

Multimedia Information
Storage and Retrieval:
Techniques and Technologies

Philip K.C. Tse
University of Hong Kong, China

Hershey • New York
IGI PublIShInG

IGIP

Acquisition Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Copy Editor: April Schmidt
Typesetter: Michael Brehm
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
IGI Publishing (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
IGI Publishing (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http:/www.eurospanbookstore.com

Copyright © 2008 by IGI Global. All rights reserved. No part of this book may be reproduced in any form or
by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the names of
the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered
trademark.

Library of Congress Cataloging-in-Publication Data

Tse, Philip K. C.
 Multimedia information storage and retrieval : techniques and technologies / Philip K. C. Tse, author.
 p. cm.
 Summary: “This book offers solutions to the challenges of storage and manipulation of a variety of media
types providing data placement techniques, scheduling methods, caching techniques and emerging character-
istics of multimedia information. Academicians, students, professionals and practitioners in the multimedia
industry will benefit from this ground-breaking publication”--Provided by publisher.
 Includes bibliographical references and index.
 ISBN-13: 978-1-59904-225-1 (hardcover)
 ISBN-13: 978-1-59904-227-5 (ebook)
 1. Multimedia systems. 2. Information storage and retrieval systems. 3. Information resources management.
I. Title.
 QA76.575.T78 2008
 006.7--dc22
 2007031978

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are
those of the authors, but not necessarily of the publisher.

Multimedia Information
Storage and Retrieval:

Techniques and Technologies

Table of Contents

Foreword...ix
Preface..xii
Acknowledgment... xxiii

Section.I:.
Background

Chapter.I
Introduction...1

Chapter.II
Multimedia.Information...5
Introduction...5
Multimedia.Data...5
Multimedia.Applications...7
Data.Representations..13
Multimedia.Access.Streams...26
Chapter.Summary...32
References...32

Chapter.III
Storage.System.Architectures..33
Introduction...33
Server.Architectures..34
Input/Output.Processors...40
Storage.Devices..43
Disk.Performance...49
Disk.Array...57
Chapter.Summary...59
References...60

Chapter.IV
Data.Compression.Techniques.and.Standards...................................61
Introduction...61
Compression.Model..62
Text.Compression..63
Image.Compression...77
Video.Compression..82
Chapter.Summary...84
References...86

Section.IIa:.
Data.Placement.on.Disks

Chapter.V
Statistical.Placement.on.Disks...92
Introduction...92
Frequency.Based.Placement...93
Bandwidth.Based.Placement...97
Chapter.Summary...99
References...99

Chapter.VI
Striping.on.Disks...101
Introduction...101
Simple.Striping..102
Staggered.Striping...104
Pseudeorandom.Placement...107
Chapter.Summary...112
References...112

Chapter.VII
Replication.Placement.on.Disks... 114
Introduction...114
Replication.to.Increase.Availability..115
Replication.to.Reduce.Network.Load...117
Replication.to.Reduce.Start-Up.Latency...118
Replication.to.Avoid.Disk.Multitasking..118
Replication.to.Maintain.Balance.of.Space.and.Load...........................120
Chapter.Summary...126
References...127

Chapter.VIII
Constraint.Allocation.on.Disks..129
Introduction...129
Phase.Based.Constraint.Allocation..130
Region.Based.Constraint.Allocation...133
Chapter.Summary...138
References...139

Section.IIb:.
Data.Placement.on.Hierarchical.Storage.Systems

Chapter.IX
Tertiary.Storage.Devices..145
Introduction...145
Magnetic.Tapes...146
Optical.Disks...149
Optical.Tapes..150
Robotic.Tape.Library..151
Performance.of.the.Tertiary.Storage.Devices.......................................153
Chapter.Summary...154
References...155

Chapter.X
Contiguous.Placement.on.Hierarchical.Storage.Systems................156
Introduction...156
Contiguous.Placement..157
Log.Structured.Placement...158
Chapter.Summary...160
References...160

Chapter.XI
Statistical.Placement.on.Hierarchical.Storage.Systems..................161
Introduction...161
Frequency.Based.Placement...162
Discussion...164
Chapter.Summary...165
References...166

Chapter.XII
Striping.on.Hierarchical.Storage.Systems..167
Introduction...167
Parallel.Tape.Striping...168
Performance.of.Parallel.Tape.Striping...170
Triangular.Placement...175
Performance.of.Triangular.Placement...180
Chapter.Summary...186
References...186

Chapter.XIII
Constraint.Allocation.on.Hierarchical.Storage.Systems.................187
Introduction...187
Interleaved.Contiguous.Placement...188
Concurrent.Striping..198
Performance.Analysis...203
Chapter.Summary...205
References...205

Section.III:.
Disk.Scheduling.Methods

Chapter.XIV
Scheduling.Methods.for.Disk.Requests...212
Introduction...212
First–In-First-Out.Method..213
The.SCAN.Algorithm...214
Chapter.Summary...223
References...223

Chapter.XV
Feasibility.Conditions.of.Concurrent.Streams.................................224
Introduction...224
Feasibility.Condition.for.a.Storage.Device.to.Accept.New.Streams....228
Feasibility.of.Homogeneous.Streams..230
Feasibility.Condition.of.Heterogeneous.Streams.................................233
Feasibility.of.Heterogeneous.Streams.over.Multiple.Storage.Devices.236
Chapter.Summary...239
References...240

Chapter.XVI
Scheduling.Methods.for.Request.Streams..241
Introduction...241
Earliest.Deadline.First.Scheduling...242
The.SCAN-EDF.Scheduling.Method...243
Group.Sweeping.Scheduling...249
Chapter.Summary...256
References...257

Section.IV:.
Data.Migration

Chapter.XVII
Staging.Methods..263
Introduction...263
Staging.Method...264
Performance.of.the.Staging.Method...267
Chapter.Summary...270
References...271

Chapter.XVIII
Time.Slicing.Method...272
Introduction...272
Time.Slicing.Method...273
Performance..275
Chapter.Summary...278
References...279

Chapter.XIX
Normal.Pipelining...280
Introduction...280
The.Normal.Pipelining.Method..281
Chapter.Summary...288
References...288

Chapter.XX
Space Efficient Pipelining...289
Introduction...289
The Basic Space Efficient Pipelining Algorithm...................................290
Circular.Buffer.Size.and.Start-Up.Latency...295
Buffer.Replacement.Policies...296
Chapter.Summary...298
References...298

Chapter.XXI
Segmented.Pipelining...299
Introduction...299
Segmented.Pipelining..300
Analysis.of.Segmented.Pipelining...302
Performance.of.Segmented.Pipelining..315
Discussion...316
Chapter.Summary...318
References...319

Section.V:.
Cache.Replacement.Policy

Chapter.XXII
Memory.Caching.Methods...325
Introduction...325
The.Least.Recently.Used.Method..328
Object.Access.Patterns...330
The.Least.Frequently.Used.Method..332
The.LRU-Min.Method...333
The.Greedy.Dual.Size.Method..335
The Least Unified Value Method...336
The.Mix.Method..337

Chapter.Summary...338
References...339
Exercises...340

Chapter.XXIII
Stream.Dependent.Caching...341
Introduction...341
The.Resident.Leader.Method..343
Variable.Length.Segmentation..346
The.Video.Staging.Method..349
The.Hotspot.Caching.Method...352
Interval.Caching...354
Layered.Based.Caching..357
The.Cost.Based.Method.for.Wireless.Networks....................................362
Chapter.Summary...365
References...366

Chapter.XXIV
Cooperative.Web.Caching..368
Introduction...368
Hierarchical.Web.Caches...370
Front.and.Rear.Partitioning...372
Directory.Based.Cooperation...374
Hash.Based.Cooperation..377
The.Multiple.Hotspot.Caching.Method...378
Chapter.Summary...381
References...381

About.the.Author..387

Index...388

�

Foreword

Most systems nowadays are designed with multimedia functionalities irre-
spective of the applications domain, and in many applications, the multimedia
component is central to the operation of the system. A key requirement of
many multimedia and visual information systems is the ability to locate and
retrieve relevant data objects. Compared with conventional database pro-
cessing, such as OLTP (Online Transaction Processing) and OLAP (Online
Analytic Processing), the data intensity in such systems in terms of size and
volume tends to be much greater. At the same time, performance constraints
on multimedia data delivery are also more stringent, since failure to retrieve
data in time may mean that the progress of a song or a movie has to be un-
desirably interrupted.
Although secondary and tertiary storage technologies have improved sub-
stantially in recent years, they are still several orders of magnitude slower
than processor speed, and such a substantial performance gap is likely to
persist for some time into the future. Therefore, it is vital that algorithms
and strategies are developed and deployed to optimize storage performance
and behavior. Such performance enhancement strategies generally take a
number of forms, some of which are static and some dynamic.
First, data must be judiciously situated and positioned so that their location
and retrieval may be carried out efficiently. This involves exploiting the

�i

characteristics of both the data objects and the storage structure. Without a
sound data placement strategy, optimal processing will not be possible. Dif-
ferent methods of data placement for multimedia processing are systemati-
cally and exhaustively treated in Section IIa of this book. The extension of
such techniques for hierarchical storage systems represents a different level
of complexity and is carefully developed in Section IIb of the book.
While data placement corresponds to the relatively static aspect of process-
ing, the dynamic operations invariably involve considerable choices and
optimizations. These relate to the scheduling of data requests, the staging
and migration of data, and cache management so as to meet the performance
constraints. These topics as well as the underlying ideas are systematically
built up and treated in Section III, Section IV, and Section V of the book,
respectively.
Throughout this book, all relevant concepts and principles are systematically
and lucidly explained, and the expositions are always accompanied by care-
fully designed diagrams and illustrations. In any serious performance analysis,
the use of mathematical modeling is unavoidable. The mathematics in the
book are presented in a lucid style, and the notations adopted are natural,
making the mathematical developments easy to understand and follow.
Systems designers will find the wealth of techniques and analysis presented
in the book an indispensable resource. Students of multimedia systems and
advanced databases will find the treatment of topics and development of
ideas in the book valuable to their understanding of efficient multimedia
storage systems. Researchers of multimedia and database systems will find
the book a vital source of reference. The unique and systematic coverage
of topics in the book will make it an important and up-to-date resource for
many types of readers.

Clement.Leung
Foundation.Chair.in.Computer.Science.
Victoria.University,.Australia

�ii

Clement.Leung:.Prior to taking up his present Foundation Chair in Computer Science at Victoria
University, Australia, Clement Leung held an Established Chair in Computer Science at the University
of London. His publications include two books and well over 100 research articles. His services to
the research community include serving as program chair, program co-chair, keynote speaker, panel
expert, and on the program committee and steering committee of major international conferences
in the U.S., Europe, Australia, and Asia. In addition to contributing to the editorship of a number of
international journals, he has also served as the Chairman of the International Association for Pattern
Recognition Technical Committee on Multimedia and Visual Information Systems, as well as well
as on the International Standards (ISO) MPEG-7 committee responsible for generating standards for
digital multimedia, where he played an active role in shaping the influential MPEG-7 International
Standard. He is listed in Who’s.Who.in.Australia, Who’s.Who.in.the.World, Great.Minds.of.the.21st.
Century, Dictionary.of.International.Biography, and Who’s Who in Australasia & Pacific Nations. He
is a Fellow of the British Computer Society and a Fellow of the Royal Society of Arts, Manufactures
and Commerce.

�iii

Preface

This book explains the techniques to store and retrieve multimedia informa-
tion in multimedia storage systems. It describes the internal architecture of
storage systems. Readers will be able to learn the internal architectures of
multimedia storage systems. Many techniques are described with details.
Examples are provided to help readers understand the techniques. By un-
derstanding these techniques, we hope that readers may also apply similar
techniques in the problems that they encounter in their everyday life. In
particular, this book would be helpful to managers who wish to improve the
performance of their multimedia storage systems.
To the best of our knowledge, there are many books about multimedia infor-
mation and only a few books discuss the storage systems in detail. Only one of
them describes the storage and retrieval methods for multimedia information.
However, none of them have discussed the storage and retrieval methods in
hierarchical storage systems. Therefore, we consider it necessary to explain
the storage techniques for multimedia information on storage systems and
hierarchical storage systems in a new book. This book discusses the research
on multimedia information storage and retrieval techniques.
This book focuses on the storage and retrieval methods. Some other tech-
niques, though somewhat related, are however outside the scope of this book.
Those topics include security of multimedia data in the storage systems,

�iv

protocols to deliver multimedia information across the networks, and real
time processing of multimedia information. Readers can easily find these
topics from other books.
This book is divided into the following six sections:

1. Background information in Section I.
2. Data placement on disks in Section IIa.
3. Data placement on hierarchical storage systems in Section IIb.
4. Disk scheduling methods in Section III.
5. Data migration methods in Section IV.
6. Cache replacement policies in Section V.

We start this book with the background of multimedia storage technology
in Section I. Multimedia applications process digital media that were only
present in the entertainment industry. Multimedia information systems pro-
cess digital media data according to the needs in these applications. Data
compression is vital to the success of multimedia information systems and
we explain two image and video compression standards. Traditional storage
systems need to be enhanced or improved to support the data storage and
retrieval operations. The characteristics of multimedia access patterns have
significant impacts on the performance of the storage systems.
In Section IIa, “Data Placement on Disks,” we describe the data placement
methods that organize the storage locations of multimedia data on disks.
Data placement methods organize the multimedia data according to the
characteristics of multimedia data access patterns. New techniques have
been designed to improve the performance of multimedia storage servers to
an acceptable level. Data placement methods are grouped according to the
strategies being applied, including statistical placement, striping, replication,
and constraint allocation.
In Section IIb, “Data Placement on Hierarchical Storage Systems,” we de-
scribe the storage organization of multimedia data on hierarchical storage
systems. Data placement methods have been designed to achieve efficient
retrievals of multimedia data. The data placements are categorized according
to the strategy in use, including contiguous placement, statistical placement,
striping, and constraint allocation.
In Section III, “Disk Scheduling Methods,” the disk scheduling methods that
rearrange the service sequences of the waiting requests are described. The

�v

methods that schedule normal disk requests are first described. The feasibil-
ity conditions to merge concurrent streams are then followed. After that, we
describe the scheduling methods for streams of multimedia requests.
In Section IV, “Data Migration,” we show the methods to migrate data across
the storage levels of the hierarchical storage systems. Data residing on the
hierarchical storage systems are migrated from high levels with high ac-
cess latency to lower levels with low access latency. Staging methods move
multimedia objects across the storage level via staging buffers. Time slicing
method accesses objects in time slices in order to reduce the start-up latency
of streams. Pipelining methods minimize the start-up latency and staging
buffer size for multimedia streams.
In Section V, “Cache Replacement Policy,” the cache replacement methods
of multimedia servers are described. Efficient cache replacement policies
on these servers keep the objects with high access probability on the cache.
They improve the cache replacement methods of multimedia streams so
that multimedia data can be delivered efficiently over the Internet. Memory
caching methods replace objects with low cache value so that high cache
value objects can be kept for efficient cache performance. Stream dependent
caching methods assign cache values to object segments in order to improve
the cache efficiency for multimedia objects. Cooperative proxy servers share
their Web cache contents so that the cache performs efficiently when similar
objects are accessed by their clients.
The organization of chapters in this book is as follows:

1. Background in Section I.
a. Introduction in Chapter I.
b. Multimedia information in Chapter II.
c. Architectures of storage systems in Chapter III.
d. Data compression techniques and standards in Chapter IV.

2. Data placement on disks in Section IIa.
a. Statistical placement on disks in Chapter V.
b. Striping on disks in Chapter VI.
c. Replication placement on disks in Chapter VII.
d. Constraint allocation on disks in Chapter VIII.

3. Data placement on hierarchical storage systems in Section IIb.

�vi

a. Tertiary storage devices in Chapter IX.
b. Contiguous placement on hierarchical storage systems in Chapter

X.
c. Statistical placement on hierarchical storage systems in Chapter

XI.
d. Striping on hierarchical storage systems in Chapter XII.
e. Constraint allocation on hierarchical storage systems in Chapter

XIII.
4. Disk scheduling methods in Section III.

a. Scheduling methods for disk requests in Chapter XIV.
b. Feasibility conditions of concurrent streams in Chapter XV.
c. Scheduling methods for request streams in Chapter XVI.

5. Data migration in Section IV.
a. Staging method in Chapter XVII.
b. Time slicing method in Chapter XVIII.
c. Normal pipelining in Chapter XIX.
d. Space efficient pipelining in Chapter XX.
e. Segmented pipelining in Chapter XXI.

6. Cache replacement policies in Section V.
a. Memory caching methods in Chapter XXII.
b. Stream dependent caching in Chapter XXIII.
c. Cooperative Web caching in Chapter XXIV.

In Chapter I, “Introduction,” we give an overview of the techniques that are
covered in this book. The techniques are described briefly according to the
division of parts in this book.
In Chapter II, “Multimedia Information,” we start with describing the char-
acteristics of multimedia data. Some applications that are involved in using
and processing multimedia information are listed as examples. The repre-
sentations of multimedia data show how the large and bulky multimedia data
are represented and compressed. The multimedia data are also accessed in
request streams. Readers who are familiar with multimedia processing may
skip this chapter.

�vii

In Chapter III, “Storage System Architectures,” the architectures of storage
systems are explained. Multimedia systems are similar to traditional comput-
ers systems in term of their architectures. Multimedia computer systems are
built with stringent processing time requirements. The components of the
computer system, including the storage servers, need to process a large amount
of data in parallel within a guaranteed time frame. The storage server needs
to access data continuously to the clients according to the clients’ requests.
Multimedia objects are large and the magnetic hard disks need to access
segments of the objects within a short time. These requirements lead to the
emergence of constant recording density disks and zoned disks. Readers who
have deep understandings of the computer storage architectures may skip
some descriptions and go to the performance equations immediately.
In Chapter IV, “Data Compression Techniques and Standards,” the data
compression techniques and standards are described. We describe the general
compression model, text compression, image compression and JPEG2000,
and video compression and MPEG2. These data compression techniques are
helpful to understand the multimedia data being stored and retrieved.
In Chapter V, “Statistical Placement on Disks,” two statistical placement
methods are described. The statistical placement strategy is based on the
difference in access characteristics of the multimedia streams. The frequency
based placement method optimizes the average request response time. It uses
an algorithm to place the objects according to their access frequencies. The
bandwidth based placement method places objects according to their data
rates. The storage system maintains its optimal performance according to
the object data transfer time without reorganizations. Readers may find this
chapter useful in other situations which involve probabilities.
In Chapter VI, “Striping on Disks,” three striping methods are explained in
detail. Multimedia streams need continuous data supply. The aggregate data
access requirement of many multimedia streams imposes very high demand
on the access bandwidth of the storage servers. The disk striping or data strip-
ing methods spread data over multiple disks to provide high aggregate disk
throughput. The simple striping methods increase the efficiency of serving
concurrent multimedia streams. Multimedia streams access the data stripes
according to their actual data consumption rates. The disk bandwidth and the
memory buffer are used efficiently. The staggered striping method provides
effective support for multiple streams accessing different objects from a group
of striped disks, and it automatically balances the workload among disks. The
pseudorandom placement method maintains that the data stripes are evenly
distributed on disks and it reduces the number of data stripes being moved

�viii

when the number of disks increases or decreases. It reduces the workload
on data reorganization when disks are added or removed.
In Chapter VII, “Replication Placement on Disks,” several replication place-
ment methods on disks are shown. When extra storage space is available,
the storage system may keep extra copies of the stored objects. Extra copies
of objects may be able to increase the storage system performance. The re-
cent trend of technology shows that storage capacity is increased at a faster
pace than the access bandwidth. Storage capacity may not be a problem
when compared to the access bandwidth. The replication strategy applies
redundancy to increase reliability of the storage system and availability of
the stored objects. It reduces network load, start-up latency. It avoids disk
multitasking. It maintains the balance of space and workload.
In Chapter VIII, “Constraint Allocation on Disks,” two constraint allocation
methods are described. Constraint allocation methods limit the available
locations to store the data stripes. They reduce the overheads of serving
concurrent streams from the same storage device. The maximum overheads
in accessing data from the storage devices are lowered. When many streams
access the same hot object, the phase based constraint allocation supports
more streams with less seek actions. The region based allocation limits the
longest seek distance among requests.
In Chapter IX, “Tertiary Storage Devices,” the tertiary storage devices are
detailed. Several types of storage devices, including magnetic tapes, optical
disks, and optical tapes, are available to be used at the tertiary storage level
in hierarchical storage systems. These storage devices are composed of fixed
storage drives and removable media units. The storage drives are fixed to
the computer system. The removable media unit can be removed from the
drives so that the storage capacity can be expanded with more media units.
When data on a media are accessed, the media unit is accessed from their
normal location. One of the storage drives on the computer system is chosen.
If there is a media unit in the storage drive, the old media unit is unloaded
and ejected. The new media unit is then loaded to the drive. Readers who
are familiar with the robotic tape libraries may skip this chapter and directly
move on to the placement methods.
In Chapter X, “Contiguous Placement on Hierarchical Storage Systems,”
two contiguous placement methods are described. The contiguous place-
ment is the most common method to place traditional data files on tertiary
storage devices. The storage space in the media units is checked. The data
file is stored on a media unit with enough space to store the data file. When
tertiary storage devices are used to store multimedia objects, the objects are

�i�

stored and retrieved similar to traditional data files. Since the main applica-
tion of the tertiary storage devices is to back up multimedia objects from
computers, the objectives of the contiguous method are (1) to support back
up of multimedia objects efficiently and (2) to reduce the number of separate
media units that are used to store an object.
In Chapter XI, “Statistical Placement on Hierarchical Storage Systems,” we
describe the statistical strategy to place multimedia objects on hierarchical
storage systems. The objective of the data placement methods is to minimize
the time to access object from the hierarchical storage system. The statistical
strategy changes the statistical time to access objects so that the mean access
time is optimal. The frequency based placement method differentiates objects
according to their access frequencies. The objects that are more frequently
accessed are placed in the more convenient locations. The objects that are
less frequently accessed are placed in the less convenient locations.
In Chapter XII, “Striping on Hierarchical Storage Systems,” two striping
techniques are explained with details. The data striping technique has been
successfully applied on disks to reduce the time to access objects from the
disks. Thus, the striping technique has been investigated to reduce the time
to access objects from the tape libraries in a similar manner. Similar to the
striping on disks, the objective of the parallel striping method is to reduce
the time to access objects from the tape libraries. The parallel tape striping
directly applies the striping technique to place data stripes on tapes. The tri-
angular placement method changes the order in which data stripes are stored
on tapes to further enhance the performance.
In Chapter XIII, “Constraint Allocation on Hierarchical Storage Systems,”
two approaches to provide constraint allocations on different types of media
units are described. Multimedia objects are large in size, but the access latency
of hierarchical storage systems is high. The hierarchical storage systems need
to provide high throughput in delivering data. Multimedia streams should
be displayed with continuity. Depending on the data migration method, the
whole object or only partial object is retrieved prior to the beginning of
consumption. The constraint allocation methods limit the freedom to place
data on media units so that the worst case would never happen. They reduce
the longest exchange time and/or the longest reposition time in accessing the
objects. The interleaved contiguous placement limits the storage locations
of data stripes on optical disks. The concurrent striping method limits the
storage locations of data stripes on tapes.
In Chapter XIV, “Scheduling Methods for Disk Requests,” two common disk
scheduling methods are explained. Disk scheduling changes the sequence

��

order to serve the requests that are waiting in the queue. While data placement
reduces the access time of a disk request, scheduling reduces the waiting time
of a request. The longer the waiting queue, the more useful is the scheduling
method. When there are not any requests in the waiting queue, any schedul-
ing methods perform the same. A disk scheduling policy changes the service
order of waiting requests. It accepts the waiting requests and serves them
in the new service sequence. The first-in-first-out policy serves requests in
the same order as the incoming order of the waiting requests. The SCAN
scheduling method serves the waiting requests in the order of their accessing
physical track locations to serve the requests efficiently.
In Chapter XV, “Feasibility Conditions of Concurrent Streams,” we prove
the feasibility conditions to accept homogeneous and heterogeneous streams
to a storage system. Multimedia storage systems store data objects and re-
ceive streams of requests from the multimedia server. When a client wishes
to display an object, it sends a new object request for the multimedia object
to the multimedia server. The multimedia server checks to see if this new
stream can be accepted. The server encapsulates the data stripe of the ac-
cepted streams as data packets and sends them to the client. The server sends
data requests periodically to the storage system. Each of these data requests
has a deadline associated with it. Every request of a stream, except the first
one, must be served within the deadline to ensure continuity of the stream.
We prove that heterogeneous streams can be accepted when their streams
accessing patterns satisfy the feasibility conditions. Readers may skip the
proofs of the equations in this chapter in the first reading.
In Chapter XVI, “Scheduling Methods for Request Streams,” we describe
three scheduling methods for multimedia streams of requests. These sched-
uling methods use either serve requests according to their deadline or serve
the stream in round robin cycle in order to provide real-time continuity
guarantee. They all use the SCAN scheduling method to improve the ef-
ficiency in serving requests. The earliest deadline first scheduling method
serves requests according to their deadlines so that the requests would not
wait too long and miss their deadlines. The SCAN-EDF scheduling method
serves requests with the same deadline in the SCAN order. It improves the
efficiency of the storage system using the EDF scheduling method. The
group sweeping scheduling method serves groups of streams in round-robin
cycles. It improves the efficiency of the storage system and provides real-
time continuity guarantees to the streams. It is also fair to all the streams by
serving one request of every stream in each cycle.

��i

In Chapter XVII, “Staging Methods,” we describe one of the data migration
methods. Data migration is the process of moving data from tertiary storage
devices to secondary storage devices in hierarchical storage systems. The
three approaches to migrate multimedia data objects across the storage levels
are staging, time slicing, and pipelining. The staging method accesses an ob-
ject using two stages. The staging method is simple and flexible. It is suitable
for any type of data on any tertiary storage systems. Some readers may find
the staging method is simple and just browse through this chapter.
In Chapter XVIII, “Time Slicing Method,” the time slicing method is de-
scribed. Tertiary storage devices provide huge storage capacity at low cost.
Multimedia objects stored on the tertiary storage devices are accessed with
high latency. The time slicing method is designed to reduce the start up latency
in accessing multimedia objects from tertiary storage devices. The start-up
latency is lowered by reducing the amount of data being migrated before
consumption begins. The time slicing method accesses objects at the unit of
slices instead of objects. Streams can start to respond at an earlier time.
In Chapter XIX, “Normal Pipelining,” the first pipelining method is intro-
duced. Three pipelining methods, including normal pipelining, space efficient
pipelining, and segmented pipelining, can be used to access multimedia ob-
jects with minimal start-up latency. Apart from reducing the start up latency,
the pipelining methods also reduce the usage of the staging buffers. The
normal pipelining method finds the minimum fraction of the object before
the stream can start to display it. The formula to find minimum size of the
first slices is explained. The pipelining method minimizes the start-up latency
for the tertiary storage devices whose data transfer rate is lower than the data
consumption rate of the objects.
In Chapter XX, “Space Efficient Pipelining,” the space efficient pipelining
method is explained. The space efficient pipelining method is designed for
pipelining objects from low bandwidth storage devices for display. It re-
trieves data at a rate lower than the data consumption rate. It keeps the front
part of objects resident on disk cache to start a new stream at disk latency.
It uses the disk space efficiently to handle more streams. The basic policy
reuses the circular buffer to store the later slices of the objects. The shrinking
buffer policy reduces the circular buffer size after a slice is displayed. It is
particularly useful when the circular disk buffer constraint is tight. The space
stealing policy reuses the storage space containing the head of the object as
part of the circular buffer.
In Chapter XXI, “Segmented Pipelining,” the segmented pipelining method
to reduce the latency in serving interactive requests is presented and analyzed.

��ii

The segmented pipelining method divides objects into segments and slices
so that the object can be pipelined from the hierarchical storage system. The
segmented pipelining method is analyzed in terms of disk space requirement
and the reposition latency. It uses small extra disk space to support object
previews and efficient interactive functions. It can offer extra flexibility in
controlling the amount of disk space usage by adjusting the storage location
of the preload data. The segmented pipelining is an efficient and flexible
data migration method for the multimedia objects on hierarchical storage
systems.
Multimedia objects can be stored in the content servers on the Internet. When
clients access multimedia objects from a content server, the content server
must have sufficient disk and network to deliver the objects to the clients.
Otherwise, it rejects the requests from the new clients. The server and net-
work workloads are important concerns in designing multimedia storage
systems over the Internet. The Internet caching technique helps to reduce
the number of repeated requests for the same objects from popular content
servers. As caching consumes myriad storage space, the cache performance is
significantly affected by the cache size. Cache admission policies determine
whether a newly accessed object should be stored onto the cache devices.
Cache replacement policies decide which objects should be removed to release
space. The cache replacement policy can be divided into memory caching
and stream dependent caching.
In Chapter XXII, “Memory Caching Methods,” we describe several replace-
ment policies in memory caching. Memory cache replacement policies assign
a cache value to each object in the cache. This cache value decides the prior-
ity of keeping the object in the cache. When space is needed to store a new
object in cache, the cache replacement function will choose the object with
the lowest cache value and delete it to release space. The objects with high
cache values will remain in the cache. Different cache replacement policies
assign different cache values to the objects. The traditional LRU method
keeps the objects that are accessed most recently. It is simple and easy to
implement and the time complexity is very low. The LFU, LUV, and mix
methods keep track of the object temperature and remove the coldest objects
from the cache first. The LRU-min, GD-size, LUV, and mix methods keep
the small and recently accessed objects in the cache. The GD-size, LUV, and
mix methods also include latency cost of objects in the cache to lower the
priority of objects that can be easily replaced.
In Chapter XXIII, “Stream Dependent Caching,” the stream dependent
caching methods that guarantee continuous delivery for multimedia streams

��iii

are described. The storage techniques on stream dependent caching include
resident leader, variable length segmentation, video staging, hotspot caching,
and interval caching. They will divide each multimedia object into smaller
segments and store selected segments on the cache level. The resident leader
method trades off the average response time of requests to reduce the maxi-
mum response time of streams. The variable length segmentation method
divides the objects into segments of increasing length so that large segments
may be deleted to release space more efficiently. The video staging method
retrieves high bandwidth segments to reduce the necessary WAN bandwidth
for streaming. The hotspot caching method creates the hotspot segments of
objects to provide fast object previews from local cache. The interval cach-
ing method keeps the shortest intervals of video to maintain the continuity
of streams from the local cache content. The layer based caching method
adapts the quality of streams to the cache efficiency. It uses the continuity
and completeness as metrics to measure the suitability of the caching method
for multimedia streams. The cost based method for wireless clients reduces
the quality distortion over the error-prone wireless networks with the help
of the cache content. The cache values of the segments are composed of the
network cost, the start-up latency cost, and the quality distortion cost.
In Chapter XXIV, “Cooperative Web Caching,” we describe how Web caches
cooperate to raise the overall cache performance on the Internet. Hierarchical
Web caching reduces network latency on requests. Front and rear partitioning
reduces the start-up latency of streams. Directory based cooperation avoids
the contention on parent proxy server. Hash based cooperation achieves low
storage overheads and update overheads. Multiple hotspot caching keeps the
hotspot blocks to provide fast local previews. The performances of various
object partitioning methods in cooperative multimedia proxy servers are
analyzed.

��iv

Acknowledgment

It is my pleasure to acknowledge the help of all involved in the writing, edit-
ing, and review of this book. Without their support, this book could not have
been satisfactorily completed.
My first note of thanks goes to all the staff at IGI Global for their valuable
contributions in the process. In particular, I would like to thank Kristin Roth
and Corrina Chandler for their timely e-mails in keeping the schedule of this
project. My special thanks go to Dr. Mehdi Khosrow-Pour whose invitation
gave me a chance to write this book.
I would like to thank Professor Clement Leung for writing the foreword of
this book. It is also his early invitation to write a book on multimedia storage
that gave me motivation and courage to write this book.
I would like to thank my colleagues in the University of Hong Kong for be-
ing supportive and cooperative. My special thanks go to Professor Victor Li
whose support and trust let me finish this book.
I owe my appreciation to my wife, Peky, for her consistent support with trust
and love during the nights I was writing. I miss the time that I could spend
with Joshua and Jonah who are growing up to understand the world.
Last but not least, I praise God for leading my life, answering my prayers,
and fulfilling my needs during this work.

Section.I

Background

We shall provide the background of multimedia storage techniques and
technology in this part. The first chapter gives an introduction to the book.
Multimedia information is described in Chapter II. The architectures of stor-
age systems are described in Chapter III. The data compression techniques
and standards are explained in Chapter IV.

Introduction �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.I

Introduction

This book explains the techniques to store and retrieve multimedia information
in multimedia storage systems. It describes the internal architecture of storage
systems. Readers will be able to learn the internal architectures of multimedia
storage systems. Many techniques are described with details. Examples are
provided to help readers understand the techniques. By understanding these
techniques, we hope that readers may also apply similar techniques in the
problems that they encounter in their everyday life.
This book focuses on storage and retrieval methods. Some other techniques,
though somewhat related, are outside the scope of this book. These topics
may include security of multimedia data in the storage systems, streaming
protocols to deliver multimedia information across the networks, recognition
of information from multimedia data, and real time processing of multimedia
information. Readers may find information on these techniques in many other
books. To our understanding, the data placement techniques, disk scheduling
methods, and data migration methods are three areas which are not sufficiently
covered in the books on the market.

� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

This book is divided into the following six sections:

1. Background information in Section I.
2. Data placement on disks in Section IIa.
3. Data placement on hierarchical storage systems in Section IIb.
4. Disk scheduling methods in Section III.
5. Data migration methods in Section IV.
6. Cache replacement policies in Section V.

The data placement methods are divided into Section IIa and Section IIb
because they are similar but different techniques applied in different storage
levels.
We start this book with the background multimedia information. Multimedia
applications process digital media that were only present in the entertainment
industry. Multimedia information systems process digital media data accord-
ing to the needs in these applications. Traditional storage systems need to be
enhanced or improved to support the data storage and retrieval operations.
The characteristics of multimedia access patterns have significant impacts on
the performance of the storage systems. New techniques have been designed
to improve their performance to an acceptable level. Data placement methods
organize the multimedia data according to the characteristics of multimedia
data access patterns in disk and hierarchical storage systems. Disk scheduling
methods rearrange the service sequences of the waiting requests. Data residing
on the hierarchical storage systems are migrated from high levels with high
access latency to lower levels with low access latency. Cache replacement
policies improve the replacement methods of multimedia data for efficient
cache performance over the Internet.
In the next chapter, we start with describing the characteristics of multimedia
data. Some applications are involved in using and processing multimedia
information. Several examples are shown to provide the basic understanding
on the processing environment of multimedia information. The representa-
tions of multimedia data show how the large and bulky multimedia data
are represented and compressed. The multimedia data are also accessed in
request streams. Readers who are familiar with the multimedia information
may skip this chapter and jump to the next chapter.

Introduction �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In Chapter III, the architectures of storage systems are explained with details.
In order to process continuous multimedia streams, multimedia computer
systems are built with stringent processing time requirements. When storage
servers are designed to handle multimedia streams, the architecture of the
storage servers also needs to handle the processing time requirements. The
storage server needs to access data continuously for the clients according
to the clients’ requests. Multimedia objects are large and the magnetic hard
disks needed to access segments of the objects within a short time. These
requirements lead to the emergence of constant recording density disks and
zoned disks. Readers who are familiar with the architectures of storage de-
vices may skip this chapter.
In Chapter IV, the data compression techniques and standards are described.
Because the performance of a computer system depends on the amount of
data retrieved and the multimedia objects are large, the performance of the
computer system can be enhanced by reducing the object sizes. Therefore,
multimedia objects are always kept in their compressed form when they are
stored, retrieved, and processed. We shall describe the commonly used com-
pression techniques and compression standards in this chapter. We describe
the general compression model, text compression, image compression and
JPEG2000, and video compression and MPEG2. These data compression tech-
niques are helpful to understand the multimedia data stored and retrieved.
The organization of chapters in this book includes:

1. Background in Section I.
a. Introduction in Chapter I.
b. Multimedia Information in Chapter II.
c. Architectures of Storage Systems in Chapter III.
d. Data Compression Techniques and Standards in Chapter IV.

2. Data placement on disks in Section IIa.
a. Statistical Placement on disks in Chapter V.
b. Striping on disks in Chapter VI.
c. Replication Placement on disks in Chapter VII.
d. Constraint Allocation in Chapter VIII.

3. Data placement on hierarchical storage systems in Section IIb.
a. Tertiary Storage Devices in Chapter IX.

� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

b. Contiguous Placement on Hierarchical Storage Systems in Chapter X.
c. Statistical Placement on Hierarchical Storage Systems in Chapter XI.
d. Striping on Hierarchical Storage Systems in Chapter XII.
e. Constraint Allocation on Hierarchical Storage Systems in Chapter XIII.

4. Disk scheduling methods in Section III.
a. Scheduling Methods for Disk Requests in Chapter XIV.
b. Feasibility Conditions of Concurrent Streams in Chapter XV.
c. Scheduling Methods for Request Streams in Chapter XVI.

5. Data migration in Section IV.
a. Staging Method in Chapter XVII.
b. Time Slicing Method in Chapter XVIII.
c. Normal Pipelining in Chapter XIX.
d. Space Efficient Pipelining in Chapter XX.
e. Segmented Pipelining in Chapter XXI.

6. Cache replacement policies in Section V.
a. Memory Caching Methods in Chapter XXII.
b. Stream Dependent Caching in Chapter XXIII.
c. Cooperative Web Caching in Chapter XIV.

Multimedia Information �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.II

Multimedia.Information

Introduction

To start this book, I shall first describe the characteristics of multimedia data.
Then, some multimedia applications are listed. After these, I shall explain
the representations of multimedia data. Lastly, the multimedia requests are
presented as streams.

Multimedia.Data

What.is.Multimedia.Information?

Traditional data represent the logical meaning only of real world entities
in computers. We use numbers such as 1, 2, 3, 4, and so on to represent
values. Textual information is described by words. These words are built up
by alphabets such as A, B, C, and D. We use drawings to represent spatial
information graphically.
In order to capture the records of real world entities, images are recorded on
films and handled by photographic equipment; sound is recorded on cassette
tapes and CD-ROMs. Sound is also transmitted by telephones. Moving im-

� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ages (video) is recorded on tapes and transported physically. Everything is
fine except that these are analog signals. Computers can only process and
handle digital signals. As a result, all these real world entities could not be
directly processed in computers.
The word “multimedia” is created by joining the two words “multiple” and “media”
together. Multimedia data provide a direct representation of the physical world in the
digital format. The multimedia data that we encounter everyday include photographs,
X-ray images, sound, and video. Other multimedia data include drawings, charts,
and animations. Any visible images and audible sound are multimedia data.

Digital.Multimedia.Data

Multimedia data are stored and processed in the digital format. Multimedia
data are handled in the digital format with several benefits.
Digital data are 100% reproducible. Digital data are precise. Any difference
can be compared and found out. It is inadvertent to making copies. Many
exact copies can be produced that are the same as the digital original. Dig-
ital data are also independent of the storage media. New storage media may
come out in the future. The same digital data can be copied or transferred to
the new media when necessary.
In addition, digital data can be processed by computers to produce new
software effects. For example, a digital photo can be blurred or sharpened.
The colour of any part of the photo can be changed. The orientation of the
photo can be rotated. Some image processing software, such are Microsoft
imaging and Photoshop can easily perform these changes.
Digital data can be transmitted over the networks. Computers can transfer
digital data from one end to another end of the networks. The ease of transmit-
ting digital data brings the possibility of building new types of applications
for multimedia information.

Multimedia.Objects

A multimedia object is a separate unit of multimedia data that can be displayed
independently. Many of these objects appear in daily life. Still images such
as photographs and X-ray images are multimedia objects. Graphic charts are
multimedia objects that are generated by reporting programs. Speech and
voice are multimedia objects that are recorded. Music is one type of multi-

Multimedia Information �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

media object that is composed. Animation graphics are artificial multimedia
objects. Video and movies are multimedia objects recorded and edited by
specialized producers.
In summary, multimedia data can directly represent real world entities in
the digital format. Digital multimedia data can be processed by computer
programs to produce software effects that were never before possible. Many
multimedia objects can be found in daily life, and these objects can now be
processed by computers.

Multimedia.Applications

Many applications can make use of multimedia information to enhance the
quality of their products.
The broadcast companies create and broadcast television programmes to the
viewers. Cable television companies such as iCable and OptusVision in
Australia transmit their encrypted audio and video programmes via dedicated
network cables to the set-top box. The set-top box then decrypts and transmits
these television signals to the television. The viewer can thus watch them
on the television.
Television can also be provided via the Internet. Some Web sites contain-
ing live radio and live television programmes are available for listeners and
viewers. Audience members who have missed some programmes may select
to watch them again via browsers.
Movie producers create digital movies using computers and allow paid viewers
to watch them. They may allow everyone to watch the advertising materials
to attract more viewers. The music companies may produce song albums for
artists. Amateur artists may directly produce their songs and publish them to
increase their personal fame.
Video on-demand, or Interactive TV, systems show video to the viewers
who have subscribed to watch the videos. They transmit selected video and
audio objects according to user’s choice. Education on-demand systems
provide video of course lectures to students enrolled in the course. They
help students in learning at their own pace. News-on-demand and sports-
on-demand systems can provide instantaneous news and sports information
to interesting viewers.

� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Remote communication and cooperation can be achieved by transmitting video
and audio information. Video telephones transmit telephone and small video
image over broadband networks. Microsoft Netmeeting® and CUSeeme®
provide video conference over computers connected over the network. Col-
laborative computing can be achieved by synchronizing the working task over
remote communications. Video e-mails may also enhance desynchronized
communications. Voice over IP software reduces international telephone calls
charges by using the Internet.
Commercial companies may install security monitoring systems that provide
around-the-clock monitoring for the office and factory areas. Advanced
systems may provide automatic alerts when too many video cameras are
being watched by a few security officers. Multimedia information can also
provide automatic quality control to enhance production. Video cameras can
take images of products. Products with significant defects will be filtered and
removed from the production line.
Visual information systems interactively search the multimedia databases
using image and audio information. Many libraries have digitized their
books and journals. With the support of government, many digital libraries
have been built, and they are available to visitors around the world. Some
museums have created an online version of some of their collections. These
virtual museums allow virtual visitors to watch their collections online.
Hospitals install patient monitoring systems to monitor patients who are
staying in intensive care units. The Earth Observatory System records and
stores video information from satellites. The system produces petabytes (1015
bytes) of scientific data per year.
Multimedia information has always been used in the entertainment industry.
Interactive video games can be enriched by high resolution graphics. Interac-
tive stories can become a reality for story readers who may make their choice
on how a story proceeds and ends.

Major System Configuration

A multimedia application system has to consider the data storage and dis-
tribution system, the data delivery network, and the delivery scheduling
algorithms.

Multimedia Information �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Data.Storage.and.Distribution

Several data storage and distribution systems have been researched. These
include the centralized system, the storage area network (SAN), the content
distribution network (CDN), and the serverless or peer-to-peer (P2P) net-
work.
The centralized system stores all the multimedia objects in one location.
The storage area network stores the multimedia objects on several servers.
These storage servers are connected over a local area network using optical
fibres. The content distribution network distributes the multimedia objects
on servers that are spread over a wide area network. Client requests are sent
to the nearest server that contains the object to serve the request.
The serverless systems or peer-to-peer networks do not permanently store the
objects on the servers. The server containing the object will only serve the
first few requests for the object. Afterwards, the nodes that have the object
will become the seed and serve other clients (Jeon & Nahrstedt, 2002). Thus,
the server can become free, and it can be disconnected from the network.

Delivery.Network.and.Scheduling

The data delivery network can be built by laying dedicated cables or by the
Internet. The multimedia objects can be delivered via broadcasting or video-
on-demand (VOD) systems. Depending on the delivery scheduling and the
delivery network, at least four types of system architectures can be built.
The interactive television (ITV) companies build their systems by broadcast-
ing over dedicated cables (Figure 2.1). In the systems, the users subscribe
to an ITV company. The ITV company broadcasts a number of channels of

TV

TV

Cable network

STB

STB

STB: Set Top Box
Interactive TV

Broadcasting Server

Hard
disk

…

Figure.2.1..Broadcasting.over.dedicated.cables

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

video content via a cable to a dedicated set-top box (STB). The STB is then
connected to the television set. The user selects a channel to watch via a
remote control unit of the STB (Furht, 1996).
The ITV companies may provide video-on-demand via dedicated cables
(Figure 2.2). In the systems, the users subscribe to an ITV company. The
ITV Company downloads a movie list to the Set Top box. User then selects
a movie from the list using remote control of set top box. The ITV Company
broadcasts the movie in a new channel to the user. Some user may join an
existing channel to watch.

Figure.2.2..Video-on-demand.over.dedicated.cables

TV

TV

Cable network

STB

STB

STB: Set Top BoxInteractive TV Video
On Demand Server

Hard
disk

…

Figure.2.3..Broadcasting.over.the.Internet

Internet

Broadcast
Streaming Server

User computers
Hard
disk

…

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The content providers may deliver multimedia objects by broadcasting over
the Internet (Figure 2.3). Users first subscribe to a content provider on the
Internet. They are then allowed to join a live video/audio channel. The content
provider then delivers the live multimedia objects from the streaming servers
to all users. Users then use their browser to receive and play streams.
The content providers may also provide video-on-demand services over the
Internet (Figure 2.4). Users first subscribe to a content provider on the Inter-
net, and the user may select a multimedia object from the content provider’s
Web site. The content provider then tests the streaming ability to the user’s
computer. The streaming server delivers the low or high resolution object
suitable for delivery to the user. The browser on the user’s computer receives
and plays the streaming object.

Video-on-Demand.Systems

Four different types of video-on-demand systems have been investigated
(Furht, 1996). These include the near video-on-demand (NVOD) systems, true
video-on-demand (TVOD) systems, partitioned video-on-demand (PVOD)
systems, and dynamically allocated video-on-demand (DAVOD) systems.
In the true video-on-demand systems, the user has complete control of a
multimedia program. The user can perform normal play, reverse play, fast
forward, random positioning, pause, and resume. In this system, each user
is allocated a unique channel during the total duration. It allows complete
user interactivity. The number of concurrent users is however limited by the

Figure.2.4..Video-on-demand.over.the.Internet

Internet

Video On Demand
(VOD) streaming server

Hard
disk

…

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

number of available channels. As a result, many potential viewers may not
be able to access the system during the busy period of time.
The near video-on-demand system (Figure 2.5) provides video distribution at
relatively low cost. This system however provides only limited user interactivity.
A popular video is broadcast using several streams or channels. Each channel is
separated from the previous channel at a fixed interval. When the user requests for
this video, the user’s access will be delayed until the start of the next stream.
The partitioned video-on-demand system (Figure 2.6) combines the advan-
tages of both NVOD and TVOD systems. User interactivity is provided at
the capacity of the system. Digital channels are partitioned into two groups:
NVOD and TVOD services. NVOD channels broadcast the most popular

Figure.2.5..Near.video-on-demand.system

Channel 1
Channel 2

Channel n

…

T
Channel 3 T

start start againend

Video length

start end

Consecutive channels start the same video with a time
difference of T sec. User waits for a time period up to T
seconds to watch a video from the beginning.

Figure.2.6..Partitioned.video-on-demand.systems

50
broadcast
channels

450 interactive channels

Near VOD
250 channels

True VOD
200 channels

All channels are divided into broadcast channels and
interactive channels. The interactive channels are subdivided
into Near Video On Demand channels and True Video On
Demand channels.

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

video with limited user control. TVOD channels will provide complete
user control functions. For example, the digital channels are divided into 50
broadcast channels and 450 interactive channels.
The dynamically allocated video-on-demand system is an extension of the
PVOD scheme. The user, watching a video from the NVOD list of most
popular videos, can request the interactivity with the video at any time. If a
channel is available, the user will be switched to the TVOD group of chan-
nels which allows complete control. The split-and-merge (SAM) protocol
provides a mechanism to split user streams for interactive functions and
merge streams when possible (Liao & Li, 1997).

Video.Conference.System

In video conference systems (Figure 2.7), computers are each installed with
a video camera, microphone, and connected to the network. A user initiates
and hosts a conference meeting. Other users then join the meeting. All of
them send their own video and audio signals to all the other users. Users may
speak, type, or draw on whiteboard.
In these systems, the network needs to deliver the video capture stream from
every user to all other users. The number of video streams is equal to n(n-
1) for n concurrent users. Thus, the network needs to support a very large
number of streams.

Data.Representations

Multimedia data types include numbers, text, graphics, animations, image,
audio, and video. However, a computer can only handle digital data that

Figure.2.7..Video.conference.system

Network

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

represents either 0 or 1. In this section, we shall describe how the computer
represents multimedia data.

Numbers.and.Text

In computers, positive integers are represented as a number with the base
of 2 instead of a base of 10. Negative integers are represented in the 2s
complement form. Real numbers are divided into mantissa and exponent
such that the significant digits are represented in the mantissa (Hennessy &
Patterson, 1996).
Each text character is represented by eight bits called a byte in the computer.
For ASCII representation, the binary byte of “0100 0001” represents an A,
and “0100 0010” means B, and so on. An English word is thus represented
by a string of bytes.

Graphics

Each position on the screen is specified as a coordinate (x, y), x-axis from left
to right and y-axis from top to bottom. For example, in an 800 x 600 screen,
the top left corner is (0, 0), the top right corner is (800, 0), the bottom right
corner is (800, 600), and the bottom left corner is (0 ,600).
A line is represented by a pair of coordinates. A curve is represented by a list
of coordinates of the starting point, several turning points, and the end point.
A circle can be represented by the coordinate of the centre and the length of
the radius (Figure 2.8).

Figure.2.8..Simple.graphics

(x1,y1)
(x2, y2)

(x1,y1) r

(x1,y1)
(x4, y4)

(x2, y2) (x3, y3)

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Animations

Computers use graphic tools to provide visual effects in a frame buffer
(Figure 2.9). The frame buffer is changed continuously by the animation
program. It scans, converts, erases, and redraws the graphic image (Figure
2.10). These changes are repeatedly drawn on the display to appear like
continuous motions.
Normally, the animation program should make 15-20 changes per second.
That is, the program has around 50 milliseconds to update the frame buffer.
If the animation updates are running too fast, the viewer may not be able to
see the changes clearly. If the animation updates are running too slowly, the
display may become jerky.

Figure.2.9..Animation

Figure.2.10..The.animation.programs.scan,.convert,.erase,.and.redraw.the.
frame.within.50.msec

Figure.2.11..Double.buffering

Frame Buffer DisplayUpdate Frame

Scan-converting process Erase &
redraw time

<25 msec <25 msec

< 50 msec

1st half frame

2nd half frame Scan-converting Erase & redraw

25 msec

Erase & redrawScan-converting

25 msec 25 msec time

Redraw after
every �� msec

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When the processes of scan, convert, erase, and redraw operations take
longer than 50 msec, the program may use the double buffering technique.
The frame buffer is divided into two parts. Each part is used to store half the
bits per pixel of the overall frame buffer. In this way, the erase and redraw
process of the first half frame buffer overlaps with the scan and convert
process of the second half frame. Each process may then have more time to
modify the frame buffer.

Images

An image is represented as a two-dimensional array of sample points called
pixels. Different from the coordinates used in mathematics, the Y coordinate
increases in the downward direction. For example, Figure 2.12 shows a 320 x
200 image that has 320 pixels on each horizontal line and 200 pixels on each
vertical line. The coordinates of the top left corner are (1, 1). The coordinates
of the top right corner are (320, 1). The coordinates of the bottom left corner
are (1, 200). The coordinates of the top left corner are (320, 200).

Image.Bits.Per.Pixel

Different images may use a different number of bits per pixel. The black and
white image (B&W) format uses only one bit per pixel. This B&W image
format is widely used in facsimile images. In elementary computer graphics
with 16 different colours, four bits are required to describe in each pixel.

x x x x x x x . . . x x x x x x x x x
x x x x x x x . . . x x x x x x x x x
x x x x x x x . . . x x x x x x x x x
x x x x x x x . . . x x x x x x x x x
.
.
x x x x x x x . . . x x x x x x x x x

A pixel

320

200

Figure.2.12..A.320.x.200.image

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The grey-scale image format uses 8 bits per pixel, and it can describe 256
different levels of colour intensity in each pixel. This image format can be
used in black and white photos.
Full colour images are described using 16 to 24 bits per pixel. They can be rep-
resented using three different representations: RGB, YUV, and YCbCr format
(Rao, Bojkovic, & Milovanovic, 2002; Witten, Moffat, & Bell, 1999). These
representations are described in more details in the paragraphs below.

RGB.Representation

Our eyes have three classes of receptors called rods. Each type of rod has a
different sensitivity to three colours: red, green, and blue. The trichromatic
theory states that the sensation of colour is produced by selectively exciting
the different types of rods. Thus, each pixel is represented by the intensity
of red, green, and blue. Each intensity value is usually coded with eight bits
to the grey-scale range of [0,255].

YUV.Representation

The cones in our eyes are very sensitive to brightness in a dark environment.
Human perception is more sensitive to brightness than any colour informa-
tion. YUV separates brightness information (luminance Y) from the colour
information (chrominance U and V) using:

Y = 0.3R + 0.6G+ 0.1B
V = R – Y
U = B – Y

Figure.2.13..RGB.representation

B

R

G

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The luminance value can be coded with more bits than the chrominance
values; for example, the number of bits may be in the ratio of (4: 2: 2).

YCbCr.Representation

The YCbCr representation is similar to the YUV representation. It is used in
the JPEG compression. In the YCbCr representation:

Y = 0.3R + 0.6G + 0.1B
Cb = U/2 + 0.5
Cr = V/1.6 +0.5

Each of these values is scaled and zero shifted to the range [0, 1].

Representation.for.Printing.CMYK

When images are being printed, the CMYK representation is used to print
the images in colours. The four colours are Cyan, Magenta, Yellow, and
Black. Each dot is printed as the combination of these four colours at dif-
ferent intensities.

Sound.and.Audio

In this section, we first describe the concept of sound waves. Then, we briefly
explain how sound waves are processed by computers. We then present a
few standard sound and audio formats.

Figure.2.14..Sound.is.a.longitudinal.wave.of.air.pressure

time

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Sound.Concept.

Sound is a longitudinal wave of air pressure (Figure 2.14). Sound is charac-
terized by the pitch and loudness. Like other waveforms, sound can be repre-
sented by a combination of waves with frequency and amplitude. Frequency
of the wave measures the pitch of the sound, and the amplitude of the wave
measures the loudness of the sound.
Wavelength is the distance between repeating units of a waveform. Fre-
quency is the number of occurrences of a repeating event per unit time, and
it is inversely related to the wavelength. While wavelengths are measured in
units of metres, frequency is measured in units of Hertz (Hz), where 1Hz =
1/second. The frequencies of some common ranges of sound waves are:

• Infra sound: 0-20 Hz
• Human hearing: 20Hz -20KHz
• Ultrasound: 20KHz – 1 GHz
• Hypersound: 1GHz – 10 THz

The amplitude of a sound wave (Figure 2.15) measures the loudness of the
sound. Amplitude is measured in units of bell or decibel (dB). Different sound
amplitudes have different effects on us:

• The background noise usually has low sound amplitude. It is difficult
to hear clearly, and we ignore these low amplitude sounds.

• The speaking level is normal amplitude sound.
• When the sound amplitude is too high, it is uncomfortable to our ears.

Figure.2.15..Amplitude.of.sound.wave

time0 1 2 3 4 5 6 7 8 9 10 11 12

Amplitude

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Computer.Processing.of.Sound

Computers cannot process sound waves without converting the sound waves
into digital signals (Figure 2.16). In order to process sound, the sound needs
to be processed. Sound waves are accepted from the microphone as analog
electronic signals. An analog-to-digital (A/D) converter converts the analog
electronic signals to digital signals in binary representation. The computer
can thus store and process the binary data.
After processing, the computer may output binary data as digital signals.
A digital-to-analog (D/A) converter does the reverse operation of changing
the digital signals back to analog electronic signals. The speakers can then
output the signals as sound waves to be heard.

Figure.2.16..Computer.processing.of.sound

A/D Converter D/A Converter
1001… 1001…

Figure.2.17..Digitization.of.sound.wave

time0 1 2 3 4 5 6 7 8 9 10 11 12

Time for 1 sample

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Digitization.of.Sound.Wave

A digitization process is used to convert the analog signals into digital sig-
nals. The A/D converter takes sample values at different times of the analog
wave according to a sampling rate. The sampling rate in number of samples
per second is usually fixed. The amplitude values of the analog signal of a
cycle are then taken as the digital data.
When the digitized sound (Figure 2.17) is output, the analog wave is gener-
ated at the same sampling rate. The amplitude of the analog wave is adjusted
according to the values of the digital data. The reproduced analog wave
resembles the original analog wave before digitization.
The reproduced analog wave may not be the same as the original analog wave
before digitization. In order to reproduce the analog wave, the sampling rate
must be at least more than or equal to twice of the frequency of the analog
wave. If the sampling rate is lower than twice of the frequency, then some
data would be lost.

Sample.Values

The sample values can be encoded with more or less bits. If more bits are used
to describe each sample value, the amplitude of the analog wave is described
in finer details. If the sample values are encoded in 8 bits, then 256 different
amplitude values can be described. If the sample values are encoded in 16
bits, then 65,536 different amplitude values can be described. When more bits
are used to describe the sample values, the sound quality would be higher.
However, more data would need to be stored and processed.

Standard.Audio/Sound.Formats

Different sound needs to be represented in different quality levels. The high
sound quality level needs to be described with more sample values at high
sampling rate. Thus, high quality sound is described with more bits per sec-
ond. For example, telephone quality is sufficient for normal speech, and CD
quality is required for audio music and songs:

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

• Telephone quality speech takes 8,000 samples/second and 8 bits/sample.
• CD-quality audio has 2 channels, a left channel and a right channel,

taking 44,100 samples/second and 16 bits /sample.
• DVD quality audio has 6 channels, including a front-left channel, a

front-right channel, a front-centre channel, a back-left channel, a back-
right channel, and a subwoofer channel.

MIDI.Format

Apart from the encoding of nature and recorded sound, audio may be encoded
using music scores. The musical instrument digital interface (MIDI) is a
digital encoding format of musical information. In the MIDI format (Figure
2.18), the sound data are not necessary. Only the commands, that is, music
scores, that describe how the music should be played are encoded.
The MIDI format uses the smallest number of bits/second to describe the
music. If recorded audio can be compressed into the MIDI format, it would
have achieved the highest compression ratio. Since the music score describes
how the music is played, a music score file in MIDI format can be edited
easily. However, the MIDI format only describes the music score that can
be easily understood by human beings. It requires a music synthesizer to
generate music.

Video

In the following paragraphs, we shall describe the representations of video
data. The concept of video leads us to the data representation of video. The
video frame rates and the aspect ratio determine the quality of the video. The
viewer should watch video at the most suitable viewing distance. Lastly, the
video formats that are used in computers are described.

Figure.2.18..MIDI.format

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Video.Concept

Since the creation of movies, a video (Figure 2.19) is represented as a list
of images called frames. Each image frame is separated from the previous
frame by a time interval. Each frame may have an image that has some dif-
ference from the image in the previous frame. The images of consecutive
frames are usually slightly different. The video would then exhibit some
continuous motion over time.
At camera cuts, the images of two consecutive frames may be completely
different. Before and after a camera cut, the consecutive frames should only
be different slightly again. If all consecutive frames have completely differ-
ent images, the video exhibits a chaotic scene which can be unpleasant to
view.

Video.Frame.Rates

The video frame rate is the number of frames that are displayed per unit
time (Wang, Ostermann, & Zhang, 2002). It is usually described in number
of frames per second. The video frame rate has an important impact on the
video quality.
Our human eyes hold the captured vision for a very short period of time.
If the frame rate is high enough, the viewer would observe a continuous
motion. If the frame rate is too low, the viewer would observe freeze in the
video. In order to show continuous motion, the video frame rate should have
at least 15 frames per second. For full motion video, 30 frames per second
are necessary.
Some video frame rates have been standardized. For movies in the cinema, 24
frames are displayed per second. The PAL TV standard in the UK, Australia,

Figure.2.19..Video.format

time

0 1 2 3 4 5 6 7 8 9

frame

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

and Hong Kong displays 25 frames per second. The NTSC TV standard in
Japan and the U.S. uses 29.97 frames per second. The High Definition Tel-
evision (HDTV) displays 59.94 frames per second.

Aspect.Ratio

Aspect ratio (Figure 2.20) is the ratio of number of pixels in the horizontal
direction to the number of pixels in the vertical direction. Thus, the aspect
ratio is the ratio of the width to the height of the image. When the displaying
aspect ratio is different from the recording aspect ratio, the image may become
distorted. If the aspect ratio value is increased, more pixels are displayed in
the horizontal direction, and the image would appear to be fatter. If the aspect
ratio is decreased, fewer pixels are displayed in the horizontal direction, and
the image would appear to be thinner.

Figure.2.20..Aspect.ratio

Width = 1920 pixels

Height =
1080 pixels

Figure.2.21..Viewing.distance

D

H

h

H: picture height
D: viewing distance

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The conventional aspect ratio in television is 4:3. Thus, the width of the im-
age is 1.33 times of the height of the image. The wide screen of HDTV uses
the 16:9 ratio, and the movies in cinema use an even wider aspect ratio.

Viewing.Distance

The viewer watches the video at a viewing distance (Figure 2.21). The optimal
viewing distance depends on the size of the displaying video. In Figure 2.21,
the picture height and the angle (h) determine the viewing distance (D). We
can easily see that the viewing distance, D, can be found using:

tan(h) = (D/H),
 D = H tan(h).

For traditional cathode ray tube (CRT) televisions, the radiation of television
is high. tan(h) should = 6. Thus, the optimal viewing distance is 6 times the
picture height. For LCD and plasma televisions, the radiation is low. The
tan(h) can be as low as 3.

Computer.Video.Formats

Computers display their output to the screen. The graphic cards inside the
computer control the video format of the display screen. Some common stand-
ard computer video formats are CGA, EGA, VGA, XGA, and SVGA.
The colour graphics array (CGA) format uses the resolution of 320 x 200
pixels. Each pixel has 4 colours and it is described with 2 bits. Thus, each
image is described with (320x200) pixels x 2 bits/pixel = 15.625 kilobytes
(KB).
The enhanced graphics array (EGA) format uses the resolution of 640 x 350
pixels per image. Each pixel uses 4 bits to describe the 16 colours. Thus, each
image is described with (640x350) pixels x 4 bits/pixel = 109.375 KB.
The video graphics array (VGA) format uses the resolution of 640 x 480
pixels. Each pixel requires 8 bits to show 256 different colours. Thus, each
image is described with (640x480) pixels x 8 bits/pixel = 300 KB.
The extended graphics array (XGA) format uses the two different resolutions
with different numbers of colour. It may use the resolution of 640 x 480 pixels

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

with 65,536 colours, and each pixel is described in 16 bits. Thus, each image
is described with (640x480) pixels x 16 bits/pixel = 600 KB. Alternatively,
it may use the resolution of 1024 x 768 pixels with 256 colours, and each
pixel is described with 8 bits. Each image is then described using (1024x768)
pixels x 8 bits/pixel = 768 KB.
The super video graphic array (SVGA) format also uses two different resolu-
tions. It may use the resolution of 800 x 600 pixels with 16,777,216 colours,
and each pixel is described in 24 bits. Thus, each image is described with
(800x600) pixels x 24 bits/pixel = 1.37 megabytes (MB). Alternatively, it may
use the resolution of 1024 x 768 pixels with 65,536 colours, and each pixel
is described with 16 bits. Each image is then described using (1024x768)
pixels x 16 bits/pixel = 1.5 MB.

Summary.to.Data.Representation

Computer graphics are represented using the coordinates on the displaying
screen. Computer animations are performed by updating changes to the frame
buffers and these changes are then drawn on the displaying screen. Images
are represented as two-dimensional pixels of colours. Each colour pixel can
be described using colour representations RGB, YUV, YCbCr, or CMYK.
Sound waves need to be accepted and digitized into digital signals for com-
puter processing. The digitization of analog waves is done by taking sample
values at a fixed sampling rate. The quality of the digitized sound is mainly
determined by the number of sample values and the sampling rate.
Video are represented as an array of image frames. 24 to 30 frames should
be displayed per second to show full continuous motions. High definition
televisions use a very high frame rate of around 60 frames per second.

Multimedia.Access.Streams.

In traditional client/server computer systems, the types of data being accessed
are usually textual and binary data. Binary data are often stored in database
files, and textual data are stored in document files. In multimedia systems,
multimedia data such as video, audio, and images are stored in data files. These
data may be accessed in a pull-based manner or a push-based manner.

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Traditional data are usually accessed in a pull-based approach. The client
programs send discrete requests to load data from the server. The request may
look like this to human beings: “Give me the 10th block of data in file A.”
Upon receiving this request, the server accesses the block of data, encloses
it in a data packet, and passes it to the client. The client then opens the data
packet and accesses the data inside the packet. After serving this request, the
server program would wait for another request from the client.
Multimedia data are often accessed in a push-based approach. The client
program sends a request to the server asking for the multimedia file starting
at a particular block. The request may look like this to human beings: “Give
me the file M starting from the 10th block.” Upon receiving this request, the
server accesses the 10th block of data in file M, encloses it in a data packet,
and passes it to the client. The server then accesses the 11th block of data in
file M and passes it to the client, and so on. The server would continue to
access the next block of data in file M and pass it to the client until it receives
another request from the client. When the client receives a data packet, it
opens the packet and accesses the data inside.
Due to the continuous nature of the multimedia data, many data requests
would be sent to the server in the pull-based approach. All the requests and

Figure.2.22..Request.streams

request

data packet data packet

Server

T time

Each packet is separated from the
previous packet at a constant time T.

Figure.2.23..Strongly.periodic.stream

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the returned data packets flow continuously like water in a river stream. In
the push-based approach, the data packets also flow continuously through
the communication path like a stream. Thus, the multimedia objects are ac-
cessed via request streams (Figure 2.22).

Classification of Streams

Depending on the time interval between consecutive packets, a stream can
be classified as strongly periodic, weakly periodic, or aperiodic streams.

Figure.2.24..Weakly.periodic.stream

T
T1 T2 T1 T2

timeT

Each group of packets is separated from the previous group at
a constant time T. The packets are separated at different time
periods T1 and T2.

Figure.2.25..Aperiodic.stream

T1 T2 Tn
time

Figure.2.26..Strongly.regular.stream
Packet size

time

D

All packets of a strongly regular stream are of the same size.

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Depending on the variation of data size between consecutive packets, a
stream can be strongly regular, weakly regular, or irregular. Depending on
the continuity of consecutive packets, a stream can be continuous or discrete
(Furht, 1996).

• Strongly.Periodic.Stream: If the time interval between any two con-
secutive packets is constant, then the stream is called a strongly periodic
stream. In the ideal case, the jitter is zero. Figure 2.23 shows a strongly
periodic stream that has a fixed time interval between consecutive data
packets. For example, the pulse code modulation (PCM) coded speech
is a strongly periodic stream.

Figure.2.27..Weakly.regular.stream

T time

Packet size

D�

D�

D�

T

Figure.2.28..Irregular.stream

time

Packet size

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

• Weakly.Periodic.Stream: If the time intervals between two consecutive
packets are not constant but only periodic, then the stream is called a
weakly periodic stream. Figure 2.24 shows a weakly periodic stream in
which the time interval between consecutive packets oscillates between
T1 and T2. When we merge two strongly periodic streams with different
periods, the resultant stream is a weakly periodic stream.

• Aperiodic.Stream: Aperiodic streams are streams such that the time
intervals between consecutive packets are neither constant nor periodic.
An aperiodic stream with different time intervals between consecutive
packets is shown in Figure 2.25.

• Strongly.Regular.Stream: If all data packets are of the same constant
size, then the stream is called a strongly regular stream (Figure 2.26).
An uncompressed video stream created from a capturing video camera
is usually a strongly regular stream.

• Weakly.Regular.Stream: If the data size of packets changes periodi-
cally, then the stream is called a weakly regular stream (Figure 2.27).

Figure.2.29..Continuous.stream

time

Packet size

Figure.2.30..Discrete.stream

timegap gap gap

Packet size

Multimedia Information ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

• Irregular.Stream: When the data sizes of packets are not constant and
they are not periodic, the stream is called an irregular stream. Since the
data sizes of packets change, it complicates the transmission and pro-
cessing of the data packets. When temporary buffers are allocated, their
size should be large enough to accommodate the largest data packet.
Thus, the buffers cannot be utilized to their full capacity. Therefore,
some efficiency is lost in handling irregular streams.

• Continuous.Stream: When the large objects are accessed and the mul-
timedia data need to be returned in small data packets, the data packets
would be sent continuously over a long time. The data stream is called
a continuous stream. Video and audio objects are usually accessed by
continuous streams.

 When the data packets are transmitted over the communication path,
the data packets occupy some capacity of the communication path for
a long period of time. If the data packets are transmitted without any
intermediate gaps, they may fully occupy the communication path (Figure
2.29). The system resources may not be able to serve other users of the
resources.

• Discrete.stream: Some multimedia objects such as images are not con-
tinuous in nature. These objects may be large, but they can be accessed
with discrete requests. A packet is not connected to its preceding and
following packets. The data stream is thus discrete. For example, a large
image object may be accessed by a request, and the object is returned
via a discrete stream.

Request.Streams.Summary

We have described the three classifications of request streams. First, a
stream may be classified according to the time interval between consecu-
tive packets. Second, a stream may be classified according to the data size
of the packets. Third, a stream may be classified according to the continuity
of the packets.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.Summary

Multimedia data can be used in many types of applications. These applications
include broadcasting, video-on-demand, communications, monitoring and
control, and even information systems. The design of multimedia systems
should consider the storage system, delivery network, and the scheduling
algorithms. Most of these systems store large multimedia objects in their
storage system for future retrievals. Inside the storage system, multimedia
objects are stored as large binary data files, and they are accessed and deliv-
ered using streams. Multimedia streams can be classified by their periodicity,
regularity, and continuity.

References

Furht, B. (1996). Multimedia technologies, systems, tools, and applica-
tions.

Hennessy, J., & Patterson, D. A. (1996). Computer.architecture:.A.quantita-
tive.approach (2nd ed.). Morgan Kaufmann.

Rao, K. R., Bojkovic, Z. S., & Milovanovic, D. A. (2002). Multimedia.com-
munication.systems:.Techniques,.standards,.and.networks. Prentice
Hall.

Tse, P. K. C. (1999). Efficient storage and retrieval methods for multimedia
information. Doctoral dissertation, Victoria University, Melbourne,
Australia.

Wang, Y., Ostermann, J., & Zhang, Y. Q. (2002). Video.processing.and.com-
munications. Prentice Hall.

Witten, I., Moffat, A., & Bell, T. (1999). Managing.gigabytes:.Compressing.
and.indexing.documents.and.images (2nd ed.). Morgan Kaufmann.

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.III

Storage.System..
Architectures

Introduction

Multimedia systems are similar to traditional computer systems in terms of
their architectures. Both types of systems have central processing unit (CPU),
random access memory, hard disks, and so forth. The CPU connects to the
memory and other components via the memory bus, and it connects to the
peripherals via the input/output (I/O) bus.
In order to process continuous multimedia streams, multimedia computer
systems are built with stringent processing time requirements. Each com-
ponent of the computer system needs to be able to process large amounts of
data, process data in parallel, and finish the processing within a guaranteed
time frame. Otherwise, undesirable effects would appear to lower the quality
of the multimedia streams.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When storage servers are designed to handle multimedia streams, the ar-
chitecture of the storage servers also needs to handle the processing time
requirements. The storage server needs to access data continuously to the
clients according to the clients’ requests.
Multimedia objects are large, and the magnetic hard disks need to access
segments of the objects within a short time. These requirements lead to the
emergence of constant recording density disks and zoned disks.
We shall describe the architecture of storage servers in the next section. After
that, we shall describe the zoned disks performance model.

Server.Architectures

Multimedia servers need to provide continuous delivery of multimedia ob-
jects to the clients. The remote clients are usually connected through a local
area network or several networks. The Internet today is a best effort network,
and it does not provide any service guarantees to multimedia streams. Thus,
the present technology uses dedicated networks to deliver the streams. The
dedicated networks, such as cable TV, are able to deliver multimedia streams
in a controllable environment.
Multimedia servers store many objects in their storage. They need to access
the objects and deliver the objects according to the requests from many cli-
ents. The storage server should access and deliver the objects efficiently in
order to maintain the quality of the streams.

Simple.Multimedia.Server.System

An example of a simple multimedia server system is shown in Figure 3.1. The
storage server or storage system is composed of a storage subsystem and a
processor subsystem. The processor subsystem serves requests from the clients
via the network. It maintains the quality of streams that are delivered to the
clients. When data are required, it sends requests to the storage subsystem.
The main responsibility of the storage subsystem is to store the multimedia
objects. All the multimedia objects are stored on the storage devices in the
storage subsystem. The storage subsystem serves data requests from the
processor subsystem. The main reason to separate the storage subsystem
from the processor subsystem is because of the workload. Since the object

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

is large and the stream is long, it takes a long time to deliver the object to
the clients. The workload on the storage subsystem is thus heavy. If the stor-
age subsystem and the processor subsystem are running on the same server,
the application server’s ability to respond interactively to the users will be
adversely affected. The user may need to wait a long time for a very simple
mouse click.
The processor subsystem is composed of three servers: the application server,
the scheduling server, and the data server. The application server receives
requests from the clients and provides a response back to them. The scheduling
server divides a request stream into a number of requests. It then schedules
the requests in a timely manner. It sends the requests to the data server. The
data server searches for the location of the requested object and forwards the
requests to the storage subsystem.
When the storage subsystem serves a read request from the data server, reads
the object from the storage device, and passes the accessed data to the data
server. When the storage subsystem serves a write request, it writes the object
to the storage devices. Most multimedia clients only access the objects for
viewing purposes only. Since multimedia objects are often read and played
to users, most requests would only read the object from the server. Thus, the
main concern on the storage subsystem is on the read operations only even
though the storage subsystem provides both read and write operations.
When the data server receives data from the storage subsystem, it directly passes
the data to the clients via the network. It will then send another data request to
the storage subsystem at the time controlled by the scheduling server.

Figure �.�. A Simple Multimedia Server System

Storage
subsystem

Data
server

Application
server

Control or
scheduling

server

Processor subsystem

ClientsNetwork

Figure.3.1..A.simple.multimedia.server.system

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Distributed.Multimedia.Server.System

A single multimedia server system may be able to serve 1 to 2,000 client
streams. When more streams need to be served or more objects need to be
stored, a large multimedia server system consisting of multiple servers is
required. A distributed multimedia server system has five objectives:

1. To store more objects
2. To serve more clients
3. To reduce the network contention
4. To spread out the network contention
5. To balance the server workloads

A multimedia server that has the accessed object may not be able to serve
a client stream for two reasons. First, if the server is overloaded, the server
does not have disk bandwidth to access the object from the storage subsys-
tems. Second, if the network around the server is already congested, the
server does not have network bandwidth to deliver the object to the client.
In either situation, the server shall reject the client stream even though it has
the object on its storage devices.
The first objective is to store more objects. Several servers in the distributed
multimedia server system have more disks to store more objects than a
simple multimedia server. To store the most number of objects, the storage
space on the servers should be used carefully. Extra copies of objects may
be created according to their access popularity. When a new object is stored,
the extra copies of objects may be deleted to release storage space for the
new object.
The second objective is to serve more client streams. Unless all the requests
are served by only one server, a distributed server system can serve more client
streams than a single server. In order to serve the most number of streams,
the objects should be distributed so that the requests are evenly spread to the
servers. Therefore, the workloads on the servers should be well balanced.
The third objective is to reduce the network workload. The workload on
the network also depends on the distance from the servers to their request-
ing clients. If the server is far from a requesting client, the data need to be
transmitted over a long distance from the server to the client. The workload

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

imposed on the network is then heavy. If the server is close to the requesting
client, the data can be transmitted over the smallest number of hops from
the server to the client. The workload imposed on the network is then light.
In distributed systems, the server that is closest to the requesting client may
be chosen to deliver the request stream. Thus, the imposed workload on the
network would be reduced.
The fourth objective is to spread out the network contention. If the servers
are close to each other, they would send packets from nearby routers on the
network. When the servers are busily serving clients, the workload on the
network around these routers becomes heavy. If the servers are far from each
other, then the routes from these servers to their serving clients may not over-
lap. Thus, the workload on the network can be spread out to more routes.
The fifth objective is to balance the server workloads. While a server is busily
serving some streams, it may not have sufficient resources, such as disk load,
to serve any additional new stream. New streams will then need to wait. If
other servers are available to serve this stream, the new stream can be served
immediately. The workload on the busy server is then transferred to the other
servers. Thus, the server workloads can thus be balanced.
In general, a distributed multimedia server system is composed of multimedia
servers, clients, and the network as shown in Figure 3.2. Multimedia objects
are stored on the simple multimedia servers. The servers are connected to the
network. Clients send requests to the multimedia servers over the network.

Figure �.�. A Distributed Multimedia Server System

network

Simple
MM server

Simple
MM server Simple

MM server

client client client client client client

Figure.3.2..A.distributed.multimedia.server.system

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The multimedia servers then serve the client requests and deliver object
streams to the clients.
Several options are available to build a distributed multimedia server system.
Here are some choices in building the system architecture:

1. Multiple independent servers share their storage to store the objects
2. A depot system to direct request to appropriate server
3. A reverse proxy server in front to balance the workload
4. A storage area network to spread the workload
5. A distributed server system to balance the server workload and spread

out the network workload
6. A content distribution system to balance server and network work-

load

If the server system is simply a list of independent multimedia servers, then the
clients need to know which server a particular object resides in. In addition,
some servers containing hot objects may be overloaded while other servers
containing cold objects are idle. Thus, some mechanisms need to be applied
so that these servers operate like a single server system to the users.
A depot system may be placed in front of the servers to direct the client
requests to the appropriate server. Such a depot server may deliver a new
client request to an idle server or the less busy server. The servers would
then serve the requests directly.
A reverse proxy server is placed in front of the multimedia servers to receive
client requests. It may redirect requests to the appropriate server containing
the accessed object. If the accessed object resides in more than one server,
the reverse proxy server may redirect requests to the most lightly loaded
server. When data are delivered from the server, the reverse proxy server
may create a local cache copy. When the same object is accessed again by
the same client or other clients, the reverse proxy server may then serve the
repeated accesses from its local cache.
A storage area network has several servers that are connected to each other
via fibre channels. These servers together operate like a single server with
higher capacity. The storage area network redirects requests to the appropriate
storage device. The storage device then serves the data access request.

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A distributed servers system has several storage servers and these servers
reside at different geographical locations. The objects divided into segments
and these segments are distributed over several servers. It operates like a
single multimedia server system to the users. A client may send requests to
the application server. The application server would then identify the seg-
ments and the server containing the segments of the object. The appropriate
server then delivers data segments directly to the requesting clients. Each
segment of the server may be delivered from a different server. The distrib-
uted server system thus balances the workload among servers and spreads
out the workload on the network.
A content distribution system is composed of several storage servers. A cli-
ent may send requests to one of the servers. The server system then chooses
the server that is closest to the client to deliver the object to the client. If this
closest server does not have the required object, it will access the object from
other servers and keep a copy in its storage. After some time, each storage
server will store the objects that are recently or frequently accessed by its
neighbouring clients.
In multimedia database systems, a client who is connected to the network
sends queries to the database system (Figure 3.3). The database system then
looks up the index tables and finds the objects that can satisfy the query. The
data server then sends a few most relevant objects to the user for preview.
The user may then select the most relevant objects for display. The multi-
media server or multimedia server system then delivers the chosen object
to the user.

Figure.3.3..Multimedia.database.server.systemFigure �.�. Multimedia Database Server System

Client sends
a query

Server
returns the
objects X, Y,
Z, …

X, Y,
Z, …

objects

indexes

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Input/Output.Processors

Inside the computer system, data are stored on different storage devices de-
pending on their usage requirements. Permanent data are stored on the hard
magnetic disks. Temporary data are stored on the random access memory
(RAM) or memory. Frequently accessed data are temporarily stored on the
cache memory for quick accesses. Data are either read or written to these stor-
age devices by the running user programs or operating system programs.
Traditional computer systems run programs when they are invoked by users
or timer events. A job task is a fragment of codes belonging to a running pro-
gram and it is executed by the CPU. A program may invoke one or more job
tasks. Many tasks belonging to different programs are concurrently executed
by the CPU. Since the CPU can serve only one job task at any one particular
moment, the tasks are served on a time-slice manner. After the CPU serves
a task for one unit of time, it switches to another task. The order of service
is determined by the job scheduling policy.
When a task arrives at a code to receive input from the keyboard, output to
the screen, read from hard disk, or other input/output operations, the running
task will be suspended and put into the waiting queue until the I/O instruction
is finished. The CPU then resumes the suspended task and continues the task
after the I/O operation.
Inside the computer system, the memory bus connects all the main compo-
nents, including the CPU and memory (Figure 3.4). Other peripheral devices

Figure.3.4..I/O.processor
Figure �.�. I/O Processor

CPU

I/O
Processor

Memory

Disk 1

I/O bus

System bus

Disk 2 Disk 3…

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

and the hard disks are connected to the I/O bus. An input/output processor
(IOP) connects the I/O bus to the memory bus. Since the input and output
devices are very slow devices when compared to the memory and CPU. The
memory bus would be very slow if the I/O devices are directly connected.
With the help of the I/O processor, the I/O devices can communicate with
the CPU and memory without slowing them down.
When the CPU executes a line of code that performs an I/O instruction, it
works with the I/O processor to execute the I/O instruction in four steps:

1. The CPU issues an I/O instruction to the I/O processor.
2. The I/O processor reads a command from memory.
3. The I/O processor transfers data to/from memory directly.
4. The I/O processor sends an interrupt to CPU when done.

In the first step, the CPU issues an I/O instruction to the I/O processor as
shown in Figure 3.5. The I/O instruction is composed of the operation code
(OP), the target device number (device), and the command address (address).
The operation code specifies which command to execute. The device speci-
fies the target device number. The address contains the address location of
the I/O command inside the memory.

Figure.3.5..Step.1:.CPU.issues.I/O.instruction.to.I/O.processorFigure �.�. Step �: CPU issues I/O instruction to I/O
Processor.

command

I/O instruction

OP Device Address

target device
where commands are

looks in memory for commands

I/O Instruction

CPU

I/O
Processor

Memory

Disk 1

I/O bus

System bus

Disk 2 Disk 3…

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the second step, the I/O processor looks in the memory for the command
as shown in Figure 3.6. The command is composed of four fields: the OP
field, the Addr field, the Cnt field, and Other field. The OP field specifies
what to do. The Addr field specifies where to put data. The Cnt field specifies
the count of how much data can be accessed by the command. The Other
field only specifies details of the command. The I/O processor then reads the
command from memory and executes the command.
In the third step, the I/O processor executes the command as shown in Figure
3.7. Most I/O commands need to access memory. When data are transferred,
the I/O processor directly transfers data to and from the memory without in-
terfering with the CPU. When a sector is read from the disk, a sector of data
(512 bytes) is read from the disk and directly transferred to the memory.
When the I/O command has finished, the I/O processor executes the last step.
It sends an interrupt to the CPU (Figure 3.8). When the CPU receives this
interrupt, it executes the interrupt in a preemptive manner. The CPU suspends
the currently running task even though the task has not been executed for
one time unit. It then performs the O/S command for the I/O interrupt. The
job task that issues the I/O instruction is resumed. The task is removed from
the list of suspended tasks and placed in the list waiting for CPU. The CPU
then resumes the previously suspended task and continues to serve it.

Figure �.�. Step �: IOP reads command from memory

what
to do

command

I/O instruction

OP Addr Cnt Other

where
to put
data

how
much

special
requests

Command

CPU

I/O
Processor

Memory

Disk 1

I/O bus

System bus

Disk 2 Disk 3…

Figure.3.6..Step.2:.IOP.reads.command.from.memory

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Storage.Devices

Magnetic disks are inexpensive disks. The storage device is inexpensive be-
cause it stores data using two-dimensional circular disk platter and the disk
platters are stacked up on the third dimension. Magnetic disks are composed
of disk platters and read/write heads as shown in Figure 3.9. The disk platters
are connected together at the centre on a spindle. When the spindle rotates,
all the disk platters move at the same speed.

Figure.3.7..Step.3:.IOP.transfers.data.to/from.memory.directly
Figure �.�. Step �: IOP transfers data to/from memory

directly

command

I/O instruction

CPU

I/O
Processor

Memory

Disk 1

I/O bus

System bus

Disk 3…

Figure.3.8..Step.4:.IOP.sends.interrupt.to.CPU.when.done

Figure �.�. Step �: IOP sends interrupt to CPU when
done

command
I/O instruction

I/O interrupt

CPU

I/O
Processor

Memory

Disk 1

I/O bus

System bus

Disk 2 Disk 3…

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The read/write heads are supported by disk arms. The disks look like a hair
comb structure in which each read/write head is a tip of the comb. Each read/
write head is placed above a surface top of a disk platter. When the disk platters
rotate, the heads hover at a very thin layer of air above the disk surface.
While the read/write heads are fixed and the disk platters are rotating, each
head forms a circle on the corresponding disk platter surface. These circles
are the tracks when data are written onto the disk surface. These tracks are
circular in shape. The shorter tracks that are closer to the centre of the disks
are called inner tracks. The longer tracks that are near the circumference of
the disks are called outer tracks. All the tracks on different surfaces with the
same radius together form a cylinder.
When data are accessed, the disk takes the following steps:

1. All read/write heads move together at a direction perpendicular to the
circumference of the circular tracks until the heads reach the required
cylinder.

2. The control servo waits for the read/write heads to settle above the
required cylinder after the movement.

3. The head above the required tracks within the cylinder is chosen.
4. The heads then wait for the rotation of the disk until the beginning of

the required data on the track come under the head.
5. The I/O path from the disk controller to the memory is established.
6. When the beginning of the required data comes under the head, data

are immediately transferred between the disk and the memory.

Data are written in units of 512 bytes. Each unit of 512 bytes is called a sector.
When the read/write head is above a track, it can access all the data on this track

Figure.3.9..Magnetic.disks

Figure �.�. Magnetic Disks

Sectors

Track

Platters

Platter

Tracks

Read/write heads

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

by waiting for the disk to rotate. At any moment, only one of the read/write
heads can transfer data. When the read/write head is fixed, it can access all the
data on the cylinder by choosing the appropriate read/write heads.
Traditionally, the magnetic disks rotate at a fixed angular speed and the
read/write heads transfer data at a fixed speed. All the tracks store the same
number of bytes. When the heads are close to the disk centre, the length of
the circular tracks is short and data bits on the tracks are densely written.
When the heads are far from the disk centre, the tracks are longer in length
and data bits on the tracks are sparsely written. Thus, the recording density
varies when the heads are close to or far from the centre of disks. Thus, the
traditional disk recording format is called variable density recording.
In these traditional magnetic disks, the disk platters simply rotate at fixed
speed. However, it does not fully utilize the storage capacity of the long outer
tracks. In order to store more data on the outer tracks, the constant recod-
ing density method is widely accepted in recent years. The constant density
recording format stores more data on the longer outer tracks and less data
on the shorter inner tracks. This constant density recording is applied in two
layouts: the zoned disk layout and the spiral track layout. These two layouts
are described in the paragraphs below.
After that, we shall describe the millipede disks and the nanodisks. For mobile
devices, the storage devices need to be small, compact, and light. The millipede
disks and the nanodisks are products that address these requirements.

Zoned.Disks

Magnetic disks use the zoned disk format to increase their storage capacities.
The disk surface of magnetic zoned disks is divided into zones as shown in
Figure 3.10. Each zone is a group of neighbouring tracks within a range of
radii. Thus, each zone is a ring-shaped region on the disk surface.
Within a zone, the disks operate like a variable density recording disk. The
disks rotate at a fixed angular speed. Thus, all the tracks within a zone store
the same number of sectors and the number of sectors per track is fixed
within a zone. To store the maximum number of sectors within a zone, the
innermost track within the zone should store the most sectors. Other tracks
in the same zone then store the same number of sectors.
Since the innermost track of the inner zones are shorter than the innermost
track of the outer zones, tracks of the inner zones store less data than the

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

tracks of the outer zones. Although the number of sectors per track is fixed
within a zone, each zone may have a different number of tracks. The storage
capacity of a zone is found as the product of the storage capacity of a track
and the number of tracks within the zone.
In addition, the I/O path transfers data at a fixed number of bits per second and
the disks rotate at a fixed speed. All the data on one track can be accessed by
one disk revolution. Thus, the data transfer rate within a zone is fixed. Since
the track capacity of outer zones is larger than the track capacity of the inner
zones, data are transferred faster when the heads are above the outer zones.
Thus, the outer zones have higher data transfer rate than the inner zones.
Magnetic zoned disks have two main advantages over traditional magnetic
disks. First, they have higher storage capacity than traditional magnetic disks
of the same size. Second, data on the outer tracks of zoned disks can be ac-
cessed more quickly. In traditional magnetic disks, the motor speed is fixed.
Whereas in zoned disks, the motor speed changes when the heads change
from one zone to another. Since changing the motor speed is very simple, it
is not difficult to be implemented.

Spiral.Track.Layout

Optical disks, such as compact disk (CD) and digital versatile disks (DVD)
use the spiral track to increase their storage capacities. The optical disks can

Figure.3.10..Zoned.disk.format

1

2

3

4

5
6 7

8

9

10

11
12

13

14

15

16

17
18

1

2

3

4 5
6

1
2

3

4

5

6

7

8
9 10

11

12

7

8
9

Inner Zone

Outer Zone

Figure �.�0. Zoned disk format

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

record data at a fixed speed continuously for a very long time.
On the surface of the optical disks, data are recorded on a long spiral track in
sectors. The spiral track runs continuously from the inside near the centre of
the disk to outside near the rim. Dual layer DVD may have a second spiral
track at the second layer that runs in the same or opposite direction.
The motor changes the disk rotation speed according to the position of the
optical read/write head. The servo controls the motor speed and changes it
automatically. While the optical head is near the centre of the disk, the optical
disk speeds up. While the optical head is near the rim of the disk, the disk
slows down. The motor speed is maintained so that the data on the track pass
the optical head at a fixed linear speed.

Millipede.Project

The millipede project creates a new type of disk (Paulson, 2002). The size
and shape of the millipede disk looks like a postage stamp. The disk is com-
posed of silicon tips above a polymer. Data are written on the polymer by
punching holes on the polymer with a silicon tip. The holes are separated at
a distance of around 10 nanometres or 50 atoms. The disk can record data at
a density of 1 trillion bits per square inch. It records data at 20 times denser
than the magnetic disks.

Figure.3.11..CD.and.DVD.layout
Spiral Track

Sectors

Figure �.��. CD and DVD Layout

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The disk is rewritable. Data on the polymer can be read or written by changing
the temperature of the silicon tips. Data on the polymer are written with hot
tips at 400°C. Data are read from the polymer with warm tips at 300°C. In
addition, data on the polymer can be erased using hot tips. Since the time to
conduct heat to the polymer is rather long, the data recording speed is 1,000
times slower than hard disks. In order to compensate for the long access
latency, the disk uses 1024 silicon tips working in parallel.

Nano.RAM

Another new disk is the Nano-RAM disk in Paulson (2003). Nano random
access memory (NRAM) is one of the first storage devices that use the nano-
technology. It is small and compact. The NRAM is small and compact. The
NRAM is composed of carbon nanotubes that are a billionth of a metre in size.
The disk head sends differing electrical charges into the nanotube and swings
the tubes into one of the two positions. One of the two positions represents a
binary digit 0 while the other position represents a binary digit 1.
Inside the NRAM, the nanotubes only move a very short distance, and it takes
a very short time to finish this movement. Thus, the read/write operations
can be finished very quickly. This short latency feature makes the NRAM
suitable for high performance systems.
The position of the nanotubes is nonvolatile. The nanotubes do not need
power to maintain their current positions as in random access memory. Thus,
the NRAM is suitable for permanent storage of information. In addition, the
NRAM does not need to maintain continuous rotations like magnetic disks
and optical disks. It saves power, and the NRAM can be used in mobile
devices.
The NRAM is 50 times stronger than steel. The nanotubes can swing into
positions many times in order to support a large number of write cycles.
Recent developments on quality control help to select only nanotubes that
are growing properly.
In summary, the nanotube is a durable, compact, low power, compact, high
capacity, and low latency storage device. The NRAM can be used in mobile and
high performance systems in which the system requirements are stringent.

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Disk.Performance

Individual.Disk.Access.Operation

When data are accessed from the disks, the disks access data in sector size
of 512, 1024, or 2048 bytes. The disk executes the following steps to read
or write data:

1. Obtain I/O channel to memory
2. Seek the required cylinder
3. Switch to the selected head within the cylinder
4. Wait for the start of the required sector to meet the head
5. Transfer the sector via I/O channel to memory
6. Send interrupt to the CPU for I/O completion

Most of these steps involve mechanical and electronic operations. The
mechanical steps are much slower than the electronic steps. The mechani-
cal steps occupy more than 95% of access time. Thus, the time spent in the
mechanical steps is considered with significance when the performance of
the disks is investigated.
The major mechanical steps are:

1. Seek.time: Move the read/write heads to the track.
2. Rotational.latency: Wait for the start of the required sector to come

under the head.
3. Optional.RPS.miss: Additional cycle if I/O path fails to establish before

transfer dependent on the duration between consecutive seeks.
4. Transfer.time: Transfer the sector via I/O path to memory

Other steps are electronic and contribute to less than 5% of the disk access
time.
The seek time and rotational latency are overheads that should be reduced
as much as possible. The data transfer time increases linearly with the motor
rotation speed.

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Performance.of.Zoned.Disks

We may use a discrete or continuous model to investigate the zoned disk
performance. The discrete model may provide accurate formulae for the disk
access time with more parameters. The continuous model can be used to find
disk access time using some approximations.
The continuous model makes three approximations to calculate the zoned
disk performance. First, the disks are divided into the maximum number of
zones so that each zone has the smallest number of tracks. Second, the inter-
track gaps are very small. Third, the maximum number of sectors is stored on
each track. These approximations allow us to find the optimal performance
of zoning. The access time formulae can also be found using integrations.
In the continuous model, a track is modeled as a ring-shaped area on the
disk surface. Data are recorded on the track. Consider a circular track at a
distance x from the centre of the disk; the length of the track is 2πx. Thus,
the area of the track is 2πxdx.
The total area of the disk surface is the integration of the ring area from
the innermost radius a to the outermost radius b. Thus, the disk area can be
found as:

=∫=
b

a

xdxp2 2πxdx

= π(b2 – a2) (3.1)

Assume that each sector has the same probability of being accessed. After
data on the track of radius x are accessed, the read/write head stays within the
ring area of radius x and width dx. The probability that the previous request
accesses data on the track of radius x, Pxdx, is equal to the ratio of the ring
area of radius x to the total disk area.
Thus, the probability that the previous request accesses data on the track of
radius x, Pxdx, is found as

2 2

2 d
()x

x xP dx
b a

=
−

 (3.2)

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the following sections, we shall use this probability to find the seek dis-
tance, rotational latency, and data transfer time.

Seek.Time

The first mechanical step is the seek action. The seek action consists of the
following components:

1. The disk arm is accelerated until it reaches the maximum speed.
2. The disk arm is traveling at the maximum speed.
3. The disk arm is decelerated until it stops.
4. The read/write heads are settled on the required track.

The seek distance is the number of tracks being traveled by the read/write
heads in performing a seek action. When the disk heads are positioned on a
track of radius x and the accessed data on another track of radius y, they travel
from track of radius x to the track of radius y. The seek distance is thus equal
to the difference in number of tracks. That is the seek distance, D, is

= | y – x | (3.3)

Figure.3.12..Disk.performance.model
Figure �.��. Disk Performance Model

x
ab

x+dx

Area of ring from radius x to x+dx

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

For completely random seeks, the mean seek distance can be found by inte-
grating all possible absolute seek distances:

∫ ∫ −
−−

=
b

a

b

a
xyxy

ab
y

ab
xD dd

)(
2

)(
2

2222

b b

a a∫ ∫

After simplifications (Tse, 1999), the mean seek distance, D , is found as

2 2

2

4()(3)
15()

b a a ab bD
a b

− + +
=

+
 (3.4)

In addition, the variance of seek distance, Var[D], is found in Tse (1999) to
be

() ()22
2 2 2 2

2 2 2 2 2

4

2 2 d d
() ()

() (3 14 3)(3 4 3)
225()

b b

a a

x y y x y x D
b a b a

b a a ab b a ab b
a b

= − −
− −

− + + + +
=

+

∫ ∫

b b

a a∫ ∫
 (3.5)

Seek time is the time required for the seek action, and it consists of the fol-
lowing time components:

1. The time spent in accelerating the arm until it reaches the maximum
speed.

2. The time spent in moving the arm at the maximum speed.
3. The time spent in slowing down the arm until it stops.
4. The time spent in settling the read/write heads on the required tracks.

During the acceleration and deceleration period, the seek time increases
with the square root of the seek distance. During the maximum traveling
period, the seek time increases linearly with the seek distance. In addition,
the settling time is a fixed value. Therefore, the seek time, s, relates to the
seek distance, D, below.





≤+
>+

=
543

521

 ,
 ,

aDDaa
aDDaa

s , (3.6)

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

where a1, a2, a3, a4, and a5 are parameters. These parameters vary from one
disk type to another disk type depending on the actual performance.
An example of the seek time curve vs. the seek distance is shown in Figure
3.13. We can see that the seek time is almost linearly proportional to the
seek distance. Anyway, the seek time increases monotonically with the seek
distance (Tse, 1999; Tse & Leung, 2000).
Although we have found the seek time for random seeks, most seeks are
however not random. When data are read from or written to the disk, the
consecutive requests usually access consecutive sectors. Furthermore, many
data placement methods increase the correlation between consecutive ac-
cesses to reduce the seek distance. For example, data that are retrieved at a
similar time may be placed together on the same track or cylinder. The seek
distance and seek time can thus be reduced.

Rotational.Latency

After the read/write heads settle on the required track, the disk selects one of
the heads to access data. It also sets up an I/O path to memory. At this time,
the beginning of the accessing sector may not be at the right position for the
head to access. While the disks continue to rotate, the heads will wait until
the beginning of the required sector comes under the head. This period of
waiting time is called the rotational latency or rotational delay.

Figure.3.13..Seek.time.is.almost.linearly.proportional.to.the.seek.distance

Figure �.��. Seek time is almost linearly proportional to the
seek distance

Seek Time Vs Seek distance

0.00

�.00

�0.00

��.00

�0.00

��.00

�0.00

� �0� �0� �0� �0� �00� ��0� ��0� ��0� ��0� �00�
Seek distance

m
se

c

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Assume that the read/write heads are at random position after the seek action.
The heads have equal probabilities of staying at any circular position after
the seek action. If the read/write heads are above the track of radius x, then
the length of the track is 2πx. Let Py.dy be the probability that the distance
of the beginning of the accessed sector from the heads is within the range
of distance y to y+dy immediately after the seek action, where 0 ≤ y ≤ 2πx.
Then, we have

Py.dy
d

2
y
x

=
π

.

Assume that the disk rotates at the fixed revolution time T. It takes time T to
rotate for a distance 2πx. The rotation speed, a, is then found as

a 2 x
T
π

= .

When it takes time dt to rotate for a distance dy, where 0 < dt ≤ T and 0 ≤
dy ≤ 2πx, we have

 dy.=.adt.
 dy 2 dx t

T
π

= .

Thus, the rotational latency t increases linearly with the distance of the be-
ginning of the accessed sector from the heads, y. Let Pl be the probability
that the rotational latency is within the range of time t to t+dt, where 0 < t ≤
T, and dt→0. Obviously,

Pl.dt = Pydy
2 d
2

x t
xT

π
=

π
.

Thus, the probability that the rotational latency is within the range t to t+dt
is found as

Pl.dt
T
td

= .

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The mean rotational latency is found as

0
d

T

lL tP t= ∫

 0

T

∫

∫=
T

T
tt

0

d

 0

T

∫

2
T

= .

Tse (1999) found that the variance of rotational latency is

Var[L] ()2
0

2 d LttP
T

l −= ∫

 0

T

∫ () 2L

4
d 2

0

2 T
T

ttT
−= ∫

 0

T

∫

43

23 T
T

T
−=

2

12
T

=
.

For some disks or I/O processors that have a buffer of the size of a track, the
disk may start to read as soon as the I/O path is established. The disk will
read the entire track to the track buffer. Afterwards, data can be transferred
to memory from the track buffer. For these disks, the disk rotational latency
is then equal to the disk revolution time T. However, the data transfer time
can then be ignored since only electronic transmission time from the track
buffer to memory is required.

Figure.3.14..Rotational.latency

Figure �.��. Rotational Latency

t < L < t+dt

t

dt

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Data.Transfer.Time

When the I/O path is established and the beginning of the accessing sector
comes under the read/write head, the disk starts to transfer data without any
further waiting. All the data belonging to the accessed sector should pass
under the read/write head for the data transfer to take place. Data transfer
time is the time to read the accessed data from the current track.
The maximum recording density on the disk is called the maximum areal
density. Let k be the recording density in bytes/unit length. On a track of
radius x, the length of the track is 2πx. The amount of data in this track is
given by 2πxk.
In one disk revolution, data on the entire track is transferred. Thus, the data
transfer rate is

2 xk
T
π

= .

To transfer R bytes of data on this track, the data transfer time (Tse, 1999)
is

2
TR

xk
=

π
.

The above equation shows that the data transfer time decreases with an in-
crease in the track radius x. Thus, the tracks on the outermost zone transfer
data with the shortest time and the tracks on the innermost zone transfer data
with the longest time. In addition, all tracks within the same zone store the
same amount of data, and the disks rotate at the same speed. Thus, the data
transfer rate is fixed for all tracks within a zone.
We have assumed that each zone has the minimum number of tracks. When
the requests access data randomly, the mean data transfer time can be found
(Tse, 1999) as

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

2 2

d
2
2 d

2 ()

()

b

xa

b

a

TRP x
xk

xTR x
xk b a

TR
k a b

τ =
π

=
π −

=
π +

∫

∫

The variance of data transfer time (Tse, 1999; Tse & Leung, 2000) is

Var(t) =
2

2d
2

b

xa

TRP x
xk

  − τ π ∫
2 2

2 2 2 2 2

ln(/) 1
2() ()

T R b a
k b a a b

 
= − π − +  .

Disk.Array

In order to store more data on a storage system, multiple disks can be used.
The disks may serve requests in parallel or independently. When multiple
disks are used as a disk array, data are divided into data stripes. Each data
stripe is a fixed number of bytes, and it is stored on multiple disks. When data
are accessed, each disk is issued a request. All the requests are then served
simultaneously. Each request retrieves a fraction of the data stripe. Hence,
more data are transferred and large data transfers are served efficiently.
Mean time to disk failure is the average time that a disk may fail. When more
disks are used, the mean time to disk failure shortens. For example, assume
that the mean time to disk failure is 5 years. If we use only one disk, then
we may expect to encounter a disk failure in around 5 years. If we use 10
disks, then we may expect to encounter a disk failure in around 6 months.
If we use one hundred disks, then we may expect to encounter a disk failure
in around 18 days. If we use 2,000 disks, then we may expect to encounter
a disk failure everyday.
In order to recover data after disk failure, some redundant data are encoded
and stored. Data on the failed disks can then be recovered from data stor-
ing on other disks. This arrangement of disks forms a redundant disk array

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

(Chen, Lee, Gibson, Katz, & Patterson, 1994; Gibson, 1992; Katz, Gibson,
& Patterson, 1989; Kuratti & Sanders, 1995).
Redundant array of inexpensive disks (RAID) is an array of small and inex-
pensive disks that store encoded redundant data to increase data reliability
and data security. When a single disk fails, data on the failed disk is recovered
from data on the remaining disks. Seven RAID levels are described below.

RAID 0: No.redundancy: Data are simply stored on disks without any
redundant information. Data can be lost when disk fails.

RAID 1: Mirrored.disks: The disks are arranged in pairs. Each disk
in the pair contains the same data. This is the most expensive
option that only half of the available disk capacity is utilized
for data storage.

RAID 2: Bit.interleaved.array: Several correction disks are added to
the group of data disks similar to RAM chips. A single parity
disk can detect a single error, but at least three disks are needed
to correct an error. More parity disks in a group means more
overheads for fault tolerance, but fewer data disks in a group
means fewer I/O events/second. Since the whole group must
be accessed to validate the correction codes, this is inefficient
for small transfers.

RAID 3: Parity.disk: Data are interleaved bit-wisely or byte-wisely
across the data disks. Disk controller can detect the failed bit
position, and a parity disk contains the parity of the data disks.
It is possible to recover data on any single lost disk by read-
ing the contents from the surviving disks, and recomputing
the parity. The disk array performance is similar to a RAID2
with a single correction disk.

RAID 4: Block. interleaved: Each individual block is stored on a
single disk. Data are interleaved between disks at the block
level instead of the bit level or byte level. The new parity is
calculated as equal to (old data xor new data xor old parity).
A small write request uses two disks to perform four accesses.
Since all write requests access the parity disk, contentions at
the parity disk would result.

RAID 5: Rotated.parity: Parity blocks are interleaved among the disks
in a rotating manner called left-symmetric (Gibson, 1992). Two

Storage System Architectures ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

writes can take place in parallel as long as the data and parity
blocks use different disks. This disk array performs better for
small and large transfers, making it the most widely accepted
level for transaction processing workloads. RAID5 tolerates
single disk failure in each parity group of disks. Data are lost
only when multiple disks in the same group of disks fail. Gibson
used mean-time-to-data-loss to measure the reliability of disk
arrays and showed that RAID5 can increase data reliability.

RAID 6: Two-dimensional.parity: The disks are arranged into a two-
dimensional matrix, and a parity disk is added to each row and
each column of the matrix array. This disk array can survive
any losses of two disks and many losses of three disks. The
only exception for three loss disks is that the data disk and
both the parity disk and the column disk of this data disk fail
at the same time. Since every logical write needs three disks
and six accesses, the impact on I/O performance is significant.
Hence, this disk array is acceptable only when the fault-toler-
ant requirement is very high.

In most data storage on disks, data are not differentiated into read-write or
read-only types. Read-only data are static and cannot be modified by the ap-
plications. Read-write data are dynamic and are frequently modified by the
application. Read-only data are easily recoverable from elsewhere, such as
tertiary storage. RAID addresses the problem of losing data under the condi-
tions of disk failures. Under the condition that read-only data are recoverable
easily from other sources, the storage of redundant information of read-only
data may waste storage capacity and bandwidth.

Chapter.Summary

In magnetic disks, data are recorded on concentric circles on disk platters.
Data are recorded on the tracks in sector units. New storage devices address
the need of large capacity, short latency, high throughput, low-power con-
sumption, and nonvolatility. We have described several new storage devices,
including zoned disk layout in new magnetic hard disks, the spiral track layout
in optical disks, the Millipede project, and the NRAM.

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The major components of magnetic disk access time are seek time, rotational
latency, and data transfer time. A continuous model provides a close ap-
proximation to the performance of the zoned disks. The mean and variance
of seek distance for completely random disk accesses are found. The mean
and variance of rotational latency and data transfer time are also found.

References

Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., & Patterson, D. A.
(1994). RAID: High-performance, reliable secondary storage. ACM.
Computing.Surveys,.26(2), 145-185.

Gibson, G. A. (1992). Redundant.disk.arrays.reliable,.parallel.secondary.
storage.(ACM 1991 Distinguished Dissertation). MIT Press.

Jeon, W. J., & Nahrstedt, K. (2002). Peer-to-peer multimedia streaming and
caching service. In Proceedings.of.IEEE.ICME.(pp. 57-60).

Katz, R. H., Gibson, G. A., & Patterson, D. A. (1989). Disk System Architec-
tures for High Performance Computing. In Proceedings.of.the.IEEE:
Vol..77(12). 1842-1858.

Kuratti, A., & Sanders, W. H. (1995). Performance analysis of the RAID 5
disk array. In Proceedings.of.the.IEEE.International.Computer.Per-
formance.and.Dependability.Symposium.IPDS’95 (pp. 236-245).

Liao, W. J., & Li, V. O. K. (1997). The split and merge (SAM) protocol for in-
teractive video-on-demand systems. IEEE.Multimedia,.4(4), 51-62.

Paulson, L. D. (2002, September). Tiny punch cards boost storage capacity.
Computer, p. 22.

Paulson, L. D. (2003, September). Nanotech RAM holds promise for universal
memory. Computer, p. 15.

Tse, P. K. C. (1999). Efficient storage and retrieval methods for multimedia
information. Doctoral dissertation, Victoria University, Melbourne,
Australia.

Tse, P. K. C., & Leung, C. H. C. (2000). Improving multimedia systems per-
formance using constant density recording disks. ACM.Multimedia.
Systems.Journal,.8(1), 47-56.

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.IV

Data.Compression..
Techniques.and.Standards

Introduction

In the previous chapter, we see that the performance of a storage system de-
pends on the amount of data being retrieved. The size of multimedia objects
are however very large in size. Thus, the performance of the storage system
can be enhanced if the object sizes are reduced. Therefore, multimedia objects
are always compressed when they are stored.
In addition, the performance of most subsystems depends on the amount
of data being processed. Since multimedia objects are large in size, their
accessing times are long. Thus, multimedia objects are always kept in their
compressed form when they are being stored, retrieved, and processed.
We shall describe the commonly used compression techniques and compres-
sion standards in this chapter. We first describe the general compression model
in the next section. Then, we explain the techniques in compressing textual
data. This is followed by the image compression techniques. In particular,
we shall explain the JPEG2000 compression with details. Lastly, we explain
the MPEG2 video compression standard. These compression techniques are
helpful to understand the multimedia data being stored and retrieved.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Compression.Model

A vast number of compression techniques have been designed since the
1950s. To understand different compression techniques, we here use a general
model to describe data compressions as shown in Figure 4.1. Data compres-
sion is performed using two processing components. The first component
is the encoder and the second component is the decoder. The encoder and
the decoder components convert input data into output data according to the
compression rules being specified in the compression method.
The encoder accepts some original data as input and generates a new encoded
representation of these symbols. These encoded symbols are sometimes
called codewords. The encoded symbols are created following the rules being
specified by the compression method. Very often, the encoded symbols are
intentionally designed to be shorter than the original input symbols.
Conversely, the decoder accepts the encoded symbols as input and outputs
the restored symbols. In order to restore the original data, the decoder must
use the same set of rules as the encoder, and these rules are specified by the
compression method. If the decoder uses a different set of compression rules,
it would not be able to restore the original data from the codewords. In ad-
dition, the codewords must be delivered unaltered from the encoder to the
decoder. If any parts of the codewords are altered, the decoder also cannot
restore the original data from the altered codewords.
To measure the performance of a compression technique, it is necessary
to compare the size of the encoded symbols with the size of the original
symbols. If the size of the encoded symbols is only one-third of the size of
the original symbols, the compression ratio is said to be 3:1. Sometimes,
the processing time to perform the encoding and decoding algorithms are
also considered. These three metrics, including compression ratio, encoding

Figure �.�. Compression Model

Encoder

Compression
rules

Decoderoriginal
symbols

encoded
symbols

restored
symbols

Figure.4.1..Compression.model

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

time, and decoding time, can provide good metrics of the performance of the
compression techniques.

Text.Compression

The Huffman coding method was created in the 1950s. The Ziv-Lempel
compression and the arithmetic coding were created in the 1970s. Several
popular compression algorithms, such as LZ77, LZ78, LZW, and gzip®, are
variants of the Ziv-Lempel compression method. Later, the prediction by the
partial matching method was designed in the 1980s. Most of the state-of-the-
art compression techniques are variants of these fundamental compression
methods.
In text compression, the encoder accepts some input text symbols and gen-
erates codewords. The codewords are created according to the rules being
specified by the compression method in Figure 4.2. For example, if we use
“a” to represent “apple,” “b” to represent “boy,” and “c” to represent “cat.”
We then represent “apple, boy, cat” with the codewords “a, b, c.” This code-
words are much shorter than the original input data symbols. Conversely, the
decoder restores the original data from the codewords according to the rules
specification of the compression method. In the above example, the decoder
converts the codewords “a, b, c” back to “apple, boy, cat” according to the
compression rules.
Before applying any data compressions, text symbols are represented by
a fixed number of bits or bytes. In the ASCII code being used in personal
computers, each text character is represented by a fixed number of eight bits.

Figure �.�. Text Compression

encoder

Compression
rules

decoder
text shorter

codeword
or index

text

boy, apple “b”, ”a” boy, apple

“a” for apple,
“b” for boy,
“c” for cat, …

Figure.4.2..Text.compression

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Data compression changes the number of bits in the codewords to represent
each text character in the symbol.
The techniques used in the compression methods can be grouped into sym-
bolwise.methods, dictionary.methods, and hybrid.methods. The symbolwise
methods, sometimes referred to as statistical.methods, estimate the prob-
abilities of occurrence of symbols and use shorter codewords for the more
likely symbols. The dictionary methods replace words and contiguous words
with an index to an entry to a “dictionary.” The decoder then uses the indexes
to look up the corresponding words from the same dictionary. The hybrid
methods combine the two techniques of both the symbolwise methods and
the dictionary methods within the same compression model. We shall explain
these techniques with more details below. Afterwards, we describe the LZ77
and arithmetic coding compression techniques.

Symbolwise.Methods

In a paragraph or text document, each different word or symbol usually occurs
for a different number of times. Some words, such as “to,” “is,” and “at,”
occur very frequently. Other words, such as “incorrecttypo,” occur rarely. If
we choose a shorter codeword for the frequently occurring symbols and the
longer codeword for the rarely occurring symbols, the short codewords occur
more frequently, and the long codewords occur less frequently. The average
length of codewords in the compressed text would then be short.
When the estimation of symbol occurrence is good, the symbolwise methods
usually lead to better compression. Although the average length of codewords
is usually shorter using the symbolwise method, the actual compression ratio
depends on the number of occurrences of each symbol in the original text
document. If the less likely symbols occur frequently in the text document,
the average length of codewords in the compressed text can become long.
It is commonly known that the number of occurrences of each word in a
file often depends on the context of the file. While the word “byte” appears
frequently in a computer book, it may appear only rarely in a tourist guide
book. Therefore, it is unlikely that a single set of compression rules works
for all types of data.
We use an example to show how variable length codewords can reduce the
average length of codewords in the compression. If we have a list of names
“Paul John John Johanna John John Joshua John John Joshua John John John

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Peter” as the input symbols, the list of uncompressed symbols are “Paul,”
“John,” “Johanna,” “Joshua,” and “Peter.”
Before compression, each character occupies one byte, and we ignore the
space characters. The length of the list of input symbols is

= 10*4+1*7+2*6+1*5 bytes
= 64 bytes.

We represent the input symbols using fixed length codewords. For five dif-
ferent names, we need at least a 3 bits codeword to represent each name
without ambiguity. For conventional purposes, we use a->b to show that
codeword a represents symbol b. We choose “000” -> “Paul,” “001” ->
“John,” “010” -> “Johanna,” “011” -> “Joshua,” “100” -> “Peter.” As there
are 14 names in the list of symbols, the total length of the symbols using
fixed length codewords is

= 14*3 bits
= 42 bits.

We represent the symbols using variable length codewords. For five dif-
ferent symbols, we only need to create five different codewords with one
codeword for each symbol. We choose “0” -> “Paul,” “10”-> “John,” “110”
-> “Johanna,” “1110” -> “Joshua,” “1111” -> “Peter.” As there is only one
occurrence of “Paul,” nine occurrences of “John,” only one occurrence of
“Johanna,” two occurrences of “Joshua,” and only one occurrence of “Peter,”
the total length of the symbols using variable length codewords is

= 1*1+9*2+1*3+2*4+1*4 bits
= 34 bits

The compression ratio due to using variable length codewords is thus

= 42 bits
34 bits

= 1.235:1.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We have seen that the use of variable length codewords may change the av-
erage length of codewords. The amount of changes actually depends on the
choice of codeword to represent the symbols. We can easily observe that the
names appear a different number of times. The average length of codewords
is minimized when the shorter codewords are chosen to represent the more
frequent symbols. That is, we arrange the list of symbols according to their
occurrence in the descending order. We have the ordered list of symbols as
“John,” “Joshua,” “Paul,” “Johanna,” and “Peter.” Let “0” -> “John,” “10”->
“Joshua,” “110” -> “Paul,” “1110” -> “Johanna,” “1111” -> “Peter,” the total
length of the symbols using this set of variable length codewords is

= 9*1+2*2+1*3+1*4+1*4 bits
= 25 bits

The compression ratio of this set of variable length codewords is thus

= 42 bits
25 bits

= 1.68 : 1.

Therefore, better compression ratio can be achieved by using shorter code-
words for the more frequent symbols.

Dictionary.Methods

The dictionary methods replace symbols and text with an index to an entry in
a “dictionary.” They use simple representations to code references to entries
in the dictionary. Instead of specifying one index for each symbol, an index
can represent several matching symbols in the dictionary to achieve higher
compressions. This is useful when several symbols often occur together.
The compression methods use a static dictionary, a semistatic dictionary, or
an adaptive dictionary. A static dictionary simply uses a fixed dictionary to
compress different sets of symbols. It is simple to use, but the compression
ratio is not optimal in general. While a dictionary is optimal for one set of
symbols, it may be suboptimal for a different set of symbols.

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Some methods may use a semistatic dictionary to compress different sets of
symbols. These methods construct a new dictionary or codebook for each text
being compressed. This helps to optimize the compression ratio for the text
or set of symbols being compressed. However, the overheads of transmitting
or storing the constructed codebook are significant. As the same codebook
has to be used by both the encoder and the decoder, the encoder needs to
transmit the newly constructed codebook to the decoder.
Some methods use the adaptive dictionary approach. These methods use
all the text prior to the current position as the codebook. While the text is
reconstructed at the decoder, the codebook is reconstructed at the same time
with the decompressed text. The decoder thus creates the same codebook as
the encoder without the need to receive the codebook from the decoder. The
dictionary is transmitted or stored implicitly at no extra cost. This codebook
also makes a very good dictionary due to the same style and language used
as the upcoming text after the current position.
In the dictionary methods, longer matching symbols lead to higher compres-
sion. For example, an index to two words “to be” is more efficient than two
separate indexes to “to” and “be.”

LZ.Compressions

In the Ziv-Lempel coding, the previously occurred text is used as the “dic-
tionary.” The first occurrence of a symbol is coded as raw symbol. Repeated
occurrence of a symbol is represented with the pointer to the matching loca-
tion and matching length. This adaptive dictionary is used in LZ77, gzip®,
LZ78, and LZW compression methods (Witten, Moffat, & Bell, 1999).

Figure �.� LZ�� Encoder Outputs Codewords

a
b
a
a
b
a
b

Input symbols Encoder outputs
<0, 0, a>
<0, 0, b>

<�, �, a>

<�, �, b>

Figure.4.3..LZ77.encoder.outputs.codewords

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the LZ77 compressions, each compressed codeword consists of three fields,
including location, length, and character. The location field describes how
far back to look in the previous text to find the next phrase. The length field
describes the length of the matching phrase. The character field describes the
next character to follow. We describe the meaning of the codewords using
an example below.
A list of text symbols is compressed using the LZ77 compression. The list
of symbols are a, b, a, a, b, a, b, and so on. After the encoder reads the first
symbol a, the encoder outputs the codeword <0, 0, a> as illustrated in Figure
4.3. This means that there is no matching phrase and the raw symbol is a.
After the encoder reads the second symbol b, it outputs the codeword <0, 0,
b>. This means that there is no matching phrase, and the second raw symbol
is b. After the encoder reads the third symbol a, it matches the first symbol
a, and continues to read the next symbol. After it reads the fourth symbol a
and finds that it does not match with the second symbol b, it outputs the third
codeword <2, 1, a>. This means that the location of the matching phrase is
the one character at two symbols prior to the current position, and the next
raw character to follow is an a. After that, the encoder reads the fifth symbol
b which matches the second symbol b. The encoder reads the sixth symbol
a which also matches the third symbol a. It then continues to read the sev-
enth symbol b, which does not match the fourth symbol a. The encoder then
outputs the codeword <3, 2, b>. This means that the matching phrase is the
two characters ba, and the next raw symbol is b.
In general, the encoder reads input symbols and output codewords. The algo-
rithm of the LZ77 encoder routine is shown in Figure 4.4. It first initializes
the current position, p, to 1 in step 1. In step 2a, it loops through all the input
symbols looking for the longest matching phrase from p-W to p-1, where W
is the limiting window size for matching. It then outputs the codeword in
step 2b and increments the current position in step 2c.
The algorithm of the LZ77 decoder routine is illustrated in Figure 4.5. It
first initializes the current position, p, to 1 in step 1. It loops through all the
codewords in step 2. In step 2a, it outputs the matching phrase from p-f. After
that, it outputs the next raw character c in step 2b. It increments the current
position, p, in step 2c.
The decoder outputs symbols of the previous example in Figure 4.6. The
decoder reads the first codeword and outputs the symbol a. It then reads
the next codeword and outputs the symbol b. When it reads the codeword
<2, 1, a>, it outputs one symbol, a, as the matching phrase and the next raw

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure.4.4..LZ77.encoder.routine

Figure.4.5..A.simple.LZ77.decoder.routine

Figure.4.6..LZ77.decoder.outputs.restored.symbols

Figure �.� LZ�� Encoder Routine

1. set p to 1

2. While there is text remaining to be
coded, do

a. Search for the longest match for
S[p…] in S[p-W…p-1] to the matching
at position m with length l.

b. Output <p-m, l, S[p+l]>.

c. Set p=p+l+1.

Figure �.� A Simple LZ�� Decoder Routine

1. set p to 1
2. For each triple <f, l, c>in the input,

do
a. Output S[p-f…p-f+l-1] to S[p…p+l-1].
b. Output c to S[p+l].
c. Set p=p+l+1.

Figure �.� LZ�� Decoder Outputs Restored Symbols

a recursive reference

<0,0,a>
<0,0,b>
<�,�,a>
<�,�,b>
<�,�,b>
<�,�0,a>

a
b
aa
bab
aabb
bbbbbbbbbba

• Codewords • Restored symbols

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

character a. Then it reads the codeword <3, 2, b> and outputs the matching
phrase, ba, and the next raw character b. If it reads the next codeword <5, 3,
b>, it outputs the matching phrase aab and the character b.
Some LZ77 decoders may support recursive references. If it reads the code-
word <1, 10, a>, it outputs ten characters from the current position–1. Thus,
the decoder recursively outputs the character b ten times before it outputs
the next character a. The decoder should update the “dictionary” and output
the restored symbol simultaneously.
The LZ77 compression limits the size of pointer to 13 bits and the size of
the matching phrase to 8,192 characters. It avoids the need of large memory
space and long searching time. Since long matching phrases is uncommon,
some LZ77 encoders practically limit the length of the matching phrase to 16
characters. Some implementations use shorter codeword for recent matches
and longer codeword for other matches. They use fewer bits to represent
smaller numbers, but they need an extra field to indicate the number of bits
for the number. Some implementations use a one-bit flag to indicate whether
the next item is a pointer or a character. When there are not any matching
phrases, the location and length fields are reduced to only one bit.

Arithmetic.Coding

The theoretical lower bound on compression can be evaluated by consider-
ing the information content of each symbol. The whole alphabet is the set
of all possible symbols. The predicted probability, Pr[.], is the probability
distribution for the next symbol to be coded within the whole alphabet. The
information content, I(.), of a symbol is defined as the number of bits a sym-
bol, s, should be coded with I(s) = -log2 Pr[s] bits.
When the probability of the next symbol is high, the information content of
the symbol is low and vice versa. In the extreme case when the next symbol
must be a symbol a, We do not provide any extra information by coding this
symbol. Thus, the information provided by the symbol is 0.
The entropy, H, is defined as the average amount of information per symbol
over the whole alphabet. By definition, we have

 Pr[] ()
s

H s I s= ⋅∑
Pr[] log Pr[].

s
H s s⇒ = − ⋅∑

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The entropy gives a theoretical lower bound on the compression ratio, meas-
ured in bits per symbol.
Consider throwing one fair dice and record the face value of the dice. The whole
alphabet is {1, 2, 3, 4, 5, 6}. The predicted probability of any number,

Pr[s] = 1/6.
I(s)= -log2(1/6) = 2.585.

As the predicted probabilities of all symbols are the same, we have

H = 6*[-(1/6)*(-2.585)] = 2.585.

The arithmetic coding method optimizes the compression ratio according to
the entropy of the symbols (Witten et al., 1999). Consider an alphabet con-
sisting of numbers from 0 to 9. A fractional number with three digits can be
used to specify three symbols. For instance, the number 0.245 can be used to
indicate three symbols 2, 4, and 5. This is not optimal when the alphabet does
not contain exactly 10 symbols or some symbols occur more frequently.
The encoding process of the arithmetic coding method finds a fractional
number to represent the sequence of symbols. The decoder processing re-
covers the sequence of symbols from the fractional number by repeating the
encoding process.
In the arithmetic coding, each symbol has an estimated probability within a
range interval. Two variables, low and high, are used to specify the current
range of the output fractional number. The range of the output fractional
number is adjusted dynamically after each symbol is encoded. The division
of the range is also adjusted dynamically according to the probabilities of
the symbols.
The arithmetic coding encoder executes the following steps as illustrated in
Figure 4.7:

1. Initially, each symbol is estimated with the same probability.
2. The range of the output fractional number is divided among the symbols

according to their probabilities.
3. After encoding a symbol, the new range of the fractional number is

restricted to the range of the encoded symbol.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

4. The probabilities of the symbols are adjusted. The range of the output
fractional number is divided among the symbols according to their new
probabilities.

5. The range-narrowing steps 3 and 4 are repeated until all symbols are
encoded.

We use an example below to compress a string bccb within the set of alpha-
bet {a, b, c}. Initially, low = 0, high = 1, probability of a = 1/3, probability
of b = 1/3, and probability of c = 1/3. We divide the range according to the
probabilities of the symbols. Thus, we get:

• The symbol a is coded within the range [0, 0.333333).
• The symbol b is coded within the range [0.333333, 0.666666).
• The symbol c is coded within the range [0.666666, 1).

As the first input symbol is b, we narrow the range and increase the probability
of the symbol b. We have low = 0.333333, high = 0.666666, probability of
a = 1/4, probability of b = 2/4, and probability of c = 1/4. We subdivide the
range [0.333333, 0.666666) according to the new probabilities of the next
symbols to get:

Figure.4.7..Arithmetic.coding.encoder
Figure �.� Arithmetic Coding Encoder Process

Initialize
probabilities

Encode
symbol

Divide
range

Narrow
range

Update
probabilities

more
symbols

?

End

Output
number
in range

Y

N

Start

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

• The next symbol a is coded within the range [0.333333, 0.416666).
• The next symbol b is coded within the range [0.416666, 0.583333).
• The next symbol c is coded within the range [0.583333, 0.666666).

As the second input symbol is c, we narrow the range and increase the prob-
ability of the symbol c. We have low = 0.583333, high = 0.666666, probability
of a = 1/5, probability of b = 2/5, probability of c = 2/5. We subdivide the
range [0.583333, 0.666666) according to the new probabilities of the next
symbols to get:

• The next symbol a is coded within the range [0.583333, 0.600000).
• The next symbol b is coded within the range [0.600000, 0.633333).
• The next symbol c is coded within the range [0.633333, 0.666666).

As the third input symbol is also c, we narrow the range and increase the
probability of the symbol c. We have low = 0.633333, high = 0.666666,
probability of a = 1/6, probability of b = 2/6, and probability of c = 3/6. We
subdivide the range [0.633333, 0.666666) according to the new probabilities
of the next symbols to get:

• The next symbol a is coded within the range [0.633333, 0.638888).
• The next symbol b is coded within the range [0.638888, 0.650000).
• The next symbol c is coded within the range [0.650000, 0.666666).

As the last input symbol is b, we use the range of b, [0.638888, 0.650000),
as the final range of the fractional number. The encoder just delivers any
fractional number within this range to the decoder. The number 0.64 would
be suitable as it falls within the range. The number 0.639 is also suitable,
but it may use more digits.
A few points must be noted in performing the arithmetic coding process.
First, the precision of the fractional number should be high enough to avoid
ambiguity of the symbols. Second, a small final interval requires many digits
to specify a number that is guaranteed to be within the final range. Third,
two digits are needed to specify a number within a range of 1/100. Three
digits are needed to specify a number within a range of 1/1000. The number

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of digits necessary is proportional to the negative logarithm of the size of
the interval.
In binary digits, a symbol s of probability Pr[s] contributes -log2Pr[s] bits
to the output. This is equal to the information content of s, I(s). Thus, the
result is identical to the entropy bound. Thus, the arithmetic coding produces
a near-optimal number of output bits. In practice, arithmetic coding is not
exactly optimal because of the limited precision arithmetic and the whole
number of bits.
Since the output number is always a fractional number, the “0.” in front
of the fractional number is unnecessary because the decoder knows that it
always appears, and it does not provide any extra information. Thus, it can
be excluded from the output bits. The output digit in the example is simply
“64.” In practice, binary arithmetic instead of decimal arithmetic is used.
Thus, the output is a stream of bits.
Theoretically, the fractional number is determined after all the input sym-
bols are considered. In practice, the symbols can be coded in parallel with
the transmission. During the range narrowing steps, the range is [0.633333,
0.666666) after the third symbol, c, is encoded. No matter what the following
symbols are, the final range is within [0.633333, 0.666666). The first decimal
digit, 6, is already fixed and it can be transmitted to the decoder. The encoder
can thus deliver digits on-the-fly before all the symbols are encoded.
Decoding is the process of recovering the string of symbols from the fractional
number by repeating the encoding process. The decoding algorithm of the
arithmetic coding method needs to find the range that the current fractional
number belongs and cut off the tail of the string according to the number of
symbols.
The decoding algorithm of the arithmetic coding method may perform the
following steps as illustrated in Figure 4.8:

1. The numbers of occurrence of all symbols in the whole alphabet are
first initialized to 1.

2. Calculate the predicted probabilities of all symbols in the alphabet.
3. The initial range [0, 1) is divided among the symbols.
4. Find the output symbol s by mapping the fractional number from the

ranges of the symbols.
5. Update the range to the range of the output symbol s.

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

6. Increment the occurrence of the symbol s and update the predicted
probabilities of all symbols.

7. Divide the range according to the predicted probabilities.
8. Repeat step 4 to 7 until enough output symbols are obtained.

Let’s consider the decoder processing in the above example. The decoder
restores a string of four symbols from the set of alphabet {a, b, c} on receiv-
ing the two digits 64 to indicate a fractional number 64.
Initially, low = 0, high = 1, probability of a = 1/3, probability of b = 1/3, and
probability of c = 1/3. We divide the range according to the probabilities of
the symbols. Thus, we get:

• The symbol a is coded within the range [0, 0.333333).
• The symbol b is coded within the range [0.333333, 0.666666).
• The symbol c is coded within the range [0.666666, 1).

The fractional number 0.64 falls within the range for the symbol b. Thus,
the first symbol is b.
After encoding the first input symbol b, we narrow the range and increase
the probability of the symbol b. We have low = 0.333333, high = 0.666666,
probability of a = 1/4, probability of b = 2/4, and probability of c = 1/4. We

Figure.4.8..Arithmetic.coding.decoderFigure �.�. Arithmetic Coding Decoder

Initialize
probabilities

Divide
range

Update
range

Update
probabilities

more
symbols

?

End

Y

N

Start

Output
symbol

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

subdivide the range [0.333333, 0.666666) according to the new probabilities
of the next symbols to get:

• The next symbol a is coded within the range [0.333333, 0.416666).
• The next symbol b is coded within the range [0.416666, 0.583333).
• The next symbol c is coded within the range [0.583333, 0.666666).

As the fractional number 0.64 falls within the range for the symbol c, the
second symbol is c.
We then narrow the range and increase the probability of the symbol c. We
have, low = 0.583333, high = 0.666666, probability of a = 1/5, probability of
b = 2/5, probability of c = 2/5. We subdivide the range [0.583333, 0.666666)
according to the new probabilities of the next symbols to get:

• The next symbol a is coded within the range [0.583333, 0.600000).
• The next symbol b is coded within the range [0.600000, 0.633333).
• The next symbol c is coded within the range [0.633333, 0.666666).

As the fractional number 0.64 falls within the range for the symbol c, the
third symbol is also c.
We continue to narrow the range and increase the probability of the symbol c.
We have low = 0.633333, high = 0.666666, probability of a = 1/6, probability
of b = 2/6, and probability of c = 3/6. We subdivide the range [0.633333,
0.666666) according to the new probabilities of the next symbols to get:

• The next symbol a is coded within the range [0.633333, 0.638888).
• The next symbol b is coded within the range [0.638888, 0.650000).
• The next symbol c is coded within the range [0.650000, 0.666666).

As the fractional number 0.64 falls within the range for the symbol b, the
fourth symbol is b. Now, we have decoded all four symbols, bccb, within the
alphabet {a, b, c} on receiving the two digits 64 from the encoder.

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Image.Compression

The main objective of image compression is to reduce the amount of data
in representing an image. As uncompressed images are large in size, images
are often kept in a compressed format. This helps to save storage space in
keeping the images and time to retrieve the images from the storage media.
The main approach in image compression methods is to reduce redundancy in
encoding images. The images may be decompressed and retrieved in parallel
to hide the processing time in decompression.
Image compression methods can be roughly divided into lossless compression
methods, lossy compression methods, and hybrid compression methods. The
most well-known image compression standards include the Joint Photographic
Expert Group (JPEG) and JPEG2000 methods.
Lossless compression, or noiseless compression, encodes data in a form that
represents the original images with fewer bits. The original representation
can be perfectly recovered. If the original images must not be lost, the im-
ages should be compressed using lossless compression methods only. The
Huffman coding, arithmetic coding, Ziv-Lempel, and run length encoding
belong to this category.
Lossy compression methods encode images into a form that can be decoded
into a representation that humans find similar to the original image. The dif-
ference between the original images and restored images should be unnotice-
able or not important to the human viewer. Lossy compression methods can
be applied on image, audio, and video objects.
The main advantage of lossy compression methods is that they can usually
compress images at a much higher compression ratio. Using the lossless
compression techniques, JPEG can compress images to the just noticeable
quality at the compression ratio of 15:1. The Motion Picture Expert Group
(MPEG) standard can compress video at compression ratio of 200:1. The
H.261 or px64 compression methods can compress video at the compression
ratio up to 2000:1.
The hybrid compression methods use both lossless and lossy compression
techniques. These include most compression standards, including JPEG,
JPEG 2000, MPEG-1, and MPEG-2. Compression standards help to avoid
complexity in handling heterogeneous methods.
Lossy compression methods compress images and video objects by predic-
tive, frequency oriented, and importance oriented techniques. The motion

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

compensation method is a predictive technique. The transform coding and
subband coding are frequency oriented techniques. The filtering, bit allocation,
subsampling, and quantization methods are importance oriented techniques.
These techniques are used in JPEG, JPEG2000, and MPEG compressions.

JPEG2000.Compression

The JPEG compression methods encode images using one of the four modes
of operations. The four modes of operations include sequential encoding,
progressive encoding, lossless encoding, and layered encoding.
In the lossless encoding, the images are encoded to guarantee exact recovery
of every source image sample value. In the sequential encoding, each image
component is encoded in a single left-to-right, top-to-bottom scan. In the
progressive encoding, the images are encoded in multiple scans for applica-
tions in which transmission time is long. In the layered encoding, also called
hierarchical encoding, the images are encoded at multiple resolutions. The
lower resolution versions of the images may be accessed without first having
to decompress the image at its full resolution.
The JPEG2000 compression method is a hybrid compression method which
uses both lossless and lossy compression techniques (Adams, 2002). It
implements compression of low bit rate. It is designed for images over low
bandwidth transmission. Each image is divided into several image compo-
nents. Each image component is subdivided into tiles that cover less than or
equal to 4096 pixels. It performs colour transform, wavelet/subband coding,

Figure.4.9..Lossy.compression.techniquesFigure �.�. Lossy Compression Techniques

Predictive Frequency
oriented

Importance
oriented

Lossy

Motion
compensation Transform Subband

Filtering

Bit
allocation

Subsampling

Quantization

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

quantization, progression, and rate control on the images as illustrated in
Figure 4.10.
A source image can be composed of several overlapping components. JPEG
supports 1 to 255 image components. Each image component consists of one
colour channel or spectral band. The colour of a full colour image can be
decomposed into three colour components, such as red, green, and blue. The
image formed by the red component is the red component image. Similarly,
the images formed by the green or blue component are the green or blue
component image. Thus, a colour image is decomposed into three overlap-
ping images.
In the preprocessing step, the encoder adjusts the pixel values so that the
nominal dynamic range is approximately centred at about zero. This is done by
subtracting a bias of 2P-1 to move the samples to the range [-2P-1, 2P-1 –1].
JPEG defines two intercomponent transforms, including irreversible colour
transform (ICT) and reversible colour transform (RCT) to change the colour
representation of the images. The irreversible colour transform (ICT) is a
Lossless compression using real-to-real transform. The reversible colour
transform (RCT) is a lossy compression using integer-to-integer transform.
The ICT converts image colours from the RGB representation to the YCbCr
transform. The RCT approximates the ICT to perform a reversible integer-
to-integer transform.
Afterwards, the encoder performs an intracomponent transform using the
2D wavelet/subband coding as illustrated in Figure 4.11. A low (L) subband
image of half resolution of the original image is formed by using the mean of
the sample values in the higher resolution. Then, another subband, the high

Figure.4.10..Processing.components.of.the.JPEG.encoder

Figure �.�0. Processing Components of the JPEG
Encoder

Preprocessing
Forward

Intercomponent
Transform

Forward
Intracomponent

Transform

Quantization Tier-1
Encoder

Tier-2
Encoder

Rate
control

Original
Image

Coded
Image

Source: Michael Adams, “The JPEG-2000 Still Image Compression Standard”

�0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

(H) subband, image of half resolution is formed by using the difference of
the subband image with the original image. Thus, an image is transformed
into two subband images. This subband coding is applied in both horizontal
and vertical directions to form four subband images, including the LL, LH,
HL, and HH subbands. The subband images are formed recursively on the
LL subband of the previous level to generate the wavelet image.
The transformed wavelet image is then quantized. Mathematically, the quan-
tization process is

()(,) (,) / sgn (,)V x y U x y U x y=  ∆ 

where Δ is the quantization step size, U(x, y) is the value of the pixel at
position (x, y) before quantization, and sgn() is the sign function returning
either +1 or -1.
Conversely, the dequantization process is:

()()(,) (,) sgn (,)U x y V x y r V x y= + ∆

where r.= 0.5 is the bias parameter.

Figure.4.11..Wavelet.intracomponent.transform
Figure �.��. Wavelet IntraComponent Transform

LL0
HLR-2

HHR-2LHR-2

HLR-1

HHR-1LHR-1

…

…

LLR-1

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the Tier-1 Coding, the image is divided into blocks of rectangular tiles
with size  4096 pixels per tile. Thus, the largest square tile covers 64x64
pixels. The pixel values are retrieved at a scan height of four samples per
vertical column. Three passes per bit plane to get the sample values in the
scan order. In the first pass, only the most significant bits of the sample values
are obtained. In the second pass, the refinement bits are used. In the third
cleanup pass, all other least significant bits are used.
The sample values are obtained in this scanning order to support multiple
passes encoding. This is particularly suitable for images being transmitted
at a low transmission rate. The resolution of images increases progressively
as more passes of data are received.
The Tier-2 Coding builds packets with passes. Each packet is comprised of
two parts, header and body. The encoded data for each tile is organized into
a number of layers. Five sorting orders of packets called progressions are
specified in JPEG2000. The five sorting orders are layer-resolution-com-
ponent-position, resolution-layer-component-position, resolution-position-
component-layer, position-component-resolution-layer, and component-
position-resolution-layer. The encoder may choose the most suitable sorting
order for the image or application.
JPEG2000 supports bit rate controlling. The bit rates can be controlled by
choosing suitable quantization step sizes or including only a suitable subset
of coding passes. JPEG2000 allows the region of interest (ROI) coding.
Different regions of an image may be coded with differing fidelity. While
synthesized from its transformed coefficients in the decompression proc-
ess, each coefficient contributes only to a specific region. The encoder may
identify the coefficient contributing to the ROI. It can then encode some or
all of these coefficients with greater precision than the others.
JPEG2000 defines a structure for the encoded data. A code stream is a se-
quence of marker segments. Each marker segment has three fields, including
type, length, and parameter. The code stream has one main header, a number
of tile-part header body pairs, and one main trailer. The JPEG2000 files use
the .JP2 file extension. A JP2 file contains a number of boxes. Each box has
box length, box type, the true length of box when the box length is 1, and
box data.
The JPEG2000 decoder reverses the process of JPEG 2000 encoder. It goes
through the following processing components as illustrated in Figure 4.12.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

1. The compressed code stream is fed through Tier-2 and Tier-1 decoders.
2. The decoded values go through the dequantizer.
3. The dequantized values go through the inverse intracomponet transform

and the inverse intercomponent transform.
4. The postprocessing restores the pixel values.
5. The image component is reconstructed from the pixel tiles.
6. The image is reconstructed from the colour components.

Video.Compression

Several video compression standards were developed by the International
Telecommunications Union and the Motion Picture Expert Group. ITU
alone developed the video compression standards H.261, H.263, H.263+,
and H.263++. MPEG alone developed the MPEG1, MEPG4, MPEG7, and
MPEG21. The ITU and MPEG worked together to develop the MPEG2 and
H.264.
MPEG1 is the first video compression standard from MPEG, and it was
released in 1993. Its main purpose is to compress a video into a sequence of
image frames. MPEG2 is an enhanced video compression standard, and it
was released in 1994. MPEG4 is an object based video compression stand-
ard in 1999, and it compresses video into composing objects. MPEG7 is a
multimedia content description standard based on the eXtensible Markup
Language (XML). MPEG21 is an open multimedia framework standard.

Figure.4.12..Processing.components.of.the.JPEG2000.decoder

Figure �.��. Processing Components of JPEG �000
Decoder

Tier-2
Decoder

Tier-1
Decoder Dequantization

Inverse
Intracomponent

Transform

Inverse
Intercomponent

Transform
Postprocessing

Coded
Image

Reconstructed
Image

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

MPEG-1 compresses the source intermediate formats (SIF) video. The char-
acteristics of a SIF format video are 4:2:0 subsampling, progressive scan,
and 30 mbps. A SIF format video may display either 352×240 pixels/frame
at 30 frames/seconds or 352×288 pixels/frame at 25 frames/second. MPEG-1
compresses SIF video with raw data rate of 30 mbps to about 1.1 mbps at
the VHS VCR quality
MPEG compression is suitable for digital storage media and channels. Dif-
ferent types of applications may compress and decompress video different
number of times. Some applications may compress an object only once and
decompress them several times. Other applications may compress and de-
compress objects in similar number of times.
Depending on the frequency of compressions and decompressions being
performed, a compression technique can be classified as symmetric and asym-
metric. The symmetric compression methods compress objects and decompress
objects with similar processing times. They are more suitable for use in ap-
plications such as video e-mail and video conferencing. In these applications,
video objects are compressed and decompressed a similar number of times.
The asymmetric compression methods compress video objects with varying
processing times. They are more suitable for use in applications including
movies, video-on-demand, education-on-demand, and e-commerce. In these
applications, the video objects are compressed only once at production of the
objects. The compressed objects are decompressed more frequently, usually
once when the objects are being viewed or displayed.

MPEG2.Compression

MPEG2 is an asymmetric compression. It strikes a balance between intraframe
and interframe coding. For interframe coding, it performs block based mo-
tion compensations to reduce temporal redundancy. For intraframe coding,
it performs DCT based transformations to reduce spatial redundancy.
An MPEG stream consists of many group-of-pictures (GOPs). Each GOP
consists of three types of frames, including I-frame, P-frame, and B-frame.
I-frames are intrapictures, and they are compressed using JPEG. They are
independently compressed, and they can be used as the starting points for
random access. P-frames are predicted pictures, and they are coded by refer-
ring to past pictures. They may also be used as reference pictures for future
predicted pictures. B-frames are bidirectional predicted pictures, and they
are coded by interpolating from the past and future pictures.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The MPEG I-frame encoders compress pictures using the JPEG compression
as illustrated in Figure 4.13. The encoder first converts the colour space of
the picture from RGB to YUV. The encoder then performs a forward discrete
cosine transform (FDCT). The transformed sample values are quantized.
After that, the quantized values are encoded using Huffman coding. MPEG
achieves moderate compression on the I-frames.
The MPEG P-frames and B-frames are compressed by referring to other
frames (Figure 4.14). P-frames only refer to the previous I-frame or P-frame,
whereas B-frames refer to the previous I-frame or P-frame as well as the
future I-frame or P-frame. P-frames are encoded using motion estimations,
and B-frames are encoded using interpolations.
Motion estimation uses the block matching techniques to compensate the
interframe differences due to motion as shown in Figure 4.15. For each block
inside the current frame, the encoder finds the best matching block from the
reference frame. If this block is found, it encodes the location of the matching
block and the difference between this block and the matching block. P-frames
are thus compressed at higher compression ratio than the I-frames.
MPEG uses interpolations to perform motion compensations on B-frames
(Figure 4.16). For each block in the current frame, the encoder finds the
best matching block in the previous reference frame and the best matching
block in the future reference frame. These two blocks are interpolated to
generate the interpolated block. The difference between the current block
and this interpolated block is then encoded. MPEG thus achieves the highest
compression on the B-frames.
As the B-frames depend on the previous and future frames, the sequence of
storing and retrieving frames is different from the sequence of displaying
frames. Each B-frame is stored after the previous and future pictures that it
depends on.

Chapter.Summary

Data compressions are vital to the storage and retrieval of multimedia infor-
mation. While compression on textual documents is optional, it is mandatory
to compress multimedia objects. In general, image compression techniques
can be categorized into lossless and lossy compressions. Lossless compres-
sions do not lose information in the encoding and decoding processes. They

Data Compression Techniques and Standards ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure.4.13..MPEG.I-frame.encoder

Figure.4.14..MPEG.P-frame.and.B-frame.encoder

Figure �.��. MPEG I-Frame Encoder

Color
Space

convertor
FDCT Quantizer Entropy

Encoder
I-frame Compressed

I-frame

Figure �.��. MPEG P-frame and B-frame Encoder

P/B-frame
Color
Space

convertor

Error
terms FDCT

Entropy
Encoder

Compressed
frame

RGBYUV
Motion

estimator

+

Reference frames

Figure.4.15..MPEG.motion.estimation

Figure �.��. MPEG Motion Estimation

A
A Best match

Previous frame Current frame

Figure.4.16..MPEG.interpolation

Figure �.��. Interpolation

AA

Previous frame Current frame Future frame

A

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

are used in handling textual documents, medical images, and originals of
multimedia objects. Lossy compressions may lose information that may not
be noticeable to humans.
Text compression techniques can be grouped into symbolwise methods,
dictionary methods, and hybrid methods. Symbolwise methods use shorter
codewords for the more likely symbols. Dictionary methods use pointers
to the location of contiguous symbols in a dictionary. The hybrid methods
combine the techniques in the symbolwise method and the dictionary methods
within the same compression model. The arithmetic coding method optimizes
the compression close to the entropy of the symbols. The arithmetic coding
encoder finds a fractional number with sufficient precisions to represent the
sequence of symbols. These text compression techniques are applied to the
image and video compression standards.
JPEG2000 is an image compression standard. It is a hybrid compression
method for continuous tone images compressions. It implements compression
to very low bit rate at the compression ratio of 50:1. It compresses images
using 2D wavelet, quantization, multiple passes, progression, rate control,
and region of interest.
MPEG2 is a video compression standard. Each MPEG video is composed
of many group-of-pictures. Each group of picture consists of a number of
I-frames, P-frames, and B-frames. I-frames are independently compressed
like JPEG images. P-frames are compressed using motion estimation with
reference to the previous frames. B-frames are compressed using interpola-
tion between previous and future I-frames or P-frames.

References

Adams, M. (2002) The.JPEG-2000.Still.Image.Compression.Standard. Re-
trieved November 21, 2007, from http://www.jpeg.org/wgln2412.pdf

Witten, I., Moffat, A., & Bell, T. (1999). Managing.gigabytes:.Compressing.
and.indexing.documents.and.images (2nd ed.). Morgan Kaufmann.

Summary.to.Section.I

Background

This book is divided into the following six sections:

1. Background information in Section I.
2. Data placement on disks in Section IIa.
3. Data placement on hierarchical storage systems in Section IIb.
4. Disk scheduling methods in Section III.
5. Data migration methods in Section IV.
6. Cache replacement policies in Section V.

Multimedia data can be used in many types of applications. These applications
include broadcasting, video-on-demand, communications, monitoring and
control, and even information systems. The design of multimedia systems

should consider the storage system, delivery network, and the scheduling
algorithms. Most of these systems store large multimedia objects in their
storage system for future retrievals. Inside the storage system, multimedia
objects are stored as large binary data files, and they are accessed and deliv-
ered using streams. Multimedia streams can be classified by their periodicity,
regularity, and continuity.
In magnetic disks, data are recorded on concentric circles on disk platters.
Data are recorded on the tracks in sector units. New storage devices address
the need of large capacity, short latency, high throughput, low power con-
sumption, and nonvolatility. We have described several new storage devices,
including zoned disk layout in new magnetic hard disks, the spiral track layout
in optical disks, the Millipede project, and the NRAM.
The major components of magnetic disk access time are seek time, rotational
latency, and data transfer time. A continuous model provides a close ap-
proximation to the performance of the zoned disks. The mean and variance
of seek distance for completely random disk accesses are found. The mean
and variance of rotational latency and data transfer time are also found.
Data compressions are vital to the storage and retrieval of multimedia informa-
tion. While compression on textual documents is optional, it is mandatory to
compress multimedia objects. Lossless compressions do not lose information
in the encoding and decoding processes. They are used in handling textual
documents, medical images, and originals of multimedia objects. The arith-
metic coding method optimizes the compression close to the entropy of the
symbols. It finds a fractional number with sufficient precisions to represent
the sequence of symbols. JPEG2000 is an image compression standard for
continuous tone images. Its encoder performs compression using 2D wavelet,
quantization, multiple passes, progression, rate control, and region of inter-
est. MPEG2 is a video compression standard. The MPEG encoders perform
compression using FDCT, quantization, entropy coding, motion estimation,
and interpolation.

Section.IIa

Data Placement on Disks

Introduction.

In the previous chapter, we have described how to apply compression tech-
niques to reduce the size of multimedia objects. The performance of storage
systems is efficient when data are carefully organized on the storage system.
Thus, we describe the data placement on disks in this part.
Storage organization is also known as data placement. The storage organization
methods are methods that place data on to the storage devices. These methods make
use of the characteristics of access patterns on the type of storage device.
A method that is suitable for one type of storage device may not be suitable for
another type of storage device. However, different storage devices may share some
overheads in access data from various locations. Thus, the same placement strategy
may be applied to different storage devices.

Many intelligent storage organizations, or data placement methods, have been
designed for traditional data files and database systems. Traditional file placement
methods are grouped into the following strategies (Kuvayev, Giles, Philbin, &
Cejtin, 1997):

1. Random.placement. Each data file is split into file blocks, and the file
blocks are randomly placed on any storage locations. This is the simplest
strategy to handle random accesses to file blocks.

2. Contiguous.placement. Each data file is stored to contiguous physical
locations. This strategy performs best when the entire file is accessed by
consecutive requests. However, fragmentation prohibits the placement
of large files.

3. Type. based. placement. Files containing the same type of data are
grouped to a category. Files belonging to the same category are placed
close to each other. This strategy trades off the seek distance of con-
secutive requests on data of the same type with that on data of different
types.

4. Frequency.based.placement. Files are sorted according to the station-
ary probabilities of their accesses. Frequently accessed files are placed
in the locations with low average access overheads. This strategy needs
to record the access frequency of files in order to reorganize the data
files.

5. Markovian.placement. The pattern of consecutive accesses to data files
is investigated. Two data files that are accessed by consecutive accesses
are correlated. The data files with the highest correlation probabilities
are stored to consecutive locations. This strategy optimizes the seek
distance of requests according to the access history.

Many data placement methods are specifically designed for multimedia data.
These data placement methods can be grouped according to their strategies
into the following categories (Tse, 1999):

1. Random.placement. Data stripes are stored randomly. This simple
method is used for comparison only. Practical systems usually use this
strategy due to its simplicity and flexibility.

2. Statistical.placement. Objects are stored according to the stationary
or transition probabilities.

3. Striping. Objects are divided into stripes to allow round robin or parallel
retrievals.

4. Replication. Objects are fully or partially replicated to increase avail-
ability of data, or redundant codes are encoded and stored to increase
data reliability and security.

5. Constraint.allocations. The physical storage locations to store consecu-
tive data stripes are restricted so that the maximum overheads between
consecutive requests are reduced.

These data placement strategies, except the random placement strategy, are
described in the following chapters. The random placement strategy is skipped
because it is simple and it does not provide any promises to the performance
of the storage systems.

References

Kuvayev, L., Giles, C. L., Philbin, J., & Cejtin, H. (1997). Intelligent meth-
ods for file system optimization. In Proceedings.of.the.14th.National.
Conference on Artificial Intelligence and 9th Innovative Applications
of Artificial Intelligence Conference (pp. 528-533). Cambridge, MA:
MIT Press.

Tse, P. K. C. (1999). Efficient storage and retrieval methods for multimedia
information. Doctoral dissertation, Victoria University, Melbourne,
Australia.

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.V

Statistical.Placement.on.
Disks

Introduction

The access pattern on each multimedia object can have very different char-
acteristics. Some multimedia objects are more popular and they are more
frequently accessed by more users. The user may concern the average access
time on the objects. Thus, the storage systems can make use of the popular-
ity of multimedia objects to optimize the average access time. Some objects
need to be accessed at a higher data rate than the other objects. The users may
concern the continuity of these objects. The storage systems may store the
high data rate objects at the locations where data transfer rates are higher.
The statistical placement methods place the multimedia objects according to
the characteristics of their access patterns. We shall describe the frequency
based placement or popularity based placement method which optimizes
the mean access time as the performance metric in the next section. After
that, we shall describe the bandwidth based placement which uses the object
continuity as the performance metrics.

Statistical Placement on Disks ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When two placement methods are compared on the same storage system,
each one of the methods may show better performance according to differ-
ent metrics. System builder may choose the appropriate method according
to the method that shows better performance in the preferred metrics. Thus,
both placement methods have their significance.

Frequency.Based.Placement

Multimedia streams access objects and display them directly to users. Differ-
ent users may access the same object stream. The same user may access an
object more than once. This produces an observable characteristic of access
pattern at the multimedia server called popularity of the objects. We will
explain below that the access frequency of objects depends on the popular-
ity of objects, thus the frequency based placement method is also called the
popularity based placement or the temperature based placement.
When an object is popular, more users access the object for display. The
time interval between consecutive requests on this object becomes short.
The object is said to have high temperature or hot. The object is frequently
accessed by the users. Thus, the access frequency of an object depends on
the popularity of the object. The storage system can place the hot objects in
the most convenient locations so that it may serve the request streams on the
hot objects efficiently.
If an object is unpopular, only a few users or not any users access the object
for display. The time interval between consecutive requests on this object
is long. The object is rarely accessed by anyone. The object is said to have
low temperature or cold. The storage system may remove the cold objects
from the convenient locations to free space for the hotter objects. The higher
overheads in accessing the cold object have little impact on the mean access
time.
Many objects are neither popular nor unpopular. These objects are sometimes
accessed by users. The time intervals between consecutive requests on these
objects are of medium length. These objects are said to be warm. The storage
system should place these objects at the medium convenient locations so that
the requests on these objects can be served efficiently.
According to the Zipf-like distribution of object popularity, there are only a
small number of hot objects, but there are many warm or cold objects. If the

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

80/20 rule is applicable, 80% of the requests access only 20% of the objects.
The storage system can place only 20% of the objects at the most convenient
locations to serve 80% of requests efficiently. However, the storage system
also needs to efficiently store 80% of the objects in order to improve the ac-
cess time of the last 20% of requests. This also shows that the 20% of objects
should be placed with minimum access time. The objective of the frequency
based placement is to reduce the mean access time of objects to its minimum.
The mean access time logically becomes the performance measure for the
placement method.
In Chapter III, we have shown that the access time is mainly composed of
seek time, rotational latency, and data transfer time. The rotational latency is
half of the disk revolution time. Data transfer time is shorter for objects resid-
ing on the outer zones. Seek time of an object depends on the seek distance
traveled by the disk heads. This means that the seek time to serve a request
depends on the track location accessed by the immediate previous request.
The frequency based placement methods assume that the objects are accessed
randomly from the disks according to their access frequencies. When objects
are randomly accessed, the immediate previous request may access data from
any random track location. Thus, it is logical to minimize the mean seek
distance from a random track.
In order to reduce the average seek time of disk requests, access probabilities
have been considered in designing optimal file locations (Ford & Christodou-
lakis, 1991; Triantafillou, Christodoulakis, & Georgiadis, 1996). Since the
access frequencies or data temperatures of multimedia data can be obtained
from prediction or access history, movie data can be distributed among disks
according to their access frequencies (Little & Venkatesh, 1995). Multimedia
objects on zoned disks can be distributed according to their access frequen-
cies (Chen & Thapar, 1996; Tewari, King, Kandlur, & Dias, 1996; Wang,
Tsao, Chang, Chen, Ho, & Ko, 1997).
We define the middle zone as the zone to which the middle track of all tracks
belongs. The zones containing tracks with shorter radius than the middle track
are called inner zones. The zones that consist of tracks with longer radius
than the middle track are called outer zones.
The middle track has the shortest distance from other tracks. Thus, it has
the shortest mean seek distance. Since the seek time increases with the seek
distance as we have shown in Chapter III, the middle track has the shortest
mean seek time.

Statistical Placement on Disks ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We have also shown in Chapter III that the data transfer time of tracks in
outer zone is shorter than the data transfer time of tracks in inner zones. Thus,
the tracks on the outermost zone transfer data with the shortest time, and the
tracks on the innermost zone transfer data with the longest time.
In the frequency based placement methods, the hottest object, V1, is placed
at the optimal position that has the minimum random access time from all
positions on the disks. The next hottest object, V2, is then placed at the next
available optimal position and so on (Figure 5.1). The objects are then placed
similarly in a organ-pipe pattern, and the organ-pipe is skewed in the outward
direction (Chen & Thapar, 1996). When the objects are independently and
randomly accessed, the mean data access time would be minimal.
Where is the optimal location? The position of the optimal location varies
from disk to disk depending on the disk parameters. Tracks of middle zone
or the outer zone may be the optimal location, but tracks of the inner zones
cannot be the optimal location. This is because the requests to the middle
track are served with smaller mean seek time and mean data transfer time
than the requests to any one track of the inner zones.
Consider two requests to the innermost track of two neighbouring zones that
are in the middle or outer zones. The request that accesses a track from the
inner one of the two zones will be served with shorter mean seek time but
longer data transfer time. The other request will be served with longer mean
seek time but shorter data transfer time. Depending on the difference between
their mean seek times and data transfer times, the request that access a track
from the outer one of the two zones may be served with shorter access time.
Thus, the optimal location may be present in the outer one instead of in the
inner one of the two zones.
If the reduction of data transfer time is larger than the increase in mean seek
time for every pair of neighbouring zones, the optimal location will be in
the outermost zone, and the hottest object will be placed in the outermost
zone. Alternatively, if the reduction of data transfer time is smaller than the
increase in mean seek time for every pair of neighbouring zones, the optimal
location will be in the middle zone, and the hottest object will be placed in
the middle zone.
Which track has the smallest mean access time among all tracks within a
zone? The data transfer rate is fixed for all tracks within each zone. The
mean seek time of a track increases when the track is further away from the
middle track. The innermost track of an outer zone has the shortest mean
access time than all other tracks within the same zone. The middle track has

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

shorter mean access time than all other tracks within the middle zone. The
outermost track of an inner zone has the shortest mean access time than all
other tracks within the same zone. Thus, if the optimal location is in the
middle zone, the optimal track should be at the middle track. If the optimal
location is within an outer zone, the innermost track of this zone should be
the optimal location.
If the object access frequencies are obtained from access history, some extra
disk storage space is required to store the access history. Fortunately, the data
temperatures of objects in some multimedia applications can be predicted.
However, their data temperature dynamically changes over time but the
placement methods are static (Griwodz, Bär, & Wolf, 1997). To maintain the
optimal performance, data on the disks need to be frequently reorganized.
The frequency based placement strategy assumes that objects are independently
and randomly accessed. However, a stream of requests sequentially accesses
data stripes of the same multimedia object. When there are multiple concur-
rent streams, the disk heads traverse to-and-fro between storage locations
of objects. Therefore, this strategy should be refined to a finer granularity in
order to handle concurrent multimedia streams.
However, the multimedia objects are not accessed independently in most
cases. In these situations, the correlation between object accesses must be
considered. The Markov chain is used to model the access patterns for brows-
ing graphs with low connectivity. A heuristic algorithm has been proposed
to place the objects (Chen, Kashyap, & Ghafoor, 1992). The running time
of the proposed heuristic algorithm is however in O(n3).

Figure.5.1..Frequency.based.placement

Figure �.�. Frequency Based Placement

zone

increase in radius

V6V7V8

6

V1V2V3

5

V5V4

4

V10V9

3

V11

2

V12

1

outer zoneinner zone

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

decrease in popularity

Statistical Placement on Disks ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When objects are stored or temporarily placed on staging buffers, objects are
only written and read back once. After these two data accesses, the objects may
be deleted to release disk space. Thus, the number of data accesses of each
object on the disk is different from the object temperature in the placement.
In addition, the individual access frequency of these objects may be very
low, but the staged buffers are accessed more frequently than other resident
objects. If these buffers are allocated at the two ends of the disk, the mean
seek distance would be very long. Therefore, these placement methods need
to be refined for the optimal placement on staging buffers.
In frequency based placement, extra storage space is required to store the ac-
cess history. The presence of concurrent streams and the continuous display
requirement render that the statistical placement methods should be enhanced
to handle streams of requests for multimedia data.

Bandwidth.Based.Placement

Different multimedia objects may have different access bandwidth require-
ments. High bandwidth multimedia objects, such as video, may consume
more bytes per second than low bandwidth multimedia objects, such as voice.
In order to meet the continuous display requirement of data streams, high
bandwidth streams should be served with higher data rates than low band-
width streams (Tse, 1999; Tse & Leung, 2000). Apart from the multimedia
objects, computer programs and text files may also reside on the same group
of disks. Discrete requests will access these files and these requests can be
served with any data transfer rates.
As shown in Chapter III, the same amount of data are transferred in less time
from outer zones than from inner zones of zoned disks; the throughput of ac-
cessing data from different zones varies. This variation in data transfer rates
can be used to create new placement methods for the multimedia objects.
The bandwidth based placement helps to maintain continuity of streams by
placing the objects according to their necessary data rates.
The bandwidth based placement method stores objects in two steps. First,
the multimedia objects to be stored on disks are grouped together based on
their bandwidth requirement. Other binary and textual data files are grouped
as an arbitrary bandwidth group. The bandwidth groups are then sorted from
the highest to the lowest bandwidth. Second, each zoned disk is divided into

�� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

a number of groups of zones. The number of zone groups is ideally more
than or equal to the number of bandwidth groups. Objects belonging to the
highest bandwidth group are stored at the outermost zone group on all disk
platters. Objects belonging to the next highest bandwidth group are stored at
the next outermost zone group on all disk platters and so on. After the objects
in all bandwidth groups are stored, the binary and textual data are stored at
the innermost zone group. An example of bandwidth based placement using
four zone groups is illustrated in Figure 5.2.
In the bandwidth based placement method, multimedia objects can be stored
together with traditional data files on the same group of disks. Since high
bandwidth data are stored at outer zones more than low bandwidth data, the
transfer rate of higher bandwidth data are always higher. It reduces the data
transfer time in accessing high bandwidth objects at the expense of longer
data transfer time in accessing low bandwidth objects. Therefore, the access
time to high bandwidth objects is reduced at the expense of longer access
time to low bandwidth objects.
This trade-off may seem to be unfavourable for binary and textual data objects.
In fact, not much is lost for the requests on binary and textual data. Since the
binary and textual data are normally accessed in small blocks, only a few
kilobytes of data are often sufficient to satisfy each request. These requests
still enjoy a similar number of I/Os per second, and they are not much worse
off. It is a reasonable trade-off so that the continuous media objects can be
accessed with their necessary data rates.
As the data rate of each object is static, this object characteristic does not
change over time. Once the storage organization is optimized for the highest
performance according to the data rates, there is no need to perform reor-

Figure.5.2..Bandwidth.based.placement

Figure �.�. Bandwidth Based Placement

zone

increase in radius

V1V2V3

6

V4V5V6

5

V7V8

4

V9V10

3

V11

2

V12

1

outer zoneinner zone

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

decrease in access bandwidth

Statistical Placement on Disks ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ganizations of the storage systems. The objects are properly placed on the
preferred location until they are no longer needed.

Chapter.Summary

The statistical placement methods consider the characteristics of the multime-
dia objects and place them accordingly. This allows the system administrator
to optimize the storage system performance according to the administrator’s
preferred metrics. A combination of the statistical characteristics may also
be combined into a priority function that determines the optimal locations
of placing objects onto the disks.
We have described two statistical placement methods that base on different
access characteristics. The frequency based placement method optimizes
the average request response time. It uses an algorithm to place the objects
according to their access frequencies. The hottest object is placed at the
storage location with the least average access time. The next hottest object
is placed at the next available storage location with the least average access
time and so on. The objects are then placed in a skewed organ-pipe manner
on the disks.
The bandwidth based placement method places objects according to their
data rates. The storage system maintains its optimal performance according
to the object data transfer time without reorganizations. The bandwidth based
placement method adapts the data transfer time of objects according to their
necessary data rates.

References

Chen, Y. T., Kashyap, R. L., & Ghafoor, A. (1992). Physical storage manage-
ment for interactive multimedia information systems. In Proceedings.
of.IEEE.International.Conference.on.Systems,.Man,.and.Cybernetics
(Vol. 1, pp. 1-6).

Chen, S., & Thapar, M. (1996). Zone-bit-recording-enhanced video data
layout strategies. In Proceedings.of.the.IEEE.MASCOTS.Conference
(pp. 29-35).

�00 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Ford, D. A., & Christodoulakis, S. (1991). Optimal placement of high-prob-
ability randomly retrieved blocks on CLV optical discs. ACM.Transac-
tions.on.Information.Systems,.9(1), 1-30.

Griwodz, C., Bär, M., & Wolf, L. C. (1997). Long-term movie popularity
models in video-on-demand systems. In Proceedings.of.the.ACM.Mul-
timedia.Conference (pp. 349-357).

Little, T. D. C., & Venkatesh, D. (1995). Popularity-based assignment of
movies to storage devices in a video-on-demand system. In Proceedings.
of.ACM.Multimedia.Systems (Vol. 2, pp. 280-287).

Tewari, R., King, R., Kandlur, D., & Dias, D. M. (1996). Placement of
multimedia blocks on zoned disks. In Proceedings.of.SPIE.Multimedia.
Computing.and.Networking.1996 (Vol. 2667, pp. 360-367).

Triantafillou, P., Christodoulakis, S., & Georgiadis, C. (1996). Optimal.data.
placement.on.disks:.A.comprehensive.solution.for.different.technologies
(Tech. Rep.). Technical University of Crete.

Tse, P. K. C. (1999). Efficient storage and retrieval methods for multimedia
information. Doctoral dissertation, Victoria University, Melbourne,
Australia.

Tse, P. K. C., & Leung, C. H. C. (2000). Improving multimedia systems
performance using constant density recording disks. ACM.Multimedia.
Systems.Journal,.8(1), 47-56.

Wang, Y. C., Tsao, S. L., Chang, R. Y., Chen, M. C., Ho, J. M., & Ko, M.
T. (1997). A fast data placement scheme for video server with zoned-
disks. In Proceedings.of.SPIE.Conference.on.Multimedia.Storage.and.
Archiving.Systems (Vol. 3229, pp. 92-102).

Striping on Disks �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.VI

Striping.on.Disks

Introduction

Multimedia streams need continuous data supply. The aggregate data access
requirement of many multimedia streams imposes very high demand on the
access bandwidth of the storage servers. The disk.striping or data.striping
methods spreads data over multiple disks to provide high aggregate disk
throughput (Chua, Li, Ooi, & Tan, 1996; Hsieh, Lin, Liu, Du, & Ruwart,
1995).
In addition to the popularity of multimedia objects that we have described in
the last chapter, multimedia streams consume an object in a sequential man-
ner. The striping methods make use of this access pattern to evenly spread
the workload across disks. This can increase aggregate disk throughput so
that high bandwidth streams can be delivered continuously.

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We first describe the simple striping method that places data stripes on a set of
disks in the next section. After that, the staggered striping method that places
data on a set of disks in a rotating manner is described. The pseudorandom
placement method that stores data stripes on random disks is explained before
we summarize this chapter.

Simple.Striping

The main objective of simple striping method is to increase the storage system
throughput so that the objects with high data rates can be accessed from the
disks. In order to use the simple striping method, multiple disks should be
available to store the multimedia objects.
The simple striping method divides an object into multiple data stripes of
fixed size (Chua et al., 1996). The stripes are placed on multiple disks on a
disk array. Each data strip is placed on one disk in the round robin manner.
When an object is striped across N disks, the first data stripe is placed on
disk 1, the second data stripe is placed on disk 2, and so on. In general, the
ith data stripe is placed on disk 1 + (i-1) mod N (Figure 6.1).
When the data stripes are accessed from the disk array, one request is sent to
every disk in the array at the same time. While the first disk is repositioning
its read/write heads to the desired location, the second to the last disks are
also repositioning their read/write heads to the desired locations. One data
stripe is then transferred back from each disk to the memory buffers.
Hence, the time required to retrieve N data stripes from N identical disks takes
about the same amount of time as retrieving one data stripe from only one
disk. In this way, the throughputs of all N disks are summed up to provide
high data bandwidth. Letting β be the throughput of each single disk and N
be the number of disks, the total throughput of the disk array can be up to Nβ.
When the data rates of objects are high, the storage system should increase
the number of disks proportionally.
In order to retrieve a data stream from the disks, a minimum buffer to store
N+1 data stripes is required. The size of the display buffers increases with
the number of disks. Initially, N data stripes are fetched from the disks to the
N buffers before the first data stripe can be displayed. This initial time to fill
N buffers is called the start-up latency of the simple striping method.

Striping on Disks �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

After the initial N buffers are filled, the stream may begin to display. The data
consumption begins at the first data stripe. The (N+1)th buffer is also starting
to fill data from disk while the first data strip is being consumed. After the
first data stripe is displayed, the buffer space that is containing the first data
stripe is freed. Then, the (N+2)th data stripe starts to fill into the first buffer
while the second data stripe is then started to be consumed. Similarly, after
the jth data stripe is consumed, the buffer space that is containing the jth
data stripe is freed. Then, the (N+j+1)th data stripe is being retrieved while
the (j+1)th data stripe is being consumed. In this way, the whole stream is
retrieved using N+1 buffers.
When the data stripes are placed across more disks, more disks can be ac-
cessed in parallel to achieve a higher throughput. The actual disk throughput
for the stream is however controlled by the current data consumption rate of
the stream. When the buffer containing the jth data stripe is still in use, the
(N+j+1)th data stripe cannot be retrieved. Thus, data are accessed from the
disks at the rate that the data are consumed from the buffers.
If the data consumption rate is higher than the aggregate disk bandwidth, all
buffers might be consumed and freed. All N disks are still busy accessing data
to the buffers. The stream will then become starved and will not continue to
display the media stream properly. The user will then observe an artifact that
a video may freeze at a frame or an audio may become silent at an inappropri-
ate point of time. Thus, the system should use enough disks to maintain the
aggregate disk bandwidth higher than the data rate of the streams.

Figure.6.1..Simple.striping

Figure �.�. Simple Striping

X1 X2 X3 X4 X5 X6 X7 X8Object X

Object Y Y1 Y2 Y3 Y4 Y5 Y6

Disk 1 Disk 2 Disk 3 Disk 4

X1
X5
Y1
Y5

X2
X6
Y2
Y6

X3
X7
Y3

X4
X8
Y4

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

If the data consumption rate is only temporarily higher than the aggregate
disk bandwidth; the stream may still be consuming the already-filled buffers
between the currently consuming buffer and the currently filling buffers. A
stream may not show any artifacts to the user at all.
In order to maintain the continuity of a stream, the actual data curve stays
between two stair-like curves. One of the stair-like curves shows the com-
pleted buffer filling while the other stair-like curve shows the currently
completed buffer consumption. If the actual data curve crosses the current
buffer consumption curve, then the stream may starve as the buffers are
still incomplete, filling while due for consumption. More disks may be used
to increase the maximum disk throughput so that the object stream can be
continuously displayed.
When simple striping is applied to stripe objects across a disk farm, the ob-
ject may be striped across a number of disks. The number of striping disks
should be enough to provide a disk bandwidth that can support the object’s
data rate requirements. The maximum number of striping disks is the number
of disks in the disk array.
When an object is striped across all disks, all streams are concurrently served
by all the disks. Each disk will access one data strip for each stream. Since
each service of request consumes one seek and latency overhead, the amount
of seek and latency overhead is equal to the number of concurrent streams.
If each object is striped across a subset of disks, the concurrent streams are
shared among different subsets. Thus, the number of seek and latency over-
heads on each disk is reduced. Therefore, it is more efficient to create data
stripes across the smallest number of disks which can support the object’s
data rate requirements.
If the actual data curve hits the current buffer consumption curve, then the
stream consumes data so slowly that all disks are waiting. The actual data
access rate is very slow. The object stream can still continue to display
properly.

Staggered.Striping

Simple striping divides each object into data stripes and spreads them across
a subset of disks. These subsets of disks overlap with each other within the
set of disks. When concurrent streams are served, some disks may need to

Striping on Disks �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

serve more streams while other disks serve fewer streams. This skews the
total throughput of the disks. In addition, the busy disks may become un-
available for a long period of time when many objects are being accessed
concurrently.
Berson, Ghandeharizadeh, Muntz, and Ju (1994) proposed a staggered strip-
ing method that aims at avoiding the continuous unavailability of disks in
a disk array. The staggered striping method removes the constraint that two
consecutive sub-objects must be assigned on non-overlapping disks. The
staggered striping method can also accommodate objects of heterogeneous
display bandwidth with little loss of disk throughput.
In the staggered striping method, each multimedia object is partitioned into a
number of sub-objects. Each sub-object is placed on a cluster of disks (Figure
6.2). The number of disks in a cluster is chosen in a way that it can support
the required bandwidth of the object. The next sub-object is then placed in
the next disk cluster. The next cluster of disks is selected as the next k disks
being shifted by r disks, where 0 ≤ r ≤ k. The number of shifted disks, r, is
called the stride.
In Figure 6.2, the multimedia object, X, is partitioned into three sub-objects,
X1, X2, and X3. In order to support the data rate requirements, the object X
needs to be stored on three disks. The sub-object X1 is further divided into
X11 to X13. These data stripes X11, X12, and X13 are placed on disk 1, disk 2,
and disk 3, respectively. The sub-object X2 is further divided into X21 to X23.
The stride of 1 is used so that the next cluster of disks is shifted by one disk.
Thus, the data stripes X21, X22, and X23 are placed on disk 2, disk 3, and disk
4, respectively. Similarly, the sub-object X3 is further divided into X31 to X33.
The next cluster of disks is also shifted by one disk. Thus, the data stripes
X31, X32, and X33 are placed on disk 3, disk 4, and disk 1, respectively.
Similarly, the multimedia object Y is partitioned into three sub-objects, Y1, Y2,
and Y3. In order to support the data rate requirements, the object Y needs to
be stored on two disks. The sub-object Y1 is further divided into Y11 and Y12.
These data stripes, Y11 and Y12 are placed on disk 4 and disk 1, respectively.
The sub-object Y2 is further divided into Y21 and Y22. The stride of 1 is also
used so that the next cluster of disks is shifted by one disk. Thus, the data
stripes Y21 and Y22 are placed on disk 1 and disk 2, respectively. Similarly,
the sub-object Y3 is further divided into Y31 and Y32. The next cluster of disks
is also shifted by one disk. Thus, the data stripes Y31 and Y32 are placed on
disk 2 and disk 3, respectively.

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

While an object is being retrieved in parallel, the cluster of disks in use changes
from time to time. The subset of disks being used for a stream shifts by the
stride value. Hence, each disk becomes free periodically. As long as a new
stream can be served within the time gap, another object can be retrieved
within the time gaps.
The staggered striping method provides effective support for multiple streams
accessing different objects from a group of striped disks, and it automati-
cally balances the workload among disks. The staggered striping method
is actually a generalization of the simple striping method. When the stride
is equal to zero or k, the stagger striping method becomes the same as the
simple striping method.

Application.Note:.Unfortunately,. the.staggered.striping.method.still.suf-
fers.from.the.disk.bandwidth.fragmentation.problems..Since.continuous.disk.
bandwidth.must.be.obtained.from.the.participating.disks,.the.disk.bandwidth.
can.become.fragmented,.and.new.streams.are.rejected..This.bandwidth.frag-
mentation problem could be alleviated by efficient scheduling methods that
alter.the.service.order.of.requests.

Although data on tertiary storage devices may also mismatch the staggered
striping arrangement on disks, data on tertiary storage can be pre-arranged to
alleviate this problem. Unfortunately, the objects are not always presented in
the normal display rate. When an object is presented in fast forward mode or

Figure.6.2..Staggered.striping
Figure �.�. Staggered striping

X11 X12 X13 X21 X22 X23 X31 X32object X:

object Y: Y11 Y12 Y21 Y22 Y31 Y32

X11 X12 X13

X31 X32

X21 X22 X23

Y12
Y22

Y32

Y11
Y21

Y31

Disk 1 Disk 2 Disk 3 Disk 4

X33

X33
Stride of 1

Striping on Disks �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

rewind mode, data are retrieved in a different rate from the cluster of disks.
Berson et al. (1994) proposed creating a replica in order to support objects
retrieved at abnormal rates. However, each rate would require an extra rep-
lica and the system is obviously limited to a small number of display rates
predicted in advance.

Pseudorandom.Placement

In the data striping methods, the data stripes are stored onto a number of
disks. The choice of which disk to store a data stripe depends on the num-
ber of disks. The striping methods assign disk numbers sequentially to data
stripes in cycles. For a storage system with d disks, the disks are numbered
from D0 to Dd-1. An object Y with n data stripes is placed on the d disks. The
i+1th data stripe Yi is placed on Dj if

Dj = i mod d,
where j = 0,1, … , d-1 and i = 0,1, … , n-1.

When new disks are added to the disk farm, the data stripes become incor-
rectly placed according to the new number of disks. Thus, all the disks
need to be reorganized, and the data stripes of all the objects are moved to
new locations in order to maintain the integrity of the storage system. This
reorganization of all the objects on the disks incurs heavy workload on the
storage system.
In Figure 6.3, object Y is originally stored on two disks, D0 and D1. The object
Y is split into six data stripes, Y0 to Y5, and these data stripes are already placed
on the appropriate disks. A new disk, D2, is now added to the disk farm. The
data stripes Y2 to Y5 need to be moved to their new disk location. This cycle
repeats for every six (=2*3) data stripes when the third disk is added. Thus,
four out of every group of six data stripes should be moved.
The addition of the second disk to a single disk involves moving half of all
data stripes. The addition of the third disk involves moving two thirds of all
data stripes. The addition of the fourth disk involves moving three fourths of
all data stripes. Since d and d-1 are relatively prime for all d > 1, the addition
of the dth disk involves moving d*(d-1)/d2 = (d-1)/d of all data stripes.

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Apart from disk additions, disk reorganization is required when disks are
removed. When one of the disks is removed, the number of disks decreases.
The data stripes on all disks should be moved to other disks in order to
maintain the integrity of the striping method. Furthermore, removing a disk
in the middle of a group of disks may result in a gap within the range of disk
numbers. The disks should be renumbered so that the data stripes can be
retrieved from the correct disk. Although disks are seldom removed, failed
disks are often directly replaced with a new one. The workload on disk re-
organization for disk removals is however heavy.
The objective of the pseudorandom placement method is to reduce the work-
load in reorganization when disks are added or removed from the disk array.
It reduces the number of data stripes being moved after adding a disk. It also
reduces the number of data stripes being moved to remove a disk.
Instead of assigning sequentially a fixed disk number to the data stripe when
a new disk is added, the pseudorandom placement method uses the pseudo-
random function to generate the new disk numbers so that the data stripes can
be evenly distributed (Goel, Shahabi, Yao, & Zimmermann, 2002; Santos,
Muntz, & Ribeiro-Neto, 2000).
The pseudorandom function is not truly random. It returns a random number
within the range 0 to 1 uniformly. When a seed number is provided as the

Figure.6.3..Pseudorandom.placement..In.adding.a.new.disk.D2,.Y3.to.Y6.are.
moved.

Figure �.�. Pseudo-random Placement. In adding a new
disk D3, Y2 to Y5 are moved.

Y1 Y2 Y3 Y4 Y5 Y6Object Y

Y1

D1 D2 New disk D3

Y2

Y3
Y5

Y4
Y6

Y1 Y2 Y3
Y4 Y5 Y6

Striping on Disks �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

parameter to the pseudorandom function, the pseudorandom function always
returns the same random number. If a random number within a range of 0
to N-1 is required, the return random number is simple multiplied by N, and
the fractional part is truncated away.
By controlling the new disk numbers for the data stripes, the pseudorandom
striping method reduces the number of movements of data stripes (Goel et
al., 2002). After a new disk is added, it regenerates a new disk number for
every data stripe. If the generated disk number for a data stripe is within the
original disks before adding, it keeps the old disk number as the new disk
number and avoids moving the data stripe. If the generated disk number is
on the newly added disk, then the new disk number is the generated disk
number and the data stripe is moved to the new disk.
Consider that a seed Xs is chosen. The pseudorandom function, RF(.), can be
used to generate the new disk numbers D1 and D2 as follows.

D1 = RF(Xs), and
D2 = RF(D1) = RF(RF(Xs)) = RF2 (Xs),
where Xs is the initial seed for the pseudorandom function. Similarly, the new
disk number Dj is generated within the range 0 to d-1 as
Dj = RF(Dj-1).
Dj-1 is then further expanded repeatedly to get
Dj = RF(RF(Dj-2)) = … = RFj (Xs).

When the same initial seed number Xs is used, it always generates the same
sequence of numbers Dj such that each Dj is within the range of 0 to d-1. This
also implies that if we know the value of the initial seed, Xs, we can calculate
an entire sequence of seed numbers Dj.
If we define qj = (Xj div Nj) and rj = Xj mod Nj, then qj and rj are the quotient
and remainder of Xj divided by Nj. Thus, we have

Xj = qj * Nj + rj.

Let Xj be the seed for the jth application of the random number function on
a data stripe, Yi. For simplicity, the index of a data stripe, i, may be used as
the initial seed for the data stripe. After adding a new disk, the previous Xj-1
is used as the seed of random number function to generate the new Xj. Thus,

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

we can always get the same sequence of seed numbers, Xj, for all j > 1. The
following disk addition algorithm is used to generate the sequence of seed
numbers after adding a new disk (Goel et al., 2002).
Disk addition algorithm to generate, Xj, the jth seed number of a data stripe
after adding a new disk:

If (RF(Xj-1) mod Nj) < Nj-1, then
Xj = RF (Xj-1) * Nj + rj-1
Otherwise,
Xj = RF(Xj-1)* Nj + RF(Xj-1) mod Nj.

The above disk addition algorithm uses RF(Xj-1) to generate a new random
number so that the data stripes can be evenly distributed to Nj disks. If the
remainder of this random number divided by Nj is less than Nj-1, then the
remainder is within the original number of disks before adding the new
disk. The new seed number Xj is then calculated as a multiple of Nj plus the
previous remainder rj-1. The new disk number, rj, is equal to the old disk
number, rj-1, since

rj = Xj mod Nj
 = (RF (Xj-1) * Nj + rj-1) mod Nj
 = rj-1.

If the remainder of the random number divided by Nj is equal to Nj-1, then
the data stripe should be placed in the new disk. The new Xj is calculated as
a multiple of Nj plus the remainder of the random number modulo Nj. Thus,
the new disk number, rj, can be found as

rj = Xj mod Nj
 = (RF(Xj-1)* Nj + RF(Xj-1) mod Nj) mod Nj
 = RF(Xj-1) mod Nj.

Therefore, the data stripe will be placed in the newly added disk if RF(Xj-1)
mod Nj is equal to Nj-1. Since the random number function always generates
random numbers that spread uniformly over the range of values from 0 to

Striping on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Nj-1, only one of Nj return random number values will be equal to Nj-1. Thus,
only one of Nj data stripes will be moved to the new disk.
Similar to adding disks, the pseudorandom placement method also provides
the means to reduce data stripes movements for disk removals. Before a disk
is removed, the previous Xj-1 is used as the seed of random number function
to generate the new disk number. The following disk removal algorithm is
executed to generate new sequence of seed numbers (Goel et al., 2002).
Disk removal algorithm to generate, Xj, the jth seed number of a data stripe
before removing a new disk:

If rj-1 is not removed, then
Xj = RF (Xj-1) * Nj + new(rj-1)
Otherwise,
Xj = RF(Xj-1),
where new(.) is a mapping function that maps from previous disk numbers
to new disk numbers.

The disk removal algorithm uses the previous Xj-1 as seed to generate a new
seed number for the data stripe. It uses a new(.) to map the previous disk
numbers to new disk numbers so that no gaps exist in the disk numbers after
mapping. The input parameter to this new() function is a disk number in the
range before disk removal. It thus returns a disk number in the range after
disk removal.
The above disk removal algorithm checks if the data stripe originally resides
on the removing disk. If it is not on the removing disk, the new Xj is calculated
as a multiple of Nj plus the mapping of the previous remainder rj-1. Thus, the
data stripe thus stays on the original disk.
If the data stripe is on the removing disk, a new Xj is calculated as RF(Xj-1).
The data stripe will then be moved to a random one of the remaining disks.
Since the pseudorandom function is used to generate the new random number,
the data stripe has the same probability to reside on anyone of the remaining
disks. Thus, the data stripes originally residing on the removing disk are thus
evenly distributed to the Nj-1 disks.
The pseudorandom placement method changes the traditional striping meth-
ods that assign disk numbers sequentially in cycles. When disks are added

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

or removed, only a small fraction of all data stripes need to be moved. The
data stripes continued to be evenly distributed across the disks.
In order to find the sequence of seeds and random numbers, the pseudorandom
placement method needs to use the random number function many times.
Fortunately, the random number function mainly looks up entries from the
random number table. The function can perform efficiently.

Chapter.Summary

The simple striping methods increase the efficiency of serving concurrent
multimedia streams. These methods consider the characteristics of multimedia
streams in the design of the techniques. Multimedia streams can access the
data stripes according to their actual data consumption rates. Thus, the disk
bandwidth and the memory buffer are used efficiently. However, the actual
participating streams may not access objects exactly as expected. Thus, the
increase in efficiency is not as much as expected.
The staggered striping method provides effective support for multiple streams
accessing different objects from a group of striped disks, and it automatically
balances the workload among disks. Unfortunately, the staggered striping
method still suffers from the disk bandwidth fragmentation problems, and
new streams may be rejected.
The pseudorandom placement method maintains that the data stripes are evenly
distributed on disks. In addition, it reduces the number of data stripes being
moved when the number of disks increases or decreases. It uses the pseudo-
random number function to generate new disk numbers that are independent
of the disk number of other data stripes. The pseudorandom placement reduces
the workload on data reorganization when disks are added or removed.

References

Berson, S., Ghandeharizadeh, S., Muntz, R., & Ju, X. (1994). Staggered
striping in multimedia information systems. In Proceedings.of.the.ACM.
SIGMOD.Conference (pp. 79-90).

Striping on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chua, T. S., Li, J., Ooi, B. C., & Tan, K. L. (1996). Disk striping strategies for
large video-on-demand servers. In Proceedings.of.the.ACM.Multimedia.
Conference (pp. 297-306).

Goel, A., Shahabi, C., Yao, S.-Y. D., & Zimmermann, R. (2002). SCADDAR:
An efficient randomized technique to reorganize continuous media
blocks. In Proceedings.of. the.18th.International.Conference.on.Data.
Engineering.(ICDE’02).

Hsieh, J., Lin, M., Liu, J. C. L., Du, D. H. C., & Ruwart, T. M. (1995). Per-
formance of a mass storage system for video-on-demand. In Proceed-
ings.of.the.14th.Annual.Joint.Conference.of.the.IEEE.Computer.and.
Communications.Societies.INFOCOM’95.(Vol. 2, pp. 771-778).

Santos, J. R., Muntz, R., & Ribeiro-Neto, B. (2000). Comparing random data
allocation and data striping in multimedia servers. In ACM.Sigmetrics.
2000 (pp. 44-55).

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.VII

Replication.Placement.on.
Disks

Introduction

When extra storage space is available on the striping disks being described
in the last chapter, the storage system may keep extra copies of the stored
objects to enhance the performance of the storage system. If any one of the
copy or the original copy is corrupted, the corrupted copy can possibly be
recovered by comparison with its replicas. The replication strategy thus
increases reliability of the storage system by applying redundancy on the
stored objects.
Extra copies of objects may be created and stored on the storage system to
increase the storage system performance. The presence of replicas on light
loading disks may be able to reduce the period of time that an object is
inaccessible. Thus, the replication strategy increases the availability of the
stored objects.

Replication Placement on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The replication strategy can have several advantages. First, the replica on
idle disks can increase the availability of data on corrupted and busy disks.
Second, the replica on local server can reduce the network load to access
objects from remote servers. Third, the replica on local server can also reduce
the need to wait for the filling of initial buffer prior to consumption. Fourth,
replica can avoid disk multitasking by avoiding the need to serve multiple
streams from the same disk head.
We will describe the streaming redundant array of inexpensive disks (RAID)
method that increases availability and fault tolerance in the next section. After
that, we present the Lancaster storage server to reduce network load. Then, we
show two data replication methods to reduce start-up latency. Afterwards, we
explain how the data replication method can avoid disk multitasking. Before
we conclude this chapter, we describe the replication method that balances
the space and workload of storage devices.

Replication.to.Increase.Availability

Redundant array of inexpensive disks has become widely accepted in recent
years. Similar to RAID disks, the streaming RAID was proposed to serve
multimedia streams. The objective of streaming RAID is to increase reliability
and availability of multimedia data. The approach to achieve these objectives
is by storing redundant information (Cohen & Burkhard, 1996; Tobagi, Pang,
Baird, & Gang, 1993). Performance of multimedia streams is maintained by
using multiple disks like the striping methods. A disadvantage of streaming
RAID is that even more data are stored on the storage system.
Multimedia data are large, and each stream accesses data of an object for a
long time. Thus, the disk containing the accessed object will become busy for
a long period of time. When other streams try to access other objects residing
on the same disk, the disk becomes too busy to serve them. As a result, new
request streams will not be served until the disk becomes free. This disk out-
age problem limits the storage system’s ability to serve multimedia streams
without degrading their quality.
Streaming RAID is an interdisk, strip-based method. In the streaming RAID
method, every data object is divided into a number of blocks. Each block is a
fixed number of bytes, and the data blocks are stored on multiple disks. One
block from each disk forms a group. A parity bit is formed by XOR of one

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

bit from every block in the group. The parity information is created as the
redundant information. This parity information is then stored onto a separate
parity disk (Tobagi et al., 1993).
For example, an object X is stored on three disks. Block X is divided into
many blocks. X3i is the 3ith block of X and it is stored on disk 1. X3i+1 is the
3i+1th block of X, and it is stored on disk 2. X3i+2 is the 3i+2th block of X,
and it is stored on disk 3. Pi is the ith parity block. Then, the jth bit of the
parity block, Pi,j is found as:

jijijiji XXXP ,23,13,3, ++ ⊕⊕= ,

where X3i,j , X3i+1,j , X3i+2,j are respectively the jth bit of the 3ith block, 3i+1th
block, and 3i+2th block of object X.
Multiple data disks are used as a disk array, and the disks serve requests
in parallel. When data are accessed, each disk is issued a request. All the
requests are then served simultaneously. Each request retrieves a data block
from the disk. If one of the disks is not available, or some data on the disk
are corrupted, the redundant information on the parity disk is accessed. The
unavailable or corrupted block is then reconstructed from the data from other
data disks and the parity disk.
For example, a data block, X3i+2, is unavailable when the object X is being
accessed. This block can be recovered from the data blocks X3i+2, X3i+2, and
the parity block Pi. The jth bit of the missing block, X3i+2,j, can be recalculated
using the equation:

jijijiji PXXX ,,3,3,23 ⊕⊕=+ .

The streaming RAID method is designed to increase the reliability of multi-
media streams by storing redundant information. It also enhances the storage
disk performance through controlling the storage location of objects. The
streaming RAID method is similar to the RAID-3 level disk in keeping the
parity information on separate parity disks. This is suitable for large data
transfers but not efficient for small data transfer. Since multimedia objects
are large and a large amount of data are transferred each time, the streaming
RAID is an efficient method for multimedia object streaming.

Replication Placement on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A limitation of streaming RAID is its lack of control on the placement of
multimedia data in storage. Hence, the data bandwidth cannot be effectively
controlled, and large variations in data bandwidth require more read-ahead
buffer.
A disadvantage of streaming RAID is that it increases the data storage us-
age. Since multimedia objects are large in size, storage of the objects’ data
already exhausts many storage systems. The creation of redundant informa-
tion increases the burden on the storage system.
Storing redundant information obviously increases the security of data during
disk failure. Although the security of multimedia data should not be neglected,
proper backing up and archiving data can also achieve the data security. Since
most multimedia data are not frequently modified and storing the redundant
information would reduce the available user data bandwidth, it would be nice
to consider redundant codes when surplus bandwidth is available or other
means to provide data security are not available.

Replication.to.Reduce.Network.Load

Multimedia objects are large in size. The workload to deliver multimedia
objects across the networks is heavy. Objects may be stored on storage servers
that are distributed over a wide geographic area network. It would be nice
if some objects can be fetched from neighbouring storage servers that have
stored the object. Thus, data replication is one of the approaches to distribute
objects across the network in order to reduce the network load.
In the Lancaster continuous media storage server, object files are replicated
according to their distance from the originating site (Lougher, Shepherd, &
Pegler, 1994). If an object’s originating site is far from the local media storage
server, the object has a higher priority of being replicated in the local server.
If an object’s originating site is close, the object has a low priority of being
replicated. The Lancaster storage server provides a method to differentiate the
priority of objects being replicated in the local server. This method provides
a mechanism to evenly spread the objects across a number of servers over
a geographical area. The most important advantage of the Lancaster server
design is that network load can be reduced. This is similar to reduce network
load using proxy servers.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Replication.to.Reduce.Start-Up.Latency

When multimedia streams are initiated, the storage server delivers the first
part of the object to the clients. The client program uses these initial data to
fill up the memory buffer. Before enough data are received to fill the buf-
fers, the client program cannot start to display the stream. Thus, the client
program needs to wait for the delivery of the initial part of the objects. This
waiting time is the start-up latency. The start-up latency is a delay time that
is directly observed by the user. When multimedia objects are being accessed
over a high delay network, the start-up latency may be significant.
Data replication is one of the approaches to reduce the start-up latency. Ghan-
deharizadeh, Kim, Shi, and Zimmermann (1997) proposed to migrate requests
with data replication across disk clusters in order to reduce start-up latency.
Chang and Molina (1997) replicated the leaders of multimedia objects on a
separate disk to reduce start up latency in constraint allocation methods.
A limitation of the leader replication is that this method only reduces the
start-up latency. After a stream is started, the leader in storage does not make
additional contributions in the delivery of the object. More methods to reduce
start-up latency will be discussed in the cache replacement policies.

Replication.to.Avoid.Disk.Multitasking

In magnetic hard disks, the disk heads are connected together like a hair
comb. All the disk heads move at the same time to the accessed tracks and
cylinders. Each object may be stored contiguously onto a few cylinders.
When one of these objects is accessed, the disk heads only need to move
one long seek action. Subsequent seek actions are very short if there is not
any other concurrent streams. Thus, the aggregate seek overhead is very low.
However, if the disk heads need to serve multiple concurrent streams, the
disk heads move up and down across the disk surface to serve one request
for each stream. The disk head is then multitasked among multiple streams.
This disk multitasking involves significant seek overheads that erode the
disk performance.
Separate replica on multiple disks may avoid disk multitasking by avoiding
the need to serve multiple streams from the same disk head. Ghandeharizadeh

Replication Placement on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

and Ramos (1993) proposed data replication to avoid disk multitasking that
could reduce disk throughput.
When multimedia objects are declustered across a group of disks, all the
disks in the group must be accessed simultaneously in order to retrieve the
objects in real-time. In order to maintain the disk retrieval throughput at the
desired level, the number of disks to decluster each multimedia object is
limited. Due to the limitation of disk throughput, each disk can only support
a limited number of streams. The contention of streams for disk bandwidth
could reduce the throughput. In Ghandeharizadeh and Ramos (1993), data
are replicated in other disks to reduce this contention.
Apart from avoiding disk multitasking, objects may be duplicated on ran-
domly selected disks to avoid disk multitasking. The number of replica being
created is directly proportional to the access frequency of the object (Korst,
1997). More replicas may be created on frequently accessed objects and few
replicas are created on rarely accessed objects. Since more streams access the
hot objects, more copies of the hot object can help the object to be accessed
from more disks. Thus, the hot objects can be accessed with low overheads
to increase the efficiency of the storage system.
For example, Figure 7.1 shows two objects X and Y being stored on six
disks, disk 1 to disk 6. Object X is divided into X1 to X4 and they are stored
on disk 1 and disk 2. Object Y is split into Y1 to Y6 and they are stored on
disk 1 to disk 4. Some data stripes of object Y that are stored on disk 1 and
disk 2, including Y1, Y2, Y5, and Y6, are replicated onto disk 5 and disk 6.
While user A is accessing object X from disk 1 and disk 2, another user B
may send requests to access object Y. The disk 1 and disk 2 may not have
the disk bandwidth to be able to access data stripes for stream X and stream
Y concurrently. During this period of time, disk 5 and disk 6 may be idle.
Instead of using disk multitasking to serve both stream X and stream Y from
disk 1 and disk 2, the replica of object Y on disk 5 and disk 6 may be accessed.
Thus, the storage system can serve both stream X and stream Y concurrently.
This shows a successful situation that replication can be used to increase disk
throughput and serve more concurrent streams.
The replication of objects may need a large number of disks. If each disk
serves only one stream, then the number of disks should not be less than the
number of concurrent streams. Thus, one disk is needed to serve one ad-
ditional concurrent stream. Unless each disk can store only one object, the
disk storage space is thus not efficiently used. When several replicas resid-
ing on several disks are available, it is necessary to choose an appropriate

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

disk to serve an incoming stream. This choice increases the complexity in
retrieving the objects.
Since the access frequency of objects changes dynamically, the number of
objects cannot be increased without additional workload to create copies.
Thus, it is not an easy task to maintain the optimal number of objects on the
appropriate disks.

Replication.to.Maintain.Balance.of.Space.and.Load

The access bandwidth of an object is affected by access frequency of the
object and the required bandwidth to deliver the object. If all the objects are
accessed with the same number of megabytes per second, the access band-
width of the objects is linearly proportional to their access frequency. If all the
objects have the same access frequency, the access bandwidth of the objects
should be linearly proportional to their data rate. Thus, the access bandwidth
of an object is equal to the data rate weighted by the access frequency of the
object. In the following paragraphs, a hot object is an object with high access
bandwidth, and a cold object is an object with low access bandwidth.
Replication of objects consumes both storage space and access bandwidth.
When a replica of an object is stored on a storage device, the replica may be

Figure.7.1..Data.replication.to.avoid.disk.multitasking

X1 X2
X3 X4

Y1 Y2
Y5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6
stream A stream B

X1 X2 X3 X4Object X:

Object Y: Y1 Y2 Y3 Y4 Y5

Y3 Y4 Y1 Y2

Y5

Figure �.�. Data replication to avoid disk multitasking

Replication Placement on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

accessed by request streams. The replica cannot be accessed if the storage
device does not have enough bandwidth to deliver it. Thus, it is more appro-
priate to place the replica on other storage devices with sufficient bandwidth.
We shall explain using the four undesirable conditions on a storage system
below.
First, when hot objects are stored on a low bandwidth disk, the disk does not
have sufficient bandwidth to serve the streams on the hot object. Otherwise,
the disk becomes overloaded. The hot objects should be replicated to high
bandwidth disks, and the hot objects can then be accessed without delay.
Second, when cold objects are stored on a high bandwidth disk, the disk has
spare bandwidth to serve more streams. However, the disk does not have
more requests to the cold objects. Thus, the disk utilization is low. The cold
objects may be moved to another disk with low bandwidth to release storage
space so that the high bandwidth disk can have storage space to store and
serve hot objects.
Third, a high bandwidth disk needs to have sufficient storage capacity to store
the hot objects. If the high bandwidth disks have stored many cold objects and
do not have sufficient storage space, the hot objects still cannot be stored.
Fourth, a low bandwidth needs to have sufficient storage capacity to store
the cold objects. If the low bandwidth disks have already stored many hot
objects and do not have sufficient storage space, the cold objects need to
be stored on disks with higher bandwidth. As a result, the disk bandwidth
utilization is low.
The above four situations show that hot objects should be stored on high
bandwidth disks, and cold objects should be stored on low bandwidth disks.
The optimal condition is maintained if all the disks consume their storage
space and spare bandwidth in similar proportions. The objective of the band-
width-to-space ratio (BSR) replication is to maintain the same percentage of
space and load consumptions on all storage devices.
The bandwidth-to-space ratio replication is an interdisk, object-based rep-
lication method for heterogeneous storage devices. In the BSR replication
method, the storage capacity and access bandwidth of each storage device
may be different. It maintains the balance of access bandwidth to storage
space ratio for every storage device (Dan & Sitaram, 1995).
The storage system keeps the allocated bandwidth to space ratios for every
storage device. When a replica of an object needs to be stored on the storage
system, it needs to find a storage device to store the new replica. If the replica

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

is stored onto the storage system, the storage system allocates both access
bandwidth and storage space for the object. This allocated bandwidth and al-
located storage space come from the same storage device. Thus, the allocated
bandwidth and the allocated storage space would increase (Figure 7.2).
Depending on the allocated bandwidth-to-space ratio and the bandwidth-to-
space ratio of the new object, the allocated bandwidth-to-space ratio of the
selected storage device may increase or decrease. The bandwidth-to-space
ratio of other storage devices however remains the same since they are not
affected.
The BSR of a storage device is defined as the bandwidth-to-space ratio of the
storage device. The actual BSR of a storage device is defined as the band-
width-to-space ratio of the storage device when it is empty. Thus,

acityStorageCap
widthAccessBandActualBSR = ,

where AccessBandwidth and StorageCapacity are the access bandwidth and
the storage capacity of the storage device respectively.

The allocated BSR of a storage device is defined as the allocated bandwidth
divided by the allocated storage capacity of the storage device. Thus,

Figure.7.2..BSR.replication..Both.the.consumed.storage.space.and.allocated.
bandwidth.increase.after.adding.a.new.object.

Figure �.�. BSR Replication. Both the consumed
storage space and allocated bandwidth increase after

adding a new object.

Bandwidth

Space

used
bandwidth

new object’s
bandwidth

used
space

new object’s
space

maximum
bandwidth

Maximum space

Replication Placement on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

AllocatedBSR
citytorageCapaAllocatedS
idthccessBandwAllocatedASRAllocatedB = ,

where AllocatedAccessBandwidth and AllocatedStorageCapacity are the
allocated bandwidth and the allocated storage capacity of the storage device
respectively.
The BSR deviation of a storage device is defined as the difference between
the actual BSR and the allocated BSR of the storage device. Thus:

BSRDeviation.=.AllocatedBSR.–.Actual.BSR.

The storage device with a high BSR deviation value is hot. The storage de-
vice with a low BSR deviation value is cold. Sometime, the BSR deviation
value can be negative.
The BSR replication method first checks if any storage devices have the stor-
age capacity and bandwidth to store the new object. Any storage devices with
insufficient space or bandwidth are excluded. It then calculates the allocated
BSR of the remaining storage devices on the speculative condition that the
replica is stored on the storage device. Afterwards, it chooses the storage
device such that the storage of the new replica results in the smallest BSR
deviation. When there is a tie, any one among the storage devices with the
smallest BSR deviations can be chosen.
For example, a storage system has five disks, D1 to D5. Each disk has a stor-
age capacity of 600MB and bandwidth 60 MB/s. After some objects are
stored on the disks, the disks now have 100MB, 300MB, 300MB, 500MB,
500MB of free space and 10MB/s, 35MB/s, 30MB/s, 45MB/s, 50MB/s of
free bandwidth, respectively.
The actual BSR of the disks is

. =.60MB/s.÷.600MB.

. =.0.1./s.

The allocated bandwidths of the first disk, D1, is

=.60MB/s.–.10MB/s.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

=.50MB/s.

The allocated storage space of the first disk, D1, is

=.600MB.–.100MB.
=.500MB.

The allocated BSR of the first disk, D1, is

=.50MB/s.÷.500MB.
=.0.1./s.

The BSR deviations of the first disk, D1, is

=.0.1/s.–.0.1/s.=.+0/s.

Similarly, the allocated bandwidths of the other disks, D2 to D5, are

=.25MB/s,30MB/s,.15MB/s,.and.10MB/s.

The allocated storage spaces of the other disks, D2 to D5, are

=.300MB,.300MB,.100MB,.and.100MB.

The allocated BSR of the other disks, D2 to D5, are

=.25/300,.30/300,.15/100,.and.10/100.
=.0.8333/s,.0.1/s,.0.15/s,.and.0.1/s.

The BSR deviations of the other disks, D2 to D5, are
=.-0.0167/s,.0/s,.+0.05/s,.and.0/s.

By comparing the BSR deviations of the disks, we can see that D2 is a cold
disk and D4 is a hot disk.

Replication Placement on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

An object X1 of size 100MB and bandwidth 15 MB/s is now stored on the
disk. The storage system will find the new BSR deviations of the disks after
the new object is stored.
The available storage space and bandwidth of the disks are first checked.
D1 is excluded because it does not have enough bandwidth to store the new
object.

If we place X1 on D2, the allocated bandwidths of D2 would become

=.25MB/s.+.15MB/s.
=.40MB/s.

The allocated storage spaces of the disk, D2, would become

=.300MB.+.100MB.
=.400MB.

The allocated BSR of the disk, D2, would become

=.40MB/s.÷.400MB
=.0.1./s.

The new BSR deviations of the first disk, D2, would become

=.0.1/s.–.0.1/s
=.+0./s.

Similarly, if the object X1 is stored on other disks, the allocated bandwidths
of the other disks, D3 to D5, would become

=.45MB/s,.30MB/s,.and.25MB/s.

The allocated storage spaces of the other disks, D3 to D5, would become

=.400MB,.200MB,.and.200MB.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The allocated BSR of the other disks, D3 to D5, would become

=.45/400,.30/200,.and.25/200.
=.0.1125/s,.0.15/s,.and.0.125/s.

The new BSR deviations of the other disks, D3 to D5, would become

=.+0.0125/s,.+0.05/s,.and.+0.025/s.

As D2 has the lowest new BSR deviation, the object X1 is stored on the disk
D2. After the object is stored, the allocated BSR of the disks, D1 to D5, be-
comes

=.0.1/s,.0.1/s,.0.1/s,.0.15/s,.and.0.1/s.

The new BSR deviations of the disks, D1 to D5, become

=.+0/s,.+0/s,.+0/s,.+0.05/s,.and.+0/s.

We can see that by storing the hot object X1 to the disk D2, the bandwidth-to-
space ratio of the cold disk D2, increases. If we add another cold object with
BSR lower than 0.1, it would decrease the BSR deviations of the disks.
The BSR replication method maintains a balance of the bandwidth to space
ratio of all the storage devices. This helps to store the hot objects on high
bandwidth storage devices and cold objects on low bandwidth storage devices.
When a storage device becomes cold, the storage device would then be cho-
sen to store the hot objects. When a storage device becomes hot, the storage
device would reduce the chance of choosing it to store new objects.

Chapter.Summary

A general requirement of all data replication methods is that extra storage
space is used. When the disk array is bandwidth bound, the usage of vacant
space to raise throughput is possible. This strategy is thus limited by the

Replication Placement on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

amount of free space available. Fortunately, the recent trend of technology
shows that storage capacity is increased at a faster pace than the access
bandwidth. Storage capacity may not be a problem when compared to the
access bandwidth.
Unfortunately, multiple data copies should be maintained the same while
they are modified. This coherence of multiple data copies on disks increases
program complexity and workloads. The index entries to link the multiple data
copies need to be stored, processed, and maintained. The selection of data to
replicate and the selection of disks to place the replica should be optimized
to achieve the sufficient gain against the extra workloads.
Fortunately, the replication of multimedia objects can increase the availability
of objects. Objects lost on corrupted disks can be recovered from the redundant
information or the replica of the original object. The replica on neighbouring
servers can reduce the network load similar to proxy servers. The replica of
leaders on local servers can hide the start up latency that is visible to the
users. When many disks are available like a disk array, proper replication of
data stripes can improve the efficiency of the storage systems.

References

Chang, E., & Molina, H. G. (1997). Reducing initial latency in media serv-
ers. IEEE.Multimedia,.4(3), 50-61.

Cohen, A., & Burkhard, W. A. (1996). Segmented information dispersal (SID)
for efficient reconstruction in fault-tolerant video servers. In Proceed-
ings.of.the.ACM.Multimedia.Conference (pp. 277-286).

Dan, A., & Sitaram, D. (1995). An online video placement policy based on
bandwidth to space ratio (BSR). In Proceedings.of.the.ACM.SIGMOD.
International.Conference.on.Management.of.Data (pp. 376-385).

Ghandeharizadeh, S., Kim, S. H., Shi, W., & Zimmermann, R. (1997). On
minimizing startup latency in scalable continuous media servers. In
Proceedings.of.SPIE.Multimedia.Computing.and.Networking.Confer-
ence (Vol. 3020, pp. 144-155).

Ghandeharizadeh, S., & Ramos, L. (1993). Continuous retrieval of multime-
dia data using parallelism. IEEE.Transactions.on.Knowledge.and.Data.
Engineering,.5(4), 658-669.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Korst, J. (1997). Random duplicated assignment: An alternative to striping in
video servers. In Proceedings.of.ACM.Mulitmedia.97 (pp. 219-226).

Lougher, P., Shepherd, D., & Pegler, D. (1994). The impact of digital audio
and video on high-speed storage. In Proceedings. of. the. 13th. IEEE.
Symposium.on.Mass.Storage.Systems (pp. 84-89).

Tobagi, F. A., Pang, J., Baird, R., & Gang, M. (1993). Streaming RAID: A
disk array management system for video files. In Proceedings.of.the.1st.
ACM.Conference.on.Multimedia (pp. 393-400).

Constraint Allocation on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.VIII

Constraint.Allocation..
on.Disks

Introduction

Most existing storage servers store data stripes on magnetic hard disks. These
magnetic hard disks are accessed by moving the disk heads to random disk
tracks. A significant amount of overhead is spent in moving the disk heads
across the disk tracks. The access time of a request would be significantly
reduced if the seek time is reduced.
In the normal placement of data stripes on disks being described in the two
previous chapters, data stripes can be placed on any tracks with free space.
There is not much consideration on the distance among data stripes of con-
current streams. Separation distances between data stripes of an object are
not sufficiently constrained. Thus, the only guarantee on the upper bounds
of access times is very high.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Constraint allocation methods limit the available locations to store the data
stripes. This helps to control the access time within media playback require-
ments. The data stripes are also evenly spread across the surface of the storage
media. This reduces the overheads of serving concurrent streams from the
same storage device. Therefore, the maximum overheads in accessing data
from the storage devices, such as seek time, become lowered.
In this chapter, we shall describe two constraint allocation methods that are
designed for magnetic hard disks. These methods may also be applicable
to other storage media that use the disk format. When many streams access
the same hot object, the phase based constraint allocation supports more
streams with less seek actions. We shall describe the phase based constraint
allocation method in the next section. The region based allocation limits
the longest seek distance among requests. After that, we describe the region
based allocation method.

Phase.Based.Constraint.Allocation

Multimedia objects are stored on and accessed from storage systems. The
concurrent streams send requests to access data stripes. If the disk heads
serve all the requests of one stream before another, the latter stream waits
for a long time before it can start. If the disk heads serve requests of streams
in an interleaving manner, the disk heads move across the disk heads many
times. The storage locations of these objects could be very far away. Thus, the
disk heads take a long time to seek the required tracks of each request. The
overheads in serving concurrent streams are heavy, and the storage system
cannot retrieve the objects efficiently.
When the overheads are heavy, the upper bounds on the access time are high.
The maximum access time to serve a stream becomes very long. Thus, the
storage system can only accept a small number of streams to be served. Other
streams have to be rejected from being served.
Özden, Biliris, Rastogi, and Silberschatz (1994) proposed the phase based
constraint allocation method to serve multiple concurrent streams efficiently
(Özden et al., 1994; Özden, Rastogi, & Silberschatz, 1996). It shares the
seek time overheads among the requests of concurrent streams. Instead of
storing the data stripes belonging to an object on nearby locations, the phase
based constraint allocation stores together the data stripes that are accessed

Constraint Allocation on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

by requests belonging to concurrent streams. Therefore, the phase constraint
allocation method can place a tighter upper bound on the mean seek time
of the requests.
In order to share the overheads among requests of concurrent streams, the
access patterns of the streams are restricted. First, these streams may be homo-
geneous in nature. That is, all the streams may access data at the same period
of time. Second, the streams are scheduled in advance before the objects are
stored. In broadcasting and near video-on-demand systems (NVOD), all the
streams start at the predefined time according to the time schedule. A stream
thus accesses data according to the predefined time schedule only.
In near video-on-demand systems, a number of channels are delivered to the
viewers. Each channel shows a video object being delivered from the system.
The starting time of these streams are separated at a fixed time interval. An
object may be delivered on several channels, and it is accessed by multiple
streams. Thus, a user may join one of the streams to view a video. If the user
misses the starting time of a video, he may wait to join the next starting time.
He may also jump to the preceding or following streams to view a different
part of the object.
In the phase based constraint allocation method, all the objects are interleaved
together to form a super object. The super object is viewed by users starting
at fixed and regular intervals called phases. A user may join one of the phases
to view the super object being displayed continuously within the phase. Since
the multimedia streams are homogeneous, each multimedia object can be split
into short data stripes that will be consumed for a fixed period of time. Thus,
only one data stripe per stream is required for this fixed period of time.
The super object is then placed on the storage system. Let m be the number
of disks in the storage system and let p be the number of phases. The super
object is organized as an (n x (m x p)) matrix of data stripes. The data stripes
are evenly distributed among the m disks using the simple striping method.
Thus, consecutive data stripes of the super object are stored sequentially from
disk 1 to disk m and so on. Each column of p data stripes is stored contigu-
ously on a disk (Figure 8.1).
The super object serves multiple streams with a phase shift at the same time.
After the disk arm moves the disk heads to the required track with only one
disk read, one data stripe per phase is then accessed from the contiguous
locations on the disk (Figure 8.2). These data stripes are then delivered to
the streams of the specific user phases. Since the super object is composed
of all the objects, the objects are then accessed periodically.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

For example, the storage system delivers six streams, and each stream is
separated from the previous stream with a phase time T. The data stripes of
the super object are placed on three disks as shown in Figure 8.1. The data
stripes X11 to X61 are stored on the same track of the disk 1. The data stripes
X12 to X62 are stored on the same track of the disk 2. The data stripes X13 to
X63 are stored on the same track of the disk 3.
The data stripes X11 to X61 are accessed after only one disk seeking action.
The near video-on-demand streams can then deliver one data stripe per
stream for six different streams. The six streams can display for a time not
shorter than T/3.
Afterwards, the data stripes X12 to X62 are accessed after one seeking action
on the second disk. The near video-on-demand streams can then deliver the
second data stripe per stream to the six streams. The six streams can display
for another time interval not shorter than T/3.
Similarly, the data stripes X13 to X63 are accessed after one seeking action on
the third disk. The near video-on-demand streams can then deliver the third
data stripe per stream for the six streams. The six streams can display for
another time interval not shorter than T/3.
Afterward, the data stripes X14 to X64 are accessed from the first disk and so
on. Repeatedly, the data stripes are accessed from the storage system and
delivered to the streams. The phase based constraint allocation method is
good at delivering multiple object streams efficiently. It delivers multime-
dia objects with minimum overheads to the near video-on-demand systems.
Therefore, it is particularly suitable for the storage subsystem of near video-
on-demand systems.

Figure �.�. Phase constraint allocation

Super object X

X11 X12 X13

X31 X32

X21 X22 X23

disk 1 disk 2 disk 3

X33
X41 X42 X43
X51 X52 X53

user phase 1
user phase 2
user phase 3
user phase 4
user phase 5

one disk seek

X11 X12 X13 X21 X22 X23 X31 X32 X33

X41 X42 X43 X51 X52 X53 X61 X62 X63

X61 X62 X63user phase 6

Figure.8.1..Phase.constraint.allocation

Constraint Allocation on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The seek time is shared among the number of phases. The maximum storage
system throughput is then limited by the number of phases instead of being
limited by the number of streams. When the number of phases is high, it al-
leviates the disk bandwidth contention on delivering many hot multimedia
objects.
Unfortunately, the start-up latency is being traded off. Since there is a gap
between the start of any two phases, new streams must wait for the begin-
ning of the next phase before they can be served. On average, a new stream
waits for half of the phase period.

Application.Note:.The.phase.based.constraint.allocation.method.is.tailored.
for.near.video-on-demand.systems..The.delivery.schedule.of.data.streams.
needs to be fixed and predetermined in advance. Thus, this is not flexible, and
the.schedule.cannot.be.changed.easily..If.changes.in.the.time.schedule.are.
required,.the.NVOD.system.may.need.two.disk.arrays..While.one.disk.array.
serves.the.streams.according.to.the.current.schedule,.the.objects.should.be.
prepared.and.stored.at.the.other.disk.array.for.the.next.schedule..

Region.Based.Constraint.Allocation

Multimedia objects are stored on the magnetic disks. When the data stripes
are randomly stored on any tracks or cylinders of a disk, the disk heads may

Figure.8.2..Phase.based. constraint. allocation.method. for. the.near.VOD.
streams

Figure �.�. Phase based constraint allocation method for
the near VOD Streams

Channel 1
Channel 2

Channel n

…

T
Channel 3 T

start startend

X11

X31
X21

X41

X51

X61

X11 … X61 : corresponding data stripes in the super video X

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

need to move across all the other tracks in between the storage location of
two data stripes to serve a request. The maximum of seek distance is thus
very long. As the seek time increases with the seek distance traveled by the
disk heads, the upper limits on the seek time and the access time are very
long. To provide guarantees for continuous display, the maximum access
time is very long. Therefore, the disk bandwidth is low, and the disks cannot
be utilized efficiently.
Multimedia streams of video-on-demand systems may be initiated at any
time. The streams cannot be predetermined as in the near video-on-demand
systems. During the quiet period, the system may not receive any requests
for data accessing services. During the busy period, the system may receive
many requests for data accessing services. Thus, it is not sure which objects
will be accessed concurrently and should be stored together.
Moreover, multiple streams access data stripes concurrently. In order to
provide a guarantee of continuous display, the supply of data should be pro-
vided continuously and smoothly. In addition, only a few requests should
be served prior to the display of the streams. Otherwise, the start-up latency
is undesirably long. Therefore, the requests of concurrent streams should be
served in an interleaving manner. This incurs heavy seek overheads due to
disk multitasking.
For each request, the seek time overheads are already heavy. This results in
long access time. When many requests are served concurrently, the total access
time is calculated as the access time multiplied by the number of concurrent
requests. Thus, the storage system cannot give a tight upper bound on the
total access time. Even if the seek time overheads may be shared among
requests using efficient disk scheduling algorithms, the guaranteed upper
limit on the total access time is still very long. Therefore, the storage system
cannot provide guaranteed delivery to many streams.
The objective of the region based constraint allocation method is to increase
the number of streams that can be served by the storage system. It limits the
maximum separation distance among data stripes that will be accessed by
consecutive requests to tighten the upper limits on the seek time and access
time (Oyang, Lee, Wen, & Cheng, 1995). After the upper limits on the access
time are reduced, the storage system can accept more multimedia streams
to be served.
The region based constraint allocation method partitions each disk into a linear
array of logical regions. Each region consists of a number of neighbouring
tracks. The number of regions and the size of each region may vary from disk

Constraint Allocation on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

to disk depending on the preferred maximum seek distance and the maximum
start-up latency. When many small regions are created, the maximum seek
distance is short, but the maximum start up latency is high. Alternatively, the
maximum seek distance is long, but the maximum start-up latency is low when
only a few large regions are created. The normal placement method without
any constraints is the same as the case when only one region is created. At
the extreme case that each track is considered as a region, the maximum seek
distance is very short, but the maximum start-up latency is very long. The
disk heads would traverse track by track to access data.
The data stripes of objects are stored into the regions one by one (Figure 8.3).
After the first data stripe of an object is stored within a region, the second
data stripe of this object is stored into its neighbouring region. The third
data stripe of the object is then stored onto the following region in the same
direction. The data stripes are stored in the regions in the same direction until
it reaches the last region in a direction. Instead of storing one data stripe in
the last region, two data stripes are stored in the last regions. After two data
stripes are placed in the last region, the algorithm changes direction and store
one data stripe in each region again.
An example is shown in Figure 8.3. The data stripes of two objects, X and
Y, are stored. Object X and object Y are split into data stripes X1 to X20 and
Y1 to Y20. The data stripes of object X are stored on the disk, beginning with
X1 in region 1, X2 in region 2, and so on until region 5. In region 5, both X5
and X6 are stored in the same region to change direction. Then, X7 is stored
in region 4, X8 is stored in region 3, and so on until region 1. Both X10 and
X11 are stored in region 1, and it changes direction again. The data stripes of
object X are stored in regions until all the data stripes are stored.

Figure.8.3..Region.based.constraint.allocation.places.data. stripes. in. re-
gions.

Figure �.�. Region based constraint allocation places data
stripes in regions.

Region 1 2 3 4 5

X1X10X11X20
Y8Y9Y18Y19

X2X9X12X19
Y7Y10Y17Y20

X3X8X13X18
Y1Y6Y11Y16

X4X7X14X17
Y2Y5Y12Y15

X5X6X15 X16
Y3Y4Y13Y14

Seek distance within a group
is bounded by the region size

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Similarly, object Y is stored in regions of the same disk. The only difference
is that the placement of object Y begins in region 3. The data stripes of object
Y are stored on the disk, beginning with Y1 in region 3, Y2 in region 4, both
Y3 and Y4 in region 5, Y6 in region 4, and so on.
We may wonder why two data stripes are stored in the regions at the two ends.
This is to balance the size of the regions. When the data stripes are placed,
the regions are visited in cycles. The regions at the two ends are visited only
once per cycle. Other regions are however visited once in every direction,
so they are visited twice per cycle. If we place only one data stripe in the
regions at the two ends every time, half of the storage space in these regions
would be wasted. If we place two data stripes in these regions, these regions
would be consumed at the similar rate as other regions.
The data stripes can be stored on any tracks within the constraint region. The
storage system thus has the freedom to store the data stripes on tracks close to
or far from the centre of disks. A region may cover more than one zone in the
zoned disks or the entire region may reside within a zone. Thus, the storage
system may store data stripes according to the bandwidth based placement
policy within a zone. For the regions at the two ends, the data stripes of hot
objects may be stored on tracks that are close to the middle region accord-
ing to the frequency based placement method. This would slightly reduce
the average seek distance when the storage system only serves streams that
access hot objects.
A stream access data stripes in the same sequence as the order of data stripes.
The stream sends a request to access the first data stripe. After a data stripe
is accessed, the disk heads stay on the storing track of this data stripe. The
stream then sends the next request to access the second data stripe from the
disk. If the disk heads serve the next request of this stream, they access the
next data stripe for this stream. Since the next data stripe is either in the same
region or in the neighbouring region, the disk heads only stay in the same
region or move to its neighbouring region. It is clear that the starting track
and the destination track are both within these two regions; the seek distance,
D, is then bounded above as

≤ 2k-1,

where k is the number of tracks in each region. Since the seek time increases
with the seek distance, using the seek time equation in Chapter III we get an
upper bound on the seek time as

Constraint Allocation on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.





+≤−+
+>−+

≤
1.2 ,12
,12),12(

543

521

akkaa
akkaa

s
(2k – 1),

1,

From the above equation, we can see that the maximum seek time is also
bounded above. Since the value of k is smaller than the number of tracks on
the disk surface, the upper bound on the seek time is also smaller than the
worst case seek time when the disk heads traverse across all tracks on the
disk surface.
When multiple streams are concurrent, the request within the same region
would be served consecutively. Each request that access data from the same
region belongs to one of the concurrent streams. Thus, the concurrent streams
are served in an interleaving manner. One request of each concurrent stream
accesses one data strip from a region in each round. Each region is visited
once in each direction in each cycle. For each concurrent stream, 2g requests
are served in each cycle, where g is the number of regions. We shall explain
more details about how concurrent streams are served in the group sweeping
scheduling policy in Chapter VIII.
Multimedia streams that provide some VCR-like interactive functions may
be supported. Apart from normal displaying streams that access data stripes
from the beginning to the end, a stream may jump to start displaying from
positions other than the current displaying position. The stream only needs to
skip 2g requests and sends the next request to access the data stripes within
the next region of the same cycle. The streams may also repeat this request
skipping to provide fast forward and rewind like interactive VCR functions.
It may even be possible to preview the objects by skipping a large number
of data stripes at different times.
If the region based constraint allocation method is used to place data stripes,
the disk scheduling method should be chosen to serve requests in the wait-
ing queue. The disk scheduling method should serve requests according to
their distance from the disk heads. Requests that are close to the disk heads
are served before the request that far away from the disk heads. The SCAN
and group sweeping scheduling policies serve requests according to their
track locations. Thus, the storage system should use either the SCAN policy
or the group sweeping scheduling policy to serve requests. If the unidirec-
tional SCAN is used, the data stripes should be placed in regions in the same
unidirectional order as the direction of the SCAN policy. Details of the disk
scheduling policies would be described in Chapter VIII.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The region based constraint allocation method is efficient. It increases the
efficiency in accessing multimedia objects. It provides an upper bound on the
maximum seek distance of disk requests to limit the retrieval time of each
requests below the displaying time. The seek time overheads are bounded; more
concurrent streams are acceptable; and the system throughput is raised.
The region based constraint allocation method is flexible. It can be used for
general multimedia systems. The multimedia streams can display objects
sequentially from the beginning to the end. They can jump to display at any
data stripes in the other cycles. They can skip cycles of data stripes to provide
VCR-like interactive functions. They can send multiple requests to access
data and the service order of these requests is controlled by the disk sched-
uling method. The region based constraint allocation method is particularly
suitable for storing multimedia objects on disks. It may also be applied to
other storage systems such as hierarchical storage system.

Application.Note:.Although.new.streams.may.only.start.when.the.region.
containing the first data stripe is being scanned, the maximum start-up latency
of.new.streams.is.limited.to.the.period.of.traversing.all.regions.once..Since.
the.start-up.latency.is.proportional.to.the.number.of.regions,.it.can.be.very.
long.if.too.many.regions.are.created..Chang.and.Molina.(1997).proposed.to.
reduce.this.start-up.latency.by.replicating.the.data.stripes.of.the.leaders..

Chapter.Summary

Multimedia systems store objects on and accessed from storage systems. The
concurrent streams send requests to access data stripes. The storage systems
should serve requests belonging to different concurrent streams in an inter-
leaving manner, leading to long seeks and heavy overheads. Therefore, only
a few streams can be served concurrently from each disk.
The constraint allocation methods place limits on the storage locations of
objects and usage patterns of streams to reduce the access times of multimedia
storage systems. They increase the efficiency of the storage systems so that
the storage systems can serve more streams.
In near video-on-demand systems, the delivery schedule of data streams are
fixed and predetermined in advance. The phase based constraint allocation

Constraint Allocation on Disks ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

method can be used to deliver multiple object streams efficiently. It shares
the disk seek time among the number of requests belonging to different
phases. It alleviates the disk bandwidth contention on delivering many hot
multimedia objects.
For general video-on-demand systems, the region based constraint allocation
method may be used in their storage systems. The region based constraint al-
location method partitions the disks tracks into regions and store data stripes
into specific regions. The data stripes of objects are stored into the regions
one by one. This limits the maximum separation distance among data stripes
belonging to the same object so that the upper bounds on the seek time and
access time are tightened. It increases the maximum number of streams that
can be served concurrently. It serves multimedia streams efficiently to raise
the storage system throughput. It can support some interactive streams on
top of the normal displaying streams. The region based constraint allocation
method is flexible that it can be applied in other storage systems such as
hierarchical storage systems.
In both constraint allocation methods, the start-up latency is being traded
off. The average start-up latency of new streams is half of the phase period
when the phase based constraint allocation method is used. The average
start-up latency of new streams is the period of time to serve one request
for all the concurrent streams when the region based constraint allocation
method is used.

References

Chang, E., & Molina, H. G. (1997). Reducing initial latency in media serv-
ers. IEEE.Multimedia,.4(3), 50-61.

Oyang, Y. J., Lee, M. H., Wen, C. H., & Cheng, C. Y. (1995). Design of mul-
timedia storage systems for on-demand playback. In Proceedings.of.the.
11th.International.Conference.on.Data.Engineering (pp. 457-465).

Özden, B., Biliris, A., Rastogi, R., & Silberschatz, A. (1994). A low-cost stor-
age server for movie on demand databases. In Proceedings.of.the.20th.
International.Conference.on.Very.Large.Data.Bases (pp. 594-605).

Özden, B., Rastogi, R., & Silberschatz, A. (1996). On the design of a low-
cost video-on-demand storage system. ACM.Multimedia.Systems,.4,

The statistical placement methods consider the characteristics of the multime-
dia objects and place them accordingly. This allows the system administrator
to optimize the storage system performance according to the adminiatrator’s
preferred metrics. A combination of the statistical characteristics may also
be combined into a priority function that determines the optimal locations of
placing objects onto the disks. We have described two statistical placement
methods based on different access characteristics.
The frequency based placement method optimizes the average request re-
sponse time. It uses an algorithm to place the objects according to their access
frequencies. The hottest object is placed at the storage location with the least
average access time. The next hottest object is placed at the next available
storage location with the least average access time and so on. The objects
are then placed in a skewed organ-pipe manner on the disks.

Summary.to.Section.IIa

Data Placement on Disks

The bandwidth based placement method places objects according to their
data rates. The storage system maintains its optimal performance according
to the object data transfer time without reorganizations. The bandwidth based
placement method adapts the data transfer time of objects according to their
necessary data rates.
The simple striping methods increase the efficiency of serving concurrent
multimedia streams. These methods consider the characteristics of multimedia
streams in the design of the techniques. Multimedia streams can access the
data stripes according to their actual data consumption rates. Thus, the disk
bandwidth and the memory buffer are used efficiently. However, the actual
participating streams may not access objects exactly as expected. Thus, the
increase in efficiency is not as much as expected.
The staggered striping method provides effective support for multiple streams
accessing different objects from a group of striped disks, and it automatically
balances the workload among disks. Unfortunately, the staggered striping
method still suffers from the disk bandwidth fragmentation problems, and
new streams may be rejected.
The pseudorandom placement method maintains that the data stripes are evenly
distributed on disks. In addition, it reduces the number of data stripes being
moved when the number of disks increases or decreases. It uses the pseudo-
random number function to generate new disk numbers that are independent
of the disk number of other data stripes. The pseudorandom placement reduces
the workload on data reorganization when disks are added or removed.
A general requirement of all data replication methods is that extra storage space
is used. When the disk array is bandwidth bound, the usage of vacant space
to raise throughput is possible. This strategy is thus limited by the amount of
free space available. Fortunately, the recent trend of technology shows that
storage capacity is increased at a faster pace than the access bandwidth. Stor-
age capacity may not be a problem when compared to the access bandwidth.
Unfortunately, multiple data copies should be maintained the same while they
are modified. This coherence of multiple data copies on disks increases pro-
gram complexity and workloads. The index entries to link the multiple data
copies need to be stored, processed, and maintained. The selection of data to
replicate and the selection of disks to place the replica should be optimized
to achieve the sufficient gain against the extra workloads.
Fortunately, the replication of multimedia objects can increase the availability
of objects. Objects lost on corrupted disks can be recovered from the redundant
information or the replica of the original object. The replica on neighbouring

servers can reduce the network load similar to proxy servers. The replica of
leaders on local servers can hide the start up latency that is visible to the
users. When many disks are available like a disk array, proper replication of
data stripes can improve the efficiency of the storage systems.
Multimedia systems store objects on and accessed from storage systems.
The concurrent streams send requests to access data stripes. The storage
systems should serve requests belonging to different concurrent streams in an
interleaving manner, leading to long seeks and heavy overheads. Therefore,
only a few streams can be served concurrently from each disk. The constraint
allocation methods place limits on the storage locations of objects and usage
patterns of streams to reduce the access times of multimedia storage systems.
They increase the efficiency of the storage systems so that the storage systems
can serve more streams.
In near video-on-demand systems, the delivery schedule of data streams is
fixed and predetermined in advance. The phase based constraint allocation
method can be used to deliver multiple object streams efficiently. It shares
the disk seek time among the number of requests belonging to different
phases. It alleviates the disk bandwidth contention on delivering many hot
multimedia objects.
For general video-on-demand systems, the region based constraint allocation
method may be used in their storage systems. The region based constraint
allocation method partitions the disk tracks into regions and store data stripes
into specific regions. The data stripes of objects are stored into the regions
one by one. This limits the maximum separation distance among data stripes
belonging to the same object so that the upper bounds on the seek time and
access time are tightened. It increases the maximum number of streams that
can be served concurrently. It serves multimedia streams efficiently to raise
the storage system throughput. It can support some interactive streams on
top of the normal displaying streams. The region based constraint allocation
method is flexible that it can be applied in other storage systems such as
hierarchical storage systems.
In both constraint allocation methods, the start-up latency is being traded
off. The average start-up latency of new streams is half of the phase period
when the phase based constraint allocation method is used. The average
start-up latency of new streams is the period of time to serve one request
for all the concurrent streams when the region based constraint allocation
method is used.

Section.IIb

Data Placement on
Hierarchical Storage Systems

Introduction

Storage system stores data objects on different storage devices. When these
storage devices are of the same type, the objects may be stored and retrieved
with similar access latency. When these storage devices are of different types,
the objects may be stored and retrieved with different access latencies. Thus,
the type of storage devices that contain the stored object affects the access
latency in accessed a stored object.
A common method to arrange the storage devices of different types is the
hierarchical storage systems (HSS). All or most objects are stored on the
storage devices with longer access latency. When these data objects are ac-
cessed, the objects are moved from these storage devices with longer access
latency to the storage devices with shorter access latency. This is called data
migration.

Similar to storage organizations on disks, there are many data placement
methods being designed to improve the performance of hierarchical stor-
age systems. These techniques use different strategies to optimize the HSS
performance. We group these data placement methods according to the fol-
lowing four strategies:

1. Contiguous placement strategy
2. Statistical placement strategy
3. Striping strategy
4. Constraint allocation strategy

Readers may find that these strategies have been described in the last part.
Similar techniques on disks have been discussed in previous chapters. Read-
ers should notice that the same technique on disks may not be directly ap-
plicable to the tertiary storage devices. Even if the same efficient technique
can be applied on HSS, it may deteriorate the HSS performance instead of
enhancing it.
We will first describe the tertiary storage devices that store data objects in
the tertiary storage level in Chapter IX. The contiguous placement strategy
minimizes the overheads in accessing the objects in their entirety. We shall
describe the contiguous placement and the log structure placement on HSS in
Chapter X. The statistical placement method optimizes the average perform-
ance by placing data according to their access characteristics. We will show
the frequency based placement method on hierarchical storage systems in
Chapter XI. Afterwards, we will describe the striping strategy which divides
a multimedia object into shorter segments and retrieves them in parallel using
separate requests. Two striping methods on HSS, including the parallel tape
striping and the triangular placement method, are described in Chapter XII.
Lastly, we will explain in Chapter XIII the constraint allocation strategy which
limits the physical locations to place objects and segments. We will explain
the interleaved contiguous placement and the concurrent striping methods.

Tertiary Storage Devices ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.IX

Tertiary.Storage.Devices

Introduction.

The main objective of the tertiary storage level is to provide huge storage
capacity at low cost. Several types of storage devices are available to be
used at the tertiary storage level in Hierarchical Storage Systems (HSS).
They include:

• Magnetic tapes
• Optical disks
• Optical tapes

These storage devices are composed of fixed storage drives and remov-
able media units. The storage drives are fixed to the computer system. The

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

removable media unit can be removed from the drives so that the storage
capacity can be expanded with more media units. When data on a media are
accessed, the media unit is accessed from their normal location. One of the
storage drives on the computer system is chosen. If there is a media unit in
the storage drive, the old media unit is unloaded and ejected. The new media
unit is then loaded to the drive.
Each type of storage drive may handle the storage drives and media units
differently. The magnetic tapes are described below in the next section. Then,
the optical tapes are presented. Afterwards, the optical disks are briefly de-
scribed before this chapter is summarized.

Magnetic.Tapes

Magnetic tapes have been in use before the magnetic hard disks became
popular. Although magnetic disks are low latency, inexpensive disks, magnetic
tapes are cheap and of large capacity. Thus, the magnetic tapes are still used
in practical storage systems for backup and archival applications. They are
used to store objects that are large and rarely accessed.
Multimedia objects are large in size, and some objects are mainly stored for
the back up purpose. These objects are rarely accessed. Thus, the large capac-
ity of magnetic tapes helps to store multimedia objects cheaply. In addition,
a multimedia stream accessed a data object sequentially. When a multimedia
object is sequentially accessed from the tapes, the tape storage format allows
the storage system to deliver data at high throughput. Thus, magnetic tapes
have been investigated to store multimedia objects.
Magnetic tape drives access data tapes in two forms. These include the tape
reels and the tape cartridges. When tapes are wound on reels, the drive uses
two reels. They include the supply reel and the take-up reel. The magnetic tape
is unwound from the supply reel. It passes through several tape guides to the
read-write heads. It then passes through more tape guides to the take-up reel
to be wound as illustrated in Figure 9.1. It usually needs human intervention
to lead the tape through all the guides and wind it at the take-up reel. It is
difficult to perform the tape loading operation automatically.
When tapes are kept on cartridges, the supply reel, the tape guides, and the
take-up reel are all included in one cartridge. To load a tape, the drive ex-
tracts some tape between the supply reel and the take-up reel and winds it

Tertiary Storage Devices ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

around the read-write heads. It is easier to perform the tape loading operation
automatically.
Magnetic tapes record data in three formats. They include:

• Linear
• Longitudinal
• Helican scan

This tape format stores data on data tracks. As shown in Figure 9.2, the
read/write heads assembly may be able to move. The different directions
in moving the read/write heads lead to different tape formats. These tape
formats are used in different types of storage devices.

Figure �.�. Magnetic Tape Drive

supply reel take-up reel

read-write heads

tape

tape guides

Figure.9.1..Magnetic.tape.drive

Figure.9.2..Magnetic.tape.formats

tape moving directions
heads
moving
directions

Longitudinal (serpentine)

Helican Scan

read/write heads
assemblyLinear tape

Figure �.�. Magnetic Tape Formats

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Traditional computers record data on magnetic tapes in the linear tape format.
The tapes move horizontally. The read/write heads assembly is fixed inside
the tape drive. Computer data are recorded horizontally along with the tape
moving direction. Several read/write heads are mounted along perpendicularly
to the tape moving direction. Thus, several bits are recorded by the read/write
heads on the tape at the same time.
Digital linear tapes record data using the serpentine tape format. Data are
recorded in the longitudinal direction like the linear tapes. Similar to the linear
tape format, the tape read/write heads are fixed when data are recorded on
the tape to form a track. After the tape comes to one end, the heads move at
perpendicular direction to the tape moving direction. The tape then moves
backwards to record another data track in the opposite direction. The move-
ment of the read/write heads are repeated to record several data tracks on
the tape. Thus, the width of the tape is used to increase the storage capacity
of the magnetic tape.
Video cassette recorders (VCR) record video data onto VHS tapes. The VHS
tapes use the helican scan format. The read/write heads are mounted on a
cylinder like a drum. The heads are mounted at an angle and rotate like a
wheel. Thus, they form short data tracks on the surface of the tape.
Magnetic tapes have been used in many legacy systems. They offer cheap
storage to systems that store large amounts of computer data. The storage of
data that are practically impossible on magnetic disks can be implemented us-
ing magnetic tapes. Based on the long access latency and low storage cost per
gigabyte, magnetic tapes have been used in backup applications for years.
Magnetic tapes record data on tapes. Since the tapes are wound around the
reels, the tape recording surface is hidden from the read/write heads. This
leads to long access latency when the tape is unwound to reveal the hidden
surface. It also results in a high storage capacity to physical dimension ratio
when compared to the disk format.
In recent years, the improvements in recording density in magnetic disks are
also implemented on magnetic tapes to increase their storage capacity and
throughput. Thus, the improvement in recording density does not make the
magnetic tapes obsolete. Unfortunately, the read/write heads touch the tape
surface when data are accessed. After some time, the tape can become wound
out or torn. This and other causes limit the life span of magnetic tapes. Thus,
the tapes need to be replaced and data are moved to new tapes.

Tertiary Storage Devices ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Optical.Disks

Optical disks record data that can be read by optical beams. Optical disks can
record data at very high recording density. Compact disks (CD) and digital
versatile disks (DVD) are commonly used optical disks. The DVD disks are
sometimes called digital video disks.
Optical disks can be classified as read-only disk, write-once disk, rewriteable
disk, and read-write disk according to the modification ability of the record-
ing material. Read-only disks can only be read by the optical drive. The data
on the disks cannot be changed. Write-once disks can be modified only once
and read many times. After a bit of data is modified, the bit of data cannot
be changed again. Similar to write-once disks, the rewriteable disks can be
modified only once and read many times. In addition, the entire disk can be
erased. After the disk is erased, the disk can be modified again. Read-write
disks can be read and modified many times.
The optical disks are covered with clear polycarbonate. Data are recorded
on the recording material under the disk surface. A thin layer of aluminium
is coated on the substrate below the recording material. The optical disks are
circular in shape. Data are recorded on a spiral track. The disk drive uses the
servo to control the position of the optical drive automatically.
Optical disks read and write data using laser beams. Some optical disks are
recorded using red laser beams, and some other optical disks are recorded
using blue laser beams. The laser beam is diffracted into the recording layer
of the optical disk. It is then focused at the recording track. The status of the
recording material at the recording layer is modified by high intensity laser
beams. The status of the recording material is read by low intensity laser
beams.
At one status of the recording bit position, the laser beam directly passes
through the recording layer to the aluminium coating underneath. The alu-
minium coating then reflects the laser beam to the reading head. At another
status of the recording bit position, the laser beam is deflected at the record-
ing layer. The reading head thus does not receive any reflected beams from
the aluminium coating.
Like magnetic disks, optical disks store data on rigid disk platters. The optical
disk head can be moved along the radius of the circular disk to locate the ac-
cessed data quickly. Thus, the optical disk drives can access data on the track
with low latency. This makes the disk format superior to the tape format.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Since optical drives record data on the disk recording layer using laser beams,
the drives do not need to touch the optical disks at all. This avoids scratching
the disk surface. When moisture or fingerprints gather on the disk surface,
the disk can easily be wiped away. These features allow the optical disks to
have a long life span.

Optical.Tapes

Optical tapes are designed to maximize the storage capacity of a media
unit. Optical tapes record data on tapes using laser beams to maximize the
recording density. Most of the recording surface is wound and hidden using
a tape form.
Unlike magnetic tapes, optical tapes record data in the transverse format.
The tape moves horizontally and the optical read/write head moves at the
perpendicular direction to the tape moving direction as shown in Figure
9.3. The tape stops while the optical head records a track of data. The head
records data from one edge to another edge along the width of the tape. After
a track of data is recorded, the tape moves a step and the head springs back.
The tape stops again, and the optical head writes another data track. These
data tracks are perpendicular to the tape moving direction. The length of the
data track is shorter than the width of the tape.

tape moving directions
heads
moving
directions

Optical data tapes: transverse

read/write
heads

assembly

Figure �.�. Optical Tape Format

Figure.9.3..Optical.tape.format

Tertiary Storage Devices ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Robotic.Tape.Library

Large hierarchical storage systems need to store many objects. These HSS
need to exchange tapes quickly so that they can serve many requests. Robotic
tape libraries perform the exchange operation automatically so that manual
operations are avoided.
As shown in Figure 9.4, the robotic tape library consists of the:

1. tapes,
2. tape drive,
3. robotic arm, and
4. tape cells.

As in manual tape drives, the objects are stored on the tapes, and the tapes
are loaded to the tape drives for accessing. The number of tape drives in the
robotic tape library determines the access bandwidth of the library. The tapes
are usually kept in the tape cells. The number of tape cells in the robotic tape
library determines the total storage capacity of the library. The robotic arm
performs the exchange of tapes automatically.

Figure.9.4..Robotic.tape.libraryFigure �.�. Robotic Tape Library

tape drives

robotic
arm

tapes

cells

I/O busmemory

system bus

I/O Processor

CPU

Disk …

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When a tape is required, the robotic tape library performs the following
steps:

1. The robotic arm moves to the tape drive.
2. The tape drive ejects the original tape.
3. The robotic arm fetches the original tape.
4. The robotic arm moves the original tape back to its own cell or a vacant

cell.
5. The robotic arm moves to the cell containing the new tape.
6. The robotic arm fetches the new tape.
7. The robotic arm moves the tape to the tape drive.
8. The robotic arm puts the tape inside the tape drive.
9. The tape drive loads the tape.

The above exchange operation uses only one robotic arm. If the tape library
has two robotic arms that are mounted together, it can exchange tapes using
fewer steps as follows.

1. The robotic arm moves to the tape cell.
2. The robotic arm fetches the tape from the cell.
3. The robotic arm moves the tape to the tape drive.
4. The tape drive ejects the original tape.
5. The robotic arm exchanges the tape with the original tape.
6. The tape drive loads the new tape.
7. The robotic arm moves the original tape back to its cell or a vacant

cell.

From the above steps, the tape library performs fewer steps when two robotic
arms are available. In addition, the tape drive can start its next operation to
reposition the tape after the new tape is loaded. The tape drive receives the
new tape in fewer steps. Thus, the robotic tape library can thus exchange
tapes more quickly.

Tertiary Storage Devices ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Performance.of.the.Tertiary.Storage.Devices

Similar to the disk performance, the tertiary storage devices mainly spend
their time on the mechanical steps. Other steps also consume some time,
but they are comparatively less significant. The major mechanical steps in
serving a request are shown in Figure 9.5 and they include:

1. Time to exchange or switch the tape in the tape drive.
2. Time to reposition the tape to the first data block of the required file or

object.
3. Time the transfer data blocks from tape to memory.

Let ω be the exchange time, α be the reposition time, γ be the tape transfer
rate, and X be the size of the object. Then, the access time can be found as
the sum of exchange time, reposition time, and data transfer time (Tse &
Leung, 1998).

X
= ω+ α +

γ
. (9.1)

Some assumptions are made to analyze the performance of magnetic tape
drives and optical tape drives. First, the exchange time can be assumed to be
uniformly distributed over a mean value. Since the times to unload and load
tapes are almost constant, it is valid to make this assumption. Second, the
tape drive runs at a fixed speed in skipping a certain length of tape since the
tape skipping time increases with the length of the tape being skipped from
reading. The reposition time thus increases linearly with the amount of data
being skipped. Third, the tape drive transfers data at a fixed data transfer rate
since the tape passes the read/write heads at a fixed speed. The data transfer
time thus increases linearly with the amount of data accessed.
These time components show that:

1. the time to access an object has a minimum overhead,
2. the overheads increase linearly with the amount of data being skipped,

and
3. the access time increases linearly with the object data size.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

First, the time to access an object has a minimum overhead. Since the ex-
change time is uniformly distributed, a minimum overhead is required un-
less the object already resides on the loaded tape in the drive. Second, the
overheads increase linearly with the amount of data being skipped in the
reposition step. When some other objects need to be skipped, the skipping
time increases linearly with the size of the skipped data. It is more efficient
to place the objects near the unloading position on the tape. Thus, an efficient
data placement method can avoid the overheads from escalating. Third, the
access time increases linearly with the object data size. Thus, it takes longer
time to access large objects.

Chapter.Summary

The main objective of the tertiary storage level is to provide huge storage
capacity at low cost. The tertiary storage devices in use include magnetic
tapes, optical disks, and optical tapes. The media units are removable from
the drive so that the storage capacity can be expanded by using more media
units. The media units take the tape form so that the physical dimension of
the media unit is small. Optical disks and tapes record data the laser beam
to provide the highest recording density.
Large hierarchical storage systems may use robotic tape libraries to store many
large objects. Robotic tape libraries use the robotic arms to exchange tapes
automatically and quickly. When data are accessed from the tape drives, the
drives spend much time in performing the mechanical steps. The drives have
a minimum overhead to access data. The overheads are affected by the data
placement method in use. It also takes longer time to access large objects.

Figure.9.5..The.major.time.spent.in.serving.a.request.at.the.tertiary.storage.
devices

Figure �.�. The major time spent in serving a request at
the tertiary storage devices

Exchange Reposition Transfer Transfer … Transfer

time

Tertiary Storage Devices ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

References

Tse, P. K. C., & Leung, C. H. C. (1998). A low latency hierarchical storage
organization for multimedia data retrieval. In Proceedings.of.the IAPR.
International.Workshop.on.Multimedia.Information.Analysis.and.Re-
trieval (LNCS, 1464(8), pp. 181-194). Springer-Verlag.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.X

Contiguous.Placement..
on.Hierarchical.Storage.

Systems

Introduction

The contiguous placement is the most common method to place traditional
data files on tertiary storage devices. The storage space in the media units is
checked. The data file is stored on a media unit with enough space to store
the data file.
When tertiary storage devices are used to store multimedia objects, the ob-
jects are stored and retrieved similar to traditional data files. Since the main
application of the tertiary storage devices is to back up multimedia objects
from computers, the objectives of the contiguous method are:

1. supporting back up of multimedia objects efficiently, and
2. reducing the number of separate media units that are used to store an

object.

Contiguous Placement on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We will describe in the next sections the simple contiguous placement method.
Afterwards, the log structured placement method is explained before we
summarize this chapter.

Contiguous.Placement

Similar to traditional data files, multimedia objects can be stored in a con-
tiguous manner to the media units. Each media unit stores the whole object
as a file. When a media unit is partially occupied and the available storage
space is not enough, a separate media unit is used. If the object is larger than
the storage capacity of a media unit, the object spans across multiple media
units. The object is partly stored on each media unit.
The contiguous placement is simple to implement. The storage system only
checks for the available storage space in each media unit beforehand. If the
object is consumed on another computer, only a few media units need to be
taken away.
The exchange overheads on accessing an object are light. When the ob-
jects are accessed in their entirety, it takes only one exchange per object.
The amount of reposition overheads depend on the number of media units
available. If each object is stored on a separate media unit, each object can
be stored from the loading position of the media unit. Thus, the overhead
in skipping over other objects on the same media unit are light. If multiple
objects are stored on a media unit, the reposition time to skip over unwanted
objects is significant.
The throughput of the storage system depends on the size of the stored ob-
jects. If the objects are large in size, the tertiary drive exchanges and reposi-
tions once for every accessed object. Although the exchange and reposition
overheads are heavy, the large object size would make the transfer time more
significant. Thus, the storage system can deliver the object at high through-
put. However, if the objects are small in size, the tertiary drive would also
exchange and reposition once for every accessed object. The heavy exchange
and reposition overheads become more significant than the data transfer time.
Thus, the throughput of the storage system is low.
Since it is efficient to access each object as a whole, the storage system may
access the entire object to the staging buffer during data migration. The stor-
age space requirement on the secondary storage level would become large.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

This leads to inefficient usage of staging buffer space since a large portion
of the object is accessed well ahead of its displaying time. These prefetched
data are kept in the staging buffer for later consumption.
If the streams are served in a sequential manner, the streams are served one
after another. A stream would only be served after the previous stream has
completely been served. Since the multimedia objects are large in size, the
tertiary drive takes a long time to access the whole object. Thus, a stream
would occupy the tertiary drive for a long time. Other streams can only wait
while the tertiary drive is busy serving the stream. Therefore, the response
times of the waiting streams are long.
If the concurrent streams are served in a time sharing manner, the storage
system would switch to serve the request for another stream after it has served
requests of a stream for some time units. If each object is stored on a separate
media unit, the tertiary drive would access these objects in an interleaving
manner. It exchanges the media units once for every change in the serving
stream. Thus, the overheads in accessing the objects from the tertiary storage
level would be heavy. It is therefore inefficient to serve concurrent streams
in a time sharing manner when the objects are stored using the contiguous
placement method. We shall explain different methods to migrate multimedia
objects from the tertiary storage level in the data migration part later.
As the multimedia objects are stored contiguously, the entire object is over-
written when a small part of it is modified. Partial updating of the objects is
not supported. Thus, the workload on updating the objects is heavy.
When the small objects are deleted after they are stored for some time, the
free space on the media units cannot be filled by larger objects. As a result,
the media units become fragmented. This fragmentation problem erodes the
storage space of the tertiary storage system. The fragmented storage space
can be recovered after reorganization.

Log.Structured.Placement

In the back up and data archival applications, object files are backed up to the
media units so that they can be accessed when the original data are corrupted
or lost. As modified objects are also backed up to the media units, an object
may be overwritten many times before it is retrieved again. Thus, the data
objects are written more often than they are read in these applications.

Contiguous Placement on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A simple log structured placement treats the entire storage space as a log.
All the object files are written by appending to the storage space only. A log
structured placement method was designed to write object files to a hierar-
chical storage system (HSS) in Kohl, Stonebraker, and Staelin (1993). The
access ranges within an object are tracked to determine whether the object
is often accessed sequentially or randomly. Random accessed objects may
be stored to many locations on the media units. Sequential object files are
stored contiguously. When new objects are created, they are appended to
the end of the media units. When an object is modified, the modified data
blocks are appended to the end of the media unit and the data blocks being
modified are deleted. When the entire object is overwritten, the entire object
is appended to the end of the media unit.
If the tertiary drive only writes data objects without reading them back,
the tertiary drive only receives write data requests. After the tertiary drive
has served the previous requests, it stays at the end of the written object
files. As the next request is also a write data request, the tertiary drive can
immediately write data without repositioning the media unit. Thus, the ap-
pend-only method optimizes the tertiary drive performance by minimizing
the reposition overheads.
The append-only operation improves the efficiency in serving consecutive
writing requests. Unfortunately, the presence of reading operations and
delete operations breaks the list of writing operations. When the tertiary
drive serves the reading request, it exchanges the media units and moves the
current position to the accessed object. After serving a reading request, the
tertiary drive stays at the end of the accessed object. The tertiary drive needs
to reposition the media unit again to serve the next writing request. Thus, the
tertiary storage performance is not optimized when the tertiary drive needs
to read objects as well.
The log structured placement is efficient only for the back up and archival
applications where data are more often being modified than retrieved. If
data are not retrieved after writing, then the reasons to write these data be-
come doubtful. In most applications, the data files are more often read than
modified. In particular, multimedia objects are seldom modified. Therefore,
the log structure placement is not an efficient method for general purpose
multimedia storage systems.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.Summary

The contiguous placement method stores the whole object in the same media
unit. It is simple and efficient when the objects are written and retrieved in
their entirety. Unfortunately, it suffers from large staging buffer consumption
and long response time.
The log structured placement is an efficient placement method for the back up
and archival applications. It optimizes the writing performance by providing
the append-only operations. However, the performance is not optimized due
to the presence of reading requests that are present in multimedia storage
systems.

References

Kohl, J., Stonebraker, M., & Staelin, C. (1993). HighLight: A File System
for Tertiary Storage. In Proceedings.of.the.Twelfth.IEEE.Symposium.on.
Mass.Storage.Systems (pp. 157-161).

Statistical Placement on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XI

Statistical.Placement..
on.Hierarchical..
Storage.Systems

Introduction

We have described the contiguous placement in the previous chapter and the
statistical strategy to place objects on disks in Chapter IV. In this chapter,
we describe the statistical strategy to place them on hierarchical storage
systems. The objective of the data placement methods is to minimize the
time to access object from the hierarchical storage system. The statistical
strategy changes the statistical time to access objects so that the mean access
time is optimal.
The objective of the frequency based placement method is to differentiate
objects according to their access frequencies. The objects that are more fre-
quently accessed are placed in the more convenient locations. The objects that
are less frequently accessed are placed in the less convenient locations.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We will describe the frequency based placement method in the next sec-
tion. Afterwards, we will analyze its performance. Last, we summarize this
chapter.

Frequency.Based.Placement

Inside the tertiary storage library, the media units are physically placed in
the cells. Some of these cells are near the drive while other cells are far from
the drive. When objects are being accessed, the media unit that contains the
object is exchanged to the drive. The time to exchange the media unit depends
on the distance of the media unit from the drive. If the media unit is far from
the drive, the exchange time would be long. If the cell containing the media
unit is close to the drive, the exchange time is short.
The exchange time is a significant overhead in accessing an object. If the
object is large, the transfer time is long and the exchange time is relatively
a small fraction of the object access time. If the object is small, the transfer
time is short and the exchange time becomes a significant percentage of the
object access time. The frequency based placement method has been applied
to reduce the average exchange time in accessing objects from hierarchical
storage systems.
The frequency based placement has been applied to place objects across media
units on the tertiary storage library. To reduce the average exchange time, the
hot objects should be placed on the media units in the cells that are near the
drive. For convenience, we would say in below paragraphs that the distance
of a media unit from the drive is the distance of the cell that contains the
media unit from the drive. The nearest media unit actually means the media
unit in the cell that is the nearest to the drive. The farthest media unit actually
means the media unit in the cell that is the farthest away from the drive.
The frequency based placement method places the objects according to their
access frequencies or popularity and fills the media units according to their
distance from the drive (Tse & Leung, 2000). First, the objects are sorted in
the decreasing order of their access frequencies or popularities. The objects
are placed in the order from the hottest object to the coldest object. Second,
the media units are sorted in the increasing order of their distances from the
drive. The media units are filled in the order from the nearest media unit to
the farthest media unit.

Statistical Placement on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The frequency based placement method places the first, hottest, objects onto
the first, nearest, media unit. After the first object is stored, it then stores the
next hottest objects on the first media unit until the first media unit becomes
full. The next hottest object is then placed on the second media unit and so
on. Thus, it places as many hot objects as possible together onto the same
media unit until the media unit becomes full.
Inside a media unit, the objects are stored according to the distance from
the loading position. Among the objects that are stored on a media unit, the
hotter objects are stored before the colder objects. Thus, the hotter objects
are stored closer to the loading position than the colder objects.
For example, a tertiary storage library has one drive and six media units. Each
media unit can store two objects. The multimedia objects V1 to V12 are sorted
in the order of popularity as shown in Figure 11.1. The object V1 is the most
popular object, and the object V12 is the least popular object.
The six media units are sorted in the order of their distances from the drive
as illustrated in Figure 11.2. The media unit T1 is the nearest to the drive,
and the media unit T6 is the farthest away from the drive. According to the
frequency based placement method, the hottest object, V1, is first placed on
the first media unit, T1. After V1 is placed, there is still storage space on the
media unit, T1. Since T1 still has enough storage space, the second hottest
object, V2, is also placed on it. After V2 is placed, the media unit, T1, becomes
full and it does not have enough storage space to store the next object V3.
Thus, the next media unit, T2, is chosen to store the next object, V3. After
storing V3, the media unit T2 can also store V4. Similarly, V5 and V6 are stored
on the media units T3 and so on.Figure ��.�. Frequency based placement

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

decrease in popularity

Figure.11.1..Frequency.based.placement

Figure ��.�. Frequency based placement

media units

increase in distance of cell from tape drive

V1V2

T1

V3V4

T2

V5V6

T3

V7V8

T4

V9V10

T5

V11V12

T6

close to drives far from drives

Figure.11.2..Frequency.based.placement

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Discussion

The frequency based placement method assumes that the objects are ac-
cessed independently. This means that the access probability of an object
is the same no matter which object has just been accessed. If the objects
are independently accessed, the probability to exchange a media unit to the
drive can easily be found as the sum of the probabilities of the objects that
are stored on this media unit.
The frequency based placement method stores the hot objects on the media
unit that are exchanged with shorter time. Since the hot objects are accessed
with the high access probability, the average exchange time is short when
the hot objects are stored on the media unit near the drive.
If we consider the media unit already loaded in the drive, then this media unit
is at zero distance from the drive since this media unit can be accessed without
exchanges. Thus, the media unit in the drive becomes the most convenient
location to store new objects after it is loaded to the drive.
The frequency based placement method places the hottest object on the me-
dia unit nearest to the drive. This media unit has the highest probability of
being exchanged to the drive than other media units. As the nearest media
unit is exchanged with the shortest time, the hottest object would incur the
lightest overheads when it is placed on the nearest media unit. Thus, the hot-
test object should be placed on the nearest media unit to achieve the shortest
exchange time.
For the same reason, the next hottest object is placed to the nearest media
unit until it becomes full. After the nearest media unit is filled up, the next
nearest media unit with available space would become the nearest media unit
to store the next object. All the objects are thus stored on the media units so
that the mean exchange time would be the shortest.

Application.Notes:.The.frequency.based.placement.is.applicable.when.the.
objects.are.independently.accessed.and.the.objects.are.of.the.similar.size..If.
objects.are.different.in.size,.a.media.unit.that.stores.two.colder.objects.may.
have.a.higher.exchange.probability.than.another.media.unit.that.stores.one.
hotter.object..
If.the.objects.are.not.accessed.independently,.two.or.more.objects.may.be.ac-
cessed.concurrently.or.they.have.high.correlation.probability..These.objects.
should.be.stored.on.the.same.media.unit.to.reduce.the.number.of.exchanges.

Statistical Placement on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

and. the.mean.exchange. time..Unfortunately,.multimedia.objects,. such.as.
video.and.audio,.may.have.high.correlation.probability.if.they.are.stored.as.
separate.objects.
The. frequency. based. placement. stores. the. hottest. objects. on. the. nearest.
media.unit..Thus,.many.requests.are.directed.towards.this.media.unit..If.the.
tertiary.storage.system.has.more.than.one.drive,.there.may.be.more.than.
one.stream.which.would.like.to.access.an.object.from.this.media.unit..Thus,.
a.contention.for.the.media.unit.is.incurred..All.other.streams.need.to.wait.
for.the.media.unit.in.the.drive,.and.the.waiting.time.is.long..Thus,.the.hot.
objects.may.be.distributed.onto.a.few.media.units.so.that.all.the.drives.can.
serve concurrent streams efficiently.

Besides moving the media units to the drive and their cells, the robotic arms
may be able to swap the positions of media units among the cells. This is
called the background migration. After the access probability of objects has
changed, the probability to exchange a media unit may be changed. The
original optimal placement of objects may become sub-optimal. The robotic
arm can be used to swap the media units among cells to improve the average
exchange time. This background migration restores the order of the media
units according to the probability that the media unit is exchanged. This
background migration should be performed when the workload on the terti-
ary storage library is light. Background migration moves the media units to
the most desirable location depending on the frequency of exchanging the
media unit when the workload is light.
If the optimal performance needs to be restored, a complete reorganization is
needed. Objects are first copied to new media units according to their access
frequencies. The media units are then migrated according to the exchange
probability with the media unit with the highest exchange probability placed
at the cell nearest to the drive (Tse, 1999).

Chapter.Summary

We have explained the statistical placement method using the frequency
based placement of objects on media units. The frequency based placement
method places the objects to the media units according to the access fre-
quency of the objects and the distance of the cell containing the media unit

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

from the drive. The performance of the frequency based placement method
is optimized when the objects are accessed independently and the objects
are of the same size.

References

Tse, P. K. C. (1999). Efficient storage and retrieval methods for multimedia
information. Doctoral dissertation, Victoria University, Melbourne,
Australia.

Tse, P. K. C., & Leung, C. H. C. (2000). Improving multimedia systems
performance using constant density recording disks. ACM.Multimedia.
Systems.Journal,.8(1), 47-56.

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XII

Striping.on.Hierarchical.
Storage.Systems

Introduction

The data striping technique has been successfully applied on disks to reduce
the time to access objects from the disks as shown in Chapter VI. Similarly,
the striping technique has been investigated to reduce the time to access
objects from the tape libraries.
Similar to the striping on disks, the objective of the parallel striping method is
to reduce the time to access objects from the tape libraries. The parallel tape
striping directly applies the striping technique to place data stripes on tapes.
The triangular placement method changes the order in which data stripes are
stored on tapes to further enhance the performance.
In the next section, the parallel tape striping method will be described. The
performance of the parallel tape striping follows. After that, the triangular
placement method is explained, and it is followed by the performance of the
triangular placement method.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Parallel.Tape.Striping

The objective of the parallel tape striping method is to reduce the time to
access objects from the tape library. Parallel tape striping places objects us-
ing the following steps:

1. Divide the object into data stripes.
2. Distribute the data stripes across several tapes.
3. Access the data stripes from the tapes in parallel.

The parallel tape striping method divides the object into data stripes of con-
stant data length approach. The size of each data stripe is fixed. Large objects
are divided into more data stripes. Small objects are divided into fewer data
stripes (Drapeau & Katz, 1993).
The data stripes are then distributed across multiple tapes. The number of tapes
being used to store an object should be fewer than or equal to the number of
drives. If an object is distributed across more tapes, some data stripes of the
object cannot be accessed in parallel.
The tape drives perform the I/O operation in parallel. When an object is writ-
ten to the tapes, the robotic arm first exchanges the tapes to the drives. The
tertiary drives then reposition to the beginning of an empty space on the tapes.
Afterwards, the drives transfer data to the tapes with the same number of data
block on each tape. Thus, the object is written to the tapes in parallel.
Similarly, the objects are retrieved in parallel from the tapes. When an object
is being accessed, the robotic arm first exchanges the required tapes to the
drives. The tertiary drives then reposition to the beginning of the object being
accessed. After that, the drives transfer data from the tape to the memory.
Therefore, the object is accessed in parallel from the tapes.
For example, the robotic tape library has three drives and five tapes. The
objects X, Y, and Z are to be stored on the robotic tape library. Object X is
divided into nine data stripes X1 to X9. Object Y is divided into six data stripes
Y1 to Y6. Object Z is also divided into six data stripes Z1 to Z6 as shown in
Figure 12.1.
When object X is being stored, the robotic arm exchanges three tapes, T1,
T2, and T3, to the three drives. The drives then reposition the tapes to the
beginning of empty storage space. Three data stripes, X1, X2, and X3, are then

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

stored on the three tapes, T1, T2, and T3, respectively, with one data stripe on
each tape. After that, the next set of three data stripes, X4, X5, and X6, are then
stored on the three tapes, T1, T2, and T3, respectively. Last, X7, X8, and X9, are
stored on the three tapes, T1, T2, and T3, as well. As a result, data stripes X1,
X4, and X7, are stored on the tape T1. Data stripes X2, X5, and X8 are stored
on the tape T2. Data stripes X3, X6, and X9 are stored on the tape T3.
Similarly, object Y is also distributed across the tapes T1, T2, and T3. When
object Z is stored, the three tapes T1 to T3 are full and they cannot store any
more data stripes. The robotic arm thus exchanges the tapes T4 and T5 to
two drives. The drives then reposition the tapes T4 and T5 to the beginning
of empty space. Two data stripes Z1 and Z2 are stored on the tapes T4 and T5,
respectively. Similarly, the data stripes Z3 and Z4 are stored on the tapes T4
and T5 again. Last, the data stripes Z5 and Z6 are stored on the tapes T4 and
T5, as well. Therefore, the data stripes Z1, Z3, and Z5 are stored on the tape
T4. The data stripes Z2, Z4, and Z6 are stored on the tape T5.
When object X is being retrieved, the robotic arm exchanges three tapes,
T1, T2, and T3, to the three drives. The drives then reposition the tapes to
the beginning of the object on the tapes. The first drive repositions T1 to the
beginning of X1. The second drive repositions T2 to the beginning of X2. The
third drive repositions T3 to the beginning of X3. Three data stripes, X1, X2,
and X3, are then read from the three tapes, T1, T2, and T3, respectively. After

Figure ��.�. Parallel Tape Striping

X1 X2 X3 X4 X5 X6 … X9Object X

Y1 Y2 Y3 Y4 Y5 Y6

X9

X6

X3
X5
X8

X1 X2
X4
X7

T1 T2 T3

Y6

Y3

Y5

Y1 Y2

Y4

Object Y

T4 T5

Z6

Z3

Z5

Z1 Z2

Z4

Z1 Z2 Z3 Z4 Z5 Z6Object Z

Tapes

Figure.12.1..Parallel.tape.striping

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

that, the next set of three data stripes, X4, X5, and X6, are read from the three
tapes, T1, T2, and T3, respectively. Last, X7, X8, and X9, are read from the three
tapes, T1, T2, and T3. After all the data stripes are retrieved from the tapes, all
three drives are released. The objects Y and Z are retrieved similarly. Details
of how the objects are kept when they are retrieved will be described in the
data migration part.

Performance.of.Parallel.Tape.Striping.

When the drives access an object in parallel, the time to perform each input/
output (I/O) operation overlaps with each other. Since each drive accesses
only a fraction of the object, the time to access an object is split among
several drives. In particular, the data transfer time is reduced by split among
the drives. Thus, the object request is served with a shorter service time.
Therefore, the time spent by each drive to access an object is overlapped to
reduce the response time of each request.
In the example above, the objects are accessed in parallel. When the object
X is being accessed, the time when the drive exchanges, repositions, and
transfers data stripes is illustrated in Figure 12.2.
Let ω be the tape exchange time, α be the tape reposition time, and γ be the
data transfer rate. Let X be the size of the object X being accessed without
losing clarity.

Figure ��.�. Performance of Parallel Tape Striping

Drive 3

Drive 2

Drive 1

Robot arm

0 2 3 3 +

Time
X1

X2

X3

X4

X5

X6

X7

X8

X9

T1 T2 T3

T1

T2

T3

3 +
+X/9

3 +
+2X/9

3 +
+X/3

T3

T2

T1

exchange reposition transfer

Figure.12.2..Performance.of.parallel.tape.striping

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the above example, the object X is striped across three tapes. As shown
in Figure 12.2, the time to access the object X from the tape library using
parallel tape striping

3
3
X

= ω+ α +
γ

Alternatively, if the object X is placed contiguously onto a single tape, then
the access time of the object X is found as

X
= ω+ α +

γ

Thus, the access time of the object X is reduced if

3
3

2 2
3

X X

X

ω+α + > ω+α +
γ γ

⇔ > ω
γ

That is, the access time is reduced by using the parallel tape striping if the
decrease in data transfer time is more than the increase in exchange time.
In general, the time to access objects from the robotic tape library can be
compared in a similar way. If none of the tapes needed are already loaded
to the tape drives, the time to access an object of size X using parallel tape
striping is

*
*
XN

N
= ω+α +

γ
 (12.1)

where the object X is striped across N tapes.
Thus, the access time of the object X is reduced if

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

() ()

*
*

1
1

X XN
N

N X
N

N
X
N

XN

ω+α + > ω+α +
γ γ

−
⇔ > − ω

γ

⇔ > ω
γ

⇔ <
ωγ

 (12.2)

Therefore, we have found an upper bound on the number of tapes that an

object can be striped across. If an object of size X is striped across fewer

than X
ωγ

 tapes, the access time of the parallel tape striping method is shorter

than the contiguous placement method. If the object is striped across more

than X
ωγ

 tapes, the access time of the parallel tape striping method becomes

longer than the contiguous placement method. If the object is striped across
X
ωγ

 tapes, the access time of the parallel tape striping method is equal to the

access time of the contiguous placement method. However, more drives are

used to provide the parallel tape striping. Thus, the objects should be striped

across fewer than X
ωγ

 tapes.

For example, if the robotic tape library has as many drives as we need, an
object of 1000MB is stored on the tape library. The time to exchange a tape
is 20 seconds and the drives transfer data at the rate of 10MB/sec. From
equation (12.2), the object should not be striped across more than N tapes
where N is

1000
(20)*(10)

X
=
ωγ

=
,

= 5.

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

That is, the object should not be striped across more than five tapes. Other-
wise, the data access time would increase instead of decrease. We could find
the optimal number of drives in another approach below. Let θ be the access
time of the object. From equation (12.1), we have

*
*
XN

N
θ = ω+α +

γ
 (12.3)

Looking at this equation, we can see that the value of θ increases with N

due to the term N*ω, and decreases due to the term
*
X

N γ
. The first order

derivative of θ with respect to the number of striping tapes N is

2*
d X
dN N
θ
= ω−

γ
 (12.4)

Setting the first order derivative of θ to zero, we have

2

2

2

0
*

*

*

*

X
N

X
N
XN

XN

ω− =
γ

⇔ ω=
γ

⇔ =
ω γ

⇔ = ±
ω γ

 (12.5)

As N is greater than 1, we reject the negative value of N to get the optimal
number of striping tapes as

*optimal
XN = +

ω γ
 (12.6)

The second order derivative of θ with respect to N is

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

2

2 3

2
*

d X
dN N
θ
=
γ (12.7)

As all the parameters X, γ, and N are all greater than 0, the second order
derivative of θ is greater than zero. Therefore, the optimal access time is
the minimum access time. The minimum access time is achieved when the

object is striped across
*
X

+
ω γ

 tapes.

If the value of
*
X

+
ω γ

 is not an integer, then the floor function or the ceiling

function may be applied to find the minimum access time. Thus, the optimal

number of striping tapes is either equal to 
*
X

+
ω γ

 or 
*
X

+
ω γ

 depend-

ing on the actual access time when the floor function or ceiling function is

applied.
The minimum access time and the optimal number of striping tapes of parallel
tape striping are plotted in Figure 12.3. The nonstriping access time of the
contiguous placement method is also shown in the figure for comparison.
We can see that larger objects can be striped across more tapes to reduce the
object access time. However, smaller objects should be striped across fewer
tapes to avoid too much exchange overheads. When the objects are very
small, the number of optimal striping tapes can be equal to one. Thus, the
object should be stored on only one tape without striping. When the object

Figure ��.�. Performance of Parallel Tape Striping

Access Time and Optimal Number of Striping Tapes

Object size

se
co

nd
s

nu
m

be
r o

f s
tr

ip
in

g
ta

pe
s

Striping
access time

Non-striping
access time

Optimal
Number of
Striping
Tapes

Figure.12.3..Performance.of.parallel.tape.striping

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

is large, the optimal number of striping tapes may be more than the number
of tape drives in the library. Since the tapes are access in parallel, the object
should not be striped across more tapes than the number of tape drives.
In addition, the optimal access time of parallel tape striping is always lower
than or equal to the access time of nonstriping. Therefore, the parallel tape
striping method reduces the time to access an object from the tape library.
Although the access time of the parallel tape striping method is always lower
than the access time of the nonstriping methods, the parallel tape striping
method uses several drives simultaneously to serve one stream. The tape
drives cannot serve requests from other streams. Therefore, the nonstriping
method should be used when its access time is the same as the striping ac-
cess time.
The parallel tape striping uses multiple drives to transfer an object from
several tapes at the same time. The transfer time of an object is reduced
by splitting among the striping tape drives. Thus, the access time is greatly
reduced. Unfortunately, the parallel tape striping method synchronizes the
reading and writing operations. When data are read or written from the tapes,
the synchronization is impaired by the presence of a bad segment. The read
and write operations are retried leading to variable access times. The syn-
chronization of the read or write operation on each drive is delayed. Thus,
the practical throughput of the storage system is lower than the theoretical
achievable value.
In addition, the parallel tape striping method exchanges the tapes in parallel.
When the number of robotic arms is fewer than the number of tape drives,
the fewer robotic arms receive all the exchange requests at the same time. It
should be noted that robotic tape libraries usually has only one robotic arm to
serve one exchange request at a time. Thus, some exchange requests need to
wait in the waiting queue. Therefore, parallel tape striping incurs contention
at the robotic arms leading to reduced system throughput. We shall explain
how the contention of exchange requests in the triangular placement method
in the next section.

Triangular.Placement

The parallel tape striping method reduces the transfer time in delivering
objects from tapes. It however induces contentions on switching tapes. The

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

performance of parallel tape striping is limited by the ability of the robotic
arms in switching tapes. The triangular placement method relaxes the strict
synchronization in accessing objects to reduce the switching overheads.
Consider that a tape library has four drives and only one robotic arm. For
objects that are striped across four tapes, the drives start to reposition and
transfer after the robotic arm has exchanged four tapes. The time to exchange
the four tapes is four times of the time to exchange one tape. Since the robotic
arm serves the exchange requests sequentially, it exchanges the tapes to the
drives one by one. After the first tape is loaded to the first drive, the drive
waits for the robotic arm to exchange other tapes. This tape is already ready
for repositioning and transfer. As shown in Figure 12.4, these drives have
some usable bandwidth that can be utilized.
The triangular placement method assumes that the tape drives share a robotic
arm. The robotic tape library can only serve exchange requests one by one
(Chiueh, 1995). In addition, the exchange time should be predictable.
The triangular placement method relaxes the synchronization constraint that
the exchange step should be completed on all drives before the next step to
reposition the tapes on all drives. Instead, each drive starts to reposition the
tape immediately after the tape on this drive is exchanged (Chiueh, 1995).
Thus, the tape drive does not wait for the other drives to complete their ex-
changing operation.
Similar to parallel tape striping, an object is divided into fixed length data
stripes. The number of data stripes depends on the size of the object. Large
objects are divided into many data stripes. Small objects are divided into
few data stripes.

Figure ��.�. Usable Bandwidth in Parallel Tape Striping

Usable
bandwidth

0 2 3 4

No. of Active Drives

4

3

2

1

Time

Tape drives start to
reposition and
transfer data after the
exchange time =4 .

exchange
tapes

Figure.12.4..Usable.bandwidth.in.parallel.tape.striping

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The tape drives perform the I/O operation in parallel with relaxed synchro-
nization. They do not synchronize individual exchange, reposition, and data
transfer operations. They only synchronize when all the data stripes of the
object is transferred.
When an object is written to the tapes, the robotic arm first exchanges a tape
to the first drive. After the tape is exchanged, the first drive is initiated to re-
position to an empty space. The first drive immediately starts to transfer data
stripes to the tape after repositioning. While the first drive is repositioning
and transferring data, the robotic arm starts to exchange the second tape to
the second drive. After the tape is exchanged, the second drive is initiated to
reposition to an empty space. The second drive immediately starts to transfer
data stripes to the tape after repositioning. The third drive and other drives
perform similarly and so on. Therefore, the object is written in parallel with
relaxed synchronization to the tapes.
Similarly, the objects are retrieved in parallel with relaxed synchronization.
When an object is written to the tapes, the robotic arm first exchanges a
tape to the first drive. After the tape is exchanged, the first drive is initiated
to reposition to the beginning of the object being accessed. The first drive
immediately starts to transfer data stripes from the tape after repositioning.
While the first drive is repositioning and transferring data, the robotic arm
starts to exchange the second tape to the second drive. After the tape is ex-
changed, the second drive is initiated to reposition to the beginning of the
object being accessed. The second drive immediately starts to transfer data
stripes from the tape after repositioning. The third drive and other drives
perform similarly and so on. Therefore, the object is accessed in parallel
with relaxed synchronization from the tapes.
Since the drive with an early exchanged tape starts to transfer data at an
earlier time, more data stripes can be stored on this tape. The storage space
on these tapes is consumed more quickly.
Consider the same example as in the parallel tape striping method. The ob-
jects X, Y, and Z are stored to the robotic tape library with three drives and
five tapes. Object X is divided into nine data stripes X1 to X9. Object Y is
divided into six data stripes Y1 to Y6. Object Z is also divided into six data
stripes Z1 to Z6 as shown in Figure 12.5.
The four devices, including the robotic arm and the three drives, write object
X to the tapes by performing the following operations. Each operation below
lasts for a considerable period of time at the devices.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

1. The robotic arm exchanges the tape T1 to the first drive. The second
and third drives are idle.

2. The first drive repositions T1 to an empty space and starts to transfer
data stripe X1 to T1 after repositioning. The robotic arm exchanges T2
to the second drive. The third drive is idle.

3. The first drive starts to transfer the next data stripe X2. The second drive
repositions T2 to an empty space and starts to transfer the data stripe X3
after repositioning. The robotic arm exchanges T3 to the third drive.

4. The first drive starts to transfer the next data stripe X4. The second drive
starts to transfer the next data stripes X5. The third drive repositions T3
to an empty space and starts to transfer the data stripe X6 to T3 after
repositioning. The robotic arm is idle.

5. The first drive starts to transfer the next data stripe X7. The second drive
starts to transfer the next data stripe X8. The first drive starts to transfer
the next data stripe X9. The robotic arm is idle.

6. After all the drives have completely transferred the data stripes, all four
devices are released. The storage system can serve the next request.

Therefore, the object X is written in parallel with relaxed synchronization
to the tapes.
Similarly, object Y is also distributed across the tapes T1, T2, and T3. When
object Z is stored, the three tapes T1 to T3 are full, and they cannot store any

Figure ��.�. Triangular Placement

X1 X2 X3 X4 X5 X6 … X9Object X

Y1 Y2 Y3 Y4 Y5 Y6

X9

X6

X3
X5
X8

X1

X2

X4
X7

T1 T2 T3

Y6

Y3
Y5

Y1

Y2

Y4

Object Y

T4 T5

Z3

Z5

Z1

Z2

Z4

Z6

Z1 Z2 Z3 Z4 Z5 Z6Object Z

Tapes

Figure.12.5..Triangular.placement

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

more objects. The object Z is written to the tapes by the following operations.
The third drive is idle throughout the period.

1. The robotic arm exchanges the tape T4 to the first drive. The second
drive is idle.

2. The first drive repositions T4 to an empty space and starts to transfer
data stripe Z1 to T4 after repositioning. The robotic arm exchanges T5
to the second drive.

3. The first drive starts to transfer the next data stripe Z2. The second drive
repositions T5 to an empty space and starts to transfer the data stripe
Z3 after repositioning.

4. The first drive starts to transfer the next data stripe Z4. The second drive
starts to transfer the next data stripes Z5. The robotic arm is idle.

5. The first drive starts to transfer the next data stripe Z6. The second drive
is idle after it has completely transferred the data stripes Z5. The robotic
arm is idle.

6. After the first drive has completely transferred the data stripe Z6, all four
devices are released. The storage system can serve the next request.

Therefore, the object Z is written in parallel with relaxed synchronization
to the tapes.
When objects are stored using the triangular placement, the drives access
objects in parallel with relaxed synchronization. More data stripes are stored
on the earlier exchanged tapes. It takes longer time to retrieve the stored data
stripes. Thus, the tapes should always be exchanged in the same order.
When the object X is being retrieved, the four devices, including the robotic
arm and the three drives, perform the following operations. Each operation
below lasts for a considerable period of time at the devices.

1. The robotic arm exchanges the tape T1 to the first drive. The second
and third drives are idle.

2. The first drive repositions T1 to the beginning of the data stripe X1
and starts to transfer X1 from T1 after repositioning. The robotic arm
exchanges T2 to the second drive. The third drive is idle.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

3. The first drive repositions to the beginning of the next data stripe X2,
if necessary, and starts to transfer X2 from T1 after repositioning. The
second drive repositions T2 to the beginning of the data stripe X3 and
starts to transfer X3 from T2 after repositioning. The robotic arm ex-
changes T3 to the third drive.

4. The first drive repositions to the beginning of the next data stripe X4,
if necessary, and starts to transfer X4 from T1 after repositioning. The
second drive repositions T2 to the beginning of the data stripe X5, if
necessary, and starts to transfer X5 from T2 after repositioning. The
third drive starts to reposition T3 to the beginning of X6 and starts to
transfer X6 from T3 after repositioning. The robotic arm is idle.

5. The first drive repositions to the beginning of the next data stripe X7,
if necessary, and starts to transfer X7 from T1 after repositioning. The
second drive repositions T2 to the beginning of the data stripe X8, if
necessary, and starts to transfer X8 from T2 after repositioning. The
third drive starts to reposition T3 to the beginning of X9, if necessary,
and starts to transfer X9 from T3 after repositioning. The robotic arm
is idle.

6. After the drives have completely transferred all data stripes of X from
the tapes, all the drives and the robotic arm are released. The storage
system can serve the next request.

The object Y and object Z are retrieved similarly. More details of how the
objects are migrated will be described in the data migration part.

Performance.of.Triangular.Placement

Similar to the parallel tape striping method, the drives access the objects in
parallel. The time to perform the I/O operations overlaps with each other.
The time to access an object is split among several drives. Apart from the
reduced data transfer time, more time is available on the early exchanged
drives. Thus, the triangular placement utilizes the usable bandwidth of the
early exchanged drive.
In the example above, the objects are accessed in parallel with relaxed syn-
chronization. When the object X is being accessed, the time when the drive

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

exchanges, repositions, and transfers data stripes is illustrated in Figure 12.6.
Let ω be the tape exchange time, α be the tape reposition time, and γ be the
data transfer rate. Let X be the size of the object X being accessed without
losing clarity. If the time to transfer a data stripe is equal to the time to ex-
change a tape, then

sX
ω =

γ

⇔ Xs = ωγ

where Xs is the size of the data stripes X1, X2, and X3. Thus, the amount of
data that is transferred before the third drive starts to transfer data is:

= (2 + 1)Xs,
= 3ωγ.

Thus, the time to access the object X from the tape library using triangular
placement method is

33
3

2
3

X

X

− ωγ
= ω+α +

γ

= ω+α +
γ

Figure.12.6..Performance.of.triangular.placementFigure ��.�. Performance of Triangular Placement

T3

T2

T1

0 2 3 3 +

No. of Active Drives

3

2

1

Time

X1 X2

X3

X4

X5

X6

X7

X8

X9

3 +
+2X/9

Exchange
tapes

Reposition Transfer

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Compared with the parallel tape striping, the time to access the object X is
reduced by

3 2
3 3
X X 

ω+α + − ω+α + γ γ 
= ω

In general, the time to access objects from the robotic tape library can be
found similarly. If none of the tapes needed are already loaded to the tape
drives, the time to access an object of size X using triangular placement is

() ()* 1 2 ... 2 1
*

*
N NXN

N N
 ω − + − + + + = ω+α + −

γ
 (12.8)

where the object X is striped across N tapes.

After simplification, it becomes

()1 *
*

* 2
NXN

N
− ω

= ω+α + −
γ

 (12.9)

1 *
2 *

N XN
N

− = − ω+α +  γ 
 (12.10)

1*
2 *

N X
N

+
= ω+α +

γ
 (12.11)

Compared with the parallel tape striping, the triangular placement method
reduces the access time by

1* *
* 2 *
X N XN

N N
 +

= ω+α + − ω+α + γ γ 

()1 *
2

N −
= ω

 (12.12)

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We could find the optimal number of striping tapes below. Let θ be the access
time of the object. From equation (12.1), we have

1
2 *

N X
N

+
θ = ω+α +

γ
 (12.13)

The first order derivative of θ with respect to the number of striping tapes
N is

22 *
d X
dN N
θ ω
= −

γ
 (12.14)

Setting the first order derivative of θ to zero, we have

2

2

2

0
2 *

2 *
2

*

2
*

X
N

X
N
XN

XN

ω
− =
γ
ω

⇔ =
γ

⇔ =
ω γ

⇔ = ±
ω γ

 (12.15)

As N is greater than 1, we reject the negative value of N to get the optimal
number of striping tapes as

2
*optimal
XN = +

ω γ
 (12.16)

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The second order derivative of θ with respect to N is

2

2 3

2
*

d X
dN N
θ
=
γ

 (12.17)

Since all the parameters X, γ, and N are all greater than 0, the second order

derivative of θ is greater than zero. Therefore, the optimal access time is the

minimum access time. The minimum access time is achieved when the object

is striped across 2
*
X

+
ω γ

 tapes.

If the value of 2
*
X

+
ω γ

 is not an integer, then the floor function or the ceiling

function may be applied to find the minimum access time. Thus, the optimal

number of striping tapes is either equal to  2
*
X

+
ω γ

 or  2
*
X

+
ω γ

 depend-

ing on the actual access time when the floor function or ceiling function is

applied.

The minimum access time and the optimal number of striping tapes of the
triangular placement method are plotted in Figure 12.7. The nonstriping ac-
cess time of the contiguous placement method and the striping access time
of the parallel tape striping are also shown in the figure for comparison. The
optimal number striping tapes of the triangular placement method is always
more than that of the parallel tape striping method. Thus, more drives can
be used together to transfer the object in parallel.
Similar to parallel tape striping, larger objects can be striped across more
tapes to reduce the object access time. However, smaller objects should
be striped across fewer tapes to avoid too much exchange overheads. The
optimal number of striping tapes is equal to one only when the objects are
very small. Thus, the small object should be stored on only one tape without
striping. If the object is large, the optimal number of striping tapes may be
more than the number of tape drives in the library. Since the tapes are ac-
cessed in parallel, the object should not be striped across more tapes than
the number of tape drives.

Striping on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In addition, the optimal access time of the triangular placement method is
always shorter than the access time of the parallel striping method and the
access time of the nonstriping method. This is because some exchange time
overlaps with some data transfer time. The triangular placement method
reduces the time to access an object from the tape library.

Application.Note:.Although. the.access. time.of. the. triangular.placement.
method.is.always.shorter.than.the.access.time.of.the.parallel.tape.striping.
method,. the. triangular. placement. method. relaxes. the. synchronization. of.
individual.operations..The.storage.system.may.need.to.create.extra.tasks.
to.perform.the.operation.on.the.drives..This.increases.the.complexity.in.the.
controlling.software.
Furthermore,.the.tapes.should.always.be.exchanged.in.the.same.order..If.
the.order.in.which.tapes.are.exchanged.is.altered,.the.tape.with.more.data.
stripes.may.be.exchanged.later..Such.a.tape.would.need.more.time.to.trans-
fer.an.object.than.the.others..Instead.of.reducing.the.access.time,.the.time.
to.access.an.object.would.be.increased..Therefore,.the.order.in.which.tapes.
are.exchanged.should.be.kept.constant..Luckily,.it.is.easy.to.implement.this.
by.assigning.an.order.number.to.every.tape..The.robotic.arm.can.exchange.
the.striping.tapes.according.to.their.order.number.

Figure ��.�. Performance of Triangular Placement

Access Time and Optimal Number of Striping Tapes

Object size

se
co

nd
s

nu
m

be
r o

f s
tr

ip
in

g
ta

pe
s

Triangular
Placement
access time

Striping
access time

Non-striping
access time

Optimal
Number of
Striping
Tapes

Figure.12.7..Performance.of.triangular.placement

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.Summary

The parallel tape striping method is a data placement method that places the
objects to tapes in robotic tape libraries. It divides objects into data stripes
and distributes data stripes of multimedia objects to several tapes. The par-
allel tape striping method accesses data stripes from the tapes in parallel.
It overlaps the time to transfer data stripes from multiple tape drives. The
parallel tape striping method reduces the time to access an object from the
robotic tape library.
Unfortunately, the parallel tape striping method induces contentions on ex-
changing tapes. It may not cause problems if each drive has its own robotic
arm or the number of robotic arms is not fewer than the number of tape
drives. Furthermore, more exchanges are incurred. The robotic arms need to
exchange several tapes for each object access. Thus, the parallel tape striping
method increases the workload on the robotic arms.
The triangular placement method utilizes the usable bandwidth during the
exchange time to reduce the data access time. A tape drive starts to reposi-
tion tapes and transfer data stripes while other drives are still waiting for
exchanges. The triangular placement method further reduces the time to ac-
cess objects from robotic tape libraries. It also increases the optimal number
of striping drives.

References

Chiueh, T. C. (1995). Performance optimization for parallel tape arrays. In
Proceedings.of.the.9th.ACM.Conference.on.Supercomputing (pp. 375-
384).

Drapeau, A. L., & Katz, R. H. (1993). Striping in large tape libraries. In
Proceedings.of.the.Conference.on.Supercomputing’93 (pp. 378-387).

Constraint Allocation on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XIII

Constraint.Allocation..
on.Hierarchical.Storage.

Systems

Introduction

Multimedia objects are stored on hierarchical storage systems (HSS). The
objects are large in size but the access latency of HSS is high. It is necessary
to provide high throughput in delivering data from the storage system. In
addition to the statistical placement and striping methods in the two previous
chapters, constraint allocation can also improve the throughput of HSS.
Multimedia streams should be displayed with continuity. Depending on the
data migration method, the whole object or only partial object is retrieved
prior to the beginning of consumption. Thus, it may need to retrieve the parts
of the object within guarantee times.
The maximum access time depends on the storage locations of the object. If
the parts of the object are freely stored on any media units, it may take the
longest exchange time to exchange a media unit. If the parts of the object

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

are freely stored on any locations of the media units, it may take the longest
reposition time to reposition the media unit. The maximum access time needs
to include both the longest exchange time and the longest reposition time. As
a result, the guarantee times should not be shorter than the maximum access
time in the worst case. The long guarantee time results in a small number of
acceptable streams to the hierarchical storage system.
The constraint allocation methods limit the freedom to place data on media
units so that the worst case would never happen. They reduce the longest
exchange time and/or the longest reposition time in accessing the objects.
Two approaches to provide constraint allocations have been proposed on
different types of media units. The interleaved contiguous placement limits
the storage locations of data stripes on optical disks and it is described in the
next section. The concurrent striping method that limits the storage locations
of data stripes on tapes is described.

Interleaved.Contiguous.Placement

The interleaved contiguous placement method reduces the maximum over-
heads in accessing the objects concurrently. It maintains the separation be-
tween consecutive data stripes so that the maximum reposition time and the
maximum access time are bounded above.
Some multimedia streams have some correlations. These multimedia streams
may be more likely to be played at similar times. The objects that are accessed
by these streams are more likely to be accessed at similar times. For example,
the audio data and video data of a movie may be created on separate objects.
The multimedia stream that accesses one object would likely be initiated at
the same time as the stream that accesses another object. These two objects
thus have a high probability of being accessed together. The interleaved
contiguous placement method stores these objects on the optical disk in a
way that they can be accessed efficiently.
The interleaved contiguous placement method merges the data stripes of
the objects that are likely to be accessed concurrently. It interleaves the data
stripes on the same optical disk by maintaining the distance in separation
between consecutive data stripes. Thus, the optical disk moves only the dis-
tance between consecutive data stripes to serve a request on the object. As

Constraint Allocation on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the separation distance between consecutive data stripes is limited, the time
to access the next data stripe of the object is bounded above.
Each stored object is characterized by a storage pattern composing of two
parameters M and G, where M is the number of data blocks of each data
stripe, and G is the number of gap blocks between two consecutive data
stripes of the stream.
Figure 13.1 shows the storage pattern of two homogeneous streams, stream X
and stream Y. Stream X is divided into data stripes, X1, X2, X3, X4, and so on.
The data stripes of stream X are placed on the storage media with some gap
blocks. The gap blocks are indicated with GX. The stream Y is divided into
data stripes Y1, Y2, Y3, Y4, and so on. The data stripes of stream Y are placed
on the storage media with gap blocks GY. When the two streams are merged,
the media blocks of stream X are placed in the gap blocks of stream Y, and
the media blocks of stream Y are placed in the gap blocks of stream X. The
storage pattern of the merged streams shows that the data stripes of stream
X and stream Y are placed on the storage media with a smaller gap GXY.

Corollary.1..Two homogeneous streams can be merged if and only if the
number of media blocks of the second stream is not more than the number
of gap blocks of the first stream.

Proof. As optical disks store data in the constant linear velocity format, they
access a fixed number of data blocks within a fixed period of time. If the
number of media blocks of the second stream is not more than the number of

Figure ��.�. Interleaved Contiguous Placement

Stream X

Stream Y

Merged stream

Y1 GY Y2 GY Y3 GY Y4 GY

X1 GX X2 GX X3 GX X4 GX

X1 Y1 GXY X2 Y2 GXY X3 Y3 GXY X4 Y4 GXY

Figure.13.1..Interleaved.contiguous.placement

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

gap blocks of the first stream, the media blocks can be placed within the gap
blocks of the first stream. The period of the two streams remains the same
before and after the merging. Thus, the merged stream still has the same
number of media blocks for the first stream and the second stream within
each period. Therefore, the two streams are merged successfully.

Conversely, if the streams can be merged and the period of the streams are
the same, the optical disk retrieves at least the media blocks for both streams
within each period. The optical disk retrieves the media blocks and the gap
blocks of the first stream within each period before merging. Thus, the num-
ber of gap blocks of the first stream is less than or equal to the number of
media blocks of the second stream within each period. Thus, the corollary
is proved. The above merging condition of two homogeneous streams can
be generalized to a number of homogeneous streams with the same period.
The generalized merging condition is stated in Corollary 2.

Corollary.2..A number of homogeneous streams can be merged if and only
if the total number of media blocks of the streams within a period of time
is not more than the number of blocks that are retrieved within the same
period of time.

Proof. As optical disks store data in the constant linear velocity format, they
retrieve a fixed number of data blocks within a period of time. If this fixed
number of data blocks is less than the total number of media blocks within
the same period, some streams would not receive enough data blocks to dis-
play. Thus, the streams cannot be merged without violating the continuous
display requirement.

Conversely, if the streams can be merged and the period of the streams are
the same, the optical disk retrieves at least the media blocks for all streams
within each period after merging. The optical disk retrieves the media blocks
for every stream within each period before merging. Thus, the total number
of media blocks of the streams within the period of time is not more than the
number of blocks that are retrieved within the same period of time. Thus,
Corollary 2 is proved.
For heterogeneous streams, the feasibility condition to merge the streams is
not so simple. We shall show the feasibility conditions to merge heteroge-

Constraint Allocation on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

neous streams later. Before that, we shall describe the continuous display
requirement below. The storage pattern of an object can satisfy the continuous
display requirement of the accessing stream if

M G+
≤ δ

ρ
 (13.1)

where ρ is the optical disk retrieval bandwidth and δ is the display time for
each data stripe of the stream.
The proof of equation (13.1) is as follows. If the storage pattern of a stream
is maintained, the optical disk can linearly access all the data blocks. As the
optical disks store data in the constant linear velocity format, the data blocks

are delivered in the fixed data rate ρ. It takes an amount of time = M G+
ρ

 to

retrieve M data blocks belonging to the stream retrieved and G blocks not
belonging to the stream. Thus, at least one data stripe is retrieved, and this
data stripe can display for a time of δ. This access pattern is repeated to ac-
cess all the data stripes, and each data stripe lasts for a time long enough for
the retrieval of the next data stripe. Thus, the continuous display requirement
of the stream is fulfilled.
The interleaved contiguous placement uses two policies to merge streams
depending on whether the storage pattern of streams remains the same or not.
The storage pattern preserving policy is described in the next section. After
that, the storage pattern altering (SPA) policy is described.

Storage.Pattern.Preserving.Policy

In the storage pattern preserving (SPP) policy, two streams are merged. The
streams maintain their storage patterns before and after the merging (Yu, Sun,
Bitton, Yang, Bruno, & Yus, 1989). We shall describe the feasibility condi-
tion to merge two streams in the paragraphs below. We then elaborate this
feasibility condition with two examples. The limitations of the SPP policy
are then analyzed.
The storage pattern preserving policy states that two media streams can be
merged if and only if their greatest common divisor satisfies the feasibility
condition,

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

M1 + M2 ≤ G.C.D. (M1 + G1, M2 + G2), (13.2)

where G.C.D.() is the greatest common divisor function.
In the first example, two streams S1 and S2 are stored on an optical disk. The
storage pattern of stream S1 is (1, 3) and the storage stream of stream S2 is
(1, 5). That is, stream S1 stores one block in every data stripe and skips three
blocks between two data stripes. The stream S2 also stores one block in every
data stripe and skips five data blocks between two data stripes. Thus,

 M1 = 1, G1 = 3, M2 = 1, and G2 = 5,
⇒ M1 + M2 = 2.

In addition, we have
 M1 + G1 = 4 and M2 + G2 = 6,
⇒ G.C.D.(M1 + G1 , M1 + G1) = 2.

Thus, we have
M1 + M2 = G.C.D.(M1 + G1 , M1 + G1).

The storage patterns of the two streams satisfy the equation (13.2). They can
be merged using the SPP policy.
When the two streams are merged, the relative positions of the two streams
are shown in Figure 13.2. The media data blocks are shown in colour, and
the gap blocks are unshaded. Since we cannot store two media data blocks
on the same block of the optical disk, we cannot merge the two streams at
this relative position when the data blocks of stream S2 is under the data
blocks of stream S1.
Since the smallest common multiple of 4 and 6 is equal to 12, the relative
positions of the two streams repeat after every 12 data blocks as a cycle.
Since the storage pattern of stream S1 is (1, 3), the storage pattern of stream
S1 repeats after every four blocks. Thus, there are four relative positions of
stream S2 with respect to stream S1.
The first row shows the positions of media data blocks and gap blocks of the
stream S1 on the data blocks of the optical disk. The second row shows the
position of media data blocks and gap blocks of stream S2. We can see that
the first and the third data blocks of stream S2 are under the data blocks of

Constraint Allocation on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

stream S1. Thus, the streams cannot be merged when the stream S2 is at this
position with respect to the stream S1.
In the third row, the stream S2 is shifted to the right by one data block. All the
data blocks of stream S2 come under the gap blocks of stream S1. The data
blocks of stream S2 can be placed on the gap blocks of stream S1. Thus, the
two streams can be merged by storing the streams at this relative position
on the optical disk.
In the fourth row, the stream S2 is further shifted to the right by one data
block. Similar to the second row, some media blocks of stream S2 are under
the media blocks of stream S1. Thus, the streams cannot be merged when the
stream S2 is at this position with respect to the stream S1.
In the fifth row, the stream S2 is shifted further to the right by one data block.
All the data blocks of stream S2 come under the gap blocks of stream S1.
The data blocks of stream S2 can be placed on the gap blocks of stream S1.
Thus, the two streams can be merged by storing the streams at this relative
position on the optical disk.
If the stream S2 is shifted to the right again, the relative positions of the two
streams are the same as the second row. Therefore, we have exhausted all
the relative positions of the merged streams.
The two streams can be merged if the stream S2 is at the relative position of
the third row or the fifth row with respect to stream S1. The storage pattern of
the merge stream S12 is also shown in Figure 13.2. We can see that the media
blocks of the stream S2 are placed at the gap blocks of stream S1. Also, the
media blocks of stream S1 are placed at the gap blocks of stream S2.
In the second example, two streams S1 and S3 are to be merged on an opti-
cal disk. The storage pattern of stream S1 is (1, 3) and the storage stream of
stream S3 is (1, 2). That is, stream S1 stores one block in every data stripe

Figure ��.�. Interleaved Contiguous Placement SPP
Example �

Stream S1
S2

S2
S2

S2

S12

problem locations

Stream S1 and possible merging positions of S2

Figure.13.2..Interleaved.contiguous.placement.SPP.example.1

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

and skips three blocks between two data stripes. The stream S2 also stores
one block in every data stripe and skips only two blocks between two data
stripes. Thus,

 M1 = 1, G1 = 3, M2 = 1, and G2 = 2,
⇒ M1 + M2 = 2.

In addition, we have

 M1 + G1 = 4 and M2 + G2 = 3,
⇒ G.C.D.(M1 + G1 , M1 + G1) = 1.

Thus, we have

M1 + M2 > G.C.D.(M1 + G1 , M1 + G1).

The storage patterns of the streams S1 and S3 do not satisfy the equation
(13.2). They cannot be merged using SPP policy.
When the two streams are merged, the relative positions of the two streams
are shown in Figure 13.3. Since the smallest common multiple of 4 and 3 is
equal to 12, the relative positions of the two streams repeat after every 12
data blocks as a cycle. Since the storage pattern of stream S1 is (1, 3), the
storage pattern of stream S1 repeats after every four blocks. Thus, there are
four relative positions of stream S3 with respect to stream S1.
The first row shows the positions of media data blocks and gap blocks of
the stream S1 on the data blocks of the optical disk. The second row shows
the position of media data blocks and gap blocks of stream S3. We can see
that the first data block of stream S3 is under the data blocks of stream S1.
Thus, the streams cannot be merged when the stream S3 is at this position
with respect to the stream S1.
In the third row, the stream S3 is shifted to the right by one data block. The
second media block of the stream S3 comes under the media block of stream
S1. Thus, the streams cannot be merged when the stream S3 is at this position
with respect to the stream S1.
In the fourth row, the stream S3 is shifted further to the right by one data
block. The third media block of the stream S3 comes under the media block

Constraint Allocation on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of stream S1. Thus, the streams also cannot be merged when the stream S3 is
at this position with respect to the stream S1.
In the fifth row, the stream S3 is shifted further to the right by one data block.
The fourth media block of the stream S3 comes under the media block of
stream S1. Thus, the streams also cannot be merged when the stream S3 is at
this position with respect to the stream S1.
If the stream S3 is shifted to the right again, the relative positions of the two
streams are the same as the second row. We have exhausted all the relative
positions of the merged streams, and we have found that the two streams cannot
be merged at any of the relative positions. Therefore, the two streams cannot
be merged. If the streams are merged, there are problem locations no matter
what is the relative position of the two streams as shown in Figure 13.3.
From the above examples, we can see that equation (13.2) provides a simple
method to test if two streams can be merged on the optical disk. This simple
equation can be evaluated quickly on every pair of objects to find out the
pairs of streams that can be merged.
The storage pattern preserving policy does not change the storage patterns
of individual streams that are involved in the merging. Thus, the continuous
display requirements of the two streams can still be guaranteed.
Unfortunately, the merged stream cannot be described in the simple storage
pattern as the streams before merging. Therefore, the merged stream cannot
be further merged with other streams again. In addition, Equation (13.2)
checks the feasibility to merge only two streams. The feasibility to merge
a number of streams is not provided. In the next section on storage pattern
altering policy, we shall see how the feasibility condition is generalized to
merge more streams.

Figure ��.�. Interleaved Contiguous Placement SPP
Example �

S1
S3

S3
S3

problem locations

S3

Problem locations exist in all possible merging positions of S3

Figure.13.3..Interleaved.contiguous.placement.SPP.example.2

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Storage.Pattern.Altering.Policy

The storage pattern altering policy merges the streams by relaxing the storage
pattern preserving constraint. Instead of keeping the same storage patterns
before and after merging, it maintains the average storage pattern over a range
time data blocks. The SPA policy thus generalizes the feasibility condition
to merge a number of streams together on the optical disks. We shall show
below the how to maintain the continuous display requirement of a stream
even though its storage pattern is altered. After that, the feasibility condition
to merge a number of streams is described.
The storage pattern altering policy changes the storage pattern of the streams
after merging (Rangan & Vin, 1993). After the storage pattern of a stream is
changed, the continuous display requirement of the stream in equation (13.1)
must still be maintained. Since the storage pattern is changed, the number
of media blocks and gap blocks would change. The media blocks can only
be moved closer to the beginning of the object so that the data stripes would
only be accessed at an earlier time. It makes sure that the data stripes would
not be accessed at a later time that might violate the continuous display
guarantee.
Although the SPA policy changes the storage pattern of the participating
streams, the average number of gap blocks per media block remains the
same. The storage system would retrieve the media blocks at the same aver-
age data rate. Thus, the buffers are filled at the same average rate as they are
consumed so that buffer starvation would not occur. Buffer overflows can
also be avoided simply by using more read-ahead buffers. By using extra
buffers to maintain the continuous display requirements, the merging of
streams can be generalized.
A number of multimedia data streams whose storage patterns are character-
ized by (M1, G1), (M2, G2), …, (Mk, Gk) can be merged if and only if

1 ...
22

2

11

1
≤

+
++

+
+

+ kk

k

GM
M

GM
M

GM
M

 (13.3)

Consider the second example in the SPP policy again. Two streams S1 and
S3 are to be merged on an optical disk. The storage pattern of stream S1 is (1,
3) and the storage stream of stream S3 is (1, 2). That is, stream S1 stores one
block in every data stripe and skips three blocks between two data stripes.

Constraint Allocation on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The stream S3 also stores one block in every data stripe and skips only two
blocks between two data stripes. Thus,

M1 = 1, G1 = 3, M2 = 1, and G2 = 2.

We substitute these values into equation (13.3) to get

1 2

1 1 2 2
 ...

1 1
1 3 1 2
7 1

12

k

k k

M M M
M G M G M G

+ + +
+ + +

= +
+ +

= <

We can see that the two streams satisfy the feasibility condition. Thus, the
two streams, stream S1 and stream S3, can be merged using the storage pattern
altering policy of the interleaved contiguous placement method.
In Figure 13.4, we show that the two streams, stream S1 and stream S3, can be
merged by altering the storage pattern of the stream S3. The storage pattern
of stream S1 does not need to be altered. The second media block in every
four media blocks of stream S3 is moved towards the beginning of the object.
Notice that the media blocks can only be moved towards the beginning of the
object so that the moved blocks are retrieved earlier. If the media blocks of a
stream are moved towards the end of the object, then the moved blocks are
retrieved later than that of the original storage pattern leading to violations
of the continuous display requirement.
Since the moved blocks are retrieved earlier than that of the original storage
pattern, some extra buffers are needed to temporarily store the moved blocks
when they are accessed. Thus, the buffer consumption seems to increase.
Since the buffers are made available while the programs are waiting for the
retrieval of the next data stripe, the buffer consumption is actually unchanged.
Furthermore, some gaps exist between consecutive data stripes. The opti-
cal disk drive spends more time to access each individual data stripe. The
interleaved contiguous placement retrieves data stripes at a short time before
they are consumed. After the data in a buffer is consumed, the buffer may
be released. Thus, the period of time between the filling and release of each

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

buffer is short. This leads to reduction of average buffer consumption.
Fortunately, more than one object can be accessed from the optical disk.
When multiple interleaving objects are retrieved from the optical disk at the
same time, the optical disk can use sequential reads to access the interleaving
data stripes. The overheads which consist of seek and rotational latency in
accessing the data stripes are shared among the concurrent streams. Thus, the
overheads are low and the merged streams are served with high throughput.
If the probability of several objects being concurrently served is high, then
interleaving these objects could also raise the throughput.
In the extreme case when all the merged streams are concurrent, the optical
disk may read all the blocks sequentially. The data stripes of the interleav-
ing objects are accessed without need for seek actions. Thus, the storage
system delivers the objects at the highest throughput. Hence, the interleaved
contiguous placement method is very suitable for composite objects whose
component objects must always be synchronized.

Concurrent.Striping

The parallel tape striping method places data stripes of objects across tapes
so that an object is retrieved in parallel from multiple tapes. The increase in
exchange overheads however lowers the system throughput. The triangular
placement method utilizes the usable bandwidth to further reduce the access
time and increase the system throughput. Both methods reduce the time to
access an object from the tapes. However, the exchange overhead is still
heavy due to the synchronization of the parallel I/O operation.

Figure.13.4..Interleaved.contiguous.placement.SPA.example

Figure ��.�. Interleaved Contiguous Placement SPA
Example

S1

S3

S1+S3 moved block

Problem locations are removed by moving some blocks of S3

Constraint Allocation on Hierarchical Storage Systems ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The principle aim of the concurrent striping method is to increase the throughput
of the hierarchical storage system (Tse, 1999; Tse & Leung, 1998, 2001, 2002).
In particular, the concurrent striping method uses the following ideas:

1. It desynchronizes all tape exchanges.
2. It shares exchange overheads among concurrent streams.
3. It supports efficient accesses for multiple concurrent streams.

The concurrent striping method desynchronizes the parallel I/O operation
to avoid exchange contentions. That is, each individual I/O operation such
as exchange, reposition, and transfer, on different drives does not need to
be completed at the same time. Each device performs the I/O operations
independently.
When multiple streams access objects concurrently, the overheads of switching
tapes among the streams are heavy. The storage devices need to exchange the
tapes unless the access data stripes reside on the same tape. The concurrent
striping method places the data stripes of the concurrent streams on the same
tape to avoid exchange overheads between services of concurrent streams.
Thus, the exchange overheads are shared among concurrent streams.
The concurrent striping method assumes that the stored objects are accessed
for normal display only. That is, the storage system does not need to sup-
port any interactive user functions. The system that uses concurrent striping
method is a combination of five different components.

1. Divide object into logical segment
2. Distribute segments across all tapes
3. Store in fixed order within tape
4. Parallel stream controller
5. Request scheduling

Each object is divided into a number of logical segments such that each logi-
cal segment is a logical starting point for consumption. The next segment is
made available after the previous segment is accessed. A segment can start to
display without the previous segment or it can display following the previous
segment. For example, objects X, Y, and Z are divided into different number

�00 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of logical segments as illustrated in Figure 13.5. Large objects are divided
into many segments and small objects are divided into few segments.
In addition to dividing objects into logical segments, each logical segment
may optionally be subdivided into slices or fixed length data stripes depend-
ing on the data migration method in use. If segments are divided into slices
for pipelining as shown in Figure 13.6, the time to display the previous slice
is longer than or equal to the time to retrieve the next slice.
When the size of a logical segment is Xi, the size of the first slice is approxi-
mately equal to

≈ Xi * (1 - ρ), (13.4)

where ρ is the production consumption ratio of the tertiary storage devices.
The production consumption ratio is defined as the ratio of tertiary bandwidth
to the display bandwidth of the object.
Thus, the production consumption ratio is found as

ρ γ
=
δ

 (13.5)

where γ is the tertiary bandwidth of the storage device, and δ is the display
bandwidth of the object.
The size of the jth slice can be found as

≈ Xi * (1 - ρ)*ρj (13.6)

More details of the sizes of the slices will be described in Chapter XVIII on
the normal pipelining method.
The concurrent striping method distributes the segments across all tapes in the
robotic tape library. The tapes are sorted into a fixed sequence. The objects are
stored on the tapes according to this sequence with one segment on each tape.
The segments of an object are stored in round robin cycles. The objects are
stored in a fixed order on each tape. When an object is stored before another
object on one tape, it is always stored before the other object on all other
tapes. When object X is stored before object Y in tape T1, object X is stored
before object Y in all other tapes, T2 to T6, as shown in Figure 13.7.

Constraint Allocation on Hierarchical Storage Systems �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The concurrent striping method controls the delivery of the objects using
a parallel stream controller. The parallel stream controller accepts requests
for new streams. It creates a new “stream object” for each data object being
accessed. The stream object is a software object in the storage system and it
is different from the data objects. The stream object initially sends two re-
quests to the service queue of each tertiary drive. The tertiary drive accesses
segments for the requests on the tapes to the memory for display.
The tertiary drives serve all requests in currently loaded tapes before they
serve the requests on other tapes that require switching. After all requests on
the currently loaded tapes are served, the drive sends an exchange request to
the robotic arm to exchange the next tape. After each request of a stream is
served, the stream sends a new request that accesses the next segment from

Figure ��.�. Concurrent Striping divides objects into logical
segments

last
segment

Object X

Object Y

Object Z

...X2 X3 Xn

...Y2 Y3 Yp

...Z2 Z3 Zq

first logical
segment

third
segment

second
segment

X1

Z1

Y1

Figure.13.5..Concurrent.striping.divides.objects.into.logical.segments

Figure.13.6..Concurrent.striping.subdivides.an.object.into.leaders.and.data.
strips

Figure ��.�. Concurrent Striping subdivides an object into
leaders & data strips

last
slice

first logical
segment, X1

second logical
segment, X2

last logical
segment, Xm

.

low temporal
resolution of

segment

start up slice

...X1,2 X1,3 X1,n

...X2,2 X2,3 X2,n

...Xm,2 Xm,3 Xm,n

first
slice

third
slice

second
slice

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the tapes. After all the segments of an object are retrieved, the stream object
sends a finish notification to the parallel stream controller before it destroys
itself. The parallel stream controller can thus accept another new stream
from its waiting queue.
The tertiary drives serve the requests in cycles and rounds. In each cycle, the
drive exchanges a tape and serves one request per stream on the exchanged
tape. Requests on the same tape are served in the order of the storage loca-
tions of the segments on the tape. Since the segments are stored in a fixed
order on the tape, the streams are served in the same fixed order. In each
round, the drive exchanges each tape once and serves the requests on the
exchanged tapes.
Since each stream sends at least two requests to each tertiary drive, the terti-
ary drives have at least one outstanding request from each stream object. The
drive exchanges one tape and serves one request of every stream in each cycle.
As the drives do not perform the exchange operation in parallel, the requests
for exchange are initiated at different times. The tape exchange operation is
thus desynchronized. The drives do not waste bandwidth in the contention
for the robotic arms. The throughput of the tertiary storage system remains
high even when the objects are accessed in parallel.
As the drive serves one request for every stream after each exchange opera-
tion, the exchange overhead is shared among all concurrent streams. When
many concurrent streams are served, the exchange overhead is shared among
many concurrent streams. Thus, the exchange overhead per stream is light.
For example, two tertiary drives retrieve segments of three objects on six
tapes as shown in Figure 13.8. Each drive exchanges a tape and retrieves one

Figure 13.7. Concurrent striping stores objects in fixed order on tapes

Figure ��.�. Concurrent Striping stores objects in fixed
order on tapes

T1

T3

T5

T2

T4

T6

Y1, Y7 , Y13

Y2, Y8 , Y14

Y3, Y9

Y5, Y11

Y6 , Y12

Y4, Y10

Z1, Z7

Z2 , Z8

Z3 , Z9

Z4 , Z10

Z5 , Z11

Z6 , Z12

X1, X7 , X13 , X19

X2, X8 , X14 , X20

X3, X9 , X15 , X21

X4, X10 , X16 , X22

X5, X11 , X17 , X23

X6, X12 , X18 , X24

Drive �

Drive �

Constraint Allocation on Hierarchical Storage Systems �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

segment for each stream in each cycle. Drive 1 exchanges M1 and retrieves
segments X13, Y9, and Z4 on M1. Then, it exchanges M3 and retrieves X15,
Y11, and Z6 on M3. Afterwards, it exchanges M5 and retrieves X17, Y13, and
Z8. It then exchanges M1 again, but stream Y has finished. So, it retrieves X19
and Z10 from M1 and so on. Drive 2 exchanges M2 and retrieves segments
X14, Y10, and Z5 on M2. Then, it exchanges M4 and retrieves X16, Y12, and Z7
on M4. After that, M6 is exchanged and X18, Y14, and Z9 are retrieved. Drive
2 exchanges M2 again, but stream Y has finished and stream Z is aborted.
Thus, it retrieves X20 from M2 only. Similarly, it exchanges M4 and retrieves
X22 and so on.

Performance.Analysis

In order to display the streams continuously, the storage system must retrieve
each segment before it is due for display. In the concurrent striping method,
the maximum number of requests that can appear between two consecutive
requests of the same stream is less than s, where s is the number of concur-
rent streams being accepted to the system.
If D drives are serving s streams that each stream accesses segments of size
X, the time to display the previous segment should be longer than or equal to
the time to retrieve the next segment. Thus, we have the continuous display
requirement as

Figure.13.8..Requests.are.scheduled.in.cycles.and.rounds

Figure ��.�. Requests are scheduled in cycles and
rounds

Drive 1 X13, Y9, Z4 X17, Y13, Z8X15, Y11, Z6 X19,Z10 X21 X23

robot arm exchanges tape Ti

Drive 2 X14, Y10 , Z5 X18, Y14, Z9X16, Y12, Z7 X20 X22 X24

Cycle

Round
stream Z ends

stream Y ends

time

T1 T3 T5 T1 T3 T5

T2 T4 T6 T2 T4 T6

Ti

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

()
j

DX Xs≥ ω+ α +
δ γ

 (13.7)

where ω, α, and γ are the media exchange time, reposition time, and data
transfer rate of the storage devices, and δj is the display bandwidth of the jth
stream, respectively.
Since one segment is retrieved for each stream after each media exchange, s
segments are retrieved from each drive and each segment is of size X. Thus,
we have for the system throughput (Tse, 1999)

()

DsX
Xs

=
ω+ α +

γ
 (13.8)

If data are migrated using the staging method, stage buffers on disks are needed
to store data that are retrieved from tertiary storage on the disks. When the
data are retrieved faster than they are consumed, the data stay on the stag-
ing buffer for a longer time. The average amount of buffer consumption is
high. If the tertiary storage system delivers data at a rate just faster than the
data consumption rate, the staging buffers are occupied for a short time. The
average amount of staging buffer consumption becomes low.
When the time that the tertiary drives spend in serving each group of con-
current requests be E[B], the disk buffer size for the jth stream using the
concurrency striping method is found as

E[]jr
rX B

D
δ

= − (13.9)

where r is the number of segments per object.
Since the concurrent striping method serves the streams concurrently, it takes
longer time to deliver one segment for each individual stream. Thus, it uses
smaller staging buffers on disks than the parallel tape striping method and
other nonstriping methods.

Constraint Allocation on Hierarchical Storage Systems �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.Summary

Large multimedia objects are stored on hierarchical storage systems. The high
access latency tertiary storage devices need to deliver the large multimedia
objects at high throughput. Multimedia data of all objects must be retrieved
from the tertiary storage devices to buffers on disks within the guarantee time
in order to display the stream with continuity. Multimedia streams would have
long waiting time if the objects are retrieved one by one. Heavy exchange
overheads may be involved when streams are served concurrently.
The constraint allocation methods limit the storage locations of the objects
on the storage media to reduce the longest exchange time and reposition
time. They increase the system throughput when multiple streams are served
concurrently.
The interleaved contiguous placement method maintains the separation be-
tween consecutive data stripes on an optical disk to provide an upper bound on
the maximum access time of each data stripe. It chooses the highly correlated
objects to be merged. The feasibility condition of merging homogeneous
streams is easily determined. The storage pattern preserving policy provides
the feasibility condition to merge two heterogeneous streams without chang-
ing their storage patterns. The storage pattern altering policy provides the
feasibility condition to merge a number of heterogeneous streams by slightly
changing the storage pattern of each stream.
The concurrent striping method desynchronizes the parallel I/O operation
to avoid exchange contentions. It places the data stripes of the concurrent
streams on the same tape to share the exchange overheads among concurrent
streams. It divides multimedia objects into logical segments and distributes
them across all tapes. The tertiary storage system stores segments in fixed order
to maintain the continuous display guarantee of every stream. The concurrent
striping method serves streams concurrently to reduce the start up latency. It
improves the system throughput and reduces the buffer consumption.

References

Rangan, P.V., & Vin, H.M. (1993). Efficient storage techniques for digital
continuous multimedia. IEEE.Transactions.on.Knowledge.and.Data.
Engineering,.5(4), 564-573.

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Tse, P. K. C. (1999). Efficient storage and retrieval methods for multimedia
information. Doctoral dissertation, Victoria University, Melbourne,
Australia.

Tse, P. K. C., & Leung, C. H. C. (1998). A low latency hierarchical storage
organization for multimedia data retrieval. In Proceedings.of.the IAPR.
International.Workshop.on.Multimedia.Information.Analysis.and.Re-
trieval.(LNCS 1464, pp. 181-194)..Springer-Verlag.

Tse, P. K. C., & Leung, C. H. C. (2001). Retrieving multimedia objects from
hierarchical storage systems. In Proceedings.of.the.18th.IEEE.Symposium.
on.Mass.Storage.Systems.and.9th.NASA.Goddard.Conference.on.Mass.
Storage.Systems.and.Technologies, San Diego, CA (pp. 297-301).

Tse, P. K. C., & Leung, C. H. C. (2002). An efficient storage organization for
multimedia databases. In Proceedings.of.the.5th.International.Confer-
ence.on.Visual.Information.Systems, HsinChu, Taiwan (pp. 152-162).

Yu, C., Sun, W., Bitton, D., Yang, Q., Bruno, R., & Yus, J. (1989). Efficient
placement of audio data on optical disks for real-time applications.
Communications.of.the.ACM,..7, 862-871.

The main objective of the tertiary storage level is to provide huge storage
capacity at low cost. The tertiary storage devices in use include magnetic
tapes, optical disks, and optical tapes. The media units are removable from
the drive so that the storage capacity can be expanded by using more media
units. The media units take the tape form so that the physical dimension of
the media unit is small. Optical disks and tapes record data the laser beam
to provide the highest recording density.
Large hierarchical storage systems may use robotic tape libraries to store
many large objects. Robotic tape libraries use the robotic arms to exchange
tapes automatically and quickly. When data are accessed from the tape
drives, the drives spend much time in performing the mechanical steps. The
drives have a minimum overhead to access data. The overheads are affected
by the data placement method in use. It also takes a longer time to access
large objects.

Summary.to.Section.IIb.

Data Placement on
Hierarchical Storage Systems

Similar to storage organizations on disks, there are many data placement
methods being designed to improve the performance of HSS. These techniques
use different strategies to optimize the HSS performance. We group these
data placement methods according to the following four strategies:

1. Contiguous placement strategy
2. Statistical placement strategy
3. Striping strategy
4. Constraint allocation strategy

The contiguous placement method stores the whole object in the same media
unit. It is simple and efficient when the objects are written and retrieved in
their entirety. Unfortunately, it suffers from large staging buffer consumption
and long response time.
The log structured placement is an efficient placement method for the back up
and archival applications. It optimizes the writing performance by providing
the append-only operations. However, the performance is not optimized due
to the presence of reading requests that are present in multimedia storage
systems.
We have explained the statistical placement method using the frequency
based placement of objects on media units. The frequency based placement
method places the objects to the media units according to the access fre-
quency of the objects and the distance of the cell containing the media unit
from the drive. The performance of the frequency based placement method
is optimized when the objects are accessed independently and the objects
are of the same size.
The parallel tape striping method is a data placement method that places the
objects to tapes in robotic tape libraries. It divides objects into data stripes and
distributes data stripes of multimedia objects to several tapes. The parallel tape
striping method accesses data stripes from the tapes in parallel. It overlaps
the time to transfer data stripes from multiple tape drives. The parallel tape
striping method reduces the time to access an object from the robotic tape
library. Unfortunately, the parallel tape striping method induces contentions
on exchanging tapes. It may not cause problems if each drive has its own
robotic arm or the number of robotic arms is not fewer than the number of
tape drives. Furthermore, more exchanges are incurred. The robotic arms

need to exchange several tapes for each object access. Thus, the parallel tape
striping method increases the workload on the robotic arms.
The triangular placement method utilizes the usable bandwidth during the
exchange time to reduce the data access time. A tape drive starts to reposi-
tion tapes and transfer data stripes while other drives are still waiting for
exchanges. The triangular placement method further reduces the time to ac-
cess objects from robotic tape libraries. It also increases the optimal number
of striping drives.
Large multimedia objects are stored on the HSS. The high access latency
tertiary storage devices need to deliver the large multimedia objects at high
throughput. Multimedia data of all objects must be retrieved from the tertiary
storage devices to buffers on disks within the guarantee time in order to dis-
play the stream with continuity. Multimedia streams would have long waiting
time if the objects are retrieved one by one. Heavy exchange overheads may
be involved when streams are served concurrently.
The constraint allocation methods limit the storage locations of the objects
on the storage media to reduce the longest exchange time and reposition
time. They increase the system throughput when multiple streams are served
concurrently.
The interleaved contiguous placement method maintains the separation be-
tween consecutive data stripes on an optical disk to provide an upper bound on
the maximum access time of each data stripe. It chooses the highly correlated
objects to be merged. The feasibility condition of merging homogeneous
streams is easily determined. The storage pattern preserving policy provides
the feasibility condition to merge two heterogeneous streams without chang-
ing their storage patterns. The storage pattern altering policy provides the
feasibility condition to merge a number of heterogeneous streams by slightly
changing the storage pattern of each stream.
The concurrent striping method desynchronizes the parallel I/O operation
to avoid exchange contentions. It places the data stripes of the concurrent
streams on the same tape to share the exchange overheads among concurrent
streams. It divides multimedia objects into logical segments and distributes
them across all tapes. The tertiary storage system stores segments in fixed order
to maintain the continuous display guarantee of every stream. The concurrent
striping method serves streams concurrently to reduce the start up latency. It
improves the system throughput and reduces the buffer consumption.

Section.III

Disk Scheduling Methods

Introduction

In Part IIa and Part IIb, we have described how to improve the performance
of storage systems using data placement methods. In this part, we shall
describe how to improve the response time of requests using efficient disk
scheduling methods.
Traditional computer systems only handle disk requests individually. Mul-
timedia systems send multiple requests one after another to the disk system.
These requests appear as a stream of requests to the storage system. These
requests should be served with a proper scheduling method so that the streams
can continue without any problems. Thus, new scheduling methods have been
designed to serve streams of requests for multimedia data.

We shall describe the methods that arrange the order of disk requests in this
section. First, we describe the scheduling methods for disk requests in Chap-
ter XIV. After that, the feasibility conditions to accept streams by a storage
system are presented in Chapter XV. Last, the scheduling methods that serve
requests of multimedia streams are described in Chapter XVI.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XIV

Scheduling.Methods..
for.Disk.Requests

Introduction

Disk scheduling changes the sequence order to serve the requests that are
waiting in the queue.
While data placement reduces the access time of a disk request, scheduling
reduces the waiting time of a request. Thus, the response time is found as:

Response time = Waiting time + Access time

The longer the waiting queue, the more useful is the scheduling method.
When there is no waiting queue, any scheduling methods perform the same.
Expected waiting time and queue length can be found using queueing theory.
The queueing theory is out of the scope of this book.

Scheduling Methods for Disk Requests ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In general, a disk scheduling policy changes the service order of waiting re-
quests. This can be illustrated using a modeling diagram as shown in Figure
14.1. A disk scheduling policy accepts the waiting requests and serves them
in the new service sequence. Notice that the service sequence may or may
not be the same as the incoming order of the waiting requests.
In this chapter, we shall describe two common disk scheduling methods.
First, we shall describe the simple first-in-first-out method. After that, we
shall describe the efficient SCAN algorithm in the following sections.

First-In-First-Out.Method

The first-in-first-out (FIFO) method is also known as the first-come-first-serve
(FCFS) method. The scheduling method serves requests in the queue according
to the normal queue order. The requests are served in the incoming order of the
requests. The request that has been waiting for the longest time is served first.
We shall model the FIFO scheduling policy as Figure 14.2. The service se-
quence is the same as the incoming order the requests. The FIFO scheduling
method is very simple. New requests are entered into the end of the queue.
The first one of the requests in the waiting queue is chosen to be served.
Since the request that arrives earliest at the waiting queue is served first, the
requests are being treated fairly. However, the accessed data may be randomly
located. The disk head is jumping up and down the tracks, leading to long
seek time. Thus, this scheduling method is not very efficient.
This scheduling method is also not suitable for multimedia systems. Since
multimedia requests have deadlines, some requests may wait so long that
their deadlines are passed before being served. Instead of being served after
their deadlines, these requests should either be served earlier or removed
from the waiting queue.

Figure.14.1..Disk.scheduling.policy

Figure ��.�. Disk Scheduling Policy

C3 B2A2

waiting requests

B3 C3 B2 A2

new service sequence

B3

Disk
Scheduling

Policy

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The.SCAN.Algorithm.

The FIFO method is too simple. More efficient scheduling methods are
designed to serve disk requests. The SCAN algorithm is one of the most ef-
ficient scheduling methods (Gemmell & Christodoulakis, 1992).
In the SCAN algorithm, the disk heads traverse the surface from the innermost
track to the outermost track and return. The requests for data from tracks that
are nearest to the disk heads and in the current scanning direction will be
served with priority. When there are no more requests in the current scanning
direction, the disk head changes direction and serves requests on its way.
The SCAN algorithm is also called the elevator disk scheduling algorithm.
It is analogous to a lift going from floor to floor picking up passengers on its
way. A lift picks up some passengers on the ground floor. Some passengers
push the button to initiate requests. Some passengers may wish to go to the
top floor and some other passengers initiate requests to go to the middle
floors. The lift stops at the middle floors to let passengers get off before it
continues its way to the top floor. While the lift is moving from the top floor
to the ground, it may receive requests for service from middle floors. The
lift would stop in the middle floors to pick up passengers and move all pas-
sengers to the ground floor.
Let h be the current position of the disk heads in track number and let d be the
current scanning direction. When the disk heads are moving in the outward
direction, d is equal to +1. When the disk heads are moving in the inward
direction, d is equal to -1.
Let ti be the track number containing data that are accessed by the ith request
in the queue. While the SCAN algorithm is moving in the outward direction,
it compares all the waiting requests to find the request that has the smallest
(ti - h), for all requests with (ti ≥ h). If it cannot find any requests with (ti ≥
h), then it changes direction by setting d to -1. While the SCAN algorithm is
moving in the inward direction, it compares all the requests finds the request

Figure.14.2..FIFO.scheduling.policy

Figure ��.�. FIFO Scheduling Policy

C3 B2A2

waiting requests

B3 C3 B2A2

Service sequence

B3FIFO

Scheduling Methods for Disk Requests ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

that has the smallest (h - ti), for all requests with (ti ≤ h). If it cannot find any
requests with (ti ≤ h), then it changes direction by setting d to +1.
A tie condition may occur if more than one request access data from the same
track. These requests should be served in the FIFO order. The disk heads first
serve the request with the longest waiting time. Afterwards, the disk heads
will be moved to the same track and serve other requests on this track as
their distance from the disk heads position is equal to 0.
For example, the disk heads are staying at the outermost track near the rim of
the disk. The tracks are numbered from the centre to the rim of the disk. Four
requests are now waiting for their services (Figure 14.3). The requests arrive
at the queue in the order A, B, C, and D. Let ta, tb, tc, td be the track numbers
of the tracks that are accessed by the requests A, B, C, and D, respectively.
These requests access data on tracks with track numbers such that h > ta >
tc = td > tb and d = -1.

According to the SCAN scheduling policy, which request is served first?

Since h > ta > tc = td > tb and d = -1, The storage systems find that the request
A is accessing data from the track.ta that is the closest to its current position,
h. The disk heads are then moved to ta to serve request A as shown in Figure
14.4.

After the request A is served, which request is served next?

After the storage system has served request A, the disk heads are staying at
the track containing data for request A. Now h = ta. Since ta = h > tc = td > tb
and d = -1, both request C and request D are accessing data from the tracks
tc = td that are the closest to its current position ta. Since request C arrives in
the queue earlier than request D, request C is served next. The disk heads are
then moved to tc to serve request C as shown in Figure 14.5.
While request C is being served, a new request E has arrived at the waiting
queue. Request E accesses data from track te such that ta > te > tc. After the
request C is served, which request is served next?
After the storage system has served request C, the disk heads are staying at the
track containing data for request C. Now h = tc. Request E is excluded as te >
h. Since tc = h = td > tb and d = -1, request D is accessing data from the tracks

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure.14.3..SCAN.algorithm.1

Figure.14.4..SCAN.algorithm.2

Figure.14.5..SCAN.algorithm.3

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Scheduling Methods for Disk Requests ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

td = h that are the closest to its current position. The disk heads then stay at
its current track position to serve request D as shown in Figure 14.6.

After the request D is served, which request is served next?

After the storage system has served request D, the disk heads are staying at
the track containing data for request D. Now h = td. Request E is excluded as
te > h. Since request B is the only request whose track number is less than or
equal to h, the disk heads is then moved to track number tb to serve request
B as shown in Figure 14.7.

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure.14.6..SCAN.algorithm.4

Figure.14.7..SCAN.algorithm.5

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

After the storage system has served request B, h = tb. All the requests do not
satisfy track number less than or equal to h. The storage system then changes to
the outward direction and set d to +1. As request E is the only request, the disk
heads are thus moved to track te to serve request E as shown in Figure 14.8.
Therefore, the requests are served in the order of A, C, D, B, and E using the
SCAN scheduling policy. The request B is served after the requests C and D
because request B accesses data from the tracks far away from the disk heads.
Request E is served after request B since it arrives at the waiting queue after
the disk heads pass the track from which it accesses data.
In principle, the SCAN scheduling policy is a scheduling policy that aligns
the waiting requests in the order of their accessing track locations. The order

Figure.14.8..SCAN.algorithm.6

Figure.14.9..SCAN.scheduling.policy

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

outward
direction Data for request D

Figure ��.�. SCAN Scheduling Policy

C3 B2A2

waiting requests

B3 C3B2A2

new service sequence

B3SCAN

Scheduling Methods for Disk Requests ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of the requests in the waiting queue is thus changed into the sequence of
their physical track numbers. After the waiting requests are reordered, these
waiting requests are thus served in their physical track number order.
The SCAN scheduling policy increases the efficiency in serving requests. The
disk heads are moved to serve waiting requests at short seek distances before
they serve other requests at long seek distance. The heavy seek time overheads
in serving long seeks are thus shared among the requests that access data in-
between the disk head and the destination track of the long seeks. The average
seek distance and average seek time are reduced significantly. Therefore, the
SCAN scheduling policy is a very efficient disk scheduling policy.
Although the SCAN scheduling policy does not increase or decrease the
priority in serving requests, it is unfavourable to some requests. As the disk
heads move from one end of the tracks to another end, the requests that ac-
cess data from the far end are served with later than the requests that access
data from the middle of the tracks. The requests that access data from the
middle of the tracks have a shorter waiting time to be served. In addition, the
disk heads do not consider requests that access data from in the reverse of
its moving direction. The requests that access data from the two ends have
a longer time to be excluded. Thus, the SCAN scheduling policy is unfair to
the requests that access data near the centre or the rim of the disk platters.
In order to serve all requests fairly, the unidirectional SCAN was designed.
The unidirectional SCAN policy serves requests only when the disk heads
are moving in one of the two directions. After the disk heads reach the last
track, they are swung back to the farthest track being accessed. Then, it starts
to serve this request and other requests in the same direction.
Consider another example. The disk heads serve requests when they move in
the inward direction. They are staying at the outermost track near the rim of
the disk. Three requests which have arrived at the waiting queue in the order
A, B, and C are now waiting for their services as shown in Figure 14.10.
These requests access data on tracks with radii in the decreasing order as A,
C, and B. Let ta, tb, and tc be the track numbers of the tracks being accessed
by the requests A, B, and C, respectively. That is, h > ta > tc > tb and d = -1.
According to the unidirectional SCAN scheduling policy, which request is
served first?
Since h > ta > tc > tb and d = -1, the storage system finds that the request A is
accessing data from the track.ta that is the closest to its current position, h.
The disk heads are then moved to ta to serve request A as shown in Figure
14.11.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure.14.10..Unidirectional.SCAN.algorithm.1
Figure ��.�0. Unidirectional SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure.14.11..Unidirectional.SCAN.algorithm.2

Figure.14.12..Unidirectional.SCAN.algorithm.3

Figure ��.��. Unidirectional SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure ��.��. Unidirectional SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Scheduling Methods for Disk Requests ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

After the request A is served, which request is served next?

After the storage system has served request A, the disk heads are staying
at the track containing data for request A. Since ta = h > tc > tb, request C is
accessing data from the track tc that is the closest to its current position ta.
The disk heads are then moved to tc to serve request C as shown in Figure
14.12.
After the storage system has served request C, the disk heads are staying
at the track tc. Since request B is the only request in the waiting queue. The
disk heads are then moved to track number tb to serve request B as shown
in Figure 14.13.
While request B is being served, two new requests D and E have arrived at
the waiting queue. They access data from track td and te such that te > td. After
the request B is served, which request is served next?
After the storage system has served request B, the disk heads are staying at
the track containing data for request B. Now h = tb. All the requests do not
satisfy track number less than or equal to h. The storage system then swings
the disk head to the rim of the disk. Since h > te > td, request E is accessing
data from the track te that is the closest to its current position. The disk heads
are then moved to te to serve request E as shown in Figure 14.14.
After the storage system has served request E, h = te. The storage system then
moved to track td to serve request D as shown in Figure 14.15.
The unidirectional SCAN scheduling policy serves all requests in only one
direction. After the disk heads have passed the tracks that are accessed by
a request, the request needs to wait for the requests to be served in a cycle.
Thus, all requests are treated fairly.
Although the requests are served fairly, the efficiency of the storage system
is traded off. Since the disk heads are swung to the other end after serving
all requests in one direction, this imposes a fixed overhead on swinging the
disk heads. Thus, the unidirectional SCAN scheduling method is less efficient
than the bidirectional SCAN scheduling method.
Multimedia storage systems deliver data stripes to the clients for display.
While the clients are displaying a stream, the data stripes of this stream
must arrive before they are due for display. Otherwise, the stream undesir-
ably starves. Thus, a deadline is associated with every data stripe and the
requests that access it. If the request is served after the deadline has passed,
the returned data stripe is no longer used. Therefore, the multimedia storage

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure.14.13..Unidirectional.SCAN.algorithm.4

Figure.14.14..Unidirectional.SCAN.algorithm.5

Figure.14.15..Unidirectional.SCAN.algorithm.6

Figure ��.��. Unidirectional SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure ��.��. Unidirectional SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure ��.��. Unidirectional SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Scheduling Methods for Disk Requests ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

system should be aware of the deadlines of requests and serves them at some
time before the deadline.

Chapter.Summary

The first-in-first-out scheduling method serves requests according to their
incoming order. It is simple and fair, but not efficient. Disk requests in mul-
timedia storage systems should be served before their deadlines are passed.
Thus, the FIFO scheduling method is not suitable for scheduling requests of
multimedia streams.
The SCAN scheduling method serves the waiting requests in the order of their
accessing physical track locations. The disk heads traverse the disk surface
and serve requests that access data on the tracks in its path. The heavy seek
time overheads of the long seeks are shared among these requests. The av-
erage seek distance and average seek time are reduced. The storage system
thus serves requests efficiently.
Although the bidirectional SCAN scheduling policy is unfair to the requests
that access data near the centre or the rim of the disk platters, the unidirec-
tional SCAN scheduling method can serve all requests fairly. However, the
efficiency of the storage system is slightly traded off.

References

Gemmell, D. J., & Christodoulakis, S. (1992). Principles of delay-sensitive
multimedia data storage and retrieval. ACM.Transactions.on.Informa-
tion.Systems,.10(1), 51-90.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XV

Feasibility.Conditions..
of.Concurrent.Streams

Introduction

Multimedia storage systems store data objects and receive streams of re-
quests from the multimedia server. When a client wishes to display an object,
it sends a new object request for the multimedia object to the multimedia
server as shown in Figure 15.1. The multimedia server checks to see if this
new stream can be accepted. If accepted, the server sends a data request to
the storage system to retrieve the first data stripe. The storage system returns
the data stripe to the server. The server then encapsulates the data stripe as
data packets and sends the data packets to the client. The client extracts the
data stripe from the data packets. Afterwards, the server sends data requests
periodically to the storage system. Each of these data requests has a dead-
line associated with it. If the request cannot be served before the deadline,
the client program does not have any more data to display. The stream thus

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

will be suspended or aborted. Therefore, every request of a stream, except
the first one, must be served within the deadline to ensure continuity of the
stream. Before we consider the scheduling methods for request streams in
the next chapter, we describe the feasibility to accept concurrent streams in
this chapter.
Consider a stream that accesses object A from the storage system. The stream
is composed of a number of requests A1, A2, … , and An. Each request will
arrive at the storage system at different times as illustrated in Figure 15.2.
The requests are then served by the storage system.
The server may send multiple requests to the storage system so that the wait-
ing times of the requests may overlap with each other. It needs to allocate
separate memory buffers to store the data stripes being accessed. The storage
system may not serve a request before the next request arrives. Thus, there
may be more than one request in the waiting queue of the storage system. If
the requests are in the waiting queue, the storage system would serve them
one by one.

Figure.15.1..Multimedia.stream.of.requests

Figure.15.2..A.stream.of.requests

Figure ��.�. Multimedia Stream of Requests

data request

data packet
data packet

object request

Figure ��.�. A stream of requests

A1 A2 A3 A4 A5 A6 time

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

If the disk serves the request in the first-in-first-out scheduling method, it
serves the requests one by one, from A1 to A3 as shown in Figure 15.3. It gets
request A1 from the waiting queue and retrieves the data stripe for it. During
the service of request A1, a new request A6 may have arrived at the waiting
queue. Then, the disk gets the second request A2 from the waiting queue and
retrieves the data stripe for it. During the service of request A2, a new request
A7 may have arrived at the waiting queue. Afterwards, the disk gets request
A3 from the waiting queue and retrieves the data stripe for it, and so on.
The stream can start to display only after the first data stripe is received. If
the waiting time and service time of the first request of a stream is long, the

Figure.15.3..Service.of.individual.request.of.a.stream

Figure.15.4..Response.time.of.a.stream

Figure ��.� Service of individual request of a stream

A3 A2A4

waiting requests

A5 A1

served requests

A4 A3A5 A1

waiting requests served requests

A6 A2

A5 A4A6 A2

waiting requests served requests

A3
A1A7

Figure ��.� Response time of a stream

Waiting time in queue Disk service time

seek latency transfer

Access overhead

+ = Stream response time

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

response time of the stream is long. The response time of a stream, Rs, can
be found as

Rs = W1 + S1,

where W1 is the waiting time of the first request and S1 is the service time of
the first request as shown in Figure 15.4.
The service time of the first request is actually the access time of the first
data stripe from the disk. From Chapter III, the disk access time is mainly
composed of the seek time, rotational latency, and data transfer time. Both the
seek time and rotational latency are access overheads in serving a request.
If the stream is not accepted by the server, the client may try to initiate the
stream again. The actual response time of the stream is further raised by
these retry times before the stream is accepted. The stream can continue to
display only after the data stripe containing the multimedia data of the object
is received. The response time of a request is composed of the waiting time
in queue and the service time of the requests. The response time of the ith
request, Ri, can be found as

Ri = Wi + Si,

where Wi is the waiting time of the ith request and Si is the service time of
the ith request. The service time of each request is actually the access time
of the data stripe from the disk. The disk access time is mainly composed of
the seek time, rotational latency, and data transfer time. Both the seek time
and rotational latency are access overheads in serving a request.
The time that a request is sent plus the response time should be earlier than
the deadline as illustrated in Figure 15.5. If the waiting time is long, the
deadline may have passed. It would be too late to serve the request. As a
result, the stream starves and the client does not have the necessary data to
display. The stream has to suspend or abort.
From the above discussion, we can see that the waiting time in queue is a
significant component of the response time of streams. It has a very signifi-
cant impact on the response time and the continuity of the streams. We first
describe the feasibility conditions for a storage device to accept new streams
in the next section. Then, we will prove the feasibility conditions for a storage

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

device to accept homogeneous streams. After that, the feasibility conditions
for a storage device to accept heterogeneous streams are proved. Before
summarizing this chapter, we prove the more general feasibility conditions
for a number of storage devices to accept heterogeneous streams.

Feasibility.Condition.for.a.Storage.Device..
to.Accept.New.Streams

Multimedia systems accept new object requests from clients. If it accepts
a stream request, it needs to retrieve the data stripes of the object from the
storage system and deliver them as a data stream to the client. The multime-
dia system does not accept all incoming streams. It checks its own storage
system’s workload whether the data stripes can be retrieved and delivered
on time. This feasibility condition can be found in several methods:

1. Check the number of accepted streams
2. Trial and error
3. Check the current workload condition

The feasibility condition may be found by checking the maximum number
of streams that can be accepted. If the number of accepted streams is already
equal to the maximum number of acceptable streams, any new streams are
rejected until some streams have finished. The multimedia system needs to
find out beforehand how many streams it can accept. This may not be too
difficult if all the streams are homogeneous. However, the maximum number
of streams needs to assume the worst case when the streams are heterogene-
ous. The dynamic workload of the system may also allow more streams to
be accepted. Thus, the utilization of the multimedia system would be low.

Figure.15.5..Response.time.of.individual.requests.of.a.stream

Figure ��.�. Response time of individual requests of a
stream

Waiting
time in
queue

Disk service time

seek latency transfer

Access overhead

+  DeadlineTime to
send

request

+

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The feasibility condition may be dynamically established by trial-and-error.
The multimedia system may try to accept the stream and deliver the data
stripes. If the storage system becomes overloaded, it then stops a stream
until the storage system no longer overloads. This method is simple, but the
quality of service of the stopped streams becomes low.
The feasibility condition may be found by checking the workload of the sys-
tem. The storage system should check its own workload to determine whether
new streams can be accepted. We shall describe how to check whether the
streams would overload the storage devices. Using this method, the feasibil-
ity condition to accept new streams can easily be found.
The objective of the feasibility condition is to check whether the streams
would overload the storage devices. The feasibility condition is checked on
the temporal domain. It can be applied on general storage organizations and
arbitrary scheduling methods. It considers variable data transfer rates over
the gaps so that performance characteristics of general storage devices can
be included. The parameters in Table 15.1 are used in this model.
The data transfer time and the display time depend on the size of each data
stripe. Both of them are needed to specify the characteristics of a stream.
Data on magnetic disks are stored in tracks. The disk heads move across the
tracks at a seek time that increases with the seek distance. Hence, data on
storage devices are accessed with an overhead which depends on the data
placement method. When the access overhead of each data stripe of a stream
is long, the storage device only has short gap time to serve other concurrent
streams. Thus, both the access overheads and the gap time are considered to
find the feasibility condition.
We assume that each stream seeks an overhead of S seconds, and each data
stripe is transferred in M seconds. After that, the stream suspends data retrieval
for G seconds. Each data stripe can display for δ seconds. This is illustrated
in Figure 15.6. A multimedia stream (S, M, δ) is acceptable if and only if it
satisfies the continuous display requirement:

Parameter Meaning

M transfer time

δ display time

S access overheads

G gap time

Table.15.1..Notations.in.feasibility.conditions

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

S + M ≤ δ. (15.1)

This continuous display requirement must be maintained over a period of
time. The requirement may temporarily be violated by satisfying requests in
advance. The data stripes that are retrieved in advance are kept in read-ahead
buffers. The average ratio of transfer time to display time must however be
maintained over a finite period of time.

Feasibility.of.Homogeneous.Streams

Multimedia streams are considered homogeneous if all streams have similar
display time period δ. Let n streams be characterized by (M1, δ), (M2, δ), to
(Mn, δ). Let Si be the access overhead times in serving the ith stream and Gi
be the gap time of the ith stream, for i = 1 to n. The gap time of a stream is
the period of time that a storage system may serve other concurrent streams.
By this definition (Tse & Leung, 2002), we have

Gi ≤ δ – (Si + Mi). (15.2)

Corollary.1: n streams can be concurrent if and only if

S1 + M1 + S2 + M2 + … + Sn + Mn ≤ δ. (15.3)

Proof: In order to be able to accept n streams concurrent, requests of any
stream are served during the time gap of other streams. The continuous dis-
play requirement necessitates that k requests are served within a continuous
time period kδ for finite value of k.

Figure.15.6..Feasibility.condition.of.a.single.stream

Figure ��.�. Feasibility condition of a single stream

A A A

G
S+M

time
A

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

If n streams are concurrent, then these n streams are served in turn over a
finite time period kδ such that k requests of each stream are served within
the time gap of other stream. Hence, we have

()
1,

 1, 2, ..., .
n

j j i
j j i

k S M kG i n
= ≠

+ ≤ =∑

This implies that

()
1,

 1, 2, ..., .
n

j j i
j j i

S M G i n
= ≠

+ ≤ =∑
 (15.4)

Summing equation (15.4) for all streams, we have

() ∑∑ ∑
== ≠=

≤+
n

i
i

n

i

n

ijj
jj GMS

11 ,1

which implies

() ∑∑
==

≤+−
n

i
i

n

j
jj GMSn

11
)1(

Substituting Gi from equation (5.2), this becomes

() ()
1 1

(1)
n n

j j i i
j i

n S M S M
= =

− + ≤ δ − −∑ ∑

which implies

() ()
1 1

(1)
n n

j j i i
j i

n S M n S M
= =

− + ≤ δ − +∑ ∑
 (15.5)

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Changing the subscript of the left hand side in equation (15.5) from j to i,
we have

() ()
1 1

(1)
n n

i i i i
i i

n S M n S M
= =

− + ≤ δ − +∑ ∑

which implies

()

()

1

1

n

i i
i

n

i i
i

n S M n

S M

=

=

+ ≤ δ

⇒ + ≤ δ

∑

∑

Therefore, we have

1 1 2 2 ... n nS M S M S M+ + + + + + ≤ δ

which is the necessary condition. Conversely, we have

1 1 2 2 ... n nS M S M S M+ + + + + + ≤ δ

Since all terms are positive, we have

, 1,2,...,i iS M i n+ ≤ δ ∀ =

Hence, the continuous display requirement of all streams is fulfilled. There-
fore, the n streams can be concurrently served.
As the corollary is true, the streams that satisfy the feasibility condition may
be concurrently served by interleaving their requests. As shown in Figure
15.7, requests of stream A are served in the gap time of stream B and requests
of stream B are served in the gap time of stream A.

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Feasibility.Condition.of.Heterogeneous.Streams

Multimedia streams are heterogeneous streams when their time periods are
different (Tse & Leung, 2002). Let n streams be characterized by (M1, δ1), (M2,
δ2), to (Mn, δn) such that not all δi are the same. Let Si be the access overhead
time in serving the ith stream and Gi be the gap time of the ith stream.

Corollary.2: A group of n streams (Si, Mi ,δi) can be concurrent if and only
if

1 1 2 2

1 2

... 1n n

n

S MS M S M ++ +
+ + + ≤

δ δ δ (15.6)

Proof: If n streams are concurrent, then there exists a finite time period δ
that kj requests of the jth streams are served. By the continuous display re-
quirement, this time period does not exceed the display time of each stream.
We have

, 1, 2,..., ,

1 , 1, 2,..., .

j j

j

j

k j n
k

j n

δ ≤ δ =

⇒ ≤ =
δ δ (15.7)

Since the time period δ is the retrieval time of all requests, we have

Figure.15.7..Feasibility.of.homogeneous.streams

Figure ��.�. Feasibility of Homogeneous Streams

B B B B B BA A A A A A

B B B B B B

A A A A A A

Disk service time

time

time

time

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

()
1

n

j j j
i

k S M
=

+ = δ∑

which implies

()
1

1
n

j j j

j

k S M

=

+
=

δ∑ (15.8)

Substituting 1 j

j

k
≤

δ δ
 from equation (15.7), we obtain

()
1

1
n

j j

j j

S M

=

+
≤

δ∑

which is the necessary condition. Conversely, we let

1 2 3... nδ = δ δ δ δ

and let kj ∈ ℜ such that

, 1, 2,..., ,j
j

k j nδ
= =
δ

which gives

1 , 1, 2,..., .j

j

k
j n= =

δ δ
 (15.9)

From the necessary condition, we have

1 1 2 2

1 2

... 1n n

n

S MS M S M ++ +
+ + + ≤

δ δ δ

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

This implies

()
1

1
n

j j

j j

S M

=

+
≤

δ∑

Substituting from equation (15.9), we obtain

()
1

1
n

j j j

j

k S M

=

+
≤

δ∑

which implies

()
1

n

j j j
j

k S M
=

+ ≤ δ∑ (15.10)

Hence, we obtain

() ()
1,

, 1, 2,..., .
n

i i i j j j i i
j j i

k S M k S M k i n
= ≠

+ + + ≤ δ =∑ (15.11)

Since all terms are positive, we can take away the term from the left hand
side of the inequality. Hence, we have

ki(Si + Mi) ≤ kiδi, ∀i,i = 1, 2, ..., n,

which implies

Si + Mi ≤.δi, ∀i,i = 1, 2, ..., n.

The continuous display requirement of each stream can be fulfilled over a
finite period of time. Hence, the n streams can be concurrently served.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When the feasibility condition in Corollary 2 is satisfied, the streams may
be concurrently served by interleaving their requests in groups. As shown in
Figure 15.8, a group of requests belonging to stream A are served in the gap
time of stream B and a group of requests belonging to stream B are served
in the gap time of stream A.

Feasibility.of.Heterogeneous.Streams.Over.Multiple.
Storage.Devices

A multimedia storage system may have several storage devices, like a disk
farm. When multiple storage devices are available, the storage devices
may serve the streams independently or in parallel. When the streams are
served in parallel, the above inequality for a single drive with different ac-
cess overheads and transfer rate may be used. When the streams are served
independently, one request is served by one storage device each time. We
may consider each storage device using the above feasibility condition for
each storage device. Alternatively, we may distribute the requests evenly to
the devices and serve them accordingly. Otherwise, some storage devices
may be overloaded while others are underutilized. Thus, we assume that the
requests are evenly distributed to p devices in establishing the following
feasibility condition.
Let n streams be characterized by (M1, δ1), (M2, δ2), to (Mn, δn). Let Si be the
access overhead time in serving the ith stream and Gi be the gap time of the
ith stream.

Figure.15.8..Feasibility.of.heterogeneous.streams

Figure ��.�. Feasibility of Heterogeneous Streams

B B B

A A A A

B B B

A A A A

B B BA A A A B B BA A A A
time

time

time

Disk service time

Disk service time

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Corollary.3: A group of n streams (Si, Mi, δi) can be concurrently served on
p independent devices if

1 1 2 2

1 2

... n n

n

S MS M S M p++ +
+ + + ≤

δ δ δ (15.12)

and the workload is evenly distributed among p devices.

Proof: If n streams are concurrently served by p devices, then there exist a
finite time period δ such that kj requests of the jth streams are served by p
devices. By the continuous display requirement, this time period should not
exceed the display time of each stream. We have

δ ≤ kjδj, j = 1, 2, ..., n

which implies

1 , 1, 2,...,j

j

k
j n≤ =

δ δ (15.13)

Since the total retrieval time of all requests must be less than the service time
of the p devices over the time period δ, we have

()
1

n

j j j
i

k S M p
=

+ ≤ δ∑

which implies

()
1

n
j j j

j

k S M
p

=

+
≤

δ∑
 (15.14)

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Substituting 1 j

j

k
≤

δ δ
 from equation (15.7), we obtain

()
1

n
j j

j j

S M
p

=

+
≤

δ∑

Hence, the necessary part is proved. Conversely, we let

1 2 3... nδ = δ δ δ δ

and let kj ∈ ℜ such that

, 1, 2,..., ,j
j

k j nδ
= =
δ

which implies

1 , 1, 2,..., .j

j

k
j n= =

δ δ
 (15.15)

Substituting from Equation (15.15) to the necessity condition, we have

()
1

n
j j j

j

k S M
p

=

+
≤

δ∑

which implies

()
1

n

j j j
j

k S M p
=

+ ≤ δ∑ (15.16)

Since all terms are positive, we can take away all except the ith term from.
Hence, we obtain

Feasibility Conditions of Concurrent Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ki(Si + Mi) ≤ pkiδi, i = 1, 2, ..., n,

which implies

(Si + Mi) ≤ pδi, i = 1, 2, ..., n. (15.17)

That is, requests of the ith stream can be served within time period δi by p
devices. As long as the requests are distributed evenly to the devices, the
continuous display requirement of all streams is fulfilled. Therefore, the n
streams can be accepted to be served concurrently.
Therefore, the feasibility condition to concurrently serve a group of n streams
(Si, Mi ,δi) on p independent storage devices if

1 1 2 2

1 2

... n n

n

S MS M S M p++ +
+ + + ≤

δ δ δ (15.18)

and the workload is evenly distributed among p devices.
When a new stream arrives at the multimedia storage system, the storage
system can directly calculate the feasibility to serve all streams including
the new stream according to their data transfer time, display time, and ac-
cess overhead. If the feasibility condition is satisfied, then the new stream is
accepted. Otherwise, the new stream should be rejected.

Chapter.Summary

We have shown that the multimedia streams have real-time continuous display
requirements. The storage system should only accept streams that can be served
without violating their continuous display requirements. Thus, the feasibility
conditions to check whether new streams should be accepted are investigated.
We have first shown the feasibility conditions to accept homogeneous streams on
a storage system with only one storage device. After that, we have proved that
heterogeneous streams can be accepted when their streams accessing patterns
satisfies the feasibility conditions. Last, we have proved the general feasibility
condition to accept heterogeneous streams over multiple storage devices.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

References

Tse, P. K. C., & Leung, C. H. C. (2002). An efficient storage organization for
multimedia databases. Proceedings.of.the.Recent.Advances.in.Visual.
Information.Systems.5th.International.Conference,.VISUAL.2002, Hsin
Chu, Taiwan (LNCS 2314, pp. 152-162). Springer-Verlag.

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XVI

Scheduling.Methods..
for.Request.Streams

Introduction

In the previous chapter, we have presented the feasibility condition to serve
request streams concurrently. In this chapter, we describe the efficient methods
to schedule the requests to avoid missing their deadlines. Multimedia requests,
except the first request, of a stream need to be served before their deadlines
(Anderson, Osawa, & Govindan, 1992; Gemmell, Beaton, & Christodoulakis,
1994; Gemmell & Christodoulakis, 1992). Thus, the scheduling algorithm
should consider the deadline so that the requests do not miss their deadlines.
In the next section, we describe the EDF-SCAN algorithm. After that, we
shall describe the group sweeping scheduling (GSS) method.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Earliest.Deadline.First.Scheduling

The earliest deadline first (EDF) method is fully aware of the deadlines of
the requests. It assigns priorities to requests and serves the request accord-
ing to the time of their deadlines (Freeman & DeWitt, 1995). The deadlines
of the requests in the waiting queue are compared. The requests with the
earliest deadline are served first. That is, the urgent requests are served with
priority. Other requests that can wait will be served later. When a tie occurs
among several requests having the same deadline, these requests are served
according to the first-in-first-out (FIFO) scheduling method.
For example, four requests A, B, C, and D arrive at the storage device.

1. Request A should be served before 09.000 seconds.
2. Request B should be served before 09.300 seconds.
3. Request C should be served before 09.150 seconds.
4. Request D should be served before 09.150 seconds.

These requests may belong to the same or different streams. The requests A,
B, C, and D should be served before their deadlines at 9.000 seconds, 9.300
seconds, 9.150 seconds, and 9.150 seconds, respectively.
The storage system compares their deadlines and finds that the deadline of
request A is the earliest. Thus, it serves the request A first. After it has finished
serving request A, it finds that both request C and request D have the earli-
est deadline. Since request C arrives at the waiting queue before request D,
it serves request C first. Afterwards, it serves request D. Finally, request B
is served unless some new incoming requests with an earlier deadline have
arrived. Therefore, the requests are served in the order of A, C, D, and B.
The EDF scheduling policy can be described with a model that changes the
order of the waiting requests according to their deadline time. The deadlines
of the waiting requests may point at different times that are not in sequence.
After the EDF scheduling, the requests are aligned with the increasing order
of their deadlines.
The earliest deadline first scheduling method serves all requests according to
their deadlines. Thus, urgent requests are served with priority. It is likely that
most requests would not miss their deadlines while waiting for service.

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Some streams may send their requests early in time with a longer deadline.
Other streams may send their requests close to their deadlines. However, the
requests with short deadlines are served with priority. This is however unfair
to the well behaving streams that schedule their requests ahead of time.
Although this strict EDF method is optimal for CPU scheduling, it should
not be applied directly on disk scheduling. The EDF scheduling method does
not consider the storage locations of the data stripes being accessed by the
requests. The disk heads would randomly traverse across the disk surfaces
to serve the most urgent request. Thus, the EDF scheduling is inefficient due
to excessive seek time overheads.

The.SCAN-EDF.Scheduling.Method

The EDF method is inefficient since it incurs heavy overheads in long seeks
to serve more urgent requests that are far away. More efficient scheduling
method should serve requests with short seeks while the urgent requests can
still wait. The SCAN-EDF scheduling method strikes a balance between
efficiency and urgency.
The SCAN-EDF scheduling method combines the seek optimization of the
SCAN method and the real-time guarantees of the EDF method (Reddy &
Wyllie, 1993, 1994). Since the deadlines of the requests should not be missed,
the waiting request with the earliest deadline is always served first. Among
waiting requests with the same deadline, the one that is first according to the
scan direction is served first.

Figure.16.1..EDF.scheduling.policy

Figure ��.�. EDF Scheduling Policy

C3 B2A2

waiting requests

B3 C3B2A2

new service sequence

B3EDF

deadline time deadline time

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The storage system selects requests according to the SCAN-EDF algorithm
as shown in Figure 16.2. First, it compares the deadlines of the waiting re-
quests. The earliest deadline of the waiting requests is first found. The waiting
requests that have the earliest deadline are inserted into a set T in Step 1. It
then checks the number of request in the set T in Step 2. If the set T contains
only one request, it serves this request. Otherwise, it finds the first request
with the smallest seek distance in one scanning direction and serves it. It
continues to serve the next requests with the shortest seek distance in the
current scanning direction until all requests in the current scanning direction
are served. If the set T is not empty, it changes the scanning direction and
serves all requests in the new direction similarly. Afterwards, it goes back
to Step 1 to fill the set T again.
We explain the SCAN-EDF algorithm using an example. Five requests A,
B, C, D, and E arrive at the storage device.

1. Request A reads track number 0 and it should be served before 09.000
seconds.

2. Request B reads track number 400 and it should be served before 09.300
seconds.

3. Request C reads track number 350 and it should be served before 09.150
seconds.

4. Request D reads track number 950 and it should be served before 09.150
seconds.

5. Request E reads track number 550 and it should be served before 09.150
seconds.

These requests may belong to the same or different streams. The request A, B,
C, D, and E should be served before their deadlines at 9.000 seconds, 9.300
seconds, 9.150 seconds, 9.150 seconds, and 9.150 seconds, respectively. The
request A, B, C, D, and E reads from track number 0, 400, 350, 950, and
550, respectively.
The storage system first compares the requests’ deadlines and finds that the
earliest deadline is 09.000 seconds. Thus, it fills the set T in Step 1 with request
A only. In Step 2, it finds that the set T only has one request. It then serves
request A. After it finishes the service of request A, it goes back to Step 1.

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The storage system then compares the requests’ deadlines and finds that the
earliest deadline is 09.150 seconds. It fills the set T in Step 1 with requests
C, D, and E. In Step 2, it finds that the set T has more than one request. The
disk heads are now staying at track number 0. The storage system finds that
request C is the request in set T with the shortest seek distance in the outward
direction. It thus moves the disk heads to track number 350 to serve request
C. After it has served request C, it finds that request E is the request in set T
with the shortest seek distance in the outward direction. It thus moves the disk
heads to track number 550 to serve request E. After it has served request E,
it finds that request D is the remaining request in set T. It then serves request
E. After it has served request E, it goes back to Step 1.
The storage system now compares the requests’ deadlines and finds that
the earliest deadline is 09.300 seconds. Thus, it fills the set T in Step 1 with
request B only. In Step 2, it finds that the set T only has one request. It then
serves request B. After it has finished serving request B, it goes back to Step
1 to continue serving any new requests. Therefore, the requests are served
in the order A, C, E, D, and B.
Notice that the SCAN-EDF algorithm is not preemptive. While a group of
requests in set T are being served, it will not stop even if some urgent requests
with an earlier deadline arrive at the storage system. The algorithm only
rebuilds the set T after all the requests in the set T have been served.
The SCAN-EDF scheduling policy can be described as a method that aligns
the waiting requests into an order based on two criteria as shown in Figure
16.3. The first one of the ordering criteria is the deadline time. All the re-
quests are served according to their deadlines. Urgent requests are served
with priority. The second one of the ordering criteria is the track location of
the data stripes being accessed by the requests. The requests with the same
deadline are served according to their accessing track locations.

Figure.16.2..The.SCAN-EDF.algorithmFigure ��.�. The SCAN-EDF Algorithm

• Step �: Let T= set of tasks with the earliest
deadline

• Step �: if n(T) = �, (there is only a single request
in T),

serve that request.
else

let t� be the first task in T in scan direction,
serve t�.

go to Step �.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The SCAN-EDF scheduling method has some overheads in creating the set
T and serving the requests in set T using the SCAN algorithm. This increases
the complexity of the algorithm. If unidirectional SCAN scheduling is used
instead of the bidirectional SCAN scheduling, the SCAN-EDF algorithm can
be simplified by slightly modifying the EDF scheduling method.
Let Di be the deadline of the ith waiting request and let Ti be the track number
of the data stripe being accessed by the ith waiting request. The deadline of
the ith waiting request can be modified to

= Di + f(Ti) (16.1)

where the function f(.) converts track number of the ith request into a small
negative value. Thus, the deadlines of the requests are slightly moved ahead.
The requests with the same deadline will be differentiated by their track num-
bers such that the requests are served in the unidirectional SCAN order.
Many functions can be chosen as f(.) to modify the deadlines. The modi-
fied deadlines of the ith and the jth waiting requests should be served in the
unidirectional SCAN order if Di = Dj. If tracks with small track numbers are
served first, then

f(Ti) < f(Tj) if (Ti < Tj), ∀i,j (16.2)

Figure.16.3..SCAN-EDF.scheduling.policy
Figure ��.�. SCAN-EDF Scheduling Policy

C3 B2A2

waiting requests

B3 C3B2A2

new service sequence

B3SCAN-EDF

deadline time deadline time

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In addition, the value of f(Ti) has to be small enough so that the modified
deadlines would not swap the service order of any two requests with differ-
ent deadlines. That is,

Di + f(Ti) < Dj + f(Tj) if (Di < Dj), ∀i,j (16.3)

Thus, the requests are served according to their deadlines if their deadlines
are different.
For example, the deadlines are originally specified to the number of seconds.
The storage system chooses the modification function as

1)(
max

−=
T
TTf i

i

 (16.4)

where 0 ≤ Ti < Tmax and Tmax = 1000. Four requests A, B, C, and D have ar-
rived and they are waiting in the queue.

1. Request A reads track number 347 and it should be served before 09.000
seconds.

2. Request B reads track number 113 and it should be served before 09.000
seconds.

3. Request C reads track number 256 and it should be served before 10.000
seconds.

4. Request D reads track number 851 and it should be served before 09.000
seconds.

The deadlines are modified as follows:

1. For request A, the function f(Ti) = -0.653 sec. Thus, the new deadline
is 08.347 seconds.

2. For request B, the function f(Ti) = -0.887 sec. Thus, the new deadline
is 08.113 seconds.

3. For request C, the function f(Ti) = -0.744 sec. Thus, the new deadline
is 09.256 seconds.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

4. For request D, the function f(Ti) = -0.149 sec. Thus, the new deadline
is 08.851 seconds.

The requests with their new deadlines are then scheduled using the simpler
EDF policy. Thus, the requests are served in the SCAN-EDF order of B, A,
D, and C. Thus, the SCAN-EDF scheduling order is achieved with a simpler
implementation.
The SCAN-EDF scheduling method serves the requests according to their
deadlines first. If all requests have different deadlines, the SCAN-EDF schedul-
ing method becomes the same as the EDF scheduling method. If all requests
have the same deadlines or they do not have any deadlines, the SCAN-EDF
scheduling method is the same as the SCAN scheduling method.

Application.Note:.The efficiency of the SCAN-EDF.method.depends.on.the.
number.of.requests.with.the.same.deadline.being.served.together.using.the.
SCAN.scheduling..In.order.for.the.SCAN-EDF.scheduling.method.to.be.ef-
ficient, some requests need to have the same deadline to be grouped together.
Two.options.may.be.used.to.increase.the.number.of.requests.that.are.served.
together.as.a.group.using.the.SCAN.scheduling..
First, the deadlines may be specified with a coarser granularity to increase
the.chance.that.requests.have.the.same.deadline..If.the.deadlines.are.speci-
fied at fine granularity, it is unlikely that the deadlines would be the same.
When.the.granularity.of. the.deadlines.is.coarse,.similar.deadlines.would.
become.the.same.deadline..As.a.result,.more.requests.would.have.the.same.
deadline..However,.the.granularity.of.the.deadlines.should.not.be.too.coarse.
since.the.deadlines.may.not.be.easily.met..Therefore,.the.deadlines.should.be.
specified at medium granularity to strike a good balance between efficiency
and.continuity.guarantee.
Second,.the.deadlines.of.the.requests.may.be.moved.in.advance..Some.re-
quests.with.early.deadlines.may.be.advanced.with.shorter.times,.while.other.
requests. with. later. deadlines. may. be. advanced. with. longer. times.. If. the.
storage.system.can.serve.all.these.requests.with.the.new.advanced.deadline,.
these requests can thus be served more efficiently according to the storage
location.of.their.accessing.data.stripe..The.SCAN-EDF.scheduling.method.
can.move.the.requests’.deadlines.dynamically.according.to.the.number.of.
waiting.requests.

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Similar to the EDF scheduling method, the SCAN-EDF serves requests with
short deadlines with priority. Thus, it is also unfair to the well behaving
streams that schedule their requests ahead of time.

Group.Sweeping.Scheduling

Multimedia streams send requests to the storage system. These requests belong-
ing to different concurrent streams wait for service in the waiting queue of the
storage system. Each request has its own deadline. The storage system should
serve the concurrent streams efficiently and fairly. Homogeneous streams
send requests in the same period of time. The storage system can serve one
request of each stream in every period. The homogeneous concurrent streams
are treated fairly when they are served in this interleaving manner.
The group sweeping scheduling method considers streams that are strongly
periodic and strongly regular. These requests access the data stripes of the
same size from the storage system. Instead of specifying deadlines to requests,
it uses a smoothing buffer to assure the continuity of streams.
The GSS method divides the set of concurrent streams into a number of
groups. Each group consists of a number of requests. The groups are served
in round robin cycles. A stream is assigned to the same group until the stream
ends. When a group of requests is being served, the storage system serves
individual requests within a group consecutively. To achieve high efficiency,
the requests within a group are served according to the SCAN algorithm
(Chen, Kandlur, & Yu, 1993).
The groups are served in fixed cycles. The order of groups being served is
thus fixed. The requests within a group are not served in fixed order. In the
previous cycle, the request belonging to a stream may be served first. In the
next cycle, the request belonging to the same stream may be served last.
Let n be the number of concurrent streams and let g be the number of groups.
The set of n streams are divided into g groups. There are two particular cases
for the number of groups.

1. When g = 1, all the concurrent streams are assigned to the same group.
Thus, the GSS method schedules requests into the order as the SCAN
algorithm.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

2. When g = n, each stream is assigned to a different group. Thus, all the
streams are served in round robin cycles. Thus, the GSS method sched-
ules stream requests in the fixed round robin cycles.

Depending on the scheduling method in use, the stream may not be able to
respond immediately after the first data stripe is received. For some sched-
uling methods, it may need to wait for an additional delay. This delay is
called the start-up latency. When the requests are served and the data stripes
are accessed, the scheduling method needs to store the data stripes in the
smoothing buffers. The smoothing buffer usage also increases when the
start-up latency increases.
If the first-in-first-out scheduling method is used, the requests are served
according to the time of arrival in the waiting queue. Since homogeneous
streams send requests using the same period of time, the same number of
requests are received in the same period of time. Thus, the streams are served
in the fixed round robin cycles. One request is served within a regular period
of time as shown in Figure 16.4. Each stream will expect to receive one data
stripe after every n data stripes are accessed by the storage system. Thus,
the time interval between the consecutive requests belonging to the same
stream is fixed. After the first data stripe is received, each stream can expect
to receive the next data stripe after a fixed period of time. Therefore, a stream
may start immediately after the first data stripe is retrieved.
Requests belonging to the same stream may store the data stripes in the same
buffer. After a data stripe is accessed, it is stored in the buffer for consump-
tion. The buffer usage increases when the request is served and it decreases
slowly until the next request is served as shown in Figure 16.4. The buffer

Figure 16.4. The delay and buffering due to the first-in-first-out scheduling

Figure ��.�. The delay and buffering due to the First-In-
First-Out Scheduling

FIFO

Buffer usage

Latency

Read data
to buffer

Display data
from buffer

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure.16.5..The.delay.and.buffering.due.to.the.SCAN.scheduling

Figure. 16.6.. The. delay. and. buffering. due. to. the. group. sweeping.
scheduling

Figure ��.�. The delay and buffering due to the SCAN
Scheduling

SCAN

Buffer usage

latency

Read data
to buffer

Display data
from buffer

Figure ��.�. The delay and buffering due to the Group
Sweeping Scheduling

GSS

Buffer usage

latency

cycle

Read data
to buffer

Display data
from buffer

should not be empty before the next data stripe is accessed to maintain the
continuity of the stream.
If the SCAN scheduling method is used, the homogeneous streams still send
requests using the same period of time. But the storage system does not serve
the requests following the time that the requests arrive at the waiting queue.
It serves requests in scanning cycles. Within each scanning cycle, the disk
heads traverse the disk surface once in each direction. The second request of
a stream may be served as the last request in the new cycle even though the
first request of the stream is served as the first request in the previous cycle.
Thus, the stream can only expect one request to be served before the end
of the scanning cycle as shown in Figure 16.5. After receiving the first data
stripe, the stream waits for the end of a scanning cycle before it can start.
Requests belonging to the same stream may store the data stripes in the same
buffer. After the first data stripe is accessed, it is stored in the buffer. Thus, the
buffer usage increases when the request is served. It stays at the same level
until the end of the scanning cycle as shown in Figure 16.5. After the stream
has started to display, it decreases slowly. When the next request is served,

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the buffer usage increases again. The buffer should not be empty before the
next data stripe is accessed to maintain the continuity of the stream. If two
data stripes are retrieved consecutively, the buffer usage may increase to a
level close to double of the data stripe size.
When the GSS method is used, the streams are divided into groups. If the
previous request of a stream is served in a group, the next request of the same
stream will be served in the same group. Thus, the service of all requests of
a stream may be delayed until the end of the group that the stream belongs
as shown in Figure 16.6. The streams can expect to receive one data stripe
from the storage system within each service of the same group. After receiv-
ing the first data stripe, the stream waits for the completion of a group before
it can start.
Requests belonging to the same stream may store the data stripes in the same
buffer. After the first data stripe is accessed, it is stored in the buffer. Thus, the
buffer usage increases when the request is served. It stays at the same level
until the end of the group as shown in Figure 16.6. After the stream starts
to display, it decreases slowly. When the next request is served, the buffer
usage increases again. The buffer should not be empty before the next data
stripe is accessed to maintain the continuity of the stream.
Depending on the number of groups, the start-up latency and the buffer size
are affected. We shall find the optimal number of groups below. The smooth-
ing buffer should be large enough to store one data stripe for each stream
and the data stripes accessed by one group of request. Thus, the size of the
smoothing buffer in the GSS method, Bb , is found as

b m
nB n kB
g

  
= +  

   (16.5)

Table.16.1..Parameters.in.GSS
Parameter Description

T Disk rotation time

sg Seek time across groups

sr Seek time of requests within a group

Δ Playback time of one block of data

B Number of blocks in a track

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

where k is the size (in number of blocks) of each data stripe and Bm is the
size (in bytes) of a block.

Since the group of requests is served using the SCAN scheduling method, the

request within a group can be served with a short seek time, sr. Each request

transfers k blocks of data and each track stores b blocks. Thus, each request

transfers 




b
k tracks of data. Assuming that data are transferred in tracks, the

rotational latency and the data transfer time of each request is found as

Tl
b
k









+



=

where l is a small correction term for the extra overheads and l is between 0
and 1. Since the first and the last blocks of a data stripe may cross the track
boundary, the number of disk rotations could be increased by one.
The access time of each request is thus equal to

Tl
b
ksr 








+



+=

The first request in each group is served with a different seek time. Thus,
the seek time of the first request of each group is sg. The cycle time to serve
n requests in g groups, Tc, can be found as

c r g
kT n l T ns gs
b

  = + + +    

Since the playback time of each stream should be longer than or equal to the
cycle time, we have

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

c

r g

k T

kk n l T ns gs
b

δ ≥

  ⇔ δ ≥ + + +    

If l = 0, k is multiple of b, and (bδ-nT)>0, we can solve for k to get

r gns gs
k b

b nT
+ 

≥  δ − 

From the above equation, we can see that the buffer size, Bb, increases with
the data stripe size, k, in number of blocks. The data stripe size should be
reduced to its smallest value so that the smoothing buffer is the smallest.
An optimal value of data stripe size, k, can be found using the optimal data
stripe size algorithm below.

Optimal Data Stripe Size Algorithm

1. Initially setting k to = r gns gs
b

b nT
+ 

 δ − 
.

2. If (k - 1) satisfies the timing constraint, set k = k - 1 and repeat this
step.

3. Otherwise, the optimal k is reached.

In addition, the optimal number of groups can be found using the optimal
groups algorithm below.

Optimal Groups Algorithm

1. For g =1 to n, repeat the above algorithm to find the optimal k and its
corresponding Bb.

2. Compare all these buffer sizes to find the optimal group size.

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The group sweeping scheduling policy can be described in the model as
shown in Figure 16.7. The waiting requests are first grouped into service
groups. The waiting requests within each group are scheduled. The service
order of these requests is aligned according to the track locations of the ac-
cessing data stripes.
The group sweeping scheduling method is designed for the homogeneous
streams. Since heterogeneous streams have different display periods, a peri-
odic fill policy would be required to change the period of the streams so that
all concurrent streams can become homogeneous. The periodic fill policy
accepts requests of the original period and outputs new requests according to
the period of the other streams. These new requests at the new period would
access more or less data stripes than the old requests at the original period.
The heterogeneous streams can thus be served using the GSS policy.
The group sweeping scheduling method does not use the deadline to provide
real-time continuity guarantees. It serves the streams in an interleaving manner
to provide continuous data supply to the streams. The storage system serves
one request of each stream in each cycle. As long as the cycle time is not
longer than the playback time of each data stripe, the continuity requirement
of the streams are not violated. Thus, the GSS method can provide real-time
continuity guarantee to the multimedia streams.

Figure.16.7..Group.sweeping.scheduling.policyFigure ��.�. Group Sweeping Scheduling Policy

C3 B2A2

waiting requests

B3 C3B2A2

new service sequence

B3GSS

Group A

Group B
Group AGroup B

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Application.Note:.The.group. sweeping. scheduling.method. improves. the.
efficiency of serving homogeneous.streams..The.requests.in.the.same.group.
are.served.together.using.the.SCAN.scheduling..The.number.of.requests.in.a.
group.can.be.controlled.by.the.number.of.groups..When.the.number.of.con-
current.streams.drops,.the.number.of.groups.can.also.be.reduced.to.maintain.
the number of requests per group and the efficiency in serving requests. Thus,
the.GSS method is an efficient method in serving multimedia streams.

When optimal performance is required, the GSS method can be used together
with the region based constraint allocation. The data stripes in the same re-
gion are accessed by requests of concurrent streams in one cycle. Only one
of the seek times across groups is not longer than the seek time across two
regions. Other seek times across groups are not longer than seek time within
one region. The seek time of requests within a group is not longer than the
seek time within one region. Therefore, seek times are short and the GSS
becomes very efficient.

Chapter.Summary

The scheduling methods for multimedia streams are described in this chap-
ter. These scheduling methods use either serve requests according to their
deadline or serve the stream in round robin cycle in order to provide real-time
continuity guarantee. They all use the SCAN scheduling method to improve
the efficiency in serving requests. These scheduling methods include the ear-
liest deadline first method, the SCAN-EDF method, and the group sweeping
scheduling method.
The earliest deadline first scheduling method serves requests according to
their deadlines so that the requests would not wait too long and miss their
deadlines. Thus, the requests with short deadlines are served with priority.
This is however unfair to the well behaving streams that send their requests
ahead of time.
The SCAN-EDF scheduling method serves requests with the same deadline
in the SCAN order. It improves the efficiency of the storage system using
the EDF scheduling method. However, it is still unfair to the well behaving
streams that send their streams ahead of time. The SCAN-EDF method us-

Scheduling Methods for Request Streams ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ing unidirectional SCAN can be simplified by adjusting the deadlines of the
waiting requests.
The group sweeping scheduling method serves groups of streams in round-
robin cycles and serves requests within each group in the SCAN order. It
improves the efficiency of the storage system and provides real-time continuity
guarantees to the streams. It is fair to all the streams by serving one request
of every stream in each cycle. However, it increases the start-up latency and
the smoothing buffer in order to implement the scheduling method.

References

Anderson, D. P., Osawa, Y., & Govindan, R. (1992). A file system for continu-
ous media. ACM.Transactions.on.Computer.Systems,.10(4), 311-337.

Chen, M. S., Kandlur, D. D., & Yu, P. (1993). Optimization of the grouped
sweeping scheduling (GSS) with heterogeneous multimedia streams. In
Proceedings.of.the.ACM.Multimedia.Conference (pp. 235-241).

Freeman, C. S., & DeWitt, D. J. (1995). The SPIFFI scalable video-on-demand
system. In Proceedings.of.the.ACM.SIGMOD.International.Conference.
on.Management.of.Data (pp. 352-363).

Gemmell, D. J., Beaton, R. J., & Christodoulakis, S. (1994). Delay-sensitive
multimedia on disks. IEEE.Multimedia,.1(4), 56-67.

Gemmell, D. J., & Christodoulakis, S. (1992). Principles of delay-sensitive
multimedia data storage and retrieval. ACM.Transactions.on.Informa-
tion.Systems,.10(1), 51-90.

Reddy, A. L. N., & Wyllie, J. C. (1993). Disk scheduling in a multimedia
I/O system. In Proceedings.of.the.1st.ACM.Conference.on.Multimedia
(pp. 225-233).

Reddy, A. L. N., & Wyllie, J. C. (1994). I/O issues in a multimedia system.
IEEE.Computer,.27(3), 69-74.

Traditional computer systems only handle disk requests individually. Mul-
timedia systems send multiple requests one after another to the disk system.
These requests appear as a stream of requests to the storage system. These
requests should be served with proper scheduling method so that the streams
can continue without any problems. Thus, new scheduling methods have been
designed to serve streams of requests for multimedia data.
The first-in-first-out scheduling method serves requests according to their
incoming order. It is simple and fair, but not efficient. Disk requests in mul-
timedia storage systems should be served before their deadlines are passed.
Thus, the FIFO scheduling method is not suitable for scheduling requests of
multimedia streams.
The SCAN scheduling method serves the waiting requests in the order of their
accessing physical track locations. The disk heads traverse the disk surface

Summary.to.Section.III

Disk Scheduling

and serve requests that access data on the tracks in its path. The heavy seek
time overheads of the long seeks are shared among these requests. The av-
erage seek distance and average seek time are reduced. The storage system
thus serves requests efficiently.
Although the bidirectional SCAN scheduling policy is unfair to the requests
that access data near the centre or the rim of the disk platters, the unidirec-
tional SCAN scheduling method can serve all requests fairly. However, the
efficiency of the storage system is slightly traded off.
We have shown that the multimedia streams have real-time continuous dis-
play requirements. The storage system should only accept streams that can
be served without violating their continuous display requirements. Thus, the
feasibility conditions to check whether new streams should be accepted are
investigated.
We have first shown the feasibility conditions to accept homogeneous streams on
a storage system with only one storage device. After that, we have proved that
heterogeneous streams can be accepted when their streams accessing patterns
satisfy the feasibility conditions. Last, we have proved the general feasibility
condition to accept heterogeneous streams over multiple storage devices.
The scheduling methods for multimedia streams are described in this chapter.
These scheduling methods use either serve requests according to their dead-
line or serve the stream in round robin cycle in order to provide a real-time
continuity guarantee. They all use the SCAN scheduling method to improve
the efficiency in serving requests. These scheduling methods include the ear-
liest deadline first method, the SCAN-EDF method, and the droup sweeping
scheduling method.
The earliest deadline first scheduling method serves requests according to
their deadlines so that the requests would not wait too long and miss their
deadlines. Thus, the requests with short deadlines are served with priority.
This is however unfair to the well behaving streams that send their requests
ahead of time.
The SCAN-EDF scheduling method serves requests with the same deadline
in the SCAN order. It improves the efficiency of the storage system using
the EDF scheduling method. However, it is still unfair to the well behaving
streams that send their streams ahead of time. The SCAN-EDF method us-
ing unidirectional SCAN can be simplified by adjusting the deadlines of the
waiting requests.

The group sweeping scheduling method serves groups of streams in round-
robin cycles and serves requests within each group in the SCAN order. It
improves the efficiency of the storage system and provides real-time continuity
guarantees to the streams. It is fair to all the streams by serving one request
of every stream in each cycle. However, it increases the start-up latency and
the smoothing buffer in order to implement the scheduling method.

Section.IV

Data Migration

Introduction

Storage system stores data objects on different storage devices. When these
storage devices are of the same type, the objects may be stored and retrieved
with similar access latency. When these storage devices are of different types,
the objects may be stored and retrieved with different access latencies. Thus,
the type of storage devices that contain the stored object affects the access
latency in an accessed stored object.
A common method to arrange the storage devices of different types is the
hierarchical storage systems (HSS). All or most objects are stored on the
storage devices with longer access latency. When these data objects are
accessed, the objects are moved from these storage devices with longer ac-
cess latency to the storage devices with shorter access latency. This is called

data migration. Similar to the chapters on disk scheduling of Part III, data
migration on HSS also improves the performance of HSS, especially at the
response time of request streams.
In hierarchical storage systems, data migration is the process of moving data
from tertiary storage devices to secondary storage devices. There are three
approaches to migrate multimedia data objects across the storage levels.
These methods are:

1. Staging
2. Time slicing
3. Pipelining

Three pipelining methods are used to reduce the start up latency and staging
buffer size. They include:

1. Normal pipelining
2. Space efficient pipelining
3. Segmented pipelining

We shall explain the simple staging method which migrate data across the
storage levels prior to using them in Chapter XVII. After that, we describe
the time-slicing method in Chapter XVIII for low latency tertiary storage
devices. Afterwards, we describe the pipelining methods for slow tertiary
storage devices. The normal pipelining method is described in Chapter
XIX. In the normal pipelining method, the sizes of the slices are minimized
to maximize the overlapping between the displaying time and the retrieval
time of the slices. Then, the space efficient pipelining method is described
in Chapter XX. In the space efficient pipelining methods, the buffer size
in accessing the slices is minimized. After that, the segmented pipelining
method is presented in Chapter XXI. In the segmented pipelining method,
the latency in serving interactive requests is reduced.

Staging Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XVII

Staging.Methods

Introduction

When data are stored in the tertiary storage devices, the tape drives shall
read them from the tapes using the input/output (I/O) operations. Due to the
long delay in exchanging tapes, it is inconvenient to exchange a tape for each
read/write access operation. Thus, the entire object or file is accessed from
the tape drives well before they are being used (Federighi & Rowe, 1994;
Kienzle, 1995; Pang, 1997). These accessed objects are temporarily stored
in the magnetic hard disks as secondary storage level.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Staging.Method

The simplest method to migrate data from the tertiary storage devices is
the staging method. This method accesses an object using two stages. In
the first stage, the entire file or object is migrated from tapes to the staging
buffers in the disks. In the second stage, the file or object is consumed from
the staging buffers.
Before we start stage one, the stage buffer is checked to make sure it still
contains the object being accessed. If the object does not exist in the stage
buffers, the stage one is executed to migrate the object from its permanent
storage in the tertiary storage devices. During the stage one, the file or object
is migrated from its permanent storage on the tertiary storage device to the
staging buffers the secondary storage devices. This copy action is illustrated
in Figure 17.1 and performed in four steps:

1. Exchange
2. Reposition
3. Transfer from tape to disk via memory
4. Wrap up

First, the tape drive exchanges the tape to the drive. The tape is moved from
the cell containing the tape to a drive. If there is an existing tape in the drive,
the old tape is first removed using the robotic arm. Then, the new tape is
inserted in the drive using another robotic arm. We have assumed that there
are two robotic arms in the exchange device. In the case that there is only
one robotic arm, the robotic arm will first remove the old tape from the drive
before it can fetch the new tape from the tape cell.
Second, the tape drive will reposition the tape to the first data block of the
file or object. This may take a very long time depending on the position of
the required file or object within the tape.
Third, the tape drive will then transfer the data blocks from the tape to the
memory. The drive reads a data block from the tape, transfers it via the I/O
bus, the I/O processor, and the system bus to the memory. The data blocks
in the memory are written to the stage.buffers or staging.buffers in the disks.
The staging buffers are checked to see if enough space is available. If the
staging buffers are full, some objects are deleted from the staging buffers to

Staging Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

release space. The program then sends I/O requests to the disk to write the
data block to the staging buffers. The data blocks in the staging buffers are
prevented from being deleted until they are accessed in the second stage.
This step is repeated until all the data blocks of the object are copied to the
staging buffers.
Last, the data blocks in the memory are erased, and the tape drive is released.
The allocated memory or used memory buffer is released. The tape drive is
released, and it may be used by other programs. The tapes in the drive may
then be unloaded to load other tapes. Stage one has now completed, and the
accessed object has been migrated from its permanent storage on the tertiary
storage devices to the staging buffers on the secondary storage devices.
In the first stage, the object is migrated from its permanent storage on the
tertiary storage devices to the staging buffers on the secondary storage de-
vices. During the second stage, the required blocks of data are copied from
the staging buffers to the memory for consumption. The second stage is
shown in Figure 17.2, and it is done in two steps:

1. Read from staging buffers
2. Consume from memory

Figure 17.1. The first stage in the staging.methodFigure ��.�. The first stage in the Staging Method

tape drives

robotic
arm

tapes

cells

I/O busmemory

system bus

I/O Processor

CPU

Disk
…Stage

buffer

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

First, the data in the memory are read from the staging buffers in the disks.
The staging buffers are checked for the location of the stored object. If the
object is found, then I/O requests are sent to the disk to read the required
data blocks from the staging buffers. Second, the data blocks in the memory
are consumed. After the first step, the data migration is completed. The user
program can thus consume data blocks from the memory.
The second stage continues until all data blocks are consumed. After the
entire object is consumed and its data blocks are no longer required, the
object in the staging buffers may then be deleted so that it could be deleted
to release space.
Note that the two stages access data using two different granularities. The
first stage accesses data at a coarse granularity, and the second stage accesses
data at a fine granularity. In the first stage, the entire object is accessed as a
migration unit. This is to achieve an object based transfer from the tertiary
storage devices so that the number of exchanges can be small. If the entire
object is stored on a single media unit, only one exchange is needed to ac-
cess the entire object.
In the second stage, the objects are accessed in an unit of data block. This can
reduce the amount of memory usage during the consumption period. Since

Figure.17.2..The.second.stage.in.the.staging.methodFigure ��.�. The second stage in the Staging Method

memory

Stage
buffers

tape drives

robotic
arm

tapes

cells

I/O bus

system bus

I/O Processor

CPU

Disk
…

Display

Staging Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the storage space on the memory is more expensive than the storage space
on the disks, the disk space should be used in place of the memory space if
possible. In addition, local disks can often deliver data at higher data rate
than the stream consumption data rate. The data blocks can stay on the stag-
ing buffers until the object is no longer required.
When tertiary storage devices are used, the multimedia objects are accessed
only once from the tertiary storage devices. They go through the disks twice,
once for writing to the staging buffers and once for reading back from the
staging buffers. They go through the memory and the system bus four times,
the first time when the object is read from the tertiary storage devices, the
second time when the object is writing to the staging buffers, the third time
when the object is read from the staging buffers, and the fourth time when
the object is being consumed. The multimedia objects also pass through the
I/O processor and the I/O bus three times. Apart from the high latency of the
tertiary storage devices, the workloads on the disks, the memory, the system
bus, the I/O bus, and the I/O processor could become the bottleneck of the
storage system that limits its maximum throughput.

Performance.of.the.Staging.Method

In order to understand the performance of the staging method, we use the
performance model of the tape drives in the previous chapter. That is, the
access time to access an object from the tape drive is

X
= ω+α +

γ

where ω is the exchange time, α is the reposition time, γ is the tape transfer
rate, and X is the data size.
The two stages are considered together along the time line as illustrated in
Figure 17.3. In a double buffers arrangement, the tape drive can start to transfer
the next data block while the disk is writing the previous data block. After
the first data block is accessed from the tape to memory in memory buffer
Mem1, the tape drive can start to read the second data block into memory
buffer Mem2 while the disk is writing the first data block from Mem1. Since

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the access latency of the tapes is higher than the access latency of the disks,
the access time of each disk access is shorter than the access time of a tape
access. When the access time of the disks is occasionally long, more memory
buffers may be used to cater for the variations in access time.
The time to write the first data block to disks is thus hidden within the time
to read the second data block from tape. Similarly, the time to write the
second data block to disks is hidden within the time to read the third data
block from tape, and so on. After the last data block is accessed from tape,
the disk writes the last data block. The access time of this data block is thus
revealed as part of the time to complete stage one.
After stage one is completed, the data are retrieved from the staging buffers
to memory in stage two. At least one data block must be retrieved from the
staging buffers before the object stream can start to display. Thus, the start-
up latency in using the staging method is

2* mBX s L 
= ω+α + + + + γ β  (17.1)

where s is the seek time, L is the rotational latency, Bm is the media block
size, and β is the data transfer rate of the disks.
Since the time to write one data block to the disks is much shorter than the
time to read an object from the tape, the access time of the two data blocks
to/from the disks can be ignored. The time spent in the second stage is com-
paratively short, and it also overlaps with the playback time of the object.

Figure.17.3..The.two.stages.in.transferring.data.using.the.staging.method

Figure ��.�. The two stages in transferring data using
the Staging Method

exchange reposition Tape to
memory 1

Time to write one block to stage buffer
and read one block from stage buffer

Stage 1 Stage 2

Tape to
memory 2

Tape to
memory 1

Tape to
memory 2

Memory 1
to disk

Memory 2
to disk

Memory 1
to disk

Memory 2
to disk

Disk to
memory

Staging Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Therefore, the access time is dominated by the time spent reading the object
from the tape in stage one. Therefore, the access time of an object from the
tape drive is approximately equal to

X
= ω+α +

γ

For example, consider an object of 1GB on tape with transfer rate 5 MB/s and
exchange using 10 seconds. Assume that the object is at the position of the
head after loading. If the contiguous method is used to store the objects and the
first object on the tape is being accessed, the access time of the object is

= 10 + 0 + 1*1024/5 seconds
= 214.8 seconds.

The access time is thus longer than 3 minutes.

Alternatively, if the object is striped over four tape drives, it takes longer
time to exchange all four tapes for four drives. The access time is

= 10*4 + 0 + 1*1024/4/5 seconds
= 91.2 seconds.

The required time is now more than 1.5 minutes.

If the object is spread over four drives using the triangular placement method.
During the first 40 seconds of exchange time, the four drives will perform
the following actions:

1. The first drive may transfer 30 seconds of data after exchanging.
2. The second drive waits for 10 seconds while the robotic arms are serving

the first drive. Then, it can transfer 20 seconds of data after exchanging.
3. The third drive waits for 20 seconds while the robotic arms are serving

the first and second drives. Then, it can transfer 10 seconds of data after
exchanging.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

4. The fourth drive waits for 30 seconds while the robotic arms are serving
the other drives. It does not have any time to transfer data.

The amount of data that can be transferred within the first 40 seconds is

= 30 + 20 + 10
= 60 seconds of transfer time.

Therefore, there are 5 * 60 = 300 MB of data being transferred within the first
40 seconds. The remaining data are transferred by all four drives in parallel.
Thus, the access time is

= 10*4 + 0 + (1024-300)/4/5
= 76.2 seconds.

Therefore, the access time is slightly above one minute using the triangular
placement method.

Chapter.Summary

The staging method is simple. Using the staging method, the entire object is
available after staging. The program can freely access any part of the required
object after waiting for the time required to migrate the object to the staging
buffers. The staging method is also flexible. The access time from tertiary
storage is completely separated. This is suitable for any type of data on any
tertiary storage systems.
Unfortunately, the time spent in waiting for stage one to complete can be
very long. This leads to a very slow response to even the simplest request.
Since the entire object is stored on the staging buffers during the complete
consumption time period, this wastes disk space for a considerably long time.
In addition, the entire object is written to and read back from the disks, and
it may unnecessarily waste disk bandwidth in migrating unused data.

Staging Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

References

Federighi, C., & Rowe, L. A. (1994). A distributed hierarchical storage man-
ager for a video-on-demand system. In Proceedings.of.SPIE.Confer-
ence.on.Storage.and.Retrieval.for.Image.and.Video.Databases.II.(Vol.
2185, pp. 185-195).

Kienzle, M. G., Dan, A., Sitaram, D., & Tetzlaff, W. (1995). Using tertiary
storage in video-on-demand servers. In Proceedings.of.IEEE.COMP-
CON (pp. 225-233).

Pang, H. H. (1997). Tertiary storage in multimedia systems: Staging or direct
access. ACM.Multimedia.Systems,.5, 386-399.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XVIII

Time.Slicing.Method

Introduction

Tertiary storage devices provide huge storage capacity at low cost. Multi-
media objects stored on the tertiary storage devices are accessed with high
latency. Despite the high access latency, some tertiary storage devices are
able to deliver data at high throughput.
The time slicing method is designed to reduce the start-up latency in access-
ing multimedia objects from tertiary storage devices. The start-up latency is
lowered by reducing the amount of data being migrated in stage one of the
staging method being described in the last chapter.
In order to support the time-slicing method, the tertiary storage devices
should have the ability to deliver data at high throughput. The tertiary storage
devices that cannot deliver data at sufficiently high throughput; the start-up
latency cannot be reduced.

Time Slicing Method ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Time.Slicing.Method

The time slicing method assumes that data of an object is consumed from the
beginning to the end. The object is divided into time slice units such that each
time slice is a continuous segment of the object. Each time slice is consumed
for a period of time. The later slices are not required while the earlier slices
are being consumed. Thus, the later slices can be retrieved from the tertiary
storage later after the early slices are being displayed.
When an object is being accessed, the object request is split into several tasks.
The number of tasks is equal to the number of time slices of the object. Each
task accesses a time slice of the object. The first task accesses the first time
slice. The second task accesses the second time slice, and so on. The entire
object is thus accessed by the tasks.
After the first time slice is migrated to the staging buffers on disks, the object
can start to display the first slice. As long as the second time slice is retrieved
before the first time slice has finished displaying, the object can continue to
display. If the tertiary storage device changes the tape to serve another object
while the first time slice is being displayed, the storage system can start to
serve the other object at an earlier time (Lau, Lui, & Wong, 1995).
Consider that the object streams are homogeneous and the tape drive band-
width is between m to m+1 times of the data consumption rate of the objects,
where m > 1. The tertiary storage device can serve the n object requests in
fixed round robin cycles, where n ≤ m. Each object request is split into m
tasks such that every task accesses only one time slice for every object.
Unlike the staging method, the streams start to display after the first time slice
of the object is accessed. The second time slice should be retrieved before
the first time slice has finished displaying. The third time slice should be re-
trieved before the second time slice has finished displaying and so on. Thus,
the later parts of the objects are retrieved from the tertiary storage devices
while the earlier parts of the objects are being consumed.
Since the tape drive bandwidth is at least m times of the data consumption
rate of the objects, the tape drive can access m time slices before each object
has displayed one time slice. Since the tasks are served in round robin cycles,
there are at most n-1 tasks between two tasks of the same object request.
These other tasks access the time slices of other objects. The tertiary storage
system thus serves one task in every n tasks being served. It accesses one
time slice of an object in every n time slices being accessed.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

For example, we consider two objects X and Y are stored on the tapes of
a tertiary storage system. The storage system has only one tape drive. The
tape drive bandwidth is more than twice the data consumption rate of each
object. The object X is divided into time slices X1 and X2 such that X1 can
display for half of the display time of object X. Similarly, the object Y is
divided into time slices Y1 and Y2 such that Y1 can display for half of the
display time of object Y.
Two requests for X and Y have arrived at the waiting queue of the storage
system. The request for each object is divided into two tasks. Request for
object X is divided into two tasks such that the first task accesses time slice
X1, and the second task accesses time slice X2. Similarly, the request for
object Y is divided into two tasks such that the first task accesses time slice
Y1 and the second task accesses time slice Y2.
The storage system accesses both objects X and Y in an interleaving manner
as illustrated in Figure 18.1. It first serves the first task of object X to access
the time slice X1. After the first task of object X has completed, the storage
system serves the first task of object Y to access the time slice Y1. After the
first task of object Y has completed, the storage system serves the second
task of object X to access the time slice X2. After the second task of object
X has completed, the storage system serves the second task of object Y to
access the time slice Y2.
After the first time slice of object X is accessed, the stream of object X starts
to display. After the first time slice of object Y is accessed, the stream of
object Y starts to display. Since the tape drive bandwidth is more than twice
of the data consumption rate of each object, the displaying time of X1 should

Figure.18.1..Time.slicing.method

Figure ��.�. Time Slicing Method

X1

Y1 Y2

X2

Display X1

Display Y1

Display X2

Display Y2

Stream X responds
Stream Y responds

Time Slicing Method ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

be longer than the retrieval time of the time slices Y1.and X2. For the same
reason, the displaying time of Y1 should be longer than the retrieval time of
the time slices X2.and Y2. Therefore, both streams can the necessary data to
display continuously.

Performance

The main improvement of the time slicing method is the start-up latency of
streams or the stream response times. Each stream starts to display after the
first time slice of the stream is accessed from the tertiary storage system.
Thus, the stream starts to respond with shorter time. We compare the start-up
latency of the time slicing method with the start-up latency of the staging
method.
Consider the scenario that n homogeneous streams arrive at an idle system
and each stream is divided into m slices, where n ≤ m. The start-up latency
of the ith stream is the time to retrieve i time slices from the tertiary storage
system. Thus, the start-up latency of the ith stream using the time slicing
method is

Si
m

 
= ω+α + γ  (18.1)

where i=1 , … , n and S is size of each object. The start-up latency of the ith
stream using the staging method is

Si  
= ω+α + γ  (18.2)

Comparing the start up latency of the two methods, the time slicing method
reduces the response time of the ith stream by

()1i m S
m
−

=
γ

 (18.3)

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the above example, stream X starts to display object X after retrieving X1
only and the stream Y starts to display object Y after retrieving Y1 only. If
both streams X and Y arrive at an idle system, then the start-up latency of
stream X using the staging method is

xS
= ω+α +

γ

where Sx is the size of object X. The start-up latency of stream X using the
time slicing method is

2
xS

= ω+α +
γ

Thus, the start-up latency of stream X is reduced by

2
xS

=
γ

In addition, the start-up latency of stream Y using the staging method is

2 2 x yS S+
= ω+ α +

γ

where Sy is the size of object Y. The start-up latency of stream Y using the
time slicing method is

2 2
2

x yS S+
= ω+ α +

γ

Thus, the start-up latency of stream Y is reduced by

Time Slicing Method ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

2
x yS S+

=
γ

Since the tape drives need to access objects from concurrent streams, the
exchanger would switch tapes when a different slice is accessed. Thus, the
number of tape switches increases from once per object to once per slice.
The extra tape switching overheads are incurred except when both objects
reside on the same tape.
Using the time slicing method, the tape drive uses more time in serving each
request. The service time of n streams increases. The access time to serve n
streams in the staging method is

Sn 
= ω+α + γ 

However, the access time to serve n streams in the time slicing method is

* * Sm n
m

 
= ω+α + γ 

Thus, the access time to serve n streams is increased by

()(1)* *m n= − ω+α

In the above example, the service time of the two streams X and Y in the
staging method is the time to access both objects X and Y. This is also equal
to the start-up latency of stream Y. Thus, the total service time of the two
object requests in the staging method is

2 2 x yS S+
= ω+ α +

γ

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The total service time of the two object requests using the time slicing
method is

2* 2*
2 2

4 4

yx

x y

SS

S S

  
= ω+α + + ω+α +  γ γ   

+
= ω+ α +

γ

Thus, the total service time of the two object requests is increased by

2 2= ω+ α

In the time slicing method, only the beginning part of the objects is accessed
prior to consumption. If a stream is canceled in the middle of consumption,
the access stream is removed. The tape library no longer retrieves the rest of
the objects. Thus, the time slicing method may save workloads on the tertiary
storage system in such situations.

Application.Note:.The.time.slicing.method.is.a.method.to.reduce.the.re-
sponse.time.of.staging..This.method.is.applicable.only.when.the.tape.drive.
bandwidth.is.at.least.twice.of.the.data.consumption.rates.of.objects..That.is,.
time.to.retrieve.two.objects.is.shorter.than.the.time.to.display.each.object..
The.time.slice.method.has.been.designed.for.homogeneous.streams.only..It.
is.necessary.to.expand.it.to.the.heterogeneous.streams.environment.for.more.
flexible and practical systems.

Chapter.Summary

The time slicing method accesses objects at the unit of slices instead of
objects. It reduces the start-up latency in accessing objects from the tertiary
storage devices. Streams can start to respond at an earlier time. It also saves
tape drive bandwidth if some streams are canceled when objects are canceled
in the middle of consumption. Unfortunately, extra tape switching overheads

Time Slicing Method ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

are incurred unless all concurrent objects reside on the same tape. The service
time in accessing objects is however increased.

References

Lau, S. W., Lui, J., & Wong, P. C. (1995). A cost-effective near-line storage
server for multimedia systems. In Proceedings.of.the.11th.International.
Conference.over.Data.Engineering (pp. 449-456).

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XIX

Normal.Pipelining

Introduction

Multimedia objects can be stored on tertiary storage devices to provide large
storage capacity at low cost. The staging method retrieves the whole objects
to the staging buffers prior to consumption. Thus, the start-up latency is high.
The time slice method being described in the last chapter reduces the start-up
latency only when the tertiary storage bandwidth is higher than double of the
displaying data rate of the object.
However, if the tertiary storage bandwidth is below double of the data con-
sumption rate of the object, then we can only stage the object prior to using
it. The pipelining methods aim at minimizing the start-up latency when the
tertiary storage bandwidth is not higher than the data consumption rate of
the objects. The pipelining methods are used to reduce the start-up latency
and staging buffer size.

Normal Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the normal pipelining method, the sizes of the slices are minimized to
maximize the overlapping between the displaying time and the retrieval
time of the slices. In the space efficient pipelining methods, the buffer size
in accessing the slices is minimized. In the segmented pipelining method,
the latency in serving interactive requests is reduced.
The normal pipelining method is described in this chapter. The space efficient
pipelining method and the segmented pipelining method are presented in the
following two chapters.
We shall describe the objective of the normal pipelining method. Then, the
bounds on the sizes of the slices are shown. After that, the start-up latency
and the minimum size of the first slice are shown. The reduction in the start-
up latency using the normal pipelining method is presented.

The.Normal.Pipelining.Method

The normal pipelining method splits the objects and retrieves the objects
while displaying the object. Its objective is to maximize the overlapping
time between the retrieval time and the displaying time. Its approach is to
retrieve only sufficiently large front part of the object to start the stream, and
overlap the retrieval time of the rest with the displaying time of the object
(Wang, Hua, & Young, 1996).
The normal pipelining method considers the condition that the data transfer
rate of the tertiary storage device is lower than the displaying rate of the
object. It assumes that the data of the object are consumed at linearly with
the displaying of the object. Since each object is considered separately, the
streams can be heterogeneous.
The normal pipelining method divides each object into a sequence of n+1
slices S0, S1, … , Sn. Its idea is to control the size of each slice so that the
display time of a slice Si is longer than the time to retrieve the next slice Si+1,
where 0 ≤ i ≤ n-1. The normal pipelining method retrieves and displays the
object as shown in Figure 19.1. The tertiary storage device first retrieves S0.
The stream starts to display the object after the slice S0 is retrieved. Then,
it retrieves S1 during the time that the stream is displaying S0. The tertiary
storage device should have retrieved the next slice S1 before the stream has
finished displaying S0. After the tertiary storage device has retrieved S1, it
continues to retrieve the next slice S2. When the stream has displayed S0, the

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

next slice S1 is ready. Thus, the stream can continue to display the slice S1 and
so on. Thus, the stream is supplied with slices of data so that it can display
the entire stream continuously.
Let γ be the data transfer rate of the tertiary storage device and δ be the data
consumption rate of the objects. The production consumption rate (PCR) is
defined as the ratio between the transfer rate of the tertiary storage device and
the data consumption rate of the object. Let ρ be the production consumption
rate of an object stored on a tertiary storage device. Thus, we get

γ
ρ =

δ
 (19.1)

As the transfer bandwidth of the tertiary storage device is lower than the data
consumption rate of the objects, we have

1
γ ≤ δ
⇒ ρ ≤

 (19.2)

Let Xi be the size of the ith slice, Si, where 0 ≤ i ≤ n. The time to access the
first slice, S0, is

0X
= ω+α +

γ
 (19.3)

where ω is the exchange time and α is the reposition time.

Figure. 19.1.. Overlapping. time. in. retrieving. and. displaying. slices. of. a.
stream

Figure ��.�. Overlapping time in retrieving and
displaying slices of a stream

S0

S0

S1 S2

S1

S3

S2

S4

S3 S4

overlap period

Retrieve slice

Display slice

Normal Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When the object is stored contiguously on the same media unit, the time to
access the ith slice, Si, is

, 1, 2,...,iX i n= =
γ (19.4)

The time to display the ith slice, Si, is

, 0,1, 2,...,iX i n= =
δ (19.5)

Since the time to display the ith slice is longer than the time to retrieve the
(i+1)th slice, we have

1

1

1

 1, 2,..., 1

 1, 2,..., 1

 1, 2,..., 1

i i

i i

i i

X X i n

X X i n

X X i n

−

−

−

≤ = −
γ δ

γ
⇔ ≤ ∗ = −

δ
⇔ ≤ ρ∗ = − (19.6)

We substitute the value of Xi-1 into the equation of Xi to get

()1 2

2
2

i i i

i i

X X X

X X
− −

−

≤ ρ∗ ≤ ρ∗ ρ∗

⇒ ≤ ρ ∗ (19.7)

Repeating the above substitutions, we get

2 1
1 2 1 0

0

...

 for 1, 2,...,

i i
i i i

i
i

X X X X X
X X i n

−
− −≤ ρ∗ ≤ ρ ∗ ≤ ≤ ρ ∗ ≤ ρ ∗

⇒ ≤ ρ ∗ = (19.8)

Therefore, the sizes of the slices are bounded above by the size of the first
slice. Conversely, the size of the first slice is also bounded below by the size

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of other slices. Thus, we get

0 , for 1, 2,...,i
i

XX i n≥ =
ρ (19.9)

From the above two equations, we can see that if ρ is less than 1, the sizes
of the slices decrease monotonically. If ρ is equal to 1, the sizes of all slices
may decrease monotonically or they may be the same.
When we sum over all values of i from 0 to n, we get

1 1

0
1 1

0
1 1

*
n n

i
i

i i
n n

i
i

i i

X X

X X

− −

= =

= =

≤ ρ

⇔ ≤ ρ

∑ ∑

∑ ∑
 (19.10)

We add the term X0 to both sides of the inequality to get,

()

0 0 0
1 1

0
0 0

0
0

1 ...

n n
i

i
i i

n n
i

i
i i
n

n
i

i

X X X X

X X

X X

= =

= =

=

+ ≤ + ρ

⇔ ≤ ρ

⇔ ≤ +ρ+ +ρ

∑ ∑

∑ ∑

∑
 (19.11)

The left hand side of the inequality is the total sum of the slice sizes. It is
thus equal to the size of the object. The right hand side of the inequality is
the sum of a geometric series. If ρ is less than or equal to 1, then we get

Normal Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

1

0
1

1

n

X X
+ −ρ

≤  −ρ  (19.12)

or

0 1

1
1 nX X +

 −ρ
≥  −ρ  (19.13)

where X is the size of the object.
In addition, if the production consumption ratio, ρ, is greater than or equal to
1, then the tape transfer rate is higher than the data consumption rate. As the
data block’s displaying time is longer than its retrieval time, we may just use
the same size to all the slices. In order to minimize the start-up latency, this
size should be set to the size of one data block. Thus, we have established a
lower bound on the size of the first slice, X0, based on the size of the object,
the number of slices, and the production consumption ratio when the produc-
tion consumption ratio is less than 1.
As shown in Figure 19.2, the retrieval time of the second slice to the last
slice overlaps with the displaying time of all except the last slice. The non-
overlapping time consists of the retrieval time of the first slice, S0, and the
displaying time of the last slice, Sn. Thus, it is necessary to minimize the size
of the first slice and the size of the last slice to optimize the benefits of the
normal pipelining method.
In order to supply the data with continuity, the time to display the sequence
{ S0, S1, … , Si-2 , Si-1 } should be longer than the time to materialize the se-
quence { S1, S2, … , Si-1 , Si }, for i = 1, 2, … , n. Thus, we have

0 11 1 2

0 1 1 1 2

... ... , 1, 2,...,

... ... , 1, 2,..., .

i i

i i

X X XX X X i n

X X X X X X i n

−

−

+ + + + ≥ + + + =
δ δ δ γ γ γ

+ + + + + +
⇔ ≥ =

δ γ

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In particular, when i = n, the data consumption time of the sequence {S1, S2,
… , Sn} is longer than the displaying time of {S0, S1, … , Sn-1}. It is equivalent
to say that the data consumption of all but the first slice eclipses the display-
ing time of all but the last slice. Thus, we have

()

()
()

()
()

0 1 1 1 2

0

0

0

0

0

0

... ...

1 .

n n

n

n

n

n

n

n

X X X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X

−+ + + + + +
≥

δ γ
− −

⇔ ≥
δ γ

γ
⇔ − ≥ −

δ
⇔ − ≤ ρ −

⇔ −ρ − ≤

⇔ ≥ −ρ −

⇔ ≥ −ρ +ρ (19.14)

The size of the first slice is bounded below by a function of the object’s size,
the production consumption ratio, and the size of the last slice.
The start-up latency to display the object using the normal pipelining method
is the time to retrieve the first slice, X0, and it is equal to

0X
= ω+α +

γ (19.15)

Figure.19.2..Reducing.slice.sizes.in.the.normal.pipelining.method

Figure ��.�. Reducing slice sizes in the normal
pipelining method

S0

S0

S1 S2

S1

S3

S2

S4

S3S4

overlapping period

Retrieve slice

Display slice

Normal Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Thus, the reduction in the start-up latency using the pipelining method is

0X X−
=

γ (19.16)

To optimize the start-up latency of the normal pipelining method, the size of
the first slice should be minimized. Thus, the size of S0 needs to be as small
as possible. To achieve this, the last slice, Sn, must be as small as possible.
As the slices are retrieved from the tertiary storage devices in integral number
of data blocks, the smallest size of a slice is one data block. Thus, we have

()0 1X X≥ −ρ +ρ (19.17)

Therefore, the minimum size of the first slice is approximately equal to

()1X≈ −ρ (19.18)

The start-up latency to display the object using the staging method is

0X
= ω+α +

γ

The start-up latency to display the object using the normal pipelining method
is the time to retrieve the first slice, X0, and it is equal to

0X
= ω+α +

γ (19.19)

Therefore, the normal pipelining method minimizes the start-up latency and
the start-up latency is reduced by

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

0X X−
=

γ (19.20)

The normal pipelining method copies only the minimally sufficient size of
the object prior to consuming it. When the sufficiently large fraction of the
object is copied, the stream can start to display the object while the tertiary
storage device continues to retrieve the rest of the object. Therefore, the
normal pipelining method minimizes the start-up latency in the low tertiary
bandwidth environments.

Application.Note:.A.limitation.of.the.normal.pipelining.method.is.that.only.
the.retrieved.portion.of.the.object.can.be.consumed.before.the.entire.object.
is.copied.to.the.staging.buffer..The.object.is.copied.to.the.staging.buffers.
similar.to.the.staging.method..The.object.could.stay.on.the.staging.buffers.
for.a.period.of.time.so.that.the.object.can.be.reused.or.displayed.again.from.
the.staging.buffers..

Chapter.Summary

The normal pipelining method has been explained in this chapter. The nor-
mal pipelining method finds the minimum fraction of the object before the
stream can start to display it. It minimizes the start-up latency for the tertiary
storage devices whose data transfer rate is lower than the data consumption
rate of the objects. The formula to find minimum size of the first slices is
explained in this chapter. We have also described the start-up latency in using
the normal pipelining method.

References

Wang, J. Z., Hua, K. A., & Young, H. C. (1996). SEP: A space efficient
pipelining technique for managing disk buffers in multimedia servers.
In Proceedings.of.IEEE.Multimedia’96 (pp. 598-607).

Space Efficient Pipelining 289

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XX

Space Efficient Pipelining

Introduction

Multimedia objects that are stored on tertiary storage devices enjoy the large
storage capacity at low cost. These objects may be retrieved using staging, time
slicing, or pipelining. The staging method retrieves the whole objects to the
staging buffers prior to consumption at the cost of high start-up latency. The
time slice method reduces the start-up latency at the cost of heavy switching
overheads. The pipelining methods aim at minimizing the start-up latency
when the tertiary storage bandwidth is not higher than the data consumption
rate of the objects. Three pipelining methods are used to reduce the start-up
latency and staging buffer size:

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

1. Normal pipelining
2. Space efficient pipelining
3. Segmented pipelining

In the normal pipelining method, the sizes of the slices are minimized to
maximize the overlapping between the displaying time and the retrieval time
of the slices. In the space efficient pipelining (SEP) methods, the buffer size
in accessing the slices is minimized. In the segmented pipelining method,
the latency in serving interactive requests is reduced.
We have described the normal pipelining method in the previous chapter. The
space efficient pipelining method is explained in this chapter. The segmented
pipelining method is presented in the next chapter. In this chapter, the basic
space efficient pipelining algorithm is first described in the next section.
Next, the buffer replacement policies are explained before this chapter is
summarized.

The Basic Space Efficient Pipelining Algorithm

The space efficient pipelining method has two objectives:

1. Reduce staging buffer size
2. Hide the start-up latency

The space efficient pipelining algorithm reduces the start-up latency by caching
the beginning part of the objects on the secondary storage. It reduces the stage
buffer size by re-cycling the disk space (Wang, Hua, & Young, 1996).
The space efficient pipelining method can be used in the following condi-
tions:

1. Objects are stored on tapes or CD with low bandwidth.
2. Disk space is available to store temporary data.
3. Objects are retrieved for display purpose only.

Space Efficient Pipelining 291

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Similar to the normal pipelining method, the space efficient pipelining method
divides each object into a sequence of n+1 slices, {S0, S1, … , Sn}. The first
slice, S0, of an object is called the head of the object and other slices, includ-
ing S1, S2, to Sn, of the object are called the tail of the object (Wang et al.,
1996).
The head of objects is stored on the resident disk that can be accessed with
low latency as shown in Figure 20.1. The head of objects is accessed from
the disk storage directly to the memory buffer for display. If the storage space
of the disks is insufficient to store the head of all objects, the objects with
high popularity may be chosen to be stored. The head of other objects may
be stored on the tertiary storage devices and accessed on demand.
The tail of the objects is stored on magnetic tapes or optical disks which have
large storage capacity and low cost. The tail of objects is loaded on demand
via a circular buffer on disks. Similar to the staging buffer, the circular disk
temporarily stores the data retrieved from the tertiary storage devices. The
name “circular disk buffer” does not mean that the disk space has any shape.
It only indicates that the disk buffer space is allocated and it uses two point-
ers to indicate the starting position of the used area and the starting position
of the vacant area. The buffer space switches between the “used” and “free”
status in cycles.
As shown in Figure 20.1, the new data of the objects on the tertiary storage
devices are read to the circular disk buffer. The free space of the circular disk
buffer is used when data from the tertiary storage devices are stored. Data on
the circular disk buffer are then read to the memory buffer for consumption.
Although the circular disk buffer and the disk cache are drawn separately on
Figure 20.1, they may reside on the same disk or separate disks.

Figure �0.�. Space Efficient Pipelining

read new
data

used

free

Memory
buffer

Circular disk buffer

send to
memory

display
data

resident
disk

Figure 20.1. Space efficient pipelining

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When an object is being accessed, the storage system retrieves the object
from both the resident disks and the tertiary storage devices. The storage
system serves the object request and accesses the objects as illustrated in
Figure 20.2, Figure 20.3, and Figure 20.4.
After a new stream is accepted, the storage system starts to retrieve the object
by performing the following actions in parallel:

1. It retrieves the head, S0, of objects from the resident disks to memory.
2. It retrieves the tail of the object from tertiary storage devices to the

circular buffer.
3. It retrieves the tail of the object from the circular disk buffer to memory.

Although a user program only runs sequentially from the beginning to the
end, a program may initiate several threads or tasks to run in parallel. These
threads could check for synchronization points when necessary. In addition,
the stream displays the object continuously when the necessary slices are
ready. It also runs in parallel with the storage system.
The first thread accesses the head of the object directly from the resident
disk to the memory as shown in Figure 20.2. The stream uses a memory
buffer to control the variations in disk bandwidth. The size of the memory
buffer is only a few data blocks and it may be much smaller than the size of
the head. The stream starts to display after the memory buffer is filled. The
stream continues to display the object while the head of the object is being
retrieved from the resident disks to the memory buffer.
The second thread retrieves the tail of the object from the tertiary storage
devices to the memory buffer via the circular disk buffer as shown in Figure
20.3. The second slice of the object should be ready at the memory buffer
before the head of the object has been consumed completely. It is retrieved
in the following steps:

1. The robotic tape library or optical jukebox exchanges the required
tape/CD to the tape/optical drive.

2. After the required tape/CD is exchanged to the drive, it immediately
starts to retrieve the second slice, S1, from tape/CD to the circular disk
buffer.

Space Efficient Pipelining 293

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure.20.2..The.space efficient pipelining method retrieves the head of object
from.resident.disks.to.memory.before.displaying.the.object.

Figure.20.3..The.space efficient pipelining method retrieves the second slice
from.tape.or.CD.to.memory.via.the.circular.disk.buffer.

Figure.20.4..The.space efficient pipelining method retrieves and displays the
slices.from.tape.or.CD.via.the.circular.disk.buffer.

Figure �0.�. The Space Efficient Pipelining method
retrieves the HEAD of object from resident disks to

memory before displaying the object

read new
data

S1

free

S0
send to
memory

display
data

S0
S0

Figure �0.�. The Space Efficient Pipelining method
retrieves the second slice from tape or CD to memory

via the circular disk buffer

read new
data

S1

S2

S1
send to
memory

display
data

S0

free

Figure �0.�. The Space Efficient Pipelining method
retrieves and displays the slices from tape or CD via the

circular disk buffer.

read new
data

S2

S3

S2
send to
memory

display
data

S0

free

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The third thread waits until the first slice of the object, S0, is completely
retrieved to the memory buffer. It then retrieves the second slice from the
circular disk buffer to fill the memory.
The time to retrieve the second slice from the tertiary storage devices to the
circular disk buffer and the time to fill the memory buffer from the circular
disk buffer should be shorter than the displaying time of the first slice in order
that memory buffer the stream can continue to display the second slice after
the first slice immediately.
While the stream is displaying the second slice, S1, of the object, two actions
run in parallel:

1. The second slice is retrieved from the circular disk buffer to the memory
buffer.

2. The tertiary storage device retrieves the third slice, S2, to the circular
disk buffer.

The third slice should be retrieved to the circular disk buffer before the second
slice has been consumed. The storage system then continues to retrieve the
fourth slice from tape/CD to the circular disk buffer after the third slice is
retrieved. After the second slice in the circular disk buffer is consumed, it is
deleted from the circular disk buffer to release space for later slices.
The above actions repeat for every slice of the object as follows. While the
stream is displaying the ith slice, Si, of the object, two actions run in paral-
lel:

1. The ith slice, Si, is retrieved from the circular disk buffer to the
memory buffer.

2. The tertiary storage device retrieves the next slice, Si+1, to the circular
disk buffer.

The next slice should be retrieved to the circular disk buffer before the ith
slice has been consumed. The storage system then continues to retrieve the
(i+2)th slice, Si+2, from tape/CD to the circular disk buffer after the (i+1)th
slice, Si, is retrieved. After the ith slice, Si, in the circular disk buffer is con-
sumed, it is deleted from the circular disk buffer to release space.

Space Efficient Pipelining 295

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Therefore, the circular disk buffer contains at least two slices. While the
storage system is retrieving the ith slice from and storing the (i+1)th slice,
Si+1, to the circular disk buffer, the circular disk buffer contains the ith and
the (i+1)th slices, that is Si and Si+1. We shall find the size of the circular disk
buffer and the start-up latency in the next section.

Circular.Buffer.Size.and.Start-Up.Latency

Let Xi be the size of the ith slice, Si. The storage space on the resident disks
for an object is
= X0.

From last chapter, we have

X0 ≥ X(1 – ρ) + ρ (20.1)

and

X0 ≈ X(1 – ρ) (20.2)

where X is the size of the object and ρ is the production consumption ratio
of the object on the tertiary storage devices. Therefore, the minimum size
amount of storage space on the resident disks for an object is approximately
equal to

≈ X(1 – ρ) (20.3)

The circular disk buffer needs to contain the two consecutive largest slices.
If the production consumption ratio, ρ, is less than or equal to 1, the circular
disk buffer is the largest when it is storing the two slices, S1 and S2.
Thus, the size of the circular disk buffer is found as

= X1 + X2

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Since Xi ≤ ρi * X0 and the overlapping is maximized when

Xi = ρi * X0 (20.4)

Thus, the size of the circular disk buffer is

= ρX0 + ρ2X0
= ρ(1 + ρ)X0
≈ ρ(1 + ρ)(1 – ρ)X
≈ρ(1 – ρ2)X (20.5)

Therefore, the size of the circular disk buffer is approximately equal to ρ(1-
ρ2)X.
Since the stream starts to display immediately after the head of the object is
copied to the memory buffer, this is very small when compared to the start-up
latency in the staging method or the normal pipelining method. Thus, it hides
the start-up latency by keeping the head of the object resident on disks.

Buffer.Replacement.Policies

There are three buffer replacement policies available for the space efficient
pipelining method (Wang et al., 1996). They are:

• The basic policy
• The shrinking buffer policy
• The space stealing policy

The basic policy uses the largest circular buffer until display finishes. It reuses
the circular buffer to store the tail part of the objects. The shrinking buffer
policy reduces the circular buffer size after a slice is displayed. It will use
the buffer space more efficiently. This is particularly useful when the buffer
constraint is tight.

Space Efficient Pipelining 297

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

While the storage system is retrieving the ith slice from and storing the (i+1)th
slice, Si+1, to the circular disk buffer, the circular disk buffer contains the ith
and the (i+1)th slices, that is Si and Si+1. If the ith slice, Si, and the (i+1)th
slice, Si+1, are stored on the circular disk buffer, the size of the circular disk
buffer is

= Xi + Xi+1
= ρiX0 + ρi+1X0
≈ ρi(1 + ρ)(1 – ρ)X
≈ ρi(1 – ρ2)X (20.6)

The space stealing policy uses the space containing the head part of the object
as part of the circular buffer to reduce the space requirement. Since the head
part of the object is not required when the tail part is being displayed, this
policy can significantly reduce the circular disk buffer space requirement.
As the size of the first slice is larger than the size of all other slices when
the production consumption ratio is less than or equal to 1, the circular disk
buffer is the largest when the second slice is being retrieved from the tape
or CD. Thus, the size of the circular disk buffer is

= X1
= ρX0
≈ ρ(1 – ρ)X (20.7)

Thus, the total size of object on the resident disk and the circular disk buffer
is

= X0 + X1
≈ (1 – ρ2)X (20.8)

Application.Note:.Since.the.storage.space.containing.the.head.part.is.modi-
fied, the head part should be restored after the entire object is displayed. Thus,
the.space.stealing.policy.will.increase.the.workload.in.retrieving.objects.from.
hierarchical.storage.systems.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.Summary

The space efficient pipelining method is designed for pipelining objects from
low bandwidth storage devices for display. It retrieves data at a rate lower than
the data consumption rate. It keeps the front part of objects resident on disk
cache to start a new stream at disk latency. It uses the disk space efficiently
to handle more streams.
The basic policy reuses the circular buffer to store the later slices of the objects.
Thus, the circular disk buffer only contains the second and the third slices.
The shrinking buffer policy reduces the circular buffer size after a slice is
displayed. It is particularly useful when the circular disk buffer constraint is
tight. The space stealing policy reuses the storage space containing the head
of the object as part of the circular buffer. However, the head of the object
should be restored after the object is displayed and this leads to increased
workloads.

References

Wang, J. Z., Hua, K. A., & Young, H. C. (1996). SEP: SEP: A space efficient
pipelining technique for managing disk buffers in multimedia servers.
In Proceedings.of.IEEE.Multimedia’96 (pp. 598-607).

Segmented Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XXI

Segmented.Pipelining

Introduction

The robotic tape library and optical jukebox provide huge and cheap capacity
for the storage of multimedia objects. The stored objects may be retrieved
using staging, time slicing, or pipelining. The staging method retrieves the
whole objects to the staging buffers prior to consumption at the cost of high
start-up latency. The time slice method reduces the start-up latency at the cost
of heavy switching overheads. The pipelining methods aim at minimizing
the start-up latency.
In the normal pipelining method, the sizes of the slices are minimized to
maximize the overlapping between the displaying time and the retrieval
time of the slices. In space efficient pipelining methods, the buffer size in
accessing the slices is minimized. We have already described the normal
pipelining and the space efficient pipelining methods in the two previous

�00 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

chapters. The segmented pipelining method to reduce the latency in serving
interactive requests is presented in this chapter.
Multimedia objects are usually displayed from the beginning to the end in
video on demand systems. Interactive video-on-demand systems support
VCR-like functions, including fast forward, rewind, pause, and resume func-
tions. Large video systems store many objects. The video systems should
allow some searching to allow users find the desired objects. When searching
is required, the video-on-demand system would need to provide browsing,
jump, keyword, and content based searching.
Unless the staging method is used, the multimedia storage system cannot
support any VCR-like operations. The segmented pipelining method is de-
signed to provide efficient retrieval of multimedia objects with supporting
of previews.
In this chapter, the segmented pipelining method is first described in the
next section. The performance of the segmented pipelining method is then
described and analyzed before this chapter is summarized.

Segmented.Pipelining

The segmented pipelining method has three objectives:

1. It supports efficient pipelining at limited disk bandwidth.
2. It supports browsing of objects by previews.
3. It supports jumping operations to start at any segments.

The segment pipelining method uses the following techniques to store and
retrieve the objects:

1. The object is divided into a number of independent logical segments.
Each segment is divided into time slices according to pipelining.

2. The first slice of every segment is stored on disks to hide the start-up
latency. The initial part of the first slice of every segment together forms
the preview files. The remaining part of the first slice of every segment
forms the preload data.

Segmented Pipelining �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

3. All other slices of every segment are stored on tertiary storage devices
and they are migrated while the object is being displayed. Each slice is
accessed from the tertiary storage devices to the disks while the previ-
ous slice is being displayed.

In the segmented pipelining method, multimedia objects are divided into
independent logical segments (Tse & Leung, 1998). Each segment can start
to display without dependence on the previous or later segments. If the object
is compressed using the MPEG compression method, the first frame should
be an I-frame. Logical segments are logical divisions of a video. Two logical
segments have different logical meanings such that each logical segment ex-
presses a different meaning to the users. For example, a logical segment may
indicate a camera shot or a scene. The breaking points are suitable positions
to start viewing a video without losing important information.
Each logical segment is divided into time slices as shown in Figure 21.1.
Similar to the pipelining method, the time to display a slice is longer than
the time to retrieve the next slice from the tertiary storage device. Thus, the
slices are retrieved continuously from the tertiary storage device when the
stream is displaying. We have changed the granularity for pipelining from
the objects to logical segments. The granularity is coarse when each object is
divided into slices for pipelining. The granularity is fine when each segment

Figure ��.�. Video Segmentation

last
slice

first logical
segment, X1

second logical
segment, X2

last logical
segment, Xm

……….

preview
data

pre-load
data

...X1,2 X1,3 X1,n

...X2,2 X2,3 X2,n

...Xm,2 Xm,3 Xm,n

first
slice

third
slice

second
slice

Disk

Figure.21.1..Video.segmentation

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

is divided into slices for pipelining. The change in granularity of pipelining
affects the total percentage of objects being included in the first slices.
The first slice of every segment is stored on disks to hide the start-up latency.
The first slice of each segment is further divided into an initial part and a
remaining part. The initial part of the first slice of every segment is placed
together to form the preview file of the object. This preview file is kept resi-
dent on disks to allow previewing quickly. Since the initial part of the first
slice of different segments comes from different segments of the object, the
user can view these initial parts from the disks to preview the object before
actually viewing it. If the user is satisfied that this object should be viewed,
the actual object will be pipelined from the tertiary storage devices.
The remaining part of the first slice of every segment is the preload data of
the object. These preload data may reside on the disks similar to the preview
file. When the amount of disk space is insufficient to store the first slices of
all segments, the preload data of some cold objects may be loaded on demand
from the tertiary storage devices.
All other slices of every segment should be stored on tertiary storage devices
and they are migrated while the object is being displayed. While the user is
displaying the first slice of a segment, the second slice of the same segment is
being retrieved from the tertiary storage device. The second slice should have
been retrieved before the first slice has finished displaying. The third slice
is retrieved while the second slice is being displayed. Each slice is retrieved
while the previous slice of the same segment is being displayed.

Analysis.of.Segmented.Pipelining

We shall find the amount of disk space required to store the first slice of all
segments. We shall consider two different conditions and one approximation
to find the disk space requirement:

1. The disk bandwidth is unlimited or it would not put any constraint on
the segmentation.

2. The disk bandwidth is limited and it affects the number of slices per
segments.

3. The total size of the first slice in all segments is found by approximation.

Segmented Pipelining �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Afterwards, the reposition latency to serve jumping requests is found.
In these analyses, we use these notations. Let ω be the exchange time, α be
the reposition time, and γ be the tape transfer rate of tertiary storage device.
An object of size X is divided into m segments such that the size of the ith
segment is Xi, for i = 1, 2, … , m. Let δ be the data consumption rate and ρ
be the production consumption ratio of the object. The ith segment is divided
into n slices such that Xi,j is the size of the jth slice of the ith segment.

Unlimited.Disk.Bandwidth

In the first condition, the preload data of the first slice reside on the disks with
sufficient bandwidth to deliver the object without any bandwidth constraints
and the logical segments can be as long as possible. The size of the slices
can easily be found below.
Since the segment is pipelined from the tertiary storage devices, we apply
equation (19.17) to find the size of the first slice as

Xi,1 ≥ Xi(1 – ρ) + ρ (21.1)

The size of the jth slice of the ith segment can be found as

Xi, j ≤ ρ j–1 Xi,1 (21.2)

The total disk space being consumed for the first slices of all segments is

()

()

()

,1
1 1

,1
1 1

,1
1

1

1

1

m m

i i
i i

m m

i i
i i
m

i
i

X X

X m X

X m X

= =

= =

=

 ≥ −ρ +ρ 

⇒ ≥ ρ+ −ρ

⇒ ≥ ρ+ −ρ

∑ ∑

∑ ∑

∑
 (21.3)

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Limited.Disk.Bandwidth

In the second condition, the preload data may not reside on the same disk
containing the staging buffers. When the disk bandwidth to retrieve the preload
data is insufficient or the preload data are loaded from slower disks than the
staging buffers, we need to consider the disk bandwidth in serving requests
on accessing the preload data of the first slice of segments in order to ensure
stream continuity. The first slice of the next segment is retrieved from disk
while the last slice of the previous segment is displaying.
To simplify the analysis, we assume that all segments are divided into the
same number of slices. In order to ensure that the multimedia object can be
displayed continuously, the display time of the first slice of each segment
should be longer than the access time of the second slice of the same seg-
ment. Since the second slice of a segment is the first slice of the segment
being accessed, the access time should include the exchange time, reposition
time, and the transfer time. Thus, we have

,1 ,2 , for i, 0 < i < m.i iX X
≥ ω+α +

δ γ
for i,.0 < i < m. (21.4)

In addition, the display time of each slice should be longer than the transfer
time of the next slice. Thus, we get

, , 1 , for 1 < j < n and 0 < i < m.i j i jX X +≥
δ γ

for 1 < j < n and 0 < i < m. (21.5)

Since the display time of the last slice of a segment is longer than the retrieval
time of the first slice of the next segment, we have

, 1,1 , for 0 < i < m.i n iX X +≥
δ β

for 0 < i < m. (21.6)

where β is the disk bandwidth. The disk bandwidth can be found as the aver-
age of data size divided by the access time.
Since the segment sizes and slice sizes can be very different, we use the mean
segment size and the mean slice size. Letting be the mean size of all logical
segments and jX be the mean size of the jth slices of segments, we have

Segmented Pipelining �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

XX
m

=
 (21.7)

and

,
1

1 m

j i j
i

X X
m =

= ∑
 (21.8)

We apply the mean average to equations (21.4) to (21.6) to get

1 2X X
≥ ω+α +

δ γ (21.9)

1 , for 1 < j < n,j jX X +≥
δ γ (21.10)

and

1nX X
≥

δ β (21.11)

When more slices are created in each segment, the pipeline method is more
efficient. The continuous display requirements however impose limitations
on the maximum number of slices per segment and the size of the slices. We
apply equation (21.10) repeatedly to get

2
1 2() ,

, for 1 < j < n.

n
n n

n j

j n

X X X

X X

−
−

−

γ γ
≤ ≤ ⋅⋅⋅ ≤
δ δ

 δ
⇒ ≥  γ  (21.12)

From equation (21.9), we have

()
1

1

n

nX X
−

 δ
⇒ ≥ ω+α δ+  γ  (21.13)

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We combine the two equations (21.12) and (21.13) above to get both the
lower and upper bounds on the first slice

()
1

1

n

n nX X X
−

 δ β
ω+α δ+ ≤ ≤ γ δ  (21.14)

Thus, we get

()
1n

n nX X
−

 δ β
ω+α δ+ ≤ γ δ  (21.15)

Since the ω, α, δ, and nX all have positive values, we get

1

1

log (1) log

log() log() 1
log() log()

n

n n

n

X X

n

n

−

−

 δ β
< γ δ 

 β δ
⇒ >  δ γ 

 β δ ⇒ > −   δ γ   
β − δ

⇒ < +
δ − γ (21.16)

We have arrived at an upper bound on the number of slices per segment. In
order to achieve the maximum pipeline efficiency, we should divide each
segment into the maximum number of slices. Since n is an integer, we may
use the floor function to get

log(/) 1
log(/)

n  β δ
= + δ γ  (21.17)

Segmented Pipelining �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

This is the maximum number of slices per segment according to the disk
bandwidth, tertiary bandwidth, and the data consumption rate. For short
logical segments, the number of slices in these short segments could be less.
For long logical segments, the number of slices is bounded by this maximum
number of slices per segment. The long segments may be handled one of
two ways below:

1. The sizes of all slices are increased proportionally.
2. The long segments are broken down into multiple short segments.

When the sizes of the slices are increased proportionally, the sizes of the
slices depend on the number of slices per segment. However, the slices could

become very large when
1n−

 β δ
−  δ γ 

 is close to zero. In such a condition,

only a few segments are created. The size of the first slice also increases
proportionally. The first slice becomes large leading to high user latency.
The data segmentation method becomes ineffective. Therefore, the pipeline
efficiency should be slightly traded off for effective data segmentation by
slightly reducing the number of slices being used.
Instead of increasing the sizes of all slices, long logical segments should be
divided into shorter segments such that the number of slices in this segment
does not exceed this maximum number of slices per segment. We shall es-
tablish the length of each segment below.
Since the size of each slice should be at least one media block, the size of
the last slice is at least one media block. Thus, we have

nX M≥ (21.18)

where M is the size of one media block.
From equation (21.5) above, we also get

�0� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

, , 1

2

, , 1 , 2 ,

,

, for 1 < j < n and 0 < i < m,

... , for 1 < j < n and 0 < i < m,

, for 1 < j < n and 0 < i < m.

i j i j

n j

i j i j i j i n

n j

i j

X X

X X X X

X M

+

−

+ +

−

≥
δ γ

     δ δ δ
⇒ ≥ ≥ ≥ ≥     γ γ γ     

 δ
⇒ ≥  γ 
 (21.19)

In particular, when j = 2,

2

,2 , i, 0 < i < m.
n

iX M
−

 δ
≥  γ  (21.20)

From Equation (21.4), we get

()

,1 ,2

2
,1

1

,1

, i, 0 < i < m,

1 , i, 0 < i < m,

, i, 0 < i < m,

i i

n
i

n

i

X X

X
M

X M

−

−

≥ ω+α +
δ γ

 δ
⇒ ≥ ω+α +  δ γ γ 

 δ
⇒ ≥ ω+α δ+  γ  (21.21)

We sum over all values of j from 1 to n and we get

()

()

()

,
1 1

1 2

,
1

, for 0 < i < m,

... 1 , for 0 < i < m,

1
, for 0 < i < m.

1

n jn n

i j
j j

n nn

i j
j

n

i

X M

X M

X M

−

= =

− −

=

 δ
≥ ω+α δ+  γ 

    δ δ
⇒ ≥ ω+α δ+ + + +    γ γ     

 δ
− γ ⇒ ≥ ω+α δ+

 δ
− γ 

∑ ∑

∑

Segmented Pipelining �0�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

()

()

()

,
1 1

1 2

,
1

, for 0 < i < m,

... 1 , for 0 < i < m,

1
, for 0 < i < m.

1

n jn n

i j
j j

n nn

i j
j

n

i

X M

X M

X M

−

= =

− −

=

 δ
≥ ω+α δ+  γ 

    δ δ
⇒ ≥ ω+α δ+ + + +    γ γ     

 δ
− γ ⇒ ≥ ω+α δ+

 δ
− γ 

∑ ∑

∑

 (21.22)

The size of the ith segment that has the maximum number of slices per seg-
ment is

()

() ()
()1

1 1
, for 0 < i < m,

1 1

1
, for 0 < i < m,

1

n

i

n

i n

X M

X M−

 
− ρ ≥ ω+α δ+

 
− ρ 

−ρ
⇒ ≥ ω+α δ+

ρ −ρ (21.23)

A logical segment whose length is equal to this lower bound will optimize
the pipelining efficiency. The slices are delivered with the maximum overlap-
ping and the first slice is at its minimum size. Therefore, the logical segments
are classified as long segments or short segments depending on whether its
length exceeds

() ()
()1

1
1

n

n M−

−ρ
ω+α δ+

ρ −ρ (21.24)

Long logical segments can be split into shorter segments of this length so that
each segment can have the maximum number of slices and these segments
can be pipelined at the highest efficiency.
If we divide all segments longer than this length into shorter segments, then
all the segments have an upper bound on their segment length. In addition,
the average segment length also has an upper bound as

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

() ()
()1

1
1

n

nX M−

−ρ
≤ ω+α δ+

ρ −ρ (21.25)

where X is the mean segment length of the object. The object should be
divided into a minimum number of segments such that

() ()
()1

1
1

n

nmX m M−

 −ρ
 ≤ ω+α δ+

ρ −ρ   (21.26)

() ()
()1

1
1

n

nX m M−

 −ρ
 ⇒ ≤ ω+α δ+

ρ −ρ   (21.27)

() ()
()1

1
1

n

n

Xm

M−

⇒ ≥
 −ρ
 ω+α δ+

ρ −ρ   (21.28)

Therefore, each object should be split into the minimum number of segments
as shown above.
Since the first slice of all segments should reside on disks permanently, the
total size of first slice of all segments can be found as

()

,1
1

1

,1
1 1

m

i
i

nm m

i
i i

X

X M

=

−

= =

  δ
⇒ ≥ ω+α δ+  γ    

∑

∑ ∑

()
1

,1
1

nm

i
i

X m M
−

=

  δ
⇒ ≥ ω+α δ+  γ    
∑

We substitute the lower bound of m to get

Segmented Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

()

() ()
()

()

() ()
()

() ()
() () ()

1

,1
1

1

1

,1
1

1

1

,1 1
1

1
1

1
1

1

1 1

n

m

i n
i

n

nm

i n
i

n

nm

i n n
i

X M

X

M

MX
X

M

X M
X

M

−

=

−

−

=

−

−

−
=

  δ
ω+α δ+  γ   ≥

 −ρ
 ω+α δ+

ρ −ρ  
 
ω+α δ+ ρ ⇒ ≥

 −ρ
 ω+α δ+

ρ −ρ  
 −ρ ω+α δρ + ⇒ ≥

 ω+α δρ −ρ + −ρ 

∑

∑

∑
 (21.29)

Therefore, we have found the amount of disk space required to store the first
slice of all segments.

Approximation.of.Disk.Space

In the third approach, we find the approximate amount of disk space required.
When the number of segments is not many, approximately the same percent-
age of the object is considered as the first slice of the object. We wish to show
that the total size of all first slices is increased by less than m data blocks
when m segments are created.
Since the segment is pipelined from the tertiary storage device, we apply
equation (19.14) to get

(),1 ,1 , for i = 1, 2, & , m. i i i nX X X≥ −ρ +ρ for i = 1, 2, &, m. (21.30)

Summing over all values of i, we get

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

()

()

,1 ,
1 1

,1 ,
1 1 1

1

1
i

m m

i i i n
i i

m m m

i i i n
i i i

X X X

X X X

= =

= = =

 ≥ −ρ +ρ 

⇒ ≥ −ρ +ρ

∑ ∑

∑ ∑ ∑
 (21.31)

Since the last slice of each segment should not be smaller than one media
data block, we have

()

()

,1
1 1

,1
1

1 * *

1 * *

m m

i i
i i

m

i
i

X X m M

X X m M

= =

=

≥ −ρ +ρ

⇔ ≥ −ρ +ρ

∑ ∑

∑
 (21.32)

Therefore, the difference between the lower bounds in the total size of the
first slices due to the change in granularity is

()1 * *m M= − ρ (21.33)

Since the production consumption ratio, ρ, is less than 1, the total size of the
first slices due to the change in granularity is

()1 *m M< − (21.34)

Therefore, the additional number of data blocks in the total size of all first
slices is less than one data block for every new segment. This cost is low
when the number of logical segments is small. For example, if the production
consumption ratio, ρ, of an object in a tertiary storage device is equal to 0.8
and the size of the object is X, then the size of the first slice is approximately
equal to

X*(1 - 0.8)
= 0.2X.

Segmented Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

If the object is divided into four segments such that each segment is one
quarter of the object, the size of each segment is equal to X/4. Thus, the size
of each segment is

()* 1 0.8
4
X

= −

= 0.05 *X.

As there are four segments, the total size of all first slices is equal to

=4 * 0.05 * X
=0.2X.

Thus, approximately the same percentage of the object is divided as the first
slice of the object. Therefore, the change in granularity of pipelining only
slightly affects the percentage of an object being included in its first slice.

Reposition.Latency

While the stream is displaying, the user may wish to change the current
displaying position. The user issues a jump request and the stream starts to
access the segment of the object at the new position. The storage system
serves these requests and accesses the object at the new position. The seg-
mented pipelining method can serve these interactive requests efficiently. We
find the amount of necessary data to retrieve from tertiary storage device for
pipelining and the start-up latency to wait prior to display below. We shall
find the amount of necessary data under three conditions:

1. The new displaying position is at the beginning of a segment.
2. The new displaying position is inside the first slice of a segment.
3. The new displaying position is within the second to the last slice of a

segment.

Afterwards, the reposition latency is found.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

If the new displaying position is at the beginning of a segment, the first slice
of this segment can be accessed immediately from the disks and subsequent
slices can be accessed from the tertiary storage devices. Thus, the reposition
latency is the same as disk latency.
If the new displaying position is inside the first slice of a segment, the stream
waits for a short time to retrieve some data from the tertiary storage devices
before responding to the stream request. Let Y be the new displaying position
from the beginning of the segment in number of data blocks.
The size of the ith segment from the new displaying position to the end of
the segment is found as

= Xi – Y (21.35)

The minimum amount of data to start pipelining

= (1 - ρ) (Xi - Y) (21.36)

As the first slice is already residing on the disks, then the amount of data
already available on disks from the new displaying position is

= (Xi,1 - Y)
= (1 - ρ) Xi – Y (21.37)

Thus, the amount of extra data to be retrieved from tertiary storage devices
prior to displaying is

= (1 - ρ) (Xi - Y) – ((1 - ρ) Xi – Y)
= -Y(1 - ρ) + Y
= ρY (21.38)

After retrieving ρY blocks of the second to the last slices from the tertiary
storage device, there are already enough data on the disks to pipeline the
segment.
If the new position is inside other slices of the segment, the minimum amount
of data to start pipelining is

Segmented Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

= (1 - ρ) (Xi - Y) (21.39)

This is also the amount of data blocks that should be retrieved from tertiary
storage devices prior to displaying. We can simply substitute the segment size
by the object size to find the necessary amount of data in the normal pipelin-
ing method. In all three cases, the amount of necessary data in segmented
pipelining is less than that in the normal pipelining method.
We have found the necessary amount of data that should be retrieved for
pipelining. The reposition latency is the just start-up latency to retrieve the
required amount of data for pipelining prior to display. As the required media
units are already loaded to the drive, the exchange operation is not neces-
sary. Let Z be the amount of data blocks to be retrieved for pipelining prior
to displaying. Thus, the reposition latency is

Z
= α +

γ (21.40)

Therefore, we have found the reposition latency that depends on the position
of the jumping destination inside the segment. Due to less data being retrieved,
the reposition latency in the segmented pipelining method is much smaller
than the reposition latency in the normal pipelining method.

Performance.of.Segmented.Pipelining

The reposition latency is the start-up latency to change the current view-
ing position of a stream. When the current viewing position of a stream
is changed, the normal pipelining method needs to start a new stream by
considering the data from the new destination displaying position to the end
of the original object as a new object. The new first slice is then calculated
to find the amount of data being retrieved prior to displaying. However, the
start-up latency cannot be hidden since all the data that need to be displayed
are not accessed from disks. If the new jump to position is near the end of
the object, the start-up latency is low. If the new jump to position is near the
beginning of the object, the start-up latency is high.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In segmented pipelining, the performance is much better. Since the object is
already divided into segments and the first slice of each segment is resident
on the disk, the later part of object also has some data resident on disks. Any
segments can be displayed in a pipeline manner. Thus, the reposition latency
is consistently low.
The reposition latency of the multimedia object is much lower than the
reposition latency in normal pipelining. The reposition latency is compared
against the latency in fast forward function using a two phase service model.
The two phase service model is a method to deliver data over low bandwidth
networks. It also supports some VCR-like functions. The reposition latency
using the segmented pipelining method is consistently lower than the other
method. Therefore, the segmented pipelining method supports interactive
multimedia streams from tertiary storage devices efficiently.
The amount of disk space required in segmented pipelining has been com-
pared against the size of the first slice in the normal pipelining method. The
size of the head in space efficient pipelining is the same as the size of the first
slice in the pipelining method. The amount of disk space required decreases
with an increase in the tertiary bandwidth increases. This is because more
data are included in the first slice when the data consumption ratio is low.
The segmented pipelining method uses a small amount of extra disk space
to support efficient interactive functions.

Discussion

The segmented pipelining method has four main advantages:

1. It supports efficient pipelining and hides the start-up latency.
2. It efficiently supports the jumping operations to start at any segments.
3. It provides browsing of objects from the preview data on disks.
4. The amount of preload data on disks can be adjusted according to the

availability of disk space.

First, the segmented pipelining method supports efficient pipelining. After
dividing the object into segments, the first slice of the segments is stored on

Segmented Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

disks to hide the start-up latency and to support stream continuity. The entire
object is thus pipelined from the tertiary storage devices at disk latency.
Second, the segmented pipelining method overcomes one of the main limita-
tions of tertiary storage devices. It supports the interactive functions from the
tertiary storage devices at low latency. When the user jumps to the starting
position of any segments, the storage system can immediately reposition
the stream to start displaying. Thus, the latency is very low. The user can
also jump to any positions with shorter latency than the normal pipelining
method. In addition, the reposition latency stays consistently at a very low
level under different tertiary bandwidth conditions.
Third, the segmented pipelining method separates the beginning part of all
logical segment to form the preview file. The preview file allows the user to
browse the objects without accessing any data from the low bandwidth terti-
ary storage devices. This helps to improve the user satisfaction on searching
the objects for display.
Fourth, when the amount of disk space is insufficient to store the first slices
of all segments, the preload data some cold objects may be loaded on demand
from the tertiary storage devices. The preload data of the hotter objects still
reside on disks and the preload data of the colder objects are loaded on de-
mand from the tertiary storage devices. The actual number of objects with
preload data resident on disks would depend on the storage space available
on the disks. This allows flexibility in controlling the amount of usage of
the disk space for resident data and the consumption of tertiary bandwidth
in preloading. If the preload data of an object is loaded on demand from the
tertiary storage devices, then they can be preloaded while the user is viewing
the preview file. This leads to two outcomes. First, more tertiary bandwidth
is consumed in preloading. Second, the start-up latency and response time of
streams that access cold objects are increased. For both metrics, the system
would perform better in selecting the cold objects as the objects that are
loaded on demand.
The disadvantage of the segmented pipelining method is that more disk space
is required. Apart from hiding the start-up latency, the disk space is used to
support the stream continuity. Since we have split the objects into segments,
more disk space is required since the total length for overlapping is reduced.
Therefore, the pipelining efficiency is slightly lowered.
The staging method moves the entire object before using it. The entire object
is available, but the start-up latency to start displaying the object is very long.
When the start-up latency is tolerable and the staging disk space is available,

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the staging method is the most flexible that it supports any access patterns
on the staged object.
The time slicing method moves only a fraction of the object before displaying
it. The start-up latency is reduced but extra switching overheads are required.
When the tertiary storage devices have high bandwidth and the tertiary stor-
age devices are not too busy, the reduction in start-up latency gives better
satisfactions to the waiting users.
The pipelining method moves only the sufficiently large part of the object
prior to display. The start-up latency is minimized when only the retrieved
portion needs to be consumed. This is particularly useful when the multimedia
system only displays streams from the beginning to the end.
The space efficient pipelining method retrieves data at a rate lower than the
data consumption rate. It keeps the front part of objects resident on disk to start
a new stream at low latency. It uses the disk space efficiently to handle more
streams. This method is desirable when the disk storage space is tight.
The segmented pipelining method supports efficient pipelining, supports
interactive user requests, and provides object previews. When the multi-
media system needs to provide some interactive VCR-like operations and
object search function, the segmented pipelining is the most desirable data
migration method.

Chapter.Summary

The segmented pipelining method divides objects into segments and slices so
that the object can be pipelined from the hierarchical storage system. We have
analyzed the method on disk space requirement and the reposition latency.
The segmented pipelining method uses small extra disk space to support object
previews and efficient interactive functions. It can offer extra flexibility in
controlling the amount of disk space usage by adjusting the storage location
of the preload data. Therefore, the segmented pipelining is an efficient and
flexible data migration method for the multimedia objects on hierarchical
storage systems.

Segmented Pipelining ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

References

Tse, P. K. C., & Leung, C. H. C. (1998). A low latency hierarchical storage
organization for multimedia data retrieval. In Proceedings.of.the IAPR.
International.Workshop.on.Multimedia.Information.Analysis.and.Re-
trieval.(LNCS 1464, pp. 181-194)..Springer-Verlag.

In hierarchical storage systems, data migration is the process of moving data
from tertiary storage devices to secondary storage devices. There are three
approaches to migrate multimedia data objects across the storage levels.
These methods are:

1. Staging,
2. Time slicing
3. Pipelining.

Three pipelining methods are used to reduce the start-up latency and staging
buffer size. They include:

Summary.to.Section.IV

Data Migration

1. Normal pipelining
2. Space efficient pipelining
3. Segmented pipelining

The staging method is simple. Using the staging method, the entire object is
available after staging. The program can freely access any part of the required
object after waiting for the time required to migrate the object to the staging
buffers. The staging method is also flexible. The access time from tertiary
storage is completely separated. This is suitable for any type of data on any
tertiary storage systems. Unfortunately, the time spent in waiting for the
stage one to complete can be very long. This leads to a very slow response
to even the simplest request. Since the entire object is stored on the stag-
ing buffers during the complete consumption time period, this wastes disk
space for a considerably long time. In addition, the entire object is written
to and read back from the disks, it may unnecessarily waste disk bandwidth
in migrating unused data.
The time slicing method accesses objects at the unit of slices instead of
objects. It reduces the start-up latency in accessing objects from the tertiary
storage devices. Streams can start to respond at an earlier time. It also saves
tape drive bandwidth if some streams are canceled when objects are canceled
in the middle of consumption. Unfortunately, extra tape switching overheads
are incurred unless all concurrent objects reside on the same tape. The service
time in accessing objects is however increased.
The normal pipelining method has been explained in this chapter. The nor-
mal pipelining method finds the minimum fraction of the object before the
stream can start to display it. It minimizes the start-up latency for the tertiary
storage devices whose data transfer rate is lower than the data consumption
rate of the objects. The formula to find minimum size of the first slices is
explained in this chapter. We have also described the start-up latency in using
the normal pipelining method.
The space efficient pipelining method is designed for pipelining objects from
low bandwidth storage devices for display. It retrieves data at a rate lower than
the data consumption rate. It keeps the front part of objects resident on disk
cache to start a new stream at disk latency. It uses the disk space efficiently
to handle more streams.
The basic policy reuses the circular buffer to store the later slices of the objects.
Thus, the circular disk buffer only contains the second and the third slices.

The shrinking buffer policy reduces the circular buffer size after a slice is
displayed. It is particularly useful when the circular disk buffer constraint is
tight. The space stealing policy reuses the storage space containing the head
of the object as part of the circular buffer. However, the head of the object
should be restored after the object is displayed and this leads to increased
workloads.
The segmented pipelining method divides objects into segments and slices
so that the object can be pipelined from the hierarchical storage system.
We have analysed the method on disk space requirement and the reposition
latency. The segmented pipelining method uses small extra disk space to
support object previews and efficient interactive functions. It can offer extra
flexibility in controlling the amount of disk space usage by adjusting the
storage location of the preload data. Therefore, the segmented pipelining is
an efficient and flexible data migration method for the multimedia objects
on hierarchical storage systems.

Section.V

Cache Replacement Policy

Introduction.

In the previous chapters of this book, we have focused on the efficient meth-
ods to store and retrieve multimedia objects. In the last part of this book,
we describe how to deliver multimedia objects from the storage systems
efficiently.
On the Internet, many multimedia objects are stored in the content servers.
The clients are located over a wide area network far from the content server.
When clients access multimedia objects from a content server, the content
server must have sufficient disk and network to deliver the objects to the cli-
ents. Otherwise, it rejects the requests from the new clients. Thus, the popular
content server can easily become the bottleneck in delivering multimedia
objects. Therefore, server and network workloads are important concerns in
designing multimedia storage systems over the Internet.

Multimedia objects, like other traditional data files and Web pages, may be
transferred across networks, such as the Internet. In order to provide efficient
delivery of data across the networks, some data can be stored in the middle
of the network. When requests for the same object have been received, these
data can be used to satisfy the requests at the middle of the network instead
of forwarding the request any further. This method to satisfy requests with
previously accessed data is called caching.
Since caching needs to consume a certain amount of storage space, the cache
performance is affected by the size of the cache memory. If the storage space
is large, more objects can be stored on the cache storage and the probability
of finding an object in the cache is thus high. The cache performs better. If
the storage space is limited, only a few objects can be stored in the cache
storage, and the probability of finding an object in the cache is low. As a
result, the cache performance becomes low. Therefore, the cache size influ-
ences the cache performance.
Since caching stores some previously fetched objects on the storage devices,
the presence of an object exists on the storage devices significantly affects
the efficiency of the caching. When a new object is being accessed, the cache
admission policy decides whether an accessed object should be stored onto
the cache devices.
Since the cache performance increases monotonically with the number of
objects in the cache, the cache storage space is often full in order to keep
the most number of objects in the cache. When an accessed object needs to
be stored and the cache space is full, the cache replacement policy decides
which object should be deleted from the cache storage to release space. The
choice of whether an object is kept in the cache is determined by the cache
replacement policy. Thus, the cache replacement policy significantly affects
the efficiency of caching.
The cache replacement policy can be divided into memory caching and stream
dependent caching. Memory caching uses the memory storage as cache of the
multimedia objects. We shall describe the memory caching policies in Chapter
XXII. Since multimedia objects are accessed as streams, it is useful to use the
cache as a temporary storage for buffering data among streams that access the
same object with a small difference in accessing time. In Chapter XXIII, we
shall present the stream dependent caching policies. When multiple proxy serv-
ers are available, they may cooperate to work as a large cache storage space for
multimedia objects. Cooperative Web caching is described in Chapter XXIV.

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XXII

Memory.Caching.Methods

Introduction

The objective of data caching and object caching is to improve the perform-
ance in accessing multimedia objects from their storage. An efficient cache
storage method can have many benefits:
First, caching can increase server capacity in serving more streams. Since the
cache may satisfy some requests before they arrive at the server, the server
will receive fewer requests to its data. Thus, the workload on the data server
can be reduced. As a result, the server can serve more streams.
Second, it can reduce access latency when a recently accessed object is be-
ing accessed again. When an object is accessed again, the first copy of the
accessed object in the cache can already satisfy the request. Since the cache
can often access objects with smaller delay, the latency on accessing the
objects is thus smaller.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Third, caching can also reduce network bandwidth need when a request can
be served locally by the local cache. If the cache is on the hard disk within
local area network, the request may be served without sending the requests
outside the local area network. Thus, the network traffic may be reduced.
Fourth, caching may be used to balance the workload among cache devices
by directing the request to different cache devices evenly. If the cache servers
containing the same cache copies have different workloads, the request can
be directed to the server with the lightest workload. Therefore, the workload
among the cache devices can be balanced.
In order to achieve memory caching, there must be at least two or more dif-
ferent storage levels. Each storage level consists of storage devices that can
store data for later retrievals. The local cache storage level is closer to the
client or the source of request. The data at this cache level can be accessed
faster or with lower delay. The remote cache storage level is closer to the
destination or the source of data objects. It takes longer time to access data
from this storage level than the local cache level.
When a request for data is being served, the local cache is first searched to
find if a copy of the required data object exists. If such a data copy can be
found, the validity of the data copy is then checked. If the data copy is valid,
then the condition is considered a hit. The data copy in the local cache level
is then delivered to satisfy the request.
If the data copy cannot be found or the data copy in the local cache is invalid,
then a cache miss occurs. The request is then forwarded to the remote stor-
age level to be served. The request is then served at the remote level and a
data copy is returned; the data copy is then stored onto the local cache level
according to the cache admission policy.

Figure ��.�. Memory Caching is achieved by two copies
of storage levels.

A B C D

Faster/local cache level
Slow/remote cache level

A

Figure.22.1..Memory.caching.is.achieved.by.two.copies.of.storage.levels

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

There are two types of cache misses. The compulsory miss occurs for the first
retrieval of objects. The compulsory misses occur independently of the cache
replacement policy. The capacity miss occurs when an object is replaced from
the cache before it is accessed again. Efficient cache replacement methods
attempt to minimize the capacity misses.
When more requests are served at the local cache level, the storage system
can serve requests at a faster rate. As a result, the performance of the stor-
age system is higher. If fewer requests are served at the local cache level,
the storage system serves requests slowly and the storage system performs
poorly. In addition, more requests will go through the network to the remote
storage level. This results in an increase in workload at the network and the
remote storage servers.
When there are more than two storage levels and each storage level performs
differently, the remote cache level can be further divided into another pair of
cache level and storage level. In this way, the remote storage level is called
the parent of the local cache level. A tree of parent and child cache hierarchy
can thus be built.
To compare the efficiency of different cache replacement policies, the per-
formance of caching is usually measured using the metrics called hit ratio
or byte hit ratio. The hit ratio is defined as

=
the number of requests being served at the cache level

the number of requests being served

Similarly, the byte hit ratio is defined as

=
the number of bytes being accessed at the cache level

the number of bytes being accessed

At the local cache, the cache replacement policy decides which object should
be deleted to release space for the newly accessed objects. The objective of
an efficient cache replacement policy is to achieve the highest byte hit ratio
or hit ratio for the local cache.
Although different cache replacement methods may have different ways to
achieve its highest efficiency (Hosseini-Khayat, 1998), a general algorithm

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

to achieve an efficient cache replacement method using different priority
value is described below. Each cache object/block is assigned a cache value
to indicate its priority to be kept in the cache. This cache value can often be
specified as the result of a cache replacement function on the object/block.
When space is needed, the cache replacement algorithm (Tse & So, 2003)
will perform the following:

1. Find the objects/data blocks with the lowest cache priority value.
2. Delete the found object with the lowest priority value.
3. Repeat step 1 and step 2 until enough space is released.
4. Insert the new object into the cache.
5. Update the cache values of all the objects in the cache.

We shall describe different cache replacement methods in the following
sections according to the criteria for priority value. The least recently used
(LRU) method section considers the period of time when the object is previ-
ously accessed. The object access pattern and the least frequently used (LFU)
method are then described. Afterwards, the LRU-min section considers the
size of objects. The size and access latency are then considered in the greedy
dual-size (GD-size) method and the least unified value (LUV) method sec-
tions, respectively. Last, all the characteristics are considered by the mix
method section.

The.Least.Recently.Used.Method

It has been commonly known that after a data object or a stored program is
accessed, the probability that the same object or the same program is being
accessed again within a short time is high. Therefore, the period of time that
an object has been accessed is being considered to increase the efficiency of
the cache performance.
The recency of an object is defined as the period of time from which an object
has been accessed to the present time. When an object has been recently ac-
cessed, its recency is said to be high. When an object has not been accessed
for a long time, its recency is then low.

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The least recently used method removes the least recently accessed object
from the cache first. It stores a timestamp for each data object. The timestamp
shows the time when the object was last accessed. Thus, it uses the recency
history of the object as the cache value.
A simple cache replacement function for LRU is

CVLRU)(
1

iTT −
= ,

where T is the current time and Ti is the timestamp of object i (Aggarwal &
Yu, 1997).
The oldest object, the least recently used one, will have the lowest value and
will be deleted by the cache replacement method to release space. The LRU
policy achieves good performance for the cache replacement algorithm. The
achieved hit ratio is good for caching memory blocks containing programs
files and data object files.
The LRU method is also simple. It only needs to store and compare the
timestamps of the accessed objects in the cache. The time complexity to
calculate the cache values of all objects in the cache is O(n). That is, the
amount of time to find calculate the cache values of objects increases linearly
with the number of objects, n. Therefore, the LRU method is commonly
used traditional cache replacement functions to calculate the cache value of
objects and stored programs. However, the LRU method only considers the
recency history. Since the least recently accessed hot object may not be the
most unlikely to be accessed, the LRU method may not be able to perform
well when the cache size is small. Also, the LRU method does not consider
other characteristics in accessing the objects. The latency time to recover
the deleted objects, the past access frequency, and the size of objects should
be considered for multimedia objects in order to achieve efficient cache
storage system. We shall describe how other cache replacement methods
can improve the efficiency of cache storage for multimedia objects in the
following sections.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Object.Access.Patterns

Since the access patterns of requests can significantly affect the probability
of which object will be accessed. In order to achieve higher cache efficiency,
we should investigate the access pattern of multimedia objects.
Traditional data files are more often being read than being modified. Mul-
timedia objects are even more often read than modified. Thus, the number
of requests reading multimedia objects is much more than the number of
requests writing or updating multimedia objects.
Each multimedia object has a certain probability of being accessed. When
an object is popular, it is frequently accessed. Its access temperature is high.
It is called a hot object. When an object is unpopular, it is rarely accessed.
Its access temperature is low. It is called a cold object.
The user access patterns of video rental stores have been investigated. It was
found that most of the accesses are on a few hot objects. The access pattern
of video tapes in the rental stores can be described using a Zipf-like distri-
bution. In the Zipf-like distribution, the objects are arranged in the order of
their access popularity. The probability that the ith popular object is accessed
can be modeled as:

Prob(ith popular object is accessed) c
iα

= , where 0 ≤ α ≤ 1.

The Zipf-like distribution is a family of probability distributions (Figure
22.2). The parameter α determines the characteristics of each distribution.
The parameter c can be found using ∑Prob() = 1.
When α =0, the access probability of all the objects are the same. The access
probabilities are evenly distributed.
When α =1, the distribution becomes a Zipf distribution. The access prob-
ability of the ith object is

Prob(ith popular object is accessed)
i
c

= .

From observations on the video rental store, it is found that the access pat-
tern follows a Zipf-like distribution where α =0.729. In addition, objects
popularity varies over time. Variations in the request rate can be observed

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

on a daily basis and weekly basis. A simple time distribution model may be
used to find the arrival rate of the mth object as

0() sin()m m mt p p A tλ = λ + γ

where λ0 is the daily average arrival rate, pm is the popularity of mth object,
and A is the amplitude, and γ = 2π/T. The access pattern of 10 objects over
a seven-day period is shown in Figure 22.3.
In addition, different types of multimedia objects have different prime time.
This is due to the fact that customers access different objects at different time
of the day. For example, daily prime time is 7 pm to 10 pm for movies on
demand. The daily prime time for cartoon series is between 11am to 5pm.
In addition, the popularity of multimedia objects changes over time. The
popularity of multimedia objects may increase rapidly at first and then it
drops slowly over time. Some new objects may become the hottest object in
two weeks and then its temperature reduces in the following weeks.
When all the above characteristics of multimedia object accesses are consid-
ered, the long term behaviour of accessing an object follows an exponential
curve plus a random effect.

Figure. 22.2.. Access. pattern. of. multimedia. objects. follows. a. Zipf-like.
distribution

Zipf-like Distributions
for �00 objects

0%
�%
�%
�%
�%

�0%
��%
��%
��%
��%
�0%

0 �0 �0 �0 �0 �00
Objects in order of popularity

Access
Probability

Alpha=0 Alpha=0.��� Alpha=�

Figure ��.�. Access pattern of multimedia objects
follows a Zipf-like distribution

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The.Least.Frequently.Used.Method

As described in the previous section, multimedia objects are accessed with
different popularity at different times. Since the access temperature of ob-
jects varies slowly over time, the object temperature can be used to raise
the efficiency of the cache replacement methods. Thus, it is reasonable to
assume that the past access frequency provides a good prediction for future
accesses.
The least frequently used method uses the frequency of past object accesses
to predict the future accesses. The objective of the method is to keep the
hot objects in the local cache and remove the coldest objects when space is
needed.
Thus, the LFU method uses the access frequency of the data objects as the
cache value of the object. The cache value of an object can be defined as
equal to the access frequency of the object. The cache value of an object i is
defined in the LFU method as

CVLFU = Ni,

where Ni is the number of past accesses on the object i. Thus, hot objects
have higher cache value than the cold objects. The coldest objects which is
accessed the least number of times will be deleted from the cache to release
space.

Figure.22.3..Arrival.rates.of.10.objects.over.a.seven-day.period

Objects' Arrival Rate over Time

0.00
0.0�
0.�0
0.��
0.�0
0.��
0.�0
0.��
0.�0
0.��
0.�0

0 � � � � � � �
Day of week

arrival rate

Object �
Object �
Object �
Object �
Object �
Object �
Object �
Object �
Object �
Object �0

Figure ��.�. Access pattern of multimedia objects
follows a Zipf-like distribution

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Application.Note:.In order to find the access frequency.of.the.objects.in.the.
cache,.the.LFU.method.needs.to.keep.the.number.of.times.that.each.object.
is.being.accessed..To.calculate.the.number.of.past.accesses,.the.number.of.
accesses.of.all.the.objects.needs.to.be.kept..

The LFU method is also simple. It only needs to keep and compare the
number of past accesses for the objects. The time complexity of the search
algorithm is rather low. To find the least accessed object among n objects,
the time complexity of the algorithm is O(log2n).
The main benefit of the LFU method is that it achieves the best performance
when the access frequencies of the objects are stable and they change only
slowly over time. However, the LFU method needs to keep the number of ref-
erence of all accessed objects even when the objects are not in the cache.
The LFU method that keeps the number of accesses on all the objects is also
called the perfect-LFU method. Alternatively, if the storage system only
stores the access frequencies of the objects that are in the cache, this method
is called the in-cache-LFU method.
The in-cache-LFU method removes the number of past accesses on the object
when the object is deleted from the cache. It may reduce the access over-
heads and the amount of data being stored in order to find the coldest object.
However, this approach has two disadvantages. First, it does not accurately
reflect the number of past accesses on the objects. Second, it performs worse
than the LRU method since the access frequencies of the objects are incor-
rectly counted. The access frequencies of the uncached objects are counted
incorrectly. Thus, the in-cache-LFU method does not adjust the cache content
according to changes in access frequencies.

The.LRU-Min.Method

The LRU method is very simple to implement. Multimedia objects are how-
ever very large in size when compared with traditional data files. Only a few
large multimedia objects, or even only one object, may completely occupy
the entire cache space. Thus, it is reasonable to consider the object size in
the cache replacement policy.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Consider the situation that three objects have exactly the same access pattern
and the size of the large object is equal to the sum of the sizes of the two
smaller objects. If the cache stores the large object only, only the requests for
the large object can be served at the cache. The requests for the two smaller
objects will become cache misses.
However, if the cache stores the two smaller objects, the cache will be able to
serve more requests at the cache. Thus, the cache hit ratio is higher by storing
the smaller objects instead of the large objects. Therefore, it is desirable for
the cache replacement function to reduce the cache value of large objects.
Although the cache hit ratio is higher when the cache stores the smaller ob-
jects, the request on the large object will deliver more bytes from the cache.
Thus, the byte hit ratios of the cache are roughly the same even though the
large objects are not served.
The LRU-min method is a cache replacement method that considers the
object sizes. It is similar to the traditional LRU method. Same as the LRU
method, the LRU method uses the recency history as the cache value. The
cache value of an object is defined as

CVLRUmin)(
1

iTT −
= ,

where T is the current time and Ti is the timestamp of object i (Hoisseini-
Khayat, 2001). The LRU-min method however has a different algorithm to
find the victim object to be deleted. The algorithm is described below:

1. It sets s equal to the size of the desired free space.
2. Find the least recently accessed object whose size is larger than s.
3. If such an object is found, then delete this object.
4. Repeat Steps 2 to 3 for all the objects whose size is larger than s until

enough space is released.
5. If enough space is not freed, sets s to s/2 and repeat the procedure until

enough space has been freed.

Considering the size of objects, the LRU-min method increases the cache hit
ratio by removing large objects from the cache. Among the objects whose

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

sizes are larger than the required space, the objects with low access recency
are still chosen to be deleted.
The LRU-min method keeps many small objects in the cache. This increase
in the number of objects in the cache however has some disadvantages. First,
the cache storage space becomes fragmented over time. As the objects kept
in the cache are small, the space occupied for each object is small. It is inef-
ficient to store or retrieve objects from a fragmented storage system.
Second, the time complexity of the cache replacement algorithm becomes
high. As the algorithm repeats the process at half size to find the victim ob-
jects, the time complexity of the algorithm is O(n), where n is the number of
objects in the cache. When the number of objects in the cache increases, the
performance of the algorithm in searching for victim objects deteriorates.

The.Greedy.Dual.Size.Method

Similar to the LRU-min method, the greedy dual-size method also considers
the size of objects in the cache replacement policy. In addition, it considers
the latency cost in accessing the object from the remote storage level.
Since the objects in the same local cache level may come from different
remote storage device, the latency cost in accessing the objects from the
remote storage varies. The latency cost in accessing the object from the
remote storage level directly determines the access time of the object. Thus,
the cache performs better if it stores the objects with high access latency
instead of storing the objects with low access latency.
The greedy dual-size method considers the access latency as the cost and the
size of object in its cache value function. It also uses the recency informa-
tion to maintain the list of objects in the cache (Breslau, Cao, Fan, Phillips,
& Shenker, 1999).
In the GD-size method, the cache value of an object i is defined as

CVGDSize
i

i

S
L

= ,

where Li is the network latency cost of object i and Si is the size of object i.
The network latency cost is the delay time in accessing the object i from the
remote storage level.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Instead of setting the recency information in the cache value, the GD-size
method reduces the cache value when an object is deleted from cache and it
resets the cache value of accessed objects. Thus, the cache value of an object
achieves its highest value when it is accessed. This value gradually reduces
after the objects on the cache are modified.
When space is needed, the GD-size performs the following steps to release
space:

1. Remove the object with the smallest cache value.
2. Reduce every cached object’s value by the removed object’s value.
3. Repeat step 1 and step 2 until enough space is released.

When an object in the cache is accessed or referenced, the GD-size method

resets the object’s cache value back to its initial value, that is =
i

i

S
L

. The

advantage of the greedy dual-size method is that it maintains good cache
efficiency. It keeps many small and hot objects that are stored remotely
with high latency. It has similar disadvantage as the LRU-min method. As
it updates the cache value of all the objects in the cache when an object is
removed, the time complexity of its algorithm is O(n), where n is the number
of objects kept in the cache.

The Least Unified Value Method

Similar to the GD-size method, the least unified value method considers the
latency cost and the object size in the cache replacement function. In addition,
it considers the complete access history for the objects. The cache value of
an object i is defined in the LUV method (Bahn et al., 2002) as

CVLUV
i

ii

S
LP

= ,

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

where Li is the network latency cost of object i, Si is the size of object i, and
Pi is the estimated reference potential of object i. The estimated reference
potential, Pi, is found as

(())i j
j

P F T T= α −∑

and

xxF 5.0)(=

where 0 ≤ α ≤ 1, T is the current time, and Tj is the times when the object was
accessed. When space is needed, LUV removes the object with the smallest
cache value from the cache.
The main technical advantage of the LUV method is that it uses the complete
history of all the accesses. The trade-off is that it needs to keep the history of
all the accesses. The second advantage is that the LUV method can optimize
the performance measure according to the expected access pattern of the
objects. However, it relies on the user to tune the parameter, α, for the best
performance suitable for the realistic environment. In order to recalculate
the cache value of all the objects in cache, the time complexity of the cache
replacement algorithm using the LUV method is O(n).

The.Mix.Method

Similar to the LUV method, the mix method considers all the characteristics
of the object access patterns. It includes all the access history as parameters
in the cache value function. The cache value of an object i in the mix method
(Bahn et al., 2002) is defined as

CVmix

() ()
() ()

l n
i i

t s
i i

L N
T S

=

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

where Li is the network latency cost of object i, Ti is the last access time,
and Si is the size of object i. The parameter Ni is the number of cache hits of
object i is accessed since it has been brought into the cache. The parameters
l, n, t, and s are constants with default values l=0.1 and n = t = s = 1.
An advantage of the mix method is that it considers all the characteristics
of the object access pattern as parameters in the cache value formula. Thus,
the cache values of the objects can easily be compared to find the victim
object.

Application.Note:.In.order.to.recalculate.the.cache.value.of.the.objects.in.
cache,.the.time.complexity.of.the.cache.replacement.algorithm.in.the.mix.
method.is.O(n)..Since.the.cache.values.of.the.objects.changes.only.when.new.
requests.are.served,.the.cache.value.needs.to.be.updated.only.when.requests.
are.being.served.

Chapter.Summary

Memory cache replacement policies assign a cache value to each object
in the cache. This cache value decides the priority of keeping the object in
the cache. When space is needed to store a new object in cache, the cache
replacement function will choose the object with the lowest cache value and
delete it to release space. As a result, the objects with high cache values will
remain in the cache.
Different cache replacement policies will assign different cache values to
the objects. The traditional LRU method keeps the objects that are accessed
most recently. It is simple and easy to implement and the time complexity
is very low. All methods except the LFU method also keep the objects that
are accessed recently.
The pattern in accessing multimedia objects has been described. The access
pattern of video tapes in the rental stores can be described with a Zipf-like
distribution. The long term behaviour of accesses for an individual object
follows an exponential curve plus a random effect. The LFU, LUV, and mix
methods keep track of the object temperature and remove the coldest objects
from the cache first.

Memory Caching Methods ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Due to the large size of multimedia objects, the cache may completely be
occupied by a few objects. To maintain a good cache hit ratio, the priority
of keeping large objects in the cache is reduced. Thus, the LRU-min, GD-
size, LUV, and mix methods keep the small and recently accessed objects
in the cache.
Since multimedia objects in the same local cache level may come from remote
storage level at different distances, the latency cost in accessing the remote
storage level varies. When cache misses occur, the objects in the remote stor-
age level will be retrieved. Thus, the cache system would perform better if it
keeps more objects that take longer to access. The GD-size, LUV, and mix
methods include latency cost of objects in the cache to lower the priority of
objects that can be easily replaced.
Several cache replacement methods have been described. The methods are
simple to implement but may not perform optimally. The optimal methods
have high time complexity and they are more difficult to implement. The
trade-offs between simplicity and efficiency will remain until new cache
replacement methods are designed.

References

Aggarwal, C. (1997). On disk caching of Web objects in proxy servers. In
Proceedings.of.ACM.CIKM (pp. 238-245).

Bahn, et. al. (2002). Efficient replacement of nonuniform objects in Web
caches. IEEE.Computer,.35(6), 65-73.

Breslau, L., Cao, P., Fan, L., Phillips, G., & Shenker, S. (1999). Web caching
and Zipf-like distributions: Evidence and implications. In Proceedings.
of IEEE.INFOCOM (pp. 126-134).

Hosseini-Khayat, S. (1998). Replacement algorithms for object caching.
In Proceedings.of. the ACM.Symposium.on.Applied.Computing (pp.
90-97).

Tse, P. K. C., & So, S. (2003). An overview of multimedia proxy servers. In
Proceedings.of.the.7th.World.Multiconference.on.Systemics,.Cybernet-
ics.and.Informatics.(Vol. 3, pp. 289-293).

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Exercises

1. LFU.method: A list of objects A, B, C, D, and E are referenced for 25,
40, 32, 16, 20 times respectively. The cache now contains A, B, and
C. A request for object E arrives; which object will be replaced from
cache?

2. LRU-min.method: A list of objects A(2GB), B(4GB), C(6GB), and
D(8GB) have been requested at times = 10, 12, 15, 20 seconds, respec-
tively. A request for object E(3GB) arrives at T=30 seconds.
a. Which object will be replaced from cache?
b. If object E is 10GB, which objects will be replaced from cache?

3. GD.size.method: A list of objects A(2GB), B(4GB), C(6GB), and D(8GB)
have been requested at latency costs of 4, 4, 6, 6 seconds, respectively.
A request for object E(5GB) with latency = 4 seconds arrives.
a. Which object will be replaced from the cache?
b. What are the new cache values after replacement?

4. Mix.method: A list of objects A, B, C, D in the cache have been re-
quested according to Table 22.1 below. A request for object E (1GB)
arrives. Which object will be replaced from cache according to the mix
method using r1=r2=r3=r4=1?

Table.22.1..List.of.requests
Object Size No..of.references Last.reference.time Access.latency

A 2 GB 10 10 seconds 4 seconds

B 4 GB 6 25 seconds 4 seconds

C 6 GB 5 30 seconds 6 seconds

D 8 GB 4 20 seconds 6 seconds

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XXIII

Stream.Dependent.Caching

Introduction

Caching has been successfully implemented on the Internet to reduce work-
load on the content server and the Internet. We have seen in the last chapter
how the cache replacement methods are adapted for multimedia objects in
memory caching. In this chapter, we shall show how the caching is tailored
to provide better performance for continuous request streams.
Even though caching reduces the access latency when there are cache hits,
there are chances that cache misses occur. When cache misses occur, the
request stream is sent through the network to the remote storage devices.
The requests are then served at the remote storage devices. The requested
multimedia objects are retrieved from the storage devices, delivered through
the network to the client. The cache content will also be modified to store
the accessed object.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Multimedia data requests are continuously sent to the remote storage de-
vices. Each request may ask for only a small part of data. The union of all
the requested data is the entire object. In order to provide continuous display
of media object for a period of time, the storage system needs to provide a
guarantee on the continuous delivery of data (Chae et al., 2002; Chang &
Hock, 2000).
Although caching increases the service rate of data requests, it is inevitable
that some misses occur. When the cache hit ratios are low, the workload on
the remote storage devices becomes heavy. When the workload on the stor-
age device is too heavy, response time and access delay of the requests could
increase indefinitely. As a result, the data cannot be retrieved within the guar-
antee time. This results in violations of the continuous display guarantee.
In order to provide continuous display guarantee of multimedia information,
the requested multimedia data must be delivered continuously. However, this
cannot be easily achieved on today’s Internet. Congestions in the network
could also hinder the smooth delivery of data. Unfortunately, the Internet is
designed and implemented in a way that congestions cannot be completely
avoided. It may be a fact that congestions persistently occur when the stream
is running for a long enough time.
Many methods to provide continuous multimedia streams have been proposed
and investigated. However, the implementation of these techniques on the
Internet still has some difficulties due to the presence of legacy routers.
As multimedia objects are large in size, the limited memory cache space can
only store a few objects. If all the accessed objects are of the same size, the
size aware cache replacement methods would not increase the number of
objects being cached. In this situation, the cache hit ratio is still constrained
by the size of the local cache.
As the multimedia objects are so large, it becomes necessary to create the
cache level on local disks, instead of the random access memory. With a big-
ger cache space, the cache level on disks can reduce more capacity misses.
However, the cache level on the disks must be created carefully. As the service
time of disk requests is rather long, the disk throughput is limited. Thus, the
disk throughput should be higher than the data rate of the objects so that the
objects on the cache are accessible.
If the workload is too high for an individual disk, multiple disks or disk array
may be used. In such condition, the workload of the disks should be well
balanced. Balanced disk load can avoid bottlenecks to build up and overload
individual disk.

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The storage techniques on stream dependent caching include resident leader,
variable length segmentation (VLS), video staging, hotspot caching, and
interval caching. They will divide each multimedia object into smaller seg-
ments and store selected segments on the cache level. We will first describe
the resident leader in the next section. Then we will show the variable length
segmentation. After that, the video staging technique uses the cache space
to reduce the maximum network bandwidth required. The hotspot caching
technique that provides a preview on objects is described. Last, the interval
caching will provide better caching for concurrent streams. In each of these
sections, we shall explain the objectives, details, and the analysis of the
methods.

The.Resident.Leader.Method

Objectives

Multimedia systems transfer and consume data in a way that is different from
traditional computer systems. In traditional systems, the data file or data object
is completely accessed from the storage system before it is being used.
In multimedia systems, the multimedia stream begins with getting some
data from the storage system. These data are kept in the memory buffer for
consumption. When sufficient data are ready, it starts to display and consume
data. While at the same time, it continues to retrieve the remaining data for
consumption so that the consumption may continue for an indefinite amount
of time.
In essence, the start-up delay of the stream is the time to prepare for the start-
up of the multimedia stream. Thus, the start-up delay of a stream depends
on the access time it takes to fill up the memory buffer with the beginning
portion of the multimedia object.
In addition, the start-up delay of the multimedia streams depends on the size
of the memory buffer. If the memory buffer is large, more data needed to be
accessed. The buffer can maintain continuity of the stream against a bigger
variation in the data access time. However, the time to fill up the memory
buffer and the start-up delay of the multimedia streams are longer.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

If the memory buffer is small, the time to fill up the memory buffer and the
start-up delay of the multimedia streams are short. However, the buffer can
maintain continuity of the multimedia stream for a small variation in the
data access time.

Details.of.the.Method

The resident leader method assumes that the object is consumed from the
beginning to the end. This assumption is valid for most systems such as
video-on-demand systems and near video-on-demand systems.
The resident leader method divides the multimedia data object into two main
parts: the head and the tail (Figure 23.1). The head part, or the leader, is the
beginning portion of the object, and the tail part is the remaining part of the
object except the beginning portion. The size of the head part is large enough
to fill the memory buffer (Tse & So, 2003).
In the resident leader method, the storage system reserves some space in the
local cache level to store the head part of all the objects permanently. Thus,
the requests for the head part are always served as cache hits. As the local
cache level is always accessed with shorter latency than the remote storage,
the head part is accessed at the latency of the cache.
The tail part of the object is stored on the remote storage level. Apart from
the reserved area for the head part, the remaining space in the cache level is
used as cache storage for the tail part of the objects. The cache replacement
methods for memory caching can be used to choose the tail part of the ap-
propriate objects.
It should be noted that the tail part should be retrieved from the remote storage
within a certain time limit. As the head part from the cache already allows
the multimedia stream and data consumption to begin, the tail part should be
retrieved in time before the memory buffer is empty. If the tail part cannot be
accessed before the memory buffer is empty, the consumption of data will
stop due to shortage of data called starvation.

Figure ��.�. Resident Leader

Head/leader tail

Figure.23.1..Resident.leader

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In addition, the tail part should be continuously accessed to fill the memory
buffer. If the delivery of data is too slow, the memory buffer may also starve
and the display or consumption of data would be suspended. This will result
in violation of the continuous display guarantee requirement on multime-
dia streams. If the delivery of data is too fast, the memory buffer becomes
full. The retrieval of data should suspend momentarily to allow for the data
consumption.

Analysis

Without the resident leader method, the cache replacement methods in memory
caching store the most likely accessed objects in the cache to serve future
request. When an object is cached, the service times of all requests on the
object are reduced. The cache replacement methods minimize the average
response time of requests on the objects. As a result, the start-up delay of the
streams is short if a valid copy of the object is stored on the cache.
However, the objects that are less likely to be accessed are deleted from the
cache when cache space is needed. The head part of these objects is accessed
from the remote storage level when needed. The start-up delay of the streams
on these objects is thus long. The long start-up delay of these streams has
a direct observable impact on the users. It would be nice if the maximum
start-up delay of the streams can be kept to an acceptable level.
Using the resident leader method, the multimedia stream begins after the head
part is retrieved. Thus, the start-up delay of the stream is reduced. In order
to keep the head part resident on the local storage, some storage space in
the cache is reserved and the storage space used to cache the tail part of the
object is reduced. Fewer objects can be stored on the cache, resulting in an
increase in the capacity misses and the average response time. Therefore, the
savings in the start-up delay come with a price. The resident leader method
trades off the maximum start-up delay of streams with the average response
time of requests.
When sufficient cache space is available, the resident leader method is simple
to implement. It reduces the maximum start-up delay of streams so that the
user will observe a short start-up delay for all the streams being requested.
However, the resident leader method increases the average response time of
requests. This reduction in cache efficiency leads to heavier workload on the

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

remote storage level and the communication network in-between. The cache
efficiency and performance is thus low.
In addition, the tail part of most objects is not cached. It is accessed from
the remote storage level when needed. As the network delays are unpredict-
able and unbounded, it is very difficult, if not impossible, to guarantee the
stream continuity.

Variable.Length.Segmentation

Objectives

When multimedia objects are stored in the cache, objects with large sizes
require a lot of space when they are brought into the cache. The cache stor-
age space may store only a few objects. The cache hit ratio is thus low and
capacity misses are high.
Users may not view the entire object from the beginning to the end. It wastes
cache space to keep the entire object in the cache if only the beginning
segments are consumed. By breaking down the objects into segments, the
beginning segments of many cold objects can be stored. The cache space
may be more efficiently used by storing the initial segments of more objects.
Also, the start-up latency of more streams is reduced similar to the resident
leader method.
A simple method is to divide objects into fixed length. If the segments are
short, many segments will be created. Many segments need to be deleted
for any incoming object. The cache space will be divided into many small
fragments and it takes a long time to find enough segments to cache a new
object. If the segments are long, it takes a long time to access the first seg-
ment before a new stream is started. The start-up latency to initiate a new
stream is high. The storage system also needs to reserve bigger cache space
for each segment. In the next section, we shall describe a method to divide
an object into increasing length so that the large segments may be deleted to
release space more efficiently.

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Details.of.the.Method

The variable length segmentation divides an object i into segments (Aggar-
wal & Yu, 1997; Wu, Yu, & Wolf, 2001). For an object i of n blocks, the jth
segment contains media blocks

2j-1, 2j-1+1, …, 2j-1, for j>=1.

The first segment contains block 0 only. In general, the j+1th segment is twice
as large as the jth segment. It divides the objects into segments of exponentially
increasing length. The number of segments for an object of n blocks is

()  1log2 += n

The cache value of a segment depends on the recency of the object and the
segment distance. The segment distance is defined as the distance of the seg-
ment from the beginning of the object. The cache value of the jth segment
of an object i is defined as

CVVLS jTT i ×−
=

)(
1

where j is the segment number, T is the current time, and Ti is the timestamp
of object i. When space is needed, the VLS removes the segment with the
smallest cache value from the cache.

Analysis

The variable length segmentation method has several technical advantages.
It divides an object into large and small objects. The beginning segments are
small and they have higher cache value. The latter segments are longer and
they have lower cache values. It allows the storage system to remove the later
segments before they remove the beginning segments. Thus, the beginning
segments of many objects can be kept in the cache. This helps to reduce the
start-up latency of many streams.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

If all the streams are consumed from the beginning of the objects, the later
segments will only be used after the earlier segments are used. When the
user stops displaying and the stream is terminated in the middle, the storage
system would not need to access the later segments. Thus, the cache storage
space is used efficiently.
Also, the storage system removes the larger segments before they remove the
smaller segments of the same object. Thus, it may release sufficient space
for the incoming object by removing only a few segments. Thus, the cache
replacement algorithm performs efficiently.
Since the size of latter segments is large, the number of segment for each
object is not many. Thus, it is fast to find a segment from N*log(n) where
N is the number of objects in cache and n is the number of blocks in each
object. Thus, the cache replacement algorithm performs fast.
The present variable length segmentation method is simple by using the
recency of the objects as the cache value. The cache system only needs to
keep the recent access time of each object in the cache. The current variable
length segmentation method is also flexible. It may be possible to adapt the
cache value function to include more access characteristics of the streams,
such as access frequency and access latency. Thus, the advantages of the
segmentation method remains while cache efficiency increases.
Also, the earlier segments of an object are smaller than the later segments.
These smaller segments have higher cache value than the large segments of
the same object. The larger segments would be deleted to release space be-
fore the smaller segments. Thus, it helps to reduce the number of segments
being deleted and increase the average size of deleted segments. Therefore,
the fragmentation problem can be avoided.

Application.Note:.A.disadvantage.of.this.method.is.that.the.streams.must.
be.displayed.from.the.beginning.to.the.end..When.a.stream.starts.to.display.
from.the.middle.of.the.multimedia.object,.the.cache.system.needs.to.access.
the.later.segments.before.the.stream.can.continue.

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The.Video.Staging.Method

Objectives

In order to deliver multimedia objects across the Internet, the network band-
width should be high enough to support the continuous display requirement.
However, this is not always achievable for these reasons:

1. The network bandwidth is limited by the link that has the smallest
bandwidth. Thus, a video stream cannot be continuously delivered over
a network with smaller bandwidth than its data rate requirement.

2. In addition, different network segments have different bandwidths. A
stream over the Internet may traverse through different networks, includ-
ing local area networks (LANs) and wide area networks (WANs). The
WAN bandwidth for a stream is not high enough for the video stream.

3. The TCP protocol is using the best effort approach to deliver the most
data in the shortest period of time. It uses a sliding window to limit the
number of packets being sent before the acknowledgment packets are
received. To achieve the highest network throughput, TCP increases the
number of packets in the sliding window until some packets are lost
and acknowledgment packets are not received. When packets are lost,
the size of the sliding window is halved. Thus, network bandwidth that
is made available to a stream fluctuates a lot.

4. The network bandwidth needs to be continuously high enough for the
entire duration of the stream. If the network bandwidth is low for a short
time, the continuous display requirement cannot be met.

Figure. 23.2.. Video. staging. keeps. the. high. bandwidth. segments. in. local.
cache

Figure ��.�. Video staging keeps the high bandwidth
segments in local cache.

High bandwidth segments

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Instead of increasing the WAN bandwidth to support the continuous display
requirement, the video staging method reduces the maximum bandwidth
requirement on the network. Thus, the objective of the video staging method
is to reduce the maximum WAN bandwidth to retrieve video continuously
from remote storage.

Details.of.the.Method

Instead of increasing the WAN bandwidth to support the continuous display
requirement, the video staging method reduces the maximum requirement on
the network (Zhang, Wang, Du, & Su, 2000). When the objects are stored to the
server, the objects are analyzed. The data rate requirements of the objects are
found out. The data rate requirements will be used in the preloading stage.
Before the delivery of the object, the WAN network condition between the
server and the client is first analyzed. This step finds out an estimated network
bandwidth between the server and client. This estimated network bandwidth
will be used as the WAN network bandwidth threshold in the delivery. The
ranges of time of the object that has a data rate higher than the estimated
bandwidth threshold are found out.
The video-on-demand system divides the delivery of a multimedia object
into two stages. In the first stage, the system preloads the high bandwidth
segments that exceed the estimated WAN bandwidth threshold to the local
cache (Figure 23.2). In the second stage, it loads the remaining segments of
the object while displaying object. As data rates of all the remaining segments
of the object are lower than the WAN bandwidth requirement, the continuous
display requirements of the object stream can be met.
Since the objective of the preloading stage is to reduce the bandwidth require-
ment, only the portion of these segments above the threshold needs to be
loaded in the preloading stage. The portion of the high bandwidth segments but
below the threshold can be loaded in the second stage as other segments.
For instance, the estimated WAN bandwidth is 2 Mbps and a one-hour object
is divided into 1 minute per segment. The bandwidth threshold of each seg-
ment is 120MB or 15MB. That is, the segments that are larger than 15MB
are high bandwidth segments. If a segment is 20 MB, the system needs to
transfer 5MB (20MB - 15MB) in the preloading stage.

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Discussion

The method is flexible that it is suitable for other low bandwidth conditions.
It can be applied to the hierarchical storage systems, where the throughput
of the tertiary storage is used as the bandwidth threshold. The video staging
may be used together with optimal smoothing. The smoothing can be applied
on the lower and/or upper portion of the video.
Unfortunately, the estimation of network bandwidth should be good enough.
If the estimated network bandwidth is too low, many segments are larger than
the threshold. A large amount of data needs to be transferred in the preload-
ing stage, resulting in very long start-up latency. If the estimated network
bandwidth is too high, only a small amount of data needs to be transferred
in the preloading stage. However, the average network condition may not
meet the estimated bandwidth threshold. Insufficient data are delivered to
the client and the display quality becomes low.

Application.Note:.The most difficult part is that the actual network condition
fluctuates a lot. The network can suddenly become congested and the band-
width.drops.below.an.accurate.network.bandwidth.estimated.that.is.made.
at.an.earlier.time..Luckily,.the.video.staging.method.only.needs.to.use.the.
average.bandwidth.estimation.for.a.period.of.time..A.short.congestion.would.
not.cause.a.problem.if.the.average.bandwidth.is.only.gradually.lowered.
It.can.be.applied.to.stored.video.streams,.but.it.cannot.be.applied.to.real-time.
streams.where.the.data.cannot.be.delivered.in.advance.

The video staging method transfers the data of the high bandwidth segments
in the preloading stage. When the streams are delivered from the beginning,
the actual data being transferred in the preloading stage can be modified. The
same network bandwidth is required as long as the data being transferred in
the preloading stage are within the range of segments from the beginning of
the video to the high bandwidth segment. Thus, the head of the video can be
included in the preloaded portion to reduce the start-up latency.
New network protocols, such as RSVP and DiffServ, reserve some bandwidths
for a stream but they are unfair to the TCP protocol. These methods also have
an implementation difficulty that existing network routers do not support these
protocols. The video staging method can be applied only if the new protocol
can be implemented on today’s Internet with new and legacy routers.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The.Hotspot.Caching.Method

Objectives

Multimedia objects are normally displayed from the beginning to the end.
Apart from the normal display of data, there are other usage patterns.
For instance, when a user searches the storage system for the appropriate
object, the user may not be able to find the desired object by looking at the
object name, object description, creation date/time, and other metadata of
the object.
Other methods may be used to search an object, including matching colour,
shape, and texture. These methods still need more time and effort to research.
At the current publishing time of this book, the matching of objects based on
low level details is still not accurate enough. In addition, users may wish to
match the objects according to their semantic meaning. User feedbacks are
often required to provide good matching of multimedia objects.
The system may not be able to understand and capture the exact need of the
user. The user may not be able to express what the user wants for the sys-
tem to search. When there are not too many objects to search, an effective
method is to browse the objects. Browsing of video objects involves looking
at some segments of the video. It is time-consuming to browse video and
audio objects at their normal display speed. It would be nice if the system
can provide fast browsing of the objects.
To provide fast browsing of objects, the system should retrieve only low
resolution objects for display. Otherwise, the workload of the system and
network may become heavy. Apart from browsing of objects, the system
may provide fast browsing option to advertise new objects to many potential
buyers or viewers. Therefore, the hotspot caching technique is designed to
provide efficient previews of objects.

Details.of.the.Method

When proxy servers cache parts of an object, each proxy server may cache a
portion of the object to reduce repeated accesses to the object (Fahmi, Latif,
Sedigh-Ali, Ghafoor, Liu, & Hsu, 2001). As multimedia streams may retrieve
the following data blocks while they are consuming the current data blocks,

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

a stream may start to respond when the first few leader blocks are available.
These leader blocks are cached in the local proxy server to reduce the response
time of the stream as shown in the resident leader method.
Apart from the leader blocks, the object is divided into a number of segments.
Each segment should be independent of the previous segments. The begin-
ning part of each segment is defined as the preview hotspot of the segment.
Hotspot segments do not need to be distributed at uniform interval or be of
equal size. It may be defined by the creator of the media object or the creator
of the hotspot segments.
The storage system then keeps these preview hotspots together in its local cache.
Apart from the preview hotspots, the other parts of the temporal segments are
retrieved from the remote storage. These data blocks can be cached according
to the chosen cache value function. For example, a segment should begin
with an I-frame in MPEG coding. A hotspot is composed of data segments
that are separated at equal temporal distance. A proxy server could provide
a preview of the object using only the segments inside the hotspots.

Discussion

The hotspot caching method provides a fast preview of the object. The user
may browse the hotspot to know the content of the object. It helps to provide
relevance feedback when the user searches for a desired object from a database
of multimedia objects. When only the hotspot is viewed, the storage system
only accesses data from the cache level. Thus, objects can be previewed ef-
ficiently and quickly.
The hotspot method also provides caching when the user jumps to the later
segments. If each segment is 10 minutes long and the first minute of each
segment is included in the hotspot, the start-up latency is reduced when the
user jumps to the first minute of every 10 minutes. Thus, the stream responds
quickly when users move their displaying position on the object. Therefore,

Figure.23.3..Hotspot.caching

Figure ��.�. Hotspot Caching

Hotspot blocks

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the hotspot method improves quality of service to the user when the object
is being searched, previewed, or randomly accessed. The hotspot caching
method allows the sizes of the segments to be determined by the creator of
the segments. This is flexible that different segment sizes can be used in
different systems.

Application.Note:.The.size.of.the.hotspots.in.each.segment.is.determined.
by.the.latency.in.accessing.the.object.from.remote.storage..Longer.hotspots.
should.be.created.on.objects.that.are.accessed.with.long.latency..Shorter.
hotspots.can.be.created.on.objects.that.are.accessed.with.short.latency..The.
shortest.display.time.of.the.hotspot.should.be.longer.than.the.access.latency.
of.the.segment.from.remote.storage.

Interval.Caching

Objectives

The principle contribution of caching is to reduce repeated access of the same
piece of data from the remote storage. It would be better to store an object
or a segment if we can be sure that it will be accessed again after it is stored
on the cache. The choice of object depends very much on the length of time
elapsed before it will be accessed again.
The durations of streams are long, in the order of minutes to hours. There is
much overlapping time among streams on the same object. In true video-on-
demand systems, these streams are initiated at different times. They access
the object via the same proxy server at different times. Since the concurrent
streams are accessing the same object, it is almost for sure that the object will
be accessed again if it is stored to the cache. Thus, it is beneficial to keep in
cache the objects for concurrent streams.
As it is beneficial to keep in cache the objects for concurrent streams, the stor-
age system needs to compare the benefits of storing an object of concurrent
stream with another object that may be accessed with a probability less than
one. Thus, the objects of concurrent streams should have higher cache value
than another object that is not concurrently accessed by multiple streams.
When the cache storage space is scarce, the cache space may not be large

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

enough to accommodate the objects for all the concurrent streams. Therefore,
the time interval between the starting times of concurrent streams is used.
When the cache storage space is scarce, the cache space may not be large
enough to accommodate the entire object. It is more efficient to store an object
with a short interval than another object with a long interval. Therefore, the
time interval between the starting times of concurrent streams on the same
object is considered.

Details.of.the.Method

The interval caching method uses the time separation between streams that
access the same object to determine the priority of keeping the segments of
the object in the cache. The streams that are close together will have high
priority to be kept in the cache. The streams that are far apart have low prior-
ity (Sitaram & Dan, 2000).
When a new stream arrives at the cache, it finds if this object is being accessed
by another stream. If the object is already accessed by another stream, then
the time interval of the two streams is the difference of the two display times
of the two streams. The interval size is the amount of data to be accessed for
the time interval. The exact interval size would increase or decrease depend-
ing on the amount of data per unit time. The estimated size of an interval is
the time to re-access all the blocks in that time interval.

Figure.23.4..Interval.caching.caches.the.shortest.intervalFigure ��.�. Interval Caching caches the shortest interval

Increasing order of interval lengths: b12 b22 b13 b14

Decreasing priorities of buffering streams:

S11S12S13S14

S21S22

S31

b14 b13

b22

b12
Movie 1

Movie 2

Movie 3

S11 S21 S12 S13

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

For instance, two streams access object A at 11:40 a.m. and 12:20 p.m. The
time interval between the two streams is 20 minutes. The estimated size of
the interval is the time to re-access all the blocks in 20 minutes. An estimated
size is the average number of bytes over a 20-minute range.
The storage system then compares the interval sizes among the streams and
chooses the data segments of the shortest intervals to be cached. Once an
interval is chosen to be cached, its preceding stream places all blocks in the
cache upon consumption. The following stream reads the block from the
cache and places them in the free pool. Thus, the interval between the two
streams is placed in the cache. The cached interval is immediately removed
from the cache after display. For instance, three movies are accessed by seven
streams in Figure 23.4.

Discussion

Since the following stream would display the interval after it is kept in the
cache, the probability of being accessed again before it is replaced is close
to one.

Application.Note:.A.limitation.of.the.interval.caching.is.that.it.can.only.
be.applied.on.several.streams.access.the.same.object.via.the.same.cache.
level..When.each.stream.accesses.a.different.object,.the.cache.values.of.the.
objects.are.unknown.

When the duration of the streams is short, there is an interval caching has
to be considered. This is unfair to the streams with short duration. The time
interval between streams may change dynamically. The interval caching
cannot change dynamically.
Different objects that are residing on the same remote storage may have dif-
ferent accessed patterns. Clients may access these objects via the same proxy
server. For instance, two 1-hour objects, object A and object B, are accessed
via the cache storage. If object A is accessed once every hour and object B
is accessed only twice at three o’clock and half past three, then object B has
shorter interval than object A between three o’clock to half past three and
object A has shorter interval than object B at other times. The objects are
cached according to the interval caching and the cache space is enough to
store only one object. Before three o’clock, object A is already cached. At

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

half past three, the storage system will start to cache object B. After half past
four, the storage system will start to remove object B and cache object A.
Depending on other access characteristics, the storage system should store
the object with higher latency and smaller size. If the storage system replaces
object A with object B, then the storage system will need to access the object
B once and write the cache storage twice, once for replacing object A and
once for replacing object B. The storage system will also access object A
from remote storage once. Otherwise, the storage system only read object B
from remote storage twice. Therefore, the storage system may perform better
by keeping the object A in the cache.

Layered.Based.Caching

Objectives

Multimedia objects are different from textual data and programs. One main
difference is that they are often kept in a compressed format. The original
objects always have the lowest compression ratio but the highest quality. After
the multimedia objects are compressed heavily, they occupy fewer bits but the
compressed objects have lower quality. Very often the objects are compressed
to a level that appears visually indifferent to the original object.
When the original object is accessed, the server and the network will need
to transfer the amount of data that is equal to the size of the original object.
If this is lower than the network bandwidth or the throughput capacity of the
server, the object cannot be delivered by streaming. Instead of providing the
highest quality version of the multimedia object, fewer bits are stored on the
cache by lowering the quality of the cached object. Thus, more objects can
be cached on the same amount of storage space. The storage system can thus
deliver more objects of lower resolution.
One of the main difficulties to deliver multimedia objects over the Internet
is that the network bandwidth fluctuates a lot. Although the average network
may be considered, the network bandwidth may drop to zero when conges-
tions happen. When network congestions occur, the server is almost discon-
nected from the proxy server and the client. The proxy server could only use
its cached content and the buffered data to wait till the congestion period is

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

over. Thus, the cache content should be tailored to maintain the continuity in
streaming for the period of time when network bandwidth is insufficient.

Details.of.the.Method

The layer based approach compressed each media object into several layers
such that upper layers contain refinements of the lower layers (Paknikar,
Kankanhalli, Ramakrishnan, Srinivasan, & Ngoh, 2000, Rejaie, Yu, Handley,
& Estrin, 2000). Each layer is further divided into equal-sized segments. The
lowest layer, layer 0, is called the base layer. The base layer consists of the
elementary information and the data for the coarse information. The layer one
contains data for the finer details of the media object that are not described
in the base layer. Each layer contains refinement details of the media object
that are not described in the lower layers.
For instance, a value of 43,892 is described. For simplicity, we use the num-
ber of base 10 digits. In reality, the value is described with base 2 digits. It
may take too many digits to describe the exact value. The value is instead
described by data in five layers. The data in the base layer may contain the
most significant figure of 40000. The layer 1 may contain 4000. The detail
values -100, -10, and 2 can be described in the layers 2, 3, and 4, respectively.
If only the base layer is known, the estimate value is 40000. If both layer 0
and 1 are known, the value is estimated to be 44000. Similarly, the value is
estimated to be 44900, 44890, and 44892 when layer 0 to layer 2, layer 3,
and layer 4 are known, respectively.
When more layers are available from the base layer, the system can restore
the media object that looks more like the original object. Since the upper
layers only contain the less refinement details such as the less significant
values, the upper layer information are useless without the lower layers.

Figure ��.�. Layer Based Caching

Layer 0

Layer 1
Layer 2
Layer 3

time

Figure.23.5..Layer.based.caching

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Without the base layer, all the upper layers cannot be used to reproduce the
object. Thus, a layer can only be consumed when all the layers below it are
available. Therefore, only the base layer is independent of other layers. All
the upper layers depend on the lower layers below.
When a proxy first accesses an object for a client, the proxy always caches
the missing stream. If cache space is exhausted, the replacement algorithm
flushes enough segments from the cache to make room for the new stream.
Thus, the proxy accumulates more objects in its cache for subsequent ac-
cesses until the cache is full.
The proxy uses a sliding window mechanism to prefetch segments (Rejaie et
al., 2000). At playout time T and a fixed T1, it examines the interval [T+T1,
T + T1 + δ] and identifies the missing segments in this interval. It sends a
new prefetch request that contains an ordered list of all the missing segments
according to their priorities. The priority of a segment is defined as a combi-
nation of the layer number and the time of the segment. Segments of lower
layers always have higher priority than the upper layers. The segments in the
same layer are delivered according to their time. When the server receives
a prefetching request, it stops the previous requests from the same client. It
then sends the requested segments according to their priorities.
The proxy organizes the cache values of objects at the granularity of a layer,
but it deletes at the granularity of segments. The cache value of a layer at
time t is defined as

CVlayer = ∑
∆−=

t

tx
xwhit)(

Figure.23.6..Prefetching.priorities.in.the.sliding.window

Figure ��.�. Prefetching Priorities in the Sliding Window

Layer 0

Layer 1
Layer 2
Layer 3

time

T T+T1 T+T1+
T1

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

where Δ is the width of the popularity window. The whit(x) is the weighted
hit of the layer and it is defined as

whit(x) =
PlaybackTime

, 0 ≤ whit ≤ 1,
StreamLength

where PlaybackTime is the cumulative amount of time that a layer is played
from the cache and StreamLength is the total length of the object.
When cache space is needed, the layer with the smallest cache value is cho-
sen as the victim layer. The cached segments of the victim layer are then
deleted from the last to the first until enough space is released. In order to
hide start-up latency, the first few segments of the base layer are kept in the
cache for a longer period.
The performance of the method is measured by completeness and continu-
ity. Completeness measures the percentage of a stream residing in the cache.
When a layer has larger portion in the cache, the completeness of the layer
is higher. The completeness of layer l in cached object s is defined as the
percentage of the layer’s size in cache and it is found as

,()Cp(s,l) = l ii Chunks l

l

L

RL
∀ ∈∑

where Chunks(l) is the set of all chunks of layer l. A chunk is defined as a
continuous group of segments of a single layer of a cached object. Ll,i is the
length in segments of the ith cached chunk of layer l. RLl is the length in
segments of layer l. If every byte of a layer is cached, the completeness of
the layer is equal to 1. Obviously, the range of the completeness is [0, 1].
Continuity measures the level of smoothness of a cached stream. It counts
the number of breaks in a cached stream. A long continuous stream has a
high number of bytes between breaks. The continuity of a layer is defined
as the mean number of bytes between two consecutive layer breaks. Thus,
the layer l in cached stream s is found as

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Ct(s,l) =
1

)(,

+
∑ ∈∀

sLayerBreak

L
lChunksi il ,

where LayerBreaks is the number of layer breaks in the layer and.Chunks(l)
is the set of all chunks of layer l. A layer break occurs when there is a missing
segment in the layer. The continuity counts the average chunk size. When the
entire layer is cached, the continuity is equal to the length of the layer.

Discussion

This method changes the quality of a stream with the popularity of the layer
of the object. More layers are cached for more popular objects. Fewer layers
are cached for less popular objects. Thus, the more popular objects are cached
to achieve higher cache efficiency. When the user is not satisfied with the
quality of a stream, the user may repeatedly access the same stream and the
quality of the stream may increase after each subsequent access.
It uses a sliding window mechanism to prefetch segments from the server. The
size of the sliding window may affect the smoothness of the streams. When
the sliding window is small, only a few segments are delivered in each layer.
When the sliding window is large, many segments of a layer are transmitted.
If the sliding window only includes one segment from each layer, one seg-
ment of each layer is delivered within the window. When traffic congestion
occurs, the server may not be able to deliver any segments within the sliding
window. Thus, a layer break occurs in every layer.
The proxy organizes the cache values of objects at the granularity of a layer,
but it deletes at the granularity of segments. This method helps the cache
replacement algorithm to find the victim layer quickly at the granularity of
layers. It maximizes the cache efficiency and avoids space fragmentation by
deleting the victim layer at the granularity of a segment.

Application.Note:.This.method.is.applicable.to.varying.client.bandwidth.
and.stream.popularity.environments..When.the.server.to.proxy.bandwidth.
is.higher.than.the.client.to.proxy.bandwidth,.stream.popularity.is.dominant..
When.the.server.to.proxy.bandwidth.is.lower.than.the.client.to.proxy.band-
width,.the.client.bandwidth.overshadows.stream.popularity..

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The cache values of the segments depend on the cache content. The cache
content in term depends on the cache values. This recursive definition of the
cache value is not flexible. Convergence needs to be guaranteed and proven.
Some studies have shown that the cache content converges. However, it may
not be true for another system with different access patterns. Thus, the method
may not be applicable in very stringent and volatile environments.
The less popular objects may be completely flushed out from the cache. It
may not be suitable to reduce the quality of less popular objects. The cache
space is provided to increase the quality of cached streams. When more cache
space is available, the quality of more streams is improved. This method
trades off the caching of the less popular layers for that of the more popular
layers. In addition, it may be more desirable to keep the base layer of a less
popular stream in the cache instead of the uppermost layer of a popular
stream. Thus, it is more flexible to define the cache values of layers based
on the completeness and continuity of the layers so that the cache efficiency
can be optimized.

The.Cost.Based.Method.for.Wireless.Networks

Objective

The cost based method for wireless networks has three objectives (Xiang,
Zhang, Zhu, & Zhong, 2001). First, it caches the popular media to reduce
network resource cost in transmitting media objects from server to proxy.
Second, it improves media quality for wireless clients by calculating and
caching the redundant data in the computation cache. Third, it decreases
start-up latency by caching the leaders of media objects.

Details.of.the.Method

The media objects are divided into two types of segments, data segment and
redundant data segments. The data segments are segments that are composed
of the media object. The redundant data segments are redundant data created
to recover the transmission errors over the wireless network. The data seg-
ments are cached in the data cache. The redundant data segments are cached

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

in the computation cache. The media distortion cost of data segments and
redundant data segments are calculated differently.
The cache value is composed of three costs: network cost, start-up latency
cost, and media distortion cost. The network cost of segment j in object i is
defined as

NCij = Sij × Hi × Fij

where Sij is the size of segment, Hi is the network distance between server
and proxy, and Fij is request frequency of segment.
Long segments consume more network bandwidth to deliver. Thus, it increases
the network cost as well. The network distance between server and proxy
is a function of the round trip time. When the round trip time is longer, the
network distance becomes longer. The request frequency of the segments
takes into account the early termination of streams. When a stream is often
terminated before it ends, the request frequency of the last segments would
be lower than its earlier segments.
The start-up latency cost of segment j in object i is defined as

, if
0, otherwise

i ij threshold
ij

L F j J
LC

× <
= 


where Li is the network latency cost in accessing the leader of object i, Fij is
request frequency of segment j, and Jthreshold is the size of the leader in number
of segments. The network latency cost is the delay for accessing the leader
from server to proxy and it is a function of the round trip time (RTT) between
the remote storage and the local cache.
When a segment is part of the leader of an object, the request frequency of
the segment and the network latency cost will be used to increase the start-up
latency cost of the segment. Otherwise, the start-up latency cost is zero.
For data segments, the media distortion cost for the segment j of object i is
defined as

QCij = Xij ×Fij

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

where Xij is the measured distortion in PSNR, and Fij is request frequency
of the segment.
The values of the above three costs all contributes to the cache value function.
The cache value of data segment j of an object i is defined as

ij ij i ij
wireless

i

n NC l LC F q QC
CV

S
× + × × + ×

=

where NCij, LCij, QCij are respectively the network cost, start-up latency cost,
and the media distortion cost of the segment j of object i, and Si is the size
of object i. The parameters n, l, and q are constants whose values depend on
the real world demand.
For redundant data segments, the cache value only depends on the media
distortion cost of the redundant data segment. The cache value of a redundant
data segment j of an object i is defined as

ij ij wireless
wireless

i

q X F
CV

S
× × ×λ

=

where Xij is the measured distortion in PSNR, Fij is the request frequency of
the segment j of object i, λwireless is the proportion of the wireless clients to all
clients, Si is the size of object i, and q is a constant.
The cache replacement algorithm is similar to traditional cache replacement
policy. When cache space is needed, the segment with the lowest cost is
deleted to release space until enough space is released.

Analysis

This cost based method for wireless clients takes care of wireless clients by
considering the quality distortion over wireless networks. It caches the redun-
dant data segments separately from the data segments so that the quality of
the media streams can be maintained over the error-prone wireless networks.
This method is simple; it can be applied on the legacy cache replacement
algorithm. It uses a cost that is different from the traditional recency value for

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

each segment in the cache. The storage system however needs to keep some
information about each cached segments, including the request frequency,
network distance, network latency cost, and the quality distortion.
The cache performance of this cost based wireless method is flexible. The
parameters can be adjusted to modify the relative importance of the network
cost, start-up latency, and media quality. Unless the users are well-experienced,
it is difficult to find the most appropriate values for the parameters, n, l, and
q. After the network conditions change, it may also be necessary to adjust
the parameter Jthreshold which is the size of the leader in number of segments.
Apart from keeping the information for each segment, this method also needs
to calculate the cost for each segment. This involves expensive computation
cost in addition to the amount of data stored.

Application.Note:.The.computation.and.data.cost.may.be.reduced.by.con-
sidering.only.the.last.cached.segment.of.each.object.for.comparison..When.
the.last.cached.segment.is.compared.to.other.segments.of.the.same.object,.it.
should.have.the.lowest.request.frequency..This.is.because.a.segment.is.usually.
accessed.after.its.previous.segments.are.accessed..The.last.cached.segment.
should.have.the.lowest.request.frequency.among.segments.of.the.same.object..
The.request.frequency.is.an.important.multiplying.factor.in.the.calculation.
of.the.network.cost,.start-up.latency.cost,.and.media.distortion.cost.

Chapter.Summary

The stream dependent caching methods were designed to guarantee continu-
ous delivery for multimedia streams.
The resident leader method stores the beginning segment to hide the latency
in accessing the object from the user. It trades off the average response time
of requests to reduce the maximum response time of streams.
The variable length segmentation method divides the objects into segments
of increasing length. The earlier segments are shorter and have higher cache
value. The later segments are longer and have smaller cache value. First, the
earlier segments have higher priority to be kept in the cache than the later
segments of the same object. The beginning of many streams may be stored
in the cache to reduce the start-up latency. Second, the large segments are

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

deleted before the small segments are deleted. The number of segments to
be deleted is reduced and the cache replacement algorithm becomes more
efficient. Third, the large segments are deleted and it avoids the fragmenta-
tion problems.
The video staging method retrieves high bandwidth segments to reduce the
necessary WAN bandwidth for streaming. Unfortunately, network conges-
tions happen at any time and the network bandwidth fluctuates a lot. The
WAN bandwidth threshold cannot be guaranteed before the reservation based
protocols are implemented on today’s Internet.
Hotspot caching creates the hotspot segments of objects and these hotspots
are stored as preview segments to provide fast object previews from local
cache.
Interval caching keeps the shortest intervals of video to maintain the continu-
ity of streams from the local cache content.
Layer based caching adapts the quality of streams to the cache efficiency.
It fetches segments in the prefetching window to control the congestion of
networks. It finds the victim layer and deletes unpopular segments to achieve
fine granularity replacement. It uses the continuity and completeness as metrics
to measure the suitability of the caching method for multimedia streams.
The cost based method for wireless clients reduces the quality distortion over
the error-prone wireless networks with the help of the cache content. The
cache value of the segments is composed of network cost, start-up latency
cost, and quality distortion costs. The cache replacement algorithm finds the
victim segment and deletes at the granularity of segments.

References

Chae, Y., et al. (2002). Silo, rainbow, and caching token: Schemes for scal-
able, fault tolerant stream caching. IEEE.Journal.on.Selected.Areas.in.
Communications, 20(7), 1328-1344.

Chang, Y., & Hock, N. C. (2000). Providing quality of service guarantee in
Internet by a proxy method. In Proceedings.of.IEEE.TENCON (Vol. 3,
pp. 51-54).

Stream Dependent Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Fahmi, H., Latif, M., Sedigh-Ali, S., Ghafoor, A., Liu, P., & Hsu, L. H. (2001).
Proxy servers for scalable interactive video support. IEEE.Computer,
34(9), 54-60.

Paknikar, S., Kankanhalli, M., Ramakrishnan, K. R., Srinivasan, S. H., &
Ngoh, L. H. (2000). A caching and streaming framework for multimedia.
In Proceedings.of.ACM.Multimedia (pp. 13-20).

Rejaie, R., Yu, H., Handley, M., & Estrin, D. (2000). Multimedia proxy
caching mechanism for quality adaptive streaming. In Proceedings.of.
IEEE.INFOCOM (pp. 980-989).

Sitaram, D., & Dan, A. (2000). Multimedia.servers:.Applications,.environ-
ments,.and.design. Morgan Kaufmann Publishers.

Tse, P. K. C., & So, S. (2003). An overview of multimedia proxy servers. In.
Proceedings.of.the.7th.World.Multiconference.on.Systemics,.Cybernetics.
and.Informatics (Vol. 3, pp. 289-293).

Wu, K.-L., Yu, P., & Wolf, J. L. (2001). Segment-based proxy caching of
multimedia streams. In Proceedings.of.the.ACM.WWW10.Conference
(pp. 36-44).

Xiang, Z., Zhang, Q., Zhu, W., & Zhong, Y. (2001). Cost-based replacement
policy for multimedia proxy across wireless Internet. In Proceedings.of.
IEEE (pp. 2009-2013).

Zhang, Z., Wang, Y., Du, D. H. C., & Su, D. (2000). Video staging: A proxy-
server-based approach to end-to-end video delivery over wide-area
networks. IEEE/ACM.Transactions.on.Networking, 8(4), 429-442.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.XXIV

Cooperative.Web.Caching

Introduction

Most clients are placed behind the proxy servers on the Internet. Proxy serv-
ers have the disk cache space, network bandwidth, and availability to cache
part of the objects for clients. In addition, the number of proxy servers can
be increased or decreased dynamically according to the anticipated server
workload, making them good candidates to alleviate the bottleneck problem.
We have described in the last two chapters how the caching methods provide
better performance for continuous request streams in individual proxy serv-
ers. In this chapter, we show how the proxy servers may work together to
improve the overall performance in delivering objects.
At present, large multimedia objects are not cached or only partially cached
in current proxy servers mainly for two reasons. First, the owner of the mul-
timedia objects needs to ensure security and control of access of the objects

Cooperative Web Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

before they are willing to let any proxy servers cache their objects. Thus, any
new methods need to allow the content owner have complete control over
the objects’ security. Second, the owner of the proxy server wishes to have
full autonomy control over its own cache content so that the proxy server
may maximize the cache efficiency for its own clients.
One of the main contributions of proxy servers to the clients is their cache
storage. The content of the cache storage depends on the cost function in
the cache replacement policy that determines the cache performance. The
cache replacement policy is often optimized to achieve the highest cache hit
ratio and byte hit ratio. When many clients access multimedia objects via
proxy servers, some of them may access the same objects. Several proxy
servers which are in the network neighbourhood of each other may access
the popular objects for their clients. If these proxy servers can cooperate
with each other by sharing their cache contents, the congestion on the net-
work and content server can be reduced (Dykes & Robbins, 2001; Wolman,
Voelker, Sharma, Cardwell, Karlin, & Levy, 1999). It is effective when the
objects are accessed by many requests in a period of time (Lee, Amiri, Sahu,
& Venkatramani, 2002).
If each proxy server caches a different fraction of a popular object, the union
of these parts may form a large fraction of the entire object. Only the missing
parts are then requested from the content server. Therefore, the cooperative
object partitioning methods thus help to reduce the amount of data that must
be delivered from the content server.
As the cooperation of Web caches assist the clients in delivery of multimedia
streams, the efficiency of the cooperation is measured with additional metrics.
Local hit ratio and local byte hit ratio measures the efficiency of the local
cache level. The hit ratio and byte hit ratio measures the overall efficiency of
all the cooperative caches. The stream response time and the stream service
time indicate how the cache performance would affect the user. The number
of server streams is used to measure the capacity of the content servers and
proxy servers.
We shall describe the recursive leader method in the next section. Then, hier-
archical Web cache is shown. After that, the array of Web caches is presented.
Afterwards, the multiple hotspot caching method is described.

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Hierarchical.Web.Caches

Objectives

The multimedia objects are large in size and the proxy servers may run out
of cache space by storing a few objects. For an object stored in the cache,
it would be more efficient if the cached object is accessed by more clients.
Thus, a proxy server may share its cached objects with other proxy servers
in the neighbourhood to reduce the capacity misses.
One method to share the cached contents is to build the caches into a hierarchy
of cache storage as illustrated in Figure 24.1. The cache storage that is closest
to the clients is the local cache level. The proxy servers at this local cache
level do not directly access the objects from the content server. Instead, they
access objects from the content server via the parent proxy server. A parent
proxy server may have several child proxy servers. Each child proxy server
has only one parent proxy server.

Details.of.the.Method

On the Internet, many proxy servers are present. A proxy server may access
an object from the server via another proxy server in the local area network
(LAN). The later proxy server is called the parent of the child proxy server.
Repeatedly, these proxy servers can be built into a large tree. Beginning from
the root of this cache tree, each proxy server is a node in the tree and the
clients are the leaves of the tree (Park, Baek, & Chung, 2000).
When an object is accessed from the content server, the client requests are
forwarded through the child and parent proxy servers before they reach the
content server. The child proxy server which is closest to the client checks
if the object has been cached or not. If it is not being cached, then the child
proxy server forwards the request to the parent proxy server.
The parent proxy server checks if the object has been cached or not. If it
is not on the cache, then it forwards the request to its parent proxy server.
If the object is already on the cache, it returns the object to the child proxy
server.
When an object is initially accessed, the root parent proxy server accesses the
object from the content server. When data of the object are delivered from the

Cooperative Web Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

content server, it passes the received segments to the requesting child proxy
server. In addition, it caches the object for other child proxy servers which
have not requested the object. When a child proxy server receives the object
from its parent proxy server, it caches the object and delivers the object to
the client requesting it.

Analysis

The parent proxy server keeps on its cache the objects requested by its child
proxy servers. The network traffic is reduced when the object is accessed by
any other clients via any child proxy servers. More clients are connected to
this proxy server and more object accesses are directed to this proxy server.
The cached object can be accessed by more clients. This helps to reduce the
capacity misses. Thus, the cache performs more efficiently.
Since the parent proxy server caches the objects, it helps to reduce the net-
work latency in accessing the object by other child proxy servers. As the
parent proxy server in the LAN is closer to the client than the content server,
the network latency is shorter. It helps to reduce the start-up latency of the
streams.
Since the parent proxy server caches all objects that are requested by its child
proxy servers, the parent proxy server needs to be very large in order to cache
the large number of objects. The parent proxy server becomes a bottleneck
as too many objects are accessed from it.

Figure.24.1..Parent.proxy.server,.P,.and.child.proxy.servers,.C,.build.into.a.
hierarchical.Web.cache

Figure ��.�. Parent Proxy Server, P, and Child Proxy
Servers, C, build into a hierarchical web cache

P

C C C

… … …
…

Clients

Child Proxy Servers

Parent Proxy Server

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Front.and.Rear.Partitioning

Objectives

The multimedia objects are large in size and the proxy servers may run out
of cache space by storing a few objects. For an object stored in the cache,
it would be more efficient if the cached object is accessed by more clients.
Thus, a proxy server may share its cached objects with other proxy servers
in the neighbourhood to reduce the capacity misses.
One method to share the cached contents is to build the caches into a hier-
archy of cache storage. The cache storage that is closest to the clients is the
local cache level. The proxy servers at this local cache level do not directly
access the objects from the content server. Instead, they access objects from
the content server via the parent proxy server. A parent proxy server may
have several child proxy servers. Each child proxy server has only one par-
ent proxy server.
The objective of the resident leader method is to completely hide the start-up
latency of the streams by keeping the leaders resident in the cache close to
the client. The objective of the front and rear segments method is similar. It
keeps the leaders in the local proxy server that is closest to the clients to hide
the start-up latency. In addition, it stores the rest of the object in the parent
cache so that the cached object is shared by more clients.

Details.of.the.Method

On the Internet, many proxy servers are present. A proxy server on the sub-
LAN may access an object from the server via another proxy server in the
LAN. The later proxy server is called the parent of the child proxy server.
Repeatedly, these proxy servers can be built into a large tree. Beginning
from the root of this cache tree, each proxy server is a node in the tree and
the clients are the leaves of the tree.
Similar to the resident leader method, the recursive leader method divides an
object into two contiguous parts: the front segment and the rear segment (as
illustrated in Figure 24.2). The front segment is the same as the leader in the
resident leader method. The rear segment is same as the rest of the object in
the resident leader method (Park, Park, & Son, 2001).

Cooperative Web Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

When an object is accessed from the content server, the client requests are
forwarded through the child and parent proxy servers before they reach the
content server. The child proxy server, which is closest to the client, checks
if the front segment has been cached or not. If it is not being cached, then the
child proxy server forwards the request to the parent proxy server.
When an object is initially accessed, the parent proxy server accesses the
object from the content server. When data of the object are delivered from
the content server, it will perform three operations on the object stream. First,
it passes the received segments to the requesting child proxy server. Second,
it caches the rear segment. Third, it pushes the front segment to other child
proxy servers which are not requesting the object.
When the child proxy server receives the front segment from its parent proxy
server, it caches the front segment and delivers the rear segment to the client
without caching it.

Analysis

Similar to the resident leader method, the child proxy server caches the front
segment and hides the start-up latency from the user.
The parent proxy server keeps the rear segment in its cache. The network
traffic is reduced when the object is accessed by any other clients via any
child proxy servers. More clients are connected to this proxy server and more
object accesses are directed to this proxy server. The cached object can be
accessed by more clients. This helps to reduce the capacity misses. Thus, the
cache performs more efficiently.
Since the parent proxy server caches the rear segments, it helps to reduce
the network latency in accessing the object. As the parent proxy server in
the LAN is closer to the client than the content server, the network latency

Figure.24.2..Front.and.rear.segments

Figure ��.�. Front and rear segments

front
segments

rear
segments

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

is shorter and the network traffic can be better predicted. It helps to provide
a guarantee on the continuity of the streams.
The front segment is pushed to other child proxy servers. Before the cached
front segment is removed, these child proxy servers can thus serve their
clients immediately when the object is first accessed. The start-up latency
of more streams is then hidden. It also helps to reduce compulsory misses
which were not possible before.
Since the addition of another proxy server as a parent proxy server, each
request will be routed through more network links. Each request will travel
through more proxy server and there is a small increase in the average delay.
In addition, the parent proxy server could become a bottleneck when too
many objects are delivered from it.
Similar to the resident leader method, this method also assumes that the object
is consumed from the beginning to the end. Similar to the resident leader
method, the caching of the front segment is a trade-off between the maximum
start up delay of streams and the average response time of requests. It helps
the problems in the resident leader method by caching the rear segment. The
network delays become more predictable and the stream continuity can be
guaranteed. The workload on the remote storage level becomes light and the
cache efficiency is maintained.

Directory.Based.Cooperation

Objectives

The main objective of the directory based cooperation is to reduce the network
latency in accessing the objects. The proxy server in the neighbourhood is
closer to the remote content server. When an object is delivered from one of
the proxy servers in the neighbourhood, the network distance is shorter.
When the parent proxy server caches the requested objects, it needs to store
all the objects that are accessed by its child proxy servers. This would increase
the number of objects being cached at the parent proxy server. The parent
proxy server can become overloaded.
Instead of delivering the objects from the parent’s own cache, the requested
object may be delivered from other child proxy servers that have the requested

Cooperative Web Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

object. The group of proxy servers thus serve more requests on the objects
in their cache. The cache efficiency is thus increased.

Details.of.the.Method

The parent proxy server and child proxy servers form a tree of proxy servers
similar to the hierarchical Web caching. A proxy server has only one parent
and it may have more than one child. Only the root parent proxy server does
not have any parent. Each proxy server is identified with its location. Each
object is identified by its universal resource locator (URL). The proxy servers
use the Internet caching protocol (ICP) to communicate with each other.
In order to know which proxy servers in the neighbourhood have the accessed
object, all the proxy servers keep track of the request objects being cached
in all its child proxy servers. A global resource index (GRI) table is built and
kept in the proxy servers. The GRI table is created similarly to the inverted
index. Each entry in the GRI table contains two parts: the URL of an object
and the proxy servers the have cached this object (Wu & Liao, 1997).
When an object is accessed, the client requests are routed through the proxy
server tree upwards before they can reach the content server. When a proxy
server receives a request from its client or its child proxy servers, it processes
the request using an object look-up algorithm.
In the object look-up algorithm, the proxy server may returns the object if it
exists in its local cache. Otherwise, it finds the location of the object. If the
location is not found, then it passes the requests to its parent for processing.
If the location is not found at the root, then the location is the URL of the
object. If it needs a copy of the object, then it gets the location of the object,
cache a copy, and returns the object to the requesting child. Otherwise, it
returns the redirection message containing the location of the object. The
child proxy server receiving the redirection message will retrieve the object
from the content server.
Details of the object look-up algorithm in the proxy servers are below:

1 Check if the requested object is kept in its local cache.
2 If the requested object is in the local cache, then return the objects

from its local cache.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

3 Check if the object exists in the GRI table.
4 If the object exists in the GRI table, then get the location of object

from GRI entry.
5 If the object does not exist in the GRI table, then
5.1 If this proxy server is not the root, then
5.1.1 Forward the request to its parent.
5.1.2 If response is redirection, then get object location from the redirec-

tion message.
5.1.3 If response is success, then get the location of parent.
5.2 Otherwise, get the location of the content server.
6 If it is not the last child in the requesting chain, then
6.1 If it needs to cache this object, then
6.1.1 Get the object from the location.
6.1.2 Cache a copy of the object.
6.1.3 Return the object to the requesting child or client.
6.2 Otherwise, return a redirection message with the location to the

requesting child.
7 Otherwise,
7.1 Get the object from the location.
7.2 If it needs to cache this object, then cache a copy of the object.
7.3 Return the object to the requesting client.

When a proxy receives a request for an object which has just been removed
from the cache, the request cannot be forwarded to the parent proxy server.
Otherwise, infinite loop of requesting may occur. The proxy server needs to
get the object directly from the content server.
When several child proxy servers have the same object being requested,
the parent proxy server may decide which proxy server’s location will be
included in the redirection message. This decision depends on the distance
from the requesting child to the other child proxy servers.

Cooperative Web Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Analysis

This directory based cooperation method does not store many objects in the
parents. The parents may provide directory look-up functions only. Thus,
there is little contention on the parent proxy servers.
There are two types of overheads involved in this method: the storage
overheads and the update overhead. The parent proxy server needs to store
the GRI table. It also needs to modify the GRI table when new requests are
processed.
One of the main difficulties is on the political issue. The owners of proxy
server may wish their proxy server to serve requests of clients within the
organization only. When cooperation among owners of proxy servers is not
established, it is unlikely that their proxy servers may cooperate to achieve
better performance.

Hash.Based.Cooperation

Objectives

Instead of keeping the directory of object, the object locations are defined
by their object ID. Based on the object ID, the object is cached on only one
of the cooperative proxy servers. In addition, the overheads in updating the
directory entries are avoided.

Details.of.the.Method

In the hash based cooperation approach, the cooperative proxy servers are
organized into an array. Each proxy server is assigned a unique proxy num-
ber. The proxy servers communicate with each other using the cache array
routing protocol (CARP).
Each object is assigned an object ID. The proxy server that can cache the
object is defined by a hashing function of the object ID. The proxy server
number is defined as

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

= Hash(ObjectID),

where Hash(.) is a hashing function that returns a random number within the
range of proxy servers.

Analysis

Proxy cooperation is achieved without any directories to be updated. The list
of locations of the proxy array is small and the update overheads are low.
Each object is cached in only one proxy server. Other proxy servers within
the array do not cache a second copy of the object. Thus, only one copy of
the object can be found in the cache array. Thus, the entire space of the cache
array will be used like a single cache. No duplications of objects are found.
Thus, the storage space of the cache array is used efficiently to minimize
the capacity misses.
Since the array of proxy servers is fixed, the objects have their destination
proxy server determined by the hashing function. The hashing function depends
on the total number of proxy servers. After new proxy server joins the array
or old proxy server leaves the array, the hashing function returns different
proxy server numbers. Thus, the cached objects need to be relocated to the
new proxy servers. This reorganization overhead is expensive.

The.Multiple.Hotspot.Caching.Method

Objectives

Clients access multimedia objects from the content servers. These clients may
reside behind the same or different proxy servers. When the clients access
an object via the same proxy server, the proxy server may store the entire
object in its cache to serve multiple clients. The proxy server can access the
object from the remote storage only once and store it on the cache. It can
then server other clients from the object in the cache. Thus, the proxy server
reduces the server load, network load, and start-up latency of streams.
When the clients access an object via different proxy servers, each proxy server
accesses the object from remote storage. The network load, server load, and

Cooperative Web Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

start-up latency of streams are high. The multiple hotspots caching method
reduces the amount of data being accessed from the remote storage.
In order to provide fast previews, the hotspot caching method stores hotspot
segments of media objects in the local cache level (Fahmi, Latif, Sedigh-Ali,
Ghafoor, Liu, & Hsu, 2001). When the hotspots on different proxy servers
are the same, each proxy server still accesses the other segments besides
the hotspots from the remote storage. A better mechanism to share hotspots
would be able to reduce the amount of data being delivered from the remote
storage while providing fast previews.
When users access multimedia objects from the Internet, the multimedia
objects may traverse through several different networks in the delivery. The
networks, in particular the wide area network (WAN), are often unstable and
sometimes congested. It would be nice to reduce the amount of data being
delivered over the network. The streams can become more stable by reducing
the amount of data being accessed from the remote storage.

Details.of.the.Method

The server mechanically partitions an object into multiple segments for
distribution (Tse, Leung, So, & Lau, 2003). Each object is divided into a
number of low temporal resolution segments (Figure 24.3). Each segment
is a small fixed number of group of pictures (GOP). A segment is a short
continuous object by itself.
Instead of creating a single hotspot by the media creator, the multiple hot-
spots method creates hotspots automatically by grouping segments that are

Figure ��.�. Multiple Hotspots Caching

Hotspot blocks

…

Proxy server

client

… client

Figure.24.3..Multiple.hotspots.caching

��0 Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

separated from each other at a fixed time intervals (Tse & Lau, 2004). Each
single hotspot can thus provide a preview of the object to its clients.
Each proxy server will cache one of these hotspots so that it may provide a
preview of the object to its clients from its local cache. The cached hotspots
may also improve the performance of the searching algorithm by letting us-
ers give feedback quickly.
In the multiple hotspots partitioning method, each segment belongs to one of
the hotspots and all the hotspots together form a large fraction of the object.
When enough hotspots are accessed from neighbouring proxy servers, the
entire object can be restored. Thus, the media object can be displayed without
any requests being sent to the remote storage server.

Discussion

The multiple hotspots method increases the sharing of data among neighbour-
ing proxy servers. Thus, it affects the cache performance in terms of local hit
ratio, local byte hit ratio, byte hit ratio, and response time.
For the local hit ratio, the methods using the variable length segments per-
form better than the methods using fixed length segments. This is because
the local proxy cache is more efficient when longer segments of hot objects
and shorter segments of cold objects are cached.
The local byte hit ratio of the methods using variable length segments per-
form similarly to the fixed length methods at small cache sizes. The variable
length methods perform better than the fixed length methods when the cache
size is sufficiently large.
The byte hit ratio is similar to the local hit ratio. The better performing group
are the methods using multiple hotspots and random segments. These methods
partition the object into several different segments and the proxy caches one
of the segments. Thus, the proxy servers are caching different segments of
the object and they can cooperate to increase the byte hit ratio. On the other
hand, the single hotspot and the fixed range methods all cache the same seg-
ment of the object. They cache the same segment of fixed or variable length
and the cooperation cannot increase the byte hit ratio.
The proxy servers cache the initial part of objects as leaders in the local cache
to reduce the response time. The response time of all methods reduces with
longer leader length. When the same leader size is used, the variable length
methods perform better than the fixed length methods.

Cooperative Web Caching ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In summary, the methods creating multiple segments perform better than
the methods creating only single segment. Among all methods, the random
multiple hotspot fixed size performs the best.

Chapter.Summary

Research on the large scale operations of Web caches have shown that the
benefits on caching Web documents do not increase beyond the capability of
a single proxy server. Hierarchical Web caching reduces network latency on
requests. Front and rear partitioning reduces the start-up latency of streams.
Directory based cooperation avoids the contention on the parent proxy
server. Hash based cooperation achieves low storage overheads and update
overheads. Multiple hotspot caching keeps the hotspot blocks to provide fast
local previews.
The performances of various object partitioning methods in cooperative
multimedia proxy servers are compared. The performance of cooperative
proxy caching is significantly affected by the chosen partitioning method. The
partitioning methods creating variable length segments perform better than the
methods creating fixed length segments in local metrics. The methods creating
multiple segments perform better than the methods creating single segment
when cooperative caching is used. Among all methods being investigated,
the random multiple hotspot fixed size uses the shortest service time.

References

Dykes, S. G., & Robbins, K. A. (2001). A viability analysis of cooperative
proxy caching. In Proceedings.of.IEEE.INFOCOM.(Vol. 3, pp. 1205-
1214).

Fahmi, H., Latif, M., Sedigh-Ali, S., Ghafoor, A., Liu, P., & Hsu, L. H.
(2001). Proxy servers for scalable interactive video support. IEEE.
Computer,.34(9), 54-60.

Lee, K. W., Amiri, K., Sahu, S., & Venkatramani, C. (2002). On the sensi-
tivity of cooperative caching performance to workload and network
characteristics. ACM.SIGMETRICS,.30(1), 268-269.

��� Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Park, Y. W., Baek, K. H., & Chung, K. D. (2000). Reducing network traffic
using two-layered cache servers for continuous media data on the
Internet. In Proceedings.of.the.IEEE.Computer.Software.and.Applica-
tions.Conference (pp. 389-394).

Park, S. C., Park, Y. W., & Son, Y. E. (2001). A proxy server management
scheme for continuous media objects based on object partitioning. In
Proceedings.of IEEE.ICPADS (pp. 757-762).

Tse, P. K. C., & Lau, G. K. M. (2004). Performance.analysis.of.multiple.layers.
object.partitioning.methods.in.cooperative.multimedia.proxy.servers
(Tech. Rep.). University of Hong Kong, Hong Kong SAR, China.

Tse, P. K. C., Leung, C. H. C., So, S. W. W., & Lau, G. K. M. (2003). Coop-
erative multimedia proxy servers. In Proceedings.of.the.International.
Conference.on.Computer,.Communication.and.Control.Technologies.
(CCCT’03). and. the. 9th. International. Conference. on. Information.
Systems.Analysis.and.Synthesis.(ISAS’03).(Vol. 1, pp. 244-249).

Wolman, A., Voelker, G. M., Sharma, N., Cardwell, N., Karlin, A., & Levy,
H. M. (1999). On the scale and performance of cooperative Web proxy
caching. Proceedings.of.the ACM.Symposium.on.Operating.Systems.
Principles,.34(5), 16-31.

Wu, S., & Liao, C. C. (1997). Virtual proxy servers for WWW and intelligent
agents on the Internet. In Proceedings.of. the Hawaii. International.
Conference.on.System.Sciences.(Vol. 4, pp. 200-209).

On the Internet, many multimedia objects are stored in the content servers.
The clients are located over a wide area network far from the content server.
When clients access multimedia objects from a content server, the content
server must have sufficient disk and network to deliver the objects to the cli-
ents. Otherwise, it rejects the requests from the new clients. Thus, the popular
content server can easily become the bottleneck in delivering multimedia
objects. Therefore, server and network workloads are important concerns in
designing multimedia storage systems over the Internet.
Multimedia objects, like other traditional data files and Web pages, may be
transferred across networks, such as the Internet. In order to provide efficient
delivery of data across the networks, some data can be stored in the middle
of the network. When requests for the same object have been received, these
data can be used to satisfy the requests at the middle of the network instead
of forwarding the request any further. This method to satisfy requests with
previously accessed data is called caching.

Summary.to.Section.V

Cache Replacement Policy

Since caching needs to consume a certain amount of storage space, the cache
performance is affected by the size of the cache memory. If the storage space
is large, more objects can be stored on the cache storage and the probability
of finding an object in the cache is thus high. The cache performs better. If
the storage space is limited, only a few objects can be stored in the cache
storage and the probability of finding an object in the cache is low. As a result,
the cache performance becomes low. Therefore, the cache size influences the
cache performance.
Since caching stores some previously fetched objects on the storage devices,
the presence of an object exists on the storage devices significantly affects
the efficiency of the caching. When a new object is being accessed, the cache
admission policy decides whether an accessed object should be stored onto
the cache devices.
Since the cache performance increases monotonically with the number of
objects in the cache, the cache storage space is often full in order to keep
the most number of objects in the cache. When an accessed object needs to
be stored and the cache space is full, the cache replacement policy decides
which object should be deleted from the cache storage to release space. The
choice of whether an object is kept in the cache is determined by the cache
replacement policy. Thus, the cache replacement policy significantly affects
the efficiency of caching.
Memory cache replacement policies assign a cache value to each object
in the cache. This cache value decides the priority of keeping the object in
the cache. When space is needed to store a new object in cache, the cache
replacement function will choose the object with the lowest cache value and
delete it to release space. As a result, the objects with high cache values will
remain in the cache.
Different cache replacement policies will assign different cache value to
the objects. The traditional LRU method keeps the objects that are accessed
most recently. It is simple and easy to implement and the time complexity
is very low. All other methods except the LFU method also keep the objects
that are accessed recently.
The pattern in accessing multimedia objects has been described. The access
pattern of video tapes in the rental stores can be described with a Zipf-like
distribution. The long term behaviour of accesses for an individual object
follows an exponential curve plus a random effect. The LFU, LUV, and mix
methods keep track of the object temperature and remove the coldest objects
from the cache first.

Due to the large size of multimedia objects, the cache may completely be
occupied by a few objects. To maintain a good cache hit ratio, the priority
of keeping large objects in the cache is reduced. Thus, the LRU-min, GD-
size, LUV, and mix methods keep the small and recently accessed objects
in the cache.
Since multimedia objects in the same local cache level may come from remote
storage level at different distances, the latency cost in accessing the remote
storage level varies. When cache misses occur, the objects in the remote stor-
age level will be retrieved. Thus, the cache system would perform better if it
keeps more objects that take longer to access. The GD-size, LUV, and mix
methods include latency cost of objects in the cache to lower the priority of
objects that can be easily replaced.
Several cache replacement methods have been described. The methods are
either simple to implement but they may not perform optimally. The optimal
methods have high time complexity and they are more difficult to implement.
The trade-offs between simplicity and efficiency will remain until new cache
replacement methods are designed.
The stream dependent caching methods were designed to guarantee continu-
ous delivery for multimedia streams.
The resident leader method stores the beginning segment to hide the latency
in accessing the object from the user. It trades off the average response time
of requests to reduce the maximum response time of streams.
The variable length segmentation method divides the objects into segments
of increasing length. The earlier segments are shorter and have higher cache
value. The later segments are longer and have smaller cache value. First, the
earlier segments have higher priority to be kept in the cache than the later
segments of the same object. The beginning of many streams may be stored
in the cache to reduce the start-up latency. Second, the large segments are
deleted before the small segments are deleted. The number of segments to
be deleted is reduced and the cache replacement algorithm becomes more
efficient. Third, the large segments are deleted and it avoids the fragmenta-
tion problems.
The video staging method retrieves high bandwidth segments to reduce the
necessary WAN bandwidth for streaming. Unfortunately, network conges-
tions happen at any time and the network bandwidth fluctuates a lot. The
WAN bandwidth threshold cannot be guaranteed before the reservation based
protocols are implemented on today’s Internet.

Hotspot caching creates the hotspot segments of objects and these hotspots
are stored as preview segments to provide fast object previews from local
cache.
Interval caching keeps the shortest intervals of video to maintain the continu-
ity of streams from the local cache content.
Layer based caching adapts the quality of streams to the cache efficiency.
It fetches segments in the prefetching window to control the congestion of
networks. It finds the victim layer and deletes unpopular segments to achieve
fine granularity replacement. It uses the continuity and completeness as metrics
to measure the suitability of the caching method for multimedia streams.
The cost based method for wireless clients reduces the quality distortion
over the error-prone wireless networks with the help of the cache content.
The cache values of the segments are composed of network costs, start-up
latency costs, and quality distortion costs. The cache replacement algorithm
finds the victim segment and deletes at the granularity of segments.
Research on the large scale operations of Web caches have shown that the
benefits on caching Web documents do not increase beyond the capability of
a single proxy server. Hierarchical Web caching reduces network latency on
requests. Front and rear partitioning reduces the start-up latency of streams.
Directory based cooperation avoids the contention on parent proxy server.
Hash based cooperation achieves low storage overheads and update over-
heads. Multiple hotspot caching keeps the hotspot blocks to provide fast
local previews.
The performances of various object partitioning methods in cooperative
multimedia proxy servers are compared. The performance of cooperative
proxy caching is significantly affected by the chosen partitioning method. The
partitioning methods creating variable length segments perform better than the
methods creating fixed length segments in local metrics. The methods creating
multiple segments perform better than the methods creating single segment
when cooperative caching is used. Among all methods being investigated,
the random multiple hotspot fixed size uses the shortest service time.

About the Author ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

About the Author

Philip. Kwok. Chung.Tse is now with the Department of Electrical and
Electronic Engineering of the University of Hong Kong. He received the
bachelor of science (Computing Studies) from the University of Hong Kong
(1983) and the doctor of philosophy (Computer Science) from the Victoria
University of Technology (2002). He has taught computer science and in-
formation technology subjects in the University of Hong Kong, the Chinese
University of Hong Kong, and the Macquarie University, Sydney. He had
worked for more than 12 years in the industry prior to joining the academic
sector. His research interests include multimedia information storage and
visual information systems.

��� Index

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.

Index

Index
A
access overhead times 230
access time 49, 50, 60, 88, 92, 93, 94, 95,

96, 98, 99, 129, 130, 134, 139, 140,
142, 153, 154, 161, 162, 171, 172,
173, 174, 175, 182, 183, 184, 185,
186, 187, 188, 198, 205, 209, 212,
227, 253, 267, 268, 269, 270, 277,
304, 321, 335, 338, 343, 344, 348

amplitude 19, 21, 331
animations 15
aspect ratio 22, 24, 25

B
bandwidth-to-space ratio (BSR) 121, 122,

123, 124, 125, 126, 127
bandwidth-to-space ratio (BSR), actual

122, 123
bandwidth-to-space ratio (BSR), allocated

122, 123, 124, 125, 126
bandwidth-to-space ratio (BSR), replica-

tion 121, 122, 123, 126
bandwidth-to-space ratio (BSR) deviation

123, 126

basic policy 296, 298, 321
bi-directional predicted pictures 83
bits per pixel 16, 17
byte hit ratio 327, 369, 380

C
cache admission policy 324, 326, 327, 384
cache array routing protocol (CARP) 377
cache misses 327, 334, 339, 341, 385
cache replacement policy 324, 327, 333,

335, 364, 369, 384
caches, hierarchical Web 370
cache value 328, 329, 332, 334, 335, 336,

337, 338, 347, 348, 353, 354, 359,
360, 362, 363, 364, 365, 366, 384,
385

caching, hotspot 343, 352, 353, 354, 369,
378, 379, 381, 386

caching, interval 343, 355, 356
caching, layered based 357
caching, memory 324, 326, 341, 344, 345
capacity miss 327, 342, 345, 346, 370,

371, 372, 373, 378
circular buffer 291, 292, 296, 297, 298,

321, 322
coding, arithmetic 63, 64, 71, 73, 74, 77,

86, 88
completeness of layer 360
compression, asymmetric 83

Index ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.

compression, hybrid 77, 78, 86
compression, JPEG 18, 77, 78, 79, 81, 83,

84, 86
compression, JPEG2000 3, 61, 77, 78, 81,

82, 86, 88
compression, lossless 77
compression, lossy 77
compression, LZ77 63, 64, 67, 68, 69, 70
compression, MPEG 77, 78, 82, 83, 84,

85, 86, 88, 301, 353
compression, MPEG2 83
compression, noiseless. See compression,

lossless
compulsory miss 327
content distribution network (CDN) 9
content distribution system 38, 39
content providers 11
continuity 29, 31, 32, 88, 92, 97, 104, 187,

205, 209, 225, 227, 248, 249, 251,
252, 255, 256, 257, 259, 260, 285,
304, 317, 343, 344, 346, 358, 360,
361, 362, 366, 374, 386

D
data consumption rate 103, 104, 204, 273,

274, 280, 282, 285, 288, 289, 298,
303, 307, 318, 321

data migration 1, 143, 157, 158, 170, 180,
187, 200, 262, 266, 318, 320, 322

data transfer rate 46, 56, 95, 153, 170,
181, 204, 268, 281, 282, 288, 321

data transfer time 49, 51, 55, 56, 57, 60,
88, 94, 95, 98, 99, 141, 153, 157,
170, 171, 180, 185, 227, 229, 239,
253

depot system 38
dequantization 80
dictionary methods 64, 66, 67, 86
digitization 21, 26
directory based cooperation 374, 377
disk array 57, 58, 59, 60, 102, 104, 105,

108, 116, 126, 127, 128, 133, 141,
142, 342

disk bandwidth, aggregate 103, 104
disk multitasking 115, 118, 119, 120, 134
disk platters 43, 44, 45, 59, 88, 98, 149,

219, 223, 259

disks, compact (CDs) 5, 21, 22, 46, 47,
149, 290, 292, 293, 294, 297

disks, digital versatile (DVDs) 22, 46, 47,
149

disks, magnetic 40, 43, 44, 45, 46, 47, 48,
59, 88, 133, 146, 148, 149, 229

disks, millipede 47
disks, Nano-RAM 48
disks, optical 46, 47, 48, 59, 88, 145, 146,

149, 150, 154, 188, 189, 190, 191,
196, 206, 207, 291

disks, redundant array of inexpensive
(RAID) 58, 59, 60, 115, 116, 117,
128

disks, redundant array of inexpensive
(RAID), streaming 115, 116, 117,
128

disks, zoned 3, 34, 45, 46, 50, 59, 60, 88,
94, 97, 100, 136

E
earliest deadline first (EDF) method 241,

242, 243, 244, 245, 246, 248, 249,
256, 259

entropy 70, 71, 74, 86, 88
erase and redraw process 16
exchange time 153, 154, 162, 164, 165,

170, 171, 176, 181, 185, 186, 187,
188, 204, 205, 209, 267, 269, 282,
303, 304

F
feasibility condition 190, 191, 195, 196,

197, 205, 209, 228, 229, 232, 236,
239, 241, 259

first-come-first-serve (FCFS) 213.
See first-in-first-out (FIFO)

first-in-first-out (FIFO) 213, 214, 215,
223, 242, 258

frequency 19, 21, 77, 78, 83, 90, 92, 93,
94, 95, 96, 97, 99, 119, 120, 136,
140, 144, 161, 162, 163, 164, 165,
166, 208, 329, 332, 333, 348, 363,
364, 365

��0 Index

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.

G
gap time 229, 230, 232, 233, 236
graphics 7, 8, 13, 14, 16, 25, 26
graphics array, colour (CGA) 25
graphics array, enhanced (EGA) 25
graphics array, extended (XGA) 25
graphics array, super video (SVGA) 25, 26
graphics array, video (VGA) 25
greedy dual size (GD-size) 328, 335, 336,

339, 385
group-of-pictures (GOPs) 83, 379
group-of-pictures (GOPs), B-frames 83,

84, 86
group-of-pictures (GOPs), I-frames 83,

84, 86
group-of-pictures (GOPs), P-frames 83,

84, 85, 86
group sweeping scheduling (GSS) 137,

241, 249, 250, 251, 252, 255, 256,
257, 260

H
hash based cooperation 377
hierarchical storage system (HSS) 138,

143, 144, 145, 151, 159, 161, 187,
188, 199, 208, 209, 261, 262, 318,
322

hit 326, 327, 329, 334, 339, 342, 346, 360,
369, 380, 385

hit, weighted 360
hit ratio 327, 329, 334, 339, 342, 346, 369,

380, 385
Huffman coding 63, 77, 84
hybrid method 64, 86

I
image 3, 6, 8, 13, 15, 16, 17, 23, 24, 25,

26, 31, 61, 77, 78, 79, 80, 81, 82,
84, 86, 88

information content 70, 74
input/output (I/O) bus 41, 264, 267
input/output processor (IOP) 41, 42, 43
interactive television (ITV) 9, 10
interleaved contiguous placement 144,

188, 191, 197, 198, 205, 209

interpolations 84
intrapictures. See GOPs, I-frames

L
layer based 358
least frequently used (LFU) 328, 332, 333,

338, 340, 384
least recently used (LRU) 328, 329, 333,

334, 335, 336, 338, 339, 340, 384,
385

least recently used (LRU)-min 328, 334,
335, 336, 339, 340, 385

least unified value (LUV) 328, 336, 337,
338, 339, 384, 385

M
media distortion cost 363, 364, 365
mix 328, 337, 338, 339, 340, 384, 385
motion estimation 84
multimedia database systems 39
musical instrument digital interface (MIDI)

22

N
nano random access memory (NRAM) 48,

59, 88
network costs 363, 364, 365, 366
networks, peer-to-peer (P2P) 9

O
object recency 328, 329, 334, 335, 336,

347, 348, 364
objects, super 131, 132

P
partitioning, front and rear 372
partitioning, multiple hotspots 380
phase based constraint allocation 130,

131, 132, 133, 138, 139, 142
phases 131, 133, 139, 142
pipelining, normal 200, 262, 281, 285,

286, 287, 288, 290, 291, 296, 299,
315, 316, 317, 321

pipelining, segmented 262, 281, 290, 300,
301, 313, 315, 316, 317, 318, 322

Index ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.

pipelining, space efficient (SEP) 262, 281,
288, 290, 291, 293, 296, 298, 299,
316, 318, 321

placement, bandwidth based 92, 97, 98,
99, 136, 141

placement, contiguous 144, 156, 157, 158,
160, 161, 172, 174, 184, 188, 189,
191, 193, 195, 197, 198, 205, 208,
209

placement, frequency based 92, 93, 94, 95,
96, 97, 99, 136, 140, 144, 161, 162,
163, 164, 165, 166, 208

placement, log structured 157, 159, 160,
208

placement, popularity based 93. See place-
ment, frequency based

placement, pseudorandom 102, 108, 111,
112, 141

placement, temperature based 93.
See placement, frequency based

predicted pictures 83. See GOPs, P-
Frames

preprocessing 79
production consumption rate (PCR) 282
proxy servers, child 370, 371, 372, 373,

375
proxy servers, parent 370, 373, 377
proxy servers, reverse 38
pull-based approach 27
push-based approach 27, 28

Q
quantization 78, 79, 80, 81, 86, 88

R
random access memory (RAM) 33, 40, 48,

58, 60, 342
read/write heads 43, 44, 45, 49, 51, 52, 53,

54, 102, 147, 148, 153
recursive leader 369, 372
region based constraint allocation method

134, 137, 138, 139, 142
region of interest (ROI) 81, 86, 88
regions, logical 45, 81, 86, 88, 130, 134,

135, 136, 137, 138, 139, 142, 256
reposition latency 303, 313, 314, 315, 316,

317, 318, 322

reposition time 153, 157, 170, 181, 188,
204, 205, 209, 267, 282, 303, 304

representation, cyan, magenta, yellow, and
black (CMYK) 18, 26

representation, red, green, and blue (RGB)
17, 26, 79, 84

representation, YCbCr 17, 18, 26, 79
representation, YUV 17, 18, 26, 84
resident leader 343, 344, 345, 346, 353,

365, 372, 373, 374, 385
robotic arm 151, 152, 165, 168, 169, 175,

176, 177, 178, 179, 180, 185, 186,
201, 208, 264

rotational delay 53, 54. See.also rotational
latency

rotational latency 49, 51, 53, 54, 55, 60,
88, 94, 198, 227, 253, 268

S
SCAN, unidirectional 137, 219, 221, 223,

246, 257, 259
SCAN-EDF 243, 244, 245, 246, 248, 249,

256, 259
SCAN algorithm 213, 214, 216, 217, 218,

220, 222, 241, 246, 249
scan format, helican 148
seek distance 51, 52, 53, 60, 88, 90, 94,

97, 130, 134, 135, 136, 138, 219,
223, 229, 244, 245, 259

seek time 49, 51, 52, 53, 60, 88, 94, 95,
129, 130, 131, 133, 134, 136, 137,
138, 139, 142, 213, 219, 223, 227,
229, 243, 252, 253, 256, 259, 268

server, Lancaster continuous media storage
117

servers system, distributed 39
server system, distributed multimedia 36,

37, 38
server system, simple multimedia 34, 35
service time 170, 226, 227, 237, 277, 278,

279, 321, 342, 369, 381, 386
set-top box (STB) 7, 10
shrinking buffer policy 296, 298, 322
sound quality level 21
space stealing policy 296, 297, 298, 322
spiral track 45, 46, 47, 59, 88, 149

��� Index

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.

staging 97, 157, 158, 160, 204, 208, 262,
264, 265, 266, 267, 268, 270, 272,
273, 275, 276, 277, 278, 280, 287,
288, 289, 290, 291, 296, 299, 300,
304, 317, 318, 320, 321, 343, 349,
350, 351, 366, 367, 385

start-up latency cost 363, 364, 365, 366
statistical methods 64
statistical placement 92, 97, 99, 140, 144,

165, 187, 208
storage area network (SAN) 9, 38
storage pattern altering (SPA) policy 191,

195, 196, 197, 198, 205, 209
storage pattern preserving (SPP) policy

191, 192, 193, 194, 195, 196
stream, response time of a 227
streams, aperiodic 30
streams, continuous 31, 360
streams, discrete 31
streams, heterogeneous 190, 205, 209,

228, 233, 236, 239, 255, 259, 278
streams, homogeneous multimedia 131,

189, 190, 205, 209, 228, 230, 233,
239, 249, 250, 251, 255, 256, 259,
273, 275, 278

streams, irregular 31
streams, request 2, 28, 31, 93, 115, 121,

225, 241, 262, 341, 368
streams, strongly periodic 29
streams, strongly regular 30
streams, weakly periodic 30
streams, weakly regular 30
striping, concurrent 144, 188, 199, 200,

201, 203, 204, 205, 209
striping, data 101, 107, 113, 167. See.

also striping, disk
striping, disk 101. See.also striping, data
striping, parallel tape 144, 167, 168, 170,

171, 172, 174, 175, 176, 177, 180,
182, 184, 185, 186, 198, 204, 208,
209

striping, simple 102, 104, 106, 112, 131,
141

striping, staggered 102, 105, 106, 112, 141
subband coding 78, 79, 80
symbolwise methods 64, 86

T
tape exchange time 170, 181
tape format 147, 148, 149, 150
tape format, linear 148
tape format, serpentine 148
tape libraries, robotic 151, 152, 154, 168,

171, 172, 176, 177, 182, 186, 200,
207, 208, 292, 299

tape reposition time 170, 181
tapes, exchange of 151
tapes, magnetic 146, 147, 148
tapes, optical xvii, 145, 146, 150, 154, 207
tapes, optimal number of striping 173, 184
tape striping, parallel xviii
tape transfer rate 153, 267, 285, 303
Tier-1 coding 81
Tier-2 coding 81
time distribution model 331
time slicing 272, 273, 275, 276, 277, 278,

289, 299, 318, 321
tracks 44, 45, 46, 50, 51, 52, 56, 59, 88,

94, 95, 96, 118, 129, 130, 133, 134,
136, 137, 139, 142, 147, 148, 150,
213, 214, 215, 218, 219, 221, 223,
229, 246, 253, 259

transforms, intercomponent 79
transforms, irreversible colour (ICTs) 79
transforms, reversible colour (RCT) 79
transverse format 150
triangular placement 144, 167, 175, 176,

179, 180, 181, 182, 184, 185, 186,
198, 209, 269, 270

V
variable length segmentation 343, 347,

348, 365, 385
video 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 22,

23, 25, 26, 30, 32, 60, 61, 77, 82,
83, 86, 87, 88, 97, 99, 100, 103,
113, 127, 128, 131, 132, 133, 134,
138, 139, 142, 148, 149, 165, 188,
257, 271, 300, 301, 330, 338, 343,
344, 349, 350, 351, 352, 354, 366,
367, 381, 384, 385, 386

Index ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.

video-on-demand 9, 10, 11, 12, 13, 32,
60, 83, 87, 100, 113, 131, 132, 133,
134, 138, 139, 142, 257, 271, 300,
344, 350, 354

video-on-demand, dynamically allocated
11, 13

video-on-demand, near 11, 12, 131, 132,
133, 134, 138, 142, 344

video-on-demand, partitioned 11, 12
video-on-demand, true 11, 354
video conferencing 8, 13
video frame rate 23
video frames 23, 24, 26, 82, 83, 84, 86
video staging 343, 350, 351, 366, 385
viewing distance 22, 25

W
waiting time 53, 118, 165, 205, 209, 212,

215, 219, 226, 227
wavelengths 19
wavelet 78, 79, 80, 86, 88
wireless networks, cost based method for

362

Z
Zipf-like distribution 93, 330, 331, 338,

384
Ziv-Lempel coding 67

Information
Technology Research

at the Click of
a Mouse!

InfoSci-Online
Instant access to thousands of information technology book
chapters, journal articles, teaching cases, and conference
proceedings

Multiple search functions

Full-text entries and complete citation information

Upgrade to InfoSci-Online Premium and add thousands of
authoritative entries from Information Science Reference's
handbooks of research and encyclopedias!

IGI Full-Text Online Journal Collection

Instant access to thousands of scholarly journal articles

Full-text entries and complete citation information

IGI Teaching Case Collection

Instant access to hundreds of comprehensive teaching cases

Password-protected access to case instructor files

IGI E-Access

Online, full-text access to IGI individual journals,
encyclopedias, or handbooks of research

Additional E-Resources

E-Books

Individual Electronic Journal Articles

Individual Electronic Teaching Cases

Sign Up for a
Free Trial of
IGI Databases!

Resources
have flexible
pricing to
help meet the
needs of any
institution.

�

�
�
�

�
�

�
�

�

�
�
�

www.igi-online.com

Looking for a way to make information science and technology research easy?
Electronic Resources are designed to keep your institution up-to-date

on the latest information science technology trends and research.

	cover
	page_r01
	page_r02
	page_r03
	page_r04
	page_r05
	page_r06
	page_r07
	page_r08
	page_r09
	page_r10
	page_r11
	page_r12
	page_r13
	page_r14
	page_r15
	page_r16
	page_r17
	page_r18
	page_r19
	page_r20
	page_r21
	page_r22
	page_r23
	page_r24
	page_r25
	page_r26
	page_z0001
	page_z0002
	page_z0003
	page_z0004
	page_z0005
	page_z0006
	page_z0007
	page_z0008
	page_z0009
	page_z0010
	page_z0011
	page_z0012
	page_z0013
	page_z0014
	page_z0015
	page_z0016
	page_z0017
	page_z0018
	page_z0019
	page_z0020
	page_z0021
	page_z0022
	page_z0023
	page_z0024
	page_z0025
	page_z0026
	page_z0027
	page_z0028
	page_z0029
	page_z0030
	page_z0031
	page_z0032
	page_z0033
	page_z0034
	page_z0035
	page_z0036
	page_z0037
	page_z0038
	page_z0039
	page_z0040
	page_z0041
	page_z0042
	page_z0043
	page_z0044
	page_z0045
	page_z0046
	page_z0047
	page_z0048
	page_z0049
	page_z0050
	page_z0051
	page_z0052
	page_z0053
	page_z0054
	page_z0055
	page_z0056
	page_z0057
	page_z0058
	page_z0059
	page_z0060
	page_z0061
	page_z0062
	page_z0063
	page_z0064
	page_z0065
	page_z0066
	page_z0067
	page_z0068
	page_z0069
	page_z0070
	page_z0071
	page_z0072
	page_z0073
	page_z0074
	page_z0075
	page_z0076
	page_z0077
	page_z0078
	page_z0079
	page_z0080
	page_z0081
	page_z0082
	page_z0083
	page_z0084
	page_z0085
	page_z0086
	page_z0087
	page_z0088
	page_z0089
	page_z0090
	page_z0091
	page_z0092
	page_z0093
	page_z0094
	page_z0095
	page_z0096
	page_z0097
	page_z0098
	page_z0099
	page_z0100
	page_z0101
	page_z0102
	page_z0103
	page_z0104
	page_z0105
	page_z0106
	page_z0107
	page_z0108
	page_z0109
	page_z0110
	page_z0111
	page_z0112
	page_z0113
	page_z0114
	page_z0115
	page_z0116
	page_z0117
	page_z0118
	page_z0119
	page_z0120
	page_z0121
	page_z0122
	page_z0123
	page_z0124
	page_z0125
	page_z0126
	page_z0127
	page_z0128
	page_z0129
	page_z0130
	page_z0131
	page_z0132
	page_z0133
	page_z0134
	page_z0135
	page_z0136
	page_z0137
	page_z0138
	page_z0139
	page_z0140
	page_z0141
	page_z0142
	page_z0143
	page_z0144
	page_z0145
	page_z0146
	page_z0147
	page_z0148
	page_z0149
	page_z0150
	page_z0151
	page_z0152
	page_z0153
	page_z0154
	page_z0155
	page_z0156
	page_z0157
	page_z0158
	page_z0159
	page_z0160
	page_z0161
	page_z0162
	page_z0163
	page_z0164
	page_z0165
	page_z0166
	page_z0167
	page_z0168
	page_z0169
	page_z0170
	page_z0171
	page_z0172
	page_z0173
	page_z0174
	page_z0175
	page_z0176
	page_z0177
	page_z0178
	page_z0179
	page_z0180
	page_z0181
	page_z0182
	page_z0183
	page_z0184
	page_z0185
	page_z0186
	page_z0187
	page_z0188
	page_z0189
	page_z0190
	page_z0191
	page_z0192
	page_z0193
	page_z0194
	page_z0195
	page_z0196
	page_z0197
	page_z0198
	page_z0199
	page_z0200
	page_z0201
	page_z0202
	page_z0203
	page_z0204
	page_z0205
	page_z0206
	page_z0207
	page_z0208
	page_z0209
	page_z0210
	page_z0211
	page_z0212
	page_z0213
	page_z0214
	page_z0215
	page_z0216
	page_z0217
	page_z0218
	page_z0219
	page_z0220
	page_z0221
	page_z0222
	page_z0223
	page_z0224
	page_z0225
	page_z0226
	page_z0227
	page_z0228
	page_z0229
	page_z0230
	page_z0231
	page_z0232
	page_z0233
	page_z0234
	page_z0235
	page_z0236
	page_z0237
	page_z0238
	page_z0239
	page_z0240
	page_z0241
	page_z0242
	page_z0243
	page_z0244
	page_z0245
	page_z0246
	page_z0247
	page_z0248
	page_z0249
	page_z0250
	page_z0251
	page_z0252
	page_z0253
	page_z0254
	page_z0255
	page_z0256
	page_z0257
	page_z0258
	page_z0259
	page_z0260
	page_z0261
	page_z0262
	page_z0263
	page_z0264
	page_z0265
	page_z0266
	page_z0267
	page_z0268
	page_z0269
	page_z0270
	page_z0271
	page_z0272
	page_z0273
	page_z0274
	page_z0275
	page_z0276
	page_z0277
	page_z0278
	page_z0279
	page_z0280
	page_z0281
	page_z0282
	page_z0283
	page_z0284
	page_z0285
	page_z0286
	page_z0287
	page_z0288
	page_z0289
	page_z0290
	page_z0291
	page_z0292
	page_z0293
	page_z0294
	page_z0295
	page_z0296
	page_z0297
	page_z0298
	page_z0299
	page_z0300
	page_z0301
	page_z0302
	page_z0303
	page_z0304
	page_z0305
	page_z0306
	page_z0307
	page_z0308
	page_z0309
	page_z0310
	page_z0311
	page_z0312
	page_z0313
	page_z0314
	page_z0315
	page_z0316
	page_z0317
	page_z0318
	page_z0319
	page_z0320
	page_z0321
	page_z0322
	page_z0323
	page_z0324
	page_z0325
	page_z0326
	page_z0327
	page_z0328
	page_z0329
	page_z0330
	page_z0331
	page_z0332
	page_z0333
	page_z0334
	page_z0335
	page_z0336
	page_z0337
	page_z0338
	page_z0339
	page_z0340
	page_z0341
	page_z0342
	page_z0343
	page_z0344
	page_z0345
	page_z0346
	page_z0347
	page_z0348
	page_z0349
	page_z0350
	page_z0351
	page_z0352
	page_z0353
	page_z0354
	page_z0355
	page_z0356
	page_z0357
	page_z0358
	page_z0359
	page_z0360
	page_z0361
	page_z0362
	page_z0363
	page_z0364
	page_z0365
	page_z0366
	page_z0367
	page_z0368
	page_z0369
	page_z0370
	page_z0371
	page_z0372
	page_z0373
	page_z0374
	page_z0375
	page_z0376
	page_z0377
	page_z0378
	page_z0379
	page_z0380
	page_z0381
	page_z0382
	page_z0383
	page_z0384
	page_z0385
	page_z0386
	page_z0387
	page_z0388
	page_z0389
	page_z0390
	page_z0391
	page_z0392
	page_z0393
	page_z0394

