Garbage Collection

-
#
e

Garbage Collection

Algorithms for Automatic Dynamic

- Memory Management

Richard Jones
University of Kent at Canterbury, UK

Rafael Lins

Universidade Federal de Pernambuco, Brazil

JOHN WILEY & SONS

Chichester—~New Yark—Weinlicim=Brisbane + Toronto Singapore.

Copyright © 1996 by John Wiley & Sons Ltd,

Baffins Lane, Chichester,
West Sussex PO19 1UD, England
Natianal 01243 779777
[nternational (+44) 1243 779777
e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on htip:2fwww.wiley.co.uk

- - orhitpfwww.wiley.com

Reprinted February 1997 ’
Reprinted November 1997
Reprinted Jaauary 1999

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical,'photocopying, recording,
scanning or otherwise, excepf under the terms of the Cepyright, Designs and Patents Act 1988

or under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottesham Court
Road, London, W1P 9HE, UK, without the prior permission in writing of the publisher, with the
exception of any material supplied specifically for the purpose:of being-entered and executed on
a computer system for exclusive use by the purchaser of the publication.

Neither the authors nor John Wiley & Sons Ltd accept any responsibility or liability for loss-or
damage nccasioned to any person or property: theough using the material, instructions, methods
or ideas contained herein; oracting or refraining from acting as a result of such use, The-authors.

“and publisher expressly disclaim all implied warranties, including merchantabilify or fitness for
any particular purpose. There will be.no duty on the authors orpublisher 1o correct any érrors or
defects in the software.

Unm,mum:o:m used by companies 8 a_w::mc_m_._ their products are often claimed as :.umn_.:m_.ru.
In all instances where John Wiley & Sons Ltd is aware of a claim, the product names mn_umE.E
initial capital or ail capital letters, Readers, however, should contact the uuﬂ.ﬂnuzu”u noavu.:nm

for more campléte information regarding trademarks and régistrition.
Other Wiley Editorial Officus

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Weinheim. Brisbane. Toronto. Singapore.

Library of Congress Cataloging-in-Publication Datn
Jones, Richard, 1954—
Garbage collection : algorithms for automatic dynamic memory
manngement / Richard Jones and Ratael Lins:
p. cm.

" Includes _u&__om_ﬁ_ur_on_ references and index.

ISBN 0 471 94148 4 (alk. paper) -

1. Garbage. collestion (Computer sciences):2. Memory management

(Compiiter sciences) 3. Computer algarithms. I, Lins, Rafhel.

11. Title.

QATE.9.GITIGE 1995

005.42--dc20 ' 9614001
o : cip

British Library-Cataloguing in Publication Daia

A catalogue record for this book is available from the British Library

ISBN 0471941484

Typeset in 10/12pt Times by Richard Jones

Printed-and .bound.in Great Britain. by Bookoratt (Bath) Lid —_— .
This book is printed on acid-free paper responsibly manufactured from m...mnp.au_u_o T
forestation, for which at least two trees are planted for each one used for paper production:

irlh

To Robbie
& Carmo

Contents n |
Prefaceo v it e e B . «.o 1 1
- Theaudienceot uit i o e e e e e e KTV
Organisationof thebook R e\
The Bibliography and the World-Wide Web S s . XEY
Acknowledgements 7 i
R e Revisions e e e e e e XXV
1 Infroduetion e e e . |
T 1.1 History of storage allocation.7. B
3 Static allocation O |
o o] B k. Stack allocation S |
Heapallocation e F - |
1.2 State, liveness and pointerreachability:....... 4
: 1.3 Explicitallocationontheheap 5 :
i Asimpleexample5 :
E Garbage S _ |
‘Danglingreferencesl....... 6-
Sharing e e 7
Failureso ie i i T ;
) o) 3 14 Whygarbagecolleot? e it s et B Do |
g Language teqUiTements b .o e u e e e e e e 8 w
- Problem requirements e D -
- - S T e e oo - Software-engineeringissues ... L. . ooy oo oL LTI T g
. g Mosilverbullet. T A N 1 L
.‘.w 1.5 How costly is garbage collection? e i .l 12
: 1.6 Comparing garbage collectionalgorithms . ~ I, ~.~... 13 _
. 17 Notaiono v vt inin e s eee i, . 16
Theheap e 16

Pointers and children .., il ee s 17
Pseudo-code v v vt r e e e e e e e o 1T
1.8 Notes............ e e e . e ek . 18

Vi CONTENTS © CONTENTS
Bobrow’stechniqecuuvunnn. .. . 14
Wealc-pointer algorithms. , S 58

- Partial Mark-Sweep Algorithms« v v v vt v ;
36 Tssuestoconsider i v i .. B9
" Basecfimplementation I <14
_Control, optimisation and cOITectnEss « » + -+« v« v e mwe e u .t ... 08
Garbage collectiondelay e e . 70
Spaceoverhead T ¢
Recursivefreeing o o o e e e IO
Mutator overhead P 1]

Space forreference coumtS e TR

o e Lovality OF TEfBIGICE . v v v v e vr v e e e e e w e e, TE
Cyclicdatastractires o Vv v v v o v v i e e e de e 71

37 Notes...--...... e e R 3

2.1 The Reference Counting. EmoﬁEB e e e e 19
Hﬁa&moﬁg 20
Anexample e e e e e, 21
Strengths and weaknesses of referencecoenting 21
Cyclic datastruetures

2.2 The Mark-Sweep Algorithm e e 25
The algorithm e e e e e e e e 26
Strengths and weaknesses of mark-swesp 27

2.3 The Copying Algorithm e e e e, 28
Thealgorithm - ennwn..
Anexample

_ Strengths and weaknesses of copying collection.,

2.4 Comparing mark-sweep and copyingcollestion «. ... 33

725 Issuestoconsider e e

o Requirements e e e e e e e
TomediBty « o o oo e e e

Cyclic datastructures

R Roots and pointer finding o
T Implementation e e e 38
Processingcost. e e e e e -

e ——Space-overhead 7 .
Heap occupancy and collector degradation-, . 39

26 NOESottt i et i e e ..

7 TMark-sweep collection. e e e e et .
Reference counting {1
Copyingeollection., 40

4. Mark-Sweep Garbage CoHection D - 8 ;
4.1 Comparisons with referencecounfing« o . oL 4. .ot . TS ;
42 Usingamarkingstack . . . o v v oi v et e e e T

Making the recursionexplicit o LTRSS
Minimising the depth of thestack &~ O i

Stack overflow e e e e e e e e e e 80

4,3 Pointerreversal e e e e e e 82
The Deutsch-Schor—Waite algorithm oo oo 2. oo ... 83

_ Pointer-reversal for variable-sizednodes i 84
Cosis.of pointerreversal N R 85

44 BitmapmarkiDg o v e e e BT
45 Lazysweeping c. oo v i vt v e e iiee..: BB
Hughes's lazy sweep algorithm e s e B2
The Boehm-Demers—WeiseISWeeper+ . - =« = v v v vv v oo ... 90 :
Zorn'slazy SWEeper . .C.t. . o - . h e a i e v s e A _
46 Issuestoconsider e e e e e e e e 93
Spaceandlocalityo el e 93

T TR COMPIERILYo e e 9

_ Objectmobility e e 95 .
AT NOES v e vt v v e e e e e — e 95 g .

3 ReferenceCounting
3.1 Non-recursive freeing e e e e e e e e P - 7 ¥
The algorithm e e e e e e e e 44
Do.ﬁmmﬂ&wmnmﬂﬁoﬂﬁwm&aﬁou o £

3.2 Deferredreferencecounting 45
The Deutsch—Bobrow algorithm, .-, o5on=7 5 o i 46
Anexample e e e
ZCToverflow

" The efficiency of deferred reference no:unEw R
33 Limited-field referencecounts ; 50
Sticky referencecounts 50
Tracing collection restores reference counts . . .
One-bitreferencecounts,

5 Mark-Compact Garbage Collectionciveer..- 97

51 Fragmemtationc e et e e i e T .

Two-levelallocation - - ve o ceqamwn . 98 i

, 52 Stylesofcompaction. . . . oo v vt v me me e e s 99 :

Restoring uniqueness information 5.3 The TwoFinger Algorithm o v oo v oo v v v v o my i - e 101 ;

The ‘Oughtto be Two’ cache i : The BlGORB - » .+ + o e e et e e e e 1O

34 Hardware/reference counting e 55 Analysis of the two-fingeralgorithmo v o cee b v oo a2 1020
w35 ~Cyeliereference counting .. L L L oL L L L L L L L T 56 A Variable-sized.cells e e e e b e e e 103

Functional programming languages 56 . 54 TheLisp2Algorithm v cuoyueenrsmenvonbone.... 103 m

[- , xi :

5.5 Table-based methods. 105 3 . 72 anau.mnommwmﬁ_ummanozmnmou.......,...........,.......Km [
The algorithm e e e e e e e, 105 . Asimpleexample &o e e e e 147 "

Thebreak table o. v oot e s e .. 106 do - Palse HES -+ . < oo b e 148
Updating poimters . -, v v v v v v e v e m e e 107 wanooﬁmaﬂmowgonnozmnmoum................,,......,Ew o
5.6 Threadedmethods e e e e e . 108 POrfOIMATICE . t v v v v e on s e e e 151 ;
. Threading pointers .-+« v v v v 70 a7V e s e e e, 108 : 73 Promotionpolicies e e e ... 152 :
Jonkers’s compaction algerithm e e ... 100 i Muléiple generations- .o - e e ... 152
Forward pointers e g Promotion threshold - ... e e ... 153
Backwardpoimtersol . e R A (] i The Standard ML of New Jersey COUECIOE . o oo e 154
Analysis of threaded algorithms S 5§ AdADHVE EIULINE .« « - « « o oo e oo e e e e o 155
57 Issuesto:comsHer v it i o i 112 74 Generation organisationand agerecording oo e e e o 159
Smaller addresSSPace .« v v oo v v b e b e b e e e e ... 113 : Ouomngmﬁmooﬁomqanummnos e e e e e e e e . 159
Repeated copying A, . T la T T T T T GGG SPACE |« <+ + e et e e s e Do 139
Handling abnormal residencies e e 113 : Agerecording . .. - - P {10
Locality e e ... 113 i ﬁﬁmno&onﬁﬁnﬁ..,..........-..........T......Hma
Choosing between compacting collectars v v o o0 oo .. L4 ¢] 75 Inter-generationalpoinfers.« oo et e 165
58 Notes........ e e e 114 & The write-bartier I Ceeeeee e 163
e : e I T
6 Copyng Garbage Collection i e e e e 11T R Remembered SEIS .« » + v o v e e e e ek d e - 167
6.1 Cheney’scopyingcollectdr v v v v v i n v oo wwnonua. . 118 Sequential Store Buffers R 168
The-tricolour-abstraction oo r e e L WS - S .. . Page marking with hardware suppart - e o a e e e e 169
Thealgorithm uana.... 120 .HummoEﬁﬁnmﬁwﬁﬂ&c&EnEon_%ucﬁ,............"......So
Anexample e e e e 122 Cardmarking o ee e 1L
T 62 Chegpallocationol el . 124 WoEnEonmmmoﬁmownﬁ%w.....................L.......H._.E
6.3 gcﬁmﬁa.,mnnmno:momou e e e e e e e e e . . 128 7.6 Non-copying generational garbage collection+ - - R v L :
Statlcareas ittt e e e ... 126 3 7.7 Scheduling garbage colleCtions - o« oo e e 175 i
Large OBJECLAIBAS & - + « « v o v o e e m e e e e e e e e e 126 E Ho%ag.mnﬁ....................................Sm
Incremental incrementally compacting garbage collection 127 E Mature ObjeCtSPAGES . . .« -« . b oo b e e e e I ¥
6.4 Garbage collectorefficiency« v v vt i it i e o .. 138 : 7.8 Issuestoconsider R PSP ¥ | : !
6.3 LocalifyiSSUBS . » & v v v v v v e e e e e e e e e e e, 129 T NOES . . v v o e v v e e e e e e e e s e e 180 :
Operating system support.« vv v .. . O ‘ |
6.6 Regroupingstrategies el it o e 131 8 Incremental and Concurrent Garbage Collection. :

Unm..,.r‘mhmiﬁ.._unmm&mu.mnmn.nowﬁnm S b R o . A _ 81 Synchronisation. ...
Stacklessirecursive copying collection, . f e e, ... 133 . Tricolowt marking . . - . -« - o v 0o oo -
_ Approximately depth-firsteopying . - -~ - . 2 o . - .. 135 : 82 Barfdermethods- . T

e " Hicrarchical decomposition . . e T Cias T E 83 Mark-Sweep colléctors 7T LU T v LT LT

Hash tables . . . - 136 The write-barmier . . . « ¢« v v v o v e o ol

6.7 Issuestoconsiderot m e e e 137 Newcells. vcv v ceme e o
QEQHBwEom of collection? e e e e . 137 i Tnitiatisation and termination-
Performance - - e S ic E Virtual memory techniques e

B8 NOES . v e e e e e e e e e 140 T 84 ConcwrentReference Counting
” 8.5 BakersAlgorithm: . o217 . ..o e .o S
7 _Generatienal Garbage Collection 143 ! “The algorithm . . e e .
"= ~7.1~The generational hypothesis S L P = s Bounds on the Eobo%ommmwm:&moﬂg- s ,
ObjectIfetimes o v v s v v v b e ee e e e s .45 T o o Limitations of Baker's algomitiin =" T [T T T T 205

xii CONTENTS CONTENTS , ‘ xiid “
Variations on Bakerot e L 206 Conversions without a smert pointer hierarchy 261
Dynamicregrouping . » . . v v e e .. 08 Multiple inheritance {24

8.6 The Appel-Ellis-Ticollector 209 Incorrect conversions 0 |
Improvements , D Some pointers cannotbe smartened L. oL L. L V... 263 _
Largeobjects. L. 212 Const and volatile pointers e e... . 263 :
Generations e e e e 212 Smartpointerleaks L. ... L. e 264
Performance 713 Smart pointers and reference counting e 2065

8.7 Replication CopyingCollectors v v v v v w s C e .. 213 A simple reference counting pointer., . . v . v v o oo 263
Nettles’steplicating collectots . . . o o v v o ot v e e L. 214 Smart pointers for flexible garbage collection 266
The Huelsbergenand Laruscollector . . ., 215 Smart pointers for tracing garbage collection, ., 267

The Doligez—Leroy--Gonthiercollectors 216 10,7 Changes to C++to support garbagecollestion 269 i

8.8 Baker's Treadmillcollector 218 10.8 The EliisDetlefeproposal e e 270) i

" 8.8 Hardware support for real-time garbage collection 220 "710.9 Tinalisation O -
8.30 Issuestocomsider e e . L. 222 Support for finalisation N ¥ 5 !
81l Notes. e e e e e e v e .. 223 10.10 Issues toconsider B A S . i ,
, 1011 Notes . . - v v v e 274 ;

9 Garbage CollectionforC 1 ’ ! N |

9.1 A taxonomy of ambiguous roots collection e e e e e 228 11 Cache-Conscious Garbage Collection R . ¥ 4 _ |
: Iﬂ1m..w..l-”monmaﬁmmé.mﬁcmmmdq:mwmon T, 230 11.1 Modern processor architectures . ., R w.\..}mﬂ._ ; ,
Allocation 231 The effect of cache misses op CPUtime w2278 W
e - ROt AN pOIntEL AN e cre o e e e 231 . ..-11.2 CachearchifeCliTeS oo v v v e v o n e R [3 _ !
Interiorpointers - : Cachesize e e e e e 278
Problems of conservative garbage collection . : Placementpoliey .. . « « v v o v o e e e i ..., . 280
-~ - Misidentification SE Write Strategy . . . - . oo. 2o -) :
Efficiency e e : Special cache instructions- e 284
Incrementzl/generational garbage collection . % ’ 11.3 Paticrns.of MemoOry access v woe v oo v v v o e e De e 284
9.3 Mostly Copying collection Mark-sweep with bitmap and lazy ms_.mmm. e e e e e 285 :
Heaplayout e e 2 Copying garbage collection oo ...t u ... 285 :
Allocation e e e e e e .. 2 :) Incremental garbage collection e e e e e 286
Garbagecollection Avoidingfetches . . . et . oo o e e 287 _
Generational garbage collection 11,4 Standard ways to improve cache unﬂmogwmnm 1.7 :
Ambiguous data structures. - Cache SiZe e e e e e e e iee ... 287 .
The efficiency of Mostly Copying © o BIOEKSIZE - . s e e e e e e e e e e 29
9.4" . The aptimising compilerdevil Associativity e e e e e J S 1)
9.5 Issucs to oonmEnm e e e Special inSITUCHONS .« v i v v v v v e o f e s ne e e s e e e o 293 ;
R X T o (4 :] Prefetching . . e cegee e . 204
, } : . mﬁwmuaoﬁﬁm:nmnvn BrfOMmANCE .« o o e e e 204 :

10 Garbage Collectionfor C++ . . ., v vee e .. ve 253 mw W\WMM_MH purpase hardware .w e e S e .. 296 : i
10.1 Garbage collection for object-criented languages e e e ... 254 ” 117 Tssuesto consider . - . . v o v v e a e e, S R ¢ . .
10.2 Requirements fora C++ garbagecollector 256 : 11.8 Notes o o o el ... 208 T
103 Inthe compilerorimalibrary?, 257 . :) P :
10,4 Conservative gatbage collection oo v 258 e 12 Distributed Garbage Collection e Rt - _
10.5 Mosdy Copyingcollection ., v v v v v oo 258 121 Requirements T . .. 300 i ;

- .Generating pointer finding methods mnnoﬂwcna@ St rTuT. L L. . ., 250 : : Network restrictions e e e e el e oo 300 ,
106 Smartpoimlers L. R . 23" Virtually shaved memoty - - . s |

i , CONTENTS o o e . W
Shared virtual memory P 1 : W
Shared data-objectmodel L. 302 . ,
Gazrbage collection over distributed shared memory e e e . 303 W
12.3 Distributed garbage collectionissunes e . m% - |
TEXOBOMLY . . v v v v v v e e e e C e e e 304 .,
Synchromisation el i e 306 - |
4 Wown.m_.u_.bmmm...-...........-,. v ... 306 - . . :
2. istributed mark-sweep e e 3)
Hudak and Keller e B mmw —l—m.ﬂ o.ﬁ >—mo—\.—ﬁ:3m
Alf'salgorithm i e e e e e e e e 309- :
Hughes'salgorithin . . . v v ov v v v v vie e e ee e e e c ... 309 m
i The LiskovLadinalgorithm, ... 309 - : ;
Augusteijn’s algorithm o C T 310 - 1.1...Dynamic allocationof alistin Paseal.o m o 6 ;
Vestal's algomthm . & 2 v v v e e s e e e 310 2.1 TRefersnce countedallocation, , . . . 0+ v v v v v v ie v e nenn - 20 _
The Schelvis-Bledoeg algorithm L 210 e . 2.2 Updating pointerfields under reference comnting. < .o oo 21
The Emerald collector . . - « v v o v v oeoeoeoee e 3 23 Allocation with markeSWeeP. . « -« « v« v oo s a el 25 :
The IK collector o, .. 312 : 2.4 The mark-sweep garbage collsctor. . - . . - . .
12.5 Distributed copying e . 312 2.5 Simplertecursivemarking.o e e 26
" 12.6 T DisiibaEd Tefefence covnfing L o L oL ... 313 2.6 Theeager sweep of theheap. . . oo ovo R TR
.H.wohanﬂnblgmﬁmnﬂoﬁooo_ J .. 313 2/} Allocationin acopying collector. v i e 29
e . - I0direct reference-counting - - - . .- e o313 _ 2.8 The E@ESEE garbagecollection. v o ool 30 ;
The gmbnnslmEEmeﬁEmanE - ... 314 2.9 Fonichel—Yochelson ooaﬁwmﬁ_ummmoozmnﬁopmon varigble-sized cells. . . . 30
The SPG protocel e e e e e e e ... 314 3.1 Weizenbaum's lazy freeing algorithm for reference counting. . ¢ - . . .« .« 44 _
‘Garbagecollecting theworld” e e e e e 315 3.2 Deferred Reference Counting; updating pointer values. 0. . - -+ - . 46 D .
Networkobjeets e 1S 33 Defemed Reference Counting: reconciling the ZCT. oo 47) S
Weighted-reference counting e 316 3.4 Greatest cOMMORAIVISOL. « - « « v v v v oo v e o e e e s e e ... 4T ;
Generational referenceconnting B 3 1] A 3.5 Incrementing and decrementing mnn_nw refersice counts. . . . ;... -0 51 ;
127 Qarbagecollectingactors - e e e 317 i 3.6 A backup tracing garbage collector that restores *stuck’ Hommnmuom counts. .. 51 m
Halstead’s algorithm e e e e e e e 317 i 3.7 One-bit reference counting with tagged pointers.. . . . v . oo oo oo s 32
Marking algorithmso - | & § 3.8 The 'Oughttobe2’ cache. . . v v v vovvivinnn b A
Logically'ceniralised collectors e i...31B i 3.9 Bobrow’s algorithm. . S A 57 i
128 Notes . . v v v v i e it e e e e e 318 : 3.10 Brownbridge's New. O T IR :
: : I 311 Salkild’supdate. e e e e et ww e aews s e e 59
GIOSSANY . . . s e e e e e e e 321 | meU&an:mmﬁonmmuaanmwmo:ﬁmmm D
o UBIBHOEEAPHY . - . s ot e e s s 328 T § 313 deletecomfinted. L.c sl 60
e g 514 suicide searches for, and breaks, strong cycles. . . v —wmrn. LS — 0L
Index v i e e e . L .. 365 3 upmQn:nnomnamunn.nonunnmqmmmnm!........,,........M........., 64
' 3.16 Lins's three-phase Mark sWeep. . « .+ « o cc o v w v oo o v mmme e 64 :
g 317 LinS’smark grey . o« e cv v 0 - e oo T e R _
3.18 The second phase of Lins's algorithm.,« .. A - S
3 u.GEE_mmnwFE%w......I..,..._.........M.... 66
a "3 90 Ling's collect WRItE & L. e e . e e e T E o \ Lo .. 66
e . L : 4.1 Marking with aresomptionstack.o oo - ; . 78
: oo : b 42 Alternative marking algorithm. oL .. - i 78 ,
4.3 Hﬂm Deutsch—Schorr—Waite pointer Hoswa& EmoEEE ! 34
- |

xvi LIST OF ALGORITHMS A T m]
44 Lazysweeping. -1 ’
4.5 Zom's allocation sequenceforconseells. 92

4.6 The inner loop of Zorn’s lazy-sweep allocator 92
5.1 Edwards's Two-Finger compaction algorithm., 101
52 Thefirst pass of the Two-Finger compaction.algorthm. 102
3.3 The second pass of the Two-Finger compaction algorithm, 102
5.4 The Lisp 2 compaction algorithm.
5.5 The first phase of the Lisp 2 algorithm.
3.6 The second phase of the Lisp 2 algorithm. . . .
3.7 The third and final phase of the Lisp 2 algorithm.
5.8 The Haddon—Waite compaction algorithm.
5.9 The threading procedure.

List of Diagrams

7775710 Jonkers's compaction algorithm. L. - L1--Dynamic m=onmﬁo_womwrmﬁ.-... e Hmw R M
5.11 Jonkers's first pass through theheap 12 myListj.next := nil createsa space leax. . . .m. a E_ .- ._u. e I
5.12 Jonkers’s second pass through theheap. 1.3 dispose (myListf.next) creates a space leak and a dang mmcE B e o =g
6.1 Cheney'salgomithm. L4 Two Lists may share 8 common SUfix . . - .« o e CT T g
6.2 Zorn'sallocation sequence for cons cells, 1.5 Astackproblem. R R .
6.3 VAX code sequence to create a new cons nn= 1.6 Concrefe vs.abstract representations - - Cete e Hm .
64 Woon's apptoxitijately depth-first algorithm. L7 Aheapoell. . ..o MH
7.1 Demographic feedback-mediated tenuring.”. 2.1 Update(left(R),8). ... oove e re e 90
cemmmeeer 1.2 The.pause-time.constrained threatening boundary, . 22 BeforaUpdate (right{R}, nill. . .. cmnevvvere e me e ” m |
73 The memory-constrained threatening boundary. 23 delete(right(RI}.. v« v v v v oo e e ey e mm“. m |
7.4 The write-barrier for 2 sequential store buffer, 24 delete(left(S)). vvvnr e Mu‘ : ,
WM mwﬂwwvmﬁmmﬁa-_umaﬁ.k_m log, (card- wﬁmu C o T i MM Wﬁmnn dﬁmmﬁmnmwwﬁwmwwnw wﬂmu.;“.nw.mn?.nn.m. R 2
. lzle’s write~barrier. e C 2 elerence coun . ot
8.1 ‘Yuasa's snapshot write-barrier. : 2.7 The graph affer the marking phase.o v e e MM
8.2 Auxiliary procedures for Yuasa's algorithm. . . . 2.8 Copyingthelist (0,101] - oo v v v e e Hum :
8.3 Yuasa'sallocator. e e 2.9 First, therootnodefscopied. oo e e B .mm L
8.4 Dijkstra’s write-bamier. i 2.10 Biscopied . U I e B P _
8.5 Steele’s write-barrier e e . 2.11 H:nnoznoaou_m COMPIEME .+ v v v e vem v me e s me e 34 P
8.6 Allocation in Steele’s concurrent algorithm. ’ : 2.12 The efficiency of mark-sweep and copying nozaonon.. B s 35 !
8.7 Steele’sconcurrentmarker. oL ..., 3.1 The graph ged{18,12). T =. -48 _
8.8 Rungand Songmutatorcode.o e . -39, A newcellfor t=x-y.is.acquired bbn:maamarﬁo the ZCT: . . e, e e 48 m
8.9 The Kung and Song marker, e e e B - 33 ris updated, recursively freeing its comtents. o . .. ol oo Lol 4 -
8.10 Mutator code for shared reference assignment. e e m e e e ... 201 i T 34 The ZCT after HnnonnEmmou g_,,cmmono Em_am_unqm- I e 49 i v
8.11" Collector code forshared refereficeasSignment. .~ . . -7 7. 72027 T T 785 Tupdate(®, 8}, . .. L oos Lo LT ‘.‘.““‘w‘.‘H\m\.\.: R mw., T T
8.12 Baker’s incremental copying algorithm. 1 £ ' 3.6 Brownbridge’ mEmQSEEEooﬂmoﬁG reclaims data stmetures 6l i _
8.13 The multi-threaded Appel-Ellis-Licollector. - i 3.7 Deleting the pointer to a throws Salkild's algorithm into wHooH.,.. e .. G2 i “
9.1 Unnecessary retentionof space e e e 220 o 3.8 - Lins's algorithm: EEmemuoa:m areblack e 6 _ :
9.2 DBartlett’s Mostly Copyingeollector. 244 3.9 The graph aftermark_grey. . . . - . - - N 67 _
93 Thetail m.EnﬂoP e e e e e e e e e e e 248 i) 3.10 The graph just before scan] blackis oéam R L 68 :
10.1 A tree of int class managed by ESE\ OQEEW nczmnﬂou: e e e .. 259 . 3.11 The mﬂmﬁrwmwmwmmoﬂmnn white sweeps éEH cells into’ Eﬂwmm list. . .. 68 _ A
10.2 Unsure refesences. . . .o« . v vt v i it e ey e e e e e e 260 F 4.1 Thelist(1 2 3). e e e e e R Y L
-~ - 103-A smart const pointerelass. e S 264 - 4.2 The moorElbnEmEIdswEon eollector reduces the risk of mSn_no<onoﬁ. S 80 _
10.4 Ginter’s example. e B T R 7743 A finite state machine. for pointer- nwﬂm.nwﬁﬁmmbam algorithms., R - :

xviil : LIST OF DIAGRAMS LIST OF DIAGRAMS : xix

4.4 A binary Deutsch—Schor—Waite node. e e e 716 Chance-of survival vs. allocation ime . . - = 164
4.5 Theadvancephase. L 7.17 Lieberman—Hewittentry tables. 1660
46 Theswitchphase.t . 7.18 Ungar's remembered set. R 1 :
4.7 Theretreatphase. L : 7.19 Ksy objects: before promotion. S P R
4.8 The Bochm-Demers—Weiser collector: block structure : 7.20 Key objects prometed out of the generational scheme,1, 178 .
4,9 The Boehm—Demers—~Weiser collector; hlockheaders - 721 The mature object space before the From-carriage is collected C179 :
5.1 The Two-Finger compaction algorithm. e e e e e , - 7.22 The mature ohject space after the From-carriage is reclaimed. .0, ., 180
5.2 The Haddaon~Waite algorithm: before compaction 8.1 Matator activity may interfere with the collegtor’s marking Qmﬁﬁ& 185 i
5.3 The first area is moved and the first entry is written into Eownmmrﬁmgm- .. : 8.2 Mutator—collector interference v . ee v v v me e o e e .. 189 '

5.4 The second area is moved and the nextentryisadded. . ., 8.3 Yuasa’s snapshot write-barrier. e e e
5.5 Rolling the breaktable. e e s e e e . 8.4 Dijkstra’s write-barrier. e e s e !
5.6 mnmoHnEHomaEqm...............,... e e e e S O 8.5 Steele’s WHte-DaITIEL . . .« . o i v v e e e o .
5.7 gﬁﬁ.&.ﬁmm&bﬂw e e e e e e e - e e e e e e e e e e el T o " mm gﬁg‘nmummmﬁ [1,2.3,4,51 5H5Uhu_nmqw.m En&ﬁg N .“,. L (
5.8 Jonkers’s agorithm: the initial configuration., ... 87 - The Modula-2+ concurrent referéice nomaﬂnqmﬂngﬁnnhm. e e 200
5.9 .szonimamogﬁﬂw.ﬂowmmo.ahnmaom e e e e “iE 8.8 Baker's Tospace layout - . . e e e o e 205 -
5.10 Forward pointers to ® are updated to refor to its aew location. - ~ 8.9 Large objects can be scanned lazily 5 nmEm m_umowsﬁm E..w- ” L. 206
5.11 Backwards-pointersto parethreaded. e ET "8.10 Brooks's forwarding pointers. :
5.12 Backward pointers are updated and Pismoved.11 Heap layout for Dawson’scollector.
—6:1---Cheney’s-algorithmn: atthe-flipr—= v+ e e e o 8.12 The Appel-Fllis-Li ‘black-only’ read-barrier
6.2 Tirst, the roots are copied to Tospace. e e e e e e e e 32) 8.13 Replicating garbage collection. - _
.63 ‘Black' nodeshavebeenscanned . , Ee s e e - 121 8.14 The Doligez-Leroy architecture, ;
6.4 All Fromspace nodes have now beencopied... Ce 5 8.15 Baker's Treadmill. . . . « o o v v v v v e v r i
B5 lefu(F) is updated with the forwarding address found inc. ., 8.16 WNilsen’s hardware architecture. ;
6.6 Incremental incrementally compacting garbage callection.. 9.1 Unnecessary retention of space -
6.7 Increasing heap size reduces garbage collectiontime. S 9.2 -Block structere, momuB..UoEoﬂmldsﬁmn oocmnnon. <S.Eoun_.m c e, 232
6.8 Abinary tree copied depth-first IR m 9.3 The two-level search tree, a block header and an objectmap, 234 |
6.9 A binary trescopied breadth-first. 1. e e e e 04 tail [1,2,--.10 o oo i v oot e e‘.k.........wum :
6.10 Code-environment closures for ‘stackless’ recursive copying. e 9.5 Space leaks in a monolithic list are.unbounded. S c
6.11 Black and grey Tospace pages may be interleaved in Moon's algorithm, | 9.6 Space leaks in a cons-list are lmited to the target of the false Hmwmnnunn ... 237 P
6.12 A binary trée copied hierarchically. e | 9.7 Adjacent small intsgers may be mistaken forapointer. 237
7.1 Generational collection: the initial configurationr 9.8 The heap layout for Bartlett's Mostly Copyingeollectoro v oo ves 242 i
7.2 After the minorcollection of the younger generation. : 9.9 Mostly Copying garbage collestion. ~ - oo oL e e 243 i
7.3 Overwriting R creates old—youngpointers. e e .. 148 b 9.10 Object format for mostly copyingcollection. , - - N PR .. = S
7.4 Garbagecollectionpauses oo ... e e e - 10.1 Client class inheritance HeTatchy, : . « v o v o v o v ve o vie v oo oo 262 i
7.5 Younger generations may have roots in older generations. RN : . 102 Smart pointer and chent class inheritance hierarchies. vv 263 .
7.6 Copying behaviour when: objects are. promoted with a copy count of two. - 03 .%..&mn.ﬁwmmoiﬁﬁHnwmmmmmﬁn.mou of class . = LT L LA 266 T
7.7 >ﬂﬁ0~.m collector e e e e e e h e e e e e e e 10.4 Detlefs’s Ptx mH—QE.Hﬂ..G@WHO.—mhmﬁm. D L 266 _
7.8 Between minor collections. IR : - 10.5 Edelson’s root table moamnnﬁmﬁmﬁﬁw.miamm. garbage collecton, 268
7.8 Immediatsly after a major collection e e e : 10.6 Exiracting the finalisable resource of 2 into 2 breaks the mE_._Emncb nwnyﬂ . 272 i
7.10 Demographicfeedback-mediated tenuring: few survivors F 11.1 The DEC Alpha AXP 21064 datacache = © 280
7.11 Demographic feedback-medizted tenuring: too many survivors 11.2 Cache miss rate vs.allocationthreshold v Do wn e ot 289
7.12 Use of a separate creation space within the youngest generation. 11.3 Read and write miss rates vs. size of allocationspace o - .. . 2800 "
7.13 The younger generation is divided into two buckets to record object ages. 11.4 Miss rate vs. cache size for differentblock sizes . .« =« + « q- - = = - aes 292

7.14 Shaw's _.ﬁmw F%onw

S ey e > N I T T

List of Tables

Jomemem g 1 Tmmediate vs. deferred reference counting .. . L. .. L 0L L L L. . 50

4.1 Asymptotic complexities of mark-sweep and copying garbage collection . . . 04

5.1 Characteristics of compacting algorithms ;
11.1 Common cache organisations - v oo v v v b
11.2 Typicel cache characteristics e

11.3 Data cache miss rates for the SPEC92 benchmark suite |
12.1 Differences hetween the SVM and.SDO paradigms |
12,2 The outcome of marking from rootsortasks}

Preface

This book is abeut garbage collection: the automatic reclamation of rmm%-&?mw&n torage
after its last use by a program. Membory is and has always been a scarce and presicus

resource. Tn the early days of computing, before the advent of very _E..m,,n scaleintegrated - -

cirenits, memory was expensive and even a time-sharing operating system like Unix was
expected to run in just one 64-kilobyte segment. Today, although SIMM mémory modiiles afe ~
ooamﬁwm<_a€ cheap to buy and easy to-install, programs are munmmmmu.bmﬁ profligatein their
consumption of this resource. Microsaft Windows'95, an operating system for a single-user
personal computer, needs more than twelve megabytes of RAM to operate om.gwr.;cm
main memory alone may account for half the cost of a PC. As with all precious resources;
memory needs to. be carefully managed and recycled when no longerneeded. < - ‘

The storage requirements of many computer programs are simple and ﬁ.ﬁammnﬂmcﬁo.

Allocation and deallocation of memery for such programs can be handled by the programmer
or the compiler, and indeed is best done so. Other programs have grown enormoiisly in size
and complexity. Languages like Lisp and Prolog typically manipulate Emmn data structures
with complex inter-dependencies. Functional and logic languages have complex patterns
of execution. The result is that the fiseful lifetimes of many data structires can no: longer
be determined before execution, either by programmer or by compiler. {Automatic: storage
reclamation is essential, o m .

One reflection of the growing importance of garbage collection is the; lavel of debate on
thig subject within the computer science community. As well as E&&mamw‘umﬁnnm in journals

- and conferences; there-have been workshaps on garbage collection-at the 1990,.1991 .and...

1993 Object-Oriented Systems, Languages.and Applications OOPSLA conferences, as well
as international workshops exclusively devoted to the topic in 1992, 1995:and 1998. Garbage
collection is also a perennially popular subject for extended argument on Usenetnews groups.

Object-orientation is' the strongest growing area of interest in wa_m&\mmm. design. and
programming today. The key to good software engineéring is the control of complexity. One of
the waysthatolject-oriented design achieves this goal is-the encapsulation ofabstractions into
objects that- communicate through clearly defined interfaces. Progranimer-controlled storage
management inkibits this modularity. For this reason, most madern o_u_.onn.womnﬁoa_mamnmmmm.
$eH sy SthalltatlBiffel, Tava-and-Dylan;-are-supported-by- mﬁammm.no:mnmouﬁﬂommw_‘ even

. . . i

T xxiv | FREFACE PREFACE - ; XXy

of applications,.and Chapter 8 describes how garbage collection can ,anm finely interleaved ;
with the rest of a computation. Chapters 9 and 10 extend garbage collectign to environments
in which there is no support from the language compiler, C and -G++respectively.. The
next chapter of the book discusses a relatively new research area, the interaction: of garbags |
gollection with hardware data caches. Finally, Chapter 12 briefly surveys mﬁcmna occnoﬂon i
for distributed systems. :
We have included a swmmary om issues to consider at the end of mmn: chapter. These
swmmaries are intended to offer gunidelines to the reader on the m:nmu@awhﬁmn should be
answered about the collectors, the cHent program and the operating system and architecture
before a garbage collector is chosen. These questions are designed as prompts to the reader.
The summaries are certainly not a substitute for reading the appropriate chapter, and we. have
not attempted to provide ‘pat’ solutions. Moreover, stategies of garbage no__anuou @E“:)
" as reference counting, mark-sweep or copying) introduced in earlier chapters are HnSm:an_. :
in later ones. The characteristics and performance of naive implementations m@.ocﬁ mm.ﬁ..a.m
mistaken for those of state of the artimplementations of the same garbage collection-sirategy.- - .
Nevertheless we hope that these summaries will provide, rather than a ooow baok’, & focus : ;
* for further analysis. ! —-- i

languages used in m,m_.; for systems mHomeEE._.bm_ such as Modula-3 and Oberon, provide
garbage collection for these sound but pragmatic reasons. Garbage collecting libraries are
also. available for such uncooperative languages as C and C4+.

The m:.n:m:nw

The literature on garbage collection is enormous. Well over a thousand journal articles,
chapters in books, presentations to conferences, technical reports and postgraduate theses
have been written on the subject. Despite this many myths about garbage collectors prevail.
‘They are only necessary for Lisp and functional languages; they can only be used with
interpreters rather than for compiled code; they place an intolerable overhead on programs’
— and doubtless they have cloven hoaves and forksd tails as welll Two coroliaries Tollow.
First, garbage-collected solutions are often ignored where they could profitably be applied.
Second, where the complexities of the data structures involved demand garbage collection,
the experience provided in the literaturs is often unfamiliar so a wheel is reinvented,

The aim of this book is to draw this wealth of experience together into & single, accossible
and unified framework. State of the art techniques are described and compared for declarative

‘We should also declare what is missing from the book. The most mmoazmmm H.oﬂ: of
memory management is to do none at run-time. A considerable amount om research has ‘gone .
info compile-time techniques to discover when objects can be discarded or reused. Most of
this. work has been theoretic and, as yet, we believe that there has beex lirtle evidence of :
substantial performance gains. We have omitted this material. Some Hnruﬁcam and tricks dre ‘
language specific. While we bave chosen to cover C++ because of its. inareasing _uo.@EE.HQ : W
and growing realisation by many of its practitioners that garbage nocmnno= is sorely needed, : :
we have concentrated in the main on generally applicable methods. Techniques m..mv are

" “and imperafive programming styles, tor sequential, conciurent and distributed architectures.
Each of the most important algorithms is explained in detail, often with illustrations of its
—- -~ characteristic-features -and animations- of its use: Its complexity, performance; applicability
- and relationship with' other related algorithns is also discussed.
We believe that ihis survey should prove useful to postgradiate students and researchers
working in Compiler Constriction; Fiinctioral; Logic and Object-oriénted Prograniming and
Design; Software Engineering; and Operating Systers. The book should also be of interest

L am amming or logic
to students taking advanced courses in these areas. We hope that professionals developing i specific to certain me_nm of ﬂ”oﬁwﬂgmw for example pure functional wnomm ng or logi
. R - " : rie :
programs — from simple software tools to complex real-time systems — will find this book ; Programming, are only mentione ; d Edmmnm will :
valuable. In particular; the rapid growth in popularity of object-oriented systems over the past . Finally, energetic researchers who trawl through on- rmun _UE_MO_M_.H_WMMSW: We were _
few years makes a thorough understanding of garbage collection methods essential for any o discover papers on other garbage collection techniques and issoe :

infrigued by, but chose to ignore, burying garbage in landfills, EnEm-.mnop and dumping it at
sea. The question of public health and garbage collection is also often HBmmn lgn_m:m_wm‘m‘n
wars are another ball game altogether!

programmer in this area.

mem:mmm.ﬁo; of the book

___The Bibliography and the World-Wide Web' = .

. .H.wn first chapter begins with the evolution of computer memory managementand the need for——— —
automatic storage reclamation. We then describe the representation of objects i in our heap, and
discuss the yardsticks by which different strategies of garbage collection may be measured.

£y s srph| ent e

We mentioned earlier that over a thousand papers have been published ‘on this topic. The m

The chapter ends with a description of our pseudo-code notation. bibliography at the end of this book is considerably shorter. maiwa_on. 2 compreensiye
Chapter 2 introduces the three ‘classical’ techniques for garbage collection: reference T database is available clectronically from / m.nnm. -
counting, mark-sweep and copying collection. Readers with some sxperience of these http://www. cs.uke.ac.wk/people/staft/re] m.nmp ailable. papers m .
techniques may wish to skip this chapter.— - - 3 This bibliography also contains some abstracts and URLs for mHmnnMEn _V.Wm_w_m ot bmwa?m !
The next four chapters cover these styles of aozmnnou — and Eﬁw.ooﬁm.mnﬁ nocmnﬂou, o Richard Jones will endeavour to keep his bibliography.up to date mudﬁﬁmw For existin i aners
— in more detail. Chapter 7 EQoaanmm generational garbage collection, 2 paradigm that has to receive further entries (preferably in BibTeX format) as well as ., g pap :

" proved'effective at reducing garbage collection pause times and overall costs ina wide range -~ - - (and any corrections).

: : |
“
_

i
i
—i

xxvi ” PREFACE

We have endeavoured to eradicate any errors from the code fragments presented in the book.
‘While not having the, courage to repeat Donald Knnth's offer of cash for errors reported, a list
of any errors found is maintained at this web site. Reports should be sent either by email to
R.E.Jones@uke.ac.uk, or by post to Richard Jones, Computing Laboratory, Gubdﬁm:w of
Kent at Canterbury, Omﬂm&p@. Kent, CT2 7NF, UK.

Acknowled w“mnsm:nm

This book would never have been completed with the encouragement, assistance and patience
of many people. I would like to thank the Theoretical Computer Science research group at the.

" University of Kent at Canterbury for cheering from the side-lines. In particular T am indebied

I

" Februory 1996

to Simon Thompson:for patiently reading and commenting on drafts of this book, and for all
his encouragement. E would also like to thank Hans Boehm, Jacques Cohen, Keith Dimond,
and David Turner for their comments and suggestions. T would also like to thank Martin
Broom, Tim Hopking, and Simon Thompson for their advice on how to wresfle LaTeX into
submission. The twoterrn study leave granted to me by the University of Kent and visits to the
Tederal University 6f Pérnambiico; Regife; Brazil’ AEE. the caipirinha), funded by the British
Council and CNPg-Brazil; were invalnable..

e —Lam. Emo.,ﬁmﬁomixﬂo.gmmwﬁ-uw2#93&5&.@ conceived the idea for the book and wrote:

the chapter on Distributed garbage collection, as well as confributing to some other chapters.
Acknowledgement must also be paid to all those — too numerous to mention — who have
worked on garbage collection over the [ast thiriy-six years.

Finally, and aboveall, I must thank Robbie, Helen, Kate and SEEE 550:” i&omm mnm_m_o_.n
and forbearance none of this would have been possible. For more than two years you have put
up with me occupying the dining room clziming that it was my study; you have forgiven my
bad temper; and you have graciously accepted that I could not come out to play. Lthank you
from the bottom of my heart.

Richard Jones
Canterbury
February 1996

I am most grateful to the many people who coniributed in many different ways to make

-this book passible,. g@ﬁum&o&ﬁ to: Dayid. Turner, Simon Thompson, Jon-Sakkild, Rosita:

‘Wachenchauzer, E& andro Martinez and Marcia Correja, I am grateful to the Universidade
Federal de Pernambuco, Recife, Brazil, for granting sabbatical leave, funded by CAPES-
Brazil, and several visits to the University of Kent, funded by CNPq-Brazil and the British
Council. The many friends at Kent made those visits ever so pleasant! I am also grateful for
all the support and love I have received from Carmo, Gilka, Maria Teresa, Rilane and Silvia.

Rafael Lins
Recife

PREFACE . xvid
wmﬁm_o:m

This reprinting has given me the chance to make some smali HEUHQRSQE to the buok.
The index has bsen extended to allow easier discovery of algorithms from the names of
their authors, Errors in the 1996 and 1597 printings have been corrected. Those observant
enough to spot bugs and kind enough to point them out to me include: Andrew Appel, Nick
Barnes, Stephen Bevan, Matthien Blondeaw, Hans Boehm, Tlomas wEd Morris Chang,
Sid Chatterjee, Peter Dickman, Alex Garthwaite, Tim Geisler and WoEnm Pirinen. I am &mo
grateful to Gaynor Redvers-Mutton, my editor at John Wiley & Sons, moh her continuing
encouragement mna in particular for the opportunity to make Emmn nnmﬁoe.mﬁmnm

Richard Jones
Canterbury T omTimmrmm o e _
November 1998 i

“Ome of LISP’s most lasting contributions is a non-language feature; namely the
term and technique garbage collection, which Homa_.m to the’ mwmﬁﬂu method of
mﬁouumunmzw dealing with storage.”

Jean E. Sammet _ |
wawaEES.w Languages: History and Fi z:&aﬁmaﬂr.. 1969 :

Over n._m. last dozen years, garbage collection has come of age. Whereas it was once- _
confined to the realm of Lisp and functional languages, today mﬂucmm@ collection is an
important part of the memory management system of many modern ﬁuomﬂmgnm ancmmmm‘
imperative as well as declarative. Although garbage collection has had & reputation for sloth :

and for distupting interactive programs, modern implementation techniques have reduced its m
overlicads substantially, €o the point where garbage collected” :nmnm are mHnmrmnn Eunon — |
even for traditional languages like C. _ ;

... Despite the rapid growth in memory sizes of ‘even the most modest noEuzanmp the: supply 1.

i of storage is notinexhaustible. Like all limited Tesources it requires carefiyl conservation and i

,) recycling. Many programming languages today allow the programmer to allocate and teclaim :

memory for data whose lifetimes are not determined by lexical moounu.mrn: data: is said to _

- be dynamically allocated. Dynamic memory may be managed explicitly Gy the programmer m

through inviecations of built-in or library procedures that allocate storage wma that dispose or :

e free that storage when it is no longer nseded. G o

Manual reclamation of dynamically managed storageis often cnmmnmmmnﬂog The mEmEmcsw
is to devalve responsibility for dynamic memory management to Ea program’'s run-

time system._The_programmer_must still request dynamically allocated storage to be

b antes w20

2 : : INTRODUCTION
reserved but no longer needs to determine when that memory is no lohger required: it is
recycled automatically. Garbage collection is precisely this — the automatic management of
dynamically altocated storage. Some authors prefer to distinguish betwesn direct technigues,
such es reference counting, and indirect, wacing techniques. However the term garbage

collection is widely used to refer to all forms of autocmatic management of dynamically

allocated storage, and we shall use it to refer to both reference counting and tracing methods.
We shall need to distingvish between the garbage collector and the part of the program that
does ‘useful’ work. Following Dijkstra’s terminology, we shall call. the user program the
mutator since, as far as the collector is concerned, its sole role is to change or mutate the
connectivity of the graph of active dats structures in the heap.

In this introduction we seek to answer three questions. What problem does garbage
collection solve? How costly is garbage collection? By which parameters may different

"~ garbage-collection algorithms be compared? We also cutling a taxonomy of garbage collection’

technigues and explain the notation used in the rest of the book. Let us first briefly review
the history of programming langnages, and in particulsr the NEEmEmanou of storage
management, from the 1940s to the present day.

1.1 ..-I.mn&..%d&. mno_.mm.m,.m__cnmn_o:

-~-=-~Thehistory-of the- mae.m_omEmﬁ of programming-langvages can'be-considered-to be amaccount
of the provision of greater support for abstraction and the automation of actfons that were
previously manual or explicit.

In the early days of computing all communication between programmer and machine was
on a bit-by-bit basis, with simple switches for input. Shortly afterwards, the introduction of
simple input and output devices made the exchange of bexadecimal values between operator
and machine easier. The next step was to allow programmers to use mnemonic codes that
were mechanically translated into binary notation. Nevertheless, users were responsible for
every detail of their program’s execution. For example, special attention was needed to count
the number of words in the program and to find the absolute address of instructions in order
to determine whether there was enough space available to load the program and in order to
specify the aamnsmnob of jumps.

By the late 1940s and early 1950s, this book-keeping burden had been transferred to macro
codes and assembly languages [Metrapolis et af., 1980]. Symbolic programs are easier to
write and to understand than Emngn-ﬁmnm:maa programs primarily because numerical codss

for addresses and operators are replaced by miore meadningful symbolic codes. Nevertheless.
the programumer must still be intimately concerned with how a specific computer operates, and
how and where data is represented within the machine. The large number of small machine~
dependent details continues to make assembly language programming an- exacting task.

To overcome these problems, ideas for high-level programming languages, intended to
make the programming task simpler, appeared during the mid to late 1940s, By 1952 the first

experimental compilérs had appeared, and the first Foriran compiler was delivered in early
1957. A compiler for a high-level language must allocate resources of the target machine to
-represent the data objects EEHGEH& by the user's program. There are three- ways in which
storage can be allocated. o

L e) b by, TN isd i

e Data structures cannot be created dynamically

HISTORY OF STORAGE ALLCCATION 3
. W
Static allocation _
The simplest allocation policy is static allocation. All names in the @Hcm_nmuu are bound to
storage locations at compile-time: these bindings do not change at Tan-time, THI¥ implies that
the local variables of a procedure are bound to the same locations at o<aQ ‘activation of the
Eononﬁa. Static aliocation was the original implemeatation policy of Fortran, mﬂa ; is sl
used by Fortran 77, for example. Static allocation has three limitations. _ :
m
. .H_ww size of each data structure must be known at compile-time., :
e No procedure ean be recursive since all its activations share the same wonmnoum mcm local

names. - . i

Nevertheless, ‘static allocation does have two important benefits. Implementations of

statically allocated languages are often fast since no data structures, mcnw as-stack-frames, - -

need to be created or destroyed during the program's execution. Since the Jocation ofall data

is known by the compiler, storage locations can be accessed directly Eﬂoﬂ Em@ Eaﬁan&
Static allocation also offers a safoty guarantee: the program cannot fail by running out- ow

_ i
space at Tun-time since its memory requircments are known in m&ﬁﬁow | T

Stack allocationr ‘ . |

The first block-structured langnages appeared in 1958 with Algol-58 mna Pmmm ?:onoan
Block-structured languages overcome some of the constraints of static m.zonmnop by &_onmﬂzm
storage on a stack. An acrivation record or frame is pushed onto ‘the mwmﬁE stack as cach
procedure is called, mﬁﬂwoum_wm when it returns. Stack organisation has me :H_.u:omconm

« Different activations of a procedure do not share the same bindings H.Q.. local variables.
Recursive calls are possible, thereby greatly enhancing the expressivity mm the Whmcmnw.

& The size of local data structures mﬂn_w as arrays may depend on a @Emhaﬁn mﬁm& to the
pracedure. :

s The values of stack-allocated local names cannot persist from one mnEmcoP to.the Eua

s A called activation'record cannot outlive its caller. - _

e Only an object whoss size is known at compile-time can be _.nEEnm as Ea result om a
Eonnaﬁn ,

Heap allocation “
Unlike the last-in, first-out discipline of a stack, data structures in a heap mm%wm‘m:d\omam and
deallocated in any order. Thus activation records and dynamic data mﬁcoEHmm may cutlive the

procedure that created them. Heap allocation has a number of mn?mﬁmanm o

« Design is about creating abstractions to model real-world problems ﬁ.m many of these
are naturally hierarchical; the-most common examples are lists and n.mnm mnmm m=oomﬁoa
allows the concrete ananmwuﬁmnou. of such abstractions to be recursive. !

4 ; INTRODUCTION

o The size of data structures is no longer fixed but can be varied dynamically. Exceeding
built-in limits on the size of data structures, such as arrays, is one of the most common
sources of program failure,

e Dynamicaily-sized objects can be returned as the result of a procedure.

« Many modern programming langnages allow a procedure to be returned as the result of

"ancther procedure. Stack-allocated languages can do this if they prohibit nested procedures:
the static address of the returned procedure is nsed. Functional and higher-order imperative
languages may allow the result of a function to be a suspension or closure: a function paired
with an eavironment of bindings of names to locations. These bindings will therefore outlive
the activation of the function that created them.

Today many if not most Emw.ﬂme.i.uHomHmEEu.memumzmmmm are ahle to allocate storage
on both the stack and the heap. Many languages, such as Pascal and C, have traditionally
managed all data on the heap expligitly. C++ is one recent language that remains committed
to this approach. Functional, logic and most object-criented langunages use garbage collection
to manage the heap antomatically. Examples include Scheme, Dylan, ML, Haskell, Miranda, *
Prolog, Smalltalk, Eiffel, Java and Oberon. Other languages, notahly Modula-3, offer both
explicitly and automatically managed heaps.

27 State; liveness and pointer reachability

The values that a program can manipulate directly are those held in processor registers,
those on the program stack (including local variables and temporaries), and those held
in global variables: Such locations holding references to heap data form the roots of the
computation. Automatic heap-memory management demands that certain rulss be followed
by the programmer; Dynamically allocated data should only be accessible to the user program
through the roots, or by following chains of pointers from these roots, In particular, the
program should not access random locations in its address space, for-example by picking an
arbitrary offset from the base of the-heap. This restriction is not unique to garbage collection.
It is also enforced by strongly-typed languages such as Pascal. Safe use of C’s explicit
malloc/free adllocation mechanisms also demands that the user program does not access
unallocated regionsiof memory.” . 7 7 77 7 . v

An individually allocated piece of data in the heap will be called, interchangeably, a node,
eell or object!. The fules above imply that the storage mechanism'’s view of the-liveness of the-
graph of objects in the heap is defined by peinter reachability. An object in the heap is live
if its address is held in a root, or there is a pointer to it held in another live heap node. More
formally, define — as the “points-to’ reladon: for any node orroot M and any heap node N,
M — N if and only if M holds a reference to N, The set of live nodes in the heap is the
transitive referential closure of the set.of roots under this relation, i.e. the least set® live where

live = {N € Nodes | (3r € Roots.r =+ N)V 3 € live.M — N}

L It will be made nﬁmew where the latter term is meant in the: object-oriented sense.
? Mathematical note: such-a least set exists by Tarski’s theorem, which states that any equation- of the
" form § = f8, where f is a monotonic: operation on sets, has a leas fixed point.

EXPLICIT ALLOCATION ON THE HEAY : 3

‘For the moment, we note that this view of the set of live cells in the heap is only a
conservative estimate of the actual set of cells that are potentially accessible to the program.
Tt may include cells that analysis of the program text or data fiow analysis by an optimising
compiler would reveal to be dead. Typical examples include a local variable after its last use in
a procedure, as yet uninitialised slots in a stack frame, or an obsolete pointet left in a Tegister
(to-avoid the cost of clearing if). “We shatl refiirn to this question later in Eﬁmngﬁﬂ, and also
when we consider techniques for conservative garbage collection in Chapter.9.

A node’s liveness may be determined either directly or indirectly. Direct methads require
that a record be associated with sach node in the heap, of all references to that node from
other heap nodes or roots. The most commeon direct mettiod is to store a count of the number
of pointers to this cell, its reference count, in the cell itself. Direct algorithms for distributed
systems may instead keep Lists of the remote processors that contain references to.each abject.
In either case, these records must be kept up to date as the mutator alters the connectivity of
the graph in the heap. e

Indirect or tracing collectors typically regenerate the set of live nodes whenever a request
by the user program for mote memory fails. The collector starts from the roots and; by
following poinfers, visits all reachable nodes. These nodss are considered o be live msmmb
memory occupied by other nodes is made available for recycling. If sufficient memory has
been recovered, the user program’s request is satisfied and it is restarted. . T

1.3 mx._u:n# allocation on the rmmﬂ “

A simple example . ! il

Traditionaily, most imperative languages have placed the responsibility for _W_._a allocation and
deallocation of objects on the heap with the programmer: In Pascal, EmBo”Q is allocated in
the heap by the new procedure, Given a pointer variable p, new(p) causes p to. point to
newly allocated storage for an object of the type to which p is declared to wﬂi. The ‘oﬁmoﬂ is
deallocated or freed by calling dispose (p}. The program fragment in Emcaz.:ﬂ 1.1 on: the
following page creates a list [1,2,3]. :

3
I

Garbage — "~ T T _ e

S ..A.
Dynamically allocated storage may hecome unreachable. Objects that are not live, bot are
" not fréé either, are callsd garbiage. With explicit deallocation, garbage n%cw,cm..‘ reused; its
space has leaked away. We conld generate a space leak in the program in wP_moEEE 1.1 on
the following page by adding a line

myList].next := nil; . !

after the list is created (Diagram 1.2 on page 7). ’ i o
Now only the first element of list {s accessible to the program; the memory containing items
2 and 3 Is gut of the program’s reach and can neither be used norrecovered. Automatic storage:

management can recover inaccessible memory: this Is the subject of this _um_mw.

i
_
]
|
|
_‘

SO RO S

6 , ‘ INTRODUCTION

program peinter({input, output);
type ptr = fTeell;
call = record
value : integer;
next : ptr
end;
var myList : ptr;

function Insert (item : integer; list : ptr) : ptr;
var temp : ptr;
begin

new (temp) ;

tempf.value := item;

templ.next := list;

© Insert := temp -
end;
begin

myList := Insert(l, Insert(2, Insert(3,nil)))
end,

Algorithm 1.1 Dynamic allocation of & Hst in Pascal.

Dangling references

Merabry can also be deallocated while there are siill references to it. Suppose we replace the
new line in Algorithm 1.1 by
dispose (myList{.next) ;

to retufs item 2 to the heap manager. Again, item 3 has become garbage: this small leak will
not harm our tiny program (see Diagram 1.3 on the next page). However, the next field of
item 1 refers to memory that has been deallocated. A dangling reference has been created.

The program has no control over the use to which the disposed storage is put. It may
be cleared, used to store book-keeping information or recycled by the heap manager. If
the program follows the dangling reference, the best that can be haped for is that it will
crash immediarely. If the heap manager had reallocarted the disposed memory to another of
the program’s data structures, a single location would represent two differeat objecis. If we
are. lucky, the program. will eventually crash. at some; future point. If-we-are-unlucky, it will --
continug to run but @Honcom incorrect results,

o | _
myList At g2 —{3]/]

Diagram 1.1 The list built g Enodnh_p 1.1

=-=-e. - -often unrepeatabler —— —

e~ — WHY GARBAGE COLLECT? "

E4—

i

B e

mytist—{ 1 | |

Diagram 1.2. .myListt.next := nil creates a space leak.

Sharing

Garbage and dangling references are the two sides of the same coin of Eﬁrﬂm allocation.

Garbage is created by destroying the last reference before an object is mmmz_onwﬁa Umnmgw.

" " references are created by deallocating an object while references to it remaip. H_..numrn appear .
that the solution is that both actions — destruction of the last reference and momzonmnou om its-
target — should be co-ordinated, but this is not sasy in the presence of mHE:q. -

Suppose two lists share & common suifix (ses Diagram 1.4 on the moﬁos._n page) A £n=-

behaved list disposal routine will recursively deallocate cach item of a rmn_s&mu the pointer ~

* =2

the other would consist of a single item and a dangling pointer. This was m._m problem that led

to interest in-automatic storage reclamation techniques in the late 1950s 9.@0%5%. 10817

Failures "

Dynamic Emuuo@ in complex programs is hard 8 manage ooﬁanﬂw with explieit

allocation and deallocation, and examples of failing programs are common. Programs crash
unexpectedly and servers run out of memory for no apparent reason. d..a effect of such
programming errors is indetenminate, particularly in mulfi-threaded m=<:.o¢EnuE Dangling
references may be benign if the heap manager does not reallocate that wﬁunimﬁ object:
Space leaks may lie dormant ander testing and even under normal conditions of use. Failures
commonly only surface when the program is put under stress or left EE._Em for long periods.
For example, the input to a noHEEoH may be machine generated and Sowwﬁ assumptions
about the shape of code that a programmer might reasonably be expected to write..Space

i
leaks may remain undiscovered when the code is run on the development machine. moﬁnﬁn

to the head of the list is destroyed. However, ifeither cat ormat were mmmu.duani ihis way,

when executed on a machine with a smaller memory or on a long-running server; the leak may
exhaust the memory. Um_ucmmEm under these conditions is Bﬁman a_mmnch as H;m.nﬁam are

e H:ia_‘.i,,.m;vﬂ;\ﬁ‘ww‘l};
I
i

mylist

e e d

UEME.E 13 dispose Eﬁﬁmn_.dmﬁu creates a space leak and: a &Emrun @Enﬁh

_
w
_
|

T 8 : . INTRODUCTION

[[F—fa[F—{]]

mat:

Diagram 1.4 Two lists may share a common suffix. mat := Insexrt(m’, catt.next) ;

1.4 Why wwwvmmm collect?

Language _.mn_pm..m_.:m:nm

Garbage collection may be essential or merely highly desitable. It Em% be a Hmumﬁ_nm
requirement: heap allocation is required for data structures that may survive the procedure
that created them. If these data structures are then passed to further procedures or functions, it
may be impossibie for the programmer or compiler to determine the point at which it is safe
to deallocate them, The prevalence of sharing and delayed execution of suspensions means
that functional languages omnnu _umsw @Eﬂn&.ﬁq unpredictable exscution orders, Garbage

collEchion is mandatory.

first:— j first->data

T |
T -
1=

Diagram 1.5 Should the data object be deallocated when the stack is popped?

Problem requirements

Garbage collection may be a problem requirement. Boehm. and Chase offer a. helpful i
illusiration [Boehm and Chase, 1992]. Suppose a general stack data type is-to be Eum_mEanﬁa i
in Cas alinked list. Each mode on the stack contaifis two pointer mmEm data and next. =

WHY GARBAGE COLLECT? { 9
The Fop operation is to deallocate the top of the stack, call it first, and Hm.nEQ a pointer to :
the remainder of the stack. Should Pop deallocate the data referenced from the top element,
first->data? If the data is statically allocated, the answer is ‘no’. Otherwise; i-this is the
last reference to the data, the answer is ‘yes’. If the data may be H_Ermn on: to more thao
one stack — it is in Diagram 1.5 on the preceding page — the answer is ‘maybe’. Some.
convention is required for deallocation even for such a simpls m&mn_..mnnou This will either
complicate the interface to the stack, reduce its applicability or force EEwnamme 835@ ﬁmo
that deallocation decisions can be made locally). i

Software engineering issues

__Software engineering is most succinctly described as the management of complexity i large-

scale software systems. Two of the most powerful tools available to the Wowgﬁm engineet |
are abstraction and modularity. We strongly believe that explicit memory Vmbmﬁmﬂmﬁ. cuts !
against these principles. Antomatic memory management gives increased abstrattion!fo the:
programmer. The model of memory allocation is less low-level and Eoﬁmumﬁmnm are-relievad. . :
of the burden of hook-keeping detail: their time is better spent on higher-level- -details of—- -
the design, and implementation of the programming problem at hand. ?HEHEQ Emnmmmu.ﬁnn :
by the run-time system is adopted by all high-level programming mmhq:mmnm for:static and = !
staclc-allocated data. Abstracting away from such low-level issuestis zEéHmme recognised e
by designers of high-level programming languages-to be essential for m_cw_mw and lexically- :

scoped data. Programmers do not have to worry where to place global amﬁ« or how toiset up

or take down procednre activation frames on the stack. We: believe that the case for m_umqmmcon i

applies equally strongly to heap-allocated data in complex programs. i
Reliable code is understandable code. At thi level of the medule, EG means Emn a

programmier should be able to understand its behaviour from the an&m itself,. or; in the

worst case, a few neighbouring modules. It should not be necéssary to nuﬂﬁmﬁman an.entire
program before being able to develop a single module. This is clearly nmwmnﬂ& for large-scale
projects involving teams of developers. In contrast, explicit allocation can allow one-module:

to cause the failure of another through.space leaks or premature reclamation of storage. The

behaviour of the module is no longer independent from the context in which it isused. : : P

The oft-cited goal of allowing software components to be combined E_Em same way as i

hardware components requires-that interfaces-should be simple- and-well-defined-—Modules —— =
that are extensible may be composed more easily with other moduoles: the Boac_m isTeusable i

in different contexts. Increasing module cohesion also makes programs ‘nmm"mn to- maintain..
Meyer suggests that every module should communicate with as few oEmnm ag uOmm_Eﬂ
and if any two modules do communicate, they should exchange as En_m information as
possible [Meyer, 1988]. Wilson correctly observes that ‘liveness is a global HoanQ [Wilson,
19941, Adding book-keeping detail to module interfaces: weakens absiractions and réduces
the extensibility of modules. Modifications to the functionality of a module-might-entail
alteration of iis memory management code. Since liveness is a gn.EmEﬁn.wn changes to
book-keeping code might radiate beyond the module being developed. ~ 1 T
While global explicit dynamic memory management may be efficient Ea appropriate for
monolithic systems built from hierarchical designs by stepwise Hombnﬁﬂnun this approach to

anEmb seems at odds with the EEOmo@E cm.cE anﬁ.odoﬂmmon It conflicts With the principle

1

10 , INTRODUCTION

of minimal communication and clutters interfaces. If objects are to be reused in different
contexts, the. new context must understand these rules of engagement, but this reduces the
freedom of composition of objects. One author has suggested that the problem of memory
management in complex systems may only be solvable without garbage collection if programs
are am%mdmn with €orrect memory management as their prime goal [Nagle, 1995]. Qmwwmmo.
moﬁaoﬁouu on the other hand, uncouples the problem of memory Emumqm.Emun from class
interfaces, rather than dispersing it throughout the code. This is why it hag _.uuomn a fundamental
componeat of many object-oriented Janguages. -

.> mﬁbm.n indication of the extent of this problem is the range of tools available to assist
with checking correct usage of heap memory: the best-known examples include CenterLine:

[CenterLine, 1992] ard Purify [Purify, 1992]. The very existence of tools of this kind reveals

the importance of correct memory management and the difficulty of getting it right. However,
M.M_._ ﬁoo_ﬂ E.M only mﬁmnmn&HMH useful as debugging aids since they impose M considerable Ew.,
& overhead on programs (the CenterLine interpre g ify Hnk-ti
library by a factor of two Hommoﬁ [Ellis, G@wuuwﬂﬁ by & factor of By, the Purlly finkctine
Although these tools are often very usaful for tracking down programming errors, they do
not mnamnmm the heart of the problem. Debugging tools do nothing to simplify the w.pﬁnammnmm
of complicated systems, nor do they -enhance. the reusability of software components
Considerable effort still must be devoted to correcting an implementation or, even worse, m

—design-after aleak-ora-danglingreference is discovered-Debugging tools tackle the symptoms

Hm:u.ﬂ EW.E the disease itself. Garbage collection, on the other hand, is an effective software
engineering tool beganse it relieves the programmer from the burden of discovering memory
management errors:by ensuring that they cannot arise. -)

Work by Rovner suggests that a considerable proportion of development time E.@ be
mwmnm on memory management bugs [Rovner, 1985]. He estimated that forty percent of
E.m time developing the Mesa system was spent on memory management’. Today, objest-
oriented programming languages are increasingly commonly cmam. Programs Emng in
Emmm Hgmﬁm.mmm typically allocate a greater proportion of their data. on the heap Emb.
their conventional procedural counterparts. The data structores generated, and the problems
Hmnﬂmau by object-oriented programs are often more complex. These factors can only increase
the intricacy of explicit storage management.

Uomﬁm:mnm and programmers are tempted to be over-defensivein order to overcome the
complexities of explicit dynamic memory management. Data is allocated statically or copied
between modules rather than being shared: each module is then free to destroy its noww of

the oEmnﬁ at will — the giobal liveness decision is transformed into a local one, Unnecessary
copying and static allocation are, at best, wasteful of space since cautious overestimates of
memory requirements must be made. If used on larger problems, however, static limits ma;
prove inadequate and.the programs will fail. . ¢
>.ncEEoEw used alternative is to build a domain-specific garbage collector. Domain-
specific nozmnnou often fails to take advantage of advances in garbage collection ﬁmnwuﬁcam
Because their applicability is by definition limited, the:costs of development of such oobmnnoﬁm.
cannot be amortised over a wide set of applications. This means that testing is likely to be

.) ; . .
There is a real need for more research to be published on the cost of memory management bugs to

development time. ;

o 11

WHY GARBAGE COLLECT?

less thorough. Wilson notes that the very existence of such weakly anmmbom_.mma collectors is
testimony to the importance of garbage collsction [Wilson, 1994]. The solution is io make

garbage collection part of system rather than a “holt-on” extra. i

No-silver bullet

: . _
We do not argue that garbage collection is a mandatory requirernent for the mwgnam of every
probiem in every language. Programs with straightforward dynamic memopy requirements
may be supported at lower run-time cost by explicit deallocation®, However, Beware solutions
to. simpie problems that are reused in more complicated programs: the short-term: gain may
have a longer-term cost. Problem specifications may make demands that mm”mcmmm collection

""" inay not be able to satisfy. Hard real-time systems demand guarantees that memary requests

will be satisfied and that the upper bounds on the time spent serving such Ho”ncn.mw be:smail.

The problem. of garbage collection for hard teal-time programming has yet to be solved

without the use of special hardware. [T
Nor do-we argue that garbage collection is a panacea for all memory management preblems.

Garbage collection has its own cosis, in terms of both time and space, %@.En.ﬁgmﬁaﬁ

these in the next two sections. Furthermore, although garbage collection removes the two
classic bugs of explicit storage management —— dangling pointexs and space _omwm. — it still
vulnerable to other errors, and moreover Taises debugging problems of its own.

Garbage collection has no solution for the problém of data structures that grow: without
bouad. Detlefs and Kalsow report that such data structures are *surprisingly Zommon’, &9
one example being the caching of intermediate resnlts to avoid recomputafion [Detlefs and
Kalsow, 1995]. Such growth is often benign in programs under test or used in a short-lived.
context, as the program is likely to terminate normally and exit before it HE.,_m out of memory-
However, if the size of the problem is increased or the code is used as part ﬂ_wm a long-finning
server, the program may crash.

We argued above that one of the major strengths of garbage oc:moﬁanwmm its support for
abstraction leading to simpler interfaces between software components. Unfartunately this
ahstraction may hide another source of errors if the concrete representation of an object:
references heap data that its abstract representation does not. The most common example.
of this. behayionr s a stack of references to heap-allocated data MBEwqunEn...mm an array:
What should Pop do? The choice suggested by the sbstract representation of the stack isto
return a reference to the heap object pointed at by the top of the stack, and Emn decrement the

“top-of-stack pointer. However; this leaves the heap-data -still. accessible from the concrete
yepresentation of the stack, the aray (see Diagram 1.6 om the following page). The safe
solution is that Pop should null the pointer held at the top of the stack before it returns a.
reference to the heap data. R

Tracing garbage collectors jdentify live data by following pointers from the roots of the

including the program stack. Unfortunately the stack can cn”noEﬁ polluted by

computation,
obsolete pointers: if these pointers are traced, & space leak might-accur.One source of

frame pollution is failure to ull Tocal variables after their last use. H.Hoéaﬁw.n_ one frame may

inherit obsolete data from another frame after that frame’s death. Suppose @..mnonnnﬁow calls

- . - R o e s

4 Byt note that this is not necessarily always true. -

f stack-.

{

12 : INTRODUCTION

stack

stack_basg———|

1op. of_stack———=

Diagram 1.6 The concrete representation of a stack may hold references (in the array
elements shaded grey) that its abstract representation does not. o

procedures B and then ¢, and that B stores & pointer x to heap data in ity stack frame. If B

returns without clearing its frame — and this would be expensive and so is never done — -

and ¢ then reserves work-space that overlaps x in its stack frame, again without first clearing

T s Work-§pacE, the hEap ohjesrwill"bevunie Teachable sgain == it has been-resurrected!

Although this problem is well known:to implementors of conservative garbage collectors (see
Chapter 9), Detlefs and Kalsow pointout that it is mare widespread since x is a perfectly valid
pointer [Detlefs and Kalsow, 1995]. Normally, this kind' of error is not (oo severe since the
work-space holding: x is likely to be used before the. next collection. However, Detlefs and
Kalsow suggest that multi-threaded environments are particularly vulnerable to leaks cansed
by stack-frame pollution since, in the example shove, the thread executing ¢ may be blocked,
and several collections may occur before x is overwritten.

Detlefs and Kalsow have produced tools to help to.diagnose these problems in Modula-3
programs. Modula-3 is a strongly typed language in which each heap abject is tagged with
its type. Their tools allow heap allocation te be viewed by type, and heap usage to be viewed
by type and call-site (since some types are-ubiquitous). The tools also allow the programmer
to identify every object reachable from a single chosen root and to assert that an object is
unreachable: if the assertion is false then the tool will print a path from a root to the object.

. o OOZHNPWE.Q GARBAGE COLLECTION ALGORITHMS

Lk
|
o
T

13

scapegoat, However, implementations of these languages often ran Eos@" for reasons other
than garbage collection, such as less efficient parameter passing Emn:mimmnmw or support for
higher order functions or delayed evaluation of expressions. o
o Modern techniques have reduced garbage collection overheads substantially to the point
- where even languages nsed for systems programming, such as gom&mlw+ and Modula-3,

are supported by garbage collection. The cost of automatic memory Emu_mmo.EoEm is highly

e

s TR s

B} application- and language-dependent so it is not possible to give simple prescriptions for its

overhead. For example, the garbage collection overhead may be a much M_Em:mn proportion
of overall execution time for an interpreted language than for an implementation of the same.
‘Tanguage that uses a highly optimising compiler. The style of test Eowamnwwhmon. (for-example,

i N whether it is written in a largely functional style) and language implementation details. (for...

__example, whether procedure activation records are heap- or mnwnw.mbonﬁv& will also have
a profound effect. Costs of collection will also be affected by object demographics such as
the distributions of object lifetimes and sizes. Finally, it is usually possible to trade space

monmm_nma.Onagwnozmnmoumdmnmnnwnmh&.sm%m_un mmannwa_u% Eﬂommmum En.mwmw.om,ﬂ:m.

region being collected.

botween a few percent to around 20 percent. If a ball-park figure had to be chosen, 10 percent
would not be unreasonable for a well-implemented system [Wilson, 1994]-However, simple- -
headline figures for garbage cotlection overhead need to be treated: with care: S

1.6, Comparing garbage collection algorithms

It is difficult to compare different garbage collection algorithms, either|in principle or in
practice. While formulae for algorithmic complexity can be determined, their constants and
implementation details often have substantial impact an actual performance, In this book we:
survey a wide range of differsnt techniques for garbage collection. The E_mmﬁ obvious costto
be considered, in termspf both time and space required by the collector, is that of reclaiming

cells. However, this is not the only factor: Allocation costs are equally important—an efficient

- collection algorithm that exacts a heavy price for the allecation of new cells is unlikely to.be.

e effective. Some algorithms also impose a tax on user program operations msmnw as pointer reads.

or writes (referonce counting being prime example); this also needs to be considered. The
user program may be suspended while the collector rueas: garbage collection delays will be
; i .

1.5 How costly is garbage collection?

Garbage collection has a reputation for placinga large overhzad on the execution of programs.
In the past this was certainly true for some applicatiens though its costs are highly system-
dependent. For example, studies-from the: 1970s and early 1980s found that-large-Lisp
programs were typically spending up to 40 percent of their execution time in garbage
collection [Steele, 1975; Foderaro and Fateman, 1981; Gabriel, 1985]. In the cases where

they -were- comparable, programs written -in garbage-collected languages often run- slower -

than equivalent ones writien in conventional languages: garbage collection was an obvious

+-—--— ---important for certain classes of application.--—-- e -

esented in the
literature for different methods are often acquired on different machines, with different

processors and under different operating systoms. The way &moﬁgmﬁm‘ﬁinﬁnﬁna may

Unforiunately, these are not independent parameters. Moreover, nmmc#m P

I8 have subtle and possibly unexpected effects on overall performance. The execution time of a

collection cycle depends in part on the topology and volume of live datd in the. heap. Even

Foe simple issues, such as minor changes fo the size of the heap or Em...ﬁ«vﬁ of objects-ean

canse collections o ocenr at differeat intervals and hence with different E.wn” graphs. Different
data access patierns interact with the memory sub-system hierarchy of di

sk, main and cache

< memdde o memary in different ways. The-arder in-which 2 graph is traversed-or: copied may affect the
1

-

|
1]
1
1
|
|

Given these caveats, the overall execution time for garbage ao:.womow.ﬁwﬁ»nm@,m ranges--

i4 INTRCGDUCTION

virtual memory behaviour of 2 program. It is desirable to be able to discuss the effects of a
single design decision, ‘all other malters being equal’, but in practice they rarely are.

However, we can clabarate the principles and factors that might be taken into consideration
when choosing an algorithm for garbage collection. Garbage collection must he safe. Live
data must never be emroneously reclaimed. However, there is a risk that some coilectors
may be compromised by aggressive optimising compilers that disregard pointer-reachability
invariants. We discuss this further in Chapter 9 where we consider conservative garhage
collectors. ,

Garbage collection should be comprehensive; garbage should not be allowed to float
unreclaimed in the heap. However, collectors vary in their approach to comprehensive
collection. Most collectors based on reference counting cannot reclaim linked data siructures
of garbage if the structures are circular. Rather than collecting the entire heap, some collectors
may concentrate their efforts in a collection cycle on just one region of the heap. It is
rezsonabls to ask when other regions of the heap are collected and at what cost. Alternatively,
a single collection cycle may be interleaved with the execution of the client program. The
most comprehensive collection policy would be to ensure that any data that became. garbage
before the collection was complete is reclaimed in that cycle. Flowever, such a policy might
be expensive to implement. The no:nnﬁon - may Hamﬁn nm view of the womu by collecting such
“data'in the next cyclel T

The programmer will wishi to consider the overheads of garbage collection on the program’s

o exeoution ime, One factor is the overall time spent by the progzam in the garbage. collector.:

For interactive programs it will also be important to consider whether the user program is
suspended during garbage collection and, if so, what is the extent of these pauses. If the
collector is able to reclaim the heap region by region, the pause time for the-collection of a
single region will be considerably less than that required for the collection of the entire heap.
The relative frequency of these minor and full collections may be significant.

Incremental collectors do not suspend the mutator program while garbage collection
completes. However, it may be necessary to halt it briefly at the start of each collection
cycle while the collector is initialised. For example, it may be necessary. to take a ‘smapshot’
of the state of the program by examining the roots. Non-concurrent incremental collectors
will also suspend the mutator briefly at each step of the collection algorithm while a small
amount of work is dane by the collector. This might vary from processing a single node to
scanning & virtual memory page of nodes. A further factor for incremental collection is the
cost of ammaEEEm whether a collection cycle has terminated. This might again require the
suspension of the mutator.

77 Overall garbage ‘collection time “dnd pause Hmes are not the only time factors to be

considered. For good interactive or real-time response, it is not sufficient simply to Jimit pause
times. It is also important that bounds be placed on the proportion of time spent in the garbage
coliector in any pericd of time in order that the mutator may make sufficient progress.

The cost of allocation of new data in the heap is as important as the tme spent reclaiming
garbage. In general, it will be more expensive to allocate in a fragmented heap than in a
compacted one, since it may be necessary to search thé heap for a contiguons arés of free
memory sufficiently. large to accommodate the new abj ject. Fit-finding will be easier if all data.
is the same, fixed size:than if objects of varying sizes are to be allocatad. The problem of the

allocation of variable-sized data in a fragmenied heap is not unique to garbage collection but

COMPARING GARBAGE COLLECTION ALGORITHMS 15

i
|
is shared _..G all Wmm@ management systems, both explicit and automatie, :

Auvtomatic memory management may impose a direct overhead on Eaﬁﬁon operations such
as pointer writes. The simplest reference counting systems require Em_,.nm; reference counts-be

- updated whenever 2 painter to a heap cell is created or deleted. More sophisticated collectors

may relax the reference: count invarjant in order to reduce this oﬁiﬁ%& Incremental and
gererational collectors perform partial collections of the heap. HbommEoEE collectors usually
guarantee to reclaim any garbage created before the start of the nozwonon cycle in that cycle;

generational coilectors collect only a part of the heap, a generation, at each collection. Both
place a time overhead on the mutator: Incremental collectors require the mutator to Teport

any changes that it has made to the connectivity of the graph while the ¢ollector is running.

- Generational collectors require the mutator to keep arecord of any Hmwwaoznnm to cells in one

generation stored in cells of other (usually older) generations.

The réle of the garbage collector is typically to reclaim memory s&mn the mntator has
exhausted’ the heap. However, the collector may require addifional memory for its own
puzposes and these space overheads must be taken into consideration. Collectors may requite
space in each cell in the heap to store reference counts, mark-bits to indjcate that the cell is
live, or the address of the cell’s new location (if a moving collector is zmn_& A collector may
also require information to be stored in each cell that allows it to aﬂoﬂ:ao the location of
any pointers stored in the cell (although this information is often also Hmncﬁmn by the mutator
and; in this case, should not be counted against the collector). . i

A collector may also employ its own auxiliary data structures, such as m__. stack for recursive
traversal of heap data structures. Copying collectors also require extra address space compared
with non-moving coliectors as all live data is picked out of the region o_m memory currently
occupied by the heap and copied compactly into a fresh region. Depending on heap layout
and collection strategy, copying collectors may Hnacnd up to twice the ma%mmm space of non-
moving collectors. :

The cost of a particular collection algerithm cannot be determined cimEﬁF analyses of
asympiotic complexity, such as whether it is proportional to the size om the heap or to the
volume of surviving data. The constants in complexity formulae are also HEm_oHBE Equally,
counting the number of instractions performed by the allocator and Scmnﬁon does not provide
a complete answer, The effects of a program’s locality of reference will Fw important, Recent
studies have also shown that different styles of garbage collection have different performance:

at both the virtual memory and the data cache levels. It fiay Be possible 8 tunesthe behiaviour
of the collector to improve both. In particular, it is worth spending moEn extra CPU effort

... toreduce paging in a virtua] memory environment. More mmm:oﬁﬁ@,pﬁunmw&n possible.to.

use the collector to improve the locality of reference of Eo mutator EE thereby enhance:
performance, _

The heap occupancy, or residency, of a program is unlikely to remain oo:ﬂm_.: Collection
algorithms may or may not be affected hy residency. For reference nocnﬁam_ mnmﬁgnw is not

an jssue but tracing collectors will be invoked more frequently if the oonmzumbow of the heap

is high than if it is low. How gracefully the performance:of the memory management;systems
. degrades with occupancy will be important. b

Finally, garbage collection algorithms may be mmunHE purpose; or their applicability may

.be restricted to particular styles of programming language (for example, to pure functional

languages or to logic languages), arrestricted to particular programming HToEm (for example,

|
i
.
m

16 INTRODUCTION,

the manner in which circutar data strucrures are created and accessed may be constrained).
Many of these factors will weigh against each other. Trade-offs between time and space ate
commonplace in computer science and different applications will wish to prioritise different
factors. For instance, an interactive application would stress low pause times whereas overall
execution time would. be more important to a non-interactive one., A real-time application
would demand small upper bounds ox both garbage collection pauses and on the proportion
of iime spent in the collector in any period. Good paging behaviour would be important for a
program running on a workstation in virtuel memory while low storage averheads might be
the main concern of an application running in & small personal computer or embedded system.
Portebility of a collector between different architectures, compilers or application programs
may also be a significant consideration. Ease of mainterance should also be weighed, as in
any design. Storage managers, like reference counting, that aze tightly coupled with compilers
will be harder to maintain than those with a simpler interfece, for example iracing collectors.
Taevitably there will be trade-offs between these constraints, and we compare some of
the methods that have been proposed. We do not provide ‘pat’ solutions ta the question of
which collection strategy to use but we do hope that this book identifies the right questions
to raise and suggesis approaches that might be profitably explored. The slogan of garbage
collection must be “know the requirements of your system and understand the demographics
— the volume, type, topelogy and lifetime — of the data that it generates’.. This is not a
suggestion unique to garbage collection: it applies equally to explicit allocatoss. It is clear

* that performiance of programs with explicit memory management can often be improved with

better understanding both of the allocation behaviour of the program and of the allocator being
used [Zorn, 1993; Wilson et al., 1995]. -

In summary, we argué that garbage collection is a useful ool for the software engineer.
We believe that it is essential for certain problems and styles of programming and at least
4 feasible and realistic siternative for others. Experience of garbage collected systems has
shown that their use can lead to reduced development tima. At the very least they are worth
considering as an alternative to explicit memory management — the development time spent
chasing memory management bugs could be more profitably spent concentrating on other
areas in which performance-or functionality could be enhanced.

1.7 Notation

We complete this introduction by describing the assumptions that we shall make in the rest

NOTATION--- - - - 17

contain & pointer or a non-pointer valus; the latter is an atomic field. By exiension, an object
that contains no pointer fields will be called an atom. The data in the heap H_mpormEn from
each root of the program forms a directed graph whose nodes are the data cells and whose

e f
arcs are references to heap objects. References are stored within pointer mm_am of heap cells.

These graphs may overlap or they may be disjoint.) “

Oﬁmﬂ we shall treat the heap as a contiguous array of slots, which we no_nn.éu by Heap.
‘When we are considering algorithms for fixed-size objects, the size of a slot ws.E usually be
ane object, Otherwise the size of & slot shall be one word, We denate the botiom of the heap

by Heap_bottom and iis top by Heap_top. ;

Poiriters and children . . m
In general, we shall refer to acell by the memory address ofits initial word. Given a cell M, we

denote the list of (addresses of) pointer fields that it contains by Children{N) : On wnnﬁHon

we shall wish to refer to arbitrary fields of & cell — which may or may not oon“ﬁE.n pointers, In

this case, we shall treat the cell itsalf as an array. Thus the 48 field of a cellijwill be denoted

N{il. We also choose to count fields from 0.) . .

To referto the immediate descendants of a cell, it is necessary 1o a.ﬂ&ﬂ@mn the m_c.H.H.HHH.
field. We- shall use a notadon _uo.ﬂosn&.mnouu Mu Thus, given a cell N, ifs- nmmn_,..n.wmm..‘ﬁ. arg the
#p where p is a member of the list Children N).)] . L .

@F Diagram. 1.7, the root cell has address n and its children are the two ma“Em m.rwnmm .mamm..
The cell also has a header and a. non-pointer data field. Tach of the four ficlds 1s one word
long. The children of n point ta two further cells whose addresses are * (n+2) and *(n+3).

p s 2 i3

parent

amncons [7] |]

of the book about the organisation of the heap and the laycut of objects within it, We also
describe our pseudo-code notation for describing garbage collection algorithms.

The heap

The heap may be a contiguous array of words or it may be organised into set of discontinuous
blacks of words. User data within the heap will be described interchangeably as cells, rodes
or objects. Tt will be made clear whenever the latter term is used in its object-oriented sense.
A cell is assumed to be a contiguous array of bytes or words, divided into Flelds. A field may

Disgram 1.7 _ Aheapcell.

Pseudo-code "

We shall use a common framework to describe mmavmma.no:mwﬁcw amonjm.ﬁw Es..w chosen
to use a pseudo-code rather than a real programming wmsmcmmn.moﬂ.ﬂw@ Ieasons.. Fixst, wmonmow
code reduces clutter {such as variable declarations) that does little to aid ooﬂﬁnm:ouman& 0

short fragments of code. Second, the consequence of using a real prograjpming language is:

that these fragments would become very large. Third, our algorithm mmm_wamn are intended

.

18 , INTRODUCTION

to be illustrative ratherthan definitive. Coding a real garbage collector is a complex language-
and ﬁnﬁﬁooﬁuw-amm.wuannﬁ wndertaking. A short code fragment should not be mistaken mow a
fully polished impleméntation. Finally, using real-code runs the risk of biasing descriptions of
algorithms towards a specific language. Wherever possibls; we have tried BuBSE language-
dependencies. , ‘) -

The instruction set of the mutator has two operations: Newand Update. New acquires & new
object from the heap manager and returns a pointer to the start of the newly acquired object.
Hew may take the size'of the storage te be allocated as an optional parameter, This parameter
will be omitted where the algorithm under consideration.only handles fixed-size objects orthe .

size does not contribute to an understanding of the algorithm. | e » . ”
- - The Classical Algo rithms |

) A.\.E:mm in cell fields may be modified with Update. Update is a generalisation of the
assignment operator and takes two arguments: the ficld to be modified and its new value,
which is nsually a pointer or the distingnished value nil. .
) The extent of procedure bodies and the scope of control statements is denoted by
_indentation. The assignment operator is = and we often use multipie assignment. Thus
. a,b = b,a ’
swaps the values of a and b. Again, after C, the equality operaior is == but we use
mathematical symbal§ for the othertelatdonal operators, suchas <, > and #.~ - -
Where appropriate, we use procedures returning a -value to read and modify the fields of
g cell. For-example, the.reference.count .of a.cell. N.is. given by RC.(N) and a cell’s reference
count is initialised by the statement : S) h .

cal methods of storage reclamation: reference

Tn this chapter we introduce the threg classi _

counting, mark-sweep and copying. As the techniques and ideas behind Snmm algorithms form
the Dasis of many schemes covered later in the boak, it is important to upderstand ¢learly = - _
how they work. For this reason, the algorithms présented in this chapter} are described in _
simple recursive terms. In later chapters more efficient ways of wﬁEwE.wu&um these methods

of garbage collection are examined. ;

24 The Reference Counting Algorithm _ o _

d on counting the number of refefences to each cell i
i

BC(N) = 1

1.8 Notes

A good Homo_.ﬂ.ﬁn for the Emnoﬁ‘ of sarly computers and programming languages is by Donald

Mnmww Mwm WMMM ”menmw“mm nﬁ Emﬂmwﬂmm M_M.m al., 1980]. The earliest versions of Lisp used : The first algorithm isa direct method, base:

O e e n, eralis, but this was soon superseded by garbage collection : from other, active cells or roots [Collins, 1960]. Tts virtue lies in its mwﬁuﬁowﬂ\ of keeping track :
of whether cells are in use or not. It is also a naturally incremental ﬁmnwaeﬂm. distributing the :

General descriptions of techniques for storage allocation in fragmented h
: e eaps can be found . .
in [Knuth, 1973; Standish, 1980; Bozman ef al., 1984; Aho ez al., 1986]. Pt Wilson, Mark s overheads of memory management throughout the program. Algoriibeie menwmmmﬁmwww m

Toh s) . - A counting have.been.adopted for many languages and applications, for examp
mmomwwwmﬁw%ﬂpﬂ mz,wmm ME nMa wma offer a particularly thorough survey of explicit o the Salltalk object-oriented language [Goldberg and Robson, 1983], InterLisp, Modula=
- ion techniques, and especially of the shortcomings of some analyses of the behaviour 2+ [DeTreville, 1990a], and the Adobe Photoshop. program. It is also the method &man by -

of allocatars [Wilsow ¢7 al, 15531, [many operating systems (for example, Tnix) to determine whether mEm,Ev%‘wm»aEnﬁn@mBHP S
o the file-store. L : ﬁ)

The reference counting method operates under a fundamentally &mﬂmb* strategy from that ;
of tracing garbage collectors. Bach cell has an additional field, fhe referencelcount. Thestorage m

manager must maintain the invariant that the teference count of each n”wﬁ is equal to the !
rmumber of pointers to that cell from roots or heap cells. The sterting peint for this algorithm is

that all clls afc piaced in a pool of free cells, which.is nsually MEEmEaEme,m‘m linked list-— |
4 chain of eells linked by one of their pointer fields, which we shall call next — along with
- , & £ree_list poiater to the head of the chain. The next field need not be used exclusively
for this mmmummmwﬂ%@mmmzﬂ._rmmlﬁmuumﬁn.m&@mm.. the reference-coumnt field +— free cells do not
need explicit reference counts. Alternatively, one ofithe cell’s user data m_n_Em may beused.

m
I
|
!
|
&

20 THE CLASSICAL ALGORITHMS

The algorithm

Free cells have a reference count of zero. When a new cell is allocated from the pool, its
- - reference count is set to one. Bach time a pointer is set to refer to this cell, the value of
the cell’s counter is increased by one; when a reference to the cell is deleted, the counier is
decreased by one, If this causes the reference count to drop to zero, the reference counting
invariant implies that there are no remaining pointers.to this cell. Furthermaore, because the
location of the cell has been ‘lost’, there is no (legitimate) way of re-establishing contact with

this cell. The cell is nolonger required by the computation and it can be returned to the list of

free cells.

allocate() =
newcell = free_list
free_list = next(free_list)
return newcell

New() =
if free list == nil
abort *Meamory exhausted"
newcell = allocate()
RE({newcell) = &
return newcell

Algorithm 2.1 Reference counted allocation.

Let us look at the algorithm in detail. In each algorithm considered, allocate will be
a general purpose mechanism for reserving space in the heap. In this case it pops the first
element from a free-list. In other algorithms its implementation will be different. Mew returns
a fresh cell acquired from the free-list, after setting the value of the new cell’s reference:
count to one (see Algorithm 2.1). If the free-list is empty the computation is aborted — the
alternative would be to expand the heap — otherwise allocate removes the head of the free-
list and returns it (o New. For safety, the painter fields of the new cell, Children (newcell} .
could also be cleared although this would be unnecessary if its fields were inidialised as soon
as the cell was acquired. In this case, New might also remove a number of arguments from the
program stack and install them in the cell’s data felds. For simplicity, we shall assume for the
moment that all cells have the same fixed size.

Update overwrites the word in the heap that is its first argument, R, with its second

REFERENCE COUNTING: - 21
free{N) =
. next(N) = free_ list
' free_list = N

delete(T) =
RC(T} = RC{T) - 1
if RC(T) == 0 R
for U in Children(T) -
delete (*U)
free(T)
Update (R, S) =
T RC{s) = RC(S8) +.1
delete (*R)
“%R-= 8§ R -
Algorithm 2.2 Updating pointer fields under reference counting.

———— ‘_......_g..__ e e R 8 e AR 1 AP s e it e o o) _._ [

An example

) . i .
As Update is more complex, an oxﬁnmmn. mNmB_.&n is zmmm.:.r Hu Em mjcng.m m..wwiﬁw_
Diagram 2.2 on the following page. the pointer right (R} is o<ﬂs..dnm$ (say wil nil).
Since: this is the only pointer to &, delete is now invoked Hmmﬁm:.d@ on both pointers
from S before s is added to the free-list. Delete(right (8)) In'turn generates a call to

dalete (right {U)) before U too is added to the free-list, and so on. _

wnw.w.zmﬂrm_mzm weaknesses of reference counting

The strength of the reference counting method is that memory EwuwmoEman o.e.mnwnmnm are
distributed Eno:mwoaﬁﬁn computation. Management of active and garbage cells is interleaved
with the execution of the user program. This contrasts with ?ou.EnnwEnnﬁEw tracing schemes

- argument, s*(which we assume to be a’pointer) — see Algorithm 2:2 and Diagram 2.1 on
the next page. The reference count of § is incremented to take account of this new reference.
The update has also removed the original pointer from R to its target, *R, so the reference
count of *R must be decremented too. By incrementing the count of the new target before
decrementing that of the old, we handle the case when the targets are identical, Suppose the
poiater at R originally referred to node T: If this pointer was the last reference to T, delete

can return T to the free list. But before it does so, any pointers from T must alsg be déleted
recursively!.

~ % A'more efficient coding of delets might leave the feference counts-of free cells-at one, thereby -
saving a couple of instructions in both New and delete,

before . after -

“Diagram 21 Updste (1eFE (RY78)T

T e e B . o

22) THE CLASSICAT, ALGORITHMS
N next] .
free_dist

Diagram 2.2 Before Update {right (R), nil).

such as mark-sweep in which useful processing is suspended while the garbage collector
runs. Reference counting may therefore be a suitable method if a smoother response time
is important, for example in a highly interactive or a real-time system. However, the simple
reference counting algorithm given above distributes processing overheads ‘lumpily’: the cost

of deleting the last pointer to 2 sub-graph depends.on its size. We considerhow to ameliorate
this in Chapter 3 when we discuss reference counting in more detail.

e Arsecond benefic of teference counting-aver garbage-coileetion-schemes-is-that its spatial

locality of reference is likely to be no worse than that of its client program, A cell whose
referonce count becomes zero can be reclaimied without access to cells in other pages of
the heap (other than'its’ descendants; but again see Chapter3). This contrasts with teacing
algorithms which typically need to visit all live cells before reclaiming dead ones. However,
note that Update alters the reference counts of both the old and the new targets of thie pointer
field being updated. If either of these fields are paged-out (on a machine with virtual mMemory)
or not held in the data cache, a page fault or cache miss will accur.

Thirdly, although empirical studies are implementation and language dependent, a wide
range of language studies suggest that few cells arc shared and many are short-lived (for
example, Lisp [Clark and Green, 1977; Stoye er al, 1984; Zorm, 1989], Cedar [Hayes,
19911, Standard ML [Appel, 1992], and C and C++ [Barrett and Zorn, 1993b]). The standard

1] L]
~— T

r

frae_list

Diagram 2.3 delete(right(R)).

s

next

free_list

UEMH».EPR delate(“_...mm.ﬂ [s)}.

reference counting method allows these cells to be reused as soon as Ewm« are discatded, in
a stack-like manner, whereas under a tracing scheme dead cells remain unallocated untl the

heap is exhausted, at which point the garbage collector would be M.HEQHR@H. Immediate reuse: .

|

of cells generates fewer page faults in a virtual memory system, and possibly better cache

!

behaviour; than simple tracing garbage collection methods that acquire fresh: cells-from the -

‘heap, uniess the entire heap can be held in main memory or the nmo_.,m.mﬁ_ﬂm return to this
issise in Chapters 7 and 11 when we consider generational garbage collection and the cache
behaviour of garhage collection respectively. | ‘
Immediate knowledge of when a cell can be reclaimed also brings o%mn advantages. If
a modified copy is required of an object to which there are no other references, the cell
can be copied by borrowing the pointer to it and updating its contents mﬂqﬁnmﬁ@. or ‘in-
place’, instead of allocating a fresh cell, copying-the data word by iouw and then:freeing
the old cell, This useful optimisation for purely functional languages is uged in the Glasgow
Haskell compiler [FPeyton Jones, 1692). Reference counting can also mmEvE@ ‘clean-up” or
finalisation:actions, such as closing files, by invoking the finaliser immediately an object dies

. . o . | .
ﬁmmmO:m@ﬁ.gS_u_manén.&wnnmmmﬁgmm collection for oEmoToﬂmEna._m,nmzmmamv. :

free list ¢ - - T

Diagram 2.5 After Update (right (R), nil).

|
m

o , THE CLASSICAL ALGORITHMS

On the debit side, reference counting suffers from a number of disadvantages which have
led many implementors to reject it as an efficient method of memory managemsnt. The most
serious disadvantage is the high processing cost (using tcday’s conventional hardware) paid
to update counters to maintain the reference count invariant (see, forinstance, [Hartel, 1988]).
‘Each time a pointer is overwritten, the reference count in both the old and the new target cells

must be adjusted. In contrast, pointer updates have no memory management overhead under -

_a simple fracing regime.

" Reference counting; storage management is tightly coupled to the client program or its
compiler. Every time a pointer is updated or copied, reference counts must be adjusted. For
example, in its simplest incarnation, this means that reference counts must be incremented
when a pointer is passed to a 'sub-rontine and decremented on its return. A single omission

. can spell disaster. This fragility of reference counted systems makes them harder to maintain

" than memory management systems that are more loosely coupled to the mutator.

Reference counting techniques must alsa use exira space in each cell to store the reference
count. In the worst case, this field would have to be large enongh to hold the total number of
pointers held in the heap and in the roots: it must he as farge as a pointer. In practice reference

_couats will not become this large and a smaller field (pessibly just a single bit) can be used
in conjunction with a strategy to handle overflow (see Chapter3 where we consider reference

counting in more detail).

Cyclic data structures

. However, the major drawback of simple reference counting algerithms is their inability to
reclaim tyclic' stfuctares, Ability to recycle such graphs is an important requirement for
many systems. Cyclic data structures are more frequently used than might be immediately
apparent. Common examples of cycles include doubly-linked lists, and ‘trees’ in which leaf
nodes contain a pointer back to the root node. Also, many implementations of lazy finctional
languages based on graph reduction use cycles to handle recursion. As an example, consider
the structure shown in; Diagram 2.6 on the nexi page and suppose that the pointer right (R}
is deleted. In the call delete (right (R}) the reference count of 5 remains non-zero after
it is decremented and-so contral is refurned to the user program. Unfortunately, rather than
pushing s, T and U onto the free-list, &n island has been created, disconnected from the rest
of the graph. This island is not required for subsequent computation, but the cells 5, T and U
cannot be reclaimed. Anarez of heap memory has effectively leaked away — it is notrequired

~ for computation but it cannot be recycled either.

Forfunately other garbage collection techniques handle cyclic data structures without
difficulty, and several authors have suggested combining reference connting with tracing
garbage collection [Weizenbaum, 1969; Knuth, 1973; Deutsch and Bobrow, 1976; Wise,
1979]. Reference counting would be used until the heap was exhavsted at which point a tracing

collector would be invoked. The collector starts by resetting the reference counts of all cells -

to zero. The count of each active cell is then restored by fncrementing it by one each time-
_the cell is visited in the marking phase. Since the marker visits each cell exactly once via
- each pointer to it from another live cell, the reference count of each cell will be set.to be the

~-number-of Teferences to it from active cells by-the-cnd of the-marking phase, which is jost

" what the reference counting invariant requires. This method offers two gains. Firstly, circular

before - after

Diagram 2.6 Re
i g1 is neither reachable nor reclaimable. - J

. :) |)
structures can be reclaimed by the tracing collector. Secondly, small Hnmﬂ.nzmm count fields can

be used (thus reducing storage requirements). Counters that reach the maximum value that can
be stored in this smaller field are no Ionger modified by Undate; H.bmﬁma_“ammmonm?ma for
their management is passed to the tracing collector. In Section 3.5, we shall pursue other
approaches to the problem of cyclic reference counting.

2.2 The Mark-Sweep Algorithm
I
The first algorithm for automatic storage reclamation” was a tracing garbage collection
techmique: the mark-sweep or mark-scan method [MeCarthy, 1960]. Undet|this scheme, cells
are not reclaimed immediately they become garbage, butremain unreachable and undetected
until all available storage is exhausted. If a request is then made for a pew cell, ‘useful’
processing is temporarily suspended while the garbage collector routine s called to sweep
all currently unused cells from the heap back-into the pool of free cells. Mark-sweep relies
on a global traversal of all live objects to determine which cells are available for reclamation.
This trace, starting fromroot, identifies all cells”that are Teachable and hence, by definition,
active. All other nodes are garbage and can be returned to the pool of free cells. If the garbage
collector is successful in reclaiming sufficient memory, the nser program request is satisfied
and computation can be resumed. _

|

New{) =
if free pool is empty _
mark_sweep ()
newcell = allocata() i
return newcell

Algorithm 2.3 Allacation with mark-sweep.

ference counting cyclic data structures: after delete {right (R) thecycle

¥

_ w
‘ _
MARK-SWEEP-COLLECTION. - _

26 THE CLASSICAL ALGORITHMS

{heir mark-bits, those left clear being unmarked. Any cell that is left gEmH_Lﬁa could not be
reached from root, and hence must be garbage. _ ,

The algorithm .
Let us look at the algorithm in more detail. New acquires & new cell from the pool and

returns a pointer to it (see: Algorithm 2.3 on the preceding page). Again, we do not specify
how allocate operates but we use the abstraction of a free.pool to describe the set of
free cells. One possible implementation is to link free cells into a free-list exactly as in the
reference counting algorithm (see Algorithm 2.1 on page 20) bur there are other more efficient
alternatives, We consider these in Chapter 4 when we discuss more efficient techniques for
mark-sweep garbage coflection. .

Updating a pointer requires o additional effort other than the write, This is in marked
contrast to reference counting which required soveral cxtra instructions to manipulate
reference counts (see Update in Algorithm 2.2 on page 21). The cost of reference counting is
gven greater if it leads to cache misses, or worse, if either of the pages that contain the target

cells are currently paged out.

mark_sweep{} =
for R in Roots
mark{R)
.swegp Y

bits) are garbage.]

Diagram N.q.. The graph after the marking phase. All unmarked cells (with nnshaded mark- M

if free pool is empty
abort “Memory exhausted"

Tt is safe to return these unmarked cells o the pool of fre cells. This is En@o‘c of the sweep
phase. The collector sweeps fhe heap linearly from bottom to tp, refurning unmarked cells
to the free pool and clearing the mark-bits of active cells, in mnmmﬁmmou&on_ e next garbage :
collection cycle. Again we do not define £ree other than to state that it retyrns its argument :
to the free pool for recycling. For example, if the frec pool were implemented as a free-list,
the code. given in Algorithm 2.2 on page 2} would suffice.- i

Algorithm 2.4 The mark-sweep garbage collector.

Mark-sweep garbage coliectiof is peiformed in two phases (see Algorithm 2.4). ..Hrn.mm\mﬁ
phase, known as marking, identifies all active cells. The second, sweep, phase returns garbage
cells to the free pool, If the sweep phase fails to recover sufficiently many fiee cells, the heap

must be expanded or the computation aborted.

mark(¥) = sweep () =
if wark pit(N} == unmarked . N = Heap_hottom : !
mark_bit{N) = marked while N < Heap_top . :
for M in Children{N) - if mark bit(N) == unmarked i
mark {*M) H free(N) ; i
oo L . . s else mark_bit (N} = unmarked : ;

F

N

R size (N7 G LA R

. Algerithm 2.5 Simple recursive marking,
remem e o R N 1:‘P_MQHEEH.N.m.-.Hrn.nmmnh.mﬂmnubmwﬁnbnww. e . . ‘1\

A bit associated with each cell is reserved for use by the garbage collector. This mark-bit S e
is used to tecord whether the cell is reachable from the roots. As mark traverses all cells’ i : . :
reachable from the Toots, the mark-bit is set in each cell visited (see Algorithm 2.5). For s) : ;
clarity, we give a simple recursive alsorithm but we show how this can be replaced by more :
efficient code in Section 4.2. .
Termination of the marking phase is enforced by not tracing from cells that have already

e S

Strengths and weaknesses of mark-sweep
B
Mark-sweep has two advantages over reference counting that have led to its Taowmg by some

rexample; by the funcdonal language Miranda [Turner, Ewu&m#@.&.ﬁpﬁmﬁw@hﬁ

been marked. When the marking phase has completed, all cells reachable from root will have e - systems(fo - !
_ hiad their mark-bits set. In this espect, the mark procedure is a simple transliteration of the i garbage collectors [Boehm and Weiser, 1988]). Cycles are ‘handled quite natirally, no special
3 precantions need. to be taken, and no overhead is placed on pointer Emjn&mmonm. On the

definition of live, the set of reachable cells, given in Section 1.2. ‘An example of marking is
shown in Diagram 2.7 on the next page; cells that have been marked are indicated by shading

o&mwwmum,.”Emammiamw. wm.:w.mﬁouﬁmmﬂ&mcﬁgVnoEmEmmoPmm bm:mp‘ﬁn&w the garbage

28 THE CLASSICAL ALGORITHMS

collector runs, and the pavses engendered by the mark-sweep algorithm may be substantial.
For example, in the early 1980s, Fateman [Foderaro and Fateman, 1981] found that, as
memory sizes grew faster than processing speeds, some large Lisp programs were spending 25
to 40 percent of their time marking and sweeping, and that users were waiting for an average of
4.5 seconds every 79 seconds. Non-interruptible, globally traversing mark-sweep algorithms
are not practical for real-time, highly interactive ordistributed systems. It would certainly not
be acceptable for a safety-critical, real-time sysiem or even a videa game to pause for lengthy
periods during a garbage collection. One solution may be to disable the collector in critical
sections. We investigate other methods of reducing pause times in Chapters 7 and 8 where we
discuss generational and incremental technigues respectively.

However, if response. time is npt an important consideration, mark-sweep does.offer a
beiter performance than, for example, incremental methods such as reference coiinting,

"Nevertheless, the costs of garbage collection are high. Every active cell is visited in the

marking phase, and all celly are examined by the sweep. Thus the asymptoiic complexity
of this algorithm is proportional to the size of the entire heap rather than, say, just the number
-of active cells™. ; .

The simple algorithm for mark-sweep presented above also tends to fragment memory,
scattering cells across: the heap.. In a real memory system the effect on performance may
not be great although benefits 'of caching could be'lost. In a viriugl memory. systein sich
fragmentation may lead to loss of locality between associated cells of a data structure and

——resolt in “thrashing’, excessive swapping of pages to &nd. from secondary-storage. In either

case, fragmentation Eﬂnmm allocation more difficult as suitable ‘gaps’ must be found in the
heap to accommodate new objects. -

Tracing -garbage: collection also requires some head-room in the heap to be efficient.
Assuming that the rate of allocation is constant and that fragmentation is not an issue,
the interval between collections depends on the amount of free space discovered at each
collection. Garbage collection will therefore become more frequent as the heap occupancy or
residency of a program increases, and so the mutator’s share of the processor will be reduced.
In other words, the garbage collector will thrash. The: performance of reference counted
systems, on the other hand, does not degrade with heap occupancy (although fragmentation
may affect allocation behaviour).

2.3 The Oo_&;:m Algorithm

‘The final class of a.‘mnEm algorithm that we consider in this mﬁﬁﬂw is that of nouﬁbm mm%mmw ‘

collectors. Copying collectors divide the heap equally inta two semi-spaces, dne of which
contains current data and the other obsolete data (see insit in Algorithm 2.7 on the next
page). Copying garbage collection starts by flipping the r6les of the two spaces. The collector
then traverses the active data struchure in the old semi-space, Fromspace, copying each live
cell into the new semi-space, Tospace, when the cell is first visited. After all active cells in
Fromspace have been traced, a replica of the active data structure has been created in Tospace
2 This measuze of complexity is too simplistic. We shall return to this maiter in Chapters 4 and 6 where
we discuss mark-sweep-and copying collectors in more detail,

- % This term is; due to Ungar [Ungar; 1984],°

COPYING COLLECTION 29

and the nser program is restarted. Since garbage cells are simply abandoned in the old semi-
spuce, Fromspace, copying collectors are often described as scavengers’] — they pick out
worthwhile objects amidst the garbage and iake them away. 4.
A natural and beneficial side-effect of copying garbage collection is ﬁmn the active data
structure is compacted into the bottom of Tospace. Compacting collectors can alloeate objects
much more efficiently than collectors for which fragmentation is a @HoEmB”. All New muost do
is check for sufficient space and then increment the next free space poinier, free. Since the
active data is compacted into Tospace, the space check is simply a pointef comparison (see
Algorithm 2.7). Copying collectors handle variable-sized objects naturally m..”o we give New the
size of the object to allocate as a parameter, n. Like mark-sweep, copying collection imposes
no overhead on mutator operations.such as pointer updates. .

imit() =
Tospace = Heap_bottom
space: size = Heap_size [2
top_of_space = Tospace + sSpace_gize
Fromspace = top _of space + 1
free = Tospace :

New{n) = .

if free + n > top_of_space
£lip() .

if free + n > top_of space
‘abort “"Memcry exhausted®

newcell = free

free = free + n

return newcell

—allocate()

Algorithm 2.7 Allocation in a copying collector.

The algorithm

First, the rdles of Tospace and Fromspace are swapped by £1:ip, which resets the variables

Tospace, Fromspace and top_of_space (see Algorithm 2.8 on the nexf page). Each cell
reachable from a root is then copied from Fromspace into Tospace. For &mH:._vp weuse a simple

-recursive-algorithm- [Fenichel and -Yochelson, 19693; more- elegant-iterative algorithms. are

covered in Chapter 6 where we discuss copying collectionin more.detail. no__mw (P) scavenges

the fields of the cell pointed at by P (see Algorithm 2.9 on the following page). Care has
to be taken when copying data structures to ensure that the topology oflshared. strictures
is preserved. Failure to do so would lead to multiple copies of shared objects, which at best

would increase the heap residency of the prograrn but may also break Em.mauwmunnw of the user
program (for example, if it updated one copy of 2 cell but thentead-the-value-from-another).
Copying cyclic data structures without preserving sharing would also require-a lot of rpom!

Copying collectors preserve sharing by leaving a forwarding address in the Fromspace
i
. . e —f =

{
!
L
|
|

31 :

m.o , THE CLASSICAL ALGORITHMS nOm_JmHZQ COLLECTION .
flip()=
Fromspace, Tospace = Tospace, Fromspace Fromspacs) “
top_of_spacs = Tospace + space _size v i

PeRac i e root—

free = Tospace
for R in Roots
R = copy (R}

Algorithm 2,8 The flip in copying garbage collection.

object when it is copied. The forwarding address is the address of the copy in Tospace.
Whenever a cell in Fromspace is visited, Copy checks to see if it has already been copied. If it
" has, the forwarding address is returned, otherwise mamory is reserved for the copy in Tospacer———
In this recursive copying algorithm, the forwarding address is set to point to this reserved
memory before the constituent fields of the object are copied — this ensuxes termination and

- that sharing is preserved. o :
The forwarding address might be held in its own field in the cell. More generally it can
be written over the first word in the cell provided that the original value of the word is saved
- beforeliand T Alzorithm 2:9 we assume that the forwardingaddress field of ¢ell Pis 2[01, -
and we use forwarding address (P) and P (0] interchangeably. e

. _Note: P points Sn_:oim.,wan.n&m
copy (P) = .
_if atomic(P) or P == nil —P'is not a pointer -
returnm P o - o T . : Taspace

if not forwarded{R) . e . : i

n = size(P) Diagram 2.8 Copying the st [0,1,0,1,...].

T A i mame e e i mem i = At e e

P = free —reserve space in Tospace !
free = free + n)) _
temp = P01 ~field O will hold the forwarding address. Garbage collection starts by flipping the semi-spaces. The root is copied: space S Teserved _

forwarding address(P) = P
P [0] = copyltemp)

for & in Tospace and its forwarding pointer is set ta &' (see Diagram 2.9 on the next page). .
The next two invocations of copy reserve space for' B and update Em_‘ 1eft field of 2/,

for i = 1 to n-1 ——copy each field of P into ¥ : L :
P'[i] = copv{(P[i]) B . “and then copy the contents of B. Since this is an atom, its value is simply returned (see
return forwarding_address (PB) 1 Diagram 2.10 on page mmv.. . o
R - The collector then copies A’s right sub-tree. ¢ and Dare scavenged in|the same way that)
s - et e — -2 and B were. Finally, copy follows C’s.right pointer, which points dm.nW to A Space has 1. L L

already been reserved for A in Tospace (in fact it has been completely cop ed), so. the zight-
pointer of ¢* is updated with the forwarding address 2" stored in &, and the collection’cycle-is
complete:(see Diagram 2.11 on page 34). o

Algorithm 2.9 Jmmmwnmmﬂwllh»oow&mmmmm@wwmm garbage collection for variable-sized cells.

i
1

An example

As an example of copying garbage collection, let us look -at how the infinite list e Mnﬁmamﬂ@w.mum_lﬁmlm.r ne m.mm.w.\:-. copying collection s
(0,1,6,1,...1 might be collected. The list can be represented in finite space by a cyclic o The advantages of capying garbage callection over reference counting and mark-sweep have

data structure (see Diagram 2.8 on the facing page). To help clarify the example, we shall - led to its widespread adoption. Allocation cosis are extremely low: the oc_m.om.m@mno check is _
name the cells in the- graph a, B, ¢, and their Tospace replicas &', B', ¢/, D' respectively. ... T .m“mmﬁwwn..mmmbnnm.noim_mimcn“‘uaﬁhEmBoQ.E.mn@:ﬁom’mg@qb%Enﬁmamwm.am. the free space i

Tnitially the single Hoonwo.ﬁm toA.] i pointer; and fragmentation is eliminated by compaeting the active nmﬁwﬁo the- bottom. of
. : . . i .) . | f

- , [B _ - - |

) , THE CLASSICAL ALGORITHMS

Fromspace

. poinier
¥———--» forwarding address

Tospace

Diagram 2.9 First, the root node is copied.

Tospace. The cost of allocation in non-compacting algorithms is much higher, particularly if
variable-sized cells are required. It is hard to see how one could allocate more cheaply.

The most immediate cost of copying garbage collection is the use of two semi-spaces; the
address space required is doubled compared with nor-copying collectois. It {5 often argued
that this is not a problem for virtual memory machines since the pages of the fnactive semi-

the behaviour of mark-sweep and capying over two garbage collection cycles for a fixed size
of heap. In this period, the copying allocator will touch every page of the heap regardless of
the residency of the user program. Unless both semi-spaces can be held simultanequsly in
physical memory, copying collection will suffer more page faults than mark-sweep, as it uses
twice as many pages, '

On the other hand, this has to be traded against the. benefits of compaction. Data in the
simple mark-swept heap is likely to be more fragmented leading to an increase in the size of
the program’s-working set of pages. This will also tend to increase the rate of page fanlts if the

_space will be evicted to secondary storage, but this argument ignores paging costs. Compare-

" “working set cannot be accommodated in main memory: Foor locality of reference will alsc.

affect cache performance but this will have very much less impact on overall execution. than

‘poor paging.

K-SWEEP vs. COPYING 33

Fromspace Fremspace

reot— root—

Tospace Tospace

. UmmemHH.- 2.10 Space is reserved for m.: then it s copied completely.’

2.4 Comparing mark-sweep and copying collection

: . _ .
The chief drawback of copying collectors is the need to divide the available memory into

: - }
two-semi-spaces. As-the-esidency-of-a program increases. the. performance. of the.collector

degrades, as less free space is recovered and so collections become more frequent. Frograms
with memory requirements larger than the semi-space size will fail. Virtwal memory can
alleviate these symptoms: the semi-space can be as large as (or larger|than) the physical
memory and the heap can be expanded if necessary. On the.other hand, ?o performance of
mark-sweep collectors degrades with heap occupancy only half as mE.nEuw as that of copying
garbage colleciors. ’ . — T

The asymptotic complexity of copying collection is less than that of simple markesweep
collection: it is propoertional to the size of the active data structure rather Fmb the size of the.
heap (semi-space). Furthiermore, if the majority of eefls do not survive ;sﬂ the'next collection
cycle — this is typical for many functional and object-oriented styles of programming — only
a-small-proportion of the-heap must be-copied. Let us compare the asymptotic complexity of
the simple mark-sweep and copying gerbage collectors deseribed in Em.m..._owwmﬁmm.., We do not
take allocation costs into account for the moment, hor do we consider locality mmmnw upon

i
!
i
|

34 , . THE CLASSICAL AL GORTTHMS. -

Fromspace Fromspace

__| Toot—]

root—

¥ P 'Y AT

T

RV ERI RSN e IR EE I CIENASIE
A —F c "D K —Q c
Tospace : . .._.Om_umnm

Diagram 2.11 left(c},Dand right (<) are copied, and the collection is complete.

the virtual memory subsystem and the data cache. Let M be the size of the heap and B be the
amount of live memory: :

The copying collector described in this chapter must trace and update every pointer
in the oot set and in the active data graph, and evacuate those objects to Tospace. The
time complexity of a eopying collecior to perform & garbage collectioh cantherefore be
approximated to F: ’

Yoopy=aR

The mark-sweep collector traces pointers to live data struchures in the mark phase, and
sweeps linearly through the entire heap in the sweep phase. The time complexity of the mark-
sweep collector can be approximated by:

tg =R+ M

- The amourit of space recovered by a garbage collection-is

MARK-SWEEP vs: COPYING - 35

1 i

ECopy = 2ar a

l—r
br+e

I
4
1
!
Define the efficiency, e, of an algorithm as the amount of memory S&E.E.T in a unit time
; |
|

eps =

wherer = R/M is the residency of the program. “
Looking at the efficiency graphs in Diagram 2.12, we observe that copying collection

_ appears to be arbitrarily more efficient than mark-sweep collection pravided that the heap

can be made arge enough. However, beyond a certain residency r+, the mark-sweep collector
is more efficient. o

\
'S " t
5 Copying —!
g Mark-Sweep -----
53]
b3
/e
0 . S R
0 r* o..m residency, » 1
o me!mmﬂmﬂtm.mr.eﬂwwmm.mmmwmw.ow.mummwam?ma.@ and nouﬁhm,.no_.aomo‘u.‘ T

~ 7" However, the matter wm.EoB. subile than this, The w.anmnnuai&nlwma in %.n.gamﬂmw

are very simple and inefficient. The behaviour of these collectors cannot be automatically

‘ascribed to their more sophisticated variants. The cost of copying an object is likely 0 be

more expensive than simply testing and setting a mark-bit, umhnnz_wnq.wmwﬁ object-is large.
Although mark-sweep must sweep the entire heap, in practice its real no._mﬁ is-dominated by
the mark phase. Linearly scanning the heap will generally be less nxmw_um?m than :tracing
data structures even using the simple technique shown above. Ehus; _Vl ST the
argement above. Furthermore, more sophisticated methods can suhstantially reduce the cost of
the sweep (see Chapter 4 where we. discuss. advanced techniques for Eﬁﬁmimg collection).

* ATthéugh eopying waibage collectors Have predominated inthe past, recent studies suggest

- |

o
|
|

36 THE CLASSICAL ALGORITHMS

that the choice between mark-sweep and copylng garbage collection may well depend: as
much on the behaviour of the client program as on the inherent properties of the garbage
collection algorithm (see, for example, [Zorn, 1989; Hartel, 19907).

2.5 Issues to consider

At the end of each chapter we include a summary of points to consider when comparing
the collectors reviewed in the chapter with other collectors. We urge the reader to treat these
summaries with some caution. While it is appealing to make comparisens with “all other
things being equal’, they rarely are. The aim of these summaries, therefore, is to provide a
focus for analysis of the behaviom of the colleciors in different environments rather than to
provide a cook book, which would be necessarily simplistic. We first examine how well each
collector satisfies any requirements that client programs may place on 4 storage manager, and
then we consider the performance of each one.

This chapter intraduced thres strategics for awiomatic storage management — _ reference
counting, mark-sweep and copying collection — and discussed a simple implementation of
each.one. We now sumumarise their relative merits under different conditions. We emphasise
that these are naive implemeniations and that the performance and behaviour of each cannot
be assumed to apply mEoSmﬁnwﬂ% to the more momgHmnn&&nuﬁaﬁoﬁmnoum that are covered

in later chapters. Semmmm e

Wmn::.mwzm:nm

The first issue that we nonmﬁww is the client program’s tolerance of interruption by the storage
manager. Both the mark-sweep and copying collectors were stop—start algorithms: the client
program was suspended while the collector ran to completion. The dslay to complete’a
garbage collection of a large heap with these simple algorithms may last from a fraction
of a second up to a few seconds. This behaviour is clearly not acceptable for a wide range of
applications from interactive programs to those with hard real-time requirements. Reference
counting operations, on the other hand, are interleaved with mutator instructions, giving a
smoother response in general. There is one exception: the simple algorithm in this chapter
recursively frees garbage structures cagerly: the user program is suspended until the entire
garbage structure has been returned to the free-list. In Section 3.1 on page 44 we show :os.
this delay can be avoided.

Immediacy

A consequence of the interleaving of reference counting operations with mutator instructions
is that (non-cyclic) garbage is detected as soon as it becomes unreachable. For certain
applications and mnﬁmm of programming this is either desirable or an essential requirement.
First, it allows space known to be garbage to be reused immediately, which may enhance
performance. For functional languages in particular, it means that destructive assignment may

b6 Gsed, for exarnple to update arrays in place rather Emn copying. Second, o_u._nnn ~oriented

ISSUES . 37

languages often support finalisation, whereby a user-defined procedure can be invoked upon
the death of an object. The canonical example of finalisation is cansing a file to be closed
after the last reference to the file is destroyed. If finalisaticn is used to release-scarce résources
held by an object, it is important that the finaliser is called as saon as uo%ﬁn affer the mm._mnﬁ
becornes garbage. Reference-counting can ensure that the finaliser is called as soon as the
object’s reference count falls to zero, Tracihg garbage collectors, such as _ Eﬁwlmﬁ.nmw and
capying, cannot provide this guarantee since an object’s death is not nmﬂn_ﬂm@ until the nexi
garbage collection. Nevertheless, there has been considerable successful oxuanmnnm of tracing
garbage collection and finalisation. By far the most common finalisation action is simply to
return the object’s space to the storage manager, a r8le accomplished by EQ garbage collector:
We consider finalisation further in Section 10.9 when we discuss garbage noﬁmnco: m 0

oriented languages.

Cyclic data mn..:nn:wmm

Emnw

Many programs need to use cyclic data structures, As well as structures Emn may have
obviously cyclic concrete represeatations, such as circular buffers, oz_.:wn common data .

structures, such as dosbly-linked lists and ‘rees’ whose leaves contain mm.mow ﬁoESH o thé
root, are also cyclic. As we saw in Section 2.1, simple reference counting cannet jeclaim
cyclic data structures. In Chapter 3 we explore variants of reference nonbﬁ_bm and constraints. -

on programming style that allow cyclic garbage to bs reclaimed by storage inanagers based on
reference counting, Tracing collectors, on the other hand, can manage cycles correctly without
need forany special action or Tesirictions on coding style. e

Roots and pointer finding

Tracing garbage collectors do need to be able to find all the roots of ajcomputation, and
possibly all the pointers in the active data structure. Moving collectors, such as. copying
collectors, must be able to lacate all the roots so that the active data canibe. traced,:and all
pointers in the active data structure so that they can be updated with the new location of their
referee. The set of roots and the set of poinfers must be determined Emn_m&w an underestimate
would cause a pointer not to be updated; an overestimate would risk Eummnjm non-pointer data

with an incorrect value. A copying coflector cannot be used unless these requirements canbe .

met (although we shall see in Chapter 9, where we discuss conservative mﬁ_ummm collection,
how a copying collector that is tolerant of overestimation of the root set can'be ooumnsnﬂn&
""'This means that non-conservative copying collectors need cooperation from the compiler: -
These requirements can be relaxed somewhat for non-moving, ﬂﬁEa collactors. ?H
overestimate is not dangerous since objects are not moved and hence uoEmmHm are:not updated.
Heap data need not be modified if mark-bits are stored in a separate’ 554 to the-side of the
heap. Furthermore, it is not necessary to trace all live pointers; it is sufficlent to-ensuré: that at
least one pointer to each live object is followed by the marker. Hence EEW -sweep collectors
can be used with less cooperation from the compile# than copying Noﬁﬂnoﬁ‘nwma Again
in Chapter 9, we shall see how a conservative, mark-sweep collector cap _@m used with little
support from the compiler other than knowledge of the extent of the run-time stack and the

location of global data.

I
|
i
|

oo ... 1sed, and we examine safe methods of reducing the; size of the reference.count field in the

39

38 : THE CLASSICAL ALGORITHMS

i
!
NOTES "
N t

next chapter), For small objects like cons cells, this Eﬁommm a fifty wmunmmn space overhead.
Mark-sweep garbage collectors also require extra space in each heap oEnon for a mark-bit.
. The amount of space required for the mark-bit is architecture- and :H@Hmﬁauﬁnou,aougana
determined by the smallest unit of data that can be addressed, and whether the bit can be
smuggled into a word used for other purposes, such as a tag field oran E“Em_na bit of a pointer.
Copying collectors require an address space twice the size of the Em.xﬁu:n. residency of the

client program in order to accommodate hoth semi-spaces.

Reference counters relax these requirements even further. All that is necessary is that every
pointer in a reference counted object can be found when an object is deleted. For this reason,
reference counters can be implemented as a library, and used without any suppert from
the compiler. For example, Christopher's reference counting system is designed to provide
automatic managerment of dynamic memory for Fortran {see Section 3.5, page 67).

Implementation:

As well as conformance to requirements impased by client programs and environments,.
performance will be an important facior in choosing between different garbage collection
algorithms, Performance can be measured in ferms of the time overhead on mutator
operations, the time cost of both allocation and collection, and both the space overheads
incurted directly by the collecior and those added to user data,

Heap occupancy and collector degradation

For any given level of efficiency, copying collectors are easier to mEEmEnEw than mark-sweep
collectors. Linear aflocation is fast and the complexity of copying collection is proportional
to the number of live pointers in the heap (and hence approximately to the volume of live
data} whereas the complexity of simple mark-sweep collection is _uHouoEoumH to the size of
the-heap. The performance of hoth types of tracing collection degrades with heap occupancy.
Reference counting, on the other hand, suffers no such degradation for nozan_uou although
fragmeniation may make allocation harder. : “

However, some caveats are in order when comparing the complexities om mark-sweep and
copying collection. First, copying collection only has a clear mszEozn advantage over
simple implementations of mark-sweep collection. Even so, this mmﬁimmm diminishes as
the residency of the client program increases. As the residency i anmmmmm beyond a certain
point (typically around one-third of the size of the heap), copying oo_Hmnaouw start to thrash
and the advantage turns in favour of mark-sweep collection (see Piagram m 12 on page 35).
Second, the constants in the complexity formulae are as important as its asymptotes, The
cost of copying an object depends on its size but will be greater thamn Emn of simply setting
its mark-bit. Purthermore, long-lived data will be: repeatedly copied mHoE one semi-space
to another by a copying collector. The choice between mark-sweep and aomQEm collectors
will be influenced by the size and longevity of heap data, and whether mmmwmmm no_._mo:ou or
allocation dominates storage management costs: |

.u.o.nmmmm:m cost-

Reference counting is. tightly coupled to the mutator, and this has two consequences. First,
reference counting imposes a tax on ezch mutator operation oo a pointer. Many adjustments to
referenice counts can be'optimised away although this risks precisely the storage management
errors that garbage collection is designed to avold. Herein lies the second consequence of
. reference counting’s tight coupling to the mutator: program maintenance and development is
made more difficult as reference counting invariants must be preserved across any changes
8 the program. Simple, non-generational, tracing collectors-on the ather hand impose no
processing overhead on client program operations. Well-designed tracing collectors therefore
have lower overall execution time overheads than reference counters.
Both reference counters and mark-sweep collectors typically use a variant om a free-list to
- manage the availabla pool of free space. Consequently fragmentation of the heap is an issne
for these collectors. Fragmentation not only dilutes the locality of active data but also-makes
the allocation of variable-sized objects more difficult and hence more expensive of processor
cycles. In contrast, copying collection: compacts the active semi-space of the heap. Allocation
is done linearly, making it equaily cheap to reserve space for any size of object.

Space overhead

2.6 Zo»mm_ , "
_ »

|

|

: . . L Marlc-sweep collection
Storage managers have a space, as well as a time, overhead and garbage colection is no i

exception. In the case of the garbage collectors discussed in this chapter; storage may be—— =
required to direct the traversal of the graph as well as for management of heap-allocated
data. All three collectors used recursion — mark-sweep and copying to trace active data,
and reference counting for delete — which requires space for the recursion stack; in later
chapters we shall see how recursion can be avoided.

~ Reference counting requires space for a reference count in each heap object. Since an object
may, in the worst case, he referenced by every other object in the heap and all the roots, the
reference count field should be peinter-sized (although in practice a smaller field could be

-~ The" mark:sweep and ‘the -Teference counting~ algorithms were _uoﬁv nﬂ&ocna moﬁ
implementing Lisp. They were also boih published in the same year, Hmmo mark-sweep
by John McCarthy in April [McCazthy, 1960] and reference counting by mncnmm Collins in
December [Collins, 1960]. The very carliest versions of Lisp required: En programmer-io
handle erasure of lists explicitly with a built-in operator, called eralis Enomm&% 1981]. Lisp
was developed on the IBM 704 computer. This machine had 15-bit index Hmmﬂmﬁnw and 36-bit

words, made up of four parts: the tag part, the decrement part, the prefix; cmﬂ. -and the address

w

i

!

- . _
. _,

|

m

. regster

40 THE CLASSICAL ALGORITHMS

@mﬂa. Hence, car is contents of the address register and edr is contents of the decrement

The address and decrement parts were each 15-bit quantities, the tag and prefix parts each
3 bits. Because the latter two bits were separatad by the decrement, they could not easily be
cambined into a single quantity, This made the architscture pasuitable for refersnce counting.
Furthermore introducing reference counting rather than mark-sweep garbage collection would
have meant a complefe Tewrite becanse of the close coupling of reference counting with
the user program. It is interesting to note that McCarthy implemented recursion in Lisp by
cntering labels, i.e. new copies of function definitions, which does not generate cycles. In
fact, he prohibited cyclic data structures even though his mark-sweep method was capable of
teclaiming such skuctures.

Reference counting

The firsi, though cumbersome and eror-prongs, reference counting technique was described
by H. Gelernter, IR. Hansen and C.L. Gerberich [Gelernter et al., 1960] but the standard
reference counting algorithm is due to George Collins [Collins, 1960]. Collins was working
with- the-CDC-1604 - which. also had 15-bit addresses. However, the CDC had a 48-bit word,
enabling him to use reference counting. Interestingly, he described McCarthy's mark-sweep

_algorithm. as ‘elegantyet inefficient’, claiming that refersnce counting outperformed mark-
sweep by a factor of three in a typically half-fall heap memory: This surprising-claim may be
an early example of how closely the performance of an algorithm is tied to the machine on
which. it is implemented. The inability of the reference counting algorithm to collect cyclic
structures was first noted by Harold McBeth [McBeth, 19631 :

Copying collection

The first copying collector was Marvin Minsky’s garbage collector for Lisp 1.5 [Minsky,
1963). Instead of having two semi-spaces in primary memory, secondary tape storage was .
used, The live data were copied outto 2 file, and then read back into a contiguous area of)
the heap, Minsky's algorithm did not use a stack, but required one mark-bit per Lisp cell. Tn -
the early days of virtual memory architectures, Danisl Bobrow and Daniet Murphy cambined .
mark-sweep as the primary method of garbage collection for their implementation of Lisp .=~
on a DEC PDP-1, with a variant of Minsky’'s copying collector to compact the: heap when
necessary [Bobrow and Murphy, 1967]. : ’

!7. table was used to handle circutar Lists.

i
i
| 41
i
|
to Ross's algorithm {Hansen, Gmwu.mﬁ algorithmalso
Hsts were stored contiguously. The &mmagumnﬁﬂna
d twice in a recursive process. A fix-up
!

—NOTES

of Minsky’s algorithm that was similar
linearised lists'sa that the spines of cons
two marking bits in each cell, and live data were scanne

. I
Robert Fenichel and Jerome Yochelson devised the copying algorithm presented in this
chapter for Lisp cons cells [Fenichel and Yochelsom, 1969]. The chief _Hom?mmow for their
scheme was to provide 2 collector for encrmoiis address spaces (potentiaily billions of cons
cells in a Multics system) — an eager Sweep phase that visited each cell in the address
space would not suffice. Copying was recursive with explicit mark-bits mmwn& in the car-
"field of each copied cell in the same way a3 forwarding pointers were stored in the cdr-
field. The best-known copying algorithm is due to C.J. Cheney [Cheney, 1970]. His elegant
algorithm is iterative rather than recursive and so runs In canstant space (see ﬂrm@ﬁ.. 6 where
copying garbage collection is discussed in more detail). General algorithms mon copying lists
in cénstant workspace can be found in [Lindstrom, 1974, Fisher, 1975; Clark, 1975; Clark,
1976; Robson, 1977; Clark, 1978; Lee ef al., 1979; Lee, 19801, _
_

D.T. Ross’s AED Free Storage Package used the concept of “plex progranuning” asa — —- ==
generalisation of list processing [Ross, 1567]. His system generalised copying in 2 number of :
interesting ways. It was the first copying algorithm for variable-sized cells; the heap was split
into an arbitrary number of spaces; and, whenever a space became full, its objects were copied
into a different space. Stmilar ideas are used today for generational garbage collection (see
Chapter 7). The generality of the Ross copying collector made it hard to understand and this is
possibly the reason why it has been poorly acknowledged. Wiltred Hansen described a variant

Notice that the order is the reverse of Emm..w
language rather than the machine itself.

car-cdr list structore which teflected the 704's assembly -

Reference Counting

‘hapter 2 introduced a simple mwmcnﬁrhpmcn reference counting. This te

QET ue bmm.m number

of advantages. It was simple to implement; it identified garbage cells. as moo:. as théy died,
aliowing immediate reuse; storage reclamation had good spatial locality jof reference, only

the-cells involved in a pointer update needing to be accessed; it did not

Irequire additional

headrgom in the heap to avoid thrashing the garbage collector; and J..m overheads were
distributed throughout the computation, making reference counting suitgble for interactive
programs and other applications that cannot tolerate garbage collection |delays. Counts of
references to each object may also have other uses, for example, in Edm_#ﬁ and for systems
that can take advantage of run-time sharing analysis. i :
These virtues have led to reference counting being adopted by seyeral systems (for
early versions of Smalltalk [Goldberg and Robson, 1983] and InterLisp; Modula-
2+ [DeTreville, 1990a]; SISAL_[Cann et al., 1992]; and. the Unix_utilities: awk and perl ___
[Aho et al., 1988; Wall and Schwartz, 1991]). Reference counting has T._mo been adopted
for memory management in distributed systems, where its good locality of reference.implies”

example,

Tednced communication overheads (see’ Chapter 12).

Chapter 2 also identified several deficiencies in the simple reference o__o_.E

The cost of removing the last pointer to an object is unbounded sinc
reachable cnly from that object must also be freed. Although the cost of re

I

ting algorithm.

e any descendants
ference counting

may be amortised over the entire computation, the total overhead of m&cmﬁ_,m reference counts
is significantly greater than that of tracing garbage collection. Despite cunvm.u.bm successfully

in more tightly eonfined heaps, referénce counting also has a ngwmbnmuwm..umﬁn. gverliead,
requiring space for counters in each cell. A further and major drawback for many applications
is its inability to reclaim cyclic data structures. In this chapter, we examine methods for

" overcoming, or at least.ameliorafing, sach of these

shortcomings.™

¥

“ o REFERENCE COUNTING
3.1 Non-recursive freeing

Tn the simple reference counting algorithm introduced in Section 2.1, Update decremented
the reference count of an object whenever a pointer to that object was overwritien. If
this cansed the count to become zero, any pointers that the object contained were also
deleted recursively before the memory occupied by the object was returned to the free-list.
Consequently, simple recursive freeing distribules processing overheads unevenly: the cost of
deleting the last pointer to an object is not constant, nor even proportional fo the size of the
object, but depends on the size of the sub-graph raoted at that object. .

The algorithm

Weizenbaum propesed a method to smooth freeing by using the free-list as a stack
{Weizenbaum, 1963]. When the last pointer to 8 node W is deleted, 1 is simply pushed onto a
free-stack. No recursive freeing is done. Instead, when N is about to be reallocated from the
top of the free-stack, any pointers in are deleted by New, and any immediate referent which
would have a reference count of zero is pushed back onto the free-stack (see Algorithm 3.1). It
is important that the: cell is pushed onto the stack without destroying its pointer contents. The
only field that is guaranteed not to be needed, and hence can be used to chain the free-stack, is
the reference count field (since it must e zero if the cell is free). To make freeing ‘lazy’ in the

‘$ense O deldying tests for garbage, the defiritons of ££&e 4iid Usdate are unchanged from
those given in Algorithm 2.2 on page 21 of Chapter 2, other than to use the RC field rather than
an unspecified next field to link the free-list. New and d=).ete must be modified, however. For
reasons that will become apparent in Section 3.3, we use incrementRC and decrementRC
to abstract away from low-level details of the operations to adjust the reference count fields.

New() =
if free_list == nil
abort "Memory exhausted"
newcell = allocate()
for N in Children{newcell)
delete (*N]
RC{newcell} =1
return newcesll
delete{N) =
if RC(N) ==
RC(N) = free list
free list = N
else decrementRC (N}

Algorithm 3,1 Weizenbavm's tazy fresing algorithm for reference counting.

DEFERRED REFERENCE COUNTING 45

Costs and henefits of lazy deletion m
: i

This lazy method is as efficient as. the original eager methed — the same instructions. are
used but have moved from dalete to ailocate — but the algorithm is not-so vulnerable
to delays cansed by cascades of cell releases. Unfortunately this does not entirely solve the
problem of unever processing. If an arzay is freed, for example, il its pointers must still be
deleted when it reaches the top of the free-list (albeit to a depth of only one lgvel); the delay to
delete the pointers and manipulate the free-stack may or may not be noticeable, depending on
the size of the acray. The laziness of Weizenbaum’s algorithm also loses some of the benefits
of immediacy of standard reference counting. The memory occupied by wooEuoEwam of a
garbage data structure remaing inaccessible until the data. structure is remaved from the top

of the free-stack by New. Suppose a type of abject is represented by a small header: pointing

- to a large body, and that such an object is deleted—the header of the object will be pushed

onto the free-stack. If several other objects are also deleted and pushed anﬁﬁo the free-stack,

the memory occupied by the large object’s body will no longer be:immediately available. .

3.2 Deferred reference counting .

The overhead of maintaining reference counts is high on conventional hardware. This has

. . - t .
made reference counting a less attractive option for storage Embwmognﬂmum_ﬂ. tracing methods

(see, for instance, [Hartel, 1988]). Overwriting 2 pointer typically requires a dozen or 50
instructionsto adjust the reference counts in both the old and the new target cells. Reference

. R . =T,
counts must also be manipnlated when pushing a pointer onto, on.mo%_umm it off, the system
stack. Even nan-destructive operations like traversing a list require that E_m counter of each

element in the lst must be incremented and then decremented as that element is passed over.
In a modern architecture with a data cache, instructions to fetch counts may cause lines to be-
broughtinto the cache that otherwise would net be touched. These lines éo:u@ be ‘dirtied’ and
would have to be.written back to heap memory even though their values werg identical to those:
that were brought into the cache [Baker, 1994]. Worse still, reference connt manipulations may
cause pages: containing the remote objects to be paged in [Stamos, 1584]. _) . :
This overhead can only be reduced by taking every safe opportunity not to adjust counts.

One. technique commonly used .in. hand-crafted reference _counting systems is. fo avoid.

il gl e S e e e

incrementing and decrementing counts of arguments to sub-routines on gﬁ and exit. This is-
safe only if it is known that the execution of the sub-routine will not cause the arguments’
réference Goudits to° drop to Zero. Manual reference count optimisationis likely to trade-

reduced CPU time for increased debugging time. More reliably, the optimiser can be:placed

in the compiler; this has proved to be very effective at eliminating reference counts in parallel

implementations of SISAL. {Cann and Oldehoeft, 1588%; Oldehoeft, Hmw&“ daoﬁroav% type
systems mady also be used to identify singly-threaded objects, Hnbmnd.bm. reference: counts
unnecessary. Baker advocates use of 4 type system based on linear Homlmn" [Girard, 1987] as
an effective technique, although others have found it disappointing-in: unmmﬂna. [Baker; 1994;
‘Wakeling, 1990]. The functional programming language Clean uses 2 similar system. of unigiie
types [Brus et al., 1987]. Although these systems reguire programmers fo identify- singly~
threaded GBjécts; the correctness of their fype-assertions can be checked by the compiler.

~-Tetug look at an example to see how ‘deferred reference” connting works in practice.

46 : REFERENCE COUNTING

The Um:\nmnrlmo_uﬂci algorithm

Rather than mﬁwﬁﬁﬁ to eliminate reference count BmEH_Emnoum through compile-time

analysis, Deutsch and Bobrow devised a systematic run-time method of deferring reference -

count adjustments (Deutsch and Bobrow, 1976]. The majority of pointer stores are made into
local variables; with modern optimising compilers for Lisp or ML, the frequency of other
_pointer stores may b as low as one percent [Taylor et al.,, 1986; Appel, 1989b; Zorn, 198y].

Deferred Reference n.a::n:m takes advantage of this observation by (reating operations on
local variables and stack-allocated compiler temporaries specially: no reference count book-
keeping is done when they are modified. Pointer writes to local names therefore use simple
assignment rather than the Update instruction (see- Algorithm 3.2). Reference counts now
only reflect the number of references from other heap. objects: refersnces from the stack are

not counted. This means that objects can no longer be reclaimed as soon as their reference. -

count drops to zero since they might still be directly reachable from a local or temporary
variable. Instead cells with a reference count of zero are added to a zers-count table (ZCT) by
delete, The ZCT is typically implemented as-a hash table or a bitmap.

delete(N) =
decrementRC (N)
if RC{N} ==
‘add ® to ZCT

Update(R,S] T "Z=Rand § are heap objects
incrementRC(S)
delete (*R)

remove S friom ZCT
*R = 8

Algorithm 3.2 Deferred Reference Counting: updating pointer values.

Entries in the ZCT are deleted and the reference count incremented when a reference to
the cbject is stored in anotherheap object. Periodically the ZCT is reconciled to remove and
collect garbage. Any object with a reference in the ZCT that is not also found by scanning
the stack must be garbage and can be 1eturned to the free-list. Reconciliation works in three
phases: first all objects directly accessible from the stack are marked, then unmarked objects
with entries in the ZCT are freed and finally all marked objects are unmarked.

One way to mark and unmark objects is to increment and decrement their reference counts
respectively (see Algorithm 3.3 on the next page). An object in the ZCT can only have a
zero reference count after the referance counts of all objects directly accessible from the stack
have been incremented if it really is garbage. These objects can be freed after their component
pointers have been deleted. Finally the reference counts that were inflated in the fizst phase —
scanning the stack -— must be decremented.

An example

The function ged x,v) calculates the greatest common divisor of its non-negative integer ’

“DEEERRED REFERENCE COUNTING

47

reconcile{} = !
for N in stack ~mark the stack
incrementRC [N) :

for N in ZCOT
if RC[N} == 0 i
for M in Children (N} !
delete (*M) . .
free (M) : |
for N in stack .l,_aaﬁv.m the stack
decrementRC (N) .

t
|~.mn~nw§ garbage

Ewcn&pﬁm 3 Ummmﬁn&%mmﬂmﬁnm Oocugm reconciling the ZCT.

S ‘N —_

arguments. If we assert that its first argument must always be greater Emu or mnE&. to its

sgeond, ged can be written as:

ged{x,y) =
if v =
L return x i
L=x-Y¥ . . - . _
if x>t _ ”
e st paturn ged (¥et) o
else return ged(t,y)

Algorithm 3.4 Greatest common divisor.

Let us suppose that we have a system in which all ohjects are allocated in ?a heap, and that
expressions are represented by graphs whose nodes are heap objects, mcwmomm further thét the
system stack also contains pointers to heap-allocated data®, The first step in w hand evaluation
of ged {18, 12} would be to rewrite : to ged {12, 6). Lot us see how the &\mﬁoﬂ would do
this. _

First the S.m@_w of ged (18, 12) is.created and unwound, leaving R, the 35 E.m:Ennw and
apointer to the function ged on the stack, For convenience, we name atomic objects by their

value. At this stage all nodes have a reference count of one (except R Sm.m_wmwumrﬁ bésharedy

and the ZCT is empty (see Diagram 3.1 on the following page). i
-The first test fails as v is not zero,-so-the local variable t.is setto 6. A :as. cell is-acquired

from the free-list and filled with the value 6. As there are no heap Hmmﬂgnmm to the new cell |

&, it is added to the ZCT. Qur compiler is also smart enough to realise Emﬂn is no longer used
in this call to ged, so it reuses its slot on the stack for &, Although 6 hasa referenca count of
zero, it is safe from reclamation as it is-accessible from Em stack (see Diagram 3.2 on the next
page). _

‘The nexttwo. mﬁwm are to link 6 into Eﬂmﬁmﬂﬁmﬂ update (right (R}, mv -and to-agquire
a new apglication cell, B, and Update (lefe(R) . B). Linking 6 to R EQdEnnE 6's count and

s _Graph reduetion, used by implementations of lazy Eunnou& Hmbm:mwwm. is Er_EuSnna of such a

mwmﬁﬂ. ' T

.

| |
L |

i
|
!
|

48 . REFERENCE COUNTING

ZCT

Al

=]

[~ 7]

N
N\,

Y

Hoed [Te]

- -« - Diagram 3.1 The graph gcd(18,12).

deletes its entry from the ZCT. Let us suppose that overwriting left (R) causes the pointers
to A, ged and 12 to ,w_w deleted recursively. At this point the ZCT contains 12, 18, A and ged
(see Diagram 3.3 on the facing page). .
Filling ZCT triggers.the reconciliation mechanism. Examining the stack, recanci e finds
R, 6, 12 and ged and marks them (increases their reference counis). Examining the ZCT,
reconcile reclaims & and 18, since they are unmarked, (their count is zer0), and adds them

to the free-list. 12 and ged are preserved and kept in the ZCT since they are pointed to from

the stack (sce UEnHm.E.m 4 on the nextpage) .

The abstract machine wonld now link god and 12 to B, and mo@ the top three items from the
stack. Tt would then be'in a state where it can perform the next step of the recursion, evaluating
ged (12, 6) (notshown).

ZCT overflow

A mnm.w._umow m_m_@mannn in this example is that the ZCT is reconciled when it overflows; but
recursive Wnﬂ:.m may add further entries to the ZCT each time an object is freed, There are

U.mmamsw N b» new nnﬁ mon t=x-yis. mnmcnnm mna wmnm&o the ZCT.

DEFERRED REFERENCE COUNTING 49

7]

AEEE \ H

R

o

H T 1 Hei G
T E

|
Diagram 3.3 * R is updated, recursively freeing its conten ﬁ.
i
_

A7l &

[

several mo_nﬁoum to. this dilemma. If freeing an object would cause the Sc_n to oﬁ&oi

its reclamation can be aborted and the object left in the ZCT until the :o_xﬁ _..nnobﬂwwucn
Alternatively, if Weizenbaum’s lazy freeing technique is used, any m_o_baﬁw contained in a~ -
freed object are not dsleted until the object is reallocated. The ZCT can _um reconciled when -

alloeation would lead to overflow. Aliernatively, ZCT overflow will not vo an“issue if it is™

" . implemented as a bitmap [Baden, 1983]. In the garbage collection noﬂnxﬂ a E_”Emm. is an

array of bits, each of which represents'a word in the heap. An object Is o:ﬁ..mu into orremoved
from the ZCT by setting or unseiting its bit. At the cost of 4 small proportion of the: heap (for
example, 1:32), overflow checks can be eliminated. -

The mmmnmm:n*on deferred reference counting

Deferred reference counting is very effective at reducing the cost of pointer writes, Experience:
of Smalltalk implementations on the Xerax Dorado in the mid-eighties; suggested: that it
typically cut the cost of pointer EmEuEmnoum by 80 percent or more at & Gost of a relatively
small space overhead (25 kilobytes ‘on a typical personal computer) Enmmﬁ.. 1984, mmn_mP

mﬁnx

| R
KEY
L 6]
- |acd]

50 : , REFERENCE COUNTING

1983]. Table 3.1 shows Ungar's comparisons of the costs of pointer updates, reconciliation and
recursive freeing for a standard reference counting system and deferred reference counting.
Ungar also states that the pauses to reconcile the ZCT were also short (30" miilissconds in
every 500 milliseconds) compared with those for Emam.msdmm garbage collection.

Table 3.1 HB.E&ES vs. deferred reference counting. Figures are percentages of total
execution time [Ungar, 1984].

Immediale Deferred

Updates .15 3
“"Reconciliation™ ” 3
Recursive freeing 5 5
Tbial 20 11

The chief drawback of deferred reference counting is that, apart from the space cost of the

- ZCT, it reduces roference counting’s advantage of immediately recycling memory as garbage. -

objects are retained until the ZCT is reconciled.

3.3 Limited-field reference counts

Reference counting techniques require space in each cell to store the reference count. In
the theoretically worst case, this field must be large enough to hold the total number of
pointers contained in the heap and in the roots: it must be as large as a pointer (this is
why Weizenbaum’s scheme could use the reference count field to chain cells in the free-
list). However, it is incanceivable that any application would cause counts to grow so large.
Space can be saved by using a smaller reference count field at the cost of taking precautions
to handle overflow.

51

LIMITED-FIELD REFERENCE COUNTS

incrementRC M)y =
if RC(N) < sticky
RC(M) = RC(M) + 1

decrementRC (N} =
if RC{N) < sticky
RC(N) = RC(N) — 1.

Emoﬁaﬁn 3.5 Incrementing and amoH@Eonnnm ‘sticky’ Hmmmnmunomnouuﬁ- :

Tracing collection restores reference counts

This implies that an olject cannot be reclaimed once its reference nonnﬁnmnﬁam the rmaximum
since it can never be returned to zero by reference counting alone. A cmnwzv tracing mwﬁvmma
collector must be used to restore true reference counts (see Algorithm 3. 8 This oo:nonow]
starts by making an additional sweep through the heap to set a1l reference counts to zero (ie. _
unmarked). As each pointer in the active graph is traversed, the mark routing increments the ;
reference count of the object it visits (up to the maximum: vatue). At the eng of the marking:
phase, the reference count of every object in the heap wilt have been restored to its true value .
or sticky, whichever is less. The use of a _umow.:m_ tracing collector, is not _uuaoumoao since ;
it is likely that it will be needed anyway to collect cyclic. garbage. Far EEEwQQ. we express y
wArk recirsively. In practice a more efficient technique would be used @ma O:mmnan 4 s&nﬁ
we discuss mark-sweep collection in more detail). . _

_ H
:.DH..W1;m.£mmﬁ:H . . . "

for N in Heap

RC(M) = 0
for R in Hoots :
mark(R)
sweap () :

if free_pool is mﬂmﬂw m
abart "Memory exhausted"” . ! :

mark{N) = . ;

incrementRC (N} o e e L

if RC(N) == : _.Iu__.awﬁhn
for M in Children(N) i

. —... Sticky reference'counts. . - [o

The per-cell overhead for reference counting depends inversely on the size of the cell, If a
pointer-sized field is used (to avoid overflow checks), the averhead for Lisp cons cells is 50
percent; it a single byte is used it is 12.5 percent. Small reference count fields may overflow
and hence break the reference count invariant that RC () is equal to the number of pointers
to W for all heap cells 5. Two problems arise.
Firsta countcannot be allowed to exceed its maximum permissible value. Second, oncs the
_ feference count reachies this value, it is ‘stuck’; it cannat be reduced sinca the true count of
-« pointers to the object 'mey be greater than its reference count (see Algorithm 3.5 on the next
’ ummmv We call this maximum value ‘sticky’.

mark (*My s o e e

Algorithm 3.6 A backup tracing garbage collector that restores ‘stuck’ reference counts.

One-bit reference counts D

More radically, Wise and others have suggested mnmnmogm the H&.annnom count field to a
single bit [Wise and Friedman, 1977; Stoye et al., 1984; Chikayama ; and HOEEP 1987 Wise,

1993]. The reference count hit Emp simply anﬁnﬁbmm whether a cell Hm.wrﬁma (s nwnﬁb

|
i
|
I
|
|
|

___....1o be necessary in any case to collect.eycles... . . - —

52 , REFERENCE COUNTING

or unique. Empirical studies of Lisp and other languages have shown that most ¢elis are
not shared and so can be reclaimed immediately their pointer is dslsted {Clark and Green,
1977; Stoye et al., 1984; Hartel, 1988], Wise argues that reference counting should therefore
concentrate its efforts on these unshared objects. The aims of One-bit Reference Counting
are to postpone garbage collection (and its consequent pause) for as long as posgible, and
to reduce the space overhead to that of mark-sweep garbage collection. Reference counting
also affords opportunities for optimisations, such as copy avoidance ot in-place updates. If a
modified copy is required of an object for which there are (about to be) no other references,
the ,oum_% can be performed by borrowing the pointer and side-effecting the object, rather
than dupliceting and deallocating the: original node. The advantages of copy avoidance for
programs that manipulate large arrays, for example, is obvious.
The simplest implemestation is to store the unique bit in each cell [Wise and Friedman,
19771, but a better ”anr.wﬂsa is to store the bit in eack pointer [Stoye et al, 1984] in the same
way that run-time tags are used for type checking [Steenkistc and Hennessy, 1987]. The first
pointer 0 a newly created object is tagged as unique. When a pointer is copied by Update,
the replica poiater is tagged as sticky, and an extra check is made of the source pointsr’s
reference count. Ifit is unique then it too must be tagged as s ticky in the original field from
ﬁ&.mnw it was fetched (see Algorithm 3.7). Notice that reference counting cannotmake sticky
moEﬂHm iitiighe: sharéd cells can only be reclaimed, and uniqueness can only be restored, by
a tracing garbage collection. However, as we noted above, a backup tracing collector is likely

The advantage of the Stoye et al. scheme is that a remote cell's status (uniquely referenced
or shared) can be determined and modified without fetching the cell itself (for example, T in
Diagram 3.5 on the facing page), and hencereduces the chance of cache misses or page faults.
H_mm cost of even a primary cache miss is likely to be of the order of five cycles; a mwmm.mmm#
will cost many hundreds of thousands. Thus the cost of the extra instruction is a price well
worth paying. We discuss the interaction between garbage collection and the cache further in
O.E.Eﬂ 11. A potential probiem is that the site of the original pointer might be difficult to
discover if the pointer’s value has been passed through registers or the stack.

Update (R, S} =
T = sticky(*5)
if RC(*S) == unique
¥E =T
deleate (*R)
*H = T

Algorithm 3.7 One-bit reference counting with tagged pointers.

Restoring uniqueness information

Once a ooEm:.. becomes:gshared, it is stuck — the reference oosumnm mechanism cannot make it
revert (o unique. If the last painter to a sticky node is deleted, the node cannot be reclaimed

- immediately but must wait for garbage collection. If the reference count bitis-stored in the

node itself, its field can be shared with a mark-sweep collector’s mark-bit by equating sticky

LIMITED-FIELD REFERENCE COUNTS 53

W \,
(L0 [¢
: @——- unique pointer , ._l

- @—» sharad pointar

Diagram 3.5 qu.m.m.nm {R,S).

with ‘marled’, After the marking phase is complete; all surviving celis will be marked as
sticky. Unfortunately marks do not distinguish between shared and uniquely referenced
cells. Although uniqueness information has been lost, Friedman and Wise argue that there will
be plenty of opportunity for the one-bit reforence counting scheme to get gaing again before
another garbage collection is required provided that the collector is retatively successful in
reclaiming space.. L

If a two-pass compacting compactor is used (see Chapter 4 where we discuss mark-compact
schemes), unique references can be restored (see also [Wise, 1979]). Mark-compact collectors
typically operate in a further two phases after the marking phase: live cells are compacted
toward the bottomn of the heap and references to these cells are updated to reflect their new
\ocations. The compactor can determine whether a cell has multiple references as it corrects

these references.

Wise has also used a semi-space copying collector to. restore unique tags to_painters that

have become sticky in the past but should be no longer [Wise, 1993] (see Chapter 6 for
a discussion of copying garbage collection). A suitable copying collector must maintain the

invarjant that, for any cell ¥ in Tospace, the tags of any forwarding address and of all pointers.”

to 1 are equal, and sticky if and only if there is more than one such pointer (excluding the
forwarding address). Wise’s algorithm requires that mwn_w cell be large enough to hold two
pointers, source and forward, rather than one. The source pointer is set-to point at the-
original Tospace reference to. this cell. The £orward pointer is used.as a forwarding address
in the usnal way. It is tagged as unique when first set and returned as the result of cepys
ensuring that the new value of origifial Tospace pointet is also uniqoe: TFtHE Fromspace cell'is
revisited by the collector, the forward pointer-is changed to sticky In this case the tag on

- the originat Tospace pointer must also be changed to sticky: this:pointer-can be found from

source.

54 REFERENCE COUNTING

The ‘Ought to be Two’ cache

Many adjustments to reference counts are only temporary. Consider the assignment
N = select (N}, where ¥ has a reference count of unique and select is a projection

function returning a currently unique field of N. A typical example of such 2 projection:

function might be taking the tail of a list. The problem is that the reference count of the
cell select (W) must be raised to sticky before:w is derefersnced (otherwise the cell will
be reclaimed before its field is retrieved) and so uniqueness information will be lost, Friedman
and Wise retain uniqueness by using a software cache of nodes whose real reference count is
two but whose Re is still set to unique — it ‘cught to be two® [Wise and Friedman, 1977].

When a pointer to a:unique node is copied, the node is inserted into the cache unless it
is already there — a hit — in which case the node is removed from the cache and marked as
shared. Cache overflow is handled by evicting an arbitrary entry from the cache (for example,
the least recently used) and setting its count 10 sticky. When a pointer is deleted, it is
removed from the cache (if present), i.e. its reference count reverts from ‘ought to be 2’
to unigque. If the cell is not in the cache but it is. unique, then it is freed recursively (see
Algorithm 3.8).

hit(N) =’
if N in cachs
remove N from cache
e ————— return trge.. ...
else return false

insert (N} =
if hit (W)
RO (N} = sticky
else put N in cache

delete{N} =
if net hit (N}
if RC(N) == unigue)
for M in Children(N)
delete {*M)
free (N)

Update{R,5) =
if RC (8) == unique
insert(8)
T T T T delete (*R)
*R = 8

 Algorithm 3.8 The ‘oughtio be 2’ cache.

This strategy can only be successful if the cache is very fast. Friedman and Wise suggest

dedicating a small number of registers to the cache. A single register is sufficient to avoid. .

incrementing reference counts for the assignments of the form ¥ = select(N) that are

commoxn in compiled images of applicative code, for example when traversing a list. In this

case, the assignment is'typically twice as expensive as it would be under standard referencing

s

.. without imposing such a tax on the mutator program, hardware. support must be sought.

HARDWARE REFERENCE COUNTING , 53

counting. Two registers suffice for code sequences of the form r = £(s); s = g(t);
t = h{x), for example, the code to swap the values of r and s. However, apart from
the cache’s management overhead, its use increases the pressure on the-compiler's register
allocator, If this causes register spills that would not otherwise occur, the real overhead may
be even greater. .

3.4 Hardware reference counting

Despite these optimisations, the execution time of reference counting is generally aceepted
ta be greater than that of tracing techniques. To obtzin the benefits of reference counting =.- . .
Wise and others have designed and built self-managing heap memories based on reference, :
counting [Wise, 1985; Wise ef al., 1994; Gebringer and Chang, 1993; Chang and Gelringer,

1993a; Chang and Gehringer, 1993b]. Active memory departs from the traditional von .
Neumann architectore that separates intelligence (the CPU) from memory. In Wise’s design,
all book-keeping to maintain reference counts is develved to banks of reference cotinting .= ©
memory (RCM), leaving the processor free to do ‘useful’ processing. Apart from releasing
the processor from the burden of managing the heap, reference counting in the memory-itself
offers 2 majer gain to multiprocessing systems: it also obviates the need for synchronisatien ~ -
between cliont programs and tracing garbage collectors, or locks on reférence counts. L :
Special-purpose architectures do not have a history of commercial success. Develapment
costs make them simply too expensive. An advantage of the active memory approach over
more radical designs is that benefits, and hence development costs, can potentially be
shared amongst different conventional -architectures if the self-managing heap appears to the
processor ta be just another bank of memory. ©~ © © :
Wise's design includes data memory and reference count mentory, cach associated with
the same addresses, in each bank of reference: counting memory. Each of the two memories
has its own bus and ports: a data port to processors and a narrower port (o other RCMs.
The latter runs at twice the speed of'the data port sinceia single data write can generate two
remote reference counting operaiions (the increment and the decrement). Each bank of RCM
maintains its own available-space lists. To obtain a new node, the processor reads, from one

of a number of distingtishied memoiy l6tations, depending of the type of tiode Tequired. A~ "
mark-sweep garbage collection mode, using & Deutsch--Schore—Waite collector in order to

operate in constant space. (see. Section 4.3 where we discuss. mark-sweep. garbage colleciion. . _:

in more mnﬁmmy is also provided. . : . , o

Tnitial tests of the RCM system suggest thatit is potentially very effective although overall
performance depended on the size of the problem. Reference counting itself is porformed
at no cost to the mutator program, and the in-RCM mark-sweep garbage: collector.ran at
twice the speed of a software-only stop-and-copy collector. However, the prototype sat-on a
NextBus as 2 ‘device’ and hence was uncached. Lack of caching costaround40. percentafuser
execution time compared with using stock, cached RAM. Nevertheless, given a sufficiently
large problem, code using the RCM executed in between 40 and 70 percent of the time of that
using stap-and-copy callection on stock, cached hardware, | S

a f

56 , , REFERENCE COUNTING

Gebringer and Chang proposed using a coprocessor as a second-level eache. The
copracessor would manage its memory by reference counting with the intention of performing
all reference count manipulatdons in this cache. Simulations of their design show that the co-
processor can remove 50 to 70 percent of cbjects before they age out of the cache, saving
57 to 72 percent of bus write traffic, and 53 to 63 percent of fetch traffic [Chang and
Gehringer, 1993a; Chang and Gehringer, 1993b]. Garbage coilection is still necessary, for
instance to collect cycles, but coprocessor reference counting extends the collsction interval
by approximately 60 percent.

3.5 Cyclic reference counting
Possibly the most powerful argument against reference counting is its inability to reclaim
gyclic data structures (an example is shown on page 25) first noted by McBeth McBeth,
1963]. Cyclic structures are common, both at the application level and at the systems
level. Cycles are typically created by programmers when they use hack-pointers or they
aim to express domain-specific problems in & natural manner. Cycles can also be created
unintentionally, for instance the back edge in the link in a hash table chain [Boehm, 1994b].
Tmplementations of functional programming languages.also commonly use cycles to express
recursion [Turner, 1979].

- -—=—-Tnder & §tandard eference Countihg regime, programmers must either modify thelr style,

or break cycles explicitly by deleting pointers. Unfortunately it is not always apparent which
pointer should be cat. Manual intervention is both burdensome and inherently unsafe. We
know of no good large-scale methodology for aveiding cycles. One alternative is to use a
hybrid memory manager, in which most cells are handled by reference counting (since cells
are usually unshared), but a mark-sweep collector iz periodically invoked to collect cyclic
garbage. However, considereble effort has been devoted to solving the problem of reclaiming
eyclic data without resort to global garbage collection. Some of the algorithms that have
been devised ate specific to functional programming languages [Friedmsan and Wise, 1979;
Hughes, 1987] or to certain programming idioms {Bobrow, 1980; Wise, 1985], while others
are generally applicable [Christopher, 1984; Lins, 1992a]. Other proposals, often widely cited
without comment, are either simply incorrect [Brownbridge, 1984] or fail to terminate in
pathological cases E.%a_ 1987]. To our knowledge, none of the schemes proposed below
have been adopted for use by significant systems. '

Functional ﬁ..Dqu.i_.:m.:m languages

Triedman and Wise observed that references to cyclic data struchues are created in a
well-defined manner in pure functional programming languages, and so can be handled
specially [Friedman and Wise, 1979). Since cycles can only be generated by recursive
definitions, references into such circular environments can be controlled provided the
following restrictions. are observed: -

- - - @ the ow.o_hmhmc.sogn. is'created all at once;

s any use of a proper subset of the- cycle that “does not include its root is wowmmn as an
independent structure rather than shared;

CYCLIC REFERENCE COUNTING 57

« cycle-closing pointers to the head of the cycle ars tagged as such.

These restrictions ensure that the cycle is treated as a single entity. In particular access 10
the cycle may only be through a pointer to its root. The consequencd 1§ that o part mw:..ﬁe
be creatad before or survive after any other part. ‘When the last pointer to the head of the cycie
is deleted, the entire cycle can be reclaimed. .

Bobrow’s nmnrq:n:m

More general technigues rely on being able to distinguish pointers internal to the cycle from
external references. Infernal references point from one member of the cycle to another and
need not be counted. All other pointers to the cycle are external references and are: counted .
as references to the structure as a whole. For example, the cycle on page 25 contained two
internal pointers, from s to T and vice-versa, dnd one external pointer, me.ﬁ... (R}, dntil it
was deleted. The eniire cycle can be reclaimed when, and cnly when, there are no xternal
references to it. ’ . AR
Bobrow used this idea to collect groups of cells [Bobrow, 1930]. All cells allocated are:
assigned by the programmer to a group. Cells.can also be transferred between groups if the=-
programmer declares certain pointers to be internal. Bach group is reference counted, dnd the

group of any cell must be determinable from its address (maybe the cell contains iis:group” =

number or a pointer to the group reference count), When a pointér is Qverwritten, E& group
numbers of the three cells involved in the, transaction are examined. I any inter-group pointors
are created or deleted, then the relevant group reference counts must be adjusted.

Update(R, 8} =
T = *R , :
gr’ = group_no (R} : i
if gr # group_no{s)

—external reference
increment_groupRC (8) o

if gr ¥ group_no(T)
decrement_groupRC (T)
if groupRC(T) ==
reclaim_group (T)

—external reférence

*R = 8 . SN ; SRS

Emoﬁngw.wwgaci_m&mongn
. This scheme only reclaims groups as a whole. If individual members or sub-groups. of
an active group become disconnected, they will not be reclaimed vntil the entire group. is
deallocated: Note that individual nodes are not reference counted. Onece the group's.reference
count is zerb, the entire group can be reclaimed. If a zone of memory is allocated exclusively
to the group, it could be swept to free these individuals. Alternatively, all ‘members of the
group could be linked through an additiosal pointer mmE. also ‘used by the free-list: In this
case the entire group can be returned to the free-list in a single operation - :

A fundamental drawback of Bobrow’s algorithm is that it can only- reclaim intra-group
cyeles but not infer-group ones. Hughes observed that Bobrow's schel -a.‘wqm%.m.‘damw.m% _.wmnw
group comprised a single strongly connected component (SCC) ofthe mmmmw_ thatis, aminimal

58 : REFERENCE COUNTING

set of nodes each of which is reachable from every other node in the set [Hughes, 1583;
Hughes, 1987]. In this case, every cell could he freed as soon as it became unreachable.
Partitioning the graph into SCCs would be prohibitively expensive in general, but Hughes
suggested that it might be feasibie for a graph reducer since graph reduciion does not modify
the graph in arbitrary ways. Graph reduction operates by repeatedly creating new graph and
then overwriting a redex node with this graph. Since allocating new nodes does not affect the
rest of the graph, the new sub-graph can be split inte SCCs independently {except for nodes
from which the root is Teachable) using Tarjan's algorithm. Overwriting the redex similarly
affects the redex’s group only.

Weak-pointer algorithms

Several anthors have amempted to tackle the problem of reclaiming cyclic data siractures. by

distinguishing cycle closing pointers (weak pointers) from other references (strong pointers)
[Brownbridge, 1985; Salkild, 1987; Pepels et al, 1988; Axford, 1990]. The basis of this
approach is as follows. Each active node in the heap must be reachable from a root via a
chain of strong pointers (strongly reachable). Strong pointers must never be allowed to form
cycles. The graph whose arcs are.the strong pointersis acyclic and hence amenable to standard
teférénce cowmiting techniques I Giily strong Teferences are coinited. The comectness of weak-
pointer algorithms depends crucially on two invariants:.

» active nodes are reachable from oot via a chain of sirong pointers; (SW.1)
« strong pointers do not form cyclés. (SW.2)

The most widely cited weak-pointer algorithm is due to Brownbridge. It.is less widely
known that, unfortunately, his algorithm may reclaim objects prematurely in some cases (for
an exarnple, see the structure ABC in Diagram 3.6 on page 61). Salkild corrected the algorithm
at the cost of introducing non-termination in certain pathological cases (for an examiple, see
Diagram 3.7 on page 62). We shall review as briefly as possible the Brownbridge—Salkild
algorithm and the wark by Pepels er al. which corrects it, albeit at considerable cost.

Brownbridge’s general purpose algorithm stores: two reference counters in each cell; one
for strong pointers to the cell, and the other for weak ones (see Diagram 3.6 on page 61).
Since allocating new: cells cannot create cycles; pointers to new cells are always strong (see
Algorithm 3.10 where Sre (R) i3 the strong reference count of cell R and strong (newcell)
makes the pointer returned strong). :

CMEW() S, i e
if free list == empty
abort "Memary exhausted”
newcell = allocate()
SRC{R) = 1
return strong(newcell)

Algorithm 3.10 Brownbridge's New.

Copying pointers, on the other hand, may lead to ¢ycles being introduced, in which case
the closing link must be weak. Salkild modified Brownbridge’s algorithm to make all copies

CYCLIC REFERENCE COUNTING 59

of pointers weak. This allows weak pointers to occor w<onw€rmaﬂ they no longer simply
close cycles but the invariants zemain valid (see Algorithm 3.11). Furthermore, this method
is suitable for general pointer manipulation systems rather than just the combinator machines
that were Brownbridge’s interest. In Algorithm 3.11 WRC{S) is the weak reference countof 5
and weaken (*R) causes the pointer at ® to be made weak (we explain later how this can be
‘done efficiently).) o ,

Update(R,8) =
WRC({8) = WRC(S) + 1
delete (*R)
*R = 8
weaken (*R)

Algorithm 3.11 Salkild’s update.

Deletion of pointers is more delicate. Weak pointers can simply be removed and the weak
reference count decremented without further action (casé (i) in Algorithm 3.12). If an object
is in use then it is reachahle via a chain of strong pointers by invariant (SW.1), so it must have
a strong reference count of at least one. Deleting a weak pointer, or any but the last strong
pointer, to an chject cannot canse it to be freed. I the strong pointer being deleted is the last
reference (strong of weak) to this cell, then the cell can be safely reiurned to the free-list (case
fii) in Algorithm 3.12). Any pointers from this cell should algo be deleted.

delete(®) = S
if is_weak{T) —{(i}
WRC(T) = WRC(T) - 1, .
else o - —T is strong
SRC{T) = SRC(T) - 1 ” , .
if SRC(T} == 0 and WRC{T) == 0 —{ii).
for U in Children(T)
deleie (*U).
free(T)

else if SRC(T) == 0 and WRAG(T} >0 -]

e A,.Emcﬂmgmhb.!uuﬁombw‘mﬂcnm and-weak pointers— - -~ e

If, however, there remain any weak pointers to’ this cell, we have case (iii) of
Algorithm 3.12; the sitnation in which the classic version of reference counting-fails. The-
cell no longer has any strong pointers to it — its strong reference count is zero ——but it might
be part of & cycle which may be detached from the roots. Alternatively, there may be a'strong
pointer to anothericell in the cycle which would mean that all the cells in“the cycle-are still
reachable. To dotermine which case applies when the pointer from one cell tor another, T, is
deleted, a search is made of alt the descendants of T ta try to find a pointer external to any

cycle tontaining the cell T, Wihith would rmean thae ft i§ stll reachablé from Toot.

60 . REFERENCE COUNTING

First, all pointers to T are made strong. If the cell is not garbage, it is strongly reachable once
more. However this action might have created strong cycles, so the daia structure reachable
from T is traversed {zlong strong pointers only) in arder to identify and remove any strong

cycles, as well as looking for external pointers. This description of the algorithm begs two

guestions:

s« how can we decide if 4 pointer is strong or weak?
« how can we efficiently turn 2ll the weak pointers to T-into strong ones?

Brownbridge provided an elegant solution to this dilemma. Each pointer and each object
has an associated strength-bit. If a pointer and the object to which it is pointing have the same
strength-bit value, then the pointer is strong. If the bit-values differ, then the peinter is weak.
The strength-bit is alsoused to determine which of the two reference counters is the SRc and
which is the Wre. To sizengthen all weak pointers 1o T in a single operation we simply invert
the value of =’s strength-bit. :

We can now return (o delete (1) . I a strong pointer was the last strong reference ta the
gell, ®, but there are other weak references (case (4} in Algorithm 3.12 on the page before),
delets strengthens all the weak pointers and then corrects the pointers in jts sub-graph to
preserve the invariants (SW.1) and (SW.2). If SRC(T) remains zero, the sub-graph is freed
recursively. ,

if is_strong(T) and SRC{T) == 1 and WRC(T] > 0
wﬂdmﬁnim trength (T}
for U in Children(T)

suicide (T, *U)
if SRC(T) ==
" for U in Song(T)
delete(*U) L
free (T} |
I

Algorithm 3.13 delete continued.

— (i)

The searching routine, suicide, takes & starting point, 7, and follows' strong pointers,
weakening them where necessary to preserve the invariants (see Algorithm 3.14 on the facing

. page), Herein lies the problem, If suicide’s traversal of strong pointers has brought it back

to its starting point, a cycle of sirong pointers has heen discovered, one of which must be
weakened in order to preserve the invariants. The only possible candidate is the nwomEm link,
s. If there are other strong pointers to the cell s, the pointer 5 does not need to be strong as
well. The pointer is weakened to break any strong cycle that may have been formed. Otherwise
suicide continues its traversal of strong pointers.

Unfortunately this does not take weak external pointers into consideration, Salkild showed
that this oversight may lead to cyclic structuses being discarded incorrectly as garbage, as
the example below shows. Brownbridge's algorithm would have discarded the left-hand cycle

** ABC in Diagram 3.6 on the next page whesn the pointer from root to A is deleted, although

2BC is still weakly reachable from root via b and E.

CYCLIC REFERENCE COUNTING ” 61

mE...nH@mﬁmannIaomP 5} =
if is_strong(S}

if § == Start_node

, weaken (S)

else if SRC(S) > 1
weaken (S) . .

else for T in Children(S)
suicide(Start_node, *T)

Algorithm 3.14. suicide searches for, and breaks, strong cycles.

Salkild proposed that if suicide should discover a cell with weak pointers but E._V. one
strong pointer (the oue along which the trayersal reached the cell), the cell’s strength bit should
be flipped and the search for external references and strong cycles be restarted from this csll.
Although this version of suicide is correct in the sense that the invariants are maintained:
and only garbage cells are discarded, the algorithmn now fails to terminate in cerfain’cases. -

Consider what happens in Diagram 3.7 on the following page when the last sttong pointer to -

B.is deloted. ” . -
" One way to prevent an infinite number of searches by suicide is to use amarkifig SCheme.. -
The solution offered by Pepels et al. was to use two kinds of mark® one to prevent an infinite

imber of searchas, and the other to guarantee terfination of each search: Their version of - -

the algorithm is extremely complex. We refer the reader to [Pepels et al., 1988] for details.and
for a proof of the algorithm. . R
Although correct, and now terminating thanks to Pepels et al., is the algorithm efficient?-
T there are no cycles in the graph and deleting the last strong reference to a cell always
resnlis in the reclamation of that cell, then it is twice as gxpensive as the, classic reference
counting algorithm (due to the suicide pass). Atthe other extreme, it is ppssible to imagine:
pathological cases in which each incarnation of suicide invokes further instantiations of
suicide at each node of the sub-graph. The complexity of their algorithm is ap least

WHi

| ———— swongpoiiter | ...
— — — = Weslcpoinlar i

Diagram 3.6 Brownbridge’s algorithm incorrectly reclaims the structure ABC m_...nu the

strong pointer from root to A js deleted.

62 ‘ REFERENCE COUNTING

root

Diagram 3.7 Deleting the pointer to & throws Salkild’s algorithm into a loop.

exponential in the worst case. Furthermore, the space overbeads are algo high: each cell
.. requires two reference count fields, and a strength- and merk-fiag (although it turns out
that both types of mark can share the same bit), more than double the overhead of standard
reference counting.

Partial Mark-Sweep Algorithms
The final algorithms in this chapter take a very different approach ta the problem of reference

counting cyclic data structures. Their general idea is to perform three partial whversals of the
data structure, in the first place removing the contribution of pointers internal to the sub-graph
beig traversed fraii<éll iefersnce counts. Atthe end of the-firsttraversal, the reference.counts
will only reflect external pointers to nodes in the sub-graph. The second traversal Testores the
counts of nodes reachable from external pointers whilst the third phase sweeps garhage into

the free-list,

Christopher’s algorithm

This method was originally invented by Christopher{Christopher, 1984] but has since been re-
discovered by several other researchers [Vestal, 1987; Martinez et al, 1990; Kennedy, 1991].
Christopher developed: his algorithm to provide dynamic storage allocation with garbage
collection for languages such as Fortran that do ot have such facilities. The primary methed
of reclaiming garbage is reference counting. However, a tracing collector is called periodically
t0 reclaim nodes in the heap that have non-zero reference counts but- are-not externaily
reachable. Because the collector only visits nodes in the heap, it does not need to be able ic

.. locate the roots of-the computation (which may be impossible to discover accurately without

knowledge of, or cooperation from, the: compiler).

Lins’s algorithm

The algorithms developed by Lins and his calleagues are also hybrid algorithms. Most cells
are freed by reference counting but garbage cycles are reclaimed by a mark-sweep collector.
Any cells that are uniquely referenced are candidates for reclamation by reférence counting
when their count drops to zero, If, on the other hand, a pointer to & shared node is deleted, the
collector is called to mark-sweep the iransitive closure of the deleted pointer Martinez et al.,

1650]. Cyelic reference counting would be prohibitively expensive if sub-graphs wére to be

63

€YELIG-REFERENGE COU

‘traced every time a shared pointer was deleted: — the Emhahow et al. algozithm is clearly

jmpractical. Lins’s lazy cyclic reference counting algorithm postpones thess traversals by
saving the values of deleted pointersina control sef [Lins, 1992a], At some suitable point, all
or part of the control set can be searched for garbage. | - -

Lins’s algorithm traps pointer writes and saves the old target of the pointer in the hope that
it will rot be mHme&o@p. This highlights the difference between his reference counting with
lazy mark-sweep algorithm and standard. mark-sweep cotlection. The latter fraverscs only the
active data siructure whereas, in the best case; Lins's collector traces only cyclic garbage
(although it may have to frace, unsuccessfuily, live data as well).

We shall first consider Lins's lazy algorithm in detail. Christopher’s scheme can be thought
of as a special case of Lins in which every cell with a non-zero count is in the control set,
and we refurn to it later. In addition to the reference count, Lins uses an extra field to keep

- the colour of the cell. Four colours are used: black, grey, white and puirple’. Intuitively, active

cells are painted black, and garbage and free cells white. Cells visited in the marking phase
are coloured grey — they need to be visited again. Parple cells may be members of isolated
cycles: they need to be traversed by the collectar. !

Whenever a pointer to a shared cell is delsted, the cell is painted purple and its address is
placed in the control set. Colouring deleted cells purple avoids adding duplicate entries to the
set and ensures that only those cells in the control set that are not subsequendy discovered to
be active will be traced. The control set heuistic is that, by the time that the mark-sweep can
no longer be avoided, there will be further evidence as to whether zells in the control set are
garhage or not. Either their last references will have been deleted, in which case they will have
been returned to the free-list (and possibly reused), or their pointers will have been copied (in
which case they must be still in use). Tn either case, the gells will not be purple.

The only difference between Lins's New and: that of the standard version shown on page 20
is that he allocates new cells black, and he must decide when to collect the control set. For the
moment, let us skip over this question. -

There is also just cne difference between Lins's Update (see Algorithm 3.15 on the next
page) and the standard one. Both arguments 1o Ling's Update must be active-and hence should
be removed from the control set to prevent them being mark-swept;.this is done (logically) by
peinting the cells black. ¥f the control set was implemented as a hash table or a bitmap, the
entry could be removed physically as well; otherwise the cost of removal is not worthwhile.
1f the set is full, it must first be scanned (or extended) to make oo far the new reference. If

the set is organised as a linked data structure in the heap, it will only become fullif the heap—- -

is exhausted, in which case garbage collection is ineviiable.

It is desirable to avoid multiple control set reforences to a single cell, although this is not
always possible to do cfficiently unless a hash table or bitmap is used. Not all cells in the
quene will be purple. Some may have been Tepainted black by Update or by aprevious call
to the mark-sweep routine: these cells and their descendants are still in use: Other: cells may
have had their last reference deleted. Such cells will either be in the free-list (white)ior have

2 ¥ ing’s control set is reminiscent of what might be called an anti-remembered set (see the discussion oo
generational garbage collection in Chapter 7) together with a mn%mroﬁ.ﬁ.ﬁa&nmm.%m,\imﬁ&Edﬂ
(we discuss incremental garbage collection techniques in Chapter 8). C

3 1 ins vsed green, red, blue and black respectively. However black, grey, white fits in better with the
tricolour abstraction used in incremental parbage collection (which is discussed in Chapter 8).

64 : REFERENCE COUNTING

been recycled by New (black). Deleting pointers {o either of these kinds of active cells will
duplicate their entries in the control set. The control set is used to identify potential free

space. On picking a cell from it, its colour is tested {see Algorithm 3.16). If it is stili purpls it

MmmﬁEmunnHEbigEmaEmHmmﬁwcmnﬁﬂ.amnwn_asmmvomﬁm&oﬁa_Bam Hon&Eﬁwamsdo@
must be performed. o

I

delete{T)
RC(T) = RC(T} - 1
if RC{T) ==
coloux(T) = black
~for U in children(T)
deleste (*U)
free(T) - - - -
else if colour(T) # purrle
if eontrol_set is full
ge_control_set (}
¢olour (T} = purple
push (T, control_set)

.. Update{R,8)-=— . I

RC{S]. = RC{8) + 1
. colour (R} = black —'remove’ R,S from control set
e 3 5] g ()= black . — - Co. -
delete{*R) ,
*R o= S

Algorithm 3.15 Cyclic reference counting Update.

gc_contxol _set{) =
S = poplcontrol set}
if colour{s8) == purple
mark _grey(S)
scan(s)
collect_white{5) -
else if control_set # empty
ge_contre 1_zetc()

Algorithm 3.16 Ling’s Eama-u:mmm EEW mimmw.

Mark_grey traces the sub-graph below its calling point and removes reference counts that
are due to pointers internal to this sub-graph (see Algorithm 3.17 on the-next page). Cells are
painted grey to.ensure termination.

Any non-zero reference counts in the grey sub-graph can only be dus to external references.
Scan searches for these, calling sean,_black 0 paint the transitive referential closure of such

_ external references black (see Algorithm 3.18 on the facing page). Cells with no external
féférences are painted white to indicate Lhat they may be. garbage. White cells may_be
repainted black by a later stage of this scan.

CYCLIC REFERENCE COUNTING . 65
mazk_grey(S) = .
if colour(S} ¥ grey .
colour{S) = gray -
for T in Children(S) ' ST
RC(*T) = RC(*E)- ~ 1
mark_grey (*T)

Algorithm 3.17 mark grey removes reference counts due to internel pointers.

$can_black paints the sub-graph below its calling point black and restores the reference
counts of each cell visited to take into accouat any active pointers internal to the sub-graph
that had been removed from its count by mark_grey (see Algorithm 3,19 on the next page).

Finally ¢ollect_white recovers the white eells in the sub-graph and returns them to the
free-list (see Algorithor 3.20 on the following page). Although the code below implements
collect_white by a traversal, following pointers, it could equally be done by sweeping the
entire heap linearly. If the sub-graph of white cells is sufficiently large, 2 sweep may be faster
than a recursive {race. :

An example

Since the operations New and Update are jargely the same as in the standard refercnce

connting algorithm we will only demonstrate how the deletion of a pointer causing the
isolation of a cycle — precisely the situation in which standard reference counting Tails —
leads to collection of the cycle ABC. ,

Suppase the pointer from root 0 2 is deleted in Diagram 3.8 on page 67. Since A ig:shared,
it will be painted purple and placed in the control set (not shown). Suppose further that after
further allocations it becomes necessary to invoke the garbage collector. Marlk grey is called
at the purple 2 to remove the effect of internal pointers from the graph ABCDE (see Diagram 3.5
on page 67). Notice that if a pointer to A had been copied, or one of its fields overwiitten, even
with a non-pointer, 2 would have been. blackened and so gc_control_set would simply
pop it from the control set and try the next entry. | ,

Now scan is called starting at 2 to check wlhisther components of the a..mbmmmﬁ closure of

— R SCANL[S)—= .« e i e e © e e
) if golour({sS) == grey
if RC(S) > O : - —external references
scan_black(S) .
else

colour(S) = white R
for T in children(S)

scan{*T} - i

_ Algerithm M.Hm The second phase of Lins’s &moHEuu.H.

. i

" 66 REFBRENCE COUNTING

]

scan_black(s)
colour{3) = black
for T in Children(S)
kR RC{*T) = RC(*%) + 1 -
if colour (*T) # black
scan_black(*T}

Algorithm 3.19 sean_blaclkrestores reference counts decremented by scan_grey.

2 are completely isolated from root. An external reference is found at D — Rc(p) is one—
provoking call to scan_black. The graph before scan_hlack is shown in Diagram 3.10.
Notice how the refersnce count of = is wrong. It is restored by scan_black which also
corrects the colours of b and E (see Diagram 3.11 on page 68). Collect _white is now
called from 2 and the whole cycle asc is collested. The sub-graph below b was transitively
connected to root through & path that did not involve the deleted pointer and thus will be
preserved with correct reference counts.

Coritrol sér stritegies

Lins's algorithm is lazy in the sense that the mark-sweep garbage collection is performed

e e i TR T iy 4 P T S e) e S o=

o demand; Difféiént siialogios dan be éasily incorporated o manage the conirol set. The -

simplest would be to run the collector only when the fiee-list is empty or when the control
structure is full. Alternatively, the queue could be scanned after every so many allocations;
when the size of the Eree-list drops below a certain size; or whenever some heuristic indicates
that the heap may be anmmm?m:\ fragmented. The set can be ireated as a LIFO stack or as
a FIFO queue, implemented as a heap-allocated list, a bitmap or as a fixed size array; either
the whole set or only a part of it can be processed each time, Effects of different management
steategies (for a trivial program) are shown in [Lins and Vasques, 1991} They found that,
for a large enough control set, scan_black never ran. The garbage collector only dealt with
garbage cycles 50 no unnecessary calls to the garbage collector were made.

Like generational garbage collection, Lins’s method works best when side-effects are

* comparatively rare, for example for programs written in a functional style. lts success also

rests o the assumptions that the great majority of nodes are uniquely referenced and can
be reclaimed without resort to garbage collection; and that the sub-graphs: traversed ars

sufficiently small to make the garbage collection delay small. The drawback is that Lins. ...

collect_white{s5) =
if colour(s) == white
colour (S) = black
for T in Children(s)
collect white{*T)
free(8)

Algorithm 3.20° collect_white sweeps white cells into the free-list.

67

Diagram 3.8 Tnitially, all cells are black.

traces garbage whereas standard mark-sweep algorithms trace only active cells. Unfortunately,
implementations of functional programming languages generate copious amounts of garbage:
collection rates of over 80 percent of the heap are common. No thorough comparisons of
eyclic reference counting against other methods have been carried out,

ﬂr:.mnov:mﬂw algorithm revisived

Although Christopher’s algorithm can be thought of asia special case of Lins’s algorithm, in
which the entire heap is the conirol set, it is nevertheless interesting in its own right. First of
ali, it was designed to provide automatic memory management without any support from the
compiler. Secondly, since the status of entire heap is in question, Christopher uses three linear
sweeps of the heap rather than three traces of the transitive closure of each deleted pointer.
Linear sweeping is cheaper than tracing graph; it also has a more predictable and hence
better virtual memory performance than tracing. The reduced cost of sweeping compared

LY

" Diagram 3,9 The graph m&nw mark_grey.

root

Ummwn.mnn 3.10° The mHmum just before mnmrluu_.m.nwmm called.

with scanning may. on_uzwmmc the cost of sweeping the heap four times, depending on the data

_ structures.inquestion. Christepher’s.algorithm is also interesting in that it uses np exira space;
although the count-restoration pass is recursive, the resumption stack is threaded through the
objects’ reference count fields.
" TheE algGrithin Operates in three phases, ke Lind’s. Befiiie w Hhark-sweep, all references due
to pointers internal to the heap are deducted in a linear sweep through the heap, equivalent to
Lins’s mazrl_grey traversal (shown on page 65), so that only objects directly pointed at from
outside the heap have non-zeroreference counts. These cells and their descendants are marked
in the second pass akin to Lins’s scan (shown on page 65) by having a special value written
into their reference count field. The heap is then rescanned and any object whose reference
count is zero is placed on the free-list while any marked objecis have their reference connts

restored.

Diagram 3.11L The graph before collect_whita ms&m@m iﬁﬁm nnwW info ‘.&m free-list.

e , REFERENCE COUNTING

[SSUES - - owo- o w 69-
--3.6 Issues to consider

At the beginning of this chepter, we noted four deficiencies of reference counting; the delay to
free garbage pointer suchmes recussively, the high overhead imposed on ww_mww&mumwwwy%m(
on pointers, the space required for the reference counts, and the inability o reclaim garbage
cycles. Given these shortcomings, and especially the second, why might one choose to use
reference counting rather fhan a tracing garbage collector? T
Many programmers eschew garbage collection, by which they useally mean tracing garbage
collection, on the grounds that it is prohibitively expensive. Although reference counting does
aot need to trace data structures in the heap to-determine which objects are live and which
are not, in principle at least it does require that adjustments be made to celt reference counts
whenever pointers to heap objects. are copied, assigned to or deleted. The tatal execution
time overhead of reference counting iy generally accepted:to be greater than that of tracing
techniques, although compile-time optimisations may reduce this deficit. Nevertheless, these
same programmers often choose to use reference counting as a storage management method
of last resort for problems that are too complex to solve by explicit deallocation. Apart from
lack of awarenass of modern garbage collection technology, there may be four reasons for this

apparently perverse choice.

Ease of m_...__u_mq:m:»mmc:

In the first place, Teference counters often appear to be easier to implement than ‘tracing
collectors. For example, assignments to pointers can be replaced by macros which also adjust
reference counts; in object-oriented languages ‘smart pointers’ can be used (see Chapter 10).
The ease of implementation is especially trueif the programimer cannot determine all the
roots of the computation — maybe the code is part of a library to be used in environments
over which the programmer has no control, or maybe the programming language does not
provide automatic storage management. ,

Control, optimisation and correctness

A second attraction of reference counting is that it can pravide programmers with total control.
The cost of reference counting operations need only be paid for those objects for which
mannal deallocatioh is believed to unreliable or impessible. Furthermore, reference counts can
be optimised away where it is believed to be safe to do so. However, one price to be paid for
eagy implementation-is the difficulty-of guaranteeing correciness- of code that uses reference
connting, If a coun is not incremented when it.should be, storage may be freed prematurely;
if it is not decremented at the right tims, a space leak will occur. Not only does the close
coupling of reference counting operations with ‘useful’ code make development more error-
prone, it also make maintenance of reference counted code more difficult. Unorthedox type
systems may offer reliable, but still efficient, methods of optimising reference counting,

70 REFERENCE COUNTING

Garbage collection delay

The third atiraction of reference count is that its operations are interleaved with those of the
mutator, The overheads of reference couating are distributed throughout the computation.
However, the choice between techniques is not this simple. Chapters 7 and 8 describe how
generational and incremental garbage collection techniques can be used to bound the length
of these delays. Reference counters can also reclaim storage as soon as it becomes garbage.
Immediate reuse of space offers possibilities of om_EEwmnon such as in-place update, and
simplified finalisation for object-oriented languages.

Space overhead

Space for a reference count is required. in ¢ach heap object’s header. The. relative space
advantages of reference counting and mark-sweep are application dependent. In the case
of a Lisp cons cell, a pointer-sized count would impose a 50 percent space overhead; for
larger objects, the overhead would be less. This cost should be weighed in the light of
reference counting’s ability to operate successfully in confined heaps. On the other hand,
under mark-sweep garbage collection, the interval between collections depends on.the amount
_of space recovered. If the residency of the program is_a substental propartion of the heap,
a mark-sweep collector will thrash. Mark-sweep therefore requires some headroom in the
heap to operate efficiently. In practice, a reasonable overhead might be at teast 20 percent for

moderately large Heaps. Copying collecions téquire double the adiress space of mark-sweep

collectors.
We concluds by summarising the properties of the algorithms presented in this owmm.ﬁb

particular, we identify the essumptions upon which they depend and the oo;mmﬁmmunom of their

use.

Recursive freeing

‘Weizenbaum's algorithm (page 44) removed the delay caused by the recursive freeing of

garbage cells. Since it simply moved the responsibility for scanning garbage cells for pointers

from delete to New, it is as efficient as the staridard algorithm. Now delay is only incurred

by New and is dependent on the size of the object at the head of the {Tee-list. The disadvantage

of Welzenbaum’s method is that oné of reference counting’s advaitages — the possibility of
- immediate rense of space — is lost.

Mutator overhead:

The overhead of reference counting on Imutator operations can be greatly reduced by

Deferred Reference Counting, No reference count manipulations are performed on the locat

or temporary variables. However, there are three costs to be paid. First, Deferred Reference

Counting trades time for space: room must be found for the ZCT table. Secondly, although

the cost ta stack- and register-allocated veriables is diminished, the cost of updating other

global variable is increased. Finally, g nwm_umqa once mnEb Hm no longer detected immediately it
" becomes.unreachable. ST - v

mechanism can reduce the frequency with which it is necessary to call the collector.

ISSUES

Space for reference counts

We noted above that the space overhead of reference counting is less E.mm 50 percent if
- pointer-sized reference count fields are used. I practice, smaller fllds Gonld be used by most
applications without overflow. Limiting the size of reference count fields to a few bits saves
space and postpones qmuwmmo collection but.the need to check for overflow increases the cost -
of copying and deleting pointers. Once counts are stuck, they can either bé: ignored (a: space
leak) or a backup tracing collector must be used to reset them. In this case, time has been
traded for space: the assumption is that side-effects mEEE be rare. Again, En m_noH_Q.Q of

immediate detection of garbage is lost.

~ Locality of ,n.mmmwm:nm

A particularly attractive optien is to use own-v:n Teference counts Emnma in the @oEﬁnn to a
heap cell rather than in the heap cell itself. Oma-bit reference counts reduce the overhead asng
overflow testis necessary and no arithmetic is performed on counts. Storing the zn.p.ﬁ?gowm bit
in pointers requires an exira instruction to test uniqueness but avoids the memory fetch-which-
may more than offset the cost of the extrd instruction, The drawback of ode<bif countsis that -
they may easily become stuck, and can only be corrected by 2 collector. .Mrm mmmsEmﬁoP on. . ..
which one-bit reference counting rests is that sharing is rare. . s e
If a tracing garbage collector has to be used to restore stuck reference counts, why =oﬂ Emw
use the tracing collector? There seem to be-two reasons, It is likely in any case that+ ttacing
collector must be invoked periodically to collect garbage cycles. On the assumption that the
delay imposed by the tracing collector is disruptive to the user of the program, it should be

invoked as little as possible. Using limited-field reference counts as the primary. reclamation:

Cyclic data structures

The most difficult: problem faced by Hmwnnmnnm ooEwnEq systems is :os. to reclaim cyclic
garbage. One solntion is o reguire the programmer to break pointer cycles explicitly’ when
objects become garbage, but this begs the question of how garbage is to be- identifiéd. and
which pointeris to be deleted. The second solution was suggested above: to invoke a backup:

wacing colléctér periodically o reclanm garbage cycles. However, othel golutions rm«d been

m_ncmOmnm to recover eyclic garbage withouthaving to meet all the requirements mmEmbnmn_ by

.. fracing collectors (snch_as_locating all roots)..None of these have- been EpmeEwEomrE -any
significant systems to the knawledge of the authors. If cycles can only bo Q.nﬁm@ in ﬁHnEoEEn

circumstances [Friedman and Wise, 1979], or restrictions are placed on programming style
‘[Bobrow; 1980; Hughes, 19871, it may be possible to treat the cycle as a ﬁ&c_m. ie. E:U a
single reference count, and delete it atomically when the count drops to'zerq: -

Alternatively, the presence or otherwise of pointers to! cycles from live data can be detected
either by scanning the heap [Chrisiopher, 1984] or by traversing the- sub-graph:- headed-by ,
nodes suspected to be garbage [Lins, 19922]. In both cases, trial aanﬂBmpB are made to-the
reference no_.EH of the descendants ow cells onooanﬁmnnn Since both Eﬂwomm trace vmhm om , I
the heap,

+-

T2 , REFERENCE COUNTING

algorithm traces shared garbage rather than live dafa as the standard mark-sweep collector
does (see page 26). Lins’s algorithm therefore depends on sharing being comparatively rare,
and thers being few side-effects since Update is more sxpensive than the standard version.

3.7 Notes

Reference counting was originally developed for Lisp by George Collins [Collins, 1960].
Although generally recognised io be less efficient in terms of overall execution time than
techniques based on mark-sweep or copying, it has nevertheless been used as the primary
method of memory management by many systems which could not tolerate garbage collection

_ delays, such as Smalltalk, Modula-2+ and SISAL, as well as by awk and perl (see, moH
example, aoE_uqu and Robson, 1983; Rovner, 19857 Cann and Oldehoeft, 1988; DeTreville,
1990al).

The first suggestion for dealing with pauses due to recrsive freeing was by J. ﬁ@mgcmg
[Weizenbaum, 1963]. Hugh Glaser and P. Thompson extended Weizenbaum’s idea. by using
a To Be Decremented stack [Glaser and Thompson, 1987]. The TBD stack stores references
to all cells that were a target of a delete instructon, rather than just those that are no longer
accessible to the mutator, All decrements are left:to be done by New. One advantage of this
method i3 that all the reference count decrements for'a given cell can be done at once. Glaser

- —-and-Thompson-suggest-that the- TBD- stack. mighi-be-implemented -by--a-separate -garbags
collecting coprocessor.

One of the major drawbacks of reference counting is the overhead that updates place on
the user program. These can be significantly reduced by Peter Deuntsch’s and Daniel Bobrow’s
deferred reference counting techaique [Deutsch and Bobrow, 1976]. The Deutsch and Babrow
algorithm was originally designed to save space as well as the transaction fime overhead by
not storing reference counts in nodes and by deferring reference counting to a convenient
time. All transactions were stored in sequential files and three hash tables were used. The.
ZCT contained cells with zero reference count, the MRT those with reference counts greater
than one, and the VRT recorded those variables holding pointers into the heap. The heap is
then partifoned into those cells with reference counts greater than cne (MRT), those cells
with reference connts equal to one (not in MRT or' ZCT), live cells with reference counts
equal to zero (ZCTONVRT), and dead cells (ZCT-VRT). Object creation, pointer duplication
and deletion operations manipulate these tables and periodically the VRT is recalculated and
the ZCT and VRT scanned to frec objects.

It may be possible to redice the run-time cost of reference counting by compile-time

optimisation. If the compiler can determine when a cell is no longer needed, it can emit
instroctions to reclaim the cell and thus aveid reference count manipulations or garbage
collections. Reference counting within the compiler is a nafural way to do this; the interested
reader is referred to [Hudak, 1986; Brus et al., 1987; Cann and Oldehoeft, 1988; Hederman,
1988; Baker, 1994).

Several anthors have taken Eﬁaa size reference counts to their lo gical conclusion by c.m:um
just a single bit. O:@-_Hﬂ reference counting concentrates reclamation efforts on the unshared
o_u._mna that Qﬁﬁmﬂ% make up the majority of Em heap [Wise and Friedman, 1977; Wise,

- Brownbridge’s algorithm.but his correction introduced termination m_noEmEm _“ma.wnn_ med :

_ NOTES ‘ , . 73

1993]. Will Stoys; T.J.W, Clarke and Arthur Norman showed how putting the reference count
bits in pointers rather than cells could also reduce memory fetch costs [Stoye eral., 1984]. A
similar approach is taken by Weighted Reference Counting algorithms for distributed garbage
collection where is it important to reduce communication [Bevan, 1987; S@.ﬁmoﬂ and ﬁ\.pm on,
1987]. Parallel implementations of logic langnages have also re-awakened 1 ESHamn in oun w:
reference counting, for example _HOEWE\EHN and Kimura, Gmd .,y G

Several special purpose architectures have used hardware to assist memory Emnmmwﬁouﬁ
[Baker, 1578; Moon, 1984; Lieberman and Hewitt, Gmm Explorer, 1987, 1987: Ichnson,
1991a; Johnson, 1991b]. Cther researchers, notably Kelvin Nilsen and David Wise, argue ‘that
active memory units should provide garbage collection, thereby relisving the @Bnmmmon of

this burden almost completely [Nilsen and Schmidt, 1994; Nilsen, 1554b]. Active memory_ .

uniis that use reference counting as the primary memory management mechanisn and non-
recursive merk-sweep for collecting cycles have been designed and vEHm _uu. Wise mu& Em
colleagues [Wise, 1983; Wise e al., 1994].

The second major challenge to reference couating is the problem of reclaiming o%&am mﬁwﬁ
pointed out by Harold McBeth [McBeth, 1963], although the frequency of cycles is lan mdmmn
dependent [Hartel, 1988]. The most common, and ?ocmﬁw the most efficient, solution. to.-
this problem is to use a hybrid reference counting and garbage collecting memory manager
[Weizenbaum, 1969], if the consequent pause is acceptable. Several researchers haviitackled -
the problem of managing cycles without global garbage collection, either iora: Euadmm.wl
dependent context or more generally. Daniel Friedman and David Wise, and John Hughes:-
noted that cycles only occur in particular ways in pure functicnal languages [Friedman and
Wise, 1979; Huglies, 1987]. Friedman and Wise observed that reference counting ﬁcﬁa be
viable in the presence of cyeles if those cycles were created and destroyed as a m_nm_n unit..
Daniel Bobrow stiggested that all nodes should be assigned to groups by the programmer and
that these groupstather than individual nodes shauld be reference counted [Bobrow, 1980]. In
this way intra- but not inter-group cycles could be reclaimed. Hughes noted that this would be
most effective if Bobrow’s groups were precisely the strongly connected compenents. (SCCs)
of the graph. Maintaining this partition would be onnmnmuw computationally EmmmmHEm _uEn it
might be appropriate for graph reducers. B

David Brownbridge and others investigated the possibility of distinguishing ; cycle-
closing pointers from other pointers [Brownbridge, 1985]. Jon Salkild found an emdr in

Independent work by Betsy Pepels, M.C.JD. van Eekelen, and M.T. Plasmeijer [Pepels et
al., 1988], and by Simon Thompson and Rafael Lins [Thompson and Lins, 1988), arrived

“'at similar algorithms which restored termination. Pepels and her colleagues also provided

a proof of the correctness of their algorithm. Unfortunately these corrected algorithms are
prohibitively inefficient in the general case. Tom Axford has also used a strong/weak pointer
scheme to reclaim cycles in functional languages [Axford, 1990], His meéthiod requires that
each strongly connected component of the graph is reachable through exactly one external
pointer. No formal proof of correctness is given. :

Rather than excluding ths contribution of cycle-closing ﬁoﬁmoﬁ ‘throughout the
computation, Thomas Christopher and others sought to count the contribution of thess
pointers %nm.B_nm.:% [Christopher, 1984]. Christopher’s algorithm was: am&mnnm to Eoémw

dynamic Bmﬁo& ‘management .mom _mnmzwqmm such 25 momn.mn “which do- not Eoﬁ&a ‘such

4 REFERENCE COUNTING

facilities. Because cyclic reference counting uses only information stored in the nodes of

the graph, his algorithm can be used in *hostile’ environments where lack of root information -

prexents more efficient methods of managing the heap (buf see [Boehm and Weiser, 1988]).

_ Christopher’s algorithm has been rediscoversd several times [Martinez er all, 1990,
Kennedy, 1991; Vestal, 1987]. The Martinez et &/, algorithm was very insfficient: the collecior
was catled every time a pointer was deleted. Its efficiency was improved by making the
collecton lazy: deleted references were pushed onto a control stack [Lins, 1992a]. Some
limited measurements of the efficacy of his lazy algorithm are presented in [Lins and Vasques,
1991]. :

Although reference counting is no longer the algorithm .of choice - for sequentiaf
implemeatations, it has continued to arouse the interest of researchers working with: parallel
systems since reference counting does not require synchronisation between user program and
garbage collection threads. Paralielism may require locks on each object’s reference count, but
locking facilities are usually already present (at a cost). Experience of multi-threaded systems
has shown that garbage collection is extremely difficnlt to get right (see for instance [Dijkstra
et al., 1978} for an explanation of the subtleties involved). The best known parallel reference
counting system is probably John DeTreville’s collector for Modula-2+ [DeTreville, 1990a].
Other reference counting mhnEHmMEmm.m ‘have been prapased by [Amamiya er al., 1983; Goto

et al., 1988; Lins, 1992b]. The Kakuta, Nakamura and Jida architecture for parallei reference
counting includes a scheme for cyclic reference counting although it is unable to guarantee to
- ———Treat-cyclic-structures properly-[Kakuta et-al;;-1986]. - - L

Reference counting is even more attractive for distributed systems since its communications
are local to the objects invalved in an update [Vestal, 1987; Eckart and Leblanc, 1987; Ichisuki
and Yonezawa, 1990; Mancini and Shrivastava, 1991; Lester, 1992; Plainfossé and Shapiro,
1992; Birrell et al., 1993]. One problem for distributed reference counting is that of ensuring
that count manipulation messages arrive at their destination in the right order. If a decrement
message overtakes an increment one, a node might be prematurely reclaimed. C-W. Lermen
and Dieter Maurer solved this by a protocol of messages and acknowledgements [Lermen and
Maurer, 1986], but more elegant techniques have since been developed, orused, to reduce the
need for communication substantially [Bevan, 1987; Watson and Watson, 1987; Corporaal
et al., 1990; Glaser et al., 1989; Foster, 1989; Goldberg, 1989; Piquer, 1991]. The question
of reclaiming cycles that span processors has been addressed by [Gupta and Fuchs, 1988;
Shapire et al., 1990; Lins and Jones, 1993; Jones and Lins, 1992; Lang et al., 1992], -

T T T éhommously; As far a8 we are aware, no-empirical comparisons of cy

Mark-Sweep Qmmvmmm -

 Collection e

In Chapter 2 we considered simple recursive &monn_uﬁw for reference counting, Eﬁw.mémmw. .
and copying garbage collection. In Chapter 3,. w& saw how some of m.ﬁ; anmﬁnn,oﬁm om, :
reference counting could be removed or at teast ameliorated. In this chapter and. O:mmﬁw 6, we
examine more efficient algorithms for the two styles of tracing garbage collector mnﬂ compare
. their relative merits. . R

4.1 Comparisons with reference counting L
Mark-sweep mﬁwwmo collection has several w&«.mﬂﬁmﬂ over anmnmnnom counting. For many
applications,. the most important of these is that no special action needs to be taken to
reclaim cyclic data structures. Although techniques exist for handling nwoym.m in m,nnmonau.on‘
counting framework (see. Section_3.5_of Chapter 3), these are either restricted to-special
cases (implementations of pure functional programming languages), rely on. programmer
declarations or programming idioms, or are likely to increase the cost.of pointer deletion

techniques with other methods of garbage collection have been published. On the oEmH hand,
several systems that use reference counting as the primary method of mﬁonmmw‘Emnmmnﬂnun.Ew.o
use backup mark-sweep garbage collectors ta reclaim cyelic data mn:ogam?.m.rgoaﬁmlw%
[DeTreville, 1990a]). S . S
Reference counting is used primarily because it recycles memory instantly- and
incrementally, or because it is simple to implement and easy for- progiammers to scontzol,
Hach object can be reclaimed as soon as the last pointer to it is deleted and user programs are
not delayed significantly. Tracing collectors such as copying or Emhw..mﬁnov, noﬂnnmonm En.ﬂ
" {nferript the clisht program while active data structures are marked-Either- the-survivors will

-

clic reference counting—- -

78 . MARK-SWEEP GARBAGE COLLECTION

gef{) =
mark heap()
sweep ()

mark_heap() =
mark_stack = empty
- for R in Roots
'mark_bit{R) = marked
push (R, mark stack)
mark({)

mark() =
while mark_stack ¥ empty _
N = pop{mark_stack}
 for M in Childrea(®} - I L
if mark_bit{*M) == unmarked
mark _bit{*M) = marked .
if not atom(*M)
push (*¥, marlk stack)..

e Algorithm 4.1 Marking with a resumption stack. .

== -jfwasnot an-atom: An alternativecoding might mark nodes when they are popped from the-

stack; in this case mark_heap would not set mark bits.

merk() =- v v T e
while mark_stack # empty :
N = pep (mark_stack)
(if mark_biti{N) == unmarked
mark bit({N) = marked
for M in Children{N)
push (*M, mark_stack)

Algorithm 4.2. Alternative marking algorithm.

Do these two meoEmDEmonm differ? The answer is yes. The method of Algorithm 4.1
traverses each node, stacking branch points exactly once, whereas. the alternative

"~ ~Algorithm 4.2 traverses ‘éach-@re of the graph once: The mumbeér of dics-{na tree is one Iess

than its number of nodes, but general directed graphs usually contain more-arcs than nodes.
Hence greater stack depths can be expected from Algorithm 4.2 than from Algorithm 4.1.

An obvious deficiency of either algorithm is that they push the last unmarked child of a
node onto the stack only to pop it immediately. This can easily be avoided by following one
child, having pushed: the others. The branch-choosing strategy that will minimise the depth.
of the stack produced depends on the natute of the problemi. However, empirical studies help
here. Lisp lists are comprised of cons nodes or nil, Each cons node contains two pointer fields,
the car which points to-the head of the list and the edr which points to-the 1est of the list. Thus
the list of the three'natural numbers, (1 2 3), might be represented by the structure shown
in Diagram 4.1 on the next page. .

USING A MARKING STACK , 79

car | edr

3 NIL

Diagram 4.1 The list (1 2 3.

Clark and Green- found that, for Lisp u.EEmEmEmmm:m, cdr-fields were. more Emznéﬁn

as likely to point to non-atomic objects as were car-fields [Clark and Green, 1977]. Thus
shallower stacks are more- likely to be obtained by stacking pointers to unmarked cdr nodes' -

and following ummarked car pointers, rather than vice-versa. - -
Algorithm 4.1 on the facing page analyses the mark-bits of the children of the cutrent
node before pushing the children onto the stack. Its effectiveness depends on the likelihood
of discovering nodes that are marked. The frequency of shared objects in the: heap. is
implementation- and problem-dependent, If the structure being marked is' a tree; each node
will have exactly one parent, and hence no marked nodes will be discovered: the analysis
will produce no benefit. On the other hand, the structure might contain shared nodes ifitis a

general graph orhas a several roots (for example, local variables on the machine stack). Such -

analysis can be extended arbitrarily far, for example to grandchildren as well as children, and
Kurokawa has suggested that such analysis might reduce maximum stack depth by 50 percent

in a Lisp implementation [Kurokawa, 1981]. However, it is more than likely Emﬂ E.m_.mom.w of

this more complex-analysis will-outweigh-any-potential ‘gaing. —- e =R =
A graph may contain very large nodes. If these do not contain pointers (for. example,
bitmaps representing cached windows), they will not need to be-stacked. Butif a .—_..Emm. is
a large structare of pointers (an array, fof instance), then pushing all its: children is likely
to cause the stack to overflow. The Boehm-Demers—Weiser mark-sweeping conservative

.garbage collector for-C and Ci+ (see Chapter 9 where we discuss .conservaiive: garbage

collectors) handles large objects by pushing their constituent wo?ﬁ%. oritd the stack in simal
groups in order to reduce the chance of overflow [Boehm and Weiser, 1988], Their marking
stack holds pairs of pointers, pointing to the start and end of each object pushed onto the stack

(see Diagram 4.2 on the next page). At each iteration of the main marking loop, the object on
the top of the stack is examined. If the difference between its start and its end is small (less

- than 128 words), it is popped from the stack and its children marked in the usual way. If the

object is large, only the components of the first 128-ward portion of the object are marked,
and the stack entry is adjusted to point to the rest of mwn abject. !

e e aemirrin o s

‘80 MARK-SWEEP GARBAGE COLLECTION

Em:n stack

remainder
of large
obfect

I_._._mmlm:n_

Diagram 4.2 The Bochm-Demers-Weiser collecior marks large objects in portions. (o
reduce the risk of stack overflow.

-Stack-overflow - - --

The predicament of marking is that garbage collection is needed precisely because of lack of

-—-mermory available-to the-useful part of the computation, but auxiliary stacks require-additional
space. Large or pathological problems may cause the garbage collector itself to un out of
space. A benefit of an explicit marking stack is that overflow can be detected easily and
recovery-action taken, Overflow can be detected in two ways. The simpler 1§70 use dn in-line
check in each push operation. A slightly more efficient method is to perform a single check by
counting the number of pointers contained in the node popped from the stack at each iteration
of the marking loop (this type-information may already he necessary for pushing pointers}, If”
operating system support is available, an alternative method that réquires no stack checks is
to use a guard page [Appel and Li, 1991]. The last page of the stack region is set to be write-
protected so that 2 memory protection fault will be triggered if mark attemps to push a stack
entry onto this page. .H._._n exception can be trapped by the garbage collector and appropriate
action taken.

The bencfits of this approach depend on the likefihood of stack overflow-and the-cost of
handling exceptions. The software test is likely to cost an ALT instruction and a branch for
each node pushed onto the stack. Trapping a memory protection violation is expensive. The
‘precise cost is highly machine and opérating-&ystein dependent, but Zorn Tound that thé tithe
to trap a write protection fault for systems based on RISC processors varied between 0.3
milliseconds for a MIPS-based DECStation. 3100 to 1.8 milliseconds for a SPARC-based
Solbourne. Series 4 [Zorn, 1990a). These are equivalent (o tens of thousands of software
overflow tests. Which methoed is more effective will depend on how many nodes are expected
to pushed onto the stack before it overflows, This in turn depends on the size of the region
allocated to- the mark stack and the shape 0f .the structures being marked. However, ‘this
approach has pitfalls which we exarnine on page 1235 of Chapter 6.

Knuth handles overflow by treating’ the marking stack circularly, stacking pointers to nodes
modulo A, where k is the fixed size of the stacic ﬂﬁEE 1973, Algorithm C, mman A.GH This

" ot robust as it is guite possible fhatne additional spaceiwill. be: found on fhe stack, Its suceéss

POINTER. REVERSAL S ' . 81

. . means. that older branch-point information on the stack is overwritten when the stack index

grows largerthan . Consequently, the stack may become empty before the marking process is
complete as the live graph below a nade whose pointer on the mark stack cmm been o<o§ﬁ.wau
may not have been marked.

Knuth’s solution to this problem is to scan the heap when the stack coooﬂmm empty, Hoo_num
for marked nodes whose contents poiit ic unmarked hodes. Marking is resumed from Eo
children of these nodes in the same manner as before, EH; the stack is emptied once more.
Bveninzlly the heap inspection will reveat that there are no such nodes — marking is then
complete. The scan need not always siart {rom the bottom of the heap. If'the forgotten nede
with the lowest address is remembered, the next inspection can start from either this location
or just after the last address discovered by the previous inspection, whicheveris the lower.

The last scan of the heap is unnecessary if the collector simply notes whether overflow has™
occurred or not. The Boehm-Demers Weiser collector Hoes exactly this [Boehm ppm.ds.ﬂmwh N
1988]. While the stack is full, new entries are simply dropped. When the stack bécomes
completely empty but the collector knows that it had overflowed, the old stack is téplaced- = ~=~
by a new one of twice the size in order to reduce the likelihood of further overflow. The ‘
collectar then searches the heap for marked objects with unmarked children, and Em&ﬂbw I
continues from each of these children.

The difference between the Knuth and the momeiUoEonléEman marking algogithms.is’.
that Bnuth treats the stack circularly, whereas Boshm et al. stop pushing nodes ontd-a m:; .
stack. Tt is not clear what the effect of these different strategies will be, although one.may
speculate that Boehm’s stack may have bettercache behaviour. :

Sharing of heap nodes may mean that some:nodes on the mark stack may UBS children, all
of which are marked. There is no point in keeping such _Hmbow%oaﬁ in the stack -— they play
no useful 16le. Kurokawa suggested handling stack overflow hy removing such unnecessary
itemns from the stack [Kurokawa, 1981]. On overflow, his Stacked Node Checking algorithm
removes nodes from the stack that have fewer than two unmarked children. If none of the
node's children are unmarked, that stack slot is deemed to be empty and is squeezed out by
sliding up the next useful entry. If exactly one child is unmarked, it is marked and a search fora
descendent with two or more enmarked children is commenced from that point, marking each
node it passes through. The stack slot is then overwritten with a pointer to that descendant,
should it exist, If it does not, the stack slot is marked as empty. At the end of this process,
every slot in the stack will contain-a-root-of-two or more unmarked sub-graphs. Kiitokawa
claims that his method is effective in practice and that the stack clearing process is.chieap, as
the work done hy its searches must be done in any case. Against this, the algorithm is clearly '

depends on finding sufficiently many nodes that have been marked already, i.e. shared nodes,
to make the cost of squeezing the stack worthwhile. However, empirical studies suggest Ewn
vely few nodes are shared (at least in Lisp and functional languages [Clark and Green, 1977;
Stoye et al., 1984; Hartel, 1988)). If it is to be. :monr Wﬁow?__w 5 algorithm Eﬁn be supported.

by a safe, last-resort algorithm.

82 . . MARK-SWEEP GARBAGE OOH.H.mQH_HQZ
4.3 Pointer reversal

So far we have seen techniques for reducing the risk of stack overflow and algorithms: for
recovering from such overflow. It tumms out that it is also possible to mark arbitrary graphs in
linear tims without using an unbounded amount of additional space. We now turn to a class
of algorithms developed independently by Schorr and Waite {Schorr and Waite, 1967], and by
Deutsch [Knuth, 1973, Exercise 2.3.5.8].

Any efficient marking process must record the branch-points that it has passed througk. If

an algorithm is to operate in constant space, this list can only be kept in the nodes of the data
structure being tracéd, One solution, which we immediately reject as wasteful of space, is to
use an additional field in each node to store a back-pointer to the previously marked node. The
only alternative is to store such back-pointersin a pointer field ¥isible to the user program.

The key to these constant space marking algorithms is the notion of pointer-reversal, As
the marking process traverses down a sub-graph it ‘reverses’ the. pointers that it follows: the
address of the parent node is placed:in one of the pointer fields of the node currently being
examined. As the trace-ascends the graph, the original values of all pointer fields are restored.
In effect, these algorithms store the mark siack in heap nodes on the path hetween the root
and the node currently being marked.

“Weshall firstconsider the case when all branch-nodes are binary: each non- HonEn node
contains exactly two pointer fields, which we shall call left and right. Later we shall extend

... the algorithm.to.cover variable-sized:nodes, - — =z = - v mmz = o e

The Deutsch—Schorr—Waite technique overwrites. the lgff and then the :m_mm mo_n_m om wmow
node visited with a back-pointer to the parent node. At the first visit, the node is marked and
the leff field is replaced with the address of the parent. The trace:continues from: the old vaiue
of the lefi field. At the second visit, the parent’s address is moved to the right field and the
original value of the lef? field is restored. The trace continues from the old valuc of the right
field, Atthe third and final visit, the original value of the righr field is restored and the process
reireats to the parent node, whose address was stored in that field..

The algorithm can be concisely described by a.finite state machine (see Diagram 4.3 on
the facing page). The machine has three states: it is either advancing down a left sub-graph,
switching to the right sub-graph, or retreating. The advance-is halted by meeting either a
marked node or an atom. The retreat moves back to the first node that has not had all its
sub-graphs marked, and switches to advance down the next sub-graph,

At each visit to a node, the marking algorithm must be able i determine which uoam it

should visit next. The algorithm needs to know whether a node is being visited for the first -
time, or whether it is being revistted dfter oné 8f7its sub-graphs has been marked — and if so

which (if any) sub-graph should be marked next. -

The node is being visited for the. first time if aﬁ Emnn c: of the node is not set. On the next
two occasions, the marlkebit will be set but the algorithm must be able to decide which pointer
field to replace, the lgfr-or the right. An additional flag-bit is required in each non-atomic node
to indicate whether the parent pointer is stored in the left field (the fiag is not set) or the right
field (the flag is set).

POINTER REVERSAL -) . 83

: head of

atem:or
marked

internal node-

unmarked \m:mma of of sub-graph

ub-graph

Diagram 4.3 A finite state machine mo‘u.wombﬁ,-..nménmﬁ marking algorithms,

The Un:nmnrlm.uro-.?im_mm algorithm ” _ L

Three variables are used to mark the data structure @mn Algorithm 4.3 on the :nﬁ wmmau
current points to the current node, previous follows one step behind current, and mext
one wﬁm E_mmm G.ﬁnmﬁn is EEPE set to m...w root of the mﬂﬁr to be marked, and HuHmS.cﬁm

tonill
The algorithm can be thought of as operating in three _urmmam In Eo first stage, mark: monoim

left pointers, marking nodes as it does so, until itreaches an atom or 2 marked node, At each
step, the 1eft field of the enirent node is overwritten i:.._u a pointer to the previous ucmn mmom m
Diagram 4.5 on page 83)..

When the first phase cannot continue or discavers a E.&.wna node, mark sets the flag-bit of
‘the previous node and attempts to restart marking from the right node. A @mm._.:ﬁ setin.a

- node indicates that the left subgraph rooted at.the node has been marked, and that the parent

pointer has been moved from the node’s Left field to its right field. The original’ <mEo of
the LeFt field, now held in current,is restored (see Diagram 4.6 on page 853).

On the third arid final visit to this node (the flag-bit is set), the original value of Ea right
field is restored from curxent and the algorithm refreats to the parent node. This address was
heldin the right field: Thisphiase is tepeated until an ancestor node is discovered whose flag=——
bitis not set, i.e. whose right subgraph is not wmﬁgoiz to have been marked (see U_mm@s 4.7
opwmmn 86). The. m_mcdmd:. terminates when uquwcnm becomes ni.l. mmEb P

mark-bit

left i nght

s : U_._mmmwﬁ 44 A'bmary Gacanrlmnwontﬁmﬁ noder’

o e = vee e Ppreyious.. s next ..

84

mark(R) =
" done = false
current = R
previous = nil
while not done
- — follow left pointers
while current s nil
and mark_hit(current) == unmarked
mark bit{current) = marked
if not atom{current)
next = left (current)
left{current) = previous
- . e - o —_ _previaus..=.ocurrent
current = next

— retreat
while previous # nil
and flag bit{previous} == set
flag_bit(previcus} = unset
... _ . _mext = right{previous)
rightiprevious} = current
current = previous ~

if previous == nil
done = true -
ralse -0 e -
— switch to right subgraph
. flag bit{previous} = set
: next = left(previous)
left{previcus) = current
current = right (previous)
righti{previous} = next

Algorithm 4.3 The Deutsch—-Schomr—Waite pointer reversal algorithm.

Pointer-reversal for variable-sized nodes

.H._uo. Deutsch—Schor=Waite Hor&e.ﬁ can be extended to mark variable-sized um@mmw s._w .
outline a method due to Thorelli [Thorelli, 1972]. Each node contains a variable. number

of pointers plus two additional fields used only by the marking algorithm. The n-field holds
the number of pointer fields that the node contains (which may be necessary in any case or
msnoaoa in the node’s type).. The i-field is used for marking: it must be large enough to store
Emn.mahm in the range: zero to-the largest number of pointers contained in any: heap abject.
Initially 1 is set to zero for all nodes in the heap. A pseudo-root node is set up, with both i

retreat. - o -

.~ andm set to one, pointing to the root node. This node.acts as 2 sentinel to halt the algorithm’s.

The algorithm operates in the same way as Deutsch—Schorr—Waite pointer reversal but

POINTER REVERSAL

pravious

T T i "

Diagram 4.5 The mm.ébnn EE%.

increments the i-field each time it visits a node. A node is considered marked if the value
of its 1-field is non-zero. The trace then continues to the! 1 child of this node. If that child is
marked, the algorithm increments 1 again:and. proceeds to the next child in the same way. This
process continues until all the children of this node have been marked, in which case i is equal
to n, at which point the algorithm retreats to the parent node. Eventually, the pseudo-root will
be reached and the algorithm terminates. , -

- Appleby et al. describe a similar algorithm for marking implementations of Prolog based
on the WAM [Appleby er al., 1988; Warren, 1983]. Their heap consists of objects mads up
of pointer-cells, cach of which: containg a two-bit tag, two one-bit flags used for marking and
a single pointer to another pointe-cell. Their scheme has the advantage for Prolog of being
able to mark a part rather than the whole of an object, at the cost of using extra space for the
two mark-bits associated with each pointer. ”

Costs o.«.vomdnm?qm_smn.mw_

The advantage-of dogﬁzﬁdnm& algonithms is that they only require constant space in which
to operate, On the other hand, cach. node in the heap carries an overhead. For systems in

pravious

. 86 , MARK-SWEEP GARBAGE COLLECTION

! .
previous [

previous current

L. .
L]

Diagram 4.7 The retreat phase,

which all non-atomic nodes contain exactly two pointers, the cost is one extra bit per node.
For systems with variable-sized nodes, the size of the i-field is [log, mv] bits per cell, where
7 is the number of pointers the node holds. [t is sometimes possible to smuggle flag-bits into

_node header fields at no extra cost, but unfortunately not all implementations conveniently
leave room. For example Lisp cons nodes typically comprise exactly two pointer words.
 Wegbreit noted that flag-bits are required only for those nodes on the paths from roots
whose frating has been postponed. He suggested using Deutstli~Sthiorr=Waite traversal; but
storing flag-bits in a stack rather than in the nodes themselves [Wegbreit, 1972b]. This scheme
reduces the total amount of storage used in practice but risks stack overflow once more
(althongh it uses & very much smaller stack, §ay 1/32 the size of the standard pointer stack). In
the worst case, Wegbreit’s method would use the same number of bits as the standard pointer
reversal techoique,

Wegbreit’s compromise highlights an interesting feature of the Deutsch—Schorr—Waite
algorithm. Pointer reversal does not abelish the marking stack, but simply hides it in heap
nodes. Deutsch—Schomr—Waite has long been & popular exemplar for demonstrating novel
program proving techniques. The most elegant proot, in our opinicn, is due to Veillon [Veillon,
1976]. He uses corredtness-preserving transformations to turn the simple recursive marking
algorithm into the pointer-reversal Algorithm 4.3 on page 4. His technique makes it apparent
that the stack has been moved irito heap nodes. =

The performance of Dentsch-Schorr—Waite traversal is considerably worse than that of the

pointer-stack method (Schorr and Waite suggested that it may be 50 percent slower for shallow

structures), Whereas the stack algorithm visits cach branch-node at least twice, Deutsch—
Schor—Waite visits each node at least (n + 1) times, where n.is the number of pointers
the node contains. The extra visits require additional memory feiches, which is particularly
undesirable in an environment where objects. might lie on swapped-out pages, or might have
been evicted from the cache. Furthermore, each visit is more expensive than stack-based
marking. Rather than popping a node from. the stack and marking and pushing its. children,
the Deutsch—Schorr-Waite technique must.¢ycle four values (previous, current, next
and one of the pointer fields) on each visit as well as reading and writing mark- and flag~

 bits. A niinor optimigatién is to reversé pointers by using an exclusive-or operation, @, taking

advantage of the identity (A & B) @ B = A [Siklossy, 1972]. Then pointer-reversal can be

BITMAP MARKING ” : 57

accomplished by setting, for example, 1eft = previous & left.Theexpense of pointer-
reversal led _mnwoﬂ and Whaite to suggest that it should be used as a .Smﬁ_u__on of last resort,
invoked only on pointer-stack overflow. Nevertheless the Dentsch=SchorrWaite method-is
used as the only method of marking in several systems, natably the pure functional language
Miranda (which also uses it for unwinding its execotion stack) [Turner; ‘meﬂu and by Wise
for hargware garbage collection (whic must operate in bounded space) [Wise ¢z al., 1994].

4.4 m#:,.m,_u marking

So far we have assumed that mark-bits must be Emnmmwu the objects that they mark.; Many-

. systems require that objecis be tagged with their type, often represented by a small intéger in

the header of the object. In this case, space for'the mark:bit can often be:found in the header:
Bt this is not always the case. Other implementations may encode the type in the address of
the object (for example, Lisp’s Big Bag of Pages: (BiBOP) method [Foderaro ¢i al., 19851)
or in pointers to that object (see [Steenkiste, 1987]), or may represent type informationby a
pointer to an information table shared by all oljects of that type (a technique commorily uséd. -
by graph reducers [Tohnsson, 1987; Peyton Jones, 1992; Themas, 1993}, - . . =0

For mark-sweep garbage collection, an effective organisation is to store mark-bilsiin a”
separate bitmap table rather thay wasting space for headers for small objecis. A bit in the -
table is associated with each address in the heap that may contain the start of an object, If the -
table is implemented as a simple linear array of bits, the fraction of the heap that it occupies.
will be inversely proporiional to the size of the smallest object that can be allocated in the
heap. For instance; if the smallest objectin a 32-bit word architecture is a binary pointer cell
two words long, the size of bitmap would be just over 15 percent of that of the heap. The bit
corresponding to an object at address p can then be accessed by using the shifted value of p

as an offset into the bitmap.

mark_bit{p) =
retura bitmap F.NVu T

More sophisticated implementations may use separate bitmaps for each. different wEa of
object (see Diagram 4.9 on page 91). In this case; access is typically via a hash table or

search tree (for example; [Boehm: and Weiser; 1988]). This techmnique also-has the: advantage-—— -

that the heap does not need:to be even nearly contiguous, and that not every location in the
heap requires a mark-bit (large objects may span several pages). L .

Mark bitmaps have two major advantages for the virtual memory m:mm_mwmﬁmi.mﬁwn. than
minimising the amount of memory needed. to store mark information. If -the bitmap is

‘comparatively small, it can be held in RAM so that reading or writing mark-bits-will not incur

page faults (all ather things being equal). No heap object is written to diring the marking
phase. The garbage collector will never cause a heap pege to be dirtied and heace written
back to the swap disk when itis dislodged from the opefating system’s, virfual memory page
frame. Page faults will only be incurred by the garbage collector when painters need to be
traced. In particular, atomic objects {and especially large numerical or screen objects) need
never be touched by the collector. This is particularly important if atomic objects comprise 2
significant proportion of the heap. For example, in Cedar atomic objects commonly account

28 MARK-SWEEP GARBAGE COLLECTION

for three-quarters of the heap®. Use of separate bitmap tables may equally improve the cache
performance of the collector since cache lines occupied by heap objects are not dirtied (but see
Chapter 11 where we discuss the interaction between. the garbage callector and the cache in
more detail). Bitmaps can also improve the efficiency of the garbage collector’s sweep phase.

The only disadvantage of using a bitmap for marking is that mapping the address of an

_object in the heap to a mark-bit is more expensive than it wotld be if the mark were stored in

the object, particularly if the bitmap or the heap is nat contignous. For example, Zorn requires
approximately twelve instructions lo access the bitmap [Zora, 1989] compared with simply
writing to a fixed offset from the start of an object (one instruction). For a collector with lttle
or no paging and good cache behaviour, cheaper access to the bit might be worthwhile.

4.5 Lazy sweeping

Part of the case made against mark-sweep garbage collection is that its cost depends on the
size of the heap because the sweep phase must examine the whole heap. In conirast, the
cost of & copying collection depends on the size of the surviving data, which be comparatively
small. This arsumentignores the cost of copying objects. Forsmall nodes, the cost.of marking

and the cost of copying may be similar, but copying a larger node will cerfainly cost more
than marking it. In Sectien 2.4 we made such a simple comparison of the efficiencies of

" mark-sweep and copying collectors. However, the matter is more complex for state-of-the-art’
mark-sweep collectors. In this section we show that there may be no difference between the

asymptotic complexities of mark-sweep and copying collectors.

Analysis must also include consideration of the algorithms’ virtual memory and cache
behaviour. The sweep phase scans the heap linearly from bottom to top whereas the access
patiern of the marking phase is random, The beneBt of such predictable access patterns is that
fetching one object has the desirable side-effect of also fetching its neighbours (which will
be swept next), Thus pre-fetching pages or cache lines (if they are sufficiently large) will be
profitable. Atthe least, the sweep phase is much less likely to effect virtual memory behaviour
than the traversal of the active graph.

One of the virtues of using bitmaps for marking is that ii reduces the frequency of page
fanlts and cache write misses in the mark phase (providing that the bitmap does not have to
be fetched). In the sweep phase live objects do nat need to e accessed at all — anly their bits
in the bitmap must be tested and unset — although garbage nodes may have to be linked inio

a free-list. If paging would atherwise be likely, this.is an important gain since the cost ofa -

single page fault is likely to be several hundred thousand cycles.
There is also evidence that many objects live and die in clusters [Hayes, 19911. If this is 50,

the mark-bits of clusters of live objecis can be tested and cleared in groups of 32% at a cost of

approximately three instructions per group. Likewise, empty memory can be returned cheaply
to the free-list in chunks.

Simple mark-sweep collectors interrupt the user program while they mark the graph.
Although the length of these pauses can be bounded, for instance by performing a fixed

3 Hans Boehm, private: communication. =

4 Assuming a 32-hit word.

LAZY SWEEPING . W 89

amount of marking at each allecation, such’ incremental collectors are complex and place
groater overheads on the nser program (we discuss incremental collection in Chapter 8). This
is because changes made by the client program to the connectivity of the graph may:interfere
with the collector’s marking traversal of the graph: the mutator must inform the collector of
these changes. i i : : :

Hughes’s lazy sweep algorithm W

The length of non-incremental garbage callection pauses can be reduced if'the m.ﬂ.ma@ phaseis
done in parallel with mutator execution. This is possible because the mutator cannot interfere

with the collector’s sweop phase since the mark-bits of live nodes are invisible to. the-user .

program, Although the collector may modify mutator-fields of garbage nodes to link them
into the free-list, these nodes are by definition inaccessible to the mutator; The simplest way
to execute the mutator and the sweeper in parallel is'to do a fixed amount of sweéping at
each allocation. Bach invocation of allocate sweeps the heap until it finds an appropriate. -

_free node (see Algorithm 4.4) [Hughes, 1982]; animplementation of mark_heap is given on

page 78. , e
allocakte() = ’)) g
while sweep < Heap top ” —continue sweep - .
if wmark_bit(sweep) == marked i

mark bit{sweep) =. unmarked

sweep = sweep + size(sweep)

else ;

rasult = swesp :

sweep = sweep + size(sweep)

return result
mark_heap () —heap is full
sweep = Heap_bhottom)
while sweep < Heap_top ‘ —try again

if mark _bit(sweep) == marked
mark _bit [sweep) = GEaWHWmm.
sweep = sweep + size(sweep)

alse) , |li. .
result = aweep:
sweep = sweep + size(sweep)

return restGlt "™~ T

abort "Memory exhausted"
Algorithm 4.4 Lazy sweeping.

Lazy sweeping reduces garbage collection pauses by transfereing. the cost of the sweep
phase to allocation. Hughes argues that a second benefit is that no free-list manipulations are
necessary: garbage nodes are recycled o the mutator program directly rather than via a free-
list buffer. If mark-bits are stored in nodes Enﬁmn?nm_ rather than in a bitmap, this argument
seems valid, and indeed it is the-method used by Miranda, for example.

50 : MARK-SWEEP GARBAGE COLLECTION

However, his case does not sxtend well to mark-bitmap systems. The most efficient way to
sweep a bitmap is to deal with every bit in a word (or small set of words) at the same time,
rather than having to.rgload and save bitmap indexes and bit-masks at each call io allocate.
Nodes reclaimed by the lazy sweep must be saved somewhers, sither in afree-list or in a fixed-
gize vector. The Boshm-Demers-Weiser conservative collector for C and Ci-+ adopts the
former approach whilst Zorn’s generational mark-sweep collector for Lisp adopts the latter.

The Boehm-Demers—Weiser sweeper

Allocation is done in the Boehm-Demers—Weiser collector at two levels. A low-level allocator
acquires four-kilobyte® blocks from the operating system using a standard allocator (for
example, malloc). Bach block will contain only objects of a single size in order ta reduce

" fragmentation. We discuss the merits of this approach further in Chapter 3 when we discuss

mark-compact garbage collection. A high-level allocator then assigns individual objects to
these blocks. A free-list for each common object size is maintained, threaded through the
blocks allocated for that size. i

”mm&mnm_n_mo.;m_uliomum* HBLKSIZE
(nomaliy zero, aligned
hb_body[BODY_SZ] WORDSZ
o aligred
. - ——— e abjectd _
object 1
hb_sz
werds obiect 2.
Y
abject n-1 '
chbjact n

Diagram 4.8 Struciure of a block, struet hblk, in the Boshm-Demers—Weiser
conservative garbage collector, version 4.2, i

Each block has a separate block header and these are held on a Hinked list, ordered by block
address. Note that this is a different organisation from the early one described in [Boehm and
Weiser, 1988]. That paper suggests placing header information at the start of each block; this
configuration interacted extremely poorly with caches, and especially direct-mapped ones.
The heap can be expanded at any time by requesting furtherblocks from the operating system

5 The block size is configurable.

LAZY SWEEPING' "~ : - T ” . 91

and typically this is done when a garbage nozn.wmow has failed to recover sufficient free space.
The block header holds, amongst other information, the size of the objects allocated on iis
block, bh_sz, and the mark bit-map for its block, kb_marks, o

size of objacts in the biock

._._dImN

hb_next o] ———- ext biack header to ba reclaimed
hb,_descr - bbject descritor for marking
hb_map o}——— valid object map
hb_obj_kind objsct kind {atomic, nomal)
hb_flags : h .

hb_Jast_reclaimed

when iast reciaimed

:Ulamwxw ‘ . mark bits

Diagram 4,9 Structre of block headers in the wOmrBIUmEnHmlimmmnn..ooiwn.?mm{n... ;
garbage collector; version 4.2. :

Small objects (less than half a heap block) are allocated from the free-list for that size of -
object, If this free-list it empty, the sweep phasc is resumed in an attempt to refill ic. The next .
unswept block is removed from a quene of reclaimable blocks for that object size and swept.
completely. Any unreachable objects are added to this free-list. The sweep continies with the
next block until this free-list is no longer empty. By using a mark bitmap, the Boehm-Demers-
Weiser sweeper can also detect cheaply that an entire block is empty and so retum it to the
low-level allocator: If no space is reclaimed by the sweep, the allocator invokes a garbage
collection provided sufficient allocation has occurred. Otherwise the heap is expanded by
obtaining new blocks from the operating system. The heap is also expanded if the noumonow

is unsuccessful.

Zorn’s lazy sweeper

Zorn takes a different approach to sweeping the bit map lazily [Zotn, 1989]. Rather. than using--.— - .
free-lists, he allocates from a cache vector of oEmnw. for each common object size. If the
required vector is empty, the heap is swept to refill it. His algorithm both allocates and sweeps
Very Tapidly, particularly for cons nodes since these are ubiquitous in Lisp: a cons hode is
allocated in five cycles on a SPARC processor when noimarking or sweeping is required (see
the code fragment in Algorithm 4.5 on the following page). Other ohjects take stightly longer
since no global registers are dedicated to their use. Allocation is competitive with~*bamp-
a-pointer’ aflocation of copying collectoss -— Zorn's version of copying collection uses five
instructions to allocate a cell regardless of object size. T

“ “Bach iferation of the lazy sweep scans a single word of the bitmap, inseiting free nodes into
the cache vector. The loop can be unrolled to sweep each bit of the bitmap word in a single
iteration to reduce loop overhead. The sequence uses four instructions if a bit is set, and seven

ifitis not. -

) , MARK-SWEEP GARBAGE COLLECTION

— is a collection needed?
subee %g_allocated, ConsSize, %g_allocated
bg,a noCollect ’
subce %g_fraeConsTndex, 4, %g_frae_ConsIndex
call Coliect :
nop
subee %g_freeConsIndex, 4, %g free_ConsTndex
noCollect:
—need to sweep?
bg.a done o
1d [%g.freeCons + %¥g_freeConsIndex], %result
call lazySweep
noep
1d - [%g_fre=Cons + %g_freeConsIndex], %result

done: ...

Algorithm 4.5 Zorn’s aflocation sequence for cons cells,

. Zom'’s eode shows that the cost of sweeping an-object canbe made small. Using mark-and-
lazy-sweep, the cost of sweeping the heap is accounted io the cost of allocating new cells,

The overall cost of allocating a new cell with his code sequences is likely to be between. ten.

and twelve cyclos. If this is small relative to the cost of initialising the cell, the difference in
instructions executed between allocation under mark-sweep and under copying collection will

“Marking with a bitmap is more expensive per object marked than marking without one, if
we ignore paging costs. Nevertheless its cost will be less than that of copying a moderately
large object. For smail objects the issue is Iess clear-cut and caching considerations are likely
to be important. Which algorithm will be more efficient will depend on the average size of
objeets, the costs of initialising them, their lifetimes, the residency of the client program

lazySweep:
—— %bitsLeft contains the remaining bits
andcc %bitsLeft, 1, %thisBit
bnz,a nextBit .
add ScurrentRef, ConsSize, fcurrentRef — — ---— - s
— sweep the word into the cons free-list
st $currentRef, {%g_freeCons + %g_freeConsIndex]
add %g_freeConsIndex, 4, %g_free_ConsIndex
add %currentRef, ConsSize, YcurrentReF
nextBit: .
—on to the next bif Rt
srl %bitsLeft, 1,%bitsLef

o Em,.,un:r.i 4.6 The inner womw.owNog.m lazy-sweep-allocator

ISSUES ; . 93

and the paging behaviour of the program and collector combined as much as the collectors’
asymptotic complexites. . !

4.6 _mm:mm to consider -

There are 2 mumber of reasons why fmplementors might choose to nuse mark-sweep garbage
collection in preference to other methods. Tracing garbage collectors, whether Inark-sweep or
copying, place much lower overheads on the user program than reference counting, Even with
reference counting’s better locality, the overall elapsed time of a garbage collecting system
will be better. | Tracing collectors are also able fo Hwoo<mu cyclic data structures. For these
reasons; debate has concentrated on which of the mark-sweep and copying methods provides
the better underlying technology for garbage collection.)

Until comparatively recenily, copying collection held the day. Its advaniages of compaction,
chezp allocation and good asymptotic behaviour were generally felt to give it the advantage
over mark-sweep methods. I was also easier to incorporate into generational systems (which ,
we. cover In Chapter 7). However, more recent work, especially that concentrating on the
behaviour of collectors in caching and virmal memory environments, has undermined this
consensus. 'The choice of collector now depends as much on the kind of application it is to
support as on the intrinsic properties of the collector itself, Unfortunately there are no easy
answers.

Space and Eﬂ.ﬂ:n%

Mark-sweep collectors require less address space than semi-space copying collectors. There
is some evidence that they exhibit better cache and virtual memory behaviour than copying
collectors: [Zorn, 1989; Zom, 1991], We examine this forther in Chapters 6 and 11 where
we discuss copying garbage collection, and’ garbage collection and the cache in mors detail.
A mark-sweep collector should be designed with a view to good virtual memory and cache
behaviour. If mark-bits are kept in separate bitmaps, the collector need only read heap objects
in the tracing phase, and does not even have to touch live objects in the sweep phase.
Furthermore, several mark-bits can be examined in a single instruction. Copying collectors—
not only use twice the address space, but must write forwarding addresses into live Fromspace
objects and update pointers in Tospace data. Mark sweep collectars may have to add garbage
objects te-a free-list.or vector. Writing a pointer intto a garbage object to KAk it into the free-list
may cause a cache miss or 2 page fault. Bur this miss or fault would have occurred anyway
when the object was allocated, which will be soon if reclamation is interleaved with allocation.
Thus the two pointer writes and one pointer read to link the object to the-free-list'are both™
effectively cache hits. - S

Time no”_d_u_mxmnu‘

Let us review the phases of a single collection cycle for both merk-sweep and copying

collection;-Both-must-perform some preparatory work: mark-sweép collectors may have ta

94 : MARK-SWEEP GARBAGE COLLECTION

clear mark-bits, and copying collectors must flip semi-spaces. The costs of inftialisation
are negligible in practice. Both mark-sweep and copying collectors must trace active data
structures in the heap, either to mark them or to copy them.

The cost of the trace is proportional to the number of pointers held in roots and in live
objects in the heap.. Although this cost is approximated by G(H) for both methods, where
R is volurne of live data in the heap, the cost of copying large objects between semi-spaces
is certainly larger than that of simply marking them (the matter is less clear cut for small
objects).

The simple mark-sweep collector described in Section 2.2 (page 27) followed the marldng
phase with a linear sweep though the heap to free garbage celis. In Section 4.5 of this
chapter, we showed that this sweep is unnecessary. Instead, the allocator can be used to search
lazily for unmarked objects. Boehm notes that ‘thissearch will terminate quickly in precisely
those cases in which a copying collector is claimed to be superior, namely when most of
the heap is empty’ [Boehm, 1995b]. The cost of allocation for 2 mark-sweep collector is
likely to be dominated by the cost of initialising data, rather than the cost of mﬁmmﬁgm orof
manipulating free-lists. Equally, the cost of allocation and initialisation for a copying collector
is proportional to the size of the unused portion of the heap, M — R.

Table 4.1 Asymptotic complexities of the phases of mark-sweep and copying garbage
collection. M is the size of the heap, R is the residency of the user program.

Otiginally ‘appeared in Marksweep vs. copying. collection and asymptotic complexity,
ftp://parcftp.xerox.cem/pub/garbage/complexity.ps, Hans Boehm, ©1995
Xerox Corporation. Reprinted with permission. .

Method Mark-sweep Copying
Initialisation negligible negligible
Tracing O(R) O{R)
Sweeping = -
Allgeation O(M —-R) OM-—-R)

Table 4.1 summarises the complexities of these two methods of garbage collection.

" Although "the ‘dsympiotes. of the complexities of sophisticated mark-sweep and copying

coliectors are the same, the constants are not, Marking any but very small cbjects will be
less expensive than copying them, regardless of locality effects. On the other hand, a copying
collector’s cost of allocation will be less than that of a mark-sweep collector. Tn the end, the
choice of collector may be determined by the demographics of the heap data used by the
mutator, and whether garbage collection time dominates allocation time. If allocation rates
are very high (as they are for mostly functional languages), or the lifetimes of most mc_.mnﬁ
are very short (as they should be in the youngest generation of a generational collector: see
-Chepter 7), then the argument in favour of copying collection is very strong, Otherwise;
it is no longer at all clear that copying garbage collection will perform better than mark-

NOTES 95

sweep, although it may be sasier to implement a reasonably efficient copying collector than
an efficient mark-sweep one. S S

Object mobility
Some environments may demand,- or operate more.easily with, 2 non-moving collector.
For example, programs may assume that addresses of objects do not changs. So-called
conservalive garbage collectors are designed to proyide automatic heap management for
languages like C or C++ without cooperation from the compiler. Without communication
berween the compiler and the collector it is difficult to use meving collectors since roots must
be updated with the new locations of their referents; accurate root information will not be
available. However, this problem is not insurmountable (for example, see [Bartlett, 1988]).
Copying collectors re-order data in the heap as they compact it into Tospace. This may be
undesireble in some environments. For example; if data is maintained in allocation order, an
unbounded amount of memory can be Tecovered in constant time when a Prolog machine
hacktracks [Bekkers et al., 1992]. Arbitrary re-ordering of heap data may also degrade
a program’s locality of reference. There isi evidence that allocation order may provide a
reasonably good estimate of the order of future accesses to data’ [Clark and Green, 1977;
Hayes, 1991; Wilson, 1994]. Other work suggests that breadth:first copying may also be
detrimental PMoon, 1984; Wilson, 1991]; we consider ‘solutions to this problem in Chapter 6.

4,7 WNotes

FEL. Bauer and H. Wossner provide a good survey of techniques for replacing recursion by
iteration [Baver and Wassner, 1982]. A treatment of marking algorithms can be found in
[Knuth, 1973). Further discussion of stack and queueing disciplines for marking algorithms,
and proofs of their correctness, can be found in [Thorelii, 1972]. H.B. Baccker proposed that
the cost of marking could be reduced by marking piges tather than cells [Raecker, 1972].
T. Kurokawa’s Stacked Node Checking algorithm émm designed for Lisp 1.9 {Kurckawa,
19817, ” .

Douglas Clark and Cordell Greenstudied the shipe of Lisp list-strrctures-[Clark--and:-
Green, 1977]. Pieter Hartel considered the -data structures produced by graph reducers for
depth-first aod: breadth-first traversal and virtual memory behaviour [Stamos, 1982; Blay,
1983; Stamos, 1984; Moon, 1984; Andre, 1986; Wilson, 1990]: Discussion of the cost of
software-anly tests and memeory protection traps for garbage collection can be found in [Zorn,
1990a; Yohnson, 1988]. . W .

The Schorr—Waite algorithm was designed for Maurice- Wilkes's list processing language,
Wisp, on the TBM 7094 [Wilkes, 1964a; Wilkes, 1964b]. It has been used for marking.in a

lazy functional languages [Hartel, 1988}, Several authors have compared the interaction: of

number of systems including various SNOBOL4 andiIcon compilers (Hanson, 1977; Dewar
and McCann, 1977; Fernandez and Hanson, 1992]. The lazy fonctional language-Miranda
[Turner, 19857, an interpreted system based on graph réduction, is completely stackless. [tuses
'Deutsch-Schor—Waite both for marking and for its execution stack. David Wise’s reference

96 = . MARK-SWEEP GARBAGE COLLECTION

counting memory modules use Deutsch-Schor—Waite marking for backup garbage coilection
in hardware {which must operate in bounded space) [Wise et ai., 1994]. The Deutsch—Schorr—
Waite method has also been extended to handle variable-sized nodes [Thorelli, 1972; Appleby
et al., 1988]. The latter can also mark parts of structures. There have been numerous proofs of
correctness of the Dentsch—Schor—Waite algorithm including [Knuth, 1973; Thorelli, 1976;
Mwﬂaﬁﬁ and Duncan, 1977; Topor, 1979; Gries, 1979; Kowaltowski, 1979; Gerhart, 1979].

- Other authors have proposed more limited methods for traversing data structures in constant
space. Some require no additional storage overhead, but may be unable to cope with cycles or
shared nodes; others require: O{n logn) time rather than O(n) (see for example [Lindstrom,
1973; Robson, 1573; Dwyer, 1973; Fisher, 1974; Lyon, 1988]).

Analysis of the caching behaviour of garbage algorithms has been considered by several
authors, notably Benjamin Zorn and Andrew Appel {Zomm, 1989; Wilson et al., 1991; Zorn,
'1991; Koopman ef al,, 1992; Wilson et al., 1992; Diwan ez al, 1994; Appel and Shao, 1994;
Gongalves and Appel, 1995].

' This problem is not _.Eueum. to mark-sweep collectors; it is faced hy any system that allocates

Mark-Compact Garbage

Collection

In Chapter 4, we saw how mark-sweep garbage collection could be made competitive with
semi-space copying collection in some. circumstances. In particular, mark-sweep had better
virtual memory behaviour, Its main remaining drawbdck is its tendency to fragment the heap
if required to handle a varisty of objects of different sizes. After each garbage collection cycle,
the heap may confain Em.@ mEm= ‘holes’.

5.1 Fragmentation

Fragmentation Em% mean that it is impossible to Emnm a large object without expanding the
heap because no hole is sufficiently.large to accommodate the new object, though the total
amount of free space is sofficient. Conversely, a dilemma is faced when allocating small
objects. Which allocation discipline should be used? Should it he First-Fit, with the risk of
permanent Wmmﬁmu:ﬁg leading-to-the-problem mvoa.m -or is-the allocator te pay-the price
of discovering a Best-Fit position for the new oEnn_ﬁ Or should a Buddy system be used?

objects of varying sizes but does not move them. Reference counters and systems for explicit
allocation and deallocation of dynamic memory share this quandary.
In contrast, collectors that compact heap memory, including semi-space no@ﬁ:m nobanSHm

have particularly cheap allocation costs. The heap allocation strategy of such sySteiiis can be
considered to obey a stack discipline: the area of memory believed to be in use Eﬂmﬁ EIOWS
until a garbage collection takes place when;, rowm?:ur it shrinks by a large amount. Object

allocation is then simple. Provided there is sufficient room in the heap, an object may be
allocated by nudging a ‘next-free-space’ pointer by En size of the ohject.
Ons atiractive heap organisation for non-moving noznnﬂoa is to maintain segregated f free-

Iists for each different size of oEmnﬁ In mEm case, Ew cost of mconmnoa need’ not: be uunnr

o8 o MARK-COMPACT GARBAGE COLLECTION

greater than that of a copying collector (as we saw in Chapter 4). Although this technique
eases the problem of allocation and freeing fixed-size objects, it does not cure the problem of
fragmentation per se. It is still possible that the area maintained by one free-list is full, while
that maintained by another is comparatively empty.

Two-level allocation

Two-level allocatars, such as that used by the Boehm-Demers—Weiser collector, can
substantially alleviate this preblem [Boshm and Weiser, 1988]. At the lower level, the
allocator maintains & list of blecks of memory. If a free-list for & certain size of object is
empty, a further block can be allocated to that list, At the higher level, each free-list allocates
objects of a single sizs in the blocks it has acquired from the low-level allocater. Providing

" that its free-list is not empty, small objects can always be allocated cheaply. If the sweep
phase of a garbage collection discovers that a block is entirely empty, it can be returned to the

low-level allocator to be recycled between the different free-lists (sweeping techniques were
discussed in Section 4.5). A further advantage of two-level allocation systems is that the heap
need not be contiguous.

Two-level allocation does not cure the fragmentation totally. Allocation of objects larger
than a single block fmay still Be difficult since sufficient adjacent free blocks must be found to
accommodate the object. Ons solution to this problem is to manage large objects separately
by splitting them into a fixed size header and.a body-(for-example, Kyoto Common Lisp uses
this technique [Yuasaand Hagiya, 1985]). The headers can then be managed by a mark-sweep
collector using a free-list for the appropriate size, whilst the bodies are allocated to a separate
region of the heap, This Large Object Area is managed by a separate strategy; maybe one that
nses compacting collection. ‘

Two-level allocation also still allows fragmentation within the blocks managed by a single
free-list. While not impeding allocation, such fragmentation may affect the spatial locality of
the client program. Adter garbage collection, areas of fiee space will be interspersed with.
live objects. These free areas will then be filled by new objects, leaving pages of virtnal
memory containing objects of different ages, allocated and used by different parts of the user
program, The net result is that the program’s working set will be spread across more pages
than is necessary, which may result in excessive paging traffic, For this reason, simple mark=
sweep collectors are sometimes considered to be unsuitable for virtual memory environments.
The. working set argument is also relevant to other ron-moving systems, such as reference

counters, or to systems that move objects without regard to locality issues. An example of the
=== -latter-is the “Two-Finger’ compaction scheme discussed in Section 5.3 below. :

However the locality problem may not be as bad as simple analysis might suggest. Objects
that are active at the same time are often created at the same time and may share similar
lifetimes. If such clusters of objects do indeed live and die in groups, the objects are likely to
be allocated closely, spatially as well as tempoerarily, and likely to be reclaimed at about the
same time [Hayes, 1991; Wilson, 1994]. :

~-——eTy1 BS OF COMPACTION : | 99

5.2 Styles of compaction

- ... In this chapter we discuss methods for compacting live data structures in_the heap. By

compaction we shall mean that, at the end of a compacting phase, {the compacted wa.wow‘cm
the heap will be divided into.two confignous areas. One ares will hold al] active data. whilst
4ll free words of the heap will be held in the other area. Some authors refer to:this technique
by the term compactifying, in order to distinguish it from techniques for compressing data
structures. In practice, it may be desirable (o use both techniques together — in this way
structures can be compressed as they are relocated — althongh technigues such as cdr-
coding lists have fallen out of favour with the m&..nﬁ of cheap memory because.of the
cost of accessing compressed data [Bobrow and Clark, 19791. However, some authors have

suggested recently that compression might be worth considering once mers i order toreduce —

memory reqiirements and disk seeks (as processor speeds continue to increase more. rapidly
than disk speeds) [Baker, 1591; Wilson, 1992a; Douglis, 1993; Wilson, 1994]. We shall be
carefil to indicate where such a distinction needs to be made; otherwise we.shall use the term.
compaction. , o , . .
Compacting algorithms make several passes over the active data structure or Em %Mmlm...!
The mirmber of passes varies depending on the algorithm used and whether optimisations
to combine passes are possible. In general, compacting ¢ollectors have three phases, although

they may differ on whether relocation of cells is done before or after pointers are updated: -

s mark the active data structure;
» compact the graph by relocating cells; and
e update the values of pointers that referred to moved cells..

Care needs to be taken with regard to the placement. of relocated cells. Ideally the
amrangement of cells in the heap should reflect the wdy in which they are accessed by the
user program. Poor object orderings may lead to reduced virtual memory performance m._._a
fewer cache hits. Algorithms can be categorised into three classes according to the relative
positions in which cells are left after compaction:

Axhiirary: cells are moved without H.mmﬁa for their original order, or whether they H..BEﬁ to
one another. Such methods may be simpleto implement and-fast to execute, w_mwn.oEEE.

ifall nodesiare of a fixed size, but they generally resultin.poor spatial lecality: . .

Linearising: cells which originally pointec to one another are moved into-adjacent positions,

--— --i—pg-far as this-is possible—Copying collectors that scavenge-the: graph in depth-first

order (such as the Fenichel-Yochelson collector described in Section 2.3) wmﬂ wwﬁ.m mﬁm
category. Data structures can then be compressed by techniques such as cdriceding if
this is felt to be desirable. i ; S

Sliding: cells are slid to one end of the mamm. squeezing out free cells, Ennn‘ﬂﬁnuwgﬁm.wabm
the original order of allocation. : Lo R

The latter two anﬁnm of n.on._umnmca offer a number of advantages. For some mﬁﬁaa.m it is
particularly important that the spatial ordering of objects in the heap reflects their ardering of

allocation. Tiipléineéntations of Prolog, for exdiniile, can use this property when back-racking

100 , MARK-COMPACT GARBAGE COLLECTION

to reciaim unbounded amounts of memory in constant time: the heap is treated as a stack. It
has alse been argued that 2 stiding strategy tends to give the best locality of reference, and that
it is not worth trying to second-gaess the user program [Clark and Green, 1977; Clark, 1579].
Studies by Hayes and experience with the Xerox 'PCR system suggest that many objects live
and die in clumps [Hayes, 1991]. If this is so, and if these clumps are allocated reasonably
adjacently, sliding compactioa will keep them togsther (or, at any rate, will not worsen theix
spatial spread).

Other issues that should be considered when comparing compaction aigorithuns are whether
the alzorithm handles objects of different sizes; how many passes through the heap are needed
to relocate objects and to update pointers; how much, if any, extra space is required by
the algorithm; and whether the algorithm places any restrictions on pointers — are interior
pointers permitted’, can pointers point backwards; and how much work is done at each step.

Many different algorithms and opiimisations of algorithms exist in the literature. We shall
restrict ourselves to examining a representative sample of methods. Apart from semi-space
capying algorithms, techniques used include:

Two-Finger algorithms: two pointers are used, one io point to the next free HonmmoP. the
ather to the next active cell to be moved. As cells are moved, a forwarding address is
left in their 61d Tocation. Such methods are generally only applicable to fixed-size cells.
Forwarding address algorithms: forwarding addresses are written into an additional field

within each cell before the cell is moved. These methods are suitable for collecting
nodes of different sizes. -

Table-based methods: a relocation map, usually called a break table, is constructed-in the
heap either before or during cell relocation. This table is consulted later to calculate
new values for pointezs.

Threaded methods: each cell is chained to a list of those cells that criginally pointed to it.
When the cell is moved, the list is. traversed to readjust pointer values.

We consider four specific algorithms in detail. Edwards's Two-Finger compactor is fast,
with complexity O(M) where M is the size of the heap. Jts compaction phase makes just
two simple passes through the beap. Tt is usually used only with. fixed-size objects (or a fized
range of sizes), but its major drawback is that it re-orders objects arbitrarily and hence will not
improve spatial locality (and might indeed worsen it). The other algorithms we consider are -

- il sliding compactors, and can handle cbjects of different sizes:The Lisp-2 compactor-also--- i

has asymptatic complexity O(M), but it makes three passes through the heap and requires an
extra pointer-sized field iz each object. It is possible to compact the heap in just two passes
with a sliding compactor and without any space overhead. The Haddon—Waite campactor does
precisely this, albeit with a complexity of O(M log M). Alternatively, if each object contains
a pointer-sized field that is guaranteed never (o contain data indistinguishable from a heap
pointer, Jonkers’s compactor can compact the heap in two passes with O(M) complexity.
Throughout this chapter, we treat the heap as a contiguous array, Heap, with indices in the
range Heap_bottom to Heap_top. For fixed-size cell algorithms, each slot in the array i
thought to be a cell; for variable-sized cell algorithims, each slot is a single word. B

1 A pointer is called an interior pointer if it points to the interior of an object rather than to its head.

THE TWO-FINGER ALGORITHM _ ; - 101

5.3

Our first example is a two-finger algorithm, due to Edwards [Saunders, 1974] . The live data
' structure is first marked, and the number of Live:cells, nlive, counted. The first pass relocates
cells from the upper part of the heap (above Heap (nlivel) to the holes-in the lower part
of the heap, overwriting the first field of vacaied slots with forwarding addresses. No exira
space is needed. The second pass scans cells in the lower (compacted) part of the heap(up o
Heap [mlive]), updating pointer values to reflect the new location of cells. At the end of the

compaction phase, £ree indexes the first free slot in the:heap (see Algorithm 5.1).

The Two-Finger b_m_o-.mm_.:.:

Compact_2Fingex () = ;
no_live_cells = mark() , . BRI
- L. yalogata() - o< e e D o R
update_pointers({no_live cells) - P
free = no_live celis + 1

Algorithm 5.1 Edwards's Two-Finger moEmmomon algorithm.

The algorithm

Two pointers are used: free sweeps from the bottom! of the heap, looking for free nodes;
while 1ive sweeps from the top of the heap locking for live cells (see Algorithm 5.2on the
next page). Cells discovered by 1ive are then. moved into the holes discovered by free, and
a forwarding address is left in the first field of the old cell. Notice that the forwarding dddress
can be written over nser dala; no additional space is required. Move (old, new) copies each
field of Heap [01d] to its new location, starting at Heap [new] . The pass terminates when the
two pointers meet. :

#mm@&. | ’ ﬂ =<mlﬁ

& Diraction of scan

Frae spaca-

i Diagram 5.1 The Two-Finger ncm%monou algorithm.

The second Mmmm scans the live nmbm_ all of which are now in the bottom part of the heap (see
Algorithm 5.3 o the following page). This pass updates the values of any pointer fields that
refer to cells that have heen evacuated, i.e. with addresses greater than nlive, by reférting to
the forwarding addresses left by thie first pass. - T g :

e 02 MARK-COMPACT GARBAGE COLLECTION

" relocate()
frae = Heap bottom
liye = Heap top

mark_bit{Heap[heap_top+l]) = unmarked -
H.m@mm.ﬂ. .
while marked(free) . —find next hole
mark_bit (Heap[free]) = unmarked
free=free+l))
while not marked(live) and live > free
live=live~1 ~find previous live cell
i1f live>free
mark bit (Heap[li d.m: = unmarked —unmark it

move{live, free)
Heap[live] = free
Efrea=free+l
i live=live-1
dﬂhMHHM<mnumHmm

—leave w.alrnwnmam address

Algorithn 5.2 The first pass of the .H.,Eo.mmwmﬁ compaction algorithm.

Analysis of the two-finger algorithm

The two-finger algorithm is attractive despite its antiguify and simplicity. It has linear
complexity and makes no more than two passes of the heap after the live. graph has been
marked, once scanning the entire heap to telocate. objects and once scanning only the
compacted portion of the heap but reading the forwarding address fields of nodes in the rest
of the heap. The amount of work done as each slot in the heap is encountered is minimal.
It requires no additional memeory as forwarding pointers are written over the contents of
relocated cells, and it permits pointers to refer to interior words of objects which other
algorithms may not. Its chief drawback is that the order in which cells are relocated is
arbitrary. Cells that were once adjacent may now be dispersed, although the relative order
of relecated. cells is unattered. The algorithm therefore will niot be suitalile if the reason for
compaction is to E%Hoed the spaifal locality of the user program. -

update_pointers{nlive} =
for i = 1 to nlive
for j in Children(Heap[i]}
if Heapl[jl > nlive —points-into relocated area
Heap([j] = Heap{ Heap[j]]

‘Algorithm 5.3, The sécond pass of the Two-Finger compaction algorithm.

THE LISP 2 ALGORITHM 103

Variable-sized cells -] -
Alhthough it is o,uz@ suitable for fixed-size cells, the, algorithm can easily be extended if
variable-sized cells are allocated to different regions of the heap. In this case, the mark phase
must caleulate no_live cells foreachregion and En cells in each region must be relocated
separately. Alternatively, the algorithm could compact variable-sized data to fresh pages of the
heap. Bartlett uses a varietion of this compactor to tracs and compact the oldest generation
of his Mostly Copying collector for C and C++ when the heap becomes more than 85 percent
full (see Section 9.3 of Chapter 9 and [Bartlett, 1989a]).

Bartlett’s heap is divided into fixed-size blocks, and objects are allocated from the current
free block by cEEuEa a pointer. The compacting phase is designed to minimise the amount
of data that is maved between blecks, rading mild fragmentation for reduced movement, It
compacts individual blocks rather than the entire heap, which it scans twice. The first pass
looks for blocks less than a third full. Marked objects on these blocks are moved into the
current free block, leaving behind a forwarding address; fuller blocks are not compacted.
Another free block is also queued up, if one is available, in case the current block should
overflow. The second phase cormrects pointers in the same way as the two-finger algorithm:
the heap is scanned and moﬁﬁ.m to moved ohjects are replaced by the appropriate forwarding
addresses. If the heap remains more than three-quarters. ﬁ.E after compaction, Bartlett expands
the heap in one megabyte increments.

Although the original two-finger algorithm noEmmEﬁw& cEwnE inte an arbitrary order,

" Bartlett’s collector is much better behaved. Since relocated objects are moved to fresh blacks,

his compactor is effectively a sliding coflector. The cn@ caveat ig that. oEmna ihat originally
shared the same page might be moved to Emmmhma H_mqnm.

5.4 ._.:m Lisp 2 Algorithm !
The next Emoﬂ::ﬂ has the virtzes being suitable for ucn_mm of varying sizes, and of sliding
cells io presarve their order rather; than rearranging objects in an arbitrary fashion (see
Algorithm 5.4). The compaction phase is fast, despite making three rather than two passes
over-the heap, but a price has to be paid for this speed: a pointer-sized field is needed in the

header of each object for storing forwarding addresses. This field is also used by the. Em&ﬂwm —

process —anon-nil valoe indicates that the nm= is in use.

. Compact LISPZ() = G e e
mark() ,
compute_addresses ()
update_rointers ()
relocate()

Algorithm 5.4 The Lisp 2 ooﬁmwnmoﬁ algorithm.. -

The first compacting pass computes the new address mmmm.nr active cell and stores this in the
forwarding’ address field inthe header of cach oEnnﬁ (see Algorithm 5,5 on the following

page). .Hrm. new address is simply the sum om the: mﬁmm am the live cells mnnoﬁimnmn so far;

104 - MARK-COMPACT GARBAGE COLLECTION "

free. This phase B@ also combine adjacent garbage nodes into a single hols to improve Em
speed om subsequent passes.

OOEUH..HEAE =

— P is unmarked.

next = P + gize(P) .
—not marked

while forwarding_ address(next) == nil
size{P) = size(P) + size (mext)
ngxt = P + gize(P)
compute_addresses () =
free = Heap_bottom
B = Heap, bhottom .
while P € Heap top-- ——-—
| if forwarding ; wmmHmmmHE qm nil ~—marked
forwarding address{P) = frae
free = free + size (P}
else combine{P) —oplional

P =P + size(P)

Algorithm 5.5 The first phase of the Lisp 2 algorithm.

~Thesecond pass simply updates the values of pointer fields of active gells, including root
pointers, by referring to the forwarding,_ address field of the cell to which they refer (see
Algorithm 5.6).

ﬁm.mm.nmi,bnwﬁanmC =
for R in Roots
R = forwarding address (R)
P = Heap_ bottom
while P < Heap top
if forwarding address(P) 7 nil
for Q in Children(P)
Heap[Q] = forwarding address{Heap([Q])
= P + zize(P)

mﬁmcﬂmﬁn 5.6 The mnnona Eummo of Em Emw 2 m;moﬁaﬁn

Finally the HEHQ, pass clears the forwarding_address field in preparation for the next
garbage collection and moves cells (o their new address (see Algorithm 5.7 oz the facing
page). Atthe end of this phase, all active data are compacted info the lower part of the heap,
and free indexes the first free location in the heap.

Although the Lisp 2 compactor makes three passes over the heap, the amount of work done
at each iteration is small. Apart from the extra pass, the main déficiency of the algorithm is
that it requires an extra pointer-sized field that can only be shared with the mark-bit. Cchen
and Nicolau analysed time-formulae for this algorithm, the two algarithms shown below and
Morris’s algorithm, d restricted form of threading algorithm (which did not fare well) [Cahen,

The algorithm’

"TABLE-BASEDMETHODS T 105

raelocate() = .
P & Heap bottom -
while P < Heap_top . ,
temp = P + size(P) i - -
if forwarding =ddress (P} # nil
free = forwarding address(P)
moﬁﬁﬂﬂ&wﬂmhw&m.w.mmm (P} = nil
move (P, frae) :
P = temp
free = free + size(free)

—unmark,.

Algorithm 3.7 The third and final phase &" the Lisp 2 algorithm.

and Nicolau, 1983; Morris, 1978]. They rated the Lisp 2 ooEMman as fastest of the's Emoﬂnﬁ_m

they modelled. While such theoretical analyses are Eanmm_ub , they ignore effects of caching . _*
and paging on the program’s execution. Studies by NcE and Grunwald suggest that' models™ - -
have only limited use as predictors of actal m&oﬁnﬁﬁn [Zorn and Grunwald, 1992].

5.5 Table-based methods :

Edwards’s two-finger compactor required no mm&moaﬁw space, but compacted cells into an
arbitrary order; The Lisp 2 collector preserved cells’ relative order, but needed an additional
pointer field for each object to store the relocation map. ‘Table-based methods, however, can.
preserve cell ordering without any space cost. They keep! account of the location of blocks-of
active data and the size of holes, and use this information for updating pointers [Haddon and
Waite, 1967]. In principle, they incur no space overhead: 'there will always be sufficientroom
to store relocation information in the holes themselves, provided that the size of the smallest

object in the heap-is at least two words, Hawever, in practice any additional-space FE& Al ———r~

the heap can be used to speed up pointer nam&nmgwnh

After marking the active graph, table-based oogmmnnoam _.uaonmmm as follows (see Algorithm 5.8
on. the next page). As the heap is compacied, a break table of relocation information is
constructed in the free area, The break table specifies the locations of holes in-the heap. As
areas of active data are relocated towards the bottom of En heap, it may be nécessary to move

the break Table in the opposite direction. If this Thovement canses the information in the.table
to become jumbled, then the table must be sorted hefore the table can be used. Finally, the
compacted area of ‘the heap is scanned and pointer mmEm are readjusted U% referring to the

gdw_m table. !

B *

106 MARK-COMPACT GARBAGE COLLECTION

Compact_Table() =
nlive = mark()
relocate{)
sort._table{)
update_pointers (nlive}

Algorithm 5.8 The Haddon—Waite compaction algorithm.

The break www_m,

The break table is.built as each contiguous area of active data is compacted by determining
the address of the start of the area, a;, and the total amount of free space discovered so far, 5.
The pair (a;, 55} is written into the free slot that can be found at the end of the break tabls. As
active areas are discovered, &8\ are slid down to the compacted region, and the break table is
moved if necessary. An inductive argument shows that there will atways be a fiee slot for the
next table entry. The example in Diagrams 5.2 to 5.5 showshow the break table is constructed.
The numbers below the heap indicate the eddresses of free and active areas of the heap. The
initial configuration of the heap is shown in Diagram 5.2,

0 o0 300 950 . . 1200 1600 REE

Diagram 5.2 Before compaction (shaded areas are free).

The active heap block held between locations 100 and 299 is moved to the bottom of the
heap (see Diagram 5.3). Iis starting address, 100, and the amount of free space found so far,
also 100, is written at location 300.

o 103 300 950 1200 1600 1988

Diagram 5.3 The first area is moved and the first enfry is written into the break table..’

The second active block starts at location mme Tt is slid to the first free location, 200, and.
its relocation data and the old break table is written behind the moved block (see Diagram 5.4

Diagram 5.5 on the next page).

~~ "o the fading page). Finally the last block is slid down and the break.table is moved again {see .

107

0 oo 300 B 1200 1600 - 1999

Diagram 5.4 The second area is moved and the next eniry is added.

Unfortunately rolling the break table causes it to become unsorted. Table entries mustbe in -

order at the end of the relocation phase if the table is to be.searched efficiently. Theoretically - . -
sorting has a cost of nlogn, where n is the size of the break table and, in the worst: case,

this may be half the size of the heap. In practics costs are likely to be much smaller. Entries

added 1o the break table since it was last rofled will be in the correct order. Ifa count is kept’

of these ‘correct entrics, then only part of the table needs to be sorted [Fiich and-Norman,

1978]. Alternatively, provided that there is sufficient room, the comect position of eachfhreake— =
table tecord conld be stored in the record itzelf. In this case, a linear scan would suffice to-sort

the table. . =

Updating pointers : | . s
The final phase of the algorithm is to re-adjust pointer fields of objects in the compacted
region, searching the break table for relocation information. To adjust a.pointer p, zﬁu_u.n.mm.wm...
table is searched for adjacent pairs (g, 8) and (a', s") such thata < p < o'. The adjusted value
of p will then be p — s. Although this, too, is apparently an nlogn operation, maiters can
usually be improved. If there is sufficient space in the free area after the break table, a hash
table can be constructed to improve searching. The & most significant bits of the pointercan be-
used as a hash key to look up the start and end of the region of the break table containing & and
a' (where the size of the hash table ig 2%). Fitch and Norman suggest that, wherever possible,
the hash tsble should be roughly twice the size of the break table [Fitch and Norman, 1978].
Alternative possibilities for t2ble-based methods inclnde storing the table as a linked data
structare in the holes in the heap and updating polaters before moving cells. The ddvantages of
not having to move or sort the break table must be weighed against the efficiency with' which

such a.linked list ¢an. be.searched. Hash table methods are also applicable to this technique . __.

[Wegbreit, 1972a].

| 600"

Q0 100 300 1200 _

Diagram 5.5 Roiling the break table. .

108 MARK-COMPACT GARBAGE COLLECTION
5.6 Threaded methods

The problem of updating is to discover all the pointers fo any cell B, and to adjust them
to point to the cell’s new location, 2. All the methods examined so far have relied upon
scanning the heap for ali pointers and then locking up their new value, Fisher was. the first of
several researchers to solve this problem with a different technique [Fisher, 1974]. Rather than
examiming the pointer fields in every active cell, he arranged the heap so that ail the pointers to
cell 2 could be found from p. This technique, called threading, manages updates by reversibly
rearranging pointers in the following fashion.

Threading pointers

If locations 2, B and ¢ point to P which has conients info (see Diagram 5.6), this structure can
be represented, without loss of information, by constructing a list of those locations pointing
to P, emanating from P itself (see Diagram 5.7). The original contents of P are stored at the
end of the list. The only restriction is that the original data must always be distinguishable
from pointer data.

Diagram 5.7 Pmmn_nﬁmm&um B

Two nodes can be threaded by reversing the pointer and storing the contents of the target
word in the source word. In this example, we would call thread on a, B and finally ¢ (see

- -+ Algorithm 5.9). Once the-new location of p is known, thelist can be traversed and each pointer

field be replaced with the new location of 2. Finally the contents of P can be reinstated.

THREADED METHODS - : , 109

nﬁmm&ﬁb =
if Heaplp] # mnil :
Heap(pl, Heapi{Heaplpll = Heap[Heap[p]l,p

Algorithm 5.9 The threading procedure.

Jonkers’s compaction algorithm

We now examine the threading algorithm due to Jonkers [Jonkers, 19791 Although Morris’s
threading algorithms are probably better known, Jonkers ‘tmposes fewer resirictions (see the
Notes on page 114 at the end of this chapter for further details of Morris's techniques). . .
Nevertheless, three restrictions are placed upon the heap organisation before compaction.
starts: ' :

» pointers may only point to the headerof a cell;
» this must be large enough to contain an address;

o headers must contain values that are distinguishable from pointers into the heap (although-- = .

pointers to other areas of memory are possible).
As usual, the callector starts by marking the active data structure. Two further passes through
the heap are then required (see Algorithm 5.10). Thé first pass handles pointers that momﬂ‘
forward, updating each one to refer to the new lacation of its referent (see Algorithm w..:
on page 111). The second pass updates pointers that point backwards and also maves objects
(see Algorithm 5.12 on page 112). : o

noﬁm_mnnl,o.oquHmC =
mark{}
update forward pointers{)
update_backward peinters(}

LI

Algorithm 5.10 Jonkers's noEwmn.mon algorithm.

The easiest way to understend this complicated Emciﬁamm to consider what happens-to an.
_individual node. ‘ ,

Diagram 5.8 The initial ooEmmEm&oP..mUoiEm all objects with uow.Ewnm to B.

110 MARK-COMPACT Qmww.mﬁmm COLLECTION i “. THREADED ?EH_H.HOUm :) 111

Forward pointers. O S .

Let P be g typical cell, shown in Diagram 5.8 on the page before, and suppose that the- (aon- .
pointer) contenis of its header are ‘info. The first pass starte by threading the roots of the ~. |
computation so that they can be updated if their referents are moved (see Algorithm 5.11 . . _
on. the facing page): As the scan sweeps linearly through the heap it updates each n@,m_ end . |- - .
threads each pointer; that it enconnters. The next free space variable, free, is incremented . | - . P!

at cach step with the size of the cell being scanned. By the time that the scan reaches », all . S , T
forward pointers to © havs been threaded and the contents of B have beer placed at the end of L : b
the threading chain (see Diagram 5.9).

Diagram 5.11 Backwards-pointers to B are threaded.

P, by following 2% thread. 2’ is again calculated on Em fly by accumulating the sizes of
- cells already moved into £xee. Once this has been done, the contents of p are moved toitheir
77 pew location (see Diagram 5.12 on the next page). The speed of this pass cam be: improved -
if adjacent free areas are combined in the first pass (as ir the Lisp 2 algorithm described on
page 103). " NN

T b—f=

- Diagram 5.9 All forward pointers to P are threaded.

When P is reached, these forward pointers can b updated with the new address of : thisis
... .. heldin £ree, which has been calculated by cumulatively adding the sizes of all marked cells

encountered.so far (Diagram 3.10).

Analysis of threaded algorithms T ! . o o

The Tonkers algorithm is suitable for abstract machine architectures in which each heap
. node has a pointer-sized heeder. Tt requires ne exira space and makes only two m”mm.mam
e e) 15 of the heap. Tts main drawback is that each jteration of each pass must do a substantial

: : C e e unt of work unthreading pointers, and each iteration may touch several other objects.

-1 VY1 T4 s update (, Eree) = - | | . :

£t = HeaplP] : : i
. while pointer(t) ! .
_ £ Heap{tl, © = free, Heapl[t] o B - : '
P'=nexifree i L Heap{P] = t .

==y

[) .
. - . Cﬁmwnmlmohzmhmlbowﬂﬁmﬁm: =

b — - - —
. .] for R in Roctis ! B
. ,) . o o L T Ehesd(R) T B m -7 o
Diagram 5.10 Torward pointers to B are updated to refer to its new location. S free = mmwmm Woonnoa |
. {0 P = Heap_kettom _ __ .~ ., el .o -

The pags then continues, threading pointers which point back to P — remember that we are hile P < Heap to
considering the effect of the algorithm on alone. A self-reference, i.e. a pointer that refers = . Mm QMH_MMQWWU ’

to the cell that contains it, is treaied: as a back-pointer. At the end of this pass, all forward -~ }. = : update (P, free)
references have been updated to point to the new locations of their referents and all backward. SR . for Q in Children(P)

pointers have been threaded (see Diagram 5.11 on the next page). thread(Q)
: .- free = free + size(P)

else combine(P}
P =P + size(P)

Backward pointers

“The second pass’updates Umn_ﬁémﬂm.momﬂmam and moves objects (see Algorithm 5,12 on

nkers's first pass through the heap updates forward pointérs.

page 112). As it Hnmnrnm the live cell P, it updates back pointers to refer to ’s new location, = - . o tmonm.ﬁ:u 511 fo

Diagram 5.12 Backward pointezs are updated and P is moved.

Bach object in the hezp is touched three times before it is moved (if live), once
‘by update_forward pointers, onteé by update backward pointers and once. by
thread; each poinier field of live objects is touched again by update on one or other of
the two passes. It is possible to improve on this by combining the: marking phase with the first
pass of the compaction phase. Martin has claimed that this optimisation gives a performance
_improvement of one third [Martin, 1982]. Even so, each live object will be accessed at least
four times. L
Break-table compactors, in conirast, touch each node in the heap exactly twice, once to

mave it anid onice td update its poiniter fields. On the other hand they must also rall the break
table through the heap, sort it and search it when updating pointers. The. Cohen-Nicolau
formulae suggest that while Jonkers’s algorithm may be more efficient for programs with
small residencies, break table methods appear increasingly attractive compared with threaded
methods as heap occupancy rises. ,)

5.7 Issues to consider

Compaction is undoubtedly expensive, but there are several reasons why it might be
contemplated. The fist is to reduce the cost of allocation to that of a copying collector. I

update_backward _pointers{) =
free = Heap_bottom]

P = Heap_botkom

while P < Heap_top
if marked(P)
update (P, free}
move {P, free}
free = free + size(B}
P =D + size(B) ,

Algorithm 512 Jonkers’s second pass through the heap moves cells and updates back- -

wards pointers.

ISSUES o , © 113

the free area of the heap is contiguous, new objects of any size can be created simply by
incrementing the next free space pointer. Nevertheless, we saw in Chapter 4 how a two-level
altocator with separate free-lists and mark bitmaps can reduce the cost of allocation in aimark-
swept heap substantially. . - : :

Smaller address space o ,

A semi-space copying collector might be undesirable wnwwumn of the amount of address space
that it uses for a program of given residency. I this is larger than the physical memory; of the
computer, the collector’s paging behaviour will suffer ih comparison with a mark-sweep of
mark-compact collector whose heap can bs accommodated in real memory. A smaller afldress

“space is particularly beneficial for small machines, such as personal computers, which also
may not support paging, Pernandez and Hanson describe an implementation of ICON for

which a compacting collector was found to offer some improvement over a capying collecter
[Fernandez and Hanson, 19921, . , L el

Repeated copying

Simple non-generational copying collectors copy long-lived data repeatedly. .mBE:o&m semi- -

space to the other. A third advantage of mark-compact collection, observed by Fernandez and
Hanson, is that such data is unlikely to be moved again once itis compacted.. A better solution

to this problem is to use generational methods (which we discuss in Chapter 7), m_Eoswr. this

would have required snbstantial changes to their run-time system.

Handling abnormal residencies , . i

Sansom has proposed an interesting solution to the dilemma of limited address space. We
observed on page 31 of Chapter 2 that the performance of a copying collector degrades
rapidly as the program residency approaches half the size of the heap. However; expanding
the size of the heap is not necessarily. a sensible tactic {see- Chapter 6 where we discuss semi-
space copying methods). Sansom suggests that the trade-off point between copying and a
Jonkers compacting collector accurs when the heap is about 30 percent full (though this

is implementation-dependent)-[Sansom, 1992; Sansom, 1991]. He employed.a dual-mode.

garbage collector for an implementation of the pure m:wnmohm._ language: ﬂmmwnﬁ [Hudak er
al., 1992, Peyton Jones, 1992]. His collector used the occupancy of the heap as a heuristic for

* 7 " switching dynamically between a non-generational ewo space copying collector and & matk-.

compact collector. Although the compacting collector was very much slower than the copying.
collector, he believed that it might be useful for programs whose typical residencies are well
within the limits of a copying collector, but have occasional spikes. :

Locality ! : ” e e =

The chief reason for choosing to perform a E.mﬂn.oonummoﬁ collection may-be to improve the

spatial locality of objects in'the heap and hence reduce _wua number of pageifaults incurred by

the user program. For this purpose, 2 sliding orlinearising collécior s €sential. It may not

114 ;) MARK-COMFPACT GARBAGE OOE._m.D.H.HOZ

be necessary to compact the heap at each collection, but rather to do so occasionally when
heuristics suggest that the improvement in paging may be worth the cost of the compaction
-~ phase. ' . .

The way in which memory management systems lay out data in the heap may be critical
to a program's overall performance. As we saw sarlier in this chapter, several studies have
shown that objects should be laid out in the heap in such a way that objects that refer to
each other, or are related in some other way, are placed In close proximity in order to reduce
the size of the program’s working set. There is considerable evidence that allocation order is
a good indicator of such a relationship between objects, and a sliding compactor preserves
this ordering (for example, [Clark and Green, 1977;.Stamos, 1982; Blau, 1583; Moon, 1984;
Andre, 1986; Wilson et al., 19911)..Some systems, such as Prolog, must maintain temporal
information to operate efficiently. Matching address order to creation order is an efficient way., .
to do this. We examine locality issues further in the next chapter,

Choosing _umﬁiwm..._ compacting collectors

There are issues to consider other than the effect of compaction on the layout of data in the
heap. The first is whether the algorithm imposes any undesirable restrictions on user data. For
example, two-finger algorithms cannot handle variable-sized heap objects unless the heap is
divided into regions, each of which holds objects. of a single size. Threading algorithms may

-==-gjther demand that pointer data can'be distinguished unambiguously from non-poiater data,
or impose restrictions on the direction of pointers, or require that the heap can be scanned for
live objects in both directions. Algorithms may also resirict the use of interior pointers.

The space and time performance of the compactors will also be important. The Lisp: 2
algorithm requires 4 separate pointer-sized field in each object to store its forwarding address.
Other algorithms either require no extra space, or can use user fields of live objects or holes
in the heap to store relocation information. The execution time of each compactor is 2 more
subtle question. The number of passes compactors make over the heap varies between two
and thres, but the first pass of Jonkers's algorithm may be combined with the merking phase.
The amount of processing done at each iteration is also important. The two-finger and Lisp 2
algorithms perform little work at each step, but break table and threaded methods do much
more. Bven worse, threaded methods may access many other heap objects af each iteration at
the risk of incurring more cache misses and page faults. .

Table 5.1 on the ficing page summarises the characteristics of the compacting collectors

_ presented in this chapter according to their style of compaction, whether they can handle
variable-sized objects, how many passes over the heap they make, their space overhead and
their asymptotic time complexity.)

5.8 Notes

The first compaction algorithm published was by Timothy Hart and Thomas Evans for Lisp
L5 on a version of the Univac 490 [Hart and Evans, 1974]. It shared similarities with

. Edwards’s two-finger collector, also for Lisp 1.5 [Saunders, 1974]. Guy -Steele and Joel - -t
Bartlett have also used versions of this technique [Steele, 1975; Bartlett, 1989a]. Daniel o

NOTES : W 115

Table 5.1 Characteristics of moEﬁmnm.mm algorithms. is the size of the heap. ’

Algorithm Syle Cellsize Passes | Space Time
Two-Finger arbittary fixed . 2 . none M
. - . o 1 pointer-sized T
LISP2 sliding variable 3 feld pex cell M
Table-based sliding variable 2 none Mlog M
: o . headers at least.
" Threaded sliding ~ variable 2 pointer-sized | M

Bobrow and Daniel Murphy peinted to the poor virtual memozy performance of cornpactors
that give arbitrary cell orderings [Bobrow and Murphy, 1967]. Details of the Lisp 2 compactor:
can be found in the answer to Exercise 2,5.33 in [Knuth; 1973, pp. 602-3]. o
The first description of a table-based compactor-was by B.H. Haddon and W.M.. Waite:

[Haddon and Waite, 1967]. Techniques for storing the table as a linked list in the holes in the:
heap (thereby obviating the need for moving or sorting the table, but paying a higher-access
price) have also been suggested by B. Wegbreit who proposed using a hash table Su%mn&
searches [Weghreit, 19724], Bernard Lang and Wegbteit [Lang and Wegbreit, GqE_HHUnH&m
Zave who proposed radix sorting the break table [Zave; 1975; Knuth, 1973}, and Motoaki
Terashima and Eiichi Goto [Terashima and Goto, 1578]. John Fitch and Arthur Z.onums..
suggested a number of improvements to Haddon and Waite's method [Fitch and Z.B.Emu_
1978]. o ;
ﬂmn first threaded methods were discovered independently by David Fisher [Fisher, 1974]
and Lockwood Morris [Morris, 1978; Morxis, 1979; Morris, 1982]. Similar methods can
also be found in [Thorelti, 1976] who also gives a proof, and in [Flanson, Hm.._d.‘wmon an
implementation of SNOBOL4.- These methods imposed restrictions on.-the- &Hm..nﬂon. of
pointers, which were lifted by H.B M. Jonkers [Jonkers, 1979]. Tonkers also required .._:MH
‘two_passes through the heap, both in the forward direction (unlike Morris who required
the sacond pass to be in the opposite direction, which .
need for additional tag bits to distingnish ordinary pointers, threaded pointers and data, by
assuming that the header of a cell is large enough to contain an address. On the ather hand,
unlike Morris’s compactor, Jonkers requires pointers to point only to the head of a cell. >=
optimisation can be found in [Martin, 1982], and related work in [Dewar E.E MeCann, 1977;
Wise, 1979] , : L

A noB@mHN_..?o survey of the efficiency of compaciing collectors is given'in [Coben and
Nicolau, 1983]. Mary Fernandez and David Hanson describe an implementation .om JCON for
which a compacting collector was found.to offer some improvement over &.copying eollector
mm..mgmumom._mum Hanson, 1992]. One of the main reasons for choosing to use compaction 1s
to improve virtual memory perforrhance. Jacques Cohen and Laurent Trilling noted as early

may be difficult), and eliminated.the

1
1
!

116 MARK-COMPACT GARBAGE COLLECTION

as 1967 that compaction could also improve marking time in virtnal memory Q.H&Houmpmnﬁ
even though the total time taken for garbage collection is longer [Cohen and Trlling, 1967] _
- T1.D. Baecker suggested a method of mearking virtnal memory pages, and only MEEWNH
page m<mm.m&..5 for reuse when it is completely empty, in order to save on compaction costs
Mzu.u.m HﬂEEmm.. a stack discipline for allocation [Baecker, 1572]. Obviously the:cost to pay
isin commng.mmon of virtual memory and extra page table entries. Studies of the relationshi
vmgman spatial ordering of heap objects and accass patterns by the user program can uwmonbw
Wﬂ Ewmbw WMMnHmTHHnanbm [Clark and. Green, 1977; Clark, 1979; Stamos, 1982; Blau, 1983;
0s, ; Moon, 1984; Andre, i ; ; 991; . .
o on 1986; Zorn, 1989; Zorn, 1990b; Hayes, 1991; Llames,

i

Copying Garbage Collection

Tn this chapter we examine the copying imethod of garbage collection, introduced in Chapter 2,
in more detail. Sinee Cheney’s discovery in 1970 of an efficient iterative technique for its
implementation, copying collection has proved popular with implemientors. Alrthough garbage
collection technology has moved beyond simple. stop-and-copy collection, this technique
remains the most widely adopted basis for more mouEmmmﬁam techniques, such as’ generational
and incremental collection. | :

Copying callection has a number of immediate attractions compared with other forms of
automatic memory management. Like any non-incremental tracing collector, it placss no
overhead on user program writes. The cost of copying is propertional to the volume of live data
rather than to the entire heap. This makes copying particularly attractive if the surviving data is
a small proportion of the total heap. Low survival rates are typical of many systems, not lsast
implementations of fonctional languages: for example, Standard ML of New Jersey (SMIL/NJ)
typically reclaims over 98 percent of the heap at each garbage collection [Appel, 1992]. For
m%mﬁ.ﬁnm with very large address spaces, an €ager sweep of the entire: heap would produce
an unaccepiable delay not engenderad by copying collection, Tt is also easier to implement a
moderately mmmnwmwﬁ memary management systet based bii stop-aiid-capy collection-than-an
any other form of tracing collection. : W

- Copying garbage collection compacts. active data structures into the bottom of the semi-

space. This has thiee potential advantages. First, the heap is now a ‘push-only’ stack. Memory
can be allocated linearly simply by incrementing a free space pointer by the size: of the
object.to be allecated, Consequently space for variable-sized objects can be-allocated for the
same cost as ofher objects; complications of separaie free-lists, or other fit-finding tactics, are
unnecessary. Thirdly, compscting the active part of muﬁwrnm@ onto fewer pages should reduce
the size of the program’s working set. - : e :
Although it divides the heap info two semi-spaces, thereby doubling the size of address
space required compared with non-copying callectors, iterative copying garbage collection

uses no further heap memory. zmuw.&mﬁ.manboﬂmmsw@m and forwarding addresses can usnally

be written over user data fields. The mgwnumﬂlw.o&&mon collector given in Chapter 2 was

The tricolour abstraction

118 | COPYING GARBAGE COLLECTION

recursive, and hence needed a stack whose size was only bounded by the length of the longest
path through the active data structure — in principle the stack could grow as long as the
number of cells in the heap. If a limited-size stack is used, stack pushes must be checked
for overflow and the collector must be able to recover if it should occur. In this chapter we
consider Cheney’s non-recursive algorithm, which requires just a pair of pointers to copy the
surviving data. ,

Copying garbage collection was originally considered eminently suitable for virtual
memory machines since pages of the unused semi-space could be evicted to disk.
dﬂoﬂ:ﬁﬁmq matters are more complicated than this simple review of copying’s. virtues

suggests. Although the asymptotic complexity of copying garbage collection is greater than
that of mark-sweep collection, the constants in these formulac must not be ignored. Copying
objects, and especially large objects, is likely to be more expensive than marking them. We
saw in Chapter 4, when we discussed mark-sweep garbage collection, how the sweep phase
could be acconnted to allocadon, and its cost substantialty diminished by using mark bitmaps
separate from the objects. The analysis above also takes an opiimistic view of the interaction
between the user program, the garbage collector and the memory hierarchy. The case for
abandoning pages of the unused semi-space to disk ignores paging costs altogether. Copying
compacts data into Tospace but this reorganises.the layout of data siructures in the heap.
Unless care is taken with this regrouping, the spatial locality of the resulting siructures may
be poar. We consider these matters in more detail below. Copying callection’s pattern of

cyclic reuse.of the heap may also.interact paorly with data.caches. We examine this issue in ..

Chapter 11. We also note that moving objects behind the compiler’s back may dsfeat certain
pointer-register caching optimisations [Chase, 1987].

6.1 Cheney's copying collector

The disadvantages of recursion were covered on page 77 of Chapter 4: recursive calls cost
CPU-time and the recursion stack occupies precious space. Furthermore, recursion risks stack
overflow.. Cheney’s elegant algorithm shows that copying collection can be mads iterative,
using just two pointers [Cheney, 1970]. Rather than remembering branch points of the active
graph in a stack, it stores them in a gueue. The pointers scan and free point to each end of’
this queue. Instead of using additional memory for the queue, it is stored in thenew semi-space
of the heap, in the nodes that have been copied.

It is useful to introduce an abstraction at this paint. Dijkstra’s On the fly concurrent marking
algorithm required the mutator to communicate with the collector by colouring objects black,
grey or white [Dijkstra et al., 1978]. However, this tricalour marking abstraction can usefully
describe stop-and-collect as well as parallel methods. Colours are assigned to heap cells (or
words) in the following manner:

Black indicates that the cell (or word) and its immediate descendants have been visited: the
garbage collector has finished with black nodes and need not visit them again.

COPYING GARBAGE COLLECTION T 119

Grey nodes (or words) have been visited but their components may not have been scanned.
Alternatively, in an incremental or concurrent context, they may have been subject ta
“hostile’ action by the mutator that has rearranged the nonuannSQ .of the graph. In -
either case, the collector must visit them again.

White nodes (or words) are unvisited and, at the end of the tracing phase, are mﬁvmﬂmn..M

A garbage collection cycle terminates when all reachable nodes have beea mnmE.Ea (ie.
blackened) — there are no unscanned grey nedes left. Any nodes left white at this point are
garbage and. can be teclaimed. We shall use this abstraction to describe Cheney’s algorithm.
Note that it can also describe mark-sweep collection: nodes on the marking stack are- -gTey, -
other EE.WW& nodes are black, and those that have not been marked yet are white.

7T

Fromspace

Tospace

Diagram 6.1 Cheney’s Emonﬁﬁn at the flip.

120
Fromspace |
)) | — fee
. scan
..Emumnm
Diagram 6.2 First, the roots are copied to Tospace.
The algorithm

Cheney’s collector repeatedly copies live objects ta Tospace, and then scans these Tospace
replicas for pointers. to further nodes that have not been copied. The algorithm terminates
when no such nodes can be found. In terms of the abstraction, copying a node to Tospace

makes the node grey. whilst scanning it for uncopied offspring colours ‘it black. Two'

pointers are used to keep track of the progress of the collection. Sean marks the boundary
between black nodes {thoss that have been completely scanned) and grey nodes (those whose
component pointers have yet o be traversed by the collector), Free, as usual, indicates the
next free location in Tospace (the end of the region of grey nodes). Since black nodes have, by
definition, been completely scanned, any pointers they contain refer only to Tospace objects.
Grey ncdes have not been scanned yet and hence contain pointers to Fromspace only, although
some of these mncEmmmnm oEmnG BE\ have been nomﬁa to .HOmmmnm nmmm UEmB.B 6.3 on the
-next page): B - -
The EMOEE.B starts by fipping the réles of .Hommmnm and Fromspace, and by initialising

UE mE_

T T[]
L

\ Fromspace.

frea-

Tospace

Diagram 6.3 2/ is scanned, copying B and c. ‘Black’ nodes have been scanned, ‘grey’ nodes
have been copied but not ‘scanned.

scan and free to point to the bottom of .H_cmmmnn (see PEE.E._E 6.1 on page 123). The roots
of the-graph are-then copied.into Tospace. At each iteration of the. main copying loop, the
next grey cell (pointed to by scan) is scanned for pointers to oEanﬁ in Fromspace that have
not been copied yet. If one is found, it is evacuated to the location in Tospace pointed at by

~ free; and a forwarding address is left behind. The forwarding addréss is typically, but not

necessarily, written over the first field-of the Fromspace object!, The Tospace child pointer

.is also updated to refer to the new grey replica rather than to the Fromspace object. Free

and scarni are moved along by the size of the object copied and that of the object mnmEﬁm.
respectively. The scanned object is now black — it need not be considered again in this

callection cycle. The algorithm terminates when there are no grey Tospace na:m _nmn ie. s&on

scan catchies up with free: Hwamm arc 0o ?ﬂwﬂ ucmmm to consider.

L gystems such as Smalltalk-that refer to wmm@ nwcm Enoum_u o_uhnnﬁ tables nnnn ouc_ nmsmn Ew c_u._moﬂ

" fable entry to refer to the Tospace oc_anﬂ

[20

-

m @
E _ F TJ._.

scan

To! m_wmnm

Diagram 6.4 All Fromspace nodes have now been copied.

This version of the algorithm assumes that all objects have headers, and that the components
of an object can be discovered from the header. Furthermore, all heap pointers are assumed to
point to the head of the object, i.¢. internal pointers are not allowed. However, it is not hard
to relax these conditions, If objects are segregated in the heap by type, their type and hence
the location of their constituent pointers can be discovered from their address, Alternatively,

= - if references are tagged to distinguish pointer words from Td
can iterate throngh each address in Tospace, rathier than object by object. -

An example

Cheney’s algorithm is extremely elegant and is actually simpler than the recursive version of
copying. In Chapter 2 we observed that copying garbage collectors correctly copy re-entrant
data structures, preserving sharing by using a forwarding address mechanism. Cheney’s
.. algorithm alse uses forwarding addresses to-maintain this essential property. Let us now see

o e e i,

37 - COPYING GARBAGE COLLECTION

intei-words, the-algorithm ™~

nmm&miﬁwomﬁmoz;., R : i e 123

WT:ET :
Fromspace, Tospace = Tospace, ,m.105mmmn..m
top_of space = Tospace + mﬁmhm size
scan = free = Tospace Do TIRIILT

for R in Roots
R = copy(R)
while scan < free
for P in Children(scan) ,
*P = copy{*P) ,
scan = scan + size {scan)

copy (P) = Co-
if Forwarded(P) ' R e RN
___ return forwarding m.&.n.—.ﬁmmm ﬁm& [.
else ! i
addr = free : , o
move (P, frae)
s (free = free + size(P))
moﬂsmﬂmwﬂm address (P) = addr .
ﬂmnﬁnﬂ addr ,

Algorithm 6.1 Owwumwwm_aodﬁﬁ) o -)

how Cheney’s algorithm copiesd sméll graph. Initially, Tospace is empty and both scan and
free point to its start (see Diagram 6.1 on page 119). |

The oot of the structure, 4, is copied into Tospace at the location coEﬂaa to by mﬁmm‘ The
pointer fields of the Tospace replica, &', still refer to Fromspace objects (see Diagram:6.2 on
page 120}, A forwarding address, &', is written over A’s first field, destroying the reference
to 8. However, B is still accessible from &’. The value of the root pointer (not m_uosﬂv is also
updated to refer to &' rather than A. The initialisation ﬁrmmm is complete.

The algorithm now enters its scanning loop, examining the next grey node: |m.oEﬁna atby .. ___
scan — and evacuating its components. First 2 is scanned and B and ¢ are copied to Tospace
at free. The pointer fields of &’ are updated to:refer to the Tospace objects, B’ and c’. 2" need
not be examined again, so we colour it black (s&e Diagram 6.3 on page 1213.

The scan is repeated for each grey ‘node in Tospace. The state of the-heap after'c’ :mm
been scanned is shown in Diagram 6.4 on the facing page. The free pointer will not be
moved again as all Fromspace nodes have now been ooEna ‘The grey nodes, ', & and ¥,
are scanned for moﬁ;ﬂ.m with scan is incremented at each iteration. The scan finds F@oéﬁn
to & at left{F'}, This pointer is updated 5& En monémh&nm paanmmm v., ﬁcnnn_ in w @mm

Diagram 6.5 0n the next page). Co .
Once & is scanned, scan points to the same Enmﬁcn as free, at SE&H onﬁ the quﬂmub
ﬁgmﬁm me E@ user. mﬂomﬂEE resumed. :

124 - , COPYING GARBAGE COLLECTION

- is a collection needed? E
subfce %g allocated, ConsSize, %Ig_zllocated
bg,a noCollect Lo
mov %g_free, %result) . T
call Collect . ' ’ .o
‘nop . : _ . . Do
S mov &g_free, %result , . :

' i
MULTIPLE-AREA COLLECTION" - . s - 125 , g

ﬁDDOHHan :) " ;

I .add %g_fres, ConsSize, %g_free _
[or $result, ConsType, %result —tag pointer with its fype ’ i
i

|

|

Fromspace

Algorithm 6.2 Zorn's allocation seguence for cons cells.

software tests for mark stack overfiow coutd be removed by placing a write-protected page
at the end of the stack region: any attempt by the user program o write to this page canses
an exception which is caught by the garbage collector’s overflow handling code. The same
technique can be applied to allocation in a compacted heap, whether managed by copying er
mark-compact, sincg this is a push-only stack. Any attempt to allocate and initialise a node in
the guard page will be trapped and the garbage cellector called. Note that the allocator must
attempt to injtialise the new cell to trigger the trap; EEE% allocating space is insufficient.

Processors with auto-decrement modes can now allocate cons cells in just two instructions
if £ree is kept in a register [Appel, 1987] (see Algorithm 6.3); the pointer to the start of
the new cell is left in the £ree register, The cost of a memory protection trap on a 20 MHz i
SPARCStation Y under SUNOS 4.1 is approximately 230 microseconds, or 4,600 cycles. This ;
is equivaleat to 2,300 compare and branch instructions for a software-only overflow check, , |

Tospace

Diagram 6.5 Ieft{(F'} isupdated with the forwarding address found in c. ; movl cdr, -(free)
, : : movl car, —-(free)

6.2 Cheap allocation

Algorithm 6.3 VAX code sequence to create a new cons cell.

Copying garbage collection is exiremely attractive. It is comparatively simple ﬁaH:EwEm.E“ oL . . : |
" However this approach should be used 2::. caution, ‘as it may be unreliable in Bighly= i

Ena.a ﬁanoEﬁWEnﬁmwmﬂo.numimnﬂwnnw.mnamnonmmgom<ﬁmm2m1mwmmno£mnﬁmm
straightforward since the heap is compacted and free-lists are unnecessary. The CPU-cost . - {7 . pipelined architectures [Appel and L4, GodOnEmmemoEnmmmuﬂmEmwcomn<mnE .
-~——t——— -ouistanding faults and the heap overflow fault Em% not be- notified to- the: processor until | R SO N

of stop-and-copy garbage collection is generally:cheap since:only active nodes are-visited and. ~ =~
the cost of scavenging small objects is slight, For example, each loop of a copying collector has executed several instructions after the fault, Consequently the faulting instruction cannot
be resumed after the trap handler has completed. Appel and Li note that this use of memory

can process a reference to a cons cell in just 27 SPARC instructions and fewer if the cell’s
referents are already copied [Zorn, 1989]. This is similar to the cost of EE.WEQ a node nsing protection faults to detect heap overflow can be unreliable even on such comparatively simple
machines as the Moforola 68020. A better way to reduce ithe cost of the overflow cheek is.to

a bitmap.

Since the heap is compacted, allocation is both simple and cheap. All that is needed is to . combine all the heap space checks for a basic biock? into a single cheek made at the start of
check that sufficient room is available in the semi-space; to-increment the free space pointer- R W...u\\En block. ’ E T
and to eturn the address of the new cell, Zorn allocates cons-size cells in just five instructions ! , | |

. {see the code fragment shown in Algorithm 6.2, on the facing page).. . B

Heap atlocation is now no more expensive than stack allocation. Jn Chapter n. we:sai gi U - memory.

w2 * & code secquence that does not contain calls to mnannnEdm Emn may allocate an _.Ewo_.En_nn_. arnount of

" 126) COPYING GARBAGE COLLECTION
6.3 Multiple-area collection

-+ Copying garbage collection copics surviving data from one semi-space to the other. The CPU-
cost of scavenging objects depends in part on their size and we have seen that for small objects
this may be no more expensive than marking with a bitmap. Copying garbage. collection is
particularly effective at reclaiming small, ephemeral objects that live for no more thas a few
colleciion cycles — if they live and die between two consecutive garbage collecticns their
space can be reclaimed “for free’. On the other hand, the cost of copying large objects may be
prohibitive. Some objects may be relatively permanent, loaded in af start-up or created soon
after and surviving until the end of the computation. Repeatedly copying such objects from
one semi-space to the otheris wasteful.

Static areas

Collection effort can be reduced if large objects and Iong-lived objects are treated specially,
by dividing the heap into a number of separately managed regions. Data that is known o be
relatively permanent can be allocated to a static area. Although static data may need to be
traced if it contains pointers to heap objects outside the static area, it should not be moved.

_..Large object areas _ |

Similarly large objects may be assigned to a large object area, possibly, but not necessarily,
by separating them into a small header and a body [Caudill and Wirfs-Brock, 1986; Ungar
and Jackson, 1988]. The header would be kept In the region of the hieap managed by the semi-
space copying collector but the body would be kept in the large object area. This largs object
area is usually managed by a non-moving collector such as mark-sweep in order to avoid the

cost of copying large objects, although it may be necessary to compact the area occasionally

to reduce fragmentation [Lang and Dupont, 1987; Hudsen and Moss, 1992]. .

Large objects are commonly comprised of bitmap or string data, such a5 cached images of
oceluded windows. Although these objects must be preserved, they do notneed to be scanned
since they do not contain pointers, If large atomic objects can be identified, either by their
header or by segregating them into a separate region of the heap, both the copying time and
the scanning time can be eliminated. Ungar and Jackson observed that, by reserving-even a
comparatively small region for large bitmap and string data, they were able to reduce pause
times by a factor of up to four [Ungar and Jackson, 1988).)

On the other hand, if sufficient support is available rom the operating system, large ohjects
can be copied comparatively cheaply by allocating each large abject to its own pages. Instead
of copying an object word by word from Fromspace inte Tospace, the: operating system’s
page table can be re-mapped to place the objest’s pages in Tospace rather than Fromspace
[Withington, 1991]. . -

The notion of segregating objects into different regions of the heap, each of which are
managed separately; is fundamental to generaiional garbage collection. Here, objects are
segregated by age on the assumption that younger objects are likely to die soon. The garbage
collector can’ therefore concentrate its efforts on the youngest region of the heap where, it is
hypothesised, its rewards will be greatest. Generational techniques have proved to be widely
successful and we look at this in the next chapter. -

MULTIPLE-AREA COLLECTION 127

Incremental incrementally compacting garbage collection :

Dividing the heap into multiple, separately Emnmmmm areas has 099.“ cmnmmﬁ_ even if

generational garbage collection is not used, One advantage of copying collection is that it
compacts the heap, eliminating fragmentation. Its cost is that the address mwmnm, is doubled to
accommaodate the second semi-space. One. way to gain some of the benefits of compaction
without the space cost of full copying collection nor the time penalty of mark-compact, is .
compact parts of the heap incrementally. . ” :

Lang and Dupont divids the heap inte n + 1 cqually sized segments {Lang and Dupont,
1987]. At each garbage collection cycle, two of these segments are treated as a pair of semi-
spaces and managed by 2 copying collector while the rest of heap is mark-swept. The pair

of segments chosen as semni-spaces rotates through the address spacs &rmmnﬁ collection; ..
- incrementally compacting the heap. e : Tl

| Tospace

After collection’

Diagram 6.6 Incremental incrementally compacting garbage collection.

This atrangement is simplest if the semi-space mnmﬂgﬁ are adjacent, say mnm_&mn_m tand T
i+ 1. Segment i is-free-at the-start of the-collection and will be the Tospace; i Lwillbathe ="

Fromspace. As the collector traces the active graph, visited cells will be marked (by setting

- @ mark-bit) unless they are in Fromspace. ‘Objects in:Fromspace are evacuated to Tospace,

leaving bohind forwarding addresses in the usual way. References. io-thase ohjecis, whether

held in objects in Tospace or in mark-sweep space (all segments but ¢ and { + 1),.must be
updated to refer to the Tospace replicas. At the end of the collection, all active data in segment
i+ 1 will have been compacted into segment 4. Segment ¢ + 1 can ther be.used as the/Tospace
for the next collection cycle to compact data from segment (4 4 2)-modulo . The fragment
of Tospace that temains unused can be added to the free-list. : -

f a Cheney collector is used to manage the semi-spaces rather than 4 recursive copying
collector, the state of the collection is represented by two data structurss; The-state of mark-
sweep part of the collection is a stack of resumption points (whether an auxiliary-stack or
pointer-reversal is used), The state of the copying part of the collection i§ Tepresented by the

queue of grey cells in Tospace. The: collector therefore has a choice oﬂﬁEoﬁ Rmﬁmmaon to-

128 : COPYING GARBAGE COLLECTION

take next: whether to pop the marking stack or to advance the scan pointer. Lang and Dupont
recommend that the mark-sweep collector always be preferred to the copying collector in
.order to limit the growth of the stack,)]
The main effect of incremenial compaction is to compact small fragments into a single
piece. The incremental compactor wilt pass through every segment of the heap fnn collection
cycles. It requires no.extra passes unlike every mark-compact algorithm, but does have a
small memory cost: the extra segment used for a semi-space. Lang and Dupont suggest that
the algorithm might be improved by letting Tospace be larger than Fromspace so that data-
structures that are partially held in mark-sweep space can also be compacted or ailowing the
size of the semi-spaces to be adapied dynamically. In any event, care must be taken to ensure
that objects do not straddle Fromspace and mark-swesp space. They also suggest that it may
‘be combined with an incremental mack-sweep collector but give few details.

6.4 Garbage collector efficiency

Appel bas argued that copying garbage collection can be made arbitrarily cheap by expanding
the size of the heap [Appel, 1987). To preserve an object, the collector must first copy the

object into Tospace and then scavenge its offspring. If the number of reachable cells is B
then Cheney copying requires cf operations, for some constant ¢ dependent on the cost

ot processing ® cell and thié average mimber of pdiriters in each @sll. "The number of cells

allocated between garbage collections is M/s — R, where M is the size of each semi-space
and the average size of cach cell is 5. This will also be the number of garbage cells reclaimed

. at each collection if the number of Teachable cells remains constani. The CPU-cost 6f garbege
collection per cell reclaimed, g, is therefore

5

9= MJsR—1.

In theary, g can be Bm&w arbitrarily small by increasing M. Appel argues that, with sufficient.

memory, if is cheaper to garbage collect than to free a csll explicitly, even if the cost of
freeing a cell is only a single instruction. He suggests that a sufficient ratio of real memory te

average volume of five data to make heap allocation of three-word objects cheaper than stack
allocationt is 7 to 1. Thus the heap should be fourteen times larger than the set of reachable
objects.

Diagram 6.7 on the facing page illustrates the effcct of increasing heap size. Imagine
that & program is run twice, once with semi-spaces of 350 kilobytes and then with semi-
spaces of 700 kilobytes. To simplify matters, let us further suppose that the amount of active
memoty used is approximately constant, say 100 kilabytes, and that the program allocates
1800 kilobytes in total. To complete, the run with the smaller heap must garbage collect six

-~ - times, copying 6 x 100 = 600 kilobytes of data; The run with the larger heap, on the othsr

hand, needs w collect only twice, copying 200 kilobytes.

LOCALITYISSUES ® * e 129

350

samk-spaces

garbage
colleation gamags : R e -
pause collection :

- = : pausg
-~

700

" sami-spacas
o

-Diagram-6:7 --Increasing heap-size reduces. garbage collection time— - -~ .

6.5 Locality issues
This argument only considers CPU-costs attributable to garbage collsction. In reality, virtual
memory behaviour will be an important factor in the overall performanceof the system unless
the entire heap can be held in main memory. Cache misses will also be an important, though
much less. significant, factor in overall performance. Once the heap iy too large, any henefits
of reducing the number of collections needed will be outweighed by the-cost of increased
paging: Since the cost of a page fault will be hundreds of thousands, or even millions, of
cycles, additional CPU effort to avoid paging is worthwhile [Hennessy and Patterson, 1996].

There are two issues of spatial locality here. First, the’ memory management sysiem (the

130 . COPYING GARBAGE CCLLECTICN

garbage collector and the allocator) will gererally touch every page in Tospace in each
collection cycle. Increasing the size of the heap increases the number of pages that witl be
touched in each collection cycle. Secondly, copying garbage collection reorganises the layout
of objects in the heap. This will affect the spatiai locality of heap data siructures and may
compromise the mutator’s working set.

Sophisticated mark-sweep collection, using a stack and a mark bitmap, only modifies heap
memory at allocation time, as the heap is lazily swept. During the marking phase, heap pages

* are not dirtied. For mark-sweep collection, paging behaviour is unlikely to be affected by a

lazy sweep (as objects are linked into a free-list) as these objects will soon be reallocated

anyway. Lazy sweepers that use a vector of cached free slots do not touch heap pages at
all until they are reallocated, Zorn compared the paging behaviour of generational copying
"and generational mark-sweep collectors for SPUR Lisp and found that the virtual memory
behaviour of mark-sweep was noticeably better than that of copying [Zorn, 188%]. Each

-, garbage collector was called whenever 500 kilobytes of memory had been allocated since the

last collection — this threshold was sufficiently low to give non-disruptive pauses. Although
the CPU overhead of mark-sweep collection was between 1.5 and 4.7 percent higher than that
of copying, copying requited a real memory between 30 percent and 40 percent larger than
that required by mark-sweep in order to achieve the same page fault rate.

Wilson argues that the chief cause-of*this impairment is the regularteuse of the two semi-
spaces, rather than worsened locality within the compacied data [Wilson, 1994], This pattern

_ of cyclic rense means that the next page to be aliocated is likely to be the one least recently

used. This pattern conflicts with virtual memory page replacement policies that typically
evict the least recently used page, on the assumption that it is the least Likely to be used
again. If the set of pages held in real memory is insufficient to accommodata both semi-
spaces simultansously, Tospace pages will always have been evicted before they are-used for
allocation. The most effective way to reduce these paging costs is to ensure that both serni-
spaces fit within main memory. If the heap is too large for this, then it can be divided into

smaller regions which are collected separately: this is the basis of generational collection.

Operating system support

Paging can also be reduced with cooperation from the operating system. At the end of each
garbage collection, data: on Fromspace pages and all Tospace pages with addresses above
free are garbage. Whena fresh, unloaded Tospace page is allocated, the data on the swapped-
out page will be loaded into real memory although it contains nothing but garbage. Loading

---this page may cause a Fromspace page to be evicted. This page is likely to be marked-as -

dirty, either because the' mutator has modified its data or because the collector had written
forwarding addresses on it. In either case, the virtwal memory system will copy the page’s
contents out to the swap disk. From the point of view of both the mutator and the collector,
this disk traffic is unnecessary.

Tt would be better if the operating system and the dynamic memory manager cooperated so
that the page frame in real memory belonging to the Fromspace page was simply re-mapped
to the Tospace page without any disk operations. The Symbolics 3600 architecture closely

.intertwined garbage collection with the virtual memory system and did precisely this [Moon,
-1984]. Wang has also suggested that a lightweight version of the AIX mua_.rnE call disclaim -

REGROUPING mgﬁmmﬁmm] . : 131

might be used by the collector to unmap m.,HoEmm_mnm wmqmm explicitly in order to save disk
traffic [Wang, 1994b; ATX, version 32].

There may be several garbage-collected processes with Eﬁmm heaps running concurrently.
Bach process will' want to meke maximum progress by expanding its heap as much as possible
without thraghing. This will lead to contention for real memory. Alonso and Appel have
suggested that heap sizes might be allocated: centrally [Alonso and Appel, 1990]. At sach
collection, each process should ask a centrall advisor whether it should €xpand or contract
its heap. The advisor could ther make the decision on the basis of the amownt of time
each process has spent on useful work and garbage collecting, and each wnonomm 's minimum
memory HmnE_HmBmEm ;

6.6 Regrouping mﬁ_...mnmmmmm o -

It is desirable that relationships between data are reflected in their Ewouﬁw. m.umu_nm@ tHe mare
closely data are related, the more closely they should _uo placed in the heap. Relationships
between mutator data may be strocturalt -— the nodes are part of the same data structure —.or
temporal — the objects are accessed by the mutator at similar times. Placing related data on
the same pages reduces paging traffic since bringing oné object into main memory also brin g8
in ite neighbours, and these are likely to be required by the user program soon.

Research by Hayes suggests that objects-are typically created and. destroyed in clusters
[Hayes, 19911. He found that over 60 percent of the longest lived objects were-allocated within
one kilobyte of each ather, and that this correlation was even strenger if younger objects were
considered. These objects also died in clusters, which strangly suggests that the initial layout
of objects in the heap reflects fature access paiterns by the user program. Work with Lisp
and Smalltalk implementations also confirms this view [Clark and Green, 1977; Clark, 1979;
Blau, 1983; Andre, 1986]. The sliding compsctors studied in Chapter 5 preserved the initial
layoui of data in the heap: garbage objects were simply squeezed out. Copying collectars,
however, do not share this property. The ordering of o_u._onﬁ in the heap may be rearranged as
they are copied.

The way that live data is Hnmuo:m& nmmmnam on the order that the live graph is traversed.
The simplest orders are depth-first and breadth-first traversal, Depth-first traversal visits all the
-descendants of a-node before it visits the node’s siblings. Breadth-first search visits-siblings.
hefore descendants. The Cheney copying collector presented earlier in this chapter copied
data structures gnm.&& first whereas recursive algorithms, such as marle-sweep or Fenichel-

77" 7 Yochelson copying, traverse the graph in depth-fisst order. Diagrams 6.8 on the next page

and 6.9 on page Gu show how a tree might be laid out on virtual memory pages in :.:u rmmw
by a depth-fitst and a breadth-first copying collector respectively.

As well as studying the locality characteristics of the garbage collector itself, Hamnunnrnnm
have investigated using the garbage collector to improve the locality of reference of mrw user
program. There are two approaches that may be taken. |

Staticmﬂncnumbm analyses the topology of heap data structures in order to Tearrange

structurally-related objects more closely. It is called static becanse it analyses the
structure of the graph at collection time HmEnH than ooﬁ&oﬁbm how ‘the~mutator
accesses that mmﬁP

132 ’ COPYING GARBAGE COLLECTION

Virtual memory
page

"REGROUPING STRATEGIES R 133

Diagram 6.8 A binary tree copied depth-first: Each shaded area represents a virtual
memory page [Wilson ei al., 1891]. PLDI'91, ©1995 Association for Computing Machinery,
Reprinted by permission.

B

Dynamic regrouping clusters objects according to the mutator's pattern of access to the data.
. This requires objects to be regrouped on the fly by an incremental copying collector: we.
examine how successful this strategy can be in O:mwﬁan 8 where we discuss incremental
colleetion HmouEﬁEnm

Depth-first vs. breadth-first novw.m:m

Moon found that depth-first copying generally yields better locality than breadth-first copying
for Lisp because it is mors likely to place parents and offspring on the same page, particularly
if data structures tend to be shallow but wide [Moon, 1984]. In Diagram 6.8 we can see that
depth-first copying tends to place nodes on pages with their offspring or parents. Breadth-first
copying on the other hand tends to place much more remotely related objects together — first
and second cousins in this example (see Diagram 6.2 on the nexi page). Such grouping reduces
the chance thatloading an object info real memory will also load another soon-to-be-accessed
object, and hence increases the probability of another page fanlt. In general, breadth-first
copying initially copies all root nodes, then copies the second-level descendants of each node, .

then the third-level descendants, and so on. Thé reachable data structures are interleaved T
Tospace, rather than grouped coherently, -

Stamos and Blan compared the effect of different groupings of Smalltalk objects on paging.
As well as creation order, and depth- and breadth-first order, they also grouped objects by type,
by reference count and randomly [Stamos, 1982; Blan, 1983; Siamos, 1984]. Both simulations
revealed that breadth-first and depth-first orderings produced fewer page faults than random
ordering, but that depth-first’s advantage over breadth-first was slight except for very small
real memory sizes. Both orderings gave worse locality than optimal or creation ordering. Not
surprisingly, larger page sizes gave rise to fewer page faults than smaller ones,.-The lack of
differentiation between depth-first and breadth-first copying shown by these results seems to

[T NS~

~ Diagram 6.9 A binary tree copied breadth-first E%ou et al., 1991} PLDI'91; @Gmm
Association for Computing Emn?bm@ Reprinted by permission.

contradict our EE.EQP

Wilson et al. ‘argue that the Stamos and:. Blau mEn_Em ignoréd the ﬁomaome of typical
-~ program images [Wilson et al., 1991]. Rather than.comprising well-proportioned trees, Lisp
and Smalltalkc sysiem images tend to contain a few extremely wide root nodes but have
relatively shallow structures. These roots are typically hash tables of all interned symbols

<7 and methods. Hash tables group data into a pseudo-random order. For good performance (few

clashes) they ard designed to spread keys across the table rather than clustering data. Not only,
Wilson ez al. say,did the earlier studies fail to group data structures in 2’'manner reflecting their
actual use, but they also ignored the disastrous grouping effects on locality of raversing hash
tables linsatly. Page faults could be reduced if hash tahles were treated specially and ‘normal’
data structires were copied in an approximately depth-first fashion. A collector that does copy
data. ammﬁ?mnmﬁ is the Henichel-Yochelsou collector but it requires additional memory to hold
the recursion mﬂmnw and hence also risks stack o<9.no<< There are two Emwm to nEEEﬁEH this
EoEoE.

MnmnEmmm recursive copying collection

Cne way to remove the stack problem from depth- mHmn copying collection is to use Deutsch—
Schorr—Whiite pointer reversal {Reingold, 1973]. However, this requires additional space-for
flag-bits and is slow, since bitsmust be interrogated and pointers manipulated at each iteration..
Thomas and Jones describe a recursive copying garbage collector for a shared environment
closure reducer for Lazy ML (LML) that does not require extra memory nor is interpretive
[Thomas and Yones, 1994; Thomas, 1995]. The basic unit of heap allocation is a variable-

e ‘length frame of closures. Each closure contains a noan painter and an environment poiater to

a heap frame,

e ~ At collection ‘time, some closures in a frame Hm« be live GE“ others may be mm_.qua.

Emuo:mw the frame itself must be preserved if any of its closures are live, garbags closures

134 , COPYING GARBAGE COLLECTION

must not be recursively copied. To do so would lead to a space leak, that is, garbage may be
falsely preserved and hence memory made permanently unavzailable for recycling®. When a
closure is scavenged, the live slots in its snvironment can be determined from its code pointer
since LML is statically typed (sec Diagram 6.10)..

A Cheney-style collectar, that scans each frame just ancs, is inadequate since a frame might
be shared between different closures, each of which uses a different set of live slots. Onie
solution might be to rescan Tospace repeatedly until no new frames are scavenged, but this
would increase the collector’s complexity to O(n?). Instead Thomas and Jones implement the
collection recursively, but thread the recursion stack through Fromspace closures that have
already been visited. The question arises: kow can a description of a set of environment slots
be stored in a single closure slot without placing an interprstive overhead on the collector?

Their collector is taifored specifically for each program by the compiler. Closure code
pointers point to-an information table rather than directly to code. The information table
includes the code to evalvate the closure and a pointer to the scavenger for that code sequence
(see Diagram 6.10). The scavenger’s code knows precisely which slots in the closure’s
environment are used by the evalvation code.

closure

information

table
scavenger
code b
evaluator
cade !

Diagram 6.18 Code-environment closures for ‘siackless’ recursive copying.

The state of the nocmnﬁoh. is modelled by a continuation, i.e. 2 pointer to code. To scavenge, . . _
say, slots 1, 3 and 5 of an environment frame of a closure, the collector writes a single ’
continuation inte the closure and pushes (links) the closurs into the its stack of continuations. -~

The collectar then visits slot 1, When the continuationis resumed, its code will push a second %~

continvation onto the stack (which is held in already <Enma Fromspace. frame slots) (to
scavenge slot 3} and'then scavenge slot 3.

Thus Thomas and Jones implement recursive copying without using any extra space for the
stack, nor suffering the costs of pointerreversal. By using continbations their collector avoids
all interpretive overheads.

_3 This is aiin ta the tenured garbage. and nepotism problem faced by generational garbage collection:
(see Chapter 7).

_“the cost of avolding re-scanning objects. TEThE scavenger finds an u

T REGROUPING STRATEGIES : W 135

>_uﬁ..ox.3m.nm_w depth-first copying

Moon, on the other hand, modifies Cheney’s algorithm 8 make it ‘approximately depth-first
[Moon, 1984]. Rather than scavenging from the cell wc::oa at by scar; the scavenge is
always continued from the last @Hmmzwlmzm& page of Tospace — call this page page (free)
—- treating grey Tospace pages more like a stack than a queve. Scan_partial scans the
page at the end of Tospace until the last allocated page of Tospace is noEEa_,h_w scanned,
ie. it is either completely filled or no further Fromspace references are found on it (see
scan_partial in Algorithm 6.4 on page 139). Although scan _partisal is _uEmnE,. first
it ensures that objects are placed on the same page as references to them as far as momﬂ_&@. If
an object should be copied onto a new page, the scan restarts on that page; if a newly copied
oEnnH straddles page boundaries, the scan restarts from the part.of the oEmon on the newest:
page, in an attempt to fill it, T

Wheneverscan' partial completes scanning the Hmmn .Homcmno page; Em EQQEEEHWEEM
to scanning Tospace objects breadih-first in the usual way (scan_all in Algorithm 6.4 on
page 138). Scan_all is almost the siandard ‘breadth-first scavenger, but'its scan staps as
soon as it copies an object from Fromspace into Tospace: This ohject.is used as a seed for
scan_partial.Copy is almost unchanged from Cheney’s algorithm except that itmust test
for pointers diready followed. F1ip alternates between mnEEEm pages at the end of Tospace
and the standard breadth-first search. :

' Tospace pages

mnm_._

- L

Diagram 6.11 Black and grey .H_om&.mmm wamm may dw interleaved in zgn.m algorithm.

The drawback of this scheme is that scan._: ali may scan addresses that have already been
scavenged by scan, Lumﬂnpmw-@nmrgmﬁmﬁ 6.11) — aﬁm is a special case.of the_problem
that Thomas was frying to overcome. Moon argues that the cost of this exira scanning is
small (around 30 percent of o.c._mnﬁ may be re-scanned [Wilson et al., Goﬁ_u compared with

aniéd reference to
Fromspace, the collector must do work that would have been done in any case. If it does
not find any Fromspace references, the objeét evacnation mechanism is. not used mu& no
page faults are incurred. On the mewOrnm 3600, éEov had hardware mzmmohn for Sumwn
memory, the Gime ko scan a 256-word page without page faults or transport traps to gvacuate
Fromspace objects, was approximately twice that of fransporting one E,EHEEGaENmm m_&.mmﬁ.
Moon reports that ‘approximately depth-first” copying inereased the elapsed time for garbage
collection by around 6 percent. He does not give figures to show how effective his traversal
was at reducing _ummm.mmEB but Courts measured a 15 manoEn HEUHoﬁBoR EEq a Hmn:um:..o.

depth-first mom.<nnmﬂ [Courts, Gmmu — T

~patterns of access by the user program. ™ ™

136 i COPYING GARBAGE COLLECTION

Hierarchical decomposition

Wilson et al. eliminate re-scanning in Moon’s algorithm by moedifying it to become a two-
level version of Cheney [Wilson et al., 1991]. As well as major scan and free pointers, each
pags of Tospace also has a minor scan and minor free poinier. Their algorithm repeatedly
scans the first unscanned address in the first incompletely scanned page in Tospace. This page
is pointed at by the major scan pointer; the location on this page is pointed at by the page's
minor scan pointer. As in Moon's algorithm, if a reference to an uncopied Fromspace object
is found, the object is evacnated to the end of Tospace to seed a new breadth-first scan limited
to that page. This scan halts when either the page is full crall of the object’s descendants have
been visited. :

Both Moon’s ‘approximately depth-first’ algorithm and the Wilson—Lam-—Moher medifi-
cation result in a hierarchical decompesition of the. graph (see Diagram 6.12 on page 142),
with upper nodes of a free grouped on the same page, and so on, recursively, for each of the
sub-graphs below. Rather than being nearly as effective as depth-first traversal, Wilson er al.
claim that their and Moon’s traversals are actually better because any access to a node will
typically also load its offspring into main memory. If a node is touched by the mutator, it is
argued, it is more likely that the node's offspring or parent will be touched soon, than, say, its
ancestors or descendants in the car-line, Hierarchical decomposition attempts to group more
important nodes together, rather than grouping data structures in diagonal slices (depth-first
traversal) or horizontal slices {breadth-first traversal). Fhis, it is argued, more closely reflects

Hash tables . e e e

Wilson et al. also avoided traversing the graph fiom system hash tables. Instead, they modified
their compiler to construct a linear list of the binding cells of global variables in the hash table
in the order that these are defined. This list is only used by the garbage collector and so has
little effect on the normal execution of the program. They also grouped global procedures with
the variables that pointed to them*. By traversing this list, Wilson’s collector can reach global

objects in the order in which they were defined — earlier studies confirmed that definition .

order copying results in superior locality not only to random order (for example, hash table
order} but also better than depth- or breadth-first search. Their results showed a significant
reduction in the incidence of page faults, parficularly for programs that were small relative
to the. system image. Repeated page faults in particular were reduced by up to an order of
magnitude. The authors assign much of this improvement to better treatment of hash.- tebles,
They also found that their regrouping led to beiter staiic locality characteristics, with the
majority of pointers pointing to other objects on the same page..)

In a Jater study, the authors found that the optimal grouping was very dependent on the
shape and type of data structure being copied [Lam et al,, 1992]. Although hierarchical
decomposition performed well for trees, it was disappointing for other structures. The authors
suggest that further improvements may be made by modifying the traversat crder according to
the kind of object being created. For their Scheme. examples, functions should be grouped in

% Andrs, too, obtained improved performance from Symbolics Lisp by moving binding cells of
procedure variables out of hash tables and info compiled code objects [Andre, 1986].

ISSUES : , - ! 137

’ calling order; m..wmo.&mmon lists in depth-first order and other lists in hierarchical decomposition

order. For small real memory sizes, they cbserved order of magnimude reductions in the
numiber of page faults incurred compared with breadth-firstsearch.g..o
Although these techniques reduce the rate of page faulis of copying garbage collectors, it
would be better if they did not fault at all. This can only be achieved if both semi-spaces
¢an be held in real ‘memory: either larger real memery or smaller semi-spaces are necessary.
Smaller serni-spaces will also reduce the garbage collection pause. This is the approach taken
by generational garbage collectors, which we examine in Chapter 7. This style of collestion
segregates objects in the heap by age. The premise is that the tarnover of younger ebjects,
is more rapid than that of older ones, and hence that most reclamation gains are to be made
amongst the youngest generation. However, improving thé virtual memory performance of
garbage-collection turns the spotlight onto the next level of the memory hicrarchy: the tache.
We turn to this matter in Chapter 11 when we discuss mmE. caches. =~ ’ T

6.7 lIssues to consider

Copying is prohably the most widely adopted method of garbage collection, either in itsown

right or as the basis for more sophisticated generational or incremental collectors. We.discuss
these in Chapters 7and 8 respectively. In this section, wereview two issues: the circumstances

- ju which copying might be an appropriate method of m»w_ummm collection, and ways in-which

its efficiency might be improved.

Which method of collection?

One disadvantage iof non-moving Storage managers is their susceptibility to fragmentation:
Wilson er al. pravide a useful survey of allocation techniques in [Wilson. et al., 1995].
Although there are allocation techniques that can ameliorate this problem, it can only be
eliminated by compacting collecters such as mark-compact or copying. Compactionmay also

bring locality advaniages by reducing. the working set'of the program. The Emnn..no_nummnn :
collectors discussed in Chapter 5 offer two advantages over copying collectors. Firsi, they -

operate in smaller address spaces: a second semi-space is not required. If the BmEca\
occupied by the two semi-spaces of & copying collector is greater-than-that-available i
real memory, paging is likely to cause extremely poor performance. Because of _,._E.. H,WG
disciplines of linear allocation and of virtual memory systems, the next page to be allocated is

the page most likely to have been evicted. Each timie a new page is allocated, it wilt have to be

swapped in. Second, mark-compact collectors preserve the allacation order of n.uE.oomm_ in the
heap which may be important for some applications. For example, Prolog compilers. can take
advantage of the reflection of spatial and allocation ordering io reclaim inbounded amounts
of memory in constant time: the heap is treated as a stack. The drawback ‘of mark-campact
collectors is the cost of the compaction phase; which requires two or three passes through the

heap. : o

Allacation in a compacted heap is extremely cheap. If the cost of storage management

is dominated by allocation rather than collection, copying garbage: collectors Ec&ﬂm.mooa
performance. For this reason, the heaps of systems with very high BHM of allocation are

T g COPYING GARBAGE COLLECTION

usually managed by copying collectors. On the other hand, copying collection performs less
well for certain heap configurations. The cost of copying an object depends on the object’s
size; for all but the smallest objects, the cost will be greater than that of simply marking
it, If the heap is mainly composed. of large cbjects, the cost of copying collection will
increase, Likewise, if the heap contains a substantial proportion of long-lived abjects, copying
collection is not necessarily the best option. -)

There is no reason why a single method of collection should be adopted for all objects. in
the heap. Instead, a hybrid collector that manages differeat types of object under different
collection policies may be appropriate. Many collectors adopt such a hybrid strategy by
dividing the heap into 2 number of separately managed areas. Objects known to be relatively
permanent can be keptin a static area. Although they must be scanned for pointers, they need
not be marked, swept nor copied. Objects in the static area known to be atomic can be simply
ignored by the collector: since they cannot contain pointers, they need not be scanned.

If the delay caused by copying large objects is prohibitive, they can be allocated to a large
object area, possibly with a small header allocated in the normal, copied region of the heap.
The large object area can then be managed by a non-moving collector such as mark-sweep,.
possibly supported by an occasional compaction phase.

Nevertheless, the: copying collectors presenied in this chapter are intrinsically stop/start
collectors. All usefiil processing must be suspended until the heap is completely collected..
Depending on the volume of data surviving a collection, the garbage collection defay may

..be. disruptive to interactive..or.real-time. programs. One. solution is to scavenge the heap
incremenially, interleaving garbage collection operations with the user program: we discuss
this in Chapter 8. Another solution is to concentrate garbage collection efforts on that region
of the heap-most likely to contain garbage. Such a solution is particularly appropriate if the
heap contains a mix of long- and short-lived cbjects. Thisds the basis of generational gafbage
collection which we discuss in the next chapter.

Performance:

If copying collection is to be used, either as a. stop-and-copy. collector or as the basis for
a generational collector, the Cheney algorithm presented on page 123 is almost always
a substantial improvement over the recursive Fenichel-Yochelson collector deseribed in
Section 2.3. One exception is Thomas’s closure reducer, described on page 133,

In the previous subsection, we noted techniques that can be used to avoid copying some

objects. If sufficient operating support is available, where copying must be done, it can be

-~~~ —made more efficient. If large objects are assigned to their own virtual memory pages, they
can be moved to Tospace without copying by re-mapping the operating system’s page table.
Paging can also be reduced. At the end of a collection, all Fromspace pages and all unscanned
Tospace pages contain garbage. Any effort spent either writing the contents of Fromspace:
pages {which will have been dirtied by forwarding addresses) out to the swap disk, or loading
Tospace pages before they are allocated, will be wasted. If the collector can cocperate with
the virtual memeory system, this disk traffic can be avoided.

Finally, breadth-first copying collection disturbs the order of objects in the heap, It may
be worth using more sophisticated traversal orders to improve the way related objects are
grouped on virtual memory pages. In particular, certain data structures, such as hash tables,
may benefit from special treatmentrather than being traced linearly.

B , 139

flip{} = - -
Fromspace, Tospace:=.Tespace, Fromspace
top_of space = Tospace + space_size
gcan, partial, free = Tospace

for R in Roots
R = copy(R)
while scan < free
scan_partial ()
scan_all ()

scan_partial(} = .
while partial < free
*partial = copy(*partial) | o
— scan partially-filled page at end of Tospace
partial = max{page(free) .M,ﬂﬁnHmH + 1)

scan_all() = : i L
oldfree = free ;
while oldfree == free
and scan < partial m i

*scan = copy{*scan) .

scan = sgan + 1 B
— set up scan af any partially-filled page . : .
if free > oldfree . : .

partial = max{page (free) ,G,N_Hnu.»m“_.v

—nothing evacuated yet

copy (B) =
if atomic(P)
return P | -
if tospace(P) —alreqdy scavenged by scan_partial
W return P i [
if forwarded(P)

return forwarding dddress (P)

else |
L addr = free |
move {P, free)

free = free + size(PR) |
forwarding_address{P) = addr

return addr

gmﬁ:&ﬁ- 64 Moon's mmwuoﬁﬁmn&w depth-first Emoﬂg K

i
e ‘ _

140 , COPYING GARBAGE COLLECTION

6.8 Notes

One advantage of copying garbage colleciion is that its cost depends on the number of
survivors at each collection, rather than the size of the heap, For many applications and
languages the propottion of survivors is low [Deutsch and Bobrow, 1976; Foderaro and
Fateman, 1981; Ungar, 1984; Swinchart er al., 1986; Zorn, 1989: Hudak et al., 1992; Appel,
1992; Sansom and Peyton Jones, 1993; Barrett and Zorn, 19934]. :

The first semi-space copying algorithm was due to Robert Fenichel and Jerome Yochelson
[Fenickel and Yochelsen, 1969], Although it was recursive, they suggested that space for
the stack could be avoided by using pointer reversal [Schorr and Waite, 1967; Knuth, 19737;
this was dore by E.M. Reingold [Reingeld, 1973]. The hest-known copying algorithm is due
to C.J. Cheney [Cheney, 1970]. His elegant algorithm is iterative rather than recursive and
80 runs in constant space. Experiments with 2 recursive capying collector by Douglas Clark
and Cordell Green produced a cdr-cell linearisation — the property that a cell that points to
anather will be next to each other in Tospace after collection — of over 98 percent [Clark and
Green, 1977]. The incidence of off page pointers was also low (between 2.7 and 8.4 percent).

James Miller and Guillermo Rozas measured Andrew Appel’s claims. for the efficiency
of heap allocation compared with stack allocation [Appel, 1987; Miller and Rozas, 1994].
Although they. accepted Appel's-general case, they- found-that heap allgeation of procedure

activation frames required an exira two instcuctions per call (to save the frame pointer and
move the heap pointer) — 18 percent more instructions than was needed for stack allocation, _

T For small numbers of frames allocated, the actual overhead was less than predicted — 3 fo 5

percent -— but it was larger if the capacity of the secondary cache was exceeded. Heap frames
were also larger than stack frames (an exira pointer is needed to link the. stack), provoking
paging more easily, which was disastrous, : ; o .

Many systems divide the hesp into separately' managed regions. This idea seems to
have first appeared in Peter Bishap's thesis [Bishop, 1977). Results for regrouping garbage
collected heap data reflect those for conventional systems: good locality is often achieved
by following the textual ordering [Ferrari, 1990]. Studies comparing the effect on locality of
different static regrouping of the graph have been carried out for Smalltalk by James Stamos
and Ricki Blau, and for Lisp by David Moon, David Andre, Robert Courts, and Paul Wiison,
Michael I.am and Thomas Moher {Stamos, 1982; Blau, 1983; Stamos, 1984; Moon, 1984;
Andre, 1986; Courts, 1988; Wilson ef al., 1991]. B

Jon White first suggested that regrouping should reflect actual program accesses rather than
the topology of the graph [White, 1980]. This. technique was incorporated in the T Explorer
[Explorer, 1987, 1987] and studied by Robert Courts-and Douglas: Johnson [Courts; 1988;
Johnson, 1991a)]. R

Several observers have noted that statically typed programming languages do not require
run-time tags to determine types. P. Branquart and T, Lewi used tables to map locations of
variables within activation records to garbage collection routines for Algol-68 [Branquart
and Lewi, 1971]. The drawback of this method is that the tables must be updated every

time a local varable is bound to a heap allocated structure, Appel used the return address — —

in the activation record to determine the procedure. called, and hence the type information

of the variables in the activation record [Appel, 1989b]. For polymorphic procedures, the
caller too may have to be examined, and so-on. This quickly hecomes very complicated and -

“H C. NOTES 141
" Appel provides few details. Ben Goldberg als0 used return addresses to handle polymorphic
and higher order fonetions [Goldberg, 1991; Goldberg and Gloger, 1992; Goldberg, 1992]. |
e Other references can be found in [Cheong, 1992; Tolmach, 1994], However, Em‘.ﬂnﬁuem.ﬁmo |
7" leads to traversing the stack, possibly twice, and again the method is complex. Amer Diwan,
" Hliot Moss and Richard Hudson have the compiler emit tables at each point where a garbage W

collection might occur [Diwan ef ¢l., 1992}, They toe use return addresses to access Em..EEaE ;
" their concern is to be able to collect in the presence of a highly optimising compiler. The

Spineless Tagless G-machine compiler for the functional Hgmﬂmmm Haskell [Peyton umnnw_

1992] replaces interpretative object tags by pointers to/an information table for the cEa.nﬁ 5

type in the same-way that Stephen Thomas does [Thomas, 1993]. These EEnm contain a

pointer to code to collect the object [Sansom, Gmr Sansom, 1992; Sansom and wmﬁou_unzam_

1993 _ o

140 ' COPYING GARBAGE COLLECTION

6.8 Zoﬁmm ”

One advantage of capying garbage collection is that its cost depends on the number of
survivors at each:collection, rather than the size of the heap. For many applications and
languages the proportion of survivors is' low [Deutsch and Bobrow, .1976; Poderarc and
Fateman, 1981; Ungar, 1984; Swinehart et al., 1986; Zorn, 1989; Hudak et al., 1992; Appel,
1992; Sansom and Peyton Jones, 1993; Barrett and Zorn, 1993b].

The first semi-space copying algorithm was due to Rabert Fenichel and Jerome Yochelson
[Fenichel and Yochelson, 1969]. Although it was recursive, they suggested that space for
the stack could be avoided by using pointer reversal [Schorr and Waite, 1967; Knuth, 1973];
this was done by E.M. Reingold [Reingold, 1973]. The best-known copying algorithm is due
to C.J. Cheney [Cheney, 1970]. His elegant algerithm is iterative rather than recursive and

$0 Tuns in constant space. Experiments with 4 récursive copying collector by Douglas Clark

and Cordell Green, produced a cdr-cell linearisation — the property that a cell that points to
another will be next to each other in Tospace after collection — of aver 98 percent [Clark and
Green, 1977]. The incidence of off-page poiniers was also low (between 2.7 and 8.4 percent).
Tames Miller and Guillermo Rozas measured Andrew Appel's claims for the efficiency
of heap allocation compared with stack allocation [Appel, 1987; Miller and Rozas, 1894],

Although theyacceptad Appsl’s general €ase, they found thatheap allocation of procedure
activation frames reguired an extra two instructions per call (to save the frame pointer and

.._move the heap pointer) — 18 percent more instructions. than wasneeded for stack allocation.

For small numbers of frames allocated, the actual overhead was less than predictad — 3 to 5
percent — but it was larger if the capacity of the secondary cache was exceeded. Heap frames
were also larger than stack frames (an exira pointer is needed to link the stack), provoking
paging more easily, which was disastrons, - *

Many systems divide the heap into separately managed regions. This Eam seems to
have first appeared in Peter Bishop's thesis [Bishop, 1977]. Resulis for regrouping garbage
collected heap data reflect those for conventional systems: good locality is often achieved
by following the textal ordering [Ferrari, 1990]. Studies comparing the effect on locality of
different static regrouping of the graph have been carried out for Smalltalk by James Stamos
and Ricki Blaw, and for Lisp by David Mocn, David Andre, Robert Courts, and Panl Wilson,
Michael Lam and Thomas Moher [Stamos, 1982; Blau, 1983; mEEOm. 1984; Moon, 1984;
Andre, 1986; Courts, 1988; Wilson et al, 19911. -

Jon White first suggested that regrouping should refiect. mnaﬁ Eoma.ﬁ accesses rather than
the topology of the graph [White, 1980], This technique was incorporated in the TI Explorer
[Explorer,-1987, Gm..: and studied-by Robert-Courts and- Deuglas Ho_ubmo_p 1Courts, 1988;
Johnson, 1991a].

Several observers have noted that statically typed programming Hmumcmamm do- not 1equire:
tun-time tags to determine types. P. Branquart and . Lewi used tables to map locations of
variables within activation records to garbage collection routines for Algol-68 [Branquart
and Lewi, 1971]. The drawback of this method is that the tables must be updated every
time a local variable is bound to a heap aliocated structure. Appel used the return address
in the activation record to determine the procedure. called, and hence the type information

. of the variables in the activation record [Appel, 1989b]. For polymorphic. procedures, -the- -

calier too may have to be examined, and so on. This quickly becomes very complicated and

NOTES 141

. Appel provides few details. Ben Goldberg also used return addresses to _umb&n polymorphic

and higher order functions [Goldberg, 1991; Geldberg and Gloger, 1952; Goldberg, 1992].

- .. Other refersnces can be found in [Cheong, 1992; Tolmach, 1994]. However, his. method.also

leads to traversingithe stack, possibly twice, and again the method is complex. Amer Diwan,
Eliot Moss and Richard Hudsen have the compiler emit tables at each point where a garbage
collection might occur [Diwan et al., 1992]. They too use/return addresses to'access the tables;
their concern is o be able to collect in the presence of a highly optimising compiler. The
Spineless Tagless G-machine compiler for the functional language Haskeli [Peyion Jones,

1992] replaces interpretative objsct tags by pointers to an. information table for the object’s
type in the same way that Stephen Thomas does. [Thomas, 1993]. These tables contain a

pointer to code to.collect the object [Sansorn, GE Sansom, 1992; Sansom and wnﬁou H ones,

Hmwuu

142

e q pajundey
Aroutyonpy Sunndwey) 10§ uopzwossy 661@ T6,1C071d [1661 “72 12 Ucs|p] Afeorgoresary pardos ashy Armulq v gr'9 wreaSerq

‘worssiurrad £

COPYING GARBAGE COLLECTION

7.1 The mm:m_.mnmo:m_.g‘von:mmmw

Simple tracing collectors, such as mark-scan and copying collectors, suffer from a number of

- drawbacks: Because all the active data must be marked or copied, delays caused by garbage

collection can be obtrusive: studies from the 19705 and 1980s found that large Lisp programs
were typically spending beiween 25 and 40 percent of their execution time in garbage
collection [Steele, 1975; Foderaro and Fateman, 1981; Gabriel, 1985]. For these reasons some
systems, such as the Xerox Dorado Smalltalk-80, largely designed for interactive programs,
used deferred reference counting to spread the cost of garbage collection evenly throughout
the pragram, despite its high CPU overhead and inability to collect cycles [Deutsch, 1983].
Incremental garbage collection techniques have also been used to try to spread the costs of
reclaiming storage more smoothly. However, the overheads of incremental systems are high
unless support from the virtual memory system or from specialised hardware is available.

Several authors have argued that the role of the garbage. collector is not simply to reclaim
memory, but that itshould also improve the locality of the system as a whole [Fenichel and
Yochelson, 1969;-Whitz; -1980%.Poorlydesigned garbage collectors can ‘certainly ‘interact ———
badly with virtual memery and caches. Tracing requires that every active;object be Snormm o
. In the case of copying « collection, each page c¢f the wom—u is touched every two nocnnnon S..Qmm .
although only half the heap is in use by the user program at any one time! Such poorilocality .
of reference leads to an excessive number of cache misses and page fanlts enless the entire
-heap can be held in memory, although this is somewhat ameliorated by the:strongly mnnamnnﬂ
behaviour of copying collection. We saw In Chapter 4! that the. number of page faulfs caused
by mark-sweep collection can also be reduced with better marking schemes, for-example by
using an array of mark bits to ayoid having. 8 touch mn oEmnﬁ in order | o, amﬁaEE.o &,. it has W
been marked ornot, ,

Tracing algorithms also spend considerable time dealing wnmznnmmm?E with Hﬂmgo@
long-lived objects (unsuccessfully in the sense that the job of the garbage oozmnmohﬁ torecycle

storage). mﬁmmmwmoﬁimﬁa collectors will either Hn@mmﬁmm@ mark and trace these oE ects, or

e 144 GENERATIONAL GARBAGE COLLECTION
repeatedly copy them from one semi-space to the other. In Chapter 6 we saw that the time
speni by copying noumnSHm in tracing and evacuating long-fived objects could be reduced by
partitioning the heap into quasi-static, read-only and dynamic spaces. Although heap ohjects
in the static area must be scanned, they are not moved. Read-only objects are gnarantsed to
contain pointers only to objects in the siafic area or into the read-only area itself. Objects in
this space do not even need scanning, Unfortunately, the lifetimes of objects cannot in general
be determined statically. Hansozn observed that the bottom of the transient object area in his
SITBOL system tended to accumulate objects that remained active throughout the program
[Hanson, 1977]. His solution was ta keep track of the height of this ‘sediment’ dynamically
and to avoid collecting it unless absolutely necessary.

On the other hand, the lifetime 6f many objects is short. As early as 1976, Deutsch noted
that “statistics show that a newly allocated datum is likely to be either ‘nailed down’ or
abandoned within & relatively shortiime™ [Deutsch and Bobrow, 1976]. Foderaro and Faternan
found that over 98 percent of starage reclaimable at one garbage collection had been aliocated
and discarded since the previous garbage collection [Foderaro and Fateman, 1981}, Modern
languages such as ML often allocate short-lived objects representing intermedtate exprassions,
or even control strictures (such as environment frames), on the heap. Many other researchers
have gathered considerable evidence to support the weak generarional kypothesis that “most
objects-die young® [Ungar; 19841 Fhe insight behind generational garbage collaction' is that
storage reclamation can be made more efficient and less obtrusive by concentrating effort on

. Ieclaiming those abjects most likely to be garbage, i.e. young objects.... —

A number of benefits accrus if this can be done effectively. By collecting only a part of
the heap, pause times can be diminished. If these delays can be reduced sufficiently, say to
100 microseconds ot so,. then garbage collection becomes feasible for interactive systems:
a common measure: of feasibility is “Can I garbage collect while tracking the mouse?”.
Furthermore, by avoiding repeatedly processing objects that remain active, the overall effort
of garbage collection, measured over the entire program, may be reduced. The locality of the
collector too can be improved by concentrating on just a small part of the heap. However,
there is a price to pay: the system must be able to distinguish older from younger objects. In
particular, the cost of storing in an old chject a pointer to a young object becomes much mare
expensive.) .

The generational siralegy is to segregate objects by age into two or more regions of the heap
called generations. Different generations can then be collected at different frequencies, with
the youngest generation being collected frequently and older generations much less often, or
even, in the case of the oldest generation, possibly not at all. In a sense, this is the dynamic

—-—-~"- -automation -at run-time of the segregation into read-only, unscanned and dynamic areas

that we discussed above, The number of generations used varies between implementations.
Until recently, Standard ML of New Jersey (SML/NI) used just two generations whereas
Tektronix 4406 Smalltalk vsed seven [Appel, 1989h; Caudill and Wirfs-Brock, 1986]. Other
schemes are able to vary the number of generations dynamically; for example, the University
of Massachusetts Language-Independent Garbage Collector Teolkit is an example [Fiudson
et al., 1991]. Generational garbage collection has often been used in conjunction with

e . ! Somelimes called ephemeral garbage collection.

THE GENERATIONAL HYPOTHESIS ” 145

incrementzl collection schemes but the two are quite different, and generational gerbage
collection is not dependent on incremental collection [Lisberman and Hewitt, 1983; gmos_
1984}. Indeed generational garbage collectionmay be used as a substitute provided that minor
collections of the youngest generation can be kept sufficiently short and that major multi-
generation collections are hidden from the user. - o

Generational techniques heve been demonstrated to be very successfil sfid genefational
collectors are now in widespread use including all commercial Lisps, Modula-3, Standard H(Hr
of New Jersey, Glasgow Haskell, and commercizi Smalltalk systems from Uﬁ@k. Ho%qux
and PARCPlace Systems. For many applications today (but not all), m.auﬂmzo.:ﬁ mﬁwmmm
collection is the system of choice but whether the generational mn”mﬁmw is om.ooﬂﬁ or not is
mmwmommou-mm@nuannw The questions to ask include: Uo most ma._no_..m tend to die Qm.u.im..‘. I
young objects do not have a sufficiently high death rate, generational .mmH.umm.n nccnnﬁmi does
ot reciaim storage efficiently. How frequent are pointer stores and in mﬁancum.ﬁ oEmlu.SEu.m.
pointer stores? What is the overhead of thess stores? We address these and oa.ﬁ_...mmm:m.m in this

chapter.

Object lifetimes : j

In order to be mEm to measure the age of an object, it is necessary to decide how to measure

time. The most obvious way is to use wall-clock fime. Time-based ﬁoﬂhﬁ distributions
do give insight into the object demographics of uﬂm@_mﬂ .Eumﬂmﬂmaﬁﬁo:m E.# m_._Q are
machine-dependent. In particular they depend on the spoed of particular machines mnn. of
particular implementations, A better measure is to count bytes of heap allocated. As;well as
being machine-independent, this measure beter reflects the demands made upon u.ﬁ. HoBoQ
management sub-system. In particular, it is closely. related to the m.nmn._amu@ of mﬁcwma
collections since these are largely dependent on the amount of heap E_BETF. o
However, heap allocation is not a perfect measure. Virtual MemoTy Emon.m._.Bm may mns%nmn
time in their page eviction policy. Objects supporting human interachon have wﬁnnupmm
determined by the user’s activity. Both of these considerations affect the mw.H_umma no:mﬂoH and
argue for a measure based on wall~clock time. Seme languages are also Eam@ to rwaud. Bsnru
higher rates of memory consumption. Implementations of Smalltalk and functional lapguages

typically allocate objects in the heap that implementations of more noE..nE,..»onw_ wﬂwmﬁmnﬁm
languages might have stored on the stack or in registers. Not only do Enmn implementations. -

2=)

allocate more rapidly, but they also discard data ata higher rate:as imﬁ.))
Many systems today, particularly those written in modern functional; objeet-oriented or

" logic languages, make prodigious demands o memory. Allocation rates of one megabyte per

second are common. SML/NT programs, for example, may allocate 2 new word for every
thirty instructions executed [Appel, 1389b]: Programs written in o@?ﬂﬁﬂnﬁm& _mmb.mnmmn,m
also make much greater use of heap allocated data structures than those wntten in their

predecessor procedural languages. However; there is strong evidence that the overwhelming

majority of ebjects die very young, although a small proportion may live for a long, time. In

his recent garbage collection survey, Wilson finds that typically 80 ,au.‘o.m petcent of o_u..w.mﬁm
die Ummo.nm one further megabyte of heap storage has U,non allocated [Wilson, 1994].. Statistics
for particular languages suggest that: P R —

146 , GENERATIONAL GARBAGE COLLECTION

between 5C and S0 percent of Common Lisp: objects die before they are ten kilobytes old
[Zorn, 1989]; :)

for & highly optimised Haskell compiler, the ten-kilobytes threshold sees the death of
between 75 and 95 percent of the heap data. No more thar 5 percent will survive beyond
one megabyte [Sansom and Peyton JTones, 1993]; .

only 1 percent of Cedar” objects survive beyond 721 kilobytes [Hayes, 1991];

SML/NT reclaims over 38 percent of any given generation at each collection [Appel, 1992);
even for C programs, a large proportion of heap allocated data may be comparatively short-
lived. Investigating four substantial C programs, Barrett and Zorn found that over half the
heap data lived for less than ten kilobytes, and that less than 10 percent lived for longer than
32 kilobyies [Barrett and Zorn, 1993b].

Ungar and Tackson found similar results for Smalitalk-80 [Ungar, 1984] and support for
the weak generational hypothesis, that most. objects die young, can be found throtighout the
literature. .

On the other hand, the strong generational hypothesis, that the older an object is the less
likely it is to die, does not appear to hold generally. Object lifetime distributions do not fall off
smoothly. Although most objects diz young, some objects may last very much longer, possibly

-in clumps. Certainly thject behaviour does nof seein to-fit the exponential decay model, in
which the rate of decay is constant. On the contrary, the probability that an object will die is
__.._ often_inversely dependent.on its.age. Measurements. with multi-generational-collectors: show
large drops in reclamation rates from generation to generation. The distribution is also lumpy.
Hayes found that more than 80 percent of objects successively deallocated differ in age by
less than 1 kilobyte, and that this proportion became even larger if the criterion were relaxed
to include ‘nearly successively’ deallocated [Hayes, 1991]. : . :

There is less agreement on whether the longevity of objects is related to their size, Although
some researchers have found that large objects exhibit a terdency to live longer [Candill and
Wirfs-Brock, 1986], others have found no such correlation [Ungar and Jackson, 1988; Barrett
and Zorn, 1993b], Nevertheless it is worth treating large objects specially (see Chapter 6
where we discuss large-object areas).

7.2 Generational garbage collection

Generational mwﬁrwma collecion schemes divide the heap into two_or more generations,
‘segregating cbjects by age. Objects are first allocated in the youngest generaton, but are
promoted into older generations if they survive long enough. Accepting the weak hypothesis
that most objects die young, generational schemes concentrate their effort to reclaim storage
on the youngest generation since it is there that most recyclable space is to be found,
Rather than occasional but lengthy pauses to collect the entire heap, the youngest generation
is collected more frequently. Since the youngest generation is small, pause times will
be comparatively short. Furthermore, because older abjects are promoted out of younger
generations, CPU cycles can be saved by not having to copy these items from one semi-space

2 Cedar is 2 Modula-like langnage developed at Xerox [Swinehart er al., 1986].

GENERATIONAL GARBAGE COLLECTION 147

" 1% 4y another; although it is still necessary to scan some older objects forpointers into younger

generations.

A simple example N ,
Let us consider how generational garbage collection may be applied to a simple exampte.
Diagram 7.1 shows the initial state of the heap, whicli is split into two generations, We suppose

that all cells apart from cell s are in the younger generation, and that this generation is now
full. .

root set

s

. Oid generation . . New generalion o

: i
Diagram 7.1 The initial configuration.

Suppose that the mutator overwrites the first slot in the root set with a %Fﬁ.—..ﬁo a n”aé'nn:
R. Suppose further that a second new cell is requested, but that this request triggers a minar
collection of the wc..Ewg. generation (see Diagram 7.2 on the next page}. The only nmmnero.
cells in the younger generation are a, b, c and R, These are moved to the older generation and:
the remaining cells are reclaimed. . . . 5 - .

The new cell can now be allocated, Initialised fo point at b and c, and zight (R) 18 m,.#
to point at it, A further new cell is acquired and initialised to point at a and c. Left{R)is

updated to-point at this new eell. The pointersto a, b and ¢ are now popped from therootset. ...

“The final state of the heap is shown in Diagram 7.3 on the following page.’ o
This example reveals five interesting praperties of generational garbage collection, First, it

is possible to collect the younger generation without collecting the older one. The pause-
time to collect this generation is shorter than that required for a .?: _.uocanﬂo.u. Secoid,
young ohjects that survive sufficiently many minor nomnn.no_wm —in E_m. case .Emmonm —
are promoted to the next generation. Third, the minor collection successfully mn&ﬁﬂnﬁ all
short-lived cells in the graph. Fourth, the writes to ® resulted in an Mwwmw.w.mzmwn:a:nﬁ pointer
(shaded grey in Diagram 7.3 on the next page), from the old generation to the young one. Ifa

fixrther minor collection was to occur now, these fields must be fredted mmﬁ&.n of theToot sét

of the younger generation. In general, generational algorithms must record w.nﬁn,mgnnmmcnﬁ
pointers. Finally, node & is no longer reachable. Gerbage in older genezations, ofien called

tenured garbage, cannot be reclaimed by minor collections of younger wmwmn.mnonm‘. .

148 . GENERATTIONAL GARBAGE COLLECTICN

root set

[

[

" New generation

] [

- Oid generation .

Diagram 7.2 After the minor collection of the younger generafion.

In this oumHEn_ we did not specify how objscts in either generation were collected. We

simply stated that any objects that survived sufficiently many collections were promoted to the

next generation. Most generational collectors are copying collectors, although it is possible
—ewer - to-use mark-swesprbased schemes [Zorn,”1989; Demers™ar &k, 1990). I this chapter we

concenirate on generational copying collectors as these are simpler to understand.

Pause times
The generational collector exhibits several space advantages. Its pauses for garbage collection
are shorter since it has less data to trace and copy at each collection, and the total volume

of data moved throughout the entire program run js smaller. The graphs in Diagram 7.4 on
the facing page compare the behaviour of a twe-space copying collector and a generational

root set

Old generation New generalion

Diagram 7.3 Overwriting R creates old—young pointers:

GENERATIONAL GARBAGE COLLECTION) 149

b ..w.....\ ‘ collectar®, For the two-space copying collector the amaunt of data copied is the.sum of the

heights of lightly shaded areas, whereas for the mmuﬁmﬂou& collector it is only Ea..mw.m
(height) of the mghtmost bar in the old generation. The spatial locality: of the-generational
collector is also beiter since the allocation area (L.e. the;new generation) is recycled at cach
scavenge in this example rather than ,a._&am flipped from ¢ne semi-space to the other as it isby
the copying collsctor. : B o

New dafa

Copied data § . T

Y ARt _ e

Heap
occupancy’

A

) new
genaration

" old
generation

Diagram-—7.4—. m__m:.._ummnw collection_.pauses:. a. two-space copying ..o.oFonn Q.OE VSRl
, generational copying collector (bottom). :

The root:set for minor collections | o

However there is a price to pay. Garbage collection starts by tracing from a goéuwmmow sgt, ,
Unfortunately determining the roots of & generation is more difficult than mmﬁgnm the , ,

3 For the generational collector, .we.assume: that there are. just two. senerations, agd that all five data in
the young generation are promoted er masse to the old generation at each scavenge.

150 GENERATIONAL GARBAGE COLLECTION
roots of the entire heap. As well as scanning registers and the stack for roots, a generational
collector must check whether any pointers to objects in one generation are stored in objects '
of other generations. Any such pointers must be treated as roots of the first generation. Ta .~ =’
the example shown in Diagram 7.5, all the shaded words ere 1oots of the new generation. :
Notice that as well as the standard root set of the computation (registers, the program stack '

" and pointer-valued objects in the static area) the: collector must also start fis trace from words .
in the old generation that point into the new generation. On the other hand, it is not necessary

to continue the trace from a word in the old generation unless it contains a pointer to an ebject
in the new generation.

Y

=

T

Diagram 7.5 Younger generations may have roots in older generations.

L1]

Old generation New generation

Inter-generational pointers can be created in two ways: either by storing a pointer in an
object or when an object containing pointers is promoted to an older generation. It is vital to
keep track of these inter-generational roots. The: burden of this may fall on the shoulders of
the garbage collector or the mutator or both. Those created through promotion are easily
recognised by the garbage collector. For those created by assignment, a write-barrier is

needed to frap and record these pointers as they are written. Recording all pointer stores T S

would impose a substantiai and unacceptable overhead on the user program. Fortunately we ik
can do better than this. If local variables are always considered to be.part of the root set, there . f
is no need to record assignments to them, since they will be scanned by the garbage collector: g
in any case. As most stores are indeed into local variables, the cost of the write-barrier is
substantially reduced. Studies have shown that, for modern optimising compilers for ¥isp or
ML for example, other poiater stores account for less than 1 percent of instructions executed
[Taylor ef al., 1986; Appel, 1989b; Zorn, 1989).

Furthermore, if’ we guarantee to collect all younger generations whenever we collect an
older generation, we only need to record old—young pointers. Old—young references are
much rarer than young-old, at least for mostly functional languages. Most pointer stores
in these languages are initialising stores (for example, Lisp's cons), and so can only point
backwards in time. These stores cannot generate references from older objects to younger

feating the whole of the younger generation as wo%mu_ow toots. The possibility of reating the
. g :

* GENERATIONAL GARBAGE COLLECTION : 151

ones. User programs can only create old—young uowaﬂmg z.mim pmmwmuwmnum or assignment-
like operators (for example, rplaca in Lisp, or Hnmﬂ.n _.Eamﬂ.am in lazy functiopal _mumnmmﬂmv.mo
only these operations need to be trapped by the’ iﬂ.ﬁ.dm.ﬁumn. deEumﬁQ‘.&n%mhm.mﬁmm.nﬁnmx
rare to make penerational garbage collection effeciive.) :

Only recording old-young pointers means that younger generations can be nommoam
independently of their elders, but not vice-versa. Since cells in younger generations are ESF
to be mainly mmm_um,mm {and so will not be traced) and Em.n_ ﬁ.o contain references to m_Emnﬁ in
older mmunnmmonm that need. to be traced anyway, the restriction msmﬁ younger, generations Emmﬁ
be collected when older ones are is not toc burdensome. Collection om the womﬂmmmﬁ generation
is usually called a'minor collection, in contrast to less frequent major nozmnﬁoun of mo<oH&
generations. To collect an older generation independently of 2 younger one would mean ___

entire younger generation as pert of the root set is only plausible because younger mmum.mmmonm
= + B - A

are likely to be smaller; and because scanning, is’ generally faster than ﬁmﬁ.nm_m..um _._mw Umﬂmn..

locality.

Performance ”

Some care is needed when examining claims in the literature for the performance of garbage
collection algorithms. What is effective for an u.baﬁmwmhmnm?gm.:mmo may be less 50 mn.ﬁ.m :
compiled version: of the same language. ‘While the EH.HLm_mHmn o<.nww_.wwn may U.m. mrm._._ﬁ
in an interpreted system, it may be much more o@ﬁﬁé in an optimising no.Bum.M.w Mm
example, Ungar’s generation-scavenging garbage collectors for ﬁ.rm Berkeley Sma ﬁ zw ..
[Ungar, 1984] and SCAR [Ungar, 1986] suffered garbage collection oé@mmam of .Hmmm .‘c.pwp.
2 percent and 3 percent respectively. However; Emmo results Eoﬁﬁoa% hand-tuned assembly
language garbage collector against an interpreter in-the Berkeley case”,. m:.a a nop.omﬁﬁmﬁw m
compiler for SOAR. These figures compare remarkably mpéﬁqu,gm_u. &omn or o e
systems. Chambers reports overheads of between 4 and 277 percent for E.m.c@n:ﬂﬂnm%wmcﬁ :
for SELE, a Smalltalk-like language [Chambers &t al., me@._ Chambers et &.: Hm.o 1]. ir mm._w
Appel finds a 5 percent to 10 percent garbage collection overhead for the New Jersey

compiler (depending on the amount of memory available) [Appel, GmmEmﬁoine.nﬁ Uon.r.
Smalltalk and ML, but not SELF, create closures for control structures, thus reducing average

objeot Yifetimes — since these closures Yast only for the mﬁmmo.c of- m.ﬁ.,‘no:ﬁ.o#. .mﬁﬁnE.Hmm.f.Ilolz
__— while increasing the allocation rate. Although high rates may increase garbage collection

overheads, short object lifetimes certainly increass the mwmmo%nmﬁm.m‘ow génerational noﬁnoﬁoﬁw -
More conventional procedural languages typically mcommﬁ objects at much lower w&nﬂh Ew
thosa objects tend to have longer lifetimes. Insights obtained from any one-sysiern are.lr ely

i \ icable. - ;) .) .
“ MMMMMMHMM MMW mecmmmo ideas, the next sections meoHo the ummmmw...om .mmumﬁﬁo:&.,mmm&mmn
collection. The ideal collector should have low CPU QB,HUnmn. good <nEm.H.M.ﬂ.HoQ Ea mnmﬂ Hm
performance, and short pause times. Space overheads should also be minimised. Inevitably

there will be irade-offs between these constraints and we compare momww.lmﬂﬁn‘ wﬁcmonm that

: , . . e emai a
4 The Berkeley Smatltalk-interpreter-ran at 9,000 instructions per second and :mnmm@ Emﬂdocmﬁ todo

a store. , _ .

. Muitiple generations

152 ' GENERATIONAL GARBAGE COLLECTION

have been proposed. For the puzposes of discussion, we assume a copy-based generational
collector, but many arguments apply equally to mark-sweep based coliectors.

7.3° Promotion policies

Generaticnal garbage collection has two aims. The first is to reduce the overall cost of dealing
with long-lived objects and thereby allow the collector to concentrate its efforts on young
objects, where the rewards are likely to be greater. The second ohjective is to reduce garbage
collection pause times to a level where they no longer disturb interactive users. Both goals
are achieved by segregating objects by age, and by collecting older generstions much less
frequently than younger ones. o ‘ . o
Panse-time is largely dependent.upon the amount of data that survives a collection. In
general, the number of survivers inthe youngest generation depends on its size: the smaller

" the generation, the shorter the pauses will be. However, a small generation will be filled

more rapidly than a large one, thus increasing the frequency of scavenges. This poses a
dilemma. Unless ohjects are promoted early, we cannot felfil the aim of reducing the amount

of copying that'must be done in thé Founger generation. On the other hand, objects should
not be promoted prematurely since the basis of genérational garbage collection is to allow as

‘many ohjects.as possible.to die in the young.generation. If the promotion threshold is toa low, ... -

objects that would have died in a younger generation will be copied into an older one, and so
die in a less frequently collected generation. This will cause the older generation to fill up too

soomn, resulting in a major collection with a longer panse time. Worse still, garbage ‘tenured”

in older generations leads to ‘nepotism’: the young offspring of these elderly dead-cells will
be preserved by minor collections or will even be promoted themselves. Premature promotion
also has an adverse effect on the user program’s focality, since it is likely that most program
accesses will be to . younger objects. Moving these objects will dilute the program’s working
set. The cost of maintaining the write-barrier must also be considered. If it is high, it may
be advantageous to lower promotion rates in order to reduce the number of inter-generational
pointer stores. In short, the cheice appears to be between reducing pause times by restricting’
the size of the youngest generation or risking more tenured garbage by increasing the rate of

promotion. We now examine how far the horns of this dilemma can be blunied. -

If the benefits of reduced pause times and copying overhead can be obtained by dividing
the heap into two generations, then it is logical o see whether further improvement can be
gained by using more than two generations. Intermediate generations serve to filter objects
prematurely promoted from the youngest generation, thereby increasing the chance that they
will die in a generation where they can still be reclaimed fairly quickly and efficiently. These
intermediate and older gsnerations fill much mare slowly than the youngest generation, and
hence will nead to be collected much less frequently. Multiple generations allow new objects
to be promoted quickly, keeping the youngest generation fairly smatl and reducing the pauses-
incurred when scavenging it, without increasing the volume of permanent garbage. Multi-

PROMOTION POLICIES : 153

generational metheds, on the other hand, have drawbacks apart from their extra complexity.
Pause-times for collecting intermediate generations may still be disruptive, although they will
till be shorter thas that for a full collection. More pointers from objeets-dn-old-generations.
to young oncs will be created, and the size of the root.set for younger gererations will be
increased (assuming that objects are advanced earlier than in a two-generation callector).

The survival rates for each gederation are unlikely to be the same (which they would be
if object lifetimes were independent of object ages). If this were 50, clder generations .@cEn
allow objects more time to age than younger generations, Hence the volume of data promoted
should decrease exponentially with each generation. Measurements of generational collgctors
do not exhibit this effect; rather, multi-generational collectors show alarge drop in reclamation. -
rates. The very large difference in reclamadon rates between very new EE slightly; clder _
objects is not reflected in subsequent generations [Hayes, 1991; Ua.wunﬁznn. 1990a; ‘“mumé.,
Gmﬁ. For this reason, many collectors are limited to just two or thres generatians.

Promotion threshold

Promotion rate alsc depends on the number of minor collections that an objest. Enm_mmﬂﬂ.ﬁ,?n. I
hefore it is advanced to the next generation. A copy count of one leads to en imasse pramotion:
all objects are promoted at each collection even though some mﬂoﬁoﬁn.n_ obj mnmm..Bmw Ew very "
young indeed, Although this has some advantages for heap organisation, iEo:.Eo n:mncmm
below, it gives young objects little opportunity to die, and may lead to promotion rates as
much as 50 to 100 percent higher than can be achieved with targer copy counts meHP. Emﬁ.
The. graph, due to [Wilson and Moher, 1989b], shown in Diagram q..m on n._o moz.oiEm.
page shows the proportion of objects in the youngest generation that survive until the mmnnonn
scavenge after they wers allocated, plotted against their time of allecation. The mHmE.Hm mros.m
respectively, the proportions of objects (a) allocated after scavenge n — 2 that survive until
scavenge n, (b) allocated after scavenge n — 1 that suirvive until scavenge n + 1, m_nm (c)
allocated after scavenge n that survive uniil scavenge n + 2. Under the weak mnnn—.mcosmm
hypothesis, most objects die young. Therefore, the nEmﬂ. to a moma.d:mw.ﬁrmﬁ an oEm_HOm is
allocated, the less opportunity it has to die, and hence the greater its chance of surviving.

that scavenge. , S
et us consider the period between scavenge and scavenge n + 1. Most objécts allocated

shorily after scavenge 7 donot survive nniil scavenge n + 1, and hencé-are-never copled, ..

these are the objects in the lightly shaded area EmHWmﬂ *never copied’. On .mﬁ c_&m_w :.uum....
most objects allogated shortly before scavenge » + 1 do survive to _um. n..@m_wa. EH .mEmﬂ,m
below curve (b) are copied at the next collection. Now supposs that objects-are profoted if

{hey survive until the second scavenge after their allocation. Somé ohjects sllocated between

scavenges 7 and 7+ 1 will survive long enough to be promated. These are the objects in the

black area marked ‘copied twice’. The objects:in the area between the two mcﬂ_n.m éE..”chEm
the first scavenge but do not live long encugh to-he promoted. s :

The graphs show that the number of objects Emﬁ survive two mnmwnmm‘nm E.nwmnm ﬁmmm@.wm
the number that sirvive just one scavenge. A copy count of two scavenges denies promotion
to very recently created objects and is highly nmmoneﬁ”nnms&nm survivors ,E\ a factor of two
whilst increasing copying costs by less than half. On the other hand, increasing the number of

scavenges beyond two is likely to reduce the HEE_um.m. of survivors only slightly [Ungar, 1984;

T s = GENERATIONAL GARBAGE COLLECTION -~
Shaw, 1988; Ungar and Jackson, 1988]. Indeed Wilson argues that it i gencrally nocessary
to increase the threshold by a factor of four or more to kill off helf the remaining survivors

. .. [Wilson and Moher, 1989a]. IR S
: , T i
- 1T S equal size |
- ! i
z g Diagram 7.7 Appel’s collector: configuration of the heap between the last major collection
@ m and the next minor one.
gx
= i
=) i - : ; .
mm TP 7 Mimer collections are about fifty times faster than major collections on average. A;major - .. _ - - ,
o> Ze p 7 collection is performed immediately following a minor collection if the clder generation -
) - ' occupies about half the heap. This is made possible since survivars from the old area are : 1
i g o first copied into the new area ol ', leaving the survivors from the minor collection Ermma they _ o
_..Mn,_mmm: anca are, althongh objeéts in sur must still be scanned (see Ummm._,mm_ 7.9 on the following page). ™™ 7) i
R - Both sets of survivors can then be block movediback to the boitom of the heap. Note Ewﬁ there: oo ;
cepied bwice Cos " is atways sufficient room to do this provided the volume of live data is never morethan half - .-
- " scavengs i1 . cevangam | ecavenge el - SCEVEnge m2 . R AR Qum anﬁ .mm.Nm — this is the same guarantec that copying mﬂwﬁmom.o-w n.mEE,am.. ~) - i
.) For good performance Appel suggests that the heap residency ratio of a program should be-: [

Time of allecation . \ : . :
kept below 1:3 (ihe garbage collection overhead for ML is 11 percent at thislevel, § percent if .

H:mmnmuu 7.6 Copying behaviour when objects are promoted with a copy count of Q..m
[Wilson and Moher, 1986b]. OOPSLA’89, ©1989 Association for Computing Machinery.
Reprinted by permiission.

The Standard ML of New Jersey nc__mnn.o.,,

The SML/NJT collector takes a different approach te the management of promotion rates
[Appel, 1980b]. Appel’s concern was to provide an easy to implement yet efficient garbage
oo:nnﬁ.oH with a fast allocation time. In order to reduce the chance that a young object ME BVEr
be .oom.ﬁa. only two® generations are used, with the new generation kept as large as. possible
.HEm. gives acceptable results because the New Jersey compiler expects EE.SwQ few oE.ooEr
ﬁaﬂznm:% only 2 percent in the younger generation) will survive a minor collection. After a
major n.o=nnno=. the:region of the heap not used by the old generation is divided into two
anc.&.mHNna parts, the reserve and the free regions. Allocation is done from the free region
until the new space hits an inaccessible page at the end of the heap? (see Diagram 7.7 cM the
next page). : : - .

At this point, the memory protection fault is trapped and a minor collection scavenges
the new generation, copying survivors, sur in Diagrams 7.8 on the facing page and 7.9 on.

page 156, en masse to the end of the old region. The remainder of the heap is again divided in -

half. :

. Recent versions of SML/NY use. multiple generations [Reppy, 1993]. - e

prog;
" WGGOWNﬂﬁﬂH m. page WMM. for a discussi
In Unix this is the On,n.mﬁd. break, o1 on virtual memory methods

. T ihe Tatio is 1579, Since the fesidency can be calewlated readily after each major collection, the: -~ - -~

system can be asked for more memory if this ratio falls below the desired value, or if a'minor
" collection only delivers a free Tegion slightly larger than that requested by the mutator:;

Adaptive »m:...mn.m o
The interval between scavenges and the panse length can be shortened by reducing the size

of the youngest generation. Conversely, the promotion rate can be reduced by increasing the
size of generations, thereby giving objects longer to die. The copying overhead is reduced by~ -
scavenging less often, but increasing the size of generations increases pause lengths. Thus
techniques based ou fixed promotion policies can only hope io perform well o dverage.
Worse still, tuning generational garbage collectors is complex and time consuming, even if

the programmer knows the Tesoirée constraints under which the pro gram will finally rin. For -——

example, the Allegro Common Lisp User Guide devotes 27 pages to this topic. [Franz, 1992,

1992, Chapter 15}.- . . - e e, ,.. |
Gﬁ.onmuﬁnqo_u_.nnnmwﬁomﬂwwﬁnmﬁo.uoﬁ stationary; rather objects scem. to be born in

squal size

Diagram 7.8 Between minor collections.

156 GENERATIONAL GARBAGE COLLECTION

Diagram 7.9 Tmmediatcly after a major collection, but before the old generation is
compacted.

clumps which slowly diminish — in Ungar’s and Jackson’s phrase ‘rather like a pig that has
been swallowed by a python’. Baby booms of fairly long-lived objects will fill the younger . -.
generation and may cause extra tenuring. If many objects live for a relatively long time and
then die, the performance of generational garbage collection will suffer. Ungar and Jackson
argue that fixed-age tenuring policies are too restrictive [Ungar and Jackson, 1988; Ungarand
Jackson, 1992]. If the tenuring threshold {i.e. the size of the youngest generation) s made too
large, panses will be long; but if very few objects are scavenged at each minor collection, a
fixed-age policy will still promote objects even though there is no need to advance any,

One way to resolve the problem of widely vacying allocation rates, and consequent

-thrashing of the garbage collector; i to Torsweair fixed-size sermi-spaces. Instead of triggering
aminor collection when an allocationrequest cannot be fulfilled, the collector is invoked when
_ the volume of data allocated since.the last garbage:collection exceeds an allocation threshold: - - -
This policy presumes that the size of the semi-spaces can be varied dynamically. Zorn suggests
that threshold-based collection policies are more stable than fixed-size semi-space policies if
net allocation rates vary widely [Zoin, 1989]. e o
Ungar and Jackson solve this dilemma by using a dynamic advancementmechanism, which.
they call demographic feedback-mediated tenuring, for a two-generation collector. Their
mechanism has two rules:

Ounly tenure when it is necessary. The number of objects that survive a scavenge is used
to predict the panse time of the mext scavenge (since pause time is proportional to
the number of objects that have to be copied). If few objects survive a scavenge, it
is probably not worth advancing them, particulazly if the cost of the. write-barrier is
high (as it is in Ungar’s system). - : e

In the example shown in Dizagram 7.10 on the next page, the volume of survivor data is less

than the threshold. This suggests that the garbage collection panse time will b2 less than the
longest pause that would be acceptable. The promotion age threshold is set ko infinity so that
no objects will be promoted next time (see Algorithm 7.1 on the faecing page),

Only tenure as many objects as necessary. If the survivor size suggests that the maximum
“acceptable pausc tme would be exceeded at the next scavenge, the age threshold is set
to a vaiue designed t advance the excess data, The survivors are scanned to produce
a table recording the volume of objects of each age: The table is then scanned, in

annwnmmw_moamwoﬁmmn.no_oownuEnmnu.aounwaunochounﬁomroﬁ‘wo:rm‘uwxﬁ..
minor collection: .

o -

' PROMOTION POLICIES : s 157

maximurm
. : acceptable
R ‘pause iime

New objact area

Diagram 7.10 Demographic feedback-mediated aﬂ_&um. The volume ‘of m.cﬁwam data -
. suggests that the pause time will be acceptable. K

Hw .E,.w nmeE.w shown in Diagram 7.11 on the: next page, the survivors exceed themaximum

tto two collections to advanie at least 10 kilobytes.) LR
Eﬁ%wwwﬁﬁﬂnmﬁ,mnm Tackson’s collector adapts the threshold awnEEoEE in an wnaﬂwﬁ to.
avoid premature promotion, it cannot do anything to Haa.cnn the amount of S_E..Sm gar M.mn.
“in the old mgmnmmou (other than to invoke a full nadooﬂonv‘. Barrett and .Nomd .wamwnw,m is
problem by modifying the Ungar—Tackson collector, mwmb,mon,ﬁm the mm& distinction anﬂmg.
the two generations [Barrett and Zorn, 1993al. Instead a threatening boundary between

collectors, only ohjects younger than the Eanmﬁinm vo:nam@ are E.&F moH. aoﬂmﬁmﬁuﬂ
at each minor collection. Since the boundary can move backwards in time, this Enmmw mq.
the allocation time of all objects must be preserved. m..c,HEmHBo.R. a single RSmemR .hmﬂa
(like Ungar and Jackson, Barrett and Zorn use.just two generations) must ﬁnnozm w: mmm,éma ‘
pointers .u notjust inter-generational ones, since. Emw boundaty between the generations mnmmwn“”m
scavenges is not known. This will increase ihe size of ﬁ.ﬁ remembered mor..wmﬁmn and : .
allow the user to choose one of two policies for setling the boundary. Since mmnﬂwnoumm
collectors trade reduced pause time for increased tenured garbage, the nomoo«n_.m can be tune

7 Remembered sets ate discnssed in more detail on page 167. -

- o —— . JRR

excess = sizelsurvivors] - max_pause_time .
if excess < 0 i e
" threshecld = oo

else
generate_table()

it - thpeshoid = look_up{excess)

< __ Algorithm?.]

hm 7.i Demographic mnmmgmw.mno&ﬂnﬁ 8@%@@

acceptable pause time threshold by 10 kilobytes. Unless the threshold wu“ Hcimwnau ?EB
= gcavenges are likely to distorh the user. The age table shows that the m_.ouponou age En...wm_uo_a. -

the two generations is allowed to move in either direction. As with standard generaticnal - -

158 GENERATIONAL GARBAGE COLLECTION

maximum TQ kilebytes
acceptable f-----mmmmoooamae - v “Ace Byies
pause time _Age Bytes
N . 1 200000
2 80000
3 80000 ﬂb kilobytes
RS
New cbject area Age table

Diagram 7.11 Demographic feedback-mediated tenuring. Too much data has survived.

either to attempt to keep pause times below 2 given value, or to reduce the amount of tenured
garbage needed. In the discussion below, time is measured in hyies. .
HE@ length, last_trace, of the last collection pause at heap-time Last__t exceeded the
desired pavse time, max_trace, the mmnm.w.mupm consirained collector moves the boundary
between_ the .mouowmmonm using Ungar-Jackson -feedback. mediation (see. Algorithm 7.2)
Otherwise there is an opportunity to reclaim some tenured garbage. WaonM calling Em“
collector, the distance between the current time, t bytes, and the threatening boundary, e85

7 “hytes, is Trcredsed By &n amouit proportional to the ratio of the desired pause-time to fie’
length of the last garbage collection pause.

if Iast_trade > max_trace
TB = Feedback Mediaticn()
else

TB = &£ - {last_t - TB)} * max_trace/last_trace

Algorithm 7.2 The pause-time constrained threatening boundary.

The memory-constrained collector, on the other hand, attempis to restrict the amount of
tenured garbage, heap_size - live. Withouta full collection the collector cannot calculate
the volume of live data, but it must lie between 1ast_trace and the volume of surviving data,
last_survivors. The mean of these two values, live_est, is used as an estimate mmmo_

~Algorithm 7.3). On the reasonable assumption that the amount of garbage decreases linearly .

as the threatening boundary moves backwards in fime, the memory-constrained collector then
moves the threatening boundary back in time by the ratio of the amount of tenured garbage
mmmﬁnm.. max_memory - live_est, to the amount of memory currently used, last nH__...mE uon
to the time of the Jast collection, whichever was ealier. -

live_est = (lask_survivors + last_trace) /2
tmp = £ * (max_memory - live_est)/lasi_mem
TB = min{tmp, last_t)

’ Emwwmn_—a 7.3 The memory-constrained threatening boundary.

B

159

There is evidence that both feedback u.ﬁ&mmcuw and dynamic threatening boundary
techniques work well for many programs, giving reasonable pavse times without excessive

-2 =PV overhead, provided that, in the Barrett—Zorn case, the constraints given are realisable.

" {ater in this chapter, we examine other ways to vary promotion policy dynamically.

7.4 Generation organisation and age .,mno_.w::m ‘

One of the drawbacks of copying collection is the mcon locality of the garbage collectar,
despite the advantages of compaction for quick allocation and for the working set of the

© " user program. Although only half the availeble heap is in use at any one. time, the collector

touches every page every two collection cycles. At the level of the whole heap, gensrational
parbage collection impraves maiters by arranging for minor collections to .noaoapnmﬁm an just
the youngest generation. However, the collector’s locality pattern within a generation remains
unchanged if generations cortinue to be arranged as a pair of Sexmi-Spaces.

One semi-space per generation ; .
The simplest promotion policy is to advance all live data en masse at each scavenge.. As well
a8 removing the need ta record object ages,’ this method has the advantage that it does not
need a second semi-space in“any but the oldest generation; the next. generation acts as the
Tospace. Fven better, the youngest region can be recycled at each scavenge. If this region
is kept in memory, and even better in a large cache, virtnal memory and cache performance
will be goed. This scheme requires multiple .mouoamaoﬁ to filter tenured garbage because the
promotion rate is high as even very young aobjects are. advanced. Early promotion leads to
more inter-generational refercnces and hence more write-barrier traps, imposing additional

mutator overhead.

Creation space .

A more subtle iechnique is to divide a generation into a creation space and an aging space
[Ungar, 1984]. All objects are initially allocated in the creation space. The aging space holds

survivars From 1B crealion Space. This spacenut be organised into semi-spaces since objects—— —

may be held in it for more than one scavenge: at each scavenge, survivors from both the
Fromspace and the creation space are copied. into the. Tospace (see Diagram 7.12 on the
following page). As the number of sarvivors of each scavenge is likely o be low, the two
semi-spaces can be kept comparatively small. TUngar’s criginal schems, for example, used: 140.
kilobytes for creation space and only 28 kilobytes for sach of the two aging m..wEw.wmwn”nm. Since
the creation space is emptied at each garbage collection cycls, it can be reused immediately,
just as in single space per generation methods. If it can be kept permanently in physical
memory, and even better in a large cache, the locality characteristics ofithis scheme will_be
good. Again, for good performance the creation space must not be swapped out. .

" 160 GENERATIONAL GARBAGE COLLECTION
B Creation
Heap B cpace
occupancy

T

garbana
- callection
- pause

" Age recording

The advantage of en masse promotion schemes is that it is unnecessary to record each object’s
age as all survivors are promoted. Methods that use more precise guarantees of an object’s age
must either record the age of each object in iis header, or segregate objects of different ages
within a generation, thereby encoding the object’s age in its address. For objects like Lisp
cons cells that may comprise just two. pointers, any per-object overhead to record ages will
increase memory consumption significantly. Per-object age-caunts also incur a time cost since
these counts must be manipulated, and indeed copied, at each scavenge.
Shaw has sngegested a method that avoids storing ages in each object. BEach generation is
subdivided into two or more spaces called buckets {Shaw, 1988]. The young generation is
L divided into a New space and an Aging space. Every n scavenges, all survivors in the new
" bucket are advanced to the aging bucket, and those in the agiiig bucket are promoted o the
next generation (see Diagram 7.13 on the next page). This arrangement guaranfess that any
_data that reach the old generation will have survived between n and 2n — 1 scavenges. Shaw
used a simple heap layout, trading precision of age warranty for simplicity of promotion. .
The old generation grows upwards from the botiom of memory. Immediately above it,
the new generation is arranged as a pair of semi-spaces. New space is allocated from the
top ‘of the semi-space, and the aging space occupies the bottom. Promotion only happens
~when a garbage collection is due to copy new generation data upwards, away from the
—old mwﬁﬂmﬂou. Figure 7.14 on page 162 illusirates the configuration in which the younger
generation comprises two buckets and objects ere promoted when they have survived three

T "GENERATIONS AND AGE RECORDING ™

o ’ Lo \:A times’
R R o H D

i6t

Upto Upta i
..._ iimas’ H
4 d 1 e B
. - b
e) © New - Aging |
space 7| -.space m
|
[
o
P
_
3 : - S o - ,
Young - Old - I

generafion generation

Diagram 7.13 The younger generation is divided into two buckets to record dbject wmam..

collections. At this point, the old generation and the aging bucket are contignous. All the data
in the aging buckst can be promoted at once by simply moving the boundary between the two-
-generations upwards. The new bucket now becomes the aging bucket. . -
This method guarantees an ohject’s age upon advancement without demanding additienal
space and time overheads. It is important {0 enderstand the difference between generations
and buckets. Although ohjects are segregated into; generations by age, generations -ars
discriminated by the frequency with which they are scavenged rather than the agé of their
contents. In particular, newer generations are collected more frequently than older ones. On
the other hand, the buckets of a single generation are used solely to record the ages of abjects
within that generation. When the generatior: is collected, all its buckets are-scavenged. There
is no need to identify buckets, in contrast to generaiions, when pointers are stored.
Shaw’s scheme allows advancement age to be varied by holding objects in buckets as long
as necessary rather than copying them to the next bucket at each scavenge: This level of control
is useful if it is important to prevent prematire promotion, for example if the write-bayrier is
expensive, as it is in Ungar's-collector (seerpage 159). On-the-other hand,-his schéme does—- -
not have such economy of memory as Ungar's. Becauge an object may bé-copied back inta. its
own bucket, Shaw’s buckets must each contain a pair:of semi-spaces. . : ‘
Wilson and Moher combined the improved locality of Ungar’s creation spaces with Shaw's
age recording technique in a comparatively simple system [Wilsos, 1989]. Their scheme uses
three generations rather than two in order to reduce the need for Shaw's complexity. of control
over edvencement: objects in the intermediate generation can still b& reglaimed before being
promoted to the oldest generation. Like thé youngest generation, this one is comparatively
small 5o that pause lengths are not excessive. Bach generation is dividedi 110 2 creation region
and an aging region, the latter comprising two semi-spaces. As in Ungat’s scheme all objects
are initielly allocated in the creation region. Each generation also contains two buckets with
_ (paitof) the creation region doubling as the first bucket: In this way, the bitckets can be thought

of as sub-divisions of a single pair of semi-spaces. When a generation is scavenged; survivors

B

TTTTTI62

GENERATIONAT, GARBAGE COLLECTION

Young
Young generation

generation

Y

Old
Gld generation

generation

_ Time

~Diagram 7.14" Shaw's :mmu Jayout.”

from the creation space are evacuated into the Tospace of the second buckei (see Diagram 7.15

on the next page), and the survivors from that bucket are advanced. to the next generation.
With this organisation, the system has an age threshold of two scavenges. If all survivors
of both buckets were to:be promoted at each scavenge, the threshold would be one. However,
notice that the data in the creation bucket are arvanged in chronological order (unlike those
in the aging space which are reordered by the scavenge). We can take advantage of this
observation to adjust the age threshold dynamically to any value between one and two, All
that is required is to draw a ‘high water mark’ across the creation region to separate the two
buckets of the generation (see Diagram 7.15 on the facing page). Objects below: the high water

mark, i.e. older ones, are advanced to the next generation. Those younger objects above the

high water mark are retained in this generation — they are copied to its aging space. Under

this-scheme the promotion decision is cheap, sincédiscrimination between thé'two bucketsis

by a single pointer comparison. -

This organisation offers efficient use of space, eéliminates per-object age counts and yet
prevents promation of young objects, However, is anything to be gained by drawing a high
water mark across the creation space? Wilson suggests that the ideal threshold may lie
between one and two scavenges: certainly thresholds higher than two give only diminishing
returns. The effect of choosing a threshold value of oneand a half scavenges can be seen in
the graph shown in Figure 7.16 on page 164 — the amount of copying is reduced but very*
young objects are still not promoted at the first scavenge [Wilson and Moher, 1989a). The cost

~is increased space requirements. Decisions on where the threshold should be set can be made

GENERATIONS AND AGERECORDING | - 163

3 - - - A,
. , - : .. { +___ bucket:1_
Crealion 3 4 = high 7)
space 7 - 3 = waler--«
y mark
Younger
Genaration -
y hucket:2
Aging o
sami-spaces
o Next T
Generation

Capied data

. o U_wmnuﬁ 7.15 The Wilson—Moher high water EB,W bucket system. The structurs of the

intermediate generation is not shown [Wilson and Eoron 1989b]. OOPSLA'E9; @Gmw
Association for Computing Machinery. Wmmnﬁma by monEmmHoF

OR eCONOILC as smuch as technical &9.5%. SwEm uoﬁ of the continuing trend oﬁ EchQ
ooﬂm”oamoﬁnﬁ ‘ i)

_ Since. the-high water. mark is easily changed, between scavenges or even.duringia-single .

scavenge, this method provides a simple adaptive tenuring mechanism. If too much data
is copied, the high water mark can simply be lowered in much the same way as in Ungar
and Jackson’s technique. This Heans that aging spaces can be kept small aven for badly
behaved programs. As soon as it becomes .wmmmunbﬁ that most data is going to survive a

_scavenge, and hence increasingly likely to survive the next one too, the threstiold can be

lowered to exile remaining survivers to the next generation, thereby avoiding copying them
twice. The drawback is that early promotion creates more inter-g gencrational pointers. But if
the targets of these pointers are also likely to be promoted then the volume and mﬁmﬁmﬁ of
these cross-generation references may be small. The other @BEEHD of early-promoticn— too
much tenured garbage — is net so likely to be a ﬁBEaB since: Wilson: and Moher use an

EnnanaEE qounnmﬁon E.amhm Eﬁuﬂn&mﬁ qmbmﬁmon a mEm: wmoémum : 8 _um oocnoﬁa

fairly ﬁ?&w.

New amﬁml . -M . u

S T , GENERATIONAL GARBAGE COLLECTION “r[NTER-GENERATIONAL POINTERS W 165

. - 7.5 Inter-generational pointers
‘Generational garbage collection reduces pause times by tollecting only.a region of the:heap
rather than its entirety. However, the only reference to an object in this zegion may reside
i an area of the heap outside the region. Tt is vital thatithese inter-generational pointers be
identified so that they can be ireated as partof the root set by the scavenger. This'can be: done
by the mutator, the garbage collector or a combination of the two. o L

The simplest way to find inter-generaticnal pointers would be to scan glder generations
at collection time. The advantage of thie method is that it can be done at no cost to the
mutator, but it requires more scanning and bas worse locality than a fully generational
collector. However, Linear scanning is faster than tracing and has better locality. Studies by
S Shaw and Swanson suggest that this technique can reduce overheads due to garbage collection
T - o= gy pearly a third compared with a completely non-generational fwo-spacs copying collector

*" [Swanson, 1986; Shaw, 1988]. Bartlett uses a similar technique for his conservative garbage
i gollector [Bartlett, 1989a). The callector conservatively marks immediately reachable objects
(ie. global variables, references held in registers and on the stack), and then'these objects are
searched for inter-gencrational pointers. In this section, we consider more precise methods of
recording inter-generational pointers. . ” R

Percentage surviving
until next scavenge

zopied ance,
not promoted

soavengs -1 scavenge 2
.) : Time of allacation

Diagram 7.16 Chance of survival vs. allocation time under the Wilson—Moher high water

mark scheme %umvﬁ and Moher, 1989b]. OOPSLA'89, ©1989 Association for Computing: -
Machinery, Reprinted by permission. -

The write-barrier : : o K

Pointers intd a generation generally arise in two ways, either throngh pointer stores or
through promotion of objects that contain pointers®. The latter ate easily detected by the
scavenger. If scanning older generations is ruled out, then pointer stores must be trapped and
recorded. Barriers can be implemented in several ways, _uw cither hardware or software, or with’
operating system support. Software barriers can be provided by having the compiler emit a few
instructions before sach pointer read or write. Hardware techniques do notrequire additional
instructions, and so are especially advantageous in the presence of uncooperative compilers.
Alrhough hardware methods give the least mutator overhiead, they may require special purpose
hardware or modifications to the virtual memory system not generally available.)

If saftware techniques are used, the implementor must consider three factors: how. the cost
to the mutator can be minimised, the space overhead of recording pointer store and how

Large object areas’

Generational techniques segregate heap objects by age, but this is not the only criterion by
which to consider the arrangement of the heap. It is also worth considering treating large
objects specially because of the cost of copying them; it is worth considering the type of
objects if it is known that certain types of object do not contain pointers or are likely to be
long-lived, Large object areas can make significant improvements to performance. Ungar and
Tackson, for example, found that pause times could be reduced by a factor of four, saving over
a megahyte of tenured garbage by dedieating 330 kilobytes to a large abject area [Ungar and

TJackson, 1988; Ungar and Jackson, 1992]. The typical candidates for this treatment are large. -~ - - -~ efficiently old-young pointers can be identified at scavenge time. If the barrier is sufficiently
strings and bitmaps (for example, images of hidden windows). ‘Large’ can be an absalute simple it can be compiled inline. However, pointer accesses may be very commeor, particularly .
measure (for example, objects larger than 1024 bytes [Ungar and Jackson, 1988]) or arelative T in functional and object-oriented languages. Zorn found that the static frequencies of pointer

- one (those that occopy more than 10 percent of Tospace [Hosking ef al, 19921). The usual =~ “=~—— " loads and stores in SPUR Lisp were 13 fo 15 percent and 4 percent respectively [Zorn, 1990a]. - -
technique is to separate such objects into header and body parts [Caudill and Wirfs-Brock, L Inlining barriers may cause the size of the code generatad to explode. If code expansion is
1986; Ungar and Jackson, 1988; Ungar and Jackson, 1992; Hosking ez al., 1992]. A large : sufficiently small (less than 30 percent) it may have negligible effect on performance provided
object area, managed by & free-list, is used to store the bodies while the headers are stored that the processor’s instruction cache is sufficiently large [Steenkiste, 1989]. R

in the generational part of the heap. The headers arc scavenged like other objects but no time
is spent copying the bodies. Some algorithms may promote headers [Hudson et al., 1991],
whilst others neverrisk letting headers become tenured garbage provided that E@.Hm.Hmn o‘&now
area can be made sufficiently large to hold ail large objects [Ungar and Jackson, 1992]. It may
alsa be possible to'retrieve an object from the large object area, if it is found to have shrunk
sufficiently, by mergihg the header and body parts of an cbject. o

An slterpative is to use the operating system’s virtual memory protettion Eangim_bm_

8 Inter-generational pointers also arise in system-specific circumstances. For exarip
system for Prolog using the WAM might start a new generation whenever 2 new choice point is set.
Old-young pointers have to be recorded by Prolog’s unification algorithm since they must be reset on

backtracking [Appleby et al,, 19881

.

e] 66

GENERATIONATL, GARBAGE COLLECTION

either to trap access to protected pages, or to use the page modification dirty bits as a map
of the locations of cells that might have had pointer fields updated. The advactage of using
virtual memory is that it is portable, requiring rio changes to the compiler. However, Zora’s
measurements suggest that its performance may be substantially inferior to software methads,
although different architectures and operating systems vary considerably [Zorm, 1990a].
Fortunafely it is not necessary to frap all stores. The proportion of stores that have to be
trapped can be reduced by compile-time analysis. Stores to registers or fo the stack need
not be trapped if these locations are part of the root set of every garbage collection. Many
stores, for example that of Lisp’s cons operator, are initialising stores. As such, they cannot
point forward in time so need not be trapped. Fortunately these two cases form the great
majority of pointer stores. Zorn estimated that only 5 to 10 percent of all memory references
were non-initialising pointer stores, and that two-thirds of these were writes to obfects in the
youngest generation [Zorn, 1990a]. Not all languages can readily recognise initialising stores,
however. Many imperative languages separzate the allocation of a heap object (for exampls,
x=malloc(...) ; in C) from its initialisation (for example, x->p=. _ _ ;). Even though only
1 percent of instructions generated by Lisp or ML compilers may be non-initialising pointer
stores, optimising the write barrier is critical for overall performance. For example, if the
write-barrier were to add 10 instructions to each of these stores, overall performance would
_be diminished by ten percent. We now consider methods of trapping and recording inter-
generational pointers..

Entry nmu_mm

The fiest generational collector, by Lieberman and Hewitt, arranged for pointers from alder
generations only to point indirectly to ohjects in younger generations [Lieberman and Hewitt,
1983}. Each generation had an entry table of references from older generations associated
with it (see Diagram 7.17}, Whenever a pointer to 2 younger gencration object was to be
stored in an older generation object, & new entry was added to the younger generation's entry
table, poinfing to the young object, and the old object was modified to point to this entry, If the
old object already contained a reference to an item in an entry table, that entry was removed.

Genaration 2 Generation 1 Generation 0

eniry {abla

Diagram 7.17 Licherman-Hewitt entry tables.

INTER-GENERATIONAL POINTERS W _, 167

The advantage of this scheme is that when: 2 %onumwn generation is collected, it is only
pecessary to scavenge its entry table rather than to search every older generation. The TI
Explorer garbage collector medified this scheme by maintaining a separate E&m for ownw pair

of generations [Johnson, 1991a; Explorez, 1987, 1987, Section 10]. For a miulti-generational
collector this simplifies scanning further as only-eniries relevant to the generation being
collected are be examined by the garbage collector.)

However, indirection schemes suifer from a numberiol disadvantages, Eniry tables may
contain duplicate references to a single object, making the cost of scanning tables proportional
to the number of store operations rather than simply to the number of inter-generational
pointers. Trapping pointer stores and following indirections in the Lieberman and mo.is
collector would have been prohibitively expensive if the MIT Lisp Machine's specialised

"‘hardware and microcode had not made these operations invisible to the user program

“" " [Greenblatt, 1984]. Most modern generational garbage collection schemes therefore allow

pointers to be used freely, referring directly to their targets. Rather than representing old—
young pointers by indirections and recording the value of the pointer, these schemes record
the location of the pointer. ;

Remembered sets ﬁ
Ungas's Generation Scavenging Collector recorded oE.nnE that contained pointers to younger
generations [Ungar, 1984]. The write-barrier,. mBEoEnHmn in. software, intercepted stores
to check (a) whether a pointer was being stored, and (b) whether a reference to a young
generation object was being stored inio an old object, If sq, the address of the old object that
was to contain the pointer was added to a remembered set (see Diagram 7.18 on the next page).
This contrasts with Lieberman and Hewilt entry tables which record pointed-to objects. To
avoid duplicates in the remembered set, each object had a bit in its header indicating whether
the abject was already & member of the remembered set. .

Scanning costs at collection time were therefore dependent on the volume of remembered
set objects, rather than on the number of pointer stores. Nevertheless, the cost of store
checking was high, although it was easily accommodated within interpreted Smalltalk. Worse
still, if an old object were stored into several times _um?.mg collections, these checks ,.y..oE.a be
repeated. If the object were large, it would have to be scanned in its entirety at collection time,

as the remembered set recorded the location of the oE.n& stored into rather than the Jocaion of —- -

the pointer —scanning large chjects has been observed to thrash Tektronix Smalltalk {Wilson,
1994]. Co

-~ = Collection-time scanning costs could be removed if the address of the slot within an’object’

were remembered. rather than the address of the object itself. Slot recording .omammm. two
other problems, both of which increase the size of the remembered set. m.ﬂmEr it wopld be
impossible to avoid duplicate entries in the remembered set unless there is room to Store &

remembered-bit in each inter-generational pointer. Secondly, the remembered set would rm.,,.\m
to include multiple entries for a large object that had Had different %oﬁﬁ.o&mmm\dﬂw will
now exapiine various approaches that have been used to reduce write barrier costs while also
limiting the space and collection overheads that must be incurred. 4 w

Appel uses a simple and fast implementation of remembered sets. [Appel, 198961, After

every assignment into a record, instructions are emitted by the compiler .ﬂo add the stored-

GENERATIONAL GARBAGE COLLECTION

Young genaraticn

Diagram 7.18 Ungar’s remembered set.

into record to an assignment list. This list néed nof necessarily be stored as a linked list: &
contiguous vector of addresses could be used. If the vector were io overflow, either more
_.space could be allocated for the list, not necessarily adjacent to the rest of the list, or the-
garbage collector could be invoked. The write-barrier is fast and unconditional: na tests that
the stored value is indeed an inter-generational pointer, nor that the assignment list does not
alteady contain the stored-into record, are used. Instead, the garbage colleetor filters the Jist,
scavenging only those objects that meet these criteria. The collection-time cast of Appel's
method therefore depends again on the number of pointer stores rather than on the number of
objects stored into. The costs of the-write-barrier and the collection-time tests were each about
four instructions on a VAX. As the dynamic frequency of pointer stores for SML/NT is less
than 1 percent, the overheads cansed by garbage collection as a whole are-between 5 and 30
percent. This technique benefits from two features of SML/NI. As a sirict, mestly functional

language, pointer stores other than initialising ones are comparatively rare. Secondly, the size

of the remembered set is further reduced by the policy of en masse promotion at each minor
collection: after each minor collection all the entries in the.list can be discarded. With more
generations or a different promotion policy, the list would have to be pruned and retained for
use by future collections. Without. these considerations, 2 more complex mechanism would

undoubtedly be required. s o =

Sequential Store Buffers

Hudson and Diwan maintain the remembered set for Modula-3 and Smalltalk in a way that
similarly minimises the processing cost of a store, yet removes duplicate entries from ths
remembered sets [Hudson and Diwan, 1990; Hosking et al., 1992). A fixed-size Sequential
Store Buffer (SSB) is again filled with addresses that might contain pointers to ycunger
_generations. The write-barrier unconditionally .adds these.addresses to the end of the 53B,
and a ‘no access' guard page is used to trapy overfiow. If the pointer to the next free slot in the

= INTER-GENERATIONAL POINTERS ™ ™~ S 160

) huffer is kept in_a register, adding a word to the 58B can be done in just two additional

instruetions, one to store the word and the other fa increment the pointer (see the code

" . fragmentin Algorithm 7.4). : R

—store ptrinto chj
—add obj to S5B

st %ptr., [%cbil
st %obj, [%$ssbl

add %ssb, 4, %=s5b

P_MQHEHH 7.4 The write-barrier fora seiqueniial store buffer,

The rememibered sets themselves are huilt as gircnlar wv.m: tables using linear hashing, with
9% 1 k entries, Items to be entered are hashed to obtain 7 bits to index the table. If that location

- already contains another item, the next k slots are mmeEnw (but not circularly). If an empty

siot still cannot be found, & circular search of the table is made, Hash tables are kept relatively

" sparse by growing them whenever an item cannot be placed in its natural slot or the next

. & slots, and more than 60 percent of the table is full. m.namop and Diwan set k Ho.mu and
" jneremented 1 by one each time that it was necessary to grow the table (i.e. the table size was

doubled). .

-~ If the SSB overflows, values in the SSB are moved to Wnﬁ remembered set of the yonngest

generation. Notice that hashing prevents duplicate entries from Being introduced from the
-55B; other uninterasting values are filtered out in a-tight loop. At collection-time, entries in
the SSB are similarly distributed into {he appropriate remembered sets. Any values placed in
the remembered set of the youngest generation when the SSB overflowed are moved to the
remembered sets of the generations to which they belong. The SSB system has the advantage
of a fast write trap and precision of recording, but it must still expend effort ensuring that
duplicate addresses are not added to the remembered sets,

Page marking i#r hardware support

The CPU cost of trapping pointer stores can be reduced ﬁo nothing with mwmnm.mmmnm hardware.
The Symbolics 3600 made extensive use of hardware to support both incremental and
generational garbage collection. Each word stored was examined for references by the same
hasdware: that implemented -the. read-barrier trap for its Baker-style incremental garbage
collector (see Chapter 8 where: we discuss incremental, garbage collection). Any references
found were stored in one of two tables (see below), but rather than recording maannwmnm .om
" objects, the entries referred to small virtual memory pages. This mediuni-level of granilarity
solves the problem of scanning véry large objects although it-increases costs if mEm= objects
are sparsely written to, as the entire page must still be scanned. At collection-time, the
scavenger searched those pages recorded in the tabies linearly to find ...nwmmnmunnmu“ Three
features of the 3600 architecture made this technique feasible. Firstly, the Symbolics hardware
write-barrierignored any word that was nota pointer to generational data. wmoouaq. ts tagged

architacture Temoved the need to consider dbject boundaries while .mm.mudauwkzmm page: pointer
words could always be distinguished from non-pointer;words. Finally, su.m.m.mmnm Emﬂ small
— only 256 words — so a page could be scanned rapidly (in about 85 ncnwom.moaﬁaww for the

1.2 mips 3600 systém, if no refefences were found). \

s 4/}

GENERATIONAL GARBAGE COLLECTION

Whenever a reference to generational memory (either forward or backward) was stored
in any page, the write-barrier hardware set a bit in the Garbage Coliector Page Table
{GCPT) of the corresponding page-frame of physical memory. This method also had the
advantage of preventing duplicates — however many times the bit is set, the page will only
be searched once. Swapped-out pages wers handled differently. Although swapped-in pages
can be searched rapidly for pointers to the generation being collected, the cost of swapping a
page in from disk, only to search it unsuccessfully, is too high. Details of swapped-out pages
were held in the Ephemeral Space Reference Table (ESRT), a B*-tree maintained by software
in nos-pageable memory. The ESRT contained a bit-mask for each page, with one bit foreach
generation referenced by that page. When a page was evicted, its GCPT bit was cleared and
the page was scanned for references, updating its ESRT table if necessary. If the page had not
been written at all, its ESRT entry need not be changed. If the page had no ESRT entry, it cnly
need be scanned if its GCPT bit was set. Ctherwise the ESRT had to be updated regardless of
the GCPT bit, since it was possible that data written to it might have overwritten pointers to
generational objects,)

Garbage collection was initiated by filling the youngest genscration. All generations that
were sufficiently full were flipped and a single pass was made through the GCPT, scavenging
each page whose bit is set. A similar pass was made through the ESRT to complete the
scavenging of the entire reot set;-only-swapping pages in toséarch them if the ESRT bit for the
generation being collected was set. Scavenging then continued in the normal way (although
the scavenger vsed the ‘approximately depth-first’ search technique described on page 139,

‘rather than breadth-first search, to improve locality). An advantage of this mechanism is that
the Symbolics garbage collector could collact generations independently of each other; since
the hardware recorded any pointer into any generation, regardless of its direction. Mest other
generational garbage collectors must collect all younger generations when they collect an
older one. . | :

Page marking with virtual memory suppart

Ephemeral Garhage Collection relied on the 3600's specialised hardware for performance.
Although this is not available on stock machines, virtual memary machinery may be, Virtual
memory systems use hardware to maintain a set of dirty bits, one for each page-frame in
memory, that determine whether a page needs to be written back to disk when it is evicted. It
might seerm that these bits could be used as the GCPT to determine whether any pointers have

‘been stored on a page; as far as the garbage callection system is concerned, this costs nothing.
However, the situation is slightly more complex than this: A copying collectar only needs ™

to scan those pages that were written during or since the last garbage collection. We shall
call this period the garbage collection interval. Shaw uses three dirty bits per resident page
to keep account of modified pages [Shaw, 1988]. The pirty bit, maintained by hardware, is
used fo track modifications made to pages since the start of the corrent interval. However,
the virtual memory system needs to know about the state of resident pages before the
interval began as well as during it — the 014 _Dirty bit is used for this. Thus all virtual
memory reads of dirtiness information must read the disjunction, Dirty vV 01d_Dirty. The
Dirty_on Disc hitis used for pages that have been swapped out, This system requires that
the virtual memory mechanism provides two new system calls. One is a request to clear all

si.i%l INTER.GENERATIONAL POINTERS _ !

dirty bits for the pages of the process making the call. The other returns a map:indicating which
pages of the process have been written in the last interval. At collection time the: garbage
collector uses this map to search dirty pages for inter-generational .Hmwonmmnmm_&wmﬁmﬁ first
cleared all this process’s dirty bits. , B . :
However there are two problems with this approach, The virfual memory Ennrmu.mwi must
be intercepted in order to determine which page needs! scanning before F mm.mimmmma out.
This may not always be possible, and is certainly operating system specifi¢ (although Shaw
claimed this-was very easy to do: only seventeen statements in the operating system wﬁnﬂ
aeeded to be changed in addition to providing the new system calis). As an alternative to
modifying the operating system kernel, pages can be write-protected _u« a system nm: Any
resulting write-faults will be trapped, and the- tap handler can. set 8 EHQ.W.: for the; page,
before unprotecting it so that no farther faults on this page will occur until mﬂan.&w mﬂn
‘garbage collection. This technique has been used on the Nmao.x mOmmmEn Common Runtime
system [Boehm et al., 1991]. Clearly it replaces a free mechanism with one of some cost: on
4 SPARCStation 2, catching the Unix signal and executing the system call to unprotect the

page takes about half a millisecond. However, the trap is'taken at most once per page _.H_ every

garbage collection cycle, rather than on every access, Boehm suggests E.mn the virtual me mory
barrier can perform better than the softwars bazier provided that allocation rates are very low

and read/write rates are modarate®, Reliance on virtual memory pro tection mechanismsmakes . “

this method unsuitable for applications with hard Hmﬁ.mﬂm demands. . s

' A second problem with virtual memory based methods is that H_ﬁw.mHoSmn a coarse; Write-
barrier. Pages in modern systems tend to be much larger than those in z:w Symbolics w..moo.
and the virtual memory dirty bits record any modification to the page, not mu.“@@ mnuonmﬁcb&
pointer stores. Both of these factors increase the costs of mnmbabm a page for inter-generational
references, particularly if writes are sparse. , _

. , _ _,

Om._..n_.,:mm_m:m . _

An ideal solution would be one that has the cheapness of a write-barrier EE m.»o econpmy of
pointer recording of the Ephemeral Garbage Collector, but is portable mn& available on wﬁcn.w
hardware. Sobalvarro proposed two methods of jmplementing Moon’s now._moﬁoﬁ‘ mom Huao_p
Common Lisp [Sobalvarro, 1988]. Word marking divides the address spacg into. large pieces

called segments of, say, 64 kilobytes. A Moedification Bit Table (MBT) 1s agsociated witheach -

segment to save space; segments which do not require. pointer recording, such as those in
the youngest generation, unscanned segments, and those that only contaifi non-pointer data,

“—share a single MBT. Scbalvarro’s MBTs occupied some 3 percent of allocated storage, When

a location is modified, the: bit in the MBT comesponding to Em.n iom& is m.nﬁ asocra:._o.amzw‘
Checking for pointers to generational data is deferred to collection time. Since the _oowcon of
these modified words is recorded exactly, it is not necessary to scan segments o m:m them.
To save the collector having to examine the MBT for each segment EE.“ might have been
modified, a second-level data structure, the segment modification nnm*.,mv._pm Emm... ?&Mﬁ mm
this cache is set non-zero wheneveran entry is made injits coesponding MBT.)
The cost of this write-barrier was not cheap: it used ten instructions, an address register

9 Hans Boelum, personal communication.

- 172

GENERATIONAL GARBAGE COLLECTION

and two mmﬁammmmn,mﬂm on the Motorola MC68020, A routine of this size cannot be used inline

without significantly increasing the size of the program image. It is also important to restrict -

the number of registers needed: excessive use of these preciouns resources by an inline write-
barrier will have a deleterious effect on the register allocation of the surrounding code.
A compromise between marking virtual memory pages and marking words, suggested by

Sobalvarro, is to divide the heap into small regions called cards. Card marking offers several ~

advantages provided that the cards are of the ‘right’ size. As they are smaller than pages, the
amount of collection-time scanning is reduced. On the other hand, the amount of space & card
table oceupies is less than that used for word marking, Card marking is also portable and
independent of the virtual memory system (although cards should not span virtual memeory

pages). It is also flexible since card sizes can be picked to opiimise locality of reference, and -

to avoid allowing single stores to cause thousards of Iocations to be scanned at collection-
time. As with word marking, a bit is set unconditionally in a card table whenever a word in
the card is modified, The Opportunistic Garbage Collector uses a smaller card size (32 four-
byte words) than either Moon’s pages. or Sobalvarro’s segments [Wilson and Moher, 1989a;
Wilson and Moher; 1989h], Wilson and Moher argue that this size is closer to the average size
of objects in Lisp or: Smalltalk (excluding cons cells which are unlikely to be modified). By
making the size of a.card similar to the size of the object likely to be guiity of dirtying it, there
is tess room left on the-card for innocent bystanders. Thus fewer objects should need scanning
at collection time. :

_ Bit manipulations usually require several instructions on medern RISC processors. This is
why Scobalvarro marked bytes in the segment modification table. Using bytes rather than bits
speeds up the write-barrier, reducing it to just three SPARC-instructions in addition to the
actual stare (see the code fragment in Algorithm 7.5) [Chambers, 1992].

%ptr, [%¥obj + offset] —store ptr inte obj's field

st

add %obj, offset, %temp —calculate address of updated word
srl %temp, k, %temp —divide by card size, 2k
clrh [$bhyvte map + $temp] —elear byte in bytea map

Algorithm 7.5 Chambers's write-barrier. k is log, (card size).

The memaory overhead is fairly small: with a 128-byte card, a byte map is still less than 1
percent of the heap. The cost of the barrier can be reduced stil further if the accuracy of card
matking is reduced. Holzle has suggesied a method of reducing the cost of the write-barrier to

-~ - justtwa SPARC instructions in most cases, at a slight increasé in scanning costs, by relaxing

the accuracy with which cards are marked (see the code fragment in Algorithm 7.6 on the
facing page) [Holzle, 1993]. If byte ¢ marked in the card table means that any card in the
range i ...1 + ! may contain a pointer, the byte marked may be up to ! bytes from the corrsct
one. Provided that the offset of the updated word is less than [+ 2" bytes (i.e. less than I cards)
from the beginning of the object, the byte corresponding to the object’s address can be marked
instead. A leeway of one (I = 1) is likely to be sufficient to cover most stores except those
into array elements: these must be marked exactly in the vsual way. With a 128-byte card, any
field of a 32-word cbject can be handled. : -

Ambiguity only arises when the last object on a card exterds into the next card. Although

INTER-GENERATIONAL POINTERS = -~ , ‘ 113

st %ptr, [(%obj + offset] . i —store ptr inio ob7’s field

srl %obj, k, %temp

—calculate approximate byte index
clrb [%byte map + %templ |

—clear byte in by temap- -

- Algorithm 7.6 Hblzle's write-barrier,

the object’s address has been marked, a pointer could Emﬁ been stored in any of the cards
that the object straddles. This means that the garbage coliector must scan the whole ofthe last .
object on a card even if only part of it belongs:to the dirty card. Holzle's figures for the SELF
system o a SPARCStation 2 suggest a total garbage collection overhead of between Siand 10
percent. In all cases, the cost of scanning cards is a fraction of the costs of store nﬂmnwaum or
scavenging. : ; FEE

Card marking collectors must scan dirty cards for inter- generational pointers at collection
time. If none are found, the dirty bit (ot byte) is cleared in the card table. The cost of scanning, - -
is proportional to the number and size of cards marked rather than the, number of stores :
performed since duplicates never arise. Dirtiness information can also be-used by Em garbage -
collector to segregate objects on written-io cards from clean ones. By gathering dirty cards K
onto the-same virtual memory pages, the nuber of pages holding cards to be-scanned, and.
likely to be-scanned again at the next scavenge, can be reduced [Wilson and Moher; 1989%a].

The small size of cards presents a problem when scanning them. The tagged archjtecture:
of the 3600 allowed it to discriminate between pointer/words and other data, but Emmwmmnm@
is not available on stock hardware. Nevertheless, card marking requires. that it is possible
to scan a card accurately for pointers, even if the card does not start with the beginning of
an ohject. The Opportunistic Garbage Collector uses a crossing map m:HEE. wo that of the
incremental collector described in [Appel ef al, 1988] (see Chapter 8). This bit- ﬁonm byte-)
map, which is the same size as the card table, indicates those cards Ewm.nmnuoﬁ&m mnwnuma
from the beginning. Cards are only scannable if they begin with the Unwmmm of an oEmmnr arin
the midst of an object whose subseguent data fields are tagged. Xf a card is zbm.nmﬂum.Em. En
garbage collector must skip back through the cIossing map until itfinds a mnmnnwEw..c:nw m‘.mmm‘
fanlts caused by skipping back to an earlier card from which to start the scan En.:ﬂ&mmﬁmzm. e
If 92-word cards are used, a 4-kilobyte page will hold 32 cards. This gives, on average, 2
choice of 15 cards on which to start the scan without risking a page fault. H.mnmmﬂnmw% ,&Nam.

~would increase this risk, but smaller sizes would increase the size of the card table.

“The chance of 2 card being scannable is also increased if large unscannable objects are
stored separately in a large object area. Headerless, rumnmaamgn objects, mzo_..— E.&omﬁ:m
point numbers (often represented by a tagged pointer to a one or go,é.nnm value in .ﬁn .:mm.mu.
also cause probléms, These can be handled specially if all hieaderless oEmn.ﬂm are required to
be entirely: scannable or entirely unscannable. Unscannable headerless gbjects can;then be

aflocated in ‘containers’, pseudo-objects in the heap which have m‘.:amaamws&om.ﬁsm?ﬂ they
contain unscannable data. When a container becomes full, a fresh one is mBE.H@ from the
storage manager, and new headerless .:am.nwﬁumE@ objgcts are mﬁonmﬁmm .m.mo:« E_gw&m_ new

container. , | . .

" page-fault rate.

GENERATIONAL GARBAGE COLLECTICN

Remembered sets or cards?

For general purpose hardware, two systems look the most promising: remembered sefs with
sequential store buffers and card marking. Although the write-barrier costs are about the same
— two instructions — in hoth systems, card marking provides a more prediciable write-
barrier overhead since the SSB may overflow. Remembered sets offer precision of pointer
recording, but allow duplicates in the sequential store buffer. Processing effort at collection
time is proportional to the number of stores performed between scavenges rather than the
volume of data modified; this and the size of the SSB might be.large. On the ather hand, cards
that contain inter-generational pointers remain dirty and hence have to be searched again oven
if they are not modified again, Hosking aud Hudson took the best of boih systems to provide

a hybrid card marking/remembered set garbage coliector for a high-performance Smalltalk
interpreter [Hosking and Hudson, 1993]. The-write-barrier uses card marking, but older—
younger pointers are summarised to the appropriate remembered set at collection time. The
remembered set is then used as the basis of the scavenge and the cards are cleaned. The write-
barrier js predictable since the card table canaot overflow; no duplicates are recorded. At the
cost of storing 2 remembered set for each generation as well as the card table, card scanning
time is reduced as only those cards dirtied since the last collection need to be scanned. It would
alsa be feasible for such a hybrid system to switch to pure card marking if the remembered sets

rew excessively large, Hosking and Hudson found the hybrid scheme offered a significant
improvement over pure remembered sets, with the optimal card sizs foand to be one kilobyte.

unlikely to be competitive, though there are otherreasons (such as uncooperative compilers)
that may mandaie its use. ’

- 7.6 Non-copying generational garbage collection

So far we have assumied that generational garbage collectors are based on copying garbage
collection. Although copy-based collectors are conceptually simpler, it is quite possible
to build mark-sweep based generational collectors. Zorn examined the trade-offs between
promotion threshold size, garbage collection overhead and pause length for generational
garbage collection based on both stop-and-copy and mark-sweep, and concluded that his
mark-and-deferred-sweep generational collector performed significantly hetter, for a range
of substantial Allegro Comman Lisp programs running on a Sun 4/280, than his copying
__collectors [Zorn, 19931, | - :

a fixed-size-object region and a variable-sized-object region. The fixed-size-object region was
divided into a number of areas, each of which contained objects of a single size. These regions
used mark-and-deferred-sweep garbage collection, with e masse promotion by copying after
three collections. The variable-sized-object region contained objects that did aot fit in any of
the fixed-size-object areas, and was collected with' a two-space copying collector. Zorn found
that, although the total CPU overhead of the mark-sweep coliector was slightly greater than
that of the copying collector, it required 30 to 40 percent less real memory to achieve the same

They also-found that;-even using sympathetic assumptions, virtual memory techniques were *

Zorn’s system used four generations, each of which contained a mark EnEmW mmnn page 92},

SCHEDULING GARBAGE COLLECTIONS ~ | - 175

Mark-sweep collection also often showed a lower cache-miss rate, althongh this depended
on promotion policy and-cache size. The compacting gffect of copying collection gave no
advantage provided that the new space resided catirely in memory. The:drawback of the
mark-sweep collector was that en masse. promotion led to much higher promotion rates;
collection-count promotion would be possible if a few bits per object were reserved to tecord
object ages (maybe in a table to the side of the heap like the mark bitmap). Incréasing
thresholds above one megabyte, however, led 1o noticeable pauses whilst thresholds less than
250 kilobytes caused increased overhead and poar locality as objects were moved out:of the
creation area prematurely. Zorn's results are in keeping with those of Demers et al for a
conservative, mark-and-deferred-sweep, generational cpllecter for Ibuki Common Lisp on
the Xerox PCR [Demers et al., 1990). Although the CPU overhead was much greater than

for a non-generational collector, an order of .EmmBEnm fewer pages were touched by the -

generational collector. : : i
Thers is no reason why all generations shouald be eollected in the same way. In particularthe
cldest generations:may have to be treated differently to|younger ones. If 2 copying collector °
is used throughout, the oldest generation must be organised into semi-spaces since there is
no older generation into which scavenge survivors can be promoted. If the cost of two, semi-
spaces is too high, then the oldest generation must be handled with a non-copying collector,
or maybe not collected at all. If mark-sweep is used, it may occasionally be worth compacting -
the generation as well, especially if this can be done without paging. Ungar and Jackson built -
a twin-frack garbage collector for PARCPlace Smalltalk-8(0, Release 4 [Ungar and Jackson,
19911, In this system, most objects are reclaimed by a generational copying collector, for
its efficiency and its non-disruptiveness. Compaction, which gives fast allocation for high
bandwidth .u,c._.mn,nmﬂh is provided at no cost. Tenured objects, on the other hand, can be dealt with
at a more leisurely rate: the key requirement is that oEo% generations should never become so
full that & major collection is needed. An incremental mark-sweep collectoris used to reclaim
tenured garbage. Although & first-fit (or best-fit) allocator for old objects is mﬂoéoﬁ than simply
increrenting a free pointer, its performance is still acceptable since objects become oldara
much lower bandwidth than new ones are allocated.

7.7 Scheduling garbage collections

One of the aims of generational garbage collection is 1o reduce pause times. Aswell as
concenirating on those objects most likely to' be garbage, it may also be worth considering
when to m‘ommaﬁn,m‘magmm collection. Two possible wnmwamwnm are either to hide collections at
points where the user is least likely to noticepauses, or to trigger gfficient collections. when
there is likely to be most garbage to collect. One way of hiding pauses in long lived systems is
to arrange that major collections happen overnight, or when the machine isiidle. Alterfiatively
garbage collections can be performed at points in the program where the pauses are least
likely to be disruptive. Two candidates for this are during compute-bound periods ‘mmﬁ.ﬁrn:
the user is presented with an opportunity to interact but doss not do so [Wilson and Moher,
1989%; Wilson, 1990]. If garbage collection phases are attached to the end of much larger
compute-bound phases, they may not cxacerbate those panses mxnnm.mgo@.. Furthermore, by

| ; ;

177

e 176 GENERATIONAL GARBAGE COLLECTION

garbage collecting then, much more disturbing interruptions during interactive phases may be
avoided.

There may also be points at which a program expects the user to interact, but they do
not do so. If the user does not interact for a few minutes then it is probably safe to initiate

a short collection. If user inactivity continues, it may be an opportune moment for 2 more

major collection. Wilson advocates incorporating these heuristics into interactive programs
by attaching code to user interaction routines. Whenever a significant pause is detected, the
system can decide whether to garbage cellect and if so, how many generations to scavenge..
The Emacs text editor system uses a variant of this strategy: if sufficient idle time has passed,
the file is auto-saved and a garbage collection is performed if sufficient allocation has been
done since the last collection.

Garbage collection will be made more efficient if it is run at times when the volums of

-~ —live data is low. The ends of compute-bound perieds or user inferaction peoints may also of

themselves be good times to collect, since they are often dispaiching peints between major
computations. It is quite likely that the volume of live data is low at these times. Other
opporiune momenis include at the local minima of stack height [Lieberman and Hewitt,
1983}, or when the nomber of page-faults becomes excessive. In the latter case, the goals
of the collection areto compact data to improve locality of reference [Wilson et af., 1991].
-The garbage collector-itself may also be ahle to detect likely opportunities. If the number of
objects reclaimed during the last scavenge of a younger generation was high, it may be worth
scavenging its older neighbour as well [Hudson and Diwan, 1990].
Detecting true local minima of the stéack height is problematic. One approximate solution is
to trigger & collection whenever the stack height drops below a certain point. Wilson suggests
that one method may be to place a bogus return address in the stack [Wilson, 1991]. If this is
used as a return address, control can be passed to a routine that determines whether itis worth:
calling the collector: This decision may be based on the amount of memory currently available,
and the height of the stack. Wilson reports that the success of this sirategy is application
dependent. Where it is successful, it tends primerily to decrease the amount of data copied at
the first scavengs but the proportion of data that survives two scavenges increases slightly.

Key objects

Hayes observed that the deaths of objects allocated at nearly the same time are closely
correlated [Hayes, 1991]. He observed the behaviour of the 1 percent of objects with the
longest lifetimes and found that more than 60 percent of these words came from a spread of =1
kilobyte. If young objects were included, the correlation was unsurprisingly much stronger.
These object demographics arise from typical styles of programming. There are usually only
a few static pointers into large data structures: an example would be the root of a tree. Other
pointers into the structure are created dynamically as it is used by the program. When the
program has finished' with the tree, it will only be reachable by its root. When this peinter is
deleted, the entire tree is garbage. :

Hayes suggests using these key objects as indicators for garbage collections. When the
death. of a cluster of objects can no longer be predicted from their age, the cluster should
be promoted out of the time-based generational scheme altogether: no effort should be made.
to collect it (see Diagrams 7.19 and 7:20). One key object, for example the root of a tree

T SCHEDULING GARBAGE COLLECTIONS

* train‘analogy to de

Diagram 7.19 Key objects: before prometion.

or the head of a list, should be retained within the mnrmﬂmmonmp ‘mornE? .HFU Hmmor¢wumm.nx of . 1
this key object is then used to snggest when to collect the cluster. Reclaiming a kay mwcmnn. K
is-interpreted as a hint that it might be worth irying to reclaim the keyed cluster associated SRR A
|
|
,

with it. Collecting older generations along with ail young generationsin & large wnmmw su.:meﬁ
disruption is problematic. Avoiding collecting ohjectsunfess there is a good reason'to think. s
that the atternpt might be sucoessful is a sound strategy, if'it can be implemented. 1 - L

Mature o_ummmn.mm.m.nmm

o.&onm are to be identified. Onemethod is a manual , ;

The difficulty with this scheme is how key : 1 |
one, with the programmer offering hints on which objects are thought to-be good predictors. , i

Alternatively, if a cluster was accessible from the. stack, Enmm direct references noE.n_ serve W
as keys. An added bonus is that this technique would, Emo.gm_nmﬁm that Em mnmnw rmm M:kuw

without explicitty monitoring it. Hudson and Moss ﬁnwoﬁcn a mEEmn..HoormEmﬂ..mEmﬁna.m

by key object opportunism; that collects clusters of objects by-detecting when &n. EERH 1S

unreachable [Hudson and Moss, 1992]. Like Hayes| they promote 3.0...05 o.EmnE out of
the time based senerational scheme altogether and into a mature object space in. om.n_nﬁ mo
avoid &&wmﬁﬁ collections. Their design is similar to the &.ma_uﬁmm. &.moﬂ&up mnw.ﬂ.&wa in
[Shapiro et af,, 1990]. The mature object space is divided into areas, n.mor of i_dor. Wmm a
remembered set, These are collected one af a time, in a Bwun,n.ouE w.m.wwyon. &sm placing mﬁ
upper bound on the length of any collection, An area is Hn&mg.gma in its entirety when Mﬂm
remembered set is empty, i.e. when there are no Hamnmnnnnm to objects in the area from outside

the area. . : : . W L er o e =
A difficulty arises if a cluster of linked objedts is too large to fitin a sin gle area, since arcas ” :
ibed in [Bishop, 1977]). Hudson and Moss use a |
|

are bounded in'size (unlike the areas descr , . (:
scribe their solution to this problem, with carriages _.anommuﬁmm m.H.amm” an
frains Hauanmnnawm.wmw_w\m\m‘mm carriages holding linked structures. At each collection, a single

178

key chjects

youny objecis

keyed area

L]

Ummmnmsm 7.20 Key objects promoted oiit cm the mganmm.ou& scheme,

Hnuwunmmw is nro.mmz wca nocnoman.” call it the From-carriage. If there are no references w.o the
om-carriage’s ﬂE.: from outside that train, the entire irain can be reclaimed. Otherwi
collection proceeds in four phases. . e
. MH% M.,n.% cm._mnﬁ that is referenced from ocutside the mature object space is moved into
ain. Suppose that the top-left carriage in Dia| 721 i
From-carriage. The only external ref: is ject a2 A s copte 1o v i (o
3 . erence is to object A; A is. copied t in (3
Diagram 7.22 on page 180). These obj : . v y oyt oatlooto
2 . objects are then scanned in the usual i
way, and any descendants also in the'From: carri s ae
3 . ~carriage (for example, B in the diagrams) ar
Emémm to this new train, mn.oEEmn_ objects are also moved into- trains-in this m&mﬂm bw.::..mw
@oﬂﬁﬂomﬂwcnmm to objects in the From-carriage are held only in mature-space oEoR.m .
e %o”ﬁﬁa ﬁ:wﬂw. meoE.omHamma objects referenced from other trains in the BmEHn. object
xample, B) are moved to those trains. Those referenced from other carridges in the
ot (for om0 e g ¢ nced from other carridges i the
: le, moved to the last carriage in this train, This 1
carriage containing only unreachable obj . of tros otgects chom
¢ . jects (for example, the group of thr j
in the lower lefi-hand corner of the Fr i tire seent erelon O
t] om-carriage), so the entire carriage is led
entire structure is held in a single train, it can b i i AR
: | e reclaimed if there are no external
to it (for example, in the collection ¢ e Dinaram 73 o
s ycle that follows the state shown in Di
page 180, the train holding ¥ and x-can be reclai in its enitir e syetem s
: aimed in its entirety). This system hasa
of attractive features. It is incremental si | D each salloation s
. since the- number of bytes moved ion i
bounded. Objects are clustered and o o The sycteon 1
1ded. i compacted as they are copied into cars: The is
a ‘ 0 s 8 sysf
efficient in that it does'not rely on special hardware or-virtual memory mechanisms e

T 179

: . [S :
Diagram 7.21 The mature object space hefore the From-carriage is collected. Only detzils
of interesting carriages are shown. : T e

7.8 lIssues to consider

Generational mm&ummw collection has wace.na_. to be EwEw successful in a wide .stmn of -

applicaticns. It can reduce pause times for mince collections to a jevel where it is worth.
considering instead ‘of incremental technigues for some applications. By concentrating
allocation and collection effort on a smaller region of the heap, paging and cache behaviour
of both the mutator and the collector can often be impraved. Finally, by delaying collection-of
long-lived objects, generational techuiques can reduce the overall cost of sarbage collection.
Programming styles. which allocate large numbers of short-lived objects, and in which non-
ipitialising. pointer writes are comparatively rare, benefit particularly from this -approach.
However, generational garbage collection is not a universal panacea and cereain circumstances
may not satisfy the weak generational hypothesis. , :

The goal of short panse times is defeated by large oot sets. These may be caused by any
combination of very large programs, an unusually large nember of global variables pointing
into the heap, orhighly recursive calls leading to very deep stacks. One solution to the problent
of large sticks is o apply -the-write-barrier to-local variables as well, although this would.
considerably increase the cost of the barrier. . :

__ Alternatively, if objects are promoted to the next generation en masse at every minor

collection, it is not necessary for the collector to scan every stack frame. In this case, the
only activaiion records that can contain old-young pointers are those created since the last
allocation. All that is necessary s that the collector mark, the top frame of the stack. At the
next minor colléction only frames above this one need to be scanned for pointers’into the
young generation. The only difficulty with this approach is that the *high water mark’ frame
_might be popped between collections. Appel and Shao suggest that the frame be marked by

replacing its return address with the return address of a “mark-shifting’ ptocedure [Appel and
Shao, 1994], When the frame is popped, control will pass to this procedure, which will mark
‘the next-lower frame in the same way before jumping to the real return address. Appel and

Shao estimate the cost of handling high water marks dt between 10 and 100 insructidns.

.

' NOTES - | - —

1975]. Each womm.o.uw B&agoamﬁEmomav._.mnwﬁmmwmwnﬂ E Emﬂ Hw%cn..”.ﬂpo EH.H.._E%
machine hed areas with exit vectors, regenerated at each nmzmoaob mWEmFm_ 1974; OBopE.mF
1984]. At collection time, only those areas modified since the ,wmmﬁ oo.znnﬁ.op were onﬁmﬁa.““ B

_Peter Bishop's thesis: contains & number of interesting ideas, EnE&.um separately oommnﬁna
areas of the heap [Bishop, 1977]. Areas could. also be linked, or cabled, to each m.i.an gither
automatically or under programmer contral, so that an atea would be collected if. m.uuﬁ.wmhmmm :
cabled to it were. » - m

The first paper published en generational garbage nozmnnon was ww H.HnE..w HmemHEE.u.. and
Carl Hewit: [Lieberman and Hewitt, 1983]. However, this E.EooﬁoH intertwined generational
garbage collection with incremental collection, as did Uwﬁa Moow’s mwﬁEQ& Qm:mnuo&
[Moon, 1984]. These techniques were succsssful becanse both the MIT Lisp Em&._Em mbn - |
the Symbolics 3600 fmade extensive use of special hardware ﬁ.v support garbage noznonon‘ e |

" [Greenblatt, 1084; Moon, 1985]. A more accessible early paper is [Ungar, 1984], but the best
brief survey is [Wilson, 19947]. Julian Davies provides HmEoEmﬂnE support for &m E.ncuﬁ.

ies, 19847.) W S L
Eﬁwﬂmwm.mmmﬂmmowm have been used in several wuwwoﬂmuﬁmouﬁ most notably for Tekironix
4406 Smalltalk-80 which used seven generations [Caudill and ﬁﬂﬁmm;mmcnw. Hmm&. HH...

1o Explorer IT Lisp (effectively five generations) [Courts, Gmmm .._orumo_.u_ H.wcH&_ mba mME.W :

== --= - Filson's Opportunistic Garbage Collector (small young and intermediate; generatiods and - |

RS a larger old ons) [Wilson and Moher, 1989b; Wilson e al, 1991]. The SPUR processor.

provided hardware support for four generations m_.ﬁobmﬁ SPUR Lisp used o_.u.E three of them

{Zomn, 1989]. Other fmplementors have allowed'a ﬁ&m@ﬁw mEEwwH of mnwmnmnobm.. for nxwu”%ﬁ |

Symbolics 3600 Lisp (which also allowed the user to specify the capacity of each generation) R

B Umw‘mﬂ..w._.ﬂ 7.22 The mature object space after the From-carriage is reclaimed.

The rtesidency of older generations is also an important factor. If object lifetimes are
not sufficiently short, miner collections will reclaim too few objects, leading to increased

promotion and hence more frequent major collsctions, Mereover, frequent references to older o WH%%%MHGWLM. wm& wﬂmwwﬂoawﬁ of Massachuselts Garbage Oocmo,BH Hoozmﬁ Eammoﬁmn &...
enerations will spail the spatial locality of the mutator if only the youngest generation. can it 1991; Hosldng ez gb., 15521, — T
mm held uanﬂmnonw_% in HnEvEmBoQ OHQE.m cache. This will WM& to Moo&mn paging behaviour - Bucket brigade systems have been used by [Shaw, .G.mm,ﬁ“wﬂub mnbnm,uh%wmwﬂ. Wwwwwwmm_mmwmmﬂw
and/or will increase the ratic of cache misses. Iigh heap occupancy rates are notuncommon'®, a4 et al., 1991]. Robert m.wmi mnr_onmnna a heap o..umm_”_,_mMmEp s 4 to Ew ow< into the new region. m.u“
Frequent pointer writes inta older generafions will also increase the overall cost of the write- 1988; Appel, Hw.moEu in which the old generatlon i$ E%ﬁm o & system is unavailable,
barrier. Wilson notes that large arrays of hezp allocated data, such as floating point numbers, A also suggests using momnuamhw to B.ma_a pages if the Nw. ”Boﬂﬁ_unwﬁums.ﬁo mmcuoﬁr Licherman
are perticularly troublesome in this respect. Such arrays commonly have long lifetimes, and 4 Write barriers ate maintained either by mogﬁwE%nm.,cH ﬁmcann.m hardware; Ungar used
hence will be promoted to an old generaticn. Each iteration of the program may update many . Jd and Hewitt used entry tables, supported by the isp) :

software-only remembered sets. The Symbolics machines write barrier and page marking
~. were possible. becanse of the close integration of hardware, operafing system and garbage

{or even all} of the slots in the array, and each of these writes must be trapped by the write-
barrier. Furthermore, the target of each write- will be added to the root set of the' next minor

collection collector. Word and card marking were suggested by Patrick Sobalvarro in his anww%i”
. . T thesis [Sabalvarro, 1988]. Combinations of Emmm.ﬁngm@:@m s.:,.r mne.:wma& mwo-da" m M.
T e e B ’ R T <o Sl T pave been suggested by Amer Diwan, Tony Hosking, Rick Hudson, Fliof -Moss mummw arko -- -
7.9 Notes - o Stefanavié [Hudson and Diwan, 1990; Hosking et al., 1992; Hosking and Hudson, 1% 1.

Ideas for separating’ the heap into separately collectible arcas can be found in many early - o= . :
papers. D.T. Ross's AED system divided storage into separately managed zones [Ross, 1967). o i E
AFD was not garbage collected. and no mechanism was provided to handle inter-zonal
pointers. D.B. Lomet described a similar approach [Lomet, 1975]. HD. Baecker suggested o
dividing the Emo—,.am heap into different regions [Baecker, 1970; Baecker, 1972; Baecker, . Lo

10 Hans Boehm, Joel Bartiett, personal communication.

Incremental and Concurrent
Garbage Collection

: , - .
Tor interactive or redl-time applications, the chisf question facing the designer of an. aulomatic - -
memory. management system.is how 1o reduce the length of garhage colléction pauses. We. .
saw in Chapter 7 thal generational garbage collection can often be an effective sirategy

for reducing garbage collection latency. Cenerational garbage collectors concentrate Storage
reclamation efforts on the region of the heap in which memory is most likely to be recovered.

Tf this Tegion is comparatively small, and if the survival rate of objects is sufficiently low,
generational techniques will be successful in, limiting ‘pause times. If an:application or an
implementation does not exhibit the Tight object anEomewEom, generaticnal collectiongannot
provide a solution. Frequent major collections of larger regions of the heap will defeat the: -
generational strategy. Incremental, and especially Hmﬁgmwbumv garbage collection has a different,
priority to that of ‘generational garbage collection. It Qﬂgmuam guarantees; for the- worst-case.
performance whereas generational collection attempts to improve the expected pauseitime at

the expense;of the worst case.] g o :

In arder to avoid-the. pauses-incurred by stop-and-collect reclamation, many researchers .
have turned. to incremental garbage collection techniques. The simplest of these is reference:
counting, which is naturally incremental for all own_..w.monm except the deletion of the last
pointer to an object, but we saw in Chapter 3 that sich recursive’ffecing can be dvoided.
The drawbacks of reference counting are its computational expense (sven with sophisticated
techniques such as deferred reference counting), its close coupling to ‘the user program
{hindering program development), and its inability to teclaim cyclic data;structures-withouok
using hybrid techriques. In this chapter, we examine parallel garbage collection techniques
based on tracing. For the main part we shall concentrate on sequential architectures, but we
shall also describe concurrent collectors, using threads or mulfiple procgssors. COrCurrent
garbage collection started almost two dacades ago as an academic exercise. With today's
technology the cost of adding exira processors o a machine. is small. Most new large
mainframes are multiprocessors already and Stiared memory multiprocessors are becoming

B

SYNCHRONISATION . , 185

< e gy - INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

widespread. Some’ of the algorithms in this chapter were originally designed for multi-
processors but are easily adapted. for serial machines. Serial execution also simplifies
implementation since the problem of maintaining a coherent view of data structures between.
different processes can be relaxed somewhat. In partcular, locks are not required and certain
subtleties of fine-grained concurrency do not arise. Synchronisation is still expensive, butless
so than for wuly concurrent systems. Likewiss it is very much easier to track the state of the

8.1 Synchronisation
R H |-

Parallel garbage collection systems can be viewed as comprising.two. Gﬂ.ﬂoﬁv progesses
running asynehronously but sharing the same: workspace. This view is useful whether the
- garbagg collector is implemented as'a separate process or thread, or has a fixed m.aﬁnww&nm
within a single sequential process. Asynchronous execution of the mutdtor and collector

iniroduces a.consistency problem. Consider an example in which there. are two nozm..‘_.u. and

running processes. . i : . 0 . o ;
Sequential garbage coliecticn can be made incremental by interleaving collection with : B, both of which are in use at all times. .wm@mcmo furthermore that C is H.EH.NE connecied 10

the user program’s activity. Care must be taken to ensure that the collector makes sufficient . 2 as shown in the figure at the top of Diagram 8.1, and that the following _nomn sequonce 18

progress to prevent the user program from renning out of memory beiore the coliection cycle = 7 executed: : : !

is complete. One way io do this is to tune the rate of collection to the rate of consumption iR Update (zight (B), right{a}) o e

of memory — the idea is that a small amount of -marking or copying can be done at right(a) = nil - . —Step (i),

each stlacation. To do so without the clisnt program rusning out of memory before the |- B Update (right{a), right(B}) o

collection cycle has terminated, incremental collectors need additional headroom in the heap N right(B) = nil W |.m.§u ?W

in comparison with their non-incremental counterparts. R) : C E

If the collector traces k& words at each allocation, and thers are B active words at the start of :
a cycle, these words will have been marked after R/ % calls to the allocaior. At the end of the -
tracing cycle the heap will contain at most R + BE/k active cells. If all cells allocated during)) " L .
a collection cycle are allowed to survive until the next cycle (and do not need to be traced), = jn .= , : ”) Comen e
the sforage required to guarantee that the user program is not starved is R(1 + 1/k) words! B . " o i
'— this valug is douhled for a semi-space copying cotlector. The. value. of k-should not be set
too large, however. Although alfocation time increases linearly with %, changes have much
Tess effect on the amount of storage required. Alternatively, for a heap (or semi-space) of size
M and a program with maximum residency R < M, it is sufficfent to set k to be:larger than T
R/(M — R) to guarantes sufficient progress. , 15

Many incremental algorithms are deseribed by their authors as real-time. Hard real-time
systems demand that results be computed on time: a late result is as useless as an incorrectly
calculated one. Such systems require worst-case guarantess rather than average-case ones,
and these may havé to be in the order of a millisecond. Indeed, many hard real-time systems .
demand guaranteed space bounds, and even eschew the use of virtual memory. Memory ‘
management is nat the only problem faced by real-time systems. .

Other advances in hardware design such as super-scalaz, pipelined architectures have also i
made performance less deterministic. Soft real-time systems prefer resulis to be delivered 2~ ioe
on time, but accept that a late result is. better than no result at all. It is clear that many so- :
called real-time garbage collectors cannot meet realistic worst-case deadlines for many hard
real-time applications. At best, they offer average-case pause times that are bounded by small " 7" T . !
constants. This is often adequate for interactive.applications but is nothard real-time. We shall T : : Step (i) oo Step (ii}
avoid calling such incremental algorithms “real-time’. : : ; : :

Diagram 8.1 Mutator activity may interfere SEH the collector’s marking traversal.

I the collector visits 2 at step (i), stiown in the leftthand figure of Diagram' 8.1, and then
; B at step (i}, shown in the right-hand figurs, it may: conclude: s.mozma_,, that ¢ is m.m&ummm,
R Synchronisation is needed between mutator and collector to mnmwmm”ﬁn %mﬁ.&m nouﬁmﬁﬁg of
. the data structure has altered. : "

186 | |NCREMENTAL AND CONCURRENT GARBAGE COLLECTION

In his survey paper, Wilson suggests viewing this as a coherence problem [Wilson, 1554].
An incremental mark-sweep collector poses 2 multiple-readers, single-writer coherence
- problem since both the mutator and the collector read pointer fields but only. the mutator
can modify them. Incremental copying collectors provide an example of 2 muiltiple-readers,
. muitiple-writers problem since the coltector also writes pointer fields when it moves abjects.
Tt is also necessary fo ensure that the mutator's view of the world is consistent, ie. that it
does not attempt {0 aCCESS objects through ohsolete references. Fortunately i is not necessary’
for the mutator and the collector 10 share an identical view of the computation graph. The
consistency requirement can be relaxed to allow thé collector 10 wark with a conservative
approximation of the graph of active objects. While the collector must treat any reachable
object as active, the semantics of garbage collection are preserved even if the collector freats
_some objects that are unreachable as if they were still visible to the mutator. Typically such
floating garbage consists of objects that became unreachable in the last garbage collection
cycle; these will usually be reclaimed in the nextcycle. Relaxing the consistency beiween the
collector’s and the mutator’s view of the world is notunigue to incremental garbage collectiom.
It is also Tundamental to generational garbage collection, whers tenured garbage is aliowed io
accumulate at least temporarily in older generations. :

As consistency requirements are relaxed, the collector’s view of the reachability graph
becomes more ooumm,ﬁ,..m&ﬁ. and more floating garbage accumulates. Floating garbage
fragments the heap, increases the effective residency of the program. and puts more pressure

- on the garbage-collector; The degree of conservatism is one parameter by which we can judge
incremental Emou.m:bm._ Incremental collection should also delay computation cnly briefly at
each step, so the bounds on these pauses provide a second measure. Incremental collectors
may also contain uninterruptible sections, for example to process the roat set or 1o check for
termination of a garbage collection cycle. Tf these pauses are too great, the incremental nafurs
of the algorithm is again compromised. :

Tricolour marking’

In Chapter-6 we introduced 2 tricolour abstraction to describe copying callection. This
abstraction was originally introduced. by Dijkstra to describe incremental garbage collection.
We restaic the abstraction hers, but cast in the light of incremental collection. Nodes in the
heap are painted ons of three colours.

Black indicates that a node and its immediate descendants have been visited: the garbage
collector has finished with black nodes and need not visit them again-

Grey indicates that the node must be visited by the collector. Either grey nodes have been
visited by the collector but their constituent pointers have not been scanned, or their
connectivity to the rest of the graph has been altered by the mutator behind the
sollector’s back. In either case, the collector must visit them again.

‘White nodes are anvisited and, at the end of the tracing phase, aré garbage.

A garbage collection cycle terminates when all reachable nodes are black. This Eﬁﬁmm thatno
grey nodes remain in the heap. Some unreachabie nodes may also be black but these cannot be
reclaimed in this cycle. Any nodes left white at this point are garbage and can be reclaimed.

W S 187

BARRIER METHODS

Cheney stop-and-copy collectors provide a paricularly clear illustration of the tricolour
abstraction. Black nodes are those nodes in Tospace whose m@annmm i5 less than scan. Nodes
between scan and free are BeYs and unvisited Fromspace nodes are white. ﬂ.wa collector
sweeps & wave-front of grey objects across the heap, separating black objects from sﬁmmnuwu
white ones. Wotice that there are 20 pointers from black objects o white ones: Ewm mnﬁmuﬁ_mm
that no active nodes will be overlaoked by the collector. : .
Diagram 8.1 on page 185 showed how the Tautator might interfere with the collector’s
marking {raversal by altering the connectivity of the graph. Black means that the. collectorhas
finished with the node and should nat need to revisit it. .Uun problem was that the mutafor
was able to install a pointer to & white object ¢ info the black a. In this example, :cmn A
was blackened at step {i}. Since right () was the ou@ reference 1o <, n,ioc.E pﬂ&ﬂdw
veached by the callector and hence would be. m&maq Honwm.hﬂma. OEQ.‘ ﬂ&mnom_ actions ﬁnﬁcﬁ
problematic. Any grey or active white cells that are- Baa&w.a will be wﬁha@ __UMH the no=nn_u8H
at some point in the fature, and creating black-black or black—grey pointers does not aherithe
collector’s view of the reachability of the grapi. ;) o

8.2 Barrier methods | S

There are two ways (o prevent the mutator from disrupting garbage collection _uu. writing AES
pointers into black objects. The first methad is to ensure Em.ﬂ @:.w %EESH. never sees a m&_ﬂm: :
object. Whenever it atternpts to access 2 white object, the object1s Eo&mﬁ._@ ﬁmnﬁ@ 3_\ the:
collector. To ensure that this bappens, white objects must ,dm protected c.< a ﬂm.nm.wawnmﬁm

The second method is 1o record where the mutator writes black to white pointers 50 that ”&m
collector can visit ar revisit the nodes in question. Objects are Eoﬁ.nﬁm .S_ a write-barrier:
In order to falsely reclaim a live object, & white object must ,cnon.ﬁpa EJ.JEEG to En.oo:umnﬁod
but still be reachable by the mutator. This means that at spme point during the marking w:mma

both of the following preconditions must hold.

! o
e A pointer 0 the white object is written Into a black oE,mnﬁ) ﬁmnw.@
Furthermors this rust be the only reference o the iEﬁon.nnn -
» The original reference to the white object is nomnou_maw. hnwsm.m.u
1f either of these conditions does not hold, the object will be retained. and no ‘mmmnmmr action
is required. If {Cond.1) doss not hold, the graph will Joﬁ contain any black—white moESMm
during the collsctor’s traversal. In this case, there must jn apathto wmﬂﬂ Hmw.ng.a white =M_ __n
from a (blagk) root that passes {hrough a grey node. ,H._u,m noﬁmnﬁon s ﬁmz.oﬂﬁ will mﬁ.nﬁr. ¥
reach the white node from the grey one: On the other hand, if a pointer to:a reachable white
node is installed in & black node, the white node will still be reached _ﬁ Em nozm.nﬂo_” through
the original reference 10 it if (Cond.2) does not hold, ie, unless this pointer is @mm.qOmna.
ﬁiﬁ.ﬂﬁ&nn methods solve the muiator-coliector communication wn._EnB c.u_ tackling one
or the other of these two conditions for failure. Wilson &EME.% sﬂm,@.ﬁm Eﬂ.ﬁ.o% m,.ww
either mznﬁuw&.n?%m-wmm_.zﬁ.:m or incremental-update, anwaEuE.m on whether they mn.méﬂ
the toss of the original reference or caich changes to the connectivity of the graph [Wilson,
1092b]. We explain these techniques in mOTe: detail below. :

== 188

INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

We discussed techniques for implementing write-barziers in Chapter 7 in the context of
trapping inter-generational pointer stores. The read-barrier can similady be implemented in
hardware, by having the compiler emit a few instructions before each pointer read, or with
support from the operating system. The cost of the bamier is diminished to a negligible
amount if the barrier is provided in hardware. Symbolics, Explorer and SPUR azchitectures
all provided hardware support in the past, but modern general purpose machines do not do so
[Moon, 1985; Explorer, 1687, 1987; Taylor et al., 1986].

Sofrware read-barriers are generally considered to be too expensive. Zorn's measurements.
suggest that pointer loads may account for 13 to 15 percent of all instructions [Zomn, 1990a].
Inlining read-barriers may cause the size of the code generated to explode. A read-barrier of
three instructions would increase the size of the code by more than 40 percent and may also

have a deleterious effect on the performance of the processor’s instruction buffer [Sieenkiste, -

1989). A read-barrier of seven instructions would double the size of the code. Read-barriers
may also be implemented with support from the operating system’s memory protection
mechanisms to trap access to protected pages. We examine this approach further when we
discuss the Appel-Ellis—Li collector on in Section 8.6.)
The total overhead of an incremental or concurrent algorithm is determined by the
conservatism of the barrier used and how it affects the collector's view of the reachability
of the graph (all other things being equal — which in practice they will not be). The time
and space costs of the barrier depend on its selectivity (whether it is applied conditionally or
unconditionally) and frequency, and how it is implemented (colour bits or a mark stack). Pause

time depends on how much work is done by the barrer (whether a single nods is coloured or
an entire page of references is scanned). It also depends on how a collection: cycle is initiated
and terminated — for some algorithms these are the more significant factors.

8.2 Mark-Sweep collectors

The mutator does not need to be protected from the activity of a non-moving collector as

the collector makes no changes to cell fields that are visible to the mutator. The expense of
read-barriers means that they are rarely, if ever, used with non-moving collectors®, Many
of the best-known non-moving algarithms. for parallel garbage collection were designed
for multi-processor architectures but they nevertheless share many of the concerns raised
by sequential incremental collection. The algorithms we shall consider are Steele’s Multi~
processing, Compactitying algorithm [Steele; 1973]; the On the Fly collector by Dijksira
and his colleagues [Dijkstra er al, 1976; Dijkstra et al., 1978]; Kung and Song’s improved
four-colour version [Kung and Song, 1977}; and Yuasa's sequential algorithm [Yuasa, 1590].
These algorithms use incremental-update write-barriers except for Yuasa who uses.a snapshot-
at-the-beginning barrier. For each algorithm, we compare. the operation of its write-barrier;
its ireatment of new cells, and the cost of the initialisation and. termination of each garbage
collection eycle.. ’

2 The only example of which we are aware is Baker’s Treadmill (see Section 8.8 on page-218), and even.
herz a write-barrier could be used.

MARK-SWEEP COLLECTORS

The write-barrier |

The rdle of the write-barrier is to prevent mutations of the graph interfering with the collector’s

iraversal. We shall use the fragment of graph in Diagram 8.2 as a'ruaning example. The
[mutator has overwritten the pointer left (a) with a pointer to ¢. We do not specify whether
there are other references to B but clearly there must bé another reference to ¢, maybe held
temporarily in a register. In any event, the garbage collection algorithm must ensure that B and
¢ are eventually marked if they are live at the end of the marking phase. .

Diagram 8.2 inﬁmnoﬁ updates 2 to point gt ¢ rather than B. B and C must n<mu.m=m£_.« cn
: marked if they are still live. -

mwmwmwoﬂ.mﬁ.ﬁm-dmmgumum algorithms prevent the loss of the original Bmﬂn..:n.m toa white
object. Whenever'a pointer is overwritten, the original reference (3 in this case} is shaded grey.

In effect, a copy-on-write virtual copy of the active data stmeture is taken at the beginning

of each garbage collection cycle. HanmeuEH.z@mmﬁnEmo&EEm on the ‘other hand record

potentially disruptive pointor writes. Either 2 or ¢ would ._uw shaded grey depending on the
algorithm. Whatever the barrier, svery grey 11 must be visited .mua Ewnw_umﬁng the n.c:mnBH
before the marking phase can terminate. The-tricolour wqumncom can be implemented QEQ.
with two calour-bits associated with each cell, or with a mark bit and a stack; marked cells
are considerad black unless they arg in the miark stack fin s&.wnr case they are grey. Although
auxiliary data struciures for marking increase the space required by the collector, they reduce

the time taken to mark active cells.

mark stack

Diagram 8,3 Yuasa's mbmwmrvn write-barrier.
‘Ounow“nﬁ_ummﬁgoép msmwmwoﬁ.mvn,.m.uﬂ%ungm,&monmﬁum mmawswmm_mamongmmnm

Algorithm %.1 on the following page). His write-barrier traps u&wmmm\ﬁwamaw {but not

L INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

shade{P} =
if not marked(FP)
mark bit{P) = marked
. .gepush (B, mark_stack)

Update (&, C) =

if phase == mark_phase
shade (*A)
*A o= C

,Emoag 8.1 Yuasa's snapshot write-barrier.

initialising writes) during the marking phase and. shades the old white pointer grey by setting: - —

the cell’s mark bit and pushing a reference to the old ¢zl B onto a marking stack.

transfer (k2) =
i=0
while i<k2 and save_stack # empty
p = pop(save_stack)
TTif pointeri(p)
gcpush (p, mark_stack)

—move k2 items from save_stack to mark stack

e A = AL . -
Sweep Gnu,v = —sweep k3 ilems
i =0
while! i<k3 and sweeper < Heap_top”
u..% mark_bit{sweeper) == unmarked

free(sweeper)

. increment free_count .
else Bm..nunluuwﬂuamimmm_mﬁ = unmarked
increment sweeper
i o= i+l

Algorithm 8.2 Auxiliary procedures for Yuasa's algorithm.

This method presérves B whether or not it is garbage. Snapshot-at-the-beginning algorithrns
are very conservative. No objects that become garbage in one garbage collection cycle can be
teclaimed in that cycle: they must all wait until the next. Consequently, new ohjects acquired
during a marking phase are effectively allocated black even though the chance of a young

~ object dying within a single cycls is high.

Snapshot algorithms do not preserve the “No black—white pointers’ invariant. Suppose that
& had already been marked and popped from the marking stack before the update. After the
update, 1eft (A} is:a: black—whits pointer: The role of grey cells in snapshot algorithms is
subtle, Call a path of ‘pointers that starts with a grey object, but then passes through white
objects only, a white path. The gnarantee offered by a snapshot write-barrier is that there will
be at least.one white path (possibly oflength one} leading to each reachable white object. {The

conservatism of snapshot algorithms means that there may also be white paths to dead white

MARE-SWEEP COLLECTORS
markikl) = . —irayerse ki cells
i=20 ’ : .)
while i<kl and EmHW stack # mam_nw«
P = pop (mark stack) W
for Q in Children(®)} i
if not marked(*Q) W
EmHFlUHn?E = marked
gepush (*Q, mark_stack)
i = i+l |

New() =
if phase == mark phase
if mark_stack # empty)
mark (k1)) [: o
if mark _stack == empty and gsave_stack == empty
phase = sweep phase | :
else transfer(k2}

else if phase == sweep_vhase |
sweep (k3) :
if sweeper » Heap_top !
phase = idling: W
else if free_count < threshold
phase = mark_phase’ P
sweeper = Heap botiom i
for R in Roots |
gepush (R, mark_staclk) |
hlock_copy{system_stack, mm<m stack)

i i

if free count ==] P
abort "Heap exhausted' ,

temp = allocate()

decrement free_count
mark_bit(temp) = nmabv.mimmﬁmﬂ
return temp W

—Marked if not yet swept

cells.) A mna% o_u._nnﬁ in a snapshot algorithm does not simply represent the local part of the
collector's wave-fTont, It may also represent pointers elsewhere in the graph that cross: the grey
wave-front otherwise undetected. This non-local property can pose problems for optimising
the collecter, particalarly in environments with Eﬁ_nm_m concurrent collectors ﬁﬂdmca and
stone, 1993 5
Ho_wuunﬁwﬂmnsp.%mmmﬁ methods are less conservative than mummmron algorithms, | m: other
matters being equal. They incrementally record changes made by the mutafor to the-shape of
the graph, rather than makinga single, static estimate of the reachability graph atthe start of'a
collectioncyele. Incrernental-update barriers prevent i the first condition for failure, (Cond.1),

from arising by trapping aay attempt by the mutator fo install & ﬁoEﬁH to a white node into

Algorithm 8.3 - m.swmm_mmmbonmﬁoh , T

e - 192 INCREMENTAL AND CONCURRENT GARBAGE COLLECTION
a black one, and then shading one of the two nodes involved grey, No special action has to
be taken when a pointer is deleted, Either of the nodes may be coloured grey, depending on
the write-barrier. In cur example, if the black & is coloured grey, the collector wave-front
is pushed back. If the white C is shaded, the wave-front is advanced. The latter is clearly a
more conservative colouring strategy than the former policy since it preserves ¢ regardless
of whether the pointer is subsequently deleted. In either case, any white cells that become
garbage during the marking phase can be reclaimed by the sweep phase of the same cycle.
Dijkstra adopts the most conservative of the incremental-update colouring strategies: white
cells are shaded grey when a refersuce is created, regardless of the colour of the parent cell
{see Algorithm 8.4). Dijkstra’s algorithm uses explicit colour bits in each cell for marking
rather than using a mark bit and a resumptioa stack. Notice that the target cannot be painted
black straight away as this would violate the ‘Mo black—white pointers’ invariant if ¢ had
white sons. : S - Tt T T

Diagram 8.4 Dijkstra’s write-barrier.

shade (P) =
if white(P)
i calour (P) = grey

Update (&,C} =
*R o= C
mwwﬂmﬁe

Algorithon 8.4 Dijkstra’s write-barrier.

Dijkstra’s algorithm permits fine-grained parallelism. For the mutator, it suffices that each

“==--line of the Update opérdtion in Algorithm 8.4 be an atomic action. Woodger and Stenning
discovered that the order of instructions in Update can introduce a subtle bug into a fine-
grained implementation. Although the order appears counter-intuitive, as it may temporarily
break the invariant (Cond.1) by writing a pointer to. a white ¢ into a black 2, it is correct.
Suppose that the order was reversed so that nodes are shaded before they are linked. Suppose
further that the mutator shades a node ¢ and then suspends activity. The garbage collector now
completes its eycle; and then starts the next, reaching & which it colours black (at this point &
has no descendants). The mutator now awakens and completes the update, wniting a pointer

8 In a paralle] implementation, each statement of Update is an ajomic action.

R details of synchronising access to the mark stack mw_mn

MARK-SWEEP COLLECTORS Tt 193

B m.oE black & to 'white ¢! Colour Eﬁogmmow has _unnﬂ lost and the live o will be reclaimed

in the next sweep phase. The correctness of the fine-grained solution can only be ensured if

updates write the pointer before shading the target cell, . e

o Dijkstra’s algorithm canses both the marker and the mutator to drive the grey wave-front

forward; it is easy to see that the progress of marking #s graranieed. However, ¢ will be
preserved even if the new pointer Left (&} is deleted before the marker reaches C.In conirast,

- Steele’s algorithm reverts the black site A of the update to grey rather than shading the new

white ¢ (see Algerithm 8.3).

mark stack

.,..H. ;.gw ’ . . Diagram 8.5 Steele’s write-barrier.

shade{p) =
mark bit(B) = unmarkead
Qnﬁﬂmwﬁww :

Update (&,C) =
LOCK gestate -
*mo=c |
if phase == marking phase

1

shade {A) ! ;

o \“‘Ewmm:—m_ﬂwm..mg Steele’s write-barrier, In a parallel implementation, the:mutator must be pre-

bage collection phases until Update has completed.

-

vented from switching gar

The effect is to retreat the grey wave-frontrather Emﬂ advance it, E&me Steele's ”EmoHE.EH

less conservative than Dijkstra’s. Steele’s algorithm is also EoR.mm__ME...._P at the cost. of extra

) tests, only shading a black parent of a white son. Although Steele’s téchnique may no_#.mE
exira visit to 4, it will reduce the amount of foating garbage left at the .,mna of nﬁ oozanﬁo.n

cycle. Like-Yuasa, Steele uses 2 mark bit and. a stack for grey references. For clarity, we ornit

Algorithm 8.6 onithe following page).
B

if.marked(A) _and cuawn_ﬂmn (Q)- - — -—black A, white.C .

T T 194

INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

push (X, stack) =
LOCK stack
stack_index = stack _imdex + 1
- stack[index] .
if phase == mark phase
cand marked{stack] and not marked(X)
, gepush (X, mark_stack)

—push X onto program stack

Create(n) =

LOCK gcstate
‘temp = allocate()
'LOCK temp :

if phase == sweep_phase
- newmark = swesper<temp . _ - —
" else newmark = true

—create new cell with n fields

for i =1 ton
D = pop()
temp[i] =~ p
if phase == mark phase -
: newmark = newmark and mark _bit(p)
mark bit(temp} = newmark
ﬂﬁmﬁ?mﬂb. stack) i

Emﬁ:&E 8.6 .P:onmﬁob in Steele’s concurrent algorithm.

New cells

The conservatism ow an algorithm is also affected. by its mcmow towards new cells. If the

mortality rate of new cells is sufficiently high, many will die before they are reached by -

the marker. New dead cells that were allocated EEH can be reclaimed in the same collection-
cycle, but cells allocated black or grey will survive the collection cycle whether they are still
visible to the mutator or not. The cost of allocating white is that any newborn cells that do’
survive must be traversed,

Dijkstra and Yuasa are more conservative in this respect than Steele or Kung and Song.
Dijkstra’s chief concern was the correctness of his algorithm rather than its efficiency.
To simplify its proof, the mutator’s instruction set contained only the Update operation.
(see Algorithm 8.4 on page 192): the free-list is considered to be reachable and New is a
combination of Update operaticns. This simplicity means that the free-list his to be marked
as well as the active data structure. As a consequence, Dijkstra allocates all new objects grey
or black, depending on whether the head of the fres list has been blackened yet or not. In either
case, a dead new cell cannot be reclaimed vntil the next collection cycle. Yuasa is somewhat
less conservative of new cells than Dijkstra (see Algorithm 8.3 on page 191). Although the
snapshot means that no cell active at any point during the marking phase can be reclaimed
until the next collection cyele, any cells that die cutside the marking phase will be reclaimed

. .. in the next cycle. These cells are allocated white or will become white after they have been.

swept. DijKstra, on. En other hand, does not distinguish between phases.

S S

. for 5§ in system_stack i T

"MARK- mﬂqmmm COLLECTCRS W : 195

mark(} =
phase = mark_phase)
for R in Roots | -
: gcpush (R, mark_stack)
markl ()

LOCK §, system_stack W
gepush (8, mark_stack)
markl {)

LOCK gostate :

finished u.EmHHnlmnm.nuaHnmuﬁuﬁ,. Lo _
while nct finished G . R —
T marki() ; 5 :
LOCK gcstate i
finished =

mark_stacks=empty Tt
Em.HWH: = m E
while mark _stack #F empty [
= gepop (mark_stack) ! u
if unmarked{X) : : S
LOCK X | . ., 4
for Y in Children CS : ;
gepush (*Y, EmHM,nlm tack)
colour (X) = uuwwn_aw

Algorithm 8.7 Steele’s ocunwnhowﬁ marker. ' Ty

The Steele (see EmOugm 8.5 and 8. 8 and NE.Q and Song (sce. >_moEEE 8.2 on

page 199) algorithms are. incremental-update and therefore inherently less oo=m9.§p<n than

snapshot-at-the-beginning algorithms. Both are concerned with officiency-rather than-ease of
verification, and therefore consider the colour of new cells in more detail than Ucwmqw Kung
and Song allocate new cells grey during the marking phase and white oﬁndw._mn. .m.EEm.Em_
Steele allocates white outside the marking phase but applies a heuristic to Inttialising writes
during the mark phase (see Algorithm 8.6 on the mmoim page). Create(n) mbcnm,mm a new
cell and initialises its » fields with values taken from the program stack..The address of the
new cell is then passed back to the mutator through its'stack. When a.new. .cell is created and
injtialised during the marking phase, the mark-bits of its components are: .examined. Jf these
are all set, the new cell is allocated black, but not pushed cnto. the stack,on the assumption
that the marking phase is near completion and that the cell will probably not be discarded
before ther. On the other hand, if any of its referents are white, then the cgll is shaded grey if
the program stack has been marked-and white: otherwise. Since the stack is marked last, and
scanned m..ouu bottom (least volatile) to top (most volatile), most.cells s:: Un allocated white,

]

—— g : INCREMENTAL AND CONCURRENT GARBAGE COLLECTION ST MARK-SWEEP COLLECTORS | ; 197

Initialisation and termination

A garbage collection cycle is initiated in a sequential algorithm when a request for more
memory cannot be satisfied, rather than following immediately after the previous cycle as
might happen in a multi-processor architecture. A serial incremental memory management

system interleaves:the mutator with the collector, suspending the mutator whiie the collector -

runs. To prevent mutator starvation during garbage collection, -a new collection cycle is
initjated whenever the amouat of free memory falls below a. certain threshold — Yuasa
suggests that an incremental system typically needs heap space headioom of around 22
percent to be safe. The simplest way to initiate garbage collection would be to snapshot the
state of the computation by pushing pointer values held in regisiers, global variables and the
program stack onto the marking stack. However, the root set of the user program may be large.
As well as global data, it may include a stack or many threads, each with their own state. The
pause to initiate a garbage collection cycle would compromise the mutator’s response time if
it must be suspended while the collector processes an unbounded root set.

Neither Dijkstra nor Kung and Song pay any attention to how the user stack should be
reated. Dijkstra ducks the issue, by stating “shade all the roots™, Knng and Song simply insert
roots one &t a time into the collector end of a double-ended marking queue at the start of each
collection cycle. Both are concurrent algorithms so mutator activity is allowed to continue
unrestricted. A simple sequential implementation would shade all the roots grey in a single
atomic operaton, with the mutator suspended, .

......... - —Yuasa ameliorates the' problem by copyingthe entiré program Stack, incloding non-pointers,

to & saved_stack with a fast block-copying operator such as Unix's memcpy, rather than
selectively pushing pointers onto the mark stack {see Algorithm 8.3 on page 191). Only
registers and global variables (of which it is assumed there are few) are pushed directly onto
the mark stack at the start of the marking phase. Large arrays may be handled similarly or
divided into a header and a body. Headers would be kept in a region of the heap managed
by incremental markisweep while their bodies would be kept in a separated region divided
into semi-spaces and compacted by copying. This arrangement also reduces fragmentation.
Entries from the saved stack are subsequently transferred to the marking stack k2 at a time
whenever it becomes'empty (in order to minimise the depth attained by the stack). The mark
phase terminates when both the mark and save stacks are empty.

Yuasa describes his algorithm as real-time, The only justification for this is that the time
complexity of the allocator is bounded by three constants. Diring the marking phase, up to k1
cells on the marking stack are processed and up to k2 entries may be moved from the saved

stack to the mark stack, at each allocatian. The sweep phase similarly sweeps up to k3 cetls ..

at each allocation. Each allocation step in Yuasa's algorithm is therefore bounded by k1, k2
and %3, provided that the user stack can be block-copied to saved_stack within this bound.
It is far from clear that this will be true in general although it may be for his implementation
of Lisp [Yuasa and Hagiya, 1985]. No empirical evidence is provided.

Yuasa also argues that there could not be a small upper bound on allocation time if the
allocator were to sweep the heap lazily at each allocation (see Chapter 4 where we discuss
sweeping techniques). Instead he uses a linked list of free cells. The free-list is not empty
during garbage collection — if it were, the mutator would starve. To distinguish cells on the
free-list from white (unmarked) cells in the heap, a fourth colour, offfwhite, is used. Off-white
is indicated by writing a distinguished poinier i a spare field of each free cell.

i Steele too takes care o specify how the program stack shouid be handled @m,o.Emo&EW 8.7

- _raced cnoe at a time. Entries on the stack are left until last since the stack is highty <oFEm..

* pushed cnto the program stack er the marking stack. The mutator must push new entries onto

on page 193). First objects reachable from the roots are marked — each root is pushed and

Again eniries are pushed and traced one at a time. Unfortunately further items may have:been

the marking stack if it pushes them onto the program stack after that stack has been marked
(see push in Algorithm 8.7 on page 193). Cells allocated by Create may also be pushed-onto
the marking stack by the mutator (see Algorithm 8.6 on page 194). In a ooﬂn;ﬁmuﬁ systerm,
the collector locks the mark stack while it examines it. If the stack is empty the mark phase is
complste; otherwise the callector releases the lock and continnes marking.) .
Termination is more expensive in Dijkstra’s algerithm. As usual, the mark phase is complete
when there are no grey cells left in the heap. Dijkstra determines this by mnEEmum. the-heap
for grey cells, restarting marking from any grey cell that it encounters. Thé marking phase
only terminates if it has completed 2 full tour of the heap inos._.. mesting any grey nntm.. The
complexity of Dijkstra’s algorithm is thus theoretically gnadratic B&E.. Em.ﬂ .H..no.uoﬁﬁouﬂ o
the size of the active data structure. Unfortunately it is only too easy to find realistic examples

with quadratic complexity.

—r1oot

direclion . ')
UENQB 8.6 Marking the list {1, 2,3, 4, 51 with Dijkstra’s algorithm. ,

Suppose a Tinked list is constructed in a functional style in an empty heap. The list will be
laid out in the heap in reverse order: the last element will be allocated at the _.oq.,_mmﬂ address
and the head of the list at the highest address (see Diagram 8.6). The marker will Emnwon.rﬁrn
head cors cell and grey its children. It will not Teach these grey cells again in order to continue

the traversal of the list until it has completed nearly a full tour of the heap. This unc.n_.wmméaw B
be repeated with every element in the spine of the list. . : o :

Merking could be improved by any of the techniques described in Chapter 4, provided that ;
they could be interieaved with mutator activity. A notable exception is the _.un_.&.orlmnrmﬂq.
Waite pointer-reversalmethod, described on page 82, which would render oﬁaﬁm Ewnnmmmu.v_m
to the mutator during the trace. Lamport, and Queinnec nw al. show Ewwaﬁﬁum.mun mi.m.mmﬁ_m
can be performed in parallel [Lamport, 1976; Queinnec ez al., 1989]. Cells in @p.oﬁmmn s
algorithm are given two colour fields. Atany point in the execution of the program, the sweep
phase of collection cycle n can be run concurrently with the Emﬁﬁbm.m.:mmm of cycle.n + 1
if each phase uses different colour fields. Thus odd-numbered ncﬁnononm._ﬂ_.mw Em..ﬂn. mﬁmn
colour field, and even-numbered ones the second. There is one subtlety, hawever. Dijkstra’s
algorithm marks the free-list as well as live data. Marking must preserve m._m ‘no Ewnwwifﬂ.m

198 : INCREMENTAT, ANI} CONCURRENT GARBAGE COLLECTION-

pointers’ invariant. When sweep phase n frees a cell whose colour field for that eycle is white,
it must shade the cell’s other colour field in order to preserve this invariant.

Lampert alse pipelines marking and sweeping phases and moreover permits multiple-
garbage collectors: Unlike Queinnec, markers and sweepers share a single colour field, This
is possible because the sweepers only free already identified garbage and the markers do not
mark garbage (garbage is not to be confused with cells on free-lists). However, a problem
arises kere: all cells must be white before a marking phase starts, but a sweeper would free
any white cells in the heap, appending them to a free-list. To overcome this problem, Lamport
repaints white cells to some new colour, say purple, and black cells te white (or grey) before: .
starting another pair of mark/scan phases. This colour change is done in a single instruction
by an ingenious reinterpretation of colour values by incrementing the value of a base colour
modulo 3: interested readers should consult [Lamport, 1976] for more details. :

Kung and Song improved Dijkstra’s algorithm by using an auxiliary data structure mon
marking and by not marking the free-list (see- Algorithm 8.9 on the facing page). Instead,
like: Yoasa, Kung and Song paint free cells a fourth colour, off-white, in the sweep phase:
To feduce the need for critical sections in a concurrent implementation, they used an output.
restricted deque rather than a stack for marking, with the mutator appending cells at one end
while the collector uses the other end. In terns of the tricolour abstraction, grey cells are those
in the queue regardless of their actual colour. Kung and Song also blacken some. cells that arg
conceptually grey to improve performance (see Algorithm 8.8).

temp = allocate(}
if phase == mark_phase

- coleur(R) = black .
Hmn,Enm. temp
shade (B) —
if white(P) or cmmlﬁwﬁrﬁwamv
colour({P) = grey

- gepush (P, Mutator-end of queue)
Update(a,C)=

*A = C
if phase == mark phases .
shade {C)

Algorithm 8.8 Kung and Song mutatordodé.”

Virtual memory'techniques

Software write-barriers impose an overhead on all pointer npdates performed by the mutator.
On, many systems, the overhead on the mutator can be removed with assistance from the

~ virtual memory. ,
S The Boehm-Demers—Shenker collector marks objects incrementally, but relies on”
o operating system dirty bits for synchronisation [Boehm et al., 1991] (see Q_Euﬁ_.. 9 where

=i MARK-SWEEP COLLECTORS ‘ e : 1199

T mark() =) i
) phase = mark phase ‘

. while gqueue # empty .) o
ST — ¥ = node at GC-end of gueue T
- colour (N} = black

gcpop (queue)) :
For M in children(N) , S

if not black{*M} : i
colour(*M) = black s

L ” gepush (*M, GC—end of! cueune) : :
phase = swesp_phase i . o

Algorithm 8.9 The WE._W and m%m marker.
|

we discuss algorithms for so-called conservatdve mmzummnwnoﬂnnmcuu. Tn ordér to termiate,
- the marking phase suspends all mutator threads and examines virtnal memory dirty ‘hits

- © . 1o discover which objects have been modified since the mark phase started. Marking

. recommences from roots and any marked objects on dirty pages — these are the grey objects
<. — and the dirty-bits are cleared. When the mark stack is empty, the collector: again atrempts
1o terminate. The set of dirty bits plays the same rble as the mutation log does mowwmmrnmzna
-« Garbage Collection (page 214 in this chapter), . - S

* Since this barrier relies only on dirty bits, it often involves no traps. It aonm involve some

extra overhead in the paging code, but this is minimal and is not executed unléss the program

granularity of the dirty-bit barrier is. very coarse. The Boehm-Demers—Shenker collector fails
the hard real-time test on two counts. Firstly, it must suspend mutator threads when it attempts
to terminate, and secondly, the cost of examining dirty bits and scanning pages may be.too
expensive. Nevertheless, for less demanding applications i in the Cedar envirgnment, Boehm
= reports that virtual memory support for incremental ao:anﬂon significantly improves pause
times [Boehm, 1995¢]. A further advantage of this scheme'is that it does not require compiler

The virtual memory system can also be used to support a:snapshot-at-the-beginning write-
barrier by-incrementally create the snapshot with noETon -write pages. This-technique has
also been used by Furusou et al. for a concurrent conservative collector designed to support

on-write-barrier is that it has probably the best pause-time characteristics, of the virtual
: memory synchronised algorithms. Furusou et al. use the Mach operating mwmﬁna s copy~on-
- write mechanism to take a virtual copy of the heap ‘cnmonm entering the mark: m:mmm. Mutator
7. threads are only suspended while the virtmal memeory Egnm are prepared for:copy-on-write.
The effect of the virtual snapshot is that the garbage oo:nn_non marks the old image of the heap
(using Yuasa’s algorithm 8.3 on pege 191), while the mutator threads run inthe currentimage.
The sweep phase then reclaims garbage in the cument image based on mérk information
held in the old image. No further synchronisation between mutator and nocnnﬁo_. E_..mm% is
o pecessary. “
The chief disadvantage of this mm_m_momn_p is that it is wma to avoid mnEmE\ noma:nq oEwnE

H

“ ~ pages. The main overhead intreduced is the page scanning by the garbage callectoriithe .

‘modifications to implement the write-barrier and so can be Emn to support aumﬂmnnymchmmam. .

object-oriented languages [Furusou et al, 1991]..The advantage of the virtual memory copy- .

200 INCREMENTAL AND CONCURRENT GARBAGE COLLECTION -

since agﬂa is anly abtained at the initial write to a page. Greying all objects referenced from’
the page is clearly unnecessarily conservative. Furusou et ¢l. alse found that their memory

manager gave very poor performance, with rates of allocation of the order of thousands of . -3

objects per second rather than the millions that object-oriented concwrrent languages require,
They ascribe this poor performance to a bottleneck in allocation: all mutater threads B.&nm.
requests for memeory to a single collector thread. They propose to remedy this by assigning
memory to mutators in page-sized chunks. While a mutator is allocating from a chunk, the
entire chunk is considered to be alive: these chunks are traced but not marked. Once the
chunk has been filled, its management is taken over by the memory manager which marks -
and sweeps the chunk at collection time. Since objects cannot be allocated into partially used
chunks after they have been placed in the care of the memory manager, this approach runs the-
risk of severe internal fragmentation. . . .

8.4 Concurrent Reference Counting

Reference counting is well-snited to incremental garbage collection, as it naturally interleaves woo
_mutator and collector operations. As e noted earlier, its chief drawbacks are its inability to.. . _ |
reclaim ayclic structures, its computational expense and its close coupling to the user program, -
However, reference counting is a less attractive proposition for concurrent environments, E
Updating a reference count must be af dtomic action in orderto avoid race conditions between
threads that might lead to the premature reclamation of shared objects. Atomicity requires
locks on all objects that might be shared between threads, and hence increases greatly the

already large cost of pointer assignment.

Heap

assignmgnt ——] RC Collector -

’ w todates

Transaction Queue

Diagram 8.7 The Modula-2+ coactuzent reference counting architectire. —

mﬁ@.& nnmnﬁnmem have suggested improving the performance of mutators by passing the
. cost of reference count manipulations to a garbage collector running in a separate thread. The
best known implementations of concurrent reference counting are the Cedar and Modula-

2+ collectors [Rovaer, 1985; DeTrevills, 1990a]. In Modula-2+ system, the mutators and ~ ~ [

the collector noBH,DcBnHm through a transaction quene (see Diagram 8.7). Mutators do not

" UFONCURRENT REFERENCE COUNTING ; . 201

- manjpulate reference counts but log all assignments in a Block of the transaction queue. {see
Algortthm 8.10). When the current block is full (typically, after 16,384 assignments), the
Jrutator notifies the collector and gets a fresh empty block. Note that a lock-is necessaty to
prevent simultaneous assignments to the same shared variable, as this would risk loggingout-
of-date values. The collector upcates reference counts in heap objects from the information

held in the transaction queue block, and frees objects whose reference count has dropped to.

Zere.

Update (&, €) =
'T.OCK mutex
insert (&, C, taq)

- —insert in transaction queue
if tg is Eull

S e . notify collector ttq) —send block to collector -
tg = get_next_block() : .
= = C W R

- Algorithm 810 Mutator code forshared reference assignment.

. -The cost of updates can be reduced dw distingnishing assignments to local variables, L.e.
ihose held in the stack or the registers of a thread, from those assignments to global variables
and heap data, The Modula-2+ cellector only reference-counts shared pointer-valued variables

(cf deferred reference counting in Chapter 2y, Tnfoftunately this complicates the collactor

since the reference counting invariant is no longer maintained. Instead, the reference count

_ held in an object is only a lower bound on the number of references to that object held by

+ -local and shared variables. !)

Whether the trué value of a reference count is zero br not can only be determined by

examining the local variables of each mutator Eme&-WHn fact, the Modula-2+ collector

. peeds only a weaker condition: whether a given pointer value appears in any thread’s state.

The collector’s code is shown in Algorithm 8.11 on the following page. When the current

tansaction queue block has been filled (or after about 40 kilobytes of storage have ‘been

ailocated), the mutator sends the blotk to the nocnnBH.WH:n block holds details of shared
réference assignments up to some time tg.) : : .

" The collector interrupts threads one at a timeto scan their state: To avoid scanning a thread

" inthé middle of an assignment, the collector must hold the mutex in order 10 stop the tliread.

-' Any ward in the thread’s state that might be areference to a word in the heap is collected
.. — for later use. Call the time by which all thread states have been scanned 1. The reference.

- " - - counts of the pairs. of variables held in the transaction block are adjusted, and any variable

whose reference count drops to zero is placed in a Zero-Count List (ZCL) before the block is

retirned o a pool of free blocks. , :
---An abject’s shared reference count can only rise from zero if its local count is non-zero at

that time. Conversely-an object’s local reference count ¢ah only tse from zero if its shared

| . countis non-zero. Thus if an object had a zero shared reference countat fg, and did not appear

in any thread state between #g and #, and does nat appear as the right-hand side of a transaction
queus record between g and £3, then both its shared andiits local reference ¢ounts were zero

. at#y. Ttcan be safely freed. - o —- e - . : i :
Finally, the ZCL must be processed. There are three. possibilities for an object in the.ZCL.

202 , INCREMENTAL AND CONCURRENT GARBAGE COLLECTION -

collector{) =
lcop forever
tg = walt_next block{)
foreach thread th
LOCK mutex
guspend (th} .
scan_thread(th}
. restart(th}
‘adjust_counts (tq)
free_block(tg)
adjust_shared_counts{)
‘process_ZCL({)

Algorithm 8.11 Colléctor cade for shared reference assignment.

Tfits shared reference count is no longer zero, it i§ removed from the ZCL. It it was foundina

thread’s state, it is left in the ZCL: it may be freed in a future collection. Otherwise the object
is removed from the list and recursively freed.

- - The Modula=2+collector-showed a numberof shortcomings Apart from the inability to
reclaim cyclic structires, the cost af assignment to shared pointer variables is high, taking
ten instructions rather thaz the single instruction required for local assignments. DeTreville
observed that this overhead sometimes led programmers to dvoid using reference variables
where they would otherwise be preferred. These concerns, and concerns over fragmentation,
working set size, locality and a tendency for the collector to fall behind the: mutator, led
DeTreville to experiment with other concurrent collectors. .

The collectors E,Ehmzna inciuded a concurrent mark-sweep based on Dijkstra'’s algorithm
with binary-buddy allocation, mark-sweep with the Appel-Ellis—T i pagewiseread-barrier, and
o mostly copying collector, again with the pagewise read-harrier (see Section 9.3 on page 241
where we &mnzmm,o,oumoﬂﬁmé capying collectors). However, all these collectors proved
unsatisfactory. As.none of the experimental collectors were generational, and Modula-2+
programs typicallyused very large heaps, all thrashed the Firefly warkstations. The collectors
were also vulnerable to programming idioms that disguised pointers from the- collector, and
the mostly, copying collector failed under programmer assumptions of object immobility. The
cost of initialisation and of trap handling in the virtual memory synchronised collectors was
alsa considered too high. :

Finally DeTreville resorted to a combined reference counting and maek-swesp collector.
Both collectors ran in their own threads, but the reference counter had precedence over the
tracing collector, and could suspend it while reference counting aperations wers performed.
The mark-sweep collector did not reclaim storage: it simply broke cycles by nulling
pointers. The cost of assignment was reduced to four instructions with the use of per-
thread transaction queues, although this placed the onus on the programmer not to perform
concurrent assignments to the same varizble. Processing of transaction blocks alse became
more complex as entries were no longer read in chronological order of assignment.

s

BAKER'S ALGORITHM W . 203
8.5 Baker’s Algorithm W

At the beginning of this chapter, we remarked that copying collectors present a more complex,
multiple-Teader, multiple-writer coherency problem than non-moving collectors. One selution
is to use a read-barrier to trap mutator accesses. If the trapped object is in Fromspace, it
is copied to Tospace and the address of the dopy is returned to the mutator. In this way the
mutator can cnly see Tospace objects: the grey wave-frontis made to advance justahead of the
mutator’s nose. Since the mutator can never see & white object, it can never install a reference
to a white cbject into a black one and hence disrupt the moﬁmoﬁo_..m traversal:(Cond.1). Two
related guestions arise. The first issue to Tesolve is whether to allow the mutator to see grey
nodes as well as black ones. The second issue is how much work should be done by the read-
barrier, For example; the least work that can be done is td evacuate a Fromspace object:into

-~ Tospace. In terms of the tricolour abstraction, the read-barrier colours a white object grey and -

returns the address of the grey copy to the mutator: Alternatively, 2 black-only bartier could
copy and scan the object (and possibly blacken other grey objects as well) c,mmoﬂ. returning
the address of the black copy. We shall examine two families of collector, one of which takes
the former approach and the other the latter. : : ,

“Tospace

Diagram 8.8- Baker's Tospace layout. scan is the nnxﬁwna:. to be scanned. The next cell to
be evacuated will be copied at B and the next new cell will be allocated at T.

The best-known incremental copying garbage collection algorithm is due: to Baker
1978]. This algorithm is so well known that standard copying collectors have, sometimes heern
crroneously referred to as Baker collectors. Baker modified Cheney's Emmazﬁp [Cheney,
1970] (see Chapter 6, page 118} to allow the Mutator to progress during a garbage no=a.onop
cycle. To do so, the Tospace region of the heap is aranged so. that the scavenger can compact
surviving data into'its bottom end at B while allocation is made from its fop end at T (see
Diagram 8.8). All new objects are thus allocated black, This arrangement has the advantage
that the collector does not need to scan new cells since the read-barrier ensures they cannot

have been initialised with references into Fromspace, The drawhack of this approach is that
it also means that no new cell can be reclaimed until the cycle after its death. Consequently
Baler’s read-harrier is more conservative than incremental-update write-barriers but Tess so
than snapshot algorithms. : ;

[Baker,

204 INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

—Flip phase

scan < B

‘ahort “Baven’t Einished scavenging”
£lip()

for root R

R = copy(R)

repeat k times while scan < B —scavenge a bit

for P in Children(scan)

*D = ¢opy (*P)

scan = scan + size{scan)
if B == .

abort *Heap full" - -
T =T -1n
return: T

read(T) =

T = copy{T)

return T

. »“—m,cammﬂb. 812 Baker's incremental copying algorithm.

e e ey - e e e e -

The algorithm: !
As usual for a copying collector, Baker’s collector starts by flipping Fromspace and Tospace.
A stop-and-copy collector would fip when the B and T pointers met (see Diagram m.Hm.u.. but
this is not the only policy that might be adopted. Flipping when the pointers meat, provided
that the collector has finished scavenging grey cells, minimises copying by allowing objects
as much time as possible to die, but maximises the amount of heap allocated and hence the
number of page faults incurred. Flipping as soon as a collection is complete, on the other
hand, compacts data as much as possible by using fewer pages and hence reduces the chance
of page faults. : s
As well as switching the roles of the semi-spaces, £1ip also checks that the new Tospace
is sufficiently large,.expanding it if necessary. The difference between Baker's and Cheney’s
allocator and collector is that collection is tuned to allocation in Baker’s atgorithm, with up to
k cells scanned at'each allocation to ensure that the mutator doss not starve. If variable-sized
cells Em..m.bonﬁmﬁ kn words should be traced when an object of n wards is allocated (ses the
discussion in the first section of this chapter). Copy I8 unchanged from Cheney’s algorithm in
Chapter 6. .)
The illusion that collection is complete is maintained by a read-barrier. The Homm.rﬂﬂmn
affects only read-access to objects read in (Algorithm 8.12) so only @Q.E.Q. load om_.mﬁ.m:oum
need to be modified to copy cells or follow forwarding addresses; write operations are
unaffected. This arrangement bas the advantage of allowing white objects (i.e. Fromspace
objects that have. not been copied) to die and their space to be. reclaimed within a mwu.mrw
collection cycle. Baker's read-barrieris a fine-grained barier, evacuating only a single object
ai a time. Tt only denies the mutator access to white cells — the mutator is permitted to read

Ly

BAKER’S ALGORITHM - - T 205
pointers to grey objects. Later we shall encounter read-barriers that copy more objects when
a pointer tead is trapped and that only allow the mutator to see black objects. ..
Eouinds on the latency of Baker’s algorithm ,

This simple implementation f Baker’s algorithm fails to provide real-time bounds in several
respects. First of all; the root set is scavenged atomically at flip time. It will'not be possible
to maintain a small upper bound on New if the size of Ew root set is large, for instance if it
includes a program stack. Baker tackles this by modifying New to scavenge a fixed number,
k', of stack cells at each allocation as well. At each flip, k! is recomputed in order to keep the
ratio k' /& equal to the ratie of stack locations to heap cells, Incremental scavenging of the
stack also complicates routines that access it. Firstly, stack pops may need to adjust the value
of the collector’s stack scanning pointer. Secondly, the read-barrier must be applied to values
picked up from the stack as well as those obtained from the heap. No special action is needed
for stack pushés, on the otherhand, since the read-barrier ensures that the object to be pushed
will be in Tospace. Baker suggests scanning the stack WoE top to bottom, but Brooks-(and
Steele) argue that less volatile stack locations should be s¢avenged before Emam volatile-ones.
[Brooks, 1984]. This tactic reduces the ¢hance that a pop might destroy the oply reference 1o
an abject that has just been copied — not only would the collector’s efforts have been wasted
but it would have moved garbage into Tospace. - i ' :

. The second problem facing Baker is that the cost.of evacuating an object depends on its
size. Flis solufion is to copy large objects Fazily. This requires that large objects contain an
additional link word in their header that will hold the forwarding address in the Fromspace
abject and a backward link to the original in the Tospace copy (see Diagram 8.9 on the next.
page). When the object is evacuated, space is reserved for the large object'in Tospace and
the forwarding and backward addresses are set. The rest of the Tospace copy can be: filled
incrementally, with the backward pointer set to nil on completion. The cost of this scheme,
apart from the extra header word, is that write-access to a field of the object reguires the field’s
address to be compared with scan. If the address is greater than scan then the old object is
used via the backward link; otherwise the new copy is used.

Limitations of mmrmm.m.w_m.c..#:_.: L

Baker’s collector is closely coupled to the mutator: This is extremely a.%w:w?n on stock
hardware. Collectors that use pure Baker schemes have therefore relied on hardware support

“to maintain the read-barrier. Wholey and Fahlman suggest that, without hardware support, the ™

cost of a microcoded Baker read-barrier is around 30 percent. [Wholey and Fahlman, 1984],
althotigh calcylations by Zorn suggest that the cost might be much lower fora well-designed
software read-barrier [Zorn, 1990Ca]. Garbage collection pauses may also be uiipredictable and
tightly clustered, causing jerky interactive response. N i o
The time to access an object depends on whether it is in Tospace or Fromspace: For
example, the cost of walking a tree depends on whether it has been traverséd before in the:
curent collection cycle. In this respect, the performance of a read-barrier is Jikely to be less
predictable-than-that of a write-barrier, since good real-time response requires not only small
bounds on pause times but also that the mutator obtains sufficient access to the processor. In

206 : INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

Fromspace Tospace

forwarding | +—————
address

Diagram 8.9 Large objects can be scanned lazily by using a backward link.

_other words, the mﬂ%&g of any-pedad of Eﬂa for which the collector runs must also be

bounded. Most variations on Baker’s algorithm have sought either to reduce the: cost of the
barrier or to make the length of pauses more predictable.

Yariations on mm,.xQ.

" ‘Brooks reduces the ¢ost of ihe read-barrier by removing the conditional test and branch that

determines whether an object needs to be forwarded [Brooks, 1984]. Instead all objects are
referred to via an indirection field in their header. If a cell has not been copied, its indirection
will refer to the Fromspace original (for exampls, B in Diagram 8.10 on the facing page). I it
has been copied, the indirection refers to the Tospace copy (forexample, A in Diagram 8.10 on
the next page). Consequently the mutator can see both Fromspace and Tospace objects, unlike
Baker’s scheme. To prevent the installation of black—white pointers, destructive oparations
such as Updat:e are required to forward their second argument before installing it.

Although cast in the light. of Baker, this is actually an incremental-updats write-barrier
rather than a read-barrier. Its cost is that Brooks's objects require additional space for
the forwarding pointer since a mutator field cannot be overwritten (otherwise it would be

_ impossible to distinguish forwarding addresses from other pointers to objects in Tospace).

For Lisp ¢ons cells this represents a 50 percent space overhead. There is also a time penalty
since access to objects is indirect, but this is. partially offset by the lower flequency of the
write-barrier compared to a read-barrier. The North and Reppy concumment garbage collector
also uses Brooks-style indirections but keeps them in a separate forwarding pointer space
[North and Reppy, 1987]. This gives lower space overheads since both cld and new versions
of an object share the same forwarding pointer. The drawback is that the forwarding poinier
space also needs garbage collecting.

A non-interpretive write-barrier for incremental copying collection has also been used
for the Spineless ‘Tagless G-machine, an abstract machine for lazy functional languages
[Peyton Jones, 1992]. Each closure in the STG-machine is associated, through an information

"= BAKER'S ALGORITEM . S o 207

Fromspace

AUmnmnmw

e —————

e dlirREHGR pointer ||

Diagram 8.10 Brooks’s mogm&ﬂ:m pointers,

~= - table of entry points; to-fixed code-sequences that evaluate {enter) or collect the closure (this

is similer to the: technique Thomas used, see Section 6.6). The While and Field collector
for the STG-machine modifies the. evaluation entry point in the information table of a grey
closure. [While and Ficld, 1992]. The evaluation code pointer is changed to point to code
that will cause the closure to scan itself when it is next entered, scavenging its components,
before entering its real evaluation code. When the scan is.complete, the evaluation enéry in
the information table is resét to its original value. The collector code in the information table
similarly restores the evalnation entry point for the case when the closure is scavenged before
it is entered by the mutator. - - = - - ;

The second drawback of Baker’s collector is’ that it conservatively allocates new objects
black, allowing young garbage to survive to the next collection cycle. Dawson attempts to
reduce the amount of this floating garbage by allocating in Fromspace rather than Tospace

. whenever possible, i.e. allocating white-rather than black [Dawson;-1992] (see Diagram:8.1L-- - -

on the fallowing page). The next garbage collection cycle is initiated as socn as the previous
one has finished rather than postponing the flip nntil Tospace is full. Like Brooks, Dawson's
barrier is a write-barrier. C. o e
Baker's algorithm has also been used, rather uneasily, as the ‘basis. mohwncE.mm.onnmmon.
garbage collection, for example in Concert MultiLisp [Halstead, 1984}, This architecture
uses a common memory addressable by all processars, but each processor i§ respansible for
the- management of its own Fromspace and Tospace regions. Apart from doubts about the
scalability of such an architecture, garbage collection of this configuration requires substantial

synchronisation. First, no processor can discard its region of Fromspace' until all other
processors have completed scanning their region of Tospace, since a grey, Tospace object
may hold a reference into their Fromspace. Secondly, evacuation of a Fromspace object into

Tospace requires synchronisation both to move the object and to write the mon.(w.ma_ﬁm address,

’

{
|
i

INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

Fromspace

Tospace

frez unoccuprad

ral \\ \\

UFWHME 8.11 ‘ H.Hm.mm E&cn for Dawsor’s collector:”

and also to update the grey pointer (since other mutators may {ry to read ir). Halstead's solution
is to include z lock bit in each pointer (for the update} and.in each object (for the move):

Dynamic regrouping .

Tn Section 6.6 of Chapter 6 we examined garbage collector strategies for improving the
mutator’s locality of reference,. an idea first snggested by White [White, 1980]. These
strategies employed different collector traversal orders to statically regroup chjects in the
heap. This reorganisation was called static because it was informed only by the now&o.mu n.:m
the active data at the moment of collection. Incremental collectors offer the opportunity, 1n
addition, to reorganise the data dynamically, based on the actual pattern of access to Em heap

by the mutator.

Tirst we consider a static regrouping strategy used by Baker and Dawson to improve: the .

spatial locality “of lists (see- Diagram 8:11). Cells svacuated asynchronously by the read-
harrier are copied to @ at the top of Tospace. Cells copied by the scavenger are moved to
A at the bottom of the heap to avoid interspersing them with objects copied by the write-
barrier. PreviousB is always cither equal to-E or points to the last cons cell whose cdr has
not besn copied. Wherever possible the collector prefers to continua linearising (from the
bottom) rather than scanning from the top. Whenever it can, the scanner copies the cdr of
previousB to B, If previcusE-does not have an uncopied cdr, the scanner picks a new
seed from which to restart linearising. The new seed will be found, in order-of preference, at
scanB, in a register or at scanT. Although this algorithm does not provide fully &amﬁ.mﬁmn
traversal, it does trace cdi-chainis contiguously. S . .
Courts’s HNSH,S& Garbage Collector for the Texas Instruments Explorer workstation
regronped objects dynamically [Courls, 1988; Explorer, 1987, 19871. Courts observed that the

" THE APPEL-ELLIS-LICOLLECTOR W ” 208

amount of data touched in a typical session was small, say 4 megabytes out of 30, and that it

would therefore be worth trying fo place this datz as n_omn together as possiblé, Te employed
combinations of tvwo strategies. The simplest strategy was to have the user run a-training
session to exercise the most frequently used system functions. Major nozmnmonm owﬁo,.:mm@
are scheduled during this session but the scavenger is inhibited. Objects are only evacuated
to Tospace by the read-barrier during this session, At the end of the training sessiom, "Tospace
will contain all the ohjects touched by the mutator, in the order that they were accessed by the
mutator, and only those objects. These are made static so that they will not be meved in future.
A full normal collection is executed to remove 21l garbage and the (rained image is saved to
disk for future use. Depending on the amount of real memory aveilable, Courts found that
hand training reduced paging time by between 30 and 50 percent.

This. band training has two limitations: it dees not dynamically regroup objects created
after a boot, and it does not reflect changes in activity mmﬂoﬁnm. Courts’s second strategy was
to prepend 2 mini-training session to the front of each collection. At each collection, an older
generation is flipped if it has exceeded a size threshold, 1f no clder generation is sufficiently
large, the youngest generation is flipped. The scavenger is inhibited dnring this collection until
an allocation threshold is-passed. This gives a chance for most of the data currently being used
by the mutator to be copied by the read-barrier. Eventually the scavenger is allowed to run to
completion.. ; . I :

This adaptive training stategy was even more successful, reducing paging time by 65 to
75 percent compared to standard generational garbage collection, Combining both strategies
reduced paging timle by 75 to RO percent. This Improvement was confirmed, albeit not so
dramatically, by Johnson and Llames who combined it with the static regrouping strategy
described in Chapter 6 [fohnson, 1991a; Llames, 1991]. | :

8.6 The Appel-Ellis-Li collector o

Without hardware ‘support Baker’s algorithm cannot provide adequate performance. The

algorithm is also inherently serial: the mutator stops whenever the collector does some work.

Appel, Eilis and Li produced an incremental collector thatis generally portable and sapports

concurrency without fine-grain object locking [Appel et al., 1988]. Furthermore their collector
does not require any modification o the compiler: Tt is based on Bakeér copying; buf uses
a pagewise black-anly read-barrier supported by the opérating system’s memory protection

hardware, The Appel—Ellis-Li read-barrier impases.a stricter constraint on the mutator than
does Baker’s: not onlyis the- mutator not altowed to see white objects, but it is only allowed to

see black ones (see Diagram 8.12 on the following page). Consequently the Appel-Ellis-Li

read-barrier is more conservative than Baker’s since the mutator cannot delete any poinier

stored in a grey object without springing the page trap. The handler will then blacken the grey

object and grey its sons. o i ;

At the start of each garbage collection cycle, objects reférenced from the root set are copied
into Tospace and the virtual memory protection:of the Tospace pages they océupy is sette ‘no
access’. Many operating systems today provide user level access to the: memary protection
mechanism.(for example, many versions. of Unix provide an mprotect system call) so this
technique is generally feasible. Whenever the mutatqr attempts to access an object on a grey

210 INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

Read
Um.&mﬁ

Tospace Tospace-

' Mutaior T

afterthe trap

befure the trap

'No access' page

Diagram 812 The Appel-Ellis-Li ‘black-only' read-barrier. Mutator access' to mhnw
Tospace objects is trapped by the read-barrier. B -

(protected) page, the page-access trap is triggered.and the fault is caught by the collector
(see Diagram 8.12). In a sequential implementation, the collector removes the protection
from the page that caused the fault and then scans all the objects on that page, evacuating
their Fromspace sons into Tospace pages which are then protected (see Algerithm 8.13 on
the facing page). Finally the collector restarts the mutator. To the mutator, the page appears
to have contained only Tospace pointers all along. It can never fetch white pointers into its
registers and so can never break the ‘No blaclk—-white pointers” invariant.
The garbage collector also scavenges grey pages in the background between handling page .

faults. In a sequential implementation, scanning is done by the allocator, just as in Baker's .

algorithm. In a concurrent implementation a separate background thread can be used to scan
Tospace pages. Like the read-barrier, the scanner scavenges complete pages at a time. As soon
as all Tospace pages have been scanned, the scanner_thread blocks until £1:ip signais that
more pages are waiting to be scanned. F11ip must ensure that scavenging is completed (there
are no mofe grey pages) before swapping semi-spaces and copying roots. In a concurrent
implementation it must also_halt all mutator threads before the fiip. Finally £1ip must restact
mutator threads and:the scanner thread.
~ The trap thread and the scanner thread must be able to access protected Tospace pages
without incurring access violation faults, if they are to operate concurrently with the mutator.
Most architectures provide two modes of execution, kernel mode and user mode, with trusted

i

-~ -lmprovements - S

THE APPEL-ELLIS-LI COLLECTOR :

211

scanPage (page} = | . |
if ‘unprotected (page) :)
) return
‘for object on page
‘scan(object)
‘unprotect{page)

trap_thread() =
forever
thread, page =
LOCK lock
scanPage {page}
ResumeThread{thread) |

Wai nm.oHHHmw@m,.memewQ. ()

———~gecanner_thread() =
forever
LOCK lock :
while B £ scan i
wait ()
scanPage (scanned)
scan = min{B, scan+PageSize)

New(n) = . :
LOCK lock W
unused = T - B : oo i
if unused < n or unused < threshold
, flip{} ,
T=T-n
‘return T

Algorithmn8.13 The multi-threaded Appel-Ellis-Li collector.
. ' : | :
components of the ,ommumnhm. system-running in kernel mode and other programs running
in user mode. User mods protections do not apply to processes running in kernel mode. If
the collector threads are run in kernel mode and only the user mode protection of a page is
changed, the collector can read and writs-pages not accessible to the user program.

The collector as presented so far suffers from a number of inefficiencies. The global lockisa
bottleneck in the concuTent system as both the allocator and the collector contend for it; One
solution is t0.use a-two-stage allocator which grabs the Hoow to allocate a chunk of memory.
Allocation can be made from within this chunk without holding the lock.

The flip latency can alsa be high if there are a large number of roots, for example if
the. user program contains many threads or a large stack — the authors inote that many
Modula-2+ programs contain hundreds of threads, Large stacks can be handled in the same
way 'as Tospace pages by selling their pages to be inaccessible. They witl then be scanned
incrementally as they are referenced by the mutator. Appel, Ellis and Li suggest that the

; . :

i

-+ ---- Generations - o o

212 INCREMENTAL AND CONCURRENT GARBAGE COLLECTION
registers of each thread also do not need to be scanned at the flip if £1ip changes the program
counter of each thread to the address of a subroutine that causes each thread to scan its own.
registers when it is. next run before jumping hack to the original value of its program ¢ounter
(¢f the While and Field collector described on page 207).

Large oEmnnm,

The algorithm, presented above suggests that objects larger than a virtual memory page cannot
be allocated. If the trap handler were only to scan 2 single page on each cceasion, it would
not be possible to handle objects that crossed pages. The Appel-Ellis-T: mozmﬂﬁ manages
pbjects that span more than one page with a crossing map array*. Crossing[p] is set to
be truc whenever an chiect crosses the boundary between pages -1 and p. Whenever the
collector catches a trap for page p, it must skip bhack to the first page n less than p that starts
with a new object, L.e. the first page for which crossing [n] is false. The-collector then scans
all pages from n until it finds a page m greater than p for which crossing(m] is false again.
To reduce the cost of scanning multiple pages, the allocator prefers- to avoid allocating
objects across pages wherever possible, The latency caused by copying largs arrays can also
_ be avoided by using back-pointers in the same way as Baker did. On a page trap the collector
can consult the crossing map to ‘find the back-pointer and then copy and scan only those
elemenis on the faulted page. Unlike Baker this ‘does not impose any additional overhead on

- e —grray indexing Gperations otherthan the usual cost of the-read-barrier.- -

The time to scan a pags in the Appel-Ellis-Ti algorithm includes the time to copy each
object referenced from that page. If the machine's page size is P bytes and each pointer
occupies 4 bytes, then & page ¢éuld refer to' Pf4 uncopied objects in the worst case. For
typical page sizes. of 4096 bytes, scanning a page could require copying up to 1024 o@._mns,.
each of which may vary in size from a few bytes to a megabyte or more. Bager copylng of
this many objects, each of which may be very small or very large, can iead to unpredictable
pauses. Johnson extends the Baker—Steele idea of lazy copying to reduce laiency yet ﬁ.E..E@H
by anly copying objects when they are scanned [Johnson, 1952]. Consequently the time to
scan a page depends on the number of headers on a page rather than on the total size o.m the.
objects referenced. Figures produced by Johnson suggest that lazy copyingcan be increasingly
offective as the 'size of objects increases, although iis overall cost is greater than that of the

eager version.

Sharma and Soffa describe a way of introducing generations to the'Appel-Ellis-Td algorithm
[Sharma and Soffa, 1991]. Theixr algorithm uses a page-marked remembered set and spawns
separate processes Lo scan the remembered set and each generation being collected. To avoid
deadlock, a complex system of three lock types are used in each generation. Results were
obizined through simulation with a configuration of very small pages (128 bytes), three
generations of equal size, and promotion on & copy-count of three. A gencration might be
involved in a collection if it was more than two-thirds full, and must be if it was more than

4 See also the discussion of card marking in Section 7.5 of Chapter 7.

- g REPLICATION COPYING COLLECTORS : i -

- i
i

213

three-quarters full, Their simulations showed that, when tompared against, Em. Appel-Ellis—-
Li collector, the parallel generational collector performed better for Hunomﬂmbpm with _wumma
.. amounts of longer-lived cells. For these programs, the parallel generational collector copied
up to 67 percent less data, and elapsed times were reduced by up to 12 percent; moﬂ.am@om&nm
rednctions in mutator overhead were also observed. i ” i

Performance W ;

Tt is difficult to compare the performance of Ea&ﬁ@&lmcwlﬁm collector sincs its efficiency
depends crucially on the efficiency of the operating system's virtual memery protection
mechanisms. Experiments by the authors on the DEC Firefly multi-pracessor, which has a
relatively slow page trap, suggest that the sequendal version was a third slower overall than
stop-and-copy. On the other hand, the concurrent version showed that aver 60 percent of
the collector’s execution could be overlapped with the mutator, giving an improvement in
performance of around & third. Zom's studies suggest that barriers that rely on the virtual
memory protection mechanism can never be competitive with those implemented in software
or with special purpose hardware [Zorn, 1990a]. His measurements suggest that the true cost
of a protection fault may be close to 10,000 cycles. One reason for this is that protection faults
are usuafly assumed to be irretrievable errors that can only lead to premature termination of
the program. Consequently, optimisation of these traps has never been considered important

... by operating system.desiguers.

However, the infiuence of the memory protection trap on overall performance depends on
how often: it is sprung. A memory protection fault can be raised at most once per page per
garhage collection cycle. The cost of a software barrier, on the other hand, is paid on évery
access. Thus for very low allocation rates, and even moderate read/write rates, the memory
protection barrier may offer better performance than the software barrier. Lisp, Scheme and
ML programs do not exhibit such behaviour. It is also unlikely from C allocation benchmarks.
Tt is clear that Appel-Ellis—Li iz not a real-time collectar. No system that relies on virtual
memory mechanisms cap provide the guarantees that hard real-time systems require. The
chief benefits of the Appel-Ellis—Li cpllector are its portability and its applicability to multi-
threaded systems.. . ;

8.7 Wmv_mmwﬁmOJ ﬂovﬁ:m nm._._..ww.now1m

Generationaf garbage collectors may be an acceptable substitute for incremental cotlectors if
the pause for their minor collection is sufficiently short and If major collections are sufficiently
infrequent and scheduled for points where their disruption will be least noticeable to the:user.
Nevertheless, Nettles and O°Toole report that, despite its. brief minor collection panse, two
to five second major collsction delays in SMEJNT are.aggravatingly familiar [Nettles and
0’ Toole, 1993]. We now consider three families of incremental or concurrentcotlector for ML
that aim to reduce garbage collection pause times in genéral, and the cost of synchronisation
i particular, , .

214 : INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

Netties’s replicating collectors

Nettles, 0" Toole and others have recently proposed a family of incremental copying collectors
that do not rely on expensive read-barriers [Nettles ef al., 1992]. Instead the muitator i3 allowed
to access the original Fromspace objects. When copying is complete, the collector replaces the
mutator’s roots with pointers to their Tospace replicas, discards Fromspace and the garbage
collection cycle is finished. This requires that copying be non-destructive, which is most
simply done by storing the forwarding address in an extra word invisible to the mutator
rather than overwriting one of the object’s fields. An alternative technique is to overwrite
the ohject’s header word with the forwarding address, but require the mutater to check for a
forwarding pointer whenever it needs the header (see Diagram 8.13). This improves space-
efficiency considerably in SML/NT where most objects are only three words long. The only
operations that incur a time penalty for the indirection are polymorphic equality and certiin
other type-specific operations [Netfles and ©'Toole, 1993].

Framspace Tospace
- " forwarding. | hisaday
gelHeads andress _ werd
e — —|--Mutator- Loead] e oo L e | e e]}
. original replica
wnils .
GG

Mutation Log

Diagram 8.13 Replicating garbage collection.

As we have seen, the mutator may Bo&@ the original object in Fromspace after it has:

been replicated. To preserve correctness, the collector must ensure that the same modification

is made to the Tospace replica before the mutator swilches to using Tospace objects. All
modifications must therefore be recorded by the mutator in a nustation log which can be used
subsequently by the collector to ensure that the replicas are consisteni. Whenever the collector
madifies a replica that has already been scanned, it must also re-scan the object to ensure that
any new child of the object is also copied. Collection is complete when there are no unscanned
objects left in Tospace and the mutation log is exhausted.

We observed earlier that reducing consistency requirements can allow the mutator to
proceed with less disruption. Replicating collection takes advantage of this by allowing
replicated ou._.ana to be in an inconsistent state provided that these inconsistencies are

recorded in the mutation log. The log can be maintained with a write-barrier rather than’

the more expensive read-barrier of the Baker and Appel-FEllis-Li algorithms. The cost of

REPLICATION COPYING COLLECTORS m 215

replication depends on the application in question and the language being nsed. For functional
languages, in which destructive writes are rars, the cost appears o be low enough to give good
performance. Replicating garbage collection is zlso well suited to generational ﬁnﬁbﬁnnw as.
the same write-barrier can be used io record inter-generational pointers and mutations, The
generational remembered sst can be used as the mutation log provided it logs all mutations
including non-pointer updates. ’ : , . ey
The Nettles and O’ Toole collectar is based on Appel’s generational collector for SML/NJT
[Appel, 1989b]. This collector already provides much of the support needed for replicating
garbage collection. For example,- it records all pointer writes unconditionally without
generation tests by copying the address of the overwritien object into a store-list. Replicating
garbage collection requires the barrier 1o be modified to record all wrifes. The simplest
implementation uses replicating garbage collection for major collections, only. After each
minor coflection, the collector also maﬂmom_u.m a limited amount of work on the alder generation.
If the minor collection exceeded a copy limit then the incremental collector simply processes
the store-list mutation log, which is then discarded. Otherwise the collector does some
scavenging as well.. b : :

The results obiained by Nettles and O Toole suggest bood parformance for ML programs.
The cost of reapplying mutaiions for the simple programs that they tested was less than
3 percent of total collection costs. The overall slowdown compared with stop-and-copy
collection was always less than 20 percent and was typically less than 10 percent if the
incremental techinique was restricted fo major noﬁmomo&m (rather than being used for minor
collections as well). . W ’

A firther-advantage of their replication garbage collector is that, since it .n.,mﬂiamm little low-
level synchronisation, it is well-suited for concurrent execution in a separatg thread. 0" Toole
and Netfles report results for their collector running on a.Silicén Graphics4D/340 with four
MIPS R3000 processors clocked at 33 MHz ._.,O_A.ocﬁ and Nettles, 1993].Pause times were
satisfactory-with most pauses lasting around five- milliseconds, The concurrent replication
collector was sucéessful compared with the: standard SML/NT collector in reducing elapsed.
time for major collectioas but not for minor-eollectioiis, which increased.

The Huelsbergen and Larus collector |

Huelsbergen - and: Larus_lake _asimilar mEu.Hcmnr to their concurrent: collectorfor ML.
[Huelsbergen and Larus, 1993]. Languages like ML distinguish mutable data from immutable

_data, and Huelsbergen and Larus use this opportunity to reduce the cost of accessing

tmmutable data, which are assumed io be overwhelmingly predominant — this is areasonable
assumption for finctional languages like ML. The muiator is allowed access to either
Fromspace or Tospace copies of immutable data without impediment, but' may only nse the
Tospace versions of mutable objects. A separate forwarding pointer i uséd fof each object
to provide non-destructive copying. If a mutable object has been copied, the mutator follows
the forwarding pointer 0 use the Tospace replica. If a Fromspace object is copied while the
mutator is attempting to access it, the read or write is repeated in the Sopy. This check requites
an extra access to mutable data items but Huelsbergen and Larus claim good performance:
pause times for-their test programs were never more-than 20 milliseconds on a Sequent

Symmetry. However, overall elapsed times were significantly greater than those obtaingd with

!

216 . INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

Appel's generational collector [Appel, 1980b] although the Huelsbergen and Larus collector
could probably be improved if'it were also 1o use:a. generational strategy.

The Doligez-Leroy—Gonthier collectors

A drawback of all the write-barrier schemes discussed earlier is that they place an overhead
on all mutator operations. Doligez and Lercy required a collector for Concurrent Cam] Light
— an implementation of ML with threads — that could cope with the prodigions memory
demands of ML, permitted multiple mutator threads, and yet limited synchronisation overhead
[Doligez and Leroy, 1993; Doligez and Gonthier; 1994]. To hardle Caml’s demands for
memory, a generational copying collector was believed to be necessary. But moving colisctors
‘were considered to make too heavy synchronisation demands, since pointers to relocated
objects must be updated. : ‘ ‘ .
ML encourages a functional style of m.no.wﬂgm.., most objects are immutable and the:
compifer distinguishes those that are not. The Doligez-Leroy takes advantage of this by
allocating mutable and immutable objects to different egions ofthe heap. The heap is divided
into two generations, Mutahle objects and thase referenced by global variables may only be
stored in the old generation. This generation is called the major heap and is shared by all

nutator threads (see Diagram 8.14 on the facing page). In addition, each thread contains 2
stack and a minor heap: the minor heaps comprise the young generation. Words in a thread
stack may-hold references into-the-stack"s-own minor heap-or into-the shared major: heap;.
words in 2 minor heap may also point to that minor heap or to the major heap. On the: other
hand, references to data stored within a thread may not be held by another thread, by a global
variable, nor by an object in the shared heap. - : o

Within a single thread, minor-collections use copying garbage collection- (see. Section 7.3}
with all survivors promoted en masse to the shared heap. Copying garbage collection: stops
only the thread involved, and requires no synchronisation with either other threads or the
shared heap since, neither the old generation nor any other thread may hald references to
this fhread’s data. A dedicated thread collects the shared heap concurrently with the mutator
threads (aod miner collections). The concurrent collector caunot move objects in the old
generation since mutator threads might hold references to them, so if uses mark-sweep
collection based upon Dijkstra’s algorithm, The free-listis coloured a fourth colour to improve
the efficiency of marking, but unlike Kung and Song, Doligez and Gonthier reject use of a
deque as it would lead'to too much synchronisation between their multiple mutators.

There are ne pointers from the old generation to young generaiion objects, If an atternpt i
made to update a maiable object (held in the shared heap) with a reférence to an object still
held in the young generation, then that young object and all its descendants are copied into. the
shared heap. This leaves two copies of the 'young’® object: one in the young generation and a
replica in the old generation. Since objects allocated in the young generation are immuizble,
consistency problems do not arise. The copying operation leaves a forwarding address behind
in the header word of the young generation replica to agsist the next minor collection.

Dicligez—Leroy copying collection places no -overhead on mutator operaticns that invelve
only data held within a thread. Updates to mutable objects’ will be arbitrarily expensive
if they require data to be copied, but require no synchronisation with other-threads other
than to reserve sufficient space in the shared generation. The more complex sithation for

L

~_wairs for-all mutators to advance from Asynch to Syncha: it can trace objects in the shared

young .
¢ generaticn

: old
;. generation;

. T Global variables _

" Diagram 8.14 The Doligez-Leroy architecture. : Cod
the concurrent collector is addressed by Deoligez and Gonthier [Doligez and Gonthier, ol
1594]. Their aim is to minimise the amount of synchronisation required between threads. :
In particular; _Em%m:\oﬁ the cost of the write-barrier for local variables: an update to a thread
register or a stack word shades neither the old nor the new value of the root, To achieve this,
major garbage collection cycles must be initiated through a complex protocol.

Mutators and collectors are each synchronised by phase variables, Threads can only modify
their own phase variable, but mutators are required. to cooperate with the collector by reading
its phase periodically. Initially, all threads are in the state Asynch. The collector starts by
advancing to the phase Synchy. This warns the mutators that the.collector is about to initiate
a new collection cycle. After all the mutators have moved to Syncha, the collector advances
toSyricha: Atthis poink, each-mutator must ensure that any pending-action; such as an-update, - -
completes before the mutator too advances t0 Synchs. The collector need not be idle while it

generation from the global variables. Once all threads are at Syncha, the collectar advances
to Asynch io signal to the mutator threads that they should-shade their local roots before
advancing to Asynch as well. - : o '
During the two Synch phases, the mutators adopt a very conservative; write-barrier: an.
update shades bath the cld and the new targets of the heap cell field being modified. This
double shading is necessary if mutator threads are to avoid incurring the overhead of theawrite-

barrier when they push or pop references to heap cells onto their stacks or intd theirregisters.

Qutside thesé two phases, Dijkstra’s write-barricr is nsed to shade the new reference.
Doligez mna Leroy report good performance from an earlier version of their collector

running on @ fourteen-processor Encore Multimax, under the Mach operating system.

218 S INCREMENTAL AND CONCURRENT GARBAGE COLLECTION BAKER'S TREADMILL COLLECTOR - P L S 218

Although Caml Light is only a bytecods interpreter, and runs four to eight times slower i o _ L
than the SML/NJ native-code compiler, most minor collections completed in less than 10 T , g
milliseconds. The major collection load was below 5 percent per mutator, which suggests that s
their architecture might scale to about 20 mutator threads. The key advantagé of the Doligez—
Leroy—Gonthier collector is that minor collections can be performed independently and
without synchronisation. However, their architectire does have a number of disadvantages.
First, mutsble data must be ailocated in the shared heap whether or not it is shared: this
is more expensive than allocation in 2 minor heap since locks are required on the free-list.
. Allocation of memory in large chunks to threads can reduce this overhead but not gliminate
" it entirely. Second, assignment of a pointer from an ald object to a young object requires that]
the transitive referential closure of the young object be copied into the shared heap: the cost b .
. of an update cannot be bounded. Finally, pauscs for minor collections can only be kept within .
an acceptable range by bounding the size of the minor heaps. For Caml Light, the minor heaps B o t/l/l/~ o
are only 32 kilobytes, o

off-white

8.8 Baker's Treadmill collector

Heap memory in a mﬂvmmm collected world falls into four sets: scanned objects, visited but

_unscanned objects, objects not yet visited an free space. The semi-space heap arrangement

Fromspace

of copying garbage collectors can be considered simply to b€ & methad of iniplémenting these
seis. However, it is not the only way in & ich they can be represented. Baker's Treadmill offers
anew organisation of these sets in a non-moving collector that retains some: of the advantages
and simplicity of copying collection [Baker, 1992]. Non-moving collectors offer several
advantages, especially for incremental collegtion. They are better suited to uncaoperative
environments (see' Chapter 9 where we discuss conservative garbage collection), consistency
requirements can be relaxed since the mutator does not need to be protected from changes
made by the collector, and they do not move objects (asynchronous movement may be .
particularly detrimental to gompiler optimisation [Chase, 1987; Chase, 1988]). T
* Baker organises all objects into a cyolic doubly-linked list called the treadmill {see = ’ : . : ,
Diagram 8.15 on the next page}. Within the list, each colour segment is arranged contiguously: ok _ : . ,
a fourth colour; off-white, is used for the free-list, The four segmenis are:defimited by four SR : Diagram 8.15 Baker's Treadmill,

puinters £ree, B, T and sean, just a8 in his incremental copying calléctor (ses page 203). - : . o —
Allocation is done by. simply advancing the. £ree pointer clockwise around the treadmill.
Marking is equally simple. After.a grey.cell has been scanned, the scan pointer is moved
anti-clockwise to paint the cell black. No manipulation of colour bits i§ necessary.

often causes fewer faults in virtual memory and/or caching environments (see Section 6.6 of

Chapter 6 where we discussed traversal ordefs for copying collectors). Snapping the white

If & scanned pointer refers to a black or grey cell, no action is taken, but if the cell is white o cell into the grey segment at the scan pointer gives a depth-first traversal without need for
then the cell must be unsnapped from the white segment of the treadmill and snapped into the T any auxiliary stack (although it can be argued that a stack is used and, worse, occupics space
grey segment. Snapping is & constant-time operation and offers the algorithm the potential to B permanently — it is the links of the treadmill). ” . :
meet real-time bounds. This is the only point at which colours need to be discriminated so] A garbage callection cycle is complete when therc are no grey cells left, i.e. when the scan
only one colour bit needs to be stored in each cell: whether or not the cell is white. Notice that b pointer meets the T pointer. When the free pointer meets the B pointer, it is time to flip.
this mechanism offers a choice of traversal strategies as the white cell can be added to sither L At this point there arc only two colours, black and white. The black segment is reinterpreted
end of the grey segment, If it is snapped in at the T pointer, traversal is breadsh-first, like a as white, the white segment as off-white, and the T and B pointers are exchanged. Thus the
traditional copying collector. However; several authors have observed that depth-first copying ~ ~f- < ——treadmill-advances its segments — hence the name. :

" The treadmill is expensive of spacé compared with other non-moving collectors beeause of
: *) o

220 . INCREMENTAL AND CONCURRENT GARBAGE COLLECTION
its links, although this is offset to a small extent as no further space is needed for a marking
stack. On the other hand, memery utilisation is no worse than copying collection since semi-
spaces are notused: the cost of the links is no more than that of the Tospace replicas of cons
cells and it is cheaper for larger objects. Allocation is more expensive than simply bumping a
pointer but is cheaper than manipulating a linked lis¢ or lazily scanning & bit map. Similarly,
resnapping an object into the grey segment is probably more expensive than copying & list
cell but less- expensive for large objects. On the other hand, the time to reclaim white cells is
constant: garbage cells donot have to be touched.

The main problem faced by the Treadmifl is how to handle heterogeneous objects. Baker
suggests several techniques that can be used to reduce the costs of manipulating objects of
different sizes (see, for example, [Brent, 1989; White, 1990; Baker er al.,. 1985]). Wilson
and Johnstone sotve this problem for their real-time garbage collector by rounding object”
sizes up to the nearest power of two and using separate weadmilis for each class size [Wilson
and Tohnstone, 1995}, Using multiple free-tists means that they will not all become empty
sirultaneously, so reclaimed cells must be explicitly recoloured, but this can be done lazily.
Tt also becomes necessary to distinguish white cells from. off-white ones.

Baker’s paper assumes that synehronisation between the mutator and the collector in the:
Treadmill fs through a read-barrier: Elowever, there is no reason why this should be so,
as the Treadmill abstracts away from details of synchronisation. The reason for the read-
harrier in Baker’s incremental copying collector: was to protect the mutator from changes

w ‘.‘Emmm..:«‘Eqdccwoﬂohlgzr@.HH&&EE.%%. not move-data.-On._the. contrary, there are .

sood Teasons why a write-barrier might be preferred: it offers beiter perfermance, is well
integrated with generational garbage callection, and may offer easier optimisation paths.
For these reasons treadinills based on incremental-update write-barriers have been used by
Wilson and Johnstone® for a collector for C++:[Wilson and Jobnstone, 1993], and based
on a snapshot-at-the-beginning barrier for Kaleida’s ScriptX cotlector [Hennessey, 1993], At
the time of writing, the performance of these collectors is disappointing (for example, only
somewhat better than deferred reference counting). However, this may be because the barriers
are implemented with smart pointers rather than any inefficiency inherent to the treadmill

algorithm.

8.9 Hardware support for real-time garbage
collection w .

No software-only garbage collection algorithm has yet demonstrated convincing hard real-
time performance. Read-bacrier techniques have been shown to be expensive and also to
lead to unpredictable performance. Virtual mewmory techniques show even greater variance
in the time to perform read or write operations, as each operation may spring a page trap.
Milsen suggests that. the best measured latency response may be 500 microseconds [Nilsen,
1995; Engelstad and-Vandendorpe, 1991]. The most promising software-only collectors are
probahly the Nettles and O’ Toote replicating collector and Baker’s Treadmill. The former has
shown measured worst-case times of 50 microsecands per atomic action but it is likely to

5 Wilson's collector can be configured to use either a Dijkstra or a Steele write-barrier [Wilson, 1995].

ISSUES : o : L : 221
perform less effectively in environments in which writes are more fre : i
SML [Nettles and O’ Toole, 1693]. Implementations of the Treadmill rwﬁw Mwmws n_wuhwnﬂw%w
satisfactory performance. ” S N S,
For these reasons Nilsen end Schmidt argue that mmm_ummm collectors for hard Hm&“_u.hﬁ
systems must have hardware support. General purpose noa,%ﬁnz. otherthan m.cmﬁnoﬂﬁmﬁﬂ.m
that rely on specialised architectures do ot have a history of commercial success. To reduce
the economic problems of building competitive special-purpose architectures, Nilsen' and
moEHm& isvlate the garbage collection hardware in a special memory module that interfaces:
to the central processor unit through a traditional memory bus: logically ‘it looks like a
bank of traditional éxpansion memory (see Diagram 8.16). The hope is that this will allow

the technology investment to be shared between different processar architectures, thereby

mtoﬁ.bw economies of scale to be made.

Cachea

Conventional ~ System | Bus

n...,m&mom-Oo__moﬁmau
Memory Module -

Diagram w.um Nilsen’s hardware mHoEHoEﬂm [Nilsen and Schmidt, Gowﬁ. Nmuac%nn@
with permission. : S

" Their collector is based on Baker's incremental copying collector, with back-pointers for

Tazy copying. The read-barrier is maintained by the memory module in parallel with dther
memory and communication activities. If an object being read by the CPU neieds to be copied

case. delay would be approximately one microsecond.

1~ — --~to Tospace, the madule stalls the processor until it is ready. Simulations suggest that the' worst

) 222 INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

:8.10 lssues to consider

_ The purpose of incremental or concurrent garbage collectors is to reduce garbage collection
pause times. For a collector that is incremental but not concurrent, this means trading an
" increase in ¢lapsed dme for a reduction in disruption to the user while garbage is collected..
" Concurrent collectors' may be able to reduce elapsed times as well, provided that they can
. collect garbage concurcently with the mutator and at no cost to the collector (for example,
thereis no substantial contention either for processor time or for the memory bus), and that the
. benefit of concurrent collection outweighs the cost of the inevitable synchronisation between
" the mutator and the collector. :
Three. straiegies of garbage collection can be used successfully to reduce pause times.
' Generational garbage collection (discussed in Chapter 7) cuis pause times (and often elapsed
times as well) by concentrating collection efforts on 2 small region of the heap. Provided
this region is small enough, pauses for garbage callection can be reduced sufficiently to be
unnoticeable for many purposes. However, if too many objects: live too long, the raie of
promotion from younger generations to older ones will become (00 high and those generations
will have to be collected as well. Generational garbage collection is not effective if the
frequency of major collections becomes large enough to be disruptive. This behaviour is not
uncommon, and generational garbage collection should nof be seen as a universal panacea.
The alternative is to garbage collect in parallel with the execution of the mutator program.
- Parallelism need not~imply true concurrency. instead -the- actions .of the . collector can
be performed in small steps interleaved with mutator actions. Such incremental garbage
collectors often require no special hardware, ner the use of any locks, However, parallel
garbage collectors, whether incremental or truly concurrent, do require synchronisation with
the mutator program. Such synchronisation does have a cost, The simplest and best known
form of incremental garbage collection is reference counting. Although reference-counting is
naturally incremental and simple to implement, it places a heavy overhead on pointer reads
and writes.

The costs of synchronisation can be reduced by relaxing the coherency of the collector’s
view of the heap, ie. by allowing some garbage to live longer than it might otherwise. In
general, coherence must be maintained by a barrier between the mutator and the heap. This
barrier may be either a read-barrier, trapping reads, or a write-barrier, trapping writes. The
choice of barrier will depend on the relative frequency of reads and writes, how often the
barrier is invoked (forexample, whether it is inveked on every read or just once per page per
collection cycle), and on the amount of work that the barrier has to do. Write-barriers are
usually vsed in conjunetion with mark-sweep collectors: their role is to notify the-marker of a
new location whence it should continue marking. The cost of write-barriers isless than that of

read-barmers. Read-barriers are used in conjunctien with copying collectors. They intercept

mutator reads to copy objects into Tospace. There is a trade-off between the frequency with
which a read-barrier traps mutator actions, and the amount of work that it must do. Baler's
collector traps every read to Fromspace, and evacuates the target of the read to Tospace. The
cast and the frequency of trapping reads is suchi that Biker's barrier is often considered to
require hardware support. Read-barviers that rely on support from the operating system (rap

mutator access just once per Tospace page: However, they do much more work at each step.

than Baker’s barrier since they evacuate every object in Fromspace for which a reference is
held in the Tospace'page. . :

R

. kit e

NOTES ” : ; 223

The cost of the barrieris not the enly criterion by which to judge FOHGEQ_.H.& and concurrent
collectors. Any such collectoris likely to defer collection of seme garbage until the nextcycle
The advantsge of deferring collection of some: garbage is-that each collection will termiriate

faster; the drawback is that more room mey be required in the heap, Collectors differ in their

degree of conservatism, i.e.-of how much floating garbage they leave. The most conservative
collectors use snapshot-at-the-beginning barriers to preserve every abject that was liveé when
the collection cycle started. Incremental update barriers are less conservative, but also differ
amongst themselves as to whether they move the marking wavefront forward or backward as
each mutatcr writs is trapped. Conservatism is alsa affected by the treatment of new cells: the
cheapest but-most conservative allocation strategy is to ensure that any cell allocated in this
cycle will be preserved until the next. i

Collector and mutator also need to be synchronised at the start and the end of each.cycle.

" At the start of a cycle, the mutator may need to be suspended so that the collector can be sure

that it has_visited all objects that are referents of roots. At the end of a cycle, the mutator may
need to be suspended while the collector checks that it is safe to terminate. ;

Many incremental or concurrent algorithms are nmmnﬂ_umm as nmE-ﬂBm.ﬂmoﬁnﬁn_ caveat
emptor., Different interpretations are put on these wards. For the hard real-time community, it
must be possible fo prove that atomic actions of an algorithm complete within a guaranteed
time, and these bounds must be smail, Clearly a collector that relied on support fram the
o.@mamnum system’s page protection mechanism could not meet this eriterion. For others, real-
time simply means that atomic actions can be completed within some reasonable period that
would not be noticed by the user. Almost all the algorithms covered in this chapter fall into
the latter; rather than the former, category. The one exception is Nilsen’s hardware garbage-
collected memeory modules. ' : ,

8.11 Notes

Donald Knuth credits Marvin Minsky for first msmmmwmum parallelism as a way to avoid
.mﬁmm_mummou of operations (Exercise 2.3.5-12, p. 422 in [Knuth, 1973]). Parallelism need not
imply concurrency. Garbage collection could oceur, for example, during keyboard input, as
long as it could be suspended on short notice to continue list processing on the input and later
be resumed without losing alt the previously expended effort. o

The first published architecture for on-the-fly garbage collection was CGuy Steele's

~ Multiprocessing Compactifying Garbage Collectior algorithm published. in [Steele,, 1975]

(see also [Steele, 1976]). Although widely referenced, Steele’s algorithm never became as
popular as Dijkstra's. The reason for that is, in our opinjen, the thorough presentation and
considerable Jevel of detail taken by Steele. His paper included deseriptions of compaction,
parameter passing mechanisms and synchroaisation (with hardware supported locks), as. well
as of mutator—collector garbage collection. The mass of detail presented by Steele contributed
to make understanding his ideas difficult. ” :

ﬂmmmwwuanum% Fdsgar Dijkstra proposed a’similar scheme in some m%ﬁczmrmnm notes
[Dijkstra, 1975], later published in [Dijkstra et al., 1976]. Dijkstra and his colleagues tackled

' this problem “as one of the more challenging — and hopefully instructive — problems’

in parallel programming. Their architecture aftracted considerable interest in the computer

t
i
H
|
H

. .mmh : INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

science community. It is more subtle than may be immediately apparent. In particular, {ine-
grained coneurrent implementations have many raps for the unwary.

For exampls, it might seem counter-intuitive to allocate a cell or copy 4 pointer befors
shading the farget. Certainly i temporarily breaks the ‘a0 black-white poiners’ invariant.
However, Mike Woodger and N, Stenning showed that reversing the order of these operations
would cause a bug to appear in a fine-grained concurrent implementation. In describing his
proof of the &moHEEu, David Gries reported that he had “seen five purported solutions ta this
problem, either in print or ready to be submitted for publication’ [Gries, 1977]. A comect
version of the algorithin appeared in [Dijkstra et al., 1978]. S. Ramesh and 8.L. Mehndiratta
formalised the proof of jermination and absence of live-lock [Ramesh and Mehndiratia, 1983}
by using Susan Owicki’s and Leslie Lamport's proof procedure [Owicki-and Lamport, 1982].
..Other proofs can be mon,ua in _Hﬂmu.nmm. 1678; Miiller, 1976]. Mordechai Ben-Ari considered

the on-the-fly collector to be one of the most difficuli concurrent programs ever studied. He
presented several parallel mark-scan algorithms based on Dijkstra’s algorithm but with much
_ simpler proofs of nonnanMm than those presented by Xung and Song, Gries, and Dijksira el
al. [Ben-Ari, 1982; Ben-Ari, 1984]. Ben-Ari’s algorithms used only two colours but required
. an extra pass by the marker to check -that fhe number of biack cells had not changed. Gries
. .EmPnnm&ﬁ‘mHmuEum,.monn uppublished version of the on-the-fly algorithm which also used
" only two colours. An indication of the complexify of these programs is that Ben-Ari believed
incorrectly that his version was imsune to the Woodger scenario [van de Snepscheut, 1987;

7T Pixley, 1988 Russinotf, 1994]. [Doligez and-Gonthier; 1994] provide-yet another proof of .

correctness, this time based on Leslie Lamport’s Temporal Logic of Actions [T.amport, 1991].

H.T. Kung and S.W. Song developed a more efficient version of Dijkstra's algorithm, They
used four colours to avoid having to trace the free-list, and a marking queus io reduce-the-cost
of marking [Kung and Song, 1977). Lamport generalised the architecture for nsing muitiple
processes [Lamport, 19761 and Christian Queinnec et al. showed how the sweep phase could
execute concurenily with the marking phase [Queinnec e? al., 19891, Dijkstra’s algorithm has
been used more recently for reclaiming global datain an implementation of ML using multiple
threads [Doligez and Leroy, 1993]. It was also implemented in hardware and software in the
Intel APX-432 microprocessor and iMAX operating system [Pollack er al., 1982].

The first mnmwmwo?mvﬁrm&nwg:m sarbage collection algorithm using virtual memory
to create the saapshot with copy-on-write pages was for a concurrent collector [Abraham
and Patel, 1987]. Taichi Yuasa also used a snapshot write-barrier for his- collector for a
sequential implementation of Kyoto Common Lisp [Yuasa, 1050}, Malcolm Wallace and

' Colin Runciman combined Yuasa’s algorithm with Queinnes's to provide a collector for a

lazy functional language with sufficiently low pause times to manage a real-time application”

[Wallace and Runciman, 1993].

The first implementation of concurrent reference counting was built by Paul Rovner for
the Xerox PARC Cedar implementation [Rovaer, 1985]. The initial coflector by Rovner and
Butler Lampson for DEC Systems Research Center Modula-2+ was based on their experience
with the Cedar sysiem. John DeTreville describes the Modula-2-+ coltector, and experiments
to improve it, in detail in [DeTreville, 1990a]. Other very similar architectures have beén
proposed by K. Kakuta, F. Nakamura and S. Tida [Kakuta et al., 1986] and Rafael Lins [Lins,
1991]; Lins’s collector can reclaim cyclic data structures and he has also wﬁmnanm his scheme

to a multiple mutator, multiple collector architecture [Lins, 1992b]. Neither architecture has.’

been implemented.

NOTES .
225

|
I
i
i 1

mn.E Baker showed how a read-barrier could be mwna to provide a serial incremental
moE.Em collector [Baker, 1978]. Collectors based at least partly on his algorithm were used
in several Lisp machines that could provide hardware support for the Hnwm.._uﬁiﬂ, such as
the MIT Lisp machine [Bawden et al,, 1977, the Symbolics 3600 [Moon, 1084], and thé
Texas Bxplorer [Explorer, 1987, 1987] and for collectors such as Henry anmﬂumn,m..mha Carl
Hewitt’s original generational garbage collector [Lieberman and Hewitt, mewu. Collectors
cast in the light of Baker, but which actually use increfnental-update write-barriers, have also
been proposed by [Brocks, 1984; Dawson, 1992; While and Field, 1992]. Baker's algorithm
has also been used for mulii-processors. Robert Halstead’s Multilisp used fine-grain locking
with lock bits on each pointer to handle cumwmbm and in each object for copy ﬁm&wﬁammu
1984]. S.C. North and Johs Reppy modified Brook’s collector ta share forwarding pointers
between Fromspace and Tospace objects for their concurrent, functional Pegasus Meta-
Language [North and Reppy, 1987}, Eelvin Nilsen and William Schmidt describe hardwars
implementations of Baker’s algorithmin & series of papers [Nilsen and Schmidt, 1990a; Nilsen
and Schmids, 1990b; Nilsen and Schmidt, 1992a; Nilsen and Schmidt, 1992b; Nilsen, 1894a; .
Nilsen and Schamidt, 1994; Nilsen, 1994b; Nilsen, 1995; Nilsen and Gao, 1995].

Andrew Appel, John Eliis and Kai Li used virtual memory protection mechanisms to
provide a pagewise black-only read-barrier [Appel et al., 1988]. Their tbarrier has two
advantages: it supports both sequential and concurrent garbage collection, and the collectar
can be implemented without modification to the compiler. The Appel-Ellis-Li collector has
been used as'the basis for several coneurrent generational collectors, mast notably Modula-3
[Detlefs, 1990; Yip, 1991; Sharma and Soffa, 1991; Detlefs, 1992]. Ralph Johnson showed
how lazy copying techniques could also be applied to the Appel-Ellis-Li collector {Tohnson,
1992]. Ravi Sharma and Mary Lou 3offa, and Niklas Réjemo used the Appel-Ellis-Li
algorithm as the basis for parallel generational collectors [Sharma and Soffa, 1991; Rijemo,
1992]. Réjemo observed a reduction in garhage collection time of almost 20 percentin the
< v, >-machine, a parallel graph reducer for shared memory architectures.

However, John DeTreville found virteal memory technigues inadequate For multi-process
garbage collection [DeTreville, 1990a; DeTreville, 1990b]. Virtual memory techniques can
M_omo_.cm ann_ to provide write-barriers for non-moving incremental collsction [Boehm et al.,

S1]. ' ; W ,

Baker reviewed the organisation of his EnamEmuE copying collector:to create a non-
moving collector, the Treadmill [Baker, 1952]. As well as Baker’s Lisp system built in
Ada, the Treadmill has also been used for real-time garbage collection for C++ [Wilson and
Tohnstone, 1993], and for the Objects in C system in %Eo: RKaleida’s ScriptX multi-media

scripting language is implemented [Hennessey, 1993]. - ;

Baker’s incremental copying algorithm ensures that the mutator sees only objects in
Tospace, evacuating them from Fromspace if necessary. This can cause unpredictable delays,
for example if traversing a list required each element to be copied, Replicating garbage
collection offers. incremental copying without nuﬁnm&.nﬁmgn pauses [Nettles ef al., 1992;
Nettles and O Toole, 1993]. The mutator uses Fromspace objects but a write-barrier records
any modifications made to copied objects. The modifications must then be re-applied to the
Tospace replicas by the collector. Scott Nettles, James O'Tocle ef al. based their collector on
Appel’s generational callector for SML/NT [Appel, 1980b]. The collector has been extended
to provide concument collection [6’ Toole and Nettles, 1993] and collection of persistent heaps
[MNettles et al., 1993; O’ Toole and Nettles, 19931, - : u,

T INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

Phil Wadler, and Tim Hickey and Jacques Cohen analysed the performance of Dijkstra-style e o
algorithms, Wadler showed that, for time-sharing rather than EE&..mEommmom systems, mmo_u. N ! -
algorithms require a greater percentags of processor time than classical sequential collection o , o N
does [Wadler, 1976]; Hickey and Cohen showed ithat a. multi-processor EﬁmﬁoTno:moﬁ.oﬂ ” ; !
system couid offer np mora than a 50 percent performance improvement on the. .mwe.ﬁuc&
one [Hickey and Cohen, 1984]. . : . . - | | E

TFinally, analysis of the effectivencss of different implementations of read NE.@ eﬁuﬁ-.omaﬂonm T] “
can be foundin [Zorn, 1990a]. Zorn argues that carefully crafted software barriers can mmfmﬁ :]
adequate performance but that virtual memory techniques are unlikely to prove competitive.

Om.&mmm.no__mnm_o: for C

: Automatic memory management has been associated with declarative muﬁmﬁum processing
= languages since the early days of those implementations. The. noEEm%Emm of the data
structures created, and the extent of their lifetimes, mean: s that such: objects cannotbe allocated
statically orunder a stack discipline; garbage ooﬁammon,w essential, Many, but not all, object-
ariented and object-based languages also provide mﬁﬁBmﬂo memory management — of
these, Smalltalk, Eiffel, Modula-3 and Java are probably the best known. The philosophy
. S of encapsulation of objec(s seems to many programmers to demand garbage collection. The
- . b renewed interest in automatic storage reclamaticn outside its traditional home in declarative
programming has led researchess to examine whether garbage collection can be a viable
technique for imperstive languages like C and jts object-oriented descendants such as C++. A
witness to this renswed interest is the volume of debate an garhage collection in several Usenet
news groups. A mwooua. reason for this interest is the growing use of C as‘a target language
for other compilers. Examples of this approach F&:nw Scheme [Bartlett, 1989b]; Modula-
o 3 [Cardelli &t al., 1988]; ML _”Q._mEmEM.. 1992; Cridlig, 1992]; Common Lisp [Schelter and
Ballantyne, 1988]; and Haskell [Peyton J onesi19923. | :
o Languages like'C present a considerable chailenge to the garbage collector implementer. To
be successful and accepfed in this environment, the garbage collector must meet demanding
R T criteria. Any systém must ensure that programs pay for garbage collection only if and when
== theyuse it-Even-with an efficient automatic management sysiem, many € programs would: -
probably never use it and, of those pro grams that might take advantage of it, the amount of ’
time spent handling dynamic memory is likely to be small, as the memory Eonmnoﬁ pattern of P ,
a typical C program is very different from that of a program wiitten in a language traditionally . ,

associated with garbage collection. b
Coexistence with the underlying operating system and existing program libraries is
essential for- ay- practical system. It would be:.quite unreasonable to expect librariés to-be
rewritten, of even recompiled, just to support garbage collection. This means that the garbage
. _ collector must suppart standard data representations. Distinguishing pointer from non-pointer
=~ words by adding bits tothe word; cormmon inmany Emm,. implementations, must be preciuded.

*

i - __ T

228 L o GARBAGE COLLECTION FOR C

“Boxing’ data with 4 header word is equally unacceptable. As well as being non-standard, such

conventions are likely to slow down operations on integers. The same arguments apply even
more strongly to foating point data. .

An antomatic memory management system for C must, at least in the first place, cooperate:
with conventional compilers as it is unlikely that vendors would be prepared to modify their
compilers to maintain invariants required by garbage collection. Any automatic memory
management system must be prepared fo operate without any sooperation from the compiler
or its run-time system, at least until the benefits of garbage collection receive wider
acceptance. In particular the garbage collector will have little cr no information on:

e where roots are to be found;
e stack frame layontor register conventions;
« which words are'pointers and which are not.

Equally the compiler will have no understanding of the garbage collecior’s activities. It is
important that the: garbage collector does not change the value: of any word. unless it can be
sure that it is safe to o so. This means that, in general, objects cannat be freely moved,
thereby ruling out standard copying or moving collectors {though we shall see later how
this restriction can be ezsed). Optimising compilers can also produce particular difficulties
for garbage colleétion as current language-standards make no-requirement that notions of
reachability of accessible data structures, required by garbags collection, are preserved.

91 A nwx0103< of ambiguous roots collection

The garbage collectors examined so far in this book have been type accurate; that is, the
garbage collector can determine unambiguously the layout of any object in registers, the staclk,
the heap or any other memory area. At the very least, the collector can distinguish pointer
from non-pointer data. Such systems usually rely on intimate knowledge of and cooperation
with the compiler. The alternative is for programmers to provide their own domain-specific
automatic memory managers. For example, reference counting could be vsed to manage the
heap but this would be slow, replacing register to register operations with several memory
loads and stores and a conditional branch.

So-called conservative callectors receive no help at all from the compiler, but must
assume that every word is a potential pointer unless ji can be proved otherwise. Conversely,
conservative collectors must also assume that potential pointers may not be pointers after all.

* This tisk of misidentification means that the collector may not alter the valueof any user

program data. Even if the collector were able to guarantee that a word was a pointer, it stifl
could not move the referent object in case there were other reforences to it that could not be
unambiguously recognised as pointers. :

Tn between these two extremes lie colloctors that are partially accurate and partially
conservative, Again, these collectors receive no assistance from the compiler and in particular
have no knowledge of the stack layout or of register conventions. On the other hand, these
collectors do assume knowledge of the format of collectible data structures in. the heap. This
requires the programmer (or the compiler using C as a target language) to observe certain
conventions for heap allocated data. The user may be asked to tag data, to provide pointer

— Algorithm 9.1

TAXONOMY . - . _ ! 229

1

identification routines, or to place data of Gifferent types in different areas ofithe heap.

The term conservative is somewhat of a misnomer since even type accurate collectors may
identify only a conservative estimate of the garbage present in the heap. Collectors mho.maz_m
any data that is reachable from the root set by following pointers. However, some of this
apparently live data may not be-used by the program again. There are two common reasons
for this. First of all, registers or the stack may contain obsolete references:simply because
it is more efficient not to axecute additional code to destroy them. Secondly, the run-time
Hmwnmm.mn_,.maop of environments (identifier bindings), for example stack frames, may retain
references afier the point at which they are last used. Consider the definition'of £ in thecode
fragment shown in Algorithm 9.1, where the expressions E; and & contain no references to
a. An Impiementation may retain a reference to @ in £'s environment until the computation of
the-if-statement is complete. A compiler may produce the,stack layout shown in Diagram 5.1,

- forexample,) ’ - S B -)

i i

let
- f = let
a= ... : W
in o :
if ... a ... then' E else Es
in B
” i
£’s environment may retain. a until execution of the nau&ﬁou&. state~

ment is complete.

Waork space o
compulg £

Work spaca to
compute £;

Diagram 9.1 Evalvation of £ for Algorithm 5.1.
Tt is clearfrom the program text thata will not be used again after the conditional expression
of the if-statement is evaluated, but the garbage collector cannot determine this. 2 is reachable
from the current activation record and so it will be preserved (unnecessarily) by any garbage
collection that takes place during the evaluation of either Ej. ' e
Some collectors take more care o avoid tracing from locations that aré either obsclete or

230 : GARBAGE COLLECTIONFCOR'C

no longer used E\ the program text. The SMI/NJ compiler emits a register mask at each

* safe pointin the program at which a garbage collection might take place, These masks specify

exactly which registers contain pointers, thus preventing the collector retaining data reachable
from previoasly used, dead registers [Appel, 1692, page 149]. Thomas's LML compiler avoids.
the interpretive overhead of masks by {ailoring the collector for each program. The garbage
collector for his closure redueer then knows precisely which slots in each closure are used by
each function (see page 133 of Chapter 6). N

The most appropriate name for the style of garbage collection deseribed in this chapter
is ambiguous roots collection. However, since the term conservative is widely used, we
shall adopt it to describe collectors that operate in uncooperative environments devoid of
assistance from compilers. In this chapter, we concentrate on tWo such collectors. The first is
the conservative collector developed largely by Boehm, Demers and Weiser at Xerox PARC,
and widely used both at PARC and elsewhere. "This is 2 non-moving collector based on mark
and deferred sweep, suitzble for use with C and C+. Since its inception it has undergone
considerable development and now supports incremental and generational collection. The
collector is mature and runs under various flavours of Unix, OS/2, Macintosh, Windows93,
WindowsNT, win32s and other operating systems (but noi directly under MS-DGS), and on
a wide range of hardware. The second collactor is the Mosily Copying Garbage Collector

“devélopsd by Bartlett at Digital's Western Research Laboratory. While not as developed as

the Boehm—Demers—Weiser collector, it can aléo'be nsed with C and C++, and is the basis for
several other collectors including the SRC Moedula-3 system. As well as examining how these
collectors operate, we also teview studies comparing the efficiency of conservative garbage
collection with that of different implementations of explicit memory managementroutines.

il

9.2 Conservative garbage collection

The Boshm—Demers—Weiser collector is a fully conservative collector that places no reliance
on cooperation from the compiler [Boehm and Weiser, 1988; Boghm, 1993]. It does not
require the compiler to emit tables fAppel, 198%a; Goldberg, 1991; Thomas, 1993], mor
to tag data, nor does it use run-time data structures to record the locations of painters
[Edelson, 1990]. Values held in data structures used by the user program and its run-time
systern, inciuding registers and stack frames, may be scanned for potential pointers but are

never altered. These requirements constrain the collector to be a non-moving one, thus the _

collestor is based on mark-sweep. As well as “stop and marl’, the collector canbe used inan

incremental/zenerational mode, and is it intended to be safe for use with threads. It can also
be used as a leak detector for C programs that manage the heap explicitly. In this case, freed
data is marked but not deallocated. The collector notices any unreachable objects that have
not been freed, and the tool indicates the site of allocation of these leaked objects.

The collectar is efficient, usually imposing only a.small penalty in overall execution
time compared with explicit memory management, and may even provide a gain depending
on the style of programming used. The interface to the garbage collected heap is throagh
Ge_mallec and eo_realloc replacements for the corresponding C routines; objects can
also be explicitly fieed by Gc_free if performance i critical. Further hooks to improve

B

CONSERVATIVE GARBAGE COLLECTION W : -1

performance are also available to client programs. The collector is based on mark-and-
deferred-sweep, with separate bitmaps for marking (see Chapter 4), and uses.segregated free-
lists for different sized objects. The marking phase marks from roots in registers, on the stack.
and in static areas, of which there may be more than one. The markeruses a Tesumption stack
and can restart with.a larger one if it should overfiow.

Allocation .W

' : I

A programising the garbage collector can be thought of mm using two logically distinct heaps,
one maintained by the garbage collector and its allocator; the other maintained by explicit
calls to the standard malloc/Eree routines. Programmers can use both heaps side by side
without fear of interference, with the proviso that the staridard heap is not subject to garbage
collection and objects within it are deemed not to contain any pointers into the collected heap.
Pointers ffom the collected heap to the standard heap are also usually not followed. This means
that the collector can be used. alongside code from standard libraries without problems. For
convenience, whenever we refer to the heap we shall mean the collected beap {unless specified
otherwise. - : ; :

The collectar uses the two-level allocator described in Section 4.5 of Chapter 4. The heap is
made up of blocks. On most but not all Unix platforms, these blocks are usually four kilobytes
and each starts on a fonr-kilobyte boundary. Smaller block sizes gerierally resuli in less space
overhead for small applications, but incur added time overhead. Adjacent empty blocks may
be merged, depending on the setting of 2 compiler Aag. Each block contains objects of a
single size (though possibly of different types), and separate free-lists are maintained for each
common object size. Blocks are obtained from the aperating system by the standard allocator
(for example, malloc). Bach block has a separate block wﬁmamw held on a linked list, ordered
by block address. The heap can be expanded st any dme by requesting further blocks and
typically this is done when a garbage collection has failed to recover sufficient free space.

Large and small objects are handled differently.. O&nnﬁ larger than haif a block are
allocated to their awn churk of hlocks. The allocator examines blocks oh the heap-block
free-list using essentially = first-fit strategy, though some care is taken to avoid splitting large
blocks unnecessarily, If no free chunk of suificient size is available, the allocator either invokes
the garbage collector or expands the heap, depending on the amount of allocation done..

Small objects are allocated by popping the first member of the free-list for that size of
ohject — each free-list is a linked list of slots'in heap blocks. If this free-list is empty, the
sweep phase is esumed in an attempt to refill it. The first biock is removed from the queue of

- eclaimable blocks for that object size, swept dnd any unréachable objécts ‘are added to this

free-list. This process continues until this free-list is no longer empty. If no space is reclaimed
by the sweep, the allocator invokes a garbage collection provided sufficient allocation has
oceurred, If the collection is also unsuccessful, the heap can be expanded by obtaining a new
block from the. lower-level allocator: | . .

Root and .—uom:n,m_. finding

___ Conservative garbage collectors immediately face two particular difficulties. The first problem

is to ideatify thé foot Set bf the Compiitation, afid the second is to"determine whether a given

233 o GARBAGE COLEECTIONFORC

garbaga[DISCARD_WO I_umw = HBLKSIZE
{rommally zero) alignaed
hb_bady[BODY_SZ] § WORDSZ
N afigned

object &

object 1

hb_sz| .
Enam% pbject 2.
Y
anjectn-1
chject i

UmwmnmE, 9.2 Block structure, B omElUmEmamlﬁommoH collector, version 4.2.

word is a pointer. Roots can be found in registers, in the stack and in stalic areas. The problem
is ta find these areas-and it is here that machine-specific dependencies lie.- : -
Marking from registers requires assembly code, but the structure of this code is not difficult.
For many architeciures it consists of pushing the content of a register onto the stack and then-
calling & C routine tc mark from the top of the stack. This is repeated for each register that
might contain a'pointer value, On.other architectures all the registers can be flushed onto the
stack. One way to do this is to use setjmp and then mark from the jmp_buf in which the
registers have béen saved; it may be necessary to clear this buffer before the registers are saved
to remove misléading entries. .
The next problem is to discoverthe bottom of the stack, and to determine in which direction
it grows. This can be done either by using explicit knowledge of the run-time system.or by
using heuristics, such as taking the address of a local variable at the start of main. The top-
of the stack can be found in a similar maoner. Finally, the extent of static areas must be’

determined. The Boehm-Demers—Weiser collector is able to handle dynamic link libraries on °

some systems, in. which case the libraries must be re-registered at each collection (since they
might change). Algain this is highly systemn-specific.

Conservative garbage collection operates without cooperation from the compiler. It has na
knowledge of mnmﬁ or stack layout, and does not expect pointers to be tagged. The collector
must therefore meat any word that it encounters as a potential pointer unless it can prove
otherwise. The key to success is an ability to determine the validity of a potential pointer
accurately and cheaply. The collector must err on the side of caution: failure to recognise a
valid pointer as such might cause the referent data to be recycled as garbage. On the: other.
hand, if the collector i too conservative, it 1isks tetaining too much garbage which could
eventually cause the program to fail by running out of space. .

CONSERVATIVE GARBAGE COLLECTION - W i " 933
The collector assumes by defanlt that every accessible object is reachable through an

accessible pointer to the beginning of the object. Interior pointers — pointers to the interiors

of objects — are considered invalid by the collector (in its simplest configuration!).: This
does not mean that such pointers are prohibited, but that if an ohjectis reachable Eaa:ww an
interior pointer, then it should also be reachable by a pointer to its base. m.om.npn_mn traditional

C programs this is a reasonable restraint: memory c_uﬁmu.nm.m. dynamically by malloc can only

be released if the pointer returned is passed to £ree. However, it is possible that this-value

is not retained between these two points in the execution of the program, but is derived-later.

Such behaviour is incompatible with the collector. Later we shall examine mxﬁbmwoﬁ to the

algorithm that altow unrestricted use of interior poiniers, albeit at some additional cost.

The collector takes considerable care to avoid misidentification. An object is only marked
if the pointer passes each of three tests. On a SPARC, for example, these tssts generate an
extra 30 instriictions or 0.~ T : UL B
1. Does a potential pointer p refer to the heap? : i

The potential pointer is compared with the highest and lowest plausible
garbage collected heap. |
2. Has the heap block that suppasedly contains this oE,mﬂ been allocated?

The address of the header associated with the block that supposedly contains this object

can be obtained from p by indirecting through a two-level tree, GC_top_index and
bottom_index shows in Diagram 9.3 on the following page. Headsrs contain pointer
to maps of allocated blocks, 6c_obi_map. .

3. Is the offset of the supposed object from the start of its (first) block a multiple of the object
size for that block? : Lo g “
There is essentially one obsj_map. for each object size. If the entry in.GC_obj _map for this
size of object that corresponds to this block and this. object is valid, then the pointer i
deemed to be a true reference. B : “

wa&nmmnm of the

If the pointer passes these tests, the corresponding bit in the block Woma_wp. is set; and the
object is pushed onto a mark stack. This stack is managed by the techniques described in
Section 4.2 of Chapter 4. Briefiy to recap, the marker attempts to avoid mark stack overflow
by pushing large objects in smaller (128-word) portions. If the. stack should become full,
overflowing entries are marked but not pushed. When the overflowed stack has emptied,
marking is recommenced using a larger stack from. marked objects with uimarked children,
Finally, at the end of the mark phase, all mark bits corresponding to objects on the free-list
are cleared, in case they have been, set accidentally due to.an undetected false reference:.

Interior pointers .
Interior pointers are problematic if a farge object is only accessible nﬁ.ocmwwbnwnmoﬁ. pointers,
Since small objects do not span four-kilobyte heap blocks, deriving the address of the.block
header by masking out the least significant bits of an interior pointer will result in.the same
value as if the pointer had referred to the start of the block. To deal with Jarge objects, the
marker must find the start of the chunk, The index in the bottom _index array in this case

will be 2 small positive integerindicating the minimum displacement to the:start. of the-object

1 The default;confignration. of recent versions of the collector accepts interior ucm:&nm ag valid.

1 i
'

GARBAGE COLLECTION FOR'C

{:d

ey 287 d0L

[11) 25”401 B07

Y

swe) 25"WOLLOE
g
As

| wizs"walicepon |

Seo_ Tk
key
hash_jink

[z1] =3z18%718H D01

ﬁ struct hilkhdr
hb_sz
hb _next
hb; descr
hb_map

hb_obj kind
ho_ilags
hib_last_reclaimed

[

GC_‘objﬁmep

:_ukaqum

Diagram 9.3 The two-level search tree, the block header and an object map derived from a
pointer p (Boehm-Demers—Weiser collector, version 4.2).

from the pointed-to address, rather than a pointer to a header block. The marker repeatedly
skips back to that block and examines its bottom_index until it discovers the start of the
chunk or discovers that the pointér was invelid. The header of this initial block holds the size
of the (single) ebject atlocated in the chunk. If the offset of the ‘object’ allegedly discovered
is greater than this; the pointer must be invalid. . N
Use of interior pointers should be safe with portable, strictly ANSI-conforming C programs
[ANSEI-C, 1989]: However, their use greatly increases the chance of misidentification and
empirical evidence suggests that it is harder 1o allocate space for large objects that is not
‘pointed’ to by m,ﬁwmﬂm (see the discussion aof ‘black listing' on page 238). Documentation

RO E et A

CONSERVATIVE GARBAGE COLLECTION "

1
]

with the collector recommends that programmers ghould éither try to avoid p,mmum the interior
pointers option, or, if that is not easily done, try to avoid using very large individual objects.

Problems of conservative garbage collection | ;

Conservative mﬁgwwnozmnﬁoﬁ face a number of difficulties not experienced by type accurate
collectors. The most important of these is the risk of misidentifying data as heap pointers,
thereby nnnecessarily retaining memory that could otherwise be recycled — a space leak.
There. are several possible causes of misidentification, and the Boehm-Demers—Weiser
collecior uses a number of techniques to reduce the risk of such ‘collisions’. The chance
of misidentification is increased both by programming wwmonno and by architecture design;
Configuring the collector to accept interior pointers inereases the proportion of addresses that
the collector will accept as valid, and hence increases the chance that a uon.mombmnn word
may be identified as pointer. However, in practice there is little evidence of leaks in most
applications despitel the collector having been widely used since its release in 1988 [Boehm,
1993; Schelter and Ballantyne, 19881, _ W A, :

Nevertheless some circumstances have proved to be inimical to nog&?mﬁ.ﬁ.a garbage
collection. Wentworth used zn early version of the collector for experiments: with interpreters
for Lisp and the lazy functional language KRC [Turner, 1981]. Conservative garbage
collection worked well for Lisp, givingleaks of less than 8 ipercent, with the amount of leakage
tending to remain constant, thus declining as a proportion of larger heaps [Wentworth, 1990].
On the other hand, KRC defeated the collector to the extent that it thrashed and computation
aborted. To understand why two ‘functional” languages should behave so &Eﬁa:&, consider
the shape of the data that each abstract machine manipulates, Wentworth found. that: Lisp
garhage tended o he made up of short disj oint structures. Any misidentification is thus likely
to lead to the retention of only a single garbage structure; disjointness of the graph causes the
size of any single leak to remain bounded. R

Simple graph reducers like KRC, on the othér hand, tend to manipulate 4 single complex
data structure. At any instant, the current state of the computation can he thought of asthose
itemns that have already been constructed plus a recipe for generating the rest of the value of the
computation, The system is driven by the need to print. As evaluation proceeds, the recipe.is
expanded and overwritten by a further partial resuit and a new recipe. I mnnwﬂ‘&, once results

£ 235

have been printed, mmg the first part of a list of numbers, they should be discarded. However,

should a misidentified ‘pointer’ refer to some point in the list, it will gain access to all data
generated from then on. Such data will not be recyclable after it becomes inaccessible to the

- printengine. Consequently the volume of reachable garbage will increase as! the computation

proceeds unless the false reference is destroyed. Diagram 9.4 on the next page shows & simple:
example of this scenario. | ;

This problem may apply to any algorithm that involves a dense address’space containing
large, strongly connected structures. For example, Edelson reported similar problems’ for a
large CAD application using a version of the Boehm-Demers—Weiser collector that did nat

-provide black listing [Edelson, 1992a]. One pragmatic-view is that programiners should code

defensively, and avoid using data structures that are likely to become unbounded through
a single faise reference. Representations of linked lists that store links in objects themselves,
rather than in cons-like cells, aze particularly likely to suffer from this fault: if a false reference

mv - imem =~ oF tenured garbageTather than conservatism. -

236 i _ GARBAGE COLLECTION FOR C

 false peinter ~ — —

Diagram 9.4 tail [1,2,...1.

retains & single list item, all elements that follow in the list also _u.mnouum Hmm”nmen.. The data
structures used in; Bdelson's example were typically two-dimensional versions of the leaky
list structure shown in Diagram 9.5, but also included some cycles [Boehm, 1993]. .H”Ua
i femsive progiamming strategy shown in Diagran o6 on the next page also applies

more defensive programmin I on ¢ I
to systems that use generational garbage collectors, although in this case the probiem 1s one

false pointer— ~

incoarractly
setained

. Diagram 9.5 Space leaks.in a monolithic kst are unbounded.

Misidentification |

Many words that may be mistaken for pointers are actually integers. Fortunately small w.somnnm
are never valid heap addresses on most systems, However, if pointers are mon.nmepﬁa@ to
be properly aligned, the collector must consider all possible alignments. Two adjacent small
integers (for example, 9 and 10) counld then be mistaken for a pointer (for example, 0x90000)

et

CONSERVATIVE GARBAGE COLLECTION ° , 337

false pointer— 7

Diagram 9.6 mmmom leaks in a cons-list are limited & the target of the false Hnmm_.numm.

by falsely concatenating the low order half of one integer with the high order half of the next
(see Diagram 9.7). B Ve i ”

000 oRlglS

‘false reference

Diagram 9.7 - Adjacent small integers u.nmw be mistaken for a pointer.

Since many integers are very small, the prevalence of such false references can be reduced
by not allocating at addresses with a large number of trailing zeroes. Nevertheless, the
combination of unaligned pointers and a requirement to recognise interier pointers. can lead
to an unreasonable number of false references: This tends to be less of a problem on newer
architectures. that penalise unaligned accesses as compilers ensure that objects. are. properly
aligned.) . - : i

Uninidalised data ocoupying memory that might still contain valid pointer values are also
ttonblespme. Boehim Teports that certain classes of data, such as large compressed bitmaps,
introduce Talse references with an excessively high probability {Boehm, 1993]. His collector
dislinguishes two Kinds of object: atomic data, allocated by ae_malloc_atemic, which is
guaranteed by the programmernot to contain pointer datd; and normal data (the defalt). Since
atomic objects om:&o.,. contain references to other heap allocated objects by definition, they do

"not need to be scanned for peinters. This saves time. and above all reduces the chances of

Hiisidentification. A, firther optimisation is that the allocator need not clear @5 space reserved
for atomic objects since thers is no chance of falsely discovering a reference. The space for
normal data, however, must always be cleared by the allocator to remove any false references.

“Architectires that encourage larse procedure frames are also prome fo introduce false

238 GARBAGE COLLECTION FORC
references, especially if large parts of the ftame are not praperly initialised: this is typical

of register window architectures. A. ‘random’ value in a new register window may migrate

to the stack, appearing to be a pointer, especially if the source of this value was a valid

reference in a previous use of the window. Boehm suggests that this may be a significant
effect, especiaily for small benchmark programs [Boehm, 1993; Cridliz, 1992]. His collector

attempts to ameliorate this tendency by clearing a few stack frames before garbage collection

takes place. ” :

The collector avoids allocating at addresses that are likely to collide with invalid ‘pointers’
[Boehm, 1993]. It black lists references that appear to point ta the vicinity of the heap but
fail the validity tesis, and the allocator ensures that black listed heap blocks are not used for
allocation. In addition the allocator will not allocate an object to an address that would cause

" the object to overlap a black listed block, Furthermore, in order to reduce the chance of false
references from variables that capnot refer to heap data, the collector is called before any -

allocaiion is made in the garbage collected heap. At this point there can be no references to
the heap, and so all false references from statically allocated constant data, for example, can
be eliminated.

Although black listing decommissions sections of memory in the heap, rendering them
unavailable for recycling, it is more bemign. than a space leak. Unlike leaks due to false

" references, black listing affects odly that block of memory: the leak does not spread to retain

other data falsely. The cost of black listing is fairly cheap. jncurring an additional overhead

... .ofless than 10 percent. Work by Shao suggests that the hlack listing collecter does not suffer

excessively from over-Tetention, at least for the styles of programming examined. For most of
Zorn’s test programs, the difference betwesn the maximummalloc/fres allocated space and
the maximum reachable space found by the collector was small. Empirically, often the most
significant source of leakage was not due to pointer misidentification but to dead pointers on
ihe stack [Bochm, 1995a]. Note also that explicit memory managers can suffer from severe
fragmentation under cerfain allocation paterns. On the other hand, Boehm reports that black
listing can make it difficult to allocate objects larger than 100 kilobytes without spanning
black listed addresses if interior pointers are allowed.

Efficiency

Two studies have compared the efficiency of the Bgehm—Demers—Weiser callector with
explicit memory management [Zorn, 1692; Detlefs et al., 1994]. The approach of these studies
has been to take several C or G+ programs and measure their performance when their

allocator/deallocator is replaced with eitherthe Boehm-Demers—Weiser coilector or another -

implementation’ of malloc/éres, The authors were concerned that synthetic behaviour
patterns do not produce accurate estimators of the performance of particular algorithms [Zorn
and Grunwald, 1992], so substantial real Unix programs wers used, of which the best known
are perl, a report extraction and printing language; xfig, an interactive drawing program; ihe
GNU GhostSeript PostScript interpreter; and GNU's make and gawk utilities.

The malloc/free combinations tested included those supplied with the DEC Ultrix and
the SUNOS 4.1 operating systems, and the GNU C++ library Libg++ as well as the Boehm—
Demers—Weiser collector (versions 1.6 and 2.6 for the two studies respectively). The design
and implementation of explicit allocators is not straightforward. Designs must compromise

CONSERVATIVE GARBAGE COLLECTION - . " 930

" between speed of allocation and the degree of WmmEnuﬁwnon tolerated.. mnmmum. old. objects

mmmo has 2 cost, Simply counting the number of instructions executed by malloc and free
is =.o.ﬂ sufficient: an apparently fast implementation thatis profligate of memory ma; w“oﬁ
additional page faults or cache misses that will impair its performance. o
This is revealed very clearly by the performance figures quoted in both mcm.,.mwm Allocators
descended from the Berkeley 4.2BSD' mailoc/free implementation, such mm. the Ulirix
allocator, typically used fewer instructions per object allocated than other dllocatars. Other

explicit algorithms were less prone to fragmentation; the SUNOS allocator performed

particularly well in this regard. However, when total execution time was measured, hybrid
algarithms like the 1ibg++ allocator were competitive with the Ultrix allocator, m<mz~ though
they exacuted mare instroctions. The reason for this disparity was that the' Ultrix allocator
spent more time in the operating system but Detlefs ef . note that the cause was not additional

" page faults, as one might expsct. Unfortunately they were urable to determine the case of

this additional system overhead. : : !

The surveys reveal sharp differences in behaviour patterns amongst the mxm:nw memaory
managers. In the earlier survey, Zomm suggested that some applications programmers were well
aware of the shortcomings of implementations of some Emb:mmngnvmnmﬁmo,a malloc/free:
nﬁ.vhﬂuugmn.cum. and had used their own domain-specific allocators instead, Unfortunately
Em evidence showed that, slthough the custom allocators were an improvement over a
given standard allocator, even betier results could have been had from pmmbm a different
standard allocator, or even the garbage collecting allocator in some cases. This suggests that
programmers’ intuition may not always he areliable guide. w

Many claims have heen made for garbage collection’s performance compared with explieit
memory management. Nevertheless, in the tests the Boehm—Demers—Weiser wmnaa&
sufficiently well to be considered as a realistic alternative to explicit Eobpo@ management,
It had an average total execution time overhead of around 20 percent abave the best of the
explicit allocators, although actual times varied considerably depending on the mm_mm.nmmon
program runming. At the time of writing, the conservative garbage collector is able to mark
about three megabytes of data per second on a SPARCStation 2. Its performance compared
best when the collector was used with programs that primarily allocate and deallocate very

~ small objects. However, for some programs the garbage collector did perform significantly

worse than any of the explicit routines, with an overall execntion time overhead ofup to
57 percent. Moreover, all garbage collectors, other than those based on mEn,,ﬁ&mHHaEngnn‘
counting, require some head room if they are to avoid coilecting too m_.‘m@zawmw. The Detlefs
et al. results: showed that, in certain circumstances, the conservative collector might use

-more than three times as much space as the best of the explicit algorithms. However, such

large space overheads were generally encountered only for very small heaps, and are largely
attributable to the fixed costs of the garbage collector’s internal data structures. Furthermore,
Boehm and Weiser have suggested that their collector might coexist m_monq with ‘mnmn:@
ﬂmummm.aaﬁ algorithms because of the requirement that heap blocks are aligned on four
kilobyte boundaries; this may cause different blocks to be mapped to the same cache; lines.

This specuiation was confirmed by Zorn’s survey which found that the conselvative garbage

collector &m.w:&um& significantly reduce the locality of reference of the programs tested,
These results need to be treated with some cantion. All the allocators tested, including the
conservative garbage coliector; are elderly or obsolete. The Boehm-TYemers=Weiser collector;

N V') o QE&QMOOHH.NDH.HOZH“OW.O

for example, is at version 4.3 at the time of wriling, but the surveys used versions 1.6 and
2.6 significant improvements have been made to the collector in the interim. The allocators,
including the conservative collectar, weze also used ‘out of the box’ and no atternpt was made
to aptimise their performance. The sarbage collector can benefit from distinguishing objects
that need to be scanned from those that de not: this was not done. Neither did the surveys take
programming m.@;m into account; instead calis to malloc Were simply replaced by GC_malloc
and cells to free were removed. Consequently the programs supported by garbage collection
were still required to maintain the invariants required by malloc/free managers. Programs
written in the knowledge that a conservative collector would provide the memory management
would undoubtedly be written in different ways. For example, it would no longer be necessary
to copy data to avoid the risk of prematurely freeing it, and pointers to obsolete data might be
explicitly destroyed to reduce the risk of retaining excessive memory. Hand-crafted reference
counting would cértainly not be emplayed.” CormTmm T

At best, such surveys provide an upper bound an the cost of garbage collection compared
with explicit memory management. Even 50, the garbage collector fared comparatively well
although, like any iracing garbage collector, it required substantially more space in order to
avoid over-frequent collections. As sxperience 'of garbage collected systes has shown that
their use can lead to reduced development time chasing memory management bugs, at the
very least thiey are worth considering as an alternative to explicit memory management.

— -~ ~ “Ineremental/ geiigrational’ garbage collection™™ ™ 7

The basic mﬁcmmw collector described above is a stop and mark collector, but this may be too
intrasive for interagtive programs-that use large heaps. For these configurations, the Beehm—
Demers—Weiser collector is also capable of collecting incrementally/generationally provided
that sufficient operating support is available. The: scheme is generational in the sense that
it makes use of knowledge of which pages have recently been modified. Tt is incrementak
in that each call to &¢_malloc causes a small amount of marking to be done. The sweep
phase is interleaved with, the user program in all the collector’s modes of operaticn (sce the
lazy sweeping techniques described in Section 4.5 of Chapter 4). For incremental marking

or generational collection, knowledgs of recently modified pages must be made available to.

the garbage collector either by the operating system or by the programimer. Some operating
systems, such as Sun’s Solaris 2, allow dirty information to be read. {from the /proc file
system in this case). Under oiher systems it may be possible to write-protect the heap and
catch the resulting faults to determine which pages have heen written since the last garbage

- collection. Unfortunately neither of these arragementsis entirely satisfactory and they are -

certainly not portable. Using /proc involves reading the dirty bits for. the entire address.
space and may be slow. Write-protecting the. heap is a sledge-hammer approach — the cost of
catching a fault is not insignificant and care must be taken not to allow system. calls to attempt
to write to a protected page and hence fail.

Incremental marking is performed in smail steps interleaved with the execution of the user
program. Each call to the allocator in this mods causes a small amount of tracing to be done—
the system attempts to touch just a few pages of memory at each allocation. Notice that there
is no explicit communication between the mutator and the marker, unlike traditional schemes
such as Dijkstra’s. (see Chapter 8 where we discussed incremental techniques). As merking

MOSTLY COPYING COLLECTION _ , _ C a4l
is done i parallel with the mutator, it is likely that, by the end of this partial marking phase,
the mutator will have changed the connectivity of the graph. One solution would be to stop
the world and trace from the roots and from all marked objects with unmarked descendants.
Tn the absence of any help from the virlual memory system, this must be done but it largely
defeats the purpose:of incremental collection. i . -
With knowledge of which pages have been written since the last garbage collection cycle,
the collector can do better than this, At the start of the cycle, a set of virtual dirty bits
corresponding to heap pages is cleared. These bits are updated to refiect mutator writes by
reading virtuzl memory dirty bits. When the incremental partial cace has exhausted the:mark
stack, the world is stopped. Using Dijkstra’s terminology, marked objects on clean pages are
black, marked objects on dirty pages are grey and unmarked. objects are white; marking is
complete when no grey objects are left. The: mark phase is now Tun to completion from &ll

" grey objects,ii.e. from the roots and all marked objects that lie on dirty pages. At tlie end

of this phase: only garbage objects will Temain EEHEW&. although some objects may have
become unreachable after they were marked: these will be collected in the next garbage.
collection cycle, Bxperiments with the incremental/generational version.of the caollector
show encouraging results. Panse times were mwmamnmbmw reduced, at.least on average, albeit
sometimes at a cost of greater total execution times [Boehm et al., 1991; Detlefs eral., 1994].

9.3 Mostly Copying collection

The Boehm-Demers—Weiser system is fully noumngmmﬁ" it runs without any cooperation
from the compiler. Because it cannot be certain that any value is a pointer, it canmot risk
modifying program data and therefore it is constrained to use a non-moving collector: Bartlett
was able to take a more liberal approach to a garbage collectar originally dasigned to support
high-level languages that used C as an intermediate langnage (such ashis Scheme-to-C ” ;
compiler [Bartlett; 1989b]). While his Maostly Copying: Garbage Collector still assumes no , ;
knowledge of register, stack ar static area layouts, it does assume that allpointers in heap-
allocated data can be found accurately [Bartlett, 19881, The collector is effectively 2 hybrid
conservative and copying coilector. Objects that might be referred to from the stack, registers
or the static area are treated conservatively and are not moved; objects only accessible. from
ather heap-allocated objects-are: copied-It is also possible to register other objects as roots.
This gives the Mostly Copying collecior three potential advantages: allocatidn is faster, finding
pointers in heap objects is simpler, and sarbags colléction is more accurate. :

Heap layout. . . W :

In the classical copying algorithm, the heap isa ncammﬁvnm area of BnEo_..w. divided into. two
semi-spaces, Promspace and Tospace, and an 6bject’s space can be determined by comparing
ite address with that of the boundary between the two spaces. In Bartlett's algorithm, however,

the heap is divided into a number of equal cized blocks?. The blocks comprising each semi-
space are not adjacent but may appear anywhere in the heap. To identify its space, each

2 Bartlett uses the [erm pages but this isks confision with 4#8»_. memory pages. |

w941 . GARBAGE COLLECTION FOR'C

block contains a space identifier (a small Eﬁmmob. This organisation offers two methods of

‘copying’ an ohject to Tospace. Fither the object can be moved to a block in Tospace, or -

the space identifier of the object’s block can be set to Tospace (in a manner-reminiscent.of
changing virtual address maps to ‘copy’ large objects [Withington, 1991]). Since semi-spaces.
are no longer contignous, unscanned blocks in Tospace must be: held on an auxiliary Iist (see
Diagram 5.9 on the next page).

curreat space = 1
nexi_space = 1

Diagram 9.8 The heap layout for Bartlet’s Mostly Copying collector: The heap gt
composed of blocks; Fromspace blocks are those whosé space identifier is. equal to
' current. space.

Allocation

Allacation is a two-level process. Within a black, allocation is-done in the normal way forany
compacting collector by incrementing & free space pointer; the hlock’s count of free slots is
also incremented. Objects smaller than a block are stored on thie current free block if they fit.
If there is insufficient room in the current block, the heap is searched for a new free block.
A block is deemed to be free if its space idenifier is equal neither to current_spacse nor

next_space: during normal allocation these have the sams value (see Diagram 9.8). Whena

block is allocated; its space identifier is set to next_space and the count of allocated blocks
is decremented. Larger objects are allocated over as many blocks as necessary.

Garbage collection.

Garbage collection is initiated when the heap is half full, L.e. when half of the availabie blocks
have been allocated. The value of next_space is incremented module n where n is large
enough to ensure thatall free blocks are eventually recycled. First, theroots of the computation
are scanned conservatively Tor potential pointers into the heap. The collector checks whether
each root points into the heap areaand, if so, whether the space-identifier of the block to which

=T~ MOSTLY COPYING COLLECTION : ” w 243

Tospace
scan-list
current_spaca = 1
next_space = 2
root —

' Diagram 9.9 Mostly Copying mﬂmmmo collection.

i - i
i 3
] 1

it points is set to current_space. If the value held in aToot could be a pointer into the heap,
the block into which it points.is added to Tospace by changing the value of the block's space
identifier to next_space. The block is also appended to the Tospace list for scanning (see
Diagram 9.9). At the end of this phase, all objects directly accessible from the root set have
been ‘copied’ into.the Tospace. A drawback is that other objects in those blocks have also
boen retained (for éxample, object X in Diagram 2.9). - . :

The next phase moves accessible objects from Fromspace to fresh biocks in Tospace in
essentially the same manner as a standard stop-and-copy collector. All objects in all blogks in.
Tospace are scanned, and each reachable Fromspace object is moved into a block in Tospace.
lsaving behind a forwarding address. The only difference is that the space test is done by
examining the space identifier of the page on which the object resides rathet than comparing
the-address of the-object with-that of Tospace, Once tracing is complete, current_space is
changed to next_space and garbage collection is complete. ; o
Pointer finding fin the heap can be done in either of two ways. The first method is to
se thé Lisp “BiBOP® method to store an identifier in each block that indicates the type of
object contained in that block: Its advantage is that it allows-a very compact representation
of commonly used types, most notably cons cells (for Bartlett’s H..BEnEmnﬁncb of Scheme),
but it complicates allocation as there are now multiple current blocks, one for each type. The
second method is to tag each ohject with a header giving its type. Bartlett’s Scheme compiler

uses both options: blocks containing list cells are given the type identifier PATR,; other plocks

are Lyped as EXTENDED to indicate that the objects in the black are tagged; of as CONTINUED
to indicate. a continnation block for alarge object. EXTENDED objects are arranged so that the
object headercontains a count of the pointers into the heap contained in thg object as well as

the size of the object itself. The heap pointers must be placed at the startof the object (see
Diagram 9,10 on page 245). ’ : !

{

244 . GARBAGE COLLECTIONTFOR C

next_space = {current_space+l) mod 07777T
Tospace_gueue = emply
for R in Roots
promoite_ (bloeck(R}))

while Tospace gueue ¥ empty

“blk = pop (Tospace gueue)

" for obi in blk

, for S in childrén{obi)

: 5 = copy(5}’

current._space = nexit_space

m.HoEcnm?Honuﬂn. ‘ .
if Heap_bottom & block £ Heap_top : . N
and space{kblock) == nﬂﬁhmuwlmu.mbm - ’ o o)

space{block) = next space
" allocatedblocks = allocatedblocks +1

push (block, Homﬁwnmiﬂq.mnmu

copy(p} =
if ‘space (p) == next_space OX P =5 nil
T Feturn p -
if' forwarded(p)
. return forwarding address(pl . ____ .

np = move(p, free)

free = free + size(p)
forwarding_address (p). = np e
return np .

. Algorithm 9.2 Bartlett’s Mostly Copying collectar.

Generational garbage collection

Bartlett's collectar can aiso be made generational, wsing block space identifiers to encode an
approximation of the age of the ehjects they contain ﬁwﬁzmﬁ 1989a]. The collector uses two

generations:; bigeks in the new géneration are given even numbered space-identifiers and those:

in the old generation odd numbered ones (this technigue could be extended to handle multiple
generations by employing 2 more complex space identifier encoding). Minor collections ogeur
when 50 percent of the space free afier the last collection is filled. Objects in the young
generation reachable from the root set oz the remembered set are promoted e masse to the old
generation, The remembered set is maintained by the operating system’s memory protection
mechanism, using the mprotect systom call, to trap writes to heap blocks. Blocks containing
objects referenced directly by the root set are promoted by incrementing their space identifier
(to-an odd number) in the same-way as the non-generational algorithm “copied’ such blocks
to Tospace. Accessible objects dn other blocks are copied in the usual way. o

MOSTLEY COPYING COLLECTION

aumbsr number i .
of pointars | - of words : .

user poinmerdata

ofher ueer data

Diagram 9.10 Object format for EOW&« copying collection.

Following a minor collection, the amount of memory occupied by the 9ld generation is
examined, IF this fraction is greater than 85 percent.of the heap, a major collection is inftiated

* using mark and compact. If the heap remains more than 75 percent fult after this collection,

the heap can be expanded in megabyte increments. A major collection starts by marking all
accessible objects in the old generation. Bartlett's compactor, described in Section 5.3, is
designed to minimise the amount of data that is moved. It compacts individual blocks rather
than the entire heap, and scans the old generation twice In the first pass, the old generation
is scanned, looking for blocks less than a third full. Marked objects on these blocks are
scavenged, leaving behind a forwarding address; objects on fuller blocks &n not evacuated.
Seavenged objects ‘are copied to the currert free block, but ancther free block is also queued

_up.(if .one is. available) in case the cument block should overflow. The final phase corrects

pointers: the old generation is scanned again and wowﬁmwm to moved ohjects are replaced by
the appropriate forwarding addresses. ! : .

Ambiguous data structures . m

P :

The collector described ahove assumes that ambiguous data is found only in registers, the
stackand the statici area, and that the format of all heap data is known. Unfortunately this may
not be the case. Unsure references can arise in two ways for Bartlett's collector, General C
programs may use undiscriminated upions in the heap , : ;

union { :

int n; |
-- <thing *ptry -~ , : -
} =

Tn this Case, x is:an unsure reference; it may be E.P.wunu&. ft may be apointer to a thing, At

Tun-time, there is no way that the collector can determine whether the nnion holds an integer or
a pointer. Scheme, for which Bartlett's coliector was originally designed, uses continuations
— data structures holding the contents of its registers and the stack (pointer) —to preserve the
program’s state so that it can be resumed later. Continuations are first-class objects thatcan be

freely passed as arguments or stored in the heap. As a continuation might contain wmwnwnnn@m

to heap objects, it must be traced like any other heap object; as it containsistate information
(by definition in an unknown format), it is essential that it be weated conservatively as a part
of the root set. Bartlett's solution is to make four passes over the heap rather than one:.

: - 245

GARBAGE COLLECTION FOR'C

1. The root set is scanned for pointers and. the blocks containing the referents are promoted.
Tlowever, rather than changing the block’s space identifier at this stage, a bit in the block
header is set to indicate that the block has been promoted. .

2. The second phase copies objects on uHoEoﬁm blocks to fresh ones in Tospace and then
continues to copy from these objects in the usual way but with two important differences.
First, it does not update pointers, and second, it must handle any continuations discovered
in the heap. The blocks on which the (conservative estimates of the) referents of these
continuations lié are promoted by selting their promotion bit,

3. The third phase comects the values of Tospace puinters to blecks in Fromspace that were
not promoted, using the forwarding addresses stored in the objects.

4. Finally the contents of promoted pages are restored. This is done by copying sach object
on a promoted page back, again using the forwarding address. .

Handling continuations. increases the complexity of the garbage collector significantly:

Bartlett suggests that it is prabably twice as expensive as the more straightforward method.

The efficiency of Mostly Copying

There have been no thorough studies of the efficiency of Bartlett’s collectors and, of the
evidence available, much is presented informally [Bartlett, 1988; Bartlett, 1989a; Yip, 1901;

wo= e e TErE T993T Mostly Copying incurs asmall space overhead-to-store:-space identifiers,-

type information (and possibly promotion bits), and to link the blacks of a space. Fer 512~
byte blocks this would be an exira 2 percent; Emmgm data increases this overhead. Adding
generations to the compiler adds a performance: penalty for maintaining the remembered set,
but this appears. to be more than compensated for by reduction in time'spent on garbage
collection, at least. for larger programs, An improvement. in running time for Bartlett's
Scheme-to-C compiler of 20 percent was noted. Interactive programs have also exhibited.an
order of magnitude reduction in pause times [Bartlett, 19891].. :
A study of the comparative performance of the Boehm-Demers—Weiser Conservative
Collector and the Mostly Copying Collector would be interesting, although as usual
performance would be heavily dependent on implementation detail. One may speculate that
Mostly Capying might perform better in an environment with a high allocation rate of short-
lived objects. However, it is not clear that first generation survival rates of typical Cor
C++ programs are sufficiently low, nor allocation rates sufficiently high, to benefir from fast
allocation, For systems with a greater proportion. of longer lived objects, Mostly Copying

collection for the first generafion combined with marl-compact collection of the second
generation can be offective. It has been used to improve the performance of a CAD system
significantly by preventing paging, The benefit of the tracing compacting phase was well
worth its cost®. On the other hand, DeTreville reported a less favourable experience with
a =om.mn=n§n._onm_,. concurrent collector: for Modula-2+, based on Mostly Copying, in an
environment with very large heaps (measured in tens of megabytes) [DeTreville, 1990a].
Firefly workstations were easily provoked into thrashing and in the-end DeTreville resorted to
combining a deferred reference counting scheme with a mark-sweep collector: These differing

% Joel Bartlett, personal communication.

i et LA e i

" THE OPTIMISING COMPILER DEVIL . ! _ 247

Hm.mc._ﬁ.. again reveal the importance of choosing a m.m&m% collection mqm.ﬁnww that is in tune
with the behaviour patterns of the user program. , i

9.4 The optimising compiler devil

We have assumed so far that, given any C prograim, the conservative algorithm providesa safe
garbage collector. Unfortunately this is not so. Programming practices that-disguise @&Emmm
cannot be used with a conservative collector” The most common type of unsafe practice
involves arithmetic on pointers; examples include adding tag bits and reversing pointers with
exclusive-ar operations. Obviously any assumption of the immobility of obj€cts {for sxample,
hashing on addresses) may cause a program to failin the presence of a moving collector. Qther
examples that liide the-pointer from the garbage collector wilk also defeatit. Fortunately most
of these possibilities are precluded by portable ANSI-compliant C programs [ANSI-C, 1989].

However, it is not difficult to contrive examples. of legitimare code and valid compiler
optimisations that may render objects invisible to a conservative collector. Strength reduction,
for example; can destroy all direct references to an object. Given an array = of size SIZE, the
code fragment: . N : !

J
I

for(i=0; i<SIZE; i++)

N 5 R

: s adleval}
might be transformed into: ; , i
xend = x + SIZE; ;
for(; % < xend; X++)

NP U
. x -= BTZE; . , |
. U) : “ i

if there is pressure on registers. Inside the toop the only references to the array are through
interior pointers, and on exit x points ohe beyond the end of the array. If this is not regarded as
a valid reference, any allocation may cause the arTay’s space to be recycled. A similar example,
suggested by Boehm and Chase [Boehm and Chase, 1992], can destray mﬁﬁ interior pointers.

Given iwo vectors % and v of size STZE: - i

sum = 0; :

“Eor{i=07 i<SIZE; it+) Ay
sum += x[i]1 + ¥[i]; ,

might be transformed into L ;

sum = 0; 1

diff = y -
xend =-x + STZEj; |
for{; x < xend; xi+)

Uosum = (Fx} + (FlorddfE))
x -= SIZE; . !
y = x + diff; 4

" —3"s register car be rensed now;
—— 50 Can 28~ o=

S

>

250 . “ GARBAGE COLLECTION FOR €

collector also shows promise for anvironments in which copying is the preferred sirategy (for
example, those with high allocation rates of very short-lived objects) although his coliector
is pot as mature &8 Boehm-Demers—Weiser, pacticularly as far as coexistence with existing’
libraries is concerned. . .

Many C and C++ programimers remain deeply suspicious of releasing control of memory
management 1o a garbage collector. It is certainly true thai currenc garbage collection

technology is not yet suitable for problems. with hard real-time constraints on stock hardware -

or for safety-critical applications. However, conservative garbage collection is a satisfactory
alternative for a wide range of applications. Errors. caused by pointer misidentification or
iniroduced by aggressive optimisers are unlikely to be an issue — the chance aof generating
garbage-collection ‘unsafe code is probably no warse than that of generating other kinds
of incomrectly optimised code [Boehm, 1994a]. Development time released from chasing

memory management bugs could almost certainly be better spent improving performance in

other areas. Garbage coflectdon is arealistic alternative today to explicit memory management
for most applications.

Several programmers have expressed concern that conservative garbage collection Testricts
C or C++ programming style. We belisve this to be unjustified. The only restriction concerns
casting pointers to integers and back again, since this may hide the pointer from. the collector.
If the only reference to an object is hidden in this way and a garbage collection occurs,
then the object would be recycled. However, this construction is only valid for ANSI C if

_the, implementatiop has an integer type sufficiently large o hold the pointer. Theoreticelly,

programs that rely on such conversions will not be generally portable.

Comparisons with explicit memory managers have shown that garbage collecting allocators
are competitive, even when the-code under test was not written for garbage collection. New
code designed to be supported by sarbage collection would certainly fall inside this upper
bound. There is no:reason why the garbage collector should run in isolation, completsly
hidden ffom the programmer. It seems sensible to provide hooks that allow the programimer
to indicate which objects are to be collected bt do not need to be traced; and to give hints
of appropriate times to. collect. Explicit calls to the deallocator might usefully be interpreted

as 2 suggestion that the amount of free memory has increased. The Boehm-Demers—Weiser

garbage collector provides these facilities and others. .

Pinally Hayes argues that garbage collection must be conservative in open mulii-language
systems [Flayes, 1990]. As different languages use different type systems so locating poiniers
becommes a language-dependent issue unless it is dene conservatively, Once located, pointers
may have different layouts (maybe a small value has been added to tag 2 poirier), and there
may be ambiguity as to which object the pointer refers (it may-have stepped off the-end of
the: aray). Hayes argues that garbage collectors should be sufficienty ‘broad minded’ not to

dictate to their compiler back-end clients but should allow the client to communicate their -

special knowledge to the collector. The burden of memory management should be delegated
to a conservative garbage collector in the same way that I/O has been factored out into shared
operating systems for many ysars. _

.ZQHmm : -) : 251

9.6 Notes - |

The first implementation of 2 garbage collector for C appears to have heen by Doug Mcllroy
of AT&T for 8th edition Unix. However, as far 4§ We are aware, 0o Hmmomﬁ. on this collector is
available. The most widely psed conservative garbage collector is that due to. Hans Boehm,
Alan Demers and Mark Weiser {Boehm and Weiser, 1988; Boehm, 1993]. It is available from
nttp://reality.sgi.com/employeas /boshmuti/ge.html, The collector is suitable
for both C znd C++ code — the C++ interface was written by Jesse Hull and John Ellis,

Diiscussion of generational and concurrent enhancements o the collector can be found in

[Demers et al., 1990; Boehm et al., 1991; Boehm, 1991a; Boehm and Shae, 1993].

An implementation of a conservative collector for 2 EuLisp to ASM/C compiler can be
found in [Ktiegel, 1993], Vincent Russo describes a collector for an object-oriented operating
system kernel [Russo, 1991], and other references to related work can be found in [Chailloux,
1992; Cridlig, 1992]. Geodesic market the commercial Grear Cirele conservative garbage
collector for C and!C++; their Web site can be found athttp:/ Jwww ..geodesic. com

Mostly Copying collectors based on Joel Bartlett’s work have been used by researchers,
mostly associated with DEC, including David Detlefs and May Yip [Bartlett, 1988; Bartlett,
1989a; Bartlett, 1990; Detlefs, 1990; Detlefs, 1991a; Detlefs, 1991b; Yip, 1991]. The
collector is aveilable from DEC at ftp://gatekeeper.dec. com/pub/DEC/ccge/. The
incremental, generational compiler for SRC Modula-3 also uses Mostly Copying [Cardelli er
al., 19921, _ .

The efficiency of ambiguous roots collectors is considered by John DeTreville, Ben Zorn,
David Detlefs and Al Dosser in [DeTreville, 1990a; Zorm, 1992; Zorn, 1993; Detlefs et al.,
1093; Detlefs, 1993; Detlefs et al., 1994]. Problems expetienced with the conservative garbage
collector arereporied by E.P. Wentworth and Daniel Edelson in [Wentworth, 1990; Edelson,
1993a; Boghm, 1993). Code-generator safety matters and proposals are discussed by Hans
Boehm, David Chase, Amer Diwan, John Ellis and David Detlefs in {Boehm, 1991b; Diwan,
1991; Bochm and Chase, 1992; Ellis and Detlefs, 1993],

Garbage Collection for n++w

Tt is often said that the greatest strength of Ci+ is its IC inheritance and’ ithat its mﬂmmﬁmmﬁ '
weakness is its C inheritance, This legacy is particularly predominant in the language's , ;
approach to memory management. Object class declarations may define waanaznaw and

_ destructor methods. The constructor method is called when an object is instantiated, typically

" to allocate storage and to initialise the object’s data ‘members. It may have other side-effects,
for example acquiring rosources such as window handles or opening files. The object’s !
destructor is called when the program terminates if the ohject is static; when it goes out : , ’

A . of scope if it is an’ automatic object; or when. delete is called on an object in the heap.
Destructors are used to perform any clean-up or finalisation actions that may be necessary,
. and to deallocate the object’s storage. Typical finafisation actions invoked by the destructor
: might be to-close any open files, or return window resources to the window manager.
) Garbage collection is not a part of the C++ language [Bllis and Stroustrup, 1990G].
Indeed it is a highly controversial issue and many Ci+ programmers ‘strongly oppose
the inclusion of garbage collection as part of the language standard. Nevertheless, many
developers have found it either convenient or essential to include their own antomatic storage
reclamation mechanisms in their applications. Technigues for sarhage collection are explained

, in several C4+ textbooks (for example, {Stroustrup, 1991; Coplien, Eomb. Often’ these
- F storage managers are based on reference counting: well-known examples include the Adobe - M
o e bl o~ Phptoshop image manipulation system and the InterViews graphical user interface toolkit. . . B e
‘ There are. two grounds that are usually affered for; opposing the inclusion of garbage , !
collection in the language standard: efficiency and complexity. Many Ci+ PrOgrammers. ; R
especially those froma C background, are reluctant to release control of BoHoQ.Emumm”oSgw : , i
to a collector, The use of garbage collection is not perceived to be necessary — particularly e
when storage debngging tools are available — and garbage collection is thought to demand o : !
an-unacceptably high mn-time penalty. Tt is also widely believed that it would be too complex . P :
to introduce garbage collection-in a way that would not compromise existing code, nor.overly “ ,
L constrain programming style. Theunderlying EEcmouE,‘ of Ct is that programs should only - Pt
" ; - = payforthe facilities that they use: Fhe coroliary is that programmers do dom wish to pay fora - :

oriented Progr

254 : - GARBAGE COLLECTION FOR C++

garbage no:anﬁo&maamm?na {0 be unnecessary. In this chapier we shall examine whether these
belicfs are justified — we believe they are not— and examine garbage collection systems that
have been proposed for C+++. One thing is clear, however: garbage collection for C++ faces
hurdles that are both technical and political. .

10.1 Garbage collection for object-oriented languages
Garbage collection W, an integral featurs of many object-oriented languages. Smalltalk

[Goldberg and Robson, 1983], Eiffel [Meyer, 1988] and o_uw.mnw.ononﬁma flavours of Lisp
incorporated garbage icollection from-the outset. Indeed, Meyer places antomatic memory

management in ihird place in a list of ‘seven steps to object-based happiness’. Only systems

that reach the last step.are, in Meyer’s opinios, worthy of the name ‘object-oriented’.

There is considerable svidence that garbage collection is.an effective software enginsering
tool its use relieves the programmer from the burden of discovering memory management
errors by ensuring that they cannot arise. Studies such as [Rovoer, 1985] suggest that a
considerable proportion of development time may be spent on bugs of this kind. That.object-
amming languages typically allocate a greater proportion of program data

structures on the heap than their conventional counterparts, and that the data. structures
they generate and the problems they are ussd. to fackle are often more complex, can only
increase the-intricacy of-explicit-storage: EmummanE..m:u.mmﬂm.mne.oni::mnmﬁom the need.
for- garbage collection in object-oriented languages. This project originally chose Cr+ as
the implementation language, but the difficulties encountered with C++ grew over time to
the point where the éngineers felt that problems could only-be overcome by designing a
new language, Java. One important feature Jacked by C++ but included in Java is a garbage
collector. .

Today there are useful tools available to assist with checking correct usage of heap.
memory: examples include CenterLine [Centeriine, 1992] and Purify {Purify, 1992]. The very
existence of toals of this kind reveals the importance of correct memory management and the
difficulty of gettingitright. However, auch tools are only practicatly useful as debugging aids,
since they impose a considerable run-time overhead on programs (the CenterLine interpreter
by a factar of fifty, the Purify link-time library by a factor of two to four [Ellis, 1993]).
Furthermore, tools do nothing to simplify the interfaces of complicated systems, nor do they
enhance the reusability of software components. Considerable effort must still be devoted to

correcting the implementation or, even worse, the design after a leak or a dangling reference

is discovered. : :

Object-oriented programs consist of sets. of abstractions encapsulated in classes. Classes
communicate with-each other through well-defined public interfaces. Object-oriented methods
make two claims to improving the development time and maintainability of code. Firstly
it is argued that real world systems comprise & number of interacting objects, each with
their own internal state and able to respond to certain external stimuli. Object-oriented
design can provide closer models of these systems. Secondly, software engineering s
about the management of complexity. Object-oriented programming separates specification
from implemeniation and provides a structured method for reusing code, thereby producing
programs that are easier to develop, maintain and extend. . .

REQUIREMENTS FOR A C++ GARBAGE COLLECTOR - 255

Reliable code should be understandable. At the level of the module, this means that a
programmer should be able to understand its bekaviour from the module itself, It should not
be necessary to understand the entire program before being able to develop.a single. module:
Tn the worst case, it should only be necessary to examine a few neighbouring modules. This is
clearly essential for large-scale projects involving teams of developers. Encapsplation restricts.
the effects of changes to & class to that'class. The rest of the program should not become-
incorrect bécause of a changé to a single class. This property permits extensible programs
with easier maintenance, Classes that are extensible in this' way may be composed more easily
with other classes: the class is reusable in different contexts. One goal is to be able io combine
software components in the same way as hardware components [Mcllroy, 1976]. This requires
that class interfaces should be simple and well-defined. Meyer offers five principles including
() “every module should communicate with as few others as possible’, and (i) “if any two
modules cominunicate at all, they should exchange as little information as possible’ [Meyer,
1988]. S :

We do not argue that garbage collection is mandatory for every application. However,
applications with sufficient complexity of ownership demand additional care in the memory
management of those objects. Nagle suggested that the problem of memory, management in
complex systems may only be solvable without gatbage collection if programs are designed
with correct Temory management as their prime goal [Nagle, 1995]. While global dynamic
memory management may be efficient and appropriate. for monglithic systems built from
hicrarchical designs and stepwise refinement, this approdch to design seemsiat odds with the
philosophy of object-orientation. 1t conflicts with the principles of minimal communication
and clutters interfaces. If objects are to be reused in different contexts, the new context must
understand these rules of engagement, but this reduces the freedom of composition of objects.
Garbage collection, on the other hand, uncouples the problem of memory management from
class interfaces, rather than dispersing it throughout the code. This is why it has been a
fundamental component of many object-criented languages. However, it does raise its own
issnes in the object-oriented context in general, and for C++ in particular.)

One is the question of reusability. Developers may provide their own garbage collection
mechanisms through libearies but this leads to a class by class implementation, and raises
the question of how components managed by different collectors are Lo be composed. In
particular, how should cyclic garbage that includes data managed by more than one of these
classes be handled? A general garbage collector, provided as part of the language, would
be a more robust solution, Secondly, C++ was designed to be run-time officient. One of its
guiding principlesis that code should not pay the costs of facilities that it does not use. In

- particnlar, code that does not use garbage collection should not be penalised by the presence -

of a module that does. The reverse shonld also hold: the efficiency of memory management

of a garbage collected module should not be compromised by incorporating it into a larger

program, providing that the complexities of the data structures used do-not;change. This has - -

implications for conservative garbage collection techniques. :
Thirdly, cbjects are often required to perform clean-up actions before they are destroyed.-
The most common finalisation action is to return storags to the run-time systemmi-In'a garbage
collected workd this is not necessary but other less common but still invaluable clean-up
actions Temain nepessary, for example closing open files. How will these clean-up actions

“ - be executed if finalisation is only invoked by the garbage collector? Will clean-up-no-longer

be synchronous with the client program? Daoes this miatter? i

_ number of proposals to improve G+

256 i GARBAGE COLLECTIONFOR G

40.2 Requirements for a C++ garbage collector

The most thorough wm,omoﬁ_ for the inclusion of garbage collection into C++ is the Ellis-
Detlefs proposal [Ellis and Detlefs, 1993]. As well as specifying a language interface to
the collector, it also offers a safe subset of C++ that ensures correct usage of the collector.
Although restrictive, this subset is optional: it is designed for use in those parts of a program
in which the programmer wishes Lo get automatic protection from storage bugs. Ellis and
Detlefs recognise the reality of the C+-+ world: changes to include gerbage collection must be
evolutionary rather than revolutionary. They identify five constraints:

‘s Neither programmers nor compiler vendors will accept too many, or too major, changes to

the language.

Programmers will not welcome changes that affect their methodology or their coding style

~unless they can ses immediate and tangible benefits. Vendors will not wish to'change either

their compilers or the representation of objests unless, they see a clear demand from their
customers. It is also worth remarking that the ANSI standards committee Teceives a great

o Any garbage collected code must coexist with .components that do not use garbage
collection.

Even though it is a comparatively young language, C++ has a legacy probiem. Much
code has already been written without garbage collection, some.of it in “foreign’ languages
such as C. It would be quite unrealistic to expect these libraries to be rewritten or even to
be recompiled. In many cases, Programiners do pot have access to library source cods and
without access there is no way to verify that the library follows the rules for garbage collector
safety. Bven with access, the effort involved in checking their safety would be prohibitive.

A corollary of this is that antomatically and explicitly managed heaps should coexist.
Ellis and Detlefs also point out that making all objects garbage collected would change the
semantics of destructors if this caused finalisaion to be asynchronous to the user program.

» The rules for safe mﬁvmmm collector operation must be defined.

Violating safe-use rules, for example by deleting an object prematurely, can lead to hard to
frace errors even in comparaiively .ah_u_npmbmzmmmm.:wm C; the complexity of C++ has been
compared unfavourably with that of Ada. Although garbage collection reduces the incidence
of such errors, cade that accidentally violates garbage collection invariants can be even harder
to debug. Garbage collectors dstermine the accessibility of objects by pointer reachability
but, as we saw in Chapter & where we discussed conservative garbage collection, preserving
pointer reachability of active objects may constrain either coding practice or code generation
or hoth. Source cads may disgnise pointers (the canonical example is implementing pointer
reversal by XOR-ing pointers), and aggressive ‘optimisers may not guaranies that there
remmains an abject code pointer to each object reachable from source-level pointers.

s Garbage: oocmnﬁm programs should co.@ozmc—n..”

CONSERVATIVE GARBAGE COLLECTION , j [25T

The results'of a program must be the same on any comect C++ implementation.

» Garbage collection will not be widely accepted unless m”_,. is efficient. oo
The main fear of many programmers who do not use: garbage collection is that it wonld
slow their programs down considerably. However, Fllis and Detlefs argue that programmers
will sacrifice some run-time spesd or memory overhead in order to eliminate storage bugs and
to reduce development time {or to let the effort be spent elsewhere). One might wish to add
ather desirable properties: .

= The programmer should not be HBEH&»O ﬁnm&mn wumow.Bmmob otherthan menmﬁum which

objects should be subject to” garbage collection. In particular no information about the
format of collected objects, such as pointer finding methods, nor about which variables
are roats, should have to be supplied. Provision of such detail is error prone and such errors
can be hard to trace. . :) : ; ;

« In the absence of garbage collector safe code-generators, the collector should have & strategy
for coping with aggressive optimisers. : .

¢ Finalisation should be supported. “

We now examine & number of strategies for garbage collection, and 'implementations
of garbage collectors, that have been proposed for C++ in the light of these consiraints
before returning to the specific proposals made by Ellis and Detlefs. Finally, we examine
the interaction between finalisation and garbage collection. - M

10.3 In the compiler or in a library?

At the implementation level, proposals for parbage collection require either changes to
compilers or the provision of a garbage collection library. Both techniques have- their
advantages and disadvantages. Modifying the compiler would muo&an_ opportunities to
enhance both, the éfficiency and the safety of garbage .ngmomo:.l.Hro.noBuﬁmﬁan generate.
code that the programmer would otherwise have to write, improving convenience and at the
same Gime reducing the chance of errors. Type information could be usedito assist accurate

-anid efficient garbage collection, and any advantages gained from compiler changes would
_ benefit all code, including that which an application does not generate directly. Fixing the

code generator to respect garbage collection safety rules would also benefit:several collection
algorithms..On the other hand, compiler changes would-increase the complexity of these
already complex pieces of software. On 2 pragmatic level, changes to compilers would not
be welcame to compiler vendors, If the garbage collector was implemented in & library, its
interface with applications would occur through the existing lan gliage. Use'of d library would

also make dissemination of the collector easier and, hopefully, widespread use of reasonably

efficient collectors would increase the chance of garbage collection being accepted as an
essential part of the language. e ¥ ;

i
!
]
P

258 GARBAGE COLLECTIONFOR Ci-+

10.4 ‘Oo:mmrwmm?m garbage collection

" Chapter 9 nxm.nmsm.m, the Boshm-Demers—Weiser conservative coflector for C and Ci+ In

some detail [Boeshm and Weiser, 1088; Boehm, 1993]. This collector fits weli with the
constraints identified by Ellis and Detiefs, Ti requires no changes to the languags, and makes
only one restriction on coding style; that is, that a pointer should not be converted to an integer
in a way that might disguise the pointer from the.collector. This practice is not portable in
general, but it is legal and useful. A good example is a hash table indexed by pointers, although

. this particular construction is safe. bacause a hash key would not be used to reconstruct the

pointer. However, safe use of this conversion cannot be checked automaticaily.

Unforturiately this constraint may compromise the collector’s coexistence with. existing
code which is not required to obey the collector’s safe-use rules. The collector is equally
vulnerable to aggressive optimisers that may temporarily destroy references to active objects.
OoE@Hm_me safe operation can only be guaranteed even fof portable, strictly conforming
programs by enforcing safety in the code-generator. The collector also provides some support
for finalisation; we discuss this later. Nevertheless, the Bbehm-Demers—Weiser collector
is usually efficient and competitive with manual memory management, although some

programming styles were problematic for early versions of it (see: Chapter 9).

10.5Zomn_i.Govﬁ:m._ﬁo:mnnm.o:‘ e s e e

The Mostly Copying family of collectors developed by Bartlett and others {described in
Chapter 8) are also suitable for use with C+# [Bartlett, 1980a]. Bartlett’s collector uses two
generations, with en masse promotion at each minor collection, and the remembered sat is
maintained by catching SEGV faults from the operating system's memory protection hardware
(the cost of this approach was discussed in Chapter 8). A trace-and-compact collector can be
used for majar collections. o

The C++ version of the collector differs From the version presented earlier in the way that
it locates pointers. The griginal Sollector required that object headers stored a count of the
number of pointers to heap objects that the ohject contained, and that these objects were stored
at the start of the object. This organisation is restrictive and has a number of disadvantages. In
particular, such grouping mnnnEmmm aggregates that confain structures, or maiching program
structures to those in a file or in device registers. Tt also interferes with fast field-lookup for
jnheritance. The Ci+ version of the collector replaces the pointer count with e user-defined
callback method that locates pointers. ’ o

A class is recognised to be aliocated in the garbage collected heap hy a GCCLASS
stafement in its declaration, As a simple example, a declaration of a tree’ of int is shown
in Algorithm 10.1 on the facing page. :

The Gocrase macra defines new and delere methods for-the class. An object of class
Tree is allocated in the normal way, for example:’ i

node = new Tree(l);

The frat instantiation of an objectin this class registers a callback Tree: : GCRoInters with
the garbage collector: Delete becomes a null operation. The callback, Tree: :GCPointers,

e L Jpel Bartlett; personal communication.

MOSTLY COPYING COLLECTION ” . 259

cldss Tree { . m

T publie: . k

, - Tree* left; :

- Tree* right; : ;

int data;) I

" Tree(fnt x); ;
GCCTASS (Tree) §

¥

Algorithm 10.1 A iree of int class managed 3 Mostly Copying collection,

i

is defined. with theé macro GCPOINTERS:

GCPOINTERS (Tree) { : |
gepeinter (1&ft) ;
gepointer {right);

} | | o

The callback i used by the garbage collector to call gepointex for each pointer to
the garbage collected heap that the object contains. User-defined pointer locating methods
eliminate the unsure reference problem for discriminated unions since the programier ¢an
write GCEointers to use the discriminant tag field to find pointers. |

Fiterman points out another nice example of how user-defined marking rontines.can provide
more accurate collection than other type-accurate methods [Fiterman, 1995]; Let us reconsider
the problem of the stack implemented as an array posad on page 12 of Chapter 1. To recap,
the abstract and the concrate representations of the siack differ: In particular, it is important
that no element of the array above the top of the stack be traced. To avoid excess retention,
a type accurate collector would require elements of the array beyond the stack to be cleared,
but even so the collector would still visit each element of the array. A user-defined pointer-
locating method can be writien that is aware of the stack behaviour of the array and visits only
elements in‘the live area. e i i :

The major disadvantage of user-defined mark routines is that they can lead to errors. Bartlett
specifies rules that must he followed to invoke pointer location methads correctly, but observes

that some users have found it difficult to defing correct macking routines®. The collector also

does not support multiply-defined virtual base classes, since it cannot know about hidden

- pointers constructed by the campiler, One solution to these-problems might be to. abandon.

user-defined pointer location methods and to use conservative heuristies in the heap as well as
for roots, and indeed users can choose to run Bartlett’s collector in such a mode.

‘Generating pointer finding methods automatically) .

An alternafive is to generate pointer finding methads aitomatically. Unﬂnﬂ.:ﬁ implemented

a collector that éxtends Bartlett in this precisely this way? [Detlefs, 1951a]. Detléfs used
. | i

2 Deilefs’s collectoris also concurrent but we do riot consider this here:

Ceq e T L

260 = w GARBAGE COLLECTION FOR C++

2 modified version of the cfront® pre-compiler to insert an object descriptor into each
heap object header. The pre-compiler replaces each call to new by a call to the garbage
collector’s storage allocator, GeHeap: :alloc, ‘which expects an object descriptor as its
second argument, Calls to delete and other destructors are removed. There are three forms
that a descriptor might take:

Bitmap: asingle word in which a 1 corTesponds to a word in the object containing a pointer.
Bitmap descriptors cannot be used for objects with unsure references — words that
might or might not contain a heap pointer — and pointers must only oceur in the first
bitmap-size words (for example, 32 words assuming 4 one-word bitmap and a 32-bit
architecture).

Indirect; a pointer to a byte array that encodes sure and unsure references, and pon-pointer
values. Arrays can be represented compactly by indicating repeats.

Fast indirect: Indirect descriptors may be siow to interpret so a faster form of representation
using an amay of integers is usually employed. The first integer is a repetition count for
the rest of the descriptor. Subsequent values indicate the number of non-pointer items
to be skipped to reach the next pointer, with unsure references represented by negative

- — yalues: The array is terminated by zero. . N :

___ The example in Algorithm 10.2 illustrates how. %ﬁ%ﬂ@ﬁﬁﬁ«ﬁ&.

struct X {
int i;
char* strr
float* fp;
ing 3

I3

struct ¥ { .
X wvector([3]:;

union {
int n;
char* §;
1

Algorithm 10.2. Unsure references.
Structure X can be represented by the bitmap descriptor 0x6 — onky the bits correspending
to str and £p are set. A bitmap cannot be used for structure ¥ as it contains an, unsurs
reference, but it can be described by an indirect descriptor: , :
[REPT 3, SKIP i, SURE 2, SKIP 1, RPT-END, UNSURE I, DESCEND]
or afastindirect descriptory . B
[z, 2, 1, 3, 1, 3, 1, -2, 01

® AT&T C+, version £.2.1.

aneseer o TR

SMART POINTERS =~ - __ W : 261
Interfor poinzers are handled in the same way as in Bartlett's algorithm, that is, through an
allocation bitmap with the bit set that cormesponds to the first word of each allocated cbject.

Detlefs’s collector has not been thoraughly tested on a wide range of large-scale C++
programs, but initial Tesults are emcouraging. Garbage collection overheads for his test
programs ranged from 2 percent to 29 percent, depending on parameters such as the amount
of retained storage and the distribution of object lifetimes; as might be expected. However,
extensive use of unsure unions has been found to lead to the retention of excessively large
amounts of storage. It may bepossible to remedy these leaks with more sophisticated handling
of potential pointers, such as Boehm’s black listing technique [Boehm, 1993]. :

Bartleti’s and Detlefs’s collectors share many properties of the Boehm-—Demers—Weiser
collector, They require no language changes; although Detlefs’s collector requires the use of
a pre-processer to create object descriptors, it does not make any change to thé syntax of'the

- langnage, Neither collector provides automatic safety chetking, and both are velnerable to

agaressive optimisers. They appear to be competitive with explicit allocation. On the: other
hand, the semiantics of objects is-changed by the removal of destructors and calls to deléte,
with mostly copying collectors currently providing no suppori for finalisation at all. Theyare
more restrictive than fully conservative collectars and coexist less easily Emﬁ.bou-o@nm,ﬁm
code; it is generzlly not safe to pass objects in the collected heap to uncollected librarics as
the address of an object cannot be assumed to be immurable: One solution to this problem is
to copy collected objects into non-collected escape lists ‘a,nmoHn‘mBmwum them to the library.

" However, this returng the programmer to the problem that garbage collectio is Supposed to

cure: it may be difficult to know when to remove objects from escape. lists;: and: leaks and
dangling references may arise. Bartlett’s collector is also vulnerable to errors:and omissions
in pointer locating methaods. , i

10.6 Smart pointers

Several researchers have investigated the use of smart. pointers to implement garbage
collection, and: this technique appears-to be widely practised (for example, [Coplien, 1992,
Counted pointers] or [Madany et al., 1992, OhjectStars]). Template classes Or pre-processors
may also be used to ease implementation [Edelson, 1992h; Detlefs, 1992]"Smart pointers
typically overlead theindiréctian operators -> and-*, either'to providereference counting-or to
notify the collector of roots. Otherwise they ‘imitate” the behaviour of the raw pointers dirsctly
supported by the compiler. Unfortunately smart pointers and raw pointers: have different

~ semantics. Bdelson highlights the limitations of this approach [Edelson, 1952c]. '

|
Conversions without a smart pointer Em_.m..n_._w. e

Consider the simple class hierarchy shown in Diagram E.F on the following page. Qmwmug B
and ¢ are derived from 2, and D is derived from €. Imagine that smart pointer classes Pa, P,

““5e and pa are defined, corresponding fo gach client class. Suppose in the fitst instance:that.

there is no inheritance relationship defined between these smart pointer classes.

-~ —Standard conversions of raw poiiters provide implicit conversions from derived classes to

PR I
4
!

GARBAGE ODﬁH.m.QHHOZ‘mOqu%.T

© Diagram 10.1 Client class inheritance hierarchy. -

both direct and indirect base classes, including both D* to c* and D* {0 A%, Programmers.
must emunlate these raw conversions with smart pointer conversions. They can choose 10
provide conversions from every smart pointer class either (a) to all the smart pointer types that
correspand to its referent's bass types, or (b) only to the types that correspond to its referent’s

direct base types. If only direct-conversions are provided, there: is no conversion from £d 1o
Pa since user-defined conversions cannot be chained together; unlike raw conversions. If all
sonversions dré provided, an ambiguity arises-since no user-defined conversion is preferred

over another. Suppose a function £ is Jeclared for an argument of class Pa or for e

void £(Pa pals ..
void £(Pe pcls

Which conversion should be invoked if £ is invoked with an argument of class pd? To reflect
the preference of wms_ pointers for the direct conversion, an explicit cast £{Pc pd) must be
used. Ths alternative of banning such widening conversions for Ci-+ would be completely
impractical. :

Multipié inheritance

An alternative is to define a parallel smart pointer class hierarchy but this-Taises the guestion
of how to deal with the 1aw pointer data in each class. If each smart pointer class in the
_hierarchy defines a pointer member then any agsignment to a smart pointer must update all
the comporient base pointers of the class. Although this emolates the stindard-Gonvetsions
and supports multiple inheritance, it is inefficient. If, for efficiency, a smart pointer class: is
to contain just a single pointer membe, then an abstract virtual base class must be defined to
hold the pointer (see Diagram 10.2 on the next page). .

This organisation reflects the conversion rules of raw pointers, both direct and indirect,
and is efficient. Unfortunately. it daes mot work with multiple inheritance (or some
{mpiementations of single inheritance), since one of the sub-objects, 2 of B, must have a
don-zero offset from the start of the derived object, c. The c* to B* raw pointer conversion

redivects the pointer fo the statt of the B sub-object by adding an offset: The corzesponding -

smait pointer conversion uses the periveds to Bases rule; this rule simply reinterprets the

e

b e

"t Base** is prohibited i’ C++ because it atlows incorrect comparison or' assignment of o “

SMARTPOINTERS 7~ 777°7 7" 7 o h E .wmm ” _

% e

1
¥

- Diagram10.2 --Smart pointer and client class inheritance Eﬂﬁo&a? .o : s i

valte of the smart pointer to C in the virtnal base class as ajpointer to B. These smart pointers
cannot be converted to base class painters if the sub-object has a non-zero offset.

Incorrect conversions ‘ . ; o : .

Both the last two schemes atlow an incorrect, implicit conversion, The conversion Darived**

objects of unrelated classes that share a common base class. With a smart pointer hierarchy, ,
the smart pointer classes.are related Ea the conversion is between Derived* and Base*, and W
hence permitted by the compiler, only to fail at rup-time. ; . m
. : L) ; I

I

Some pointers cannot be smartened S

gmbum ﬁ+._. am.E types and expressions implicitly use raw pointers that cannot be smartened.

The implicit this pointer cahnot be redeclared as smari; and reference variables are o
represented by machine addresses. : 1 , “

! j '
|
i

nobwﬁm:n_ho_wn:m..—...D.mznmnmu..,“ FEE ‘, - o

Smart pointers do not reflect raw pointer conversions (o const 0f volatile transparently. .
Raw pointers can be used in declarations in two ways: .- - - - - - ; - , 3

—The referent *p tris const il
—-The pointer ptx'is const ,

canst T* ptry
T* const ptry

1
i

but smart pointers can only be used to declare pointers of the second kind: WEE.H immutable
pointers const PEr® ‘ptr. Attempts to circumvent this problem with templates, defining.

ptroTs and Prr<const T>, Will not succéed as the template simply declares two distinct
types — there is no implicit conversion between them. Edelson suggests implementing const:

o poiriter conversions by making the smart T* class derive from the smart const T+ class (see

ﬁwcmm._mp 10.3 on the following page).

i
+ 1
'

i
1
|
4 ; i
i
4
}

““— orfor If the leaked pointer becomes the arly reference 10 an objéct

. .- -pointer will have the.wrong value.after a. copying garbage.collectionm-. —— -

% : GARBAGE COLLECTION FOR: G5

264
class CPErT { —replaces const T*
protecteds: o :
union { T* ptr;
' - const TF cptr;

}s

elass PLrT : public cPerT { .i. }i ——replaces T*

; Algorithm 10.3 A smart const pointer class.

Smart vom:nqu,_mmrm

Finally smart pointers may leak raw pointers to other components of a program, for example
through this pointers. Unconstrained use of such leaked raw pointers leads to two types of

~the.garbage collector
will recyele it regardless, Teaving a dangling pointer. Even if the object is preserved, the raw

Kennedy pointed out a related problem [Kennedy, 1991], using as an example the statement

02 = Ol->makeCopyi)->transform(};

o1 and 02 are smart pointer variables, and makeCopy and transform copy and. transform
the object that they 4re given beforé returning a smart peinter o it. The compiler will create
a temporaTy smart pointer object to hold the result of makeCopy. The result of the next ->
operator Teturns a raw pointer which is passed to transform. Since the smart pointer to the
copy of o1 is no longer used, the compiler can ‘destroy it, but unfortunately it was the only
smart reference to the copy, which the garbage collector can now reclaim! Transform has
nothing to transform. However this problem is resolved by requiring that temporary objects
shall only be destroyed as the last step in evaluating a ‘full-expression’, i.e. an expression that
is not part of any other expression [ANSIT-C++, 19951

Kennedy avoids this error by using accessors in his OATH system. -Accessors lie
somewhere between pointers and. references, but rather than overloading ->, they use *.°
to access objects, thereby side-stepping this problem. The accessors form a parallel type
hierarchy; duplicating all’ the externally accessible- functions of their client types, in which
each accessor contains a pointer to a client chject as its only data member. Unfortunately they
share with smast m.o,r.;ma most of the other problems of multiple inheritance — OATH uses
only single inheritance — and incorrect type canversion.

In summary, smart pointers have a number of theoretical disadvantages. They cannot
transparently HoEmnn raw pointers, there are a number of safety concerns which cannot be
checked automatically, they coexist uneasily with existing libraries, and they are vulnerable
to aggressive cumhmmmmou., Ginter makes some suggestions to improve the feasibility of smart
pointers but these H@nﬁn changes to the language [Ginter,-1991]. Nevertheless, there have
been many suggestions for their use and we consider some of these:below. T

IR
1
f

Smart pointers are used for garbage collection in one of two ways. The most common

of these roots. ,

SMARTPOINTERS _ : : 965
Smart pointers, and reference counting

technique is to use them for reference counting, having the overloaded indirection operators
manipulate reference ‘counts in the client objests. For example, the ATX Ci+ and OS/2.

. CSET?2 library provide an TRefCounted tlass. Pure reference counting systems suffer from.

the well-known disadvantage that they cannot reclaim cycles. However, thers is debate over
whether this actually matters in practice. Many authors uow: oxnt the prevalesnce of circular
structures while others point to equally subsiantial examples of programs that contain no
cyclic data, Examples of apparantly cyclic references, such as frees whose nodes cach keepa
back pointer to the toot, can be made acyclic as faras memory management is‘concerned by
ignoring some pointers (these are often called weak pointers). However, E.oﬁam.ﬁ.n pointstto
wealcen may not be straightforward. Designing systems that can: only cope with agyclic data
{albeit modulo. weak pointers) necessarily leads to a module-by-module approach to automatic
storage reclamation. . W) .
The second technique uses smart pointers to inform the garbage collector of the locations
of toots in the heap. Such maps ate usually used either to indicate which locatiors on the stack
or in the static area may contain roots, or to pravide indirect dccess to objects in the heap. The
advantage of the first method is that it does not addia level of indirection to the activities of the
user program, Ts disadvantage is that it may not always be possible to identifyithe addresses

A simple reference counting pointer

A simple implementation of reference counted pointers might provide & new ciass to handle
memory management (see Diagram 10.3 on the: next page) [Coplien, 1992]. This avoids
changing the representation of the client class. All counted feferences to the clent are made:
indirectly through the wrapper CountedPtrRep which hoids a reference count and a pointer
to the client object. The counted pointer constructor either creates, initialises and attaches.a
new CountedPtrRep for a client object, or increments the reference. count.in an existing
CountedptrRep. The destructor decréments the reference count as expected, deleting the:
CountedptrRep and in turn the client object if the count is zero. The assignment operator
is also overioaded to handle reference counts correctly. It is also possible to supply a cast to
provide more efficient, hat Giinanaged, access to the client object. This raw pointer and any
other pointers derived from it must only be used where it can be guaranteed that the original
srnart pointer is. preserved. This. is not checked and such usage is dangerous. Safer access to
the client is through duplication of its public methods.

Apart from the deficiencies of smart pointers described above, this implementation has
other shortcomings. The client class is known outside the smart pointer representation: this
could lead to incorrect nsage. This problem could be removed by making the mmmﬁ a private
member of the wrapper. The drawback of this is that changes to the client would require.
recompilation of the counted class, Reference counting is also expensivein any M&Hn:BmSunnm
but counted pointers add further indirection. The: cost of allocation and deletion of counted
pointers is also greater. A mare efficient way to handle reference counts is E use Deferred

_Reference Counting which we. discussedin Chzpter 3 [Deutsch and Bobrow, 1976]..

M 1

1

L

SMARTPOINTERS = = '~ - W 267

) 266 !
W Each Wrapper<T> also contains a static reference conteining map used Uw the garbage
- CountedPir collector to locate heap pointers. These maps are automatically generated by the smart pointer ,
rep OOE:mn_u:mmn\v Pl constructor. Implementation of the maps requires adding private members to-Btrany 50 that |
rep , it can operate either in an initialising state or in its normal state. In its Emwmwim state, the - ,
CountedPtr count 2 constructor causes the offset between the address of the Ptrany and the start of its container

to NIL. Bach ptr created during the construction of an object determines its offset within the
~ object and records this value in the map. Interested Teaders should consult [Detlefs, 1992] for

class to be calculated and stored in the map. In its normal state, the pointer is simply initialised . . |
Diagram 10.3 A counted pointer representation of class T. - further details. —

o There are 2 number of disadvantages to Detlefs’s framework. Some manmE_ constructions
are awkward, in addition to the general problems of smart pointers raised by Edelson. A
further smart pointer class template has to be used for dynamically-sized arrays, circular
definitions require some trickery, and there are restrictions on the kind of class that-can be:
used to instantiate a smart pointer class. : .
The garbage collection algorithm fmplemented and measwred by Detlefs was a version
of deferred reference counting. The members and methods required for this ialgorithm are
contained in the WrapperBase class. Deferred reference counting overcomes the problem
identified by Kennedy becanse it does not reclaim objects with zero Hmmannﬁwm count until
it has checked that they are no longer pointed to from:the stack or registers. Detlefs's
algorithm scans the stack and registers conservatively in order to recognise Emmm raw pointers
to collected objects. This algorithm also has shortcomings, however. Firstly, two smart pointer

E]

Smart pointers for flexible garbage collection

Detlefs investigated the use of smart pointer class templates io provide flexible support for
garbage collection [Detlefs, 1992]. The chief benefits of his system are that it does not require
the programmer to supply any information about the format of garbage collected objects,
and that it supports finalisation. His scheme is also fexible in that it does not prescribe
any particular garbage collection algorithm. e implemented and measured a conservative
deferred reference counting garbage collector but his method should be applicable to other

~partialiy type-accurato algorithms. + e ”
Detlofs’s smart pointer hierarchy is rocted in 2 class PtrAny (analogous to voidr for

<= raw pointersy. The- equality operator is defined in this class-so-that smart pointers may be b .)
compared with a single NIL value rather than a separate one for each client type. The smart o class templates must be used rather than one, in order to handle non-counted stack variable

pointer class for a client class T is defined by a templats that (at least) overloads copy, 3 types*. This scheme:is safe if the latter type is used exclusively for automatic variables, but
assignment and indirection operators. The idea is that all variables of type T* are replaced - e there is no checking that usage is correct. Secondly, the performance of the deferred reference
by ones of type Pre<T>, Pointer afithmetic is deliberately not defined. ' counting algorithm was poor, af least on the programs he measured. It remains to be seen

= whether performance would ke improved if another collector were to be used..

Deilefs encloses garbage collected classes in wrapper classes that contain all information. :
necessary for garbage collection, such as reference counts, mark bits ot virtual marking i . . |

functions (see Diagiam .5.\6. The new operator is n.,<m&o.mmmn in SHN@UWHA_H_V to provide ”_. Smart pointers .mm:.nq.m.nm:m garbage col _..mnnm.u: " “”

a garbage collector specific storage allocator. All objects in the heap are instances of class - i i m
Wrapoer as far as the garbage collector is concerned, although different collectors will Tequire 5 Edelson uses smart pointers to implement a garbage collector based on Emﬁ?m%nnm [Edelson,
different implementations of ‘the WrapperBase class, Wrapper<T> may also implement . 1992a; Edelson, 1993al. As an aside we note that. earlier versions of Edelson’s collector were
some virtual functions of WwrapperBasein r-specific manner. Both classes have empiy virtual CE based on copying [Edelson, 1990; Edelson and Pohl, 1990]. However, there is'a fundamental
destrictors in order to allow the collector to destroy wrappers and their client objects: delete 1t flaw to this approach, as he discovered. Copying collectors Tequire that mE&% pointer to an
WrapperBase* will invoke the destructors for the Wrapper<T> and hence for T (if it has i object be identified and modified. This is in contrast to mark-sweep collectors which enly
one). , : : TOE Tequire that at least one pointer be identified. In order to modify all references, the collector
P o T T T S R -~toust take the address 6f this pointers, but this is illegal in' C4-+. Mostly copying collectors
’ . : are not affected by this restriction since they scan the stack rather than HBEHW the addresses
Ptr<T> Wrapper<T> of roots on the:stack to be registered, but type-accurate capying collectors cannot be written.

A copying collector must be either partially conservative or implemented in the compiler:
Fdelson’s mark-sweep collector uses smart pointers to insert or delete the address of each
root in a table of root cells (see Diagram 10.5 on the next page). Access: to the objects -
=~ - - referenced by these roots from the program is indirect through the oot table. A separats - T

WrapperBase

o e 4-filson similarly distinguishes smart pointers that live on the stack from other smiyt pointers fahis
hard real-time gerbage collector [Wilson and Johnstone, 1993]. . - Co _

‘Diagram 10.4 Detlefs’s Prr and Wrapper classes.

" 268 “ GARBAGE COLLECTION FOR C¥+

root table and marking function is associated with each type, so that the appropriate marking
method can be determined by compile-time overloading. The mark phase examines each cell
in the roat tables, marking its referent object and its descendants. Objects that are members of
a class hierarchy require an additional call to virtual fenction in arder to be properly marked
according to their dynamic type. S

Since not all roots have lifetimes that are LIFO with respect to other roots, the root tables.
cannot be organised as stacks. Instead, the roat table comprisss a list of arrays of root calls
throngh which a free-cell list is threaded. Bach cell is a single word containing either a direct
pointer to a client gbject or the link to the next cell in the free-list. To avoid conditional
branches when allocating cells, the last page of the root table is read-protected: when the
fanlt oocurs a new array is acquired and linked into the table. Unfortunately this means that

although root tables can grow, they can never shrink, This could cause fragmentation problems -

as pathological situations can be imégined in which the Toot table for one type grows. very
large before becoming largely empty, and then the table for another typs grows large. None of
the unused space occupied by the first table would be available to the second unless one of its
sub-arrays were empty. Similar internal fragmentation can also be exhibited by conventional
allocators that use segregated free-lists [Wilson ef al., 19951

& ~~--» indirect pointer
»——> diract pointer
a—w——3 cell array link

Diagram 10.5 Bdelson’s root table for accurate mark-sweep garbage collection [Edelson,
: 1993a]. Reproduced with permission.

For each collected class, two smart pointer classes must be constructed, one for pointers
to mutable objects and one for pointers to consts. Conversions from derived to base types:
must also be defined. A pre-compiler, rather than templaies, is used to assist coding of smart
pointers since the latter cannet provide the necessary type conversions [Edelson,1992b]. Each
smart pointer contains a direct and an indirect pointer. The constructor obtains anew cell from

_ch it

CHANGES TO C#++ TO SUPPORT GARBAGE COLLECTION) : NWm

the root table which is returned by the pointer’s destructor. The indirection operators * and ->
are overloaded to use the direct pointers to the object, but assignment is overioaded to modify
the contents of the ropt cell rather than the indirect pointer. This adds an extra indirection
compared with using'raw pointers, but again sore: optimisation may be possible if a Thing*
can be used rather than a Root<Thing>. This is safe provided that at least one zoot 10 an
accessible object is preserved, but safety cannot be checked automatically. i

Like Detlefs's, Edelson’s results for the performance of his collector are poor. For the small
application that he tested, his collector had an execution time of around 170 percent of that
of manual reclamation, In contrast the Boehm—Demers—Weiser collector ran in: less time than
the manual system.. - ‘ :

10.7 Changes to C++ to m:vvo_..n mm,:.—ummm no__mnmo:

The shoricomings of smart pointers and other issues of efficient, type-accirate garbage
collection have led soms authors to propose changes to the C++ language. Ginter suggested
providing better support for ‘smart pointers [Ginter, 1991]. His proposals would include
allowing operations on primitive data types (particularly pointers) to be cﬁﬁ%&na in order
to allow smart pointers to derived types to be assigned to smart poinfers to base types; adding
new traced and untracedkeywords; and modifying pointer representations 16 include more-
information for the-garbage collector. .
Samples also proposed adding aew type specifiers, traced and :bnﬁmnmm. to declare
whether an object is to be allocated in the garbage collected or the standard heap and to
identify pointers that may point into the interior of‘objects [Samples, 1952]. mum proposal alse
required changes to the representations of objects. ‘His scheme has the advantages that objects
may be freely allocated on either heap with the compiler catching errors éﬁnuo.f a collected
class contains an uncollected object, shown in the example in Algorithm. 10.4 {due to Ginter
[Ginter, 19911), _ . B H, :

class member* untraced X;

untraced class member {
public: .

void £{void) {X = this;}

H
|

i h
traced class base { i

.— - class-membexr- ¥; e P
Yoo |]
class UWmm* traced Z; . ‘ .

%Z = nowl{class base);) ,
(2->¥) . £(); !
Algorithm10.4 Ginter’s example. i

.. T this example, the call to £ resulis in a reference to the untraced mcc-oE.nnmm of the-traced

7 being held i the untraced x.. This untraced poinfer might become the only reference into

o]

“

2 at which point the object can be reclaimed. Samples” compiler would require member to
be declared as an embedded class and would spot as.an error an assignment of an embedded
pointer to an uncollected pointer. This proposal would require changes to C++ compilers and
their type checkers. :

10.8 The Ellis-Detlefs proposal

Ellis and Detlefs believe that garbage collection should be introduced into the language slowly
and incrementally, but that it must be introduced today. Its introduction should be compatible
as far as possible with current compilers and class libraries. Insisting that all objects be
allocated in the collected heap, including those allocated by existing libraries, would not be
feasible. Coexistence also precludes extensions to the type system such as indicating those
pointers that refer to collected objects. Heap specifiers, on the other hand, do not affect the
C++ type-checking rules.

With this in mind, they propose that a collected heap should coexist with the standard heap
managed by malloc/new. A single change 1o the language is proposed io add a new heap
specifier ge indicating the heap in which an object is to be allocated. Objects in each heap

may contain pointers to objects in the otherheap, and expressions of type ‘pointer-to ge T’
may be used wherever an expressicn of type ‘pointer to 7 can. Bllis and Detlefs argue that

experience with systems programming languages such: as Cedar-and Modula-2+indicate the

utility of such an approach,

As well as the new storage specifier, Ellis and Detlefs also provide an optional garbage-
coliector safs subset of C++, althoigh the garbage collector' can be used with code written:
outside this set if the programmer is prepared to také the responsibility that their code is safe.
Code is guaranteed to: be safe if it does not exccute constructs labelled by the C++ Annotated
Reference Manual Wm” ‘undefined’ or mEEoEobEmoh-amuanamE__ nor casts an integer to a
pointer unless the integer resulted from casting a non-collected pointer and the referent of the
pointer is still allocated at the time the integer is'cast bhack to a pointer, A safe-set compiler
should disallow these constructs and also generate run-time checks for other constructs. The
safe set is undeniably restrictive. However, the Ellis—Detlefs proposal provides a library of safe
alternatives to replace some dangerous constructs prohibited by the safe subset. The interested
reader should consult Section 7 of the proposals for details.

Ellis and Detlefs argue that any practical garbage collscior must exhibit the following
properties. It must-have low pause times {less than 0.1 second) if it is to be vseful for
interactive applications; it must be competitive with current implications of malloc/mew;
and it must support mulki-threading and muld-processing. Farthermore for G4+, the garbage.
collector must support interior pointers, cross-heap pointers and untagged unions and must
operate in multi-lingual environments. They do not specify a garbage collection slgorithm bat
they note that both the Boshm-Demers—Weiser and. the Bartlett families. of collectors meet
many of their concerns. Bath collectors have generational or incremental modes, relying on
support from the operaling system. Neither collector requires changes to the langnage —
indeed they even mEuuoHﬁ the garbage collection of C — and both support the ather desirable
properties identified by Eilis and Detlefs. Finally, recent studies suggest that conservative
collectors are-competitive with explicit deallocation [Zorn, 1992; Detlefs er al., 1994].

GARBAGE COLLECTIONFOR C++

e

FINALISATION o N . , 271

10.9 Finalisation

There is considerable experience of object clean-up in object-oriented or|-object-based
languages that are supported by garbage collection (for example, Lisp, Cedar, Smalltalk,
CLU and Modulas 2+ and 3): Garbage collector finalisation has been used for a range of
activities including menaging caches of abjects, and releasing resources Eoﬁamm_ by servers or
other programs. Hayes provides a survey of finalisation facilities in several languages [Hayes,
1992]. The. first issue that arises is that devolving finalisation to the garbage. collector may
change the semantics 'of objects as clean-up is no.longer performed synchrenously with the:
client program.. Indeed, the finaliser of a garbage object may not be called until program.
termination if that object has been promoted to a stable generatien by a generational collector.
Pointer misidentification may likewise prevent finalisation by conservative mmamwmo collectors.
‘C++, on the other hand, calls the destructor for.an object when the program terminates
if it is a static object; as soon as it goes out of scope if it is an antomatic object;or
when delete is called on an abject in the heap. However, the reader should beware that.
the point at which desiructors are called for compiler-generated temporary ‘ohjects is. pot
defined. For most objects in garbage collected languages, finalisation is not an jssue since it
simply deallocates storage: this rdle is taken cver by the garbage collector.. However, there
is a small but indispensable set of classes for which non-trivial finalisation is important
and concern has been raised over how and whether it should be handled by the garbage
_collector. It is appropriate to ask how promptly a resqurce should be recovered after it has
become unreachable, Clearly standard reference counting collectors are prompt, but other
callectors may delay finalisation indefinitely. Such delays are not acceptable in situations
where timeliness is important or where exciusive access to scarce resources is retained by the
finalisable object. Bllis and Detlefs suggest that programmers should regard object clean-up
as a mechanism for improving resource usage, rather than relying on it for correct behavipur
of their programs. Perversely, finalisation timing may be less problematic in muiti-threaded
environments since synchronising concurrent access is already recagnised to be a general
issue. S : ;
Other questions are raised by garbage collector induced finalisation. Finalisation may
reswrrect objects, making them available to the user _Hom,nmu.p once more. If the object is
subsequently reciaimed by the garbage coliector, should it be finalised again? The order of
finalisation is. also_critical_Finalisation should usually be. done-in-topelogical order — this
is guaranteed in Cedar, for example: If an object.A contains a reference to an object B then
2 must be finalised before B in case the finalisation of & requires B. The garbage collector
is well placed to choose the finalisation order since it understands the connettivity of these
objects. However, the handling of cycles then becomes an issue.. One moEmou“ is to redesign
objects to separate their finalisable parts from their other components. In the example shown
in Diagram 10.6 on the next page, the finalisable resources of & might be extracted into anew
object 2. Now-only &’ and B are finalisable and there is no cycle of finalisable objects. B.can
be finalised, & reclaimed and then 2’ finalised.]

|
When C++ desiructors are” called and whether the gerbage collsctor should “support
finalisation are separate issues. One view to take may be to accept that garbage collection
_should not prevent clean-iip actions being invoked explicitly (& la C++ delets), but that
" it does providé the guarantes that an object’s finaliser will not be called before it becoimes
inaccessible to:the program. : : : , :

' GARBAGE COLLECTION FORCF+

Umwmnmn_, 10.6. Extracting the finalisable resource of & into 2' breaks the finalisation cycle.

Support for finalisation ~ _

The garbage collectors discussed earlier in this chapter support finalisation to greater and
lesser degrees. Bartlet’s and Detlefs’s Mostly Copying collectors remove all instances. of
delete and so do not support finalisation at all. The Boehm-—Demers—Weiser collector
allows an object that requires finalisation to be explicitly registered with the collector by
GC_regqister_finalizer. The motivation for remembering which objects need finalising,
rather than scanning the heap for them, is that few objects are likely to require clean-up in a

garbage collected world. Objects that Tefer to cach other are finalised in stages. If finalisable
objects 2 and B are inaccessible, and A points to B; then only & will be finalised by the current

+ - gollection, ¥ finalisation -does ot create any:new pointers to-B; then B-will be finalised after

the next collection. This means that any finalisable object that is reachable from itseif will not
be finalised (er collected).

Cycles involving finalisable objects should be avoided, or should be broken by calling
GC_register disappearing link(&p). wheré p is a pointer that is not foliowed by
finalisation code, agd should not be considered in determining finalisation order; The link
will be cleared when the object to which it refers is discovered to be to be unreachable. This
is done before any finalisation code is invoked, and before any decisions about finalisation
order are made. Ellis suggests that the need to ‘disappear’ links is extremely rare: in the Cedar
programming environment, it was used in just one situation [Ellis, 1993]. Clearly finalisation
is handled by the Boehm--Demers-Weiser collector al.a very low level.

Hudson describes a method for clean-up in Modula-3 that associates finalisation with
objects rather than with cads {such as Modula-3"s TRY FINALLY construct).[Hudson et ak,
1991]. As before, objects that require finalisation are registered with the garbage collector
‘when they are created. and appended to the youngest generation's set of finalisable objects,
has-finaliser. The order in which these objects should be finalised is the reverse of their
creation order and Hudson takes advantage of this by preserving the creation order in the
has-finaliser set. He notes that this arrangement is well suited to the functional style of
programming encouraged by Modula-3’s NEW operator.

After a generation is scavenged, its has-finaliser set is scanned in this order, and any
survivor is appended to the has-finaliser set of the region to which the object was moved,
If a fnalisable object did not survive the scavenge, it is added to the please-findlise set of
Tospace. The dead object must be preserved for finalisation since it may be resurrecied, so it
and its descendants are also moved to Tospace. Finally the finalisation thread pops entries from
the current space’s please-finalise set in reverse creation order and executes their finalisers.
Although finalisation can resurrect objects, they are never re-ragistered for finalisation.

uapadiaba e Gl L

ISSUES | 5 : , 273
10.10 Issues to consider

Many strategies for the garbage collection-of C++ have been proposed. We-conclude this
chapter by reviewing the more commonly used techniques in the light of the virmes anWWowaw
Ellis and Detlefs. In particular, we compare any changes they require to the language standard,
the strength of their guarantes of safety including any restrictions they may mnevmm on coding
style, how easily collect code coexists with non-callected code and aggressive cwmﬂmmm&. and

-their support for finalisation.

The Boehm-Demers—Weiser collector is competitive with cenventional &R,omﬁoﬁ and is
widely used for both € and C++. It requires no changes to be made to the langnage, and'no

restrictions are placed on coding style for portable, strictly. conforming programs. The oaly -

caveat is that pointers should not be disgoised from the collector, The collector operates as a
library so this safety consideration cannot be checked. Pointer visihility is a requirement ofall
code that is used with the collector — this compromises its coexistence with existing libraries.
The collector is alse vulnerable to aggressive optimisers thatmay temporarily destroy pointess
to live data. The collector has timited support for finalisation. :

Bartlett's Mostly .Copying: collector similarly neither demands language: changes, nor
imposes tesirictions on coding style. It is sufficiently efficient to be used as the underlying
technology of the incremental, genefational collectar for Modula-3. Programmers must write
their own pointer finding metheds for heap objects and cannot rely on objects having
fixed addresses! Detlefs’s version of Mostly Copying removes the possibility of incorrect
pointer finding methods either by using a pre-compiler or by Eonﬁ.ﬁumw the compiler
to generate methods automatically. Object movément may COMPromise coexistence with
existing libraries. Again, safety is not checked automatically, and it is vulnerable to aggressive
optimisers. No suppert is provided for finalisation. , ! '

Many implemsntations of garbage collection have been built with smart pointers, Again,
no language changes are required. However, smart pointers do not HmEmno., raw pointers.
transparently, and some changes to programming style are required. Libraries cannot be
expected to use: smart pointers so conversions to raw pointers will be Hmncﬁnm. Furthermore,
even without such conversions, smart ppinters that overload * and —> may leak raw pointers.
Safefy cannot be checked and many implementations of smart pointers are’ vulnerable to
aggressive optimisers, One exception is Detlefs's Smart Pointer Templates ﬁnmimﬁm. but.this
involves complex and subtle programming. The: overheads of smartness alsb lead to poor
performance, particularly if they are nsed for reference counting, Mare positively, finalisation

is supported. . , ,

Typé accuraie garbage collection for C++1s fraught with difficulties. Smart wow:w_.m appear
superficially to offer a solution but may mislead programmers into believing that they have the
same semanticé as raw pointers, All implementations using smart pointers have shown poor
performance, whether for reference counting or for registering roots with the onmzmnﬂon Pointer
finding is problematic, requiring the programmer to write methods for each class and Eamn,aw

risking errors, unless a pre-processor is used, Détlefs's templates avoid this but at the cost

of considerable coding complexity. Pre-processor techniques do not handle urisure references
as well as existing conservative. garbage collectors. Smart painters and copying collectors are

- incompatible with existing class libraries and eveén conservative collection takes the risk that

the library may not respect its rules. All the collectors proposed that do not Féquire compiler
changes are vulnerable to aggressive optimisers in one Way or another. B

274 L . GARBAGE COLLECTIONFOR U+

The Boehm-Demers—Weiser appears to be the most promising collector for C++. It makes
few demands on programming style, and is safe if it is used with Ellis's and Detlefs’s safe
subset, Its chief flaw is its vulnerability to hostile code generators. Some concern has also been
expressed over excess Tetention of storage by earlier versions of the collector [Wentworth,
1990: Edelson, 19934]. Other shorteomings include only limited support for finalisation and
the fact that the cost of collecting a module is dependent on the-context in which it is used..

It seems. unlikely that garbage collection will be incorporated into C++ in the near future.
Although Ellis and Detlefs originally intended to put their proposal formally to the standards
committes, they withheid it when it became clear that the committes was intent on finishing
the standard quickly and that their proposal would probably not be accepied. Their current
intention is to encourage compiler suppliers to incorporate their proposals with a conservative
collector. We hope thatthey are successful. . g

1011 Notes

Details of the conservative garpage collector by Hans Boehm, Alan Demers and Mark
Weiser can he found in [Boshm and Weiser, 198%; Boehm et gl, 1991 Boehm, 1993;
Demers et al., 1990]. The compiler is discussed in detail in Chapter 9. Tt is avail-
able from http://reality.sgi .com/emplovees/boehmmti/ge . himl. Other con-

servative collectors” for C4+ afé markered by ‘Codewrighie's Toolworks™ [Codewright's -

Toolworks, 1993] EE Geodesic Systems, http: / {www.geodesic.com Joel Bartlett’s
Mostly Copying compiler; alse discussed in detail in Chapter 9, is available from
DEC in fep:/ \mm.n,m_,nmmmmﬁ.Lamn-moaxmgm\umoxonun. ﬁmm.mﬁn_#.. 1989%; Bartlett, 1989b].
Extensions to the collector can be found-in [Detlefs. 1990; Detlefs, 1991a; Detlefs,
1991b; Yip, 1991]. Guiseppe Attardi, Tito Flageila and Pietro Iglio describe a col-
lector based on Mostly Copying in [Atrardi e al, 1995]; it is avaailable from
Etp://Ltp. QH.EE..@H .it/pub/project/possa/cmm.

Paulo Ferreira takes a similar but even more complicated approach in his multi-generational
garbage collection library [Ferreira, 1991]. The declaration of ezch garbage collected. class
includes a macro which must take the names of the base classes as acguments. Additional rules
are provided to improve performance by avoiding teliance on conservative stack scanping.
Constructors and destructors use macros to régister or de-register the object ‘and ‘member
functions deal similarly with local pointers that mightpoint to garbage collected objects, Bach

class provides a pointer locating method similar to GCPointers. Generational collection is

supported by replacing pointer assignments by yet another macro. Use of these macros clutters
code considerably; anything that hinders code readability must be deprecated. It is also easy
to fail to abids strictly by the rules (for exampke, omitting a root registering macro fora local
variabls). :

Daniel Edelson describes attempts to build a copying collector by using smart pointers to
register roots with the collector [Edelson, 1990; Edelison and Pohl, 1990; Edelson and Pohl,
1991]. Inability to take the address of this @omuﬁn.m led Bdelson to reject copying collection in

favour of mark-sweep [Edelson, 1992a; Edelson, 1992b; Edelson, 1993a]. Smart pointers are

ZQHMM : - . : 275

used again, this time to indirect access to roots _..E.ocm_u global root tables. mmam:oa_. 1993b]

" uses a modified version of the Boehm—Demers—Waiser collector. David Detlefs describes

another smart pointer collector, but based on conservative deferred reference counting,-in
[Detlefs, 1992]. Othet implementations based on reference colinting are described in [Maeder,
1992: Madany ez al., 1992]. ”

The problems of smart peinters are discussed thoroughly in [Ginter; 1991; Kenredy, 1991;
Edelson, 1992¢]. Andrew Ginter also makes suggestions for changes to G+ to facilitate

garbage collection. Other proposed extensions to- Ci++ to support garbage collection infer

alia can be found in [Seliger, 1990; Samples, 1992]. The most thorough propesal to include
garbage collection into the language came from. Jobn Ellis. and David Detlefs [Ellis and
Detlefs, 1993]. - . , : o

Surveys of systems that offer finalisation in the collection interface can be found in [Hayes,
1692; Hudson, 1991], Other work on garbage collection for Ci- can be found in Master's
theses by [Wang, 1989; Ganesan, 1994; Guggilla, 1994; Satishkumar, 1994]. A

11 -

- Cache-Conscious Garbage
- Collection o

11.1 Z.ommg processor m_.nr#mnnﬁ..mm _ . B -

The memory-sub-system of modern compufers ‘comprises a hierarchy of na_uﬁc:gﬁ.&.og
disk drives to on-chip registers. As the disparity. in performance of parts of the memory sub-

system has increased, so too has the complexity of this hierarchy. Even the most modest
personal computers now often contain on-chip instruction buffers and dzta caches, secondary

or board-level caches, memary buses, main memory, /O channels, disk drives and CD-ROMs

or other high-capacity secondary storage devices. W i

The improvement in processor speeds has been truly dramatic. In 1976, an ICL 2060

mainframe, often serving thirty or more mﬂn-mwmﬁh.m..nmﬁm, ran at abput 0.6 million

instructions per second, At the time, of writing, twenty years later, desk-top personal

computers based on Motorala PowerPC or Intel Pentinm processars are ‘clocked at. over

I 120 MHz, an improvement in processor speed of two orders of magnitude; high-end

- il workstations based on Digital's Alpha chip may-run at up to 266 MHz. i :
. : Fowever, the increase in performance has 1ot been uniform. While processor speeds have
improved a hundred-fold, disk latencies have remained largely unchanged. This is why some

ST T B © BT exira processor effort to avoid page faulis is so worfhwhile. Equally, the' performance of
.] DRAM memory chips has not kept pace. with: that of CPUs.-Main memory can no lpnger
supply data of instructions to the CPU fast enongh; in Baker’s words, modern processorichips : :
are ‘T/O-bound’ [Baker, 1991]. . - 7 o : T .

DRAM memory chips have an access ime of 70-120 1s. Although faster memory chips are
available, it is pot economic to populate all of main memory in this way. Instead the average
latency of memory access can be reduced by inserting a-small cache af fast SRAM memory
between the CPU and main memory. SRAM memory typically has an access time of 8-35 ns.

T . T T ” . "L ... Ifthe CPU accesses a memory block that is held in this cache — a cache it — the datim

{s immediate]y available. If not — a cache iss — the processor may havé to be stalled for
several clock cycles — the miss penalty — umntil the ‘block is retrieved from main memory.

CACHE-CONSCIOUS GARBAGE CCLLECTION

" In earlier chapters, we saw how poorly designed collectors can interact _.um&.% with virtual
memory. Equaily, the performance of programs that interact poorly with the cache can be
many tiches worse than that of those programs that “fit' well with the .cache.

" The effect. of cache misses on CPU time

The perfoimance of 4 program can be significantly enhanced if its miss rate — the ratio of
cache misses to instructions executed — is low. Baker argues that the management of on-
chip memory space and off-chip communications has becoms the major problem in gaining
fast execution times on modsrn processor architectures. Grunwald et @l. repart that increased
cache misses can inerease execution time by up (o 25 percent in range of large allocation-
intensive C pro grams [Grinwald ef al., 1993]. More dramatically, Lam ef al. used blocking to”

improve the performance of a processor from 0.9 mflops to 4 mflops when multiplying large ~

matrices. Blocking operates on sub-matrices, rather than whole rows of columns, in order to
minimise the cache miss rate [L.am and others, 1991].

The importance of good cache behaviour to overall execution times is ncreasingly
important. The cost of a cache miss has grown as the speeds of modem processors and
the complexity of their designs
depéndent; it 4150 vaties betwecn read misses and write misses, and whether only the primary

- (level oie) on-chip cache is missed or the secondary (level two) cache is missed as well.
-+ . -Hénnessy and-Patterson provide a clear example of the interaction between processor design,.
arid cache and overall CPU performance [Hennessy and Patterson, 1996). The CPU time spent
executing a program can be divided between the time spent doing useful processing and the.

time spent waiting for the memory system. Thus, : C e e

have increased. The cost of a cache-miss is architecturs-

CPUtime = IC « (CPI + miss/ instruction * misspenalty) n@.&m&.q:w

where IC is the instruction count, i.e. the nutnber of instructions executed, C'PT is the average
number of cyclés per instruction, and the miss rates and penalties for reads and writes have
been combined. The cache miss penalty on the DEC Alpha AXP, a modern RESC Processor,
.is 50 cycles and the CPI is 2. Suppose further that the miss rate is 2 percent, and that thers is
an average of 1.33 memory references per instruction. :

CPUtime

IC*(2+ 1.33+ 0.02 # 50) =cycletime -
_IC x3.33xcycletime oo o

In other words, the effect of cache misses hias increased the effective CPI from 2.0 to 3.33, an
increase of two-thirds, Note that without a cache, the effective CPI would be 68.5! Contrast
this with the smaller effect of cache misses on oldex CISC desigus, such as the VA 11/780.
Here we supposé that the cache miss penalty is lower, 6 cycles, but thai the average CPLis
much higher, at 8.5 cycles per instruction. Assume that the miss rate is the same, but that there
is an average of 3.0 memory references per instruction. :

CPUtime

= IC*(85+30 £0.11 *‘3,.*.8&@&33
= IC'#10.5 scycletime :

CACHE ARCHITECTURES | S 279

The effective CPI has risen from 8.5 to 10.5, an increase of 24 percent: The cost of cache
misses 1o the overall performance is therefare much greater for the madern RISC processor
Emn.:u is for the older CISC processor. The deleterious effect of cache ‘misses on performance
has increased as pipelining technigues have reduced raw CPI and as processor cycle Lmes

_have been cut, Moreover, the trend is for the cost of retrieving data from thain memory to

increase. Jouppi predicts that the cost of a ¢athe miss may rise to 100 cycles, while Maogul
and Borg suggest that the cost of missing the second-level miss in next-generation m%mﬁmﬁm
may be as much as 200 Qnﬂmm [Touppi, 1990; Mogui and Borg, 1991]. If E@mww&&ongm”ﬂn
berne out, the need for programs to have good cache behaviour will be even Fnore important
in the futere than it is now. . : :
Wilson argues that normel sized main memories are designed to nw@EE the norinal
components of locality of the mutator but beyond that page faults caused by allocation
dominate [Wilson ef al., 1992]. The solution ig to fit the Tegion of the rm&u that is most
frequently used into the fastest layer available in the memory hierarchy. Thus, real memory
should be prefarred to the swap disk and the cache should be preferréd to real memory. One
successful method of partitioning the heap is by generations (see Chapter 7ion page 143).
The allocation zone is concentrated into a region of the heap populated by thelyoungest data.
The ﬁmmw generational hypothesis predicts that frequent collections of the woanm generations
will reclaim sufficient memory to make major collections of the entire heap necessary only
accasionally, If the size of the youngest generation is matched to the size of available real

. memory, page faults will be rediced. In this chapter we shall examine how, and indeed

whether, garbage collection algorithms can be tailored to give acceptable cache performance.
We shall also investigate whether certain data cache configurations are better matched to
garbage collected programs than others. : :

J

11.2 Cache architectures

|

Before we consider the interaction between the. cache and dynamic Memory management,
let us review modern cache configurations. Caches may be used to store both data: and
instructions. However, most current workstations have separate or split instruction and data
caches (for example, Digitdl’s DECStations and .H.Hmimn.wmnw.&m.m PA 9000 series) but some
machines have unifigd caches, containing both instrections and data {notably those based
on Sun’s SPARC processors). Modern machines may fearure both.primary {level one):and

secondary (level two) caches. Primary caches are placed on the CPU chip, but the secondary -

cache is usually packaged in a separate chip. An exceptionis Intel’s forthcoming Pé processor
which packages the secondary cache with the €PU, although on a separate wafer. For the
purposes of our discussion, caches may be classified according to size, how E.cmwm are placed
in the cache, and what happens on a write. i o

Cache size |

The size of the cache varies _umgmg implementations. The on-chip cache of Ew woén%n, 603

" chip used in the Macintosh 5200 range is only & kilobytes but Unix workstations commonly

have 64-kilobyte caches. Data caches on the Hewlett-Packard’s FIP 9000/700 range may be

A
i
1

i
1
i

280

CACHE-CONSCIOUS GARBAGE COLLECTION

as large as 2 Emmm_uwam but are typically 256 kilobytes. OoBEon cache configurations are
summarised in Table 11,1 on the next page. :

Placement policy

Caches are divided into a number of blocks or lines (see Diagram 11.1). At its simplest, any

mermory reference to an address not held in a Blockin the cache causes that block to be fetched
from main memory. Bach address in main memory is mapped into a cache block. The mapping
is usually obtained by ignoring the low- and high-order bits of the address: the low-order bits
identify the word or'byte in the block rather than the block iiself, and the high-order bits are
insufficiently random to be an effective hash key. Note that this is a many-io-oné mapping:
different blocks in main memary will map the same line in the cache. The high-order-bits
are comparad with the cache block’s tag to ensure that it does indeed store the contents of the
memory block Homnann,_nam.. Each line. in the cache also has a valid bir'that indicates whether

the tag is valid or meaningless (for example, if the line is empty).

T A‘|||,m_._.onx.wn_a_.mmw.|.lv...
___.aﬁ‘.mu Hsel

. i._... : ,‘AM%: Bl
R (B : Y
wogn owen]
| _k -
2 2
e
(=)
A S

hit? ” data -

Diagram 11.1 The DEC Alpha AXP 21064 data cache. The 8-kilobyte cache is direct-

mapped with 32-byle blocks. The tag field is 21 bits and the index 3. Two bits of the address
are used to select the 64-bit word from the data field of the block [Hennessy and-Pattersomn,
19961 Reproduced by permission of Morgan Kaufman.

Caché .

Black B
size

U e

size

(words) "~ (kilobytes)

Associativity

Sub-block
placement?

buffer
depth

Write-

Write-miss
policy

Write policy

Split
cache?

. Architenture/System .

64

na

alloc

- through

yes -
yes
yes
ves

DEC DS3100

16
160r32

6

alloc

“through

DEC DS5000/200 |

MIPS R4400

" CACHE ARCHTTECTURES

16

back

32

32

either

MIPS R5000

DEC DS3000/500 |

8/512

32
32164

4
6

no-glloc/alloc

yes
yes/no through/back

8/96

113

nofyes

no-alloc

DEC Alpha 21164

642k

32

none no_

alloc

back

yes

HP 5000

64

32
32

through

no

SPARCStation 2

16

yes

UlraSPARC

through

16
32

32
64

varies no

varies

alloc?
alloc?

back

either

yes

PowerPC 604
PowerPC 620

no

yes

8256)

32
32

2/4
, but mifsses felch 4 lings aatime, 0 T

back
back

yesino

Intel Pentium Pro

.Inte] Pentium

no-alloc

yes

- “The DECStation 5000/200 aetyally has o block size of 4 bytes

“The DECStation 300500 uses.an Alpha 21064 processor.

5000 and the PowerPC 620 allow the cache (o be used as write-through or write-back en a per-page or per-block basis.

. The MIPS R.

282 O>Dﬁ-ﬂ02m CIQUS GARBAGE COLLECTION.

. Block size

Block sizes typically range between 4 and 128 bytes. The size of the block influences both
the Jikelihood of a miss -— the miss rate — and the penalty paid for such a miss. If 2 progrem
has good spatial localily, increasing the size of the hlock will reduce the miss rate as it will
be more likely that subsequent references will bie to addresses in the same block. However, if
the block size becomes taa large in comparison with overall cache size, and thus the number
of blocks in the cache becomes ioo small (the poilution point), cache miss rates may again
rise. The penalty incurred in fetching 2 block from main memory is determined by the time to
access the block and the time to transferit The latency is independent of block size, but the
transfer time depends on the block size. Thersis 2 performance trade-off to be made between
‘reducing miss ratios by increasing block size, and increased penaities when a miss does occur.

Associativity

Cache memory can be thought of as associative memory. If a cache were fully associative then
any block of main memaory could be held in any block of the cache. Unfortunately, searching &
fully associative cache for a particular block would either be slow or require expensive parallel
‘hardware. Fully_associative. Inemory is usually reserved for smaller units, such as the virtual
aemory subsystem’s translation lookaside buffers. . .)
Most cachas today are direct-mapped — each block of main memory. is mapped to a single
T Hosition in the cache. Although diréct-napped Eachies are simpler to build and fdstér to search, * .

_ they may be mare prone [o conflicts as frequently used blocks of memory map to the same

. line in the cache. :

' gerassociative caches are a compromise between fully associative and direct-mapped
caches. Here the cache is divided into sets, each of which can contain several blocks; typically
two- or four-way sets are used, Blocks of main memory are mapped to a single set (as for a

* direct mapped cache) but may be placed anywhere within that set. Searching the cache for a
particular block requires the tags of the blocks in just one set [0 be examined. If the search
does not reveal the required block, a block in the set is:replaced with one fetched from main

memory.

. Write strategy i
. As we shall see later, ,m.mnmmmw collected programs appear to be particularly sensitive to the”

. --. way wIite misses are handled. The cache’s behaviour on a write miss is characterised by two_ .
. design decisions, :

Whrite-through or n,otklwmn__a

The first is where to send data when a write A occors. There are two possibilities. A write-
through cache causes the dafa to be written to both the block in the cache and the block in
the lower level of the memory hierarchy (either main memory or 2 further level of cache).
A copy-back (or write-back) cache buffers data in the cache hlock, only flushing it back to
"~ the next level when a cache miss forces the replacement of that block. As it is not necessary

CACHE ARCHITECTURES : : W

283

" to write a block ._um.n.w on a miss to the next Ievel of the memory hierarchy if :. has not been
altered, a dirty bitis often associated with each cache block to indicate whether:the black has
been medified in the cache or not. | i :

Roth techniques have their advantages. Copy-back uses Iess memory bus vﬂaﬁ.&ﬁr since
multiple writes to a single cache block require only the last write to be transferred to the lower
Jevel. On the other hand; misses do not cause a block to be displaced from & write-through
cache, In particular, read misses do not cause information to be written back tothe next lovel
when the block is replaced in the cache since the write has atready occurred: the‘assumption is
that reads are more common than writes. It is possible to ayoid stalling the CPU: while it waits
for a write to complete by using a write-buffer. The depth of the write-buifer — the number

of blocks it can hold — typically varies between four and eight.

- Fetch-on-write or write-around
The second decision is whether a bleck should be allocaied in the cache when. a write miss
] occurs. Write-allocaté (or feich-on-write) caches fech the block into the cache and then treat it
o as a write hit. Write-no-allocate (or write-around) caches do not fetch the blockiinto the cache
’ but modify it in the next level of memeory. Typically copy-back caches use é&ﬁ;&?mmﬁ. and
o ‘write-thongh caches use wriie-no-allocate. Table 11.2 showstypical penalties for cache misses
: [Hennessy and Patterson, 1996]. : , . ;

 Table 11.2 Typical cache characteristics [Hennessy ‘and Patterson, 1996]. Reproduced by
permission of Morgan Kaufman.

i

|
5
3

Level two

Level one -
Hit time - 1-2 cycles ,m,le“ cycles i
Miss penalty 866 cycles 30200 cycles]
Miss rate 0.5-20 percent Hw.lmo percent .W
Block size 4-82 bytes 32-256 bytes !
Cachesize 1128 kilobytes 256 16kkilobytes

E__.. time is normally one cycle for the level oue nuo_.um..)

|

Sub-block placerment

The cost of fetching large blocks can be avoided by using sub-block placemént with didect-
mapped, write-through caches. A cache is said to have sub-block placement if a single
cache block can be divided into sub-blocks (typically four bytes), each of which has an
associated valid bit. The block is no longer the smallest unit of transfer between the cache
... and main memory, but is the unit associated with an address tag. Whenever a write occurs, the

* information is written to the sub-block (turning the valid bit on) and through to the next level

ookl ik v~

284 , CACHE-CONSCIOUS GARBAGE OOh.ﬁmnﬂDZ

"of memory.. If this write would have been a miss, the other sub-biocks in this line are now
invalid, They may be either allocated by turning their valid bits off or fetched from memary
(for a write-allocate cache) without stalling the CPU. Sub-black placement reduces the cost
of writes to one cycle. Read misses on the other hand typically cause the entire block to be
fetched. - :

A write-validate policy is equivalent to write-allocate with sub-block placement using one-
‘word sub-tlocks. This technique can also avoid fetching memory blocks if every word is
written before it is read. Although write-validate can improve the performance of C and
Fortran programs [Jouppi, 1993], it has been found to be particularly significant for copying
garbage collection. We discuss this further in Section 11.5.

.mﬁmnmm. cache m_..mn,q._.unmo:m

A final design possibility is software control of the operation of the cache. Peng and Sohi
suggested a special allocaie instruction to hint to. the cache that it need not bother fetching
.a block since its contents will be overwritten immediately [Peng and Sohi, 1989]. A similar
instruction is provided in higher-end HP 9000 processors. As well as being useful for linear
.allocationina noEm_moSn heap, as we shall see,. this instruction has applications for clearing or
copying virtual memory pages (for instance when a parent process forks a. child). To the same
end, the instruction set of the IBM RS6000 family of processors includes & cache control
insiruction ..ﬁ.o..m‘;onﬁnh. d zero a cache line. This too_can be used to avoid aliocation write
. misses.

' 11.3 Patterns of memory access

" The effectiveness of the memory hierarchy rests upon certain assumptions about typical
patterns of memeory access. The strategies at both the virtual memory level and the cache
level are similar, The goal of the virtual memory sub-system designes is to ensure that page

” frames are filled with those pages that are most likely to be used next. Likewise the goal of
the cache designer is to fill cache fines with those blocks of main memory that are likely to
" be used next. The underlying assumption of both systems ig that data accesses are typically

concentrated on a small subset of the address space of the program or set of programs —
the working set [Denning, 1968]. It is further assumed that the best estimator for the page

- or block likely to be ‘,ﬁo,zn:na next is the set of pages already resident in main memory, or
“~this set of blocks already held in the cache. Tn othisr words, the spatial proximity of data in

memory predicts the temporal proximity of access by the prograz. Furthermore, the memory

" hierarchy’sreplacement algorithms may assume temporal locality. The virtual memory system

usually evicts the leastrecently used (LRU) page when loading a new page, and set-associative
caches may also adopt an LRU replacement policy.

If programs co indeed exhibit temporal and spatial locality, such a memory hierarchy,
with LRU replacement policies, is effective. But do zarbage. collected programs, including
programs that use compacted heaps (linear allocation, see below in this section), share these

. . locality properties? At first sight, it seems thai tracing garbage collection must violate-these-

. significant implications for the spatial locality of programs.

PATTERNS OF MEMORY ACCESS ” , : 285

assumptions. In igeneral, it has necessarily poor spatial and ‘temporal Honmma\” since, in its
simplest non-generational forms, a tracing collector must visit every active node of the data
struchire at each collection as its notion of liveness is based on pointer Bm.nsmmwmq‘.mm.oﬁnn
to examine whether garbage collection necessarily interacts poorly with the cache, we shall
first classify the typical access patterns of the allocators and collectors. We shall then Ly to
predict how these patterns affect the cache and ses whether our predictions mﬁm_ borne out;in
practice.) .

Mark-sweep with bitmap and lazy sweep ” ,

The memeory access pattern of mark-sweep mﬁ_ummm.. collection depends on EgE?nEnEmmmF
Tf a simple collector is used, references to the leap made by the %onmﬁo&man likely ito

“ - éonsist of random reads and writes. The pattern of access is likely to he more predictable; if

more sophisticated techniques, such as. segregated free-lists, mark bitmaps E._E.wh% sweeping
(described in Chapter 4}, and generational methods (described in Chapter 7) aré employed:

The mark phase R K

The marking phase typically uses a stack to remember branch points (the m_.mwammﬁ isito
use the pointer reversal technique described in Chapter 4) and a bitmap to mark objects, and

... accesses heap data to trace pointers. References to the stack are highly localised, for both reads

and writes. References to the mark bitmap are also Iikely to have comparatively good spatial
locality, partcularly if a two-level organisation is used and the phase behaviour of programs
means that objects of the same (ype, and hence likely to be of the same size; are allocated
together; Tracing the graph, on the other hand, generates tandom but read-only accesses! to
objects in the heap. If the heap is organised generationaily, the range of the reférences can’be
constrained to some extent to a limited region of the heap. The overall pattern of access wo_‘
mark-sweep garbage collection is thersfore one of random reads and highly localised writes
[Zorm, 1991]. . :

Allocaticn) o

If lazy sweep is used, the sweep phase of mark-sweep garbage collection counts against..

allocation. In any case, the access pattern of the sweep is one of highly sequeitial reads and

writes to mark bits. Using first-fit allocation with separate free-lists for gach ovEEon object
.\mﬁm_ﬁ:o.wconmmouum#wﬁuwoanqwmmn_ﬁounw&_mummawm.ﬁwimﬁnm.‘: i :

Copying mw_._ummm,no__mnnmo: : , e =

‘We now turn to the behaviour of programs using no@ﬁbm.mwﬂcmmw.oo:anﬂo:. Oow...ﬁ:.m mﬁcwmm ’

collection compacts the heap {or at least campacts each region of the heap'in the case of

generational garbage collection). The consequence for the allecator is that allocation is linear

— the next object allocated will be placed adjacent to the object last mzon._,ﬂmn. This has

]

i
;
H
bl

et al., 1984; Hartel, 1988].

286 , CACHE-CONSCIOUS GARBAGE COLLECTION
‘Copying

A copying garbage collector must scan objects in the grey (copied but not yet updated) Hawmou
of Tospace. Each pointer-valued word in this region must be read and then updated, causing
a pattern of sequential reads and writes. The forwarding address of the Fromspace object to

-which the pointer refers must also be read. I the Fromspace object has not been copied, the

obfect must be copled to Tospace and its forwarding address updated. Thus, for each live
object in Fromspace, the pattern is a tead to a random location possibly followed by a write
(the forwarding address), and then sequential reads in Fromspece and sequentizl writes in
Tospace (to copy the object). If a Fromspace word is accessed, it s highly Likely that its
successors will be read too, since most objects are not shared {Clark and Green, 1977; Stoye

. References to Tospace; on the other hand, are concentrated at the address vombﬁn to by

scan (for read and write) and at the address pointed to by £xee (for write). After a. word has

‘been scanned and updated (blackened), it will not be touched by the garbage collector again

in this collection cycle. Baker suggests. that black data Is a good candidate for replacement
should it be necessary [Baker, 1991]. : .
Note that, for simplicity, we have ignored the possibility of ‘copying’ large objects by

remapping virtual memory [Moon, 1984]. ‘We. have assumed. that references to Fromspace

are distributed randomly although clusfering of objects may increase locality [Hayes, 1951;
Hayes, 1993]. We have also ignored the regrouping strategies, discussed in Chapter 6, whose

“Goal was to place related data together on th assumption thaf the mutator’s proximity of

access to them would be close, If this strategy were to be successful, the pattern of accesses

-to Fromspace would be less random than would otherwise be the case.

Allocation

Lineac allocation is umwmnﬁmn_w simple and makes a highly predictable pattern of accesses to

Tospace: a sequence of initialising writes. However, it is not uncommeon for systems supported

- by garbage collection to have very high rates of allocation. Computer architects commenty

assume that writes are comparatively rare, typically accounting for less than 10 per cent of
all instructions executed [Hennessy and Patterson, 1996]. However, the proportion of writes
executed by SML/NJ programs has been found to be between 10 and 25 percent, and the
overwhelming majority of these writes (up to 96 percent) are dus to allocation [Diwan et al.,
1994; Gongalves and Appel, 1995]. Furthermore, copying garbage collection leads to a ‘back

. and forth’ pattern of allocation across the two semi-spaces. This pattern may. work against.

the replacement policies of both the virual memory system and the cache. Thus although

- linear allocation may be cheap in terms. of instructions. executed by the allocator itself, it is
. potentially expensive in cycles.

Incremental garbage collection

Intuition may suggest that incremental garbage collection will worsen the data cache miss rate

- since it will finely intermingle mutator and collector references. This could be expected 10 lead
to a greater proportion of conflicts as data accessed by the mutator and by the collector are -

IMPROVING PERFORMANCE _ | : 287

mapped to the 'same cache line. However, there is some evidence that this is not so [Zorm,
1989]. The style and granularity of incremental collection will also be sighificant. Read-
barriers trap mmtator access so the collector will process the same data that ‘the mutator-is
currently using, This effect is weakened if the granularity:of the read-barrier is a page, as it
is for some incrementat copying collectors that rely on support from the operating system’s
memory protection system, Write-barriefs like Dijkstra’s and Steele’s, ‘that are not based on
virtual memery support, behave similarly to some extent as they similarly mark data subject
to mutator writes. Some incremental copying collectors are also designed to improve locality
by clustering cbjects in Tospace according to how they are referenced by the mutator {Cousts,
1988]. We are not aware of any studies that have measured the performance of these garbage
collectors at the cache level. ,

Avoiding fetches

For both the mark-sweep and copying styles of garbage collection, existing data stored at a
memory location that is about te be allocated is garbage, and thus should be neither paged into
main memory ner loaded into the cache. At the level of the virtual memory system, we saw in
Chapter 6 that this can be accomplished either by-closely coupling the garhage collector with
the operating system [Moon, 19841, or by using system cdlls to “disclaim’ pages of memory
[Wang, 1994a]. At the level of the cache, we require & write-miss policy that will allow the
collector to allocate new data in the cache without stalling the processor. Preferably the block
corresponding to that address should notbe fetched ffom main memory. If the lifetime of this
new object is sufficiently short, it may live and die without leaving the cache. ;

11.4 Standard ways to m3ﬁ1r<m cache vmwm01lawsnm

Cache performance ‘can be improved in three ways: by reducing the cache miss rate; by
reducing the miss penalty, or by reducing the time to hit in the cache [Hennessy and Patterson,
1996]. Conventional programs tend to-exhibit a strong locality of reference mun data caches
are designed to capture this Iocality. In this section we examins how garbage collection in
a garbage collected world affects Jocality and hence data cache miss rates. In particular we

ask how linear allocation affects miss rates. A number of techniques for reducing miss1ates -

are well known. These include the use of larger caches, increasing the size of cache blocks,

increasing assgciativity or prefetching blocks from memory. The miss penalty can be reduced

by the use of sub-block placement, second-level caches and other techniques.
Cache size ” ah | i - _

It is known that increasing cache size reduces miss rates of instruction caches, data caches

and unified caches for conventional programs [Hennessy and Patterson, 1996]. For example, .

Table 11,3 on the following page shows the miss rates fora direct-mapped data cache on the
DECStation 5600 for an average of SPEC92 benchmarks [Gee ez al., 19931, ; :

“ “Zorn confirms these findings for a range of Lisp programs supported by gen! rational mark-

. 1

288 . CACHE-CONSCIOUS GARBAGE COLLECTION

“HwEm 11.3 Data cache miss rates for the SPECH2 benchmark suite on a DECStation 5000
[Gee et al., 1993]. The cache is direct-mapped with a block=size of 32 biytes.

Cache size Miss rate

(kilobytes) (percent)

1 2461

: 2 20-57.

= 4 15-94

8 10-19

. 16 647

. N - g9 L. %mm ‘ T

, 64 377

128 2-88

_ms.mmu garbage collection: caches larger than 512 kilobytes performed substantially better

. - than smaller ones [Zorn, 1991). Increasing cache size significantly reduced miss rates until

* the cache was sufficiently large to allow garbage collected programs to “fit' well. This fit can

be achieved. by varying the size of the allocation threshold. Rather than assigning a fixed-

“gize region of the heap'io the youngest generation and collecting” when the region is full,

. Zorn’s collector is invoked when the volume of data allocated since the last collection passes

o threshold (sec Chapter 4). Bach doubling of the size of the cache caused the cache miss rate

_to be reduced by approximately 1 percent, until a cache of two megahytes almost eliminatad
cache misses (fewer than 1 percent of memory references missed the cache) provided thai the
allocation threshold was less than 500 kilobytes.

Diagram 11.2 on the next page shows the overall miss rates (both read and write misses)
for Zorn’s generational mark-sweep collector against various sizes of direct-mapped cache.

. The programs are compilers for Lisp and Prolog, written in Common Lisp. Zorn found that
the cache performance of the collector was particularly sensitive to the size of the allocation
threshold telative to the size of the cache, With a 512-kilobyte cache; the miss rate for the
Lisp compiler was three times lower for a 128-kilobyte allocation threshold than it was for a

" 9.megabyte threshold, The ‘knees’ in the graphs for the Prolag compiler illustrate particularly
clearly how miss rates can be sharply reduced by matching the size of the allocation threshold

_and the cache. , :

Similar results are-to be expected for copying garbage collection. Wilson ef al. likewise
emphasise the importance of matching the size of the creation region to the size of the data
cache for generational copying collectors [Wilson et al., 1992]. Linear allocation’s cyelic
reuse of space marches the allocation zone through both semi-spaces, which means that the
pext block of the creation region to be allocated will be precisely the block least recently
allocated. Although the cache does not use the sams LRU replacement policies as the virtual
fmemory, if the cache is smaller than the creation region, this block is also the one most likely

‘” o

- — -— 1megabyta
———— 532 kilobytes
;;;;;;; 256 kilobytas|
——— 128 Kilobytes

Miss rate %

” Prolog compiler

Lisp compilar

T T T L T T - -
128k 256Kk 512k ™ M - 128k 258k 513k SIM M.

Cache size. (bytes)
Diagram - 11:2 - Cache miss rate vs. allocation threshold for two large! Common. Lisp
programs. Both programs used mark-sweep collection, and the cache was' direct-mapped
[Zomm, 1991]; The graphs show the results for a 46,500 line commercial Common. Lisp
compiler (left) and a much smaller Prolog compiler for a RISC architecture (right).
! Reproduced with permission.

to have been purged from the cache: Two features of noa,mum garbage collection make matters
even worse, First, increasing the size of the cache (or reducing the size of Eo., creation region)
should have no efféct on caching behaviour until the cache is large encugh to hold the reuse
queue, i.c. until it can contain both semi-spaces. Second, the write-back rate for copying
garbage collection will be worse than that of mark-sweep collection since live: daia in the
heap is dirtied by the coliector-as.it writes forwarding addresses and updates pointers. Mark-
sweep collection in contrast does not need to writs to heap data at all if a separate bitmap is
tsed for marking,. . , . .,

Gongalves and Appel confirm these predictions, using Reppy’s multi-genérational copying
collector far SML/NT [Reppy, 1993). Diagram 11.3 on the following page shows writé-miss
rates for a direct-mapped cache [Gongalves and Appel, 1995]. Again, the write-miss rate
increases dramatically once the creation space s larger than the cache. However, although
7orn and Diwan et al. found that increasing cache size was beneficial, the benefit was less
pronounced than it was for mark-sweep. Other techmiques, such as sub-block placement,

Wwere tiore effective [Zotn, 1991; Diwan ef al.; 1994]. Zom also found that’the miss ratés for
generational copying collection were consistently higher than those for mnumnmnouﬁ.aﬁwr
sweep collection. The overall miss rate for copying collection was often fwice as high as, and
somefimes four fimea higher than, thar for mafk-sweep collection, In contrast to mark-Fweep

N

250

16 A

Miss ralo %

o
1

16k . 32k G4k 128k 256k 512k M, M aM BM e
Allocafion space (bytes)

Diagram 11.3 Read’4nd write miss rates vs. size of allocation space, for various sizes of
+ ~diresi-mapped data cache (Gongalves and Appel, 1995]. Write-nisses are drawn more boldly
than read-misses. FPCA’93, ©1995 Association for Computing Machinery. Reprinted by
; permission.

collection, varying the allocation: threshold had little effect on overall miss rates for copying
collection. : : :

Differences in the handling of the youngest generation and reporting of miss raes may
explain the discrepancies between the Zorn and the. Gongalves and Appel findings for
generational stop-and-copy collection. Two points are worthy of note. First, Reppy’s collector
used a single 512 kilobyte creation space for the youngest generation, rather than two semi-
spaces or an ellocation threshold. Zom poiuts out that use of an allocation thresheld, rather
than a fixed-size youngest generatian, causes the size of the semi-spaces to vary depending
on how much data survives a collection. Thus he argues that no single cache size will hold

all semi-spaces. If a space grows to the extent that it does not fit in the cache, many conflict

" misses will arise. : S
Second, and in contrast to Zomn, Gongalves and Appel separate write misses from read
misses. The effect of cache size on read-miss rates was less sharply pronounced: the miss
rate declined smoothly as cache size increased, reflecting the more random pattern of read
accesses of mostly functional programs and copying garbage collection. We speculate that
this separation of read misses irom write misses may be significant. The data for their set
of benchmarks show that reads accounted for approximately 23 percént of all instructions
whereas writes accounted for 18 percent, This propaortion of reads to writes is much lower than
- that found by Hennessy and Patierson for five- SPECintG2 programs, where reads similarly
accounted for 26 percent of all instructions but writes accounted foronly 9 percent [Hennessy

IMPROVING PERFORMANCE - _ ” A, 291
and Patterson, 1996]. If both read and write misses are taken into account then the prominent
platean in the Gongalves and Appel graphs is less pronounced (although still present). If the
read:write ratio of Lisp lies somewhere between that of the 3PECint92 programs and the: SME.
programs, then the dominance of reads over writes will further mask the sharp knee predicted
by Wilson et o, and found by Gongalves and Appel.

However, matching the size of the cache to the size of the creation region means either
expanding the cache or shrinking the creation region. We saw in Chapter 7 thi .,ﬁ reducing the
size of the youngest generation diminishes' garbage collection pause times but risks earlier
promotion. At the virtual memory and cache level, the effect of promotion is to spread
the program’s working set across more generztions. Furthermore, the volume of tenured
garbage and the write-barrier overhead will also tend to increase as thers may be mors
old—young pointers. These factors will tend to decrease the mutator’s locality of reference
and in particulsr to increase the rate of conflict misses. The problem of cache behaviour
does not disappear even if the youngest generation fits inside the: cache. There will still be
a proportion of references to older generation data and this may range from negligible to
significant. These effécts were particularly noticeable for Zorn’s mark-sweep collector when

.very small thresholds of 128 kilobytes or less were used -with direct-mapped caches since
the mark-sweep algorithm’s en masse promotion policy increased the amourt of promoted
aarbage substantially compared to the generational copying algorithm. Dilution of locality
was also noticeable in programs in which a significant proportion of memory references were
to. objects oufside the jgeneration scheme. For example, references to Lisp system objects have
heen observed to account for up to 28 percent of all data references [Zorn, 1989].

Block size

The second standard method for reducing miss rates is to increase block size. Increasing
black size improves miss rate by taking advantage of the spatial locality of programs. Both
mark-sweep and copying garbage collection algorithms make sequential, and hence highly
predictable, access to certain data structures. Mark-sweepicollectors typically use a stack o
control the trace, and make a seguential sweep either through the heap or through a mark
bitmap. Copying collectors scan the grey region of Tospace lineatly to Eum%m pointers, and
both allocation and evacuation into Tospace are @E.monhmnﬂ linearly. Henee it is not surprising
that increasing block size has been found to lead fo reduced miss raies .ﬁU.E...wn et.al., 1994;
Koopman et al., 1992, Wilson et al., 19921, The benefit is particularly mnoﬂonﬁnn& for write-
miss rates (see Diagram 11.4 on the next page).

Associativity : , L

The third technique for reducing conflict miss rates is to increase the associativity of the-cache.
However, Zorn found that two- and four-way set-associative caches gave litile performance
gain over direct-mapped caches for mark-sweep collection [Zorn, 1991]. He suggests’ that

L.+ Yhis {s becanse few collisions will arise ance the cache is large enough to hold the allogation

space. Since newly allocated objects remain in the same position in the new space untilthey
are promoted: (and this is rare according to the weak generational hypothesis), conflicts; will
- =~ only be between objects in the youngest and older generations. As older genierations tend to

- 3
:

1
1
H
{

i

CACHE-CONSCIOUS GARBAGE COELECTION

Cache block size
— e 16-0yi0

E ———— 32-byte
— -~ —— 258-byia

20

-
n
|

Miss sate %

]
|

¥ T T T T T

T T
4k Bk 18k 32k B4k Ak 256k Sizk M 2M 4M
Cache size {bytes}

Diagram. 11.4 Miss rate vs. cache size for different bleck sizes [Gongalves and Appel,

1995]. The graphs for the read miss rates are drawn heavier than those for write misses,

The cache is direct-mapped, write-allocate, and the creation space is 512 kilobytes. FPCA’'93,
(©1995 Association for Computing Machinery. Reprinted by permission.

be very much larger than the youngest generation, the site of such conflicts will be random

rather than systematic and hence will be fess comprehensively controlled by set-associativity.

Similarly, sei-associative caches offered little benefit for copying garbage collection if the
cache was smaller than the allocation threshold. The cyclic reuse of semi-spaces. leads to a
iarge number of conflicts and set-associativity’s LRU replacement policy tended to evict most
ohjects before Emv. were reused. Equally, caches gained less from increased associativity if
they were sufficiently large to accommodate both semi-spaces, On the other hand, Zorn found
that increasing mm?wwmonwmniq reduced miss rates substantially for mid-range cache sizes.
The miss rate of a iwo-way set-associative cache was often half that of a ditect-mapped cache
and sometimes five times lower:

Zorn’s generational copying collector-used -an allocation threshold to trigger collection”
rather than a fixed-size creation space. Results from studies of generational copying cellectors
that used. other organisations show different results for increasing the cache’s associativity.
Resnlts for Scheme-48 and SME/NT obtained by Wilson et al. and by Gongalves and Appel,
respectively, suggest that the miss Tates suffered by direct-mapped caclies are lower than
those suffered by set-associative cachies of the same capacity, provided that the size of the
cache approximates the size of the creationregion [Wilsoweral.; 1992; Gongalves and Appel,
1995]. Otherwise the miss rates of direct-mapped caches were higher than those of their set-
associative counterparts. Wilson er al. presume that this is because at this eritical point 2
direct-mapped cache is able to keep most of creation space in the cache, whereas the LRU

IMPROVING PERFORMANCE _ W) 293

policy of set-associative caches tends to evict the next block o be written, mﬁﬁmgoﬁ. higher
-associativity leads to higher miss ratios. : ! :)

OsﬁEnﬂEmmémnﬂmvoﬁ._uon»émmonmw&..mbm Qoumm?nm and Appel movma -that two-

or four-way set-associativity improved miss rates: significantly, especially for reads, since it

- eliminated many conflicts between objects in the creation region and older generations. Four-

* suitable %, whenever the free space puinter £reeis incremented. : T

way associativity was: sufficient to aliminate most conflicts in a seven-generation collector,
and higher associativities gave comparatively tittlefurther benefit. As the size of the cache was
increased, the misses suffered by set-associative ¢aches quickly approached the compulsory
miss rate as there was room in the cache for older geperation blocks without evicting
creation-space blocks. Direct-mapped caches, on the other hand, continued to ‘suffer confiict
misses even after the. capacity misses abated. Conversely, if the cache were smaller than the
creation space, set-associative caches suffered fewer conflict misses than direct-mapped ones.
Unfortunately one drawback of incteasing the mmmunmmﬁiﬁ of the cache may be to increase
the processor’s cycle fime, and so these gains may not be realised in practice [Hill, 1988]:As
a cheaper alternative, Wilson has suggested that the rate of inter-generational conflicts might
be teduced by splitting the cache using one high-order bit as well as the low-order bits. for
cache line indexing [Wilson ez al., 19911 : .

Special instructions

Tf the cache is very small, it may be impractical to restrict the size of the allocation space to the
gize of the cachie in order to avoid allocation. write misses. Eighe- or sixteen-kilobyte primary
caches are not yncommon (sea Table 11.1 on page 281). To set allocation :_H“mm_.__oamu orthe
size of the creation regions, so low would mean increasing the frequency of minor collections
and hence increasing the garbage collection overhead. Appel and others have shown that. it
is possible to use special cache control instructions o avoid allocation write misses [Appel
and Shao, 1994; Gangalves and Appel, 1995]. If the allocator attempts to initialise a block
not held in the-cache, a write-miss will oceur. A write-allocate cache will handle the miss by
first fetching the block into the cache and then treating it as a write-hit. Unless some strategy
like sub-block placement or early restart is used, the processor may be stalled until this read
completes (although many architecturss allow certain instructions to be issned and completz
while reads are outstanding) [Hennessy and Patterson, 1996]. ;

However, it is unnecessary to. feich the block’s data from memory since it will be . . .

overwritien before it is read. There are two ways to achieve this with special cache control
instructions. The HP PA7100 instraction set includes a cache control hint thata Ecn_.n.s.E be
averwiitien Gefore it i5 read; thus avoiding the read when the write misses. Processors such
as the IBM Power and Motorola PowerPC provide an instruction to allocate and/or zero a
specified cache line. When the heap is allocated linearly, the allocation pointer £ree marches
linearly through a direct-mapped cache. If the next line to be allocated is reserved in advance,
then the write miss will not occur. This can be achieved by having the compiler insert a cache
control instruction to alloéate and zero the line containing the address mHmmw+...W.. .m.on some

504 , CACHE-CONSCIOUS GARBAGE COTLECTION

Prefetching

Machines that allow the cache to be directly controlled by software are uncommon. However,
it is possible to allocate a cache lineina write-no-allocate cache simply by reading the block.
Tf the result of the read is not required immediately, the read will not stall the processor on
many architectures: instructions that do not involve:memary accesses may still be issued and
completed. For example, the DEC Alpha 211 64 processor can accommodate up £o Six memary
references that are waliing to complete without stalling. Thus in the same way as the cache
coritrol hint could be used in the RSG000, an insiruction can be issued by the compiler to read
from the address free + k whenever free is incremented. The read will have completed
without stalling the processor by the time that this address is used for allocation. Koopman et

al, found that by inserting dummy memory reads, whose results were immediately discarded,

3

“before allocating groups of cells, the overall performance of their TIGRE combinator graph

reducer could be incréased by 20 percent.on a VAX 8800, despite the overhead of exccuting
extra instructions [Koopman et al.,, 1992]. Similar improvements were found by Gongalves
and Appel for SML/NJ on a DECStation 3000/400 and rather smaller improvemesnts (4.3
percent decrease in cycles) by Necula for a more recent version of SML/NT on a DECStation
3000/600.

11.5 Miss rate and overall cache performance

Most studies of the effect of garbage. collection on cache performance have been made in the
contest of Lisp and mainly functional languages. Most of these studies measured the level of
cache misses with cache simulators such as zycho- [Hill, 1987]. Zorn considered the effects
of different cache configurations. in the context of large Lisp programs, Wilson et al. and
Reinhold studied Scheme, Koopman et al. measured a combinater graph reducer, and Diwan
et al., Appel and Shao, and Gongalves and Appel investigated SML/NT [Zorn, 1950b; Zorn,
1991; Wilson et al., 1992; Reinhold, 1994; Koopman et al., 1992; Diwan et al., 1994; Appel
and Shao, 1994; Gongalves and Appel, 1995]. The methodologies used in these studies differ
in important respects. Some studies separated read and write misses, others simply counted
overall misses; some measured miss rate, others overall performance. We have already noted
that styles of programming typically supported by garbage collection exhibit a.much higher
write rate than canventional programming languages, and that most of these writes are due
to allocation. Ignoring differences between the behaviour of reads and writes, or betwsen
miss rate and-CPI, .may lead to a distorted view of cache-performance. Actual performance
does nat simply depend on miss rates: the penalty incurred by misses is also important. Real
understanding of the interaction between the memory management and cache strategies must
come from analysis of overall performance.

At first sight it appears that garbage collected programs are more likely to interact poarly
with the cache than other programs. Theré are several reasons why this supposition might
initially seem attractive. SR :

+ Functional and object-oriented programs make more prodigious use of the heap than their

conventional counterparts. If the locality of reference to the heap is poorer than it is to

- stack-allocated data, then programs that make heavier use of the heap should be expected
to have poorer cache performance than those that make lighter use of it:

it |

MISSRATE _ : M 295

s Functional languages, at least, have high write rates whereas conventional cache designs
assume that writes are comparatively uncommon. The performance of progéams written in
a functional style will be more affected by penalties incurred by-cache write misses than-
those programs with a lower write rate. | S A

o Copying garbage collestors’ eyclic use of two semi-spaces may lead to a high rate of cache
misses. As we saw above, Wilson et al. argue that if the cache is smaller BNEW”,EH frequeitly
reused area then the size of this reuse cycle will defeat caching strategies [Wilson et al.,
1992]. ! w

¢ Processors more commonly use direct-mapped rather than set-associative caches @Egc_wm_._.
this appears to be changing). Semi-space allocation may lead to an increase'in the nuniber
of conifict misses as addresses in each semi-space map to the same cache line. N

However, these conjectures assume that higher miss rates necessarily lead to pogrer
performance. Depending on the design of the cache, this may not be s0. We saw in

Section 11.2 on page 279 that there are several ways of reducing the penalties for write

misses. Several researchers have found that overall miss rates and the performance of rapidly-
allocating garbage-collected systems are better than the sirplistic nxunnﬁmmou,m ahove would
indicate. | I C
Wilson et al found the capacity miss cost to be only 1.6 percent for Mmowmaa.-hm. S
byte-coded implementation with a generational, copying: garbage collector, running on &
DECStation 5000/200, although they predicted that this cost would rise as CPUs becamie:
faster and second-level cache miss penalties rise [Wilson ef al., 1992]. Reinhold also foand a
cache overhead for Scheme of less than 5 percent, again on a DECStation 5000/200, leading.
him to conclude that many programs written in a funcional style, supported by simple linear
allocation, are naturally ‘well-suited to direct-mapped caches even without garbage collection
[Reinhold, 1994]. Gengalves and Appel found similarly good cache performance for a suite of
SML/NJ programs [Gongalves and Appel, 1995]. With direct-mapped, write-allocate caches,
they found that the ML programs they measured sometimes had a lower overall miss rate than
those of the SPEC92 benchmarks. : :
Why should these programs show good performance with Jinear allocation even when;un
on processors with direct-mapped caches? First of all, although the programs lexhibited high
write rates (particularly SML/NI) and the caches were write-through, the DEC machines’

deep write-buffers were able Lo absorb the write traffic without stalling the CPU [Eoopman et

al., 1992; Diwan et al., 1994; Reinhold, 1994; Gongalves and Appel, 1995]. With a functional

~style of programming and copying garbage collection, most writes will be allocation writes,

and these writes will be bunched as they correspond to the initialisation of newly allocated
objects [Diwan er al., 1994]. “Write-validate caches (that is, write-allocate: with sub-block
placement using one-word sub-blocks) can avoid fetching blocks from memiory on a. write
miss. The write-miss penalty for allocation is thus reduced to zero. This organisation
solves the problem of initialising write misses, althaugh sub-block placement does not take
advantage of any spatial locality when a read misses the cache. There is also evidence that it
is unlikely that these.newly allocated blocks will be evicted from the cache before they are
read. Gongalves and Appel found thar more than 50 percent of reads were 1o newly allocated

- objects less than 64 words from the allocation pointer [Gongalves and Appel; 1995]. Diwan

et al. found write-validate to be the most significant cache design decision in achieving low
cache overheads. It consistently out-performed all other confi gurations, giving a reduction
: - ' . ! -

:
i

£

296 o CACHE-CONSCIOUS. GARBAGE COLLECTION

in cycles per instruction of around a sixth for both direct mapped and two-way associative
caches [Diwan et al., 1994; Koopman ef al., 1992]. A six-decp write-butfer combined with
page-made writes also helped to absorb bursty writes.

If the penalty incurred by write-misses can:be reduced substantially then the benefits of
employing srategies described in the previous section to reduce the miss rate should be
slight. Measurements by Gongalves and Appel suggest that this is indeed so. For example,
the effect of Ei,um the size of the allocation region for SML/NT to the size of the cache on
the IDECStation 5000 was very small, and largely offsst by changes in garbage collection
overhead (since 'varying the size of the allocation. space varies the frequency of minor
collections). On the other hand, for machines that do incur a penalty for write misses, they
found that reducing the size of the allocation space to fit the cache could improve performance

even though this would increase collection overheads. Reducing the frequency of major .

collections o compensate for more frequent minor collections. further imiproved performance.

Direct-mapped caches allocate memory blocks by using their lower-order bits to index
cache lines. Lincar allocation therefore sweeps through the direct-mapped cache. If most
objects have very short life-times, they will be dead by the time their cache block is rensed
for new data, provided that the cache is large enough — the primary caches investigated by
Reinhold varied in'size between 32 kilobytes and 4 megabytes, He argues it is important not
to disturbthe allocator’s sweep through the direct-mapypéd cache, from one end to the other.
Objects should be afforded the longest possible time to die; linear allocation and infrequent
eollection spreads objects spatially and temporally throughcut the heap; and most objects Hve
and die entirely within the cache. In his words, ‘a program written in 2 mostly-functional style
Hdes the allocation wave, just as a surfer rides an ocean wave’. Long-Tived and frequently
referenced data may interfere with this pattern, but Reinhold argues that these are rare in
programs wrilten in a functional style [Reinhold, 1994]. However, today’s machines do not
have such large primary caches. It is not clear, for example, that a program’s working set could
be accommodated within an eight or sixtzen-kilobyte cache without suffering a high rate of
capacity misses.

11.6 Special purpose hardware

So far we have considered only conveniional cache designs. However, an alternative is-to

tailor the hardware architecture to support languages that make heavy use of an astomatically

managed heap. In this section we briefly mention two special-purpose hardware architectures
designed in part to improve the cache performance of such languages. =~ o
Gehringer and Chang use a co-processor as a second-level cache [Gehringer and Chang,
1993]. The co-processor allocates objects in its. cache- and manages them with reference
counting — an idea first suggested by Peng and: Sohi [Peng and Sohi,, 19891, Gehringer’s
and Chang’s simulation studies show that the co-processor can remove up to 70 percent
of objects before they age out of the cache, saving a similar amount of bus traffic [Chang
and Gehringer, 1993a; Chang and Gehringer, 1993b]. Tracing garbage collection is still
necessary, for instance to collect cycles, but reference counting extends the: collection interval
by approximately 60 percent. : t : i

_overall perfortnance been measured. Incremental copying cellection has a similar cache

ISSUES T " : W ,ﬂ 297
The MUSHROOM architecture is a classical RISC architecture extended' with features
designed to support dynamic object-ariented languages, such as tagged memory [Williams
and Wolezko, 1990; Wolczko and Williams, 1993]. Memory is seen .as-a fine-grained.
segmented store, with each segment containing: a single ohject rather thani a Summ.nmcm
address space of words. The primary garbage callector is' & generational nomﬁnm collector
with the data cache acting as the youngest gencration. This collector is backed up by'an
incremental, on-the-fly collector in main memory. A particularly elegant featurs of this
architecture is that the cache/memory boundary acts as a barrier for both collectors. It is a
write-barrier for the generational collecior and a read-barrier for the incremental collector: The
cache is also software-visible: this can be uséd to avoid redundant bos traffic when allocating
objects dizectly-into free cache lines. To avoid mutator/collector cache conflicts, a portion of
the cache is dedicated to the collector ” .

11.7 _mm.rmm. to consider _. B :

‘We conclude this chapter by summarising the evidence. The functional programming style, in
which the overwhelming majority of writes are initialising, combined with linear allocation,
appears to tesult in acceplable cache performance providing the write-miss penalty is
negligible. An appropriate architecture might be a large direct-mapped cache, with sub-block
placement and 4 deep write-buffer; caches larger than one megabyte perform particularly well.
Snch configurations are starting to become availabls. !

Tf the write-miss penalty is not negligible, the LRU behaviour of copying garbage collection
may lead to a high write-miss. rate. To avoid this, it is important to match the size of’the
cache with the size of the %ouwmmﬁ generation. Increasing set-associadvity to two-way or
four-way is effective in dealing with conflict misses, including those between addresses in
different generations. Larger block sizes are effective since many garbage coll¢cted programs
have strong spatial locality. In particular, both the sweep phase of mark-sweep collection and
copying collection's scan of the grey region of Tospace make strongly sequential references
to'the heap. A miss that brings a block into the cache has the: side-effect of also loading many
other locations that are likely to be accessed soon. ! :

There is evidence that the miss rate of generational mark-sweep garbage collection is
lower than -that of generationat stop-and-copy coflection, but published results-have-only
measured overall miss rate; read- and write-misses have not been distinguished, nor has
performance to stop-and-copy collection. : ! :

TFinally, some researchers have speculated that; far from having an adverse gffect on nwﬂ.a
performance, programs sapported by garbage collection — and particularly E_,omE\ functiénal

programs — may have better cache performance, at least for some cache configurations, than =

conventional programs. Zom speculates that programs using a generational, highly localised

garbage collector may perform better than those with no garbage collection by reusing small

areas of space efficiently. In this way the spatial locality of the mutator; and hence its cache
performance, might be improved [Zorn, 199 1]. Reinhold also notes that, if the cache hias a

[" - significant effect on performance, a mostly functional style may be more appropriate than

,
C .) L i
!
{

298 & CACHE-CONSCIOUS GARBAGE COLLECTION

the imperative m.a;m of programming since updates are comparatively rare, the working set is
small, and Ynear allocation is well-suited to direct-mapped caches with negligible write-miss
penalties [Reinhold, 1554]. As the gulf between the relative speeds of processors and main
MEmory continnes to widen, and caches play an ever more significant role in guaranteeing
overall performance, these arguments may become increasingly powerful.

Gongalves and Appel offer some evidence to support these conjectures [Gongalves and
Appel, 19951. Comparisons of a set of small-to-medium size SML/NJ programs with the

SPEC92 benchmarks on a direct-mapped, write-allocate cache show the ML programs to-

have significantly, better overall miss rates in very small caches (less than sixteen kilobytes).
Providing block size was sufficiently large (64 bytes or more), the miss rates of the SML/NT
programs and those of the SPECY2 benchmarks were broadly similar regardless of cache size
[Gongalves and Appel, 19951

11.8 Notes

General studies of ”omn_um memory design can be found in [Hennessy and Patterson, 1996;
Przybylski, 1990]. Most of the studies here used Mark Hill’s tycho memory subsystem

" simulator [Hill, 1987]. Diwan er al. extended the simulator with a write-buffer simulator

[Diwan et al., 1594].

Benjamin Zorn studied the cache-behaviour of large Lisp-programs in several papers. [Zorn,
1989; Zorn, 1590b] concentrate on comparing the behaviour of generarional mark-sweep
and generational copying collectors whereas [Zorn, 1991] investigates the effect of different
cache parameters mote generally. Paul Wilsen, Michael Lam. and Thomas Moher, and Mark
Reinhold simulated different caches in the context of large Scheme programs [Wilson et al.,
1992: Reinhold, 1994]. Simulations of the cache behaviour of SML/NT by Andrew Appel and
Zhong Shao, Amer Diwan, David Tarditi and Eliot Moss, and Andrew Appel and Marcelo
Gongalves can be found in [Appel and Shao, 1994; Diwan et al., 1994; Gongalves and Appel,
1995] respectively. Philip Koopman, Peter T.ee and Daniel Siewiorek measured the cache

performance for the TIGRE threaded-code combinator-graph reducer [Koopman et al., 1989;

Roopman ef al., 1992]. They were the first to note the importance of write-validate caches
and pre-fetching for linearly allocating programs. However, their results must be treated with
some caution, since their benchmark programs were very small and only one allocated enough
data to invoke the garbage collector: :

The first sugeestion that a co-processor acting as a cache could be used for garbage
‘collection was dus to Chih-Tui Peng and Gurindar Sohi [Peng and Sohi, 1989]. The reference
counting co-processor approach was also taken up by Edward Gehringer and Morris Chang
[Gehringer and Chang, 1993; Chang and Gehringer, 1993a; Chang and Gehringer; 1993b].
Details of Manchester University’s MUSHROOM hardware design for object-orientsd
programming by Trevor Hopkins, Ifor Williams and Mario Wolczko can be found in a series
of papers [Williams ef al., 1987a; Williams ef al., 1987b; Williams et al., 1990; Wolezko and
Williams, 1990; Williams and Wolczko, 1990; Wolczko and Williams, 1992; Wolezko and

Williams, 1993].

12 R

Distributed Garbage |

Collection

The old model.of a single computer serving all of the computational needs of dn organisation
is being rapidly superseded by the one in which a large number of separate computers.
interconnected in a network do the job. Today, machines ranging from personal computers
io supercomputers are more likely to be part of a network than not. Networks are no longer
an academic curiosity: they have become an essential tool for users in business, government
and universities. B ; : :

As Tanguages aré evolving and are freeing users of the burden of doing memory
management, so computer netwerks are evolving into distributed systems. For: Tanenbaum

“The key distinction fs that in a distriboted syster, the existence of jmultiple
autonomous computers is transparent (i.e. not visible) to the user. He can type a
command to run a program, and it rons. Itis up to the aperating system'to select
the best processor; find and transport all the input files to that processor, and put
the results in the appropriate place.” {Tanenbaum, 1988] ;

A distributed system is a special case of a computer, network in which a higher-level

_communication protocol gives a high degree of cohesiveness and transpargncy, creating a

virtoal uniprocessor. Nothing has to be done explicitly by the user, but all is automatically
done by the system without the user's knowledge.

When one {alks about distributed garbage collection the first thing that springs to mind is
Inemory management 0Ver & COmputer network. Ts this relevant? The main Hm%:m in computer
networking is resource sharing. The aim is to make all programs, data and equipment available
to amyone on the network without regard to the physical location of the resource and the nser.
As our ability to gather, process.and distribute information grows, the demand for even more
sophisticated information processing grows even faster. Algorithms and programs can cnwm@:n
overa distribdted syStem to create finer-grained tasks that communicate somehow to exchange

information. Fudak and Keller suggest that there. is an ‘isomorphism’ between memory
> ¥ .

N

300 DISTRIBUTED GARBAGE COLLECTION
and process so that distributed memory management and distributed process management
are different ways of addressing the same problem (Huodak and Eeller, 1982], In this
scenario objects are active and possess their own thread of control. It makes sense (o talk
about process collsction, recursive {cyclic) processes, and so forth. It is significantly more
difficult to manage-active ohjects than passive ones because both reachability and state must
be considered. Furthermore, as active objects consume not only memory spdce but also
processing capacily, it is imperative that active garbage objects (processes) are identified
quickly. This is one of the reasons why distributed garbage collection is oue of the areas
that is drawing much.attention from the computer science research commumity.

No doubt this is an area in which one would expect rapid and possibly drastic changes.
Network technology is evalving rapidly, yielding everyday more and more scphisticated
distributed systems. The World Wide Web is an example today of a complex distributed
multi-media database, accessible from all over the world. So far, all information in this kind
of distributed database is static; in the near future we envisage the possibility that, amongst
many other things, information may migrate to reduce communication costs, or even that the
cost of data will be inversely proportional to the number of peaple who access them. To an
extent, Java already addresses this issus. Transparency may be taken to the extreme, allowing
powerful distributed systems that will need to run on top of a distributed garbage collection
layer of 4 communication protacal. :

Tt is very difficult to talk about distributed garbage collection without running the risk of

.. being outdated in the near future. On the. other hand, it would be impossible to ignore what

has been done in this area so far, because any new solution that modern technology may bring
will have to be based on the existing knowledge today. .

In this chapter we address the main constraints and difficulties in distributed garbage
collection, propose a taxonomy to classify algorithms, and present an ‘overview of strategies
for distributed garbage collection. .

12.1 Requirements

Distributed systems must be anatysed at two different levels. The lower level is the network
level, and the higher level is the distribution protocol that creates a virtual shared memory.
Understanding of both levels is important to allow rtealistic assumptions to ‘be made,
permitting applications to run correctly. In this section, we address some of the features of

* these two levels and their impact on the requirements of distributed garbage colleciion.

Networlk restrictions

A number of factors are relevant in the design of a computer network. The most important
of them is possibly the physical distance between machines. If computers are within a short!
distance from each other, one has a local area network (LAN), Otherwise, one has a wide area
network (WAN), also called a long haul network.

1 Distances depend-on tectnology. Tanenbaum considers short distances to be up to about
[Tanenbaw, 1988]. ‘ .

one kilometre

it

VIRTUALLY SHARED MEMORY 301

It is reasonable B. assurme that in LANs communications are reliable, low-cost and high-
speed. There may be real distributed computation involving fine-grained parallélism in which

processors will work together, exchanging data towards the solution of a problem. A typical .

example of a local area network in today’s technology is a network of workstations in a
laboratory, or spread throughout.a university campus or a single-site organisation. Machines
interconnected by optical fibres have data transmission rates already of the order of several
hundred megabits per second, In LANSs one can assume that there is the possibility of some
sort of global synchronisation taking place, and that data structures tend to be much smaller
in size and intérdependent. Migration of passive objects: between processors to increase
locality of data may be technically viable. LAN distributed garbage collection can be seen
as a complex extension of uniprocessor, or more: appropriately shared-memory techniques.
Although not explicitly mentioned in the literature, it is fair to say that almost all of the
existing algorithims for distributed garbage collection are aifmed at LANS. .

In WANSs, communications are enreliable and expensive. Messages may be lost, corrupted,
repeated, follow different paths, or be received in a different order from that in which
they were sent. Communication costs and data safety may impose the constraint of having
replicated information in order to increase locality and thereby reduce the latency of access to
data, and increase reliability. The units of data transferred tend to be much larger than in LAN
garbage collection and computations tend to be of much coarser grain, In WANs, one would
hardly envisage the kind of application in which there is interdependent computation. While
the use of a stop-the-world distributed garbage collection algorithm is accepiable in a LAN, it
would be unbearably inefficient in a WAN. It is more likely that processes and Processors are
autonomous and connect themselves for a specific, possibly short-lived task, such as a remote
query in a distributed database. Most information and processors are tenured, and an object or
process that is not transitively connected to the graph of active processes or cells may become
so by sending a message to an active one. Because messages may be pending in the network,
the asynchrony of WANs makes it difficnlt to determine the process (or cell) topology at any
given moment. A distributed garbage collection algorithm for WANs has to: take all these
factors into account. Algorithms such as Maheshwari’s Client-server [Maheshwari, 19932;
Maheshwari, 1993b], and those of the Mneme project [Moss and Sinofsky, 1988; Moss,
1989a; Moss, 1980h; Moss, 1990] handle Wo_.mmwﬁuw oEmnﬁ.w‘ and nmu.rm.mmws mmJS.Z.mEEEn
algorithms. W : ! Lo

As technology evolves machines and networks are wmo.o,n:.bm faster and more teliable. A

computational problem that is addressed by a LAN taday may in the near futire be runding
over 2 WAN. The same evolutionary scale applies to distributed garbags collection protocols.

122 Virtually shared memory

Although much effort has been put in hiding message-passing from the mmomﬂmﬁamn it
iz difficult to make it entirely transparent. Remote procedure call (RPC). offers a @..mw of
hiding communications by making them look like ordinary procedure calls. The-programaner,
however, still has to'be aware that the semantics of RPC are different mﬂoﬁw those of local

- procedure calls, Passing pointers as parameters in RPC is difficult, and passing arrays is costly.

-
|

1+ 3 P
i
]

i

“02 - DISTRIBUTED GARBAGE COLLECTION

The existonce of 4 logical shared memory protocol underneath a distributed garbage
collector would permit it to concentrate on garbage collecticn issues alone, thus behaving
in a similar fashion to the relationship between the garbage collector and the operating system.
in uniprocessors. Distributed shared memary (DSM) provides the illusion of & true physical
shared memory, in which a number of processes share a single address space. The DSM
models make the access protocol consistent with the way sequential applications access data.
The simple abstraction provided to the application programmer by the DSM models has made
it the focus of recent study. .

The two most important approaches o distributed shared memories are the shared virtual
model (SVM), for which the most widely known algorithm is due to Li [Li, 1986; Li and
Hudak, 1989], and the shared data-object (SDO) model presented in [Bal et al., 1992]. These
twa models offer different abstraction. : :

Shared virtual memory

In the shared virtual memory model the address space is divided into pages, which are
distributed amongst the processes, regardless of the structure of the data (objects) stored in
them. Processes have either read, write or no access to a page. Read pages can be replicaied
on multiple processorsto increase data locality, reducing access {ime: Arrcadoperationalways
returns the value of the most recent write to that address. Each process or processor can access
any memory location in.the shared address space at any time, and read or write values altered
by any other processior processor, Mutual exclusion may be implemeated by locking pages.

The SVM is a low-level unstructured protocol in which data can only be accessed with
primitive operations, such as load, store and lock. o access protection or type-security is
enforced by the system. Li’s original idea was to allow an casy integration of SVM with. the
virtual memory management of the host operating system [Li, 1986]. K a shared memory
page is held locally at a host, it can be mapped into the application’s virtual address space
on that host and therefore be accessed using normal machine instructions for accessing
memory. An access to a page not held locally triggers a page: fault, passing the control to
2 fault handler, which communicates with a remote host in order to obtain a valid copy of
the page before mapping it into the address space of the appiication. Whenever used on a
homogeneous. set @m hosis SVM can hide communication complexity from the applicatien,
achieving complete functional transparency in the sense that a program written for a shared
memory multiprocessor system canrun on SVM without changes.

-t Shared nmmnm...c_.&mmﬁ model :
The shared data-object model was proposed by Bal et al. [Bal ef al., 1992]. Tt is a high-
level, structured approach to distributed shared memory. In contrast to the SVM model,
which is implemented by the kernel using hardware support, the shared data-object model
is implemented outside the kernel and completely in sofiware. .

The distributed shiared memory is not ireated as a flat address space that can be accessed in.
any arbitrary way. Compilers, such as the one for Orca [Bal er al., 1992], provide information
to the run-time system, keeping the DSM coherent. The semantics of the language restrict the

scope of shared <Mﬂm5mm. In a shared data-object language, shared data are encapsulated i - -

i
|

DISTRIBUTION ISSUES _ : - 303

objects. A shared data-object is an instance of & user-defined abstract data Qmm. and can.only
be accessed through methods defined in the specification of the. object. The run-time system
can also replicate objects on more than one processor, to reduce access time, These operations .
are executed invisibly, and the run-time system ensures that all processes that share the owwmmm.
see the result. :
The partitioning of the DSM address space is not defined by the system, 4s-in the SVM
approach, but implicitly by the application programmer. A shared object is the unit. of
programmer-defined sharing, rather than the page. As objects are instances of abstract data
types, variables that are independent of each other will typically reside in different objects. -
Table 12.1 summarises the differences between the SVM and SDO m.mHm&mEmk, [Levelt et al,
1992). , i o :

- o bl
Table 12.1 Differences between the SVM and SDO @ﬁw&mﬁum. From .w&@_tnmm Practice and
Experience, 22, no, 11, pp. 985-1010, Levelt et oL ©1992 John Wiley & Sons ‘Ltd. Reprinted

" by permission of John Wiley & Sons Ltd. :

Shared virtugl memory | Shared data-object

Implemeptation Tn kernel, hardware support Completely in software
Unit of sharing System-defined page " User-defined object
Unit of synchronisation Machine instruction : . Procedure i

Data placement : Explicit Implicit ,
Address space Flat Structured |

Garbage collection over distributed mrw_.mn_ memory

” o Theise of virtually shared meméry protocols n.mmw meHE& thé task of aamwmaum garbage

collectors in distributed systems by handling message passing protocols in a uniform way.
However, in order to be able to perform distributed garbage collection efficiently,. the
algorithm must &y to reduce communication costs by every means. The mwmoﬁ adoption of
a shared memory parallel algorithm on top of a virtually shared memory protocol would be
unbearably inefficient [Le Sergent and Barthomieu, 1992], :
The ideas of virtually shared memory are very recent and their implementation still has o

be made more efficient. We envisage that in the: nsar future these ideas sman adopted by
most distributed systems and will have a large impact in widening the frontiers of distributed

- garbage tollection.

L Mnn._\m oE.mn.ﬁm

304 ,, " DISTRIBUTED GARBAGE COLLECTION

12.3 Ummnl._ufﬁmm garbage collection issues

Are the tequisites for distributed garbage collection the same as for uniprecessor garbage
collection or even for shared memory machines? A garbage collection scheme must he able
to collect all garbage (comprehensive), only garbage must be collected (correct), the rate of

recycling memory should be sufficient to meet new allocation requests (expedient}, and space -

and time overheads should be acceptable (gfficient). In a distributed system, concurrency is
also a constraint to be met. Concurmrency allows several processors to change the connectivity
of the graph simultaneously in an autonomous way. Besides the distribution issues, some of
which were mentioned above, the whole nature of compitations may change. An assumption
fundamental to many algorithms for unipzocessors or shared memory machines is & certain
order in the connectivity of the graph. Cells im use are transitively connected to a root. Cells
detached from the graph are garbage cells: the mutator will never access them. In some
applications in distributed systems, one can envisage the possibility that a cell that is ‘dead’
may send a request to a live one connecting, itseif to the graph, creating a new and more
complex scenario.

Taxonomy

As distributed mmn_u.mmo collection algorithms preset new difficulties for garbage collection,

.« --some classification:method seems appropriate.. - - —-———

We will apalyse algorithms depending cn the nature: of objects managed, their hierarchy,
the existence or not of cyclic structures, the way objects are accessed, and their robustness to
communication or node failures. : : . e

Passive objects

Objects can be either achive or passive. Passive objects hold data but the computational thread
of control is external to them. Once a passive object has been disconnected from the graphitis
garbage, and its resources are free to be reused. Most.of the existing algorithms for distributed
garbage collection fall into this category, are snitable for being implemented in L.ANs, and
are based on uniprocessar garbage collection algorithms. The new techniques developed,
such as weighted reference counting and generdtional reference counting (see Section 12.6
on page 316), iry to reduce interprocessor communication.

Active objects control their computational thread. They model the behaviour of objects in
object-oriented languages, for instance. Their management is more complex than that of
passive ones, because reachability and state may need to be analysed simultaneously. A
passive garbage object wastes space only; while an active garbage object may consume
pracessing power or drain memory. We reswict the term active to those objects that if
carrying useful compusation, are transitively connected to the root of the computation graph.
. Otherwise, they are garbage and their resources can be antomatically recycled...

" Object hierarchy

DISTRIBUTION ISSUES . : . 305

Actors : ; |

Some objects have a behaviour more autonomous than that of active ones, and that allows an
abject detached from root to come to life by sending a message to a live omu.mmn The-Actor
Model has been used to describe such objects, called getors [Hewitt, 1977, >m_u.,m« 1986Y. Each
actor is an sntity that has a conceptual location (its meil address) and a behaviour.

Actors exchangs messages amongst each other — this is the only way that one actor ¢an
influence the actions of another, Communications between actors are asynchronous, and every
message sent will be delivered after some finite delay (fairness of mail delivery). Every
actor has its own mailbox that queues incoming communications. Actors and their garbage

_ collsction are discussed in Section 12.7 on page 317. :

An important aspect to be analysed is whether all objects are accessible from ﬁ,& other object
within the distributed systam or not. Interprocessor communication is still far less efficient
than local memory aceess. To avoid comiminicafion or space costs, of somefimes to make
explicit the kind of operation to'be pétformed by the lower layers of the distributed protocal,
objects can be classified as either local or global. An object is said to be local to a given
processor if it lies within its address spacé. Otherwise, it is'said to e global, :
Many schemes for distributed garbage collection assume the existence of a local garbage
~ gollector Tunning within the processor node and’ a global garbage collector at the network.
level. The local and slobal algorithms cooperate in garbage detection and Hmo&n.:um. In many
algorithms, a focal object may become a global one. The converse may also happen. A
global object may become local by losing all external references to it.'Such upgrading and

downgrading operations, that change the status of objects, must be carefully handled.

Accessing objects

The main aim of a garbage collection algorithm s to be able to find resources that aré no
longer needed by the computation, and to recycle them. In indirect methods, the garbage
collection algorithm visits all objects forcing communication. Direct checking protocols in
distributed systems may yield algorithms that are more communication intensive and less

robust to network failures. Ditect methads allow information about an objéct to be stored

in other objects in the network. In general, the information about an objéct is stered in

... the objects that access. it or in tables placed. in the node. Indirect checking may allow less

7 the network, yielding global cycles. Local cycles. are dealt with in the same way as in
: , W

infensive communication between processors. asi the. information about a. given node is not
directly stored-in it. This kind of protocol may be more robust to network failures.

i ol
3

Cyclic structures o o

The same solutions that lead to cyclic stucrures in uniprocessors also -aris¢ in distributed
systems, In some distributed garbage collection protocols, a ¢yclic structure must be confined
to a single processor: a local cycle. Other distributed algorithms allow cyckes to span

306 s DISTRIBUTED GARBAGE COLLECTION
uniprocsssors. On thé other hand, global cycles may either:

e not be managed by the protocal;
« be managed by the protocol at the network level;or .
« be forced to migrate to oze single processor-where a local gasbage collector will eventually

take care of it.

Synchronisation

Tocal information is; not always sufficient to determine whether an object is still needed or

.. pot. The speculative parallelism model of computation, for instance, initiates several tasks

simultaneously in the knowledge that not all of them will be needed ultimately. At some point,
somehow, processars need to be reset and the space consumed recycled. In order to allow a
decision to be made, processors in the whole (or part) of the nstwork need to interchange
messages. At this moment, some soft of synchronisation takes place.)

The simplest synchronisation model is by a srop-the-world protocol. All processors stop
graph mutation, or at lsast stop making changes to the connectivity of global objects, and
collaborate for mﬁuwmm collection, This process is gquivalent to garbage collection pauses
in mark-sweep algorithms for uniprocessors. A good representative of the stap-the-world

" model of garbage colléction is distibuted fark-Sweep, which has been used in practice by -

the Emerald system, for example [Black et al., 1986; Black et al.,, 1987; Jul et al., 1988].
Some other algorithms. try to weaken the mutater pause restriction by permitting somse
operations to take place concurrently with garbage collection. In general, this model would.
not apply to actors, This sort of protacol tends to permit increasing the connectivity of the
graph with operations such as New and Update, but seldom allows actual link deletion.

Robusiness

Making a network robust to partial failures is far from being a resolved probiem. Most of
us have already experienced problems even with very basic distributed software such 'as
electronic mait. Sometimes messages arrive more than once, at other times they are delivered
unreasonabiy late or get lost on their way and never find their destination.

The goals of comprehensiveness, cONCUITency, expediency; efficiency and comectness
in distributed garbage collection become much harder to achieve simultaneausly when
robustness is demanded. Guaranteeing that all warbage is collected, and that there is no
memory leakage, under a possibly faulty network of processors requires that the garbage
collecting protocol be able to deal with the available parts, while waiting for unavailable
paris to become available again. Under all circumstances only garbage must be reclaimed;
references to unavailable parts of the network must remain valid. Tt would be unreasonable to
stop the world, and block operations in the whole network just because of a partial failure. The
garbage collection protocol must be able to reclaim garbage despite unavailable parts. Failures
and their recovery must be handled efficientiy. Additional overheads due to robustness must

“be limited and mainly paid when failures are present [Funl shd Tul, 1992]. ~

DISTRIBUTED MARK-SWEEE _ | mﬂs.,

. o . i .
It is extremely difficnlt to fulfil all thess goals simultaneously. A ooEmHnranm,.Eo collection
depends on all nodes in the distributed system. The presence of communication delays

makes the requitements for comprehension and expediency fmpossible for-a single collectos:

Trading-off comprehension for expediency yields a conservative scheme in which only part of
the garbage is collected. One solution is to group aodes togsther for collection E\Hm.bog etal.,
1991; Shapiro et al., 1990; Shapiro, 1991]: The distributed collector Eoﬁ%n& in [Lang ezal.,
1992] eventually reclaims all inaccessible objects. The partitioning and grouping strategies
in distributed garbage collection are similar to | those: used by Eﬁwnonnmmgw generational
scavengers. Juul and Jul describe a robust and. comprehensive algorithm used 'in the object-
based Emerald systemn [Huéchinson, 1987; Hutchinson etal., 1987; Tuul and Jul, 1992].

12.4 Distributed mark-sweep |

Tn the following sections, we present an overview of existing algorithms, and review their main
features in the light of the taxonomy presented above. First, we consider Bmawlwémmw garbage
collection. Algarithms for distributed mark-sweep form two different families. Some of them
are descendants from the original mark-sweep algorithm while some others adapt Dijkstra’s
on-the-fly mark-sweep garbage collector (discussed in Chapter 8) to work {in distributed
environments. . : i

Hudak and Keller | .

The Hudak—Keller mark-troe collector was one of the first distributed m_m.olmzm,am [Hudak and
Keller, 1982]. Designed for functional languages, it is based on Dijkstra’s on-the-fly scheme.
Garbage reclamation is accomplished in paralle] with computation, and no central control is
necessary other than a logical rendezvous between phases of the. collector. It is also capable
of finding, and subsequentty delsting, active processes that are determined ¢ be no longer
relevant to the computation. ” ”

The Hudak—Kellerarchitecture is formed by linking together processor nedes, Concurrence.
is realised at each node either by running the collsctor on a shared memory processor in
parallel with the- mutator, or by interleaving the operations of the two processes, Thers is
a virtual addressing schemie-whereby a node may reference any other node in the system.
Communication between nodes occurs by spawning tasks from one processor to another. A

finer granularity than, for example, PL/1 or Ada tasks. ; :
Garbage is defined as nodes unrsachable from the root, but there are two other forms
of garbage: irrelevant tasks [Friedman and Wise, 1978; Grit and Page, Emﬂ and dormant
subgraphs. Irrelevant tasks are created by speculative parallelism and can arise;in 2 number of
ways. The eager evalnation of unneeded arguments to a function in alazy functional language,
or the parallel evaluation of conditional branches are instances. A dormant conputation graph
is one for which the semantics of evaluation dictate that no task can ever again propagate

_task is the smallest artonomous unit of processor activity, and is assumed E be of a much

. work, although that node is still accessible from. the. root. Irrelevant tasks may be found by

308 UHmH.wES.mU GARBAGE COLLECTION
tracing and marking nodes from the root. At the-end all tasks pointing to unmarked tasks are
irrelevant. Dormant subgraphs may be found by tracing fram the tasks instead of from the
root. These markings may take place either simultancously (two mark bits are nesded) or in
alternation. Table 12.2 shows possible-cutcomes.

Table 12.2 The outcome of marking Woi roots or tasks [FHudak and Keller, 19821

” Marked from tasks?

yes no
@nﬁwmmw.oi ooty T active - - dormant
: no . ielevant garbage

For ;HpEmﬁoHIou:mnHmn cocperation, Hudak and Keller use a mark tree (hence the name of
the algorithm), to which a distributed mutator may add branches. The collapse of the iree

indicates that marking is-complete. The scheme is best yiewed as a-parallel implementation -

of conventional recursive marking, in which each recursive step is replaced by the spawning
of a mark task, The mark tree is built to provide mechanisms for cooperation and proper
termination, Termination is detected since each mark task eventuaily spawns.an ‘upfree’ task,
which is propagated upward in the mark tree. Spawning an uptree task from ttie root indicates
that marking is noBEnﬁm. In order to provide a way for a mark task to refurn to its parent once
it has been spawned on & node’s children, each node is augmented with fields for its parent in
the mark tree, and for a count of the number of tasks which have been spawned on its children.

As usual, three colours are used for marking, interpreted for distributed garbage collection.
White nodes are those not yet reached by a mark task. Initially all nodes are white, and after
marking is complete white nodes are garbage. Grey nodes are those to which marking has
been propagated, and from which a mark task has been spawned on each of its children. Once
all the mark tasks spawned from a grey node have heen ‘returned’ by upiree tasks, the nods
is painted biack, and an uptree task is spawned on the node’s parent in the marking tree. New
nodes are also creatsd black. .

Tnitially afl nodes are white and their mark task couat is zero. The marking phase simply
spawns a mark task on the roat, with a dummy node as its parent, and then waits for the global
flag dene to become true, The first mark task to find a white node Is the one that shades it grey,.
makes it a child to its parent in the mark tree; and spawns mark tasks on each of its children,
keeping track of how many mark tasks are spawned in its count field. If the node is a leaf, it
is painted black and an immediate return is made through an uptree task. Once the marking
phase terminates, the sweep phase takes place. At this point, ali white nodes:ars garhage and
all tasks pointing to white nodes are irrelevant. The sweep phase first terminates all irrelevant

tasks, and collects all white nodes by adding them to the free-list. It then prepares the system

for the next collection cycle by flipping the colour the mutator saes as garbage.

1

DISTRIBUTED MARK-SWEEP 309

]
-Ali's algorithm . .,W

Al presents algorithms that allow each processor to mark-sweep its own heap Mummuoua.gﬁ%
[Mohamed-Ali, 1984). At thé end of a local garbage collection, the processer informs all other
processors which remote pointers it relains, and. the other processors then treat these as roots
that must be marked during their own cellections. These algorithms allow each Processor
to work independently, thus reducing the synchronisation overhead. Ali’s algorithms are not
real-time since any particularcomputation may bedelayed for a long time ng its wnooom.mow.
does a garbage cellection. ” ” ! _

Garbage collection, messages can be batched together:into large Eonw?m allowing fhe
communications medium to be used more efficiently. A table stores in-iransit references and
several message queuss are maintained. The {ssue: of lost or in-fransit messages is solved by
assuming that the communication channel between each pair of nodes is order-preserving
(an alternative solution is to keep message counts in each node). Before a garbage collection
is campleted, a check iz made to ensule that the number of reply messages is equal to the
message count. The algorithm is unable to collect global cycles. !

Hughes's algorithm , M,

Hughes’s algorithm is based on Ali’s but has lower storage overheads. It is also likely to take
longer to recover remotely-referenced garbage, and like Ali’s, is not truly real-time, becanse
mutator operation is suspended until garbage collection is over [Hughes, 1985]. Unlike Ali’s,
it can reclaim global cyclic data structures, Many garbage collections are performed in parallel
and each of thern marks nodes differently. When the marking phase terminates, unmarked
nodes can be deleted. Each processor makes a contribution to all the currently active slabal
garbage collections every time it performs a local garbage collection. i

The algorithm assumes the existence of a global’ clock and that communications are
instantaneous, thereby avoiding problems of in-transit messages. These Ewcnﬁngm are
reasonable if they are taken to refer to simulated time, rather than real time. A slohal garbage
collection marks nodes by stamping them with the time that it started, and counts 2 node as
unmarked if its stamp is less than this tithe: Nodes created since the garbage collection started
are automatically considered marked. Local garbage collections propagate the time-stamps of
root nodes on a processor to its leaves, performing part of the mark phase of each currertly
active garbage collection. At the end of the local garbage collection, marking messagesiare
sent to remote objects whose time-stamps have increased. Each processor keeps track ofithe
earliest global garbage collection for which it has more work to do. é.:mnbcm processor has.
more work to do for 4 garhage collection T then all nodes with dme-stamyp less than T carl be
collected. Detection of distributed termination is done by an adaptation of Rana's algorithm
[Rana, 1983]. S _

The Liskav—Ladin algorithm _ .

Liskov and Ladin take a different approach to distributed memory Emnmmoﬂmwm {Liskov and
Ladin, 1986]. Instcad of distributing decision-making, the service is logically centralised but
physically replicated in order to moana.n‘Emr.mmnﬁlﬁoﬁﬁmunn and availability. All ohjects-and

|
1
i
o
g
i

!

310 DISTRIBUTED GARBAGE COLLECTION

tables are assumed to be backed up in stable storage. Clocks are synchronised and message
delivery delay is bounded, allowing the ceniralised service to build a consistent view of the
distributed system. Incoming and outgoing references and their paths are reported by local
collectors to the centralised service. Based on the path information collected, the centralised
service builds the geaph of inter-site (global) references. The ceniralised service runs a mark-
sweep process on this graph and informs the local garbage collectors about the accessibility
of their root objects. This information is used by the local mark-sweep collectors to detect
garbage. L i

The adoption of Hughes’s algorithm and loossly synchronised local clocks allowed Ladin
and Liskov to simplify and corract their original algorithm [Ladin and Liskov, 1992]. There
is no nead for accurate computation of the paths of ingoming and outgoing references for
the central service to maintain the graph of global references, becanse Hughes’s algorithm.
eliminates inter-space: cycles of garbage. A termination. protocol is no longer necessary,
hecause the ceniral service determines the garbage threshold date.

Augusteijn’s m_monmnza

In order to avoid mmﬁnm during mark-sweep, Augusteijn based the garbage collector for the
parallel object-oriented language POOL-T oo Dijkstra’s on-the-fly algorithm [Augusteijn;
1987]. POOL-T enables the programmer to describe a distributed program by a collection

of coopérating dynamically created processes, called objects. The DOOM machine in which .

POOL-T was supposed o be implemented is really 2 LAN. Communication between
processes follows a rendezvous protocol, with the object sending a message suspended until
it receives the result. The message-passiag mechanism behaves like a remote procedure call.
Since an object can.hold a reference to another object anywhere in the system, each collector
must be able to communicate with any other collectar. This makes the fogical communication
network between processors fully connected, although the physical network does not need
to be. This constraint makes most of the termination detection algorithms unsuitable for
Augusteijn’s implementation. The solution adapted is not fully distributed, because a special
synchronisation cbjectis introduced. to-establish global invariants.

Vestal’s algorithm

Vestal’s algorithm is also based on Dijkstra’s collector [Vestal, 1987}. Processors cooperate
_in both phases of the callection and marking proceeds in parallel with mutation. The address

space is split into logical areas for which thare is no control over site boundary crossing. Bach

collector wmwmoﬁnm,p global mark starting at the Toot of an area, which leads to a very high

communication overhead. .

The Mnrm_ﬁmlw_.,,wmomm algorithm

The distributed wo,aw&o% Smalltalk collector uses 2 combination of distributed mark-sweep
for global objects and a generational scavenger locally [Schelvis and Bledoeg, 1988]. Bach
processor has its local heap split into areas to be filled with cells of different generations

and an additional region that contains all replicated objects. This region behaves like the old

DISTRIBUTED MARX-SWEEP . , . 311

mouﬂwmou of a generational garbage collector except that it is replicated in Qvna‘ Eo_uom.moh
Whenever a local processor runs out of cells in its new space, a scavenge takes place. The roots

of the computation graph are the set of new and survivor cells referenced from the replicated-

spaces on remote nodes. : i Lo

At the global level, mark-sweep is initiated by traversing and marking the whole mﬁmmum
of living cells. Then, the sweep takes place. According to:Abdullahi ez al., this algorithm is
cwwﬂm ta work properly wher not all nodes are able or willing to cooperate [Abdullahi eral,
1992]. : :

The Emerald collector | ,
Emerald is a distributed active-object based system [Hutchinson, 1987; Hutchinson et al.,
1987]. Emerald’s garbage collection scheme is hierarchical and has been MEEmEmEma over a
LAN of warkstations [Tul et al., 1988; Tuul and Tul, 1992}. The global collector runs on each
node in the system, continuously adapting to the current Wmﬁzmmow and striving to fulfil the
comprehensiveness réquirement while giving up on expediency. The local mn:a?n foresees the
possibility of failure of many parts of the system by performing an independent and expedient,
but not comprehensive, local collection at each node. ! :
Comprehensive collection is achieved by conéurrent mark-sweep collectors on each node,
which cooperate as a global garbage collector across the ‘entire network. A onﬁR:npm?n

. sarbage collection can take place while varios parts of the distributed system are temporarily

unavailable. A second set of coilectors does an independent, partial collection on each node.
These node-local collectors do a more expedient collection of lacal garbage without being
comprehensive. Both sets of collectors work in paralle] with the mutator processes, most of
the time. The global collection adds robustness to the garbage collection scheme by waiting
for needed, but unavailahle, nodes to become availeble again while progressing the collection
in the available parts of the system. Local colleetors are able to collect local garbage while
the rest of the system is unavailable, adding efficiency and expediency to the scheme, as most
objects tend to be short-lived and local [Schelvis and Bledoeg, 1988; Jul et al.,. 1988; Rudalics,
1986]1. . o ; ;

During a comprehensive garbags collection, the graph must be traversed from the oot set
to identify reachabie objects. Any node may initiate & global collection cycletand inform the
other-nodes about that decision- Bach collector makes progress Eamm_muanan& doing marking-
lacally. External references-are handled differently. Non-local objects are seen by mutators as
black and by collectors as belonging to 2 non-local grey set; When the grey setis emptied, non-

" resident objects are handled by sending a shade Tequest to the node hosting the object. Each

shade request is acknowledged to allow the requesting node to remove the reference from its
non-resident grey set. Grey references are kept until the node hosting the node, mzmnubnmmm that.
the object Is either grey or black. The mark-phase is finished when the HOan and non-local
grey sets are empty on all nodes. This state can be detected by a two-phase commit protocol
or by having a coordinator node. W T

The cooperating collectors that constiute the glabal collection may run mmawnnnmnnmw on’
each node. Cooperation is needed over when to start, i.e. when mutators must be stopped and

- the local part of the distributed set of root objects constructed; during the mark-phasé, i.e.

when a non-resident object is shaded; and to determine when the mark-phase is finished. A’

R

e

- 312 , DISTRIBUTED GARBAGE COLLECTION

disimibuted termination detection protocol must detect that the all grey set is empty in this
situation. Any node may decide to start a new cycls of the global collection. By acding

the eycle numiber of a collector to all inter-node messages, every node will become aware
" of the coliection before it engages in the transfer of objects ar references with the stardng
node. During the mark phase, the current cycle number repressats the colonr black, and the
previous collection number the colour white. At the end of the mark phase white objects can
be collected by the sweeper, which is interleaved with the allocation routines.

The IK collector- ,

IK is an object-oriented platform intended to simplify the development of distributed and
persistent applications: {Sousa, 1993]. Tt runs in user mode on a LAN of heterogeneous
Unix machines. IK generalises the notion of volatile and persistent data by considering ail
objects maintained by the system t0 be part of the: iransitive closure of an eternal root. Object:
invocation is the basic primitive of the. system, embodying all of ihe feamres required for
transparent handling of persistence and distribution. Object faults are triggered solely by
intercepting object invocations, and direct access to other objects’ member data is not allowed.
Faulty objects are either mapped and invoked locally or; if already mapped elsewhere,
remotely invoked. TK aiso provides object. migration, but its policy must be defined by
application. Three independent garbage collectors ave: used. Local objects are recycled by a

s generation-scavengingalgorithm. The second garbage collectoris ateference counting cluster .

collector, run off-line by a process running continuously on each storage node. Clusters are
1ocked while being recycled, suspending mutators’ access to them. The third garbage collector
is a system-wide mark-sweep collector. Initially, a suspending mark-sweep collector was used.
Tt was later replaced by a collector hased on the Hudak—Keller algorithm. .

12.5 Ummn1mvcnm& copying

Radalics suggested & copying algorithm for 2 distributed environment [Rudalics, 1986). This
algorithm is a combination of Cheney’s copying collector and Baker’s real-time algorithm
(see Sections 6.1 and 8.5, respectively). Collection is incremental, but each step may take an
unbounded amount.of time in a processor. The local memary of each processor is divided
into three spaces: the root space, which stores elobal objects, and two sermi-spaces. Roots are
invisible to the programmer, and serve as the second stage in the indirection of references
between processors, Each root is an incoming external reference, and contains a local pointer
to the actual object:and a tag bit for garbage collection. Roots are linked il either of three
lists, The fizst two lists act as semi-spaces for roots, while the third is used to store roois
temporarily while a remote object or root is being created. The semi-spaces are used by
the collector for moving and compacting local objects. The upper part of each semi-spaceé
is reserved for storing remote pointers, which act as indirections to exiernal references, and
also have tag bits for garbage collection. Roots and remote pointers establish a two-stage
indirection concept, and are similar to inter-area links [Bishop, 1977 and entry/exit pointers
Licberman and Hetwitt, 1983; Plainfossé and Shapiro, 1992]. ~ © ..

ihﬂ .

‘The Lermen—Maurer protocol

DISTRIBUTED REFERENCE COUNTING 313

1
The algorithm ‘assumes that all objects are reachable from one. glabal Hoouﬁ_ from which
collection starts. Collection consists of a scan phase followed by a flip phase msmn eventually
includes all processors. Rudalics snggests interleaving local collections with-global ones in
arder to reclzim short-lived objects more easily. This protocol is unable to terminate global
active objects, but is able to colleet them after they exhaust their own. rescurces. -

12.6 Distributed reference no_._:n;,m

Reference counting has several advantages over tracing garbage ooznnmopmﬁsmﬁ make its

. application attractive for loosely-coupled multiprocessor architectures. It is; performed in

small steps interleaved with computation; it has better locality as there is no need to scan
global data structures, and it does not degrade with occupancy. Distributed Hnmowounm counting
is a simple extension to uniprocessor reference counting. ‘On a loosely-coupled system 'the
creation of a new reference to an object requires that a message be sent to the.object in order
to incrementits reference count. Likewise, if a remote reference is discarded then a decrement
message must he sent. Special care must be taken to prevent an object being reclaimed while
references to it'still exist, This may happen if messages arrive in an order different from that
expected. For instance, if a message deleting the last reference to an object overtakes a copying
message, the object will be reclaimed incorrectly. , - j

A solution to this problem appears in [Lermen and Maurer, 1986]. Their communication
protocol requires that messages between any pair of objects are delivered in the'order in which
they were sent. Messages must be acknowledged, and objécts are only Hnﬁmgmm if an equal
aumber of copy, acknowledge and delete messages are received for that object. This protocal
provides a correct distributed reference counting scheme [at the cost of Eﬁm_w messages. per

interprocessor reference.

Indirect reference counting ; ,
Piquer's' scheme optimises distributed reference counting by avoiding count increment
messages [Piquer, 1990b; Piguer, 1991]. The indirect reference count (IRC) algorithm
maintains a diffusion tree structure that represents history of Uow:nm.n ooEnm.HEm structure is
squivalent to the termination trees proposed by Dijkstra and Scholten [Dijkstra and Scholten,
1989]. It uses two extra fields in each pointer: a reference to the ﬁo::na_w parent in. the
diffusion tree and a count of its children, The parent pointer serves only distribated garbage
collection purposes, and refers either to an obiject or to another remcte uoEﬁh The whole
set of remote pointers referencing an object forms a distributed graph which can be traversed
using indirect pointers. Creation of new cells or copying of pointers is performed locally
without any need for communication. The deleiion of a pointer may mgmnwm inore than one
message per reference. . W)
Piquer’s scheme is also concerned wit

. - , :
object migration between processocrs. Messages

“ 314 : DISTRIBUTED GARBAGE COLLECTION

"to & migrating object may be flowing in the network and, unless special care is taken,
the protocol will behave erroncously.: Object migration is performed at a cost of only one
interprocessoz message. Indirect reference counting communications hehave similarly to those
of the weighted reference count protocol (see page 316), but its main advantage is that itavolds
generating indirection cells, and thus allows access 10 non-local references in constant time,

“ The IRC protocol, as distributed reference counting, is acyclic and not robust against message

- loss or duplication.

‘The Zw:nm:mlmr..?wﬂgm algorithm

An efficient and fault-tolerant distributed garbage collection algorithm based on reference
counting has been @Honoﬁn_ by Mancini and Shrivastava [Mancini and Shrivastava, 1991].

" " Resilience to space or message Tailures is supported by 2 remote procedure call mechanism
extended to detect and kill orphans. Duplication of remote messages is handled by a special
protocol that makes an garly short-cut of potential indirections even if they are not used. Two
alternatives are proposed to make the protocal cyclic. The first one is distributed mark-sweep..
The other alternative is based on a heuristic that allows cells to leak away.

" The SPG protocol
....The SPG algorithm..assumes. that interprocessor communication is. unreliable and, that.
messages may arrive in a different order from that in which they were sent {Shapiro er al.,
1990; Plainfossé and Shapiro, 1992]. Objects may contain references to other ohjects located
in the same or in remote processors, and changes of stams are permitted. The-SPG protocol
relies on any standard local tracing garbage collsctor. The distribuied protocol is based on a
conservative extension of reference counting. External references are avoided by migrating
objects between processors whenever a local collecter discovers that there are no locally held
_ references o the abject, thereby allowing garbage cycles to be reclaimed locally (a cyclic
extonsion of the SPG protacol was proposed by Kordale and Ahamad [Kordale and Ahamad,
1993]). Mutators in different spaces communicate via remote procedure call style invocation.
The arguments and results in the invocation may contain any mixture of pure data, references,
and migrating cbjects.\. : .
Bach node maintains entry and exit tables of potentizl incoming and outgoing references.
Both tables are conservative estimates. I two different nodes possibly refer to a single object,
each will be assigned an entry item. This differs from reference counting, and in particular

~ 7 irom Piquer’s approachi, because the SPG protocolneeds an entry per remote space i tolerate™ "

fost or duplicated messages. : .

When sending a reference, the value of the local clock is stored in the entry item. The
same value is used to time-stamp the mutator message. Upon receiving a mutator message,
the: receiver compares the time-stamp value in the message with the one found in a vector -
of highest time-stamps. This vector contains a space identifier and an associated time-stamp
for each remote node. The time-stamp is increased each time a message is received; if the
corresponding entry is not in the vector, the inirial value can be taken from the message.

.....Messages carrying the value. of the time-stamp vector are sent to the. target nodes of a given
node. Upon receiving one of these messages, the time-stamp’ valve found in the message is

T W

DISTRIBUTED REFERENCE COUNTING . ; 35

compared with the value in the entry items to detect messages in qﬂnmwﬂ..gmmwmma delivery
delays may cause improper object reclamation. To guard against duplicafion or loss of
messages, a list of all existing exit items on a node is sent to the nodes referenced; this
comparison can deduce entry items that are not reachable, and remove them. To .H_Hoﬁmm
fault-tolerance, extra time and ownership information is piggy-backed onwo the existing
mutator messages. Occasional conirol messages are exchanged in the background to remove
inaccessible entry items. 4
|

‘Garbage collecting the world’ o M
The ‘Garbage collecting the world” paper describes a fault-tolerant, distributed collectorthat
can reclaim distributed cyclic garbage [Lang et al, 1992]. Tt is a hybrid collector that uses. -
reference counting for global objects, and a tracing collector at each node for local objects.
Nodes are organised into groups that are willing to cooperate for garbage collection. Each
group gives a unique identifier to sach collection cycle, and multiple o<ow_mmn5m group
collections can be simultancously active, If a node fails to cooperate, the: group it belongs
is reorganised to exclude the node, and celiection continues. 1

A distributed collection begins with group negotiation; All entry objects of nodes within
the group are jdentified and marked as either hard or soft. An object is hard. either ifiit is
referenced from outside the group, or if it is accessible from a root. Other objects reachable ~ -

only from other nodes in the group are marked soft. The reference counter provides the initial
marks of the entry objects of a group, which are propagated towards exit objects by the local
collectors. The marks of exit objects are propagated towards the entry objects they referénce
(if they lie within the group) by the group collector. This process is Hawmmﬁm until marks of
entry or exit objects of the group no longer change, at which point the group is &m_umuaman. All
objects accessible either from a root or from a node. outside the group are uo“é marked hard..

Entry objects marked soft must be parts of isolated cycles local to the group and can thus be-
reclaimed. E 4 :

Networlc objects .

Birrell et al. use reference counting to support distributed oE.onomnnﬁw programming
[Bircell ef al,, 1993]. Objects visible to other nodes are called network objects. A process
that allocates a network object is called its owner, and the instance of the OEWnn in the owner
node is called a concrete object. Other client processes may. hold indirect references o the
concrete object through a surrogate object fhat communicates with the-ownet through remote: - --
procedure calls. : i :

A public network object holds a reference list of identifiers of each process that references
it. ‘This set is maintained by communication between processes. When a oﬁwuamhmﬁ Teceives
a reference 16 a particular object, it makes a:call to the owner and credles & suragate.
‘When a client’s local garbage collector determines that a surrogate is no longer reachable,
the client delstes the surrogate and informs the owner that it has done so..Once:2 network
object’s reference list is empty, the objeet can be reclaimed, unless there arellocal refergnces
to it. Network objects face two problems. First, cycle detection is stilt o problem. Jones

and Rodrigues-have-recently extended-the- network object- system to reclaim-cyclic' data

316

DISTRIBUTED GARBAGE COLLECTION

_ structures that span Qw network. Second, althongh reference lsts offer better fault-tolerance
than reference counts, the network objects’ garbage collector cannct distinguish node fajlure
 from long-lasting communication delay. It therefore risks collecting areachable object if there

is a femporary communication failure.

Weighted _..m.,.m_.m:n,m counting

. Weighted reference counting is suitable for the management of passive and active objects. This
. scheme has a low communication overhead of one message per interprocessor reference, with
no need for global synchronisation. Hach object and each pointer has an associated weight.
The algorithm maintains the invariant that the weight of a object is equal to the sum of the

- weights of all external pointers to it.

Now cells are initialised with a préedetermined maximum weight; and the weight of the
pointer to the new cell is also set to this weight, When a pointer is copied, its' weight is
divided equaily between the two copies of the pointer; thereby maintaining the invariant of
the algorithm. An indirection cell is needed if the weight of the original pointer is one. The
advantage of this scheme is that 0o messages need be exchanged with the referent of the

pointer.

The ounly time that communication is needed to maintain the weights is when a pointer is
deleted. A message to subtract the weight of the deleted pointer is sent to the remote object.
.. Tf this causes.the object’s reference count to drop; to Zera, the_referenced object is freed and
its children deleted recursively. As this is the only time that messages are exchanged, the
weighted reference count protocol is robustagainst changes in the order of arrival of messages.
“The maximum weiglit is always a power of two to allow for easy division, and the size of its
weight field can be reduced by replacing a weight by its logarithm.

Based on Hughes’s ¢yclic reference counting-algorithm for uniprocessors (see Ormﬁﬁon 3),

Lester proposed an extension of the weighted reference counting protocol that is able to handle

cycles in referentially transparent applications, such as pure functional langnages [Lester,
1992]. Jones and Lins present general algorithms for weighted reference counting cycles

{Lins and Jones, 1993; Jones and Lins, 1993].

These algorithms combine weighted reference

counting with Lins's. algorithm for cyclic reference counting (discussed in Chapter 3).

Generational reference counting

Generational reference counting is a distributed storage retlamation scheme for loosely-

“+=:= coupled multipracessors [Goldberg; 1989].

It-is suitable for passive and.active objects.

It is a non-hierarchical scheme, makes indirect access Lo objects and imposes no glabal
synchronisation. Eachreference has an associated generation. These should not be confused
with gencrational garbage collection: The original reférence to an ohject is a zero generation
reference, Any reference copied from the original reference is a first generation reference, and
so on. Bach object contains a table, called a ledger — an mxray of the number of outstanding
refercnces to a generation, Each pointer contains twa additional felds: its generation field
and a count of the number of copies of this particular reference. When a pointer is copied,
the new pointer has its generation field assigned to the generation of the original pointer plus
one, to indicate that it is a descendant of that generation. In a similar way the-count field of

the original pointer is incremented by one to

indicate that it has cne more child. Conversely,

* cyclic withoutdrastic alterations to iis philosophy.

ACTORS | : '317
when a pointer is deleted, the processor holding the reference sends a Enmmmmm containing the
ma&.mmm of the referent, the pointer’s generation and its count fields. When the Hmmmognonwmmﬂ
receives the message, it adjusts the ledger of the referenced ohject. If the ledger drops ta-zero
the oanﬁ is garbage, its children are recursively deleted and the oE.acn.ﬁ. Emoan onto the
free-list. Goldberg writes that the major drawback of his algorithm compared with Emmm?”nm

- reference counting is its space costs. It is also urable to collect cyclic structures, Because of

the complex generation structure, one would hardly envisage the possibility of it becoming

12.7 Garbage collecting actors

The idea of mm.m_umwm collecting actors was first addressed by Agha, and _mﬁmu H.m.wn_mm by .ﬁmwﬁm.

and others [Agha, 1986; Kafura er al., 1990; Puaut, 1992; Venkatasubramanian et al., 1992].
The concept of-actor unifies the notions of a process (thread of control}, memory (encapsulated
variables) and-communication (message passing). Actors are currently active ohjects. There
are no passive entities. Each actor is uniquely identified by the address of lits single mail
queue, Root actors are those actors designated as always running, and those that can interact
directly with the external world via /O devices, external naming, and so forth. An actor'B is
an acquaintance of actor A if B’s mail queue address is known to &. . i

An astor can be considered garbage if its absence from the system cannot’be detected by
exiernal chservation, other than through its consumption of memory and processor resources.
Thus, an actor is garbage if it is neither active nor can become active hereafter, or if it cannot

~ send information to, or receive information from a root [Kafura et al., 1990]. The key property

of garbage actors is 'that they cannot become non-garbage. This is because an actor is only
determined to be garbage when there is no possibility of communication between it and a
root actor, Therefore, once an actor is marked as garbage, there is no possible sequence of
transformations which wauld cause the garbage actor to become non-garbage, .

i
]
3 R i
|

Halstead’s m:mo_.m.n_._n:

Halstead’s garbage collector uses the concept of an actor reference tree —a m.mﬁ of processors’
and connections between processors such that each Eoon.mmoa has a reference to the actor
[Halstead, 1978]. Garbage collection is performed by reducing the tree until it contains &
single processor. A local garbage collector is then used on each Processor Ho”.w,no:mnﬁ garbage

actors. A drawback of this scheme is that it cannot reclaim cycles. i

Marking algorithms a . "

Nelson’s marking algorithm for actors assumes that the mutator is E&na._ and that all actors
in the system reside in the same node [Nelson, 1989]. It uses three colours that, at the, end of
marking, have the following meanings. White actors are not reachable from aroot acior; grey
actors are reachable from a root actor but cannot become active; black actors .Lhw :o:-mmmwmmm

- - = they are either root actors or both reachable from a root actor and potentially alive.

The b..mhanw algorithm, also by Kafura and others, uses two colours and 1 visit field (for

77318 o DISTRIBUTED GARBAGE COLLECTION

cycle detection) {Kafura er al,, 1950]. The algorithm starts by colouring all actors white and ¢
all roots black. This is followed by painting black the acquaintances of black actors. Thena . !
depth-first search from active actors for a black actor isi performed. If a black actor is found, o
then the originating actor is painted black, together with ils acquaintances, and the whole o
algorithm is repeated. At the termination, all non-black actors are collected. : ‘e
Washabaugh presenis.a series of extensions to these algorithms, one of which shows how to o

adapt them for distributed systems [Washabaugh, 16861, Twa major problems are mentioned,
which are the chief difficulties of all the algorithms presented in this chapter. First, the

- global collector must operate concurrently with the local collectors and mutators, and must
synchronise properly with the local collector, Bither a snapshot approach or a strategy that ;
{ime-stamps node acquaintances is suggested. Second, the disiributed pieces: of the global :
collector must be able to determine termination., Termination is complicated because a global
collector at one node may finish afl its work only to be reawakened later by an action taken at
another node. Asrecment can be achieved by using a rotating token which, if it ever refurns to
its last owner, signals termination.

. Logically centralised collectors

" The alorithms proposed by Puant and by Venkatasubramanian et al. mergs the ideas.
from the ‘Garbage collecting the world’ and the T.iskov—Ladin algorithm in order to
. 1994b; Venkatasubramanian et al., 1992). Tn both architectures the garbage collectors
are hierarchically organised, with local garbage collectors loosely coupled to a logically
centralised global garbage collector that maintains a global snapshot of the system. The
difference between the two propositions is the way that the global snapshot is. obtained:
Venkatasubramanian ef'al. use 2 two-dimensional grid architecture, and properties concerning
message-routing on the grid tepology are ussd for detecting a consistent system state. A
generational scavenger is used at each node. Puaut uses time-stamping of events to get giobal

... make Kafura’s algorithm distributed and robust [Puaut,. .1992; Puaui, 1994a; Puoaut, D

. infonmation, and no assumption is made of the underlying architecture. Locally, each node q

runs Nelson’s marking algorithm for actors.

12.8 Notes _ e

Surveys of techniques for distributed garbage: nmzonmon can be found in the proceedings of the.

International Workshops in Memory Management for 1992 and 1995 [IWMM, 1992; IWMM,
1995]. The survey by David Plainfossé and Marc Shapiro in the latter workshop is particularly
goad [Plainfossé and Shapiro, 1995].. R
The distributed shared memory model (DSM) of computation has been studied in [Fieisch,
1989; Forin et al., wau Kessler and Livny, 1989; Krieger and Stumm, 1990; Li, 1986; Li and
Tiudak, 1989; Bennet ef al.. 1990; Kaashoek ef al., 1989; Stumm and Zhou, 1990a; Stumm and
Zhou, 1990h: Levelcef al, 1992}, and [Stumm and Zhou, 1990a; Bal and Tanenbaum, 1991]
provide an overview..[Zhou et.al., 1992] studies the design, implementation and performance
- - of shared virtual memory {SVM) in networks of heterogeneous hosts. [Levelt et al., 1952]

NOTES : : 319

provides a comparison of the DSM and SYM models. The Actor Model is described in
[Hewitt, 1977; Agha, 1986]. . , : ,

POOL-T and DOOM were. pact of an Esprit project, and most of the references-in
Augusteijn’s paper are to project documents [Augnsteijn, 1587]. However, the code for an
implementation of his algorithm in POOL-T is provided and the appendix of his paper also
presents a brief introduction te thdt language. - ﬁ

The indirect reference counting algorithm has been implemented on a distributed Lisp
system called TransPive, based on LeLisp version 15.2, extended io support remote pointers
[Piquer, 1990a].) i

There is some controversy about the origin of weighted reference counting. The idea ‘was
first published in the same confarence by Bevan, and Watson and ﬁmﬁoﬁﬁgmn. 1987;
‘Watson and Watson, 1987]. The latter atibute it to Weng, but Thomas credits it to Arvind
fWeng, 1979; Thomas, 1981]. Piguer discusses the introduction of object migration into
weighted refarence counting through the use of indirection cells, and through forwarding any
messages direcied to an object to its new address [Piquer, 1991], The idea of delaying delcte
messages in a “To-Be-Decremented stack’ as a way of reducing interprocessor communication
in weighted reference counting is presented in [Glaser, 1987; Glaser et al., Hmmo_.. Corporaal.
uses tables to avoid indirection cells, thereby reducing the access time to objects [Corporaal
et al., 1988; Corporaal, 1989; Corporaal et al; 19901 In [Lester, 1989], Lester proposes
combining weighted reference counting with a copying collactor for vmnambw local garbage
collections. Thic use of this composite collector in a distributed graph Hmas,nmo: system is
descrihed in [Kingdon ef al., 1991}, Foster combined weighted reference counting and a local
collector for garbage collection in Strand, a single assignmjent concurrent logic programiming
langnage. Dickman [Dickman, 1591} uses a nuil weight to avoid indirection cells and to
improve message failure resilience in weighted reference. counting, This tnakes the total
weight in the objectalways greater than or equal to the sam of the weights of the pointersto it,
preventing objects being collected in error. The weak invariant tolerates message re-ordering
and loss, network partitions and processor crashes (with of without subsequent recovery), but
may cause space leaks. Dickman relies on some other garbage collection strategy to callect
cycles and cells that have leaked away, | i ; :

Glossary

accurate: see type-accurate.

activation record:, a record .that saves the
state of noEmEmﬁou msm HaﬁEd ad-
dress.

active data: data in use, as oEuommm to free

data or garbage.

active process: live process..

actor: an entty with an address and' a be-
haviour. '

acyclic: structure that contains no cycles;
collector unable to manage cyclic. data
stnectures,

address, forwarding: a pointer keft in a re~

located object that holds its new loca-
tion.

address space;:- the range.. of aﬁzamrnﬁnwwt

pointer may hold.

mem space: & region of a generation that =

holds survivors of collections until they

are old enough to be m._,.oEonm_w o the

nexti-generation.

aHocation: the acquisition of space from the- -

i H
.allocation, static; allocation pattern In

uhonwmoﬁ_ stack: mEoomn.El pattern that fol-
lows a last-in-first-out order.

which knowledge of the location and
layout of all data can be determined at
compile-time, 1.¢. statically.

‘barrier, read: a barrier that interrupts reads

- from an ohject.

barrier, write: a barrier Mmﬁﬁ interrupts
é&ﬁmﬁmﬁc&nﬂ ;

.e:..Euw an array of Eﬁ; Typically: used

by garbage collectorsifor marking, in
which case each bit ooﬁmmmcnam tca
s.oa (or object) in 9@ heap.

E»n_w. ,oHozH of an object t Emﬁ has been vis-
ited by the garbage nczmoﬁo_. as.haveits
m:.nnn &mmnoaamuﬁ :

Ewnw-_._mnuw the wOnEﬂ UmBanmlﬁ@_mmﬁ

- comservative no:nnﬁon records values
that might be EGESGBH& as - valid
pointers jn a-black- list, and ensures that
it does not allocate mnz._mmw mmmnnmmmm.

L
w—cnw basic: a code mmnanunn Emﬁ does not
contain. any .EBE cH calls to proce-

memory Emﬁwmnh. e e —— cdlr@S, . sim T

allocation, w@w ‘aliocation of objects to an
-+ ~area of themory not subject ta’ the EH..O

discipline of stack allacation.

vo_._ummh%_ threatening: PEnEo.u of adap-
" tive tenuring that cafl Ietrieve garbage

S

Emn would otherwise HmEm,E terured.
.,

122

break-table: a table that stores relocation in-
formation for a compacting garbage
collector. ,

bucket: a sub-division of a gemeration by
age.

cache block/line; usually the smallest sabdi-
vision of & cache, (Bui see cache, sub-
block placement).

caché, copy-back: write strategy in which
data is only writien back to the next
level when a cache miss forces its re-
placement., .

cache, direct-mapped: o,,mo,U@ organisation
in which each block of memory is
mapped to a single ¢ache block. -—

_cache, fetch-on-write: sce
cache,

write-allocate

cache hit: the CPU has found a needed data
or instruction word in the cache mem-
ory. :

cache memory: asmall but fast memory be-
tween the CPU and the main-memory
used to buffer data or instructions.

cache miss: the CPUJ has not found a needed
data or Emn.coaou word in the cache
memory. :

cache, miss penalty: Ea number of cycles
for which the processor is stalled after
a eache miss.

cache, ought to be two: 'a technique for
maintaining the uniqueness of one-bit
reference counts. * !

cache, set associative: nmnro organisation in
which each block of memory: is
mapped to a small set of cache blocks.

GLOSSARY

cache, sub-block placement: cache organi-
sation in which a single cache block
can be.divided into sub-blocks, each of
which has an associated valid bit..

cache, ﬁ.;m-m:onmﬁm. strategy far cache
write misses that fatches the block into
the cache and then treats it as a write
hit. i

cache, write-around: sse write-no-allocate
cache:

cache, write-back: see copy-back cache.

cache, write buifer: a buffer between the
cache and the next level of memory.

cache, write-no-allocate: strategy. that does
not fetch the bleck into the cache on a
o s.m:m miss.

cache, %Eﬁm.ﬁrnonwr write strategy in
which data is written to both the:biock
i the cache and the block in the next
level of the memory.

cache, write-validater write strategy equiv-
alent to cache, write-allocate with
cache, sub-block placement using
one-word sub-blocks.

car: the pointer in a cons cell that contains
or points ta the list element.

card: the division of the heap marked by a
write barrier.)

EQHwEn. an array of bits or bytes set by

the write barrier each of which corre-
sponds to a card of memory:

edr: the pointerin a cons cell thatcontainsor
points io the next cons cell in the list.

cell: a pumber of contigugus memory fields
forming a single logical structure.

cell, atomic: an object that contains no
pointers.

!i ;

i
3

GLOSSARY
cell, fixed-size: a heap layout in which all
cells are the same size. .

cell, variable-sized: a heap layout in which
cells may have different sizes,

child: acell w is said fo be a child of a cell A

if 2 holds a pointer to B.

closure: a code-environment pair used for
later eveluaiion of the cede (used in
functional languages, for instance).

closure, transitive veferential: the set of
cells reachable ffom a given cell by
following pointers | held in the cells in
the set.

collection, major:: a mm:._ummm ooEnnﬁo: of
more than one generation.

collection, minor: a garbage collection of
the youngest generation alone,

collector: a procass or processor responsible
for garbage collection..

collector; copying: a garbage collector that
copies all live data to a fresh region of
the heap.

collector, mark-sweep: a garbage collec-
tion algorithm that marks each reach-

able object as live, and then returns un-
marked objects to.the storage manager.

collector; moving: a garbage collection al-

gorithm that relocates data.

* callectox; on-the=fly: typically,” an’ ‘incre-

mental mark-sweep garbage collec-
tor.

collector; #.mnmbm”“ a garbage collector that
visits all _?.n data, ‘

..BE@E&HM the property of a MeImory man-

agement algorithm that moves all. cells

- - imuse to @ contiguous: region of the

workspace.

i

i 323

ncﬁmmnmoﬁ order, arbitrary: a Wncﬁai:m
of heap objects that is independent

.both of their previous ordering and of

" their kinship relationships. ,

‘nmEm_mnﬁoﬂ order, linearising: & reorder-

"ing of heap objects in i:oﬁ objects:
that ariginally point to one mmoaﬁa oc-
cupy adjacent memory uoﬂmozm after
HwHOomccu. !

compaction order, sliding: a reordering of
- heap objects that preservesitheir origi-
* ial order. : .

component, m»ﬁcum_w.nonbmnﬁnm“, mini-
mak set of nodes in a graph, each of
~which is reachable from each other
node in the set. W

comprehensive: the property of a garbage
collection algorithm in which all
n.&.@mﬂn is reclaimed by En end of m.:m
nozannou cycle.

neﬂn:.-.nn:n. twa processes are oosnEHnE if
. they may be executed asynchronously
without any pre-defined Eamnmium.

cons: a mm_Ew node in 2 Lisp :mﬁ

conservative: a garbage nomnoucu Emo-
rithm which may oﬁRﬂ_Bﬁn the

- amount.of live data. mmanEE garbage

. collectors that expect ligtle: -cooperation
from _,._u,n compiler (and in particular
have no knowledge of which locations
- gontain pointers); and incremental and
concurrent collectors thatidefer recla-
mation of some garbage E:b the next
cycle. | i

i
v i

creation space: a region of 2 mmﬁmnwﬂﬂ— in
which objects are created. |

crossing map: map of the romc m.._os:nn

which page boundaries arg spanned 3 ’

or._nnﬁ

j
.m
L
q
;
i

-~ 324

nu:mm. a subset of a ruwna data structure in

which any cell in the set can be reached
from any other cell in the set by follow-
ing pointers. :

mmm@. see mmucmmm.

deallocation: the return om space to the stor-
age manager.

deallocation, explicit: /deallocation under
programmer control.

“direct: garbage collection method in which

field: a number of contiguous waords

Yiveness information is held in the
cells themselves (for example, refer-
ence counting).

dirty-bit: a flag that determines whether a
---ypit -of ~-memory has been modified
since it was last examined..

actual ﬁEEﬁanmn of a procedure.

_ exit table/vector: a ﬁ.wEm or vector.. that

stares Ihe pointers that refer to objects
outside a region ow memory.

expediency: the property of a garbage col-
lection algorithm: that can reclaim
garbage despite parts of 2 distributed
system being unavailable.

m
which a single itern of information can
be storad. .

L

finalisation:. a omoms.n‘mwmnmou performed on

an object when it dies,

“flip: the action of a:copying collector in

which the réles of Fromspace and
Tospace are exchanged.

fragmentation: the. ﬂowc is not fully cccu-

pied yet dees not: contain a hole large -

enough to satisfy an allocation request.

GLOSSARY’

frame: astack- or _unmm-m.ﬁogﬁ@ activation
record.

a celt which is available for reuse; to re-
turn an unused cell to the storage man-
‘Ager.

firee:

freeing, recursive: & reference coumter’s.
action of freeing each unshared ele-
ment of a linked data structurs when
theihead of the data structure is freed.

m.nmm.r.mﬁ a Ebﬁm list of free cells,

free-lists; segregated: an array of free-lists,
‘one for each (common) object size.

Fromspace: the semi-space from which ob-
jects are copied by a copying collec-
tor.

garbage: space no longer required by the

-— - computation but that has not yst been

reclaimed by the memory manager.

garbage collector: an algorithm that auto-
matically recycles garbage. . :

garbage; floating: garbage that is not re-
claimed in the current collection cycle.

garbage, tenured: objecis that have been
promoted i an older generation but
, are now garbage.

generation: a division of the heap accord-
ing to the frequency with which it will
?w nccmoﬁaa

grey: colour om aobjectthat has _unon Sm:n@

by the garbage collector but whose di-
rect descendants have not.

heap: aregion of memory in which the deal-
location of objects fallows no specific
causal order.

&mwm occupancy: the proportion of the heap
occupied by live data.

-

GLOSSARY .

incremental: zn algorithm in which compu-
tation is performed in small steps, be-
tween which it may be suspended.

w-nnmEnhE.E“..mm_ﬁﬂ a "write-harrier that
records changes to the connectivity of
the graph.

indirect garbage collection method in which
the liveness of a cell cannot be deter-
mined by scrutiny of that cell alone.

large object area: the region of the heap in
-~ - which large’ objects are stored, and
which is managed'by a separate strat-

egy.

lazy languages: languages in which an ex-
pression is evaluated only when its
value is required, and then at most
once.

live: data that is required by the computa-
tion (or at least reachable by following
a path of peinters from a root).

locality, spatial: the proximity with which
telated. cells are stored.

locality, temporal: the | proximity with
" which related cells are accessed.

mark-bit: a bit set in an object or a bitmap
to indicate that the object is live.

marking: the process of visiting each live
cell by following pointers-from one or

more roots and whereby a mark-bit is

__set corresponding to each live cell.

memory, virtual: a memory organisation. in
which the address spaces of running
processes may be larger than the phys-
ical memory of the computer.

mortality: the rate at which cells. become
garbage.

- multi-processor: ‘an architecturs that makes
use of several processors.

325

mutator: the process or Processor responsi--
‘ble for executing the user process, in
‘particular changing the connectivity of .
the graph, I) .

: , |
pepotism: the tendency of a generational ;
garbage collecior to E.m&ﬂm. incor- “
rectly the offspring of elderly dead’ g,

cells.

oEnan a nm= (unlsss oEoE;mm SG:EE,
mﬁmﬁ& :

‘control 1 _m mﬁﬂu& toit.

off-white: typically _Em colour ofia free nw:.wm : ’
in the Wmmm_.)

operation, EEEn. an oﬁﬂmﬂo that . ounn
_started will run to noEEnnoﬂ iHEoE
Eﬁmndmaon

page: a Eo&h of memory used 3 the vir-
“tual memory system nmmnﬂ.&.@ of Sw&
Uﬁnm or small EcEm_nm Eﬂwo@

mnmn.mwin a ,mwma required is pon found in.
-main memory, forcing Em operating
system to load it from mnnouas mem-

ory.

uEuﬁna EEW. wuocua:om: mﬁ:ﬂ. BaE-
* ber of a linked data mpdnEHn :

.u
pointer, inter-generational: a onﬂmm w.oa,
an objeetin one mgmnuﬁo: to an ob- Loy
" ject in another. i . Co

m_o_uﬁnn, interior: a HUQEE. o Ew interior om
an o_u._nn_.. Hmnwmn nﬁb to its mB._..ﬁ ' o i

—— T . : H

m_ogﬁmu. raw:: a pointer of a J%n supported
- directly by the language; the o@@oﬂﬁ
ofa mEmun pointer. K :

I
i
|
(-

326

pointer revexsal: 2 technique for traversing
a linked data structure by temporarily
changing the direction of its pointers.

pointer, smart: a pointer that is overloaded
so that it performs other operations. as
well as ananmmnmunwpm.

pointer, weak: wonSH treated specially by
the garbage collector. For example, it
may not be used in referential closure
calculations.

prometion: the m.w,_.,.m:nnﬁsnﬁ of an object
from cne generation to an clder one.

real-time n_manm_,.r,m:,u an algorithm in which
a guarantesd upper bound is placed
on the time: spent executing any Qp-

gration. Commonly (but mistakenly) a
mwnonQB moH Ennm.ﬁnnn&

nmn_wgwﬁcb. 5@ act Om ng.éum mmnummm
to the storage: Embmmﬂ.. for muwmm@znﬂ_n
reuse. P Lo

reference count: a count that stores the
nurnber of pointers to an object.

reference count, sticky: the maximum
value of a limited-field reference
count, Once attained it cannot be re-
duced by reference counting alone.

reference no:ﬂnum. cyelic: a reference
counting scheme that can reclaim

___ garbage nun—nm..,. R

reference counting, deferred: a reference:
counting scheme in which. the refer-
ence counts of loczl variables are not.

updated.

reference oo:ﬁgmu:bunmm -fieldr a refer-
ence counting, scheme which uses

smali reference count fields (often -

only cne bit).

GLOSSARY

reference, dangling: a reference to a cell
that has been dealloeated.

_ regrouping, dynamie: a strategy of cluster-
ing objects accordingto the mutator’s
actual pattern of access.

_ regrouping, staticr a strategy of clustering

objects according to their topology.

remembered set: a set of addresses of ob-
. jectsin an old generation thathold ref-
erences to objects in onuqu mnumﬁml
tions. - -~ . —

rendezvous: asynchronisation point.

replication: anon-destructive copying algo-
rithm, which may create (temporary)
replicas of live objects.

amﬂ&nun% see heap cnnam_mun%

root: a storage location which is always

deemed to be live.
scavenger: noEEun collector.

semi-space: each half of (a Hnm:u:.o@ the:
heap managed by a copying collector.

shading: painting a cell grey.
shared: a cell which is referenced by more
than one object.

snapshot-at-the-beginning: 2. write-
barrier method that records the con-
nectivity of the heap as it was at the
start of a collection cycle.

~ space-leaks the situation in “whigh & part”

of the heap is neither in use nor re-
claimable by the memory manager.

static-area: an arca where permanent ob-
jects are stored.

sticky: Ew maximum <mEm that a Teference
count may reach, and once: attained,

ing alone.

cannotbe reduced cw reference count- -

L b

gl b

GLOSSARY

stopping: an algorithm that suspends the
computation of the user process while
it performs a garbage collection.

stop-the-world: a garbage collection algo-
rithm that suspends mutatoxs (for ex—
ample, in a diswributed system).

suspension: see closure.

sweep: a linear scan through the heap in or-
der to free cells that have not been
marked.

‘ ‘me.ﬂmnm.u _Nww" a m«amm,m. interleaved with allo- -

cation to improve performance and, in
particular, locality.

tag: information stored in a cell wmmman_- n..w
a pointer to a cell, that determines the
cell's type. —

temuring: the promotion of objects to a
generation not (or infrequently) sub-
ject to garbage collection.

tenuring, adaptive: a policy. of promoting
that allows the promofion criterion to
vary. -

tenuring, demographic feedback-mediated:

aform of adaptive tenuring that varies
the ﬁﬂogoﬂoh Tate mmmann:ua on the
volume of survivors. >

threading: EnEom, of reamanging pointers
so all the words that hold'pointers to.a
cell can be found from that cell.

‘W 327

tracing: the process of imﬁs_m each livecell

by following pointers from one or more
roots, M

traversal, breadth-first: a traversal of a
data structure in which the siblings of 2
node are visited before its descendants.

traversal, depth-first;. a traversal of a data
structure in which the siblings of a
nodg are visited after its mmmnnun_mnn.

ﬁ.mmm.EE., a non-moving n_..mnEn garbage
oo_._mnnop.. Hompombw a nom.w:uw collec-
tor.

tricolour-marking: Ewnﬁum with the
black—grey—white ooHorn scheme.

.H.ommmnm. the semi-space to’ é_..zn—_ objects
are copied by a ncﬁu&um collector..

Jﬂn.mnnﬁ.uno. a garbage no:mnﬁon that can

: determine unambiguously the layout of
any lobject incinding registers and the
mﬁmow. H :

s&:». colour of a cell that rm.m not dnma vis-
ited by the garbage oomnnnon Attheend
of the tracing phase, white cells are
garbage.. ,

ZCT: a Zero Count Table of cells whose
reference-count has dropped to zero
but which have not been reclaimed.

Bibliography

A - o= - [Abdullahi mw&; 1992] S. Abdullahi, Eliot E. Miranda, munmamwaﬁw.ﬁnioom Uﬁﬁwaﬁn
: : garbage collection. In [TWMM, 1992]. ’] i

[Abraharm and wmno_ 1987] Santosh Ahraham and J. Patel. Parallel nﬁcmqa nczmnnop on
o= a virtnal memory system. In E. Chiricezzi and A. D’Amato, editors, International
B Conference on Parallel Processing and Applications, pages 243-246,iL’ Aquila, HBE.
. September 1987. Elsevier-North Holland. Also technical report CSRID;620, G:EEEQ
of Illinois WndHUmum.me.BuEm:_ Center for mzwnanoﬁm:nuq Wmmnmaov muu Uoﬁ_omﬁnpﬁ

T AR < -~t- - - [Agha, 1586]" G. Agha: Actors: A Model af Concurrent Ouuﬁﬁnng Ebanzwﬁm&_muﬁmiw.
, : i MIT Press, 1986.

e [Aho et al., 1986] Alfred V. Aho, Ravi Sethi, and Ho..mmnmw D. Ullman, Oaﬁu&ma. __uwﬁnﬁhmm
o Techniques and Tools. Addison-Wesley, Emm ! | :

] [Aho et al,, 1988] Alfred V. Aho, Brian W. HmeqEE, E& Peter I. ﬁxﬂbcnamou The %Sﬂ
E Programming Language. Addison-Wesley, Gmm

[AIX, version mﬁ Subroutines Overview, Qmﬂﬂ.& _.uHomeEnuzo Oouomwﬁ »PUm ﬁwnm:ua 32
edition, version 3.2,

L . : . sets. Tn Proceedings of the 1990 ACM Sigmeirics. Conference on Mpasurement and
, : -k Modeling of n_b:ﬁ:umw @mumiq. Boulder, Eﬁnw. 22-25, ﬁmqnm 153-162. >Q,<H Press, Gmo

[Alonso znd Appel, 1990] R. Alonso and >n&m€ W. .Pm%& Adyvisor for mwﬁEm éc_.._cbm.i. i

_”>EEE§. etal., HmmB M. Amamiya, R. Hasegawa, msa H. Mikami. H.Erm.ﬂonnmmgm ,SE
a dats flow machine. In Proceedings of RIMS Symposia on Software Science and
Engineering, 19801982, volume 147 of hmn.:qm Notes in n.aﬁuﬁmw _m_nnmznm ummom 165—
190, Kyoto, 1983. Springer-Verlag.

u
i ; ! .
[Andre, 1986] David L. Andre. Paging in H.Hmﬁ programs. Master’s thes m GE,..QQQ of “ S
‘Maryland, College Park, Maryland, 1986, . L

[ANSI-C, 1989] W&nﬁnﬁfﬂmﬂcn& Standards Humﬁnho American Zano al Standard for

: . R Information Systems: Programming Language C, December 1989.

---[Baecker; 1972] H. D! Baecker. Garbage no=nonop..w9_u virtual memory computer systems.
Communications of the ACM, 15{(11):981-986, Navember 1972.

= gl logation. M@?Ewﬂﬁwﬁwanm ané M&.wml.mznmloﬁu”Hﬂ.lwmm‘wwwwm. Rt

" [PARLE, 19871, pages 75-93.

[ANSI-C++, 1995] bz ST document X3716/95-0087, ISO' document WGZL/INO618, Draft
" Proposed International Standard for Information SSystems: Programming Language Cir+y
April 1995, :

[Appel and Li, 1991] Andrew W. Appel and Kai Li. Virtual memory primitives far user
' programs. ACM SIGPLAN Notices, 26(4%.96-107, 1991. Also in SIGARCE Computer
Architecture News 19 (2) and SIGOPS Operating Systems Review 23.

[Appel and Shao, 1994] Andrew W. Appel and Zhong Shao. An empirical and analytic study
of stack vs. heap cost for languages with closures. Technical Report CS-TR-450-94,
Department of Computer Science, Princeton University, March 1994.

[Appel et al., 1988] >u“aw9< W. Appel, John R. Ellis, and Kai Li. Real-time concurrent
collection on stock maltiprocessors. ACM SIGPLAN Notices, 23(7):11-20, 1988.

[Appel, 1987] Andrew; W. Appel. Garbage collection can be faster than stack allocation.
" Informatipn Processing Letiers, 25(4) ".qulmqm. 1987.. .

{Appel, 198%a] Andrew W, Appel., Runtime tags aren’t necessary. Lisp and Symbalic
" Computation,2:153-162,198%. — —— . o o .

[Appel, 1989b] Andrew W. Appel. Simple generational garbage collection and fast

T»%@m—.wmmﬁ>nmn@s.§>mmmrn.niwmh.:w%&r Qawm.x:amaﬁ.o_umm.aﬁHm.wmmmmwomlwg..
- Cambridge University Press, 1992. -+ : e

._uf.uu_mcw et al., 1988] Karen Appleby, Mats Carlsson, Seif Haridi, and Dan Sahlin. Qﬁm.mmo
collection for Prolog um_mmm on WAM. Communications of the ACM, 31(6):719-741, 1088,

[ASPLOS, 1991] Fourth International Conference. ax Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS IV), Santa Clara, CA, April 1991

[Attardi et al., 1995] Qﬁmmmmobnﬁ&_ Tito Flagella, and Pietro Iglio. Performance tuning in
a customizable nozooncn. In [TWMM, 1595]. ’

[Augusteijn, 1987] Lex ‘Augusteijn. Garbage collection in a distributed environment, In

unting of ou:umn. graphs for functional
programs, Computer Journal, 33(5):466-470, 1990.

[Axford, 1990] Thomas H. Axford. Refersace co

[Baden, 1983} ScottB. Baden. Low-overhead storage reclamation in the Smalltalk-80 virtual
machine. In [Krasner; 1983], pages 331-342.

[Baecker, 1970] H.D. w,mmnwﬂ. Implementing the Algol-68 heap. BIT, 10(4):405-414, 1970.

L

Vv

430 | _ BIBLIOGRAPHY - "

-

 BIBLIOGRAPHY o ! : 331

Emanwﬂ.,“mﬂﬂ H.H.U.w,manwmmEmﬁmnanoooa&mmmmm. OQS,FERQ ,wazﬂznrwmnmwmmmlmmmu
August 1975, ’ ,

(Baker et al,, 1985] Brenda Baker, E. G. Coffmen; and D. E. Willard. Algorithuns for

HnmcgumgbmmomE&aman‘mﬂﬁmmnm:onmmo?Haaﬁn,“&n%mmn?hmmﬁwwwmqlm»m.
April 1985. - , ST -

[Baker, 1978] Henry G. Baker List processing in resl-time on a mmn&m nonEmh”
Communications of the ACM, 21(4):280-94, 1978. Also AT Laboratery Working Paper
139, 1977. ,)

[Baker, 1991] Henry G. Baker. Cache-conscious copying collection. In ﬁoommh.%.mﬁ 1991].

.- [Baker,;1992] Henry G. ,wmw.wﬁ The Treadmill, real-time mﬁﬁ_mmm collection émiocn motion

sickness. ACM M&Qﬁg Notices, 27(3), March 1992,

[Baker, 1994] Henry Q mmwnm“ Minimising reference noﬁrn vpdating with n.“umoﬁnp and
anchored pointers for functional dara struetures. ACM SIGPLAN Notices, 29(9), September
1994, : - e ; :

[Bal and Tanenbaumy, 19911 Henri E.~ w.&. and ?u&.wi S Tanenbavm. Ummﬂvﬁmm
programming with shared data. Computer Langunages, 16(2):129-146, 1991. :

" [Bal ef al., 1992] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A
language for parallel programming of disiributed systems. ACM Transactions on Software
Engineering, 18(3):190-205, 1992. : : .

[Barrett and Zorn, 1993a] David A. Barrett and Benjamin Zorn. Garbage collection using
& dynamic threatening boundary, Computer Science- Technical Report CU-(C8-659-93,
University of Colerado, July 1993. , i

[Barrett and Zorn, 1993b] David A. Barrett and Benjamin . Zomn. Using E.nnﬁw. m_nmmmnﬁoﬂm
to improve memory allocation performance.. In [ELDI, 1993}, pages 187-196.. ’

{Bartlett, 1988] Joel E ‘Bardlett. Compacting mm:..wwmm noponnon with ambignous Honn.mm.
Technical Report 88/2, DEC Western Research Laboratory, Palo Alto, CA, February 1988,

Also in Lisp Pointers 1, 6 (April-Tune 1988), 2-12.. . .
[Rartlett, 1989a] Joel F. Bartlett. Mostly-Copying garbage collection picks ﬁwmana.ma.o;w
and C++. Technical note, DEC Western Research ﬁmﬁﬂﬁoﬁ. Palo Alto, CA, October
1989, Sources available in ftp://gatekeeper.dec.com/pub/DEC/CCge. :

EE%FE%EEam”mﬁmnq._momm,za-vo”m.E.HEE@m%nEﬂo-nssEmw,_,m%ana
report, DEC Western Research Laboratory, Palo Alto, CA, January 1989. b

Ewman_mn.GwSHo&m.wmammﬁ.}mﬂunnmmou&_ non%mnmbmg:annonmoﬁmi. Ha‘ mOOm.mH.bpw
gc, 1990]. ’ : i .

= [Baverand Wossner; 1982] F.L. Bauerand H. Wossner. Algorithmic Language and Program

Development. Springer-Verlag, 1982,

N
!
1

A

B
1
|
)
1

332 : o BIBLIOGRAPHY

[Bawden et al., 1977] > Bawden, Richard Greenblatt, J. Hollowsy, T. Knight, David A.
Moon, and D: Weinreb. Lisp machine progress report. Technical Report Memo 444, AL
Lab, MIT, Cambridge, MA, August 1977,

.ﬁmmﬁnm: eral., 1992] Yves Bekkers, Olivier Ridoux, and L. Ungaro. A survey on Memory
management for logic programming. In [TWMM, 1992].

[Ben-Ari, 1982] Mordechai Ben-Ari. Ou-the-fly garbage collection: New algorithms inspired
by program proofs. In M. Nielsen and E. M. Schmidy, editors, Automata, languages
and programming. Ninth colloguium, pages 1422, Aarhus, Denmark, July 12-16 1982,
Springer-Verlag. .

- -[Ben-Ari, 1984] goimnrmm Ben-Ari. - Algorithms for on-the-fly garbage collection. ACM
Transactions on Programming Languages and Systems, 6(3):333-344, July 1984.

[Bennet et ail., 19901 I, Bennet, T. Carter; and W, Zwaenepoel. Munin: Distributed shared
memory based on type-specific memory cohereace. In ACM Symposium on Principles and
Practice of Parallel Programming, volume 30 of ACM SIGPLAN Notices, pages 168-176.
_ACM Press, March 1990, __ S))

[Berkeley and Bobrow, 18741 E. C. Berkeley and Daniel G. Bobrow, editors. The
T %Emwnﬁim:mﬁnxw:ﬁmm LISP: Its Operation and Applications: InformationInternational,
Inc., Cambridge, M4, fourth edition, 1974 :

[Bevan, 1987] David I. Bevan. Distributed garbage collection using reference counting. In
PARLE Parallel Architectures and Languages Europe, volume 259 of Lecture Notes in
Computer Science, pages 176-187. Springer-Verlag, June 1987,

. [Birrell et al., 1993] Andrew Birrell, David Evers, Qawm Nelson, Susan Owicki, and Edward
Wobber. Distributed ‘garbage collection for network objects. Technical Report 116, DEC
Systems Research Center, 130 Lytion Avenue, Palo Alio, CA 94301, December 1993.

_ [Bishop, 1977] Peter B. Bishop. Computer Systems with a Very Large Address.Space and
Garbage Collection. PhD thesis, MIT Laboratory for Computer Science, May 1977,
Technical report EHHPGM\H.WISW. :

. [Black e al., 1986] Andrew Black, Norman mﬁnEwmoF Eric Jul, and Henry Levy. Object
structure in the Emerald system. In [OOPSLA, 1986], pages 78-86.

[Black et al., 19871 Andrew Black, Norman mEoEumo:. Eric Jul, Henry Levy, and Larry
Carter, Distribution and abstract types in Emerald. ACM Transactions on Software
Engineering, 13(1):65-76, January 1987.

. [Blau, 1983] Ricki Blau. Paging on an object-oriented personal computer for Smalltalk. In
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
Minneapolis. ACM Press, August 1983, "Also appears as Technical Report UCB/CSD |
83/125, University of California at Berkeley, Computer Science Division (EECS).

ming i L

BIBLIOGRAPHY - 133

[Bobrow and Clark, 1979] Daniel G. Bobrow and Douglas W, Clark. Compact encodings of
list structure. ACM Transactions on Programming Languages and Systems, 1(2):266-286,
October 1679, . e m e = .

. [

[Bobrow and Murphy, 1967] Daniel G, Bobrow and Daniel L. Murphy. mﬁun_.._hw of a LISE
system using two-level storage. Communications of the ACM, 10(3):155-159, March 967.

[Bobrow, 1980] U.mE.m_“O. Bobrow. Managing re-entrant structures nwgm .Hm.mmﬁ,unm counts:
ACM Transactions on Programming Languages and Systems, 2(3):269-273, July 1980.

[Boehm and Chase, 1992] Hans-Juergen Boehm and David R. Chase. A u.u,nom_om& for
garbage-collector-safe C compilation. Journal of C Language Translation, pages 126141,
1592, . : : ' - ,

[Boehm and Shao, 1993] Hans-Tuergen Bochm and Zhong Shao. Inferring type uuumum.nE.m:w

garbage collaction. In [QOPSLA-ge, 1993]. . : i

mmooEu.H and Weisér, 1988) Hans-Juergen Boshm and Mark Weiser, Garbage nozwnmoz in an
uncooperative énvironment. Sgftware Practice arnd Experience, 18(9):807-820, 1988.

[Boehm et al., 1991] Hans-Tuergen Boehm, Alan 1. Demers, and Scott mwnuwmh. goﬁw
parallel garbage collection. ACM SIGPLAN Notices, 26{6):157-164, 1991. : .

[Boetim, 1991a] Hans-Juergen Boehm. Hardware and omﬂmmbm system. wzwmon for
conservative garbage collection. In [IWOQO0OS, 1991], pages 61-67. i

[Boehm, 1991b] Hans-Tuergen Boehm, Simple GC-safe compilation. Tn [QOPSLA-gc,
19911 : :) _

[Boehm, 1993] mmnm-uanamwn Boehm. Space efficient nonmnﬁmmﬁ garbage nofmnmou. In
[PLDI, 1993], pages 197-206. : : , .
1

[Boehm, 19942] Hans-Tuergen Boehm. USENET, April 1994.

[Boehm, 1994h] “Hm.mum.u. wergen Boehm. Re: Reference counting (was Re: MmmmnEnm methed
for incrementsl garbage collection). USENET, November: 1654, A

[Boehm, 1995a] Hans-Tuergen Boehm. USENET comp.lang.c++, Janiiary 1995,

. ﬁmonr@‘umwmvu.ﬂmﬁMu?nnmnn Boehm. gm.am.min.ww vs. copying collection and asymptotic:

complexity. fip://parcftp.xerox.com/pub/ earbage/complexity.ps, September wam..

[Boehm, 1995¢c] Hans-Juergen Boehm. Re: Real-time GC (was Re: Widespread Ci+
competency gap). USENET comp.lang.c++, January 1995. W

[Bozman et al., 1984] G. Bozman, W. Buco, T. F. Daly, and'W. H. Tetzlaff. Ew@mmm of free
storage algorithms — revisited. [BM “Systems Journal, 23(1):44-64, 1984, . - —]

Hwnmh.ﬁﬁmﬂ and Lewi, 1971] P. Branquart and J. Hms..w., A scheme of storage allocation and

garbage collection for-Algal-68. InJ. E. L. Peck, editor, Algol-68 Hﬁ.uwm.imﬁnmg‘ pages.

198-238. North-Holland, Amsterdam, 1971,

334 ' _ BIBLIOGRAPHY ~ —=[BIBLIOGRAPHY - _ . 335

‘{Brent, 1989] R. P: Brent. Ffficient implementation of the first-Et strategy for dynamic Sl [Chambers, 1992) Craig Chambers. The Design and Implementation of the SELF Compiler;
storage allocation. ~ ACM Transactions on’ Programming Languages and Systems, an Optimizing Compiler for an Objected-Oriented Programming Language. PhD thesis,
H“_.ﬁuv.wmmlhomu .._.ﬁ_.u\ mem . . . Stanford G.hz..<0ﬁmmq_ March 1962, ; ~
[Brooks, 1984] Rodney A. Brooks. Trading data space for reduced time and code space in . [Chang and Gehringer, 1993a] I. Morris Chang and Edward E. Gehringer. Evaluation of an

object-caching coprocessor design for object-oriented systems. In Proceedings of IREE- . W
ﬁ ,

International Conference on Computer Design. IEEE Press, October 1993,

real-time garbage collection on stock hardware. In [LEF, 1984], pages 256-262,

_wmaos.bcn&mm. 1584] David R. Brownbridgs. mmnzﬁw?m Structures in Computer Systems.

PhD thesis, University of Newcastle upon Tyne, September 1284, [Chang and Gehringer, 1993b] J. Morris Chang and Edward F. Gehringer. HuanmoHBm:om of _
. L . object caching for object-oriented systems. In Proceedings of International Conference on o T
[Brownbridge, 1985] David R, Brownbridge. Cyclic reference counting for combinator Very Large Scale Integration, VLSI'93, 9@83@ France, September 1993, :

. machines. In [FPCA, 1985]. L ,

[Chase, 1687] David R. Chass. Garbage collection and other optimizations. Technical R@oﬂ.

[Brus et al., 1987] T. Brus, M. I. C. D. van Eekelen, M. J. Plasmeijer, and H. P, Barendregt. ” T"Rice University, August 1987.

Clean — a language for functional graph rewriting. In [FPCA, 1987], pages 364—384. , i ,
, [Chage, 1988] David R. Chase. Safety considerations for starage atlocation optimizations. : .. !

= i

[Cann and Oldehoeft, 1988] 1. C. Cann and Rod R. Oldehoeft. Reference count and copy b ACM SIGPLAN Notices, 23(7):1-10, 1988. | :
" elimination for parallel applicative computing. Technical Report CS—88-129; Department o , . : , ' |
of Computer Science, Colorado State University, Fort Collins, CO, 1988. i [Cheney, 19701 C. I Cheney. A non-recursive list compacting algorithm. Communications i

, : ! ; _ |

!

e e S i &nSm}Q&_Hwﬁuv"mqqlm.zgﬁuuu@nHm._.o.., ‘
[Cann et al., 1992] D. C. Cann, J. T. Feo, A. D. W. Bohoem, and Rod R. Oldehoeft. SISAL T , - ,

Reference Manual: Language Version 2.0, 1992, ‘ ‘ [Clieong, 1992] Fah-Chun Cheong. Almost tag-frée garbage collection for mq@um@-aﬁo@ ; -
e L B e R S N ..kt object-oriented languages. Technical Report CSE-TR-126-92, University of Michigsn, ! ;
‘[Cardelli ef al., 1988] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill 1902: : ; | . e

Kalsow, and Greg Nelson. Modula-3 report (revised). Research Report PRC-131, DEC

. Systems Research Centeranc Olivelti Research Center, 1988~ - - [Chikayama and Kimura, 1987] T. Chikayama and Y. Kimura, chEn” reférence.
: . managementin Flat GHC. In 4th International Conference on Logic Programming; pages

[Caxdelli et al., 1992] H..._nw Cardelli, James Donahue, Lucille Glassman, Mick T o&.m? Bilt m._dlubm.u 1987:

- Kalsow, and. Greg Z@,Hmcu. Modula-3 language definition. ACM SIGPLAN Notices, i ’) o i .
27(8):15-42, August1992. o o " [Christopher, 19841 T, W. Christopher. Reference count garbage collection.. Sdftware

X L . . X Practice and Experience, 14(6):303-507, June 1984, I]
[Caudill and Wirfs-Brock, 1986] Patrick T. Caudill and Allen Wirfs-Brock. A third- . . , : o !)
generation Smalltalk-80 implementation. In [OOPSLA, 1986], pages 119-130. . [Clark and Green, 1977] Douglas W, Clark and C. Cordell Green. An empirical wEnE of list
P X structure in Lisp. Communications of the ACM, 20(2):78-86, February 1977, ;
[CenterLine, 1992] CenterLine Software, Cambridge, MA. CodeCenter, The Programming o : - . o , i
Environment, 1992. B O [Clark, 1975] Douglas. W, Clark. A fast algorithm for copying binary. trees.-Information.
Processing Letters, 9(3):62-63, December 1975. - ” !

[Chailloux, 1992] Emmanuel Chailloux. A conservative garbage collector with ambiguous - :) : . :)
-:- 1o0ts, for static type checking languages: In [IWMM, 1992]:-—- - -+ —— v =4 e [Clark; 1976] Doiglas-We -Clark. -~ An efficient -list -moving algorithm using constant
workspace. Copmunications of the ACM, 19(6):352-354, June-1976.

[Chambers eral., 1989] Craig Chambers, David M.: Ungar, and Elgin Lee. An efficient ‘ b
implementation of SELF, a dynamically-typed object-oriented language based on : [Clark, 1978] Douglas W. Clark. A fast algorithm for copying list structures. w_uﬁsxé.nn,. o o
prototypes. In OOPSLA'89 ACM Conference on Object-Oriented Systems, Languages and fions of the ACM, 21(5):351-357, May 1978. : i
Applications, volume 24(10) of ACM SIGPLAN Notices, pages 48-70, New Orleans, LA, :
October 1589. ACM Press. “ S : C

(Clark, 1979] Douglas W, Clark. Measurements of dynamic Hst siructure in Lisp- ACH
o : Transactions on Software Engineering, 5(1):51-59, January 1979, N :
[Chambers ef al., 1991] Craig Chambers, David M. Ungsr, and Frank Jackson. An i
- efficient implementation of SELF, a dynamically-typed object-oriented language based on
prototypes. Lisp and Symbolic Computation, 4:243-281, 1991. o

s ;.ﬁ.ﬂuoamgimrﬂmﬂoogoawm, 1993] Codewright’s Hoowﬁonwm, San Pedro, CA. E&n-ﬁﬁ. The . : !
TETT Garbage Collecting Replacement for mallae(), 1993 o | ., B

.

.m.mm | BIBLIOGRAPHY
mnornn and Nicoiau, GWB Jacques Cohen and Alexapdru Nicolau. - Ooﬁ._m_mamon of

compacting algorithms for garbage collection. ACM Transactions on Programming
* Languages and Systems, 5(4):532-553, 1983.

ﬁno_ﬁp and Trilling, 1967] Jacques Cohen and H.mﬁaum Trilling. Remarks on garbage.
collection using a two level storage. BIT, 7(1):22-30, 1967.

[Collins, 1960] mmoﬁmm,m. Collins. A methed for overlapping. and erasure of lists.
Communications of the ACM, 3(12):655-657, December 1960.

mmoumnm, GmﬁHmEmmOo,mmoFb&E:nm&O.Tv »ﬁwa_wwasg.um .wﬁmuﬁ:&&&ﬁ?.»hmwo?
Wesley, 1992. ’) :

- [Corparaal et al., Gmmu.”m. Corporaal, T. Veldman, and A. J. van de Goor. Reference weight-
based garbage collection for distributed sysiems. In Proceedings of the SION Conference
on Compuzing Science in the Netherlands, Utrecht, November 1988.

[Corporaal et al., 1990]° H. Corporaal, T. Veldman, and A. J. van de Goor. Efficient, reference
weight-based garbage' collection method for distributed systems. In PARBASE-90:
International Conference on. Databases, Parallel Architectures, and Their Puﬁ:ma&n&..

pages 463465, Miami Beach, 7-9 March 1990. TEEE. Press.

._._[Corporaat, 1989]_H. Oowﬁgm&. Garbage eollection in distributed systems. Internal report,
Technical University, Delft, 1989, :

[Courts, 1988] Robert Coutts. Improving _onmm@ of reference in p.mmﬁdmmo-oouaon._bm
" memory management-system, Communications of the: ACM, 331(9):1128-1138, 1988, -

(Cridig, 1992] Regis Cridlig. An optimising ML to € compiler, In David MacQueen, editor;
ACM SIGPLAN Workshop on ML and its Applications, San Francisco, Tune 1992. ACM
Press..

[Davies, 1984] D. Julian M. Davies. Msmary occupancy patterns in garbage collection
sysiems. Communications af the ACM, 27(8):819-825, August 1984,

[Dawson, 1952] Jeffrey L. Dawson. Improved effectiveness from a real-time LISP garbage
collector: In [LFP, 1992], pages 159--167. :

[Demers et al., 1990] Alan Demers, Mark ‘Weiser, Barry Hayes, Daniel G. Bobraw, and Scott
Shenker, Combhining generational and conservative garbage. collection: Framework and
implementations. In Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, ACM SIGPLAN Notices, pages 261269, San
Francisco, CA, Tanuary 19%0. ACM Press.

[Denning, 1968] P. J. Denning. The working set model for program behaviour
Communications of the ACM, 11:323-333, 1968:

[Detlefs and Kalsow, Hwom__ Dave Detlefs and Bill Kalsow. Debugging storage management
problems in garbage-collected environments. Tn USENIX Conference on Object-Oriented
Technologies. USENIX Association, June 1995.

'

BIBLIOGRAPHY _ W i 337

[Detlefs er al., 1993] David L. Detlefs, Al Dosser, and Benjamin Zorn. gnﬁodw allocation,
costs in large C-and C++ programs. Camputer Science “Technical Report CU-CS-663-93,
Digital Equipment Corporation and University of Colorada, 130 Lytton Avenue; Palo Altc;,
CA 94301 end Campus Box 430, Boulder, CO 80309, Angust 1993, ,

[Detlefs et al., 1994] David Detlefs, Al Dosser, and Benjamin Zorn. ZmEoQ mﬁommn._ou ¢Osis.
in large C and O++ programs. Software Practice and Experience, 24(G}, 1994

[Detlefs, 1950] David ﬁ Detlefs. Concurrent garbage collection for C++, Hnnmmwnﬁ Report
CMU-C5-90-119, Carnegie Mellon University, Pittsburgh, PA, May 1990. | .
[Detlefs, 1991a] David ﬁ. Detlefs. Concurrent, Atomic Garbage Collection. m.rU thesis;
Departinent of Computer Science, Carnegie Mellon University, Pitisburgh, Pa, 15213,
" ‘November 1951 T ’) B ;

[Detlefs, 1991b] David L. Detlefs. Concurrent mE._.umma collection for C++ In! Peter Les, -

editor, Topics in Advanced Langnage Implementation. MIT Press, 1881, _
[Detlefs; 1992] David L, Detlefs. Garbage collection and EnmeQEum as a O++ library. In,
USENIX C++ Conference, Portland, Oregon, August 1992, USENIX >umonmmﬁmﬂo=. .

Ci++ programs. In {OOPSLA-gc, 1993].

[Detlefs, 1993] David L. Detlefs. Empirical evidence for using mmnvmmﬂ oo:mnn._mu in Cand

[DeTreville, 1990a] John DeTreville. Experience with concurrent garbage nmum.moﬁoa, mow
Modula-2+. Technical Report.64, DEC Systems Research Center, Palo Alto, CA, August
1990. R - i -

" [DeTreville, 1990b] John Delreville. Heap uszge in the A.,om..ﬁ wu&BnEmbﬂ Technical

Report 63, DEC Systems Rescarch Center, Palo Alto, CA, August 1990. ;

i

[Deutsch and Bobrow, H,@qﬂ. L. Peter Deutsch and Umhwn_” G. Bobrow. >= mmm&muuw
ineremental automatic garbage collectar. Communications ‘of the ACM, 19(9):522-526,
September 1976. . , i .

i
. j)

[Deutsch, 1983] L. Peter Deutsch. The Dorado Smalltalk-80 mEb_nEoEma.oHM” Hardware

architecture’s impact on software architecture. In [Krasner, 1983], pages 1132125, 7 T

[Dewar and McCann, 1977) Robert B. K. Dewar and A. P. McCann. MACRO SPITBOL —

& SNOBOLA compiler. Software Practice and Experience, T(1):95-113, 1977,

[Dickman, 1991] Peter Dickman. Effective load balancing in a mmmﬁcnﬁaa owwooﬁ.mawuon
operating system. In [TWOOOQS, 1991]. e | :

i

[Dijkstra and mor.wmﬁmn. 1989] Edsgar W. Dijkstra and C. S. Scholten. .Hnnn&bmmmﬂ detection
for diffusing computations: Information Processing Letters, 11, August 1989 - :
' y

[Dijkstra et al., G._.ﬂ Mammﬁ W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Stholten, and
E. F. M. Steffens. Onp-the-fly garbage collection: An exercise in ncocmammoi In Lecture
Notes in Computer Science, No. 46. Springer-Verlag, New Yark, 1976. R

3
i
]
; g
Bl
i

1
i
i
|

338 BIBLIOGRAPHY
[Dijkstra ef al., 1978] Bdsgar W, Dificsra, Leslie Lamport, A. J. Marti, C. 5. Scholten,

and E. E M. Steffens. On-the-fly garbage collection: An exercise in cooperation.
© . Communications af the ACM, 21(11):965-975, November 1978.

[Dijkstra, 15751 Edsgar W. Dijkstra. Notes on a real-time mww_ummm collection system. Froma
., conversation with D. E. Knuth (private-collection of D. E- Knuth), 1975.

[Diwan et al., 1592] Amer Diwar, J. Eliot B. Moss, and Richard L. Hudson. . Compiler
" support for garbags collection in a statically typed language. In Proceedings of
SIGPLAN’92 ﬁ_meqs.mzww on Programming Languages Design and Implementation,
: yolume 27 of ACM SIGPLAN Notices, pages 973282, San Francisco, CA, June 1992,
. L ACM Press. , :

i
:
1

* [Ellis and. Detlefs, 1993] John R, Ellis and David L.Detlefs. Safe, efficient garb

|
i
i

BIBLIOGRAPHY : : ‘ 130

Emw_,wom__ GBE_UE%E.E%S.H.Hnsamasm_ni?R&&%Sﬁ&%ﬁﬁg
2]. _ .ﬂ .

[Edelson, 1992¢] Daniel R. Edelsen. Smart pointers: .Hwoz.ﬂm. smart, but they're not pointers.
In USENIX C++ Conference. USENEX Association, 1992. o

[Edelson, 1993a] Danicl R. Edelson. Doﬂu‘w.mwm two mﬁwﬁn collectors H.ow.n+.w.. Technical
Report UCSC-CRIL-93-20, University of California, Santa'Cruz, January 1993.

_”ma&m.ou. H.wo,wE _Uwumn_ Ross Edelson. Type-Specific Storage Management. {PhD thesis,
University of California, Sante Cruz, May 1993.: ’ :

d] . e collection
-~for 4+ Technical report, Xerox PARC, Palo Alto, CA, 1993, o

MUEEH et al., 1994] Eﬁmw Diwan, David _H.NH&F and J. Eliot B. Moss. Ko,HEQ mcmwwmﬁaﬂ .
performance of m_HomeEm. using copying garbage collection. In [POPL, 1654]. (Eltis and Stroustiup, 1990] Margaret A. Ellis an & Bjarne Stroustrup. The An monﬁmm cvh . .

Reference Manual. Addison-Wesley, 1950.

‘_uuwimb, 1991] Amer Diwan. Stack tracing in a statically typed language. In [OOPSL.A-gC, .
, : [Ellis, 1993] John R. Ellis. Putup or shut up. In [OOPSLA-ge, 1993].

19911,
[Ellis, 1995] Joha Eilis. Re: GC, and objects finalization (was: GC, again), USENET L
comp.lang.misc, January 1995. . ” o

._uuommam and Gonthier, mcm&. Tdemien Doligez and Georges Gonthier. Portable, unobtrusive PR
. garbage collection for muliiprocessar systems. In [PORL, 1994]. :

[Doligez and Leroy, 19931 Damrien Doligez and Xavier Leroy. A corncurrent genérational [Engelstad and Vandendorpe, 1991] Steven L. -Engelstad and James E. Vandendorpe.
garbage collector fora multi-threaded implementation of ML.. In Conference Record of Automatic storage management for systems with real time constraints. Tn [QOPSLA-ge,
1991]. : .W

- .. the Twentieth Annual ACM Symposium on Principles of Programming Languages, ACM 1)
SIGPLAN Notices, pages 113123, ACM Press, January 1993. : - . , _ |
p | [Explorer, 1987, 1987] Explorer (tm) System Saftware Design Notes, June. 1987. Texas

[Douglis, 1993] Fred Umpmmm. The compression cache: Using on-line compression to extend Instruments part number 2243208-0001*A.

physical memory. In 1993 Winter USENIX Conference, pages 519529, San Diega; CA,
Janwary 1993. USENIX Association. :

[Fenichel and Yochelson, 1969] Robert R. Fenichel and Jerome C. Moowm_mnwu. A Lisp
| : garbage collector for virtual memary computer systems. Communications of the ACM,
[Dwyer, 1973] B. Dwyer: Simple algorithms for traversing a ree without an awuxiliary stack. : 12(11):611-612, November 1969- X : . , : ;
Inf Process. Lett., 2(5):143-145, December 1973, : : [Fernandez and Hanson, 1982] Mary F Fernandez and David R. Hanson. Dﬁvw.,ma collection |

alternatives for Icon. Software Practice and Experience, 22(8):659~672, August 1992, :

[Eckart and Leblanc, 1987] I. Dana Eckart and En.wmﬁn T. Leblanc, Distributed garbage

ccllection. ACM SIGPLAN Notices, 22(7):264-273, 1987. 13
] tions af the ACM, :nHHu”mHmlmmo. November 1990. i .

* [Edelson and Pohl, 1990 Daniel R. Bdelson and ra-Pohl, The case for garbage collectionin -~ - o oo o - wee o o2 7 e e fe e ,
C+. In [OOPSLA-gc, 1990}, Also University of California Santa Cruz teckinical report [Ferreira, 1991] Paulo Ferreira. Garbage collection in C++. Tn [OOPSLA-go, 1991]. _ Lo
UCSC-CRL-90-37. : _ : , o 1 e _, . _ o

] [Fisher, 1974] David A, Fisher. Bounded workspace garbage collection in an address order . .

preserving list processing environment. Information Processing Letiers, 3(1):25-32; Tuly o

1974. S A . |

[Ferrari, 1990] UoEmEno‘m...nnmﬁ.w.. Him.woaw locality by critical EonEm sats. ﬁmﬁ.&:iﬂ?

[Edelson and Pohl, Gwd Daniel R. Edelson and Ira Pohl. A copying collector for C++. In
Usenix C++ Confererice Proceedings, pages 85-102. USENIX Assocjation, 1991.
- & #:.. [Fisher, 1975] David A. Fisher. Copying cyclic list structure in linear time zmﬂmbm&onua.ma s

[Edelson, 1990] Danicl R. Edelson. Dynamic storage reclamation in C++. Master’s thesis, ‘
workspace., Communicarions of the ACM, 18(5):251-252, May 1975.

University of Ommmo.ﬂmm at Santa Cruz, June 1990,

[Bdelson, 1992a] Umi,& R. Edelson. A mark-and-sweep collector for C++. Tn [POPL, 1992].

~ [Fitch and Notiian, 1978] John P_Fitch and Arthur C. Norman. A nofe { compacting _
garbage collsttion. Computer Journal, 21{1):31-34, February 1978. . i Y |

340 . o BIBLIOGRAPHY

[Fiterman, 1995] Charles Fiterman. An incremental reflexive garbage coliector for Cs+.
‘USENET comp.lang.c++, Fannary 1995. .

[Ficisch, 19851 B. D. Fleisch. Mirage: A coherent distributed shared memory design. In
-Proceedings of 12th ACM Symposium on Operating Systems Principles, pages 21 1-213.
" ACM Press, December 1989. i -

[Foderaro and Fateman, Hcm 11 John K. Foderaro and Richard J. Fateman. Characterization
-of VAX Macsyma. In 1981 ACM Symposium on Symbolic and Algebraic Computation,
_pages 14-19, Berkeley, CA, 1981. ACM Press.

?....ommﬁﬁo et al., 1985] John K. Foderaro, Keith Sklower, Kevin Layer, et al. Franz Lisp
- Reference Manual. Franz Inc.,1985. : .

_H..oin etal, 1989] A. Forin, J. Barrera, M. Young, and B.Rashid. Design, implementation,
and performance evaluation of a distributed shared memory server for Mach. In

Proceedings of the 1989 Winter USENIX conference, USENIX. Association, January 1989.

ﬂm..oﬂmﬂ. 1989] Ian Foster. A multicomputer mmﬁwmwa collector for a single-assignment

7 language. Iniérhational Journal of Parallel mwuwwniwm:w”ummmu”.u.m‘wwwom.#wm@.r o

__[EPCA, 1985] Jean-Pierre:Jonannaud, editor, Record of the 1983 Conference on Functional

. Programming and Computer Architecture, volume 201 of Lecture Notes in Computer
Science, Nancy, France, September 1985. Springer-Verlag.

TEPCA, 1987] Gilles Kahn, editor. Record of the 1987 -Conference on Functional
Programming and Computer Architecture, volume 274 of Lecture Notes in Computer
. Science, Portland, Oregon, September 1987, Springer-Verlag.

[Francez, 1978] Nissim Francez. An application of amethod for analysis of cyclic programs.
ACM Transactions on Software Engineering, 4(5):371-377, September 1578.

[Franz, 1992, 1992] Franz Inc. Allegro CIL User Guide, Version 4.1, revision2 editon, March
1992. , :

[Friedman and Wise, 1978] Daniel P. Friedman and David S. Wise.. Aspects of applicative
programuning for parallel processing. IEEE Transactions on Compuiers, 27(4):286-296,

- »Drmu._ﬂﬂ, Hmdmv [[S e e R . .
[Friedman and Wise, 1979] Daziel P. Friedman and David §. Wise: Reference counting can

manage the circular environments of mutual recursion. Information Processing Letters,
8(1):41-45, January 1979,

" [Purusou et al., 1991] Shinichi Furusou, Saioshi Matsuoka, and Akinori Yonezawa. Parallel
conservative garbage collection with fast allocation. I [OOPSLA-gc, 19911

** [Gabriel, 1985] Richard P. Gabriel. Performance n;&_m.eﬁ:ﬁnma: of Lisp Systems. MIT Press
Series in Computer Science. MIT Press, Cambridge, MA, 1985. ’

BIBLIOGRAPHY ‘ : : 341

ﬁmmuommu.. 1994] Ravichandran Ganesan. Local variable allocation for mnni,.mﬁo mmmwmm,o
collection of C++. ‘Master’s thesis, lowa State University, Toly 1994, Technical report
ISUTR 94-12, : .

[Gee m.w al., Gu.mw Jeffrey D. Gee, Mark D. Hill, Dionisios N. man,..ammw&oﬂmsa. Alan T,
mm-w%. Cache: performance of the SPEC92 benchmark suite, JEEE Micro, 13(4):17-27,
1993, : ! ’ o

{Gehringer and Chang, 1693] Edward F. Gehringer and Ellis Chang. mmhmep.m_..m,mmmﬁﬁn
memory management. In [OOPSLA-ge, 1993]. : -

i

[Gelernter e al., 1960] H. Gelernter, J. R. Hansen, and C. L. Gerberich. A Fortran-compile
list processing linguage. Journal of the ACM, 7(2):87-101, April 1960. - .

[Gerhart, 1979] 8. L. ‘Gerhart. A derivation omnﬁn@ proof of m%oﬂlﬁ%ﬁ marking
algorithm. Lecture Notes in Computer Science, 69:472-492, 1979, ,

[Ginter, 1991] Andrew Ginter. Cooperative garbage collection using smart painters in the
C++ programming language. “Master's. thesis, University of Calgary, December 1991.
Technical report 91/451/45. : ;)

[Girard, 1987] I.-Y. Girard. Linear logic. Theoretical Computer Science, moulwom, 1987. .

[Glaser and Thompson, 1987] Hugh W. Glaser and P. H_uon,%mon. Lazy mﬁwmwm collection
Software Practice and Experience, 17(1):1-4, January 1987, ; :

[Glaser et al., 1989] Hugh W, Glaser, ‘Michael Reeve, and S. Wright. An mum&.mm of reference
count garbage: collection schemes for declarative langnages: Technical Hnmonw Department
of Computing, Tmperial Collegs, London, 1589.- ”

[Glaser, 1987] fugh W. Glaser. On minimal overhead reference count mﬁvmwm collection
in distributed systems. Technical report, Department of Compuiing, Tmperial College,
London, 1987, o :

[Goldberg and Glo mmn., 1992] Benjarnin Goldberg and Michael Gloger. wuog.ﬁoﬂgo‘nxmm.
reconstruction for garbage collection without tags. In [LFP, 1992], pages 53-65.

~=— --[Goldberg-and Robson; 1983] -Adele Goldberg mmm‘U. Robson. Smalltalk-80; The Language

and its Implementation. Addison-Wesley, 1983.

. [Goldberg, 19891 Benjamin Goldberg. Generational reference noznnbawa.Hmmnnnml

communication distributed storage reclamation scheme. In [PLDI, 1989], pages 313-320.

[Goldberg, 1991]. Benjamin Goldberg. Tag-free mﬁwmm.w collection Ho_”...m.ﬂ,oum%\ DG,@Q
programming languages. ACM SIGPLAN Notices, 26(6):165-176, 1991, v

- - -[Goldberg; 1952] Benjamin Goldberg, HnnnoBme mmacwmm collection 5505 tags. In

1

Proceedings ESOP92 — European Symposiui on Programming, 1992.

i
|
|
i

342 s - BIBLIOGRAPHY

Hﬁomm&ﬁm and Appel, 1995) Marcelo I R. Gongalves and Andrew W. Appel. Cache
 performance of fast-allocating programs. In Record of the 1995 Conférence on Functional
- Programming and Computer Architecture, June 1995. :

{Gota et al., 1988] Atsuhiro Goto, Y. Kimura, T. Nakagawa, end T. Chikayama. Lazy
 reference counting: An incremental garbage collection method for parailel inference
" machines. In Proceedings of Fifth International Conference on Logic Programming, pages
+1241-1256, 1988. Also.ICOT Technical Report TR-354, 1988,

[Greenblatt, 19341 Eormhn Greenblatt. The LISP machine, In D. R. Barstow, o E, Shrobe,
~ and E. Sandewall, editors, Interactive Programming Environments. McGraw-Hill, 1984,

[Gries, 1977] David Gries. An exercise in proving parallel programs correct. Communica-
" tions of the ACM, 20(12):921-930, December 1977) .

mﬂamm. 19797 David Qﬁ,mm_,.. The Schorr—Waite graph H_bmhﬁum algorithm. Acta Informatica,
11(3):223-232, 1975, :

.ﬁﬂmﬁ and Page, 1981] Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in
! an expression-orjented: multiprocessor systerm. ACM Transactions on Programming
Languages and Systems, 3(1):49-59, January 1981. ce S

_[Grunwald et al., 1993] Dirk mEuéwE,.wn&ENown. and Robert Henderson.. Improving
. the cache locality of memeory allocation. In [FLDE, 1993], pages 177-186.

[Guggilla, 1694] Satish Kumar Guggilla. Generatipnal garbage collection of C++ targeted Lo
SPARC architectures: Master’s thesis, Iowa. State University, July 1994, Technical report
ISUTR 94-11. :

[Gupta and Fuchs, 1988] Aloke Gupta and W. K. Fuchs. Reliable garbage collection in
distributed object oriented systems. In Proceedings of the Twelfth Annual International
Computer Sofiware Applications Conference. {COMPSAC 88), pages 324328, Chicago,
October 1988. IEEE Press. :

[Haddon and Waite, 1967] B. K. Haddon and W, M. Waite. A compaction procedure for
variable length storage elements, Compuzer Journal, 10:162-165, August 1967.

[Halstead, 1978] Robert H. Halstead. Multiple-processor implementations of message
_ passing systems, Technical Report TR-198, MIT Laboratery for Computer Science, April
1978. :

[Halstead, 1984] Robert H. Halstead. Implementation of Multilisp: Lisp on amultiprocessar.
In [LFF, 1984]. , :

[Hansen, 19691 Wilfred J. Hansen. Compact list representation; Definition, garbage
collection, and system implementation. Communications of the ACM, 12(9):499-507,
September 1968, ;

[Hanson, 1977] David R. Hanson. Storage management for an implementation of Snobol 4.
Software Practice and Experience, 7(2):175-192,1977.

RIBLIOGRAPHY - : - 343
[Hart and Evans, ”H@q.&, Timothy P. Hart and Thomas G. Evans. Notes on E%Ho.uwmumbm LISP
for the M—460 computer. In [Berkeley and Bobrow, 1974], pages 191-203, | .

[Hartel, 1988] Pieter H. Hartel. Performance Analysis of Storage %Ezn_mmuﬂm.ﬁ E, mmawmmammw
Graph Reduction. PhD thesis, Department of Computer Systems, Univesity of
Amsterdam, Amsterdam, 1988. o o

[Hartel, 19907 Pieter II. Hartel. A comparison of 3 garbage collection Emo&nﬁnw. .w?angw..m&
Programming, 11(3):117-127, 1990. o i

[Hayes, 1990] Barry Hayes. Open systems: require noumn,gwnﬁ garbage o.obmnﬁoﬁ. In
[COPSLA-gc, 19901. : :

{Hayes, 1991] Barry Hayes. Using key object opportunism to collect old WoEwoG.‘ In
[OOFSLA, 1991], pages 33-46. , !

[Hayes, 1992] Barry Hayes. Finalization of the collector interface. In ﬂﬁ%ﬁmmﬁ.

{Hayes, 1993] Barry Hayes. Kay Objects in Garbage Collection. PhD E_mwmmm. Stanford
University, March 1993, : W :

[Hederman, 1988] Lucy Bederman. Compile-time Garbage Collection Swﬁ Reference
Count Analysis. PhD thesis, Rice University, August 1988, Also Rice University Technical
Report TR88=75 but, according to Rice University’s technical report list, this report is no
langer available for distribution. : ” .

[Hennessey, 1993] Wade Hennessey. Real-time mﬁcmwn_ collection in w multimedia
programming’langeage. In {OOPSLA-gc, 1993]. W :

[Flenncssy and Patterson, 19961 John I.. Hennessy and David A, Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kaufman, second edition, 1996.

[Hewitt, 1977] Carl Hewitt, Viewing mohn.oH structures as patterns of H_mmmm_m messages.

Journal of Artificial Intelligence, 8(3):323-364,.June 1977. , :
[Hickey and Cohen, 1984] Tim Hickey and Hmn@:mm Cohen. Performance mumimmm. of on-the-
" fly garbage collection. ﬁagnxmwﬁ@:&oﬁ&m&ﬁ? m.uG.CNHT_@I:MP.Z‘%WBUQ 1984.

[Hill, 1987] \@E.WU EE Aspects of Cache Emin..u_ and Instruction mmﬁwﬁw_m%uga:mm_s
PhD thesis, University of California, Berkeley, November 1987, Also UCB/CSD Hnn:awmr

report 87/381, , i

[Hill, 1988] Mark D, Il A case for direct-mapped caches. IEEE Computer, MHﬁHmv“mmlwo.
December 1988. o) P :

..HHE.NF 1993] Urs Holzle. A fast write barrier for genérational mmmcmma‘mvrnnﬁoﬁm....”?
[OOPSLA-gc, 1993]. : _

1

can also play'cards. In [OOPSLA-ge, 1953].

- [Hosking and Hudson, 1993] “Antony L. Hosking and Richard L. Hudson. Wmﬂmn_cnﬂ.n_.m"na

3
A
|
B
-l
i
]
B
1
|

344 BIBLIOGRAPHY

ﬂ.__uo_wﬁbm.mw al., 1992] Anthony L. Hosking, T. Eliot B. Moss, and Darko Stefanovié. A
_comparative performance evaination of write barrer implementations. - Tn Andreas
Paspeke, editor, GOPSLA’92 ACM Conference on Object-Oriented Systems, Languages
and Applications, volume 27(10) of ACM SIGPLAN Notices, pages 92-109, Vancouver,
British Columbia, October 1992. ACM Press. .

[Hudak and Keller, 1982] Paul R. Hudak and R. M. Keller. Garbage collection and task
- deletion in distributed. applicative processing sysiems. In Conference Record of the 1982
' ACM Symposium on Lisp and Functional Programming, pages 168-178, Pittsburgh, PA,
: Angust 1982. ACM Press.

[Hudek ez al., 1992] Panl Hudak, Simon L. Peyton J ones, and Phillip Wadler. Report on the
- - programming language Haskell, 2 non-strict purely functional langrage. (version 1.2). ACM
 SIGPLAN Notices, 27(5), May 1992. :

.HH..H_EMFF 1986] Paul R. Hudak. A semantic- model of reference counting and iis abstraction
B (detailed summary). In [LFF, 1986], pages 351-363. -

[Hudson and Diwan, 5@8 Richard L. Hudson and Amer Diwan. Adaptive garbage
 collection for Modula-3 and Smalltalk. To [OOPSLA-ge, 1990].

_Hm.HnamoFmba Moss, .Gmmg TRichard L. Hudson and J. Eliot B, Moss. Incremental garbage
collection for mature-objects. In [IWMM, 1992].

[Hudson et al., Gms. Richard L. Hudson, T. Eliot B. Moss, Amer Diwan, and Ogﬁowrmn E
. Weight. A language-independent garbage collector toolkit. Technical Report COINS 91-
. 47, University of Massachusetts at Amherst, Department of Computer and Information

Science, September 1991. :

BIBLIOGRAPHY R i 345

[Hutchinson ez al., 1987] Norman Hutchinsen, R, K. Raj, Andrew P. Black, Henry M. H.mé.
and Eric Jul. The Emerald programming language report. Technical Report 87-10-07,
University of Washington, Octaber 1987. : S

[Hutchinson, 1987] Norman Iufchinson. Emerald: An Object-Based Nhaw:nwm Jor
Distributed Programming. PhD thesis, University of Washington, January 1987.

[Ichisuki and Yonezawa, 1990] Yuuji Tchisuki and Aldnori Yonezawa. uaahwﬁ& garbage

collection using aroup reference counting. In [OOPSLA-ge, 1990].
. i

[(TWMM, 1992] Yves Bekkers and Jacques Cohen, editors, Proceedings of International
Workshop on Memory Management, volume 637 of Leciure Notes in nwﬁ;vﬁmﬂ Science,
St Malo, France, 16-18 September 1992. Springer-Verlag. i

[TWMM, 19951 Henry Baker, editor. Proceedings of International s\aaﬁxowu on Memory
Management, volume 986 of Lecture Notes:in Computér-Science, Kintoss, ‘Scotland,
September 1993. Springer-Verlag. - ‘ B

[[WOO00S, 1991] bﬂﬁ.ﬁwﬁ@a Cabrera, Vincent Russo, Eum Marc Shapiro, m“&ﬁonu.) 5?.?
national Workshep on Objecr Orientation in Operating Systems, Palo Alto, CA, October
1991, IEEE Press. B A

[Johnson, 1988] Uopmﬂmm Johnson. Trap architecture$ m& Lisp systems. .H.nmrinﬂ Report
UCB/CSD/88/470, University of California, Berkeley, November 1988, |

[Johnson, GE.& Huowamﬂmm Johnson. The case for a read barrier. ACM SIGPLAN Notices,
26(4):279-287, 1991, . .

[TJohnson, 1991b] Douglas Fohnson. Comparing two mﬁmmmn collectors. In Hoommwaummo_

H.HcmmcF 1991] Richard L. Hudson. Finalization ina garbage collected world. In [OOPSLA- 1991}, . . o ,

ge, 1991]. . L ST : S
[Fohinson, 1992] Ralph E. Johnson. Reducing the latency of a real-time garbage collector. : i

[Huelsbergen and Larus, 1993] Lorenz Fluelsbergen and James R. Larus. A concurrent Letters on Programming Languages and Systems, 1(1):46-58, March 1992
copying garbage collector for languages that distinguish (im)mutable data. In Fourth : , i
Annual ACM Symposium on Principles and Practice of Parallel. Programming, volume S

28(7) of ACM SIGPLAN Notices, pages 73-82, San Diego, CA, May 1993. ACM FPress.

{Tohnsson, 1987] Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Chalmers University of Technology, 1987. : . N

““[Hughes, 1982] R. John M. Hughes. A semi-incremental garbage collection algorithm. - o= [Jones.and Lins, 1992] Richard E. Jones and Rafael D. Lins. Cyclic weighted reference - B

Software Practice and Experience, 12(1 13:1081-1084, November 1982, _

__.mnm_ummv 1983] R. John M. Elughes. Reference counting with. circplar structures in virtual
memory applicative systems. Inernal paper, Programming Research Group, Oxford, 1983.

[Hughes, 19851 R. John M. Hughes. A distributed mﬁ_ummm.noﬂon%ou algorithm. In [FPCA,
1985}, pages 256272, .

-+ -[Tiughes, 1987] R. Tohn M: Hughes. ‘Managing reduction graphs with reference counts:- -

Departmental Research Report CSC/B7/R2, University of Glasgow, March 1987.

counting without delay. Technical Report 28-92, Computing Laboratory, The University. ol

of Eent at Canterbury, December 1992. |
[Jones and Lins, 1993] Richard E. Jones and Rafael D. Lins. Cyclic ﬁ&mE& referénce
counting without delay. In Arndt Bode, Mike Reeve, and Goltfried> Wolf, editors,
PARLE’93 Parallel Architeciures and Languages Europe, volume 694 of, Lecture Notes

in Computer Science. Springer-Verlag, Tune 1993.

Processing Letters, 9(1):25-30, Tuly 1979,

ek [Jonkers, 19761 L B. M. Jonkers. A fast garbage compaction algorithm. w&«agmmoz

wuwmomw%, _ : o ,
_ mm ‘ _ , ‘W uﬁ

346 . RIBLIOGRAPHY

[Touppi, 1990] Norman P. Jouppi. Improving directzmapped cache. performance by the [Kordale and Ahamad, 1993] R. Kordale and wﬁ:mﬁ , .
aadition of a small fully-associative cache and prefetch buffers. In I7th Annual I detection, algorithm for distributed mwmﬁaﬁm.“ﬁn_”MQO_WMWWWWMQH@W%QE»E@ cyclic garbage

International Symposiwm on Computer Archifecture, pages 346-373, May 1990, - . ey i

[Kowaltowski, 19797 T. Kowaltowski. Data structures and correctness of bwcmnﬁmm. %r:mr&

 [Touppi, 193] Norman P. Jouppi. Cache write policies and performance. In 20th Annual o ofthe ACM, 26(2):283-301, April 1979

Internaiional Symposium on Computer Architectiire, pages 191-201, San Diego, CA, May . o , ..
1993. IBEE Press. . . : [Krasner, 1983] Glenn Krasner, editor. " Smalltalk-80; Bits of History, w\a&u of mwms.nm
: . - . . 1 Addison-Wesley, 1983. : P ” -
[Jul et al., 1988) Bric.Jul, Henry Levy; Norman Hutchinson, and Andrew Black, Fine-grained
mobility in the Emerald system. ACM Transactions on Computer Systems, 6(1):109-133,
January 1988. "
[Tl and Jul, 1992] Neils-Christian Jual and Eric Jul. Comprehensive and robust garbage
- collectionina distributed system. In [TWMM, 1992].) N :
- |Kaashoek et al., 1989] M. Frans Kaashoek, Andrew Tanenbaum, S. Humrael, and Henri E.
Bal. An efficient reliable broadcast protocol. " Operating Systems Review, 23(4):5-19,
October 1589. :
[Kafura et al., 1990] ‘Dennis Kafura, Doug ‘Washabaugh, and Jeff Nelson. Garbage collection
of actars. Tn Norman Meyrowitz, editor, OOPSLA’00ACM Conference on Object-Oriented
Systems, Languages and Applications, volume 25(10) of ACM SIGPLAN Notices, pages
i me 137 Ottawa, Ohtatio; October 1990. ACM Press. o

Emnnm.wr. Gmmu.m‘GEosﬁmmmmw>ooumopém.mﬁmﬁ_ummmno:moﬁonmemn .mmﬁmm@ ﬁo.\wmgﬂ
compiler. In [OOPSLA-gc, 1993]. W

i Emnomnm and Stumm, 1990]. O. Krieger and Michae]l Stumm. An omeE.wmo approach for
iR consistent replicated data for multicomputers.. In Proc. HICCSS, 1990. ,

[Kong and mo&m. 1977] L. T Kung and S. W. Song. Aq efficient parallel W,E.wmma collection
systern and its correctnass proof. In IEEE Symposium on Foundations of Computer Science,
pages 120-131. IEEE Press, 1977. 2 :

[Kurokaws, 1981] T. Kurokawa. A new fast and safe marking algorithm. Software Practice
and Experience, 11:671-682, 1981. , !

Fm%mu and Liskov, 1992] Rivka Ladin. and Barbara Liskov. Dﬁgma, collection of a
. + .—“H_._.VMU H Q s » - ' .
akuta ol 19861 « Katoa, H. Neksmure, and S. Tida. Pusallel refesence counting %MWorMﬁMm WMMM.H%WP International Conference on Distributed n_qﬁuxn:w .mu.ﬁmﬂ._..

algorithm. Information Processing Letters, 23(1):33-37, 1986.

[Lam: and others, 1991] Monica S. Lam ez al. ‘The nmn,vo performance m:m optimizations of S

” [Kennedy, 1991] mnmﬂ..ﬂahﬁn&\. The: .w.mmEHmm of the object oriented wwmnmn.ﬁ.a\m_m Em_mma.nww ; . blocked afgorithms. In [ASPLOS, 1991] 3
(OATH). In Proceedings of the Usenix Ct++ Conference, pages.41-50. Usenix Association, P : » pages 63-74. | .
: April 1991 , . [Lam ez al.,. 1992} Michael S. T.am, Paul R. Wilson, and Thomas G. Enhwmnp Object type
' (Kossler and Livny, 1989] Richard E. Kessler and M. Livny. An analysis of distributed shared directed garbage collection to improve locality. In [TWMM, 1952). | _ S
memory algorithms. In Proceedings of the Oth International Conference on Distributed “ . [Lampert, 1976] Leslie Lampost. Garbage collection s.:.: multiple wnonom.wmmm“ an exercise in |

parallelism. In' Proceedings of the 1976 International Conference on Parallel Processing,

Computing Systems, June 1989.
, pages 50-54, 1976,

[Kingdon et al., wa H. Kingdon, David R. hmmﬁmﬂ. and Geoffrey L. Burn. The HDG-
machine: A highly distributed graph reducer for a transputer network. Computer Journal,

34:290-301, September 1991. :

[Lamport, 1591] ,H.ommn Lamport. The temporal logic of actions. Rescarch Report qw. Umn
Systems Research Center, Palo Alto, CA, 1991. - m

[Kmight, 1974] Tom Knight, CONS. Working Paper 80, MIT AT Laboratory, November 1974.. TR : - P ,
|) : [Lang and Dupont, 1987] Bernard Lang and . Francis Dupont. Incremental incrementally) ,

[Knuth, 1973] Donald E. Knuth. The Art of Computer Programming, volume T: Fundamental , compacting garhage collection. In SIGPLAN'SY Symposium on| Interpreters and . m
4 Interpretive Techniques, volume 22(7) of ACM SIGPLAN Notices, pages 253-263. ACM :

Algorithms, chapter 2. Addison-Wesley, second edition, 1973.
e : Press, 1987. T ‘, : m

[Koopman et al., 19891 Philip J. Koopman, Peter Leg, and Daniel P. Siewiorek. Cache

,@mnmon:munm of combinator graph reduction. In {PLDIL, 1989), pages 110-115. [Lang and d_qmmwﬁmﬁ 1972] w&ﬁn Lang mzab ‘Weghreit. Fast noEuwnmwnmmou- Technical

Report 25-72, Harvard University, Camhridge, MA, November 1572, | ' . o

1992] Philip J. Koopman, Peter Tee, and Deniel P Siewiorek. Cache

[Boopman et al., .
atar graph reduction. ACM Transactions on Programming Languages [- [Langeral, 1992] Bernard Lang, Christian Quenniac; and. José Piquer. Garbage collecting : ;
e L - - S g , i

behavior of noBuE
and Systems, 14(2):265-257, April 1992,

the world. In [POPL, 1992], pages 39-50.

i
|
i
- i
B
4 H
G
1
g

_[Lester, 1992] ‘Um&av.hmmﬁn _Distributed garbage eollection of

348 mHmﬂHOOEmm‘

[Le Sergent g&wﬁﬁmanc, 1992] Thierry Le Sergent and Bernard wEEnEmoF Incre-
mental multi-threaded garbage collection on virtually shared memory architectures. In

CIWMM, 1992]. : .
[Lee et al., 1979] S. H.om._ W. P De Wcm<oa. and §. Gerhart. The evolution. of List copying

algorithms. In 6th ACM Symposium on Principles of Programming Languages, pages 33—
56, San Antonio, Texas, January 1979. ACM Press,

[Lee, 1980] K.P.Lee: A linear algorithm for copyingbinary trees using bounded workspace.
QQSE:E.namQE_&n the ACM, 23(3):159-162, March 1980.

[Lermen and Ewﬁmw pwwﬂ C.-W. Lermen and Dieter Maurer, A protocol for distributed
reference counting; In [LFE, 1986], pages 343-350."

[Lester, 1989] David Lester, An efficient diswibuted garbage collector algorithm. In Eddy -
Odijik, M, Rem, and Jean-Clande Sayr, editoss, PARLE'89 Parallel Architectures and
Languages Europe, volume 265/366 of Lecture Notes in Computer Science, Eindhoven,
The Netheriands; June 1989, Springer-Verlag.

cyclic structures. In 4th
International Workshop on the Parallel Implementation of Funetional Languages, Aachen, i
September 1992 Available +rom Herbert Kuchen, Lehrsuhl Informatik IT, RWTH Aachen,

“ Ahornstt. 53, W=51000 Anchen, Also Glasgow mnunmona,?omagm‘éﬁwmrom 1993. -

[Levelt ef al., 1992] Willem G. Levelt, M. Frans Kaashoek, Henri E. Bal, and Andrew
Tanenbaum. A comparison of two-paradigms for distributed shared memory. Software
Practice and mumnmlmznmu 22(11):985-1010, November 1992, : T

[LEP, 1984] Guy h ,mﬁ&n. editor. Conference w”mna& of the 1984 ACM Symposiurn on Lisp
and Functional Hwowﬂnﬁs_.zwv. Austin, TX, August 1984, ACM Press.

of the 1986 ACM Symposium on Lisp and Functional.

[LEFP, 1986] Conference Record
Cambridge, MA, August 1986. ACM Press.

~ Programming, ACM SIGPLAN Notices,

[LFP, 1992] Conference Record of the 1992 .»D__N &3@833 on Lisp and Functional
Programming, San Francisco, CA, Tune 1992, ACM Press.

[Li anc Hudak, Gwmu KaiLiand mqm_..: Hudak. ZHmEoQ coherence in shared virtual memory

systems.. ACM Transactions on Computer Systems, 7(4):321-359, November 1980. |

[Li, 1986] Kai Li. Shared Virtual Memory on Loosely Coupled Mulliprocessors. PhD thesis,
Yale GHB.@G.HQ 1986.

[Lieberman and mw&#, 1983] Henry Lieberman and Catl B, Hewitt. A real-time garbage
collector based on the lifetimes of abjects. Communications of the ACM, 26(6):419-29, ‘

1583. Also Hmﬁoa_,.. TM-184, Laboratory for Computer Science, MIT, Cambridge, MA, July o

1980 and AT Lab Memo 569, 1981.

[Lindstrom, 1973] Gary Lindstrom. Scaning list souctmes without stacks or tag bits.
Information Processing Letters, 2(2):47-51, June 1973 - o

BIBLIOGRAPHY 249

[Lindstrom, .E.q.& Gary Lindstom. Copying _m.mﬁ.mqﬁwﬁnm using bounded workspace.
Communications of the ACM, 17(4):199-202, April 1974, ,
[Lins EH.H Tones, 1993] Rafael D. Lins and Richard E. Jones. Cyclic éommrﬁna. reference coL N
counting. In K. Boyanov, editor, Procedings of WP & DP’93 Workshop on Parallel and ” _
Distributed Processing. North Holland, Mey 1993. Also Computing hm@cﬂ...o&. Technical :
Report 95, University of Kent, December 1651. o : m
" [Lins and Vasques, 1991] Rafael D. Lins and Mircio A. Vasques. A nou%mk..mﬁad mEmw of
algorithms for cyclic reference counting. Technical Report 92, Computing Laboratory,

"The University of Kent at Canterbury, Angust 1891, L

[Lins, 1991} Rafael D. Lins. A shared memory mmnEﬁm:hm for parallel nmnmnamwmnn:nn

counting. Microprocessing and Microprogramming, 34;31-35, September 1991.
: : f

[Lins, 1992a] Rafael D. Lins. Cyclic reference counting f&ﬁ lazy Eﬁw.mnmw. Information . ,
Processing Letters, 44(4):215-220, 1992. Also Computing Laboratory Technical Report '
75, University of Kent, July 1990. : ‘

[Lins, 1992b] Rafael D. Lins. A EEmﬁBnmmm.oH shared. memory architecture for parallel W
cyclic reference counting. Microprocessing and Microprogramming, 35:563-568, ,
. September 1992. : C

{Liskov and Ladin, 1986] Barbara Liskov and Rivka Ladin, Highly available distributed

services and fault-tolerant distributed garbags collection, In J, Halpern, editor, Proceedings

of the Fifth Annual ACM Symposium on. the Principles on Distributed Computing, pages
]

29-39, Calgary, August 1986. ACM Press. - ; |
: . i

o . . : - i :
[Llames, 1991] Rene Lim Llames. FPerformance Analysis of Garbage Collection and
Dynamic: Reordering in a LISP System. PiD thesis, University of Ilinois at Urbana-
* Champaign, 1991. ‘ _] :
[Lomet, 1975] D.B. Lomét. $¢heme for .F<&Ew.mbw.namnﬁmunom to freed ﬂﬂmmf. IBM Journal. .

of Research and Development, pages 26-35, January 1975, i

{Lyon, 1988] G. Lyon. Tagless marking that is linear over subtrees. ‘...:.ﬁquzﬁnwa:, wémmq.,,.h.zw
Letters, 27(1):23-28, 1988, Lo i .

[Madany ef al;, 1992] Peter W. Madany, Nayeem Islam, Panos Wocmmoﬁ.mw“ and Roy H.
Campbell. Reification and reflection in C++: An operating systems perspective. Technical
Report UTUCDCS-R—92-1736, Department of Computer Science, University of Illinais at
Urbana-Champaign, March 1992,)) i :

Maeder, 1992] RomanE. Maeder. A provably correct reference count scheme for a symbolie
computation system. In unpublished form, ciied by Edelson, 1992, 1 :

{Maheshwari, 1993a} Umesh Maheshwari, Distributed garhage collection in a client-server
persistent object system. In [OOPSLA-ge, 1993]. . :

H

1

)

|

{

[: ;

1 : . . i
I

i

i

. _ the ACM, 6(9); uqm September 1963.. . o -

350 . mHmEomEmw -

[vlzheshwari, GcwE Umesh Maheshwari, Distributed garbage collection in a client—server;
transactional, persistent objeot system. Techaical Report MIT/LCS/TR-574, MIT Press,
February Gmm

[Mancini mbn_ Shrivastava, 1991] Luigi V. Mancini and §. K. Shrivastava. Fault-tolerant
reference counting for garbage collection in distributed systems.

34(6):503-513, December 1991. :

(Mancini et al., 1991] Luigi V. Mancini, Vittoria Rotella, and Simonetia Venosa. Copying
garbage collection for distributed object stores. In Proceedings ot the Tenth Symposiumon
Reliable UG:.&E& &5«5& ?._.P September 1991, .

”Z..mHWE 1982] i ogbﬁmm u EE.E. An efficient garbage compaction &qoﬂaﬁn QaES:E.
cations of the .»Qﬁ . 25(8):571-581, August Gm

fMartinez et al., GmB A. D. Martinez, R. Wachenchauzer, and Rafael D. Lins. Cyclic — 7|

reference counting with local mark-scan. Information Processing Letters, 34: 31-35, 1890,

[McReth, 1963] T. Harold McBeth. On the reference counter method. Communications &n

[McCarthy, Emg Tohn MecCarthy. Recursive ?bnnoum of symbolic expressions and Emﬁ

[MeCarthy, 198 E uog MecCarthy. History of LISP. In Richard L, Wexelblat, editor, History
of HEMSSEEW hu:m:nmﬁ chapter IV, pages 173-197. ACM Monograph, 1981. --

[McIroy, 1976} M. Douglas Mecliray, Mass-produced software components. In I. M. Buxton,
Peter Naur, and Brian Randell, editors, Software Engineering Concepts and Hmnrw:%“m__.
{1968 NATO Conference of Software Engineering), pages 88-08, 1976,

Eoﬁomorw &n? 1980] N.Metropolis, I. umoimn and Gian-Carlo Rota, editors. hmiod_
of Computing in'the Twentieth Century. Academic Press, 1980.

[Meyer, 1988] Bertrand Meyer. Ohject-oriented Software Construction. Prentice-Hall, 1988.

[Miller and Rozas, 1994] JTames S. Miller and Guillermo I. Rozas. Garbage collection is ».mmy
buta mmmnw is faster. Technical w.nvcn ATM- Emm MIT AL H.m_uonmﬁog March 1994.

‘ ?HE&Q Gmm_ gﬁﬁu H. g._bm@ > E% garbage no=ao§. &qonﬁamen mmBmH mnoonn_mQ

storage. Technjcal Report Memo 58 (rev.), ?Emoﬁ MAC, MIT, Cambridge, MA, December
1963.

[Mogul and wﬁw. 1991)] Jeffrey C. Mogul and Anita Borg. The effect of context switches on ‘
cache @nnmonﬁ,mbno. In [ASPLOS, 15%1], @mmg 75-84.

[Mohamed-Ali, Gmh: Khayri A, Mohamed-All. Qbject Oriented Storage Management and -
Gurbage Collection in Distributed Processing Systems. PhD thesis, Royal Instituic of - - -
Technology, Stackholm, December 1984. :

Computer Journal, -~ 3|

computation by machine. Communications &J.“_m -ACM, 37184195, 1960. - il e [MOSS, Gmm& I. Bliot B. Moss.

_, 351
|

Eoou, 1984] David A, Moon. Garbage collection in 2 large LISP mwuaE. In me Gm&.

pages 235-245.

- .‘wEEomw%mw.

mgoon 1985] David A. Moon. Architecture of the Symbolics 3600, Tn wwcnmm&“xw.,. &n ﬂ.«a
12th Annual International .&5@@25& on Qaihﬁmw Architecture, pages 76-83, Boston,
. MA, June 1985. , W
_”goam. 1978] B Lockwood Morris. A time- and space-efficient mmﬁ_umam noEanDop
algorithm, Communications of the ACM, 21(8):662-5, 1978. |
i
: mSoEm. 1979} F. Lockwood Mozris. On a comparison of garbage nocmonos techniques.
ﬁcﬁizﬁgmazq&nurm}ﬁs% 22(10):571, October Eqw ” .

g

”goam mmmu E ﬁ.onﬁiocm Morris. >bon.5a noEmmoEum wmwcwmm ncEmoSH. ~=&9§aanz
m.EnmquEm Letters, 15(4):139—142, October 1982.

: [Moss and mEow&Q_ 1988] 1. Eliot B, Moss and S. wEoE@ Managing wmnmaﬁmnﬁ data with
Mneme: Designing a reliahle, shared ohject interface, In Advances in Qwumnn.a:mﬁmm
Database Systems, volume 334 of Lecture Notes in Computer Science, ummam 298-314.

_. Springer-Verlag, Hmmw ,

Addressing - large distributed no:mnﬂoam of persistent
objects: The Mneme project’s approach. In S econd International Workshop on Database
Programming Languages, pages 269285, Glenedon Beach, OR, June 1989, Also available
as Technicdl Report 89-68, University of Massachusetts Departnent of OoBuEnH and
Information Science, Amherst, MA, 1985. ;

[Moss, 1989b] J. FliotB. Moss. The Mneme: mﬁ.ﬁmﬁnﬁ o_u._nnﬁ store. COINS Hm%;ﬁﬁﬂ%oﬂ
89-107, University of ‘Massachusetts, Department of Computer and Eodﬂmﬁon Science,
Bmw ,

" [Moss, GoS I. Eliot B. Moss. Garbage noznnﬁnm persistent object stores. Hu HOOwwHa?.nn.
1990]. Also in SIGPLAN Notices 23(1): 145-52, umn:E 1591. W

- [Miiller, Eq& Klans A G-Milller. -On-the Feasibility of n.azn::.mﬁ Qal@m« Collection.
FhD Eamﬁ Tech. Hogeschool Delft, March 1976.

— T [Nagle, 19951 Tohun Zm&.m. Re: Real-time GC Q,_.mm Re: é&amﬁomﬁ_ Ci+ noEmnB:ow gap).
USENET comp.lang.c++, January 1995. W

: [Nelson, 1989] Jefftey E. Nelson. Automatic, incremental, on-the-fiy mﬁcmqn collection of
* actors. Master’s thesis, Snn:.hm Polytechnic Instiiute m:m State QE,HHEQ_ 1989,

- _[Nettles. mnu O’ Toole,1993] - mno# M.-Nettles and James 2 o .H.ooym. an_ an Hnm:nmno?
based garbage nocmnﬁcu In [PLDI, 1993]. ,

qumm: W. O’Toole, David Tmnnn. and Zu.nwo_mm

" [Nettles er gl., 1992] Scott M. Nettles,

Haines.. Wm@anﬁoulwmmmn Enn.wnpnuﬂ& copying collection. In [TWMM, wa”_

,
|
1
i
1
B
i

W1
4
|
!

¢ 353

352 . BIBLIOGRAPHY | BIBLIOGRAPHY

{ H

{OOPSLA-gc, 1991] Paul R. Wilson and Bamy Hayes, editors. OOPSLA/ECOOP 91
Workshop on Garbage Collection in Object-Oriented Systems, October 1321.

[Nettles ez al., 1993]- Scott M. Nettles, James W. U_Hooﬁ and David Gifford, Concurent
garbage collection of persistent heaps. Technical Report MIT/T.CS/TR-568 and CMU-

CS-93-137, Computer Science Department, Carnegie-Mellon University, April 1993. The B

Sarie paper as [O*Toele et al., 1993].

[Nilsen and Gac, 1995] Kelvin Nilsen and H. Gao. The real-tme behaviour of dynamic
memory management in Ct++. In IEEE Real-Time Technologies and Applications
Symposium, pages 142-153, Chicago, May 1995. IEEE Press.

[Nilsen and Schmidt, 1990a] Kelvin D. Nilsen and William J. Schmidt. Hardware support
for garbage collection of linked objects and arrays in real-time. In [QOPSLA-gc, 1990].

[Nilsen and Schmidt, 1990b] Kelvin I3, Nilsen and William J. Schmidt. A high-level
sverview of hardware assisted real-iime garbage collection. Technical Report TR90-13a,
Towa State University, Department of Computer Science, October 1990.

[Nilsen and moEBEn 1992aj Kelvin D. Nilsen and William I. Schroidt. Hardware-assisted
general-purpose garbage collection for havd real-time systems. Technical Report ISU
TR92-15, Towa State University, Department of Computer Science;, October 1992.

[Nilser and onE.mm_ 1992b] Kelvin D. Nilsen ‘and William J. Schimidt. Preferred
embodiment of a hardware-assisted garbage collection system. Technical Report ISU

TR92-17, Towa State University, Departmént of Computer Science, November 1992.

[Nilsen and mnwEEn 1994] Kelvin D. Nilsen and William J. Schmidt. A high-performance
hardware-assisted teal time garbage collection system. Jowmal of Programming
Languages, 2(1), 1994. :

[Nilsen, 1993] KelvinD. Nilsen. Reliable real-time garbage collection of C++. In [OOPSLA-
gc, 1993].

[Nilsen, 1994za] Kelvin D. Nilsen. Cost-effective. hardware-assisted real-time garbage
collection. In Workshop on Language, Compiler, and Tool Support for Real-Time Systems,
PLDI94, Tune 1994,

[INilsen, 1994b] Kelvin D. Nilsen. Reliable real-time garhage collection of C++. Compuiing
Systems, 7(4}, _.wcm_,. :

[Nilses, 1995] Kelvin Nilsen. Progress in hardware-assisted réal time garbage caltection. In
[TWMM, 1995]. * - -

[Noxth and Reppy, 1987] S. C, North and John H. Reppy. Concurrent garbage collection on
stock hardware. In [FPCA, 1987), pages 113-133.

[Oldehoeft, 19941 Rod.Oldshoeft. Re: ref counting vs. heavy GC. USENET comp.functional,
September 1994, Parallel SISAL on Sequents optimises away most RCs.

-+ [OOPSLA-gc, 1950] Eric Jul and Niels-Christian Juul, editors. OOPSLA/ECOOP 90

Worlshop on Qawv,amm Collection in Object-Oriented Systems, Ottawa, October 1990.

i

[OOPSLA-ge, 1993] Bliot Moss, Paul R. Wilson, and Benjamin Zom, editors. OOP-
STA/ECOOP '93 Workshop on Garbage Collection in OBject-Oriented Systems, October
1993. : S _ p ‘

[OOPSLA, 1986] Norman Meyrowitz, editor.’ OOPSLA'86 ACM Océﬂww_w-znm on Qbject-

Oriented Systems, Languages and Applications, volume 21(11) of ACM Eﬁm% Notices.
ACM Press, October 1986. , | :

[QOPSLA, 1991] Andreas Paepcke, editor. .DQ%ME.E ACM ﬁ.oéqmwmunm on Dw%n?
Oriented Systems, Languages and Applications, volums 26(11) of ACM SIGPLAN Norices,
Phoenix; Arizona, October 1991, ACM Press. : b 5

Q" Toole and Nettles, 1993] James W. O"Toole-and Scott M. Nettles. Oonﬂ,ﬁmﬂ replicating
garbage collection. Technical Report MIT-LCS-TR-570 and CMU-CS-93-138, MIT
and CMU, 1993. Alsc LEPO4 and OOPSLAY3 Workshop on Memory Management and
Garbage Collection. . w .

[O'Toole et al., 1993] James W. O’ Toole, Scott M. Nettles, and David Gifford. Concurrent
compacting garbage collection of a persistent heap., In Proceedings of the Fourteenti
Symposium on Operating Systems Principles, volume 27(5) of Operating Systems Review,
pages 161-174, Asheville, North Carolina, December 1993, ACM Press. :Also MIT/CMU

Technical report MIT-LCS-TR-569. The same paper as [Nettles et al., 1993].

[Owicki and Lamport, 1982] Susan Owicki and Leslie Lamport. Proving E.nnmmm properties
of concurrent programs. ACM Transactions on Programming Languages and Systems,
Ahmvuhmmraom.q&wwmmm. |

| .
[PARLE, 1987] Hm,oocnm W. de Bakker, L. Nijman, :and Philip C. Hn.w_nmé:. editors..
PARLE'87 Parallel Architectures and Languages Europe, volume 258/259 of Lecture Notes
in Computer Science, Eindhoven, The Netherlands, Tune 1987. Springer-Verlag.

[Peng m:Pm‘oEermﬂ Chih-Jui Peng and Gurindar §. Sohi. . Omnro..w memory, design
considerations to suppart languages with dynamic heap atlocation. Technieal Repoit 860,
Compuier Sciences Department, University of Wisconsin-Madison, July 1989.

[Pepels et al., 1988] E. J. L Pepels, M. C. I. D. van Eekelon, and M. J. Plasmeijer; A cyclic

reference-counting algerithm and its proof.” Technical Report 88-10, Omuﬁﬁmnm Seience
Department, University of Nijmegen, 1988.. . . M, N
: i

[Peyton I ones, 1992] Simon L. Peyton Jones.. Implementing lazy functional languages on
stock hardware: The Spinelass Tagless G-machine.. Journal af. Fl x:nmﬁnrhamwniﬂmxmw

2(2):127-202, April 1992. |

[Piguer, G.oo& .HOmm M. Piquer. ‘Sharing date structures in mwﬁgﬁm.gmn. In Proceedings

of High Performance and Parallel Computing in Lisp Workshop, Hou&onw November 1990.

g
.1

354 L ” ‘ BIBLIOGRAPHY

[Piquer, 1990b] José M. Piguer, Un GC paralléle pour un Lisp distribué. Journées
francophones des langages applicatifs, January 1990. Also Bigre 69, July 1990.

[Piquer, 1991] José M: Piquer. Indirect reference countingr A distributed garbage collection
algorithm. In Aarts et al., editors, PARLE’91 Parallel Architectures and Languages Furope,
volume 505 of Lecture Notes in Computer Science. Springer-Verlag, June 1991,

[Pixley, 1988] C. Pixley. An incremental mﬁcmwm. collection algorithm for multi-mutator
systems. Distributed Computing, 3(1):41-50, 1988.

[Plainfossé and Shapira, 19921 David Plainfossé and Marc Shapiro. Experience with fault-
tolerant garbage collection in a distributed Lisp system. In [TWMM, 1992].

" [Plainfossé and Shapiro, 1995] David Plainfossé and Marc Shapito. A survey of distributed
garbage collection techniques. In [TWMM, 19953

[PLDL 1989] Proceedings of SIGPLAN'89 Conference on Programming Languages Design
and Implementation, volume 24(7) of ACM SIGPLAN Notices, Portland, Oregon, June
1989, ACM Press.

: mm.ﬁ.u.u‘m‘.‘_.@mmu wﬂanmmmm:wh a.%w.w@ﬁg '93 Conference on Progiamming Languages Design
and Implementation, volume 28(6) of ACM SIGPLAN
et 1993, ACM Fress. ST

[PLDL, 1994] Proceedings of SIGPLAN'94 Conference on Programming Languages Design
and Implementation, volume 29 of ACM SIGPLAN Notices, Orlando, FL, Fune 1994, ACM
Press. Also Lisp Pointers VI 3, July-September 1994.

[Pollack et @l., 1982] F. I. Pollack, G. W. Cox, D. W. Hammerstein, K. C. Kahn, K. K.
Lai, and . R. Rattner. Supporting Ada memory management in the iAPX-432. In
Second International Conference on Architectural Support for Programming: Languages
and Operating Systems (ASPLOS), volume 12(4) of ACM SIGPLAN Notices, pages 117-
131. ACM Press, ,Emm.

[POPL, 1992] Conference Record of the Nineteenth Annual ACM Symposium on Principles
of Programming Languages, ACM SIGPLAN Notices. ACM Press, J anuary 1992. ‘

_H.OmH.« 19941 m.aé“mww:nm Record of the HémaQuﬁ.ﬁb:E__E ACM Symposium on Principles

" “of Programming Languages, ACM SIGPLAN Notices. ACM Press, January 1994.

[Przybylski, 1990] Steven A. Przybylski. Cache and Memory Hierarchy Design: A
Performance-Directed Approach. Morgan Kaufman, Pala Alto, CA, 1990.

[Puaut, 1992] Isabelle Puaut. Distributed garbage collection of active objects with no global
synchronisation. InJTWMM, 1992]. “ - : -

[Puaut, 19944] Isabelle Puaut. A dismibuted garbage collector for active objects. In
PARLE’04 Parallel Architectures and Languages Europe, Lecture Notes in Computer
Science. Springer-Verlag, 1994. Also INRTA TCIS-DIFUSION RR 2134.

| -

P

Notices, Albuquerque, NM, June

.muwhmo.ﬁgmm- ,, 355
[Puaut, 1994b] Isabelle Pusut. A distributed garbage collector for active oE.mnﬁ.. In
OOPSLA’94 ACM Conference on Object-Oriented Systems; Languages and Applications,
volume 29 of ACM SIGPLAN Notices, pages 113-128. ACM Press;’ October 1994 :

[Purify, 1992] Pure Software, Los Altos, CA. Purify, 1992,

[Queinnec et al., Humm”_ Christian Queinnec, Barbara Beaudoing, and Jeah-Pierre Queille.
Mark DURING Sweep rather than Mark THEN Sweep. Lecture Najes in Computer
Science, 365:224-237, 1989. ; y

[Ramesh and: Mehndiratta, 1983] S. Ramesh and 8. L. Mehndiratta, The Ew:mmm propérty of
on-the-fly garbage collector —- a proof. Information. Processing Letters. 17(4):189-195,
November 1983,) i o :

[Rana, 1983] 5. P; Rana. A distributed solution to &n. distributed termination unmu_ma.
" Information Pracessing Letters, 17:43-46, July 1983. ‘ 4 i

Qﬂnwum&m_ 19731 E. M. W,Q.bmoa. A non-tecursive list moving algorithm. ﬂaSE:E.n_nneuu
of the ACM, 16(5):305-307, May 1973. ,

[Reinhold, 1994] Mark B. Reinhold. Cache performance ommﬁdwma.noznmﬁa prograins. In
[PLDI, 1994]. Also Lisp Pointers VIIL 3, Tuly—September 1994: :

[Reppy. Gmﬂ Tohn H, Reppy. A Emﬁ.ﬁmﬁdﬁum‘:om garbage collector w,o_” Standard ML.
Tachnical memorandum, AT&T Bell Laboratories, Murray Hill, NI, Uanmacm_. Gmm..

[Robson, 16731 J. M. Robson. An improved algorithm for traversing EEQ trees ;m.EEE
auxiliary-stack. Information Processing Letters, 2(1):12-14, March qu. ;

{Robson, 1977] T. M. Robson. A bounded storage algorithm for ocwﬁum cyclic structures. -
. m .

Communications of the ACM, 20(6):43 1-433, Tune 1977. i

[Réjemo, 1992] NWiklas Réjemo. A concurrent generational garbage noc_wﬁﬁ fora mmam:&

graph reducer. In [TWMM, 19921, ,

[Ross, 19671 D. T. Ross.

10(8):481-492, August 1967. : |

The AED free storage package. .ﬂaﬁsgmnnmai of the ACM,

.ﬁﬂoﬁpoﬁpmmﬂ Paul Rovner. On adding garbage collection and Enmﬂm nwmnm toa mﬂcumd\n
typed, statically-checked, concurrent language. Technical Report ﬂmﬁlmplﬂ,ummnox
PARC, Palo Alto, CA, July 1983, - : - 4

. : B
[Rudalics, 1986} M. Rudalics. Distributed nowﬁsm garbage ooznonon.w:.m,ﬁwm Gmﬁ, pages
364372, :) : : T

Eﬁmmgoﬁ.uwoﬁ_ David M. Russinoff. A mechanically verified incremental -garbage
collector. Formal Aspects of Computing, m“muclmcou 1994, i

[Russo, 1991] Vincent E._Russo. Qarbage. collecting and cEmnvo&mEnm om.mﬁwmnmmmwmﬁa
kernel. In [OOPSLA-gc, 1991]. . i :

|
|
3
§
i
1
H

356 W : . BIBLIOGRAPHY

{Salkild, 1987] Jon D: Salkild. Implementation and analysis of two reference counting
algorithms. Master's thesis, University College, London, 1987.

[Samples, 1652} > UBb Samples. Garbage collsction-cooperative C++. In TWIVIM, 1992].

[Sansom and Pey ton Jones, 1993] Patrick M. Sansom: and Simon L. Peyton Jones. Genera-
tional garbage coliection for Haskell. In R. John M. Huoghes, editor, Record of the 1993
Conference on F unctional Programming and Computer Architecture, volume 523 of Lec-

ture Notes in Computer Sciznce, University of Glasgow, June 1993, Springer-Verlag.

[Sansom, 1991] Patrick M. Sansom. Dual-mode garbage collection. Technical Report CSTR
$1-07, Department of Electronics and Computer Science, University of Southampton, June
1991, Proceedings of Third International Workshop on Implementation of Functional
Languages on Parallel Architectures. e T T o -

[Sansom, 1992} Patrick M. Sansom. Combining copying and compacting garbage collection.
In Simon L. Peyton Jones, G. Hutton, and C. K. Hols, editors, Fourth Annual Glasgow
Workshop on Furictional Programming, Workshops in Computer Science. Springer-Verlag,
1992. .

[Satishkumar, Gw& S. Satishkumar. Register allocation for acturate garbage collection of
C-++. Master’s thesis, Towa State University, Tuly 1994, Technical report ISUTR 94--12.

[Saunders, 1974] Robert A. Saunders. The LISP éystem for the)32 computer. In [Berkeley

and Bobrow, 19741, pages 220-231.

[Schelter and Ballantyne, 1988] W.E. Schelter and M. Ballantyne. Kyoto Common Lisp. A
Expert, 3(3):75-T1, 1988. . C

[Schelvis and Eaaon,w, 1988] M. Schelvis' and E. Bledoeg. The implementation of a
distributed Smalltalk. Lecture Notes in Computer Science, 322:212-232, 1988.

[Sehorr and Waite, 1967] H. Schorr and W. Waite. An efficient machine independent
procedure for garbage collection in various list structares. Communications of the ACM,
10{%):501-506, Angust 1967.

Exiending C++ to support remote - procedure call,
In Usenix C++ Conference

[Seliger, 19501 Robert Seliger.
conciurency, exception handling and garhage collection.
Proceedings, pages 241-264. USENIX Association, 1990.

[Shapiro et al., Gme_ Marc Shapiro, Olivier Gruber, and David Plainfossé. A garbage

detestion pratocol for a realistic distributed object-support system. Rapports de Recherche
1320, INRIA-Rocquencoutt, November 1990. Superseded by [Shapiro, Gmﬁ.

[Shapiro, 1991] Marc Shapiro. A fault-tolerant, scalable, low-overhead distributed garbage

collection protocel. In Proczedings of the Tenth Symposium on Reliable Distributed
Systems, Pisa, September 1991.

[Sharma and mom..w. 1991] Ravi Sharma and Mary T.ou Soffa. Parallel generational-garbage
collection. In [QOPSLA, 1991], pages 16-32. ’

[Stamos, 1982] James W. Stamos.

: 357

BIBLIOGRAPHY
: o y .

[Shaw, 1987] Robert A. Shaw. Tmproving garbage collector performance in virtual memory.

Technical Report CSL-TR—87-323, Stanford University, March 1987. Also Hewlett-

Packard Laboratories report STL-TM~87-05, Palo Alto, 1987. j :

[Shaw, 1988] Robert A, Shaw. Empirical Anglysis of a Lisp System. PhD thesis, Stanford
University, 1988. Technical Report CSL~TR-88-351. W _,
uézwmm. without an

[Siklossy, 1972] L. Siklossy. Fast and readonly algorithms for traversing
auxiliary stack. Information Processing Letters, 1(4):149-152, June 1572.

[Sobalvarro, 1988] Patrick Sobalvarro. A lifetime-based garbage collector for Lisp systems
on general-purpose computers, Technical Report ATTR-1417, MIT AL Lab, February 1988.
Bachelor of Science thesis. :

[Sousa, 1993] wnmﬁo Sousa. Garbage ncﬁnnﬂmm of persistent objects ina &mﬁgﬁn object-
orented platform. In [OOPSL.A-gc, 19931«

A Hmhm_m object-oriented virtal memory: Grouping
strategics, measurements, and performance. Techniocal Report 8CG-82-2, Xerox PARC,
Pala Alto, CA, May 1982, : :

[Stamaos, 1984] James W, Stamos. Static grouping of small objects to enhance performance

of a paged virtyal memory. ACM Transactions on Computer Systems, mﬁmv;mml_mo_ May -

1984.

[Standish, 1980] Thomas A. Standish.. Dara Structures, Technigues. >n_&m@u|4\mﬁaﬁ.5mo.‘

[Steele, 19751 Guy L. Stecle. Multiprocessing compactifying mﬁwmma‘oo:wnmo? Communi-
cations of the ACM, 18(9):495-508, September'1575. ! -

i

Ooammna_s_ﬁ” Multiprocessing compactifying garbage

[Steele, 1976] Guy L. Steele. .
. collection. Communications of the ACM, 19(6):354, June 1976.

1

[Steenkiste and Hennessy, 1987] Peter Steenkists and. John Hennessy.| Tags and type
checking in LISP: Hardware and software approaches. In Second International Conference
on Architectural Support for Programming Languages and Operating. @u&ﬁm (ASPLOS.
11}, pages 50-59, Palo Alto, CA, October 1087,

ﬁmﬁnnﬁmnw_u 1987] Peter— Steenkiste. Lisp- on « Reduced-Instructipn-Set Processor:
Characterization and Optimization. PhD thesis, Stanford University, Also appears as
Technical Report CSL-TR-87-324, Stanford University Computer System Laboratery, Palo
Alto, CA, March 1987. T :

[Steenkiste, 1989] Peter Steenkiste. ‘The impact of code density onw Emﬂ.ﬁomow cache:
performance. In Proceedings of Sixteenth Annual International Symposi
Architecture, pages 252259, May 1989. v

[Stoye et al.,, 1984]) Will R. Stoye, T. I. W. Clarke, and Arthur C. ZE.Bw? Some m.nmnnoa
methods for rapid combinator reduttion, Tn [LEE, 1984], pages G@lﬁmn

! ‘ N]

um. o Computer.

158 ,” _ . EIBLIOGRAPHY

[Stroustrup, 19917 Bjarne Stroustrup. The Cre Programming Language, Addison-Wesley,
second edition, December 1991, - : ,

" [Stumm and N.UoF 1960a], M. Stumm and Songnian Zhou. Algorithms wﬂEmEmnn.Em
&ma_uﬁm&, shared memory. IEEE Computing, 23(5), May 1990.

[Stumm and Zhou, 1990b] Michael Stumm and Songrian Zhou. Fault tolerant distributed
shared memory. In Proceedings of IEEE International Conference on Parallel Distributed
Computing. IEEE Press, December 1990.

[Swanson, 1986] M. Swanson. An improved portable copying garbage collector. OPnote
86-03, University of Utah, February 1986.

[Swinehart mm al. ,. 1986] Daniel C. Swinehart, Polle T. Zellweger, Richard T, Beach, and
Robert B. Hagmann. A structural view of the Cedar programming environment. Technical
Report CSL-86-1, Xerox Corporation, 1986.

[Tanenbaum, 1988] Andrew S. Tanenbaum. Compuier ZNEG.%.,.. Prentice-Hall, second
edition, 1988. _ .

[Taylor et nh.., Gm& George S. Taylor, Paul N, Hilfinger, James R. Larus, David A. Patterson,

and Benjamin G. Zom. Evaluation of the SPUR Lisp architecture. In Proceedings of the

Thirteenth Symposium on Computer Architecture, June 1936.

[Terashima and Gota, 1978] Motoaki Terashima and Eiichi Goto. Genetic order and
compactifying garbage collectors. Information, Processing Letters, 7(1):27-32, January
1978.

[Thomas and Tones, 1994] Stephen P. Thomas and Richard E. Jones. Garbage collection for
shared environment closure redncers. Technical Report 31-94, University of Kent and
University of Nottingham, December1994..

[Thomas, 19811 R.E, Thomas. A dataflow computer with improved m@EEow.n performance..
Technical Report MIT/LCS/TR-263, MIT Laboratory for Computer Science, 1981. -

[Thomas, 1993] Stephen P. Thomas. The m"vamﬁamnh af Closure mmmwna.mw.. PhD- thesis, The
Computing Laboratory, University of Kentat Canterbury, October 1993. -

[Thomas, G.@&. Stephen P. Fhomas. Having your cake and eating it: Recursive depth-first

copying garbage collection with-no extra stack. Personal communication, May 1995,

[Thompson and Lins, 1988] Simon J. Thompson and Rafael D. Lins. Cyclic reference
counting: A correction to Brownbridge’s algorithm. Unpublished notes, 1988.

[Thorelli, 1972) Lars-Erik Thorelli. Marking algorithms. BIT 12(4):555-568, 1972.

[Thorelli, 1976] Lars-Erik Thorelli. A fast compactifying garbage collector. BIT, 1:6(4):426—-

441,1976.

PR okt

BIBLIOGRAPHY . - -

i
i
i
i

[Tolmdch, 1994] Andrew Tolmach. ‘Tag-free: garbage collection using m.@m.n# type:

parameters. In [PLDI, 1994}, pages 1-11. Also Lisp Pointers g 3, Tuly—September

1904, : o

mﬂowobwmq&w.ﬂo@nﬁHﬁoooﬂanﬁammom. Eamnwoﬁlﬁ\&ﬁmmﬁ EVHEmm &mong.bna
Informatica, 11(3), 1979. , :)

[Turner, 19791 David A. Tarner. A new Hpﬁaﬂo&mﬂon technique mow applicative languages.

Sofiware Practice and Experience, 9, 1979.

E,Enm.ﬁ 1981] David A. Turner. Recursion equations as a Eomnmnnmm.um language. In John
Darlington, Peter Henderson, and David Turner, editors, Functional Programming and its .

Applications, pages 1-28, Cambridge: University Press, January wmmmu.

[Turper, 1985) David A. Tumer. Miranda — a non-strict functional langnage with
polymorphic types. In [FPCA, 1985], pages 1-16. i :

[Ungar and Jackson, 1988] David M. Ungar and Frank Jackson. , Tenuring - palicies for

generation-based Mﬁoﬂmm.wﬂmo.wmﬁmmos_.. ACM SIGPLAN Notices, 23(1 C..wlﬁ..,.Gmm.

[Ungar and um&ﬁo? 1991] David M. Ungar and. Frank Jackson. O,,;niﬁum GC devils: A -

fiybrid incremental garbage collector. In [OOPSLA-gc, 1991].

‘[Ungar and Jackson, 1692] David M. G..nm.ma and Frank Jackson. An adaptive tenuring policy -

for generation scavengers. ACM Transactions, on Programming .ﬁhzmzn.mmm and Systems,
14¢1):1-27, 1992. , o ! :

| .
[Ungar, 1984] David M. Ungar. Generation scavenging: A non-disruptive high performance..
storage reclamation algorithm. ACM SIGPLAN Notices, 19(5):157-167, April 1984.
Also published as ACM Software Engineering Notes 9, 3 (May 1984) — Proceedings of .

the ACM/SIGSOFT/SIGPLAN Software Enginsering Symposium on Practical Software
Development Environments, 157167, April 1984, _,

: i .
[Ungar, 1986] David M. Ungar. The Désign and Evaluation of a High Performance Smalltalk’

System. ACM distinguished dissertation 1986. MIT Press, 1986. g,

[van de mum,wmnrmﬁ. 1687] Jan van mm.. m:mmmnmmﬁ. »Ewoaﬁgmm for on-the-fly mﬁ_ummw“

-———collection revisited. Information Processing Letters, MAQGHNZIMME. March ‘”Gm.q.

[Veillon, 1976] G. Yeillon.

Informatique, 10(9):7-20, September 1976. i
: 8!

?m%mﬁmﬂramuumnmmn et al., 1992] Nalini 49#&%5@55@5&. QE Agha, ‘and Carolyn: :
Taleott. Scalable distributed garbage collection for systems of active objects. In [TWMM,

1092, pages 134-147. _ , : A

[Vestal; 1987] Stephen C. Vestal. Garbage Callection: An MHNHWR in Distributed, Munim.., :

Tolerant Progranmiming. PhD thesis, University of Washington, Seattls, WA, 1987.
) . . : i p

. . : | .
Transformations ‘de ﬁwcmamEEmm.?nnEmmmm.., RAILRQ. -

T 360 = o BIBLIOGRAPHY
{Wadler, 1976] Philip L. Wadler. Analysis of an algorithm for real-ime garbage collection.
Communications of the ACM, 19(93:491-500, September 1976.

{Wakeling, 1950] David Wakeling. Linearity and Laziness. PhD thesis, University of Yok,
November 1990, ! : .

[Wall and Schwariz, 1991] Larry Wall and Randal L. Schwartz. Programming Perl. O'Reilly
and Associates, Inc., 1991,

[Wallace and Runciman, 1993} Malcolin ﬁ_@zmom” and Colin Runciman. An incremental

garbage collector for embedded real-time systems. In Proceedings of the Chalmers -

Winter Meeting, pages 273-288, Tanum Sirand, Sweden, 1593. Published as Programming

Methodology Group, Chalmers University of Technology, Technical Report 73. -

{Wang, 1989} Thomas Wang. The MM garbage collector for C++. Master’s thesis, California
State Polytechnic University, October 1589,

[Wang, 1994a] Thomas Wang. Better C; An object-oriented C language with automatic
memory manager suitable for interactive applications. ACM SIGPLAN Notices,
20(11):104--111, December 1954.

[Wang, 1094b} Thomas Wang. Eliminate memory fragmentation through heles in the heap.
ACM SIGPLAN Notices, 29(11):112-113, December 1994. _

[Warren, 1983} David H. D, Warren. An abstract Prolog instruction set. Technical Note 309,
SRI International, 1983. :

[Washabaugh, GmB Douglas Markham Washabaugh. WW&.WEH garbage collection of actors
in a distributed system. Master's thesis, Virginia Polytechnic Institute and: State University,
1989, ; .

[Watson and ﬁﬂmnmo,uv,w 1087] Paul Watson an¢ lan Watson. An efficient garbage collection
scheme for mmhmbmw computer architectures. In [PARLE, 1987], pages 432-443.

[Wegbreit, 1972a] B. Weghreit. A generalised compactifying garbage collector. Computer
Journal, 15(3):204-208, August: 1972,)

[Wegbreit, 1972b] ,w,.‘ Wegbreit. A space efficient list structure tracing algorithm. IEEE
Transactions on Computers, Pages 1098--1010, September 1972.

ACM, 6(9):524-544, September 1963.

[Weizenbaum, Gm,ﬁ T, Weizenbaum. Recovery' of reentrant list mnnannmm in SLIP.
Communications of the ACM, 12(7):370-372, Tuly 1969,

[Weng, 1979] K.-S. Weng. An abstract implementation for a generalised dataflow language.
Technical Report MIT/LCS/TR228, MIT Laboratory for Computer Science, 1979,

- [Weniworth, 1980] E. P. Wentworth: Fitfalls of conservative garbage collection. .m..oﬂg_a.é. :

Practice and Experience, 20(7):719-727, 1990. .

%mﬁmucmrg. 1963] J. Weizenbaum. m%\EEmnnn list uﬁonmw.moh‘ Communications of the

BIBLIOGRAPHY | 361

: , , “
[While and Field, 1992] R. Lyndon While and Tony Field. Incremental garbage collection for
the Spinsless Tagless G-machine. In Evan Ireland and Nigel Perty, editars, Proceedings of

the Massey Functional Programming Workshop 1992, Department of Computer Science;: .

Massey University, 1992, :

- [White, 1980] wcn L. White, Address/memory Emhmm.mu,ponﬁ for & gigantic Lisp enviranment,

thOOoamEmH&mE.E?H.Hpﬁ.aéqmwm:nm wmnowm,&qsmhwmehwhOmenmwmznm,.@mmmm
119-127, Redwood Estates, CA, >ﬂmdmwuomo. i : -

[White, 1990] Jon L. White. Three issues in objected-oriented mmﬁvmmw collection. In
[OOPSLA-gc, 1990]. , ;

[Wholey mbmmmEBNE. 1984] Skef Wholey and Scott E. Fahlman. H.,rn design of an

instriction set for Common Lisp, In [LFP, 1984], pages 150-158.

[Wilkes, 1964a] Maurice V. Wilkes. An experiment &E a mmm.nonﬁmﬁm compiler for a
simple list-processing language. Annual Review in Automatic Programming, 4:1-48, 1964.

”ﬁww@m;@mhzzwﬁiomﬁ‘ﬁ&wg. ﬁmmnmgaignumwmﬂwnmm?.g mwanmm&:wn_ &oEm
ACM 19:h National Conference. ACM Press, August 1964, : :

[Williams and Wolezko, 1990] Ifor W. Williams and gm.no 1. Wolczko. , An object-based
memory atchitecture. In Alan Dearle, Gail M. Shaw, and Stapley B: Zdonik, editors,
Implementing Persistent Object Bases: Principles and Practice (Proceedings of theFourth
International Workshop on Persistent Object Systems), pages 114-130, Martha’s Vineyard,
MA, September 1990. Morgan Kaufman. : } .

{Williams ef al., 1987a] Ifor W. Williams, Mario 1. Wolczko, and T. P. Hopkins. Realisation
of a dynamic grouped cbject-oriented virtual memory hierarchy. In Second International
Workshop on Persistent Object Systems, pages 298-308, Appin, Scctland, August 1987.
Persistent Programming Research Report, Universities of Q_mmmoé.”hmua St Andrews,

number PPRR-44-87. : : |

[Williams er al., 1987b] Ifar W. Williams, Marie 1. Wolezko, and Trevor P. Hopkins.
Dynamic grouping in an object-ariented virtual memory hierarchy. HHn I. Bézivin, T~
N Hullot, P-Cointe,” and Henry Lieberman, editors, Proceedings of 1987 European
Conference on Object-Oriented Programming, volume 276 of Lecture QEE. in. Computer
Science, pages 79-88. Springer-Verlag, June 1987. o 4 .

[Williams et al., 1990] Hor Williams, Mario L Wolczko, and Trevor Hopkins. Realization of
a dynamically grouped object-oriented memary hierarchy. Technical report; Univarsity of
Manchester Departmentof ComputerScience, Mangchester, 1990. -

[Wilson and Johnstone, 1993} Panl R. Wilson and Mark S. Johnstone. .H,HE% real-tilne non-
- copying garbagecollection o [OOPSIL:A-gc; 1993). . ¥

(Wilson and Moher, 1989a] Paul R. Wilson and Thomas G. Moher. A ommnlﬁmaﬁnmmmn:nﬂn

forcontrolling intergenerational references in generation-based garbage collection on stock

hardware. ACM SIGFPLAN Notices, 24(5)87-92, 1989, W :

362 : . BIBLIOGRAPHY

[Wilson and Moher, .,G,mmE Panl B. Wilson and Thomas G. Moher. Design of the
opportunistic garbage coliector. ACM SIGPLAN Notices, 24(10):23-35, 1989,

7 [Wilson et al., 199 1] Paul R. Wilson, Michael S. T.am, and Thomas G. Moher. Eifective

static-graph reorganization to improve locality in garbage collected systems. ACH
SIGPLAN Notices, 26(6):177-191,1991.

[Wilson er al., 1992] Paul R. Wilson, Michael 8. Lam, and Thomas G. Moher. Caching
considerations for generational garbage collection. In [LFP, 19927, pages 32-42.

[Wilson ef al., 1995] Paul R. Wilson, Mark S. T ogmﬁosmm Mictiael Neely, and David Boles.
Dynamic storage allacasion: A survey and critical review. In [TWMM, 1905].

. 7 [Wilson, 1989] FEH R. Wilson. A simple U._...n.Wa?_immmn advancement mechanism for

generation-based garbage collection. ACM. ST GPLAN Notices, 24(5):38—46, May 1989.

{Wilson, 1950] Paul uw Wilson. Some issues and m.n.mﬁmmmam in heap management and memaory
hierarchies. In [OOPSLA-ge, 1990]. Also in SIGPLAN Notices 23(1):45-52, January
EE. ., .

[Wilson, 1991] Paul R. Wilson. Heap Management and Memory Hierarchies. PhD thesis,
University of Illinois at Chicago, December 1591.

[Wilson, 1992a] HumE,W. Wilson, Operating system support for small objects. In Luis-

Felipe Cabrera, Vince Russo, and Marc Shapiro, editors, International Workshop on Object
Orientation in Operating Systems, Paris, September 1992. TEEE Press. i -

E,EmoFEmemm.nmw.ﬁmmon.q:m@noommmoa m.mnvmmmoozonmonﬁngﬁcom.Fgmg.
1992]. , :

[Wilson, 1994] Paul R. Wilson, Uniprocessor garbage collection _anwbmn.gm. Technical
report, University of Texas, January 1994. Expanded version of the TWMMO92 paper.

[Wilson, 1995] Paol R. Wilson. Re: Real-time GC (was Re: Widespread C++ competency
gap). USENET comp.lang.c++ January 1995.°

[Wise and Friedman, 1977] David 5. Wise and Daniel P. Friedman, The one-bit reference
count, BIT, 17(3):351-9, 1977.

[Wise et al,, 1994] ,U,min_ S. Wise, Brian Heck, Caleb Hess, Willie Hunt, and Eric Ost..

Uniprocessor performance of a reference-counting hardware heap. Technical Repert TR-
401, Tndiana University, Computer Science Department, May: 1994.

[Wise, 1979] David S. Wise. Morris’ gacbage compaction Emo&,EE restores reference
counts, ACM Transactions on Programming Languages and. Systems, 1:115-120, July
1979, :

- [Wise, 1985] David 5. Wise. Design for a multiprocessing heap with on-board reférence

counting. In [FPCA, 19851, pages 289-304.

BIBLIOGRAPHY | 363

[Wise, 1993] David 8. Wise. Stop and oua-_u..w reference counting, .H.mn_ummomp Report 360,
Indizna University, Computer Science Department, March 1993. , :

[Withington, 199 d P. Tucker Withingtori, How real ig “real time” garbage collection? In
[OOPSLA-ge, 1991]. W

[Wolorko and Williams, 1990] Mario L. Wolezko and Tor Williams. Garbage collection in
high performance system. In [OOPSLA-ge, 1990]. !

[Wolezko and Williams, 1992] Mario . Wolezko and Tfor Williams. Multi-level GC in a
high-performance persistent object system. In Fifth Imternational %owﬁ:% on Pergsistent

Object Systems, Pisa, Ttaly, September 1992. Springer-Verlag.

- - [Wolczko and Williams; 1993] Mario L Wolczko and Ior Williams. | An alternative

architecture for objects: Lessons from the MUSEROOM project. In ﬁonvwmwruﬁmﬁ 1993].

[Yelowitz and Duncan, 19771 L. Yelowitz and A. G. Duncan. >wmqmomoaw_wmum§mmnonm and
proofs of marking algorithms. ACM SIGPLAN Notices, 12(8):13-21, August 1977.

. 1
[Yip, 1991] G. May Yip. Incremental, generational mostly-copying garbage collection
in uncooperative environments. ~Technical Report 91/8, Digital, Westcrn Resgarch
Laboratory, June 1991, Masters Thesis — MIT, Cambridge, MA, 1851,

[Yuasa and mm%wm, 1985] Taiichi Yuasa and Masumi Hagiya. Kyoto Common Lisp report.
Technical report, Teikoku Insatsu Publishing, Kyoto, 1985. ,

[Yuasa, 1990] %&nE Yuasa, Real-time garbage collection on mnsmﬂﬁ.mﬁwgn Em_oEnnm.
Journal of Software and Systems, 11(3):181-198, 1990,

[Zave, Gqﬂ Detek A. Zave. A fast compacting .mﬁgwo collector. 5&%&&% Processing
Letters, 3(6):167-169, July 1975. ; :

[Zhou et al., 1992] Scngnian Zhou, Michael Stumm, Eai Li, and | David Wortman.
Heterogeneous distributed shared memory. IEEE Transactions on Paraile and Ua&?:&
Systems, 3(5):540-5354, September 1992. ,

N
[Zorn and Grunwald, 1992} Benjamin Zorn and Dirk Grunwald. my..ﬁﬁmuw Bo"n_m_m of
memory allocation. Computer Science HonwEnE Report CU-CS-603-92, G:?m.nmma\ of
"Colorado, Tuly 1992, C

[Zorn, 1989] Benjamin G. Zorn. Oasheuau?m Performance mf‘&zwn.oa of inunmm
Collection Algorithms. PhD thesis, Tniversity of California at wﬁm&@u March 1989,
Technical Report UCB/CSD 89/544. ; :

[Zorn, 1990a] Benjamin Zern. Barrier methods for' garbage SE&S.MW Technical Report
CU-C8:494-90, University of Colorade, Boulder, November 1990, = :

T
1

[Zorm, 1990b] Benjamin Zorn, Comparing mark-and-sweep and mﬁon-mnn.noa‘.mﬁcmmm

coliection, In Conference Record of the 1990 ACM Symposium on hm&u and Functional

Prograrmming, Nice, France, June 1990: ACM Fress. i i

i
o
]
R

364 BIBLIOGRAPHY

[Zorn, G.mz Benjamin Zorn, The effect of garbage collection on cache woﬂon.ﬂmnnm.
Technical Wn@oﬂ CU-CS8-528-51, University of Colerado at Boulder, May 1991.

[Zorn, 1992] Benjamin Zom. The measured cost of garhage collection. Technical Report -

CU-CS-573-92, University of Colorado at Boulder, Department of Computer Scisnce,
Boulder, O&aﬁmno April 1992.

[Zorm, 1993] waEmEE Zorn, The Emmm:nma cost om conservative garbage collection, Saftware

Praciice and Experience, 23:7133-756, 1593,

Index

Absiraction; i1 - - - - - -
Activation record, 3
Allocation
Baker's Treadmill, 220
Bochm-Demers—Weiser collector; 231
cache behaviour, 286, 293297
collection rate, 184, 2035
copying; 31, 117, 124, 137
dynamic;, 1
explicit, 5-7, 15, 16
heap, 34
history, 24
locality; 286
mark-compact, 112
modelling, 105
Mostly Copying, 242
rate, 94, 145
spaca overhead, 239
stack, 3 - -
statie, 3,10
sweep, lazy,-89 -
time overhead, 23977
traversal order, 95
two-level, 98 - -
variable-sized ow._moﬁm :q
Ambiguous roots collection, see
Conservative collection
Appel-Ellis-Li collector, 2002 13
concwrant collection, 202
crossing map, 212 - oo~
generationdl collection, 212
Tohnson's algorithm, 212)
_ largechjects, 212

“latency, 211,212
New; 210
real-time, 213
scanPage, 210
Sharma-Soffa collectdr, 212-213
time: overhead, 213 |

>=uumﬁa= see Umn&nﬁa HEW&Emoﬁ

Baker copying, 203209 U
- Brooks’s variant, 206
collection rate, 205
conssrvatism, 203, 207
Courts’s collector, 208-209
Dawson’s variant, 207, 208
MultiLisp, 207 i
New, 203
North-Reppy nc:mnﬁon 206
read-barrier; 203, 204
real-time, 205 |
regrouping, 208 ‘,
space overhead, 206 :
tirne overhead, momlmom
While—Field no:mnﬁoH,. 207
" write-barrier, 206
w&na_. s Treadmill, 218-220
allocation, 220
read-barrier, 220
real-time, 218 #
space overhead, 219"
termination, 219 |
time overhead, 218 | ’
variable-sized oEwaﬁ 220
Wilson—Tohnstone variant, 220
write-barrier, 220)

. 366

. Barrett and Zorn, seel 'Generational no:nnncn
. Bartlett, see Mostly Copying
* ‘Bevan, see Distributed reference counting
Bibliography, xxv
Birrell, see Distributed reference counting
Black cell, see Tricolour absiraction .
Bobrow, see Reference counting
Boehm—Chase proposals, 248-249
Bochm-Demers—Shenker; see Incremental
collection .
Bochm-—Demeis—Weiser coliector, 79,
230-241,249
allocation, 231
allocation rate, Mhm
atomic data, 237 .
avoiding overflow, 79
black-listing, 238
C++ collection, 258, 273
caclie beliaviott, 90,2397 © 770 7
comparison with explicit deallocation,

compiler onﬁﬁﬁmmnoumv mum mm H
disguised pointers, 258
dynamic libraries; 232
Ellis-Detlefs proposal, 258, 270
finalisation, 258, 272
GC_free, 230 ' |
Ge_mallac, 230
eC_malloc_atomic, 237
generational colléction, 240
incremental collection, 240-241
interior pointers, 233-235, 249
language changes, 270
large objects, 79,231
lazy sweep, 231 |

= leak detector, 230~ T 777
malloc, 231, 238
misidentification, 234238
operating system suppori, 240-241
pointer finding; 232235
roat finding, 232
segregated free-lists, 231
space leak, 235-238
space overhead, 239
stack frame pellution, 238

. 238240 . . - .

INDEX

stack overflow, 81,231
. sweep, lazy, 90-91
" time-overhead, 239
write-barrier, 241
Brooks, see Baker copying
Brownbridge, see Reference counting

C++ collection, 253275
accessors, 264
Boehm-Chase mﬁowg&m. 248-249
Boehm-Demers—Weiser collector; 258,
273
coexistence, 256
censtructors, 253
copying, 267
deferred reference counting, 266, 267
destruciors, 253
Detlefs’s flexible collector, 266267
Edelson’s coliector, 267-269
efficiency, 257
Ellis—Detlefs proposal, 248-249,
236-257,270,274
finalisaticn, 253, 255, 271-272
language changes, 256, 261, 269270
mark-sweep, 267269
Mostly Copying, 258-261,273
need for garbage collection, 254
operating system support, 268
pointer reachability, 256
portability, 256

- programming style, 256, 267

reference counting, 265
safety, 256
separately managed heaps, 236, 270
smart pointers, 261-269, 273
space leaks, 264
this pointers, 267
time overhead, 265
weak pointers, 265

Cache
block, 280
block size, 282
copy-back, 282, 283
direct-mapped, 282,297
effect on vnnmonumunm. 278-279

¥

INDEX

fetch-on-write, 283
hit, 277

Hoe, 280

mapping, 280
miss, 277
miss penalty, 277
miss rate, 278
pollution point, 282
primary, 278

read misses, 283
read-barrer; 297

_secondary, 278

set-assaciative, 282

size, 279

software control, 284
special dE.mOmm._ 296-297
split, 279-- :
sub- wEnWﬁHmomEmmn mmm 297
tag, 280

unified, 279

valid bit, 280
write-allocate, 283, 205
write-around, 283
write-back, 282
Wwrite-barrier, 297
write-buffer, 283, 297

- write-miss penalty, 257

write-no-allocate, 283
write-through, 282, 283
write-validate, 284 -

Cache behaviour, 15, 277298

allocation, 286, 293, 205297
allocation thresheld; 288—-——-—-— - -
associativity, 291293 ‘
avoiding fetches, 287

" block size, 281~

Boehm-Demers—Weiser collector, 50

cache size, 287-291, 297

capying, 93, 285-286, 280, 291, 292,
295, 297

creation region, 288, 291, 203,297

cffect on @anmoﬁnmboa. 294-286

functional programming, 295, 257

.OmEEqnﬁlﬁrmbmHnmmHgnm counting, -

56, 296

367

generational collection, 297

incremental oo:mnmcn. 286,297

lifetime, 296 - =TT

linear allocation, 288 ;

locality, 279,287 |

mark-sweep, 53, 175, mwm_ mmwm. 289,
291, 297 ;

Em&ﬁum. 88,285 !

MUSHROQM architecturs, 287

prefetching, 294 i

read misses, 290

reference nocunum. mwu 36

software control, m.wm !

sweep, lazy, 90, 285 |

write misses, 260

ear, 40 i

edr, 40

cdr-coding, 99 :

Cell, 4, 16 ”
atom, 17 ;

- field, 16, 17 i

Cheney, see Copying :

Children, 17 .

Christopher, see Wammnnuom counting

Closure, see Suspension, 133

Closure, transitive Smn_..onn.&_ 4

Clusters, 88, 100, 131, Hﬁm

fragmentation, 98 |
Collector; 2 i :
Collins, see Reference oomnmua
Compactifying, see MarkiCompact
Compaction, see Mark- OQEHEQ
Mostly Copying, 243
Compiler cooperation, lack of, 62, mq
Complexity | :
copying, 93, 117, 118, melHuo.
formulae, 13, 15 ,
mark-compact, 100,7102, 107
mark-sweep, 28, 83 4
OQE@Ho:num:.n:ommu 14
Coneurrent collection, 183-226
Appel-] mEmlhwnozonSH. 202, 209-213
conservatism, 186, Goluom

donsistency, 185-1 m.m

368

Dijkstra’s algorithm, 192-194, 197,
202,216,217

floating garbage, 186, 2

Furusou-Matsuoka—Yonezawa
algorithm, 199200

initialisation, 196-197

Kung—-Song algorithm, 154196, 198,
216 o

 Lamport's Emong 198

latency, 196

locks, 222

Mark During mimam. 197-198

mark-sweep, 188200

Modula2+collector, 200-202

Mostly Copying, 202

new cells, 194-195

page faults, 202

pause fime, 222

Queinnec-Beaudoing-Queille
algorithm, 197

read-barrier; 187 -~ = - T

real-time, 223

reference oopsnnm_ 200202

replication oomﬁum. 215

Steele’s algorithm, 193-194, 196-197,
223

termination, 197:

terminelogy, 2

time overhead, 202, 218, 222

Update, 192-194, 201

Woodger’s scenario, 192-193, 224

write-bartier, 187-193

Conservative collection, 67,227-251

Bartlett's collector; 230, 241-247
Boehm~—Chase proposals, 248249
Boehm-— UmbGlﬁsm_mE. collector,
230-241: :
code-generator safety, 248249
compiler optimisations, 247248
Ellis-Detlefs proposal, 248245
misidentification, 235-238
Mostly Copyisg, 165, 230, 241-247
pointer finding, 232-235
programming style, 240, 250 -
reference counting, 62

INDEX

; root finding, 231
‘'space leak, 233

space averhead, 250 -
stack frame pollution, 238
time overhead, 250

- unsafe programming practices, 247
Continuation, 134 .
Copying, 28-32, 117141

-1ar =
advantages, 31
allocation, 31, 117, 124, 137

approximately depth-first, 135-%36, 170

C++ collection, 267

cache behaviour, 93, 285-286, 289,
291, 292, 205, 297

cheaper than stack allocation, 128, 140

Cherney’s coliector, 118~123, 134, 187

compared with mark-sweep, 33-36

complexity. 33-36,93, 117, 118,
128-130

copy, 29, 121, 135

depthfirst; 133134~ -~ - -~

disadvaniages, 32

example, 30-31

Fenichel-Yochelson algorithm, 2630,
99,117, 131, 133

flip, 28, 120

Flip, 29,120, 135

forwarding address, 29

forwarding_address, 30

fragmentafion, 31

Fromspace, 28

generational collection, 297

hardware, 135

hash tables, 136-137

hierarchical decomposition, 136

incrementally compacting, 127--128

Lang-Dupont algorithm, 127128

large object area, 126, 138

locality, 93, 118, 128130, 137,

' 285286

Moaon's algorithm, 135

New, 29

operating system support, 125,
130-131, 138

page Faults, 32, 93, 129, 130, 136, 137

INDEX

pause ime, 36
read-barrier, 169
reference counting, 53
regrouping, dynamic, 132, 208-209
regrouping, static, 131-137
repeated, 113
residency, 35, 39
Scan_all, 135
Scan_partial, 135
semi-space, 28 .
sharing, 29
space- overhead, 32, 38, 93, 118, qu

. static area, 126, 144
Thomas—Jones algorithm, 133-134
timne overhead, 88, 93
Tospace, 28
traversal order, 131, 138
unnecessary, 9, 104
virtual memory, 32 *
Wilson—Lam—Moher algorithm, 136
Zorn's allocator, 124

Corporaal, see Distributed reference

counting

Courts, seé wmwﬁ. nomﬁum,

Dawson, see menH oomea
Deallocation
explicit, 9, 11
Debugging tools, 10, 254
CenterLine, 10 .
Purify, 10 .
Deferred reference counting, 45-50, 70, 16

C++-collection, 266267 — -

delete, 46
Dentsch-Bobrow : algorithm, 46-50, qm

" example, 4648
immeédiacy, 50

local variables, 46
pagefaults, 45 ~
~ pointer writes, 46

space overhead, 70
time-overhead, 49, 70"

Update, 46
ZCT, 46, 48, 70,72,

Detlefs

i

see ‘Mostly Copying, O++no:nnpob

i :
| _ 369
Deutsch and Bobrow, see Uammﬂam Hﬂ”maapnn
counting i
Deutsch, Schorr and €E84 nmm..MD.EﬁH S
~ reversal A
Dickman, see Distributed Hnwnamnnn counting
Dijkstra, see-Concurrent oo=nn_ucu ’
Direct iethods, see Liveness -
Distributed coilection, 299319
actors, 317-318
Copying, see Distributed copying
cycles, 305-306, 314,315,317
fault-tolerance, 315 |
carbage collecting Em world, 315
groups, 315
Halstead’s Emoﬁ_u.:ﬂv 317
Enmmmqmm, duplicaticen, 315
messages, in-transit, 309, 315
Bnmmmmom. lost, 309, 315
migration, 314 !
reference counting, mHm
reference lists, 5
requirements, 304 AW
robustness, 306-307
mrm@n?ﬂﬁﬁdmmm oocnoﬁoﬁ. 3 E
SPG protocol, mKluHu
stop-the-world, 306 |
Distributed copying, 312-313
Distributed mark-sweep, 307-312
Augusteijn’s algorithm, 310
cycles, 309,310 :
BEmerald collector, 311-312
Hudalk—Keller &mo&__.._mu. 307-308
Hughes's algorithm, 309
IK collector, 312 n
Kafora's et al. algorithm, 317 .
- Tiskoy-Ladin algorithm, 309-310
mark tree, 308 " .
Mohamed-Ali’s Emong mom
Nelson's algorithm, 317 :
Puant’s algorithm, me
munr,pmlwwaaonm_ 3 Holm 11
Venkatasubramaniat &¢ al. aqonEE,
318 i
Vestal’s algorithm, mHo .
Washabangh’s algorithm, 318

370

Distributed chjects .
active, 304
actor, 305
passive, 304

Distributed Hmm&dnna ocggn 313317
Corporaal’s algotithm, 319
cycles, 316,317
Dickman’s algorithm, 319
generaticnal, 304, 316-317
Goldberg’s algorithm, 316
inditect, 313-314
Lermen—Maurer protocot, 313
" Mancini—~Shrivastaya algorithm, 314
message order,313, 316
Network Objects, 315-316
weighted, 73, 304, 314, 316
Distributed shared memory, 302
shared data-object model, 302-303

shared virtdal model, 302
Dotligez, Leroy and Gonthier, see Woﬁ:nm:op

Edelson, see C++ collection
Bdwards, see Mark:Compact
Ellis—Detlefs proposal, 248-24%
meraldaEnHmWJx\nmmmm collector, 258,
270
C++ collection, 256257, 270, 274
interior pointers, 270
Mostly Copying; 270
pause time, 270
safe subset, 270
separately managed heaps, 270
threads, 270
unsure references, 270
Emerald, see Distributed mark-sweep
Environment, 4, 133 i
Ephemeral collection, see Generational
collection
Errata, xxvi ,

Fenichel-Yochelson, see Copying
Finalisation, 37, 271272
Boehm-Demers~Weiser collectar, 238,
272 : ’

v -COPYING = oy e e -—

INDEX

C++ collection, 233, 255
cycles, 271,272
misidentification, 271
Moduia-3, 272
Mostly Copying, 261, 272
order, 271
reference couniing, 23, 70
mEm_, see Copying
Forwarding address, see OoEEq
Fragmentation, 14, 28, 97-98
allocation, two-level, 98
clusters, 98
copying, 31
mark-sweep, 28
Free-list, 19
allocation, two-tevel, 98
segregated, 57
Friedman and Wise, see Reference counting
“Furusow, Matsuoka and Yonezawa, see
Concurrent collection

Oﬂvmao 5
Garbage collecting the io&n see UEE@E&
collection
-Garbage caollection
comparing algorithms, 13-16
. cost, 12-13
Garbage, floating, 186
waﬁnmma and Chang, see Reference:
counting .
Generation scavenging, see Generational
collection
Qonﬂmﬁou& collection, 126, 143—181 -
age recording, 160-163
aging space, 159
Boehm-Tiemers—Shenker collector, 171
mon:EIUnEonlﬂﬂmmﬂnocnnﬁom 240
pucket, 160-163
cache behaviour; 287
card marking, 171-174
card scanning, 173 ..
Chambers’ write-barrier; 172
comprehensiveness, 15
“copy count, 153
copying, 148, 257

I L xS

T NHWIQHM! T T T T

INDEX

Courts, 208209
-creation region, 159
crossing map, 173 -
entry tables, 166-167
generation, 15, 144
Holzle write-barrier, 172-173
hardware, 169-170
Hosking—TTudson algorithm, M.E.
Hudson-Diwan S8B, 168169
Hudson—Moss algorithm, 177178
hybrid collectors, 175
hypothesis, strong, 146
hypothesis, weak, 144
inter-generational pointers, 147,
150-151, 153, 165174
key objects, 176-177
large abject area, 164 _
Lieberman—Hewitt collector, Hmmr;q
locel variables, 150~ 7 .7
locality, 159, 161, 179, 180
major collection, 145, 150, 151, 154
mark-sweep, 148, 174-175,297
mature object space, 177-178
minor collection, 145, 151, 154
Mostly Copying, 244245
multiple generations, 152-153
nepotism, {52 .
operating systera support, 168, Solw\:
page-faults, 130)
page-marking, 169171 .
pause time, 147-149, 152, 179, Hmm
213,222

... Prolog, 1657, _ -
promotion, 146, 147, Hmw 159, 162
remembered set, qu qul_.mw H.K.

replication copying; 215

residency, 179

roots, 149 S

scanning older generations, 163
sequential store buffer, 168162, 174 -
Sharma-Soffa collector; 2127
Shaw's collector, 160-161, 170-171

SME./NT collector, 154—153, 167,

" 'Heap

; 7T

Sebalvarro’s algorithm, 171172
space overhead, 161, 172"
survival rate, 153 :
tenured garbage, 147,152, Hm_.
tepuring, adaptive, GmLme. 161
tenuring, Bagmett—Zorm, 157-159
tenuring, feedback-mediated, 156-157
tenuring, Ungar-Yackson, 156-157
threatening boundary; 157
time overhead, 161, 162, 167, 171, 173,

179 "
Train algorithm, 177178

" “Ungar’s collector, 159, 167
Wilson-Mokher collector, 161-163, 172
word marking, 171
write-barrier, G?Gw. 165- Hmm
170-173 i
Zorn’s collector, 174175
Glaser:and Thompsor, mmm Reference
" counting "

.. .Goldberg, see Distributed reference counting

Graph reduction, 47n.; 5 8l
Grey cell, see Tricolour mwmnmom.o:

Haddon and Waite, see g,mhﬁ.ﬂoamm,nn
Tialstead, see Baker copying, Distributed
collection W '

Hardware ,

copying, 135

generational nc:wnnoP 169-170

Nilsen—Schmidt no:moﬁo_.. 221 :

. pointer reversal, 35, 87

real-time, 220-221 !

reference counting, 55-56, Nwm

inﬁm-gaﬂ. qu

occupancy, see Wmmanunu‘
Heap, 17 |
Heap. botiom, 17
Heap. top, 17 !
‘High water” frames, S.w
Hosking and Hudson, see Generational
collection
Hudak and Keller, see Distributed
- mark-sweep i

- S
]
|
!

|
8!

INDEX - B T I e

L3712 - INDEX |
" Hudson, see m..Embmmnom write-barrier; 187-193 reference connting, 22. Co114 .
Hudson and Diwan, see Generational ! Yuasa's algorithm, 185-190, 193, 194, - fracing, 143 complexity, 100, 102, 107
) cellection " ” 194, 198, 199 - Liskov and Ladin, see Distributed : compute_addresses, 103..
Hudson and Moss, see Generational Incremental incrementally ooE@mngn mark-sweep . : Bdwards's compactor, 100
~ collection. ¢ ¢ - : collection, 127-128- Lisp 2, see Mark-Compact - : fixed-size cells, 100 |
Huelsbergen and Larus, sze Replication Indirect methods, se¢ Liveness live, 4 . S forwarding address &wo&&ﬂ. 100 |
: copying : Information table, 134, 206 Liveness - - Haddon—~Waite compactor, 100,
. Hughes, see Reference counting, Swesp, Interior pointers direct methods, 5, 305 - . 105107 ; 7
' lazy, Unm_ﬁgﬁn mark-sweep Boehm-Demers—Weiser collector, 233, indirect methods, 5, 305 : interior pointers, Homuw 109, 114 t
Hybrid collectors, Nur 75,113, 127-128, 138 : 249 Locality, 15, 143, 284287, 291, 207 Jonkers’s algorithm, 100, 109111 “
generational collection, 175 compiler optimisations, 247 allocation, 286 - linearising, 9 D
ZHOmE, Copying, 241 ¢ mark-compact, 109 cache behaviour, 279, 287 . Lisp 2 compactor, 100, 1053-105:
-~ reference no:n:ua 62 : © ~; Mostly Copying, 261 - copying, 93, 118, 126130, 137, T 7.7 locality, 99,100, Hom. 113° :
! _ o 285-286 : Morris's algorithm, 104, 109, 115
Tncremental 8;85,9” 183-226 Tohnson, see Appel-Ellis—Li caliector senerational collection, 159, 161, 179, page faults, 113, 116
advantages of non-moving, 218 Tones and H.Emu..wmm Distributed reforence - 180 . passes, 99, 100, Homlu.o 4,100, H:
Appel Ellis—Li coliector; 205213 countng incremental collection, 286 112, 114 |
Baker copying, 203 Jonkers, see gﬁw..ﬂo_.unmmom. lazy-sweep, 285) . poiuter direction, 114
Taker's Tradoill, 218220 . ubend Jjuul, see Distributed mark:sweep mark-compat, 99, 100, 102, 113 Prolog, 99 .m
Boehm-Demers—Shenker collector Wmmcwmq Washabaugh and Nelso 1, see . mark-sweep, 28, 03, 130, 285 . reference counting, mu
e C171,198-200 « - - - e - —wreem - Distributed marks mﬂnm@ marking, 285 : . Hm“_.onw.nm. 101, Ho&w ,
wOmEHTUmEﬂmlﬁmamH noﬁonﬁon Knith, see Marking ordering, 99 .) Hoo.anHE.m. 99100 . |
240-241 Kordale and Ahamad, see UEHUE& page faults, 287 : residency, 113 : ' ; '
eache -behaviour, 286, 297 colléction) Hmmn-vuﬂnn. mmm. ’ sliding, 99, 100, 103; 105 C
collection rate, 184 Kung and Song, see Concurrent collection - referénce counting, 22, 71 . space averhead, Eow 102--105, Hom
comprehensiveness, 15 Kurokawa, see Marking sweep, lazy, Mmm o 1L, 114 |
conservatism, 186, 190195 tracing, 284 . . styles of compaction, 99100
consistency, 185186 Lamport, se¢ Concurrent collection write-barrier, 287 . . table-based, 108G, 105-107, 112,
floating garbage, 186, 223 Lang and Dupont, see Copying o ; _ hreaded, 100, 108112, 115 o
initialisation, 196197 Large object area, 98, 126 - malloc, 4 : i i time overhead, 99, 102, 104, 111, 112, : _
latency, 14, 196 . cepying, 138 : T Mancini and Shrivastava, see Distributed 114 | i
locality, 286 - . generational collection, 164 L : iefarence counting Two- Finger &moﬂnﬁn 98, Eoluow Co T
mark, 190, 198 . _ operating system support, 126 .- . ~ ‘Mark During Sweep, see Concurrent : 105
mark-sweep, 188200 pause time, 164 : collection update] ﬁwn#smnmvvo»unmhm. 1089,
Mostly Parallel no=monoP SH Large objecis T . .gﬁw Gonemnn mqtﬁm wmw S 110
..| 198200 - ~-= ' Apps-Ellis-Licollector, 212" 7 7 B R allocation, 112 : - . 7 update . manmHmfﬂowdﬁmHm 109, - T T
; New, 198 Bochm-Demers—Weiser-collector, 231 . arbitrary order; 99, 100; 102, 105 110 : _
new cells, 194-195 Lermen and Maurer, see Distributed o Bartlett's compactor, 103 . s@mmwm%opnﬁmﬂm 101,104 . m
operating system support, 198200 reference counting: break-izhle, 105-107 variable-sized cells, 103, 114
pause time, 222 ” Lester, see Distributed reference counting combine, 104 .+ Mark-Sweep, 2528, qmlwm
read-barrier, 187 Lieherman and Hewitt, see Generational Compact_2Finger, 101 advantages, 27
real-time, 196,205, 223 " collection ‘ : compact_Jonkers, 109 allocate,26 |
replication copying, 213-216 Lifetime, 94, 143-146 Cempact, T.TSP2, 103 bitmap, 231 ”
termination, 197- - -~ . cache behaviour, 296 Compact_Table, 103 ; Boehm-Demers—Weiser collector, 231 ”
Update, 189, 194, 198 . objectsize, 146 ’ T T T acamuw%mom E.mmm%mmuoa 112, Ci+ collection, mm@tm% :

1
374 = : " INDEX i INDEX - i 375
cache behaviour, 93, 175, 285, 288, , ‘page faults, 87-88 . g large object area, 126 . concurrent collection, wmm
289,291, 297 pointer reversal, 82-87 - o static area, Hmm g : copying, 36 |
compared with copying, 33-36 sharing, 79 i Mutator, 2.~ v - S generational Szmngu_ 147149, 152,
compared with reference counting, stack depth, 77,72 e . 179, 183, 2 Hmuwwl . :
75-76 o -stack overflow, 77, 80 Nelson, see Distributed mark-sweep: . : incremental coliection] 222
complexity, 28, 33-36,93 . . _ time overhead, 88,92 ~ _ Netiles and O"Toole, see Replication copying - interactive programs, 14
concurrent coilection, 188200 traversal order, 79 i Network objects, see Distributed reference large object area, 164
cycles, 27 i McCarthy, see Mark-Sweep :) nocuau.m . mark-sweep, 27, 36 |
disadvantages, 27-28 ModulaZ+, see Concurrent collection P Nilsen and Schmidt, see Hardware. : read-barrier; 188
fragmentation, 28 Mohamed-Ali, sze Distributed mark-sweep o Node, see Cell : : reference counting, 21, 36, 70)
generational collection, 174-175,297 Moon, see Copying o North and Reppy, see Baker SEEJ 7 roots 179 | .
incremental collection, 188200 Morris, see Mark-Compact Zonwnow. Hm Hm T " Pepels, see Reference counting
"7 incrementally compacting, 127-128 “Mostly Copying, 230, 241247, 249 Obi O E T omTTTT T pPerformance, 151-152 i
Lang—Dupont algorithm, 127-128 allocation, 242 _.mor g8~ . - Piquer, see Distributed reference counting
Hwn.%umﬁnnm 28 mum 7 H_ BiROP, 2 u.nm Ohject-oriented programming, 10 CPointer ! Do
, 8693, : s 2 . ; . in B et
locality, 28, 93, 130, 285 i+ collection, 258-261,273 ‘ On-the-fiy collection, see Concurrent * ™ finging, 37, 208 o i
mark, 26 , - collection, 242243 _ coltection L il..w: . interior, 100n. ;
mark-bit, 26 ¢ compaction, 243 . Omnawﬁﬂwww HW@MW 0 Q T strong, 58 !
MECarthy's algorithm, 2627~ © ° .:._..ooEumnH.cmnhmmmnoE“ 261 o 4 olaMuH —WeIseL COLSCIOn, . yreak, 8 . L N ,
s p 2102) . 9. -]
_ Mocnmw\ of objects, 03 MMMMHMMM collection, 202. Ca-+ collection, 268 : m.EEMHHHMﬁMMMmMmm 87
e e NEW 26 e i e e e e) S — . , , L. . hi
page faults, 28,93, 174 Detlefs's variant, 259-261 Mmmwwmwmmw. %?Gr 188 . " DagtschSchom-Waite, 82-87, mm
pause time, 27, 36 - Ellis-Detlefs proposal, 270 o¢ 02 lrap, . “example, 83
Prolog, 95 o o " fnalisation, 261, 272 . .- generational collection, 168, 170-171 finite state machinc, 82 -
" residency, 28,35,39,76 e 22 incremental colleetion, 198-200, hdrdware, 55, 87 .
! I CNCY, ’ >] . 3 ad - H s N
‘ smart pointers, 267-269 . generational collection, 244-245 ‘ ﬁwﬁ%ﬁ;ﬂw NM © . hidden stack; 86
space averhead, 38, 76, 93 - heap layout, 241242 - rea n.WmHno—wwH mum. 209 : mark, 8% .
standard algorithm, 26-27 interior pointers, 261 N al-tim mm 0 ! " Prolog, 85 B
sweep, 27 . language changes, 270 roa m.r od 171,213 : proof of correctness, mm
SWeep, eager; HS operating system support, 244 : tme OVerheac, - space overhead, mmlmm .
time owmnvnm.m 28,93 _ uwmn&m:wﬁ.‘mam s unreliability, Em. o : Thorelli’s algorithm, '84-85 :
Marking Y " pointer finding, 258261 o write-barrier, 165, 198-200 . time overhead, 86-87 :
auxiliary stack, 77-81 promote, 243 . . : Page Fanlts, 15 . variable-sized uommm.gm# : R
avoiding overflow, 75 : HwEnﬂ_unHom set, 244 Lo concurrent collection, 202 Wegbreit’s stack, 86)
. vmﬁmm—w mwlmm ,mm Jas " space MmHnMMM. 242 - copying, 32, 93, 129, 130, 136, 137 Pointer, smart, umw Oﬁéa:mnﬁob g . o ,
— 7 gache behaviour, 83, o - ospageleak, 261 T T T T T T T TEEI T mmwmﬂmmﬁmmownunmnoﬁﬁuq 45 ~ Programming style, . s ‘ T B :
Deutsch—Schorr—Waite algorithm, ~ space overhead, 246 . generational collection, 130 Prolog o | . , “
rmbamwﬂmM< _.noi 80-81 MMMMMMM“_MMHWMMMSW loealiy, 287 6 WMMMMNMMMM%%%MM_”SH 1o
g ove g : g mark-compact, 113, 11 : - : B
Knuth’s circular stack, 80-81 * unsure references, 245-246, 259 Emaw.min%m_. 28,93, 174 : mark-sweep, 95
Kurckawa’s technique, 81 write-barrer, 244 marking, 87-88 . pointer reversal, 85
Enmm.o_&anﬁ. .G, o gmmE.\. Parallel o.cznnmob. see Incremental _. Mostly Copying, 246 S wmnﬁan,v..noma 7 - . :
locality, 285 , . collecion. - g reference counting, 45, 52 assignment, 18 - ‘
. mark, 77 - : MultiLisp, see Bakercopying - - - . - : Lo traversal order, 136,218 : New, 18

a@mnmﬁquwmﬁmgmcmmonn 80 Multiple area collestion, 126128 ~ ™~ ° 7T Papse time .i T C nil, 18

i
i
|

. 376

scope, 18
update, 18
Puaut, see Umﬂgﬁa EE.W miwou

Queinnec, mamcmcmum and Queille, see
Concurrent collection

Reachability, see Liveness
Read-barrier; 222 ”
Baker copying, 203, 204
Baker’s Treadmill, 220
__. black-only, 203,208, -
cache, 297 :
concurrent collection, 187
conservadsm, 203
copying, 169
ijncremental collection, qu
locality, 287 | L.)
cm_mHmnum m%mﬁoﬂ mnwmon Hmw. 209
page-wise, 209
‘“pausé time, 188 777
real-time, 220
time overhead, 188
Real-time, 11, 184, 250
" Appel-Ellis-Li collector, 213
Baker copying; 205)
Baker's Treadmill, 218
concurrent collection, 223
hardware, 220-221
incremental collection, 196, 205, 223
operating systém support, 220
read-barrier; 220
Recursion, 76, 77, 9%
space overhead, 77
time c<ﬂrnm& 77

 Reference ,
dangling, 6, 7
Reference counting, 15, 19-25, 43-74,183
advantages, 21-23, 45
allocate, 20
at compile-time; 45, 72
Bobrow’s algorithm, 57
Brownbridge’s algorithm, mmlmw
C++ éollecton, 265
cache behaviour, 52

INDEX.

* Christopher’s algorithm, 62, Sxmm
' collect_whits, 65

: Collins' algorithm, 20

- econcurrent colfection, 200-202

conservative collection, 62

control set, 63, 64, 6667

copy avoidance, 52

copying, 53

correctness, 69

coupling with mutator, 186, 24, 69
cycles, 24-25, 37, 56-68, 71,75

deferred, 45-50, 70

dalete, 20, 44, 59, 64

delete, recursive, 22

disadvantages, 24-25,45

distributed collection, 312

example, 21, 65-66

failures, 60

finalisation, 23,707

“Friedman—Wise algorithm, 54-57

functional Iangnages, 56-57.
Gehringes—Chang cache, 5 6
Glaser—Thompson algorithm, 72
group counting, 57-58 -
hardware, 55-56, 206

Hughes' algorithm, 57

hybrid collectors, 62
immediacy, 50, 70

in-place update, 52

lazy, 4445

lifetime, 22. -
limited-field, 50-53

Lins's algorithm, 62-67
locatity, 22, 71

‘mark, 51

mark-compact, 53 T T
mark_grey, 64

New, 20, 44,58, 63

non-recursive freeing, 4445

one-bit, 531-55, 71

optimisation, 69

ought-to-be-two cache, 34-55

page faults, 45, 52

partial mark-sweep, 62-68 . - -~
pause time, 21,36,70° R

INDEX

Pepels! et al.correction, 61
reference count, 5, 19:
residency; 15,39, 70
restoring reference counts, 51
restoring uniqueness, 52=-53
Salkild’s correction, m 8, 60, 61
scan, 64
scan_black, 64
sharing, 22, 52
smart _.uombﬁa,h 69 °
spaceleak, 24, 69 .. ~
. space overhead, 24, 38, 70,71,76
standard &moﬂmﬁn 20
sticky counts, 50
sticky pointer, 52 :
Stoye-Clarke-Norman algorithm, 52 .
strength-bit; 60- -~ - . -
mﬁu.nu.m.m 60 -
time o<w9wmu. 24,38, 69, 1:. wmm
tracing, 217 ..
update, 20, 52,57, 38, 63
weak pointers, 58—62, 2635
Weizenbaum, 44-45, 50, 70
Wise’s hardware, 55
Replication capying, 213-218
congcurrent collection, 215
Doligez—Leroy—Gonthier collector,
216-218.
functional languages, 215
generational collection, 215 , |
H.Hnmumwmnmmnlﬁmem collector, 215216
immutable objects, 215216
mutationlog, 214 -
Nettles—0’ Toole collector, 2 EIMG
iﬂﬂm&ﬁdoﬂ ME.
" Requirements
language, 8
problem, 8-9
Residency
copying, 35, 39
generational nozoocou :o
mark-compact, 183
mark-sweep, 28, 35, 39, 76.
reference counting, 15, 39, 70
ﬁmnEq 15, 33,39, ‘_._.o\ll 0

" Sharing, 7

= Sharma dnd Soffa, see .Pﬁm.&lm_mmlﬁ.m

377

Roots, 4 !
finding, 37, 62, 228
generational collection, 149

payse time, 179 W
Rudelics, see Distributed collection ‘ ,

Safety, 3

Salkild, see Reference noaucbm
Scavenger, see Copying |

Scheduling garbage ncnmoﬁon_ 175-177
Shapiro and Plainfossé, ._..mm Distributed

collection

reference counting, MM, 52

- " collector | _
Shaw, see Generatianal collection R o
Shelvis. and Bledoeg, see UGE@&&
— mark-sweep ,
SML/NT collector, see Generational . m
- collection A i
Saobalvarro, see Qannmmmoum_ nozmomon
Software engineering, 5—11
absteaction, 9, 254
modularity, 9, 253
reuse, 9, 255 :
Space leak, 5, 238 .u , :
C++ collecton, wmh_, : : ;
conservative mm_.wmmo collection, -
235-238 | : , :
functional Hmbm:mmmm 134
Mostly Copying, mmH
- - reference counting; 24 -
mmmnn overhead, 15
- allocation, 239
" Baker copying, wom : : :
Baker’s Treadmill, MG : : = i
womrﬂ.IUmEmnmLﬁ.ﬂmﬁ. collector; 239
" gonservative nozonaon 250
copying, 32, 38, 93,1118, 137
deferred reference counting, 70
generational collection, 161,172~ L
mark-compact, 100; 102-105, 109, 111, S Pl
113, 114 - , m
“Thark-sweep, 38, 76193

|

ﬂ , i
i .

1

,

. Stacked Node Checking, see Marking

378

Mostly Copying, 246
pointer reversal, 85-86
reference ooE.E:q 24,38,70,71,76
tracing, 38
write-barrier, 165’
Stack
frame, 3
marking, _ilmh
overflow,77 -
polluton, 11 |
recursion, 15
Static area, 126, 138,)
Steele, see Concurrent collection
Stoye, Clarke and Z.o_H:E see Wownannnn
counting '
Survival rate, 117
Suspension, 4 i

- "Sweep Ty, 8804

allocate, 89
_. ..allocation, 89. . J— .
wOeriUoEnHmlﬁQmmn oomnnnow
90-91
cache Umrmﬁoﬁ_bo. 285
Hughes, §9-90
locality, 285
Z.orn’s sweeper, 91-93

Tags, run-time, 140’
Task, 307 ,
dormant mzcmmmu_u 307
irrelevant, 307,
Temporal Garbage Ooumnﬁor see Baker
copying
Thomas and Jones, wmm Copying
Thorelli, seé Pointer reversal
Threads, 12. ,
Time overhead, 14
allocation, 239
Appel-Ellis-Ti collector, 213
Baker copying, 205206
Baker’s Treadmill, 218
Boehm—Demers—Weiser collector, 239
C++ collection, 265 -
concurrent collection, 202, 218, 222

INDEX

conservative collection, 250
copying, 88, 63
deferred reference counting, 49, 70
generational collection, 161, 162, 167,
171,173,179
mark-compact, 99, 102, 104, 111, 112,
114
mark-sweep, 28, 93
marking, 88, 92
Mostly Copying, 246
operating system support, 171, 213
pointer reversal, 86-87
read-bartier, 188
reference counting, 24, 38, 69, 71, 263
smart pointers, 263
wirite-barrier; 151, 136, 165, 171, ﬁm.
180, 188
Time, amﬁﬁam. 145
Tracing, 57"~ ’
Tifetime, K.m
.. locality, 284 . .- . —
reference counting, 21
residency,"15, 33, 39, 76
restores reference counts, 71
space overhead, 38 ‘
Train algorithm, see Generational no__nnﬁon
Traversal order
allocation, 85
approximatsly depth-first, 135, 170
breadth-first, 131-133
copying, 131, 138
depth-first, 131134
hash tables, 133, 136-137
hierarchical decomposition, 136
page faults,. 136, 218

HﬁnOEE. abstraction, 63, 118119, Hmmlwmql..

218,308

black, 118, 186, 308

arey, 119, 186, 308

white, 119, 186, 308
Two-Finger algorithm, see Mark-Compact
Type accurate collection, 228
Type information

BiBOP, 87 - e

information table, 87

INDEX
tagging, 87

Ungar; see Generational collection

TUngar and Jackson, see Generational
collection

Update in Ewnn. see Reference counting

Update, destructive, sze Reference nomumbm

<@%ﬁmm=cﬂwﬂmbwmh, see Distributed
mark-sweep

Vestal, see Distributed mark-sweep

Virtual memory, 15

write-bartier; 166 - Coe

von Newmann arghitectore, 55

Washabaugh, see Distributed mark-swecp

Watson and Watson, see Distributed
reference counting

Wegbreit, see Pointer reversal

Weizenbaum, see Reference counting

‘While and Field, see Baker copying

" White cell, see Tricolour abstraction

Wilson and Johnstone, see Baker’s Treadmill
Wilson and Moher, see Generational .
. collection
Wilson's taxonomy, 187
Wilson, Lam and Moher; see Copying
Wriie-barrier, 189-193, 222
Baker copying, 206
Baker's Treadmill, 220
Boehm-Demers-Weiser collettor, Nﬂ.

1 R 7. S

cache, 297 o
Chambers, 172 !
concurrent nocnoﬁou. 187-188
condition for failure, .qu
conservatism, 190-193, 203, 217
copy-on-write, 199-200 :
generational collection, 150-152,
165-166, 170-173
Hilzls, 172173 !
hardware, 167 |
incremental collection, 187-188
incremental-update, 187, chle
focal variables, 130 |
locality, 287 |
Mostly Caopying, mﬁ,
c@ﬂwﬂnq system mcmmon 165, 198200
page-wise, 199 :
replication copying, N,E.
snapshot-at-the-beglining, 187,
i 189-191 ” :
space overhead, 163
time overhead, 151, Hmm 165,171,172,
180, 188 M
virtual memory, 166
Wilson’s taxonomy, :wq
WWW site, Xxv ;,

Yiiasa, see Incremental no,znomo_..

s i
Zorn, See Sweep, lazy, Oo,muE.__m.
Generational collection

