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Foreword

Most systems nowadays are designed with multimedia functionalities irre-
spective of the applications domain, and in many applications, the multimedia 
component is central to the operation of the system. A key requirement of 
many multimedia and visual information systems is the ability to locate and 
retrieve relevant data objects. Compared with conventional database pro-
cessing, such as OLTP (Online Transaction Processing) and OLAP (Online 
Analytic Processing), the data intensity in such systems in terms of size and 
volume tends to be much greater. At the same time, performance constraints 
on multimedia data delivery are also more stringent, since failure to retrieve 
data in time may mean that the progress of a song or a movie has to be un-
desirably interrupted. 
Although secondary and tertiary storage technologies have improved sub-
stantially in recent years, they are still several orders of magnitude slower 
than processor speed, and such a substantial performance gap is likely to 
persist for some time into the future.  Therefore, it is vital that algorithms 
and strategies are developed and deployed to optimize storage performance 
and behavior. Such performance enhancement strategies generally take a 
number of forms, some of which are static and some dynamic.
First, data must be judiciously situated and positioned so that their location 
and retrieval may be carried out efficiently. This involves exploiting the 
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characteristics of both the data objects and the storage structure. Without a 
sound data placement strategy, optimal processing will not be possible. Dif-
ferent methods of data placement for multimedia processing are systemati-
cally and exhaustively treated in Section IIa of this book. The extension of 
such techniques for hierarchical storage systems represents a different level 
of complexity and is carefully developed in Section IIb of the book.
While data placement corresponds to the relatively static aspect of process-
ing, the dynamic operations invariably involve considerable choices and 
optimizations. These relate to the scheduling of data requests, the staging 
and migration of data, and cache management so as to meet the performance 
constraints. These topics as well as the underlying ideas are systematically 
built up and treated in Section III, Section IV, and Section V of the book, 
respectively. 
Throughout this book, all relevant concepts and principles are systematically 
and lucidly explained, and the expositions are always accompanied by care-
fully designed diagrams and illustrations. In any serious performance analysis, 
the use of mathematical modeling is unavoidable. The mathematics in the 
book are presented in a lucid style, and the notations adopted are natural, 
making the mathematical developments easy to understand and follow.
Systems designers will find the wealth of techniques and analysis presented 
in the book an indispensable resource. Students of multimedia systems and 
advanced databases will find the treatment of topics and development of 
ideas in the book valuable to their understanding of efficient multimedia 
storage systems. Researchers of multimedia and database systems will find 
the book a vital source of reference. The unique and systematic coverage 
of topics in the book will make it an important and up-to-date resource for 
many types of readers.

Clement.Leung
Foundation.Chair.in.Computer.Science.
Victoria.University,.Australia



�ii

Clement.Leung:.Prior to taking up his present Foundation Chair in Computer Science at Victoria 
University, Australia, Clement Leung held an Established Chair in Computer Science at the University 
of London. His publications include two books and well over 100 research articles. His services to 
the research community include serving as program chair, program co-chair, keynote speaker, panel 
expert, and on the program committee and steering committee of major international conferences 
in the U.S., Europe, Australia, and Asia. In addition to contributing to the editorship of a number of 
international journals, he has also served as the Chairman of the International Association for Pattern 
Recognition Technical Committee on Multimedia and Visual Information Systems, as well as well 
as on the International Standards (ISO) MPEG-7 committee responsible for generating standards for 
digital multimedia, where he played an active role in shaping the influential MPEG-7 International 
Standard. He is listed in Who’s.Who.in.Australia, Who’s.Who.in.the.World, Great.Minds.of.the.21st.
Century, Dictionary.of.International.Biography, and Who’s Who in Australasia & Pacific Nations. He 
is a Fellow of the British Computer Society and a Fellow of the Royal Society of Arts, Manufactures 
and Commerce.



�iii

Preface

This book explains the techniques to store and retrieve multimedia informa-
tion in multimedia storage systems. It describes the internal architecture of 
storage systems. Readers will be able to learn the internal architectures of 
multimedia storage systems. Many techniques are described with details. 
Examples are provided to help readers understand the techniques. By un-
derstanding these techniques, we hope that readers may also apply similar 
techniques in the problems that they encounter in their everyday life. In 
particular, this book would be helpful to managers who wish to improve the 
performance of their multimedia storage systems.
To the best of our knowledge, there are many books about multimedia infor-
mation and only a few books discuss the storage systems in detail. Only one of 
them describes the storage and retrieval methods for multimedia information. 
However, none of them have discussed the storage and retrieval methods in 
hierarchical storage systems. Therefore, we consider it necessary to explain 
the storage techniques for multimedia information on storage systems and 
hierarchical storage systems in a new book. This book discusses the research 
on multimedia information storage and retrieval techniques.
This book focuses on the storage and retrieval methods. Some other tech-
niques, though somewhat related, are however outside the scope of this book. 
Those topics include security of multimedia data in the storage systems, 
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protocols to deliver multimedia information across the networks, and real 
time processing of multimedia information. Readers can easily find these 
topics from other books. 
This book is divided into the following six sections:

1. Background information in Section I.
2. Data placement on disks in Section IIa.
3. Data placement on hierarchical storage systems in Section IIb.
4. Disk scheduling methods in Section III.
5. Data migration methods in Section IV.
6. Cache replacement policies in Section V.

We start this book with the background of multimedia storage technology 
in Section I. Multimedia applications process digital media that were only 
present in the entertainment industry. Multimedia information systems pro-
cess digital media data according to the needs in these applications. Data 
compression is vital to the success of multimedia information systems and 
we explain two image and video compression standards. Traditional storage 
systems need to be enhanced or improved to support the data storage and 
retrieval operations. The characteristics of multimedia access patterns have 
significant impacts on the performance of the storage systems. 
In Section IIa, “Data Placement on Disks,” we describe the data placement 
methods that organize the storage locations of multimedia data on disks. 
Data placement methods organize the multimedia data according to the 
characteristics of multimedia data access patterns. New techniques have 
been designed to improve the performance of multimedia storage servers to 
an acceptable level. Data placement methods are grouped according to the 
strategies being applied, including statistical placement, striping, replication, 
and constraint allocation.
In Section IIb, “Data Placement on Hierarchical Storage Systems,” we de-
scribe the storage organization of multimedia data on hierarchical storage 
systems. Data placement methods have been designed to achieve efficient 
retrievals of multimedia data. The data placements are categorized according 
to the strategy in use, including contiguous placement, statistical placement, 
striping, and constraint allocation.
In Section III, “Disk Scheduling Methods,” the disk scheduling methods that 
rearrange the service sequences of the waiting requests are described. The 
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methods that schedule normal disk requests are first described. The feasibil-
ity conditions to merge concurrent streams are then followed. After that, we 
describe the scheduling methods for streams of multimedia requests. 
In Section IV, “Data Migration,” we show the methods to migrate data across 
the storage levels of the hierarchical storage systems. Data residing on the 
hierarchical storage systems are migrated from high levels with high ac-
cess latency to lower levels with low access latency. Staging methods move 
multimedia objects across the storage level via staging buffers. Time slicing 
method accesses objects in time slices in order to reduce the start-up latency 
of streams. Pipelining methods minimize the start-up latency and staging 
buffer size for multimedia streams.
In Section V, “Cache Replacement Policy,” the cache replacement methods 
of multimedia servers are described. Efficient cache replacement policies 
on these servers keep the objects with high access probability on the cache. 
They improve the cache replacement methods of multimedia streams so 
that multimedia data can be delivered efficiently over the Internet. Memory 
caching methods replace objects with low cache value so that high cache 
value objects can be kept for efficient cache performance. Stream dependent 
caching methods assign cache values to object segments in order to improve 
the cache efficiency for multimedia objects. Cooperative proxy servers share 
their Web cache contents so that the cache performs efficiently when similar 
objects are accessed by their clients.
The organization of chapters in this book is as follows:

1. Background in Section I.
a. Introduction in Chapter I.
b. Multimedia information in Chapter II.
c. Architectures of storage systems in Chapter III.
d. Data compression techniques and standards in Chapter IV.

2. Data placement on disks in Section IIa.
a. Statistical placement on disks in Chapter V.
b. Striping on disks in Chapter VI.
c. Replication placement on disks in Chapter VII.
d. Constraint allocation on disks in Chapter VIII.

3. Data placement on hierarchical storage systems in Section IIb.



�vi

a. Tertiary storage devices in Chapter IX.
b. Contiguous placement on hierarchical storage systems in Chapter 

X.
c. Statistical placement on hierarchical storage systems in Chapter 

XI.
d. Striping on hierarchical storage systems in Chapter XII.
e. Constraint allocation on hierarchical storage systems in Chapter 

XIII.
4. Disk scheduling methods in Section III.

a. Scheduling methods for disk requests in Chapter XIV.
b. Feasibility conditions of concurrent streams in Chapter XV.
c. Scheduling methods for request streams in Chapter XVI.

5. Data migration in Section IV.
a. Staging method in Chapter XVII.
b. Time slicing method in Chapter XVIII.
c. Normal pipelining in Chapter XIX.
d. Space efficient pipelining in Chapter XX.
e. Segmented pipelining in Chapter XXI.

6. Cache replacement policies in Section V.
a. Memory caching methods in Chapter XXII.
b. Stream dependent caching in Chapter XXIII.
c. Cooperative Web caching in Chapter XXIV.

In Chapter I, “Introduction,” we give an overview of the techniques that are 
covered in this book. The techniques are described briefly according to the 
division of parts in this book. 
In Chapter II, “Multimedia Information,” we start with describing the char-
acteristics of multimedia data. Some applications that are involved in using 
and processing multimedia information are listed as examples. The repre-
sentations of multimedia data show how the large and bulky multimedia data 
are represented and compressed. The multimedia data are also accessed in 
request streams. Readers who are familiar with multimedia processing may 
skip this chapter.
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In Chapter III, “Storage System Architectures,” the architectures of storage 
systems are explained. Multimedia systems are similar to traditional comput-
ers systems in term of their architectures. Multimedia computer systems are 
built with stringent processing time requirements. The components of the 
computer system, including the storage servers, need to process a large amount 
of data in parallel within a guaranteed time frame. The storage server needs 
to access data continuously to the clients according to the clients’ requests. 
Multimedia objects are large and the magnetic hard disks need to access 
segments of the objects within a short time. These requirements lead to the 
emergence of constant recording density disks and zoned disks. Readers who 
have deep understandings of the computer storage architectures may skip 
some descriptions and go to the performance equations immediately.
In Chapter IV, “Data Compression Techniques and Standards,” the data 
compression techniques and standards are described. We describe the general 
compression model, text compression, image compression and JPEG2000, 
and video compression and MPEG2. These data compression techniques are 
helpful to understand the multimedia data being stored and retrieved.
In Chapter V, “Statistical Placement on Disks,” two statistical placement 
methods are described. The statistical placement strategy is based on the 
difference in access characteristics of the multimedia streams. The frequency 
based placement method optimizes the average request response time. It uses 
an algorithm to place the objects according to their access frequencies. The 
bandwidth based placement method places objects according to their data 
rates. The storage system maintains its optimal performance according to 
the object data transfer time without reorganizations. Readers may find this 
chapter useful in other situations which involve probabilities.
In Chapter VI, “Striping on Disks,” three striping methods are explained in 
detail. Multimedia streams need continuous data supply. The aggregate data 
access requirement of many multimedia streams imposes very high demand 
on the access bandwidth of the storage servers. The disk striping or data strip-
ing methods spread data over multiple disks to provide high aggregate disk 
throughput. The simple striping methods increase the efficiency of serving 
concurrent multimedia streams. Multimedia streams access the data stripes 
according to their actual data consumption rates. The disk bandwidth and the 
memory buffer are used efficiently. The staggered striping method provides 
effective support for multiple streams accessing different objects from a group 
of striped disks, and it automatically balances the workload among disks. The 
pseudorandom placement method maintains that the data stripes are evenly 
distributed on disks and it reduces the number of data stripes being moved 
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when the number of disks increases or decreases. It reduces the workload 
on data reorganization when disks are added or removed.
In Chapter VII, “Replication Placement on Disks,” several replication place-
ment methods on disks are shown. When extra storage space is available, 
the storage system may keep extra copies of the stored objects. Extra copies 
of objects may be able to increase the storage system performance. The re-
cent trend of technology shows that storage capacity is increased at a faster 
pace than the access bandwidth. Storage capacity may not be a problem 
when compared to the access bandwidth. The replication strategy applies 
redundancy to increase reliability of the storage system and availability of 
the stored objects. It reduces network load, start-up latency. It avoids disk 
multitasking. It maintains the balance of space and workload. 
In Chapter VIII, “Constraint Allocation on Disks,” two constraint allocation 
methods are described. Constraint allocation methods limit the available 
locations to store the data stripes. They reduce the overheads of serving 
concurrent streams from the same storage device. The maximum overheads 
in accessing data from the storage devices are lowered. When many streams 
access the same hot object, the phase based constraint allocation supports 
more streams with less seek actions. The region based allocation limits the 
longest seek distance among requests.
In Chapter IX, “Tertiary Storage Devices,” the tertiary storage devices are 
detailed. Several types of storage devices, including magnetic tapes, optical 
disks, and optical tapes, are available to be used at the tertiary storage level 
in hierarchical storage systems. These storage devices are composed of fixed 
storage drives and removable media units. The storage drives are fixed to 
the computer system. The removable media unit can be removed from the 
drives so that the storage capacity can be expanded with more media units. 
When data on a media are accessed, the media unit is accessed from their 
normal location. One of the storage drives on the computer system is chosen. 
If there is a media unit in the storage drive, the old media unit is unloaded 
and ejected. The new media unit is then loaded to the drive. Readers who 
are familiar with the robotic tape libraries may skip this chapter and directly 
move on to the placement methods.
In Chapter X, “Contiguous Placement on Hierarchical Storage Systems,” 
two contiguous placement methods are described. The contiguous place-
ment is the most common method to place traditional data files on tertiary 
storage devices. The storage space in the media units is checked. The data 
file is stored on a media unit with enough space to store the data file. When 
tertiary storage devices are used to store multimedia objects, the objects are 
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stored and retrieved similar to traditional data files. Since the main applica-
tion of the tertiary storage devices is to back up multimedia objects from 
computers, the objectives of the contiguous method are (1) to support back 
up of multimedia objects efficiently and (2) to reduce the number of separate 
media units that are used to store an object.
In Chapter XI, “Statistical Placement on Hierarchical Storage Systems,” we 
describe the statistical strategy to place multimedia objects on hierarchical 
storage systems. The objective of the data placement methods is to minimize 
the time to access object from the hierarchical storage system. The statistical 
strategy changes the statistical time to access objects so that the mean access 
time is optimal. The frequency based placement method differentiates objects 
according to their access frequencies. The objects that are more frequently 
accessed are placed in the more convenient locations. The objects that are 
less frequently accessed are placed in the less convenient locations. 
In Chapter XII, “Striping on Hierarchical Storage Systems,” two striping 
techniques are explained with details. The data striping technique has been 
successfully applied on disks to reduce the time to access objects from the 
disks. Thus, the striping technique has been investigated to reduce the time 
to access objects from the tape libraries in a similar manner. Similar to the 
striping on disks, the objective of the parallel striping method is to reduce 
the time to access objects from the tape libraries. The parallel tape striping 
directly applies the striping technique to place data stripes on tapes. The tri-
angular placement method changes the order in which data stripes are stored 
on tapes to further enhance the performance.
In Chapter XIII, “Constraint Allocation on Hierarchical Storage Systems,” 
two approaches to provide constraint allocations on different types of media 
units are described. Multimedia objects are large in size, but the access latency 
of hierarchical storage systems is high. The hierarchical storage systems need 
to provide high throughput in delivering data. Multimedia streams should 
be displayed with continuity. Depending on the data migration method, the 
whole object or only partial object is retrieved prior to the beginning of 
consumption. The constraint allocation methods limit the freedom to place 
data on media units so that the worst case would never happen. They reduce 
the longest exchange time and/or the longest reposition time in accessing the 
objects. The interleaved contiguous placement limits the storage locations 
of data stripes on optical disks. The concurrent striping method limits the 
storage locations of data stripes on tapes. 
In Chapter XIV, “Scheduling Methods for Disk Requests,” two common disk 
scheduling methods are explained. Disk scheduling changes the sequence 
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order to serve the requests that are waiting in the queue. While data placement 
reduces the access time of a disk request, scheduling reduces the waiting time 
of a request. The longer the waiting queue, the more useful is the scheduling 
method. When there are not any requests in the waiting queue, any schedul-
ing methods perform the same. A disk scheduling policy changes the service 
order of waiting requests. It accepts the waiting requests and serves them 
in the new service sequence. The first-in-first-out policy serves requests in 
the same order as the incoming order of the waiting requests. The SCAN 
scheduling method serves the waiting requests in the order of their accessing 
physical track locations to serve the requests efficiently. 
In Chapter XV, “Feasibility Conditions of Concurrent Streams,” we prove 
the feasibility conditions to accept homogeneous and heterogeneous streams 
to a storage system. Multimedia storage systems store data objects and re-
ceive streams of requests from the multimedia server. When a client wishes 
to display an object, it sends a new object request for the multimedia object 
to the multimedia server. The multimedia server checks to see if this new 
stream can be accepted. The server encapsulates the data stripe of the ac-
cepted streams as data packets and sends them to the client. The server sends 
data requests periodically to the storage system. Each of these data requests 
has a deadline associated with it. Every request of a stream, except the first 
one, must be served within the deadline to ensure continuity of the stream. 
We prove that heterogeneous streams can be accepted when their streams 
accessing patterns satisfy the feasibility conditions. Readers may skip the 
proofs of the equations in this chapter in the first reading.
In Chapter XVI, “Scheduling Methods for Request Streams,” we describe 
three scheduling methods for multimedia streams of requests. These sched-
uling methods use either serve requests according to their deadline or serve 
the stream in round robin cycle in order to provide real-time continuity 
guarantee. They all use the SCAN scheduling method to improve the ef-
ficiency in serving requests. The earliest deadline first scheduling method 
serves requests according to their deadlines so that the requests would not 
wait too long and miss their deadlines. The SCAN-EDF scheduling method 
serves requests with the same deadline in the SCAN order. It improves the 
efficiency of the storage system using the EDF scheduling method. The 
group sweeping scheduling method serves groups of streams in round-robin 
cycles. It improves the efficiency of the storage system and provides real-
time continuity guarantees to the streams. It is also fair to all the streams by 
serving one request of every stream in each cycle. 
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In Chapter XVII, “Staging Methods,” we describe one of the data migration 
methods. Data migration is the process of moving data from tertiary storage 
devices to secondary storage devices in hierarchical storage systems. The 
three approaches to migrate multimedia data objects across the storage levels 
are staging, time slicing, and pipelining. The staging method accesses an ob-
ject using two stages. The staging method is simple and flexible. It is suitable 
for any type of data on any tertiary storage systems. Some readers may find 
the staging method is simple and just browse through this chapter.
In Chapter XVIII, “Time Slicing Method,” the time slicing method is de-
scribed. Tertiary storage devices provide huge storage capacity at low cost. 
Multimedia objects stored on the tertiary storage devices are accessed with 
high latency. The time slicing method is designed to reduce the start up latency 
in accessing multimedia objects from tertiary storage devices. The start-up 
latency is lowered by reducing the amount of data being migrated before 
consumption begins. The time slicing method accesses objects at the unit of 
slices instead of objects. Streams can start to respond at an earlier time.
In Chapter XIX, “Normal Pipelining,” the first pipelining method is intro-
duced. Three pipelining methods, including normal pipelining, space efficient 
pipelining, and segmented pipelining, can be used to access multimedia ob-
jects with minimal start-up latency. Apart from reducing the start up latency, 
the pipelining methods also reduce the usage of the staging buffers. The 
normal pipelining method finds the minimum fraction of the object before 
the stream can start to display it. The formula to find minimum size of the 
first slices is explained. The pipelining method minimizes the start-up latency 
for the tertiary storage devices whose data transfer rate is lower than the data 
consumption rate of the objects.
In Chapter XX, “Space Efficient Pipelining,” the space efficient pipelining 
method is explained. The space efficient pipelining method is designed for 
pipelining objects from low bandwidth storage devices for display. It re-
trieves data at a rate lower than the data consumption rate. It keeps the front 
part of objects resident on disk cache to start a new stream at disk latency. 
It uses the disk space efficiently to handle more streams. The basic policy 
reuses the circular buffer to store the later slices of the objects. The shrinking 
buffer policy reduces the circular buffer size after a slice is displayed. It is 
particularly useful when the circular disk buffer constraint is tight. The space 
stealing policy reuses the storage space containing the head of the object as 
part of the circular buffer. 
In Chapter XXI, “Segmented Pipelining,” the segmented pipelining method 
to reduce the latency in serving interactive requests is presented and analyzed. 
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The segmented pipelining method divides objects into segments and slices 
so that the object can be pipelined from the hierarchical storage system. The 
segmented pipelining method is analyzed in terms of disk space requirement 
and the reposition latency. It uses small extra disk space to support object 
previews and efficient interactive functions. It can offer extra flexibility in 
controlling the amount of disk space usage by adjusting the storage location 
of the preload data. The segmented pipelining is an efficient and flexible 
data migration method for the multimedia objects on hierarchical storage 
systems.
Multimedia objects can be stored in the content servers on the Internet. When 
clients access multimedia objects from a content server, the content server 
must have sufficient disk and network to deliver the objects to the clients. 
Otherwise, it rejects the requests from the new clients. The server and net-
work workloads are important concerns in designing multimedia storage 
systems over the Internet. The Internet caching technique helps to reduce 
the number of repeated requests for the same objects from popular content 
servers. As caching consumes myriad storage space, the cache performance is 
significantly affected by the cache size. Cache admission policies determine 
whether a newly accessed object should be stored onto the cache devices. 
Cache replacement policies decide which objects should be removed to release 
space. The cache replacement policy can be divided into memory caching 
and stream dependent caching.
In Chapter XXII, “Memory Caching Methods,” we describe several replace-
ment policies in memory caching. Memory cache replacement policies assign 
a cache value to each object in the cache. This cache value decides the prior-
ity of keeping the object in the cache. When space is needed to store a new 
object in cache, the cache replacement function will choose the object with 
the lowest cache value and delete it to release space. The objects with high 
cache values will remain in the cache. Different cache replacement policies 
assign different cache values to the objects. The traditional LRU method 
keeps the objects that are accessed most recently. It is simple and easy to 
implement and the time complexity is very low. The LFU, LUV, and mix 
methods keep track of the object temperature and remove the coldest objects 
from the cache first. The LRU-min, GD-size, LUV, and mix methods keep 
the small and recently accessed objects in the cache. The GD-size, LUV, and 
mix methods also include latency cost of objects in the cache to lower the 
priority of objects that can be easily replaced.
In Chapter XXIII, “Stream Dependent Caching,” the stream dependent 
caching methods that guarantee continuous delivery for multimedia streams 
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are described. The storage techniques on stream dependent caching include 
resident leader, variable length segmentation, video staging, hotspot caching, 
and interval caching. They will divide each multimedia object into smaller 
segments and store selected segments on the cache level. The resident leader 
method trades off the average response time of requests to reduce the maxi-
mum response time of streams. The variable length segmentation method 
divides the objects into segments of increasing length so that large segments 
may be deleted to release space more efficiently. The video staging method 
retrieves high bandwidth segments to reduce the necessary WAN bandwidth 
for streaming. The hotspot caching method creates the hotspot segments of 
objects to provide fast object previews from local cache. The interval cach-
ing method keeps the shortest intervals of video to maintain the continuity 
of streams from the local cache content. The layer based caching method 
adapts the quality of streams to the cache efficiency. It uses the continuity 
and completeness as metrics to measure the suitability of the caching method 
for multimedia streams. The cost based method for wireless clients reduces 
the quality distortion over the error-prone wireless networks with the help 
of the cache content. The cache values of the segments are composed of the 
network cost, the start-up latency cost, and the quality distortion cost. 
In Chapter XXIV, “Cooperative Web Caching,” we describe how Web caches 
cooperate to raise the overall cache performance on the Internet. Hierarchical 
Web caching reduces network latency on requests. Front and rear partitioning 
reduces the start-up latency of streams. Directory based cooperation avoids 
the contention on parent proxy server. Hash based cooperation achieves low 
storage overheads and update overheads. Multiple hotspot caching keeps the 
hotspot blocks to provide fast local previews. The performances of various 
object partitioning methods in cooperative multimedia proxy servers are 
analyzed. 
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Section.I

Background

We shall provide the background of multimedia storage techniques and 
technology in this part. The first chapter gives an introduction to the book. 
Multimedia information is described in Chapter II. The architectures of stor-
age systems are described in Chapter III. The data compression techniques 
and standards are explained in Chapter IV.
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Chapter.I

Introduction

This book explains the techniques to store and retrieve multimedia information 
in multimedia storage systems. It describes the internal architecture of storage 
systems. Readers will be able to learn the internal architectures of multimedia 
storage systems. Many techniques are described with details. Examples are 
provided to help readers understand the techniques. By understanding these 
techniques, we hope that readers may also apply similar techniques in the 
problems that they encounter in their everyday life.
This book focuses on storage and retrieval methods. Some other techniques, 
though somewhat related, are outside the scope of this book. These topics 
may include security of multimedia data in the storage systems, streaming 
protocols to deliver multimedia information across the networks, recognition 
of information from multimedia data, and real time processing of multimedia 
information. Readers may find information on these techniques in many other 
books. To our understanding, the data placement techniques, disk scheduling 
methods, and data migration methods are three areas which are not sufficiently 
covered in the books on the market. 
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This book is divided into the following six sections:

1. Background information in Section I.
2. Data placement on disks in Section IIa.
3. Data placement on hierarchical storage systems in Section IIb.
4. Disk scheduling methods in Section III.
5. Data migration methods in Section IV.
6. Cache replacement policies in Section V.

The data placement methods are divided into Section IIa and Section IIb 
because they are similar but different techniques applied in different storage 
levels.
We start this book with the background multimedia information. Multimedia 
applications process digital media that were only present in the entertainment 
industry. Multimedia information systems process digital media data accord-
ing to the needs in these applications. Traditional storage systems need to be 
enhanced or improved to support the data storage and retrieval operations. 
The characteristics of multimedia access patterns have significant impacts on 
the performance of the storage systems. New techniques have been designed 
to improve their performance to an acceptable level. Data placement methods 
organize the multimedia data according to the characteristics of multimedia 
data access patterns in disk and hierarchical storage systems. Disk scheduling 
methods rearrange the service sequences of the waiting requests. Data residing 
on the hierarchical storage systems are migrated from high levels with high 
access latency to lower levels with low access latency. Cache replacement 
policies improve the replacement methods of multimedia data for efficient 
cache performance over the Internet. 
In the next chapter, we start with describing the characteristics of multimedia 
data. Some applications are involved in using and processing multimedia 
information. Several examples are shown to provide the basic understanding 
on the processing environment of multimedia information. The representa-
tions of multimedia data show how the large and bulky multimedia data 
are represented and compressed. The multimedia data are also accessed in 
request streams. Readers who are familiar with the multimedia information 
may skip this chapter and jump to the next chapter.
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In Chapter III, the architectures of storage systems are explained with details. 
In order to process continuous multimedia streams, multimedia computer 
systems are built with stringent processing time requirements. When storage 
servers are designed to handle multimedia streams, the architecture of the 
storage servers also needs to handle the processing time requirements. The 
storage server needs to access data continuously for the clients according 
to the clients’ requests. Multimedia objects are large and the magnetic hard 
disks needed to access segments of the objects within a short time. These 
requirements lead to the emergence of constant recording density disks and 
zoned disks. Readers who are familiar with the architectures of storage de-
vices may skip this chapter.
In Chapter IV, the data compression techniques and standards are described. 
Because the performance of a computer system depends on the amount of 
data retrieved and the multimedia objects are large, the performance of the 
computer system can be enhanced by reducing the object sizes. Therefore, 
multimedia objects are always kept in their compressed form when they are 
stored, retrieved, and processed. We shall describe the commonly used com-
pression techniques and compression standards in this chapter. We describe 
the general compression model, text compression, image compression and 
JPEG2000, and video compression and MPEG2. These data compression tech-
niques are helpful to understand the multimedia data stored and retrieved.
The organization of chapters in this book includes:

1. Background in Section I.
a. Introduction in Chapter I.
b. Multimedia Information in Chapter II.
c. Architectures of Storage Systems in Chapter III.
d. Data Compression Techniques and Standards in Chapter IV.

2. Data placement on disks in Section IIa.
a. Statistical Placement on disks in Chapter V.
b. Striping on disks in Chapter VI.
c. Replication Placement on disks in Chapter VII.
d. Constraint Allocation in Chapter VIII.

3. Data placement on hierarchical storage systems in Section IIb.
a. Tertiary Storage Devices in Chapter IX.
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b. Contiguous Placement on Hierarchical Storage Systems in Chapter X.
c. Statistical Placement on Hierarchical Storage Systems in Chapter XI.
d. Striping on Hierarchical Storage Systems in Chapter XII.
e. Constraint Allocation on Hierarchical Storage Systems in Chapter XIII.

4. Disk scheduling methods in Section III.
a. Scheduling Methods for Disk Requests in Chapter XIV.
b. Feasibility Conditions of Concurrent Streams in Chapter XV.
c. Scheduling Methods for Request Streams in Chapter XVI.

5. Data migration in Section IV.
a. Staging Method in Chapter XVII.
b. Time Slicing Method in Chapter XVIII.
c. Normal Pipelining in Chapter XIX.
d. Space Efficient Pipelining in Chapter XX.
e. Segmented Pipelining in Chapter XXI.

6. Cache replacement policies in Section V.
a. Memory Caching Methods in Chapter XXII.
b. Stream Dependent Caching in Chapter XXIII.
c. Cooperative Web Caching in Chapter XIV.
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Chapter.II

Multimedia.Information

Introduction

To start this book, I shall first describe the characteristics of multimedia data. 
Then, some multimedia applications are listed. After these, I shall explain 
the representations of multimedia data. Lastly, the multimedia requests are 
presented as streams.

Multimedia.Data

What.is.Multimedia.Information?

Traditional data represent the logical meaning only of real world entities 
in computers. We use numbers such as 1, 2, 3, 4, and so on to represent 
values. Textual information is described by words. These words are built up 
by alphabets such as A, B, C, and D. We use drawings to represent spatial 
information graphically.
In order to capture the records of real world entities, images are recorded on 
films and handled by photographic equipment; sound is recorded on cassette 
tapes and CD-ROMs. Sound is also transmitted by telephones. Moving im-
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ages (video) is recorded on tapes and transported physically. Everything is 
fine except that these are analog signals. Computers can only process and 
handle digital signals. As a result, all these real world entities could not be 
directly processed in computers.
The word “multimedia” is created by joining the two words “multiple” and “media” 
together. Multimedia data provide a direct representation of the physical world in the 
digital format. The multimedia data that we encounter everyday include photographs, 
X-ray images, sound, and video. Other multimedia data include drawings, charts, 
and animations. Any visible images and audible sound are multimedia data.

Digital.Multimedia.Data

Multimedia data are stored and processed in the digital format. Multimedia 
data are handled in the digital format with several benefits. 
Digital data are 100% reproducible. Digital data are precise. Any difference 
can be compared and found out. It is inadvertent to making copies. Many 
exact copies can be produced that are the same as the digital original. Dig-
ital data are also independent of the storage media. New storage media may 
come out in the future. The same digital data can be copied or transferred to 
the new media when necessary. 
In addition, digital data can be processed by computers to produce new 
software effects. For example, a digital photo can be blurred or sharpened. 
The colour of any part of the photo can be changed. The orientation of the 
photo can be rotated. Some image processing software, such are Microsoft 
imaging and Photoshop can easily perform these changes.
Digital data can be transmitted over the networks. Computers can transfer 
digital data from one end to another end of the networks. The ease of transmit-
ting digital data brings the possibility of building new types of applications 
for multimedia information.

Multimedia.Objects

A multimedia object is a separate unit of multimedia data that can be displayed 
independently. Many of these objects appear in daily life. Still images such 
as photographs and X-ray images are multimedia objects. Graphic charts are 
multimedia objects that are generated by reporting programs. Speech and 
voice are multimedia objects that are recorded. Music is one type of multi-
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media object that is composed. Animation graphics are artificial multimedia 
objects. Video and movies are multimedia objects recorded and edited by 
specialized producers.
In summary, multimedia data can directly represent real world entities in 
the digital format. Digital multimedia data can be processed by computer 
programs to produce software effects that were never before possible. Many 
multimedia objects can be found in daily life, and these objects can now be 
processed by computers.

Multimedia.Applications

Many applications can make use of multimedia information to enhance the 
quality of their products.
The broadcast companies create and broadcast television programmes to the 
viewers. Cable television companies such as iCable and OptusVision in 
Australia transmit their encrypted audio and video programmes via dedicated 
network cables to the set-top box. The set-top box then decrypts and transmits 
these television signals to the television. The viewer can thus watch them 
on the television.
Television can also be provided via the Internet. Some Web sites contain-
ing live radio and live television programmes are available for listeners and 
viewers. Audience members who have missed some programmes may select 
to watch them again via browsers.
Movie producers create digital movies using computers and allow paid viewers 
to watch them. They may allow everyone to watch the advertising materials 
to attract more viewers. The music companies may produce song albums for 
artists. Amateur artists may directly produce their songs and publish them to 
increase their personal fame.
Video on-demand, or Interactive TV, systems show video to the viewers 
who have subscribed to watch the videos. They transmit selected video and 
audio objects according to user’s choice. Education on-demand systems 
provide video of course lectures to students enrolled in the course. They 
help students in learning at their own pace. News-on-demand and sports-
on-demand systems can provide instantaneous news and sports information 
to interesting viewers.
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Remote communication and cooperation can be achieved by transmitting video 
and audio information. Video telephones transmit telephone and small video 
image over broadband networks. Microsoft Netmeeting® and CUSeeme® 
provide video conference over computers connected over the network. Col-
laborative computing can be achieved by synchronizing the working task over 
remote communications. Video e-mails may also enhance desynchronized 
communications. Voice over IP software reduces international telephone calls 
charges by using the Internet.
Commercial companies may install security monitoring systems that provide 
around-the-clock monitoring for the office and factory areas. Advanced 
systems may provide automatic alerts when too many video cameras are 
being watched by a few security officers. Multimedia information can also 
provide automatic quality control to enhance production. Video cameras can 
take images of products. Products with significant defects will be filtered and 
removed from the production line. 
Visual information systems interactively search the multimedia databases 
using image and audio information. Many libraries have digitized their 
books and journals. With the support of government, many digital libraries 
have been built, and they are available to visitors around the world. Some 
museums have created an online version of some of their collections. These 
virtual museums allow virtual visitors to watch their collections online.
Hospitals install patient monitoring systems to monitor patients who are 
staying in intensive care units. The Earth Observatory System records and 
stores video information from satellites. The system produces petabytes (1015 
bytes) of scientific data per year. 
Multimedia information has always been used in the entertainment industry. 
Interactive video games can be enriched by high resolution graphics. Interac-
tive stories can become a reality for story readers who may make their choice 
on how a story proceeds and ends.

Major System Configuration

A multimedia application system has to consider the data storage and dis-
tribution system, the data delivery network, and the delivery scheduling 
algorithms.
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Data.Storage.and.Distribution

Several data storage and distribution systems have been researched. These 
include the centralized system, the storage area network (SAN), the content 
distribution network (CDN), and the serverless or peer-to-peer (P2P) net-
work.
The centralized system stores all the multimedia objects in one location. 
The storage area network stores the multimedia objects on several servers. 
These storage servers are connected over a local area network using optical 
fibres. The content distribution network distributes the multimedia objects 
on servers that are spread over a wide area network. Client requests are sent 
to the nearest server that contains the object to serve the request.
The serverless systems or peer-to-peer networks do not permanently store the 
objects on the servers. The server containing the object will only serve the 
first few requests for the object. Afterwards, the nodes that have the object 
will become the seed and serve other clients (Jeon & Nahrstedt, 2002). Thus, 
the server can become free, and it can be disconnected from the network. 

Delivery.Network.and.Scheduling

The data delivery network can be built by laying dedicated cables or by the 
Internet. The multimedia objects can be delivered via broadcasting or video-
on-demand (VOD) systems. Depending on the delivery scheduling and the 
delivery network, at least four types of system architectures can be built.
The interactive television (ITV) companies build their systems by broadcast-
ing over dedicated cables (Figure 2.1). In the systems, the users subscribe 
to an ITV company. The ITV company broadcasts a number of channels of 
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Figure.2.1..Broadcasting.over.dedicated.cables
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video content via a cable to a dedicated set-top box (STB). The STB is then 
connected to the television set. The user selects a channel to watch via a 
remote control unit of the STB (Furht, 1996).
The ITV companies may provide video-on-demand via dedicated cables 
(Figure 2.2). In the systems, the users subscribe to an ITV company. The 
ITV Company downloads a movie list to the Set Top box. User then selects 
a movie from the list using remote control of set top box. The ITV Company 
broadcasts the movie in a new channel to the user. Some user may join an 
existing channel to watch.

Figure.2.2..Video-on-demand.over.dedicated.cables
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The content providers may deliver multimedia objects by broadcasting over 
the Internet (Figure 2.3). Users first subscribe to a content provider on the 
Internet. They are then allowed to join a live video/audio channel. The content 
provider then delivers the live multimedia objects from the streaming servers 
to all users. Users then use their browser to receive and play streams.
The content providers may also provide video-on-demand services over the 
Internet (Figure 2.4). Users first subscribe to a content provider on the Inter-
net, and the user may select a multimedia object from the content provider’s 
Web site. The content provider then tests the streaming ability to the user’s 
computer. The streaming server delivers the low or high resolution object 
suitable for delivery to the user. The browser on the user’s computer receives 
and plays the streaming object.

Video-on-Demand.Systems

Four different types of video-on-demand systems have been investigated 
(Furht, 1996). These include the near video-on-demand (NVOD) systems, true 
video-on-demand (TVOD) systems, partitioned video-on-demand (PVOD) 
systems, and dynamically allocated video-on-demand (DAVOD) systems.
In the true video-on-demand systems, the user has complete control of a 
multimedia program. The user can perform normal play, reverse play, fast 
forward, random positioning, pause, and resume. In this system, each user 
is allocated a unique channel during the total duration. It allows complete 
user interactivity. The number of concurrent users is however limited by the 

Figure.2.4..Video-on-demand.over.the.Internet
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number of available channels. As a result, many potential viewers may not 
be able to access the system during the busy period of time.
The near video-on-demand system (Figure 2.5) provides video distribution at 
relatively low cost. This system however provides only limited user interactivity. 
A popular video is broadcast using several streams or channels. Each channel is 
separated from the previous channel at a fixed interval. When the user requests for 
this video, the user’s access will be delayed until the start of the next stream.
The partitioned video-on-demand system (Figure 2.6) combines the advan-
tages of both NVOD and TVOD systems. User interactivity is provided at 
the capacity of the system. Digital channels are partitioned into two groups: 
NVOD and TVOD services. NVOD channels broadcast the most popular 

Figure.2.5..Near.video-on-demand.system
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video with limited user control. TVOD channels will provide complete 
user control functions. For example, the digital channels are divided into 50 
broadcast channels and 450 interactive channels.
The dynamically allocated video-on-demand system is an extension of the 
PVOD scheme. The user, watching a video from the NVOD list of most 
popular videos, can request the interactivity with the video at any time. If a 
channel is available, the user will be switched to the TVOD group of chan-
nels which allows complete control. The split-and-merge (SAM) protocol 
provides a mechanism to split user streams for interactive functions and 
merge streams when possible (Liao & Li, 1997).

Video.Conference.System

In video conference systems (Figure 2.7), computers are each installed with 
a video camera, microphone, and connected to the network. A user initiates 
and hosts a conference meeting. Other users then join the meeting. All of 
them send their own video and audio signals to all the other users. Users may 
speak, type, or draw on whiteboard. 
In these systems, the network needs to deliver the video capture stream from 
every user to all other users. The number of video streams is equal to n(n-
1) for n concurrent users. Thus, the network needs to support a very large 
number of streams.

Data.Representations

Multimedia data types include numbers, text, graphics, animations, image, 
audio, and video. However, a computer can only handle digital data that 

Figure.2.7..Video.conference.system

Network



��   Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

represents either 0 or 1. In this section, we shall describe how the computer 
represents multimedia data.

Numbers.and.Text

In computers, positive integers are represented as a number with the base 
of 2 instead of a base of 10. Negative integers are represented in the 2s 
complement form. Real numbers are divided into mantissa and exponent 
such that the significant digits are represented in the mantissa (Hennessy & 
Patterson, 1996).
Each text character is represented by eight bits called a byte in the computer. 
For ASCII representation, the binary byte of “0100 0001” represents an A, 
and “0100 0010” means B, and so on. An English word is thus represented 
by a string of bytes.

Graphics

Each position on the screen is specified as a coordinate (x, y), x-axis from left 
to right and y-axis from top to bottom. For example, in an 800 x 600 screen, 
the top left corner is (0, 0), the top right corner is (800, 0), the bottom right 
corner is (800, 600), and the bottom left corner is (0 ,600).
A line is represented by a pair of coordinates. A curve is represented by a list 
of coordinates of the starting point, several turning points, and the end point. 
A circle can be represented by the coordinate of the centre and the length of 
the radius (Figure 2.8).

Figure.2.8..Simple.graphics
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Animations

Computers use graphic tools to provide visual effects in a frame buffer 
(Figure 2.9). The frame buffer is changed continuously by the animation 
program. It scans, converts, erases, and redraws the graphic image (Figure 
2.10). These changes are repeatedly drawn on the display to appear like 
continuous motions.
Normally, the animation program should make 15-20 changes per second. 
That is, the program has around 50 milliseconds to update the frame buffer. 
If the animation updates are running too fast, the viewer may not be able to 
see the changes clearly. If the animation updates are running too slowly, the 
display may become jerky.

Figure.2.9..Animation

Figure.2.10..The.animation.programs.scan,.convert,.erase,.and.redraw.the.
frame.within.50.msec

Figure.2.11..Double.buffering
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When the processes of scan, convert, erase, and redraw operations take 
longer than 50 msec, the program may use the double buffering technique. 
The frame buffer is divided into two parts. Each part is used to store half the 
bits per pixel of the overall frame buffer. In this way, the erase and redraw 
process of the first half frame buffer overlaps with the scan and convert 
process of the second half frame. Each process may then have more time to 
modify the frame buffer. 

Images

An image is represented as a two-dimensional array of sample points called 
pixels. Different from the coordinates used in mathematics, the Y coordinate 
increases in the downward direction. For example, Figure 2.12 shows a 320 x 
200 image that has 320 pixels on each horizontal line and 200 pixels on each 
vertical line. The coordinates of the top left corner are (1, 1). The coordinates 
of the top right corner are (320, 1). The coordinates of the bottom left corner 
are (1, 200). The coordinates of the top left corner are (320, 200).

Image.Bits.Per.Pixel

Different images may use a different number of bits per pixel. The black and 
white image (B&W) format uses only one bit per pixel. This B&W image 
format is widely used in facsimile images. In elementary computer graphics 
with 16 different colours, four bits are required to describe in each pixel. 

x x x x x x x .  .  .  x x x x x x x x x
x x x x x x x .  .  .  x x x x x x x x x
x x x x x x x .  .  .  x x x x x x x x x
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Figure.2.12..A.320.x.200.image
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The grey-scale image format uses 8 bits per pixel, and it can describe 256 
different levels of colour intensity in each pixel. This image format can be 
used in black and white photos.
Full colour images are described using 16 to 24 bits per pixel. They can be rep-
resented using three different representations: RGB, YUV, and YCbCr format 
(Rao, Bojkovic, & Milovanovic, 2002; Witten, Moffat, & Bell, 1999). These 
representations are described in more details in the paragraphs below.

RGB.Representation

Our eyes have three classes of receptors called rods. Each type of rod has a 
different sensitivity to three colours: red, green, and blue. The trichromatic 
theory states that the sensation of colour is produced by selectively exciting 
the different types of rods. Thus, each pixel is represented by the intensity 
of red, green, and blue. Each intensity value is usually coded with eight bits 
to the grey-scale range of [0,255].

YUV.Representation

The cones in our eyes are very sensitive to brightness in a dark environment. 
Human perception is more sensitive to brightness than any colour informa-
tion. YUV separates brightness information (luminance Y) from the colour 
information (chrominance U and V) using:

Y = 0.3R + 0.6G+ 0.1B 
V = R – Y 
U = B – Y

Figure.2.13..RGB.representation
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The luminance value can be coded with more bits than the chrominance 
values; for example, the number of bits may be in the ratio of (4: 2: 2).

YCbCr.Representation

The YCbCr representation is similar to the YUV representation. It is used in 
the JPEG compression. In the YCbCr representation:

Y = 0.3R + 0.6G + 0.1B
Cb = U/2 + 0.5
Cr = V/1.6 +0.5

Each of these values is scaled and zero shifted to the range [0, 1].

Representation.for.Printing.CMYK

When images are being printed, the CMYK representation is used to print 
the images in colours. The four colours are Cyan, Magenta, Yellow, and 
Black. Each dot is printed as the combination of these four colours at dif-
ferent intensities. 

Sound.and.Audio

In this section, we first describe the concept of sound waves. Then, we briefly 
explain how sound waves are processed by computers. We then present a 
few standard sound and audio formats. 

Figure.2.14..Sound.is.a.longitudinal.wave.of.air.pressure

time
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Sound.Concept.

Sound is a longitudinal wave of air pressure (Figure 2.14). Sound is charac-
terized by the pitch and loudness. Like other waveforms, sound can be repre-
sented by a combination of waves with frequency and amplitude. Frequency 
of the wave measures the pitch of the sound, and the amplitude of the wave 
measures the loudness of the sound.
Wavelength is the distance between repeating units of a waveform. Fre-
quency is the number of occurrences of a repeating event per unit time, and 
it is inversely related to the wavelength. While wavelengths are measured in 
units of metres, frequency is measured in units of Hertz (Hz), where 1Hz  = 
1/second. The frequencies of some common ranges of sound waves are:

• Infra sound:  0-20 Hz
• Human hearing:  20Hz -20KHz
• Ultrasound:  20KHz – 1 GHz
• Hypersound:  1GHz – 10 THz

The amplitude of a sound wave (Figure 2.15) measures the loudness of the 
sound. Amplitude is measured in units of bell or decibel (dB). Different sound 
amplitudes have different effects on us:

• The background noise usually has low sound amplitude. It is difficult 
to hear clearly, and we ignore these low amplitude sounds. 

• The speaking level is normal amplitude sound.
• When the sound amplitude is too high, it is uncomfortable to our ears.

Figure.2.15..Amplitude.of.sound.wave
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Computer.Processing.of.Sound

Computers cannot process sound waves without converting the sound waves 
into digital signals (Figure 2.16). In order to process sound, the sound needs 
to be processed. Sound waves are accepted from the microphone as analog 
electronic signals. An analog-to-digital (A/D) converter converts the analog 
electronic signals to digital signals in binary representation. The computer 
can thus store and process the binary data.
After processing, the computer may output binary data as digital signals. 
A digital-to-analog (D/A) converter does the reverse operation of changing 
the digital signals back to analog electronic signals. The speakers can then 
output the signals as sound waves to be heard.

Figure.2.16..Computer.processing.of.sound
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Figure.2.17..Digitization.of.sound.wave
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Digitization.of.Sound.Wave

A digitization process is used to convert the analog signals into digital sig-
nals. The A/D converter takes sample values at different times of the analog 
wave according to a sampling rate. The sampling rate in number of samples 
per second is usually fixed. The amplitude values of the analog signal of a 
cycle are then taken as the digital data. 
When the digitized sound (Figure 2.17) is output, the analog wave is gener-
ated at the same sampling rate. The amplitude of the analog wave is adjusted 
according to the values of the digital data. The reproduced analog wave 
resembles the original analog wave before digitization.
The reproduced analog wave may not be the same as the original analog wave 
before digitization. In order to reproduce the analog wave, the sampling rate 
must be at least more than or equal to twice of the frequency of the analog 
wave. If the sampling rate is lower than twice of the frequency, then some 
data would be lost.

Sample.Values

The sample values can be encoded with more or less bits. If more bits are used 
to describe each sample value, the amplitude of the analog wave is described 
in finer details. If the sample values are encoded in 8 bits, then 256 different 
amplitude values can be described. If the sample values are encoded in 16 
bits, then 65,536 different amplitude values can be described. When more bits 
are used to describe the sample values, the sound quality would be higher. 
However, more data would need to be stored and processed.

Standard.Audio/Sound.Formats

Different sound needs to be represented in different quality levels. The high 
sound quality level needs to be described with more sample values at high 
sampling rate. Thus, high quality sound is described with more bits per sec-
ond. For example, telephone quality is sufficient for normal speech, and CD 
quality is required for audio music and songs:
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• Telephone quality speech takes 8,000 samples/second and 8 bits/sample.
• CD-quality audio has 2 channels, a left channel and a right channel, 

taking 44,100 samples/second and 16 bits /sample.
• DVD quality audio has 6 channels, including a front-left channel, a 

front-right channel, a front-centre channel, a back-left channel, a back-
right channel, and a subwoofer channel.

MIDI.Format

Apart from the encoding of nature and recorded sound, audio may be encoded 
using music scores. The musical instrument digital interface (MIDI) is a 
digital encoding format of musical information. In the MIDI format (Figure 
2.18), the sound data are not necessary. Only the commands, that is, music 
scores, that describe how the music should be played are encoded. 
The MIDI format uses the smallest number of bits/second to describe the 
music. If recorded audio can be compressed into the MIDI format, it would 
have achieved the highest compression ratio. Since the music score describes 
how the music is played, a music score file in MIDI format can be edited 
easily. However, the MIDI format only describes the music score that can 
be easily understood by human beings. It requires a music synthesizer to 
generate music.

Video

In the following paragraphs, we shall describe the representations of video 
data. The concept of video leads us to the data representation of video. The 
video frame rates and the aspect ratio determine the quality of the video. The 
viewer should watch video at the most suitable viewing distance. Lastly, the 
video formats that are used in computers are described.

Figure.2.18..MIDI.format
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Video.Concept

Since the creation of movies, a video (Figure 2.19) is represented as a list 
of images called frames. Each image frame is separated from the previous 
frame by a time interval. Each frame may have an image that has some dif-
ference from the image in the previous frame. The images of consecutive 
frames are usually slightly different. The video would then exhibit some 
continuous motion over time.
At camera cuts, the images of two consecutive frames may be completely 
different. Before and after a camera cut, the consecutive frames should only 
be different slightly again. If all consecutive frames have completely differ-
ent images, the video exhibits a chaotic scene which can be unpleasant to 
view. 

Video.Frame.Rates

The video frame rate is the number of frames that are displayed per unit 
time (Wang, Ostermann, & Zhang, 2002). It is usually described in number 
of frames per second. The video frame rate has an important impact on the 
video quality. 
Our human eyes hold the captured vision for a very short period of time. 
If the frame rate is high enough, the viewer would observe a continuous 
motion. If the frame rate is too low, the viewer would observe freeze in the 
video. In order to show continuous motion, the video frame rate should have 
at least 15 frames per second. For full motion video, 30 frames per second 
are necessary.
Some video frame rates have been standardized. For movies in the cinema, 24 
frames are displayed per second. The PAL TV standard in the UK, Australia, 

Figure.2.19..Video.format
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and Hong Kong displays 25 frames per second. The NTSC TV standard in 
Japan and the U.S. uses 29.97 frames per second. The High Definition Tel-
evision (HDTV) displays 59.94 frames per second.

Aspect.Ratio

Aspect ratio (Figure 2.20) is the ratio of number of pixels in the horizontal 
direction to the number of pixels in the vertical direction. Thus, the aspect 
ratio is the ratio of the width to the height of the image. When the displaying 
aspect ratio is different from the recording aspect ratio, the image may become 
distorted. If the aspect ratio value is increased, more pixels are displayed in 
the horizontal direction, and the image would appear to be fatter. If the aspect 
ratio is decreased, fewer pixels are displayed in the horizontal direction, and 
the image would appear to be thinner.

Figure.2.20..Aspect.ratio
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The conventional aspect ratio in television is 4:3. Thus, the width of the im-
age is 1.33 times of the height of the image. The wide screen of HDTV uses 
the 16:9 ratio, and the movies in cinema use an even wider aspect ratio. 

Viewing.Distance

The viewer watches the video at a viewing distance (Figure 2.21). The optimal 
viewing distance depends on the size of the displaying video. In Figure 2.21, 
the picture height and the angle (h) determine the viewing distance (D). We 
can easily see that the viewing distance, D, can be found using:

tan(h) = (D/H), 
 D = H tan(h).

For traditional cathode ray tube (CRT) televisions, the radiation of television 
is high. tan(h) should = 6. Thus, the optimal viewing distance is 6 times the 
picture height. For LCD and plasma televisions, the radiation is low. The 
tan(h) can be as low as 3.

Computer.Video.Formats

Computers display their output to the screen. The graphic cards inside the 
computer control the video format of the display screen. Some common stand-
ard computer video formats are CGA, EGA, VGA, XGA, and SVGA.
The colour graphics array (CGA) format uses the resolution of 320 x 200 
pixels. Each pixel has 4 colours and it is described with 2 bits. Thus, each 
image is described with (320x200) pixels x 2 bits/pixel = 15.625 kilobytes 
(KB).
The enhanced graphics array (EGA) format uses the resolution of 640 x 350 
pixels per image. Each pixel uses 4 bits to describe the 16 colours. Thus, each 
image is described with (640x350) pixels x 4 bits/pixel = 109.375 KB.
The video graphics array (VGA) format uses the resolution of 640 x 480 
pixels. Each pixel requires 8 bits to show 256 different colours. Thus, each 
image is described with (640x480) pixels x 8 bits/pixel = 300 KB. 
The extended graphics array (XGA) format uses the two different resolutions 
with different numbers of colour. It may use the resolution of 640 x 480 pixels 
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with 65,536 colours, and each pixel is described in 16 bits. Thus, each image 
is described with (640x480) pixels x 16 bits/pixel = 600 KB. Alternatively, 
it may use the resolution of 1024 x 768 pixels with 256 colours, and each 
pixel is described with 8 bits. Each image is then described using (1024x768) 
pixels x 8 bits/pixel = 768 KB.
The super video graphic array (SVGA) format also uses two different resolu-
tions. It may use the resolution of 800 x 600 pixels with 16,777,216 colours, 
and each pixel is described in 24 bits. Thus, each image is described with 
(800x600) pixels x 24 bits/pixel = 1.37 megabytes (MB). Alternatively, it may 
use the resolution of 1024 x 768 pixels with 65,536 colours, and each pixel 
is described with 16 bits. Each image is then described using (1024x768) 
pixels x 16 bits/pixel = 1.5 MB.

Summary.to.Data.Representation

Computer graphics are represented using the coordinates on the displaying 
screen. Computer animations are performed by updating changes to the frame 
buffers and these changes are then drawn on the displaying screen. Images 
are represented as two-dimensional pixels of colours. Each colour pixel can 
be described using colour representations RGB, YUV, YCbCr, or CMYK.
Sound waves need to be accepted and digitized into digital signals for com-
puter processing. The digitization of analog waves is done by taking sample 
values at a fixed sampling rate. The quality of the digitized sound is mainly 
determined by the number of sample values and the sampling rate. 
Video are represented as an array of image frames. 24 to 30 frames should 
be displayed per second to show full continuous motions. High definition 
televisions use a very high frame rate of around 60 frames per second.

Multimedia.Access.Streams.

In traditional client/server computer systems, the types of data being accessed 
are usually textual and binary data. Binary data are often stored in database 
files, and textual data are stored in document files. In multimedia systems, 
multimedia data such as video, audio, and images are stored in data files. These 
data may be accessed in a pull-based manner or a push-based manner.
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Traditional data are usually accessed in a pull-based approach. The client 
programs send discrete requests to load data from the server. The request may 
look like this to human beings: “Give me the 10th block of data in file A.” 
Upon receiving this request, the server accesses the block of data, encloses 
it in a data packet, and passes it to the client. The client then opens the data 
packet and accesses the data inside the packet. After serving this request, the 
server program would wait for another request from the client. 
Multimedia data are often accessed in a push-based approach. The client 
program sends a request to the server asking for the multimedia file starting 
at a particular block. The request may look like this to human beings: “Give 
me the file M starting from the 10th block.” Upon receiving this request, the 
server accesses the 10th block of data in file M, encloses it in a data packet, 
and passes it to the client. The server then accesses the 11th block of data in 
file M and passes it to the client, and so on. The server would continue to 
access the next block of data in file M and pass it to the client until it receives 
another request from the client. When the client receives a data packet, it 
opens the packet and accesses the data inside.
Due to the continuous nature of the multimedia data, many data requests 
would be sent to the server in the pull-based approach. All the requests and 

Figure.2.22..Request.streams

request

data packet data packet

Server

T time

Each packet is separated from the 
previous packet at a constant time T.

Figure.2.23..Strongly.periodic.stream



��   Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

the returned data packets flow continuously like water in a river stream. In 
the push-based approach, the data packets also flow continuously through 
the communication path like a stream. Thus, the multimedia objects are ac-
cessed via request streams (Figure 2.22).

Classification of Streams

Depending on the time interval between consecutive packets, a stream can 
be classified as strongly periodic, weakly periodic, or aperiodic streams. 

Figure.2.24..Weakly.periodic.stream
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Depending on the variation of data size between consecutive packets, a 
stream can be strongly regular, weakly regular, or irregular. Depending on 
the continuity of consecutive packets, a stream can be continuous or discrete 
(Furht, 1996).

• Strongly.Periodic.Stream: If the time interval between any two con-
secutive packets is constant, then the stream is called a strongly periodic 
stream. In the ideal case, the jitter is zero. Figure 2.23 shows a strongly 
periodic stream that has a fixed time interval between consecutive data 
packets. For example, the pulse code modulation (PCM) coded speech 
is a strongly periodic stream. 

Figure.2.27..Weakly.regular.stream
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• Weakly.Periodic.Stream: If the time intervals between two consecutive 
packets are not constant but only periodic, then the stream is called a 
weakly periodic stream. Figure 2.24 shows a weakly periodic stream in 
which the time interval between consecutive packets oscillates between 
T1 and T2. When we merge two strongly periodic streams with different 
periods, the resultant stream is a weakly periodic stream. 

• Aperiodic.Stream: Aperiodic streams are streams such that the time 
intervals between consecutive packets are neither constant nor periodic. 
An aperiodic stream with different time intervals between consecutive 
packets is shown in Figure 2.25.

• Strongly.Regular.Stream: If all data packets are of the same constant 
size, then the stream is called a strongly regular stream (Figure 2.26). 
An uncompressed video stream created from a capturing video camera 
is usually a strongly regular stream.

• Weakly.Regular.Stream: If the data size of packets changes periodi-
cally, then the stream is called a weakly regular stream (Figure 2.27). 

Figure.2.29..Continuous.stream
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• Irregular.Stream: When the data sizes of packets are not constant and 
they are not periodic, the stream is called an irregular stream. Since the 
data sizes of packets change, it complicates the transmission and pro-
cessing of the data packets. When temporary buffers are allocated, their 
size should be large enough to accommodate the largest data packet. 
Thus, the buffers cannot be utilized to their full capacity. Therefore, 
some efficiency is lost in handling irregular streams.

• Continuous.Stream: When the large objects are accessed and the mul-
timedia data need to be returned in small data packets, the data packets 
would be sent continuously over a long time. The data stream is called 
a continuous stream. Video and audio objects are usually accessed by 
continuous streams.

 When the data packets are transmitted over the communication path, 
the data packets occupy some capacity of the communication path for 
a long period of time. If the data packets are transmitted without any 
intermediate gaps, they may fully occupy the communication path (Figure 
2.29). The system resources may not be able to serve other users of the 
resources. 

• Discrete.stream: Some multimedia objects such as images are not con-
tinuous in nature. These objects may be large, but they can be accessed 
with discrete requests. A packet is not connected to its preceding and 
following packets. The data stream is thus discrete. For example, a large 
image object may be accessed by a request, and the object is returned 
via a discrete stream.

Request.Streams.Summary

We have described the three classifications of request streams. First, a 
stream may be classified according to the time interval between consecu-
tive packets. Second, a stream may be classified according to the data size 
of the packets. Third, a stream may be classified according to the continuity 
of the packets.
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Chapter.Summary

Multimedia data can be used in many types of applications. These applications 
include broadcasting, video-on-demand, communications, monitoring and 
control, and even information systems. The design of multimedia systems 
should consider the storage system, delivery network, and the scheduling 
algorithms. Most of these systems store large multimedia objects in their 
storage system for future retrievals. Inside the storage system, multimedia 
objects are stored as large binary data files, and they are accessed and deliv-
ered using streams. Multimedia streams can be classified by their periodicity, 
regularity, and continuity.
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Chapter.III

Storage.System..
Architectures

Introduction

Multimedia systems are similar to traditional computer systems in terms of 
their architectures. Both types of systems have central processing unit (CPU), 
random access memory, hard disks, and so forth. The CPU connects to the 
memory and other components via the memory bus, and it connects to the 
peripherals via the input/output (I/O) bus.
In order to process continuous multimedia streams, multimedia computer 
systems are built with stringent processing time requirements. Each com-
ponent of the computer system needs to be able to process large amounts of 
data, process data in parallel, and finish the processing within a guaranteed 
time frame. Otherwise, undesirable effects would appear to lower the quality 
of the multimedia streams.
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When storage servers are designed to handle multimedia streams, the ar-
chitecture of the storage servers also needs to handle the processing time 
requirements. The storage server needs to access data continuously to the 
clients according to the clients’ requests.
Multimedia objects are large, and the magnetic hard disks need to access 
segments of the objects within a short time. These requirements lead to the 
emergence of constant recording density disks and zoned disks. 
We shall describe the architecture of storage servers in the next section. After 
that, we shall describe the zoned disks performance model.

Server.Architectures

Multimedia servers need to provide continuous delivery of multimedia ob-
jects to the clients. The remote clients are usually connected through a local 
area network or several networks. The Internet today is a best effort network, 
and it does not provide any service guarantees to multimedia streams. Thus, 
the present technology uses dedicated networks to deliver the streams. The 
dedicated networks, such as cable TV, are able to deliver multimedia streams 
in a controllable environment. 
Multimedia servers store many objects in their storage. They need to access 
the objects and deliver the objects according to the requests from many cli-
ents. The storage server should access and deliver the objects efficiently in 
order to maintain the quality of the streams.

Simple.Multimedia.Server.System

An example of a simple multimedia server system is shown in Figure 3.1. The 
storage server or storage system is composed of a storage subsystem and a 
processor subsystem. The processor subsystem serves requests from the clients 
via the network. It maintains the quality of streams that are delivered to the 
clients. When data are required, it sends requests to the storage subsystem. 
The main responsibility of the storage subsystem is to store the multimedia 
objects. All the multimedia objects are stored on the storage devices in the 
storage subsystem. The storage subsystem serves data requests from the 
processor subsystem. The main reason to separate the storage subsystem 
from the processor subsystem is because of the workload. Since the object 
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is large and the stream is long, it takes a long time to deliver the object to 
the clients. The workload on the storage subsystem is thus heavy. If the stor-
age subsystem and the processor subsystem are running on the same server, 
the application server’s ability to respond interactively to the users will be 
adversely affected. The user may need to wait a long time for a very simple 
mouse click.
The processor subsystem is composed of three servers: the application server, 
the scheduling server, and the data server. The application server receives 
requests from the clients and provides a response back to them. The scheduling 
server divides a request stream into a number of requests. It then schedules 
the requests in a timely manner. It sends the requests to the data server. The 
data server searches for the location of the requested object and forwards the 
requests to the storage subsystem. 
When the storage subsystem serves a read request from the data server, reads 
the object from the storage device, and passes the accessed data to the data 
server. When the storage subsystem serves a write request, it writes the object 
to the storage devices. Most multimedia clients only access the objects for 
viewing purposes only. Since multimedia objects are often read and played 
to users, most requests would only read the object from the server. Thus, the 
main concern on the storage subsystem is on the read operations only even 
though the storage subsystem provides both read and write operations.
When the data server receives data from the storage subsystem, it directly passes 
the data to the clients via the network. It will then send another data request to 
the storage subsystem at the time controlled by the scheduling server.

Figure �.�. A Simple Multimedia Server System
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Distributed.Multimedia.Server.System

A single multimedia server system may be able to serve 1 to 2,000 client 
streams. When more streams need to be served or more objects need to be 
stored, a large multimedia server system consisting of multiple servers is 
required. A distributed multimedia server system has five objectives: 

1. To store more objects
2. To serve more clients
3. To reduce the network contention
4. To spread out the network contention
5. To balance the server workloads

A multimedia server that has the accessed object may not be able to serve 
a client stream for two reasons. First, if the server is overloaded, the server 
does not have disk bandwidth to access the object from the storage subsys-
tems. Second, if the network around the server is already congested, the 
server does not have network bandwidth to deliver the object to the client. 
In either situation, the server shall reject the client stream even though it has 
the object on its storage devices.
The first objective is to store more objects. Several servers in the distributed 
multimedia server system have more disks to store more objects than a 
simple multimedia server. To store the most number of objects, the storage 
space on the servers should be used carefully. Extra copies of objects may 
be created according to their access popularity. When a new object is stored, 
the extra copies of objects may be deleted to release storage space for the 
new object. 
The second objective is to serve more client streams. Unless all the requests 
are served by only one server, a distributed server system can serve more client 
streams than a single server. In order to serve the most number of streams, 
the objects should be distributed so that the requests are evenly spread to the 
servers. Therefore, the workloads on the servers should be well balanced.
The third objective is to reduce the network workload. The workload on 
the network also depends on the distance from the servers to their request-
ing clients. If the server is far from a requesting client, the data need to be 
transmitted over a long distance from the server to the client. The workload 
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imposed on the network is then heavy. If the server is close to the requesting 
client, the data can be transmitted over the smallest number of hops from 
the server to the client. The workload imposed on the network is then light. 
In distributed systems, the server that is closest to the requesting client may 
be chosen to deliver the request stream. Thus, the imposed workload on the 
network would be reduced.
The fourth objective is to spread out the network contention. If the servers 
are close to each other, they would send packets from nearby routers on the 
network. When the servers are busily serving clients, the workload on the 
network around these routers becomes heavy. If the servers are far from each 
other, then the routes from these servers to their serving clients may not over-
lap. Thus, the workload on the network can be spread out to more routes. 
The fifth objective is to balance the server workloads. While a server is busily 
serving some streams, it may not have sufficient resources, such as disk load, 
to serve any additional new stream. New streams will then need to wait. If 
other servers are available to serve this stream, the new stream can be served 
immediately. The workload on the busy server is then transferred to the other 
servers. Thus, the server workloads can thus be balanced.
In general, a distributed multimedia server system is composed of multimedia 
servers, clients, and the network as shown in Figure 3.2. Multimedia objects 
are stored on the simple multimedia servers. The servers are connected to the 
network. Clients send requests to the multimedia servers over the network. 

Figure �.�. A Distributed Multimedia Server System
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The multimedia servers then serve the client requests and deliver object 
streams to the clients.
Several options are available to build a distributed multimedia server system. 
Here are some choices in building the system architecture:

1. Multiple independent servers share their storage to store the objects
2. A depot system to direct request to appropriate server
3. A reverse proxy server in front to balance the workload
4. A storage area network to spread the workload 
5. A distributed server system to balance the server workload and spread 

out the network workload
6. A content distribution system to balance server and network work-

load

If the server system is simply a list of independent multimedia servers, then the 
clients need to know which server a particular object resides in. In addition, 
some servers containing hot objects may be overloaded while other servers 
containing cold objects are idle. Thus, some mechanisms need to be applied 
so that these servers operate like a single server system to the users. 
A depot system may be placed in front of the servers to direct the client 
requests to the appropriate server. Such a depot server may deliver a new 
client request to an idle server or the less busy server. The servers would 
then serve the requests directly.
A reverse proxy server is placed in front of the multimedia servers to receive 
client requests. It may redirect requests to the appropriate server containing 
the accessed object. If the accessed object resides in more than one server, 
the reverse proxy server may redirect requests to the most lightly loaded 
server. When data are delivered from the server, the reverse proxy server 
may create a local cache copy. When the same object is accessed again by 
the same client or other clients, the reverse proxy server may then serve the 
repeated accesses from its local cache.
A storage area network has several servers that are connected to each other 
via fibre channels. These servers together operate like a single server with 
higher capacity. The storage area network redirects requests to the appropriate 
storage device. The storage device then serves the data access request. 
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A distributed servers system has several storage servers and these servers 
reside at different geographical locations. The objects divided into segments 
and these segments are distributed over several servers. It operates like a 
single multimedia server system to the users. A client may send requests to 
the application server. The application server would then identify the seg-
ments and the server containing the segments of the object. The appropriate 
server then delivers data segments directly to the requesting clients. Each 
segment of the server may be delivered from a different server. The distrib-
uted server system thus balances the workload among servers and spreads 
out the workload on the network.
A content distribution system is composed of several storage servers. A cli-
ent may send requests to one of the servers. The server system then chooses 
the server that is closest to the client to deliver the object to the client. If this 
closest server does not have the required object, it will access the object from 
other servers and keep a copy in its storage. After some time, each storage 
server will store the objects that are recently or frequently accessed by its 
neighbouring clients.
In multimedia database systems, a client who is connected to the network 
sends queries to the database system (Figure 3.3). The database system then 
looks up the index tables and finds the objects that can satisfy the query. The 
data server then sends a few most relevant objects to the user for preview. 
The user may then select the most relevant objects for display. The multi-
media server or multimedia server system then delivers the chosen object 
to the user.

Figure.3.3..Multimedia.database.server.systemFigure �.�. Multimedia Database Server System
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Input/Output.Processors

Inside the computer system, data are stored on different storage devices de-
pending on their usage requirements. Permanent data are stored on the hard 
magnetic disks. Temporary data are stored on the random access memory 
(RAM) or memory. Frequently accessed data are temporarily stored on the 
cache memory for quick accesses. Data are either read or written to these stor-
age devices by the running user programs or operating system programs. 
Traditional computer systems run programs when they are invoked by users 
or timer events. A job task is a fragment of codes belonging to a running pro-
gram and it is executed by the CPU. A program may invoke one or more job 
tasks. Many tasks belonging to different programs are concurrently executed 
by the CPU. Since the CPU can serve only one job task at any one particular 
moment, the tasks are served on a time-slice manner. After the CPU serves 
a task for one unit of time, it switches to another task. The order of service 
is determined by the job scheduling policy. 
When a task arrives at a code to receive input from the keyboard, output to 
the screen, read from hard disk, or other input/output operations, the running 
task will be suspended and put into the waiting queue until the I/O instruction 
is finished. The CPU then resumes the suspended task and continues the task 
after the I/O operation.
Inside the computer system, the memory bus connects all the main compo-
nents, including the CPU and memory (Figure 3.4). Other peripheral devices 

Figure.3.4..I/O.processor
Figure �.�. I/O Processor
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and the hard disks are connected to the I/O bus. An input/output processor 
(IOP) connects the I/O bus to the memory bus. Since the input and output 
devices are very slow devices when compared to the memory and CPU. The 
memory bus would be very slow if the I/O devices are directly connected. 
With the help of the I/O processor, the I/O devices can communicate with 
the CPU and memory without slowing them down.
When the CPU executes a line of code that performs an I/O instruction, it 
works with the I/O processor to execute the I/O instruction in four steps: 

1. The CPU issues an I/O instruction to the I/O processor.
2. The I/O processor reads a command from memory.
3. The I/O processor transfers data to/from memory directly.
4. The I/O processor sends an interrupt to CPU when done.

In the first step, the CPU issues an I/O instruction to the I/O processor as 
shown in Figure 3.5. The I/O instruction is composed of the operation code 
(OP), the target device number (device), and the command address (address). 
The operation code specifies which command to execute. The device speci-
fies the target device number. The address contains the address location of 
the I/O command inside the memory.

Figure.3.5..Step.1:.CPU.issues.I/O.instruction.to.I/O.processorFigure �.�. Step �: CPU issues I/O instruction to I/O 
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In the second step, the I/O processor looks in the memory for the command 
as shown in Figure 3.6. The command is composed of four fields: the OP 
field, the Addr field, the Cnt field, and Other field. The OP field specifies 
what to do. The Addr field specifies where to put data. The Cnt field specifies 
the count of how much data can be accessed by the command. The Other 
field only specifies details of the command. The I/O processor then reads the 
command from memory and executes the command.
In the third step, the I/O processor executes the command as shown in Figure 
3.7. Most I/O commands need to access memory. When data are transferred, 
the I/O processor directly transfers data to and from the memory without in-
terfering with the CPU. When a sector is read from the disk, a sector of data 
(512 bytes) is read from the disk and directly transferred to the memory.
When the I/O command has finished, the I/O processor executes the last step. 
It sends an interrupt to the CPU (Figure 3.8). When the CPU receives this 
interrupt, it executes the interrupt in a preemptive manner. The CPU suspends 
the currently running task even though the task has not been executed for 
one time unit. It then performs the O/S command for the I/O interrupt. The 
job task that issues the I/O instruction is resumed. The task is removed from 
the list of suspended tasks and placed in the list waiting for CPU. The CPU 
then resumes the previously suspended task and continues to serve it.

Figure �.�. Step �: IOP reads command from memory
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Storage.Devices

Magnetic disks are inexpensive disks. The storage device is inexpensive be-
cause it stores data using two-dimensional circular disk platter and the disk 
platters are stacked up on the third dimension. Magnetic disks are composed 
of disk platters and read/write heads as shown in Figure 3.9. The disk platters 
are connected together at the centre on a spindle. When the spindle rotates, 
all the disk platters move at the same speed.

Figure.3.7..Step.3:.IOP.transfers.data.to/from.memory.directly
Figure �.�. Step �: IOP transfers data to/from memory 
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The read/write heads are supported by disk arms. The disks look like a hair 
comb structure in which each read/write head is a tip of the comb. Each read/
write head is placed above a surface top of a disk platter. When the disk platters 
rotate, the heads hover at a very thin layer of air above the disk surface. 
While the read/write heads are fixed and the disk platters are rotating, each 
head forms a circle on the corresponding disk platter surface. These circles 
are the tracks when data are written onto the disk surface. These tracks are 
circular in shape. The shorter tracks that are closer to the centre of the disks 
are called inner tracks. The longer tracks that are near the circumference of 
the disks are called outer tracks. All the tracks on different surfaces with the 
same radius together form a cylinder. 
When data are accessed, the disk takes the following steps: 

1. All read/write heads move together at a direction perpendicular to the 
circumference of the circular tracks until the heads reach the required 
cylinder. 

2. The control servo waits for the read/write heads to settle above the 
required cylinder after the movement. 

3. The head above the required tracks within the cylinder is chosen. 
4. The heads then wait for the rotation of the disk until the beginning of 

the required data on the track come under the head.
5. The I/O path from the disk controller to the memory is established.
6. When the beginning of the required data comes under the head, data 

are immediately transferred between the disk and the memory. 

Data are written in units of 512 bytes. Each unit of 512 bytes is called a sector. 
When the read/write head is above a track, it can access all the data on this track 

Figure.3.9..Magnetic.disks

Figure �.�. Magnetic Disks 

Sectors

Track

Platters

Platter

Tracks

Read/write heads



Storage System Architectures   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

by waiting for the disk to rotate. At any moment, only one of the read/write 
heads can transfer data. When the read/write head is fixed, it can access all the 
data on the cylinder by choosing the appropriate read/write heads. 
Traditionally, the magnetic disks rotate at a fixed angular speed and the 
read/write heads transfer data at a fixed speed. All the tracks store the same 
number of bytes. When the heads are close to the disk centre, the length of 
the circular tracks is short and data bits on the tracks are densely written. 
When the heads are far from the disk centre, the tracks are longer in length 
and data bits on the tracks are sparsely written. Thus, the recording density 
varies when the heads are close to or far from the centre of disks. Thus, the 
traditional disk recording format is called variable density recording.
In these traditional magnetic disks, the disk platters simply rotate at fixed 
speed. However, it does not fully utilize the storage capacity of the long outer 
tracks. In order to store more data on the outer tracks, the constant recod-
ing density method is widely accepted in recent years. The constant density 
recording format stores more data on the longer outer tracks and less data 
on the shorter inner tracks. This constant density recording is applied in two 
layouts: the zoned disk layout and the spiral track layout. These two layouts 
are described in the paragraphs below. 
After that, we shall describe the millipede disks and the nanodisks. For mobile 
devices, the storage devices need to be small, compact, and light. The millipede 
disks and the nanodisks are products that address these requirements. 

Zoned.Disks

Magnetic disks use the zoned disk format to increase their storage capacities. 
The disk surface of magnetic zoned disks is divided into zones as shown in 
Figure 3.10. Each zone is a group of neighbouring tracks within a range of 
radii. Thus, each zone is a ring-shaped region on the disk surface. 
Within a zone, the disks operate like a variable density recording disk. The 
disks rotate at a fixed angular speed. Thus, all the tracks within a zone store 
the same number of sectors and the number of sectors per track is fixed 
within a zone. To store the maximum number of sectors within a zone, the 
innermost track within the zone should store the most sectors. Other tracks 
in the same zone then store the same number of sectors.
Since the innermost track of the inner zones are shorter than the innermost 
track of the outer zones, tracks of the inner zones store less data than the 
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tracks of the outer zones. Although the number of sectors per track is fixed 
within a zone, each zone may have a different number of tracks. The storage 
capacity of a zone is found as the product of the storage capacity of a track 
and the number of tracks within the zone.
In addition, the I/O path transfers data at a fixed number of bits per second and 
the disks rotate at a fixed speed. All the data on one track can be accessed by 
one disk revolution. Thus, the data transfer rate within a zone is fixed. Since 
the track capacity of outer zones is larger than the track capacity of the inner 
zones, data are transferred faster when the heads are above the outer zones. 
Thus, the outer zones have higher data transfer rate than the inner zones.
Magnetic zoned disks have two main advantages over traditional magnetic 
disks. First, they have higher storage capacity than traditional magnetic disks 
of the same size. Second, data on the outer tracks of zoned disks can be ac-
cessed more quickly. In traditional magnetic disks, the motor speed is fixed. 
Whereas in zoned disks, the motor speed changes when the heads change 
from one zone to another. Since changing the motor speed is very simple, it 
is not difficult to be implemented.

Spiral.Track.Layout

Optical disks, such as compact disk (CD) and digital versatile disks (DVD) 
use the spiral track to increase their storage capacities. The optical disks can 

Figure.3.10..Zoned.disk.format
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record data at a fixed speed continuously for a very long time.
On the surface of the optical disks, data are recorded on a long spiral track in 
sectors. The spiral track runs continuously from the inside near the centre of 
the disk to outside near the rim. Dual layer DVD may have a second spiral 
track at the second layer that runs in the same or opposite direction.
The motor changes the disk rotation speed according to the position of the 
optical read/write head. The servo controls the motor speed and changes it 
automatically. While the optical head is near the centre of the disk, the optical 
disk speeds up. While the optical head is near the rim of the disk, the disk 
slows down. The motor speed is maintained so that the data on the track pass 
the optical head at a fixed linear speed.

Millipede.Project

The millipede project creates a new type of disk (Paulson, 2002). The size 
and shape of the millipede disk looks like a postage stamp. The disk is com-
posed of silicon tips above a polymer. Data are written on the polymer by 
punching holes on the polymer with a silicon tip. The holes are separated at 
a distance of around 10 nanometres or 50 atoms. The disk can record data at 
a density of 1 trillion bits per square inch. It records data at 20 times denser 
than the magnetic disks.

Figure.3.11..CD.and.DVD.layout
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The disk is rewritable. Data on the polymer can be read or written by changing 
the temperature of the silicon tips. Data on the polymer are written with hot 
tips at 400°C. Data are read from the polymer with warm tips at 300°C. In 
addition, data on the polymer can be erased using hot tips. Since the time to 
conduct heat to the polymer is rather long, the data recording speed is 1,000 
times slower than hard disks. In order to compensate for the long access 
latency, the disk uses 1024 silicon tips working in parallel. 

Nano.RAM

Another new disk is the Nano-RAM disk in Paulson (2003). Nano random 
access memory (NRAM) is one of the first storage devices that use the nano-
technology. It is small and compact. The NRAM is small and compact. The 
NRAM is composed of carbon nanotubes that are a billionth of a metre in size. 
The disk head sends differing electrical charges into the nanotube and swings 
the tubes into one of the two positions. One of the two positions represents a 
binary digit 0 while the other position represents a binary digit 1. 
Inside the NRAM, the nanotubes only move a very short distance, and it takes 
a very short time to finish this movement. Thus, the read/write operations 
can be finished very quickly. This short latency feature makes the NRAM 
suitable for high performance systems.
The position of the nanotubes is nonvolatile. The nanotubes do not need 
power to maintain their current positions as in random access memory. Thus, 
the NRAM is suitable for permanent storage of information. In addition, the 
NRAM does not need to maintain continuous rotations like magnetic disks 
and optical disks. It saves power, and the NRAM can be used in mobile 
devices. 
The NRAM is 50 times stronger than steel. The nanotubes can swing into 
positions many times in order to support a large number of write cycles. 
Recent developments on quality control help to select only nanotubes that 
are growing properly. 
In summary, the nanotube is a durable, compact, low power, compact, high 
capacity, and low latency storage device. The NRAM can be used in mobile and 
high performance systems in which the system requirements are stringent.
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Disk.Performance

Individual.Disk.Access.Operation

When data are accessed from the disks, the disks access data in sector size 
of 512, 1024, or 2048 bytes. The disk executes the following steps to read 
or write data:

1. Obtain I/O channel to memory
2. Seek the required cylinder
3. Switch to the selected head within the cylinder
4. Wait for the start of the required sector to meet the head
5. Transfer the sector via I/O channel to memory
6. Send interrupt to the CPU for I/O completion

Most of these steps involve mechanical and electronic operations. The 
mechanical steps are much slower than the electronic steps. The mechani-
cal steps occupy more than 95% of access time. Thus, the time spent in the 
mechanical steps is considered with significance when the performance of 
the disks is investigated.
The major mechanical steps are:

1. Seek.time: Move the read/write heads to the track.
2. Rotational.latency: Wait for the start of the required sector to come 

under the head. 
3. Optional.RPS.miss: Additional cycle if I/O path fails to establish before 

transfer dependent on the duration between consecutive seeks.
4. Transfer.time: Transfer the sector via I/O path to memory

Other steps are electronic and contribute to less than 5% of the disk access 
time.
The seek time and rotational latency are overheads that should be reduced 
as much as possible. The data transfer time increases linearly with the motor 
rotation speed.
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Performance.of.Zoned.Disks

We may use a discrete or continuous model to investigate the zoned disk 
performance. The discrete model may provide accurate formulae for the disk 
access time with more parameters. The continuous model can be used to find 
disk access time using some approximations.
The continuous model makes three approximations to calculate the zoned 
disk performance. First, the disks are divided into the maximum number of 
zones so that each zone has the smallest number of tracks. Second, the inter-
track gaps are very small. Third, the maximum number of sectors is stored on 
each track. These approximations allow us to find the optimal performance 
of zoning. The access time formulae can also be found using integrations.
In the continuous model, a track is modeled as a ring-shaped area on the 
disk surface. Data are recorded on the track. Consider a circular track at a 
distance x from the centre of the disk; the length of the track is 2πx. Thus, 
the area of the track is 2πxdx.
The total area of the disk surface is the integration of the ring area from 
the innermost radius a to the outermost radius b. Thus, the disk area can be 
found as:

=∫=
b

a

xdxp2 2πxdx

= π(b2 – a2)        (3.1)

Assume that each sector has the same probability of being accessed. After 
data on the track of radius x are accessed, the read/write head stays within the 
ring area of radius x and width dx. The probability that the previous request 
accesses data on the track of radius x, Pxdx, is equal to the ratio of the ring 
area of radius x to the total disk area. 
Thus, the probability that the previous request accesses data on the track of 
radius x, Pxdx, is found as
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In the following sections, we shall use this probability to find the seek dis-
tance, rotational latency, and data transfer time.

Seek.Time

The first mechanical step is the seek action. The seek action consists of the 
following components: 

1. The disk arm is accelerated until it reaches the maximum speed. 
2. The disk arm is traveling at the maximum speed. 
3. The disk arm is decelerated until it stops. 
4. The read/write heads are settled on the required track. 

The seek distance is the number of tracks being traveled by the read/write 
heads in performing a seek action. When the disk heads are positioned on a 
track of radius x and the accessed data on another track of radius y, they travel 
from track of radius x to the track of radius y. The seek distance is thus equal 
to the difference in number of tracks. That is the seek distance, D, is 

= | y – x |        (3.3)

Figure.3.12..Disk.performance.model
Figure �.��. Disk Performance Model
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For completely random seeks, the mean seek distance can be found by inte-
grating all possible absolute seek distances:
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After simplifications (Tse, 1999), the mean seek distance, D , is found as 
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In addition, the variance of seek distance, Var[D], is found in Tse (1999) to 
be
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Seek time is the time required for the seek action, and it consists of the fol-
lowing time components:

1. The time spent in accelerating the arm until it reaches the maximum 
speed.

2. The time spent in moving the arm at the maximum speed.
3. The time spent in slowing down the arm until it stops.
4. The time spent in settling the read/write heads on the required tracks.

During the acceleration and deceleration period, the seek time increases 
with the square root of the seek distance. During the maximum traveling 
period, the seek time increases linearly with the seek distance. In addition, 
the settling time is a fixed value. Therefore, the seek time, s, relates to the 
seek distance, D, below.
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where a1, a2, a3, a4, and a5 are parameters. These parameters vary from one 
disk type to another disk type depending on the actual performance.
An example of the seek time curve vs. the seek distance is shown in Figure 
3.13. We can see that the seek time is almost linearly proportional to the 
seek distance. Anyway, the seek time increases monotonically with the seek 
distance (Tse, 1999; Tse & Leung, 2000).
Although we have found the seek time for random seeks, most seeks are 
however not random. When data are read from or written to the disk, the 
consecutive requests usually access consecutive sectors. Furthermore, many 
data placement methods increase the correlation between consecutive ac-
cesses to reduce the seek distance. For example, data that are retrieved at a 
similar time may be placed together on the same track or cylinder. The seek 
distance and seek time can thus be reduced.

Rotational.Latency

After the read/write heads settle on the required track, the disk selects one of 
the heads to access data. It also sets up an I/O path to memory. At this time, 
the beginning of the accessing sector may not be at the right position for the 
head to access. While the disks continue to rotate, the heads will wait until 
the beginning of the required sector comes under the head. This period of 
waiting time is called the rotational latency or rotational delay.

Figure.3.13..Seek.time.is.almost.linearly.proportional.to.the.seek.distance

Figure �.��. Seek time is almost linearly proportional to the 
seek distance
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Assume that the read/write heads are at random position after the seek action. 
The heads have equal probabilities of staying at any circular position after 
the seek action. If the read/write heads are above the track of radius x, then 
the length of the track is 2πx. Let Py.dy be the probability that the distance 
of the beginning of the accessed sector from the heads is within the range 
of distance y to y+dy immediately after the seek action, where 0 ≤ y ≤ 2πx. 
Then, we have

Py.dy 
d

2
y
x

=
π

.

Assume that the disk rotates at the fixed revolution time T. It takes time T to 
rotate for a distance 2πx. The rotation speed, a, is then found as

a 2 x
T
π

= .

When it takes time dt to rotate for a distance dy, where 0 < dt ≤ T and 0 ≤ 
dy ≤ 2πx, we have

 dy.=.adt.
 dy 2 dx t

T
π

= .

Thus, the rotational latency t increases linearly with the distance of the be-
ginning of the accessed sector from the heads, y. Let Pl be the probability 
that the rotational latency is within the range of time t to t+dt, where 0 < t ≤ 
T, and dt→0. Obviously,

Pl.dt = Pydy
2 d
2

x t
xT

π
=

π
.

Thus, the probability that the rotational latency is within the range t to t+dt 
is found as 

Pl.dt 
T
td

= .
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The mean rotational latency is found as
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Tse (1999) found that the variance of rotational latency is
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For some disks or I/O processors that have a buffer of the size of a track, the 
disk may start to read as soon as the I/O path is established. The disk will 
read the entire track to the track buffer. Afterwards, data can be transferred 
to memory from the track buffer. For these disks, the disk rotational latency 
is then equal to the disk revolution time T. However, the data transfer time 
can then be ignored since only electronic transmission time from the track 
buffer to memory is required.

Figure.3.14..Rotational.latency

Figure �.��. Rotational Latency
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Data.Transfer.Time

When the I/O path is established and the beginning of the accessing sector 
comes under the read/write head, the disk starts to transfer data without any 
further waiting. All the data belonging to the accessed sector should pass 
under the read/write head for the data transfer to take place. Data transfer 
time is the time to read the accessed data from the current track. 
The maximum recording density on the disk is called the maximum areal 
density. Let k be the recording density in bytes/unit length. On a track of 
radius x, the length of the track is 2πx. The amount of data in this track is 
given by 2πxk.
In one disk revolution, data on the entire track is transferred. Thus, the data 
transfer rate is

2 xk
T
π

= .

To transfer R bytes of data on this track, the data transfer time (Tse, 1999) 
is

2
TR

xk
=

π
.

The above equation shows that the data transfer time decreases with an in-
crease in the track radius x. Thus, the tracks on the outermost zone transfer 
data with the shortest time and the tracks on the innermost zone transfer data 
with the longest time. In addition, all tracks within the same zone store the 
same amount of data, and the disks rotate at the same speed. Thus, the data 
transfer rate is fixed for all tracks within a zone.
We have assumed that each zone has the minimum number of tracks. When 
the requests access data randomly, the mean data transfer time can be found 
(Tse, 1999) as
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The variance of data transfer time (Tse, 1999; Tse & Leung, 2000) is
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Disk.Array

In order to store more data on a storage system, multiple disks can be used. 
The disks may serve requests in parallel or independently. When multiple 
disks are used as a disk array, data are divided into data stripes. Each data 
stripe is a fixed number of bytes, and it is stored on multiple disks. When data 
are accessed, each disk is issued a request. All the requests are then served 
simultaneously. Each request retrieves a fraction of the data stripe. Hence, 
more data are transferred and large data transfers are served efficiently.
Mean time to disk failure is the average time that a disk may fail. When more 
disks are used, the mean time to disk failure shortens. For example, assume 
that the mean time to disk failure is 5 years. If we use only one disk, then 
we may expect to encounter a disk failure in around 5 years. If we use 10 
disks, then we may expect to encounter a disk failure in around 6 months. 
If we use one hundred disks, then we may expect to encounter a disk failure 
in around 18 days. If we use 2,000 disks, then we may expect to encounter 
a disk failure everyday.
In order to recover data after disk failure, some redundant data are encoded 
and stored. Data on the failed disks can then be recovered from data stor-
ing on other disks. This arrangement of disks forms a redundant disk array 
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(Chen, Lee, Gibson, Katz, & Patterson, 1994; Gibson, 1992; Katz, Gibson, 
& Patterson, 1989; Kuratti & Sanders, 1995). 
Redundant array of inexpensive disks (RAID) is an array of small and inex-
pensive disks that store encoded redundant data to increase data reliability 
and data security. When a single disk fails, data on the failed disk is recovered 
from data on the remaining disks. Seven RAID levels are described below.

RAID 0: No.redundancy: Data are simply stored on disks without any 
redundant information. Data can be lost when disk fails.

RAID 1: Mirrored.disks: The disks are arranged in pairs. Each disk 
in the pair contains the same data. This is the most expensive 
option that only half of the available disk capacity is utilized 
for data storage. 

RAID 2: Bit.interleaved.array: Several correction disks are added to 
the group of data disks similar to RAM chips. A single parity 
disk can detect a single error, but at least three disks are needed 
to correct an error. More parity disks in a group means more 
overheads for fault tolerance, but fewer data disks in a group 
means fewer I/O events/second. Since the whole group must 
be accessed to validate the correction codes, this is inefficient 
for small transfers.

RAID 3: Parity.disk: Data are interleaved bit-wisely or byte-wisely 
across the data disks. Disk controller can detect the failed bit 
position, and a parity disk contains the parity of the data disks. 
It is possible to recover data on any single lost disk by read-
ing the contents from the surviving disks, and recomputing 
the parity. The disk array performance is similar to a RAID2 
with a single correction disk.

RAID 4: Block. interleaved: Each individual block is stored on a 
single disk. Data are interleaved between disks at the block 
level instead of the bit level or byte level. The new parity is 
calculated as equal to (old data xor new data xor old parity). 
A small write request uses two disks to perform four accesses. 
Since all write requests access the parity disk, contentions at 
the parity disk would result. 

RAID 5: Rotated.parity: Parity blocks are interleaved among the disks 
in a rotating manner called left-symmetric (Gibson, 1992). Two 
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writes can take place in parallel as long as the data and parity 
blocks use different disks. This disk array performs better for 
small and large transfers, making it the most widely accepted 
level for transaction processing workloads. RAID5 tolerates 
single disk failure in each parity group of disks. Data are lost 
only when multiple disks in the same group of disks fail. Gibson 
used mean-time-to-data-loss to measure the reliability of disk 
arrays and showed that RAID5 can increase data reliability.

RAID 6: Two-dimensional.parity: The disks are arranged into a two-
dimensional matrix, and a parity disk is added to each row and 
each column of the matrix array. This disk array can survive 
any losses of two disks and many losses of three disks. The 
only exception for three loss disks is that the data disk and 
both the parity disk and the column disk of this data disk fail 
at the same time. Since every logical write needs three disks 
and six accesses, the impact on I/O performance is significant. 
Hence, this disk array is acceptable only when the fault-toler-
ant requirement is very high.

In most data storage on disks, data are not differentiated into read-write or 
read-only types. Read-only data are static and cannot be modified by the ap-
plications. Read-write data are dynamic and are frequently modified by the 
application. Read-only data are easily recoverable from elsewhere, such as 
tertiary storage. RAID addresses the problem of losing data under the condi-
tions of disk failures. Under the condition that read-only data are recoverable 
easily from other sources, the storage of redundant information of read-only 
data may waste storage capacity and bandwidth.

Chapter.Summary

In magnetic disks, data are recorded on concentric circles on disk platters. 
Data are recorded on the tracks in sector units. New storage devices address 
the need of large capacity, short latency, high throughput, low-power con-
sumption, and nonvolatility. We have described several new storage devices, 
including zoned disk layout in new magnetic hard disks, the spiral track layout 
in optical disks, the Millipede project, and the NRAM. 
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The major components of magnetic disk access time are seek time, rotational 
latency, and data transfer time. A continuous model provides a close ap-
proximation to the performance of the zoned disks. The mean and variance 
of seek distance for completely random disk accesses are found. The mean 
and variance of rotational latency and data transfer time are also found.
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Chapter.IV

Data.Compression..
Techniques.and.Standards

Introduction

In the previous chapter, we see that the performance of a storage system de-
pends on the amount of data being retrieved. The size of multimedia objects 
are however very large in size. Thus, the performance of the storage system 
can be enhanced if the object sizes are reduced. Therefore, multimedia objects 
are always compressed when they are stored.
In addition, the performance of most subsystems depends on the amount 
of data being processed. Since multimedia objects are large in size, their 
accessing times are long. Thus, multimedia objects are always kept in their 
compressed form when they are being stored, retrieved, and processed.
We shall describe the commonly used compression techniques and compres-
sion standards in this chapter. We first describe the general compression model 
in the next section. Then, we explain the techniques in compressing textual 
data. This is followed by the image compression techniques. In particular, 
we shall explain the JPEG2000 compression with details. Lastly, we explain 
the MPEG2 video compression standard. These compression techniques are 
helpful to understand the multimedia data being stored and retrieved.
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Compression.Model

A vast number of compression techniques have been designed since the 
1950s. To understand different compression techniques, we here use a general 
model to describe data compressions as shown in Figure 4.1. Data compres-
sion is performed using two processing components. The first component 
is the encoder and the second component is the decoder. The encoder and 
the decoder components convert input data into output data according to the 
compression rules being specified in the compression method. 
The encoder accepts some original data as input and generates a new encoded 
representation of these symbols. These encoded symbols are sometimes 
called codewords. The encoded symbols are created following the rules being 
specified by the compression method. Very often, the encoded symbols are 
intentionally designed to be shorter than the original input symbols. 
Conversely, the decoder accepts the encoded symbols as input and outputs 
the restored symbols. In order to restore the original data, the decoder must 
use the same set of rules as the encoder, and these rules are specified by the 
compression method. If the decoder uses a different set of compression rules, 
it would not be able to restore the original data from the codewords. In ad-
dition, the codewords must be delivered unaltered from the encoder to the 
decoder. If any parts of the codewords are altered, the decoder also cannot 
restore the original data from the altered codewords.
To measure the performance of a compression technique, it is necessary 
to compare the size of the encoded symbols with the size of the original 
symbols. If the size of the encoded symbols is only one-third of the size of 
the original symbols, the compression ratio is said to be 3:1. Sometimes, 
the processing time to perform the encoding and decoding algorithms are 
also considered. These three metrics, including compression ratio, encoding 

Figure �.�. Compression Model
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time, and decoding time, can provide good metrics of the performance of the 
compression techniques.

Text.Compression

The Huffman coding method was created in the 1950s. The Ziv-Lempel 
compression and the arithmetic coding were created in the 1970s. Several 
popular compression algorithms, such as LZ77, LZ78, LZW, and gzip®, are 
variants of the Ziv-Lempel compression method. Later, the prediction by the 
partial matching method was designed in the 1980s. Most of the state-of-the-
art compression techniques are variants of these fundamental compression 
methods.
In text compression, the encoder accepts some input text symbols and gen-
erates codewords. The codewords are created according to the rules being 
specified by the compression method in Figure 4.2. For example, if we use 
“a” to represent “apple,” “b” to represent “boy,” and “c” to represent “cat.” 
We then represent “apple, boy, cat” with the codewords “a, b, c.” This code-
words are much shorter than the original input data symbols. Conversely, the 
decoder restores the original data from the codewords according to the rules 
specification of the compression method. In the above example, the decoder 
converts the codewords “a, b, c” back to “apple, boy, cat” according to the 
compression rules.
Before applying any data compressions, text symbols are represented by 
a fixed number of bits or bytes. In the ASCII code being used in personal 
computers, each text character is represented by a fixed number of eight bits. 

Figure �.�. Text Compression
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Data compression changes the number of bits in the codewords to represent 
each text character in the symbol.
The techniques used in the compression methods can be grouped into sym-
bolwise.methods, dictionary.methods, and hybrid.methods. The symbolwise 
methods, sometimes referred to as statistical.methods, estimate the prob-
abilities of occurrence of symbols and use shorter codewords for the more 
likely symbols. The dictionary methods replace words and contiguous words 
with an index to an entry to a “dictionary.” The decoder then uses the indexes 
to look up the corresponding words from the same dictionary. The hybrid 
methods combine the two techniques of both the symbolwise methods and 
the dictionary methods within the same compression model. We shall explain 
these techniques with more details below. Afterwards, we describe the LZ77 
and arithmetic coding compression techniques.

Symbolwise.Methods

In a paragraph or text document, each different word or symbol usually occurs 
for a different number of times. Some words, such as “to,” “is,” and “at,” 
occur very frequently. Other words, such as “incorrecttypo,” occur rarely. If 
we choose a shorter codeword for the frequently occurring symbols and the 
longer codeword for the rarely occurring symbols, the short codewords occur 
more frequently, and the long codewords occur less frequently. The average 
length of codewords in the compressed text would then be short.
When the estimation of symbol occurrence is good, the symbolwise methods 
usually lead to better compression. Although the average length of codewords 
is usually shorter using the symbolwise method, the actual compression ratio 
depends on the number of occurrences of each symbol in the original text 
document. If the less likely symbols occur frequently in the text document, 
the average length of codewords in the compressed text can become long.
It is commonly known that the number of occurrences of each word in a 
file often depends on the context of the file. While the word “byte” appears 
frequently in a computer book, it may appear only rarely in a tourist guide 
book. Therefore, it is unlikely that a single set of compression rules works 
for all types of data.
We use an example to show how variable length codewords can reduce the 
average length of codewords in the compression. If we have a list of names 
“Paul John John Johanna John John Joshua John John Joshua John John John 
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Peter” as the input symbols, the list of uncompressed symbols are “Paul,” 
“John,” “Johanna,” “Joshua,” and “Peter.” 
Before compression, each character occupies one byte, and we ignore the 
space characters. The length of the list of input symbols is

= 10*4+1*7+2*6+1*5 bytes
= 64 bytes.

We represent the input symbols using fixed length codewords. For five dif-
ferent names, we need at least a 3 bits codeword to represent each name 
without ambiguity. For conventional purposes, we use a->b to show that 
codeword a represents symbol b. We choose “000” -> “Paul,” “001” -> 
“John,” “010” -> “Johanna,” “011” -> “Joshua,” “100” -> “Peter.” As there 
are 14 names in the list of symbols, the total length of the symbols using 
fixed length codewords is

= 14*3 bits
= 42 bits.

We represent the symbols using variable length codewords. For five dif-
ferent symbols, we only need to create five different codewords with one 
codeword for each symbol. We choose “0” -> “Paul,” “10”-> “John,” “110” 
-> “Johanna,” “1110” -> “Joshua,” “1111” -> “Peter.” As there is only one 
occurrence of “Paul,” nine occurrences of “John,” only one occurrence of 
“Johanna,” two occurrences of “Joshua,” and only one occurrence of “Peter,” 
the total length of the symbols using variable length codewords is

= 1*1+9*2+1*3+2*4+1*4 bits
= 34 bits

The compression ratio due to using variable length codewords is thus

= 42 bits
34 bits

= 1.235:1.
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We have seen that the use of variable length codewords may change the av-
erage length of codewords. The amount of changes actually depends on the 
choice of codeword to represent the symbols. We can easily observe that the 
names appear a different number of times. The average length of codewords 
is minimized when the shorter codewords are chosen to represent the more 
frequent symbols. That is, we arrange the list of symbols according to their 
occurrence in the descending order. We have the ordered list of symbols as 
“John,” “Joshua,” “Paul,” “Johanna,” and “Peter.” Let “0” -> “John,” “10”-> 
“Joshua,” “110” -> “Paul,” “1110” -> “Johanna,” “1111” -> “Peter,” the total 
length of the symbols using this set of variable length codewords is

= 9*1+2*2+1*3+1*4+1*4 bits
= 25 bits

The compression ratio of this set of variable length codewords is thus

= 42 bits
25 bits

= 1.68 : 1.

Therefore, better compression ratio can be achieved by using shorter code-
words for the more frequent symbols.

Dictionary.Methods

The dictionary methods replace symbols and text with an index to an entry in 
a “dictionary.” They use simple representations to code references to entries 
in the dictionary. Instead of specifying one index for each symbol, an index 
can represent several matching symbols in the dictionary to achieve higher 
compressions. This is useful when several symbols often occur together.
The compression methods use a static dictionary, a semistatic dictionary, or 
an adaptive dictionary. A static dictionary simply uses a fixed dictionary to 
compress different sets of symbols. It is simple to use, but the compression 
ratio is not optimal in general. While a dictionary is optimal for one set of 
symbols, it may be suboptimal for a different set of symbols.
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Some methods may use a semistatic dictionary to compress different sets of 
symbols. These methods construct a new dictionary or codebook for each text 
being compressed. This helps to optimize the compression ratio for the text 
or set of symbols being compressed. However, the overheads of transmitting 
or storing the constructed codebook are significant. As the same codebook 
has to be used by both the encoder and the decoder, the encoder needs to 
transmit the newly constructed codebook to the decoder. 
Some methods use the adaptive dictionary approach. These methods use 
all the text prior to the current position as the codebook. While the text is 
reconstructed at the decoder, the codebook is reconstructed at the same time 
with the decompressed text. The decoder thus creates the same codebook as 
the encoder without the need to receive the codebook from the decoder. The 
dictionary is transmitted or stored implicitly at no extra cost. This codebook 
also makes a very good dictionary due to the same style and language used 
as the upcoming text after the current position. 
In the dictionary methods, longer matching symbols lead to higher compres-
sion. For example, an index to two words “to be” is more efficient than two 
separate indexes to “to” and “be.”

LZ.Compressions

In the Ziv-Lempel coding, the previously occurred text is used as the “dic-
tionary.” The first occurrence of a symbol is coded as raw symbol. Repeated 
occurrence of a symbol is represented with the pointer to the matching loca-
tion and matching length. This adaptive dictionary is used in LZ77, gzip®, 
LZ78, and LZW compression methods (Witten, Moffat, & Bell, 1999).

Figure �.� LZ�� Encoder Outputs Codewords
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In the LZ77 compressions, each compressed codeword consists of three fields, 
including location, length, and character. The location field describes how 
far back to look in the previous text to find the next phrase. The length field 
describes the length of the matching phrase. The character field describes the 
next character to follow. We describe the meaning of the codewords using 
an example below.
A list of text symbols is compressed using the LZ77 compression. The list 
of symbols are a, b, a, a, b, a, b, and so on. After the encoder reads the first 
symbol a, the encoder outputs the codeword <0, 0, a> as illustrated in Figure 
4.3. This means that there is no matching phrase and the raw symbol is a. 
After the encoder reads the second symbol b, it outputs the codeword <0, 0, 
b>. This means that there is no matching phrase, and the second raw symbol 
is b. After the encoder reads the third symbol a, it matches the first symbol 
a, and continues to read the next symbol. After it reads the fourth symbol a 
and finds that it does not match with the second symbol b, it outputs the third 
codeword <2, 1, a>. This means that the location of the matching phrase is 
the one character at two symbols prior to the current position, and the next 
raw character to follow is an a. After that, the encoder reads the fifth symbol 
b which matches the second symbol b. The encoder reads the sixth symbol 
a which also matches the third symbol a. It then continues to read the sev-
enth symbol b, which does not match the fourth symbol a. The encoder then 
outputs the codeword <3, 2, b>. This means that the matching phrase is the 
two characters ba, and the next raw symbol is b. 
In general, the encoder reads input symbols and output codewords. The algo-
rithm of the LZ77 encoder routine is shown in Figure 4.4. It first initializes 
the current position, p, to 1 in step 1. In step 2a, it loops through all the input 
symbols looking for the longest matching phrase from p-W to p-1, where W 
is the limiting window size for matching. It then outputs the codeword in 
step 2b and increments the current position in step 2c.
The algorithm of the LZ77 decoder routine is illustrated in Figure 4.5. It 
first initializes the current position, p, to 1 in step 1. It loops through all the 
codewords in step 2. In step 2a, it outputs the matching phrase from p-f. After 
that, it outputs the next raw character c in step 2b. It increments the current 
position, p, in step 2c.
The decoder outputs symbols of the previous example in Figure 4.6. The 
decoder reads the first codeword and outputs the symbol a. It then reads 
the next codeword and outputs the symbol b. When it reads the codeword 
<2, 1, a>, it outputs one symbol, a, as the matching phrase and the next raw 
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Figure.4.4..LZ77.encoder.routine

Figure.4.5..A.simple.LZ77.decoder.routine

Figure.4.6..LZ77.decoder.outputs.restored.symbols

Figure �.� LZ�� Encoder Routine
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b. Output <p-m, l, S[p+l]>.
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Figure �.� A Simple LZ�� Decoder Routine

1. set p to 1
2. For each triple <f, l, c>in the input, 

do
a. Output S[p-f…p-f+l-1] to S[p…p+l-1].
b. Output c to S[p+l].
c. Set p=p+l+1.

Figure �.� LZ�� Decoder Outputs Restored Symbols
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character a. Then it reads the codeword <3, 2, b> and outputs the matching 
phrase, ba, and the next raw character b. If it reads the next codeword <5, 3, 
b>, it outputs the matching phrase aab and the character b. 
Some LZ77 decoders may support recursive references. If it reads the code-
word <1, 10, a>, it outputs ten characters from the current position–1. Thus, 
the decoder recursively outputs the character b ten times before it outputs 
the next character a. The decoder should update the “dictionary” and output 
the restored symbol simultaneously.
The LZ77 compression limits the size of pointer to 13 bits and the size of 
the matching phrase to 8,192 characters. It avoids the need of large memory 
space and long searching time. Since long matching phrases is uncommon, 
some LZ77 encoders practically limit the length of the matching phrase to 16 
characters. Some implementations use shorter codeword for recent matches 
and longer codeword for other matches. They use fewer bits to represent 
smaller numbers, but they need an extra field to indicate the number of bits 
for the number. Some implementations use a one-bit flag to indicate whether 
the next item is a pointer or a character. When there are not any matching 
phrases, the location and length fields are reduced to only one bit.

Arithmetic.Coding

The theoretical lower bound on compression can be evaluated by consider-
ing the information content of each symbol. The whole alphabet is the set 
of all possible symbols. The predicted probability, Pr[.], is the probability 
distribution for the next symbol to be coded within the whole alphabet. The 
information content, I(.), of a symbol is defined as the number of bits a sym-
bol, s, should be coded with I(s) = -log2 Pr[s] bits.
When the probability of the next symbol is high, the information content of 
the symbol is low and vice versa. In the extreme case when the next symbol 
must be a symbol a, We do not provide any extra information by coding this 
symbol. Thus, the information provided by the symbol is 0.
The entropy, H, is defined as the average amount of information per symbol 
over the whole alphabet. By definition, we have

 Pr[ ] ( )
s

H s I s= ⋅∑
Pr[ ] log Pr[ ].

s
H s s⇒ = − ⋅∑
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The entropy gives a theoretical lower bound on the compression ratio, meas-
ured in bits per symbol.
Consider throwing one fair dice and record the face value of the dice. The whole 
alphabet is {1, 2, 3, 4, 5, 6}. The predicted probability of any number,

Pr[s] = 1/6.
I(s)= -log2(1/6) = 2.585.

As the predicted probabilities of all symbols are the same, we have

H = 6*[-(1/6)*(-2.585)] = 2.585.

The arithmetic coding method optimizes the compression ratio according to 
the entropy of the symbols (Witten et al., 1999). Consider an alphabet con-
sisting of numbers from 0 to 9. A fractional number with three digits can be 
used to specify three symbols. For instance, the number 0.245 can be used to 
indicate three symbols 2, 4, and 5. This is not optimal when the alphabet does 
not contain exactly 10 symbols or some symbols occur more frequently.
The encoding process of the arithmetic coding method finds a fractional 
number to represent the sequence of symbols. The decoder processing re-
covers the sequence of symbols from the fractional number by repeating the 
encoding process.
In the arithmetic coding, each symbol has an estimated probability within a 
range interval. Two variables, low and high, are used to specify the current 
range of the output fractional number. The range of the output fractional 
number is adjusted dynamically after each symbol is encoded. The division 
of the range is also adjusted dynamically according to the probabilities of 
the symbols.
The arithmetic coding encoder executes the following steps as illustrated in 
Figure 4.7:

1. Initially, each symbol is estimated with the same probability.
2. The range of the output fractional number is divided among the symbols 

according to their probabilities.
3. After encoding a symbol, the new range of the fractional number is 

restricted to the range of the encoded symbol.
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4. The probabilities of the symbols are adjusted. The range of the output 
fractional number is divided among the symbols according to their new 
probabilities.

5. The range-narrowing steps 3 and 4 are repeated until all symbols are 
encoded.

We use an example below to compress a string bccb within the set of alpha-
bet {a, b, c}. Initially, low = 0, high = 1, probability of a = 1/3, probability 
of b = 1/3, and probability of c = 1/3. We divide the range according to the 
probabilities of the symbols. Thus, we get:

• The symbol a is coded within the range [0, 0.333333).
• The symbol b is coded within the range [0.333333, 0.666666).
• The symbol c is coded within the range [0.666666, 1).

As the first input symbol is b, we narrow the range and increase the probability 
of the symbol b. We have low = 0.333333, high = 0.666666, probability of 
a = 1/4, probability of b = 2/4, and probability of c = 1/4. We subdivide the 
range [0.333333, 0.666666) according to the new probabilities of the next 
symbols to get:

Figure.4.7..Arithmetic.coding.encoder
Figure �.� Arithmetic Coding Encoder Process

Initialize
probabilities

Encode
symbol

Divide
range

Narrow
range

Update
probabilities

more
symbols 

?

End

Output
number
in range

Y

N

Start



Data Compression Techniques and Standards   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

• The next symbol a is coded within the range [0.333333, 0.416666).
• The next symbol b is coded within the range [0.416666, 0.583333).
• The next symbol c is coded within the range [0.583333, 0.666666).

As the second input symbol is c, we narrow the range and increase the prob-
ability of the symbol c. We have low = 0.583333, high = 0.666666, probability 
of a = 1/5, probability of b = 2/5, probability of c = 2/5. We subdivide the 
range [0.583333, 0.666666) according to the new probabilities of the next 
symbols to get:

• The next symbol a is coded within the range [0.583333, 0.600000).
• The next symbol b is coded within the range [0.600000, 0.633333).
• The next symbol c is coded within the range [0.633333, 0.666666).

As the third input symbol is also c, we narrow the range and increase the 
probability of the symbol c. We have low = 0.633333, high = 0.666666, 
probability of a = 1/6, probability of b = 2/6, and probability of c = 3/6. We 
subdivide the range [0.633333, 0.666666) according to the new probabilities 
of the next symbols to get:

• The next symbol a is coded within the range [0.633333, 0.638888).
• The next symbol b is coded within the range [0.638888, 0.650000).
• The next symbol c is coded within the range [0.650000, 0.666666).

As the last input symbol is b, we use the range of b, [0.638888, 0.650000), 
as the final range of the fractional number. The encoder just delivers any 
fractional number within this range to the decoder. The number 0.64 would 
be suitable as it falls within the range. The number 0.639 is also suitable, 
but it may use more digits.
A few points must be noted in performing the arithmetic coding process. 
First, the precision of the fractional number should be high enough to avoid 
ambiguity of the symbols. Second, a small final interval requires many digits 
to specify a number that is guaranteed to be within the final range. Third, 
two digits are needed to specify a number within a range of 1/100. Three 
digits are needed to specify a number within a range of 1/1000. The number 
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of digits necessary is proportional to the negative logarithm of the size of 
the interval.
In binary digits, a symbol s of probability Pr[s] contributes -log2Pr[s] bits 
to the output. This is equal to the information content of s, I(s). Thus, the 
result is identical to the entropy bound. Thus, the arithmetic coding produces 
a near-optimal number of output bits. In practice, arithmetic coding is not 
exactly optimal because of the limited precision arithmetic and the whole 
number of bits.
Since the output number is always a fractional number, the “0.” in front 
of the fractional number is unnecessary because the decoder knows that it 
always appears, and it does not provide any extra information. Thus, it can 
be excluded from the output bits. The output digit in the example is simply 
“64.” In practice, binary arithmetic instead of decimal arithmetic is used. 
Thus, the output is a stream of bits.
Theoretically, the fractional number is determined after all the input sym-
bols are considered. In practice, the symbols can be coded in parallel with 
the transmission. During the range narrowing steps, the range is [0.633333, 
0.666666) after the third symbol, c, is encoded. No matter what the following 
symbols are, the final range is within [0.633333, 0.666666). The first decimal 
digit, 6, is already fixed and it can be transmitted to the decoder. The encoder 
can thus deliver digits on-the-fly before all the symbols are encoded.
Decoding is the process of recovering the string of symbols from the fractional 
number by repeating the encoding process. The decoding algorithm of the 
arithmetic coding method needs to find the range that the current fractional 
number belongs and cut off the tail of the string according to the number of 
symbols.
The decoding algorithm of the arithmetic coding method may perform the 
following steps as illustrated in Figure 4.8:

1. The numbers of occurrence of all symbols in the whole alphabet are 
first initialized to 1.

2. Calculate the predicted probabilities of all symbols in the alphabet.
3. The initial range [0, 1) is divided among the symbols.
4. Find the output symbol s by mapping the fractional number from the 

ranges of the symbols.
5. Update the range to the range of the output symbol s.
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6. Increment the occurrence of the symbol s and update the predicted 
probabilities of all symbols.

7. Divide the range according to the predicted probabilities.
8. Repeat step 4 to 7 until enough output symbols are obtained.

Let’s consider the decoder processing in the above example. The decoder 
restores a string of four symbols from the set of alphabet {a, b, c} on receiv-
ing the two digits 64 to indicate a fractional number 64.
Initially, low = 0, high = 1, probability of a = 1/3, probability of b = 1/3, and 
probability of c = 1/3. We divide the range according to the probabilities of 
the symbols. Thus, we get:

• The symbol a is coded within the range [0, 0.333333).
• The symbol b is coded within the range [0.333333, 0.666666).
• The symbol c is coded within the range [0.666666, 1).

The fractional number 0.64 falls within the range for the symbol b. Thus, 
the first symbol is b.
After encoding the first input symbol b, we narrow the range and increase 
the probability of the symbol b. We have low = 0.333333, high = 0.666666, 
probability of a = 1/4, probability of b = 2/4, and probability of c = 1/4. We 

Figure.4.8..Arithmetic.coding.decoderFigure �.�. Arithmetic Coding Decoder
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subdivide the range [0.333333, 0.666666) according to the new probabilities 
of the next symbols to get:

• The next symbol a is coded within the range [0.333333, 0.416666).
• The next symbol b is coded within the range [0.416666, 0.583333).
• The next symbol c is coded within the range [0.583333, 0.666666).

As the fractional number 0.64 falls within the range for the symbol c, the 
second symbol is c.
We then narrow the range and increase the probability of the symbol c. We 
have, low = 0.583333, high = 0.666666, probability of a = 1/5, probability of 
b = 2/5, probability of c = 2/5. We subdivide the range [0.583333, 0.666666) 
according to the new probabilities of the next symbols to get:

• The next symbol a is coded within the range [0.583333, 0.600000).
• The next symbol b is coded within the range [0.600000, 0.633333).
• The next symbol c is coded within the range [0.633333, 0.666666).

As the fractional number 0.64 falls within the range for the symbol c, the 
third symbol is also c.
We continue to narrow the range and increase the probability of the symbol c. 
We have low = 0.633333, high = 0.666666, probability of a = 1/6, probability 
of b = 2/6, and probability of c = 3/6. We subdivide the range [0.633333, 
0.666666) according to the new probabilities of the next symbols to get:

• The next symbol a is coded within the range [0.633333, 0.638888).
• The next symbol b is coded within the range [0.638888, 0.650000).
• The next symbol c is coded within the range [0.650000, 0.666666).

As the fractional number 0.64 falls within the range for the symbol b, the 
fourth symbol is b. Now, we have decoded all four symbols, bccb, within the 
alphabet {a, b, c} on receiving the two digits 64 from the encoder.
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Image.Compression

The main objective of image compression is to reduce the amount of data 
in representing an image. As uncompressed images are large in size, images 
are often kept in a compressed format. This helps to save storage space in 
keeping the images and time to retrieve the images from the storage media. 
The main approach in image compression methods is to reduce redundancy in 
encoding images. The images may be decompressed and retrieved in parallel 
to hide the processing time in decompression.
Image compression methods can be roughly divided into lossless compression 
methods, lossy compression methods, and hybrid compression methods. The 
most well-known image compression standards include the Joint Photographic 
Expert Group (JPEG) and JPEG2000 methods.
Lossless compression, or noiseless compression, encodes data in a form that 
represents the original images with fewer bits. The original representation 
can be perfectly recovered. If the original images must not be lost, the im-
ages should be compressed using lossless compression methods only. The 
Huffman coding, arithmetic coding, Ziv-Lempel, and run length encoding 
belong to this category.
Lossy compression methods encode images into a form that can be decoded 
into a representation that humans find similar to the original image. The dif-
ference between the original images and restored images should be unnotice-
able or not important to the human viewer. Lossy compression methods can 
be applied on image, audio, and video objects. 
The main advantage of lossy compression methods is that they can usually 
compress images at a much higher compression ratio. Using the lossless 
compression techniques, JPEG can compress images to the just noticeable 
quality at the compression ratio of 15:1. The Motion Picture Expert Group 
(MPEG) standard can compress video at compression ratio of 200:1. The 
H.261 or px64 compression methods can compress video at the compression 
ratio up to 2000:1.
The hybrid compression methods use both lossless and lossy compression 
techniques. These include most compression standards, including JPEG, 
JPEG 2000, MPEG-1, and MPEG-2. Compression standards help to avoid 
complexity in handling heterogeneous methods.
Lossy compression methods compress images and video objects by predic-
tive, frequency oriented, and importance oriented techniques. The motion 
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compensation method is a predictive technique. The transform coding and 
subband coding are frequency oriented techniques. The filtering, bit allocation, 
subsampling, and quantization methods are importance oriented techniques. 
These techniques are used in JPEG, JPEG2000, and MPEG compressions.

JPEG2000.Compression

The JPEG compression methods encode images using one of the four modes 
of operations. The four modes of operations include sequential encoding, 
progressive encoding, lossless encoding, and layered encoding.
In the lossless encoding, the images are encoded to guarantee exact recovery 
of every source image sample value. In the sequential encoding, each image 
component is encoded in a single left-to-right, top-to-bottom scan. In the 
progressive encoding, the images are encoded in multiple scans for applica-
tions in which transmission time is long. In the layered encoding, also called 
hierarchical encoding, the images are encoded at multiple resolutions. The 
lower resolution versions of the images may be accessed without first having 
to decompress the image at its full resolution.
The JPEG2000 compression method is a hybrid compression method which 
uses both lossless and lossy compression techniques (Adams, 2002). It 
implements compression of low bit rate. It is designed for images over low 
bandwidth transmission. Each image is divided into several image compo-
nents. Each image component is subdivided into tiles that cover less than or 
equal to 4096 pixels. It performs colour transform, wavelet/subband coding, 

Figure.4.9..Lossy.compression.techniquesFigure �.�. Lossy Compression Techniques
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quantization, progression, and rate control on the images as illustrated in 
Figure 4.10.
A source image can be composed of several overlapping components. JPEG 
supports 1 to 255 image components. Each image component consists of one 
colour channel or spectral band. The colour of a full colour image can be 
decomposed into three colour components, such as red, green, and blue. The 
image formed by the red component is the red component image. Similarly, 
the images formed by the green or blue component are the green or blue 
component image. Thus, a colour image is decomposed into three overlap-
ping images.
In the preprocessing step, the encoder adjusts the pixel values so that the 
nominal dynamic range is approximately centred at about zero. This is done by 
subtracting a bias of 2P-1 to move the samples to the range [-2P-1, 2P-1 –1].
JPEG defines two intercomponent transforms, including irreversible colour 
transform (ICT) and reversible colour transform (RCT) to change the colour 
representation of the images. The irreversible colour transform (ICT) is a 
Lossless compression using real-to-real transform. The reversible colour 
transform (RCT) is a lossy compression using integer-to-integer transform. 
The ICT converts image colours from the RGB representation to the YCbCr 
transform. The RCT approximates the ICT to perform a reversible integer-
to-integer transform.
Afterwards, the encoder performs an intracomponent transform using the 
2D wavelet/subband coding as illustrated in Figure 4.11. A low (L) subband 
image of half resolution of the original image is formed by using the mean of 
the sample values in the higher resolution. Then, another subband, the high 

Figure.4.10..Processing.components.of.the.JPEG.encoder
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(H) subband, image of half resolution is formed by using the difference of 
the subband image with the original image. Thus, an image is transformed 
into two subband images. This subband coding is applied in both horizontal 
and vertical directions to form four subband images, including the LL, LH, 
HL, and HH subbands. The subband images are formed recursively on the 
LL subband of the previous level to generate the wavelet image.
The transformed wavelet image is then quantized. Mathematically, the quan-
tization process is

( )( , ) ( , ) / sgn ( , )V x y U x y U x y=  ∆ 

where Δ is the quantization step size, U(x, y) is the value of the pixel at 
position (x, y) before quantization, and sgn() is the sign function returning 
either +1 or -1.
Conversely, the dequantization process is:

( )( )( , ) ( , ) sgn ( , )U x y V x y r V x y= + ∆

where r.= 0.5 is the bias parameter.

Figure.4.11..Wavelet.intracomponent.transform
Figure �.��. Wavelet IntraComponent Transform
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In the Tier-1 Coding, the image is divided into blocks of rectangular tiles 
with size  4096 pixels per tile. Thus, the largest square tile covers 64x64 
pixels. The pixel values are retrieved at a scan height of four samples per 
vertical column. Three passes per bit plane to get the sample values in the 
scan order. In the first pass, only the most significant bits of the sample values 
are obtained. In the second pass, the refinement bits are used. In the third 
cleanup pass, all other least significant bits are used.
The sample values are obtained in this scanning order to support multiple 
passes encoding. This is particularly suitable for images being transmitted 
at a low transmission rate. The resolution of images increases progressively 
as more passes of data are received. 
The Tier-2 Coding builds packets with passes. Each packet is comprised of 
two parts, header and body. The encoded data for each tile is organized into 
a number of layers. Five sorting orders of packets called progressions are 
specified in JPEG2000. The five sorting orders are layer-resolution-com-
ponent-position, resolution-layer-component-position, resolution-position-
component-layer, position-component-resolution-layer, and component-
position-resolution-layer. The encoder may choose the most suitable sorting 
order for the image or application.
JPEG2000 supports bit rate controlling. The bit rates can be controlled by 
choosing suitable quantization step sizes or including only a suitable subset 
of coding passes. JPEG2000 allows the region of interest (ROI) coding. 
Different regions of an image may be coded with differing fidelity. While 
synthesized from its transformed coefficients in the decompression proc-
ess, each coefficient contributes only to a specific region. The encoder may 
identify the coefficient contributing to the ROI. It can then encode some or 
all of these coefficients with greater precision than the others.
JPEG2000 defines a structure for the encoded data. A code stream is a se-
quence of marker segments. Each marker segment has three fields, including 
type, length, and parameter. The code stream has one main header, a number 
of tile-part header body pairs, and one main trailer. The JPEG2000 files use 
the .JP2 file extension. A JP2 file contains a number of boxes. Each box has 
box length, box type, the true length of box when the box length is 1, and 
box data. 
The JPEG2000 decoder reverses the process of JPEG 2000 encoder. It goes 
through the following processing components as illustrated in Figure 4.12.
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1. The compressed code stream is fed through Tier-2 and Tier-1 decoders.
2. The decoded values go through the dequantizer.
3. The dequantized values go through the inverse intracomponet transform 

and the inverse intercomponent transform.
4. The postprocessing restores the pixel values.
5. The image component is reconstructed from the pixel tiles.
6. The image is reconstructed from the colour components.

Video.Compression

Several video compression standards were developed by the International 
Telecommunications Union and the Motion Picture Expert Group. ITU 
alone developed the video compression standards H.261, H.263, H.263+, 
and H.263++. MPEG alone developed the MPEG1, MEPG4, MPEG7, and 
MPEG21. The ITU and MPEG worked together to develop the MPEG2 and 
H.264.
MPEG1 is the first video compression standard from MPEG, and it was 
released in 1993. Its main purpose is to compress a video into a sequence of 
image frames. MPEG2 is an enhanced video compression standard, and it 
was released in 1994. MPEG4 is an object based video compression stand-
ard in 1999, and it compresses video into composing objects. MPEG7 is a 
multimedia content description standard based on the eXtensible Markup 
Language (XML). MPEG21 is an open multimedia framework standard.

Figure.4.12..Processing.components.of.the.JPEG2000.decoder
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MPEG-1 compresses the source intermediate formats (SIF) video. The char-
acteristics of a SIF format video are 4:2:0 subsampling, progressive scan, 
and 30 mbps. A SIF format video may display either 352×240 pixels/frame 
at 30 frames/seconds or 352×288 pixels/frame at 25 frames/second. MPEG-1 
compresses SIF video with raw data rate of 30 mbps to about 1.1 mbps at 
the VHS VCR quality
MPEG compression is suitable for digital storage media and channels. Dif-
ferent types of applications may compress and decompress video different 
number of times. Some applications may compress an object only once and 
decompress them several times. Other applications may compress and de-
compress objects in similar number of times. 
Depending on the frequency of compressions and decompressions being 
performed, a compression technique can be classified as symmetric and asym-
metric. The symmetric compression methods compress objects and decompress 
objects with similar processing times. They are more suitable for use in ap-
plications such as video e-mail and video conferencing. In these applications, 
video objects are compressed and decompressed a similar number of times. 
The asymmetric compression methods compress video objects with varying 
processing times. They are more suitable for use in applications including 
movies, video-on-demand, education-on-demand, and e-commerce. In these 
applications, the video objects are compressed only once at production of the 
objects. The compressed objects are decompressed more frequently, usually 
once when the objects are being viewed or displayed.

MPEG2.Compression

MPEG2 is an asymmetric compression. It strikes a balance between intraframe 
and interframe coding. For interframe coding, it performs block based mo-
tion compensations to reduce temporal redundancy. For intraframe coding, 
it performs DCT based transformations to reduce spatial redundancy.
An MPEG stream consists of many group-of-pictures (GOPs). Each GOP 
consists of three types of frames, including I-frame, P-frame, and B-frame. 
I-frames are intrapictures, and they are compressed using JPEG. They are 
independently compressed, and they can be used as the starting points for 
random access. P-frames are predicted pictures, and they are coded by refer-
ring to past pictures. They may also be used as reference pictures for future 
predicted pictures. B-frames are bidirectional predicted pictures, and they 
are coded by interpolating from the past and future pictures.
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The MPEG I-frame encoders compress pictures using the JPEG compression 
as illustrated in Figure 4.13. The encoder first converts the colour space of 
the picture from RGB to YUV. The encoder then performs a forward discrete 
cosine transform (FDCT). The transformed sample values are quantized. 
After that, the quantized values are encoded using Huffman coding. MPEG 
achieves moderate compression on the I-frames.
The MPEG P-frames and B-frames are compressed by referring to other 
frames (Figure 4.14). P-frames only refer to the previous I-frame or P-frame, 
whereas B-frames refer to the previous I-frame or P-frame as well as the 
future I-frame or P-frame. P-frames are encoded using motion estimations, 
and B-frames are encoded using interpolations.
Motion estimation uses the block matching techniques to compensate the 
interframe differences due to motion as shown in Figure 4.15. For each block 
inside the current frame, the encoder finds the best matching block from the 
reference frame. If this block is found, it encodes the location of the matching 
block and the difference between this block and the matching block. P-frames 
are thus compressed at higher compression ratio than the I-frames.
MPEG uses interpolations to perform motion compensations on B-frames 
(Figure 4.16). For each block in the current frame, the encoder finds the 
best matching block in the previous reference frame and the best matching 
block in the future reference frame. These two blocks are interpolated to 
generate the interpolated block. The difference between the current block 
and this interpolated block is then encoded. MPEG thus achieves the highest 
compression on the B-frames.
As the B-frames depend on the previous and future frames, the sequence of 
storing and retrieving frames is different from the sequence of displaying 
frames. Each B-frame is stored after the previous and future pictures that it 
depends on.

Chapter.Summary

Data compressions are vital to the storage and retrieval of multimedia infor-
mation. While compression on textual documents is optional, it is mandatory 
to compress multimedia objects. In general, image compression techniques 
can be categorized into lossless and lossy compressions. Lossless compres-
sions do not lose information in the encoding and decoding processes. They 
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Figure.4.13..MPEG.I-frame.encoder

Figure.4.14..MPEG.P-frame.and.B-frame.encoder
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are used in handling textual documents, medical images, and originals of 
multimedia objects. Lossy compressions may lose information that may not 
be noticeable to humans.
Text compression techniques can be grouped into symbolwise methods, 
dictionary methods, and hybrid methods. Symbolwise methods use shorter 
codewords for the more likely symbols. Dictionary methods use pointers 
to the location of contiguous symbols in a dictionary. The hybrid methods 
combine the techniques in the symbolwise method and the dictionary methods 
within the same compression model. The arithmetic coding method optimizes 
the compression close to the entropy of the symbols. The arithmetic coding 
encoder finds a fractional number with sufficient precisions to represent the 
sequence of symbols. These text compression techniques are applied to the 
image and video compression standards.
JPEG2000 is an image compression standard. It is a hybrid compression 
method for continuous tone images compressions. It implements compression 
to very low bit rate at the compression ratio of 50:1. It compresses images 
using 2D wavelet, quantization, multiple passes, progression, rate control, 
and region of interest.
MPEG2 is a video compression standard. Each MPEG video is composed 
of many group-of-pictures. Each group of picture consists of a number of 
I-frames, P-frames, and B-frames. I-frames are independently compressed 
like JPEG images. P-frames are compressed using motion estimation with 
reference to the previous frames. B-frames are compressed using interpola-
tion between previous and future I-frames or P-frames.
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Summary.to.Section.I

Background

This book is divided into the following six sections:

1. Background information in Section I.
2. Data placement on disks in Section IIa.
3. Data placement on hierarchical storage systems in Section IIb.
4. Disk scheduling methods in Section III.
5. Data migration methods in Section IV.
6. Cache replacement policies in Section V.

Multimedia data can be used in many types of applications. These applications 
include broadcasting, video-on-demand, communications, monitoring and 
control, and even information systems. The design of multimedia systems 



should consider the storage system, delivery network, and the scheduling 
algorithms. Most of these systems store large multimedia objects in their 
storage system for future retrievals. Inside the storage system, multimedia 
objects are stored as large binary data files, and they are accessed and deliv-
ered using streams. Multimedia streams can be classified by their periodicity, 
regularity, and continuity.
In magnetic disks, data are recorded on concentric circles on disk platters. 
Data are recorded on the tracks in sector units. New storage devices address 
the need of large capacity, short latency, high throughput, low power con-
sumption, and nonvolatility. We have described several new storage devices, 
including zoned disk layout in new magnetic hard disks, the spiral track layout 
in optical disks, the Millipede project, and the NRAM. 
The major components of magnetic disk access time are seek time, rotational 
latency, and data transfer time. A continuous model provides a close ap-
proximation to the performance of the zoned disks. The mean and variance 
of seek distance for completely random disk accesses are found. The mean 
and variance of rotational latency and data transfer time are also found.
Data compressions are vital to the storage and retrieval of multimedia informa-
tion. While compression on textual documents is optional, it is mandatory to 
compress multimedia objects. Lossless compressions do not lose information 
in the encoding and decoding processes. They are used in handling textual 
documents, medical images, and originals of multimedia objects. The arith-
metic coding method optimizes the compression close to the entropy of the 
symbols. It finds a fractional number with sufficient precisions to represent 
the sequence of symbols. JPEG2000 is an image compression standard for 
continuous tone images. Its encoder performs compression using 2D wavelet, 
quantization, multiple passes, progression, rate control, and region of inter-
est. MPEG2 is a video compression standard. The MPEG encoders perform 
compression using FDCT, quantization, entropy coding, motion estimation, 
and interpolation.



Section.IIa

Data Placement on Disks

Introduction.

In the previous chapter, we have described how to apply compression tech-
niques to reduce the size of multimedia objects. The performance of storage 
systems is efficient when data are carefully organized on the storage system. 
Thus, we describe the data placement on disks in this part.
Storage organization is also known as data placement. The storage organization 
methods are methods that place data on to the storage devices. These methods make 
use of the characteristics of access patterns on the type of storage device. 
A method that is suitable for one type of storage device may not be suitable for 
another type of storage device. However, different storage devices may share some 
overheads in access data from various locations. Thus, the same placement strategy 
may be applied to different storage devices.



Many intelligent storage organizations, or data placement methods, have been 
designed for traditional data files and database systems. Traditional file placement 
methods are grouped into the following strategies (Kuvayev, Giles, Philbin, & 
Cejtin, 1997):

1. Random.placement. Each data file is split into file blocks, and the file 
blocks are randomly placed on any storage locations. This is the simplest 
strategy to handle random accesses to file blocks.

2. Contiguous.placement. Each data file is stored to contiguous physical 
locations. This strategy performs best when the entire file is accessed by 
consecutive requests. However, fragmentation prohibits the placement 
of large files.

3. Type. based. placement. Files containing the same type of data are 
grouped to a category. Files belonging to the same category are placed 
close to each other. This strategy trades off the seek distance of con-
secutive requests on data of the same type with that on data of different 
types. 

4. Frequency.based.placement. Files are sorted according to the station-
ary probabilities of their accesses. Frequently accessed files are placed 
in the locations with low average access overheads. This strategy needs 
to record the access frequency of files in order to reorganize the data 
files.

5. Markovian.placement. The pattern of consecutive accesses to data files 
is investigated. Two data files that are accessed by consecutive accesses 
are correlated. The data files with the highest correlation probabilities 
are stored to consecutive locations. This strategy optimizes the seek 
distance of requests according to the access history.

Many data placement methods are specifically designed for multimedia data. 
These data placement methods can be grouped according to their strategies 
into the following categories (Tse, 1999):

1. Random.placement. Data stripes are stored randomly. This simple 
method is used for comparison only. Practical systems usually use this 
strategy due to its simplicity and flexibility.

2. Statistical.placement. Objects are stored according to the stationary 
or transition probabilities.



3. Striping. Objects are divided into stripes to allow round robin or parallel 
retrievals. 

4. Replication. Objects are fully or partially replicated to increase avail-
ability of data, or redundant codes are encoded and stored to increase 
data reliability and security. 

5. Constraint.allocations. The physical storage locations to store consecu-
tive data stripes are restricted so that the maximum overheads between 
consecutive requests are reduced.

These data placement strategies, except the random placement strategy, are 
described in the following chapters. The random placement strategy is skipped 
because it is simple and it does not provide any promises to the performance 
of the storage systems.
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Chapter.V

Statistical.Placement.on.
Disks

Introduction

The access pattern on each multimedia object can have very different char-
acteristics. Some multimedia objects are more popular and they are more 
frequently accessed by more users. The user may concern the average access 
time on the objects. Thus, the storage systems can make use of the popular-
ity of multimedia objects to optimize the average access time. Some objects 
need to be accessed at a higher data rate than the other objects. The users may 
concern the continuity of these objects. The storage systems may store the 
high data rate objects at the locations where data transfer rates are higher.
The statistical placement methods place the multimedia objects according to 
the characteristics of their access patterns. We shall describe the frequency 
based placement or popularity based placement method which optimizes 
the mean access time as the performance metric in the next section. After 
that, we shall describe the bandwidth based placement which uses the object 
continuity as the performance metrics.
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When two placement methods are compared on the same storage system, 
each one of the methods may show better performance according to differ-
ent metrics. System builder may choose the appropriate method according 
to the method that shows better performance in the preferred metrics. Thus, 
both placement methods have their significance.

Frequency.Based.Placement

Multimedia streams access objects and display them directly to users. Differ-
ent users may access the same object stream. The same user may access an 
object more than once. This produces an observable characteristic of access 
pattern at the multimedia server called popularity of the objects. We will 
explain below that the access frequency of objects depends on the popular-
ity of objects, thus the frequency based placement method is also called the 
popularity based placement or the temperature based placement.
When an object is popular, more users access the object for display. The 
time interval between consecutive requests on this object becomes short. 
The object is said to have high temperature or hot. The object is frequently 
accessed by the users. Thus, the access frequency of an object depends on 
the popularity of the object. The storage system can place the hot objects in 
the most convenient locations so that it may serve the request streams on the 
hot objects efficiently.
If an object is unpopular, only a few users or not any users access the object 
for display. The time interval between consecutive requests on this object 
is long. The object is rarely accessed by anyone. The object is said to have 
low temperature or cold. The storage system may remove the cold objects 
from the convenient locations to free space for the hotter objects. The higher 
overheads in accessing the cold object have little impact on the mean access 
time.
Many objects are neither popular nor unpopular. These objects are sometimes 
accessed by users. The time intervals between consecutive requests on these 
objects are of medium length. These objects are said to be warm. The storage 
system should place these objects at the medium convenient locations so that 
the requests on these objects can be served efficiently.
According to the Zipf-like distribution of object popularity, there are only a 
small number of hot objects, but there are many warm or cold objects. If the 
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80/20 rule is applicable, 80% of the requests access only 20% of the objects. 
The storage system can place only 20% of the objects at the most convenient 
locations to serve 80% of requests efficiently. However, the storage system 
also needs to efficiently store 80% of the objects in order to improve the ac-
cess time of the last 20% of requests. This also shows that the 20% of objects 
should be placed with minimum access time. The objective of the frequency 
based placement is to reduce the mean access time of objects to its minimum. 
The mean access time logically becomes the performance measure for the 
placement method. 
In Chapter III, we have shown that the access time is mainly composed of 
seek time, rotational latency, and data transfer time. The rotational latency is 
half of the disk revolution time. Data transfer time is shorter for objects resid-
ing on the outer zones. Seek time of an object depends on the seek distance 
traveled by the disk heads. This means that the seek time to serve a request 
depends on the track location accessed by the immediate previous request.
The frequency based placement methods assume that the objects are accessed 
randomly from the disks according to their access frequencies. When objects 
are randomly accessed, the immediate previous request may access data from 
any random track location. Thus, it is logical to minimize the mean seek 
distance from a random track.
In order to reduce the average seek time of disk requests, access probabilities 
have been considered in designing optimal file locations (Ford & Christodou-
lakis, 1991; Triantafillou, Christodoulakis, & Georgiadis, 1996). Since the 
access frequencies or data temperatures of multimedia data can be obtained 
from prediction or access history, movie data can be distributed among disks 
according to their access frequencies (Little & Venkatesh, 1995). Multimedia 
objects on zoned disks can be distributed according to their access frequen-
cies (Chen & Thapar, 1996; Tewari, King, Kandlur, & Dias, 1996; Wang, 
Tsao, Chang, Chen, Ho, & Ko, 1997).
We define the middle zone as the zone to which the middle track of all tracks 
belongs. The zones containing tracks with shorter radius than the middle track 
are called inner zones. The zones that consist of tracks with longer radius 
than the middle track are called outer zones.
The middle track has the shortest distance from other tracks. Thus, it has 
the shortest mean seek distance. Since the seek time increases with the seek 
distance as we have shown in Chapter III, the middle track has the shortest 
mean seek time. 
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We have also shown in Chapter III that the data transfer time of tracks in 
outer zone is shorter than the data transfer time of tracks in inner zones. Thus, 
the tracks on the outermost zone transfer data with the shortest time, and the 
tracks on the innermost zone transfer data with the longest time.
In the frequency based placement methods, the hottest object, V1, is placed 
at the optimal position that has the minimum random access time from all 
positions on the disks. The next hottest object, V2, is then placed at the next 
available optimal position and so on (Figure 5.1). The objects are then placed 
similarly in a organ-pipe pattern, and the organ-pipe is skewed in the outward 
direction (Chen & Thapar, 1996). When the objects are independently and 
randomly accessed, the mean data access time would be minimal.
Where is the optimal location? The position of the optimal location varies 
from disk to disk depending on the disk parameters. Tracks of middle zone 
or the outer zone may be the optimal location, but tracks of the inner zones 
cannot be the optimal location. This is because the requests to the middle 
track are served with smaller mean seek time and mean data transfer time 
than the requests to any one track of the inner zones.
Consider two requests to the innermost track of two neighbouring zones that 
are in the middle or outer zones. The request that accesses a track from the 
inner one of the two zones will be served with shorter mean seek time but 
longer data transfer time. The other request will be served with longer mean 
seek time but shorter data transfer time. Depending on the difference between 
their mean seek times and data transfer times, the request that access a track 
from the outer one of the two zones may be served with shorter access time. 
Thus, the optimal location may be present in the outer one instead of in the 
inner one of the two zones.
If the reduction of data transfer time is larger than the increase in mean seek 
time for every pair of neighbouring zones, the optimal location will be in 
the outermost zone, and the hottest object will be placed in the outermost 
zone. Alternatively, if the reduction of data transfer time is smaller than the 
increase in mean seek time for every pair of neighbouring zones, the optimal 
location will be in the middle zone, and the hottest object will be placed in 
the middle zone.
Which track has the smallest mean access time among all tracks within a 
zone? The data transfer rate is fixed for all tracks within each zone. The 
mean seek time of a track increases when the track is further away from the 
middle track. The innermost track of an outer zone has the shortest mean 
access time than all other tracks within the same zone. The middle track has 
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shorter mean access time than all other tracks within the middle zone. The 
outermost track of an inner zone has the shortest mean access time than all 
other tracks within the same zone. Thus, if the optimal location is in the 
middle zone, the optimal track should be at the middle track. If the optimal 
location is within an outer zone, the innermost track of this zone should be 
the optimal location.
If the object access frequencies are obtained from access history, some extra 
disk storage space is required to store the access history. Fortunately, the data 
temperatures of objects in some multimedia applications can be predicted. 
However, their data temperature dynamically changes over time but the 
placement methods are static (Griwodz, Bär, & Wolf, 1997). To maintain the 
optimal performance, data on the disks need to be frequently reorganized.
The frequency based placement strategy assumes that objects are independently 
and randomly accessed. However, a stream of requests sequentially accesses 
data stripes of the same multimedia object. When there are multiple concur-
rent streams, the disk heads traverse to-and-fro between storage locations 
of objects. Therefore, this strategy should be refined to a finer granularity in 
order to handle concurrent multimedia streams.
However, the multimedia objects are not accessed independently in most 
cases. In these situations, the correlation between object accesses must be 
considered. The Markov chain is used to model the access patterns for brows-
ing graphs with low connectivity. A heuristic algorithm has been proposed 
to place the objects (Chen, Kashyap, & Ghafoor, 1992). The running time 
of the proposed heuristic algorithm is however in O(n3). 

Figure.5.1..Frequency.based.placement
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When objects are stored or temporarily placed on staging buffers, objects are 
only written and read back once. After these two data accesses, the objects may 
be deleted to release disk space. Thus, the number of data accesses of each 
object on the disk is different from the object temperature in the placement. 
In addition, the individual access frequency of these objects may be very 
low, but the staged buffers are accessed more frequently than other resident 
objects. If these buffers are allocated at the two ends of the disk, the mean 
seek distance would be very long. Therefore, these placement methods need 
to be refined for the optimal placement on staging buffers. 
In frequency based placement, extra storage space is required to store the ac-
cess history. The presence of concurrent streams and the continuous display 
requirement render that the statistical placement methods should be enhanced 
to handle streams of requests for multimedia data.

Bandwidth.Based.Placement

Different multimedia objects may have different access bandwidth require-
ments. High bandwidth multimedia objects, such as video, may consume 
more bytes per second than low bandwidth multimedia objects, such as voice. 
In order to meet the continuous display requirement of data streams, high 
bandwidth streams should be served with higher data rates than low band-
width streams (Tse, 1999; Tse & Leung, 2000). Apart from the multimedia 
objects, computer programs and text files may also reside on the same group 
of disks. Discrete requests will access these files and these requests can be 
served with any data transfer rates. 
As shown in Chapter III, the same amount of data are transferred in less time 
from outer zones than from inner zones of zoned disks; the throughput of ac-
cessing data from different zones varies. This variation in data transfer rates 
can be used to create new placement methods for the multimedia objects. 
The bandwidth based placement helps to maintain continuity of streams by 
placing the objects according to their necessary data rates.
The bandwidth based placement method stores objects in two steps. First, 
the multimedia objects to be stored on disks are grouped together based on 
their bandwidth requirement. Other binary and textual data files are grouped 
as an arbitrary bandwidth group. The bandwidth groups are then sorted from 
the highest to the lowest bandwidth. Second, each zoned disk is divided into 
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a number of groups of zones. The number of zone groups is ideally more 
than or equal to the number of bandwidth groups. Objects belonging to the 
highest bandwidth group are stored at the outermost zone group on all disk 
platters. Objects belonging to the next highest bandwidth group are stored at 
the next outermost zone group on all disk platters and so on. After the objects 
in all bandwidth groups are stored, the binary and textual data are stored at 
the innermost zone group. An example of bandwidth based placement using 
four zone groups is illustrated in Figure 5.2.
In the bandwidth based placement method, multimedia objects can be stored 
together with traditional data files on the same group of disks. Since high 
bandwidth data are stored at outer zones more than low bandwidth data, the 
transfer rate of higher bandwidth data are always higher. It reduces the data 
transfer time in accessing high bandwidth objects at the expense of longer 
data transfer time in accessing low bandwidth objects. Therefore, the access 
time to high bandwidth objects is reduced at the expense of longer access 
time to low bandwidth objects. 
This trade-off may seem to be unfavourable for binary and textual data objects. 
In fact, not much is lost for the requests on binary and textual data. Since the 
binary and textual data are normally accessed in small blocks, only a few 
kilobytes of data are often sufficient to satisfy each request. These requests 
still enjoy a similar number of I/Os per second, and they are not much worse 
off. It is a reasonable trade-off so that the continuous media objects can be 
accessed with their necessary data rates.
As the data rate of each object is static, this object characteristic does not 
change over time. Once the storage organization is optimized for the highest 
performance according to the data rates, there is no need to perform reor-

Figure.5.2..Bandwidth.based.placement

Figure �.�. Bandwidth Based Placement
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ganizations of the storage systems. The objects are properly placed on the 
preferred location until they are no longer needed.

Chapter.Summary

The statistical placement methods consider the characteristics of the multime-
dia objects and place them accordingly. This allows the system administrator 
to optimize the storage system performance according to the administrator’s 
preferred metrics. A combination of the statistical characteristics may also 
be combined into a priority function that determines the optimal locations 
of placing objects onto the disks.
We have described two statistical placement methods that base on different 
access characteristics. The frequency based placement method optimizes 
the average request response time. It uses an algorithm to place the objects 
according to their access frequencies. The hottest object is placed at the 
storage location with the least average access time. The next hottest object 
is placed at the next available storage location with the least average access 
time and so on. The objects are then placed in a skewed organ-pipe manner 
on the disks. 
The bandwidth based placement method places objects according to their 
data rates. The storage system maintains its optimal performance according 
to the object data transfer time without reorganizations. The bandwidth based 
placement method adapts the data transfer time of objects according to their 
necessary data rates.
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Chapter.VI

Striping.on.Disks

Introduction

Multimedia streams need continuous data supply. The aggregate data access 
requirement of many multimedia streams imposes very high demand on the 
access bandwidth of the storage servers. The disk.striping or data.striping 
methods spreads data over multiple disks to provide high aggregate disk 
throughput (Chua, Li, Ooi, & Tan, 1996; Hsieh, Lin, Liu, Du, & Ruwart, 
1995). 
In addition to the popularity of multimedia objects that we have described in 
the last chapter, multimedia streams consume an object in a sequential man-
ner. The striping methods make use of this access pattern to evenly spread 
the workload across disks. This can increase aggregate disk throughput so 
that high bandwidth streams can be delivered continuously.
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We first describe the simple striping method that places data stripes on a set of 
disks in the next section. After that, the staggered striping method that places 
data on a set of disks in a rotating manner is described. The pseudorandom 
placement method that stores data stripes on random disks is explained before 
we summarize this chapter.

Simple.Striping

The main objective of simple striping method is to increase the storage system 
throughput so that the objects with high data rates can be accessed from the 
disks. In order to use the simple striping method, multiple disks should be 
available to store the multimedia objects.
The simple striping method divides an object into multiple data stripes of 
fixed size (Chua et al., 1996). The stripes are placed on multiple disks on a 
disk array. Each data strip is placed on one disk in the round robin manner. 
When an object is striped across N disks, the first data stripe is placed on 
disk 1, the second data stripe is placed on disk 2, and so on. In general, the 
ith data stripe is placed on disk 1 + (i-1) mod N (Figure 6.1).
When the data stripes are accessed from the disk array, one request is sent to 
every disk in the array at the same time. While the first disk is repositioning 
its read/write heads to the desired location, the second to the last disks are 
also repositioning their read/write heads to the desired locations. One data 
stripe is then transferred back from each disk to the memory buffers. 
Hence, the time required to retrieve N data stripes from N identical disks takes 
about the same amount of time as retrieving one data stripe from only one 
disk. In this way, the throughputs of all N disks are summed up to provide 
high data bandwidth. Letting β be the throughput of each single disk and N 
be the number of disks, the total throughput of the disk array can be up to Nβ. 
When the data rates of objects are high, the storage system should increase 
the number of disks proportionally.
In order to retrieve a data stream from the disks, a minimum buffer to store 
N+1 data stripes is required. The size of the display buffers increases with 
the number of disks. Initially, N data stripes are fetched from the disks to the 
N buffers before the first data stripe can be displayed. This initial time to fill 
N buffers is called the start-up latency of the simple striping method. 
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After the initial N buffers are filled, the stream may begin to display. The data 
consumption begins at the first data stripe. The (N+1)th buffer is also starting 
to fill data from disk while the first data strip is being consumed. After the 
first data stripe is displayed, the buffer space that is containing the first data 
stripe is freed. Then, the (N+2)th data stripe starts to fill into the first buffer 
while the second data stripe is then started to be consumed. Similarly, after 
the jth data stripe is consumed, the buffer space that is containing the jth 
data stripe is freed. Then, the (N+j+1)th data stripe is being retrieved while 
the (j+1)th data stripe is being consumed. In this way, the whole stream is 
retrieved using N+1 buffers. 
When the data stripes are placed across more disks, more disks can be ac-
cessed in parallel to achieve a higher throughput. The actual disk throughput 
for the stream is however controlled by the current data consumption rate of 
the stream. When the buffer containing the jth data stripe is still in use, the 
(N+j+1)th data stripe cannot be retrieved. Thus, data are accessed from the 
disks at the rate that the data are consumed from the buffers.
If the data consumption rate is higher than the aggregate disk bandwidth, all 
buffers might be consumed and freed. All N disks are still busy accessing data 
to the buffers. The stream will then become starved and will not continue to 
display the media stream properly. The user will then observe an artifact that 
a video may freeze at a frame or an audio may become silent at an inappropri-
ate point of time. Thus, the system should use enough disks to maintain the 
aggregate disk bandwidth higher than the data rate of the streams. 

Figure.6.1..Simple.striping

Figure �.�. Simple Striping
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If the data consumption rate is only temporarily higher than the aggregate 
disk bandwidth; the stream may still be consuming the already-filled buffers 
between the currently consuming buffer and the currently filling buffers. A 
stream may not show any artifacts to the user at all.
In order to maintain the continuity of a stream, the actual data curve stays 
between two stair-like curves. One of the stair-like curves shows the com-
pleted buffer filling while the other stair-like curve shows the currently 
completed buffer consumption. If the actual data curve crosses the current 
buffer consumption curve, then the stream may starve as the buffers are 
still incomplete, filling while due for consumption. More disks may be used 
to increase the maximum disk throughput so that the object stream can be 
continuously displayed.
When simple striping is applied to stripe objects across a disk farm, the ob-
ject may be striped across a number of disks. The number of striping disks 
should be enough to provide a disk bandwidth that can support the object’s 
data rate requirements. The maximum number of striping disks is the number 
of disks in the disk array.
When an object is striped across all disks, all streams are concurrently served 
by all the disks. Each disk will access one data strip for each stream. Since 
each service of request consumes one seek and latency overhead, the amount 
of seek and latency overhead is equal to the number of concurrent streams. 
If each object is striped across a subset of disks, the concurrent streams are 
shared among different subsets. Thus, the number of seek and latency over-
heads on each disk is reduced. Therefore, it is more efficient to create data 
stripes across the smallest number of disks which can support the object’s 
data rate requirements.
If the actual data curve hits the current buffer consumption curve, then the 
stream consumes data so slowly that all disks are waiting. The actual data 
access rate is very slow. The object stream can still continue to display 
properly.

Staggered.Striping

Simple striping divides each object into data stripes and spreads them across 
a subset of disks. These subsets of disks overlap with each other within the 
set of disks. When concurrent streams are served, some disks may need to 
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serve more streams while other disks serve fewer streams. This skews the 
total throughput of the disks. In addition, the busy disks may become un-
available for a long period of time when many objects are being accessed 
concurrently. 
Berson, Ghandeharizadeh, Muntz, and Ju (1994) proposed a staggered strip-
ing method that aims at avoiding the continuous unavailability of disks in 
a disk array. The staggered striping method removes the constraint that two 
consecutive sub-objects must be assigned on non-overlapping disks. The 
staggered striping method can also accommodate objects of heterogeneous 
display bandwidth with little loss of disk throughput.
In the staggered striping method, each multimedia object is partitioned into a 
number of sub-objects. Each sub-object is placed on a cluster of disks (Figure 
6.2). The number of disks in a cluster is chosen in a way that it can support 
the required bandwidth of the object. The next sub-object is then placed in 
the next disk cluster. The next cluster of disks is selected as the next k disks 
being shifted by r disks, where 0 ≤ r ≤ k. The number of shifted disks, r, is 
called the stride. 
In Figure 6.2, the multimedia object, X, is partitioned into three sub-objects, 
X1, X2, and X3. In order to support the data rate requirements, the object X 
needs to be stored on three disks. The sub-object X1 is further divided into 
X11 to X13. These data stripes X11, X12, and X13 are placed on disk 1, disk 2, 
and disk 3, respectively. The sub-object X2 is further divided into X21 to X23. 
The stride of 1 is used so that the next cluster of disks is shifted by one disk. 
Thus, the data stripes X21, X22, and X23 are placed on disk 2, disk 3, and disk 
4, respectively. Similarly, the sub-object X3 is further divided into X31 to X33. 
The next cluster of disks is also shifted by one disk. Thus, the data stripes 
X31, X32, and X33 are placed on disk 3, disk 4, and disk 1, respectively.
Similarly, the multimedia object Y is partitioned into three sub-objects, Y1, Y2, 
and Y3. In order to support the data rate requirements, the object Y needs to 
be stored on two disks. The sub-object Y1 is further divided into Y11 and Y12. 
These data stripes, Y11 and Y12 are placed on disk 4 and disk 1, respectively. 
The sub-object Y2 is further divided into Y21 and Y22. The stride of 1 is also 
used so that the next cluster of disks is shifted by one disk. Thus, the data 
stripes Y21 and Y22 are placed on disk 1 and disk 2, respectively. Similarly, 
the sub-object Y3 is further divided into Y31 and Y32. The next cluster of disks 
is also shifted by one disk. Thus, the data stripes Y31 and Y32 are placed on 
disk 2 and disk 3, respectively.
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While an object is being retrieved in parallel, the cluster of disks in use changes 
from time to time. The subset of disks being used for a stream shifts by the 
stride value. Hence, each disk becomes free periodically. As long as a new 
stream can be served within the time gap, another object can be retrieved 
within the time gaps. 
The staggered striping method provides effective support for multiple streams 
accessing different objects from a group of striped disks, and it automati-
cally balances the workload among disks. The staggered striping method 
is actually a generalization of the simple striping method. When the stride 
is equal to zero or k, the stagger striping method becomes the same as the 
simple striping method.

Application.Note:.Unfortunately,. the.staggered.striping.method.still.suf-
fers.from.the.disk.bandwidth.fragmentation.problems..Since.continuous.disk.
bandwidth.must.be.obtained.from.the.participating.disks,.the.disk.bandwidth.
can.become.fragmented,.and.new.streams.are.rejected..This.bandwidth.frag-
mentation problem could be alleviated by efficient scheduling methods that 
alter.the.service.order.of.requests.

Although data on tertiary storage devices may also mismatch the staggered 
striping arrangement on disks, data on tertiary storage can be pre-arranged to 
alleviate this problem. Unfortunately, the objects are not always presented in 
the normal display rate. When an object is presented in fast forward mode or 

Figure.6.2..Staggered.striping
Figure �.�. Staggered striping
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rewind mode, data are retrieved in a different rate from the cluster of disks. 
Berson et al. (1994) proposed creating a replica in order to support objects 
retrieved at abnormal rates. However, each rate would require an extra rep-
lica and the system is obviously limited to a small number of display rates 
predicted in advance. 

Pseudorandom.Placement

In the data striping methods, the data stripes are stored onto a number of 
disks. The choice of which disk to store a data stripe depends on the num-
ber of disks. The striping methods assign disk numbers sequentially to data 
stripes in cycles. For a storage system with d disks, the disks are numbered 
from D0 to Dd-1. An object Y with n data stripes is placed on the d disks. The 
i+1th data stripe Yi is placed on Dj if 

Dj = i mod d,
where j = 0,1, … , d-1 and i = 0,1, … , n-1.

When new disks are added to the disk farm, the data stripes become incor-
rectly placed according to the new number of disks. Thus, all the disks 
need to be reorganized, and the data stripes of all the objects are moved to 
new locations in order to maintain the integrity of the storage system. This 
reorganization of all the objects on the disks incurs heavy workload on the 
storage system.
In Figure 6.3, object Y is originally stored on two disks, D0 and D1. The object 
Y is split into six data stripes, Y0 to Y5, and these data stripes are already placed 
on the appropriate disks. A new disk, D2, is now added to the disk farm. The 
data stripes Y2 to Y5 need to be moved to their new disk location. This cycle 
repeats for every six (=2*3) data stripes when the third disk is added. Thus, 
four out of every group of six data stripes should be moved.
The addition of the second disk to a single disk involves moving half of all 
data stripes. The addition of the third disk involves moving two thirds of all 
data stripes. The addition of the fourth disk involves moving three fourths of 
all data stripes. Since d and d-1 are relatively prime for all d > 1, the addition 
of the dth disk involves moving d*(d-1)/d2 = (d-1)/d of all data stripes.
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Apart from disk additions, disk reorganization is required when disks are 
removed. When one of the disks is removed, the number of disks decreases. 
The data stripes on all disks should be moved to other disks in order to 
maintain the integrity of the striping method. Furthermore, removing a disk 
in the middle of a group of disks may result in a gap within the range of disk 
numbers. The disks should be renumbered so that the data stripes can be 
retrieved from the correct disk. Although disks are seldom removed, failed 
disks are often directly replaced with a new one. The workload on disk re-
organization for disk removals is however heavy.
The objective of the pseudorandom placement method is to reduce the work-
load in reorganization when disks are added or removed from the disk array. 
It reduces the number of data stripes being moved after adding a disk. It also 
reduces the number of data stripes being moved to remove a disk.
Instead of assigning sequentially a fixed disk number to the data stripe when 
a new disk is added, the pseudorandom placement method uses the pseudo-
random function to generate the new disk numbers so that the data stripes can 
be evenly distributed (Goel, Shahabi, Yao, & Zimmermann, 2002; Santos, 
Muntz, & Ribeiro-Neto, 2000).
The pseudorandom function is not truly random. It returns a random number 
within the range 0 to 1 uniformly. When a seed number is provided as the 

Figure.6.3..Pseudorandom.placement..In.adding.a.new.disk.D2,.Y3.to.Y6.are.
moved.

Figure �.�. Pseudo-random Placement. In adding a new 
disk D3, Y2 to Y5 are moved.
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parameter to the pseudorandom function, the pseudorandom function always 
returns the same random number. If a random number within a range of 0 
to N-1 is required, the return random number is simple multiplied by N, and 
the fractional part is truncated away.
By controlling the new disk numbers for the data stripes, the pseudorandom 
striping method reduces the number of movements of data stripes (Goel et 
al., 2002). After a new disk is added, it regenerates a new disk number for 
every data stripe. If the generated disk number for a data stripe is within the 
original disks before adding, it keeps the old disk number as the new disk 
number and avoids moving the data stripe. If the generated disk number is 
on the newly added disk, then the new disk number is the generated disk 
number and the data stripe is moved to the new disk.
Consider that a seed Xs is chosen. The pseudorandom function, RF(.), can be 
used to generate the new disk numbers D1 and D2 as follows.

D1 = RF(Xs), and 
D2 = RF(D1) = RF(RF(Xs)) = RF2 (Xs),
where Xs is the initial seed for the pseudorandom function. Similarly, the new 
disk number Dj is generated within the range 0 to d-1 as
Dj = RF(Dj-1).
Dj-1 is then further expanded repeatedly to get
Dj  = RF( RF(Dj-2)) = … = RFj (Xs). 

When the same initial seed number Xs is used, it always generates the same 
sequence of numbers Dj such that each Dj is within the range of 0 to d-1. This 
also implies that if we know the value of the initial seed, Xs, we can calculate 
an entire sequence of seed numbers Dj. 
If we define qj = (Xj div Nj) and rj = Xj mod Nj, then qj and rj are the quotient 
and remainder of Xj divided by Nj. Thus, we have

Xj = qj * Nj + rj.

Let Xj be the seed for the jth application of the random number function on 
a data stripe, Yi. For simplicity, the index of a data stripe, i, may be used as 
the initial seed for the data stripe. After adding a new disk, the previous Xj-1 
is used as the seed of random number function to generate the new Xj. Thus, 
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we can always get the same sequence of seed numbers, Xj, for all j > 1. The 
following disk addition algorithm is used to generate the sequence of seed 
numbers after adding a new disk (Goel et al., 2002).
Disk addition algorithm to generate, Xj, the jth seed number of a data stripe 
after adding a new disk:

If (RF(Xj-1) mod Nj) < Nj-1, then
Xj = RF (Xj-1) * Nj + rj-1
Otherwise, 
Xj = RF(Xj-1)* Nj + RF(Xj-1) mod Nj.

The above disk addition algorithm uses RF(Xj-1) to generate a new random 
number so that the data stripes can be evenly distributed to Nj disks. If the 
remainder of this random number divided by Nj is less than Nj-1, then the 
remainder is within the original number of disks before adding the new 
disk. The new seed number Xj is then calculated as a multiple of Nj plus the 
previous remainder rj-1. The new disk number, rj, is equal to the old disk 
number, rj-1, since

rj  = Xj mod Nj 
 = (RF (Xj-1) * Nj + rj-1) mod Nj
 = rj-1.

If the remainder of the random number divided by Nj is equal to Nj-1, then 
the data stripe should be placed in the new disk. The new Xj is calculated as 
a multiple of Nj plus the remainder of the random number modulo Nj. Thus, 
the new disk number, rj, can be found as

rj  = Xj mod Nj 
 = (RF(Xj-1)* Nj + RF(Xj-1) mod Nj) mod Nj
 = RF(Xj-1) mod Nj.

Therefore, the data stripe will be placed in the newly added disk if RF(Xj-1) 
mod Nj is equal to Nj-1. Since the random number function always generates 
random numbers that spread uniformly over the range of values from 0 to 
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Nj-1, only one of Nj return random number values will be equal to Nj-1. Thus, 
only one of Nj data stripes will be moved to the new disk.
Similar to adding disks, the pseudorandom placement method also provides 
the means to reduce data stripes movements for disk removals. Before a disk 
is removed, the previous Xj-1 is used as the seed of random number function 
to generate the new disk number. The following disk removal algorithm is 
executed to generate new sequence of seed numbers (Goel et al., 2002).
Disk removal algorithm to generate, Xj, the jth seed number of a data stripe 
before removing a new disk:

If rj-1 is not removed, then
Xj = RF (Xj-1) * Nj + new(rj-1)
Otherwise, 
Xj = RF(Xj-1),
where new(.) is a mapping function that maps from previous disk numbers 
to new disk numbers.

The disk removal algorithm uses the previous Xj-1 as seed to generate a new 
seed number for the data stripe. It uses a new(.) to map the previous disk 
numbers to new disk numbers so that no gaps exist in the disk numbers after 
mapping. The input parameter to this new( ) function is a disk number in the 
range before disk removal. It thus returns a disk number in the range after 
disk removal.
The above disk removal algorithm checks if the data stripe originally resides 
on the removing disk. If it is not on the removing disk, the new Xj is calculated 
as a multiple of Nj plus the mapping of the previous remainder rj-1. Thus, the 
data stripe thus stays on the original disk.
If the data stripe is on the removing disk, a new Xj is calculated as RF(Xj-1). 
The data stripe will then be moved to a random one of the remaining disks. 
Since the pseudorandom function is used to generate the new random number, 
the data stripe has the same probability to reside on anyone of the remaining 
disks. Thus, the data stripes originally residing on the removing disk are thus 
evenly distributed to the Nj-1 disks.
The pseudorandom placement method changes the traditional striping meth-
ods that assign disk numbers sequentially in cycles. When disks are added 
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or removed, only a small fraction of all data stripes need to be moved. The 
data stripes continued to be evenly distributed across the disks.
In order to find the sequence of seeds and random numbers, the pseudorandom 
placement method needs to use the random number function many times. 
Fortunately, the random number function mainly looks up entries from the 
random number table. The function can perform efficiently.

Chapter.Summary

The simple striping methods increase the efficiency of serving concurrent 
multimedia streams. These methods consider the characteristics of multimedia 
streams in the design of the techniques. Multimedia streams can access the 
data stripes according to their actual data consumption rates. Thus, the disk 
bandwidth and the memory buffer are used efficiently. However, the actual 
participating streams may not access objects exactly as expected. Thus, the 
increase in efficiency is not as much as expected.
The staggered striping method provides effective support for multiple streams 
accessing different objects from a group of striped disks, and it automatically 
balances the workload among disks. Unfortunately, the staggered striping 
method still suffers from the disk bandwidth fragmentation problems, and 
new streams may be rejected.
The pseudorandom placement method maintains that the data stripes are evenly 
distributed on disks. In addition, it reduces the number of data stripes being 
moved when the number of disks increases or decreases. It uses the pseudo-
random number function to generate new disk numbers that are independent 
of the disk number of other data stripes. The pseudorandom placement reduces 
the workload on data reorganization when disks are added or removed.
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Chapter.VII

Replication.Placement.on.
Disks

Introduction

When extra storage space is available on the striping disks being described 
in the last chapter, the storage system may keep extra copies of the stored 
objects to enhance the performance of the storage system. If any one of the 
copy or the original copy is corrupted, the corrupted copy can possibly be 
recovered by comparison with its replicas. The replication strategy thus 
increases reliability of the storage system by applying redundancy on the 
stored objects. 
Extra copies of objects may be created and stored on the storage system to 
increase the storage system performance. The presence of replicas on light 
loading disks may be able to reduce the period of time that an object is 
inaccessible. Thus, the replication strategy increases the availability of the 
stored objects.
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The replication strategy can have several advantages. First, the replica on 
idle disks can increase the availability of data on corrupted and busy disks. 
Second, the replica on local server can reduce the network load to access 
objects from remote servers. Third, the replica on local server can also reduce 
the need to wait for the filling of initial buffer prior to consumption. Fourth, 
replica can avoid disk multitasking by avoiding the need to serve multiple 
streams from the same disk head.
We will describe the streaming redundant array of inexpensive disks (RAID) 
method that increases availability and fault tolerance in the next section. After 
that, we present the Lancaster storage server to reduce network load. Then, we 
show two data replication methods to reduce start-up latency. Afterwards, we 
explain how the data replication method can avoid disk multitasking. Before 
we conclude this chapter, we describe the replication method that balances 
the space and workload of storage devices.

Replication.to.Increase.Availability

Redundant array of inexpensive disks has become widely accepted in recent 
years. Similar to RAID disks, the streaming RAID was proposed to serve 
multimedia streams. The objective of streaming RAID is to increase reliability 
and availability of multimedia data. The approach to achieve these objectives 
is by storing redundant information (Cohen & Burkhard, 1996; Tobagi, Pang, 
Baird, & Gang, 1993). Performance of multimedia streams is maintained by 
using multiple disks like the striping methods. A disadvantage of streaming 
RAID is that even more data are stored on the storage system.
Multimedia data are large, and each stream accesses data of an object for a 
long time. Thus, the disk containing the accessed object will become busy for 
a long period of time. When other streams try to access other objects residing 
on the same disk, the disk becomes too busy to serve them. As a result, new 
request streams will not be served until the disk becomes free. This disk out-
age problem limits the storage system’s ability to serve multimedia streams 
without degrading their quality. 
Streaming RAID is an interdisk, strip-based method. In the streaming RAID 
method, every data object is divided into a number of blocks. Each block is a 
fixed number of bytes, and the data blocks are stored on multiple disks. One 
block from each disk forms a group. A parity bit is formed by XOR of one 
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bit from every block in the group. The parity information is created as the 
redundant information. This parity information is then stored onto a separate 
parity disk (Tobagi et al., 1993). 
For example, an object X is stored on three disks. Block X is divided into 
many blocks. X3i is the 3ith block of X and it is stored on disk 1. X3i+1 is the 
3i+1th block of X, and it is stored on disk 2. X3i+2 is the 3i+2th block of X, 
and it is stored on disk 3. Pi is the ith parity block. Then, the jth bit of the 
parity block, Pi,j is found as:

jijijiji XXXP ,23,13,3, ++ ⊕⊕= ,

where X3i,j , X3i+1,j , X3i+2,j are respectively the jth bit of the 3ith block, 3i+1th 
block, and 3i+2th block of object X.
Multiple data disks are used as a disk array, and the disks serve requests 
in parallel. When data are accessed, each disk is issued a request. All the 
requests are then served simultaneously. Each request retrieves a data block 
from the disk. If one of the disks is not available, or some data on the disk 
are corrupted, the redundant information on the parity disk is accessed. The 
unavailable or corrupted block is then reconstructed from the data from other 
data disks and the parity disk. 
For example, a data block, X3i+2, is unavailable when the object X is being 
accessed. This block can be recovered from the data blocks X3i+2, X3i+2, and 
the parity block Pi. The jth bit of the missing block, X3i+2,j, can be recalculated 
using the equation:

jijijiji PXXX ,,3,3,23 ⊕⊕=+ .

The streaming RAID method is designed to increase the reliability of multi-
media streams by storing redundant information. It also enhances the storage 
disk performance through controlling the storage location of objects. The 
streaming RAID method is similar to the RAID-3 level disk in keeping the 
parity information on separate parity disks. This is suitable for large data 
transfers but not efficient for small data transfer. Since multimedia objects 
are large and a large amount of data are transferred each time, the streaming 
RAID is an efficient method for multimedia object streaming.
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A limitation of streaming RAID is its lack of control on the placement of 
multimedia data in storage. Hence, the data bandwidth cannot be effectively 
controlled, and large variations in data bandwidth require more read-ahead 
buffer. 
A disadvantage of streaming RAID is that it increases the data storage us-
age. Since multimedia objects are large in size, storage of the objects’ data 
already exhausts many storage systems. The creation of redundant informa-
tion increases the burden on the storage system.
Storing redundant information obviously increases the security of data during 
disk failure. Although the security of multimedia data should not be neglected, 
proper backing up and archiving data can also achieve the data security. Since 
most multimedia data are not frequently modified and storing the redundant 
information would reduce the available user data bandwidth, it would be nice 
to consider redundant codes when surplus bandwidth is available or other 
means to provide data security are not available.

Replication.to.Reduce.Network.Load

Multimedia objects are large in size. The workload to deliver multimedia 
objects across the networks is heavy. Objects may be stored on storage servers 
that are distributed over a wide geographic area network. It would be nice 
if some objects can be fetched from neighbouring storage servers that have 
stored the object. Thus, data replication is one of the approaches to distribute 
objects across the network in order to reduce the network load.
In the Lancaster continuous media storage server, object files are replicated 
according to their distance from the originating site (Lougher, Shepherd, & 
Pegler, 1994). If an object’s originating site is far from the local media storage 
server, the object has a higher priority of being replicated in the local server. 
If an object’s originating site is close, the object has a low priority of being 
replicated. The Lancaster storage server provides a method to differentiate the 
priority of objects being replicated in the local server. This method provides 
a mechanism to evenly spread the objects across a number of servers over 
a geographical area. The most important advantage of the Lancaster server 
design is that network load can be reduced. This is similar to reduce network 
load using proxy servers.
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Replication.to.Reduce.Start-Up.Latency

When multimedia streams are initiated, the storage server delivers the first 
part of the object to the clients. The client program uses these initial data to 
fill up the memory buffer. Before enough data are received to fill the buf-
fers, the client program cannot start to display the stream. Thus, the client 
program needs to wait for the delivery of the initial part of the objects. This 
waiting time is the start-up latency. The start-up latency is a delay time that 
is directly observed by the user. When multimedia objects are being accessed 
over a high delay network, the start-up latency may be significant. 
Data replication is one of the approaches to reduce the start-up latency. Ghan-
deharizadeh, Kim, Shi, and Zimmermann (1997) proposed to migrate requests 
with data replication across disk clusters in order to reduce start-up latency. 
Chang and Molina (1997) replicated the leaders of multimedia objects on a 
separate disk to reduce start up latency in constraint allocation methods. 
A limitation of the leader replication is that this method only reduces the 
start-up latency. After a stream is started, the leader in storage does not make 
additional contributions in the delivery of the object. More methods to reduce 
start-up latency will be discussed in the cache replacement policies.

Replication.to.Avoid.Disk.Multitasking

In magnetic hard disks, the disk heads are connected together like a hair 
comb. All the disk heads move at the same time to the accessed tracks and 
cylinders. Each object may be stored contiguously onto a few cylinders. 
When one of these objects is accessed, the disk heads only need to move 
one long seek action. Subsequent seek actions are very short if there is not 
any other concurrent streams. Thus, the aggregate seek overhead is very low. 
However, if the disk heads need to serve multiple concurrent streams, the 
disk heads move up and down across the disk surface to serve one request 
for each stream. The disk head is then multitasked among multiple streams. 
This disk multitasking involves significant seek overheads that erode the 
disk performance. 
Separate replica on multiple disks may avoid disk multitasking by avoiding 
the need to serve multiple streams from the same disk head. Ghandeharizadeh 
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and Ramos (1993) proposed data replication to avoid disk multitasking that 
could reduce disk throughput. 
When multimedia objects are declustered across a group of disks, all the 
disks in the group must be accessed simultaneously in order to retrieve the 
objects in real-time. In order to maintain the disk retrieval throughput at the 
desired level, the number of disks to decluster each multimedia object is 
limited. Due to the limitation of disk throughput, each disk can only support 
a limited number of streams. The contention of streams for disk bandwidth 
could reduce the throughput. In Ghandeharizadeh and Ramos (1993), data 
are replicated in other disks to reduce this contention. 
Apart from avoiding disk multitasking, objects may be duplicated on ran-
domly selected disks to avoid disk multitasking. The number of replica being 
created is directly proportional to the access frequency of the object (Korst, 
1997). More replicas may be created on frequently accessed objects and few 
replicas are created on rarely accessed objects. Since more streams access the 
hot objects, more copies of the hot object can help the object to be accessed 
from more disks. Thus, the hot objects can be accessed with low overheads 
to increase the efficiency of the storage system.
For example, Figure 7.1 shows two objects X and Y being stored on six 
disks, disk 1 to disk 6. Object X is divided into X1 to X4 and they are stored 
on disk 1 and disk 2. Object Y is split into Y1 to Y6 and they are stored on 
disk 1 to disk 4. Some data stripes of object Y that are stored on disk 1 and 
disk 2, including Y1, Y2, Y5, and Y6, are replicated onto disk 5 and disk 6. 
While user A is accessing object X from disk 1 and disk 2, another user B 
may send requests to access object Y. The disk 1 and disk 2 may not have 
the disk bandwidth to be able to access data stripes for stream X and stream 
Y concurrently. During this period of time, disk 5 and disk 6 may be idle. 
Instead of using disk multitasking to serve both stream X and stream Y from 
disk 1 and disk 2, the replica of object Y on disk 5 and disk 6 may be accessed. 
Thus, the storage system can serve both stream X and stream Y concurrently. 
This shows a successful situation that replication can be used to increase disk 
throughput and serve more concurrent streams.
The replication of objects may need a large number of disks. If each disk 
serves only one stream, then the number of disks should not be less than the 
number of concurrent streams. Thus, one disk is needed to serve one ad-
ditional concurrent stream. Unless each disk can store only one object, the 
disk storage space is thus not efficiently used. When several replicas resid-
ing on several disks are available, it is necessary to choose an appropriate 



��0   Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

disk to serve an incoming stream. This choice increases the complexity in 
retrieving the objects. 
Since the access frequency of objects changes dynamically, the number of 
objects cannot be increased without additional workload to create copies. 
Thus, it is not an easy task to maintain the optimal number of objects on the 
appropriate disks.

Replication.to.Maintain.Balance.of.Space.and.Load

The access bandwidth of an object is affected by access frequency of the 
object and the required bandwidth to deliver the object. If all the objects are 
accessed with the same number of megabytes per second, the access band-
width of the objects is linearly proportional to their access frequency. If all the 
objects have the same access frequency, the access bandwidth of the objects 
should be linearly proportional to their data rate. Thus, the access bandwidth 
of an object is equal to the data rate weighted by the access frequency of the 
object. In the following paragraphs, a hot object is an object with high access 
bandwidth, and a cold object is an object with low access bandwidth.
Replication of objects consumes both storage space and access bandwidth. 
When a replica of an object is stored on a storage device, the replica may be 

Figure.7.1..Data.replication.to.avoid.disk.multitasking
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Figure �.�. Data replication to avoid disk multitasking
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accessed by request streams. The replica cannot be accessed if the storage 
device does not have enough bandwidth to deliver it. Thus, it is more appro-
priate to place the replica on other storage devices with sufficient bandwidth. 
We shall explain using the four undesirable conditions on a storage system 
below.
First, when hot objects are stored on a low bandwidth disk, the disk does not 
have sufficient bandwidth to serve the streams on the hot object. Otherwise, 
the disk becomes overloaded. The hot objects should be replicated to high 
bandwidth disks, and the hot objects can then be accessed without delay.
Second, when cold objects are stored on a high bandwidth disk, the disk has 
spare bandwidth to serve more streams. However, the disk does not have 
more requests to the cold objects. Thus, the disk utilization is low. The cold 
objects may be moved to another disk with low bandwidth to release storage 
space so that the high bandwidth disk can have storage space to store and 
serve hot objects.
Third, a high bandwidth disk needs to have sufficient storage capacity to store 
the hot objects. If the high bandwidth disks have stored many cold objects and 
do not have sufficient storage space, the hot objects still cannot be stored.
Fourth, a low bandwidth needs to have sufficient storage capacity to store 
the cold objects. If the low bandwidth disks have already stored many hot 
objects and do not have sufficient storage space, the cold objects need to 
be stored on disks with higher bandwidth. As a result, the disk bandwidth 
utilization is low.
The above four situations show that hot objects should be stored on high 
bandwidth disks, and cold objects should be stored on low bandwidth disks. 
The optimal condition is maintained if all the disks consume their storage 
space and spare bandwidth in similar proportions. The objective of the band-
width-to-space ratio (BSR) replication is to maintain the same percentage of 
space and load consumptions on all storage devices.
The bandwidth-to-space ratio replication is an interdisk, object-based rep-
lication method for heterogeneous storage devices. In the BSR replication 
method, the storage capacity and access bandwidth of each storage device 
may be different. It maintains the balance of access bandwidth to storage 
space ratio for every storage device (Dan & Sitaram, 1995).
The storage system keeps the allocated bandwidth to space ratios for every 
storage device. When a replica of an object needs to be stored on the storage 
system, it needs to find a storage device to store the new replica. If the replica 
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is stored onto the storage system, the storage system allocates both access 
bandwidth and storage space for the object. This allocated bandwidth and al-
located storage space come from the same storage device. Thus, the allocated 
bandwidth and the allocated storage space would increase (Figure 7.2).
Depending on the allocated bandwidth-to-space ratio and the bandwidth-to-
space ratio of the new object, the allocated bandwidth-to-space ratio of the 
selected storage device may increase or decrease. The bandwidth-to-space 
ratio of other storage devices however remains the same since they are not 
affected. 
The BSR of a storage device is defined as the bandwidth-to-space ratio of the 
storage device. The actual BSR of a storage device is defined as the band-
width-to-space ratio of the storage device when it is empty. Thus,

acityStorageCap
widthAccessBandActualBSR = ,

where AccessBandwidth and StorageCapacity are the access bandwidth and 
the storage capacity of the storage device respectively.

The allocated BSR of a storage device is defined as the allocated bandwidth 
divided by the allocated storage capacity of the storage device. Thus,

Figure.7.2..BSR.replication..Both.the.consumed.storage.space.and.allocated.
bandwidth.increase.after.adding.a.new.object.
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AllocatedBSR
citytorageCapaAllocatedS
idthccessBandwAllocatedASRAllocatedB = ,

where AllocatedAccessBandwidth and AllocatedStorageCapacity are the 
allocated bandwidth and the allocated storage capacity of the storage device 
respectively.
The BSR deviation of a storage device is defined as the difference between 
the actual BSR and the allocated BSR of the storage device. Thus:

BSRDeviation.=.AllocatedBSR.–.Actual.BSR.

The storage device with a high BSR deviation value is hot. The storage de-
vice with a low BSR deviation value is cold. Sometime, the BSR deviation 
value can be negative.
The BSR replication method first checks if any storage devices have the stor-
age capacity and bandwidth to store the new object. Any storage devices with 
insufficient space or bandwidth are excluded. It then calculates the allocated 
BSR of the remaining storage devices on the speculative condition that the 
replica is stored on the storage device. Afterwards, it chooses the storage 
device such that the storage of the new replica results in the smallest BSR 
deviation. When there is a tie, any one among the storage devices with the 
smallest BSR deviations can be chosen.
For example, a storage system has five disks, D1 to D5. Each disk has a stor-
age capacity of 600MB and bandwidth 60 MB/s. After some objects are 
stored on the disks, the disks now have 100MB, 300MB, 300MB, 500MB, 
500MB of free space and 10MB/s, 35MB/s, 30MB/s, 45MB/s, 50MB/s of 
free bandwidth, respectively. 
The actual BSR of the disks is 

. =.60MB/s.÷.600MB.

. =.0.1./s.

The allocated bandwidths of the first disk, D1, is

=.60MB/s.–.10MB/s.
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=.50MB/s.

The allocated storage space of the first disk, D1, is

=.600MB.–.100MB.
=.500MB.

The allocated BSR of the first disk, D1, is

=.50MB/s.÷.500MB.
=.0.1./s.

The BSR deviations of the first disk, D1, is

=.0.1/s.–.0.1/s.=.+0/s.

Similarly, the allocated bandwidths of the other disks, D2 to D5, are 

=.25MB/s,30MB/s,.15MB/s,.and.10MB/s.

The allocated storage spaces of the other disks, D2 to D5, are 

=.300MB,.300MB,.100MB,.and.100MB.

The allocated BSR of the other disks, D2 to D5, are

=.25/300,.30/300,.15/100,.and.10/100.
=.0.8333/s,.0.1/s,.0.15/s,.and.0.1/s.

The BSR deviations of the other disks, D2 to D5, are
=.-0.0167/s,.0/s,.+0.05/s,.and.0/s.

By comparing the BSR deviations of the disks, we can see that D2 is a cold 
disk and D4 is a hot disk.
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An object X1 of size 100MB and bandwidth 15 MB/s is now stored on the 
disk. The storage system will find the new BSR deviations of the disks after 
the new object is stored. 
The available storage space and bandwidth of the disks are first checked. 
D1 is excluded because it does not have enough bandwidth to store the new 
object. 

If we place X1 on D2, the allocated bandwidths of D2 would become

=.25MB/s.+.15MB/s.
=.40MB/s.

The allocated storage spaces of the disk, D2, would become

=.300MB.+.100MB.
=.400MB.

The allocated BSR of the disk, D2, would become

=.40MB/s.÷.400MB
=.0.1./s.

The new BSR deviations of the first disk, D2, would become

=.0.1/s.–.0.1/s
=.+0./s.

Similarly, if the object X1 is stored on other disks, the allocated bandwidths 
of the other disks, D3 to D5, would become

=.45MB/s,.30MB/s,.and.25MB/s.

The allocated storage spaces of the other disks, D3 to D5, would become

=.400MB,.200MB,.and.200MB.
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The allocated BSR of the other disks, D3 to D5, would become

=.45/400,.30/200,.and.25/200.
=.0.1125/s,.0.15/s,.and.0.125/s.

The new BSR deviations of the other disks, D3 to D5, would become

=.+0.0125/s,.+0.05/s,.and.+0.025/s.

As D2 has the lowest new BSR deviation, the object X1 is stored on the disk 
D2. After the object is stored, the allocated BSR of the disks, D1 to D5, be-
comes

=.0.1/s,.0.1/s,.0.1/s,.0.15/s,.and.0.1/s.

The new BSR deviations of the disks, D1 to D5, become

=.+0/s,.+0/s,.+0/s,.+0.05/s,.and.+0/s.

We can see that by storing the hot object X1 to the disk D2, the bandwidth-to-
space ratio of the cold disk D2, increases. If we add another cold object with 
BSR lower than 0.1, it would decrease the BSR deviations of the disks.
The BSR replication method maintains a balance of the bandwidth to space 
ratio of all the storage devices. This helps to store the hot objects on high 
bandwidth storage devices and cold objects on low bandwidth storage devices. 
When a storage device becomes cold, the storage device would then be cho-
sen to store the hot objects. When a storage device becomes hot, the storage 
device would reduce the chance of choosing it to store new objects. 

Chapter.Summary

A general requirement of all data replication methods is that extra storage 
space is used. When the disk array is bandwidth bound, the usage of vacant 
space to raise throughput is possible. This strategy is thus limited by the 
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amount of free space available. Fortunately, the recent trend of technology 
shows that storage capacity is increased at a faster pace than the access 
bandwidth. Storage capacity may not be a problem when compared to the 
access bandwidth.
Unfortunately, multiple data copies should be maintained the same while 
they are modified. This coherence of multiple data copies on disks increases 
program complexity and workloads. The index entries to link the multiple data 
copies need to be stored, processed, and maintained. The selection of data to 
replicate and the selection of disks to place the replica should be optimized 
to achieve the sufficient gain against the extra workloads.
Fortunately, the replication of multimedia objects can increase the availability 
of objects. Objects lost on corrupted disks can be recovered from the redundant 
information or the replica of the original object. The replica on neighbouring 
servers can reduce the network load similar to proxy servers. The replica of 
leaders on local servers can hide the start up latency that is visible to the 
users. When many disks are available like a disk array, proper replication of 
data stripes can improve the efficiency of the storage systems. 
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Chapter.VIII

Constraint.Allocation..
on.Disks

Introduction

Most existing storage servers store data stripes on magnetic hard disks. These 
magnetic hard disks are accessed by moving the disk heads to random disk 
tracks. A significant amount of overhead is spent in moving the disk heads 
across the disk tracks. The access time of a request would be significantly 
reduced if the seek time is reduced.
In the normal placement of data stripes on disks being described in the two 
previous chapters, data stripes can be placed on any tracks with free space. 
There is not much consideration on the distance among data stripes of con-
current streams. Separation distances between data stripes of an object are 
not sufficiently constrained. Thus, the only guarantee on the upper bounds 
of access times is very high.
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Constraint allocation methods limit the available locations to store the data 
stripes. This helps to control the access time within media playback require-
ments. The data stripes are also evenly spread across the surface of the storage 
media. This reduces the overheads of serving concurrent streams from the 
same storage device. Therefore, the maximum overheads in accessing data 
from the storage devices, such as seek time, become lowered.
In this chapter, we shall describe two constraint allocation methods that are 
designed for magnetic hard disks. These methods may also be applicable 
to other storage media that use the disk format. When many streams access 
the same hot object, the phase based constraint allocation supports more 
streams with less seek actions. We shall describe the phase based constraint 
allocation method in the next section. The region based allocation limits 
the longest seek distance among requests. After that, we describe the region 
based allocation method.

Phase.Based.Constraint.Allocation

Multimedia objects are stored on and accessed from storage systems. The 
concurrent streams send requests to access data stripes. If the disk heads 
serve all the requests of one stream before another, the latter stream waits 
for a long time before it can start. If the disk heads serve requests of streams 
in an interleaving manner, the disk heads move across the disk heads many 
times. The storage locations of these objects could be very far away. Thus, the 
disk heads take a long time to seek the required tracks of each request. The 
overheads in serving concurrent streams are heavy, and the storage system 
cannot retrieve the objects efficiently.
When the overheads are heavy, the upper bounds on the access time are high. 
The maximum access time to serve a stream becomes very long. Thus, the 
storage system can only accept a small number of streams to be served. Other 
streams have to be rejected from being served.
Özden, Biliris, Rastogi, and Silberschatz (1994) proposed the phase based 
constraint allocation method to serve multiple concurrent streams efficiently 
(Özden et al., 1994; Özden, Rastogi, & Silberschatz, 1996). It shares the 
seek time overheads among the requests of concurrent streams. Instead of 
storing the data stripes belonging to an object on nearby locations, the phase 
based constraint allocation stores together the data stripes that are accessed 
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by requests belonging to concurrent streams. Therefore, the phase constraint 
allocation method can place a tighter upper bound on the mean seek time 
of the requests.
In order to share the overheads among requests of concurrent streams, the 
access patterns of the streams are restricted. First, these streams may be homo-
geneous in nature. That is, all the streams may access data at the same period 
of time. Second, the streams are scheduled in advance before the objects are 
stored. In broadcasting and near video-on-demand systems (NVOD), all the 
streams start at the predefined time according to the time schedule. A stream 
thus accesses data according to the predefined time schedule only.
In near video-on-demand systems, a number of channels are delivered to the 
viewers. Each channel shows a video object being delivered from the system. 
The starting time of these streams are separated at a fixed time interval. An 
object may be delivered on several channels, and it is accessed by multiple 
streams. Thus, a user may join one of the streams to view a video. If the user 
misses the starting time of a video, he may wait to join the next starting time. 
He may also jump to the preceding or following streams to view a different 
part of the object.
In the phase based constraint allocation method, all the objects are interleaved 
together to form a super object. The super object is viewed by users starting 
at fixed and regular intervals called phases. A user may join one of the phases 
to view the super object being displayed continuously within the phase. Since 
the multimedia streams are homogeneous, each multimedia object can be split 
into short data stripes that will be consumed for a fixed period of time. Thus, 
only one data stripe per stream is required for this fixed period of time.
The super object is then placed on the storage system. Let m be the number 
of disks in the storage system and let p be the number of phases. The super 
object is organized as an (n x (m x p)) matrix of data stripes. The data stripes 
are evenly distributed among the m disks using the simple striping method. 
Thus, consecutive data stripes of the super object are stored sequentially from 
disk 1 to disk m and so on. Each column of p data stripes is stored contigu-
ously on a disk (Figure 8.1).
The super object serves multiple streams with a phase shift at the same time. 
After the disk arm moves the disk heads to the required track with only one 
disk read, one data stripe per phase is then accessed from the contiguous 
locations on the disk (Figure 8.2). These data stripes are then delivered to 
the streams of the specific user phases. Since the super object is composed 
of all the objects, the objects are then accessed periodically. 
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For example, the storage system delivers six streams, and each stream is 
separated from the previous stream with a phase time T. The data stripes of 
the super object are placed on three disks as shown in Figure 8.1. The data 
stripes X11 to X61 are stored on the same track of the disk 1. The data stripes 
X12 to X62 are stored on the same track of the disk 2. The data stripes X13 to 
X63 are stored on the same track of the disk 3. 
The data stripes X11 to X61 are accessed after only one disk seeking action. 
The near video-on-demand streams can then deliver one data stripe per 
stream for six different streams. The six streams can display for a time not 
shorter than T/3. 
Afterwards, the data stripes X12 to X62 are accessed after one seeking action 
on the second disk. The near video-on-demand streams can then deliver the 
second data stripe per stream to the six streams. The six streams can display 
for another time interval not shorter than T/3. 
Similarly, the data stripes X13 to X63 are accessed after one seeking action on 
the third disk. The near video-on-demand streams can then deliver the third 
data stripe per stream for the six streams. The six streams can display for 
another time interval not shorter than T/3.
Afterward, the data stripes X14 to X64 are accessed from the first disk and so 
on. Repeatedly, the data stripes are accessed from the storage system and 
delivered to the streams. The phase based constraint allocation method is 
good at delivering multiple object streams efficiently. It delivers multime-
dia objects with minimum overheads to the near video-on-demand systems. 
Therefore, it is particularly suitable for the storage subsystem of near video-
on-demand systems.

Figure �.�. Phase constraint allocation
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The seek time is shared among the number of phases. The maximum storage 
system throughput is then limited by the number of phases instead of being 
limited by the number of streams. When the number of phases is high, it al-
leviates the disk bandwidth contention on delivering many hot multimedia 
objects.
Unfortunately, the start-up latency is being traded off. Since there is a gap 
between the start of any two phases, new streams must wait for the begin-
ning of the next phase before they can be served. On average, a new stream 
waits for half of the phase period. 

Application.Note:.The.phase.based.constraint.allocation.method.is.tailored.
for.near.video-on-demand.systems..The.delivery.schedule.of.data.streams.
needs to be fixed and predetermined in advance. Thus, this is not flexible, and 
the.schedule.cannot.be.changed.easily..If.changes.in.the.time.schedule.are.
required,.the.NVOD.system.may.need.two.disk.arrays..While.one.disk.array.
serves.the.streams.according.to.the.current.schedule,.the.objects.should.be.
prepared.and.stored.at.the.other.disk.array.for.the.next.schedule..

Region.Based.Constraint.Allocation

Multimedia objects are stored on the magnetic disks. When the data stripes 
are randomly stored on any tracks or cylinders of a disk, the disk heads may 

Figure.8.2..Phase.based. constraint. allocation.method. for. the.near.VOD.
streams
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need to move across all the other tracks in between the storage location of 
two data stripes to serve a request. The maximum of seek distance is thus 
very long. As the seek time increases with the seek distance traveled by the 
disk heads, the upper limits on the seek time and the access time are very 
long. To provide guarantees for continuous display, the maximum access 
time is very long. Therefore, the disk bandwidth is low, and the disks cannot 
be utilized efficiently.
Multimedia streams of video-on-demand systems may be initiated at any 
time. The streams cannot be predetermined as in the near video-on-demand 
systems. During the quiet period, the system may not receive any requests 
for data accessing services. During the busy period, the system may receive 
many requests for data accessing services. Thus, it is not sure which objects 
will be accessed concurrently and should be stored together.
Moreover, multiple streams access data stripes concurrently. In order to 
provide a guarantee of continuous display, the supply of data should be pro-
vided continuously and smoothly. In addition, only a few requests should 
be served prior to the display of the streams. Otherwise, the start-up latency 
is undesirably long. Therefore, the requests of concurrent streams should be 
served in an interleaving manner. This incurs heavy seek overheads due to 
disk multitasking.
For each request, the seek time overheads are already heavy. This results in 
long access time. When many requests are served concurrently, the total access 
time is calculated as the access time multiplied by the number of concurrent 
requests. Thus, the storage system cannot give a tight upper bound on the 
total access time. Even if the seek time overheads may be shared among 
requests using efficient disk scheduling algorithms, the guaranteed upper 
limit on the total access time is still very long. Therefore, the storage system 
cannot provide guaranteed delivery to many streams.
The objective of the region based constraint allocation method is to increase 
the number of streams that can be served by the storage system. It limits the 
maximum separation distance among data stripes that will be accessed by 
consecutive requests to tighten the upper limits on the seek time and access 
time (Oyang, Lee, Wen, & Cheng, 1995). After the upper limits on the access 
time are reduced, the storage system can accept more multimedia streams 
to be served.
The region based constraint allocation method partitions each disk into a linear 
array of logical regions. Each region consists of a number of neighbouring 
tracks. The number of regions and the size of each region may vary from disk 
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to disk depending on the preferred maximum seek distance and the maximum 
start-up latency. When many small regions are created, the maximum seek 
distance is short, but the maximum start up latency is high. Alternatively, the 
maximum seek distance is long, but the maximum start-up latency is low when 
only a few large regions are created. The normal placement method without 
any constraints is the same as the case when only one region is created. At 
the extreme case that each track is considered as a region, the maximum seek 
distance is very short, but the maximum start-up latency is very long. The 
disk heads would traverse track by track to access data.
The data stripes of objects are stored into the regions one by one (Figure 8.3). 
After the first data stripe of an object is stored within a region, the second 
data stripe of this object is stored into its neighbouring region. The third 
data stripe of the object is then stored onto the following region in the same 
direction. The data stripes are stored in the regions in the same direction until 
it reaches the last region in a direction. Instead of storing one data stripe in 
the last region, two data stripes are stored in the last regions. After two data 
stripes are placed in the last region, the algorithm changes direction and store 
one data stripe in each region again.
An example is shown in Figure 8.3. The data stripes of two objects, X and 
Y, are stored. Object X and object Y are split into data stripes X1 to X20 and 
Y1 to Y20. The data stripes of object X are stored on the disk, beginning with 
X1 in region 1, X2 in region 2, and so on until region 5. In region 5, both X5 
and X6 are stored in the same region to change direction. Then, X7 is stored 
in region 4, X8 is stored in region 3, and so on until region 1. Both X10 and 
X11 are stored in region 1, and it changes direction again. The data stripes of 
object X are stored in regions until all the data stripes are stored.

Figure.8.3..Region.based.constraint.allocation.places.data. stripes. in. re-
gions.

Figure �.�. Region based constraint allocation places data 
stripes in regions.
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Similarly, object Y is stored in regions of the same disk. The only difference 
is that the placement of object Y begins in region 3. The data stripes of object 
Y are stored on the disk, beginning with Y1 in region 3, Y2 in region 4, both 
Y3 and Y4 in region 5, Y6 in region 4, and so on.
We may wonder why two data stripes are stored in the regions at the two ends. 
This is to balance the size of the regions. When the data stripes are placed, 
the regions are visited in cycles. The regions at the two ends are visited only 
once per cycle. Other regions are however visited once in every direction, 
so they are visited twice per cycle. If we place only one data stripe in the 
regions at the two ends every time, half of the storage space in these regions 
would be wasted. If we place two data stripes in these regions, these regions 
would be consumed at the similar rate as other regions. 
The data stripes can be stored on any tracks within the constraint region. The 
storage system thus has the freedom to store the data stripes on tracks close to 
or far from the centre of disks. A region may cover more than one zone in the 
zoned disks or the entire region may reside within a zone. Thus, the storage 
system may store data stripes according to the bandwidth based placement 
policy within a zone. For the regions at the two ends, the data stripes of hot 
objects may be stored on tracks that are close to the middle region accord-
ing to the frequency based placement method. This would slightly reduce 
the average seek distance when the storage system only serves streams that 
access hot objects. 
A stream access data stripes in the same sequence as the order of data stripes. 
The stream sends a request to access the first data stripe. After a data stripe 
is accessed, the disk heads stay on the storing track of this data stripe. The 
stream then sends the next request to access the second data stripe from the 
disk. If the disk heads serve the next request of this stream, they access the 
next data stripe for this stream. Since the next data stripe is either in the same 
region or in the neighbouring region, the disk heads only stay in the same 
region or move to its neighbouring region. It is clear that the starting track 
and the destination track are both within these two regions; the seek distance, 
D, is then bounded above as

≤ 2k-1,

where k is the number of tracks in each region. Since the seek time increases 
with the seek distance, using the seek time equation in Chapter III we get an 
upper bound on the seek time as
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From the above equation, we can see that the maximum seek time is also 
bounded above. Since the value of k is smaller than the number of tracks on 
the disk surface, the upper bound on the seek time is also smaller than the 
worst case seek time when the disk heads traverse across all tracks on the 
disk surface.
When multiple streams are concurrent, the request within the same region 
would be served consecutively. Each request that access data from the same 
region belongs to one of the concurrent streams. Thus, the concurrent streams 
are served in an interleaving manner. One request of each concurrent stream 
accesses one data strip from a region in each round. Each region is visited 
once in each direction in each cycle. For each concurrent stream, 2g requests 
are served in each cycle, where g is the number of regions. We shall explain 
more details about how concurrent streams are served in the group sweeping 
scheduling policy in Chapter VIII.
Multimedia streams that provide some VCR-like interactive functions may 
be supported. Apart from normal displaying streams that access data stripes 
from the beginning to the end, a stream may jump to start displaying from 
positions other than the current displaying position. The stream only needs to 
skip 2g requests and sends the next request to access the data stripes within 
the next region of the same cycle. The streams may also repeat this request 
skipping to provide fast forward and rewind like interactive VCR functions. 
It may even be possible to preview the objects by skipping a large number 
of data stripes at different times.
If the region based constraint allocation method is used to place data stripes, 
the disk scheduling method should be chosen to serve requests in the wait-
ing queue. The disk scheduling method should serve requests according to 
their distance from the disk heads. Requests that are close to the disk heads 
are served before the request that far away from the disk heads. The SCAN 
and group sweeping scheduling policies serve requests according to their 
track locations. Thus, the storage system should use either the SCAN policy 
or the group sweeping scheduling policy to serve requests. If the unidirec-
tional SCAN is used, the data stripes should be placed in regions in the same 
unidirectional order as the direction of the SCAN policy. Details of the disk 
scheduling policies would be described in Chapter VIII.
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The region based constraint allocation method is efficient. It increases the 
efficiency in accessing multimedia objects. It provides an upper bound on the 
maximum seek distance of disk requests to limit the retrieval time of each 
requests below the displaying time. The seek time overheads are bounded; more 
concurrent streams are acceptable; and the system throughput is raised. 
The region based constraint allocation method is flexible. It can be used for 
general multimedia systems. The multimedia streams can display objects 
sequentially from the beginning to the end. They can jump to display at any 
data stripes in the other cycles. They can skip cycles of data stripes to provide 
VCR-like interactive functions. They can send multiple requests to access 
data and the service order of these requests is controlled by the disk sched-
uling method. The region based constraint allocation method is particularly 
suitable for storing multimedia objects on disks. It may also be applied to 
other storage systems such as hierarchical storage system.

Application.Note:.Although.new.streams.may.only.start.when.the.region.
containing the first data stripe is being scanned, the maximum start-up latency 
of.new.streams.is.limited.to.the.period.of.traversing.all.regions.once..Since.
the.start-up.latency.is.proportional.to.the.number.of.regions,.it.can.be.very.
long.if.too.many.regions.are.created..Chang.and.Molina.(1997).proposed.to.
reduce.this.start-up.latency.by.replicating.the.data.stripes.of.the.leaders..

Chapter.Summary

Multimedia systems store objects on and accessed from storage systems. The 
concurrent streams send requests to access data stripes. The storage systems 
should serve requests belonging to different concurrent streams in an inter-
leaving manner, leading to long seeks and heavy overheads. Therefore, only 
a few streams can be served concurrently from each disk.
The constraint allocation methods place limits on the storage locations of 
objects and usage patterns of streams to reduce the access times of multimedia 
storage systems. They increase the efficiency of the storage systems so that 
the storage systems can serve more streams.
In near video-on-demand systems, the delivery schedule of data streams are 
fixed and predetermined in advance. The phase based constraint allocation 
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method can be used to deliver multiple object streams efficiently. It shares 
the disk seek time among the number of requests belonging to different 
phases. It alleviates the disk bandwidth contention on delivering many hot 
multimedia objects.
For general video-on-demand systems, the region based constraint allocation 
method may be used in their storage systems. The region based constraint al-
location method partitions the disks tracks into regions and store data stripes 
into specific regions. The data stripes of objects are stored into the regions 
one by one. This limits the maximum separation distance among data stripes 
belonging to the same object so that the upper bounds on the seek time and 
access time are tightened. It increases the maximum number of streams that 
can be served concurrently. It serves multimedia streams efficiently to raise 
the storage system throughput. It can support some interactive streams on 
top of the normal displaying streams. The region based constraint allocation 
method is flexible that it can be applied in other storage systems such as 
hierarchical storage systems.
In both constraint allocation methods, the start-up latency is being traded 
off. The average start-up latency of new streams is half of the phase period 
when the phase based constraint allocation method is used. The average 
start-up latency of new streams is the period of time to serve one request 
for all the concurrent streams when the region based constraint allocation 
method is used. 
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The statistical placement methods consider the characteristics of the multime-
dia objects and place them accordingly. This allows the system administrator 
to optimize the storage system performance according to the adminiatrator’s 
preferred metrics. A combination of the statistical characteristics may also 
be combined into a priority function that determines the optimal locations of 
placing objects onto the disks. We have described two statistical placement 
methods based on different access characteristics. 
The frequency based placement method optimizes the average request re-
sponse time. It uses an algorithm to place the objects according to their access 
frequencies. The hottest object is placed at the storage location with the least 
average access time. The next hottest object is placed at the next available 
storage location with the least average access time and so on. The objects 
are then placed in a skewed organ-pipe manner on the disks. 

Summary.to.Section.IIa

Data Placement on Disks



The bandwidth based placement method places objects according to their 
data rates. The storage system maintains its optimal performance according 
to the object data transfer time without reorganizations. The bandwidth based 
placement method adapts the data transfer time of objects according to their 
necessary data rates.
The simple striping methods increase the efficiency of serving concurrent 
multimedia streams. These methods consider the characteristics of multimedia 
streams in the design of the techniques. Multimedia streams can access the 
data stripes according to their actual data consumption rates. Thus, the disk 
bandwidth and the memory buffer are used efficiently. However, the actual 
participating streams may not access objects exactly as expected. Thus, the 
increase in efficiency is not as much as expected. 
The staggered striping method provides effective support for multiple streams 
accessing different objects from a group of striped disks, and it automatically 
balances the workload among disks. Unfortunately, the staggered striping 
method still suffers from the disk bandwidth fragmentation problems, and 
new streams may be rejected. 
The pseudorandom placement method maintains that the data stripes are evenly 
distributed on disks. In addition, it reduces the number of data stripes being 
moved when the number of disks increases or decreases. It uses the pseudo-
random number function to generate new disk numbers that are independent 
of the disk number of other data stripes. The pseudorandom placement reduces 
the workload on data reorganization when disks are added or removed.
A general requirement of all data replication methods is that extra storage space 
is used. When the disk array is bandwidth bound, the usage of vacant space 
to raise throughput is possible. This strategy is thus limited by the amount of 
free space available. Fortunately, the recent trend of technology shows that 
storage capacity is increased at a faster pace than the access bandwidth. Stor-
age capacity may not be a problem when compared to the access bandwidth. 
Unfortunately, multiple data copies should be maintained the same while they 
are modified. This coherence of multiple data copies on disks increases pro-
gram complexity and workloads. The index entries to link the multiple data 
copies need to be stored, processed, and maintained. The selection of data to 
replicate and the selection of disks to place the replica should be optimized 
to achieve the sufficient gain against the extra workloads.
Fortunately, the replication of multimedia objects can increase the availability 
of objects. Objects lost on corrupted disks can be recovered from the redundant 
information or the replica of the original object. The replica on neighbouring 



servers can reduce the network load similar to proxy servers. The replica of 
leaders on local servers can hide the start up latency that is visible to the 
users. When many disks are available like a disk array, proper replication of 
data stripes can improve the efficiency of the storage systems. 
Multimedia systems store objects on and accessed from storage systems. 
The concurrent streams send requests to access data stripes. The storage 
systems should serve requests belonging to different concurrent streams in an 
interleaving manner, leading to long seeks and heavy overheads. Therefore, 
only a few streams can be served concurrently from each disk. The constraint 
allocation methods place limits on the storage locations of objects and usage 
patterns of streams to reduce the access times of multimedia storage systems. 
They increase the efficiency of the storage systems so that the storage systems 
can serve more streams. 
In near video-on-demand systems, the delivery schedule of data streams is 
fixed and predetermined in advance. The phase based constraint allocation 
method can be used to deliver multiple object streams efficiently. It shares 
the disk seek time among the number of requests belonging to different 
phases. It alleviates the disk bandwidth contention on delivering many hot 
multimedia objects.
For general video-on-demand systems, the region based constraint allocation 
method may be used in their storage systems. The region based constraint 
allocation method partitions the disk tracks into regions and store data stripes 
into specific regions. The data stripes of objects are stored into the regions 
one by one. This limits the maximum separation distance among data stripes 
belonging to the same object so that the upper bounds on the seek time and 
access time are tightened. It increases the maximum number of streams that 
can be served concurrently. It serves multimedia streams efficiently to raise 
the storage system throughput. It can support some interactive streams on 
top of the normal displaying streams. The region based constraint allocation 
method is flexible that it can be applied in other storage systems such as 
hierarchical storage systems.
In both constraint allocation methods, the start-up latency is being traded 
off. The average start-up latency of new streams is half of the phase period 
when the phase based constraint allocation method is used. The average 
start-up latency of new streams is the period of time to serve one request 
for all the concurrent streams when the region based constraint allocation 
method is used.



Section.IIb

Data Placement on  
Hierarchical Storage Systems

Introduction

Storage system stores data objects on different storage devices. When these 
storage devices are of the same type, the objects may be stored and retrieved 
with similar access latency. When these storage devices are of different types, 
the objects may be stored and retrieved with different access latencies. Thus, 
the type of storage devices that contain the stored object affects the access 
latency in accessed a stored object. 
A common method to arrange the storage devices of different types is the 
hierarchical storage systems (HSS). All or most objects are stored on the 
storage devices with longer access latency. When these data objects are ac-
cessed, the objects are moved from these storage devices with longer access 
latency to the storage devices with shorter access latency. This is called data 
migration.



Similar to storage organizations on disks, there are many data placement 
methods being designed to improve the performance of hierarchical stor-
age systems. These techniques use different strategies to optimize the HSS 
performance. We group these data placement methods according to the fol-
lowing four strategies:

1. Contiguous placement strategy
2. Statistical placement strategy
3. Striping strategy
4. Constraint allocation strategy

Readers may find that these strategies have been described in the last part. 
Similar techniques on disks have been discussed in previous chapters. Read-
ers should notice that the same technique on disks may not be directly ap-
plicable to the tertiary storage devices. Even if the same efficient technique 
can be applied on HSS, it may deteriorate the HSS performance instead of 
enhancing it.
We will first describe the tertiary storage devices that store data objects in 
the tertiary storage level in Chapter IX. The contiguous placement strategy 
minimizes the overheads in accessing the objects in their entirety. We shall 
describe the contiguous placement and the log structure placement on HSS in 
Chapter X. The statistical placement method optimizes the average perform-
ance by placing data according to their access characteristics. We will show 
the frequency based placement method on hierarchical storage systems in 
Chapter XI. Afterwards, we will describe the striping strategy which divides 
a multimedia object into shorter segments and retrieves them in parallel using 
separate requests. Two striping methods on HSS, including the parallel tape 
striping and the triangular placement method, are described in Chapter XII. 
Lastly, we will explain in Chapter XIII the constraint allocation strategy which 
limits the physical locations to place objects and segments. We will explain 
the interleaved contiguous placement and the concurrent striping methods.
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Chapter.IX

Tertiary.Storage.Devices

Introduction.

The main objective of the tertiary storage level is to provide huge storage 
capacity at low cost. Several types of storage devices are available to be 
used at the tertiary storage level in Hierarchical Storage Systems (HSS). 
They include:

• Magnetic tapes
• Optical disks
• Optical tapes

These storage devices are composed of fixed storage drives and remov-
able media units. The storage drives are fixed to the computer system. The 
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removable media unit can be removed from the drives so that the storage 
capacity can be expanded with more media units. When data on a media are 
accessed, the media unit is accessed from their normal location. One of the 
storage drives on the computer system is chosen. If there is a media unit in 
the storage drive, the old media unit is unloaded and ejected. The new media 
unit is then loaded to the drive.
Each type of storage drive may handle the storage drives and media units 
differently. The magnetic tapes are described below in the next section. Then, 
the optical tapes are presented. Afterwards, the optical disks are briefly de-
scribed before this chapter is summarized.

Magnetic.Tapes

Magnetic tapes have been in use before the magnetic hard disks became 
popular. Although magnetic disks are low latency, inexpensive disks, magnetic 
tapes are cheap and of large capacity. Thus, the magnetic tapes are still used 
in practical storage systems for backup and archival applications. They are 
used to store objects that are large and rarely accessed. 
Multimedia objects are large in size, and some objects are mainly stored for 
the back up purpose. These objects are rarely accessed. Thus, the large capac-
ity of magnetic tapes helps to store multimedia objects cheaply. In addition, 
a multimedia stream accessed a data object sequentially. When a multimedia 
object is sequentially accessed from the tapes, the tape storage format allows 
the storage system to deliver data at high throughput. Thus, magnetic tapes 
have been investigated to store multimedia objects.
Magnetic tape drives access data tapes in two forms. These include the tape 
reels and the tape cartridges. When tapes are wound on reels, the drive uses 
two reels. They include the supply reel and the take-up reel. The magnetic tape 
is unwound from the supply reel. It passes through several tape guides to the 
read-write heads. It then passes through more tape guides to the take-up reel 
to be wound as illustrated in Figure 9.1. It usually needs human intervention 
to lead the tape through all the guides and wind it at the take-up reel. It is 
difficult to perform the tape loading operation automatically.
When tapes are kept on cartridges, the supply reel, the tape guides, and the 
take-up reel are all included in one cartridge. To load a tape, the drive ex-
tracts some tape between the supply reel and the take-up reel and winds it 
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around the read-write heads. It is easier to perform the tape loading operation 
automatically.
Magnetic tapes record data in three formats. They include:

• Linear
• Longitudinal
• Helican scan

This tape format stores data on data tracks. As shown in Figure 9.2, the 
read/write heads assembly may be able to move. The different directions 
in moving the read/write heads lead to different tape formats. These tape 
formats are used in different types of storage devices.

Figure �.�. Magnetic Tape Drive

supply reel take-up reel

read-write heads

tape

tape guides

Figure.9.1..Magnetic.tape.drive

Figure.9.2..Magnetic.tape.formats
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Traditional computers record data on magnetic tapes in the linear tape format. 
The tapes move horizontally. The read/write heads assembly is fixed inside 
the tape drive. Computer data are recorded horizontally along with the tape 
moving direction. Several read/write heads are mounted along perpendicularly 
to the tape moving direction. Thus, several bits are recorded by the read/write 
heads on the tape at the same time.
Digital linear tapes record data using the serpentine tape format. Data are 
recorded in the longitudinal direction like the linear tapes. Similar to the linear 
tape format, the tape read/write heads are fixed when data are recorded on 
the tape to form a track. After the tape comes to one end, the heads move at 
perpendicular direction to the tape moving direction. The tape then moves 
backwards to record another data track in the opposite direction. The move-
ment of the read/write heads are repeated to record several data tracks on 
the tape. Thus, the width of the tape is used to increase the storage capacity 
of the magnetic tape.
Video cassette recorders (VCR) record video data onto VHS tapes. The VHS 
tapes use the helican scan format. The read/write heads are mounted on a 
cylinder like a drum. The heads are mounted at an angle and rotate like a 
wheel. Thus, they form short data tracks on the surface of the tape.
Magnetic tapes have been used in many legacy systems. They offer cheap 
storage to systems that store large amounts of computer data. The storage of 
data that are practically impossible on magnetic disks can be implemented us-
ing magnetic tapes. Based on the long access latency and low storage cost per 
gigabyte, magnetic tapes have been used in backup applications for years.
Magnetic tapes record data on tapes. Since the tapes are wound around the 
reels, the tape recording surface is hidden from the read/write heads. This 
leads to long access latency when the tape is unwound to reveal the hidden 
surface. It also results in a high storage capacity to physical dimension ratio 
when compared to the disk format. 
In recent years, the improvements in recording density in magnetic disks are 
also implemented on magnetic tapes to increase their storage capacity and 
throughput. Thus, the improvement in recording density does not make the 
magnetic tapes obsolete. Unfortunately, the read/write heads touch the tape 
surface when data are accessed. After some time, the tape can become wound 
out or torn. This and other causes limit the life span of magnetic tapes. Thus, 
the tapes need to be replaced and data are moved to new tapes.
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Optical.Disks

Optical disks record data that can be read by optical beams. Optical disks can 
record data at very high recording density. Compact disks (CD) and digital 
versatile disks (DVD) are commonly used optical disks. The DVD disks are 
sometimes called digital video disks.
Optical disks can be classified as read-only disk, write-once disk, rewriteable 
disk, and read-write disk according to the modification ability of the record-
ing material. Read-only disks can only be read by the optical drive. The data 
on the disks cannot be changed. Write-once disks can be modified only once 
and read many times. After a bit of data is modified, the bit of data cannot 
be changed again. Similar to write-once disks, the rewriteable disks can be 
modified only once and read many times. In addition, the entire disk can be 
erased. After the disk is erased, the disk can be modified again. Read-write 
disks can be read and modified many times.
The optical disks are covered with clear polycarbonate. Data are recorded 
on the recording material under the disk surface. A thin layer of aluminium 
is coated on the substrate below the recording material. The optical disks are 
circular in shape. Data are recorded on a spiral track. The disk drive uses the 
servo to control the position of the optical drive automatically.
Optical disks read and write data using laser beams. Some optical disks are 
recorded using red laser beams, and some other optical disks are recorded 
using blue laser beams. The laser beam is diffracted into the recording layer 
of the optical disk. It is then focused at the recording track. The status of the 
recording material at the recording layer is modified by high intensity laser 
beams. The status of the recording material is read by low intensity laser 
beams. 
At one status of the recording bit position, the laser beam directly passes 
through the recording layer to the aluminium coating underneath. The alu-
minium coating then reflects the laser beam to the reading head. At another 
status of the recording bit position, the laser beam is deflected at the record-
ing layer. The reading head thus does not receive any reflected beams from 
the aluminium coating.
Like magnetic disks, optical disks store data on rigid disk platters. The optical 
disk head can be moved along the radius of the circular disk to locate the ac-
cessed data quickly. Thus, the optical disk drives can access data on the track 
with low latency. This makes the disk format superior to the tape format.
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Since optical drives record data on the disk recording layer using laser beams, 
the drives do not need to touch the optical disks at all. This avoids scratching 
the disk surface. When moisture or fingerprints gather on the disk surface, 
the disk can easily be wiped away. These features allow the optical disks to 
have a long life span.

Optical.Tapes

Optical tapes are designed to maximize the storage capacity of a media 
unit. Optical tapes record data on tapes using laser beams to maximize the 
recording density. Most of the recording surface is wound and hidden using 
a tape form.
Unlike magnetic tapes, optical tapes record data in the transverse format. 
The tape moves horizontally and the optical read/write head moves at the 
perpendicular direction to the tape moving direction as shown in Figure 
9.3. The tape stops while the optical head records a track of data. The head 
records data from one edge to another edge along the width of the tape. After 
a track of data is recorded, the tape moves a step and the head springs back. 
The tape stops again, and the optical head writes another data track. These 
data tracks are perpendicular to the tape moving direction. The length of the 
data track is shorter than the width of the tape.

tape moving directions
heads
moving
directions

Optical data tapes: transverse

read/write
heads

assembly

Figure �.�. Optical Tape Format

Figure.9.3..Optical.tape.format
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Robotic.Tape.Library

Large hierarchical storage systems need to store many objects. These HSS 
need to exchange tapes quickly so that they can serve many requests. Robotic 
tape libraries perform the exchange operation automatically so that manual 
operations are avoided. 
As shown in Figure 9.4, the robotic tape library consists of the:

1. tapes,
2. tape drive,
3. robotic arm, and 
4. tape cells.

As in manual tape drives, the objects are stored on the tapes, and the tapes 
are loaded to the tape drives for accessing. The number of tape drives in the 
robotic tape library determines the access bandwidth of the library. The tapes 
are usually kept in the tape cells. The number of tape cells in the robotic tape 
library determines the total storage capacity of the library. The robotic arm 
performs the exchange of tapes automatically. 

Figure.9.4..Robotic.tape.libraryFigure �.�. Robotic Tape Library
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When a tape is required, the robotic tape library performs the following 
steps:

1. The robotic arm moves to the tape drive. 
2. The tape drive ejects the original tape.
3. The robotic arm fetches the original tape.
4. The robotic arm moves the original tape back to its own cell or a vacant 

cell.
5. The robotic arm moves to the cell containing the new tape.
6. The robotic arm fetches the new tape.
7. The robotic arm moves the tape to the tape drive.
8. The robotic arm puts the tape inside the tape drive.
9. The tape drive loads the tape.

The above exchange operation uses only one robotic arm. If the tape library 
has two robotic arms that are mounted together, it can exchange tapes using 
fewer steps as follows.

1. The robotic arm moves to the tape cell.
2. The robotic arm fetches the tape from the cell.
3. The robotic arm moves the tape to the tape drive.
4. The tape drive ejects the original tape.
5. The robotic arm exchanges the tape with the original tape.
6. The tape drive loads the new tape. 
7. The robotic arm moves the original tape back to its cell or a vacant 

cell.

From the above steps, the tape library performs fewer steps when two robotic 
arms are available. In addition, the tape drive can start its next operation to 
reposition the tape after the new tape is loaded. The tape drive receives the 
new tape in fewer steps. Thus, the robotic tape library can thus exchange 
tapes more quickly.
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Performance.of.the.Tertiary.Storage.Devices

Similar to the disk performance, the tertiary storage devices mainly spend 
their time on the mechanical steps. Other steps also consume some time, 
but they are comparatively less significant. The major mechanical steps in 
serving a request are shown in Figure 9.5 and they include:

1. Time to exchange or switch the tape in the tape drive.
2. Time to reposition the tape to the first data block of the required file or 

object.
3. Time the transfer data blocks from tape to memory.

Let ω be the exchange time, α be the reposition time, γ be the tape transfer 
rate, and X be the size of the object. Then, the access time can be found as 
the sum of exchange time, reposition time, and data transfer time (Tse & 
Leung, 1998).

X
= ω+ α +

γ
.        (9.1)

Some assumptions are made to analyze the performance of magnetic tape 
drives and optical tape drives. First, the exchange time can be assumed to be 
uniformly distributed over a mean value. Since the times to unload and load 
tapes are almost constant, it is valid to make this assumption. Second, the 
tape drive runs at a fixed speed in skipping a certain length of tape since the 
tape skipping time increases with the length of the tape being skipped from 
reading. The reposition time thus increases linearly with the amount of data 
being skipped. Third, the tape drive transfers data at a fixed data transfer rate 
since the tape passes the read/write heads at a fixed speed. The data transfer 
time thus increases linearly with the amount of data accessed.
These time components show that:

1. the time to access an object has a minimum overhead, 
2. the overheads increase linearly with the amount of data being skipped, 

and
3. the access time increases linearly with the object data size.
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First, the time to access an object has a minimum overhead. Since the ex-
change time is uniformly distributed, a minimum overhead is required un-
less the object already resides on the loaded tape in the drive. Second, the 
overheads increase linearly with the amount of data being skipped in the 
reposition step. When some other objects need to be skipped, the skipping 
time increases linearly with the size of the skipped data. It is more efficient 
to place the objects near the unloading position on the tape. Thus, an efficient 
data placement method can avoid the overheads from escalating. Third, the 
access time increases linearly with the object data size. Thus, it takes longer 
time to access large objects.

Chapter.Summary

The main objective of the tertiary storage level is to provide huge storage 
capacity at low cost. The tertiary storage devices in use include magnetic 
tapes, optical disks, and optical tapes. The media units are removable from 
the drive so that the storage capacity can be expanded by using more media 
units. The media units take the tape form so that the physical dimension of 
the media unit is small. Optical disks and tapes record data the laser beam 
to provide the highest recording density.
Large hierarchical storage systems may use robotic tape libraries to store many 
large objects. Robotic tape libraries use the robotic arms to exchange tapes 
automatically and quickly. When data are accessed from the tape drives, the 
drives spend much time in performing the mechanical steps. The drives have 
a minimum overhead to access data. The overheads are affected by the data 
placement method in use. It also takes longer time to access large objects.

Figure.9.5..The.major.time.spent.in.serving.a.request.at.the.tertiary.storage.
devices

Figure �.�. The major time spent in serving a request at 
the tertiary storage devices
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Chapter.X

Contiguous.Placement..
on.Hierarchical.Storage.

Systems

Introduction

The contiguous placement is the most common method to place traditional 
data files on tertiary storage devices. The storage space in the media units is 
checked. The data file is stored on a media unit with enough space to store 
the data file. 
When tertiary storage devices are used to store multimedia objects, the ob-
jects are stored and retrieved similar to traditional data files. Since the main 
application of the tertiary storage devices is to back up multimedia objects 
from computers, the objectives of the contiguous method are: 

1. supporting back up of multimedia objects efficiently, and
2. reducing the number of separate media units that are used to store an 

object.
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We will describe in the next sections the simple contiguous placement method. 
Afterwards, the log structured placement method is explained before we 
summarize this chapter.

Contiguous.Placement

Similar to traditional data files, multimedia objects can be stored in a con-
tiguous manner to the media units. Each media unit stores the whole object 
as a file. When a media unit is partially occupied and the available storage 
space is not enough, a separate media unit is used. If the object is larger than 
the storage capacity of a media unit, the object spans across multiple media 
units. The object is partly stored on each media unit. 
The contiguous placement is simple to implement. The storage system only 
checks for the available storage space in each media unit beforehand. If the 
object is consumed on another computer, only a few media units need to be 
taken away.
The exchange overheads on accessing an object are light. When the ob-
jects are accessed in their entirety, it takes only one exchange per object. 
The amount of reposition overheads depend on the number of media units 
available. If each object is stored on a separate media unit, each object can 
be stored from the loading position of the media unit. Thus, the overhead 
in skipping over other objects on the same media unit are light. If multiple 
objects are stored on a media unit, the reposition time to skip over unwanted 
objects is significant.
The throughput of the storage system depends on the size of the stored ob-
jects. If the objects are large in size, the tertiary drive exchanges and reposi-
tions once for every accessed object. Although the exchange and reposition 
overheads are heavy, the large object size would make the transfer time more 
significant. Thus, the storage system can deliver the object at high through-
put. However, if the objects are small in size, the tertiary drive would also 
exchange and reposition once for every accessed object. The heavy exchange 
and reposition overheads become more significant than the data transfer time. 
Thus, the throughput of the storage system is low.
Since it is efficient to access each object as a whole, the storage system may 
access the entire object to the staging buffer during data migration. The stor-
age space requirement on the secondary storage level would become large. 
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This leads to inefficient usage of staging buffer space since a large portion 
of the object is accessed well ahead of its displaying time. These prefetched 
data are kept in the staging buffer for later consumption.
If the streams are served in a sequential manner, the streams are served one 
after another. A stream would only be served after the previous stream has 
completely been served. Since the multimedia objects are large in size, the 
tertiary drive takes a long time to access the whole object. Thus, a stream 
would occupy the tertiary drive for a long time. Other streams can only wait 
while the tertiary drive is busy serving the stream. Therefore, the response 
times of the waiting streams are long. 
If the concurrent streams are served in a time sharing manner, the storage 
system would switch to serve the request for another stream after it has served 
requests of a stream for some time units. If each object is stored on a separate 
media unit, the tertiary drive would access these objects in an interleaving 
manner. It exchanges the media units once for every change in the serving 
stream. Thus, the overheads in accessing the objects from the tertiary storage 
level would be heavy. It is therefore inefficient to serve concurrent streams 
in a time sharing manner when the objects are stored using the contiguous 
placement method. We shall explain different methods to migrate multimedia 
objects from the tertiary storage level in the data migration part later.
As the multimedia objects are stored contiguously, the entire object is over-
written when a small part of it is modified. Partial updating of the objects is 
not supported. Thus, the workload on updating the objects is heavy. 
When the small objects are deleted after they are stored for some time, the 
free space on the media units cannot be filled by larger objects. As a result, 
the media units become fragmented. This fragmentation problem erodes the 
storage space of the tertiary storage system. The fragmented storage space 
can be recovered after reorganization.

Log.Structured.Placement

In the back up and data archival applications, object files are backed up to the 
media units so that they can be accessed when the original data are corrupted 
or lost. As modified objects are also backed up to the media units, an object 
may be overwritten many times before it is retrieved again. Thus, the data 
objects are written more often than they are read in these applications.
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A simple log structured placement treats the entire storage space as a log. 
All the object files are written by appending to the storage space only. A log 
structured placement method was designed to write object files to a hierar-
chical storage system (HSS) in Kohl, Stonebraker, and Staelin (1993). The 
access ranges within an object are tracked to determine whether the object 
is often accessed sequentially or randomly. Random accessed objects may 
be stored to many locations on the media units. Sequential object files are 
stored contiguously. When new objects are created, they are appended to 
the end of the media units. When an object is modified, the modified data 
blocks are appended to the end of the media unit and the data blocks being 
modified are deleted. When the entire object is overwritten, the entire object 
is appended to the end of the media unit. 
If the tertiary drive only writes data objects without reading them back, 
the tertiary drive only receives write data requests. After the tertiary drive 
has served the previous requests, it stays at the end of the written object 
files. As the next request is also a write data request, the tertiary drive can 
immediately write data without repositioning the media unit. Thus, the ap-
pend-only method optimizes the tertiary drive performance by minimizing 
the reposition overheads. 
The append-only operation improves the efficiency in serving consecutive 
writing requests. Unfortunately, the presence of reading operations and 
delete operations breaks the list of writing operations. When the tertiary 
drive serves the reading request, it exchanges the media units and moves the 
current position to the accessed object. After serving a reading request, the 
tertiary drive stays at the end of the accessed object. The tertiary drive needs 
to reposition the media unit again to serve the next writing request. Thus, the 
tertiary storage performance is not optimized when the tertiary drive needs 
to read objects as well.
The log structured placement is efficient only for the back up and archival 
applications where data are more often being modified than retrieved. If 
data are not retrieved after writing, then the reasons to write these data be-
come doubtful. In most applications, the data files are more often read than 
modified. In particular, multimedia objects are seldom modified. Therefore, 
the log structure placement is not an efficient method for general purpose 
multimedia storage systems.
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Chapter.Summary

The contiguous placement method stores the whole object in the same media 
unit. It is simple and efficient when the objects are written and retrieved in 
their entirety. Unfortunately, it suffers from large staging buffer consumption 
and long response time. 
The log structured placement is an efficient placement method for the back up 
and archival applications. It optimizes the writing performance by providing 
the append-only operations. However, the performance is not optimized due 
to the presence of reading requests that are present in multimedia storage 
systems.
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Chapter.XI

Statistical.Placement..
on.Hierarchical..
Storage.Systems

Introduction

We have described the contiguous placement in the previous chapter and the 
statistical strategy to place objects on disks in Chapter IV. In this chapter, 
we describe the statistical strategy to place them on hierarchical storage 
systems. The objective of the data placement methods is to minimize the 
time to access object from the hierarchical storage system. The statistical 
strategy changes the statistical time to access objects so that the mean access 
time is optimal.
The objective of the frequency based placement method is to differentiate 
objects according to their access frequencies. The objects that are more fre-
quently accessed are placed in the more convenient locations. The objects that 
are less frequently accessed are placed in the less convenient locations. 
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We will describe the frequency based placement method in the next sec-
tion. Afterwards, we will analyze its performance. Last, we summarize this 
chapter.

Frequency.Based.Placement

Inside the tertiary storage library, the media units are physically placed in 
the cells. Some of these cells are near the drive while other cells are far from 
the drive. When objects are being accessed, the media unit that contains the 
object is exchanged to the drive. The time to exchange the media unit depends 
on the distance of the media unit from the drive. If the media unit is far from 
the drive, the exchange time would be long. If the cell containing the media 
unit is close to the drive, the exchange time is short. 
The exchange time is a significant overhead in accessing an object. If the 
object is large, the transfer time is long and the exchange time is relatively 
a small fraction of the object access time. If the object is small, the transfer 
time is short and the exchange time becomes a significant percentage of the 
object access time. The frequency based placement method has been applied 
to reduce the average exchange time in accessing objects from hierarchical 
storage systems.
The frequency based placement has been applied to place objects across media 
units on the tertiary storage library. To reduce the average exchange time, the 
hot objects should be placed on the media units in the cells that are near the 
drive. For convenience, we would say in below paragraphs that the distance 
of a media unit from the drive is the distance of the cell that contains the 
media unit from the drive. The nearest media unit actually means the media 
unit in the cell that is the nearest to the drive. The farthest media unit actually 
means the media unit in the cell that is the farthest away from the drive.
The frequency based placement method places the objects according to their 
access frequencies or popularity and fills the media units according to their 
distance from the drive (Tse & Leung, 2000). First, the objects are sorted in 
the decreasing order of their access frequencies or popularities. The objects 
are placed in the order from the hottest object to the coldest object. Second, 
the media units are sorted in the increasing order of their distances from the 
drive. The media units are filled in the order from the nearest media unit to 
the farthest media unit.
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The frequency based placement method places the first, hottest, objects onto 
the first, nearest, media unit. After the first object is stored, it then stores the 
next hottest objects on the first media unit until the first media unit becomes 
full. The next hottest object is then placed on the second media unit and so 
on. Thus, it places as many hot objects as possible together onto the same 
media unit until the media unit becomes full.
Inside a media unit, the objects are stored according to the distance from 
the loading position. Among the objects that are stored on a media unit, the 
hotter objects are stored before the colder objects. Thus, the hotter objects 
are stored closer to the loading position than the colder objects.
For example, a tertiary storage library has one drive and six media units. Each 
media unit can store two objects. The multimedia objects V1 to V12 are sorted 
in the order of popularity as shown in Figure 11.1. The object V1 is the most 
popular object, and the object V12 is the least popular object. 
The six media units are sorted in the order of their distances from the drive 
as illustrated in Figure 11.2. The media unit T1 is the nearest to the drive, 
and the media unit T6 is the farthest away from the drive. According to the 
frequency based placement method, the hottest object, V1, is first placed on 
the first media unit, T1. After V1 is placed, there is still storage space on the 
media unit, T1. Since T1 still has enough storage space, the second hottest 
object, V2, is also placed on it. After V2 is placed, the media unit, T1, becomes 
full and it does not have enough storage space to store the next object V3. 
Thus, the next media unit, T2, is chosen to store the next object, V3. After 
storing V3, the media unit T2 can also store V4. Similarly, V5 and V6 are stored 
on the media units T3 and so on.Figure ��.�. Frequency based placement
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Figure.11.1..Frequency.based.placement

Figure ��.�. Frequency based placement
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Discussion

The frequency based placement method assumes that the objects are ac-
cessed independently. This means that the access probability of an object 
is the same no matter which object has just been accessed. If the objects 
are independently accessed, the probability to exchange a media unit to the 
drive can easily be found as the sum of the probabilities of the objects that 
are stored on this media unit.
The frequency based placement method stores the hot objects on the media 
unit that are exchanged with shorter time. Since the hot objects are accessed 
with the high access probability, the average exchange time is short when 
the hot objects are stored on the media unit near the drive. 
If we consider the media unit already loaded in the drive, then this media unit 
is at zero distance from the drive since this media unit can be accessed without 
exchanges. Thus, the media unit in the drive becomes the most convenient 
location to store new objects after it is loaded to the drive. 
The frequency based placement method places the hottest object on the me-
dia unit nearest to the drive. This media unit has the highest probability of 
being exchanged to the drive than other media units. As the nearest media 
unit is exchanged with the shortest time, the hottest object would incur the 
lightest overheads when it is placed on the nearest media unit. Thus, the hot-
test object should be placed on the nearest media unit to achieve the shortest 
exchange time.
For the same reason, the next hottest object is placed to the nearest media 
unit until it becomes full. After the nearest media unit is filled up, the next 
nearest media unit with available space would become the nearest media unit 
to store the next object. All the objects are thus stored on the media units so 
that the mean exchange time would be the shortest.

Application.Notes:.The.frequency.based.placement.is.applicable.when.the.
objects.are.independently.accessed.and.the.objects.are.of.the.similar.size..If.
objects.are.different.in.size,.a.media.unit.that.stores.two.colder.objects.may.
have.a.higher.exchange.probability.than.another.media.unit.that.stores.one.
hotter.object..
If.the.objects.are.not.accessed.independently,.two.or.more.objects.may.be.ac-
cessed.concurrently.or.they.have.high.correlation.probability..These.objects.
should.be.stored.on.the.same.media.unit.to.reduce.the.number.of.exchanges.
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and. the.mean.exchange. time..Unfortunately,.multimedia.objects,. such.as.
video.and.audio,.may.have.high.correlation.probability.if.they.are.stored.as.
separate.objects.
The. frequency. based. placement. stores. the. hottest. objects. on. the. nearest.
media.unit..Thus,.many.requests.are.directed.towards.this.media.unit..If.the.
tertiary.storage.system.has.more.than.one.drive,.there.may.be.more.than.
one.stream.which.would.like.to.access.an.object.from.this.media.unit..Thus,.
a.contention.for.the.media.unit.is.incurred..All.other.streams.need.to.wait.
for.the.media.unit.in.the.drive,.and.the.waiting.time.is.long..Thus,.the.hot.
objects.may.be.distributed.onto.a.few.media.units.so.that.all.the.drives.can.
serve concurrent streams efficiently.

Besides moving the media units to the drive and their cells, the robotic arms 
may be able to swap the positions of media units among the cells. This is 
called the background migration. After the access probability of objects has 
changed, the probability to exchange a media unit may be changed. The 
original optimal placement of objects may become sub-optimal. The robotic 
arm can be used to swap the media units among cells to improve the average 
exchange time. This background migration restores the order of the media 
units according to the probability that the media unit is exchanged. This 
background migration should be performed when the workload on the terti-
ary storage library is light. Background migration moves the media units to 
the most desirable location depending on the frequency of exchanging the 
media unit when the workload is light.
If the optimal performance needs to be restored, a complete reorganization is 
needed. Objects are first copied to new media units according to their access 
frequencies. The media units are then migrated according to the exchange 
probability with the media unit with the highest exchange probability placed 
at the cell nearest to the drive (Tse, 1999).

Chapter.Summary

We have explained the statistical placement method using the frequency 
based placement of objects on media units. The frequency based placement 
method places the objects to the media units according to the access fre-
quency of the objects and the distance of the cell containing the media unit 
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from the drive. The performance of the frequency based placement method 
is optimized when the objects are accessed independently and the objects 
are of the same size.
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Chapter.XII

Striping.on.Hierarchical.
Storage.Systems

Introduction

The data striping technique has been successfully applied on disks to reduce 
the time to access objects from the disks as shown in Chapter VI. Similarly, 
the striping technique has been investigated to reduce the time to access 
objects from the tape libraries. 
Similar to the striping on disks, the objective of the parallel striping method is 
to reduce the time to access objects from the tape libraries. The parallel tape 
striping directly applies the striping technique to place data stripes on tapes. 
The triangular placement method changes the order in which data stripes are 
stored on tapes to further enhance the performance.
In the next section, the parallel tape striping method will be described. The 
performance of the parallel tape striping follows. After that, the triangular 
placement method is explained, and it is followed by the performance of the 
triangular placement method. 
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Parallel.Tape.Striping

The objective of the parallel tape striping method is to reduce the time to 
access objects from the tape library. Parallel tape striping places objects us-
ing the following steps:

1. Divide the object into data stripes.
2. Distribute the data stripes across several tapes.
3. Access the data stripes from the tapes in parallel.

The parallel tape striping method divides the object into data stripes of con-
stant data length approach. The size of each data stripe is fixed. Large objects 
are divided into more data stripes. Small objects are divided into fewer data 
stripes (Drapeau & Katz, 1993).
The data stripes are then distributed across multiple tapes. The number of tapes 
being used to store an object should be fewer than or equal to the number of 
drives. If an object is distributed across more tapes, some data stripes of the 
object cannot be accessed in parallel. 
The tape drives perform the I/O operation in parallel. When an object is writ-
ten to the tapes, the robotic arm first exchanges the tapes to the drives. The 
tertiary drives then reposition to the beginning of an empty space on the tapes. 
Afterwards, the drives transfer data to the tapes with the same number of data 
block on each tape. Thus, the object is written to the tapes in parallel.
Similarly, the objects are retrieved in parallel from the tapes. When an object 
is being accessed, the robotic arm first exchanges the required tapes to the 
drives. The tertiary drives then reposition to the beginning of the object being 
accessed. After that, the drives transfer data from the tape to the memory. 
Therefore, the object is accessed in parallel from the tapes. 
For example, the robotic tape library has three drives and five tapes. The 
objects X, Y, and Z are to be stored on the robotic tape library. Object X is 
divided into nine data stripes X1 to X9. Object Y is divided into six data stripes 
Y1 to Y6. Object Z is also divided into six data stripes Z1 to Z6 as shown in 
Figure 12.1.
When object X is being stored, the robotic arm exchanges three tapes, T1, 
T2, and T3, to the three drives. The drives then reposition the tapes to the 
beginning of empty storage space. Three data stripes, X1, X2, and X3, are then 
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stored on the three tapes, T1, T2, and T3, respectively, with one data stripe on 
each tape. After that, the next set of three data stripes, X4, X5, and X6, are then 
stored on the three tapes, T1, T2, and T3, respectively. Last, X7, X8, and X9, are 
stored on the three tapes, T1, T2, and T3, as well. As a result, data stripes X1, 
X4, and X7, are stored on the tape T1. Data stripes X2, X5, and X8 are stored 
on the tape T2. Data stripes X3, X6, and X9 are stored on the tape T3. 
Similarly, object Y is also distributed across the tapes T1, T2, and T3. When 
object Z is stored, the three tapes T1 to T3 are full and they cannot store any 
more data stripes. The robotic arm thus exchanges the tapes T4 and T5 to 
two drives. The drives then reposition the tapes T4 and T5 to the beginning 
of empty space. Two data stripes Z1 and Z2 are stored on the tapes T4 and T5, 
respectively. Similarly, the data stripes Z3 and Z4 are stored on the tapes T4 
and T5 again. Last, the data stripes Z5 and Z6 are stored on the tapes T4 and 
T5, as well. Therefore, the data stripes Z1, Z3, and Z5 are stored on the tape 
T4. The data stripes Z2, Z4, and Z6 are stored on the tape T5.
When object X is being retrieved, the robotic arm exchanges three tapes, 
T1, T2, and T3, to the three drives. The drives then reposition the tapes to 
the beginning of the object on the tapes. The first drive repositions T1 to the 
beginning of X1. The second drive repositions T2 to the beginning of X2. The 
third drive repositions T3 to the beginning of X3. Three data stripes, X1, X2, 
and X3, are then read from the three tapes, T1, T2, and T3, respectively. After 

Figure ��.�. Parallel Tape Striping
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that, the next set of three data stripes, X4, X5, and X6, are read from the three 
tapes, T1, T2, and T3, respectively. Last, X7, X8, and X9, are read from the three 
tapes, T1, T2, and T3. After all the data stripes are retrieved from the tapes, all 
three drives are released. The objects Y and Z are retrieved similarly. Details 
of how the objects are kept when they are retrieved will be described in the 
data migration part.

Performance.of.Parallel.Tape.Striping.

When the drives access an object in parallel, the time to perform each input/
output (I/O) operation overlaps with each other. Since each drive accesses 
only a fraction of the object, the time to access an object is split among 
several drives. In particular, the data transfer time is reduced by split among 
the drives. Thus, the object request is served with a shorter service time. 
Therefore, the time spent by each drive to access an object is overlapped to 
reduce the response time of each request.
In the example above, the objects are accessed in parallel. When the object 
X is being accessed, the time when the drive exchanges, repositions, and 
transfers data stripes is illustrated in Figure 12.2. 
Let ω be the tape exchange time, α be the tape reposition time, and γ be the 
data transfer rate. Let X be the size of the object X being accessed without 
losing clarity. 

Figure ��.�. Performance of Parallel Tape Striping
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In the above example, the object X is striped across three tapes. As shown 
in Figure 12.2, the time to access the object X from the tape library using 
parallel tape striping

3
3
X

= ω+ α +
γ

Alternatively, if the object X is placed contiguously onto a single tape, then 
the access time of the object X is found as

X
= ω+ α +

γ

Thus, the access time of the object X is reduced if

3
3

2 2
3

X X

X

ω+α + > ω+α +
γ γ

⇔ > ω
γ

That is, the access time is reduced by using the parallel tape striping if the 
decrease in data transfer time is more than the increase in exchange time.
In general, the time to access objects from the robotic tape library can be 
compared in a similar way. If none of the tapes needed are already loaded 
to the tape drives, the time to access an object of size X using parallel tape 
striping is

*
*
XN

N
= ω+α +

γ
       (12.1)

where the object X is striped across N tapes.
Thus, the access time of the object X is reduced if
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( ) ( )

*
*

1
1

X XN
N

N X
N

N
X
N

XN

ω+α + > ω+α +
γ γ

−
⇔ > − ω

γ

⇔ > ω
γ

⇔ <
ωγ

     (12.2)

Therefore, we have found an upper bound on the number of tapes that an 

object can be striped across. If an object of size X is striped across fewer 

than X
ωγ

 tapes, the access time of the parallel tape striping method is shorter 

than the contiguous placement method. If the object is striped across more 

than X
ωγ

 tapes, the access time of the parallel tape striping method becomes 

longer than the contiguous placement method. If the object is striped across 
X
ωγ

 tapes, the access time of the parallel tape striping method is equal to the 

access time of the contiguous placement method. However, more drives are 

used to provide the parallel tape striping. Thus, the objects should be striped 

across fewer than X
ωγ

 tapes.

For example, if the robotic tape library has as many drives as we need, an 
object of 1000MB is stored on the tape library. The time to exchange a tape 
is 20 seconds and the drives transfer data at the rate of 10MB/sec. From 
equation (12.2), the object should not be striped across more than N tapes 
where N is

1000
(20)*(10)

X
=
ωγ

=
,

= 5.
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That is, the object should not be striped across more than five tapes. Other-
wise, the data access time would increase instead of decrease. We could find 
the optimal number of drives in another approach below. Let θ be the access 
time of the object. From equation (12.1), we have

*
*
XN

N
θ = ω+α +

γ
       (12.3)

Looking at this equation, we can see that the value of θ increases with N 

due to the term N*ω, and decreases due to the term 
*
X

N γ
. The first order 

derivative of θ with respect to the number of striping tapes N is

2*
d X
dN N
θ
= ω−

γ
       (12.4)

Setting the first order derivative of θ to zero, we have 

2

2

2

0
*

*

*

*

X
N

X
N
XN

XN

ω− =
γ

⇔ ω=
γ

⇔ =
ω γ

⇔ = ±
ω γ

       (12.5)

As N is greater than 1, we reject the negative value of N to get the optimal 
number of striping tapes as

*optimal
XN = +

ω γ
       (12.6)

The second order derivative of θ with respect to N is
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2

2 3

2
*

d X
dN N
θ
=
γ         (12.7)

As all the parameters X, γ, and N are all greater than 0, the second order 
derivative of θ is greater than zero. Therefore, the optimal access time is 
the minimum access time. The minimum access time is achieved when the 

object is striped across 
*
X

+
ω γ

 tapes.

If the value of 
*
X

+
ω γ

 is not an integer, then the floor function or the ceiling 

function may be applied to find the minimum access time. Thus, the optimal 

number of striping tapes is either equal to 
*
X

+
ω γ

 or 
*
X

+
ω γ

 depend-

ing on the actual access time when the floor function or ceiling function is 

applied.
The minimum access time and the optimal number of striping tapes of parallel 
tape striping are plotted in Figure 12.3. The nonstriping access time of the 
contiguous placement method is also shown in the figure for comparison. 
We can see that larger objects can be striped across more tapes to reduce the 
object access time. However, smaller objects should be striped across fewer 
tapes to avoid too much exchange overheads. When the objects are very 
small, the number of optimal striping tapes can be equal to one. Thus, the 
object should be stored on only one tape without striping. When the object 

Figure ��.�. Performance of Parallel Tape Striping
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is large, the optimal number of striping tapes may be more than the number 
of tape drives in the library. Since the tapes are access in parallel, the object 
should not be striped across more tapes than the number of tape drives. 
In addition, the optimal access time of parallel tape striping is always lower 
than or equal to the access time of nonstriping. Therefore, the parallel tape 
striping method reduces the time to access an object from the tape library. 
Although the access time of the parallel tape striping method is always lower 
than the access time of the nonstriping methods, the parallel tape striping 
method uses several drives simultaneously to serve one stream. The tape 
drives cannot serve requests from other streams. Therefore, the nonstriping 
method should be used when its access time is the same as the striping ac-
cess time. 
The parallel tape striping uses multiple drives to transfer an object from 
several tapes at the same time. The transfer time of an object is reduced 
by splitting among the striping tape drives. Thus, the access time is greatly 
reduced. Unfortunately, the parallel tape striping method synchronizes the 
reading and writing operations. When data are read or written from the tapes, 
the synchronization is impaired by the presence of a bad segment. The read 
and write operations are retried leading to variable access times. The syn-
chronization of the read or write operation on each drive is delayed. Thus, 
the practical throughput of the storage system is lower than the theoretical 
achievable value.
In addition, the parallel tape striping method exchanges the tapes in parallel. 
When the number of robotic arms is fewer than the number of tape drives, 
the fewer robotic arms receive all the exchange requests at the same time. It 
should be noted that robotic tape libraries usually has only one robotic arm to 
serve one exchange request at a time. Thus, some exchange requests need to 
wait in the waiting queue. Therefore, parallel tape striping incurs contention 
at the robotic arms leading to reduced system throughput. We shall explain 
how the contention of exchange requests in the triangular placement method 
in the next section.

Triangular.Placement

The parallel tape striping method reduces the transfer time in delivering 
objects from tapes. It however induces contentions on switching tapes. The 
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performance of parallel tape striping is limited by the ability of the robotic 
arms in switching tapes. The triangular placement method relaxes the strict 
synchronization in accessing objects to reduce the switching overheads.
Consider that a tape library has four drives and only one robotic arm. For 
objects that are striped across four tapes, the drives start to reposition and 
transfer after the robotic arm has exchanged four tapes. The time to exchange 
the four tapes is four times of the time to exchange one tape. Since the robotic 
arm serves the exchange requests sequentially, it exchanges the tapes to the 
drives one by one. After the first tape is loaded to the first drive, the drive 
waits for the robotic arm to exchange other tapes. This tape is already ready 
for repositioning and transfer. As shown in Figure 12.4, these drives have 
some usable bandwidth that can be utilized. 
The triangular placement method assumes that the tape drives share a robotic 
arm. The robotic tape library can only serve exchange requests one by one 
(Chiueh, 1995). In addition, the exchange time should be predictable. 
The triangular placement method relaxes the synchronization constraint that 
the exchange step should be completed on all drives before the next step to 
reposition the tapes on all drives. Instead, each drive starts to reposition the 
tape immediately after the tape on this drive is exchanged (Chiueh, 1995). 
Thus, the tape drive does not wait for the other drives to complete their ex-
changing operation. 
Similar to parallel tape striping, an object is divided into fixed length data 
stripes. The number of data stripes depends on the size of the object. Large 
objects are divided into many data stripes. Small objects are divided into 
few data stripes. 

Figure ��.�. Usable Bandwidth in Parallel Tape Striping
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The tape drives perform the I/O operation in parallel with relaxed synchro-
nization. They do not synchronize individual exchange, reposition, and data 
transfer operations. They only synchronize when all the data stripes of the 
object is transferred.
When an object is written to the tapes, the robotic arm first exchanges a tape 
to the first drive. After the tape is exchanged, the first drive is initiated to re-
position to an empty space. The first drive immediately starts to transfer data 
stripes to the tape after repositioning. While the first drive is repositioning 
and transferring data, the robotic arm starts to exchange the second tape to 
the second drive. After the tape is exchanged, the second drive is initiated to 
reposition to an empty space. The second drive immediately starts to transfer 
data stripes to the tape after repositioning. The third drive and other drives 
perform similarly and so on. Therefore, the object is written in parallel with 
relaxed synchronization to the tapes. 
Similarly, the objects are retrieved in parallel with relaxed synchronization. 
When an object is written to the tapes, the robotic arm first exchanges a 
tape to the first drive. After the tape is exchanged, the first drive is initiated 
to reposition to the beginning of the object being accessed. The first drive 
immediately starts to transfer data stripes from the tape after repositioning. 
While the first drive is repositioning and transferring data, the robotic arm 
starts to exchange the second tape to the second drive. After the tape is ex-
changed, the second drive is initiated to reposition to the beginning of the 
object being accessed. The second drive immediately starts to transfer data 
stripes from the tape after repositioning. The third drive and other drives 
perform similarly and so on. Therefore, the object is accessed in parallel 
with relaxed synchronization from the tapes.
Since the drive with an early exchanged tape starts to transfer data at an 
earlier time, more data stripes can be stored on this tape. The storage space 
on these tapes is consumed more quickly. 
Consider the same example as in the parallel tape striping method. The ob-
jects X, Y, and Z are stored to the robotic tape library with three drives and 
five tapes. Object X is divided into nine data stripes X1 to X9. Object Y is 
divided into six data stripes Y1 to Y6. Object Z is also divided into six data 
stripes Z1 to Z6 as shown in Figure 12.5.
The four devices, including the robotic arm and the three drives, write object 
X to the tapes by performing the following operations. Each operation below 
lasts for a considerable period of time at the devices.
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1. The robotic arm exchanges the tape T1 to the first drive. The second 
and third drives are idle.

2. The first drive repositions T1 to an empty space and starts to transfer 
data stripe X1 to T1 after repositioning. The robotic arm exchanges T2 
to the second drive. The third drive is idle.

3. The first drive starts to transfer the next data stripe X2. The second drive 
repositions T2 to an empty space and starts to transfer the data stripe X3 
after repositioning. The robotic arm exchanges T3 to the third drive.

4. The first drive starts to transfer the next data stripe X4. The second drive 
starts to transfer the next data stripes X5. The third drive repositions T3 
to an empty space and starts to transfer the data stripe X6 to T3 after 
repositioning. The robotic arm is idle.

5. The first drive starts to transfer the next data stripe X7. The second drive 
starts to transfer the next data stripe X8. The first drive starts to transfer 
the next data stripe X9. The robotic arm is idle.

6. After all the drives have completely transferred the data stripes, all four 
devices are released. The storage system can serve the next request.

Therefore, the object X is written in parallel with relaxed synchronization 
to the tapes.
Similarly, object Y is also distributed across the tapes T1, T2, and T3. When 
object Z is stored, the three tapes T1 to T3 are full, and they cannot store any 

Figure ��.�. Triangular Placement
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more objects. The object Z is written to the tapes by the following operations. 
The third drive is idle throughout the period.

1. The robotic arm exchanges the tape T4 to the first drive. The second 
drive is idle.

2. The first drive repositions T4 to an empty space and starts to transfer 
data stripe Z1 to T4 after repositioning. The robotic arm exchanges T5 
to the second drive. 

3. The first drive starts to transfer the next data stripe Z2. The second drive 
repositions T5 to an empty space and starts to transfer the data stripe 
Z3 after repositioning.

4. The first drive starts to transfer the next data stripe Z4. The second drive 
starts to transfer the next data stripes Z5. The robotic arm is idle.

5. The first drive starts to transfer the next data stripe Z6. The second drive 
is idle after it has completely transferred the data stripes Z5. The robotic 
arm is idle.

6. After the first drive has completely transferred the data stripe Z6, all four 
devices are released. The storage system can serve the next request.

Therefore, the object Z is written in parallel with relaxed synchronization 
to the tapes.
When objects are stored using the triangular placement, the drives access 
objects in parallel with relaxed synchronization. More data stripes are stored 
on the earlier exchanged tapes. It takes longer time to retrieve the stored data 
stripes. Thus, the tapes should always be exchanged in the same order.
When the object X is being retrieved, the four devices, including the robotic 
arm and the three drives, perform the following operations. Each operation 
below lasts for a considerable period of time at the devices.

1. The robotic arm exchanges the tape T1 to the first drive. The second 
and third drives are idle.

2. The first drive repositions T1 to the beginning of the data stripe X1 
and starts to transfer X1 from T1 after repositioning. The robotic arm 
exchanges T2 to the second drive. The third drive is idle.
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3. The first drive repositions to the beginning of the next data stripe X2, 
if necessary, and starts to transfer X2 from T1 after repositioning. The 
second drive repositions T2 to the beginning of the data stripe X3 and 
starts to transfer X3 from T2 after repositioning. The robotic arm ex-
changes T3 to the third drive.

4. The first drive repositions to the beginning of the next data stripe X4, 
if necessary, and starts to transfer X4 from T1 after repositioning. The 
second drive repositions T2 to the beginning of the data stripe X5, if 
necessary, and starts to transfer X5 from T2 after repositioning. The 
third drive starts to reposition T3 to the beginning of X6 and starts to 
transfer X6 from T3 after repositioning. The robotic arm is idle.

5. The first drive repositions to the beginning of the next data stripe X7, 
if necessary, and starts to transfer X7 from T1 after repositioning. The 
second drive repositions T2 to the beginning of the data stripe X8, if 
necessary, and starts to transfer X8 from T2 after repositioning. The 
third drive starts to reposition T3 to the beginning of X9, if necessary, 
and starts to transfer X9 from T3 after repositioning. The robotic arm 
is idle.

6. After the drives have completely transferred all data stripes of X from 
the tapes, all the drives and the robotic arm are released. The storage 
system can serve the next request.

The object Y and object Z are retrieved similarly. More details of how the 
objects are migrated will be described in the data migration part.

Performance.of.Triangular.Placement

Similar to the parallel tape striping method, the drives access the objects in 
parallel. The time to perform the I/O operations overlaps with each other. 
The time to access an object is split among several drives. Apart from the 
reduced data transfer time, more time is available on the early exchanged 
drives. Thus, the triangular placement utilizes the usable bandwidth of the 
early exchanged drive. 
In the example above, the objects are accessed in parallel with relaxed syn-
chronization. When the object X is being accessed, the time when the drive 
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exchanges, repositions, and transfers data stripes is illustrated in Figure 12.6. 
Let ω be the tape exchange time, α be the tape reposition time, and γ be the 
data transfer rate. Let X be the size of the object X being accessed without 
losing clarity. If the time to transfer a data stripe is equal to the time to ex-
change a tape, then 

sX
ω =

γ

⇔ Xs = ωγ

where Xs is the size of the data stripes X1, X2, and X3. Thus, the amount of 
data that is transferred before the third drive starts to transfer data is:

= (2 + 1)Xs,
= 3ωγ.

Thus, the time to access the object X from the tape library using triangular 
placement method is

33
3

2
3

X

X

− ωγ
= ω+α +

γ

= ω+α +
γ

Figure.12.6..Performance.of.triangular.placementFigure ��.�. Performance of Triangular Placement
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Compared with the parallel tape striping, the time to access the object X is 
reduced by

3 2
3 3
X X 

ω+α + − ω+α + γ γ 
= ω

In general, the time to access objects from the robotic tape library can be 
found similarly. If none of the tapes needed are already loaded to the tape 
drives, the time to access an object of size X using triangular placement is

( ) ( )* 1 2 ... 2 1
*

*
N NXN

N N
 ω − + − + + + = ω+α + −

γ
  (12.8)

where the object X is striped across N tapes.

After simplification, it becomes

( )1 *
*

* 2
NXN

N
− ω

= ω+α + −
γ

     (12.9)

1 *
2 *

N XN
N

− = − ω+α +  γ 
      (12.10)

1*
2 *

N X
N

+
= ω+α +

γ
      (12.11)

Compared with the parallel tape striping, the triangular placement method 
reduces the access time by

1* *
* 2 *
X N XN

N N
 +

= ω+α + − ω+α + γ γ 

( )1 *
2

N −
= ω

        (12.12)
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We could find the optimal number of striping tapes below. Let θ be the access 
time of the object. From equation (12.1), we have

1
2 *

N X
N

+
θ = ω+α +

γ
      (12.13)

The first order derivative of θ with respect to the number of striping tapes 
N is

22 *
d X
dN N
θ ω
= −

γ
       (12.14)

Setting the first order derivative of θ to zero, we have 

2

2

2

0
2 *

2 *
2

*

2
*

X
N

X
N
XN

XN

ω
− =
γ
ω

⇔ =
γ

⇔ =
ω γ

⇔ = ±
ω γ

       (12.15)

As N is greater than 1, we reject the negative value of N to get the optimal 
number of striping tapes as

2
*optimal
XN = +

ω γ
       (12.16)
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The second order derivative of θ with respect to N is 

2

2 3

2
*

d X
dN N
θ
=
γ

        (12.17)

Since all the parameters X, γ, and N are all greater than 0, the second order 

derivative of θ is greater than zero. Therefore, the optimal access time is the 

minimum access time. The minimum access time is achieved when the object 

is striped across 2
*
X

+
ω γ

 tapes.

If the value of 2
*
X

+
ω γ

 is not an integer, then the floor function or the ceiling 

function may be applied to find the minimum access time. Thus, the optimal 

number of striping tapes is either equal to  2
*
X

+
ω γ

 or  2
*
X

+
ω γ

 depend-

ing on the actual access time when the floor function or ceiling function is 

applied.

The minimum access time and the optimal number of striping tapes of the 
triangular placement method are plotted in Figure 12.7. The nonstriping ac-
cess time of the contiguous placement method and the striping access time 
of the parallel tape striping are also shown in the figure for comparison. The 
optimal number striping tapes of the triangular placement method is always 
more than that of the parallel tape striping method. Thus, more drives can 
be used together to transfer the object in parallel. 
Similar to parallel tape striping, larger objects can be striped across more 
tapes to reduce the object access time. However, smaller objects should 
be striped across fewer tapes to avoid too much exchange overheads. The 
optimal number of striping tapes is equal to one only when the objects are 
very small. Thus, the small object should be stored on only one tape without 
striping. If the object is large, the optimal number of striping tapes may be 
more than the number of tape drives in the library. Since the tapes are ac-
cessed in parallel, the object should not be striped across more tapes than 
the number of tape drives. 
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In addition, the optimal access time of the triangular placement method is 
always shorter than the access time of the parallel striping method and the 
access time of the nonstriping method. This is because some exchange time 
overlaps with some data transfer time. The triangular placement method 
reduces the time to access an object from the tape library.

Application.Note:.Although. the.access. time.of. the. triangular.placement.
method.is.always.shorter.than.the.access.time.of.the.parallel.tape.striping.
method,. the. triangular. placement. method. relaxes. the. synchronization. of.
individual.operations..The.storage.system.may.need.to.create.extra.tasks.
to.perform.the.operation.on.the.drives..This.increases.the.complexity.in.the.
controlling.software.
Furthermore,.the.tapes.should.always.be.exchanged.in.the.same.order..If.
the.order.in.which.tapes.are.exchanged.is.altered,.the.tape.with.more.data.
stripes.may.be.exchanged.later..Such.a.tape.would.need.more.time.to.trans-
fer.an.object.than.the.others..Instead.of.reducing.the.access.time,.the.time.
to.access.an.object.would.be.increased..Therefore,.the.order.in.which.tapes.
are.exchanged.should.be.kept.constant..Luckily,.it.is.easy.to.implement.this.
by.assigning.an.order.number.to.every.tape..The.robotic.arm.can.exchange.
the.striping.tapes.according.to.their.order.number.

Figure ��.�. Performance of Triangular Placement
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Chapter.Summary

The parallel tape striping method is a data placement method that places the 
objects to tapes in robotic tape libraries. It divides objects into data stripes 
and distributes data stripes of multimedia objects to several tapes. The par-
allel tape striping method accesses data stripes from the tapes in parallel. 
It overlaps the time to transfer data stripes from multiple tape drives. The 
parallel tape striping method reduces the time to access an object from the 
robotic tape library.
Unfortunately, the parallel tape striping method induces contentions on ex-
changing tapes. It may not cause problems if each drive has its own robotic 
arm or the number of robotic arms is not fewer than the number of tape 
drives. Furthermore, more exchanges are incurred. The robotic arms need to 
exchange several tapes for each object access. Thus, the parallel tape striping 
method increases the workload on the robotic arms.
The triangular placement method utilizes the usable bandwidth during the 
exchange time to reduce the data access time. A tape drive starts to reposi-
tion tapes and transfer data stripes while other drives are still waiting for 
exchanges. The triangular placement method further reduces the time to ac-
cess objects from robotic tape libraries. It also increases the optimal number 
of striping drives. 
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Chapter.XIII

Constraint.Allocation..
on.Hierarchical.Storage.

Systems

Introduction

Multimedia objects are stored on hierarchical storage systems (HSS). The 
objects are large in size but the access latency of HSS is high. It is necessary 
to provide high throughput in delivering data from the storage system. In 
addition to the statistical placement and striping methods in the two previous 
chapters, constraint allocation can also improve the throughput of HSS.
Multimedia streams should be displayed with continuity. Depending on the 
data migration method, the whole object or only partial object is retrieved 
prior to the beginning of consumption. Thus, it may need to retrieve the parts 
of the object within guarantee times.
The maximum access time depends on the storage locations of the object. If 
the parts of the object are freely stored on any media units, it may take the 
longest exchange time to exchange a media unit. If the parts of the object 
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are freely stored on any locations of the media units, it may take the longest 
reposition time to reposition the media unit. The maximum access time needs 
to include both the longest exchange time and the longest reposition time. As 
a result, the guarantee times should not be shorter than the maximum access 
time in the worst case. The long guarantee time results in a small number of 
acceptable streams to the hierarchical storage system.
The constraint allocation methods limit the freedom to place data on media 
units so that the worst case would never happen. They reduce the longest 
exchange time and/or the longest reposition time in accessing the objects. 
Two approaches to provide constraint allocations have been proposed on 
different types of media units. The interleaved contiguous placement limits 
the storage locations of data stripes on optical disks and it is described in the 
next section. The concurrent striping method that limits the storage locations 
of data stripes on tapes is described.

Interleaved.Contiguous.Placement

The interleaved contiguous placement method reduces the maximum over-
heads in accessing the objects concurrently. It maintains the separation be-
tween consecutive data stripes so that the maximum reposition time and the 
maximum access time are bounded above.
Some multimedia streams have some correlations. These multimedia streams 
may be more likely to be played at similar times. The objects that are accessed 
by these streams are more likely to be accessed at similar times. For example, 
the audio data and video data of a movie may be created on separate objects. 
The multimedia stream that accesses one object would likely be initiated at 
the same time as the stream that accesses another object. These two objects 
thus have a high probability of being accessed together. The interleaved 
contiguous placement method stores these objects on the optical disk in a 
way that they can be accessed efficiently.
The interleaved contiguous placement method merges the data stripes of 
the objects that are likely to be accessed concurrently. It interleaves the data 
stripes on the same optical disk by maintaining the distance in separation 
between consecutive data stripes. Thus, the optical disk moves only the dis-
tance between consecutive data stripes to serve a request on the object. As 
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the separation distance between consecutive data stripes is limited, the time 
to access the next data stripe of the object is bounded above.
Each stored object is characterized by a storage pattern composing of two 
parameters M and G, where M is the number of data blocks of each data 
stripe, and G is the number of gap blocks between two consecutive data 
stripes of the stream. 
Figure 13.1 shows the storage pattern of two homogeneous streams, stream X 
and stream Y. Stream X is divided into data stripes, X1, X2, X3, X4, and so on. 
The data stripes of stream X are placed on the storage media with some gap 
blocks. The gap blocks are indicated with GX. The stream Y is divided into 
data stripes Y1, Y2, Y3, Y4, and so on. The data stripes of stream Y are placed 
on the storage media with gap blocks GY. When the two streams are merged, 
the media blocks of stream X are placed in the gap blocks of stream Y, and 
the media blocks of stream Y are placed in the gap blocks of stream X. The 
storage pattern of the merged streams shows that the data stripes of stream 
X and stream Y are placed on the storage media with a smaller gap GXY. 

Corollary.1..Two homogeneous streams can be merged if and only if the 
number of media blocks of the second stream is not more than the number 
of gap blocks of the first stream. 

Proof. As optical disks store data in the constant linear velocity format, they 
access a fixed number of data blocks within a fixed period of time. If the 
number of media blocks of the second stream is not more than the number of 

Figure ��.�. Interleaved Contiguous Placement
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gap blocks of the first stream, the media blocks can be placed within the gap 
blocks of the first stream. The period of the two streams remains the same 
before and after the merging. Thus, the merged stream still has the same 
number of media blocks for the first stream and the second stream within 
each period. Therefore, the two streams are merged successfully.

Conversely, if the streams can be merged and the period of the streams are 
the same, the optical disk retrieves at least the media blocks for both streams 
within each period. The optical disk retrieves the media blocks and the gap 
blocks of the first stream within each period before merging. Thus, the num-
ber of gap blocks of the first stream is less than or equal to the number of 
media blocks of the second stream within each period. Thus, the corollary 
is proved. The above merging condition of two homogeneous streams can 
be generalized to a number of homogeneous streams with the same period. 
The generalized merging condition is stated in Corollary 2.

Corollary.2..A number of homogeneous streams can be merged if and only 
if the total number of media blocks of the streams within a period of time 
is not more than the number of blocks that are retrieved within the same 
period of time. 

Proof. As optical disks store data in the constant linear velocity format, they 
retrieve a fixed number of data blocks within a period of time. If this fixed 
number of data blocks is less than the total number of media blocks within 
the same period, some streams would not receive enough data blocks to dis-
play. Thus, the streams cannot be merged without violating the continuous 
display requirement. 

Conversely, if the streams can be merged and the period of the streams are 
the same, the optical disk retrieves at least the media blocks for all streams 
within each period after merging. The optical disk retrieves the media blocks 
for every stream within each period before merging. Thus, the total number 
of media blocks of the streams within the period of time is not more than the 
number of blocks that are retrieved within the same period of time. Thus, 
Corollary 2 is proved.
For heterogeneous streams, the feasibility condition to merge the streams is 
not so simple. We shall show the feasibility conditions to merge heteroge-
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neous streams later. Before that, we shall describe the continuous display 
requirement below. The storage pattern of an object can satisfy the continuous 
display requirement of the accessing stream if 

M G+
≤ δ

ρ
        (13.1)

where ρ is the optical disk retrieval bandwidth and δ is the display time for 
each data stripe of the stream.
The proof of equation (13.1) is as follows. If the storage pattern of a stream 
is maintained, the optical disk can linearly access all the data blocks. As the 
optical disks store data in the constant linear velocity format, the data blocks 

are delivered in the fixed data rate ρ. It takes an amount of time = M G+
ρ

 to 

retrieve M data blocks belonging to the stream retrieved and G blocks not 
belonging to the stream. Thus, at least one data stripe is retrieved, and this 
data stripe can display for a time of δ. This access pattern is repeated to ac-
cess all the data stripes, and each data stripe lasts for a time long enough for 
the retrieval of the next data stripe. Thus, the continuous display requirement 
of the stream is fulfilled.
The interleaved contiguous placement uses two policies to merge streams 
depending on whether the storage pattern of streams remains the same or not. 
The storage pattern preserving policy is described in the next section. After 
that, the storage pattern altering (SPA) policy is described.

Storage.Pattern.Preserving.Policy

In the storage pattern preserving (SPP) policy, two streams are merged. The 
streams maintain their storage patterns before and after the merging (Yu, Sun, 
Bitton, Yang, Bruno, & Yus, 1989). We shall describe the feasibility condi-
tion to merge two streams in the paragraphs below. We then elaborate this 
feasibility condition with two examples. The limitations of the SPP policy 
are then analyzed.
The storage pattern preserving policy states that two media streams can be 
merged if and only if their greatest common divisor satisfies the feasibility 
condition, 
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M1 + M2 ≤ G.C.D. (M1 + G1, M2 + G2),    (13.2)

where G.C.D.( ) is the greatest common divisor function. 
In the first example, two streams S1 and S2 are stored on an optical disk. The 
storage pattern of stream S1 is (1, 3) and the storage stream of stream S2 is 
(1, 5). That is, stream S1 stores one block in every data stripe and skips three 
blocks between two data stripes. The stream S2 also stores one block in every 
data stripe and skips five data blocks between two data stripes. Thus, 

 M1 = 1, G1 = 3, M2 = 1, and G2 = 5,
⇒ M1 + M2 = 2.

In addition, we have
 M1 + G1 = 4 and M2 + G2 = 6,
⇒ G.C.D.(M1 + G1 , M1 + G1) = 2.

Thus, we have
M1 + M2 = G.C.D.(M1 + G1 , M1 + G1).

The storage patterns of the two streams satisfy the equation (13.2). They can 
be merged using the SPP policy. 
When the two streams are merged, the relative positions of the two streams 
are shown in Figure 13.2. The media data blocks are shown in colour, and 
the gap blocks are unshaded. Since we cannot store two media data blocks 
on the same block of the optical disk, we cannot merge the two streams at 
this relative position when the data blocks of stream S2 is under the data 
blocks of stream S1. 
Since the smallest common multiple of 4 and 6 is equal to 12, the relative 
positions of the two streams repeat after every 12 data blocks as a cycle. 
Since the storage pattern of stream S1 is (1, 3), the storage pattern of stream 
S1 repeats after every four blocks. Thus, there are four relative positions of 
stream S2 with respect to stream S1. 
The first row shows the positions of media data blocks and gap blocks of the 
stream S1 on the data blocks of the optical disk. The second row shows the 
position of media data blocks and gap blocks of stream S2. We can see that 
the first and the third data blocks of stream S2 are under the data blocks of 
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stream S1. Thus, the streams cannot be merged when the stream S2 is at this 
position with respect to the stream S1. 
In the third row, the stream S2 is shifted to the right by one data block. All the 
data blocks of stream S2 come under the gap blocks of stream S1. The data 
blocks of stream S2 can be placed on the gap blocks of stream S1. Thus, the 
two streams can be merged by storing the streams at this relative position 
on the optical disk.
In the fourth row, the stream S2 is further shifted to the right by one data 
block. Similar to the second row, some media blocks of stream S2 are under 
the media blocks of stream S1. Thus, the streams cannot be merged when the 
stream S2 is at this position with respect to the stream S1. 
In the fifth row, the stream S2 is shifted further to the right by one data block. 
All the data blocks of stream S2 come under the gap blocks of stream S1. 
The data blocks of stream S2 can be placed on the gap blocks of stream S1. 
Thus, the two streams can be merged by storing the streams at this relative 
position on the optical disk.
If the stream S2 is shifted to the right again, the relative positions of the two 
streams are the same as the second row. Therefore, we have exhausted all 
the relative positions of the merged streams.
The two streams can be merged if the stream S2 is at the relative position of 
the third row or the fifth row with respect to stream S1. The storage pattern of 
the merge stream S12 is also shown in Figure 13.2. We can see that the media 
blocks of the stream S2 are placed at the gap blocks of stream S1. Also, the 
media blocks of stream S1 are placed at the gap blocks of stream S2.
In the second example, two streams S1 and S3 are to be merged on an opti-
cal disk. The storage pattern of stream S1 is (1, 3) and the storage stream of 
stream S3 is (1, 2). That is, stream S1 stores one block in every data stripe 

Figure ��.�. Interleaved Contiguous Placement SPP 
Example � 
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S12
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Figure.13.2..Interleaved.contiguous.placement.SPP.example.1
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and skips three blocks between two data stripes. The stream S2 also stores 
one block in every data stripe and skips only two blocks between two data 
stripes. Thus, 

 M1 = 1, G1 = 3, M2 = 1, and G2 = 2,
⇒ M1 + M2 = 2.

In addition, we have

 M1 + G1 = 4 and M2 + G2 = 3,
⇒ G.C.D.(M1 + G1 , M1 + G1) = 1.

Thus, we have

M1 + M2 > G.C.D.(M1 + G1 , M1 + G1).

The storage patterns of the streams S1 and S3 do not satisfy the equation 
(13.2). They cannot be merged using SPP policy. 
When the two streams are merged, the relative positions of the two streams 
are shown in Figure 13.3. Since the smallest common multiple of 4 and 3 is 
equal to 12, the relative positions of the two streams repeat after every 12 
data blocks as a cycle. Since the storage pattern of stream S1 is (1, 3), the 
storage pattern of stream S1 repeats after every four blocks. Thus, there are 
four relative positions of stream S3 with respect to stream S1. 
The first row shows the positions of media data blocks and gap blocks of 
the stream S1 on the data blocks of the optical disk. The second row shows 
the position of media data blocks and gap blocks of stream S3. We can see 
that the first data block of stream S3 is under the data blocks of stream S1. 
Thus, the streams cannot be merged when the stream S3 is at this position 
with respect to the stream S1. 
In the third row, the stream S3 is shifted to the right by one data block. The 
second media block of the stream S3 comes under the media block of stream 
S1. Thus, the streams cannot be merged when the stream S3 is at this position 
with respect to the stream S1.
In the fourth row, the stream S3 is shifted further to the right by one data 
block. The third media block of the stream S3 comes under the media block 



Constraint Allocation on Hierarchical Storage Systems   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

of stream S1. Thus, the streams also cannot be merged when the stream S3 is 
at this position with respect to the stream S1.
In the fifth row, the stream S3 is shifted further to the right by one data block. 
The fourth media block of the stream S3 comes under the media block of 
stream S1. Thus, the streams also cannot be merged when the stream S3 is at 
this position with respect to the stream S1.
If the stream S3 is shifted to the right again, the relative positions of the two 
streams are the same as the second row. We have exhausted all the relative 
positions of the merged streams, and we have found that the two streams cannot 
be merged at any of the relative positions. Therefore, the two streams cannot 
be merged. If the streams are merged, there are problem locations no matter 
what is the relative position of the two streams as shown in Figure 13.3.
From the above examples, we can see that equation (13.2) provides a simple 
method to test if two streams can be merged on the optical disk. This simple 
equation can be evaluated quickly on every pair of objects to find out the 
pairs of streams that can be merged.
The storage pattern preserving policy does not change the storage patterns 
of individual streams that are involved in the merging. Thus, the continuous 
display requirements of the two streams can still be guaranteed.
Unfortunately, the merged stream cannot be described in the simple storage 
pattern as the streams before merging. Therefore, the merged stream cannot 
be further merged with other streams again. In addition, Equation (13.2) 
checks the feasibility to merge only two streams. The feasibility to merge 
a number of streams is not provided. In the next section on storage pattern 
altering policy, we shall see how the feasibility condition is generalized to 
merge more streams.

Figure ��.�. Interleaved Contiguous Placement SPP 
Example �
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Figure.13.3..Interleaved.contiguous.placement.SPP.example.2
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Storage.Pattern.Altering.Policy

The storage pattern altering policy merges the streams by relaxing the storage 
pattern preserving constraint. Instead of keeping the same storage patterns 
before and after merging, it maintains the average storage pattern over a range 
time data blocks. The SPA policy thus generalizes the feasibility condition 
to merge a number of streams together on the optical disks. We shall show 
below the how to maintain the continuous display requirement of a stream 
even though its storage pattern is altered. After that, the feasibility condition 
to merge a number of streams is described.
The storage pattern altering policy changes the storage pattern of the streams 
after merging (Rangan & Vin, 1993). After the storage pattern of a stream is 
changed, the continuous display requirement of the stream in equation (13.1) 
must still be maintained. Since the storage pattern is changed, the number 
of media blocks and gap blocks would change. The media blocks can only 
be moved closer to the beginning of the object so that the data stripes would 
only be accessed at an earlier time. It makes sure that the data stripes would 
not be accessed at a later time that might violate the continuous display 
guarantee. 
Although the SPA policy changes the storage pattern of the participating 
streams, the average number of gap blocks per media block remains the 
same. The storage system would retrieve the media blocks at the same aver-
age data rate. Thus, the buffers are filled at the same average rate as they are 
consumed so that buffer starvation would not occur. Buffer overflows can 
also be avoided simply by using more read-ahead buffers. By using extra 
buffers to maintain the continuous display requirements, the merging of 
streams can be generalized. 
A number of multimedia data streams whose storage patterns are character-
ized by (M1, G1), (M2, G2), …, (Mk, Gk) can be merged if and only if
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Consider the second example in the SPP policy again. Two streams S1 and 
S3 are to be merged on an optical disk. The storage pattern of stream S1 is (1, 
3) and the storage stream of stream S3 is (1, 2). That is, stream S1 stores one 
block in every data stripe and skips three blocks between two data stripes. 
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The stream S3 also stores one block in every data stripe and skips only two 
blocks between two data stripes. Thus,

M1 = 1, G1 = 3, M2 = 1, and G2 = 2.

We substitute these values into equation (13.3) to get 
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We can see that the two streams satisfy the feasibility condition. Thus, the 
two streams, stream S1 and stream S3, can be merged using the storage pattern 
altering policy of the interleaved contiguous placement method.
In Figure 13.4, we show that the two streams, stream S1 and stream S3, can be 
merged by altering the storage pattern of the stream S3. The storage pattern 
of stream S1 does not need to be altered. The second media block in every 
four media blocks of stream S3 is moved towards the beginning of the object. 
Notice that the media blocks can only be moved towards the beginning of the 
object so that the moved blocks are retrieved earlier. If the media blocks of a 
stream are moved towards the end of the object, then the moved blocks are 
retrieved later than that of the original storage pattern leading to violations 
of the continuous display requirement. 
Since the moved blocks are retrieved earlier than that of the original storage 
pattern, some extra buffers are needed to temporarily store the moved blocks 
when they are accessed. Thus, the buffer consumption seems to increase. 
Since the buffers are made available while the programs are waiting for the 
retrieval of the next data stripe, the buffer consumption is actually unchanged. 
Furthermore, some gaps exist between consecutive data stripes. The opti-
cal disk drive spends more time to access each individual data stripe. The 
interleaved contiguous placement retrieves data stripes at a short time before 
they are consumed. After the data in a buffer is consumed, the buffer may 
be released. Thus, the period of time between the filling and release of each 
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buffer is short. This leads to reduction of average buffer consumption.
Fortunately, more than one object can be accessed from the optical disk. 
When multiple interleaving objects are retrieved from the optical disk at the 
same time, the optical disk can use sequential reads to access the interleaving 
data stripes. The overheads which consist of seek and rotational latency in 
accessing the data stripes are shared among the concurrent streams. Thus, the 
overheads are low and the merged streams are served with high throughput. 
If the probability of several objects being concurrently served is high, then 
interleaving these objects could also raise the throughput.
In the extreme case when all the merged streams are concurrent, the optical 
disk may read all the blocks sequentially. The data stripes of the interleav-
ing objects are accessed without need for seek actions. Thus, the storage 
system delivers the objects at the highest throughput. Hence, the interleaved 
contiguous placement method is very suitable for composite objects whose 
component objects must always be synchronized. 

Concurrent.Striping

The parallel tape striping method places data stripes of objects across tapes 
so that an object is retrieved in parallel from multiple tapes. The increase in 
exchange overheads however lowers the system throughput. The triangular 
placement method utilizes the usable bandwidth to further reduce the access 
time and increase the system throughput. Both methods reduce the time to 
access an object from the tapes. However, the exchange overhead is still 
heavy due to the synchronization of the parallel I/O operation. 

Figure.13.4..Interleaved.contiguous.placement.SPA.example

Figure ��.�. Interleaved Contiguous Placement SPA 
Example
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The principle aim of the concurrent striping method is to increase the throughput 
of the hierarchical storage system (Tse, 1999; Tse & Leung, 1998, 2001, 2002). 
In particular, the concurrent striping method uses the following ideas:

1. It desynchronizes all tape exchanges.
2. It shares exchange overheads among concurrent streams. 
3. It supports efficient accesses for multiple concurrent streams.

The concurrent striping method desynchronizes the parallel I/O operation 
to avoid exchange contentions. That is, each individual I/O operation such 
as exchange, reposition, and transfer, on different drives does not need to 
be completed at the same time. Each device performs the I/O operations 
independently.
When multiple streams access objects concurrently, the overheads of switching 
tapes among the streams are heavy. The storage devices need to exchange the 
tapes unless the access data stripes reside on the same tape. The concurrent 
striping method places the data stripes of the concurrent streams on the same 
tape to avoid exchange overheads between services of concurrent streams. 
Thus, the exchange overheads are shared among concurrent streams.
The concurrent striping method assumes that the stored objects are accessed 
for normal display only. That is, the storage system does not need to sup-
port any interactive user functions. The system that uses concurrent striping 
method is a combination of five different components.

1. Divide object into logical segment
2. Distribute segments across all tapes
3. Store in fixed order within tape
4. Parallel stream controller
5. Request scheduling

Each object is divided into a number of logical segments such that each logi-
cal segment is a logical starting point for consumption. The next segment is 
made available after the previous segment is accessed. A segment can start to 
display without the previous segment or it can display following the previous 
segment. For example, objects X, Y, and Z are divided into different number 
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of logical segments as illustrated in Figure 13.5. Large objects are divided 
into many segments and small objects are divided into few segments. 
In addition to dividing objects into logical segments, each logical segment 
may optionally be subdivided into slices or fixed length data stripes depend-
ing on the data migration method in use. If segments are divided into slices 
for pipelining as shown in Figure 13.6, the time to display the previous slice 
is longer than or equal to the time to retrieve the next slice. 
When the size of a logical segment is Xi, the size of the first slice is approxi-
mately equal to

≈ Xi * (1 - ρ), (13.4)

where ρ is the production consumption ratio of the tertiary storage devices. 
The production consumption ratio is defined as the ratio of tertiary bandwidth 
to the display bandwidth of the object. 
Thus, the production consumption ratio is found as

ρ γ
=
δ

         (13.5)

where γ is the tertiary bandwidth of the storage device, and δ is the display 
bandwidth of the object.
The size of the jth slice can be found as 

≈ Xi * (1 - ρ)*ρj       (13.6)

More details of the sizes of the slices will be described in Chapter XVIII on 
the normal pipelining method.
The concurrent striping method distributes the segments across all tapes in the 
robotic tape library. The tapes are sorted into a fixed sequence. The objects are 
stored on the tapes according to this sequence with one segment on each tape. 
The segments of an object are stored in round robin cycles. The objects are 
stored in a fixed order on each tape. When an object is stored before another 
object on one tape, it is always stored before the other object on all other 
tapes. When object X is stored before object Y in tape T1, object X is stored 
before object Y in all other tapes, T2 to T6, as shown in Figure 13.7. 
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The concurrent striping method controls the delivery of the objects using 
a parallel stream controller. The parallel stream controller accepts requests 
for new streams. It creates a new “stream object” for each data object being 
accessed. The stream object is a software object in the storage system and it 
is different from the data objects. The stream object initially sends two re-
quests to the service queue of each tertiary drive. The tertiary drive accesses 
segments for the requests on the tapes to the memory for display.
The tertiary drives serve all requests in currently loaded tapes before they 
serve the requests on other tapes that require switching. After all requests on 
the currently loaded tapes are served, the drive sends an exchange request to 
the robotic arm to exchange the next tape. After each request of a stream is 
served, the stream sends a new request that accesses the next segment from 

Figure ��.�. Concurrent Striping divides objects into logical 
segments
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Figure.13.6..Concurrent.striping.subdivides.an.object.into.leaders.and.data.
strips
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the tapes. After all the segments of an object are retrieved, the stream object 
sends a finish notification to the parallel stream controller before it destroys 
itself. The parallel stream controller can thus accept another new stream 
from its waiting queue. 
The tertiary drives serve the requests in cycles and rounds. In each cycle, the 
drive exchanges a tape and serves one request per stream on the exchanged 
tape. Requests on the same tape are served in the order of the storage loca-
tions of the segments on the tape. Since the segments are stored in a fixed 
order on the tape, the streams are served in the same fixed order. In each 
round, the drive exchanges each tape once and serves the requests on the 
exchanged tapes. 
Since each stream sends at least two requests to each tertiary drive, the terti-
ary drives have at least one outstanding request from each stream object. The 
drive exchanges one tape and serves one request of every stream in each cycle. 
As the drives do not perform the exchange operation in parallel, the requests 
for exchange are initiated at different times. The tape exchange operation is 
thus desynchronized. The drives do not waste bandwidth in the contention 
for the robotic arms. The throughput of the tertiary storage system remains 
high even when the objects are accessed in parallel.
As the drive serves one request for every stream after each exchange opera-
tion, the exchange overhead is shared among all concurrent streams. When 
many concurrent streams are served, the exchange overhead is shared among 
many concurrent streams. Thus, the exchange overhead per stream is light.
For example, two tertiary drives retrieve segments of three objects on six 
tapes as shown in Figure 13.8. Each drive exchanges a tape and retrieves one 

Figure 13.7. Concurrent striping stores objects in fixed order on tapes

Figure ��.�. Concurrent Striping stores objects in fixed 
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segment for each stream in each cycle. Drive 1 exchanges M1 and retrieves 
segments X13, Y9, and Z4 on M1. Then, it exchanges M3 and retrieves X15, 
Y11, and Z6 on M3. Afterwards, it exchanges M5 and retrieves X17, Y13, and 
Z8. It then exchanges M1 again, but stream Y has finished. So, it retrieves X19 
and Z10 from M1 and so on. Drive 2 exchanges M2 and retrieves segments 
X14, Y10, and Z5 on M2. Then, it exchanges M4 and retrieves X16, Y12, and Z7 
on M4. After that, M6 is exchanged and X18, Y14, and Z9 are retrieved. Drive 
2 exchanges M2 again, but stream Y has finished and stream Z is aborted. 
Thus, it retrieves X20 from M2 only. Similarly, it exchanges M4 and retrieves 
X22 and so on.

Performance.Analysis

In order to display the streams continuously, the storage system must retrieve 
each segment before it is due for display. In the concurrent striping method, 
the maximum number of requests that can appear between two consecutive 
requests of the same stream is less than s, where s is the number of concur-
rent streams being accepted to the system.
If D drives are serving s streams that each stream accesses segments of size 
X, the time to display the previous segment should be longer than or equal to 
the time to retrieve the next segment. Thus, we have the continuous display 
requirement as

Figure.13.8..Requests.are.scheduled.in.cycles.and.rounds

Figure ��.�. Requests are scheduled in cycles and 
rounds
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( )
j

DX Xs≥ ω+ α +
δ γ

       (13.7)

where ω, α, and γ are the media exchange time, reposition time, and data 
transfer rate of the storage devices, and δj is the display bandwidth of the jth 
stream, respectively.
Since one segment is retrieved for each stream after each media exchange, s 
segments are retrieved from each drive and each segment is of size X. Thus, 
we have for the system throughput (Tse, 1999)

( )

DsX
Xs

=
ω+ α +

γ
       (13.8)

If data are migrated using the staging method, stage buffers on disks are needed 
to store data that are retrieved from tertiary storage on the disks. When the 
data are retrieved faster than they are consumed, the data stay on the stag-
ing buffer for a longer time. The average amount of buffer consumption is 
high. If the tertiary storage system delivers data at a rate just faster than the 
data consumption rate, the staging buffers are occupied for a short time. The 
average amount of staging buffer consumption becomes low. 
When the time that the tertiary drives spend in serving each group of con-
current requests be E[B], the disk buffer size for the jth stream using the 
concurrency striping method is found as

E[ ]jr
rX B

D
δ

= −        (13.9)

where r is the number of segments per object. 
Since the concurrent striping method serves the streams concurrently, it takes 
longer time to deliver one segment for each individual stream. Thus, it uses 
smaller staging buffers on disks than the parallel tape striping method and 
other nonstriping methods.
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Chapter.Summary

Large multimedia objects are stored on hierarchical storage systems. The high 
access latency tertiary storage devices need to deliver the large multimedia 
objects at high throughput. Multimedia data of all objects must be retrieved 
from the tertiary storage devices to buffers on disks within the guarantee time 
in order to display the stream with continuity. Multimedia streams would have 
long waiting time if the objects are retrieved one by one. Heavy exchange 
overheads may be involved when streams are served concurrently. 
The constraint allocation methods limit the storage locations of the objects 
on the storage media to reduce the longest exchange time and reposition 
time. They increase the system throughput when multiple streams are served 
concurrently. 
The interleaved contiguous placement method maintains the separation be-
tween consecutive data stripes on an optical disk to provide an upper bound on 
the maximum access time of each data stripe. It chooses the highly correlated 
objects to be merged. The feasibility condition of merging homogeneous 
streams is easily determined. The storage pattern preserving policy provides 
the feasibility condition to merge two heterogeneous streams without chang-
ing their storage patterns. The storage pattern altering policy provides the 
feasibility condition to merge a number of heterogeneous streams by slightly 
changing the storage pattern of each stream. 
The concurrent striping method desynchronizes the parallel I/O operation 
to avoid exchange contentions. It places the data stripes of the concurrent 
streams on the same tape to share the exchange overheads among concurrent 
streams. It divides multimedia objects into logical segments and distributes 
them across all tapes. The tertiary storage system stores segments in fixed order 
to maintain the continuous display guarantee of every stream. The concurrent 
striping method serves streams concurrently to reduce the start up latency. It 
improves the system throughput and reduces the buffer consumption. 
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The main objective of the tertiary storage level is to provide huge storage 
capacity at low cost. The tertiary storage devices in use include magnetic 
tapes, optical disks, and optical tapes. The media units are removable from 
the drive so that the storage capacity can be expanded by using more media 
units. The media units take the tape form so that the physical dimension of 
the media unit is small. Optical disks and tapes record data the laser beam 
to provide the highest recording density.
Large hierarchical storage systems may use robotic tape libraries to store 
many large objects. Robotic tape libraries use the robotic arms to exchange 
tapes automatically and quickly. When data are accessed from the tape 
drives, the drives spend much time in performing the mechanical steps. The 
drives have a minimum overhead to access data. The overheads are affected 
by the data placement method in use. It also takes a longer time to access 
large objects.

Summary.to.Section.IIb.

Data Placement on  
Hierarchical Storage Systems



Similar to storage organizations on disks, there are many data placement 
methods being designed to improve the performance of HSS. These techniques 
use different strategies to optimize the HSS performance. We group these 
data placement methods according to the following four strategies:

1. Contiguous placement strategy
2. Statistical placement strategy
3. Striping strategy
4. Constraint allocation strategy

The contiguous placement method stores the whole object in the same media 
unit. It is simple and efficient when the objects are written and retrieved in 
their entirety. Unfortunately, it suffers from large staging buffer consumption 
and long response time. 
The log structured placement is an efficient placement method for the back up 
and archival applications. It optimizes the writing performance by providing 
the append-only operations. However, the performance is not optimized due 
to the presence of reading requests that are present in multimedia storage 
systems.
We have explained the statistical placement method using the frequency 
based placement of objects on media units. The frequency based placement 
method places the objects to the media units according to the access fre-
quency of the objects and the distance of the cell containing the media unit 
from the drive. The performance of the frequency based placement method 
is optimized when the objects are accessed independently and the objects 
are of the same size.
The parallel tape striping method is a data placement method that places the 
objects to tapes in robotic tape libraries. It divides objects into data stripes and 
distributes data stripes of multimedia objects to several tapes. The parallel tape 
striping method accesses data stripes from the tapes in parallel. It overlaps 
the time to transfer data stripes from multiple tape drives. The parallel tape 
striping method reduces the time to access an object from the robotic tape 
library. Unfortunately, the parallel tape striping method induces contentions 
on exchanging tapes. It may not cause problems if each drive has its own 
robotic arm or the number of robotic arms is not fewer than the number of 
tape drives. Furthermore, more exchanges are incurred. The robotic arms 



need to exchange several tapes for each object access. Thus, the parallel tape 
striping method increases the workload on the robotic arms.
The triangular placement method utilizes the usable bandwidth during the 
exchange time to reduce the data access time. A tape drive starts to reposi-
tion tapes and transfer data stripes while other drives are still waiting for 
exchanges. The triangular placement method further reduces the time to ac-
cess objects from robotic tape libraries. It also increases the optimal number 
of striping drives. 
Large multimedia objects are stored on the HSS. The high access latency 
tertiary storage devices need to deliver the large multimedia objects at high 
throughput. Multimedia data of all objects must be retrieved from the tertiary 
storage devices to buffers on disks within the guarantee time in order to dis-
play the stream with continuity. Multimedia streams would have long waiting 
time if the objects are retrieved one by one. Heavy exchange overheads may 
be involved when streams are served concurrently. 
The constraint allocation methods limit the storage locations of the objects 
on the storage media to reduce the longest exchange time and reposition 
time. They increase the system throughput when multiple streams are served 
concurrently. 
The interleaved contiguous placement method maintains the separation be-
tween consecutive data stripes on an optical disk to provide an upper bound on 
the maximum access time of each data stripe. It chooses the highly correlated 
objects to be merged. The feasibility condition of merging homogeneous 
streams is easily determined. The storage pattern preserving policy provides 
the feasibility condition to merge two heterogeneous streams without chang-
ing their storage patterns. The storage pattern altering policy provides the 
feasibility condition to merge a number of heterogeneous streams by slightly 
changing the storage pattern of each stream. 
The concurrent striping method desynchronizes the parallel I/O operation 
to avoid exchange contentions. It places the data stripes of the concurrent 
streams on the same tape to share the exchange overheads among concurrent 
streams. It divides multimedia objects into logical segments and distributes 
them across all tapes. The tertiary storage system stores segments in fixed order 
to maintain the continuous display guarantee of every stream. The concurrent 
striping method serves streams concurrently to reduce the start up latency. It 
improves the system throughput and reduces the buffer consumption.



Section.III

Disk Scheduling Methods

Introduction

In Part IIa and Part IIb, we have described how to improve the performance 
of storage systems using data placement methods. In this part, we shall 
describe how to improve the response time of requests using efficient disk 
scheduling methods.
Traditional computer systems only handle disk requests individually. Mul-
timedia systems send multiple requests one after another to the disk system. 
These requests appear as a stream of requests to the storage system. These 
requests should be served with a proper scheduling method so that the streams 
can continue without any problems. Thus, new scheduling methods have been 
designed to serve streams of requests for multimedia data. 



We shall describe the methods that arrange the order of disk requests in this 
section. First, we describe the scheduling methods for disk requests in Chap-
ter XIV. After that, the feasibility conditions to accept streams by a storage 
system are presented in Chapter XV. Last, the scheduling methods that serve 
requests of multimedia streams are described in Chapter XVI.
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Chapter.XIV

Scheduling.Methods..
for.Disk.Requests

Introduction

Disk scheduling changes the sequence order to serve the requests that are 
waiting in the queue.
While data placement reduces the access time of a disk request, scheduling 
reduces the waiting time of a request. Thus, the response time is found as: 

Response time = Waiting time + Access time

The longer the waiting queue, the more useful is the scheduling method. 
When there is no waiting queue, any scheduling methods perform the same. 
Expected waiting time and queue length can be found using queueing theory. 
The queueing theory is out of the scope of this book.
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In general, a disk scheduling policy changes the service order of waiting re-
quests. This can be illustrated using a modeling diagram as shown in Figure 
14.1. A disk scheduling policy accepts the waiting requests and serves them 
in the new service sequence. Notice that the service sequence may or may 
not be the same as the incoming order of the waiting requests.
In this chapter, we shall describe two common disk scheduling methods. 
First, we shall describe the simple first-in-first-out method. After that, we 
shall describe the efficient SCAN algorithm in the following sections.

First-In-First-Out.Method

The first-in-first-out (FIFO) method is also known as the first-come-first-serve 
(FCFS) method. The scheduling method serves requests in the queue according 
to the normal queue order. The requests are served in the incoming order of the 
requests. The request that has been waiting for the longest time is served first. 
We shall model the FIFO scheduling policy as Figure 14.2. The service se-
quence is the same as the incoming order the requests. The FIFO scheduling 
method is very simple. New requests are entered into the end of the queue. 
The first one of the requests in the waiting queue is chosen to be served. 
Since the request that arrives earliest at the waiting queue is served first, the 
requests are being treated fairly. However, the accessed data may be randomly 
located. The disk head is jumping up and down the tracks, leading to long 
seek time. Thus, this scheduling method is not very efficient.
This scheduling method is also not suitable for multimedia systems. Since 
multimedia requests have deadlines, some requests may wait so long that 
their deadlines are passed before being served. Instead of being served after 
their deadlines, these requests should either be served earlier or removed 
from the waiting queue.

Figure.14.1..Disk.scheduling.policy

Figure ��.�. Disk Scheduling Policy
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The.SCAN.Algorithm.

The FIFO method is too simple. More efficient scheduling methods are 
designed to serve disk requests. The SCAN algorithm is one of the most ef-
ficient scheduling methods (Gemmell & Christodoulakis, 1992).
In the SCAN algorithm, the disk heads traverse the surface from the innermost 
track to the outermost track and return. The requests for data from tracks that 
are nearest to the disk heads and in the current scanning direction will be 
served with priority. When there are no more requests in the current scanning 
direction, the disk head changes direction and serves requests on its way.
The SCAN algorithm is also called the elevator disk scheduling algorithm. 
It is analogous to a lift going from floor to floor picking up passengers on its 
way. A lift picks up some passengers on the ground floor. Some passengers 
push the button to initiate requests. Some passengers may wish to go to the 
top floor and some other passengers initiate requests to go to the middle 
floors. The lift stops at the middle floors to let passengers get off before it 
continues its way to the top floor. While the lift is moving from the top floor 
to the ground, it may receive requests for service from middle floors. The 
lift would stop in the middle floors to pick up passengers and move all pas-
sengers to the ground floor. 
Let h be the current position of the disk heads in track number and let d be the 
current scanning direction. When the disk heads are moving in the outward 
direction, d is equal to +1. When the disk heads are moving in the inward 
direction, d is equal to -1.
Let ti be the track number containing data that are accessed by the ith request 
in the queue. While the SCAN algorithm is moving in the outward direction, 
it compares all the waiting requests to find the request that has the smallest 
(ti - h), for all requests with (ti ≥ h). If it cannot find any requests with (ti ≥ 
h), then it changes direction by setting d to -1. While the SCAN algorithm is 
moving in the inward direction, it compares all the requests finds the request 

Figure.14.2..FIFO.scheduling.policy
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that has the smallest (h - ti), for all requests with (ti ≤ h). If it cannot find any 
requests with (ti ≤ h), then it changes direction by setting d to +1.
A tie condition may occur if more than one request access data from the same 
track. These requests should be served in the FIFO order. The disk heads first 
serve the request with the longest waiting time. Afterwards, the disk heads 
will be moved to the same track and serve other requests on this track as 
their distance from the disk heads position is equal to 0. 
For example, the disk heads are staying at the outermost track near the rim of 
the disk. The tracks are numbered from the centre to the rim of the disk. Four 
requests are now waiting for their services (Figure 14.3). The requests arrive 
at the queue in the order A, B, C, and D. Let ta, tb, tc, td be the track numbers 
of the tracks that are accessed by the requests A, B, C, and D, respectively. 
These requests access data on tracks with track numbers such that h > ta > 
tc = td > tb and d = -1.

According to the SCAN scheduling policy, which request is served first?

Since h > ta > tc = td > tb and d = -1, The storage systems find that the request 
A is accessing data from the track.ta that is the closest to its current position, 
h. The disk heads are then moved to ta to serve request A as shown in Figure 
14.4. 

After the request A is served, which request is served next?

After the storage system has served request A, the disk heads are staying at 
the track containing data for request A. Now h = ta. Since ta = h > tc = td > tb 
and d = -1, both request C and request D are accessing data from the tracks 
tc = td that are the closest to its current position ta. Since request C arrives in 
the queue earlier than request D, request C is served next. The disk heads are 
then moved to tc to serve request C as shown in Figure 14.5.
While request C is being served, a new request E has arrived at the waiting 
queue. Request E accesses data from track te such that ta > te > tc. After the 
request C is served, which request is served next?
After the storage system has served request C, the disk heads are staying at the 
track containing data for request C. Now h = tc. Request E is excluded as te > 
h. Since tc = h = td > tb and d = -1, request D is accessing data from the tracks 
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td = h that are the closest to its current position. The disk heads then stay at 
its current track position to serve request D as shown in Figure 14.6.

After the request D is served, which request is served next?

After the storage system has served request D, the disk heads are staying at 
the track containing data for request D. Now h = td. Request E is excluded as 
te > h. Since request B is the only request whose track number is less than or 
equal to h, the disk heads is then moved to track number tb to serve request 
B as shown in Figure 14.7.

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure ��.�. SCAN Algorithm �

Data for request A

Data for request C

Data for request E

Data for request B

First in queue

Last in queue

Disk head

inward
direction Data for request D

Figure.14.6..SCAN.algorithm.4

Figure.14.7..SCAN.algorithm.5



���   Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

After the storage system has served request B, h = tb. All the requests do not 
satisfy track number less than or equal to h. The storage system then changes to 
the outward direction and set d to +1. As request E is the only request, the disk 
heads are thus moved to track te to serve request E as shown in Figure 14.8.
Therefore, the requests are served in the order of A, C, D, B, and E using the 
SCAN scheduling policy. The request B is served after the requests C and D 
because request B accesses data from the tracks far away from the disk heads. 
Request E is served after request B since it arrives at the waiting queue after 
the disk heads pass the track from which it accesses data.
In principle, the SCAN scheduling policy is a scheduling policy that aligns 
the waiting requests in the order of their accessing track locations. The order 

Figure.14.8..SCAN.algorithm.6
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of the requests in the waiting queue is thus changed into the sequence of 
their physical track numbers. After the waiting requests are reordered, these 
waiting requests are thus served in their physical track number order.
The SCAN scheduling policy increases the efficiency in serving requests. The 
disk heads are moved to serve waiting requests at short seek distances before 
they serve other requests at long seek distance. The heavy seek time overheads 
in serving long seeks are thus shared among the requests that access data in-
between the disk head and the destination track of the long seeks. The average 
seek distance and average seek time are reduced significantly. Therefore, the 
SCAN scheduling policy is a very efficient disk scheduling policy.
Although the SCAN scheduling policy does not increase or decrease the 
priority in serving requests, it is unfavourable to some requests. As the disk 
heads move from one end of the tracks to another end, the requests that ac-
cess data from the far end are served with later than the requests that access 
data from the middle of the tracks. The requests that access data from the 
middle of the tracks have a shorter waiting time to be served. In addition, the 
disk heads do not consider requests that access data from in the reverse of 
its moving direction. The requests that access data from the two ends have 
a longer time to be excluded. Thus, the SCAN scheduling policy is unfair to 
the requests that access data near the centre or the rim of the disk platters.
In order to serve all requests fairly, the unidirectional SCAN was designed. 
The unidirectional SCAN policy serves requests only when the disk heads 
are moving in one of the two directions. After the disk heads reach the last 
track, they are swung back to the farthest track being accessed. Then, it starts 
to serve this request and other requests in the same direction. 
Consider another example. The disk heads serve requests when they move in 
the inward direction. They are staying at the outermost track near the rim of 
the disk. Three requests which have arrived at the waiting queue in the order 
A, B, and C are now waiting for their services as shown in Figure 14.10. 
These requests access data on tracks with radii in the decreasing order as A, 
C, and B. Let ta, tb, and tc be the track numbers of the tracks being accessed 
by the requests A, B, and C, respectively. That is, h > ta > tc > tb and d = -1. 
According to the unidirectional SCAN scheduling policy, which request is 
served first?
Since h > ta > tc > tb and d = -1, the storage system finds that the request A is 
accessing data from the track.ta that is the closest to its current position, h. 
The disk heads are then moved to ta to serve request A as shown in Figure 
14.11.
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Figure.14.10..Unidirectional.SCAN.algorithm.1
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After the request A is served, which request is served next?

After the storage system has served request A, the disk heads are staying 
at the track containing data for request A. Since ta = h > tc > tb, request C is 
accessing data from the track tc that is the closest to its current position ta. 
The disk heads are then moved to tc to serve request C as shown in Figure 
14.12. 
After the storage system has served request C, the disk heads are staying 
at the track tc. Since request B is the only request in the waiting queue. The 
disk heads are then moved to track number tb to serve request B as shown 
in Figure 14.13. 
While request B is being served, two new requests D and E have arrived at 
the waiting queue. They access data from track td and te such that te > td. After 
the request B is served, which request is served next?
After the storage system has served request B, the disk heads are staying at 
the track containing data for request B. Now h = tb. All the requests do not 
satisfy track number less than or equal to h. The storage system then swings 
the disk head to the rim of the disk. Since h > te > td, request E is accessing 
data from the track te that is the closest to its current position. The disk heads 
are then moved to te to serve request E as shown in Figure 14.14.
After the storage system has served request E, h = te. The storage system then 
moved to track td to serve request D as shown in Figure 14.15.
The unidirectional SCAN scheduling policy serves all requests in only one 
direction. After the disk heads have passed the tracks that are accessed by 
a request, the request needs to wait for the requests to be served in a cycle. 
Thus, all requests are treated fairly.
Although the requests are served fairly, the efficiency of the storage system 
is traded off. Since the disk heads are swung to the other end after serving 
all requests in one direction, this imposes a fixed overhead on swinging the 
disk heads. Thus, the unidirectional SCAN scheduling method is less efficient 
than the bidirectional SCAN scheduling method.
Multimedia storage systems deliver data stripes to the clients for display. 
While the clients are displaying a stream, the data stripes of this stream 
must arrive before they are due for display. Otherwise, the stream undesir-
ably starves. Thus, a deadline is associated with every data stripe and the 
requests that access it. If the request is served after the deadline has passed, 
the returned data stripe is no longer used. Therefore, the multimedia storage 
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system should be aware of the deadlines of requests and serves them at some 
time before the deadline.

Chapter.Summary

The first-in-first-out scheduling method serves requests according to their 
incoming order. It is simple and fair, but not efficient. Disk requests in mul-
timedia storage systems should be served before their deadlines are passed. 
Thus, the FIFO scheduling method is not suitable for scheduling requests of 
multimedia streams.
The SCAN scheduling method serves the waiting requests in the order of their 
accessing physical track locations. The disk heads traverse the disk surface 
and serve requests that access data on the tracks in its path. The heavy seek 
time overheads of the long seeks are shared among these requests. The av-
erage seek distance and average seek time are reduced. The storage system 
thus serves requests efficiently. 
Although the bidirectional SCAN scheduling policy is unfair to the requests 
that access data near the centre or the rim of the disk platters, the unidirec-
tional SCAN scheduling method can serve all requests fairly. However, the 
efficiency of the storage system is slightly traded off. 
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Chapter.XV

Feasibility.Conditions..
of.Concurrent.Streams

Introduction

Multimedia storage systems store data objects and receive streams of re-
quests from the multimedia server. When a client wishes to display an object, 
it sends a new object request for the multimedia object to the multimedia 
server as shown in Figure 15.1. The multimedia server checks to see if this 
new stream can be accepted. If accepted, the server sends a data request to 
the storage system to retrieve the first data stripe. The storage system returns 
the data stripe to the server. The server then encapsulates the data stripe as 
data packets and sends the data packets to the client. The client extracts the 
data stripe from the data packets. Afterwards, the server sends data requests 
periodically to the storage system. Each of these data requests has a dead-
line associated with it. If the request cannot be served before the deadline, 
the client program does not have any more data to display. The stream thus 
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will be suspended or aborted. Therefore, every request of a stream, except 
the first one, must be served within the deadline to ensure continuity of the 
stream. Before we consider the scheduling methods for request streams in 
the next chapter, we describe the feasibility to accept concurrent streams in 
this chapter.
Consider a stream that accesses object A from the storage system. The stream 
is composed of a number of requests A1, A2, … , and An. Each request will 
arrive at the storage system at different times as illustrated in Figure 15.2. 
The requests are then served by the storage system.
The server may send multiple requests to the storage system so that the wait-
ing times of the requests may overlap with each other. It needs to allocate 
separate memory buffers to store the data stripes being accessed. The storage 
system may not serve a request before the next request arrives. Thus, there 
may be more than one request in the waiting queue of the storage system. If 
the requests are in the waiting queue, the storage system would serve them 
one by one.

Figure.15.1..Multimedia.stream.of.requests

Figure.15.2..A.stream.of.requests

Figure ��.�. Multimedia Stream of Requests
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If the disk serves the request in the first-in-first-out scheduling method, it 
serves the requests one by one, from A1 to A3 as shown in Figure 15.3. It gets 
request A1 from the waiting queue and retrieves the data stripe for it. During 
the service of request A1, a new request A6 may have arrived at the waiting 
queue. Then, the disk gets the second request A2 from the waiting queue and 
retrieves the data stripe for it. During the service of request A2, a new request 
A7 may have arrived at the waiting queue. Afterwards, the disk gets request 
A3 from the waiting queue and retrieves the data stripe for it, and so on. 
The stream can start to display only after the first data stripe is received. If 
the waiting time and service time of the first request of a stream is long, the 

Figure.15.3..Service.of.individual.request.of.a.stream

Figure.15.4..Response.time.of.a.stream
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response time of the stream is long. The response time of a stream, Rs, can 
be found as 

Rs = W1 + S1, 

where W1 is the waiting time of the first request and S1 is the service time of 
the first request as shown in Figure 15.4. 
The service time of the first request is actually the access time of the first 
data stripe from the disk. From Chapter III, the disk access time is mainly 
composed of the seek time, rotational latency, and data transfer time. Both the 
seek time and rotational latency are access overheads in serving a request.
If the stream is not accepted by the server, the client may try to initiate the 
stream again. The actual response time of the stream is further raised by 
these retry times before the stream is accepted. The stream can continue to 
display only after the data stripe containing the multimedia data of the object 
is received. The response time of a request is composed of the waiting time 
in queue and the service time of the requests. The response time of the ith 
request, Ri, can be found as 

Ri = Wi + Si, 

where Wi is the waiting time of the ith request and Si is the service time of 
the ith request. The service time of each request is actually the access time 
of the data stripe from the disk. The disk access time is mainly composed of 
the seek time, rotational latency, and data transfer time. Both the seek time 
and rotational latency are access overheads in serving a request.
The time that a request is sent plus the response time should be earlier than 
the deadline as illustrated in Figure 15.5. If the waiting time is long, the 
deadline may have passed. It would be too late to serve the request. As a 
result, the stream starves and the client does not have the necessary data to 
display. The stream has to suspend or abort. 
From the above discussion, we can see that the waiting time in queue is a 
significant component of the response time of streams. It has a very signifi-
cant impact on the response time and the continuity of the streams. We first 
describe the feasibility conditions for a storage device to accept new streams 
in the next section. Then, we will prove the feasibility conditions for a storage 
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device to accept homogeneous streams. After that, the feasibility conditions 
for a storage device to accept heterogeneous streams are proved. Before 
summarizing this chapter, we prove the more general feasibility conditions 
for a number of storage devices to accept heterogeneous streams. 

Feasibility.Condition.for.a.Storage.Device..
to.Accept.New.Streams

Multimedia systems accept new object requests from clients. If it accepts 
a stream request, it needs to retrieve the data stripes of the object from the 
storage system and deliver them as a data stream to the client. The multime-
dia system does not accept all incoming streams. It checks its own storage 
system’s workload whether the data stripes can be retrieved and delivered 
on time. This feasibility condition can be found in several methods:

1. Check the number of accepted streams
2. Trial and error
3. Check the current workload condition

The feasibility condition may be found by checking the maximum number 
of streams that can be accepted. If the number of accepted streams is already 
equal to the maximum number of acceptable streams, any new streams are 
rejected until some streams have finished. The multimedia system needs to 
find out beforehand how many streams it can accept. This may not be too 
difficult if all the streams are homogeneous. However, the maximum number 
of streams needs to assume the worst case when the streams are heterogene-
ous. The dynamic workload of the system may also allow more streams to 
be accepted. Thus, the utilization of the multimedia system would be low. 

Figure.15.5..Response.time.of.individual.requests.of.a.stream
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The feasibility condition may be dynamically established by trial-and-error. 
The multimedia system may try to accept the stream and deliver the data 
stripes. If the storage system becomes overloaded, it then stops a stream 
until the storage system no longer overloads. This method is simple, but the 
quality of service of the stopped streams becomes low. 
The feasibility condition may be found by checking the workload of the sys-
tem. The storage system should check its own workload to determine whether 
new streams can be accepted. We shall describe how to check whether the 
streams would overload the storage devices. Using this method, the feasibil-
ity condition to accept new streams can easily be found.
The objective of the feasibility condition is to check whether the streams 
would overload the storage devices. The feasibility condition is checked on 
the temporal domain. It can be applied on general storage organizations and 
arbitrary scheduling methods. It considers variable data transfer rates over 
the gaps so that performance characteristics of general storage devices can 
be included. The parameters in Table 15.1 are used in this model.
The data transfer time and the display time depend on the size of each data 
stripe. Both of them are needed to specify the characteristics of a stream. 
Data on magnetic disks are stored in tracks. The disk heads move across the 
tracks at a seek time that increases with the seek distance. Hence, data on 
storage devices are accessed with an overhead which depends on the data 
placement method. When the access overhead of each data stripe of a stream 
is long, the storage device only has short gap time to serve other concurrent 
streams. Thus, both the access overheads and the gap time are considered to 
find the feasibility condition.
We assume that each stream seeks an overhead of S seconds, and each data 
stripe is transferred in M seconds. After that, the stream suspends data retrieval 
for G seconds. Each data stripe can display for δ seconds. This is illustrated 
in Figure 15.6. A multimedia stream (S, M, δ) is acceptable if and only if it 
satisfies the continuous display requirement:

Parameter Meaning

M transfer time 

δ display time

S access overheads

G gap time

Table.15.1..Notations.in.feasibility.conditions
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S + M ≤ δ.        (15.1)

This continuous display requirement must be maintained over a period of 
time. The requirement may temporarily be violated by satisfying requests in 
advance. The data stripes that are retrieved in advance are kept in read-ahead 
buffers. The average ratio of transfer time to display time must however be 
maintained over a finite period of time. 

Feasibility.of.Homogeneous.Streams

Multimedia streams are considered homogeneous if all streams have similar 
display time period δ. Let n streams be characterized by (M1, δ), (M2, δ), to 
(Mn, δ). Let Si be the access overhead times in serving the ith stream and Gi 
be the gap time of the ith stream, for i = 1 to n. The gap time of a stream is 
the period of time that a storage system may serve other concurrent streams. 
By this definition (Tse & Leung, 2002), we have

Gi ≤ δ – (Si + Mi).       (15.2)

Corollary.1: n streams can be concurrent if and only if

S1 + M1 + S2 + M2 + … + Sn + Mn ≤ δ.     (15.3)

Proof: In order to be able to accept n streams concurrent, requests of any 
stream are served during the time gap of other streams. The continuous dis-
play requirement necessitates that k requests are served within a continuous 
time period kδ for finite value of k.

Figure.15.6..Feasibility.condition.of.a.single.stream

Figure ��.�. Feasibility condition of a single stream
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If n streams are concurrent, then these n streams are served in turn over a 
finite time period kδ such that k requests of each stream are served within 
the time gap of other stream. Hence, we have

( )
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n

j j i
j j i

k S M kG i n
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This implies that
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Summing equation (15.4) for all streams, we have
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Substituting Gi from equation (5.2), this becomes
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Changing the subscript of the left hand side in equation (15.5) from j to i, 
we have
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Therefore, we have

1 1 2 2 ... n nS M S M S M+ + + + + + ≤ δ

which is the necessary condition. Conversely, we have

1 1 2 2 ... n nS M S M S M+ + + + + + ≤ δ

Since all terms are positive, we have

, 1,2,...,i iS M i n+ ≤ δ ∀ =

Hence, the continuous display requirement of all streams is fulfilled. There-
fore, the n streams can be concurrently served.
As the corollary is true, the streams that satisfy the feasibility condition may 
be concurrently served by interleaving their requests. As shown in Figure 
15.7, requests of stream A are served in the gap time of stream B and requests 
of stream B are served in the gap time of stream A.
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Feasibility.Condition.of.Heterogeneous.Streams

Multimedia streams are heterogeneous streams when their time periods are 
different (Tse & Leung, 2002). Let n streams be characterized by (M1, δ1), (M2, 
δ2), to (Mn, δn) such that not all δi are the same. Let Si be the access overhead 
time in serving the ith stream and Gi be the gap time of the ith stream.

Corollary.2: A group of n streams (Si, Mi ,δi) can be concurrent if and only 
if

1 1 2 2

1 2

... 1n n

n

S MS M S M ++ +
+ + + ≤

δ δ δ      (15.6)

Proof: If n streams are concurrent, then there exists a finite time period δ 
that kj requests of the jth streams are served. By the continuous display re-
quirement, this time period does not exceed the display time of each stream. 
We have

,           1, 2,..., ,

1 ,     1, 2,..., .

j j

j

j

k j n
k

j n

δ ≤ δ =

⇒ ≤ =
δ δ       (15.7)

Since the time period δ is the retrieval time of all requests, we have

Figure.15.7..Feasibility.of.homogeneous.streams

Figure ��.�. Feasibility of Homogeneous Streams
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( )
1

n

j j j
i

k S M
=

+ = δ∑

which implies

( )
1

1
n

j j j

j

k S M

=

+
=

δ∑        (15.8)

Substituting 1 j

j

k
≤

δ δ
 from equation (15.7), we obtain

( )
1

1
n

j j

j j

S M

=

+
≤

δ∑

which is the necessary condition. Conversely, we let 

1 2 3... nδ = δ δ δ δ

and let kj ∈ ℜ such that

,         1, 2,..., ,j
j

k j nδ
= =
δ

which gives

1 ,          1, 2,..., .j

j

k
j n= =

δ δ
      (15.9)

From the necessary condition, we have 

1 1 2 2

1 2

... 1n n

n

S MS M S M ++ +
+ + + ≤

δ δ δ



Feasibility Conditions of Concurrent Streams  ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

This implies

( )
1

1
n

j j

j j

S M

=

+
≤

δ∑

Substituting from equation (15.9), we obtain

( )
1

1
n

j j j

j

k S M

=

+
≤

δ∑

which implies

( )
1

n

j j j
j

k S M
=

+ ≤ δ∑        (15.10)

Hence, we obtain 

( ) ( )
1,

,        1, 2,..., .
n

i i i j j j i i
j j i

k S M k S M k i n
= ≠

+ + + ≤ δ =∑   (15.11)

Since all terms are positive, we can take away the term  from the left hand 
side of the inequality. Hence, we have

ki(Si + Mi) ≤ kiδi, ∀i,i = 1, 2, ..., n,

which implies

Si + Mi ≤.δi,  ∀i,i = 1, 2, ..., n.

The continuous display requirement of each stream can be fulfilled over a 
finite period of time. Hence, the n streams can be concurrently served.
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When the feasibility condition in Corollary 2 is satisfied, the streams may 
be concurrently served by interleaving their requests in groups. As shown in 
Figure 15.8, a group of requests belonging to stream A are served in the gap 
time of stream B and a group of requests belonging to stream B are served 
in the gap time of stream A.

Feasibility.of.Heterogeneous.Streams.Over.Multiple.
Storage.Devices

A multimedia storage system may have several storage devices, like a disk 
farm. When multiple storage devices are available, the storage devices 
may serve the streams independently or in parallel. When the streams are 
served in parallel, the above inequality for a single drive with different ac-
cess overheads and transfer rate may be used. When the streams are served 
independently, one request is served by one storage device each time. We 
may consider each storage device using the above feasibility condition for 
each storage device. Alternatively, we may distribute the requests evenly to 
the devices and serve them accordingly. Otherwise, some storage devices 
may be overloaded while others are underutilized. Thus, we assume that the 
requests are evenly distributed to p devices in establishing the following 
feasibility condition. 
Let n streams be characterized by (M1, δ1), (M2, δ2), to (Mn, δn). Let Si be the 
access overhead time in serving the ith stream and Gi be the gap time of the 
ith stream.

Figure.15.8..Feasibility.of.heterogeneous.streams

Figure ��.�. Feasibility of Heterogeneous Streams
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Corollary.3: A group of n streams (Si, Mi, δi) can be concurrently served on 
p independent devices if

1 1 2 2

1 2

... n n

n

S MS M S M p++ +
+ + + ≤

δ δ δ     (15.12)

and the workload is evenly distributed among p devices.

Proof: If n streams are concurrently served by p devices, then there exist a 
finite time period δ such that kj requests of the jth streams are served by p 
devices. By the continuous display requirement, this time period should not 
exceed the display time of each stream. We have

δ ≤ kjδj, j = 1, 2, ..., n

which implies

1 ,         1, 2,...,j

j

k
j n≤ =

δ δ       (15.13)

Since the total retrieval time of all requests must be less than the service time 
of the p devices over the time period δ, we have

( )
1

n

j j j
i

k S M p
=

+ ≤ δ∑

which implies

( )
1

n
j j j

j

k S M
p

=

+
≤

δ∑
       (15.14)
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Substituting 1 j

j

k
≤

δ δ
 from equation (15.7), we obtain

( )
1

n
j j

j j

S M
p

=

+
≤

δ∑

Hence, the necessary part is proved. Conversely, we let 

1 2 3... nδ = δ δ δ δ

and let kj ∈ ℜ such that

,        1, 2,..., ,j
j

k j nδ
= =
δ

which implies

1 ,         1, 2,..., .j

j

k
j n= =

δ δ
      (15.15)

Substituting  from Equation (15.15) to the necessity condition, we have

( )
1

n
j j j

j

k S M
p

=

+
≤

δ∑

which implies

( )
1

n

j j j
j

k S M p
=

+ ≤ δ∑        (15.16)

Since all terms are positive, we can take away all except the ith term from. 
Hence, we obtain
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ki(Si + Mi) ≤ pkiδi, i = 1, 2, ..., n,

which implies

(Si + Mi) ≤ pδi,  i = 1, 2, ..., n.     (15.17)

That is, requests of the ith stream can be served within time period δi by p 
devices. As long as the requests are distributed evenly to the devices, the 
continuous display requirement of all streams is fulfilled. Therefore, the n 
streams can be accepted to be served concurrently.
Therefore, the feasibility condition to concurrently serve a group of n streams 
(Si, Mi ,δi) on p independent storage devices if

1 1 2 2

1 2

... n n

n

S MS M S M p++ +
+ + + ≤

δ δ δ     (15.18)

and the workload is evenly distributed among p devices.
When a new stream arrives at the multimedia storage system, the storage 
system can directly calculate the feasibility to serve all streams including 
the new stream according to their data transfer time, display time, and ac-
cess overhead. If the feasibility condition is satisfied, then the new stream is 
accepted. Otherwise, the new stream should be rejected.

Chapter.Summary

We have shown that the multimedia streams have real-time continuous display 
requirements. The storage system should only accept streams that can be served 
without violating their continuous display requirements. Thus, the feasibility 
conditions to check whether new streams should be accepted are investigated. 
We have first shown the feasibility conditions to accept homogeneous streams on 
a storage system with only one storage device. After that, we have proved that 
heterogeneous streams can be accepted when their streams accessing patterns 
satisfies the feasibility conditions. Last, we have proved the general feasibility 
condition to accept heterogeneous streams over multiple storage devices.
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Chapter.XVI

Scheduling.Methods..
for.Request.Streams

Introduction

In the previous chapter, we have presented the feasibility condition to serve 
request streams concurrently. In this chapter, we describe the efficient methods 
to schedule the requests to avoid missing their deadlines. Multimedia requests, 
except the first request, of a stream need to be served before their deadlines 
(Anderson, Osawa, & Govindan, 1992; Gemmell, Beaton, & Christodoulakis, 
1994; Gemmell & Christodoulakis, 1992). Thus, the scheduling algorithm 
should consider the deadline so that the requests do not miss their deadlines. 
In the next section, we describe the EDF-SCAN algorithm. After that, we 
shall describe the group sweeping scheduling (GSS) method.
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Earliest.Deadline.First.Scheduling

The earliest deadline first (EDF) method is fully aware of the deadlines of 
the requests. It assigns priorities to requests and serves the request accord-
ing to the time of their deadlines (Freeman & DeWitt, 1995). The deadlines 
of the requests in the waiting queue are compared. The requests with the 
earliest deadline are served first. That is, the urgent requests are served with 
priority. Other requests that can wait will be served later. When a tie occurs 
among several requests having the same deadline, these requests are served 
according to the first-in-first-out (FIFO) scheduling method.
For example, four requests A, B, C, and D arrive at the storage device.

1. Request A should be served before 09.000 seconds.
2. Request B should be served before 09.300 seconds.
3. Request C should be served before 09.150 seconds.
4. Request D should be served before 09.150 seconds.

These requests may belong to the same or different streams. The requests A, 
B, C, and D should be served before their deadlines at 9.000 seconds, 9.300 
seconds, 9.150 seconds, and 9.150 seconds, respectively. 
The storage system compares their deadlines and finds that the deadline of 
request A is the earliest. Thus, it serves the request A first. After it has finished 
serving request A, it finds that both request C and request D have the earli-
est deadline. Since request C arrives at the waiting queue before request D, 
it serves request C first. Afterwards, it serves request D. Finally, request B 
is served unless some new incoming requests with an earlier deadline have 
arrived. Therefore, the requests are served in the order of A, C, D, and B.
The EDF scheduling policy can be described with a model that changes the 
order of the waiting requests according to their deadline time. The deadlines 
of the waiting requests may point at different times that are not in sequence. 
After the EDF scheduling, the requests are aligned with the increasing order 
of their deadlines.
The earliest deadline first scheduling method serves all requests according to 
their deadlines. Thus, urgent requests are served with priority. It is likely that 
most requests would not miss their deadlines while waiting for service.
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Some streams may send their requests early in time with a longer deadline. 
Other streams may send their requests close to their deadlines. However, the 
requests with short deadlines are served with priority. This is however unfair 
to the well behaving streams that schedule their requests ahead of time. 
Although this strict EDF method is optimal for CPU scheduling, it should 
not be applied directly on disk scheduling. The EDF scheduling method does 
not consider the storage locations of the data stripes being accessed by the 
requests. The disk heads would randomly traverse across the disk surfaces 
to serve the most urgent request. Thus, the EDF scheduling is inefficient due 
to excessive seek time overheads. 

The.SCAN-EDF.Scheduling.Method

The EDF method is inefficient since it incurs heavy overheads in long seeks 
to serve more urgent requests that are far away. More efficient scheduling 
method should serve requests with short seeks while the urgent requests can 
still wait. The SCAN-EDF scheduling method strikes a balance between 
efficiency and urgency.
The SCAN-EDF scheduling method combines the seek optimization of the 
SCAN method and the real-time guarantees of the EDF method (Reddy & 
Wyllie, 1993, 1994). Since the deadlines of the requests should not be missed, 
the waiting request with the earliest deadline is always served first. Among 
waiting requests with the same deadline, the one that is first according to the 
scan direction is served first.

Figure.16.1..EDF.scheduling.policy

Figure ��.�. EDF Scheduling Policy
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The storage system selects requests according to the SCAN-EDF algorithm 
as shown in Figure 16.2. First, it compares the deadlines of the waiting re-
quests. The earliest deadline of the waiting requests is first found. The waiting 
requests that have the earliest deadline are inserted into a set T in Step 1. It 
then checks the number of request in the set T in Step 2. If the set T contains 
only one request, it serves this request. Otherwise, it finds the first request 
with the smallest seek distance in one scanning direction and serves it. It 
continues to serve the next requests with the shortest seek distance in the 
current scanning direction until all requests in the current scanning direction 
are served. If the set T is not empty, it changes the scanning direction and 
serves all requests in the new direction similarly. Afterwards, it goes back 
to Step 1 to fill the set T again.
We explain the SCAN-EDF algorithm using an example. Five requests A, 
B, C, D, and E arrive at the storage device.

1. Request A reads track number 0 and it should be served before 09.000 
seconds.

2. Request B reads track number 400 and it should be served before 09.300 
seconds.

3. Request C reads track number 350 and it should be served before 09.150 
seconds.

4. Request D reads track number 950 and it should be served before 09.150 
seconds.

5. Request E reads track number 550 and it should be served before 09.150 
seconds.

These requests may belong to the same or different streams. The request A, B, 
C, D, and E should be served before their deadlines at 9.000 seconds, 9.300 
seconds, 9.150 seconds, 9.150 seconds, and 9.150 seconds, respectively. The 
request A, B, C, D, and E reads from track number 0, 400, 350, 950, and 
550, respectively.
The storage system first compares the requests’ deadlines and finds that the 
earliest deadline is 09.000 seconds. Thus, it fills the set T in Step 1 with request 
A only. In Step 2, it finds that the set T only has one request. It then serves 
request A. After it finishes the service of request A, it goes back to Step 1.
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The storage system then compares the requests’ deadlines and finds that the 
earliest deadline is 09.150 seconds. It fills the set T in Step 1 with requests 
C, D, and E. In Step 2, it finds that the set T has more than one request. The 
disk heads are now staying at track number 0. The storage system finds that 
request C is the request in set T with the shortest seek distance in the outward 
direction. It thus moves the disk heads to track number 350 to serve request 
C. After it has served request C, it finds that request E is the request in set T 
with the shortest seek distance in the outward direction. It thus moves the disk 
heads to track number 550 to serve request E. After it has served request E, 
it finds that request D is the remaining request in set T. It then serves request 
E. After it has served request E, it goes back to Step 1. 
The storage system now compares the requests’ deadlines and finds that 
the earliest deadline is 09.300 seconds. Thus, it fills the set T in Step 1 with 
request B only. In Step 2, it finds that the set T only has one request. It then 
serves request B. After it has finished serving request B, it goes back to Step 
1 to continue serving any new requests. Therefore, the requests are served 
in the order A, C, E, D, and B.
Notice that the SCAN-EDF algorithm is not preemptive. While a group of 
requests in set T are being served, it will not stop even if some urgent requests 
with an earlier deadline arrive at the storage system. The algorithm only 
rebuilds the set T after all the requests in the set T have been served.
The SCAN-EDF scheduling policy can be described as a method that aligns 
the waiting requests into an order based on two criteria as shown in Figure 
16.3. The first one of the ordering criteria is the deadline time. All the re-
quests are served according to their deadlines. Urgent requests are served 
with priority. The second one of the ordering criteria is the track location of 
the data stripes being accessed by the requests. The requests with the same 
deadline are served according to their accessing track locations.

Figure.16.2..The.SCAN-EDF.algorithmFigure ��.�. The SCAN-EDF Algorithm

• Step �: Let T= set of tasks with the earliest 
deadline

• Step �: if n(T) = �, (there is only a single request 
in T), 

serve that request. 
else

let t� be the first task in T in scan direction, 
serve t�.

go to Step �.
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The SCAN-EDF scheduling method has some overheads in creating the set 
T and serving the requests in set T using the SCAN algorithm. This increases 
the complexity of the algorithm. If unidirectional SCAN scheduling is used 
instead of the bidirectional SCAN scheduling, the SCAN-EDF algorithm can 
be simplified by slightly modifying the EDF scheduling method. 
Let Di be the deadline of the ith waiting request and let Ti be the track number 
of the data stripe being accessed by the ith waiting request. The deadline of 
the ith waiting request can be modified to

= Di + f(Ti)        (16.1)

where the function f(.) converts track number of the ith request into a small 
negative value. Thus, the deadlines of the requests are slightly moved ahead. 
The requests with the same deadline will be differentiated by their track num-
bers such that the requests are served in the unidirectional SCAN order. 
Many functions can be chosen as f(.) to modify the deadlines. The modi-
fied deadlines of the ith and the jth waiting requests should be served in the 
unidirectional SCAN order if Di = Dj. If tracks with small track numbers are 
served first, then

f(Ti) < f(Tj) if (Ti < Tj), ∀i,j     (16.2)

Figure.16.3..SCAN-EDF.scheduling.policy
Figure ��.�. SCAN-EDF Scheduling Policy
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In addition, the value of f(Ti) has to be small enough so that the modified 
deadlines would not swap the service order of any two requests with differ-
ent deadlines. That is,

Di + f(Ti) < Dj + f(Tj) if (Di < Dj), ∀i,j    (16.3)

Thus, the requests are served according to their deadlines if their deadlines 
are different.
For example, the deadlines are originally specified to the number of seconds. 
The storage system chooses the modification function as

1)(
max

−=
T
TTf i

i

       (16.4)

where 0 ≤ Ti < Tmax and Tmax = 1000. Four requests A, B, C, and D have ar-
rived and they are waiting in the queue.

1. Request A reads track number 347 and it should be served before 09.000 
seconds.

2. Request B reads track number 113 and it should be served before 09.000 
seconds.

3. Request C reads track number 256 and it should be served before 10.000 
seconds.

4. Request D reads track number 851 and it should be served before 09.000 
seconds.

The deadlines are modified as follows:

1. For request A, the function f(Ti) = -0.653 sec. Thus, the new deadline 
is 08.347 seconds.

2. For request B, the function f(Ti) = -0.887 sec. Thus, the new deadline 
is 08.113 seconds.

3. For request C, the function f(Ti) = -0.744 sec. Thus, the new deadline 
is 09.256 seconds.
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4. For request D, the function f(Ti) = -0.149 sec. Thus, the new deadline 
is 08.851 seconds.

The requests with their new deadlines are then scheduled using the simpler 
EDF policy. Thus, the requests are served in the SCAN-EDF order of B, A, 
D, and C. Thus, the SCAN-EDF scheduling order is achieved with a simpler 
implementation.
The SCAN-EDF scheduling method serves the requests according to their 
deadlines first. If all requests have different deadlines, the SCAN-EDF schedul-
ing method becomes the same as the EDF scheduling method. If all requests 
have the same deadlines or they do not have any deadlines, the SCAN-EDF 
scheduling method is the same as the SCAN scheduling method.

Application.Note:.The efficiency of the SCAN-EDF.method.depends.on.the.
number.of.requests.with.the.same.deadline.being.served.together.using.the.
SCAN.scheduling..In.order.for.the.SCAN-EDF.scheduling.method.to.be.ef-
ficient, some requests need to have the same deadline to be grouped together. 
Two.options.may.be.used.to.increase.the.number.of.requests.that.are.served.
together.as.a.group.using.the.SCAN.scheduling..
First, the deadlines may be specified with a coarser granularity to increase 
the.chance.that.requests.have.the.same.deadline..If.the.deadlines.are.speci-
fied at fine granularity, it is unlikely that the deadlines would be the same. 
When.the.granularity.of. the.deadlines.is.coarse,.similar.deadlines.would.
become.the.same.deadline..As.a.result,.more.requests.would.have.the.same.
deadline..However,.the.granularity.of.the.deadlines.should.not.be.too.coarse.
since.the.deadlines.may.not.be.easily.met..Therefore,.the.deadlines.should.be.
specified at medium granularity to strike a good balance between efficiency 
and.continuity.guarantee.
Second,.the.deadlines.of.the.requests.may.be.moved.in.advance..Some.re-
quests.with.early.deadlines.may.be.advanced.with.shorter.times,.while.other.
requests. with. later. deadlines. may. be. advanced. with. longer. times.. If. the.
storage.system.can.serve.all.these.requests.with.the.new.advanced.deadline,.
these requests can thus be served more efficiently according to the storage 
location.of.their.accessing.data.stripe..The.SCAN-EDF.scheduling.method.
can.move.the.requests’.deadlines.dynamically.according.to.the.number.of.
waiting.requests.
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Similar to the EDF scheduling method, the SCAN-EDF serves requests with 
short deadlines with priority. Thus, it is also unfair to the well behaving 
streams that schedule their requests ahead of time.

Group.Sweeping.Scheduling

Multimedia streams send requests to the storage system. These requests belong-
ing to different concurrent streams wait for service in the waiting queue of the 
storage system. Each request has its own deadline. The storage system should 
serve the concurrent streams efficiently and fairly. Homogeneous streams 
send requests in the same period of time. The storage system can serve one 
request of each stream in every period. The homogeneous concurrent streams 
are treated fairly when they are served in this interleaving manner.
The group sweeping scheduling method considers streams that are strongly 
periodic and strongly regular. These requests access the data stripes of the 
same size from the storage system. Instead of specifying deadlines to requests, 
it uses a smoothing buffer to assure the continuity of streams.
The GSS method divides the set of concurrent streams into a number of 
groups. Each group consists of a number of requests. The groups are served 
in round robin cycles. A stream is assigned to the same group until the stream 
ends. When a group of requests is being served, the storage system serves 
individual requests within a group consecutively. To achieve high efficiency, 
the requests within a group are served according to the SCAN algorithm 
(Chen, Kandlur, & Yu, 1993). 
The groups are served in fixed cycles. The order of groups being served is 
thus fixed. The requests within a group are not served in fixed order. In the 
previous cycle, the request belonging to a stream may be served first. In the 
next cycle, the request belonging to the same stream may be served last.
Let n be the number of concurrent streams and let g be the number of groups. 
The set of n streams are divided into g groups. There are two particular cases 
for the number of groups.

1. When g = 1, all the concurrent streams are assigned to the same group. 
Thus, the GSS method schedules requests into the order as the SCAN 
algorithm.
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2. When g = n, each stream is assigned to a different group. Thus, all the 
streams are served in round robin cycles. Thus, the GSS method sched-
ules stream requests in the fixed round robin cycles. 

Depending on the scheduling method in use, the stream may not be able to 
respond immediately after the first data stripe is received. For some sched-
uling methods, it may need to wait for an additional delay. This delay is 
called the start-up latency. When the requests are served and the data stripes 
are accessed, the scheduling method needs to store the data stripes in the 
smoothing buffers. The smoothing buffer usage also increases when the 
start-up latency increases.
If the first-in-first-out scheduling method is used, the requests are served 
according to the time of arrival in the waiting queue. Since homogeneous 
streams send requests using the same period of time, the same number of 
requests are received in the same period of time. Thus, the streams are served 
in the fixed round robin cycles. One request is served within a regular period 
of time as shown in Figure 16.4. Each stream will expect to receive one data 
stripe after every n data stripes are accessed by the storage system. Thus, 
the time interval between the consecutive requests belonging to the same 
stream is fixed. After the first data stripe is received, each stream can expect 
to receive the next data stripe after a fixed period of time. Therefore, a stream 
may start immediately after the first data stripe is retrieved.
Requests belonging to the same stream may store the data stripes in the same 
buffer. After a data stripe is accessed, it is stored in the buffer for consump-
tion. The buffer usage increases when the request is served and it decreases 
slowly until the next request is served as shown in Figure 16.4. The buffer 

Figure 16.4. The delay and buffering due to the first-in-first-out scheduling

Figure ��.�. The delay and buffering due to the First-In-
First-Out Scheduling
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Figure.16.5..The.delay.and.buffering.due.to.the.SCAN.scheduling

Figure. 16.6.. The. delay. and. buffering. due. to. the. group. sweeping.
scheduling
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Figure ��.�. The delay and buffering due to the Group 
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should not be empty before the next data stripe is accessed to maintain the 
continuity of the stream.
If the SCAN scheduling method is used, the homogeneous streams still send 
requests using the same period of time. But the storage system does not serve 
the requests following the time that the requests arrive at the waiting queue. 
It serves requests in scanning cycles. Within each scanning cycle, the disk 
heads traverse the disk surface once in each direction. The second request of 
a stream may be served as the last request in the new cycle even though the 
first request of the stream is served as the first request in the previous cycle. 
Thus, the stream can only expect one request to be served before the end 
of the scanning cycle as shown in Figure 16.5. After receiving the first data 
stripe, the stream waits for the end of a scanning cycle before it can start.
Requests belonging to the same stream may store the data stripes in the same 
buffer. After the first data stripe is accessed, it is stored in the buffer. Thus, the 
buffer usage increases when the request is served. It stays at the same level 
until the end of the scanning cycle as shown in Figure 16.5. After the stream 
has started to display, it decreases slowly. When the next request is served, 
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the buffer usage increases again. The buffer should not be empty before the 
next data stripe is accessed to maintain the continuity of the stream. If two 
data stripes are retrieved consecutively, the buffer usage may increase to a 
level close to double of the data stripe size.
When the GSS method is used, the streams are divided into groups. If the 
previous request of a stream is served in a group, the next request of the same 
stream will be served in the same group. Thus, the service of all requests of 
a stream may be delayed until the end of the group that the stream belongs 
as shown in Figure 16.6. The streams can expect to receive one data stripe 
from the storage system within each service of the same group. After receiv-
ing the first data stripe, the stream waits for the completion of a group before 
it can start.
Requests belonging to the same stream may store the data stripes in the same 
buffer. After the first data stripe is accessed, it is stored in the buffer. Thus, the 
buffer usage increases when the request is served. It stays at the same level 
until the end of the group as shown in Figure 16.6. After the stream starts 
to display, it decreases slowly. When the next request is served, the buffer 
usage increases again. The buffer should not be empty before the next data 
stripe is accessed to maintain the continuity of the stream.
Depending on the number of groups, the start-up latency and the buffer size 
are affected. We shall find the optimal number of groups below. The smooth-
ing buffer should be large enough to store one data stripe for each stream 
and the data stripes accessed by one group of request. Thus, the size of the 
smoothing buffer in the GSS method, Bb , is found as

b m
nB n kB
g

  
= +  

          (16.5)

Table.16.1..Parameters.in.GSS
Parameter Description

T Disk rotation time

sg Seek time across groups

sr Seek time of requests within a group

Δ Playback time of one block of data

B Number of blocks in a track
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where k is the size (in number of blocks) of each data stripe and Bm is the 
size (in bytes) of a block.

Since the group of requests is served using the SCAN scheduling method, the 

request within a group can be served with a short seek time, sr. Each request 

transfers k blocks of data and each track stores b blocks. Thus, each request 

transfers 




b
k  tracks of data. Assuming that data are transferred in tracks, the 

rotational latency and the data transfer time of each request is found as

Tl
b
k









+



=

where l is a small correction term for the extra overheads and l is between 0 
and 1. Since the first and the last blocks of a data stripe may cross the track 
boundary, the number of disk rotations could be increased by one. 
The access time of each request is thus equal to

Tl
b
ksr 








+



+=

The first request in each group is served with a different seek time. Thus, 
the seek time of the first request of each group is sg. The cycle time to serve 
n requests in g groups, Tc, can be found as

c r g
kT n l T ns gs
b

  = + + +    

Since the playback time of each stream should be longer than or equal to the 
cycle time, we have
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c

r g

k T

kk n l T ns gs
b

δ ≥

  ⇔ δ ≥ + + +    

If l = 0, k is multiple of b, and (bδ-nT)>0, we can solve for k to get

r gns gs
k b

b nT
+ 

≥  δ − 

From the above equation, we can see that the buffer size, Bb, increases with 
the data stripe size, k, in number of blocks. The data stripe size should be 
reduced to its smallest value so that the smoothing buffer is the smallest. 
An optimal value of data stripe size, k, can be found using the optimal data 
stripe size algorithm below. 

Optimal Data Stripe Size Algorithm

1. Initially setting k to = r gns gs
b

b nT
+ 

 δ − 
.

2. If (k - 1) satisfies the timing constraint, set k = k - 1 and repeat this 
step.

3. Otherwise, the optimal k is reached.

In addition, the optimal number of groups can be found using the optimal 
groups algorithm below.

Optimal Groups Algorithm

1. For g =1 to n, repeat the above algorithm to find the optimal k and its 
corresponding Bb.

2. Compare all these buffer sizes to find the optimal group size.
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The group sweeping scheduling policy can be described in the model as 
shown in Figure 16.7. The waiting requests are first grouped into service 
groups. The waiting requests within each group are scheduled. The service 
order of these requests is aligned according to the track locations of the ac-
cessing data stripes.
The group sweeping scheduling method is designed for the homogeneous 
streams. Since heterogeneous streams have different display periods, a peri-
odic fill policy would be required to change the period of the streams so that 
all concurrent streams can become homogeneous. The periodic fill policy 
accepts requests of the original period and outputs new requests according to 
the period of the other streams. These new requests at the new period would 
access more or less data stripes than the old requests at the original period. 
The heterogeneous streams can thus be served using the GSS policy.
The group sweeping scheduling method does not use the deadline to provide 
real-time continuity guarantees. It serves the streams in an interleaving manner 
to provide continuous data supply to the streams. The storage system serves 
one request of each stream in each cycle. As long as the cycle time is not 
longer than the playback time of each data stripe, the continuity requirement 
of the streams are not violated. Thus, the GSS method can provide real-time 
continuity guarantee to the multimedia streams.

Figure.16.7..Group.sweeping.scheduling.policyFigure ��.�. Group Sweeping Scheduling Policy
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Application.Note:.The.group. sweeping. scheduling.method. improves. the.
efficiency of serving homogeneous.streams..The.requests.in.the.same.group.
are.served.together.using.the.SCAN.scheduling..The.number.of.requests.in.a.
group.can.be.controlled.by.the.number.of.groups..When.the.number.of.con-
current.streams.drops,.the.number.of.groups.can.also.be.reduced.to.maintain.
the number of requests per group and the efficiency in serving requests. Thus, 
the.GSS method is an efficient method in serving multimedia streams.

When optimal performance is required, the GSS method can be used together 
with the region based constraint allocation. The data stripes in the same re-
gion are accessed by requests of concurrent streams in one cycle. Only one 
of the seek times across groups is not longer than the seek time across two 
regions. Other seek times across groups are not longer than seek time within 
one region. The seek time of requests within a group is not longer than the 
seek time within one region. Therefore, seek times are short and the GSS 
becomes very efficient. 

Chapter.Summary

The scheduling methods for multimedia streams are described in this chap-
ter. These scheduling methods use either serve requests according to their 
deadline or serve the stream in round robin cycle in order to provide real-time 
continuity guarantee. They all use the SCAN scheduling method to improve 
the efficiency in serving requests. These scheduling methods include the ear-
liest deadline first method, the SCAN-EDF method, and the group sweeping 
scheduling method.
The earliest deadline first scheduling method serves requests according to 
their deadlines so that the requests would not wait too long and miss their 
deadlines. Thus, the requests with short deadlines are served with priority. 
This is however unfair to the well behaving streams that send their requests 
ahead of time. 
The SCAN-EDF scheduling method serves requests with the same deadline 
in the SCAN order. It improves the efficiency of the storage system using 
the EDF scheduling method. However, it is still unfair to the well behaving 
streams that send their streams ahead of time. The SCAN-EDF method us-
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ing unidirectional SCAN can be simplified by adjusting the deadlines of the 
waiting requests. 
The group sweeping scheduling method serves groups of streams in round-
robin cycles and serves requests within each group in the SCAN order. It 
improves the efficiency of the storage system and provides real-time continuity 
guarantees to the streams. It is fair to all the streams by serving one request 
of every stream in each cycle. However, it increases the start-up latency and 
the smoothing buffer in order to implement the scheduling method.

References

Anderson, D. P., Osawa, Y., & Govindan, R. (1992). A file system for continu-
ous media. ACM.Transactions.on.Computer.Systems,.10(4), 311-337.

Chen, M. S., Kandlur, D. D., & Yu, P. (1993). Optimization of the grouped 
sweeping scheduling (GSS) with heterogeneous multimedia streams. In 
Proceedings.of.the.ACM.Multimedia.Conference (pp. 235-241).

Freeman, C. S., & DeWitt, D. J. (1995). The SPIFFI scalable video-on-demand 
system. In Proceedings.of.the.ACM.SIGMOD.International.Conference.
on.Management.of.Data (pp. 352-363).

Gemmell, D. J., Beaton, R. J., & Christodoulakis, S. (1994). Delay-sensitive 
multimedia on disks. IEEE.Multimedia,.1(4), 56-67.

Gemmell, D. J., & Christodoulakis, S. (1992). Principles of delay-sensitive 
multimedia data storage and retrieval. ACM.Transactions.on.Informa-
tion.Systems,.10(1), 51-90.

Reddy, A. L. N., & Wyllie, J. C. (1993). Disk scheduling in a multimedia 
I/O system. In Proceedings.of.the.1st.ACM.Conference.on.Multimedia 
(pp. 225-233).

Reddy, A. L. N., & Wyllie, J. C. (1994). I/O issues in a multimedia system. 
IEEE.Computer,.27(3), 69-74.



Traditional computer systems only handle disk requests individually. Mul-
timedia systems send multiple requests one after another to the disk system. 
These requests appear as a stream of requests to the storage system. These 
requests should be served with proper scheduling method so that the streams 
can continue without any problems. Thus, new scheduling methods have been 
designed to serve streams of requests for multimedia data. 
The first-in-first-out scheduling method serves requests according to their 
incoming order. It is simple and fair, but not efficient. Disk requests in mul-
timedia storage systems should be served before their deadlines are passed. 
Thus, the FIFO scheduling method is not suitable for scheduling requests of 
multimedia streams.
The SCAN scheduling method serves the waiting requests in the order of their 
accessing physical track locations. The disk heads traverse the disk surface 

Summary.to.Section.III

Disk Scheduling



and serve requests that access data on the tracks in its path. The heavy seek 
time overheads of the long seeks are shared among these requests. The av-
erage seek distance and average seek time are reduced. The storage system 
thus serves requests efficiently. 
Although the bidirectional SCAN scheduling policy is unfair to the requests 
that access data near the centre or the rim of the disk platters, the unidirec-
tional SCAN scheduling method can serve all requests fairly. However, the 
efficiency of the storage system is slightly traded off. 
We have shown that the multimedia streams have real-time continuous dis-
play requirements. The storage system should only accept streams that can 
be served without violating their continuous display requirements. Thus, the 
feasibility conditions to check whether new streams should be accepted are 
investigated. 
We have first shown the feasibility conditions to accept homogeneous streams on 
a storage system with only one storage device. After that, we have proved that 
heterogeneous streams can be accepted when their streams accessing patterns 
satisfy the feasibility conditions. Last, we have proved the general feasibility 
condition to accept heterogeneous streams over multiple storage devices.
The scheduling methods for multimedia streams are described in this chapter. 
These scheduling methods use either serve requests according to their dead-
line or serve the stream in round robin cycle in order to provide a real-time 
continuity guarantee. They all use the SCAN scheduling method to improve 
the efficiency in serving requests. These scheduling methods include the ear-
liest deadline first method, the SCAN-EDF method, and the droup sweeping 
scheduling method.
The earliest deadline first scheduling method serves requests according to 
their deadlines so that the requests would not wait too long and miss their 
deadlines. Thus, the requests with short deadlines are served with priority. 
This is however unfair to the well behaving streams that send their requests 
ahead of time. 
The SCAN-EDF scheduling method serves requests with the same deadline 
in the SCAN order. It improves the efficiency of the storage system using 
the EDF scheduling method. However, it is still unfair to the well behaving 
streams that send their streams ahead of time. The SCAN-EDF method us-
ing unidirectional SCAN can be simplified by adjusting the deadlines of the 
waiting requests. 



The group sweeping scheduling method serves groups of streams in round-
robin cycles and serves requests within each group in the SCAN order. It 
improves the efficiency of the storage system and provides real-time continuity 
guarantees to the streams. It is fair to all the streams by serving one request 
of every stream in each cycle. However, it increases the start-up latency and 
the smoothing buffer in order to implement the scheduling method.



Section.IV

Data Migration

Introduction

Storage system stores data objects on different storage devices. When these 
storage devices are of the same type, the objects may be stored and retrieved 
with similar access latency. When these storage devices are of different types, 
the objects may be stored and retrieved with different access latencies. Thus, 
the type of storage devices that contain the stored object affects the access 
latency in an accessed stored object. 
A common method to arrange the storage devices of different types is the 
hierarchical storage systems (HSS). All or most objects are stored on the 
storage devices with longer access latency. When these data objects are 
accessed, the objects are moved from these storage devices with longer ac-
cess latency to the storage devices with shorter access latency. This is called 



data migration. Similar to the chapters on disk scheduling of Part III, data 
migration on HSS also improves the performance of HSS, especially at the 
response time of request streams.
In hierarchical storage systems, data migration is the process of moving data 
from tertiary storage devices to secondary storage devices. There are three 
approaches to migrate multimedia data objects across the storage levels. 
These methods are: 

1. Staging
2. Time slicing
3. Pipelining

Three pipelining methods are used to reduce the start up latency and staging 
buffer size. They include:

1. Normal pipelining
2. Space efficient pipelining
3. Segmented pipelining

We shall explain the simple staging method which migrate data across the 
storage levels prior to using them in Chapter XVII. After that, we describe 
the time-slicing method in Chapter XVIII for low latency tertiary storage 
devices. Afterwards, we describe the pipelining methods for slow tertiary 
storage devices. The normal pipelining method is described in Chapter 
XIX. In the normal pipelining method, the sizes of the slices are minimized 
to maximize the overlapping between the displaying time and the retrieval 
time of the slices. Then, the space efficient pipelining method is described 
in Chapter XX. In the space efficient pipelining methods, the buffer size 
in accessing the slices is minimized. After that, the segmented pipelining 
method is presented in Chapter XXI. In the segmented pipelining method, 
the latency in serving interactive requests is reduced.
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Chapter.XVII

Staging.Methods

Introduction

When data are stored in the tertiary storage devices, the tape drives shall 
read them from the tapes using the input/output (I/O) operations. Due to the 
long delay in exchanging tapes, it is inconvenient to exchange a tape for each 
read/write access operation. Thus, the entire object or file is accessed from 
the tape drives well before they are being used (Federighi & Rowe, 1994; 
Kienzle, 1995; Pang, 1997). These accessed objects are temporarily stored 
in the magnetic hard disks as secondary storage level.
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Staging.Method

The simplest method to migrate data from the tertiary storage devices is 
the staging method. This method accesses an object using two stages. In 
the first stage, the entire file or object is migrated from tapes to the staging 
buffers in the disks. In the second stage, the file or object is consumed from 
the staging buffers. 
Before we start stage one, the stage buffer is checked to make sure it still 
contains the object being accessed. If the object does not exist in the stage 
buffers, the stage one is executed to migrate the object from its permanent 
storage in the tertiary storage devices. During the stage one, the file or object 
is migrated from its permanent storage on the tertiary storage device to the 
staging buffers the secondary storage devices. This copy action is illustrated 
in Figure 17.1 and performed in four steps:

1. Exchange
2. Reposition 
3. Transfer from tape to disk via memory
4. Wrap up

First, the tape drive exchanges the tape to the drive. The tape is moved from 
the cell containing the tape to a drive. If there is an existing tape in the drive, 
the old tape is first removed using the robotic arm. Then, the new tape is 
inserted in the drive using another robotic arm. We have assumed that there 
are two robotic arms in the exchange device. In the case that there is only 
one robotic arm, the robotic arm will first remove the old tape from the drive 
before it can fetch the new tape from the tape cell.
Second, the tape drive will reposition the tape to the first data block of the 
file or object. This may take a very long time depending on the position of 
the required file or object within the tape. 
Third, the tape drive will then transfer the data blocks from the tape to the 
memory. The drive reads a data block from the tape, transfers it via the I/O 
bus, the I/O processor, and the system bus to the memory. The data blocks 
in the memory are written to the stage.buffers or staging.buffers in the disks. 
The staging buffers are checked to see if enough space is available. If the 
staging buffers are full, some objects are deleted from the staging buffers to 
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release space. The program then sends I/O requests to the disk to write the 
data block to the staging buffers. The data blocks in the staging buffers are 
prevented from being deleted until they are accessed in the second stage. 
This step is repeated until all the data blocks of the object are copied to the 
staging buffers.
Last, the data blocks in the memory are erased, and the tape drive is released. 
The allocated memory or used memory buffer is released. The tape drive is 
released, and it may be used by other programs. The tapes in the drive may 
then be unloaded to load other tapes. Stage one has now completed, and the 
accessed object has been migrated from its permanent storage on the tertiary 
storage devices to the staging buffers on the secondary storage devices.
In the first stage, the object is migrated from its permanent storage on the 
tertiary storage devices to the staging buffers on the secondary storage de-
vices. During the second stage, the required blocks of data are copied from 
the staging buffers to the memory for consumption. The second stage is 
shown in Figure 17.2, and it is done in two steps:

1. Read from staging buffers 
2. Consume from memory

Figure 17.1. The first stage in the staging.methodFigure ��.�. The first stage in the Staging Method
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First, the data in the memory are read from the staging buffers in the disks. 
The staging buffers are checked for the location of the stored object. If the 
object is found, then I/O requests are sent to the disk to read the required 
data blocks from the staging buffers. Second, the data blocks in the memory 
are consumed. After the first step, the data migration is completed. The user 
program can thus consume data blocks from the memory.
The second stage continues until all data blocks are consumed. After the 
entire object is consumed and its data blocks are no longer required, the 
object in the staging buffers may then be deleted so that it could be deleted 
to release space. 
Note that the two stages access data using two different granularities. The 
first stage accesses data at a coarse granularity, and the second stage accesses 
data at a fine granularity. In the first stage, the entire object is accessed as a 
migration unit. This is to achieve an object based transfer from the tertiary 
storage devices so that the number of exchanges can be small. If the entire 
object is stored on a single media unit, only one exchange is needed to ac-
cess the entire object. 
In the second stage, the objects are accessed in an unit of data block. This can 
reduce the amount of memory usage during the consumption period. Since 

Figure.17.2..The.second.stage.in.the.staging.methodFigure ��.�. The second stage in the Staging Method
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the storage space on the memory is more expensive than the storage space 
on the disks, the disk space should be used in place of the memory space if 
possible. In addition, local disks can often deliver data at higher data rate 
than the stream consumption data rate. The data blocks can stay on the stag-
ing buffers until the object is no longer required.
When tertiary storage devices are used, the multimedia objects are accessed 
only once from the tertiary storage devices. They go through the disks twice, 
once for writing to the staging buffers and once for reading back from the 
staging buffers. They go through the memory and the system bus four times, 
the first time when the object is read from the tertiary storage devices, the 
second time when the object is writing to the staging buffers, the third time 
when the object is read from the staging buffers, and the fourth time when 
the object is being consumed. The multimedia objects also pass through the 
I/O processor and the I/O bus three times. Apart from the high latency of the 
tertiary storage devices, the workloads on the disks, the memory, the system 
bus, the I/O bus, and the I/O processor could become the bottleneck of the 
storage system that limits its maximum throughput.

Performance.of.the.Staging.Method

In order to understand the performance of the staging method, we use the 
performance model of the tape drives in the previous chapter. That is, the 
access time to access an object from the tape drive is

X
= ω+α +

γ

where ω is the exchange time, α is the reposition time, γ is the tape transfer 
rate, and X is the data size.
The two stages are considered together along the time line as illustrated in 
Figure 17.3. In a double buffers arrangement, the tape drive can start to transfer 
the next data block while the disk is writing the previous data block. After 
the first data block is accessed from the tape to memory in memory buffer 
Mem1, the tape drive can start to read the second data block into memory 
buffer Mem2 while the disk is writing the first data block from Mem1. Since 
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the access latency of the tapes is higher than the access latency of the disks, 
the access time of each disk access is shorter than the access time of a tape 
access. When the access time of the disks is occasionally long, more memory 
buffers may be used to cater for the variations in access time. 
The time to write the first data block to disks is thus hidden within the time 
to read the second data block from tape. Similarly, the time to write the 
second data block to disks is hidden within the time to read the third data 
block from tape, and so on. After the last data block is accessed from tape, 
the disk writes the last data block. The access time of this data block is thus 
revealed as part of the time to complete stage one. 
After stage one is completed, the data are retrieved from the staging buffers 
to memory in stage two. At least one data block must be retrieved from the 
staging buffers before the object stream can start to display. Thus, the start-
up latency in using the staging method is

2* mBX s L 
= ω+α + + + + γ β       (17.1)

where s is the seek time, L is the rotational latency, Bm is the media block 
size, and β is the data transfer rate of the disks.
Since the time to write one data block to the disks is much shorter than the 
time to read an object from the tape, the access time of the two data blocks 
to/from the disks can be ignored. The time spent in the second stage is com-
paratively short, and it also overlaps with the playback time of the object. 

Figure.17.3..The.two.stages.in.transferring.data.using.the.staging.method

Figure ��.�. The two stages in transferring data using 
the Staging Method
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Therefore, the access time is dominated by the time spent reading the object 
from the tape in stage one. Therefore, the access time of an object from the 
tape drive is approximately equal to

X
= ω+α +

γ

For example, consider an object of 1GB on tape with transfer rate 5 MB/s and 
exchange using 10 seconds. Assume that the object is at the position of the 
head after loading. If the contiguous method is used to store the objects and the 
first object on the tape is being accessed, the access time of the object is

= 10 + 0 + 1*1024/5 seconds
= 214.8 seconds. 

The access time is thus longer than 3 minutes. 

Alternatively, if the object is striped over four tape drives, it takes longer 
time to exchange all four tapes for four drives. The access time is

= 10*4 + 0 + 1*1024/4/5 seconds
= 91.2 seconds.

The required time is now more than 1.5 minutes.

If the object is spread over four drives using the triangular placement method. 
During the first 40 seconds of exchange time, the four drives will perform 
the following actions:

1. The first drive may transfer 30 seconds of data after exchanging.
2. The second drive waits for 10 seconds while the robotic arms are serving 

the first drive. Then, it can transfer 20 seconds of data after exchanging.
3. The third drive waits for 20 seconds while the robotic arms are serving 

the first and second drives. Then, it can transfer 10 seconds of data after 
exchanging.
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4. The fourth drive waits for 30 seconds while the robotic arms are serving 
the other drives. It does not have any time to transfer data.

The amount of data that can be transferred within the first 40 seconds is

= 30 + 20 + 10 
= 60 seconds of transfer time.

Therefore, there are 5 * 60 = 300 MB of data being transferred within the first 
40 seconds. The remaining data are transferred by all four drives in parallel. 
Thus, the access time is

= 10*4 + 0 + (1024-300)/4/5 
= 76.2 seconds.

Therefore, the access time is slightly above one minute using the triangular 
placement method.

Chapter.Summary

The staging method is simple. Using the staging method, the entire object is 
available after staging. The program can freely access any part of the required 
object after waiting for the time required to migrate the object to the staging 
buffers. The staging method is also flexible. The access time from tertiary 
storage is completely separated. This is suitable for any type of data on any 
tertiary storage systems.
Unfortunately, the time spent in waiting for stage one to complete can be 
very long. This leads to a very slow response to even the simplest request. 
Since the entire object is stored on the staging buffers during the complete 
consumption time period, this wastes disk space for a considerably long time. 
In addition, the entire object is written to and read back from the disks, and 
it may unnecessarily waste disk bandwidth in migrating unused data.
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Chapter.XVIII

Time.Slicing.Method

Introduction

Tertiary storage devices provide huge storage capacity at low cost. Multi-
media objects stored on the tertiary storage devices are accessed with high 
latency. Despite the high access latency, some tertiary storage devices are 
able to deliver data at high throughput.
The time slicing method is designed to reduce the start-up latency in access-
ing multimedia objects from tertiary storage devices. The start-up latency is 
lowered by reducing the amount of data being migrated in stage one of the 
staging method being described in the last chapter.
In order to support the time-slicing method, the tertiary storage devices 
should have the ability to deliver data at high throughput. The tertiary storage 
devices that cannot deliver data at sufficiently high throughput; the start-up 
latency cannot be reduced.



Time Slicing Method   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

Time.Slicing.Method

The time slicing method assumes that data of an object is consumed from the 
beginning to the end. The object is divided into time slice units such that each 
time slice is a continuous segment of the object. Each time slice is consumed 
for a period of time. The later slices are not required while the earlier slices 
are being consumed. Thus, the later slices can be retrieved from the tertiary 
storage later after the early slices are being displayed. 
When an object is being accessed, the object request is split into several tasks. 
The number of tasks is equal to the number of time slices of the object. Each 
task accesses a time slice of the object. The first task accesses the first time 
slice. The second task accesses the second time slice, and so on. The entire 
object is thus accessed by the tasks. 
After the first time slice is migrated to the staging buffers on disks, the object 
can start to display the first slice. As long as the second time slice is retrieved 
before the first time slice has finished displaying, the object can continue to 
display. If the tertiary storage device changes the tape to serve another object 
while the first time slice is being displayed, the storage system can start to 
serve the other object at an earlier time (Lau, Lui, & Wong, 1995).
Consider that the object streams are homogeneous and the tape drive band-
width is between m to m+1 times of the data consumption rate of the objects, 
where m > 1. The tertiary storage device can serve the n object requests in 
fixed round robin cycles, where n ≤ m. Each object request is split into m 
tasks such that every task accesses only one time slice for every object. 
Unlike the staging method, the streams start to display after the first time slice 
of the object is accessed. The second time slice should be retrieved before 
the first time slice has finished displaying. The third time slice should be re-
trieved before the second time slice has finished displaying and so on. Thus, 
the later parts of the objects are retrieved from the tertiary storage devices 
while the earlier parts of the objects are being consumed. 
Since the tape drive bandwidth is at least m times of the data consumption 
rate of the objects, the tape drive can access m time slices before each object 
has displayed one time slice. Since the tasks are served in round robin cycles, 
there are at most n-1 tasks between two tasks of the same object request. 
These other tasks access the time slices of other objects. The tertiary storage 
system thus serves one task in every n tasks being served. It accesses one 
time slice of an object in every n time slices being accessed. 
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For example, we consider two objects X and Y are stored on the tapes of 
a tertiary storage system. The storage system has only one tape drive. The 
tape drive bandwidth is more than twice the data consumption rate of each 
object. The object X is divided into time slices X1 and X2 such that X1 can 
display for half of the display time of object X. Similarly, the object Y is 
divided into time slices Y1 and Y2 such that Y1 can display for half of the 
display time of object Y.
Two requests for X and Y have arrived at the waiting queue of the storage 
system. The request for each object is divided into two tasks. Request for 
object X is divided into two tasks such that the first task accesses time slice 
X1, and the second task accesses time slice X2. Similarly, the request for 
object Y is divided into two tasks such that the first task accesses time slice 
Y1 and the second task accesses time slice Y2.
The storage system accesses both objects X and Y in an interleaving manner 
as illustrated in Figure 18.1. It first serves the first task of object X to access 
the time slice X1. After the first task of object X has completed, the storage 
system serves the first task of object Y to access the time slice Y1. After the 
first task of object Y has completed, the storage system serves the second 
task of object X to access the time slice X2. After the second task of object 
X has completed, the storage system serves the second task of object Y to 
access the time slice Y2.
After the first time slice of object X is accessed, the stream of object X starts 
to display. After the first time slice of object Y is accessed, the stream of 
object Y starts to display. Since the tape drive bandwidth is more than twice 
of the data consumption rate of each object, the displaying time of X1 should 

Figure.18.1..Time.slicing.method

Figure ��.�. Time Slicing Method
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be longer than the retrieval time of the time slices Y1.and X2. For the same 
reason, the displaying time of Y1 should be longer than the retrieval time of 
the time slices X2.and Y2. Therefore, both streams can the necessary data to 
display continuously.

Performance

The main improvement of the time slicing method is the start-up latency of 
streams or the stream response times. Each stream starts to display after the 
first time slice of the stream is accessed from the tertiary storage system. 
Thus, the stream starts to respond with shorter time. We compare the start-up 
latency of the time slicing method with the start-up latency of the staging 
method.
Consider the scenario that n homogeneous streams arrive at an idle system 
and each stream is divided into m slices, where n ≤ m. The start-up latency 
of the ith stream is the time to retrieve i time slices from the tertiary storage 
system. Thus, the start-up latency of the ith stream using the time slicing 
method is

Si
m

 
= ω+α + γ         (18.1)

where i=1 , … , n and S is size of each object. The start-up latency of the ith 
stream using the staging method is

Si  
= ω+α + γ         (18.2)

Comparing the start up latency of the two methods, the time slicing method 
reduces the response time of the ith stream by

( )1i m S
m
−

=
γ

        (18.3)
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In the above example, stream X starts to display object X after retrieving X1 
only and the stream Y starts to display object Y after retrieving Y1 only. If 
both streams X and Y arrive at an idle system, then the start-up latency of 
stream X using the staging method is

xS
= ω+α +

γ

where Sx is the size of object X. The start-up latency of stream X using the 
time slicing method is

2
xS

= ω+α +
γ

Thus, the start-up latency of stream X is reduced by

2
xS

=
γ

In addition, the start-up latency of stream Y using the staging method is

2 2 x yS S+
= ω+ α +

γ

where Sy is the size of object Y. The start-up latency of stream Y using the 
time slicing method is

2 2
2

x yS S+
= ω+ α +

γ

Thus, the start-up latency of stream Y is reduced by
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2
x yS S+

=
γ

Since the tape drives need to access objects from concurrent streams, the 
exchanger would switch tapes when a different slice is accessed. Thus, the 
number of tape switches increases from once per object to once per slice. 
The extra tape switching overheads are incurred except when both objects 
reside on the same tape. 
Using the time slicing method, the tape drive uses more time in serving each 
request. The service time of n streams increases. The access time to serve n 
streams in the staging method is

Sn 
= ω+α + γ 

However, the access time to serve n streams in the time slicing method is 

* * Sm n
m

 
= ω+α + γ 

Thus, the access time to serve n streams is increased by

( )( 1)* *m n= − ω+α

In the above example, the service time of the two streams X and Y in the 
staging method is the time to access both objects X and Y. This is also equal 
to the start-up latency of stream Y. Thus, the total service time of the two 
object requests in the staging method is

2 2 x yS S+
= ω+ α +

γ
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The total service time of the two object requests using the time slicing 
method is

2* 2*
2 2

4 4

yx

x y

SS

S S

  
= ω+α + + ω+α +  γ γ   

+
= ω+ α +

γ

Thus, the total service time of the two object requests is increased by

2 2= ω+ α

In the time slicing method, only the beginning part of the objects is accessed 
prior to consumption. If a stream is canceled in the middle of consumption, 
the access stream is removed. The tape library no longer retrieves the rest of 
the objects. Thus, the time slicing method may save workloads on the tertiary 
storage system in such situations.

Application.Note:.The.time.slicing.method.is.a.method.to.reduce.the.re-
sponse.time.of.staging..This.method.is.applicable.only.when.the.tape.drive.
bandwidth.is.at.least.twice.of.the.data.consumption.rates.of.objects..That.is,.
time.to.retrieve.two.objects.is.shorter.than.the.time.to.display.each.object..
The.time.slice.method.has.been.designed.for.homogeneous.streams.only..It.
is.necessary.to.expand.it.to.the.heterogeneous.streams.environment.for.more.
flexible and practical systems.

Chapter.Summary

The time slicing method accesses objects at the unit of slices instead of 
objects. It reduces the start-up latency in accessing objects from the tertiary 
storage devices. Streams can start to respond at an earlier time. It also saves 
tape drive bandwidth if some streams are canceled when objects are canceled 
in the middle of consumption. Unfortunately, extra tape switching overheads 
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are incurred unless all concurrent objects reside on the same tape. The service 
time in accessing objects is however increased.
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Chapter.XIX

Normal.Pipelining

Introduction

Multimedia objects can be stored on tertiary storage devices to provide large 
storage capacity at low cost. The staging method retrieves the whole objects 
to the staging buffers prior to consumption. Thus, the start-up latency is high. 
The time slice method being described in the last chapter reduces the start-up 
latency only when the tertiary storage bandwidth is higher than double of the 
displaying data rate of the object.
However, if the tertiary storage bandwidth is below double of the data con-
sumption rate of the object, then we can only stage the object prior to using 
it. The pipelining methods aim at minimizing the start-up latency when the 
tertiary storage bandwidth is not higher than the data consumption rate of 
the objects. The pipelining methods are used to reduce the start-up latency 
and staging buffer size.
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In the normal pipelining method, the sizes of the slices are minimized to 
maximize the overlapping between the displaying time and the retrieval 
time of the slices. In the space efficient pipelining methods, the buffer size 
in accessing the slices is minimized. In the segmented pipelining method, 
the latency in serving interactive requests is reduced.
The normal pipelining method is described in this chapter. The space efficient 
pipelining method and the segmented pipelining method are presented in the 
following two chapters.
We shall describe the objective of the normal pipelining method. Then, the 
bounds on the sizes of the slices are shown. After that, the start-up latency 
and the minimum size of the first slice are shown. The reduction in the start-
up latency using the normal pipelining method is presented.

The.Normal.Pipelining.Method

The normal pipelining method splits the objects and retrieves the objects 
while displaying the object. Its objective is to maximize the overlapping 
time between the retrieval time and the displaying time. Its approach is to 
retrieve only sufficiently large front part of the object to start the stream, and 
overlap the retrieval time of the rest with the displaying time of the object 
(Wang, Hua, & Young, 1996).
The normal pipelining method considers the condition that the data transfer 
rate of the tertiary storage device is lower than the displaying rate of the 
object. It assumes that the data of the object are consumed at linearly with 
the displaying of the object. Since each object is considered separately, the 
streams can be heterogeneous. 
The normal pipelining method divides each object into a sequence of n+1 
slices S0, S1, … , Sn. Its idea is to control the size of each slice so that the 
display time of a slice Si is longer than the time to retrieve the next slice Si+1, 
where 0 ≤ i ≤ n-1. The normal pipelining method retrieves and displays the 
object as shown in Figure 19.1. The tertiary storage device first retrieves S0. 
The stream starts to display the object after the slice S0 is retrieved. Then, 
it retrieves S1 during the time that the stream is displaying S0. The tertiary 
storage device should have retrieved the next slice S1 before the stream has 
finished displaying S0. After the tertiary storage device has retrieved S1, it 
continues to retrieve the next slice S2. When the stream has displayed S0, the 
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next slice S1 is ready. Thus, the stream can continue to display the slice S1 and 
so on. Thus, the stream is supplied with slices of data so that it can display 
the entire stream continuously.
Let γ be the data transfer rate of the tertiary storage device and δ be the data 
consumption rate of the objects. The production consumption rate (PCR) is 
defined as the ratio between the transfer rate of the tertiary storage device and 
the data consumption rate of the object. Let ρ be the production consumption 
rate of an object stored on a tertiary storage device. Thus, we get

γ
ρ =

δ
         (19.1)

As the transfer bandwidth of the tertiary storage device is lower than the data 
consumption rate of the objects, we have

1
γ ≤ δ
⇒ ρ ≤

        (19.2)

Let Xi be the size of the ith slice, Si, where 0 ≤ i ≤ n. The time to access the 
first slice, S0, is

0X
= ω+α +

γ
        (19.3)

where ω is the exchange time and α is the reposition time. 

Figure. 19.1.. Overlapping. time. in. retrieving. and. displaying. slices. of. a.
stream

Figure ��.�. Overlapping time in retrieving and 
displaying slices of a stream
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When the object is stored contiguously on the same media unit, the time to 
access the ith slice, Si, is

,        1, 2,...,iX i n= =
γ       (19.4)

The time to display the ith slice, Si, is

,         0,1, 2,...,iX i n= =
δ       (19.5)

Since the time to display the ith slice is longer than the time to retrieve the 
(i+1)th slice, we have

1

1

1

        1, 2,..., 1

        1, 2,..., 1

        1, 2,..., 1

i i

i i

i i

X X i n

X X i n

X X i n

−

−

−

≤ = −
γ δ

γ
⇔ ≤ ∗ = −

δ
⇔ ≤ ρ∗ = −      (19.6)

We substitute the value of Xi-1 into the equation of Xi to get

( )1 2

2
2

i i i

i i

X X X

X X
− −

−

≤ ρ∗ ≤ ρ∗ ρ∗

⇒ ≤ ρ ∗       (19.7)

Repeating the above substitutions, we get

2 1
1 2 1 0

0

...

      for   1, 2,...,

i i
i i i

i
i

X X X X X
X X i n

−
− −≤ ρ∗ ≤ ρ ∗ ≤ ≤ ρ ∗ ≤ ρ ∗

⇒ ≤ ρ ∗ =    (19.8)

Therefore, the sizes of the slices are bounded above by the size of the first 
slice. Conversely, the size of the first slice is also bounded below by the size 
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of other slices. Thus, we get

0 ,       for   1, 2,...,i
i

XX i n≥ =
ρ      (19.9)

From the above two equations, we can see that if ρ is less than 1, the sizes 
of the slices decrease monotonically. If ρ is equal to 1, the sizes of all slices 
may decrease monotonically or they may be the same. 
When we sum over all values of i from 0 to n, we get

1 1

0
1 1

0
1 1

*
n n

i
i

i i
n n

i
i

i i

X X

X X

− −

= =

= =

≤ ρ

⇔ ≤ ρ

∑ ∑

∑ ∑
       (19.10)

We add the term X0 to both sides of the inequality to get, 

( )

0 0 0
1 1

0
0 0

0
0

1 ...

n n
i

i
i i

n n
i

i
i i
n

n
i

i

X X X X

X X

X X

= =

= =

=

+ ≤ + ρ

⇔ ≤ ρ

⇔ ≤ +ρ+ +ρ

∑ ∑

∑ ∑

∑
     (19.11)

The left hand side of the inequality is the total sum of the slice sizes. It is 
thus equal to the size of the object. The right hand side of the inequality is 
the sum of a geometric series. If ρ is less than or equal to 1, then we get
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1

0
1

1

n

X X
+ −ρ

≤  −ρ         (19.12)

or

0 1

1
1 nX X +

 −ρ
≥  −ρ         (19.13)

where X is the size of the object. 
In addition, if the production consumption ratio, ρ, is greater than or equal to 
1, then the tape transfer rate is higher than the data consumption rate. As the 
data block’s displaying time is longer than its retrieval time, we may just use 
the same size to all the slices. In order to minimize the start-up latency, this 
size should be set to the size of one data block. Thus, we have established a 
lower bound on the size of the first slice, X0, based on the size of the object, 
the number of slices, and the production consumption ratio when the produc-
tion consumption ratio is less than 1. 
As shown in Figure 19.2, the retrieval time of the second slice to the last 
slice overlaps with the displaying time of all except the last slice. The non-
overlapping time consists of the retrieval time of the first slice, S0, and the 
displaying time of the last slice, Sn. Thus, it is necessary to minimize the size 
of the first slice and the size of the last slice to optimize the benefits of the 
normal pipelining method.
In order to supply the data with continuity, the time to display the sequence 
{ S0, S1, … , Si-2 , Si-1 } should be longer than the time to materialize the se-
quence { S1, S2, … , Si-1 , Si }, for i = 1, 2, … , n. Thus, we have

0 11 1 2

0 1 1 1 2

... ... ,        1, 2,...,

... ... ,        1, 2,..., .

i i

i i

X X XX X X i n

X X X X X X i n

−

−

+ + + + ≥ + + + =
δ δ δ γ γ γ

+ + + + + +
⇔ ≥ =

δ γ
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In particular, when i = n, the data consumption time of the sequence {S1, S2, 
… , Sn} is longer than the displaying time of {S0, S1, … , Sn-1}. It is equivalent 
to say that the data consumption of all but the first slice eclipses the display-
ing time of all but the last slice. Thus, we have

( )

( )
( )

( )
( )

0 1 1 1 2

0

0

0

0

0

0

... ...

1 .

n n

n

n

n

n

n

n

X X X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X

−+ + + + + +
≥

δ γ
− −

⇔ ≥
δ γ

γ
⇔ − ≥ −

δ
⇔ − ≤ ρ −

⇔ −ρ − ≤

⇔ ≥ −ρ −

⇔ ≥ −ρ +ρ     (19.14)

The size of the first slice is bounded below by a function of the object’s size, 
the production consumption ratio, and the size of the last slice.
The start-up latency to display the object using the normal pipelining method 
is the time to retrieve the first slice, X0, and it is equal to

0X
= ω+α +

γ         (19.15)

Figure.19.2..Reducing.slice.sizes.in.the.normal.pipelining.method

Figure ��.�. Reducing slice sizes in the normal 
pipelining method
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Thus, the reduction in the start-up latency using the pipelining method is

0X X−
=

γ         (19.16)

To optimize the start-up latency of the normal pipelining method, the size of 
the first slice should be minimized. Thus, the size of S0 needs to be as small 
as possible. To achieve this, the last slice, Sn, must be as small as possible. 
As the slices are retrieved from the tertiary storage devices in integral number 
of data blocks, the smallest size of a slice is one data block. Thus, we have

( )0 1X X≥ −ρ +ρ        (19.17)

Therefore, the minimum size of the first slice is approximately equal to 

( )1X≈ −ρ         (19.18)

The start-up latency to display the object using the staging method is

0X
= ω+α +

γ

The start-up latency to display the object using the normal pipelining method 
is the time to retrieve the first slice, X0, and it is equal to 

0X
= ω+α +

γ         (19.19)

Therefore, the normal pipelining method minimizes the start-up latency and 
the start-up latency is reduced by
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0X X−
=

γ         (19.20)

The normal pipelining method copies only the minimally sufficient size of 
the object prior to consuming it. When the sufficiently large fraction of the 
object is copied, the stream can start to display the object while the tertiary 
storage device continues to retrieve the rest of the object. Therefore, the 
normal pipelining method minimizes the start-up latency in the low tertiary 
bandwidth environments.

Application.Note:.A.limitation.of.the.normal.pipelining.method.is.that.only.
the.retrieved.portion.of.the.object.can.be.consumed.before.the.entire.object.
is.copied.to.the.staging.buffer..The.object.is.copied.to.the.staging.buffers.
similar.to.the.staging.method..The.object.could.stay.on.the.staging.buffers.
for.a.period.of.time.so.that.the.object.can.be.reused.or.displayed.again.from.
the.staging.buffers..

Chapter.Summary

The normal pipelining method has been explained in this chapter. The nor-
mal pipelining method finds the minimum fraction of the object before the 
stream can start to display it. It minimizes the start-up latency for the tertiary 
storage devices whose data transfer rate is lower than the data consumption 
rate of the objects. The formula to find minimum size of the first slices is 
explained in this chapter. We have also described the start-up latency in using 
the normal pipelining method.
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Chapter.XX

Space Efficient Pipelining

Introduction

Multimedia objects that are stored on tertiary storage devices enjoy the large 
storage capacity at low cost. These objects may be retrieved using staging, time 
slicing, or pipelining. The staging method retrieves the whole objects to the 
staging buffers prior to consumption at the cost of high start-up latency. The 
time slice method reduces the start-up latency at the cost of heavy switching 
overheads. The pipelining methods aim at minimizing the start-up latency 
when the tertiary storage bandwidth is not higher than the data consumption 
rate of the objects. Three pipelining methods are used to reduce the start-up 
latency and staging buffer size:
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1. Normal pipelining
2. Space efficient pipelining
3. Segmented pipelining

In the normal pipelining method, the sizes of the slices are minimized to 
maximize the overlapping between the displaying time and the retrieval time 
of the slices. In the space efficient pipelining (SEP) methods, the buffer size 
in accessing the slices is minimized. In the segmented pipelining method, 
the latency in serving interactive requests is reduced. 
We have described the normal pipelining method in the previous chapter. The 
space efficient pipelining method is explained in this chapter. The segmented 
pipelining method is presented in the next chapter. In this chapter, the basic 
space efficient pipelining algorithm is first described in the next section. 
Next, the buffer replacement policies are explained before this chapter is 
summarized.

The Basic Space Efficient Pipelining Algorithm

The space efficient pipelining method has two objectives:

1. Reduce staging buffer size
2. Hide the start-up latency

The space efficient pipelining algorithm reduces the start-up latency by caching 
the beginning part of the objects on the secondary storage. It reduces the stage 
buffer size by re-cycling the disk space (Wang, Hua, & Young, 1996).
The space efficient pipelining method can be used in the following condi-
tions:

1. Objects are stored on tapes or CD with low bandwidth.
2. Disk space is available to store temporary data.
3. Objects are retrieved for display purpose only.
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Similar to the normal pipelining method, the space efficient pipelining method 
divides each object into a sequence of n+1 slices, {S0, S1, … , Sn}. The first 
slice, S0, of an object is called the head of the object and other slices, includ-
ing S1, S2, to Sn, of the object are called the tail of the object (Wang et al., 
1996). 
The head of objects is stored on the resident disk that can be accessed with 
low latency as shown in Figure 20.1. The head of objects is accessed from 
the disk storage directly to the memory buffer for display. If the storage space 
of the disks is insufficient to store the head of all objects, the objects with 
high popularity may be chosen to be stored. The head of other objects may 
be stored on the tertiary storage devices and accessed on demand.
The tail of the objects is stored on magnetic tapes or optical disks which have 
large storage capacity and low cost. The tail of objects is loaded on demand 
via a circular buffer on disks. Similar to the staging buffer, the circular disk 
temporarily stores the data retrieved from the tertiary storage devices. The 
name “circular disk buffer” does not mean that the disk space has any shape. 
It only indicates that the disk buffer space is allocated and it uses two point-
ers to indicate the starting position of the used area and the starting position 
of the vacant area. The buffer space switches between the “used” and “free” 
status in cycles.
As shown in Figure 20.1, the new data of the objects on the tertiary storage 
devices are read to the circular disk buffer. The free space of the circular disk 
buffer is used when data from the tertiary storage devices are stored. Data on 
the circular disk buffer are then read to the memory buffer for consumption. 
Although the circular disk buffer and the disk cache are drawn separately on 
Figure 20.1, they may reside on the same disk or separate disks.

Figure �0.�. Space Efficient Pipelining
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Figure 20.1. Space efficient pipelining
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When an object is being accessed, the storage system retrieves the object 
from both the resident disks and the tertiary storage devices. The storage 
system serves the object request and accesses the objects as illustrated in 
Figure 20.2, Figure 20.3, and Figure 20.4. 
After a new stream is accepted, the storage system starts to retrieve the object 
by performing the following actions in parallel:

1. It retrieves the head, S0, of objects from the resident disks to memory.
2. It retrieves the tail of the object from tertiary storage devices to the 

circular buffer.
3. It retrieves the tail of the object from the circular disk buffer to memory.

Although a user program only runs sequentially from the beginning to the 
end, a program may initiate several threads or tasks to run in parallel. These 
threads could check for synchronization points when necessary. In addition, 
the stream displays the object continuously when the necessary slices are 
ready. It also runs in parallel with the storage system.
The first thread accesses the head of the object directly from the resident 
disk to the memory as shown in Figure 20.2. The stream uses a memory 
buffer to control the variations in disk bandwidth. The size of the memory 
buffer is only a few data blocks and it may be much smaller than the size of 
the head. The stream starts to display after the memory buffer is filled. The 
stream continues to display the object while the head of the object is being 
retrieved from the resident disks to the memory buffer.
The second thread retrieves the tail of the object from the tertiary storage 
devices to the memory buffer via the circular disk buffer as shown in Figure 
20.3. The second slice of the object should be ready at the memory buffer 
before the head of the object has been consumed completely. It is retrieved 
in the following steps:

1. The robotic tape library or optical jukebox exchanges the required 
tape/CD to the tape/optical drive.

2. After the required tape/CD is exchanged to the drive, it immediately 
starts to retrieve the second slice, S1, from tape/CD to the circular disk 
buffer.
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Figure.20.2..The.space efficient pipelining method retrieves the head of object 
from.resident.disks.to.memory.before.displaying.the.object.

Figure.20.3..The.space efficient pipelining method retrieves the second slice 
from.tape.or.CD.to.memory.via.the.circular.disk.buffer.

Figure.20.4..The.space efficient pipelining method retrieves and displays the 
slices.from.tape.or.CD.via.the.circular.disk.buffer.
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Figure �0.�. The Space Efficient Pipelining method 
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The third thread waits until the first slice of the object, S0, is completely 
retrieved to the memory buffer. It then retrieves the second slice from the 
circular disk buffer to fill the memory. 
The time to retrieve the second slice from the tertiary storage devices to the 
circular disk buffer and the time to fill the memory buffer from the circular 
disk buffer should be shorter than the displaying time of the first slice in order 
that memory buffer the stream can continue to display the second slice after 
the first slice immediately.
While the stream is displaying the second slice, S1, of the object, two actions 
run in parallel:

1. The second slice is retrieved from the circular disk buffer to the memory 
buffer. 

2. The tertiary storage device retrieves the third slice, S2, to the circular 
disk buffer. 

The third slice should be retrieved to the circular disk buffer before the second 
slice has been consumed. The storage system then continues to retrieve the 
fourth slice from tape/CD to the circular disk buffer after the third slice is 
retrieved. After the second slice in the circular disk buffer is consumed, it is 
deleted from the circular disk buffer to release space for later slices.
The above actions repeat for every slice of the object as follows. While the 
stream is displaying the ith slice, Si, of the object, two actions run in paral-
lel:

1. The ith slice, Si, is retrieved from the circular disk buffer to the 
memory buffer. 

2. The tertiary storage device retrieves the next slice, Si+1, to the circular 
disk buffer. 

The next slice should be retrieved to the circular disk buffer before the ith 
slice has been consumed. The storage system then continues to retrieve the 
(i+2)th slice, Si+2, from tape/CD to the circular disk buffer after the (i+1)th 
slice, Si, is retrieved. After the ith slice, Si, in the circular disk buffer is con-
sumed, it is deleted from the circular disk buffer to release space. 
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Therefore, the circular disk buffer contains at least two slices. While the 
storage system is retrieving the ith slice from and storing the (i+1)th slice, 
Si+1, to the circular disk buffer, the circular disk buffer contains the ith and 
the (i+1)th slices, that is Si and Si+1. We shall find the size of the circular disk 
buffer and the start-up latency in the next section.

Circular.Buffer.Size.and.Start-Up.Latency

Let Xi be the size of the ith slice, Si. The storage space on the resident disks 
for an object is 
= X0.

From last chapter, we have

X0 ≥ X(1 – ρ) + ρ       (20.1)

and

X0 ≈ X(1 – ρ)        (20.2)

where X is the size of the object and ρ is the production consumption ratio 
of the object on the tertiary storage devices. Therefore, the minimum size 
amount of storage space on the resident disks for an object is approximately 
equal to

≈ X(1 – ρ)        (20.3)

The circular disk buffer needs to contain the two consecutive largest slices. 
If the production consumption ratio, ρ, is less than or equal to 1, the circular 
disk buffer is the largest when it is storing the two slices, S1 and S2.
Thus, the size of the circular disk buffer is found as

= X1 + X2
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Since Xi ≤ ρi * X0 and the overlapping is maximized when

Xi = ρi * X0        (20.4)

Thus, the size of the circular disk buffer is

= ρX0 + ρ2X0
= ρ(1 + ρ)X0
≈ ρ(1 + ρ)(1 – ρ)X
≈ρ(1 – ρ2)X        (20.5)

Therefore, the size of the circular disk buffer is approximately equal to ρ(1-
ρ2)X.
Since the stream starts to display immediately after the head of the object is 
copied to the memory buffer, this is very small when compared to the start-up 
latency in the staging method or the normal pipelining method. Thus, it hides 
the start-up latency by keeping the head of the object resident on disks.

Buffer.Replacement.Policies

There are three buffer replacement policies available for the space efficient 
pipelining method (Wang et al., 1996). They are:

• The basic policy
• The shrinking buffer policy
• The space stealing policy

The basic policy uses the largest circular buffer until display finishes. It reuses 
the circular buffer to store the tail part of the objects. The shrinking buffer 
policy reduces the circular buffer size after a slice is displayed. It will use 
the buffer space more efficiently. This is particularly useful when the buffer 
constraint is tight. 
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While the storage system is retrieving the ith slice from and storing the (i+1)th 
slice, Si+1, to the circular disk buffer, the circular disk buffer contains the ith 
and the (i+1)th slices, that is Si and Si+1. If the ith slice, Si, and the (i+1)th 
slice, Si+1, are stored on the circular disk buffer, the size of the circular disk 
buffer is

= Xi + Xi+1
= ρiX0 + ρi+1X0
≈ ρi(1 + ρ)(1 – ρ)X
≈ ρi(1 – ρ2)X        (20.6)

The space stealing policy uses the space containing the head part of the object 
as part of the circular buffer to reduce the space requirement. Since the head 
part of the object is not required when the tail part is being displayed, this 
policy can significantly reduce the circular disk buffer space requirement. 
As the size of the first slice is larger than the size of all other slices when 
the production consumption ratio is less than or equal to 1, the circular disk 
buffer is the largest when the second slice is being retrieved from the tape 
or CD. Thus, the size of the circular disk buffer is 

= X1
= ρX0
≈ ρ(1 – ρ)X        (20.7)

Thus, the total size of object on the resident disk and the circular disk buffer 
is

= X0 + X1
≈ (1 – ρ2)X        (20.8)

Application.Note:.Since.the.storage.space.containing.the.head.part.is.modi-
fied, the head part should be restored after the entire object is displayed. Thus, 
the.space.stealing.policy.will.increase.the.workload.in.retrieving.objects.from.
hierarchical.storage.systems.
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Chapter.Summary

The space efficient pipelining method is designed for pipelining objects from 
low bandwidth storage devices for display. It retrieves data at a rate lower than 
the data consumption rate. It keeps the front part of objects resident on disk 
cache to start a new stream at disk latency. It uses the disk space efficiently 
to handle more streams.
The basic policy reuses the circular buffer to store the later slices of the objects. 
Thus, the circular disk buffer only contains the second and the third slices. 
The shrinking buffer policy reduces the circular buffer size after a slice is 
displayed. It is particularly useful when the circular disk buffer constraint is 
tight. The space stealing policy reuses the storage space containing the head 
of the object as part of the circular buffer. However, the head of the object 
should be restored after the object is displayed and this leads to increased 
workloads.
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Chapter.XXI

Segmented.Pipelining

Introduction

The robotic tape library and optical jukebox provide huge and cheap capacity 
for the storage of multimedia objects. The stored objects may be retrieved 
using staging, time slicing, or pipelining. The staging method retrieves the 
whole objects to the staging buffers prior to consumption at the cost of high 
start-up latency. The time slice method reduces the start-up latency at the cost 
of heavy switching overheads. The pipelining methods aim at minimizing 
the start-up latency.
In the normal pipelining method, the sizes of the slices are minimized to 
maximize the overlapping between the displaying time and the retrieval 
time of the slices. In space efficient pipelining methods, the buffer size in 
accessing the slices is minimized. We have already described the normal 
pipelining and the space efficient pipelining methods in the two previous 
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chapters. The segmented pipelining method to reduce the latency in serving 
interactive requests is presented in this chapter. 
Multimedia objects are usually displayed from the beginning to the end in 
video on demand systems. Interactive video-on-demand systems support 
VCR-like functions, including fast forward, rewind, pause, and resume func-
tions. Large video systems store many objects. The video systems should 
allow some searching to allow users find the desired objects. When searching 
is required, the video-on-demand system would need to provide browsing, 
jump, keyword, and content based searching. 
Unless the staging method is used, the multimedia storage system cannot 
support any VCR-like operations. The segmented pipelining method is de-
signed to provide efficient retrieval of multimedia objects with supporting 
of previews. 
In this chapter, the segmented pipelining method is first described in the 
next section. The performance of the segmented pipelining method is then 
described and analyzed before this chapter is summarized.

Segmented.Pipelining

The segmented pipelining method has three objectives:

1. It supports efficient pipelining at limited disk bandwidth.
2. It supports browsing of objects by previews.
3. It supports jumping operations to start at any segments.

The segment pipelining method uses the following techniques to store and 
retrieve the objects:

1. The object is divided into a number of independent logical segments. 
Each segment is divided into time slices according to pipelining.

2. The first slice of every segment is stored on disks to hide the start-up 
latency. The initial part of the first slice of every segment together forms 
the preview files. The remaining part of the first slice of every segment 
forms the preload data.
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3. All other slices of every segment are stored on tertiary storage devices 
and they are migrated while the object is being displayed. Each slice is 
accessed from the tertiary storage devices to the disks while the previ-
ous slice is being displayed. 

In the segmented pipelining method, multimedia objects are divided into 
independent logical segments (Tse & Leung, 1998). Each segment can start 
to display without dependence on the previous or later segments. If the object 
is compressed using the MPEG compression method, the first frame should 
be an I-frame. Logical segments are logical divisions of a video. Two logical 
segments have different logical meanings such that each logical segment ex-
presses a different meaning to the users. For example, a logical segment may 
indicate a camera shot or a scene. The breaking points are suitable positions 
to start viewing a video without losing important information.
Each logical segment is divided into time slices as shown in Figure 21.1. 
Similar to the pipelining method, the time to display a slice is longer than 
the time to retrieve the next slice from the tertiary storage device. Thus, the 
slices are retrieved continuously from the tertiary storage device when the 
stream is displaying. We have changed the granularity for pipelining from 
the objects to logical segments. The granularity is coarse when each object is 
divided into slices for pipelining. The granularity is fine when each segment 

Figure ��.�. Video Segmentation
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is divided into slices for pipelining. The change in granularity of pipelining 
affects the total percentage of objects being included in the first slices. 
The first slice of every segment is stored on disks to hide the start-up latency. 
The first slice of each segment is further divided into an initial part and a 
remaining part. The initial part of the first slice of every segment is placed 
together to form the preview file of the object. This preview file is kept resi-
dent on disks to allow previewing quickly. Since the initial part of the first 
slice of different segments comes from different segments of the object, the 
user can view these initial parts from the disks to preview the object before 
actually viewing it. If the user is satisfied that this object should be viewed, 
the actual object will be pipelined from the tertiary storage devices. 
The remaining part of the first slice of every segment is the preload data of 
the object. These preload data may reside on the disks similar to the preview 
file. When the amount of disk space is insufficient to store the first slices of 
all segments, the preload data of some cold objects may be loaded on demand 
from the tertiary storage devices.
All other slices of every segment should be stored on tertiary storage devices 
and they are migrated while the object is being displayed. While the user is 
displaying the first slice of a segment, the second slice of the same segment is 
being retrieved from the tertiary storage device. The second slice should have 
been retrieved before the first slice has finished displaying. The third slice 
is retrieved while the second slice is being displayed. Each slice is retrieved 
while the previous slice of the same segment is being displayed.

Analysis.of.Segmented.Pipelining

We shall find the amount of disk space required to store the first slice of all 
segments. We shall consider two different conditions and one approximation 
to find the disk space requirement:

1. The disk bandwidth is unlimited or it would not put any constraint on 
the segmentation.

2. The disk bandwidth is limited and it affects the number of slices per 
segments. 

3. The total size of the first slice in all segments is found by approximation.
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Afterwards, the reposition latency to serve jumping requests is found.
In these analyses, we use these notations. Let ω be the exchange time, α be 
the reposition time, and γ be the tape transfer rate of tertiary storage device. 
An object of size X is divided into m segments such that the size of the ith 
segment is Xi, for i = 1, 2, … , m. Let δ be the data consumption rate and ρ 
be the production consumption ratio of the object. The ith segment is divided 
into n slices such that Xi,j is the size of the jth slice of the ith segment. 

Unlimited.Disk.Bandwidth

In the first condition, the preload data of the first slice reside on the disks with 
sufficient bandwidth to deliver the object without any bandwidth constraints 
and the logical segments can be as long as possible. The size of the slices 
can easily be found below.
Since the segment is pipelined from the tertiary storage devices, we apply 
equation (19.17) to find the size of the first slice as

Xi,1 ≥ Xi(1 – ρ) + ρ       (21.1)

The size of the jth slice of the ith segment can be found as

Xi, j ≤ ρ j–1 Xi,1        (21.2)

The total disk space being consumed for the first slices of all segments is
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Limited.Disk.Bandwidth

In the second condition, the preload data may not reside on the same disk 
containing the staging buffers. When the disk bandwidth to retrieve the preload 
data is insufficient or the preload data are loaded from slower disks than the 
staging buffers, we need to consider the disk bandwidth in serving requests 
on accessing the preload data of the first slice of segments in order to ensure 
stream continuity. The first slice of the next segment is retrieved from disk 
while the last slice of the previous segment is displaying.
To simplify the analysis, we assume that all segments are divided into the 
same number of slices. In order to ensure that the multimedia object can be 
displayed continuously, the display time of the first slice of each segment 
should be longer than the access time of the second slice of the same seg-
ment. Since the second slice of a segment is the first slice of the segment 
being accessed, the access time should include the exchange time, reposition 
time, and the transfer time. Thus, we have 

,1 ,2  ,    for i, 0 < i < m.i iX X
≥ ω+α +

δ γ
for i,.0 < i < m.    (21.4)

In addition, the display time of each slice should be longer than the transfer 
time of the next slice. Thus, we get

, , 1 ,    for 1 < j < n and 0 < i < m.i j i jX X +≥
δ γ

for 1 < j < n and 0 < i < m.    (21.5)

Since the display time of the last slice of a segment is longer than the retrieval 
time of the first slice of the next segment, we have

, 1,1 ,    for 0 < i < m.i n iX X +≥
δ β

for 0 < i < m.      (21.6)

where β is the disk bandwidth. The disk bandwidth can be found as the aver-
age of data size divided by the access time.
Since the segment sizes and slice sizes can be very different, we use the mean 
segment size and the mean slice size. Letting be the mean size of all logical 
segments and jX  be the mean size of the jth slices of segments, we have
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XX
m

=
        (21.7)
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We apply the mean average to equations (21.4) to (21.6) to get

1 2X X
≥ ω+α +

δ γ        (21.9)

1  ,    for 1 < j < n,j jX X +≥
δ γ       (21.10)

and

1nX X
≥

δ β         (21.11)

When more slices are created in each segment, the pipeline method is more 
efficient. The continuous display requirements however impose limitations 
on the maximum number of slices per segment and the size of the slices. We 
apply equation (21.10) repeatedly to get
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From equation (21.9), we have 
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We combine the two equations (21.12) and (21.13) above to get both the 
lower and upper bounds on the first slice

( )
1

1

n

n nX X X
−

 δ β
ω+α δ+ ≤ ≤ γ δ       (21.14)

Thus, we get 

( )
1n

n nX X
−

 δ β
ω+α δ+ ≤ γ δ        (21.15)

Since the ω, α, δ, and nX  all have positive values, we get

1

1

log ( 1) log

log( ) log( ) 1
log( ) log( )

n

n n

n

X X

n

n

−

−

 δ β
< γ δ 

 β δ
⇒ >  δ γ 

 β δ ⇒ > −   δ γ   
β − δ

⇒ < +
δ − γ       (21.16)

We have arrived at an upper bound on the number of slices per segment. In 
order to achieve the maximum pipeline efficiency, we should divide each 
segment into the maximum number of slices. Since n is an integer, we may 
use the floor function to get

log( / ) 1
log( / )

n  β δ
= + δ γ         (21.17)
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This is the maximum number of slices per segment according to the disk 
bandwidth, tertiary bandwidth, and the data consumption rate. For short 
logical segments, the number of slices in these short segments could be less. 
For long logical segments, the number of slices is bounded by this maximum 
number of slices per segment. The long segments may be handled one of 
two ways below:

1. The sizes of all slices are increased proportionally.
2. The long segments are broken down into multiple short segments.

When the sizes of the slices are increased proportionally, the sizes of the 
slices depend on the number of slices per segment. However, the slices could 

become very large when 
1n−

 β δ
−  δ γ 

 is close to zero. In such a condition, 

only a few segments are created. The size of the first slice also increases 
proportionally. The first slice becomes large leading to high user latency. 
The data segmentation method becomes ineffective. Therefore, the pipeline 
efficiency should be slightly traded off for effective data segmentation by 
slightly reducing the number of slices being used.
Instead of increasing the sizes of all slices, long logical segments should be 
divided into shorter segments such that the number of slices in this segment 
does not exceed this maximum number of slices per segment. We shall es-
tablish the length of each segment below.
Since the size of each slice should be at least one media block, the size of 
the last slice is at least one media block. Thus, we have 

nX M≥         (21.18)

where M is the size of one media block. 
From equation (21.5) above, we also get
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 δ
⇒ ≥  γ   
         (21.19)

In particular, when j = 2,

2

,2 ,     i, 0 < i < m. 
n

iX M
−

 δ
≥  γ       (21.20)

From Equation (21.4), we get

( )
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 δ
⇒ ≥ ω+α +  δ γ γ 

 δ
⇒ ≥ ω+α δ+  γ     (21.21)

We sum over all values of j from 1 to n and we get
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 δ
− γ ⇒ ≥ ω+α δ+
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− γ 

∑ ∑

∑
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         (21.22)

The size of the ith segment that has the maximum number of slices per seg-
ment is

( )

( ) ( )
( )1

1 1
,    for 0 < i < m,

1 1

1
,    for 0 < i < m,

1

n

i

n

i n

X M

X M−

 
− ρ ≥ ω+α δ+

 
− ρ 

−ρ
⇒ ≥ ω+α δ+

ρ −ρ    (21.23)

A logical segment whose length is equal to this lower bound will optimize 
the pipelining efficiency. The slices are delivered with the maximum overlap-
ping and the first slice is at its minimum size. Therefore, the logical segments 
are classified as long segments or short segments depending on whether its 
length exceeds

( ) ( )
( )1

1
1

n

n M−

−ρ
ω+α δ+

ρ −ρ       (21.24)

Long logical segments can be split into shorter segments of this length so that 
each segment can have the maximum number of slices and these segments 
can be pipelined at the highest efficiency.
If we divide all segments longer than this length into shorter segments, then 
all the segments have an upper bound on their segment length. In addition, 
the average segment length also has an upper bound as
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( ) ( )
( )1

1
1

n

nX M−

−ρ
≤ ω+α δ+

ρ −ρ      (21.25)

where X  is the mean segment length of the object. The object should be 
divided into a minimum number of segments such that

( ) ( )
( )1

1
1

n

nmX m M−

 −ρ
 ≤ ω+α δ+

ρ −ρ        (21.26)

( ) ( )
( )1

1
1

n

nX m M−

 −ρ
 ⇒ ≤ ω+α δ+

ρ −ρ        (21.27)
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1
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n

n

Xm
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⇒ ≥
 −ρ
 ω+α δ+

ρ −ρ        (21.28)

Therefore, each object should be split into the minimum number of segments 
as shown above.
Since the first slice of all segments should reside on disks permanently, the 
total size of first slice of all segments can be found as

( )
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1 1
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i
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∑

We substitute the lower bound of m to get
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∑

∑

∑
   (21.29)

Therefore, we have found the amount of disk space required to store the first 
slice of all segments. 

Approximation.of.Disk.Space

In the third approach, we find the approximate amount of disk space required. 
When the number of segments is not many, approximately the same percent-
age of the object is considered as the first slice of the object. We wish to show 
that the total size of all first slices is increased by less than m data blocks 
when m segments are created. 
Since the segment is pipelined from the tertiary storage device, we apply 
equation (19.14) to get

( ),1 ,1 ,    for i = 1, 2, & , m. i i i nX X X≥ −ρ +ρ for i = 1, 2, &, m.    (21.30)

Summing over all values of i, we get
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Since the last slice of each segment should not be smaller than one media 
data block, we have

( )
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1 * *
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i i

m

i
i

X X m M

X X m M

= =
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≥ −ρ +ρ

⇔ ≥ −ρ +ρ

∑ ∑

∑
     (21.32)

Therefore, the difference between the lower bounds in the total size of the 
first slices due to the change in granularity is

( )1 * *m M= − ρ        (21.33)

Since the production consumption ratio, ρ, is less than 1, the total size of the 
first slices due to the change in granularity is

( )1 *m M< −         (21.34)

Therefore, the additional number of data blocks in the total size of all first 
slices is less than one data block for every new segment. This cost is low 
when the number of logical segments is small. For example, if the production 
consumption ratio, ρ, of an object in a tertiary storage device is equal to 0.8 
and the size of the object is X, then the size of the first slice is approximately 
equal to

X*(1 - 0.8)
= 0.2X.



Segmented Pipelining   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

If the object is divided into four segments such that each segment is one 
quarter of the object, the size of each segment is equal to X/4. Thus, the size 
of each segment is

( )* 1 0.8
4
X

= −

= 0.05 *X.

As there are four segments, the total size of all first slices is equal to

=4 * 0.05 * X
=0.2X.

Thus, approximately the same percentage of the object is divided as the first 
slice of the object. Therefore, the change in granularity of pipelining only 
slightly affects the percentage of an object being included in its first slice.

Reposition.Latency

While the stream is displaying, the user may wish to change the current 
displaying position. The user issues a jump request and the stream starts to 
access the segment of the object at the new position. The storage system 
serves these requests and accesses the object at the new position. The seg-
mented pipelining method can serve these interactive requests efficiently. We 
find the amount of necessary data to retrieve from tertiary storage device for 
pipelining and the start-up latency to wait prior to display below. We shall 
find the amount of necessary data under three conditions:

1. The new displaying position is at the beginning of a segment.
2. The new displaying position is inside the first slice of a segment.
3. The new displaying position is within the second to the last slice of a 

segment.

Afterwards, the reposition latency is found.
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If the new displaying position is at the beginning of a segment, the first slice 
of this segment can be accessed immediately from the disks and subsequent 
slices can be accessed from the tertiary storage devices. Thus, the reposition 
latency is the same as disk latency.
If the new displaying position is inside the first slice of a segment, the stream 
waits for a short time to retrieve some data from the tertiary storage devices 
before responding to the stream request. Let Y be the new displaying position 
from the beginning of the segment in number of data blocks. 
The size of the ith segment from the new displaying position to the end of 
the segment is found as

= Xi – Y        (21.35)

The minimum amount of data to start pipelining

= (1 - ρ) (Xi - Y)       (21.36)

As the first slice is already residing on the disks, then the amount of data 
already available on disks from the new displaying position is

= (Xi,1 - Y) 
= (1 - ρ) Xi – Y        (21.37)

Thus, the amount of extra data to be retrieved from tertiary storage devices 
prior to displaying is

= (1 - ρ) (Xi - Y) – ((1 - ρ) Xi – Y)
= -Y(1 - ρ) + Y
= ρY         (21.38)

After retrieving ρY blocks of the second to the last slices from the tertiary 
storage device, there are already enough data on the disks to pipeline the 
segment.
If the new position is inside other slices of the segment, the minimum amount 
of data to start pipelining is
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= (1 - ρ) (Xi - Y)       (21.39)

This is also the amount of data blocks that should be retrieved from tertiary 
storage devices prior to displaying. We can simply substitute the segment size 
by the object size to find the necessary amount of data in the normal pipelin-
ing method. In all three cases, the amount of necessary data in segmented 
pipelining is less than that in the normal pipelining method.
We have found the necessary amount of data that should be retrieved for 
pipelining. The reposition latency is the just start-up latency to retrieve the 
required amount of data for pipelining prior to display. As the required media 
units are already loaded to the drive, the exchange operation is not neces-
sary. Let Z be the amount of data blocks to be retrieved for pipelining prior 
to displaying. Thus, the reposition latency is

Z
= α +

γ         (21.40)

Therefore, we have found the reposition latency that depends on the position 
of the jumping destination inside the segment. Due to less data being retrieved, 
the reposition latency in the segmented pipelining method is much smaller 
than the reposition latency in the normal pipelining method. 

Performance.of.Segmented.Pipelining

The reposition latency is the start-up latency to change the current view-
ing position of a stream. When the current viewing position of a stream 
is changed, the normal pipelining method needs to start a new stream by 
considering the data from the new destination displaying position to the end 
of the original object as a new object. The new first slice is then calculated 
to find the amount of data being retrieved prior to displaying. However, the 
start-up latency cannot be hidden since all the data that need to be displayed 
are not accessed from disks. If the new jump to position is near the end of 
the object, the start-up latency is low. If the new jump to position is near the 
beginning of the object, the start-up latency is high. 
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In segmented pipelining, the performance is much better. Since the object is 
already divided into segments and the first slice of each segment is resident 
on the disk, the later part of object also has some data resident on disks. Any 
segments can be displayed in a pipeline manner. Thus, the reposition latency 
is consistently low.
The reposition latency of the multimedia object is much lower than the 
reposition latency in normal pipelining. The reposition latency is compared 
against the latency in fast forward function using a two phase service model. 
The two phase service model is a method to deliver data over low bandwidth 
networks. It also supports some VCR-like functions. The reposition latency 
using the segmented pipelining method is consistently lower than the other 
method. Therefore, the segmented pipelining method supports interactive 
multimedia streams from tertiary storage devices efficiently.
The amount of disk space required in segmented pipelining has been com-
pared against the size of the first slice in the normal pipelining method. The 
size of the head in space efficient pipelining is the same as the size of the first 
slice in the pipelining method. The amount of disk space required decreases 
with an increase in the tertiary bandwidth increases. This is because more 
data are included in the first slice when the data consumption ratio is low. 
The segmented pipelining method uses a small amount of extra disk space 
to support efficient interactive functions. 

Discussion

The segmented pipelining method has four main advantages:

1. It supports efficient pipelining and hides the start-up latency.
2. It efficiently supports the jumping operations to start at any segments.
3. It provides browsing of objects from the preview data on disks.
4. The amount of preload data on disks can be adjusted according to the 

availability of disk space.

First, the segmented pipelining method supports efficient pipelining. After 
dividing the object into segments, the first slice of the segments is stored on 
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disks to hide the start-up latency and to support stream continuity. The entire 
object is thus pipelined from the tertiary storage devices at disk latency.
Second, the segmented pipelining method overcomes one of the main limita-
tions of tertiary storage devices. It supports the interactive functions from the 
tertiary storage devices at low latency. When the user jumps to the starting 
position of any segments, the storage system can immediately reposition 
the stream to start displaying. Thus, the latency is very low. The user can 
also jump to any positions with shorter latency than the normal pipelining 
method. In addition, the reposition latency stays consistently at a very low 
level under different tertiary bandwidth conditions. 
Third, the segmented pipelining method separates the beginning part of all 
logical segment to form the preview file. The preview file allows the user to 
browse the objects without accessing any data from the low bandwidth terti-
ary storage devices. This helps to improve the user satisfaction on searching 
the objects for display.
Fourth, when the amount of disk space is insufficient to store the first slices 
of all segments, the preload data some cold objects may be loaded on demand 
from the tertiary storage devices. The preload data of the hotter objects still 
reside on disks and the preload data of the colder objects are loaded on de-
mand from the tertiary storage devices. The actual number of objects with 
preload data resident on disks would depend on the storage space available 
on the disks. This allows flexibility in controlling the amount of usage of 
the disk space for resident data and the consumption of tertiary bandwidth 
in preloading. If the preload data of an object is loaded on demand from the 
tertiary storage devices, then they can be preloaded while the user is viewing 
the preview file. This leads to two outcomes. First, more tertiary bandwidth 
is consumed in preloading. Second, the start-up latency and response time of 
streams that access cold objects are increased. For both metrics, the system 
would perform better in selecting the cold objects as the objects that are 
loaded on demand.
The disadvantage of the segmented pipelining method is that more disk space 
is required. Apart from hiding the start-up latency, the disk space is used to 
support the stream continuity. Since we have split the objects into segments, 
more disk space is required since the total length for overlapping is reduced. 
Therefore, the pipelining efficiency is slightly lowered.
The staging method moves the entire object before using it. The entire object 
is available, but the start-up latency to start displaying the object is very long. 
When the start-up latency is tolerable and the staging disk space is available, 
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the staging method is the most flexible that it supports any access patterns 
on the staged object. 
The time slicing method moves only a fraction of the object before displaying 
it. The start-up latency is reduced but extra switching overheads are required. 
When the tertiary storage devices have high bandwidth and the tertiary stor-
age devices are not too busy, the reduction in start-up latency gives better 
satisfactions to the waiting users.
The pipelining method moves only the sufficiently large part of the object 
prior to display. The start-up latency is minimized when only the retrieved 
portion needs to be consumed. This is particularly useful when the multimedia 
system only displays streams from the beginning to the end.
The space efficient pipelining method retrieves data at a rate lower than the 
data consumption rate. It keeps the front part of objects resident on disk to start 
a new stream at low latency. It uses the disk space efficiently to handle more 
streams. This method is desirable when the disk storage space is tight. 
The segmented pipelining method supports efficient pipelining, supports 
interactive user requests, and provides object previews. When the multi-
media system needs to provide some interactive VCR-like operations and 
object search function, the segmented pipelining is the most desirable data 
migration method.

Chapter.Summary

The segmented pipelining method divides objects into segments and slices so 
that the object can be pipelined from the hierarchical storage system. We have 
analyzed the method on disk space requirement and the reposition latency. 
The segmented pipelining method uses small extra disk space to support object 
previews and efficient interactive functions. It can offer extra flexibility in 
controlling the amount of disk space usage by adjusting the storage location 
of the preload data. Therefore, the segmented pipelining is an efficient and 
flexible data migration method for the multimedia objects on hierarchical 
storage systems.
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In hierarchical storage systems, data migration is the process of moving data 
from tertiary storage devices to secondary storage devices. There are three 
approaches to migrate multimedia data objects across the storage levels. 
These methods are:

1. Staging, 
2. Time slicing
3. Pipelining.

Three pipelining methods are used to reduce the start-up latency and staging 
buffer size. They include:

Summary.to.Section.IV

Data Migration



1. Normal pipelining
2. Space efficient pipelining
3. Segmented pipelining

The staging method is simple. Using the staging method, the entire object is 
available after staging. The program can freely access any part of the required 
object after waiting for the time required to migrate the object to the staging 
buffers. The staging method is also flexible. The access time from tertiary 
storage is completely separated. This is suitable for any type of data on any 
tertiary storage systems. Unfortunately, the time spent in waiting for the 
stage one to complete can be very long. This leads to a very slow response 
to even the simplest request. Since the entire object is stored on the stag-
ing buffers during the complete consumption time period, this wastes disk 
space for a considerably long time. In addition, the entire object is written 
to and read back from the disks, it may unnecessarily waste disk bandwidth 
in migrating unused data.
The time slicing method accesses objects at the unit of slices instead of 
objects. It reduces the start-up latency in accessing objects from the tertiary 
storage devices. Streams can start to respond at an earlier time. It also saves 
tape drive bandwidth if some streams are canceled when objects are canceled 
in the middle of consumption. Unfortunately, extra tape switching overheads 
are incurred unless all concurrent objects reside on the same tape. The service 
time in accessing objects is however increased.
The normal pipelining method has been explained in this chapter. The nor-
mal pipelining method finds the minimum fraction of the object before the 
stream can start to display it. It minimizes the start-up latency for the tertiary 
storage devices whose data transfer rate is lower than the data consumption 
rate of the objects. The formula to find minimum size of the first slices is 
explained in this chapter. We have also described the start-up latency in using 
the normal pipelining method.
The space efficient pipelining method is designed for pipelining objects from 
low bandwidth storage devices for display. It retrieves data at a rate lower than 
the data consumption rate. It keeps the front part of objects resident on disk 
cache to start a new stream at disk latency. It uses the disk space efficiently 
to handle more streams.
The basic policy reuses the circular buffer to store the later slices of the objects. 
Thus, the circular disk buffer only contains the second and the third slices. 



The shrinking buffer policy reduces the circular buffer size after a slice is 
displayed. It is particularly useful when the circular disk buffer constraint is 
tight. The space stealing policy reuses the storage space containing the head 
of the object as part of the circular buffer. However, the head of the object 
should be restored after the object is displayed and this leads to increased 
workloads.
The segmented pipelining method divides objects into segments and slices 
so that the object can be pipelined from the hierarchical storage system. 
We have analysed the method on disk space requirement and the reposition 
latency. The segmented pipelining method uses small extra disk space to 
support object previews and efficient interactive functions. It can offer extra 
flexibility in controlling the amount of disk space usage by adjusting the 
storage location of the preload data. Therefore, the segmented pipelining is 
an efficient and flexible data migration method for the multimedia objects 
on hierarchical storage systems.



Section.V

Cache Replacement Policy

Introduction.

In the previous chapters of this book, we have focused on the efficient meth-
ods to store and retrieve multimedia objects. In the last part of this book, 
we describe how to deliver multimedia objects from the storage systems 
efficiently.
On the Internet, many multimedia objects are stored in the content servers. 
The clients are located over a wide area network far from the content server. 
When clients access multimedia objects from a content server, the content 
server must have sufficient disk and network to deliver the objects to the cli-
ents. Otherwise, it rejects the requests from the new clients. Thus, the popular 
content server can easily become the bottleneck in delivering multimedia 
objects. Therefore, server and network workloads are important concerns in 
designing multimedia storage systems over the Internet.



Multimedia objects, like other traditional data files and Web pages, may be 
transferred across networks, such as the Internet. In order to provide efficient 
delivery of data across the networks, some data can be stored in the middle 
of the network. When requests for the same object have been received, these 
data can be used to satisfy the requests at the middle of the network instead 
of forwarding the request any further. This method to satisfy requests with 
previously accessed data is called caching.
Since caching needs to consume a certain amount of storage space, the cache 
performance is affected by the size of the cache memory. If the storage space 
is large, more objects can be stored on the cache storage and the probability 
of finding an object in the cache is thus high. The cache performs better. If 
the storage space is limited, only a few objects can be stored in the cache 
storage, and the probability of finding an object in the cache is low. As a 
result, the cache performance becomes low. Therefore, the cache size influ-
ences the cache performance.
Since caching stores some previously fetched objects on the storage devices, 
the presence of an object exists on the storage devices significantly affects 
the efficiency of the caching. When a new object is being accessed, the cache 
admission policy decides whether an accessed object should be stored onto 
the cache devices. 
Since the cache performance increases monotonically with the number of 
objects in the cache, the cache storage space is often full in order to keep 
the most number of objects in the cache. When an accessed object needs to 
be stored and the cache space is full, the cache replacement policy decides 
which object should be deleted from the cache storage to release space. The 
choice of whether an object is kept in the cache is determined by the cache 
replacement policy. Thus, the cache replacement policy significantly affects 
the efficiency of caching.
The cache replacement policy can be divided into memory caching and stream 
dependent caching. Memory caching uses the memory storage as cache of the 
multimedia objects. We shall describe the memory caching policies in Chapter 
XXII. Since multimedia objects are accessed as streams, it is useful to use the 
cache as a temporary storage for buffering data among streams that access the 
same object with a small difference in accessing time. In Chapter XXIII, we 
shall present the stream dependent caching policies. When multiple proxy serv-
ers are available, they may cooperate to work as a large cache storage space for 
multimedia objects. Cooperative Web caching is described in Chapter XXIV.
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Chapter.XXII

Memory.Caching.Methods

Introduction

The objective of data caching and object caching is to improve the perform-
ance in accessing multimedia objects from their storage. An efficient cache 
storage method can have many benefits:
First, caching can increase server capacity in serving more streams. Since the 
cache may satisfy some requests before they arrive at the server, the server 
will receive fewer requests to its data. Thus, the workload on the data server 
can be reduced. As a result, the server can serve more streams.
Second, it can reduce access latency when a recently accessed object is be-
ing accessed again. When an object is accessed again, the first copy of the 
accessed object in the cache can already satisfy the request. Since the cache 
can often access objects with smaller delay, the latency on accessing the 
objects is thus smaller.
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Third, caching can also reduce network bandwidth need when a request can 
be served locally by the local cache. If the cache is on the hard disk within 
local area network, the request may be served without sending the requests 
outside the local area network. Thus, the network traffic may be reduced.
Fourth, caching may be used to balance the workload among cache devices 
by directing the request to different cache devices evenly. If the cache servers 
containing the same cache copies have different workloads, the request can 
be directed to the server with the lightest workload. Therefore, the workload 
among the cache devices can be balanced.
In order to achieve memory caching, there must be at least two or more dif-
ferent storage levels. Each storage level consists of storage devices that can 
store data for later retrievals. The local cache storage level is closer to the 
client or the source of request. The data at this cache level can be accessed 
faster or with lower delay. The remote cache storage level is closer to the 
destination or the source of data objects. It takes longer time to access data 
from this storage level than the local cache level.
When a request for data is being served, the local cache is first searched to 
find if a copy of the required data object exists. If such a data copy can be 
found, the validity of the data copy is then checked. If the data copy is valid, 
then the condition is considered a hit. The data copy in the local cache level 
is then delivered to satisfy the request. 
If the data copy cannot be found or the data copy in the local cache is invalid, 
then a cache miss occurs. The request is then forwarded to the remote stor-
age level to be served. The request is then served at the remote level and a 
data copy is returned; the data copy is then stored onto the local cache level 
according to the cache admission policy.

Figure ��.�. Memory Caching is achieved by two copies 
of storage levels.

A B C D

Faster/local cache level
Slow/remote cache level

A

Figure.22.1..Memory.caching.is.achieved.by.two.copies.of.storage.levels
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There are two types of cache misses. The compulsory miss occurs for the first 
retrieval of objects. The compulsory misses occur independently of the cache 
replacement policy. The capacity miss occurs when an object is replaced from 
the cache before it is accessed again. Efficient cache replacement methods 
attempt to minimize the capacity misses.
When more requests are served at the local cache level, the storage system 
can serve requests at a faster rate. As a result, the performance of the stor-
age system is higher. If fewer requests are served at the local cache level, 
the storage system serves requests slowly and the storage system performs 
poorly. In addition, more requests will go through the network to the remote 
storage level. This results in an increase in workload at the network and the 
remote storage servers.
When there are more than two storage levels and each storage level performs 
differently, the remote cache level can be further divided into another pair of 
cache level and storage level. In this way, the remote storage level is called 
the parent of the local cache level. A tree of parent and child cache hierarchy 
can thus be built. 
To compare the efficiency of different cache replacement policies, the per-
formance of caching is usually measured using the metrics called hit ratio 
or byte hit ratio. The hit ratio is defined as 

=
the number of requests being served at the cache level

the number of requests being served

Similarly, the byte hit ratio is defined as

=
the number of bytes being accessed at the cache level

the number of bytes being accessed

At the local cache, the cache replacement policy decides which object should 
be deleted to release space for the newly accessed objects. The objective of 
an efficient cache replacement policy is to achieve the highest byte hit ratio 
or hit ratio for the local cache.
Although different cache replacement methods may have different ways to 
achieve its highest efficiency (Hosseini-Khayat, 1998), a general algorithm 
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to achieve an efficient cache replacement method using different priority 
value is described below. Each cache object/block is assigned a cache value 
to indicate its priority to be kept in the cache. This cache value can often be 
specified as the result of a cache replacement function on the object/block. 
When space is needed, the cache replacement algorithm (Tse & So, 2003) 
will perform the following:

1. Find the objects/data blocks with the lowest cache priority value.
2. Delete the found object with the lowest priority value. 
3. Repeat step 1 and step 2 until enough space is released.
4. Insert the new object into the cache.
5. Update the cache values of all the objects in the cache.

We shall describe different cache replacement methods in the following 
sections according to the criteria for priority value. The least recently used 
(LRU) method section considers the period of time when the object is previ-
ously accessed. The object access pattern and the least frequently used (LFU) 
method are then described. Afterwards, the LRU-min section considers the 
size of objects. The size and access latency are then considered in the greedy 
dual-size (GD-size) method and the least unified value (LUV) method sec-
tions, respectively. Last, all the characteristics are considered by the mix 
method section.

The.Least.Recently.Used.Method

It has been commonly known that after a data object or a stored program is 
accessed, the probability that the same object or the same program is being 
accessed again within a short time is high. Therefore, the period of time that 
an object has been accessed is being considered to increase the efficiency of 
the cache performance. 
The recency of an object is defined as the period of time from which an object 
has been accessed to the present time. When an object has been recently ac-
cessed, its recency is said to be high. When an object has not been accessed 
for a long time, its recency is then low.
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The least recently used method removes the least recently accessed object 
from the cache first. It stores a timestamp for each data object. The timestamp 
shows the time when the object was last accessed. Thus, it uses the recency 
history of the object as the cache value.
A simple cache replacement function for LRU is 

CVLRU )(
1

iTT −
= ,

where T is the current time and Ti is the timestamp of object i (Aggarwal & 
Yu, 1997).
The oldest object, the least recently used one, will have the lowest value and 
will be deleted by the cache replacement method to release space. The LRU 
policy achieves good performance for the cache replacement algorithm. The 
achieved hit ratio is good for caching memory blocks containing programs 
files and data object files. 
The LRU method is also simple. It only needs to store and compare the 
timestamps of the accessed objects in the cache. The time complexity to 
calculate the cache values of all objects in the cache is O(n). That is, the 
amount of time to find calculate the cache values of objects increases linearly 
with the number of objects, n. Therefore, the LRU method is commonly 
used traditional cache replacement functions to calculate the cache value of 
objects and stored programs. However, the LRU method only considers the 
recency history. Since the least recently accessed hot object may not be the 
most unlikely to be accessed, the LRU method may not be able to perform 
well when the cache size is small. Also, the LRU method does not consider 
other characteristics in accessing the objects. The latency time to recover 
the deleted objects, the past access frequency, and the size of objects should 
be considered for multimedia objects in order to achieve efficient cache 
storage system. We shall describe how other cache replacement methods 
can improve the efficiency of cache storage for multimedia objects in the 
following sections.
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Object.Access.Patterns

Since the access patterns of requests can significantly affect the probability 
of which object will be accessed. In order to achieve higher cache efficiency, 
we should investigate the access pattern of multimedia objects. 
Traditional data files are more often being read than being modified. Mul-
timedia objects are even more often read than modified. Thus, the number 
of requests reading multimedia objects is much more than the number of 
requests writing or updating multimedia objects.
Each multimedia object has a certain probability of being accessed. When 
an object is popular, it is frequently accessed. Its access temperature is high. 
It is called a hot object. When an object is unpopular, it is rarely accessed. 
Its access temperature is low. It is called a cold object.
The user access patterns of video rental stores have been investigated. It was 
found that most of the accesses are on a few hot objects. The access pattern 
of video tapes in the rental stores can be described using a Zipf-like distri-
bution. In the Zipf-like distribution, the objects are arranged in the order of 
their access popularity. The probability that the ith popular object is accessed 
can be modeled as:

Prob(ith popular object is accessed) c
iα

= , where 0 ≤ α ≤ 1.

The Zipf-like distribution is a family of probability distributions (Figure 
22.2). The parameter α determines the characteristics of each distribution. 
The parameter c can be found using ∑Prob( ) = 1.
When α =0, the access probability of all the objects are the same. The access 
probabilities are evenly distributed. 
When α =1, the distribution becomes a Zipf distribution. The access prob-
ability of the ith object is 

Prob(ith popular object is accessed) 
i
c

= . 

From observations on the video rental store, it is found that the access pat-
tern follows a Zipf-like distribution where α =0.729. In addition, objects 
popularity varies over time. Variations in the request rate can be observed 
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on a daily basis and weekly basis. A simple time distribution model may be 
used to find the arrival rate of the mth object as

0( ) sin( )m m mt p p A tλ = λ + γ

where λ0 is the daily average arrival rate, pm is the popularity of mth object, 
and A is the amplitude, and γ = 2π/T. The access pattern of 10 objects over 
a seven-day period is shown in Figure 22.3.
In addition, different types of multimedia objects have different prime time. 
This is due to the fact that customers access different objects at different time 
of the day. For example, daily prime time is 7 pm to 10 pm for movies on 
demand. The daily prime time for cartoon series is between 11am to 5pm.
In addition, the popularity of multimedia objects changes over time. The 
popularity of multimedia objects may increase rapidly at first and then it 
drops slowly over time. Some new objects may become the hottest object in 
two weeks and then its temperature reduces in the following weeks.
When all the above characteristics of multimedia object accesses are consid-
ered, the long term behaviour of accessing an object follows an exponential 
curve plus a random effect. 

Figure. 22.2.. Access. pattern. of. multimedia. objects. follows. a. Zipf-like.
distribution
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The.Least.Frequently.Used.Method

As described in the previous section, multimedia objects are accessed with 
different popularity at different times. Since the access temperature of ob-
jects varies slowly over time, the object temperature can be used to raise 
the efficiency of the cache replacement methods. Thus, it is reasonable to 
assume that the past access frequency provides a good prediction for future 
accesses.
The least frequently used method uses the frequency of past object accesses 
to predict the future accesses. The objective of the method is to keep the 
hot objects in the local cache and remove the coldest objects when space is 
needed. 
Thus, the LFU method uses the access frequency of the data objects as the 
cache value of the object. The cache value of an object can be defined as 
equal to the access frequency of the object. The cache value of an object i is 
defined in the LFU method as

CVLFU = Ni,

where Ni is the number of past accesses on the object i. Thus, hot objects 
have higher cache value than the cold objects. The coldest objects which is 
accessed the least number of times will be deleted from the cache to release 
space. 

Figure.22.3..Arrival.rates.of.10.objects.over.a.seven-day.period
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Application.Note:.In order to find the access frequency.of.the.objects.in.the.
cache,.the.LFU.method.needs.to.keep.the.number.of.times.that.each.object.
is.being.accessed..To.calculate.the.number.of.past.accesses,.the.number.of.
accesses.of.all.the.objects.needs.to.be.kept..

The LFU method is also simple. It only needs to keep and compare the 
number of past accesses for the objects. The time complexity of the search 
algorithm is rather low. To find the least accessed object among n objects, 
the time complexity of the algorithm is O(log2n).
The main benefit of the LFU method is that it achieves the best performance 
when the access frequencies of the objects are stable and they change only 
slowly over time. However, the LFU method needs to keep the number of ref-
erence of all accessed objects even when the objects are not in the cache. 
The LFU method that keeps the number of accesses on all the objects is also 
called the perfect-LFU method. Alternatively, if the storage system only 
stores the access frequencies of the objects that are in the cache, this method 
is called the in-cache-LFU method. 
The in-cache-LFU method removes the number of past accesses on the object 
when the object is deleted from the cache. It may reduce the access over-
heads and the amount of data being stored in order to find the coldest object. 
However, this approach has two disadvantages. First, it does not accurately 
reflect the number of past accesses on the objects. Second, it performs worse 
than the LRU method since the access frequencies of the objects are incor-
rectly counted. The access frequencies of the uncached objects are counted 
incorrectly. Thus, the in-cache-LFU method does not adjust the cache content 
according to changes in access frequencies.

The.LRU-Min.Method

The LRU method is very simple to implement. Multimedia objects are how-
ever very large in size when compared with traditional data files. Only a few 
large multimedia objects, or even only one object, may completely occupy 
the entire cache space. Thus, it is reasonable to consider the object size in 
the cache replacement policy.



���   Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Consider the situation that three objects have exactly the same access pattern 
and the size of the large object is equal to the sum of the sizes of the two 
smaller objects. If the cache stores the large object only, only the requests for 
the large object can be served at the cache. The requests for the two smaller 
objects will become cache misses. 
However, if the cache stores the two smaller objects, the cache will be able to 
serve more requests at the cache. Thus, the cache hit ratio is higher by storing 
the smaller objects instead of the large objects. Therefore, it is desirable for 
the cache replacement function to reduce the cache value of large objects. 
Although the cache hit ratio is higher when the cache stores the smaller ob-
jects, the request on the large object will deliver more bytes from the cache. 
Thus, the byte hit ratios of the cache are roughly the same even though the 
large objects are not served. 
The LRU-min method is a cache replacement method that considers the 
object sizes. It is similar to the traditional LRU method. Same as the LRU 
method, the LRU method uses the recency history as the cache value. The 
cache value of an object is defined as

CVLRUmin )(
1

iTT −
= ,

where T is the current time and Ti is the timestamp of object i (Hoisseini-
Khayat, 2001). The LRU-min method however has a different algorithm to 
find the victim object to be deleted. The algorithm is described below:

1. It sets s equal to the size of the desired free space.
2. Find the least recently accessed object whose size is larger than s.
3. If such an object is found, then delete this object.
4. Repeat Steps 2 to 3 for all the objects whose size is larger than s until 

enough space is released.
5. If enough space is not freed, sets s to s/2 and repeat the procedure until 

enough space has been freed.

Considering the size of objects, the LRU-min method increases the cache hit 
ratio by removing large objects from the cache. Among the objects whose 
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sizes are larger than the required space, the objects with low access recency 
are still chosen to be deleted.
The LRU-min method keeps many small objects in the cache. This increase 
in the number of objects in the cache however has some disadvantages. First, 
the cache storage space becomes fragmented over time. As the objects kept 
in the cache are small, the space occupied for each object is small. It is inef-
ficient to store or retrieve objects from a fragmented storage system.
Second, the time complexity of the cache replacement algorithm becomes 
high. As the algorithm repeats the process at half size to find the victim ob-
jects, the time complexity of the algorithm is O(n), where n is the number of 
objects in the cache. When the number of objects in the cache increases, the 
performance of the algorithm in searching for victim objects deteriorates.

The.Greedy.Dual.Size.Method

Similar to the LRU-min method, the greedy dual-size method also considers 
the size of objects in the cache replacement policy. In addition, it considers 
the latency cost in accessing the object from the remote storage level.
Since the objects in the same local cache level may come from different 
remote storage device, the latency cost in accessing the objects from the 
remote storage varies. The latency cost in accessing the object from the 
remote storage level directly determines the access time of the object. Thus, 
the cache performs better if it stores the objects with high access latency 
instead of storing the objects with low access latency.
The greedy dual-size method considers the access latency as the cost and the 
size of object in its cache value function. It also uses the recency informa-
tion to maintain the list of objects in the cache (Breslau, Cao, Fan, Phillips, 
& Shenker, 1999).
In the GD-size method, the cache value of an object i is defined as

CVGDSize 
i

i

S
L

= , 

where Li is the network latency cost of object i and Si is the size of object i. 
The network latency cost is the delay time in accessing the object i from the 
remote storage level.
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Instead of setting the recency information in the cache value, the GD-size 
method reduces the cache value when an object is deleted from cache and it 
resets the cache value of accessed objects. Thus, the cache value of an object 
achieves its highest value when it is accessed. This value gradually reduces 
after the objects on the cache are modified. 
When space is needed, the GD-size performs the following steps to release 
space:

1. Remove the object with the smallest cache value.
2. Reduce every cached object’s value by the removed object’s value.
3. Repeat step 1 and step 2 until enough space is released.

When an object in the cache is accessed or referenced, the GD-size method 

resets the object’s cache value back to its initial value, that is =
i

i

S
L

. The 

advantage of the greedy dual-size method is that it maintains good cache 
efficiency. It keeps many small and hot objects that are stored remotely 
with high latency. It has similar disadvantage as the LRU-min method. As 
it updates the cache value of all the objects in the cache when an object is 
removed, the time complexity of its algorithm is O(n), where n is the number 
of objects kept in the cache.

The Least Unified Value Method

Similar to the GD-size method, the least unified value method considers the 
latency cost and the object size in the cache replacement function. In addition, 
it considers the complete access history for the objects. The cache value of 
an object i is defined in the LUV method (Bahn et al., 2002) as

CVLUV 
i

ii

S
LP

= ,
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where Li is the network latency cost of object i, Si is the size of object i, and 
Pi is the estimated reference potential of object i. The estimated reference 
potential, Pi, is found as

( ( ))i j
j

P F T T= α −∑

and

xxF 5.0)( =

where 0 ≤ α ≤ 1, T is the current time, and Tj is the times when the object was 
accessed. When space is needed, LUV removes the object with the smallest 
cache value from the cache.
The main technical advantage of the LUV method is that it uses the complete 
history of all the accesses. The trade-off is that it needs to keep the history of 
all the accesses. The second advantage is that the LUV method can optimize 
the performance measure according to the expected access pattern of the 
objects. However, it relies on the user to tune the parameter, α, for the best 
performance suitable for the realistic environment. In order to recalculate 
the cache value of all the objects in cache, the time complexity of the cache 
replacement algorithm using the LUV method is O(n).

The.Mix.Method

Similar to the LUV method, the mix method considers all the characteristics 
of the object access patterns. It includes all the access history as parameters 
in the cache value function. The cache value of an object i in the mix method 
(Bahn et al., 2002) is defined as

CVmix

( ) ( )
( ) ( )

l n
i i

t s
i i

L N
T S

=
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where Li is the network latency cost of object i, Ti is the last access time, 
and Si is the size of object i. The parameter Ni is the number of cache hits of 
object i is accessed since it has been brought into the cache. The parameters 
l, n, t, and s are constants with default values l=0.1 and n = t = s = 1.
An advantage of the mix method is that it considers all the characteristics 
of the object access pattern as parameters in the cache value formula. Thus, 
the cache values of the objects can easily be compared to find the victim 
object.

Application.Note:.In.order.to.recalculate.the.cache.value.of.the.objects.in.
cache,.the.time.complexity.of.the.cache.replacement.algorithm.in.the.mix.
method.is.O(n)..Since.the.cache.values.of.the.objects.changes.only.when.new.
requests.are.served,.the.cache.value.needs.to.be.updated.only.when.requests.
are.being.served.

Chapter.Summary

Memory cache replacement policies assign a cache value to each object 
in the cache. This cache value decides the priority of keeping the object in 
the cache. When space is needed to store a new object in cache, the cache 
replacement function will choose the object with the lowest cache value and 
delete it to release space. As a result, the objects with high cache values will 
remain in the cache.
Different cache replacement policies will assign different cache values to 
the objects. The traditional LRU method keeps the objects that are accessed 
most recently. It is simple and easy to implement and the time complexity 
is very low. All methods except the LFU method also keep the objects that 
are accessed recently.
The pattern in accessing multimedia objects has been described. The access 
pattern of video tapes in the rental stores can be described with a Zipf-like 
distribution. The long term behaviour of accesses for an individual object 
follows an exponential curve plus a random effect. The LFU, LUV, and mix 
methods keep track of the object temperature and remove the coldest objects 
from the cache first.
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Due to the large size of multimedia objects, the cache may completely be 
occupied by a few objects. To maintain a good cache hit ratio, the priority 
of keeping large objects in the cache is reduced. Thus, the LRU-min, GD-
size, LUV, and mix methods keep the small and recently accessed objects 
in the cache. 
Since multimedia objects in the same local cache level may come from remote 
storage level at different distances, the latency cost in accessing the remote 
storage level varies. When cache misses occur, the objects in the remote stor-
age level will be retrieved. Thus, the cache system would perform better if it 
keeps more objects that take longer to access. The GD-size, LUV, and mix 
methods include latency cost of objects in the cache to lower the priority of 
objects that can be easily replaced.
Several cache replacement methods have been described. The methods are 
simple to implement but may not perform optimally. The optimal methods 
have high time complexity and they are more difficult to implement. The 
trade-offs between simplicity and efficiency will remain until new cache 
replacement methods are designed.
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Exercises

1. LFU.method: A list of objects A, B, C, D, and E are referenced for 25, 
40, 32, 16, 20 times respectively. The cache now contains A, B, and 
C. A request for object E arrives; which object will be replaced from 
cache?

2. LRU-min.method: A list of objects A(2GB), B(4GB), C(6GB), and 
D(8GB) have been requested at times = 10, 12, 15, 20 seconds, respec-
tively. A request for object E(3GB) arrives at T=30 seconds. 
a. Which object will be replaced from cache? 
b. If object E is 10GB, which objects will be replaced from cache?

3. GD.size.method: A list of objects A(2GB), B(4GB), C(6GB), and D(8GB) 
have been requested at latency costs of 4, 4, 6, 6 seconds, respectively. 
A request for object E(5GB) with latency = 4 seconds arrives. 
a. Which object will be replaced from the cache?
b. What are the new cache values after replacement?

4. Mix.method: A list of objects A, B, C, D in the cache have been re-
quested according to Table 22.1 below. A request for object E (1GB) 
arrives. Which object will be replaced from cache according to the mix 
method using r1=r2=r3=r4=1?

Table.22.1..List.of.requests
Object Size No..of.references Last.reference.time Access.latency

A 2 GB 10 10 seconds 4 seconds

B 4 GB 6 25 seconds 4 seconds

C 6 GB 5 30 seconds 6 seconds

D 8 GB 4 20 seconds 6 seconds
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Chapter.XXIII

Stream.Dependent.Caching

Introduction

Caching has been successfully implemented on the Internet to reduce work-
load on the content server and the Internet. We have seen in the last chapter 
how the cache replacement methods are adapted for multimedia objects in 
memory caching. In this chapter, we shall show how the caching is tailored 
to provide better performance for continuous request streams.
Even though caching reduces the access latency when there are cache hits, 
there are chances that cache misses occur. When cache misses occur, the 
request stream is sent through the network to the remote storage devices. 
The requests are then served at the remote storage devices. The requested 
multimedia objects are retrieved from the storage devices, delivered through 
the network to the client. The cache content will also be modified to store 
the accessed object.
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Multimedia data requests are continuously sent to the remote storage de-
vices. Each request may ask for only a small part of data. The union of all 
the requested data is the entire object. In order to provide continuous display 
of media object for a period of time, the storage system needs to provide a 
guarantee on the continuous delivery of data (Chae et al., 2002; Chang & 
Hock, 2000). 
Although caching increases the service rate of data requests, it is inevitable 
that some misses occur. When the cache hit ratios are low, the workload on 
the remote storage devices becomes heavy. When the workload on the stor-
age device is too heavy, response time and access delay of the requests could 
increase indefinitely. As a result, the data cannot be retrieved within the guar-
antee time. This results in violations of the continuous display guarantee.
In order to provide continuous display guarantee of multimedia information, 
the requested multimedia data must be delivered continuously. However, this 
cannot be easily achieved on today’s Internet. Congestions in the network 
could also hinder the smooth delivery of data. Unfortunately, the Internet is 
designed and implemented in a way that congestions cannot be completely 
avoided. It may be a fact that congestions persistently occur when the stream 
is running for a long enough time.
Many methods to provide continuous multimedia streams have been proposed 
and investigated. However, the implementation of these techniques on the 
Internet still has some difficulties due to the presence of legacy routers.
As multimedia objects are large in size, the limited memory cache space can 
only store a few objects. If all the accessed objects are of the same size, the 
size aware cache replacement methods would not increase the number of 
objects being cached. In this situation, the cache hit ratio is still constrained 
by the size of the local cache.
As the multimedia objects are so large, it becomes necessary to create the 
cache level on local disks, instead of the random access memory. With a big-
ger cache space, the cache level on disks can reduce more capacity misses. 
However, the cache level on the disks must be created carefully. As the service 
time of disk requests is rather long, the disk throughput is limited. Thus, the 
disk throughput should be higher than the data rate of the objects so that the 
objects on the cache are accessible. 
If the workload is too high for an individual disk, multiple disks or disk array 
may be used. In such condition, the workload of the disks should be well 
balanced. Balanced disk load can avoid bottlenecks to build up and overload 
individual disk.
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The storage techniques on stream dependent caching include resident leader, 
variable length segmentation (VLS), video staging, hotspot caching, and 
interval caching. They will divide each multimedia object into smaller seg-
ments and store selected segments on the cache level. We will first describe 
the resident leader in the next section. Then we will show the variable length 
segmentation. After that, the video staging technique uses the cache space 
to reduce the maximum network bandwidth required. The hotspot caching 
technique that provides a preview on objects is described. Last, the interval 
caching will provide better caching for concurrent streams. In each of these 
sections, we shall explain the objectives, details, and the analysis of the 
methods.

The.Resident.Leader.Method

Objectives

Multimedia systems transfer and consume data in a way that is different from 
traditional computer systems. In traditional systems, the data file or data object 
is completely accessed from the storage system before it is being used.
In multimedia systems, the multimedia stream begins with getting some 
data from the storage system. These data are kept in the memory buffer for 
consumption. When sufficient data are ready, it starts to display and consume 
data. While at the same time, it continues to retrieve the remaining data for 
consumption so that the consumption may continue for an indefinite amount 
of time.
In essence, the start-up delay of the stream is the time to prepare for the start-
up of the multimedia stream. Thus, the start-up delay of a stream depends 
on the access time it takes to fill up the memory buffer with the beginning 
portion of the multimedia object.
In addition, the start-up delay of the multimedia streams depends on the size 
of the memory buffer. If the memory buffer is large, more data needed to be 
accessed. The buffer can maintain continuity of the stream against a bigger 
variation in the data access time. However, the time to fill up the memory 
buffer and the start-up delay of the multimedia streams are longer. 
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If the memory buffer is small, the time to fill up the memory buffer and the 
start-up delay of the multimedia streams are short. However, the buffer can 
maintain continuity of the multimedia stream for a small variation in the 
data access time.

Details.of.the.Method

The resident leader method assumes that the object is consumed from the 
beginning to the end. This assumption is valid for most systems such as 
video-on-demand systems and near video-on-demand systems.
The resident leader method divides the multimedia data object into two main 
parts: the head and the tail (Figure 23.1). The head part, or the leader, is the 
beginning portion of the object, and the tail part is the remaining part of the 
object except the beginning portion. The size of the head part is large enough 
to fill the memory buffer (Tse & So, 2003).
In the resident leader method, the storage system reserves some space in the 
local cache level to store the head part of all the objects permanently. Thus, 
the requests for the head part are always served as cache hits. As the local 
cache level is always accessed with shorter latency than the remote storage, 
the head part is accessed at the latency of the cache.
The tail part of the object is stored on the remote storage level. Apart from 
the reserved area for the head part, the remaining space in the cache level is 
used as cache storage for the tail part of the objects. The cache replacement 
methods for memory caching can be used to choose the tail part of the ap-
propriate objects.
It should be noted that the tail part should be retrieved from the remote storage 
within a certain time limit. As the head part from the cache already allows 
the multimedia stream and data consumption to begin, the tail part should be 
retrieved in time before the memory buffer is empty. If the tail part cannot be 
accessed before the memory buffer is empty, the consumption of data will 
stop due to shortage of data called starvation.

Figure ��.�. Resident Leader

Head/leader tail

Figure.23.1..Resident.leader
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In addition, the tail part should be continuously accessed to fill the memory 
buffer. If the delivery of data is too slow, the memory buffer may also starve 
and the display or consumption of data would be suspended. This will result 
in violation of the continuous display guarantee requirement on multime-
dia streams. If the delivery of data is too fast, the memory buffer becomes 
full. The retrieval of data should suspend momentarily to allow for the data 
consumption.

Analysis

Without the resident leader method, the cache replacement methods in memory 
caching store the most likely accessed objects in the cache to serve future 
request. When an object is cached, the service times of all requests on the 
object are reduced. The cache replacement methods minimize the average 
response time of requests on the objects. As a result, the start-up delay of the 
streams is short if a valid copy of the object is stored on the cache.
However, the objects that are less likely to be accessed are deleted from the 
cache when cache space is needed. The head part of these objects is accessed 
from the remote storage level when needed. The start-up delay of the streams 
on these objects is thus long. The long start-up delay of these streams has 
a direct observable impact on the users. It would be nice if the maximum 
start-up delay of the streams can be kept to an acceptable level.
Using the resident leader method, the multimedia stream begins after the head 
part is retrieved. Thus, the start-up delay of the stream is reduced. In order 
to keep the head part resident on the local storage, some storage space in 
the cache is reserved and the storage space used to cache the tail part of the 
object is reduced. Fewer objects can be stored on the cache, resulting in an 
increase in the capacity misses and the average response time. Therefore, the 
savings in the start-up delay come with a price. The resident leader method 
trades off the maximum start-up delay of streams with the average response 
time of requests. 
When sufficient cache space is available, the resident leader method is simple 
to implement. It reduces the maximum start-up delay of streams so that the 
user will observe a short start-up delay for all the streams being requested.
However, the resident leader method increases the average response time of 
requests. This reduction in cache efficiency leads to heavier workload on the 
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remote storage level and the communication network in-between. The cache 
efficiency and performance is thus low.
In addition, the tail part of most objects is not cached. It is accessed from 
the remote storage level when needed. As the network delays are unpredict-
able and unbounded, it is very difficult, if not impossible, to guarantee the 
stream continuity.

Variable.Length.Segmentation

Objectives

When multimedia objects are stored in the cache, objects with large sizes 
require a lot of space when they are brought into the cache. The cache stor-
age space may store only a few objects. The cache hit ratio is thus low and 
capacity misses are high.
Users may not view the entire object from the beginning to the end. It wastes 
cache space to keep the entire object in the cache if only the beginning 
segments are consumed. By breaking down the objects into segments, the 
beginning segments of many cold objects can be stored. The cache space 
may be more efficiently used by storing the initial segments of more objects. 
Also, the start-up latency of more streams is reduced similar to the resident 
leader method.
A simple method is to divide objects into fixed length. If the segments are 
short, many segments will be created. Many segments need to be deleted 
for any incoming object. The cache space will be divided into many small 
fragments and it takes a long time to find enough segments to cache a new 
object. If the segments are long, it takes a long time to access the first seg-
ment before a new stream is started. The start-up latency to initiate a new 
stream is high. The storage system also needs to reserve bigger cache space 
for each segment. In the next section, we shall describe a method to divide 
an object into increasing length so that the large segments may be deleted to 
release space more efficiently.
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Details.of.the.Method

The variable length segmentation divides an object i into segments (Aggar-
wal & Yu, 1997; Wu, Yu, & Wolf, 2001). For an object i of n blocks, the jth 
segment contains media blocks 

2j-1, 2j-1+1, …, 2j-1, for j>=1. 

The first segment contains block 0 only. In general, the j+1th segment is twice 
as large as the jth segment. It divides the objects into segments of exponentially 
increasing length. The number of segments for an object of n blocks is

( )  1log2 += n

The cache value of a segment depends on the recency of the object and the 
segment distance. The segment distance is defined as the distance of the seg-
ment from the beginning of the object. The cache value of the jth segment 
of an object i is defined as

CVVLS jTT i ×−
=

)(
1

where j is the segment number, T is the current time, and Ti is the timestamp 
of object i. When space is needed, the VLS removes the segment with the 
smallest cache value from the cache. 

Analysis

The variable length segmentation method has several technical advantages. 
It divides an object into large and small objects. The beginning segments are 
small and they have higher cache value. The latter segments are longer and 
they have lower cache values. It allows the storage system to remove the later 
segments before they remove the beginning segments. Thus, the beginning 
segments of many objects can be kept in the cache. This helps to reduce the 
start-up latency of many streams.
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If all the streams are consumed from the beginning of the objects, the later 
segments will only be used after the earlier segments are used. When the 
user stops displaying and the stream is terminated in the middle, the storage 
system would not need to access the later segments. Thus, the cache storage 
space is used efficiently.
Also, the storage system removes the larger segments before they remove the 
smaller segments of the same object. Thus, it may release sufficient space 
for the incoming object by removing only a few segments. Thus, the cache 
replacement algorithm performs efficiently.
Since the size of latter segments is large, the number of segment for each 
object is not many. Thus, it is fast to find a segment from N*log(n) where 
N is the number of objects in cache and n is the number of blocks in each 
object. Thus, the cache replacement algorithm performs fast.
The present variable length segmentation method is simple by using the 
recency of the objects as the cache value. The cache system only needs to 
keep the recent access time of each object in the cache. The current variable 
length segmentation method is also flexible. It may be possible to adapt the 
cache value function to include more access characteristics of the streams, 
such as access frequency and access latency. Thus, the advantages of the 
segmentation method remains while cache efficiency increases.
Also, the earlier segments of an object are smaller than the later segments. 
These smaller segments have higher cache value than the large segments of 
the same object. The larger segments would be deleted to release space be-
fore the smaller segments. Thus, it helps to reduce the number of segments 
being deleted and increase the average size of deleted segments. Therefore, 
the fragmentation problem can be avoided.

Application.Note:.A.disadvantage.of.this.method.is.that.the.streams.must.
be.displayed.from.the.beginning.to.the.end..When.a.stream.starts.to.display.
from.the.middle.of.the.multimedia.object,.the.cache.system.needs.to.access.
the.later.segments.before.the.stream.can.continue.
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The.Video.Staging.Method

Objectives

In order to deliver multimedia objects across the Internet, the network band-
width should be high enough to support the continuous display requirement. 
However, this is not always achievable for these reasons:

1. The network bandwidth is limited by the link that has the smallest 
bandwidth. Thus, a video stream cannot be continuously delivered over 
a network with smaller bandwidth than its data rate requirement.

2. In addition, different network segments have different bandwidths. A 
stream over the Internet may traverse through different networks, includ-
ing local area networks (LANs) and wide area networks (WANs). The 
WAN bandwidth for a stream is not high enough for the video stream.

3. The TCP protocol is using the best effort approach to deliver the most 
data in the shortest period of time. It uses a sliding window to limit the 
number of packets being sent before the acknowledgment packets are 
received. To achieve the highest network throughput, TCP increases the 
number of packets in the sliding window until some packets are lost 
and acknowledgment packets are not received. When packets are lost, 
the size of the sliding window is halved. Thus, network bandwidth that 
is made available to a stream fluctuates a lot.

4. The network bandwidth needs to be continuously high enough for the 
entire duration of the stream. If the network bandwidth is low for a short 
time, the continuous display requirement cannot be met.

Figure. 23.2.. Video. staging. keeps. the. high. bandwidth. segments. in. local.
cache

Figure ��.�. Video staging keeps the high bandwidth 
segments in local cache.

High bandwidth segments



��0   Tse

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Instead of increasing the WAN bandwidth to support the continuous display 
requirement, the video staging method reduces the maximum bandwidth 
requirement on the network. Thus, the objective of the video staging method 
is to reduce the maximum WAN bandwidth to retrieve video continuously 
from remote storage.

Details.of.the.Method

Instead of increasing the WAN bandwidth to support the continuous display 
requirement, the video staging method reduces the maximum requirement on 
the network (Zhang, Wang, Du, & Su, 2000). When the objects are stored to the 
server, the objects are analyzed. The data rate requirements of the objects are 
found out. The data rate requirements will be used in the preloading stage.
Before the delivery of the object, the WAN network condition between the 
server and the client is first analyzed. This step finds out an estimated network 
bandwidth between the server and client. This estimated network bandwidth 
will be used as the WAN network bandwidth threshold in the delivery. The 
ranges of time of the object that has a data rate higher than the estimated 
bandwidth threshold are found out.
The video-on-demand system divides the delivery of a multimedia object 
into two stages. In the first stage, the system preloads the high bandwidth 
segments that exceed the estimated WAN bandwidth threshold to the local 
cache (Figure 23.2). In the second stage, it loads the remaining segments of 
the object while displaying object. As data rates of all the remaining segments 
of the object are lower than the WAN bandwidth requirement, the continuous 
display requirements of the object stream can be met.
Since the objective of the preloading stage is to reduce the bandwidth require-
ment, only the portion of these segments above the threshold needs to be 
loaded in the preloading stage. The portion of the high bandwidth segments but 
below the threshold can be loaded in the second stage as other segments.
For instance, the estimated WAN bandwidth is 2 Mbps and a one-hour object 
is divided into 1 minute per segment. The bandwidth threshold of each seg-
ment is 120MB or 15MB. That is, the segments that are larger than 15MB 
are high bandwidth segments. If a segment is 20 MB, the system needs to 
transfer 5MB (20MB - 15MB) in the preloading stage.
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Discussion

The method is flexible that it is suitable for other low bandwidth conditions. 
It can be applied to the hierarchical storage systems, where the throughput 
of the tertiary storage is used as the bandwidth threshold. The video staging 
may be used together with optimal smoothing. The smoothing can be applied 
on the lower and/or upper portion of the video.  
Unfortunately, the estimation of network bandwidth should be good enough. 
If the estimated network bandwidth is too low, many segments are larger than 
the threshold. A large amount of data needs to be transferred in the preload-
ing stage, resulting in very long start-up latency. If the estimated network 
bandwidth is too high, only a small amount of data needs to be transferred 
in the preloading stage. However, the average network condition may not 
meet the estimated bandwidth threshold. Insufficient data are delivered to 
the client and the display quality becomes low.

Application.Note:.The most difficult part is that the actual network condition 
fluctuates a lot. The network can suddenly become congested and the band-
width.drops.below.an.accurate.network.bandwidth.estimated.that.is.made.
at.an.earlier.time..Luckily,.the.video.staging.method.only.needs.to.use.the.
average.bandwidth.estimation.for.a.period.of.time..A.short.congestion.would.
not.cause.a.problem.if.the.average.bandwidth.is.only.gradually.lowered.
It.can.be.applied.to.stored.video.streams,.but.it.cannot.be.applied.to.real-time.
streams.where.the.data.cannot.be.delivered.in.advance.

The video staging method transfers the data of the high bandwidth segments 
in the preloading stage. When the streams are delivered from the beginning, 
the actual data being transferred in the preloading stage can be modified. The 
same network bandwidth is required as long as the data being transferred in 
the preloading stage are within the range of segments from the beginning of 
the video to the high bandwidth segment. Thus, the head of the video can be 
included in the preloaded portion to reduce the start-up latency.
New network protocols, such as RSVP and DiffServ, reserve some bandwidths 
for a stream but they are unfair to the TCP protocol. These methods also have 
an implementation difficulty that existing network routers do not support these 
protocols. The video staging method can be applied only if the new protocol 
can be implemented on today’s Internet with new and legacy routers. 
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The.Hotspot.Caching.Method

Objectives

Multimedia objects are normally displayed from the beginning to the end. 
Apart from the normal display of data, there are other usage patterns. 
For instance, when a user searches the storage system for the appropriate 
object, the user may not be able to find the desired object by looking at the 
object name, object description, creation date/time, and other metadata of 
the object.
Other methods may be used to search an object, including matching colour, 
shape, and texture. These methods still need more time and effort to research. 
At the current publishing time of this book, the matching of objects based on 
low level details is still not accurate enough. In addition, users may wish to 
match the objects according to their semantic meaning. User feedbacks are 
often required to provide good matching of multimedia objects.
The system may not be able to understand and capture the exact need of the 
user. The user may not be able to express what the user wants for the sys-
tem to search. When there are not too many objects to search, an effective 
method is to browse the objects. Browsing of video objects involves looking 
at some segments of the video. It is time-consuming to browse video and 
audio objects at their normal display speed. It would be nice if the system 
can provide fast browsing of the objects.
To provide fast browsing of objects, the system should retrieve only low 
resolution objects for display. Otherwise, the workload of the system and 
network may become heavy. Apart from browsing of objects, the system 
may provide fast browsing option to advertise new objects to many potential 
buyers or viewers. Therefore, the hotspot caching technique is designed to 
provide efficient previews of objects. 

Details.of.the.Method

When proxy servers cache parts of an object, each proxy server may cache a 
portion of the object to reduce repeated accesses to the object (Fahmi, Latif, 
Sedigh-Ali, Ghafoor, Liu, & Hsu, 2001). As multimedia streams may retrieve 
the following data blocks while they are consuming the current data blocks, 
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a stream may start to respond when the first few leader blocks are available. 
These leader blocks are cached in the local proxy server to reduce the response 
time of the stream as shown in the resident leader method.
Apart from the leader blocks, the object is divided into a number of segments. 
Each segment should be independent of the previous segments. The begin-
ning part of each segment is defined as the preview hotspot of the segment. 
Hotspot segments do not need to be distributed at uniform interval or be of 
equal size. It may be defined by the creator of the media object or the creator 
of the hotspot segments.
The storage system then keeps these preview hotspots together in its local cache. 
Apart from the preview hotspots, the other parts of the temporal segments are 
retrieved from the remote storage. These data blocks can be cached according 
to the chosen cache value function. For example, a segment should begin 
with an I-frame in MPEG coding. A hotspot is composed of data segments 
that are separated at equal temporal distance. A proxy server could provide 
a preview of the object using only the segments inside the hotspots.

Discussion

The hotspot caching method provides a fast preview of the object. The user 
may browse the hotspot to know the content of the object. It helps to provide 
relevance feedback when the user searches for a desired object from a database 
of multimedia objects. When only the hotspot is viewed, the storage system 
only accesses data from the cache level. Thus, objects can be previewed ef-
ficiently and quickly.
The hotspot method also provides caching when the user jumps to the later 
segments. If each segment is 10 minutes long and the first minute of each 
segment is included in the hotspot, the start-up latency is reduced when the 
user jumps to the first minute of every 10 minutes. Thus, the stream responds 
quickly when users move their displaying position on the object. Therefore, 

Figure.23.3..Hotspot.caching

Figure ��.�. Hotspot Caching

Hotspot blocks
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the hotspot method improves quality of service to the user when the object 
is being searched, previewed, or randomly accessed. The hotspot caching 
method allows the sizes of the segments to be determined by the creator of 
the segments. This is flexible that different segment sizes can be used in 
different systems. 

Application.Note:.The.size.of.the.hotspots.in.each.segment.is.determined.
by.the.latency.in.accessing.the.object.from.remote.storage..Longer.hotspots.
should.be.created.on.objects.that.are.accessed.with.long.latency..Shorter.
hotspots.can.be.created.on.objects.that.are.accessed.with.short.latency..The.
shortest.display.time.of.the.hotspot.should.be.longer.than.the.access.latency.
of.the.segment.from.remote.storage.

Interval.Caching

Objectives

The principle contribution of caching is to reduce repeated access of the same 
piece of data from the remote storage. It would be better to store an object 
or a segment if we can be sure that it will be accessed again after it is stored 
on the cache. The choice of object depends very much on the length of time 
elapsed before it will be accessed again.
The durations of streams are long, in the order of minutes to hours. There is 
much overlapping time among streams on the same object. In true video-on-
demand systems, these streams are initiated at different times. They access 
the object via the same proxy server at different times. Since the concurrent 
streams are accessing the same object, it is almost for sure that the object will 
be accessed again if it is stored to the cache. Thus, it is beneficial to keep in 
cache the objects for concurrent streams.
As it is beneficial to keep in cache the objects for concurrent streams, the stor-
age system needs to compare the benefits of storing an object of concurrent 
stream with another object that may be accessed with a probability less than 
one. Thus, the objects of concurrent streams should have higher cache value 
than another object that is not concurrently accessed by multiple streams. 
When the cache storage space is scarce, the cache space may not be large 
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enough to accommodate the objects for all the concurrent streams. Therefore, 
the time interval between the starting times of concurrent streams is used.
When the cache storage space is scarce, the cache space may not be large 
enough to accommodate the entire object. It is more efficient to store an object 
with a short interval than another object with a long interval. Therefore, the 
time interval between the starting times of concurrent streams on the same 
object is considered. 

Details.of.the.Method

The interval caching method uses the time separation between streams that 
access the same object to determine the priority of keeping the segments of 
the object in the cache. The streams that are close together will have high 
priority to be kept in the cache. The streams that are far apart have low prior-
ity (Sitaram & Dan, 2000).
When a new stream arrives at the cache, it finds if this object is being accessed 
by another stream. If the object is already accessed by another stream, then 
the time interval of the two streams is the difference of the two display times 
of the two streams. The interval size is the amount of data to be accessed for 
the time interval. The exact interval size would increase or decrease depend-
ing on the amount of data per unit time. The estimated size of an interval is 
the time to re-access all the blocks in that time interval.

Figure.23.4..Interval.caching.caches.the.shortest.intervalFigure ��.�. Interval Caching caches the shortest interval
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For instance, two streams access object A at 11:40 a.m. and 12:20 p.m. The 
time interval between the two streams is 20 minutes. The estimated size of 
the interval is the time to re-access all the blocks in 20 minutes. An estimated 
size is the average number of bytes over a 20-minute range.
The storage system then compares the interval sizes among the streams and 
chooses the data segments of the shortest intervals to be cached. Once an 
interval is chosen to be cached, its preceding stream places all blocks in the 
cache upon consumption. The following stream reads the block from the 
cache and places them in the free pool. Thus, the interval between the two 
streams is placed in the cache. The cached interval is immediately removed 
from the cache after display. For instance, three movies are accessed by seven 
streams in Figure 23.4.

Discussion

Since the following stream would display the interval after it is kept in the 
cache, the probability of being accessed again before it is replaced is close 
to one.

Application.Note:.A.limitation.of.the.interval.caching.is.that.it.can.only.
be.applied.on.several.streams.access.the.same.object.via.the.same.cache.
level..When.each.stream.accesses.a.different.object,.the.cache.values.of.the.
objects.are.unknown.

When the duration of the streams is short, there is an interval caching has 
to be considered. This is unfair to the streams with short duration. The time 
interval between streams may change dynamically. The interval caching 
cannot change dynamically. 
Different objects that are residing on the same remote storage may have dif-
ferent accessed patterns. Clients may access these objects via the same proxy 
server. For instance, two 1-hour objects, object A and object B, are accessed 
via the cache storage. If object A is accessed once every hour and object B 
is accessed only twice at three o’clock and half past three, then object B has 
shorter interval than object A between three o’clock to half past three and 
object A has shorter interval than object B at other times. The objects are 
cached according to the interval caching and the cache space is enough to 
store only one object. Before three o’clock, object A is already cached. At 
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half past three, the storage system will start to cache object B. After half past 
four, the storage system will start to remove object B and cache object A. 
Depending on other access characteristics, the storage system should store 
the object with higher latency and smaller size. If the storage system replaces 
object A with object B, then the storage system will need to access the object 
B once and write the cache storage twice, once for replacing object A and 
once for replacing object B. The storage system will also access object A 
from remote storage once. Otherwise, the storage system only read object B 
from remote storage twice. Therefore, the storage system may perform better 
by keeping the object A in the cache.

Layered.Based.Caching

Objectives

Multimedia objects are different from textual data and programs. One main 
difference is that they are often kept in a compressed format. The original 
objects always have the lowest compression ratio but the highest quality. After 
the multimedia objects are compressed heavily, they occupy fewer bits but the 
compressed objects have lower quality. Very often the objects are compressed 
to a level that appears visually indifferent to the original object.
When the original object is accessed, the server and the network will need 
to transfer the amount of data that is equal to the size of the original object. 
If this is lower than the network bandwidth or the throughput capacity of the 
server, the object cannot be delivered by streaming. Instead of providing the 
highest quality version of the multimedia object, fewer bits are stored on the 
cache by lowering the quality of the cached object. Thus, more objects can 
be cached on the same amount of storage space. The storage system can thus 
deliver more objects of lower resolution.
One of the main difficulties to deliver multimedia objects over the Internet 
is that the network bandwidth fluctuates a lot. Although the average network 
may be considered, the network bandwidth may drop to zero when conges-
tions happen. When network congestions occur, the server is almost discon-
nected from the proxy server and the client. The proxy server could only use 
its cached content and the buffered data to wait till the congestion period is 
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over. Thus, the cache content should be tailored to maintain the continuity in 
streaming for the period of time when network bandwidth is insufficient.

Details.of.the.Method

The layer based approach compressed each media object into several layers 
such that upper layers contain refinements of the lower layers (Paknikar, 
Kankanhalli, Ramakrishnan, Srinivasan, & Ngoh, 2000, Rejaie, Yu, Handley, 
& Estrin, 2000). Each layer is further divided into equal-sized segments. The 
lowest layer, layer 0, is called the base layer. The base layer consists of the 
elementary information and the data for the coarse information. The layer one 
contains data for the finer details of the media object that are not described 
in the base layer. Each layer contains refinement details of the media object 
that are not described in the lower layers.
For instance, a value of 43,892 is described. For simplicity, we use the num-
ber of base 10 digits. In reality, the value is described with base 2 digits. It 
may take too many digits to describe the exact value. The value is instead 
described by data in five layers. The data in the base layer may contain the 
most significant figure of 40000. The layer 1 may contain 4000. The detail 
values -100, -10, and 2 can be described in the layers 2, 3, and 4, respectively. 
If only the base layer is known, the estimate value is 40000. If both layer 0 
and 1 are known, the value is estimated to be 44000. Similarly, the value is 
estimated to be 44900, 44890, and 44892 when layer 0 to layer 2, layer 3, 
and layer 4 are known, respectively.
When more layers are available from the base layer, the system can restore 
the media object that looks more like the original object. Since the upper 
layers only contain the less refinement details such as the less significant 
values, the upper layer information are useless without the lower layers. 

Figure ��.�. Layer Based Caching
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Figure.23.5..Layer.based.caching
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Without the base layer, all the upper layers cannot be used to reproduce the 
object. Thus, a layer can only be consumed when all the layers below it are 
available. Therefore, only the base layer is independent of other layers. All 
the upper layers depend on the lower layers below.
When a proxy first accesses an object for a client, the proxy always caches 
the missing stream. If cache space is exhausted, the replacement algorithm 
flushes enough segments from the cache to make room for the new stream. 
Thus, the proxy accumulates more objects in its cache for subsequent ac-
cesses until the cache is full.
The proxy uses a sliding window mechanism to prefetch segments (Rejaie et 
al., 2000). At playout time T and a fixed T1, it examines the interval [T+T1, 
T + T1 + δ] and identifies the missing segments in this interval. It sends a 
new prefetch request that contains an ordered list of all the missing segments 
according to their priorities. The priority of a segment is defined as a combi-
nation of the layer number and the time of the segment. Segments of lower 
layers always have higher priority than the upper layers. The segments in the 
same layer are delivered according to their time. When the server receives 
a prefetching request, it stops the previous requests from the same client. It 
then sends the requested segments according to their priorities. 
The proxy organizes the cache values of objects at the granularity of a layer, 
but it deletes at the granularity of segments. The cache value of a layer at 
time t is defined as

CVlayer = ∑
∆−=

t

tx
xwhit )(

Figure.23.6..Prefetching.priorities.in.the.sliding.window

Figure ��.�. Prefetching Priorities in the Sliding Window
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where Δ is the width of the popularity window. The whit(x) is the weighted 
hit of the layer and it is defined as

whit(x) =
PlaybackTime

, 0 ≤ whit ≤ 1,
StreamLength

where PlaybackTime is the cumulative amount of time that a layer is played 
from the cache and StreamLength is the total length of the object.
When cache space is needed, the layer with the smallest cache value is cho-
sen as the victim layer. The cached segments of the victim layer are then 
deleted from the last to the first until enough space is released. In order to 
hide start-up latency, the first few segments of the base layer are kept in the 
cache for a longer period.
The performance of the method is measured by completeness and continu-
ity. Completeness measures the percentage of a stream residing in the cache. 
When a layer has larger portion in the cache, the completeness of the layer 
is higher. The completeness of layer l in cached object s is defined as the 
percentage of the layer’s size in cache and it is found as

,( )Cp(s,l) = l ii Chunks l

l

L

RL
∀ ∈∑

where Chunks(l) is the set of all chunks of layer l. A chunk is defined as a 
continuous group of segments of a single layer of a cached object. Ll,i is the 
length in segments of the ith cached chunk of layer l. RLl is the length in 
segments of layer l. If every byte of a layer is cached, the completeness of 
the layer is equal to 1. Obviously, the range of the completeness is [0, 1]. 
Continuity measures the level of smoothness of a cached stream. It counts 
the number of breaks in a cached stream. A long continuous stream has a 
high number of bytes between breaks. The continuity of a layer is defined 
as the mean number of bytes between two consecutive layer breaks. Thus, 
the layer l in cached stream s is found as 
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Ct(s,l) = 
1

)( ,

+
∑ ∈∀

sLayerBreak

L
lChunksi il ,

where LayerBreaks is the number of layer breaks in the layer and.Chunks(l) 
is the set of all chunks of layer l. A layer break occurs when there is a missing 
segment in the layer. The continuity counts the average chunk size. When the 
entire layer is cached, the continuity is equal to the length of the layer.

Discussion

This method changes the quality of a stream with the popularity of the layer 
of the object. More layers are cached for more popular objects. Fewer layers 
are cached for less popular objects. Thus, the more popular objects are cached 
to achieve higher cache efficiency. When the user is not satisfied with the 
quality of a stream, the user may repeatedly access the same stream and the 
quality of the stream may increase after each subsequent access.
It uses a sliding window mechanism to prefetch segments from the server. The 
size of the sliding window may affect the smoothness of the streams. When 
the sliding window is small, only a few segments are delivered in each layer. 
When the sliding window is large, many segments of a layer are transmitted. 
If the sliding window only includes one segment from each layer, one seg-
ment of each layer is delivered within the window. When traffic congestion 
occurs, the server may not be able to deliver any segments within the sliding 
window. Thus, a layer break occurs in every layer.
The proxy organizes the cache values of objects at the granularity of a layer, 
but it deletes at the granularity of segments. This method helps the cache 
replacement algorithm to find the victim layer quickly at the granularity of 
layers. It maximizes the cache efficiency and avoids space fragmentation by 
deleting the victim layer at the granularity of a segment.

Application.Note:.This.method.is.applicable.to.varying.client.bandwidth.
and.stream.popularity.environments..When.the.server.to.proxy.bandwidth.
is.higher.than.the.client.to.proxy.bandwidth,.stream.popularity.is.dominant..
When.the.server.to.proxy.bandwidth.is.lower.than.the.client.to.proxy.band-
width,.the.client.bandwidth.overshadows.stream.popularity..
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The cache values of the segments depend on the cache content. The cache 
content in term depends on the cache values. This recursive definition of the 
cache value is not flexible. Convergence needs to be guaranteed and proven. 
Some studies have shown that the cache content converges. However, it may 
not be true for another system with different access patterns. Thus, the method 
may not be applicable in very stringent and volatile environments.
The less popular objects may be completely flushed out from the cache. It 
may not be suitable to reduce the quality of less popular objects. The cache 
space is provided to increase the quality of cached streams. When more cache 
space is available, the quality of more streams is improved. This method 
trades off the caching of the less popular layers for that of the more popular 
layers. In addition, it may be more desirable to keep the base layer of a less 
popular stream in the cache instead of the uppermost layer of a popular 
stream. Thus, it is more flexible to define the cache values of layers based 
on the completeness and continuity of the layers so that the cache efficiency 
can be optimized.

The.Cost.Based.Method.for.Wireless.Networks

Objective

The cost based method for wireless networks has three objectives (Xiang, 
Zhang, Zhu, & Zhong, 2001). First, it caches the popular media to reduce 
network resource cost in transmitting media objects from server to proxy. 
Second, it improves media quality for wireless clients by calculating and 
caching the redundant data in the computation cache. Third, it decreases 
start-up latency by caching the leaders of media objects.

Details.of.the.Method

The media objects are divided into two types of segments, data segment and 
redundant data segments. The data segments are segments that are composed 
of the media object. The redundant data segments are redundant data created 
to recover the transmission errors over the wireless network. The data seg-
ments are cached in the data cache. The redundant data segments are cached 
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in the computation cache. The media distortion cost of data segments and 
redundant data segments are calculated differently. 
The cache value is composed of three costs: network cost, start-up latency 
cost, and media distortion cost. The network cost of segment j in object i is 
defined as

NCij = Sij × Hi × Fij

where Sij is the size of segment, Hi is the network distance between server 
and proxy, and Fij is request frequency of segment. 
Long segments consume more network bandwidth to deliver. Thus, it increases 
the network cost as well. The network distance between server and proxy 
is a function of the round trip time. When the round trip time is longer, the 
network distance becomes longer. The request frequency of the segments 
takes into account the early termination of streams. When a stream is often 
terminated before it ends, the request frequency of the last segments would 
be lower than its earlier segments.
The start-up latency cost of segment j in object i is defined as

,  if 
0,                otherwise

i ij threshold
ij

L F j J
LC

× <
= 


where Li is the network latency cost in accessing the leader of object i, Fij is 
request frequency of segment j, and Jthreshold is the size of the leader in number 
of segments. The network latency cost is the delay for accessing the leader 
from server to proxy and it is a function of the round trip time (RTT) between 
the remote storage and the local cache.
When a segment is part of the leader of an object, the request frequency of 
the segment and the network latency cost will be used to increase the start-up 
latency cost of the segment. Otherwise, the start-up latency cost is zero. 
For data segments, the media distortion cost for the segment j of object i is 
defined as 

QCij = Xij ×Fij
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where Xij is the measured distortion in PSNR, and Fij is request frequency 
of the segment. 
The values of the above three costs all contributes to the cache value function. 
The cache value of data segment j of an object i is defined as

ij ij i ij
wireless

i

n NC l LC F q QC
CV

S
× + × × + ×

=

where NCij, LCij, QCij are respectively the network cost, start-up latency cost, 
and the media distortion cost of the segment j of object i, and Si is the size 
of object i. The parameters n, l, and q are constants whose values depend on 
the real world demand.
For redundant data segments, the cache value only depends on the media 
distortion cost of the redundant data segment. The cache value of a redundant 
data segment j of an object i is defined as 

ij ij wireless
wireless

i

q X F
CV

S
× × ×λ

=

where Xij is the measured distortion in PSNR, Fij is the request frequency of 
the segment j of object i, λwireless is the proportion of the wireless clients to all 
clients, Si is the size of object i, and q is a constant.  
The cache replacement algorithm is similar to traditional cache replacement 
policy. When cache space is needed, the segment with the lowest cost is 
deleted to release space until enough space is released.

Analysis

This cost based method for wireless clients takes care of wireless clients by 
considering the quality distortion over wireless networks. It caches the redun-
dant data segments separately from the data segments so that the quality of 
the media streams can be maintained over the error-prone wireless networks. 
This method is simple; it can be applied on the legacy cache replacement 
algorithm. It uses a cost that is different from the traditional recency value for 
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each segment in the cache. The storage system however needs to keep some 
information about each cached segments, including the request frequency, 
network distance, network latency cost, and the quality distortion.
The cache performance of this cost based wireless method is flexible. The 
parameters can be adjusted to modify the relative importance of the network 
cost, start-up latency, and media quality. Unless the users are well-experienced, 
it is difficult to find the most appropriate values for the parameters, n, l, and 
q. After the network conditions change, it may also be necessary to adjust 
the parameter Jthreshold which is the size of the leader in number of segments. 
Apart from keeping the information for each segment, this method also needs 
to calculate the cost for each segment. This involves expensive computation 
cost in addition to the amount of data stored.

Application.Note:.The.computation.and.data.cost.may.be.reduced.by.con-
sidering.only.the.last.cached.segment.of.each.object.for.comparison..When.
the.last.cached.segment.is.compared.to.other.segments.of.the.same.object,.it.
should.have.the.lowest.request.frequency..This.is.because.a.segment.is.usually.
accessed.after.its.previous.segments.are.accessed..The.last.cached.segment.
should.have.the.lowest.request.frequency.among.segments.of.the.same.object..
The.request.frequency.is.an.important.multiplying.factor.in.the.calculation.
of.the.network.cost,.start-up.latency.cost,.and.media.distortion.cost.

Chapter.Summary

The stream dependent caching methods were designed to guarantee continu-
ous delivery for multimedia streams. 
The resident leader method stores the beginning segment to hide the latency 
in accessing the object from the user. It trades off the average response time 
of requests to reduce the maximum response time of streams.
The variable length segmentation method divides the objects into segments 
of increasing length. The earlier segments are shorter and have higher cache 
value. The later segments are longer and have smaller cache value. First, the 
earlier segments have higher priority to be kept in the cache than the later 
segments of the same object. The beginning of many streams may be stored 
in the cache to reduce the start-up latency. Second, the large segments are 
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deleted before the small segments are deleted. The number of segments to 
be deleted is reduced and the cache replacement algorithm becomes more 
efficient. Third, the large segments are deleted and it avoids the fragmenta-
tion problems.
The video staging method retrieves high bandwidth segments to reduce the 
necessary WAN bandwidth for streaming. Unfortunately, network conges-
tions happen at any time and the network bandwidth fluctuates a lot. The 
WAN bandwidth threshold cannot be guaranteed before the reservation based 
protocols are implemented on today’s Internet. 
Hotspot caching creates the hotspot segments of objects and these hotspots 
are stored as preview segments to provide fast object previews from local 
cache.
Interval caching keeps the shortest intervals of video to maintain the continu-
ity of streams from the local cache content.
Layer based caching adapts the quality of streams to the cache efficiency. 
It fetches segments in the prefetching window to control the congestion of 
networks. It finds the victim layer and deletes unpopular segments to achieve 
fine granularity replacement. It uses the continuity and completeness as metrics 
to measure the suitability of the caching method for multimedia streams.
The cost based method for wireless clients reduces the quality distortion over 
the error-prone wireless networks with the help of the cache content. The 
cache value of the segments is composed of network cost, start-up latency 
cost, and quality distortion costs. The cache replacement algorithm finds the 
victim segment and deletes at the granularity of segments.
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Chapter.XXIV

Cooperative.Web.Caching

Introduction

Most clients are placed behind the proxy servers on the Internet. Proxy serv-
ers have the disk cache space, network bandwidth, and availability to cache 
part of the objects for clients. In addition, the number of proxy servers can 
be increased or decreased dynamically according to the anticipated server 
workload, making them good candidates to alleviate the bottleneck problem. 
We have described in the last two chapters how the caching methods provide 
better performance for continuous request streams in individual proxy serv-
ers. In this chapter, we show how the proxy servers may work together to 
improve the overall performance in delivering objects.
At present, large multimedia objects are not cached or only partially cached 
in current proxy servers mainly for two reasons. First, the owner of the mul-
timedia objects needs to ensure security and control of access of the objects 



Cooperative Web Caching   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

before they are willing to let any proxy servers cache their objects. Thus, any 
new methods need to allow the content owner have complete control over 
the objects’ security. Second, the owner of the proxy server wishes to have 
full autonomy control over its own cache content so that the proxy server 
may maximize the cache efficiency for its own clients.
One of the main contributions of proxy servers to the clients is their cache 
storage. The content of the cache storage depends on the cost function in 
the cache replacement policy that determines the cache performance. The 
cache replacement policy is often optimized to achieve the highest cache hit 
ratio and byte hit ratio. When many clients access multimedia objects via 
proxy servers, some of them may access the same objects. Several proxy 
servers which are in the network neighbourhood of each other may access 
the popular objects for their clients. If these proxy servers can cooperate 
with each other by sharing their cache contents, the congestion on the net-
work and content server can be reduced (Dykes & Robbins, 2001; Wolman, 
Voelker, Sharma, Cardwell, Karlin, & Levy, 1999). It is effective when the 
objects are accessed by many requests in a period of time (Lee, Amiri, Sahu, 
& Venkatramani, 2002).
If each proxy server caches a different fraction of a popular object, the union 
of these parts may form a large fraction of the entire object. Only the missing 
parts are then requested from the content server. Therefore, the cooperative 
object partitioning methods thus help to reduce the amount of data that must 
be delivered from the content server.
As the cooperation of Web caches assist the clients in delivery of multimedia 
streams, the efficiency of the cooperation is measured with additional metrics. 
Local hit ratio and local byte hit ratio measures the efficiency of the local 
cache level. The hit ratio and byte hit ratio measures the overall efficiency of 
all the cooperative caches. The stream response time and the stream service 
time indicate how the cache performance would affect the user. The number 
of server streams is used to measure the capacity of the content servers and 
proxy servers.
We shall describe the recursive leader method in the next section. Then, hier-
archical Web cache is shown. After that, the array of Web caches is presented. 
Afterwards, the multiple hotspot caching method is described.
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Hierarchical.Web.Caches

Objectives

The multimedia objects are large in size and the proxy servers may run out 
of cache space by storing a few objects. For an object stored in the cache, 
it would be more efficient if the cached object is accessed by more clients. 
Thus, a proxy server may share its cached objects with other proxy servers 
in the neighbourhood to reduce the capacity misses.
One method to share the cached contents is to build the caches into a hierarchy 
of cache storage as illustrated in Figure 24.1. The cache storage that is closest 
to the clients is the local cache level. The proxy servers at this local cache 
level do not directly access the objects from the content server. Instead, they 
access objects from the content server via the parent proxy server. A parent 
proxy server may have several child proxy servers. Each child proxy server 
has only one parent proxy server.

Details.of.the.Method

On the Internet, many proxy servers are present. A proxy server may access 
an object from the server via another proxy server in the local area network 
(LAN). The later proxy server is called the parent of the child proxy server. 
Repeatedly, these proxy servers can be built into a large tree. Beginning from 
the root of this cache tree, each proxy server is a node in the tree and the 
clients are the leaves of the tree (Park, Baek, & Chung, 2000).
When an object is accessed from the content server, the client requests are 
forwarded through the child and parent proxy servers before they reach the 
content server. The child proxy server which is closest to the client checks 
if the object has been cached or not. If it is not being cached, then the child 
proxy server forwards the request to the parent proxy server.
The parent proxy server checks if the object has been cached or not. If it 
is not on the cache, then it forwards the request to its parent proxy server. 
If the object is already on the cache, it returns the object to the child proxy 
server.
When an object is initially accessed, the root parent proxy server accesses the 
object from the content server. When data of the object are delivered from the 
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content server, it passes the received segments to the requesting child proxy 
server. In addition, it caches the object for other child proxy servers which 
have not requested the object. When a child proxy server receives the object 
from its parent proxy server, it caches the object and delivers the object to 
the client requesting it.

Analysis

The parent proxy server keeps on its cache the objects requested by its child 
proxy servers. The network traffic is reduced when the object is accessed by 
any other clients via any child proxy servers. More clients are connected to 
this proxy server and more object accesses are directed to this proxy server. 
The cached object can be accessed by more clients. This helps to reduce the 
capacity misses. Thus, the cache performs more efficiently.
Since the parent proxy server caches the objects, it helps to reduce the net-
work latency in accessing the object by other child proxy servers. As the 
parent proxy server in the LAN is closer to the client than the content server, 
the network latency is shorter. It helps to reduce the start-up latency of the 
streams.
Since the parent proxy server caches all objects that are requested by its child 
proxy servers, the parent proxy server needs to be very large in order to cache 
the large number of objects. The parent proxy server becomes a bottleneck 
as too many objects are accessed from it.

Figure.24.1..Parent.proxy.server,.P,.and.child.proxy.servers,.C,.build.into.a.
hierarchical.Web.cache

Figure ��.�. Parent Proxy Server, P, and Child Proxy 
Servers, C, build into a hierarchical web cache
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Front.and.Rear.Partitioning

Objectives

The multimedia objects are large in size and the proxy servers may run out 
of cache space by storing a few objects. For an object stored in the cache, 
it would be more efficient if the cached object is accessed by more clients. 
Thus, a proxy server may share its cached objects with other proxy servers 
in the neighbourhood to reduce the capacity misses.
One method to share the cached contents is to build the caches into a hier-
archy of cache storage. The cache storage that is closest to the clients is the 
local cache level. The proxy servers at this local cache level do not directly 
access the objects from the content server. Instead, they access objects from 
the content server via the parent proxy server. A parent proxy server may 
have several child proxy servers. Each child proxy server has only one par-
ent proxy server.
The objective of the resident leader method is to completely hide the start-up 
latency of the streams by keeping the leaders resident in the cache close to 
the client. The objective of the front and rear segments method is similar. It 
keeps the leaders in the local proxy server that is closest to the clients to hide 
the start-up latency. In addition, it stores the rest of the object in the parent 
cache so that the cached object is shared by more clients.

Details.of.the.Method

On the Internet, many proxy servers are present. A proxy server on the sub-
LAN may access an object from the server via another proxy server in the 
LAN. The later proxy server is called the parent of the child proxy server. 
Repeatedly, these proxy servers can be built into a large tree. Beginning 
from the root of this cache tree, each proxy server is a node in the tree and 
the clients are the leaves of the tree.
Similar to the resident leader method, the recursive leader method divides an 
object into two contiguous parts: the front segment and the rear segment (as 
illustrated in Figure 24.2). The front segment is the same as the leader in the 
resident leader method. The rear segment is same as the rest of the object in 
the resident leader method (Park, Park, & Son, 2001). 
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When an object is accessed from the content server, the client requests are 
forwarded through the child and parent proxy servers before they reach the 
content server. The child proxy server, which is closest to the client, checks 
if the front segment has been cached or not. If it is not being cached, then the 
child proxy server forwards the request to the parent proxy server.
When an object is initially accessed, the parent proxy server accesses the 
object from the content server. When data of the object are delivered from 
the content server, it will perform three operations on the object stream. First, 
it passes the received segments to the requesting child proxy server. Second, 
it caches the rear segment. Third, it pushes the front segment to other child 
proxy servers which are not requesting the object.
When the child proxy server receives the front segment from its parent proxy 
server, it caches the front segment and delivers the rear segment to the client 
without caching it.

Analysis

Similar to the resident leader method, the child proxy server caches the front 
segment and hides the start-up latency from the user. 
The parent proxy server keeps the rear segment in its cache. The network 
traffic is reduced when the object is accessed by any other clients via any 
child proxy servers. More clients are connected to this proxy server and more 
object accesses are directed to this proxy server. The cached object can be 
accessed by more clients. This helps to reduce the capacity misses. Thus, the 
cache performs more efficiently.
Since the parent proxy server caches the rear segments, it helps to reduce 
the network latency in accessing the object. As the parent proxy server in 
the LAN is closer to the client than the content server, the network latency 

Figure.24.2..Front.and.rear.segments

Figure ��.�. Front and rear segments
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is shorter and the network traffic can be better predicted. It helps to provide 
a guarantee on the continuity of the streams.
The front segment is pushed to other child proxy servers. Before the cached 
front segment is removed, these child proxy servers can thus serve their 
clients immediately when the object is first accessed. The start-up latency 
of more streams is then hidden. It also helps to reduce compulsory misses 
which were not possible before. 
Since the addition of another proxy server as a parent proxy server, each 
request will be routed through more network links. Each request will travel 
through more proxy server and there is a small increase in the average delay. 
In addition, the parent proxy server could become a bottleneck when too 
many objects are delivered from it. 
Similar to the resident leader method, this method also assumes that the object 
is consumed from the beginning to the end. Similar to the resident leader 
method, the caching of the front segment is a trade-off between the maximum 
start up delay of streams and the average response time of requests. It helps 
the problems in the resident leader method by caching the rear segment. The 
network delays become more predictable and the stream continuity can be 
guaranteed. The workload on the remote storage level becomes light and the 
cache efficiency is maintained.

Directory.Based.Cooperation

Objectives

The main objective of the directory based cooperation is to reduce the network 
latency in accessing the objects. The proxy server in the neighbourhood is 
closer to the remote content server. When an object is delivered from one of 
the proxy servers in the neighbourhood, the network distance is shorter.
When the parent proxy server caches the requested objects, it needs to store 
all the objects that are accessed by its child proxy servers. This would increase 
the number of objects being cached at the parent proxy server. The parent 
proxy server can become overloaded. 
Instead of delivering the objects from the parent’s own cache, the requested 
object may be delivered from other child proxy servers that have the requested 
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object. The group of proxy servers thus serve more requests on the objects 
in their cache. The cache efficiency is thus increased.

Details.of.the.Method

The parent proxy server and child proxy servers form a tree of proxy servers 
similar to the hierarchical Web caching. A proxy server has only one parent 
and it may have more than one child. Only the root parent proxy server does 
not have any parent. Each proxy server is identified with its location. Each 
object is identified by its universal resource locator (URL). The proxy servers 
use the Internet caching protocol (ICP) to communicate with each other.
In order to know which proxy servers in the neighbourhood have the accessed 
object, all the proxy servers keep track of the request objects being cached 
in all its child proxy servers. A global resource index (GRI) table is built and 
kept in the proxy servers. The GRI table is created similarly to the inverted 
index. Each entry in the GRI table contains two parts: the URL of an object 
and the proxy servers the have cached this object (Wu & Liao, 1997).
When an object is accessed, the client requests are routed through the proxy 
server tree upwards before they can reach the content server. When a proxy 
server receives a request from its client or its child proxy servers, it processes 
the request using an object look-up algorithm.
In the object look-up algorithm, the proxy server may returns the object if it 
exists in its local cache. Otherwise, it finds the location of the object. If the 
location is not found, then it passes the requests to its parent for processing. 
If the location is not found at the root, then the location is the URL of the 
object. If it needs a copy of the object, then it gets the location of the object, 
cache a copy, and returns the object to the requesting child. Otherwise, it 
returns the redirection message containing the location of the object. The 
child proxy server receiving the redirection message will retrieve the object 
from the content server.
Details of the object look-up algorithm in the proxy servers are below:

1 Check if the requested object is kept in its local cache. 
2 If the requested object is in the local cache, then return the objects 

from its local cache. 
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3 Check if the object exists in the GRI table. 
4 If the object exists in the GRI table, then get the location of object 

from GRI entry.
5 If the object does not exist in the GRI table, then 
5.1 If this proxy server is not the root, then
5.1.1 Forward the request to its parent.
5.1.2 If response is redirection, then get object location from the redirec-

tion message.
5.1.3 If response is success, then get the location of parent.
5.2 Otherwise, get the location of the content server.
6 If it is not the last child in the requesting chain, then 
6.1 If it needs to cache this object, then 
6.1.1 Get the object from the location.
6.1.2 Cache a copy of the object.
6.1.3 Return the object to the requesting child or client.
6.2 Otherwise, return a redirection message with the location to the 

requesting child.
7 Otherwise, 
7.1 Get the object from the location.
7.2 If it needs to cache this object, then cache a copy of the object.
7.3 Return the object to the requesting client.

When a proxy receives a request for an object which has just been removed 
from the cache, the request cannot be forwarded to the parent proxy server. 
Otherwise, infinite loop of requesting may occur. The proxy server needs to 
get the object directly from the content server.
When several child proxy servers have the same object being requested, 
the parent proxy server may decide which proxy server’s location will be 
included in the redirection message. This decision depends on the distance 
from the requesting child to the other child proxy servers.
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Analysis

This directory based cooperation method does not store many objects in the 
parents. The parents may provide directory look-up functions only. Thus, 
there is little contention on the parent proxy servers.
There are two types of overheads involved in this method: the storage 
overheads and the update overhead. The parent proxy server needs to store 
the GRI table. It also needs to modify the GRI table when new requests are 
processed.
One of the main difficulties is on the political issue. The owners of proxy 
server may wish their proxy server to serve requests of clients within the 
organization only. When cooperation among owners of proxy servers is not 
established, it is unlikely that their proxy servers may cooperate to achieve 
better performance.

Hash.Based.Cooperation

Objectives

Instead of keeping the directory of object, the object locations are defined 
by their object ID. Based on the object ID, the object is cached on only one 
of the cooperative proxy servers. In addition, the overheads in updating the 
directory entries are avoided.

Details.of.the.Method

In the hash based cooperation approach, the cooperative proxy servers are 
organized into an array. Each proxy server is assigned a unique proxy num-
ber. The proxy servers communicate with each other using the cache array 
routing protocol (CARP).
Each object is assigned an object ID. The proxy server that can cache the 
object is defined by a hashing function of the object ID. The proxy server 
number is defined as
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= Hash(ObjectID),

where Hash(.) is a hashing function that returns a random number within the 
range of proxy servers. 

Analysis

Proxy cooperation is achieved without any directories to be updated. The list 
of locations of the proxy array is small and the update overheads are low. 
Each object is cached in only one proxy server. Other proxy servers within 
the array do not cache a second copy of the object. Thus, only one copy of 
the object can be found in the cache array. Thus, the entire space of the cache 
array will be used like a single cache. No duplications of objects are found. 
Thus, the storage space of the cache array is used efficiently to minimize 
the capacity misses. 
Since the array of proxy servers is fixed, the objects have their destination 
proxy server determined by the hashing function. The hashing function depends 
on the total number of proxy servers. After new proxy server joins the array 
or old proxy server leaves the array, the hashing function returns different 
proxy server numbers. Thus, the cached objects need to be relocated to the 
new proxy servers. This reorganization overhead is expensive.

The.Multiple.Hotspot.Caching.Method

Objectives

Clients access multimedia objects from the content servers. These clients may 
reside behind the same or different proxy servers. When the clients access 
an object via the same proxy server, the proxy server may store the entire 
object in its cache to serve multiple clients. The proxy server can access the 
object from the remote storage only once and store it on the cache. It can 
then server other clients from the object in the cache. Thus, the proxy server 
reduces the server load, network load, and start-up latency of streams.
When the clients access an object via different proxy servers, each proxy server 
accesses the object from remote storage. The network load, server load, and 
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start-up latency of streams are high. The multiple hotspots caching method 
reduces the amount of data being accessed from the remote storage. 
In order to provide fast previews, the hotspot caching method stores hotspot 
segments of media objects in the local cache level (Fahmi, Latif, Sedigh-Ali, 
Ghafoor, Liu, & Hsu, 2001). When the hotspots on different proxy servers 
are the same, each proxy server still accesses the other segments besides 
the hotspots from the remote storage. A better mechanism to share hotspots 
would be able to reduce the amount of data being delivered from the remote 
storage while providing fast previews.
When users access multimedia objects from the Internet, the multimedia 
objects may traverse through several different networks in the delivery. The 
networks, in particular the wide area network (WAN), are often unstable and 
sometimes congested. It would be nice to reduce the amount of data being 
delivered over the network. The streams can become more stable by reducing 
the amount of data being accessed from the remote storage. 

Details.of.the.Method

The server mechanically partitions an object into multiple segments for 
distribution (Tse, Leung, So, & Lau, 2003). Each object is divided into a 
number of low temporal resolution segments (Figure 24.3). Each segment 
is a small fixed number of group of pictures (GOP). A segment is a short 
continuous object by itself. 
Instead of creating a single hotspot by the media creator, the multiple hot-
spots method creates hotspots automatically by grouping segments that are 

Figure ��.�. Multiple Hotspots Caching
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separated from each other at a fixed time intervals (Tse & Lau, 2004). Each 
single hotspot can thus provide a preview of the object to its clients. 
Each proxy server will cache one of these hotspots so that it may provide a 
preview of the object to its clients from its local cache. The cached hotspots 
may also improve the performance of the searching algorithm by letting us-
ers give feedback quickly.
In the multiple hotspots partitioning method, each segment belongs to one of 
the hotspots and all the hotspots together form a large fraction of the object. 
When enough hotspots are accessed from neighbouring proxy servers, the 
entire object can be restored. Thus, the media object can be displayed without 
any requests being sent to the remote storage server.

Discussion

The multiple hotspots method increases the sharing of data among neighbour-
ing proxy servers. Thus, it affects the cache performance in terms of local hit 
ratio, local byte hit ratio, byte hit ratio, and response time.
For the local hit ratio, the methods using the variable length segments per-
form better than the methods using fixed length segments. This is because 
the local proxy cache is more efficient when longer segments of hot objects 
and shorter segments of cold objects are cached.
The local byte hit ratio of the methods using variable length segments per-
form similarly to the fixed length methods at small cache sizes. The variable 
length methods perform better than the fixed length methods when the cache 
size is sufficiently large.
The byte hit ratio is similar to the local hit ratio. The better performing group 
are the methods using multiple hotspots and random segments. These methods 
partition the object into several different segments and the proxy caches one 
of the segments. Thus, the proxy servers are caching different segments of 
the object and they can cooperate to increase the byte hit ratio. On the other 
hand, the single hotspot and the fixed range methods all cache the same seg-
ment of the object. They cache the same segment of fixed or variable length 
and the cooperation cannot increase the byte hit ratio.
The proxy servers cache the initial part of objects as leaders in the local cache 
to reduce the response time. The response time of all methods reduces with 
longer leader length. When the same leader size is used, the variable length 
methods perform better than the fixed length methods. 
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In summary, the methods creating multiple segments perform better than 
the methods creating only single segment. Among all methods, the random 
multiple hotspot fixed size performs the best.

Chapter.Summary

Research on the large scale operations of Web caches have shown that the 
benefits on caching Web documents do not increase beyond the capability of 
a single proxy server. Hierarchical Web caching reduces network latency on 
requests. Front and rear partitioning reduces the start-up latency of streams. 
Directory based cooperation avoids the contention on the parent proxy 
server. Hash based cooperation achieves low storage overheads and update 
overheads. Multiple hotspot caching keeps the hotspot blocks to provide fast 
local previews.
The performances of various object partitioning methods in cooperative 
multimedia proxy servers are compared. The performance of cooperative 
proxy caching is significantly affected by the chosen partitioning method. The 
partitioning methods creating variable length segments perform better than the 
methods creating fixed length segments in local metrics. The methods creating 
multiple segments perform better than the methods creating single segment 
when cooperative caching is used. Among all methods being investigated, 
the random multiple hotspot fixed size uses the shortest service time.
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On the Internet, many multimedia objects are stored in the content servers. 
The clients are located over a wide area network far from the content server. 
When clients access multimedia objects from a content server, the content 
server must have sufficient disk and network to deliver the objects to the cli-
ents. Otherwise, it rejects the requests from the new clients. Thus, the popular 
content server can easily become the bottleneck in delivering multimedia 
objects. Therefore, server and network workloads are important concerns in 
designing multimedia storage systems over the Internet.
Multimedia objects, like other traditional data files and Web pages, may be 
transferred across networks, such as the Internet. In order to provide efficient 
delivery of data across the networks, some data can be stored in the middle 
of the network. When requests for the same object have been received, these 
data can be used to satisfy the requests at the middle of the network instead 
of forwarding the request any further. This method to satisfy requests with 
previously accessed data is called caching.

Summary.to.Section.V

Cache Replacement Policy



Since caching needs to consume a certain amount of storage space, the cache 
performance is affected by the size of the cache memory. If the storage space 
is large, more objects can be stored on the cache storage and the probability 
of finding an object in the cache is thus high. The cache performs better. If 
the storage space is limited, only a few objects can be stored in the cache 
storage and the probability of finding an object in the cache is low. As a result, 
the cache performance becomes low. Therefore, the cache size influences the 
cache performance.
Since caching stores some previously fetched objects on the storage devices, 
the presence of an object exists on the storage devices significantly affects 
the efficiency of the caching. When a new object is being accessed, the cache 
admission policy decides whether an accessed object should be stored onto 
the cache devices. 
Since the cache performance increases monotonically with the number of 
objects in the cache, the cache storage space is often full in order to keep 
the most number of objects in the cache. When an accessed object needs to 
be stored and the cache space is full, the cache replacement policy decides 
which object should be deleted from the cache storage to release space. The 
choice of whether an object is kept in the cache is determined by the cache 
replacement policy. Thus, the cache replacement policy significantly affects 
the efficiency of caching.
Memory cache replacement policies assign a cache value to each object 
in the cache. This cache value decides the priority of keeping the object in 
the cache. When space is needed to store a new object in cache, the cache 
replacement function will choose the object with the lowest cache value and 
delete it to release space. As a result, the objects with high cache values will 
remain in the cache.
Different cache replacement policies will assign different cache value to 
the objects. The traditional LRU method keeps the objects that are accessed 
most recently. It is simple and easy to implement and the time complexity 
is very low. All other methods except the LFU method also keep the objects 
that are accessed recently.
The pattern in accessing multimedia objects has been described. The access 
pattern of video tapes in the rental stores can be described with a Zipf-like 
distribution. The long term behaviour of accesses for an individual object 
follows an exponential curve plus a random effect. The LFU, LUV, and mix 
methods keep track of the object temperature and remove the coldest objects 
from the cache first.



Due to the large size of multimedia objects, the cache may completely be 
occupied by a few objects. To maintain a good cache hit ratio, the priority 
of keeping large objects in the cache is reduced. Thus, the LRU-min, GD-
size, LUV, and mix methods keep the small and recently accessed objects 
in the cache. 
Since multimedia objects in the same local cache level may come from remote 
storage level at different distances, the latency cost in accessing the remote 
storage level varies. When cache misses occur, the objects in the remote stor-
age level will be retrieved. Thus, the cache system would perform better if it 
keeps more objects that take longer to access. The GD-size, LUV, and mix 
methods include latency cost of objects in the cache to lower the priority of 
objects that can be easily replaced.
Several cache replacement methods have been described. The methods are 
either simple to implement but they may not perform optimally. The optimal 
methods have high time complexity and they are more difficult to implement. 
The trade-offs between simplicity and efficiency will remain until new cache 
replacement methods are designed. 
The stream dependent caching methods were designed to guarantee continu-
ous delivery for multimedia streams. 
The resident leader method stores the beginning segment to hide the latency 
in accessing the object from the user. It trades off the average response time 
of requests to reduce the maximum response time of streams.
The variable length segmentation method divides the objects into segments 
of increasing length. The earlier segments are shorter and have higher cache 
value. The later segments are longer and have smaller cache value. First, the 
earlier segments have higher priority to be kept in the cache than the later 
segments of the same object. The beginning of many streams may be stored 
in the cache to reduce the start-up latency. Second, the large segments are 
deleted before the small segments are deleted. The number of segments to 
be deleted is reduced and the cache replacement algorithm becomes more 
efficient. Third, the large segments are deleted and it avoids the fragmenta-
tion problems.
The video staging method retrieves high bandwidth segments to reduce the 
necessary WAN bandwidth for streaming. Unfortunately, network conges-
tions happen at any time and the network bandwidth fluctuates a lot. The 
WAN bandwidth threshold cannot be guaranteed before the reservation based 
protocols are implemented on today’s Internet. 



Hotspot caching creates the hotspot segments of objects and these hotspots 
are stored as preview segments to provide fast object previews from local 
cache.
Interval caching keeps the shortest intervals of video to maintain the continu-
ity of streams from the local cache content.
Layer based caching adapts the quality of streams to the cache efficiency. 
It fetches segments in the prefetching window to control the congestion of 
networks. It finds the victim layer and deletes unpopular segments to achieve 
fine granularity replacement. It uses the continuity and completeness as metrics 
to measure the suitability of the caching method for multimedia streams.
The cost based method for wireless clients reduces the quality distortion 
over the error-prone wireless networks with the help of the cache content. 
The cache values of the segments are composed of network costs, start-up 
latency costs, and quality distortion costs. The cache replacement algorithm 
finds the victim segment and deletes at the granularity of segments.
Research on the large scale operations of Web caches have shown that the 
benefits on caching Web documents do not increase beyond the capability of 
a single proxy server. Hierarchical Web caching reduces network latency on 
requests. Front and rear partitioning reduces the start-up latency of streams. 
Directory based cooperation avoids the contention on parent proxy server. 
Hash based cooperation achieves low storage overheads and update over-
heads. Multiple hotspot caching keeps the hotspot blocks to provide fast 
local previews.
The performances of various object partitioning methods in cooperative 
multimedia proxy servers are compared. The performance of cooperative 
proxy caching is significantly affected by the chosen partitioning method. The 
partitioning methods creating variable length segments perform better than the 
methods creating fixed length segments in local metrics. The methods creating 
multiple segments perform better than the methods creating single segment 
when cooperative caching is used. Among all methods being investigated, 
the random multiple hotspot fixed size uses the shortest service time.
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