3D Game Engine Design

A Practical Approach to Real-Time Computer Graphics

David H. Eberly
GLOSSARY OF NOTATION

\(\mathbb{R}, \mathbb{R}^n, [0, \infty) \) \hspace{1cm} \text{real numbers, } n\text{-tuples of real numbers, nonnegative real numbers}

\(\vec{x}, \vec{x}^T, \vec{0} \) \hspace{1cm} \text{vector, vector transpose, zero vector}

\(M, M^{-1}, M^T, M^\text{adj}, I \) \hspace{1cm} \text{matrix, matrix inverse, matrix transpose, matrix adjoint, identity matrix}

\text{det}(M), \text{trace}(M) \hspace{1cm} \text{matrix determinant, matrix trace}

\text{diag}(a, b, c) \hspace{1cm} 3 \times 3 \text{ diagonal matrix with diagonal terms listed}

\langle M | \vec{T} \rangle \hspace{1cm} \text{short notation for homogeneous matrix with last row } (0, 0, 0, 1)

[\vec{U}, \vec{V}, \vec{W}] \hspace{1cm} \text{a } 3 \times 3 \text{ matrix whose columns are the specified } 3 \times 1 \text{ vectors}

\text{skew}(\vec{W}) \hspace{1cm} \text{skew-symmetric matrix that represents cross product on the left by } \vec{W}

\rho(M), ||M|| \hspace{1cm} \text{spectral norm of matrix, norm of matrix}

\vec{A} \cdot \vec{B}, \vec{A} \times \vec{B} \hspace{1cm} \text{dot product of vectors, cross product of vectors}

\frac{\partial F(\vec{X})}{\partial x_i} \hspace{1cm} \text{first-order partial derivative of } F \text{ with respect to the } i\text{th component of } \vec{X}

\vec{V} F(\vec{X}) \hspace{1cm} \text{gradient vector of function } F, \text{ the } n\text{-tuple of first-order partial derivatives}

\vec{X}^\perp \hspace{1cm} \text{represents some vector orthogonal to } \vec{X}

\sigma, \Gamma, f \hspace{1cm} \text{summation operator, product operator, integral operator}

\subset, \subseteq \hspace{1cm} \text{set inclusion operators}

\in, \cup, \cap, \times \hspace{1cm} \text{element of, union, intersection, Cartesian product}

n, f, l, r, b, t \hspace{1cm} \text{view frustum parameters (near, far, left, right, bottom, top)}

\sin, \cos, \tan \hspace{1cm} \text{sine, cosine, and tangent functions}

\sin^{-1}, \cos^{-1}, \tan^{-1} \hspace{1cm} \text{inverse sine, inverse cosine, and inverse tangent functions}

\log, \exp \hspace{1cm} \text{natural logarithm and exponential functions}

[x], [x] \hspace{1cm} \text{floor function of } x, \text{ ceiling function of } x

\text{sign}(x) \hspace{1cm} \text{sign of } x, \text{ in } [-1, 0, 1]

\text{dist}(A, B) \hspace{1cm} \text{distance between two sets}

B_{n,t}(t) \hspace{1cm} \text{Bernstein polynomial}

C(n, t) \hspace{1cm} \text{combinations of } n \text{ items choosing } t \text{ at a time}

\text{resultant}(p, q, x) \hspace{1cm} \text{resultant of two polynomials by eliminating variable } x

C^k \hspace{1cm} \text{function whose partial derivatives through order } k \text{ are continuous}

q, q^{-1}, q^*, q^i \hspace{1cm} \text{quaternion, quaternion inverse, quaternion conjugate, quaternion to power}

w + \vec{0} \hspace{1cm} \text{quaternion as sum of real part and imaginary parts}

N(q), W(q) \hspace{1cm} \text{norm of quaternion, selection of real part of quaternion}

\text{interp}, \text{squad} \hspace{1cm} \text{interpolation functions for quaternions}

A := B, B := A \hspace{1cm} \text{indicates quantity } A \text{ is defined by quantity } B
Greek Alphabet

<table>
<thead>
<tr>
<th>Greek</th>
<th>Roman</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>α</td>
</tr>
<tr>
<td>beta</td>
<td>β</td>
</tr>
<tr>
<td>gamma</td>
<td>γ, Γ</td>
</tr>
<tr>
<td>delta</td>
<td>δ, Δ</td>
</tr>
<tr>
<td>epsilon</td>
<td>ε</td>
</tr>
<tr>
<td>zeta</td>
<td>ζ</td>
</tr>
<tr>
<td>eta</td>
<td>η</td>
</tr>
<tr>
<td>theta</td>
<td>θ, Θ</td>
</tr>
<tr>
<td>iota</td>
<td>ι</td>
</tr>
<tr>
<td>kappa</td>
<td>κ</td>
</tr>
<tr>
<td>lambda</td>
<td>λ, Λ</td>
</tr>
<tr>
<td>mu</td>
<td>μ</td>
</tr>
<tr>
<td>nu</td>
<td>ν</td>
</tr>
<tr>
<td>xi</td>
<td>ξ</td>
</tr>
<tr>
<td>xi, Ξ</td>
<td></td>
</tr>
<tr>
<td>omicron</td>
<td>ο</td>
</tr>
<tr>
<td>phi</td>
<td>ϕ, Φ</td>
</tr>
<tr>
<td>chi</td>
<td>χ</td>
</tr>
<tr>
<td>rho</td>
<td>ρ</td>
</tr>
<tr>
<td>xi</td>
<td>ξ</td>
</tr>
<tr>
<td>omega</td>
<td>ω, Ω</td>
</tr>
</tbody>
</table>
This book is dedicated to all those folks who participate in comp.graphics.algorithms and have made my online life quite interesting and meaningful. Enjoy!
Contents

List of Figures
xxi
List of Tables
xxv
Preface
xxvii

Chapter 1
Introduction
1
1.1 **A BRIEF MOTIVATION**
1
1.2 **A SUMMARY OF THE CHAPTERS**
3
1.3 **TEXT IS NOT ENOUGH**
5

Chapter 2
Geometrical Methods
7
2.1 **Transformations**
8
2.1.1 Scaling
8
2.1.2 Rotation
8
2.1.3 Translation
9
2.1.4 Homogeneous Transformations
9
2.2 **Coordinate Systems**
10
2.3 **Quaternions**
11
2.3.1 Quaternion Algebra
11
2.3.2 Relationship of Quaternions to Rotations
13
2.3.3 Conversion between Angle-Axis and Rotation Matrix
15
Angle-Axis to Rotation Matrix
15
Rotation Matrix to Angle-Axis
16
2.3.4 Conversion between Quaternion and Angle-Axis
16
Angle-Axis to Quaternion
16
Quaternion to Angle-Axis
17
2.3.5 Conversion between Quaternion and Rotation Matrix
17
Quaternion to Rotation Matrix
17
Rotation Matrix to Quaternion
17
2.4 **Euler Angles**
2.4.1 Factoring Rotation Matrices
 Factor as $R_x R_y R_z$
 Factor as $R_x R_y R_z$
2.4.2 Factor Product of Two
 Factor $P_x P_y$
 Factor $P_x P_y$
 Factor $P_x P_y$
 Factor $P_x P_y$
2.5 **Standard 3D Objects**
2.5.1 Spheres
 Sphere Containing Axis-Aligned Box
 Sphere Centered at Average of Points
 Minimum-Volume Sphere
2.5.2 Oriented Boxes
 Axis-Aligned Boxes
 Fitting Points with a Gaussian Distribution
 Minimum-Volume Box
 Fitting Triangles with a Gaussian Distribution
2.5.3 Capsules
 Least-Squares Fit
 Minimum of Minimum-Area Projected Circles
2.5.4 Lozenges
 Fit with a Gaussian Distribution
 Minimization Method
2.5.5 Cylinders
 Least-Squares Line Contains Axis
 Least-Squares Line Moved to Minimum-Area Center
2.5.6 Ellipsoids
 Axis-Aligned Ellipsoid
 Fitting Points with a Gaussian Distribution
 Minimum-Volume Ellipsoid
2.6 **Distance Methods**
2.6.1 Point to Linear Component
2.6.2 Linear Component to Linear Component
 Line to Line
 Line to Ray or Segment
CHAPTER 3

THE GRAPHICS PIPELINE

3.1 MODEL AND WORLD COORDINATES 80

3.2 PERSPECTIVE PROJECTION 80

3.2.1 Lines Project to Lines 81

3.2.2 Triangles Project to Triangles 83

3.2.3 Conics Project to Conics 83

3.3 CAMERA MODELS 84

3.3.1 Standard Camera Model 85

3.3.2 General Camera Model 87

3.3.3 Model-to-View Transformation 87

3.3.4 Mapping to Screen Coordinates 89

3.3.5 Screen Space Distance Measurements 90

3.4 CULLING AND CLIPPING 91

3.4.1 Object Culling 92

3.4.2 Back Face Culling 92

3.4.3 Clipping 93

Clip World, Transform World to View 97
Clip Model, Transform Model to View 98
Transform Model to View, Clip View 98
Chapter 4

Hierarchical Scene Representations

4.1 Tree-Based Representation
4.1.1 Transforms
4.1.2 Bounding Volumes
4.1.3 Renderer State
4.1.4 Animation

4.2 Updating a Scene Graph

4.2.1 Merging Two Spheres
4.2.2 Merging Two Oriented Boxes
4.2.3 Merging Two Capsules
4.2.4 Merging Two Lozenges
4.2.5 Merging Two Cylinders
4.2.6 Merging Two Ellipsoids
4.2.7 Algorithm for Scene Graph Updating

4.3 Rendering a Scene Graph

4.3.1 Culling by Spheres
4.3.2 Culling by Oriented Boxes
4.3.3 Culling by Capsules
4.3.4 Culling by Lozenges
4.3.5 Culling by Cylinders
4.3.6 Culling by Ellipsoids
4.3.7 Algorithm for Scene Graph Rendering

Chapter 5

Picking

5.1 Intersection of a Linear Component and a Sphere
5.2 Intersection of a Linear Component and a Box
5.2.1 Line Segment
5.2.2 Ray
5.2.3 Line

5.3 Intersection of a Linear Component and a Capsule
5.4 Intersection of a Linear Component and a Lozenge
5.5 Intersection of a Linear Component and a Cylinder
5.6 Intersection of a Linear Component and an Ellipsoid
5.7 Intersection of a Linear Component and a Triangle

Chapter 6

Collision Detection

6.1 Design Issues
6.2 Intersection of Dynamic Objects and Lines
6.2.1 Spheres
6.2.2 Oriented Boxes
6.2.3 Capsules
6.2.4 Lozenges
6.2.5 Cylinders
6.2.6 Ellipsoids
6.2.7 Triangles

6.3 INTERSECTION OF DYNAMIC OBJECTS AND PLANES

6.3.1 Spheres
6.3.2 Oriented Boxes
6.3.3 Capsules
6.3.4 Lozenges
6.3.5 Cylinders
6.3.6 Ellipsoids
6.3.7 Triangles

6.4 STATIC OBJECT-OBJECT INTERSECTION

6.4.1 Spheres, Capsules, and Lozenges
6.4.2 Oriented Boxes
6.4.3 Oriented Boxes and Triangles
 Axis \vec{N}
 Axes \vec{A}_i
 Axes $\vec{A}_i \times \vec{E}_j$
 Triangles
 Axes \vec{N} or \vec{M}
 Axes $\vec{E}_i \times \vec{F}_j$
 Axes $\vec{N} \times \vec{E}_i$ or $\vec{M} \times \vec{F}_i$

6.5 DYNAMIC OBJECT-OBJECT INTERSECTION

6.5.1 Spheres, Capsules, and Lozenges
6.5.2 Oriented Boxes
 Finding the First Time of Intersection
 Finding a Point of Intersection
6.5.3 Oriented Boxes and Triangles
 Finding the First Time of Intersection
 Finding a Point of Intersection
6.5.4 Triangles
 Finding the First Time of Intersection
 Finding a Point of Intersection

6.6 ORIENTED BOUNDING BOX TREES

6.7 PROCESSING OF ROTATING AND MOVING OBJECTS

6.7.1 Equations of Motion
6.7.2 Closed-Form Algorithm
6.7.3 Algorithm Based on a Numerical Ordinary Differential Equation Solver 249

6.8 Constructing an OBB Tree 250

6.9 A Simple Dynamic Collision Detection System 251
6.9.1 Testing for Collision 252
6.9.2 Finding Collision Points 253

CHAPTER 7

Curves 257

7.1 Definitions 258

7.2 Reparameterization by Arc Length 260

7.3 Special Curves 261
7.3.1 Bézier Curves 261
 Definitions 261
 Evaluation 262
 Degree Elevation 263
 Degree Reduction 263
7.3.2 Natural, Clamped, and Closed Cubic Splines 264
 Natural Splines 266
 Clamped Splines 266
 Closed Splines 267
7.3.3 Nonparametric B-Spline Curves 267
7.3.4 Kochanek-Bartels Splines 271

7.4 Subdivision 276
7.4.1 Subdivision by Uniform Sampling 276
7.4.2 Subdivision by Arc Length 276
7.4.3 Subdivision by Midpoint Distance 277
7.4.4 Subdivision by Variation 278
7.4.5 Subdivision by Minimizing Variation 282
7.4.6 Fast Subdivision for Cubic Curves 283

7.5 Orientation of Objects on Curved Paths 285
7.5.1 Orientation Using the Frenet Frame 285
7.5.2 Orientation Using a Fixed "Up" Vector 286

CHAPTER 8

Surfaces 287

8.1 Definitions 288
8.2 Curvature
8.2.1 Curvatures for Parametric Surfaces 289
8.2.2 Curvatures for Implicit Surfaces 290
Maxima of Quadratic Forms 290
Maxima of Restricted Quadratic Forms 291
Application to Finding Principal Curvatures 292
8.2.3 Curvatures for Graphs 293

8.3 Special Surfaces 293
8.3.1 Bézier Rectangle Patches 293
Definitions 294
Evaluation 294
Degree Elevation 295
Degree Reduction 295
8.3.2 Bézier Triangle Patches 297
Definitions 297
Evaluation 297
Degree Elevation 298
Degree Reduction 298
8.3.3 Bézier Cylinder Surfaces 301
8.3.4 Nonparametric B-Spline Rectangle Patches 302
8.3.5 Quadratic Surfaces 304
Three Nonzero Eigenvalues 304
Two Nonzero Eigenvalues 305
One Nonzero Eigenvalue 305
8.3.6 Tube Surfaces 306

8.4 Subdivision 306
8.4.1 Subdivision of Bézier Rectangle Patches 306
Uniform Subdivision 306
Nonuniform Subdivision 313
Adjustments for the Camera Model 316
Cracking 316
8.4.2 Subdivision of Bézier Triangle Patches 321
Uniform Subdivision 322
Nonuniform Subdivision 323
8.4.3 Subdivision of Bézier Cylinder Surfaces 328
Uniform Subdivision 328
Nonuniform Subdivision 328
8.4.4 Subdivision of Spheres and Ellipsoids 328
Data Structures for the Algorithm 329
Subdivision Algorithm 331
8.4.5 Subdivision of Tube Surfaces 339
CHAPTER
9
ANIMATION OF CHARACTERS

9.1 KEY FRAME ANIMATION 342
 9.1.1 Quaternion Calculus 342
 9.1.2 Spherical Linear Interpolation 343
 9.1.3 Spherical Cubic Interpolation 345
 9.1.4 Spline Interpolation of Quaternions 346
 9.1.5 Updating a Key Frame Node 347

9.2 INVERSE KINEMATICS 348
 9.2.1 Numerical Solution by Jacobian Methods 350
 9.2.2 Numerical Solution by Nonlinear Optimization 351
 9.2.3 Numerical Solution by Cyclic Coordinate Descent
 List Manipulator with One End Effector 352
 List Manipulator with Multiple End Effectors 354
 Tree Manipulator 355
 Other Variations 355

9.3 SKINNING 356

CHAPTER
10
GEOMETRIC LEVEL OF DETAIL 359

10.1 SPRITES AND BILLBOARDS 360
10.2 DISCRETE LEVEL OF DETAIL 361
10.3 CONTINUOUS LEVEL OF DETAIL 362
 10.3.1 Simplification Using Quadric Error Metrics 362
 10.3.2 The Algorithm 364
 10.3.3 Construction of the Error Metric 365
 10.3.4 Simplification at Run Time 365
 10.3.5 Selecting Surface Attributes 366

CHAPTER
11
TERRAIN 369

11.1 TERRAIN TOPOLOGY 370
11.2 VERTEX-BASED SIMPLIFICATION 373
 11.2.1 Distant Terrain Assumption 373
 11.2.2 Close Terrain Assumption 374
 11.2.3 No Assumption 375
11.3 **Block-Based Simplification** 375
 11.3.1 Distant Terrain Assumption 376
 11.3.2 Close Terrain Assumption 378
 11.3.3 No Assumption 379

11.4 **Vertex Dependencies** 381

11.5 **Block Rendering** 383

11.6 **The Full Algorithm** 385

11.7 **Other Issues** 392
 11.7.1 Terrain Pages and Memory Management 392
 11.7.2 Vertex Attributes 395
 11.7.3 Height Calculations 397

11.8 **Height Fields from Point Sets or Triangle Meshes** 398
 11.8.1 Linear Interpolation 398
 11.8.2 Quadratic Interpolation 399
 * Barycentric Coefficients as Areas
 * Inscribed Circles
 * Bézier Triangles
 * Derivatives
 * Derivative Continuity
 * The Algorithm

Chapter 12

Spatial Sorting 411

12.1 **Quadtrees and Octrees** 412

12.2 **Portals** 413

12.3 **Binary Space Partitioning** 417
 12.3.1 BSP Tree Construction 418
 12.3.2 Hidden Surface Removal 420
 * Back-to-Front Drawing
 * Front-to-Back Drawing
 12.3.3 Visibility Determination 424
 * View Space Method
 * Screen Space Method
 12.3.4 Picking and Collision Detection 425
Appendix B

Numerical Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Systems of Equations</td>
<td>469</td>
</tr>
<tr>
<td>B.1.1</td>
<td>Linear Systems</td>
<td>469</td>
</tr>
<tr>
<td>B.1.2</td>
<td>Polynomial Systems</td>
<td>470</td>
</tr>
<tr>
<td>B.2</td>
<td>Eigensystems</td>
<td>472</td>
</tr>
<tr>
<td>B.3</td>
<td>Least-Squares Fitting</td>
<td>472</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Linear Fitting of Points ((x, f(x)))</td>
<td>472</td>
</tr>
<tr>
<td>B.3.2</td>
<td>Linear Fitting of Points Using Orthogonal Regression</td>
<td>473</td>
</tr>
<tr>
<td>B.3.3</td>
<td>Planar Fitting of Points ((x, y, f(x, y)))</td>
<td>474</td>
</tr>
<tr>
<td>B.3.4</td>
<td>Hyperplanar Fitting of Points Using Orthogonal Regression</td>
<td>475</td>
</tr>
<tr>
<td>B.3.5</td>
<td>Fitting a Circle to 2D Points</td>
<td>476</td>
</tr>
<tr>
<td>B.3.6</td>
<td>Fitting a Sphere to 3D Points</td>
<td>478</td>
</tr>
<tr>
<td>B.3.7</td>
<td>Fitting a Quadratic Curve to 2D Points</td>
<td>480</td>
</tr>
<tr>
<td>B.3.8</td>
<td>Fitting a Quadric Surface to 3D Points</td>
<td>481</td>
</tr>
<tr>
<td>B.4</td>
<td>Minimization</td>
<td>481</td>
</tr>
<tr>
<td>B.4.1</td>
<td>Methods in One Dimension</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>Brent's Method</td>
<td>482</td>
</tr>
<tr>
<td>B.4.2</td>
<td>Methods in Many Dimensions</td>
<td>482</td>
</tr>
<tr>
<td></td>
<td>Steepest Descent Search</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>Conjugate Gradient Search</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>Powell's Direction Set Method</td>
<td>484</td>
</tr>
<tr>
<td>B.5</td>
<td>Root Finding</td>
<td>485</td>
</tr>
<tr>
<td>B.5.1</td>
<td>Methods in One Dimension</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Bisection</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>Newton's Method</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>Polynomial Roots</td>
<td>486</td>
</tr>
<tr>
<td>B.5.2</td>
<td>Methods in Many Dimensions</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Bisection</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>Newton's Method</td>
<td>490</td>
</tr>
<tr>
<td>B.6</td>
<td>Integration</td>
<td>491</td>
</tr>
<tr>
<td>B.6.1</td>
<td>Romberg Integration</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Richardson Extrapolation</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Trapezoid Rule</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>The Integration Method</td>
<td>494</td>
</tr>
<tr>
<td>B.6.2</td>
<td>Gaussian Quadrature</td>
<td>495</td>
</tr>
<tr>
<td>B.7</td>
<td>Differential Equations</td>
<td>496</td>
</tr>
<tr>
<td>B.7.1</td>
<td>Ordinary Differential Equations</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Euler's Method</td>
<td>497</td>
</tr>
</tbody>
</table>
Figures

2.1 The six possibilities for $I \times J$. 41
2.2 Various level curves $Q(s, t) = V$. 44
2.3 Partitioning of the sr-plane by triangle domain D. 50
2.4 Various level curves $Q(s, t) = V$. 51

3.1 Relationship between s and \tilde{s}. 82
3.2 The standard camera model. 85
3.3 Object with front facing and back facing triangles indicated. 93
3.4 Four configurations for triangle splitting. 94
3.5 Various light sources. 101
3.6 Pixels that form the best line segment between two points. 113
3.7 Pixel selection based on slope. 114
3.8 Deciding which line pixel to draw next. 115
3.9 Deciding which circle pixel to draw next. 118
3.10 Three configurations for clipped triangle. 135
3.11 Three configurations for clipped triangle. 137

4.1 A simple tree with one grouping node. 143
4.2 Examples of culled and unculled objects. 158
4.3 Examples of culled and unculled objects. 160
4.4 Projection of cylinder and frustum plane, no-cull case. 163
4.5 Projection of ellipsoid and frustum plane, no-cull case. 165

5.1 The three cases for clipping when $d_0 > 0$. 173
5.2 The three cases for clipping when $d_0 < 0$. 173
5.3 The two cases for clipping when $d_0 = 0$. 174
5.4 Typical separating axis for a line segment and a box. 176
5.5 Typical situations for a ray and a box. 178
5.6 Partitioning of a line by a capsule. 180
5.7 Partitioning of a line by a lozenge. xxii
7.1 Parameters: \(\tau = 0, \gamma = 0, \beta = 0 \).
7.2 Parameters: \(\tau = 1, \gamma = 0, \beta = 0 \).
7.3 Parameters: \(\tau = 0, \gamma = 1, \beta = 0 \).
7.4 Parameters: \(\tau = 0, \gamma = 0, \beta = 1 \).
7.5 Parameters: \(\tau = -1, \gamma = 0, \beta = 0 \).
7.6 Parameters: \(\tau = 0, \gamma = -1, \beta = 0 \).
7.7 Parameters: \(\tau = 0, \gamma = 0, \beta = -1 \).
7.8 Uniform subdivision of a curve.
7.9 Subdivision of a curve by arc length.
7.10 Subdivision of a curve by midpoint distance.
7.11 Subdivision of a curve by variation.

8.1 Polynomial coefficients for \(n = 2 \).
8.2 Polynomial coefficients for \(n = 3 \).
8.3 Polynomial coefficients for \(n = 4 \).
8.4 Subdivisions of parameter space for a rectangle patch.
8.5 Subdivision that contains cracking.
8.6 Subdivision that has no cracking.
8.7 Subdivision that contains more complicated cracking.
8.8 Partial subdivision with three subdividing edges.
8.9 Partial subdivision illustrating the parent's topological constraint.
8.10 Partial subdivision with two adjacent subdividing edges.
8.11 Partial subdivision illustrating the parent's topological constraint.
8.12 Partial subdivision with two opposing subdividing edges.
8.13 Partial subdivision with one subdividing edge.
8.14 Subdivision based on calculating information in adjacent block.
8.15 Subdivisions of parameter space for a triangle patch.
8.16 Subdivision of a triangle and the corresponding binary tree.
8.17 H-adjacency for triangles \(A \) and \(B \).
8.18 H-adjacency for triangles \(A \) and \(C \).
8.19 H-adjacency for triangles \(A \) and \(D \).
8.20 Pattern for subdivision of a triangle.
8.21 Working set of vertices, edges, and triangles.
8.22 Subdivided triangle.
8.23 Possible orientations of adjacent triangle with central triangle.
8.24 Tessellation of parameter space for a tube surface.

9.1 A general linearly linked manipulator.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Edge contraction.</td>
</tr>
<tr>
<td>11.1</td>
<td>A 5×5 height field and quadtree representation.</td>
</tr>
<tr>
<td>11.2</td>
<td>The topology for a single block.</td>
</tr>
<tr>
<td>11.3</td>
<td>The seven distinct triangle configurations.</td>
</tr>
<tr>
<td>11.4</td>
<td>The smallest simplification and highest resolution for four sibling blocks.</td>
</tr>
<tr>
<td>11.5</td>
<td>A single block with nine vertices labeled and all eight triangles drawn.</td>
</tr>
<tr>
<td>11.6</td>
<td>Special case for optimization when $(D_x, D_y) = (1, 0)$.</td>
</tr>
<tr>
<td>11.7</td>
<td>Vertex dependencies for an even block (left) and an odd block (right).</td>
</tr>
<tr>
<td>11.8</td>
<td>Minimal triangulation after block-based simplification.</td>
</tr>
<tr>
<td>11.9</td>
<td>Triangulation after vertex dependencies are satisfied.</td>
</tr>
<tr>
<td>11.10</td>
<td>The upper-left block shows one set of dependents for the added vertex.</td>
</tr>
<tr>
<td>11.11</td>
<td>The left block is the configuration after block simplification.</td>
</tr>
<tr>
<td>11.12</td>
<td>Binary tree for the right block in Figure 11.11.</td>
</tr>
<tr>
<td>11.13</td>
<td>Adjacent triangles forming a nonconvex quadrilateral.</td>
</tr>
<tr>
<td>11.14</td>
<td>Adjacent Bézier triangle patches.</td>
</tr>
<tr>
<td>11.15</td>
<td>Control points in triangle subdivision.</td>
</tr>
<tr>
<td>11.16</td>
<td>The required cofinite subtriangles are shaded in gray.</td>
</tr>
<tr>
<td>11.17</td>
<td>Illustration for geometric relationships between the vertices.</td>
</tr>
<tr>
<td>12.1</td>
<td>Illustration of visibility through a portal.</td>
</tr>
<tr>
<td>12.2</td>
<td>Simple portal example.</td>
</tr>
<tr>
<td>12.3</td>
<td>L-shaped region in a portal system.</td>
</tr>
<tr>
<td>12.4</td>
<td>BSP tree partitioning \mathbb{R}^2.</td>
</tr>
<tr>
<td>12.5</td>
<td>Two polygons that cannot be sorted.</td>
</tr>
<tr>
<td>12.6</td>
<td>One-dimensional BSP tree representing drawn pixels on a scan line.</td>
</tr>
<tr>
<td>13.1</td>
<td>Illustration of environment mapping.</td>
</tr>
<tr>
<td>A.1</td>
<td>Single-inheritance hierarchy.</td>
</tr>
<tr>
<td>A.2</td>
<td>Multiple-inheritance hierarchy.</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>3.1</td>
<td>Combining a single texture and vertex colors.</td>
</tr>
<tr>
<td>3.2</td>
<td>Combining multitextures.</td>
</tr>
<tr>
<td>5.1</td>
<td>Separating axis tests for a line segment and a box.</td>
</tr>
<tr>
<td>6.1</td>
<td>Relationship between sphere-swept volumes and distance calculators (pmt, point; seg, line segment; rect, rectangle).</td>
</tr>
<tr>
<td>6.2</td>
<td>Values for R, R_0, and R_1 for the separating axis tests.</td>
</tr>
<tr>
<td>6.3</td>
<td>Values for R, p_0, p_1, and p_2 for the separating axis tests.</td>
</tr>
<tr>
<td>6.4</td>
<td>Values for p_i and q_j for the separating axis tests for noncoplanar triangles.</td>
</tr>
<tr>
<td>6.5</td>
<td>Values for p_i and q_j for the separating axis tests for coplanar triangles.</td>
</tr>
<tr>
<td>6.6</td>
<td>Relationship between sphere-swept volumes and distance calculators when the second object is moving (pmt, point; seg, line segment; rect, rectangle; pgm, parallelogram; pdd, parallelepiped; hex, hexagon).</td>
</tr>
<tr>
<td>6.7</td>
<td>Values for R, R_0, and R_1 for the separating axis test $R > R_0 + R_1$ for two boxes in the direction of motion.</td>
</tr>
<tr>
<td>6.8</td>
<td>Coefficients for unique points of oriented bounding box-oriented bounding box intersection.</td>
</tr>
<tr>
<td>6.9</td>
<td>Coefficients for unique points of triangle-OBB intersection for \vec{N} and $\vec{A_i}$.</td>
</tr>
<tr>
<td>6.10</td>
<td>Coefficients for unique points of triangle-OBB intersection for $\vec{A_0} \times \vec{E}_j$.</td>
</tr>
<tr>
<td>6.11</td>
<td>Coefficients for unique points of triangle-OBB intersection for $\vec{A_1} \times \vec{E}_j$.</td>
</tr>
<tr>
<td>6.12</td>
<td>Coefficients for unique points of triangle-OBB intersection for $\vec{A_2} \times \vec{E}_j$.</td>
</tr>
<tr>
<td>6.13</td>
<td>Coefficients for unique points of triangle-triangle intersection.</td>
</tr>
</tbody>
</table>
11.1 Values for r_{min} and r_{max} based on eye point location. 378

A.1 Encoding for the various types to be used in identifier names. 444

B.1 Signs of the Sturm polynomials for $t^3 + 2t^2 - 1$ at various t values. 489
B.2 Signs of the Sturm polynomials for $(t - 1)^3$ at various t values. 489
B.3 Coefficients for polynomial approximations to $\tan^{-1}(z)$. 506
B.4 Various parameters for the CORDIC scheme. 507
This book is the culmination of many years of reading and participating in the Internet newsgroups on computer graphics and computer games, most notably comp.graphics.algorithms and the hierarchy of groups comp.games.development. The focus of my participation has been to provide free source code that solves common problems that arise in computer graphics, image analysis, and numerical methods, available through Magic Software at www.magic-software.com. The book is also a technical summary of my experiences in helping to produce a commercial game engine, NetImmerse, developed by Numerical Design Limited (NDL), www.ndl.com.

The focus of this book is on understanding that a game engine, or more generally a real-time computer graphics engine, is a complex entity that consists of more than simply a rendering layer that draws triangles. It is also more than just a collection of unorganized techniques. A game engine must deal with issues of scene graph management as a front end that efficiently provides the input to the back end renderer, whether it be a software- or hardware-based renderer. The engine must also provide the ability to process complex and moving objects in a physically realistic way. The engine must support collision detection, curved surfaces as well as polygonal models, animation of characters, geometric level of detail, terrain management, and spatial sorting. Moreover, the engine is large enough that the principles of object-oriented design must be practiced with great care.

The chapters of this book tend to be fairly mathematical and geometrical. The intended audience includes anyone who is interested in becoming involved in the development of a real-time computer graphics engine. It is assumed that the reader's background includes a basic understanding of vector and matrix algebra, linear algebra, multivariate calculus, and data structures.

Many people have directly or indirectly contributed to the book. Most notable are the engineers at NDL: Lars Bishop, Jon McAllister, Chad Robertson, Rob Phillips, Tim Preston, Scott Sherman, Ed Holzworth, and Andy Jones. Lars and I are the primary architects for NetImmerse. He is the renderer expert, especially with regards to Direct3D, and has been instrumental in helping me to understand many of the issues for rendering. We also have had many productive design sessions about how best to incorporate the ideas for scene graph management to properly feed the renderers and to properly manage renderer state. Chad and Rob are the animation experts. They did a lot of legwork on understanding how various modeling packages animate characters and deciding how NetImmerse can best support the animation. Chad also contributed many good ideas on how to structure the collision detection system to work well with the hierarchical scene graph system. Jon is the expert on continuous level of detail and has implemented some of the algorithms mentioned in this book for NetImmerse. The implementations go well beyond what is discussed here and
addressed practical concerns that some of the research papers did not cover. Jon also worked with Chad and Rob on the integration of continuous level of detail with the skin-and-bones system, a nontrivial task. Tim was helpful in reading Chapter 8 and attempting to implement the top-down algorithm as I originally wrote it. He pointed out what I had overlooked, leading to some fine discussions about how to properly tessellate the surfaces without paying for a large memory overhead. The algorithm as described in this book reflects these discussions. Finally, Bill Baxter was a summer intern from the University of North Carolina, but in his time at NDL was able to investigate the topic of inverse kinematics and implement that system in NetImmerse. Discussions with him led to my understanding of how inverse kinematics should work in the game engine and is reflected in how I wrote the section on that topic.

I want to thank the reviewers for the book: Ian Ashdown (byHeart Consultants Limited), John Laird (University of Michigan), Jeff Lander (Darwin 3D), Franz Lanzinger (Actual Entertainment), Ming Lin (University of North Carolina), Peter Lipson (Mindscape), Tomas Moller (Chalmers), Andrea Pessino (Blizzard Entertainment), and Steve Woodcock (Raytheon). They spent a quite large amount of time reading over the two drafts of the book and provided many helpful comments and criticisms. I also want to thank my editor, Tim Cox, and his assistants, Brenda Modliszewski and Stacie Pierce, for the time they have put into helping the book come to completion.
1

INTRODUCTION

I have no fault to find with those who teach geometry. That science is the only one which
has not produced sects; it is founded on analysis and on synthesis and on the calculus;
 it does not occupy itself with probable truth; moreover it has the same method in
every country.
— Frederick the Great

1.1 A BRIEF MOTIVATION

Computer graphics has been a popular area of computer science for the last few
decades. Much of the research has been focused on obtaining physical realism in
rendered images, but generating realistic images comes at a price. The algorithms
tend to be computationally expensive and must be implemented on high-end, special-
purpose graphics hardware affordable only by universities through research funding
or by companies whose focus is computer graphics. Although computer games have
also been popular for decades, for most of that time the personal computers available
to the general public have not been powerful enough to produce realistic images.
The game designers and programmers have had to be creative to produce immersive
environments that draw the attention of the player to the details of game play and yet
do not detract from the game by the low-quality graphics required for running on a
low-end machine.

Chapter opening image is from Prince of Persia. All Prince of Persia images Copyright © 1999, 2000 Mattel
Interactive and Jordan Mechner. All Rights Reserved. Prince of Persia is a registered trademark of Mattel
Interactive.
Times are changing. As computer technology has improved, the demand for more realistic computer games that support real-time interaction has increased. Moreover, the group of computer gamers itself has evolved from a small number of, shall we say, computer geeks to a very large segment of the population. One of the most popular, successful, and best-selling games was Myst, created and produced by Cyan Productions and published through Broderbund. This game and others like it showed that an entirely new market was possible—a market that included the general consumer, not just computer-savvy people. The increased demand for games and the potential size of the market has created an impetus for increased improvement in the computer technology—a not-so-vicious circle.

One result of the increased demand has been the advent of hardware-accelerated graphics cards that off-load a lot of the work a CPU normally does for software rendering. The initial cards were add-ons that handled only the 3D acceleration and ran only in full-screen mode. The 2D graphics cards were still used for the standard graphics display interface (GDI) calls. Later-generation accelerators have been designed to handle both 2D GDI and 3D acceleration within a window that is not full screen. Since triangle rasterization has been the major bottleneck in software rendering, the hardware-accelerated cards have acted as fast triangle rasterizers. As of the time of this writing, the next-generation hardware cards are being designed to off-load even more work. In particular, the cards will perform point transformations and lighting calculations in hardware.

Another result of the increased demand for games has been the evolution of the CPUs themselves to include support for operations that typically arise in game applications: fast division, fast inverse square roots (for normalizing vectors), and parallelism to help with transforming points and computing dot products. The possibilities for the evolutionary paths are endless. Many companies are now exploring new ways to use the 3D technology in applications other than games, for example, in Web commerce and in plug-ins for business applications.

And yet one more result of the increased demand is that a lot of people now want to write computer games. The Internet newsgroups related to computer graphics, computer games, and rendering application programmer interfaces (APIs) are filled with questions from eager people wanting to know how to program for games. At its highest level, developing a computer game consists of a number of factors. First and foremost (at least in my opinion) is having a good story line and good game play—without this, everything else is irrelevant. Creation of the story line and deciding what the game play should be can be categorized as game design. Once mapped out, artists must build the game content, typically through modeling packages. Interaction with the content during run time is controlled through game artificial intelligence, more commonly called game AI. Finally, programmers must create the application to load content when needed, integrate the AI to support the story line and game play, and build the game engine that manages the data in the world and renders it on the computer screen. The last topic is what this book is about—building a sophisticated real-time game engine. Although games certainly benefit from real-time computer
1.2 A Summary of the Chapters

The classical view of what a computer graphics engine does is the rendering of triangles (or polygons). Certainly this is a necessary component, but it is only half the story. Viewed as a black box, a renderer is a consumer-producer. It consumes triangles and produces output on a graphics raster display. As a consumer it can be fed too much data, too quickly, or it can be starved and sit idly while waiting for something to do. A front-end system is required to control the input data to the renderer; this process is called scene graph management. The main function of the scene graph management is to provide triangles to the renderer, but how those triangles are obtained in the first place is a key aspect of the front end. The more realistic the objects in the scene, the more complex the process of deciding which triangles are sent to the renderer. Scene graph management consists of various modules, each designed to handle a particular type of object in the world or to handle a particular type of process. The common theme in most of the modules is geometry.

Chapter 2 covers basic background material on geometrical methods, including matrix transformations, coordinate systems, quaternions, Euler angles, the standard three-dimensional objects that occur most frequently when dealing with bounding volumes, and a collection of distance calculation methods.

The graphics pipeline, the subject of Chapter 3, is discussed in textbooks on computer graphics to varying degrees. Some people would argue against the inclusion of some parts of this chapter, most notably the sections on rasterization, contending that hardware-accelerated graphics cards handle the rasterization for you, so why bother expounding on the topic. My argument for including these sections is twofold. First, the computer games industry has been evolving in a way that makes it difficult for the "garage shop" companies to succeed. Companies that used to focus on creating games in-house are now becoming publishers and distributors for other companies. If you have enough programmers and resources, there is a chance you can convince a publisher to support your effort. However, publishers tend to think about reaching the largest possible market and often insist that games produced by their clients run on low-end machines without accelerated graphics cards. And so the clients, interested in purchasing a third-party game engine, request that software renderers and rasterizers be included in the package. I hope this trend goes the other way, but the commercial reality is that it will not, at least in the near future. Second, hardware-accelerated cards do perform rasterization, but hardware requires drivers that implement the high-level graphics algorithms on the hardware. The cards are evolving rapidly, and the quality of the drivers is evolving at the same rate—no one wants to fix bugs in the drivers
for a card that will soon be obsolete. But another reason for poor driver quality is that programming 3D hardware is a much more difficult task than programming 2D hardware. The driver writers need to understand the hardware and the graphics pipeline. This chapter may be quite useful to that group of programmers.

Chapter 4 introduces scene graph management and provides the foundation for a hierarchical organization designed to feed the renderer efficiently, whether a software or hardware renderer. The basic concepts of local and world transforms, bounding volumes for culling, render state management, and animation support are covered.

Chapters 5 and 6 discuss aspects of the intersection of objects in the world. Picking is the process of computing the intersection of a line, ray, or line segment with objects. Collision detection refers to computing intersections between planar or volumetric objects. Some people include picking as part of the definition of collision detection, but the complexity of collision systems for nonlinear objects greatly exceeds that for picking, so I have chosen to separate the two systems.

Chapters 7 through 12 cover various systems that are supported by the scene graph management system. Chapters 7 and 8, on curves and surfaces, are somewhat general, but the emphasis is on tessellation. The next-generation game consoles have powerful processors but are limited in memory and bandwidth between processors. The dynamic tessellation of surfaces is desirable since the surfaces can be modeled with a small number of control points (reducing memory usage and bandwidth requirements) and tessellated to as fine a level as the processors have cycles to spare. The emphasis will start to shift from building polygonal models to building curved surface models to support the trend in new hardware on game consoles. Chapter 9 discusses the animation of geometric data, and in particular, key frame animation, inverse kinematics, and skin-and-bones systems. Level of detail is the subject of Chapter 10, with a special focus on continuous level of detail, which supports dynamic change in the number of triangles to render based on view frustum parameters.

Chapter 11 presents an algorithm for handling terrain. Although there are other algorithms that are equally viable, I chose to focus on one in detail rather than briefly talk about many algorithms. The key ideas in implementing this terrain algorithm are applicable to implementing other algorithms. High-level sorting algorithms, including portals and binary space partitioning trees, are the topic of Chapter 12.

Chapter 13 provides a brief survey of special effects that can be used in a game engine. The list is not exhaustive, but it does give an idea of what effects are possible with not much effort.

Building a commercial game engine certainly requires understanding a lot about computer graphics, geometry, mathematics, and data structures. Just as important is properly architecting the modules so that they all integrate in an efficient manner. A game engine is a large library to which the principles of object-oriented design apply. Appendix A provides a brief review of those principles and includes a discussion on an object-oriented infrastructure that makes maintenance of the library easier down the road. These aspects of building an engine are often ignored because it is faster and easier to try to get the basic engine up and running right away. However, short-
term satisfaction will inevitably come at the price of long-term pain in maintenance. Appendix B is a summary of various numerical methods that, in my experience, are necessary to implement the modules described in Chapters 7 through 12.

1.3 Text Is Not Enough

This book is not like the academic textbooks you would find in the school bookstore or the popular computer game programming books that you see at your favorite bookseller. Academic texts on computer graphics tend to be tomes covering a large number of general topics and are designed for learning the basic concepts, not for implementing a full-blown system. Algorithmic details are modest in some books and lacking in others. The popular programming books present the basic mathematics and concepts, but in no way indicate how complex a process it is to build a good engine. The technical level in those books is simply insufficient.

A good collection of books that address more of the algorithmic issues for computer graphics is the Graphics Gems series (Glassner 1990; Aarvo 1991; Kirk 1992; Heckbert 1994; Paeth 1995). Although providing a decent set of algorithms, the collection consists of contributions from various people with no guidance as to how to incorporate these into a larger integrated package such as a game engine. The first real attempt at providing a comprehensive coverage of the topics required for real-time rendering is Möller and Haines (1999), which provides much more in-depth coverage about the computer graphics topics relevant to a real-time graphics engine. The excellent references provided in that book are a way to investigate the roots of many of the concepts that current-generation game engines incorporate.

But there is one last gap to fill. Textual descriptions of graphics algorithms, no matter how detailed, are difficult to translate into real working code, even for experienced programmers. Just try to implement some of the algorithms described in the ACM SIGGRAPH proceedings! Many of those articles were written after the authors had already worked out the details of the algorithms and implemented them. That process is not linear. Ideas are formulated, algorithms are designed, then implemented. When the results of the coding point out a problem with the algorithmic formulation, the ideas and algorithms are reformulated. This natural process iterates until the final results are acceptable. Written and published descriptions of the algorithms are the final summary of the final algorithm. However, taken out of context of the idea-to-code environment, they sometimes are just not enough. Because having an actual implementation to look at while attempting to learn the ideas can only accelerate the learning process, a CD-ROM containing an implementation of a game engine accompanies this book. While neither as feature complete nor as optimized as a commercial engine, the code should help in understanding the ideas and how they are implemented. Pointers to the relevant source code files that implement the ideas are given in the text.
Chapter 2

Geometrical Methods

This chapter provides some basic mathematics, geometry, and algorithms that will be used throughout the book. I am assuming that you are familiar with the concepts of elementary vector and matrix algebra: vectors, matrices, dot product, cross product, and length. I am also assuming that you are familiar with the basic concepts in calculus: continuity, derivatives, and integrals. The set of real numbers is denoted \(\mathbb{R} \), and the set of vectors with \(n \) components is \(\mathbb{R}^n \). In almost all cases in this book, \(n \leq 3 \).

Numerical methods that are referred to in the book are described in Appendix B.

Transformations (Section 2.1) and coordinate systems (Section 2.2) are pervasive throughout a game engine. In particular, the graphics pipeline (Chapter 3) and scene graph management (Chapter 4) require a thorough understanding of these topics. Section 2.3 covers the topic of quaternions and describes what these entities are and how they relate to rotations, which are fundamental in orienting objects. For key frame animation, sequences of rotations must be interpolated in a way that produces reasonable in-between orientations. Quaternions are quite useful for interpolation. Section 2.4 covers the topic of Euler angles and shows how to work with rotations viewed in this way. In particular, there is a discussion of how to factor rotations into ones that represent rotation about coordinate axes, which many applications require.
Certain types of 3D objects are useful in a game engine, especially spheres and oriented boxes. Other types that are less frequently seen but are nevertheless quite useful are cylinders, ellipsoids, capsules, and lozenges. These objects are defined and their properties listed in Section 2.5. Finally, Section 2.6 discusses computing distance between various geometric entities. Computing distance accurately and efficiently is absolutely essential for collision detection.

2.1 Transformations

A matrix $M : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is called a linear transformation and maps vectors to vectors by $\vec{Y} = M \vec{X}$. The linearity refers to the property that $M(c\vec{U} + \vec{V}) = cM\vec{U} + M\vec{V}$ for any scalar c and any vectors \vec{U} and \vec{V}. The zero matrix is a matrix with all zero entries. The identity matrix is the matrix I with 1 on the diagonal entries and 0 for the other entries. A matrix is said to be invertible if there exists a matrix, denoted M^{-1}, such that $MM^{-1} = M^{-1}M = I$. The transpose of a matrix $M = [m_{ij}]$ is the matrix $M^T = [m_{ji}]$. That is, the rows of M become the columns of M^T. A matrix is symmetric if $M^T = M$ or skew-symmetric if $M^T = -M$. Diagonal matrices $D = [d_{ij}]$ have the property $d_{ij} = 0$ for $i \neq j$ and are typically denoted $D = \text{diag}(a, b, c)$. Some special 3×3 matrices that appear regularly in computer graphics are described below.

2.1.1 Scaling

If a diagonal matrix $D = \text{diag}(d_0, d_1, d_2)$ has all positive entries, it is a scaling matrix. Each diagonal term represents how much stretching ($d_i > 1$) or shrinking ($d_i < 1$) occurs for the corresponding coordinate direction. Uniform scaling is $D = sI = \text{diag}(s, s, s)$ for $s > 0$.

2.1.2 Rotation

A matrix R is a rotation matrix if its transpose and inverse are the same matrix; that is, $R^{-1} = R^T$, in which case $RR^T = R^TR = I$. The matrix has a corresponding unit-length axis of rotation \vec{U} and angle of rotation θ. The choice is not unique since $-\vec{U}$ is also an axis of rotation and $\theta + 2\pi k$ for any integer k is an angle of rotation. If $\vec{U} = (u_0, u_1, u_2)$, define the skew-symmetric matrix S by

$$S = \begin{bmatrix} 0 & -u_2 & u_1 \\ u_2 & 0 & -u_1 \\ -u_1 & u_0 & 0 \end{bmatrix}.$$
The rotation corresponding to axis \hat{U} and angle θ is

$$R = I + (\sin \theta)S + (1 - \cos \theta)S^2.$$

2.1.3 Translation

Translation of vectors by a fixed vector $\vec{T} \in \mathbb{R}^3$ is represented by the function $\vec{Y} = \vec{X} + \vec{T}$ for $\vec{X}, \vec{Y} \in \mathbb{R}^3$. It is not possible to represent this as a linear transformation of the form $\vec{Y} = M\vec{X}$ for some constant matrix M. However, if the problem is embedded in a four-dimensional setting, it is possible to represent translation with a linear transformation. The next section describes how to do this.

2.1.4 Homogeneous Transformations

A vector $(x, y, z) \in \mathbb{R}^3$ can be mapped uniquely onto a vector $(x, y, z, 1) \in \mathbb{R}^4$. Other vectors $(x, y, z, w) \in \mathbb{R}^4$ can be projected onto the hyperplane $w = 1$ by $(x, y, z, w) \rightarrow (\frac{x}{w}, \frac{y}{w}, \frac{z}{w}, 1)$. An entire line of points (with origin $(0, 0, 0, 0)$) is projected onto the single point $(x, y, z, 1)$. All of $\mathbb{R}^4 \setminus \{0\}$ is partitioned into equivalence classes, each class having representative projection $(x, y, z, 1)$. A 4-tuple in this setting is called a homogeneous coordinate. Two homogeneous coordinates that are equivalent are indicated to be so by $(x_0, y_0, z_0, w_0) \sim (x_1, y_1, z_1, w_1)$.

Transformations can be applied to homogeneous coordinates to obtain other homogeneous coordinates. Such a 4×4 matrix $H = [h_{ij}]$, $0 \leq i \leq 3$ and $0 \leq j \leq 3$, is called a homogeneous transformation as long as $h_{33} = 1$. Usually, homogeneous matrices are written as a 2×2 block matrix,

$$H = \begin{bmatrix} M & \vec{T} \\ \vec{S}^T & 1 \end{bmatrix},$$

where the M is 3×3, \vec{T} is 3×1, \vec{S}^T is 1×3, and the lower-right entry is just the scalar 1. The product of a homogeneous coordinate and homogeneous transformation in block format is

$$H = \begin{bmatrix} M & \vec{T} \\ \vec{S}^T & 1 \end{bmatrix} \begin{bmatrix} \vec{V} \\ w \end{bmatrix} = \begin{bmatrix} M\vec{V} + w\vec{T} \\ \vec{S}^T\vec{V} + w \end{bmatrix} \sim \begin{bmatrix} M\vec{V} + w\vec{T} \\ \vec{S}^T\vec{V} + w \end{bmatrix}.$$

Any 3×3 linear transformation M can be represented by the homogeneous matrix

$$\begin{bmatrix} M & \vec{0} \\ \vec{0}^T & 1 \end{bmatrix}.$$
Moreover, translation by vector \vec{T} can also be represented by a homogeneous transformation,

$$\begin{bmatrix} I & \vec{T} \\ 0^T & 1 \end{bmatrix}.$$

The two can be composed to represent $\vec{Y} = M \vec{X} + \vec{T}$ as

$$\begin{bmatrix} \vec{Y} \\ 1 \end{bmatrix} = \begin{bmatrix} M & \vec{T} \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} \vec{X} \\ 1 \end{bmatrix}.$$

Assuming M is invertible, the equation can be solved for $\vec{X} = M^{-1}(\vec{Y} - \vec{T})$. Thus, the inverse of a homogeneous matrix is

$$\begin{bmatrix} M & \vec{T} \\ 0^T & 1 \end{bmatrix}^{-1} = \begin{bmatrix} M^{-1} & -M^{-1} \vec{T} \\ 0^T & 1 \end{bmatrix}.$$

Perspective projection is discussed in Chapter 3. It too can be represented by a homogenous matrix where the lower-left entry S^T is not the zero vector. Most graphics textbooks discuss the geometric pipeline in terms of products of homogeneous transformations. That notation is a convenience and is not particularly useful in an implementation unless the underlying hardware has native support for vector and matrix operations in four dimensions.

2.2 Coordinate Systems

A 3D coordinate system consists of an origin \vec{P} and three coordinate axes \vec{U}_0, \vec{U}_1, and \vec{U}_2 that are each unit length and mutually perpendicular. The axes can be written as the columns of a matrix, $R = [\vec{U}_0 \mid \vec{U}_1 \mid \vec{U}_2]$. This matrix is orthonormal; that is, $R^{-1} = R^T$ and $|\det(R)| = 1$. The coordinate system is said to be *right-handed* if $\det(R) = 1$ or *left-handed* if $\det(R) = -1$. The axes in a right-handed coordinate system satisfy $\vec{U}_0 \times \vec{U}_1 = \vec{U}_2$, $\vec{U}_1 \times \vec{U}_2 = \vec{U}_0$, and $\vec{U}_2 \times \vec{U}_0 = \vec{U}_1$. In a left-handed coordinate system, $\vec{U}_0 \times \vec{U}_1 = \vec{U}_2$, $\vec{U}_1 \times \vec{U}_2 = \vec{U}_0$, and $\vec{U}_2 \times \vec{U}_0 = \vec{U}_1$. The standard Euclidean coordinate system is right-handed and has origin $\vec{P} = (0, 0, 0)$, $\vec{U}_0 = (1, 0, 0)$, $\vec{U}_1 = (0, 1, 0)$, and $\vec{U}_2 = (0, 0, 1)$.

Given a coordinate system, any vector \vec{X} can be written in terms of that system as $\vec{X} = \vec{P} + x_0\vec{U}_0 + y_1\vec{U}_1 + y_2\vec{U}_2 = \vec{P} + R\vec{Y}$. It is simple to solve this system to obtain $\vec{Y} = R^T(\vec{X} - \vec{P})$. Specifically, $y_i = \vec{U}_i \cdot (\vec{X} - \vec{P})$ for $0 \leq i \leq 2$.

2.3 Quaternions

This section provides a mathematical summary of quaternion algebra and calculus and explains how they relate to rotations and interpolation of rotations. The ideas are based on Shoemake (1987).

2.3.1 Quaternion Algebra

A quaternion is given by \(q = w + xi + yj + zk \), where \(w, x, y, \) and \(z \) are real numbers. Define \(q_n = w_n + x_n i + y_n j + z_n k \) \((n = 0, 1)\). Addition and subtraction of quaternions is defined by

\[
q_0 \pm q_1 = (w_0 \pm x_0 i + y_0 j + z_0 k) \pm (w_1 \pm x_1 i + y_1 j + z_1 k)
= (w_0 \pm w_1) + (x_0 \pm x_1)i + (y_0 \pm y_1)j + (z_0 \pm z_1)k.
\]

(2.1)

Multiplication for the primitive elements \(i, j, \) and \(k \) is defined by \(i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, \) and \(ki = -ik = j \). Multiplication of quaternions is defined by

\[
q_0q_1 = (w_0 + x_0 i + y_0 j + z_0 k)(w_1 + x_1 i + y_1 j + z_1 k)
= (w_0 w_1 - x_0 x_1 - y_0 y_1 - z_0 z_1) + (w_0 x_1 + x_0 w_1 + y_0 z_1 - z_0 y_1)i +
(w_0 y_1 + x_0 z_1 + y_0 w_1 + z_0 x_1)j + (w_0 z_1 + x_0 y_1 - y_0 x_1 + z_0 w_1)k.
\]

(2.2)

Multiplication is not commutative; that is, the products \(q_0q_1 \) and \(q_1q_0 \) are not necessarily equal. This is clearly evident for primitive elements since \(k = ij \neq ji = -k \).

The conjugate of a quaternion is defined by

\[
q^* = (w + xi + yj + zk)^* = w - xi - yj - zk.
\]

(2.3)

The conjugate of a product of quaternions satisfies the properties \((pq)^* = p^* q^*\) and \((pq)^* = q^* p^*\).

The norm of a quaternion is defined by

\[
N(q) = N(w + xi + yj + zk) = w^2 + x^2 + y^2 + z^2.
\]

(2.4)

The norm is a real-valued function, and the norm of a product of quaternions satisfies the properties \(N(q^*) = N(q)\) and \(N(pq) = N(p)N(q)\).

The multiplicative inverse of a quaternion \(q \) is denoted \(q^{-1} \) and has the property \(qq^{-1} = q^{-1}q = 1 \). It is constructed as

\[
q^{-1} = q^*/N(q),
\]

(2.5)
where the division of a quaternion by a real-valued scalar is just componentwise division. The inverse operation satisfies the properties \((p^{-1})^{-1} = p\) and \((pq)^{-1} = q^{-1}p^{-1}\).

A simple but useful function is the selection function

\[
W(q) = W(w + xi + yj + zk) = w,
\]

which selects the real part of the quaternion. This function satisfies the property \(W(q) = (q + q^*)/2\).

The quaternion \(q = w + xi + yj + zk\) may also be viewed as \(q = w + \hat{v}\), where \(\hat{v} = xi + yj + zk\). If \(\hat{v}\) is identified with the 3D vector \((x, y, z)\), then quaternion multiplication can be written using vector dot product \((\cdot)\) and cross product \((\times)\) as

\[
(w_0 + \hat{v}_0)(w_1 + \hat{v}_1) = (w_0 w_1 - \hat{v}_0 \cdot \hat{v}_1) + w_0 \hat{v}_1 + w_1 \hat{v}_0 + \hat{v}_0 \times \hat{v}_1.
\]

In this form it is clear that \(q_0 q_1 = q_1 q_0\) if and only if \(\hat{v}_0 \times \hat{v}_1 = 0\) (these two vectors are parallel).

A quaternion \(q\) may also be viewed as a 4D vector \((w, x, y, z)\). The dot product of two quaternions is

\[
q_0 \cdot q_1 = w_0 w_1 + x_0 x_1 + y_0 y_1 + z_0 z_1 = W(q_0 q_1^*).\]

A unit quaternion is a quaternion \(q\) for which \(N(q) = 1\). The inverse of a unit quaternion and the product of unit quaternions are themselves unit quaternions. A unit quaternion can be represented by

\[
q = \cos \theta + \hat{u} \sin \theta,
\]

where \(\hat{u} = u_0 i + u_1 j + u_2 k\) and vector \((u_0, u_1, u_2)\) has length 1. However, observe that the quaternion product \(\hat{u} \hat{u} = -1\). Note the similarity to unit-length complex numbers \(\cos \theta + i \sin \theta\). In fact, Euler's identity for complex numbers generalizes to quaternions,

\[
\exp(\hat{u} \theta) = \cos \theta + \hat{u} \sin \theta,
\]

where the exponential on the left-hand side is evaluated by symbolically substituting \(\hat{u} \theta\) into the power series representation for \(\exp(x)\) and replacing products \(\hat{u} \hat{u}\) by \(-1\). From this identity it is possible to define the power of a unit quaternion,

\[
q^t = (\cos \theta + \hat{u} \sin \theta)^t = \exp(\hat{u} \theta) = \cos(t \theta) + \hat{u} \sin(t \theta).
\]

It is also possible to define the logarithm of a unit quaternion,

\[
\log(q) = \log(\cos \theta + \hat{u} \sin \theta) = \log(\exp(\hat{u} \theta)) = \hat{u} \theta.
\]
Note that the noncommutativity of quaternion multiplication disallows the standard identities for exponential and logarithm functions. The quaternions \(\exp(p) \exp(q) \) and \(\exp(p + q) \) are not necessarily equal. The quaternions \(\log(pq) \) and \(\log(p) + \log(q) \) are not necessarily equal.

2.3.2 Relationship of Quaternions to Rotations

A unit quaternion \(q = \cos \theta + \hat{u} \sin \theta \) represents the rotation of the 3D vector \(\hat{u} \) by an angle \(2\theta \) about the 3D axis \(\hat{u} \). The rotated vector, represented as a quaternion, is \(R(\hat{u}) = q\hat{u}q^* \). The proof requires showing that \(R(\hat{u}) \) satisfies four conditions: it is a 3D vector, it is a length-preserving function of \(\hat{u} \), it is a linear transformation, and it does not have a reflection component.

To see that \(R(\hat{u}) \) is a 3D vector:

\[
W(R(\hat{u})) = W(q\hat{u}q^*)
\]

\[
= [(q\hat{u}q^*) + (q\hat{u}q^*)^*]/2
\]

\[
= [q\hat{u}q^* + q\hat{u}^*q^*]/2
\]

\[
= q(\hat{u} + \hat{u}^*)q^*/2
\]

\[
= qW(\hat{u})q^*
\]

\[
= W(\hat{u})
\]

\[
= 0.
\]

To see that \(R(\hat{u}) \) is length preserving:

\[
N(R(\hat{u})) = N(q\hat{u}q^*)
\]

\[
= N(q)N(\hat{u})N(q^*)
\]

\[
= N(q)N(\hat{u})N(q)
\]

\[
= N(\hat{u})
\]

To see that \(R(\hat{u}) \) is a linear transformation, let \(a \) be a real-valued scalar and let \(\hat{u} \) and \(\hat{w} \) be 3D vectors; then

\[
R(a\hat{u} + \hat{w}) = q(a\hat{u} + \hat{w})q^*
\]

\[
= (qa\hat{u}q^*) + (q\hat{w}q^*)
\]

\[
= a(q\hat{u}q^*) + (q\hat{w}q^*)
\]

\[
= aR(\hat{u}) + R(\hat{w})
\]
thereby showing that the transform of a linear combination of vectors is the linear combination of the transforms.

The previous three properties show that \(R(\hat{v})\) is an orthonormal transformation, a class that includes rotations and reflections. We need to show that reflections cannot occur. For unit-length vector \(\hat{v}\), define the function \(M\) by \(\hat{v} = M(\hat{v})\), a function from the unit sphere in \(\mathbb{R}^3\) to the unit quaternions with zero real part. Its inverse is \(\hat{v} = M^{-1}(\hat{v})\). If \(\hat{w} = M(\hat{w})\) and \(\hat{w} = R(\hat{v}) = q \hat{v} q^*\), then the composition

\[
\hat{w} = M^{-1}(\hat{v}) = M^{-1}(R(\hat{v})) = M^{-1}(R(M(\hat{v})))
\]

defines a matrix transformation \(\hat{w} = P\hat{v}\), where \(P\) is an orthonormal matrix since \(R(\hat{v})\) is an orthonormal transformation. Thus, \(|\det(P)| = 1\), which implies that the determinant can be only +1 or −1. \(P\) is determined by the choice of unit quaternion \(q\), so it is a function of \(q\), written as \(P(q)\) to show the functional dependence. Moreover, \(P(q)\) is a continuous function, which in turn implies that \(\delta(q) = \det(P(q))\) is a continuous function of \(q\). By the definition of continuity, \(\lim_{q \to 1} P(q) = P(1) = I\), the identity matrix, and \(\lim_{q \to 1} \delta(q) = \delta(1) = 1\). Since \(\delta(q)\) can only be +1 or −1 and since the limiting value is +1, \(\delta(q) = 1\) is true for all unit quaternions. Consequently, \(P\) cannot contain reflections.

We now prove that the unit rotation axis is the 3D vector \(\hat{u}\) and the rotation angle is \(2\theta\). To see that \(\hat{u}\) is a unit rotation axis, we need only show that \(\hat{u}\) is unchanged by the rotation. Recall that \(\hat{u}^2 = \hat{u}\hat{u} = -1\). This implies that \(\hat{u}^3 = -\hat{u}\). Now

\[
R(\hat{u}) = q \hat{u} q^*
\]

\[
= (\cos \theta + \hat{u} \sin \theta)\hat{u}(\cos \theta - \hat{u} \sin \theta)
\]

\[
= (\cos \theta)^2 \hat{u} - (\sin \theta)^2 \hat{u}^3
\]

\[
= (\cos \theta)^2 \hat{u} - (\sin \theta)^2 (-\hat{u})
\]

\[
= \hat{u}.
\]

To see that the rotation angle is \(2\theta\), let \(\hat{u}\), \(\hat{v}\), and \(\hat{w}\) be a right-handed set of orthonormal vectors. That is, the vectors are all unit length; \(\hat{u} \cdot \hat{v} = \hat{u} \cdot \hat{w} = \hat{v} \cdot \hat{w} = 0\), and \(\hat{u} \times \hat{v} = \hat{w}\), \(\hat{v} \times \hat{w} = \hat{u}\), and \(\hat{w} \times \hat{u} = \hat{v}\). The vector \(\hat{v}\) is rotated by an angle \(\phi\) to the vector \(q \hat{v} q^*\), so \(\hat{v} \cdot (q \hat{v} q^*) = \cos(\phi)\). Using Equation (2.8) and \(\hat{v}^3 = -\hat{v}\), and \(\hat{v}^2 = -1\) for unit quaternions with zero real part,

\[
\cos(\phi) = \hat{v} \cdot (q \hat{v} q^*)
\]

\[
= W(\hat{v}^* q \hat{v} q^*)
\]

\[
= W[-\hat{v}(\cos \theta + \hat{u} \sin \theta)\hat{v}(\cos \theta - \hat{u} \sin \theta)]
\]
\[W(-\hat{v} \cos \theta - \hat{v}\hat{u} \sin \theta)(\hat{v} \cos \theta - \hat{v}\hat{u} \sin \theta)] \]
\[= W(-\hat{v}^2(\cos \theta)^2 + \hat{v}^2 \sin \theta \cos \theta - \hat{v}\hat{u} \sin \theta \cos \theta + (\hat{v}\hat{u})^2(\sin \theta)^2) \]
\[= W((\cos \theta)^2 - (\sin \theta)^2 - (\hat{u} + \hat{v}\hat{u}) \sin \theta \cos \theta). \]
Now \(\hat{v}\hat{u} = -\hat{v} \cdot \hat{u} + \hat{v} \times \hat{u} = \hat{v} \times \hat{u} = -\hat{w} \) and \(\hat{v}\hat{u}\hat{v} = -\hat{w}\hat{v} = \hat{w} \cdot \hat{v} - \hat{w} \times \hat{v} = \hat{u}. \)
Consequently,
\[\cos(\phi) = W((\cos \theta)^2 - (\sin \theta)^2 - (\hat{u} + \hat{v}\hat{u}) \sin \theta \cos \theta) \]
\[= W((\cos \theta)^2 - (\sin \theta)^2 - \hat{u}(2 \sin \theta \cos \theta)) \]
\[= (\cos \theta)^2 - (\sin \theta)^2 \]
\[= \cos(2\theta). \]
and the rotation angle is \(\phi = 2\theta. \)
Note that the quaternions \(q \) and \(-q\) represent the same rotation since \((-q)\hat{v}(-q)^* = q\hat{v}q^*.\) While either quaternion will do, the interpolation methods require choosing one over the other.

2.3.3 Conversion Between Angle-Axis and Rotation Matrix

Applications represent rotations using either an angle-axis pair or a rotation matrix. Sometimes it is necessary to convert from one representation to the other. The conversions are discussed here.

Angle-Axis to Rotation Matrix

Any standard computer graphics text discusses the relationship between an angle and axis of rotation and the rotation matrix, although the constructions can be varied. A useful one is given here. If \(\theta \) is the angle of rotation and \(\hat{U} \) is the unit-length axis of rotation, then the corresponding rotation matrix is

\[R = I + (\sin \theta)S + (1 - \cos \theta)S^2, \]

where \(I \) is the identity matrix and

\[
S = \begin{bmatrix}
0 & -u_2 & u_1 \\
u_2 & 0 & -u_0 \\
-u_1 & u_0 & 0
\end{bmatrix},
\]
a skew-symmetric matrix. For \(\theta > 0 \), the rotation represents a counterclockwise rotation about the axis. The sense of clockwise or counterclockwise is based on looking at
the plane with normal \hat{U} from the side of the plane to which the normal points. Note that $\hat{S}\hat{V} = \hat{U} \times \hat{V}$ and

$$R\hat{V} = \hat{V} + (\sin \theta)\hat{U} \times \hat{V} + (1 - \cos \theta)\hat{U} \times (\hat{U} \times \hat{V}).$$

Rotation Matrix to Angle-Axis

The inverse problem is to start with the rotation matrix and extract an angle and unit-length axis. There are multiple solutions since $-\hat{U}$ is a valid axis whenever \hat{U} is and $\theta + 2\pi k$ is a valid solution whenever θ is. First, the trace of a matrix is defined to be the sum of the diagonal terms. Some algebra will show that $\cos \theta = (\text{trace}(R) - 1)/2$ and $R - R^T = (2 \sin \theta)S$. The first formula can be solved for the angle, $\theta = \cos^{-1}((\text{trace}(R) - 1)/2) \in [0, \pi]$. If $\theta = 0$, then any axis is valid since there is no rotation. If $\theta \in (0, \pi)$, the second formula allows direct extraction of the axis, $V = (r_{21} - r_{12}, r_{02} - r_{20}, r_{10} - r_{01})$ and $\hat{U} = V/|V|$. If $\theta = \pi$, the second formula does not help with the axis since $R - R^T = 0$. In this case note that

$$R = I + 2S^2 = \begin{bmatrix}
1 & 2u_2u_1 & 2u_0u_1 \\
2u_2u_1 & 1 - 2(u_1^2 + u_2^2) & 2u_1u_3 \\
2u_0u_2 & 2u_1u_3 & 1 - 2(u_0^2 + u_2^2)
\end{bmatrix}.$$

The idea now is to extract the maximum component of the axis from the diagonal entries of the rotation matrix. If r_{00} is maximum, then u_0 must be the largest component in magnitude. Compute $4u_0^2 = r_{00} - r_{11} - r_{22} + 1$ and select $u_0 = \sqrt{r_{00} - r_{11} - r_{22} + 1}/2$. Consequently, $u_1 = r_{01}/(2u_0)$ and $u_2 = r_{02}/(2u_0)$. If r_{11} is maximum, then compute $4u_1^2 = r_{11} - r_{00} - r_{22} + 1$ and select $u_1 = \sqrt{r_{11} - r_{00} - r_{22} + 1}/2$. Consequently, $u_0 = r_{00}/(2u_1)$ and $u_2 = r_{02}/(2u_1)$. Finally, if r_{22} is maximum, then compute $4u_2^2 = r_{22} - r_{00} - r_{11} + 1$ and select $u_2 = \sqrt{r_{22} - r_{00} - r_{11} + 1}/2$. Consequently, $u_0 = r_{00}/(2u_2)$ and $u_1 = r_{11}/(2u_2)$.

2.3.4 Conversion between Quaternion and Angle-Axis

Applications also can represent rotations by quaternions in addition to angle-axis pairs and rotation matrices. The conversions between quaternions and angle-axis pairs are discussed here.

Angle-Axis to Quaternion

Recall from earlier in this section that the quaternion $q = w + xi + yj + zk = \cos(\theta/2) + \sin(\theta/2)(u_0i + u_1j + u_2k)$ represents the rotation by θ radians about
the axis \(\vec{U} = (u_0, u_1, u_2) \). Given the angle and axis, the components of the quaternion are
\(w = \cos(\theta/2), x = u_0 \sin(\theta/2), y = u_1 \sin(\theta/2), \) and
\(z = u_2 \sin(\theta/2). \)

Quaternion to Angle-Axis

The inverse problem is also straightforward. If \(|w| = 1\), then the angle is \(\theta = 0 \) and
any axis will do. If \(|w| < 1\), the angle is obtained as
\(\theta = 2 \cos^{-1}(w) \) and the axis is
computed as \(\vec{U} = (x, y, z)/\sqrt{1 - w^2}. \)

2.3.5 Conversion Between Quaternion and Rotation Matrix

To complete the set of conversions between representations of rotations, this section
describes the conversions between quaternions and rotation matrices.

Quaternion to Rotation Matrix

The problem is to compute \(\theta \) and \(\vec{U} \) given \(w, x, y, \) and \(z. \) Using the identities
\(2 \sin^2(\theta/2) = 1 - \cos(\theta) \) and \(\sin(\theta) = 2 \sin(\theta/2) \cos(\theta/2), \) it is easily shown that
\(2wx = (\sin \theta)u_0, \) \(2wy = (\sin \theta)u_1, \) \(2wz = (\sin \theta)u_2, \) \(2x^2 = (1 - \cos \theta)u_0^2, \) \(2xy = (1 - \cos \theta)u_0u_1, \) \(2xz = (1 - \cos \theta)u_0u_2, \) \(2y^2 = (1 - \cos \theta)u_1^2, \) \(2yz = (1 - \cos \theta)u_1u_2, \) \(2z^2 = (1 - \cos \theta)u_2^2. \) The right-hand sides of all these equations are terms in the
expression \(R = I + (\sin \theta)S + (1 - \cos \theta)S^2. \) Replacing them yields

\[
R = \begin{bmatrix}
1 - 2y^2 - 2z^2 & 2xy - 2wz & 2xz + 2wy \\
2xy + 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx \\
2xz - 2wy & 2yz + 2wx & 1 - 2x^2 - 2y^2
\end{bmatrix}.
\] (2.13)

Rotation Matrix to Quaternion

Earlier it was mentioned that \(\cos \theta = (\text{trace}(R) - 1)/2. \) Using the identity \(2 \cos^2(\theta/2) = 1 + \cos \theta \) yields
\(w^2 = \cos^2(\theta/2) = (\text{trace}(R) + 1)/4 \) or \(|w| = \sqrt{\text{trace}(R) + 1}/2. \) If
\(\text{trace}(R) > 0, \) then \(|w| > 1/2, \) so without loss of generality choose \(w \) to be the positive
square root, \(w = \sqrt{\text{trace}(R) + 1}/2. \) The identity \(R - R^T = (2 \sin \theta)S \) also yielded
\((r_{12} - r_{21}, r_{20} - r_{02}, r_{01} - r_{10}) = 2 \sin \theta(u_0, u_1, u_2). \) Finally, identities derived earlier
were \(2wx = u_0 \sin \theta, \) \(2yw = u_1 \sin \theta, \) and \(2zw = u_2 \sin \theta. \) Combining these leads to
\(x = (r_{12} - r_{21})/(4w), \) \(y = (r_{20} - r_{02})/(4w), \) and \(z = (r_{01} - r_{10})/(4w). \)

If \(\text{trace}(R) \leq 0, \) then \(|w| \leq 1/2. \) The idea is to first extract the largest one of \(x, y, \)
or \(z \) from the diagonal terms of the rotation \(R \) in Equation (2.13). If \(r_{00} \) is the max-
um term, then \(x \) is larger in magnitude than \(y \) or \(z. \) Some algebra shows
that $4x^2 = r_{00} - r_{11} - r_{22} + 1$, from which is chosen $x = \sqrt{r_{00} - r_{11} - r_{22} + \frac{1}{2}}$. Consequently, $w = (r_{12} - r_{21})/(4x)$, $y = (r_{01} + r_{10})/(4x)$, and $z = (r_{02} + r_{20})/(4x)$.

If r_{11} is the maximum diagonal term, then compute $4y^2 = r_{11} - r_{00} - r_{22} + 1$ and choose $y = \sqrt{r_{11} - r_{00} - r_{22} + \frac{1}{2}}$. Consequently, $w = (r_{20} - r_{02})/(4y)$, $x = (r_{01} + r_{10})/(4y)$, and $z = (r_{12} + r_{21})/(4y)$. Finally, if r_{22} is the maximum diagonal term, then compute $4z^2 = r_{22} - r_{00} - r_{11} + 1$ and choose $z = \sqrt{r_{22} - r_{00} - r_{11} + \frac{1}{2}}$. Consequently, $w = (r_{01} - r_{10})/(4z)$, $x = (r_{02} + r_{20})/(4z)$, and $y = (r_{12} + r_{21})/(4z)$.

2.4 Euler Angles

Rotations about the coordinate axes are easy to define and work with. Rotation about the x-axis by angle θ is

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix},$$

where $\theta > 0$ indicates a counterclockwise rotation in the plane $x = 0$. The observer is assumed to be positioned on the side of the plane with $x > 0$ and looking at the origin. Rotation about the y-axis by angle θ is

$$R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix},$$

where $\theta > 0$ indicates a counterclockwise rotation in the plane $y = 0$. The observer is assumed to be positioned on the side of the plane with $y > 0$ and looking at the origin. Rotation about the z-axis by angle θ is

$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

where $\theta > 0$ indicates a counterclockwise rotation in the plane $z = 0$. The observer is assumed to be positioned on the side of the plane with $z > 0$ and looking at the origin. Rotation by an angle θ about an arbitrary axis containing the origin and having unit-length direction $\mathbf{U} = (U_x, U_y, U_z)$ is given by

$$R_{\mathbf{U}}(\theta) = I + (\sin \theta)\mathbf{S} + (1 - \cos \theta)\mathbf{S}^2,$$
where \(I \) is the identity matrix,

\[
S = \begin{bmatrix}
0 & -U_z & U_y \\
U_z & 0 & -U_x \\
-U_y & U_x & 0
\end{bmatrix},
\]

and \(\theta > 0 \) indicates a counterclockwise rotation in the plane \(\vec{U} \cdot (x, y, z) = 0 \). The observer is assumed to be positioned on the side of the plane to which \(\vec{U} \) points and is looking at the origin.

2.4.1 Factorizing Rotation Matrices

A common problem is to factor a rotation matrix as a product of rotations about the coordinate axes. The form of the factorization depends on the needs of the application and what ordering is specified. For example, we might want to factor a rotation as \(R = R_z(\theta_z) R_y(\theta_y) R_x(\theta_x) \) for some angles \(\theta_x, \theta_y, \) and \(\theta_z \). The ordering is \(xyz \).

Five other possibilities are \(xzy, yxz, yzx, xzy, \) and \(yzx \). We might also envision factorizations such as \(xxy \)—these are not discussed here. In the following discussion, we use the notation \(c_a = \cos(\theta_a) \) and \(s_a = \sin(\theta_a) \) for \(a = x, y, z \).

Factor as \(R_z R_y R_x \)

Setting \(R = [r_{ij}] \) for \(0 \leq i \leq 2 \) and \(0 \leq j \leq 2 \), formally multiplying \(R_z(\theta_z) R_y(\theta_y) R_x(\theta_x) \), and equating yields

\[
\begin{bmatrix}
 r_{00} & r_{01} & r_{02} \\
r_{10} & r_{11} & r_{12} \\
r_{20} & r_{21} & r_{22}
\end{bmatrix} =
\begin{bmatrix}
c_y c_z & -c_y s_z & s_y \\
c_z s_x c_y + s_x s_z c_y & c_z c_x - s_x s_y s_z & -c_z s_x s_y + c_y s_z c_x \\
-c_z s_x c_y + s_x s_z c_y & c_z c_x + s_x s_y s_z & c_z s_x s_y - c_y s_z c_x
\end{bmatrix}.
\]

From this we have \(s_y = r_{02} \), so \(\theta_y = \tan^{-1}(r_{02}) \). If \(\theta_y \in (-\pi/2, \pi/2) \), then \(c_y \neq 0 \) and \(c_y (s_x c_z + c_x s_z) = (-r_{12}, r_{22}) \), in which case \(\theta_x = \tan^{-1}(-r_{12}, r_{22}) \). Similarly, \(c_y (s_x c_z + c_x s_z) = (-r_{01}, r_{00}) \), in which case \(\theta_z = \tan^{-1}(-r_{01}, r_{00}) \).

If \(\theta_y = \pi/2 \), then \(s_y = 1 \) and \(c_y = 0 \). In this case

\[
\begin{bmatrix}
r_{10} & r_{11} \\
r_{20} & r_{21}
\end{bmatrix} =
\begin{bmatrix}
c_z s_x + c_x s_z & c_z c_x - s_x s_z \\
-c_x c_z + s_x s_z c_x & s_z s_x + c_z s_z c_x
\end{bmatrix} =
\begin{bmatrix}
\sin(\theta_z + \theta_x) & \cos(\theta_z + \theta_x) \\
-\cos(\theta_z + \theta_x) & \sin(\theta_z + \theta_x)
\end{bmatrix}.
\]

Therefore, \(\theta_z + \theta_x = \tan^{-1}(r_{10}, r_{11}) \). There is one degree of freedom, so the factorization is not unique. One choice is \(\theta_z = 0 \) and \(\theta_x = \tan^{-1}(r_{10}, r_{11}) \). If \(\theta_y = -\pi/2 \), then \(s_y = -1 \) and \(c_y = 0 \). In this case

\[
\begin{bmatrix}
r_{10} & r_{11} \\
r_{20} & r_{21}
\end{bmatrix} =
\begin{bmatrix}
-c_z s_x + c_x s_z & c_z c_x + s_x s_z \\
c_x c_z + s_x s_z c_x & s_z s_x - c_z s_z c_x
\end{bmatrix} =
\begin{bmatrix}
\sin(\theta_z - \theta_x) & \cos(\theta_z - \theta_x) \\
\cos(\theta_z - \theta_x) & -\sin(\theta_z - \theta_x)
\end{bmatrix}.
\]
Therefore, $\theta_z - \theta_s = \tan^{-1} 2(r_{10}, r_{11})$. There is one degree of freedom, so the factorization is not unique. One choice is $\theta_z = 0$ and $\theta_s = -\tan^{-1} 2(r_{10}, r_{11})$.

Pseudocode for the factorization is

```c
thetaY = asin(r02);
if ( thetaY < PI/2 )
{
  if ( thetaY > -PI/2 )
  {
    thetaX = atan2(-r12, r22);
    thetaZ = atan2(-r01, r00);
  }
  else
  {
    // not a unique solution
    thetaX = -atan2(r10, r11);
    thetaZ = 0;
  }
}
else
{
  // not a unique solution
  thetaX = atan2(r10, r11);
  thetaZ = 0;
}
```

Factor as $R_x R_z R_y$

Setting $R = [r_{ij}]$ for $0 \leq i \leq 2$ and $0 \leq j \leq 2$, formally multiplying $R_x(\theta_x) R_z(\theta_z) R_y(\theta_y)$, and equating yields

$$
\begin{bmatrix}
 r_{00} & r_{01} & r_{02} \\
 r_{10} & r_{11} & r_{12} \\
 r_{20} & r_{21} & r_{22}
\end{bmatrix} =
\begin{bmatrix}
 c_x c_z & -s_x & s_x s_y \\
 s_x c_z & c_x & -c_y s_z + c_z s_x s_y \\
 -c_y s_x + c_z s_y & c_z s_x & s_y s_z
\end{bmatrix}.
$$

Analysis similar to the xyz case leads to the pseudocode

```c
thetaZ = asin(-r01);
if ( thetaZ < PI/2 )
{
  if ( thetaZ > -PI/2 )
  {
    thetaX = atan2(r21, r11);
  }
}
```
\[\text{thetaY} = \text{atan2}(r02, r00); \]

} else {
 // not a unique solution
 \text{thetaX} = -\text{atan2}(-r20, r22);
 \text{thetaY} = 0;
}
}

} else {
 // not a unique solution
 \text{thetaX} = \text{atan2}(-r20, r22);
 \text{thetaY} = 0;
}

\textbf{Factor as } R_y R_z R_x

Setting \(R = [r_{ij}] \) for \(0 \leq i \leq 2 \) and \(0 \leq j \leq 2 \), formally multiplying \(R_y(\theta_y) R_z(\theta_z) R_x(\theta_x) \), and equating yields

\[
\begin{bmatrix}
 r_{00} & r_{01} & r_{02} \\
 r_{10} & r_{11} & r_{12} \\
 r_{20} & r_{21} & r_{22}
\end{bmatrix}
= \begin{bmatrix}
 c_y c_z + s_y s_z s_x & c_y s_z s_x - c_x s_y & c_x s_y \\
 c_y s_z & c_x c_z & -s_x \\
 -c_z s_y + c_y s_x s_z & c_y c_x s_z + s_y s_x & c_x c_y
\end{bmatrix}.
\]

Analysis similar to the xyz case leads to the pseudocode

\[\text{thetaX} = \text{asin}(-r12); \]

if (\thetaX < \Pi/2)
{
 if (\thetaX > -\Pi/2)
 {
 \text{thetaY} = \text{atan2}(r02, r22);
 \text{thetaZ} = \text{atan2}(r10, r11);
 }
 else
 {
 // not a unique solution
 \text{thetaY} = -\text{atan2}(-r01, r00);
 \text{thetaZ} = 0;
 }
}
else
{
// not a unique solution
thetaY = atan2(-r01,r00);
thetaZ = 0;
}

Factor as \(R_y R_z R_x \)

Setting \(R = [r_{ij}] \) for \(0 \leq i \leq 2 \) and \(0 \leq j \leq 2 \), formally multiplying \(R_y(\theta_y) R_z(\theta_z) R_x(\theta_x) \), and equating yields

\[
\begin{bmatrix}
r_{00} & r_{01} & r_{02} \\
r_{10} & r_{11} & r_{12} \\
r_{20} & r_{21} & r_{22}
\end{bmatrix}
= \begin{bmatrix}
c_y c_z & s_x s_y - c_x s_y c_z & c_x r_z + s_x s_y s_z \\
s_x & c_y c_z & -c_x s_z \\
-c_x s_y & c_y r_z + s_y s_z & c_x c_y - s_x s_y s_z
\end{bmatrix}.
\]

Analysis similar to the \(xyz \) case leads to the pseudocode

\[
\begin{align*}
\thetaZ &= \text{asin}(r10); \\
\text{if } (\thetaZ < \pi/2) & \text{ then }
\begin{align*}
\text{if } (\thetaZ > -\pi/2) & \text{ then }
\begin{align*}
\thetaY &= \text{atan2}(-r20,r00); \\
\thetaX &= \text{atan2}(-r12,r11);
\end{align*}
\text{else }
\begin{align*}
// not a unique solution \\
\thetaY &= -\text{atan2}(r21,r22); \\
\thetaX &= 0;
\end{align*}
\end{align*}
\text{else }
\begin{align*}
// not a unique solution \\
\thetaY &= \text{atan2}(r21,r22); \\
\thetaX &= 0;
\end{align*}
\end{align*}
\]
2.4 Euler Angles

Factor as $R_zR_yR_x$

Setting $R = |r_{ij}|$ for $0 \leq i \leq 2$ and $0 \leq j \leq 2$, formally multiplying $R_z(\theta_z)R_y(\theta_y)R_x(\theta_x)$, and equating yields

$$
\begin{bmatrix}
 r_{00} & r_{01} & r_{02} \\
 r_{10} & r_{11} & r_{12} \\
 r_{20} & r_{21} & r_{22}
\end{bmatrix} =
\begin{bmatrix}
 c_y c_z - s_y s_x s_z & c_y s_z + c_x s_y s_z & -c_x s_y \\
 c_x s_y s_z + c_y s_x c_z & c_x s_z c_y - c_y s_x s_z & c_y c_z \\
 -c_x s_y & s_x & c_x c_y
\end{bmatrix}.
$$

Analysis similar to the xyz case leads to the pseudocode

```c
thetaX = asin(r21);
if ( thetaX < PI/2 )
{
  if ( thetaX > -PI/2 )
  {
    thetaZ = atan2(-r01,r11);
    thetaY = atan2(-r20,r22);
  }
  else
  {
    // not a unique solution
    thetaZ = -atan2(r02,r00);
    thetaY = 0;
  }
}
else
{
  // not a unique solution
  thetaZ = atan2(r02,r00);
  thetaY = 0;
}
```

Factor as $R_zR_yR_x$

Setting $R = |r_{ij}|$ for $0 \leq i \leq 2$ and $0 \leq j \leq 2$, formally multiplying $R_z(\theta_z)R_y(\theta_y)R_x(\theta_x)$, and equating yields

$$
\begin{bmatrix}
 r_{00} & r_{01} & r_{02} \\
 r_{10} & r_{11} & r_{12} \\
 r_{20} & r_{21} & r_{22}
\end{bmatrix} =
\begin{bmatrix}
 c_y c_z - s_y s_x s_z & c_y s_z + c_x s_y s_z & -c_x s_y \\
 c_x s_y s_z + c_y s_x c_z & c_x s_z c_y - c_y s_x s_z & c_y c_z \\
 -s_y & c_x & c_y
\end{bmatrix}.
$$
Analysis similar to the xyz case leads to the pseudocode

\[
\text{thetaY} = \arcsin(-r20);
\text{if (thetaY < PI/2)}
\]
\[
\{ \text{if (thetaY > -PI/2)}
\text{thetaZ = \arctan2(r10,r00);
thetaX = \arctan2(r21,r22);
}
\text{else}
\}
\{ // not a unique solution
\text{thetaZ = \arctan2(-r01,r02);
thetaX = 0;
}
\}
\text{else}
\}
\{ // not a unique solution
\text{thetaZ = \arctan2(-r01,r02);
thetaX = 0;
\}
\]

2.4.2 Factor Product of Two

Given a rotation R that is a product of two coordinate axis rotations, the problem is to factor it into three coordinate axis rotations using the ordering xyz. Derivations for the other orderings are similar. In the subsections the matrices are $P_x = R_x(\phi_x)$, $P_y = R_y(\phi_y)$, and $P_z = R_z(\phi_z)$. Define $s_x = \sin(\phi_x)$, $c_x = \cos(\phi_x)$, $s_y = \sin(\phi_y)$, $c_y = \cos(\phi_y)$, and $s_z = \sin(\phi_z)$, and $c_z = \cos(\phi_z)$.

Factor $P_x P_y$

Trivial. The factorization is $R = R_x(\phi_x) R_y(\phi_y) = R_x(\theta_x) R_y(\theta_y) R_z(\theta_z)$. Therefore, $\theta_x = \phi_x$, $\theta_y = \phi_y$, and $\theta_z = 0$.

Factor $P_y P_z$

The factorization is $R = R_y(\phi_y) R_z(\phi_z) = R_y(\theta_y) R_z(\theta_z) R_y(\theta_z)$. Formal multiplication of the various terms leads to the equation
\[
\begin{bmatrix}
 c_y & s_y s_z & c_y s_z \\
 c_y & -s_y & -c_y s_z \\
 -s_y & c_y s_z & c_y c_z \\
\end{bmatrix} =
\begin{bmatrix}
 c_z c_x & -c_y s_x & s_x \\
 c_y s_x + c_x s_y s_z & c_z c_s x y - s_x s_y s_z & -c_y s_s x \\
 -c_x s_y s_z + c_z s_s x y + c_z s_s x s_z & c_z s_x + c_x s_y s_z & c_s c_y \\
\end{bmatrix}.
\]

It is easy to see that \(s_y = c_a s_{h_y} \), in which case \(\theta_y = \sin^{-1}(\cos \theta_x \sin \theta_z) \). Adding the 10 and 21 terms yields

\[
0 + c_b s_{a_y} = (c_z s_x s_y + c_x s_z) + (c_z s_x + c_x s_y s_z) = (1 + s_y)(c_z s_x + c_x s_z),
\]

which leads to \(\sin(\theta_x + \theta_z) = c_b s_{a_y}/(1 + c_b s_{a_y}) \). In the event that \(c_b s_{a_y} = -1 \), this leads to a special case in the coding that is easy to solve. Subtracting the 10 term from the 21 term yields

\[
c_b s_{a_y} = 0 = (c_z s_x s_y + c_x s_z) - (c_z s_x + c_x s_y s_z) = (1 - s_x)(c_z s_x + c_x s_z),
\]

which leads to \(\sin(\theta_x - \theta_z) = c_b s_{a_y}/(1 - c_b s_{a_y}) \). In the event that \(c_b s_{a_y} = 1 \), this also leads to a special case in the coding that is easy to solve. The sine functions can be inverted and the two resulting equations for \(\theta_x \) and \(\theta_z \) can be solved. For the case \(|c_b s_{a_y}| < 1 \),

\[
\theta_x = \frac{1}{2} \left[\sin^{-1} \left(\frac{c_b s_{a_y}}{1 + c_b s_{a_y}} \right) + \sin^{-1} \left(\frac{c_b s_{a_y}}{1 - c_b s_{a_y}} \right) \right]
\]

\[
\theta_y = \sin^{-1}(c_a s_{h_y})
\]

\[
\theta_z = \frac{1}{2} \left[\sin^{-1} \left(\frac{c_b s_{a_y}}{1 + c_b s_{a_y}} \right) - \sin^{-1} \left(\frac{c_b s_{a_y}}{1 - c_b s_{a_y}} \right) \right].
\]

Factor \(P_x P_z \)

Trivial. The factorization is \(R = R_z(\phi_z) R_x(\phi_x) = R_z(\theta_z) R_x(\theta_x) R_y(\theta_y) \). Therefore, \(\theta_x = \phi_x, \theta_y = 0 \), and \(\theta_z = \phi_z \).

Factor \(P_z P_x \)

A construction similar to the case \(P_z P_x \) leads to

\[
\theta_x = \frac{1}{2} \left[\sin^{-1} \left(\frac{c_a C_x}{1 + s_a s_c} \right) + \sin^{-1} \left(\frac{c_a C_x}{1 - s_a s_c} \right) \right]
\]

\[
\theta_y = \sin^{-1}(s_a s_c)
\]

\[
\theta_z = \frac{1}{2} \left[\sin^{-1} \left(\frac{c_a C_x}{1 + s_a s_c} \right) - \sin^{-1} \left(\frac{c_a C_x}{1 - s_a s_c} \right) \right].
\]
Factor \(P_y P_z \)

Trivial. The factorization is \(R = R_y(\theta_y)R_z(\theta_z) = R_x(\theta_x)R_y(\theta_y)R_z(\theta_z) \). Therefore, \(\theta_x = 0, \theta_y = \phi_y \), and \(\theta_z = \phi_z \).

Factor \(P_z P_y \)

A construction similar to the case \(P_y P_z \) leads to

\[
\theta_x = \frac{1}{2} \left[\sin^{-1} \left(\frac{c_h s_c}{1 + s_h c_c} \right) - \sin^{-1} \left(\frac{c_h s_c}{1 - s_h c_c} \right) \right]
\]

\[
\theta_y = \sin^{-1}(s_h c_c)
\]

\[
\theta_z = \frac{1}{2} \left[\sin^{-1} \left(\frac{c_h s_c}{1 + s_h c_c} \right) + \sin^{-1} \left(\frac{c_h s_c}{1 - s_h c_c} \right) \right].
\]

2.5 Standard 3D Objects

The objects described here are useful as bounding regions for two purposes: rapid culling in the rendering process and rapid determination that two objects are not intersecting during the collision detection process.

2.5.1 Spheres

A sphere is defined by the set of all points \(\mathbf{X} \) equidistant from a center point \(\mathbf{C} \) with distance \(r > 0 \). The quadratic equation defining the set is \(|\mathbf{X} - \mathbf{C}|^2 = r^2 \).

For a geometric object that consists of a collection of points \(\{V_i\}_{i=0}^n \), a bounding sphere can be computed in a number of ways.

Sphere Containing Axis-Aligned Box

A simple approach is to compute the minimum-volume axis-aligned bounding box of the points, then select the smallest enclosing sphere of the box with sphere centered at the box center. The algorithm is

Point min = V[0], max = min;
for (i = 1; i <= n; i++)
 {
 }
if (V[i].x < min.x)
 min.x = V[i].x;
else if (V[i].x > max.x)
 max.x = V[i].x;

if (V[i].y < min.y)
 min.y = V[i].y;
else if (V[i].y > max.y)
 max.y = V[i].y;

if (V[i].z < min.z)
 min.z = V[i].z;
else if (V[i].z > max.z)
 max.z = V[i].z;
}
Point center = (min+max)/2;
Point diagonal = (max-min)/2;
float radiusSqr = diagonal.SquaredLength();

An advantage of this algorithm is the speed with which it is executed. The drawback to this algorithm is that the bounding sphere is not as good a fit as it could be.

Sphere Centered at Average of Points

An alternative that takes longer to compute but provides a somewhat better fit is to select the sphere center to be the average of the points and the sphere radius to be the smallest value for which the sphere of the given center and that radius encloses the points. The algorithm is

```
Point sum = V[0];
for (i = 1; i <= n; i++)
    sum += V[i];
Point center = sum/n;
float radiusSqr = 0;
for (i = 0; i < n; i++)
{
    Point diff = V[i] - center;
    float temp = diff.SquaredLength();
    if ( temp > radiusSqr )
        radiusSqr = temp;
}````
Minimum-Volume Sphere

Computing the minimum-volume sphere that encloses the points requires a more complicated algorithm based on work by Emo Welzl (1991). The problem uses a randomized linear algorithm, so the order is expected to be linear. The worst case is polynomial in the number of inputs, but the input data is randomly permuted so that the probability of the worst case occurring is negligible.

The pseudocode for the algorithm given below computes the minimum-volume sphere containing \( N \) points \( P[0] \) through \( P[N - 1] \). The idea is to maintain a set of supporting points for the sphere while processing the input point set one point at a time. The supporting points lie on the sphere and no other points are necessary to form the sphere.

```c
Sphere ComputeMinimumSphere (int N, Point P[])
{
 randomly permute the points P[0]..P[N-1];
 Sphere sphere = ExactSphere1(P[0]);
 PointSet support = { P[0] };
 i = 1;
 while (i < N)
 {
 if (P[i] not in support)
 {
 if (P[i] not in sphere)
 {
 add P[i] to support and (possibly) remove unnecessary points;
 compute sphere from current support;
 i = 0; // need to start over when support
 // changes
 continue;
 }
 i++;
 }
 }
}
```

Internally, the algorithm requires computing spheres that contain exactly two points, exactly three points, or exactly four points. Updating the support can be modularized into a collection of update functions, each depending on the current number of points in the support.
2.5.2 Oriented Boxes

Oriented boxes generally provide a better fit of the object than spheres. An oriented box is defined by a center \( \bar{C} \), three orthonormal axes \( U_i \) that form a right-handed coordinate system, and three extents \( e_i > 0 \) for \( i = 0, 1, 2 \). Let \( R = [U_0 \ U_1 \ U_2] \), an orthonormal matrix with determinant one. Any point \( \bar{X} = (x_0, x_1, x_2) \) inside or on the box can be represented as \( \bar{X} = \bar{C} + R \bar{Y} \), where \( \bar{Y} = (y_0, y_1, y_2) \) with \(|y_i| \leq e_i\) for all \( i \).

Axis-Aligned Boxes

There are various methods for generating bounding boxes that contain a set of points \( \{V_i\}_{i=0}^n \). The simplest is to fit with an axis-aligned box. This type of box is simpler to represent as two points, \( \bar{p}_{\min} = (x_{\min}, y_{\min}, z_{\min}) \) and \( \bar{p}_{\max} = (x_{\max}, y_{\max}, z_{\max}) \). The pseudocode is:

```c
Point min = V[0], max = min;
for (i = 1; i <= n; i++)
{
 if (V[i].x < min.x) min.x = V[i].x;
 if (V[i].x > max.x) max.x = V[i].x;
 if (V[i].y < min.y) min.y = V[i].y;
 if (V[i].y > max.y) max.y = V[i].y;
 if (V[i].z < min.z) min.z = V[i].z;
 if (V[i].z > max.z) max.z = V[i].z;
}
```

Fitting Points with a Gaussian Distribution

A Gaussian distribution is a probability distribution of the form \( A \exp((\bar{X} - \bar{C})M^{-1}(\bar{X} - \bar{C})) \), where \( A \) is an appropriate scaling factor, \( \bar{C} \) is the mean of the distribution, and \( M \) is the covariance matrix of the distribution. The distribution is said to be anisotropic if the eigenvalues of \( M \) are not all the same value.

A more sophisticated method for building an oriented box that usually fits the points better than an axis-aligned box is based on fitting the points with an anisotropic Gaussian distribution. The center of the box is the mean of the points,

\[
\bar{C} = \frac{1}{n} \sum_{j=0}^{n} V_j.
\]
The axes of the box are selected as unit-length eigenvectors of the covariance matrix

$$M = \frac{1}{n} \sum_{j=0}^{n-1} (\tilde{V}_j - \tilde{C})(\tilde{V}_j - \tilde{C})^\top.$$ 

If $\tilde{U}_i$ are unit-length eigenvectors, the extents along those axes are the extreme values of the projections of the points onto those axes, $e_i = \max_j |\tilde{U}_i \cdot (\tilde{V}_j - \tilde{C})|$. The pseudocode is

```plaintext
// Box has center, axis[3], extent[3]
Box box;

// compute mean of points
Point3 sum = V[0];
for (i = 1; i < n; i++)
 sum += V[i];
box.center = sum/n;

// compute covariances of points
Matrix3 mat = 0;
for (i = 0; i < n; i++)
 { Point3 delta = V[i] - box.center;
 mat += Tensor(delta, delta);
 }
Matrix3 covariance = mat/n;

// eigenvectors for covariance matrix are the box axes
ExtractEigenVectors(covariance, box.axis[3]);

// compute extents as extreme values of projections onto axes
box.extent = 0;
for (i = 0; i < n; i++)
 { Point3 delta = V[i] - box.center;
 for (j = 0; j < 3; j++)
 { Real adot = |Dot(box.axis[j], delta)|
 if (adot > box.extent[j])
 box.extent[j] = adot;
 }
 }
```
For a vector \( \vec{W} \), \( \text{Tensor}(\vec{W}, \vec{W}) \) is the matrix \( \vec{W} \vec{W}^T \). The code does require an
eigensolver for a \( 3 \times 3 \) matrix. The eigenvectors can be computed using a closed-form
solution rather than an iterative scheme.

One variation of the algorithm is to compute the convex hull of the data points
first, then build an oriented box containing the hull. Another variation is to compute
the eigenvectors of the covariance matrix, project the points onto the lines \( \vec{C} + r \vec{U}_i \)
in the direction of the eigenvectors \( \vec{U}_i \), then compute the intervals of projection
\([\text{min}_i, \text{max}_i]\). The point \( C \) is not the center of the box and must be replaced with
the correct center of the box implied by the projected intervals,

\[
\vec{C}' = \vec{C} + \sum_{i=0}^{2} \frac{\text{min}_i + \text{max}_i}{2} \vec{U}_i.
\]

**Minimum-Volume Box**

The best-fitting box may be considered to be the box of minimum volume that con-
tains the points. Constructing this box requires an iterative scheme to solve a mini-
mization problem, so it is recommended that minimum-volume boxes be computed
off-line or during program initialization and not during program run time. The algo-
rithm is as follows. For any choice of coordinate axes \( \vec{A}_i \), \( i = 0, 1, 2 \), the points
are projected onto the axes \( \vec{V}_0 + s \vec{A}_i \), the values being \( \rho_{ij} = \vec{A}_i \cdot (\vec{V}_j - \vec{V}_0) \) for all
\( j \). Define \( \alpha_i = \min_j (\rho_{ij}) \), \( \beta_i = \max_j (\rho_{ij}) \), and \( \gamma_i = (\alpha_i + \beta_i)/2 \). The center of the
smallest-volume oriented box with specified axes is

\[
\vec{C} = \vec{V}_0 + \sum_{i=0}^{2} \gamma_i \vec{A}_i.
\]

The extents of the oriented box are \( \alpha_i = (\beta_i - \alpha_i)/2 \).

Each set of coordinate axes can be represented as the columns of rotation matrices.
Each rotation matrix is generated by a unit-length vector \( \vec{U} \) and an angle \( \theta \in [0, 2\pi] \).
The mapping from rotation matrices to coordinate axes is of course not one-to-one.
However, the volume of the oriented boxes can be viewed as a function \( v : S^2 \times
[0, 2\pi] \rightarrow [0, \infty) \), where \( S^2 \) is the unit sphere. The volume is \( v(\vec{U}, \theta) = \prod_{i=0}^{2} (\beta_i - \alpha_i) \). This function is continuous on its compact domain, so from calculus it must
attain its minimum on that domain. Therefore, there exists an axis \( \vec{U}_0 \) and an angle \( \theta_0 \)
for which \( v(\vec{U}_0, \theta_0) \leq v(\vec{U}, \theta) \) for all axes \( \vec{U} \) and all angles \( \theta \). The construction of \( \vec{U}_0 \)
and \( \theta_0 \) can be implemented as a numerical minimization using techniques that do not
require derivatives. A good choice is Powell's direction set method (Press et al. 1988).
The rate of convergence to the minimum depends on the initial guesses for axis and
angle.
Fitting Triangles with a Gaussian Distribution

This method was presented in Gottschalk, Lin, and Manocha (1996). If the data points are the vertices of a triangle mesh, the triangles themselves may be used to generate an oriented box containing the vertices. The fit of an oriented bounding box to the convex hull of the vertices given previously has problems with sampling. The vertices on the convex hull may be irregularly distributed so that a small, dense collection of points can unfairly affect the orientation of the bounding box. This effect can be minimized by using a continuous formulation of the covariance matrix.

Suppose there are \( \ell \) triangles. If the \( i \)th triangle has vertices \( \vec{V}_{0,i}, \vec{V}_{1,i}, \), and \( \vec{V}_{2,i}, \) then the triangle and its interior are represented by \( \vec{X}_i(s, t) = \vec{V}_{0,i} + s(\vec{V}_{1,i} - \vec{V}_{0,i}) + t(\vec{V}_{2,i} - \vec{V}_{0,i}) \) for \( 0 \leq s \leq 1, 0 \leq t \leq 1, \) and \( s + t \leq 1. \) Let \( m_i = |(\vec{V}_{1,i} - \vec{V}_{0,i}) \times (\vec{V}_{2,i} - \vec{V}_{0,i})|/2 \) be the area of the triangle. Define the weights \( w_i = m_i / \sum_{i=0}^{\ell-1} m_i. \) The mean point of the convex hull is

\[
\vec{C} = \frac{1}{\ell} \sum_{i=0}^{\ell-1} w_i \int_0^1 \int_0^{1-t} \vec{X}_i(s, t) \, ds \, dt
\]

\[
= \frac{1}{\ell} \sum_{i=0}^{\ell-1} w_i \left( \sum_{j=0}^2 \vec{V}_{j,i} \right)
\]

and the covariance matrix of the convex hull is

\[
M = \frac{2}{\ell} \sum_{i=0}^{\ell-1} w_i \int_0^1 \int_0^{1-t} (\vec{X}_i(s, t) - \vec{C})(\vec{X}_i(s, t) - \vec{C})^T \, ds \, dt
\]

\[
= \frac{1}{12\ell} \sum_{i=0}^{\ell-1} w_i \left( \sum_{j=0}^2 \sum_{k=0}^2 (\vec{V}_{j,i} - \vec{C})(\vec{V}_{k,i} - \vec{C})^T \right).
\]

If \( \vec{A}_j \) are unit-length eigenvectors, the extents along those axes are \( a_i = \max_j |\vec{A}_j \cdot (\vec{X}_i - \vec{C})|, \) where the \( \vec{X}_i \) are the vertices. As in the subsection on fitting points with a Gaussian distribution, a variation allows adjustment of \( \vec{C} \) once the axes \( \vec{A}_j \) are known.

2.5.3 Capsules

A capsule is a natural extension of a sphere based on equidistance. It is defined as the set of all points that are distance \( r > 0 \) from a line segment with end point \( \vec{P} \) and direction \( \vec{D}. \) The other end point is \( \vec{P} + r \vec{D}. \) A capsule is a cylinder that has two hemispherical caps attached at the end points.
In this section, we present two algorithms to bound the points \( \{ \bar{X}_i \}_{i=0}^n \) one involving least-squares fitting and one based on a minimization that is solved using an iterative algorithm.

**Least-Squares Fit**

Fit the points by a line using the least-squares algorithm described in Appendix B. Let the line be \( \bar{A} + r \bar{W} \), where \( \bar{W} \) is unit length and \( \bar{A} \) is the average of the data points. The line will contain the capsule line segment. Compute \( r \) to be the maximum distance from the data points to the line. Select unit vectors \( \bar{U} \) and \( \bar{V} \) so that the matrix \( R = [ \bar{U} \bar{V} \bar{W} ] \) is orthonormal and has determinant one. The data points can be represented as \( \bar{X}_i = \bar{A} + r \bar{Y}_i \), where \( \bar{Y}_i = (u_i, v_i, w_i) \). In the \( (u, v, w) \) coordinate system, the capsule axis is contained by the line \( t(0, 0, 1) \). We need to compute the largest \( \xi_0 \) so that all points lie above the hemisphere \( u^2 + v^2 + (w - \xi_0)^2 = r^2 \) with \( w \leq \xi_0 \). The value is computed as

\[
\xi_0 = \min_i \{ w_i + \sqrt{r^2 - (u_i^2 + v_i^2)} \},
\]

where \( 0 \leq i \leq n \). Similarly, there is a smallest value \( \xi_1 \) so that all points lie below the hemisphere \( u^2 + v^2 + (w - \xi_1)^2 = r^2 \) with \( w \geq \xi_1 \). The value is computed as

\[
\xi_1 = \max_i \{ w_i - \sqrt{r^2 - (u_i^2 + v_i^2)} \}.
\]

The end points of the capsule line segment are \( \bar{P}_j = \bar{A} + \xi_j \bar{W} \) for \( j = 0, 1 \). If instead the data points are fit by a least-squares plane \( \bar{W} \cdot (\bar{X} - \bar{A}) = 0 \), the result is the same since the unit-length plane normal \( \bar{W} \) is exactly the line direction.

**Minimum of Minimum-Area Projected Circles**

For each unit-length direction \( \bar{W} \) such that \( \bar{W} \cdot (0, 0, 1) \geq 0 \) (\( \bar{W} \) lies on the upper unit hemisphere), select unit vectors \( \bar{U} \) and \( \bar{V} \) so that the matrix \( R = [ \bar{U} \bar{V} \bar{W} ] \) is orthonormal and has determinant one. The data points can be represented as \( \bar{X}_i = \bar{A} + r \bar{Y}_i \), where \( \bar{Y}_i = (u_i, v_i, w_i) \). The projections of the points onto the plane \( \bar{W} \cdot \bar{X} = 0 \) are \( (u_i, v_i) \). The minimum-area circle containing these points can be computed, say, the radius is \( r = r(\bar{W}) \) and the center is \( \bar{C} = \bar{C}(\bar{W}) \). Compute the vector \( \bar{W}' \) that minimizes \( r(\bar{W}) \) and let \( w_{\min} \) and \( w_{\max} \) be the extreme values for the \( w_i \). The capsule radius is \( r(\bar{W}') \) and let \( w_{\min}' \) and \( w_{\max}' \) be the extreme values for the \( w_i \). The capsule line segment has end points \( \bar{P}_0 = \bar{C}(\bar{W}') + w_{\min}' \bar{W}' \) and \( \bar{P}_0 = \bar{C}(\bar{W}') + w_{\max}' \bar{W}' \).
2.5.4 LOZENGES

A lozenge is also a natural extension of a sphere based on equidistance. It is defined as the set of all points that are distance \( r > 0 \) from a rectangle with origin \( \bar{P} \) and edge directions \( \bar{E}_0 \) and \( \bar{E}_1 \), where \( \bar{E}_0 \cdot \bar{E}_1 = 0 \). The four vertices of the rectangle are \( \bar{P}, \bar{P} + \bar{E}_0, \bar{P} + \bar{E}_1, \) and \( \bar{P} + \bar{E}_0 + \bar{E}_1 \). A lozenge is an oriented rectangle that has attached four half-cylinder sides and four quarter-spherical corners.

In this section, we present two algorithms to bound the points \( \{ \bar{X}_i \}_{i=0}^n \), one involving fitting with a Gaussian distribution and one based on a minimization that is solved using an iterative algorithm.

**Fit with a Gaussian Distribution**

Compute the mean \( \bar{A} \) of the points and compute the covariance matrix, just as in the algorithm for fitting with an oriented box. Let unit-length eigenvectors of the matrix be \( \bar{U}, \bar{V}, \) and \( \bar{W} \). Assume these are labeled so that \( \bar{U} \) corresponds to the largest eigenvalue and \( \bar{W} \) corresponds to the smallest eigenvalue. The data points are represented as \( \bar{X}_i = \bar{A} + u_i \bar{U}_i + v_i \bar{V}_i + w_i \bar{W}_i \). Let \( w_{\min} \) and \( w_{\max} \) be the extreme values for the \( w_i \). The data points are bounded by the two planes \( \bar{W} \cdot (\bar{X} - \bar{A}) = w_{\min} \) and \( \bar{W} \cdot (\bar{X} - \bar{A}) = w_{\max} \). Set the lozenge radius to \( r = (w_{\max} - w_{\min})/2 \) and adjust the mean to \( \bar{A} \leftarrow \bar{A} + ((w_{\max} + w_{\min})/2) \bar{W} \).

Analogous to the fitting of data by a three-dimensional capsule, construct a two-dimensional capsule containing the pairs \( (u_i, w_i) \). We need to compute the largest \( \beta_0 \) so that all points lie above the hemicircle \( u^2 + (v - \beta_0)^2 = r^2 \) with \( v \leq \alpha_0 \). The value is computed as

\[
\beta_0 = \min_i \left\{ u_i + \sqrt{r^2 - w_i^2} \right\},
\]

where \( 0 \leq i \leq n \). Similarly, there is a smallest value \( \beta_1 \) so that all points lie below the hemicircle \( u^2 + (v - \beta_0)^2 = r^2 \) with \( v \geq \beta_1 \). The value is computed as

\[
\beta_1 = \max_i \left\{ u_i - \sqrt{r^2 - w_i^2} \right\}.
\]

The end points of the projected capsule line segment determine an edge of the lozenge, \( \bar{E}_1 = (\beta_1 - \beta_0) \bar{V} \).

Repeat this process for the pairs \( (u_i, w_i) \) to obtain values

\[
\alpha_0 = \min_i \left\{ u_i + \sqrt{r^2 - w_i^2} \right\}.
\]
\[ \alpha_t = \max_i \left\{ w_i - \sqrt{r^2 - u_i^2} \right\}. \]

Although it appears that the other lozenge edge should be \( E_0 = (\alpha_1 - \alpha_0) \bar{U} \), it might not be. The hemicylinder ends that are attached by the above process form mitered corners that enclose more space than the quarter spheres. It is possible for some data points to be inside the hemicylinder overlap, but outside the quarter sphere. The candidate edge \( E_0 \) may need to be increased to close the outliers.

Let \( K_0 = \bar{A} + \alpha_0 \bar{U} + \beta_0 \bar{V} \) be one of the corner points of the current lozenge rectangle. Suppose that \( \bar{P} = \bar{A} + \alpha_p \bar{U} + \beta_p \bar{V} + \gamma_p \bar{W} \) is a point outside the quarter sphere centered at \( \bar{K}_0 \). For this to be true, \( |\bar{P} - \bar{K}_0| > r \). The corner must be adjusted to \( \bar{K}_1 = \bar{A} + \alpha_1 \bar{U} + \beta_1 \bar{V} \) so that \( |\bar{P} - \bar{K}_1| = r \). There are two degrees of freedom for the adjustment. One degree is eliminated by requiring \( (\alpha_1, \beta_1) = \alpha_0 (\alpha_0, \beta_0) + (1 - t)(\alpha_p, \beta_p) \). Replacing in the previous distance equation yields a quadratic in \( t \) that can be solved for

\[ t = \frac{r^2 - \gamma_p^2}{(\alpha_p - \alpha_0)^2 + (\beta_p - \beta_0)^2}. \]

The adjustment on the corner point does not affect previous containment relationships. Thus, the list of input points can be iterated and the corners adjusted as needed.

After the adjustment, the lozenge rectangle parameters are \( [\alpha_0, \alpha_1] \times [\beta_0, \beta_1] \). The lozenge origin is chosen to be \( \bar{A} + \alpha_0 \bar{U} + \beta_0 \bar{V} \), and the lozenge edges are \( E_0 = (\alpha_1 - \alpha_0) \bar{U} \) and \( E_1 = (\beta_1 - \beta_0) \bar{V} \).

**Minimization Method**

The construction of a lozenge in the last subsection used eigenvectors from the covariance matrix. The same construction can be applied for any choice of orthonormal vectors that form a right-handed system. The corresponding rotation matrices whose columns are the selected vectors form a three-parameter family (the unit quaternions form a three-dimensional manifold in 4-space). Let the parameters be labeled as the 3-tuple \( \bar{p} \). The volume for a given set of parameters, \( \nu(\bar{p}) \), can be computed by adding the volumes of the pieces forming the lozenge: the rectangular box, the four hemicylinder sides, and the four quarter-sphere corners. A minimization algorithm can be applied to \( \nu \) to obtain parameters \( \bar{p}^* \) so that \( \nu(\bar{p}^*) \) is a global minimum.

### 2.5.5 Cylinders

An infinite cylinder is the set of all points a distance \( r \) from a line \( \bar{P} + t \bar{D} \), where \( t \in \mathbb{R} \) and \( \bar{D} \) is unit length. A finite cylinder is a subset of an infinite cylinder, where \(|t| \leq h/2\)
for a specified height \( h \). We will refer to finite cylinders simply as "cylinders." If we need to talk about infinite cylinders, we will refer to them explicitly as "infinite cylinders."

Two algorithms to bound the points \( \{ \bar{X}_i \}^n_{i=0} \) are as follows. Fit the points by a line using the least-squares algorithm described in Appendix B. Let the line be \( \bar{A} + t \bar{W} \), where \( \bar{W} \) is unit length and \( \bar{A} \) is the average of the data points. Select unit vectors \( \bar{U} \) and \( \bar{V} \) so that the matrix \( R = [\bar{U} \bar{V} \bar{W}] \) is orthonormal and has determinant one. The data points can be represented as \( \bar{X}_i = \bar{A} + R\bar{Y}_i \), where \( \bar{Y}_i = (u_i, v_i, w_i) \).

Least-Squares Line Contains Axis

The cylinder radius is \( r = \max_{i} \{ \sqrt{u_i^2 + v_i^2} \} \). The cylinder height is \( h = w_{\text{max}} - w_{\text{min}} \), where \( w_{\text{min}} \) and \( w_{\text{max}} \) are the extreme values of the \( w_i \). To conform to the finite cylinder definition, the line must have its translation vector adjusted. The new translation is

\[
\bar{A}' = \bar{A} + \frac{w_{\text{min}} + w_{\text{max}}}{2} \bar{W}.
\]

The line is \( \bar{A}' + t \bar{W} \) and the cylinder is constrained by \( |t| \leq h/2 \).

Least-Squares Line Moved to Minimum-Area Center

The minimum-area circle containing the \((u_i, v_i)\) values is computed and has center \((u', v')\) and radius \( r \). The least-squares line is shifted to contain the circle center,

\[
\bar{A}' = \bar{A} + u'\bar{U} + v'\bar{V}.
\]

The cylinder radius is \( r \) and the algorithm in the last subsection is applied to compute \( h \). That algorithm also shifts the line in the direction of \( \bar{W} \) to \( \bar{A}'' + t \bar{W} \), where

\[
\bar{A}'' = \bar{A}' + \frac{w_{\text{min}} + w_{\text{max}}}{2} \bar{W}.
\]

2.5.6 ELLIPSOIDS

An ellipsoid in standard axis-aligned form is

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\]

with center \((0, 0, 0)\) and semiaxis lengths \( a > 0, b > 0, \) and \( c > 0 \). The axis directions of the ellipse are \((1, 0, 0)\), \((0, 1, 0)\), and \((0, 0, 1)\).
Given a coordinate system with center \( \mathbf{C} \) and orthonormal axis directions \( \mathbf{U}_i \) for \( 0 \leq i \leq 2 \), the ellipsoid with that center and axes is

\[
(\mathbf{X} - \mathbf{C})^T R^T D R (\mathbf{X} - \mathbf{C}) = 1,
\]

where \( R = [\mathbf{U}_0 \mathbf{U}_1 \mathbf{U}_2] \) is a rotation matrix, \( D = \text{diag}(1/d_0^2, 1/d_1^2, 1/d_2^2) \) has positive diagonal entries that are the squared semiaxis lengths, and \( \mathbf{X} \) is the algebraic variable for the equation. An equation \( (\mathbf{X} - \mathbf{C})^T M (\mathbf{X} - \mathbf{C}) = 1 \), where \( M \) is a positive definite matrix, also represents an ellipsoid. The axes and semiaxis lengths are obtained by an eigendecomposition \( M = R^T D R \) (see Section B.2 in Appendix B).

The most general form for the ellipsoid is \( \mathbf{X}^T A \mathbf{X} + \mathbf{b}^T \mathbf{X} + c = 0 \), where \( A \) is positive definite. It is possible to algebraically manipulate this, analogous to completing the square for a quadratic polynomial of one variable, and obtain the other form. The center is \( \mathbf{C} = -A^{-1} \mathbf{b}/2 \), and the matrix is \( M = A/(\mathbf{b}^T A^{-1} \mathbf{b}/4 - c) \).

**Axis-Aligned Ellipsoid**

Given a set of points \( \{\mathbf{V}_i\}_{i=0}^n \), a simple way to bound with an ellipsoid is to first generate the axis-aligned box containing the points and establish the ratios of semiaxis lengths. Let \( \mathbf{p}_{\text{min}} \) and \( \mathbf{p}_{\text{max}} \) be the vectors storing the minimum and maximum component values. The center of the ellipsoid is \( \mathbf{C} = (\mathbf{p}_{\text{max}} + \mathbf{p}_{\text{min}})/2 \). The semiaxis lengths are components of \( \lambda (\mathbf{p}_{\text{max}} - \mathbf{p}_{\text{min}})/2 = \lambda (\delta_0, \delta_1, \delta_2) \), where \( \lambda > 0 \) is to be determined. Let \( D = \text{diag}(1/(\lambda \delta_0)^2, 1/(\lambda \delta_1)^2, 1/(\lambda \delta_2)^2) \). The ellipsoid is \( (\mathbf{X} - \mathbf{C})^T E (\mathbf{X} - \mathbf{C}) = 1 \), where \( E = D/ \max_i ((V_i - C)^T D (V_i - C)) \).

**Fitting Points with a Gaussian Distribution**

This method is similar to the one used for fitting points with an oriented box. The mean of the points is used for the center of the ellipsoid, and the eigenvalues and eigenvectors of the covariance matrix are used for the axes. The eigenvalues are used in the same way as the vector \( (\delta_0, \delta_1, \delta_2) \) in the fit with an axis-aligned ellipsoid. The ellipsoid is \( (\mathbf{X} - \mathbf{C})^T E (\mathbf{X} - \mathbf{C}) = 1 \), where \( E = (R^T D R)/ \max_i ((V_i - C)^T R^T D R (V_i - C)) \).

**Minimum-Volume Ellipsoid**

While the theory of such a fit has been worked out using randomized linear techniques (Welzl 1991), an implementation is extremely difficult because it requires special-case handlers for bounding point sets with up to nine points (the minimum-volume sphere algorithm requires special-case handlers with up to four points). An alternative is to use a constrained numerical minimization, something that is challenging but
not impossible to implement. In either case, rapidly computing minimum-volume ellipsoids is not possible at the moment for real-time applications.

2.6 Distance Methods

Calculating distances between points, linear components (line, ray, or line segment), triangles, and rectangles is based on minimizing a quadratic function on a compact set. The solution can be computed using methods of calculus. Generally, if two objects are parameterized as \( \tilde{X}(\tilde{s}) \) and \( \tilde{Y}(\tilde{t}) \) for \( \tilde{s} \in A \subset \mathbb{R}^n \) and \( \tilde{t} \in B \subset \mathbb{R}^m \), then the squared distance between two points, one from each set, is \( Q(\tilde{s}, \tilde{t}) = |X(\tilde{s}) - Y(\tilde{t})|^2 \) for \( (\tilde{s}, \tilde{t}) \in A \times B \subset \mathbb{R}^n \times \mathbb{R}^m \). This is a continuously differentiable function whose minimum occurs either at an interior point of \( A \times B \), in which case \( \nabla Q = 0 \), or at a boundary point of \( A \times B \), in which case the problem is reduced to minimizing a quadratic function in spaces with dimension smaller than \( n + m \). Thus, the algorithm is recursive in dimension.

2.6.1 Point to Linear Component

The following construction applies in any dimension, not just in three dimensions. Let the point be \( \tilde{P} \). A line is parameterized as \( \tilde{L}(t) = \tilde{B} + t\tilde{M} \), where \( \tilde{B} \) is a point on the line, \( \tilde{M} \) is the line direction, and \( t \in \mathbb{R} \). A ray is of the same form but with restriction \( t \geq 0 \). A line segment is restricted even further with \( t \in [0, 1] \).

The closest point on the line to \( \tilde{P} \) is the projection of \( \tilde{P} \) onto the line, \( \tilde{Q} = \tilde{B} + t_0\tilde{M} \), where

\[
t_0 = \frac{\tilde{M} \cdot (\tilde{P} - \tilde{B})}{\tilde{M} \cdot \tilde{M}}.
\]

The distance from \( \tilde{P} \) to the line is

\[
D = |\tilde{P} - (\tilde{B} + t_0\tilde{M})|.
\] (2.14)

If \( t_0 \leq 0 \), then the closest point on the ray to \( \tilde{P} \) is \( \tilde{B} \). For \( t_0 > 0 \), the projection \( \tilde{B} + t_0\tilde{M} \) is the closest point. The distance from \( \tilde{P} \) to the ray is

\[
D = \begin{cases} 
|\tilde{P} - \tilde{B}|, & t_0 \leq 0 \\
|\tilde{P} - (\tilde{B} + t_0\tilde{M})|, & t_0 > 0 .
\end{cases}
\] (2.15)

Finally, if \( t_0 > 1 \), then the closest point on the line segment to \( \tilde{P} \) is \( \tilde{B} + \tilde{M} \). The distance from \( \tilde{P} \) to the line segment is
\[
D = \begin{cases} 
|\vec{P} - \vec{B}|, & t_0 \leq 0 \\
|\vec{P} - (\vec{B} + t_0\vec{M})|, & 0 < t_0 < 1 \\
|\vec{P} - (\vec{B} + \vec{M})|, & t_0 \geq 1 
\end{cases}
\] (2.16)

The division by \( \vec{M} \cdot \vec{M} \) is the most expensive algebraic operation. The implementation should defer the division as late as possible. The pseudocode is given below. The returned quantity is squared distance and the segment parameter of the closest point is also made available.

```c
float SquaredDistancePointSegment (Point P, Segment segment, float & t) {
 float diff = P - segment.B;
 float t = Dot(segment.M, diff);

 if (t > 0) {
 float dotMM = Dot(segment.m.segment.m);
 if (t < dotMM) {
 t = t / dotMM;
 diff = diff - t * segment.M;
 } else {
 t = 1;
 diff = diff - segment.M;
 }
 } else {
 t = 0;
 }

 return Dot(diff, diff);
}
```

It is also possible to implement a point-to-segment distance algorithm without divisions, but it requires storing more information with the linear component. The line segment can be represented in the style of oriented boxes, \( \vec{C} + r\vec{U} \), where \( \vec{U} \) is a unit-length vector and \( r \in [-r, r] \). The line segment data structure still stores two vector quantities, but must additionally store \( r \). Given two end points initially,
preprocessing time includes computing $\tilde{U}$, an operation that requires an inverse square root. The pseudocode is

```c
float SquaredDistancePointSegment (Point P, Segment segment, float& t)
{
 diff = P - segment.C;
 t = Dot(segment.U,diff);

 if (t < -segment.r)
 {
 t = -segment.r;
 } else if (t > segment.r)
 {
 t = segment.r;
 }

 diff = diff - t*segment.U;
 return Dot(diff,diff);
}
```

A further small speedup (on average) is possible by allowing the line segment to store $rU$ in addition to $r$ and $U$. The pseudocode is

```c
float SquaredDistancePointSegment (Point P, Segment segment, float& t)
{
 diff = P - segment.C;
 t = Dot(segment.U,diff);

 if (t < -segment.r)
 {
 t = -segment.r;
 diff = diff + segment.rU;
 } else if (t > segment.r)
 {
 t = segment.r;
 diff = diff - segment.rU;
 } else
 {
 diff = diff - t*segment.U;
 }
 return Dot(diff,diff);
}
```
The six possibilities for $I \times J$.

### 2.6.2 Linear Component to Linear Component

The two linear components are $\tilde{L}_0(s) = \tilde{B}_0 + s\tilde{M}_0$ for $s \in I \subset \mathbb{R}$ and $\tilde{L}_1(t) = \tilde{B}_1 + t\tilde{M}_1$ for $t \in J \subset \mathbb{R}$. The first component is a line if $I = \mathbb{R}$, a ray if $I = [0, \infty)$, or a segment if $I = [0, 1]$. The second component is similarly classified.

The squared-distance function for any two points on the linear components is $Q(s, t) = |\tilde{L}_0(s) - \tilde{L}_1(t)|^2$ for $(s, t) \in I \times J$. The function is quadratic in $s$ and $t$, $Q(s, t) = as^2 + 2bst + ct^2 + 2ds + 2et + f$.

where $a = \tilde{M}_0 \cdot \tilde{M}_0$, $b = -\tilde{M}_0 \cdot \tilde{M}_1$, $c = \tilde{M}_1 \cdot \tilde{M}_1$, $d = \tilde{M}_0 \cdot (\tilde{B}_0 - \tilde{B}_1)$, $e = -\tilde{M}_1 \cdot (\tilde{B}_0 - \tilde{B}_1)$, and $f = (\tilde{B}_0 - \tilde{B}_1) \cdot (\tilde{B}_0 - \tilde{B}_1)$. Quadratics are classified by the sign of $ac - b^2$. For function $Q$,

$$ac - b^2 = (\tilde{M}_0 \cdot \tilde{M}_0)(\tilde{M}_1 \cdot \tilde{M}_1) - (\tilde{M}_0 \cdot \tilde{M}_1)^2 = |\tilde{M}_0 \times \tilde{M}_1|^2 \geq 0.$$

If $ac - b^2 > 0$, then the two linear components are not parallel and the graph of $Q$ is a paraboloid. If $ac - b^2 = 0$, then the two line segments are parallel and the graph of $Q$ is a parabolic cylinder.

The goal is to minimize $Q(s, t)$ over the domain $I \times J$. Since $Q$ is a continuously differentiable function, the minimum occurs either at an interior point of the domain where the gradient $\nabla Q = 2(as + bt + d, bs + ct + e) = (0, 0)$ or at a point on the boundary of the domain. Figure 2.1 shows the six possibilities for $I \times J$. The plane is partitioned into regions in which $\tilde{P}$ can live. Each region is handled differently in the distance calculations.
Line to Line

If the lines are not parallel \((ac - b^2 > 0)\), then the minimum distance must occur when \(\vec{Q}(0, 0)\). The two equations in two unknowns can be solved for \(s = (be - cd)/(ac - b^2)\) and \(t = (bd - ae)/(ac - b^2)\). If the lines are parallel, only one equation from \(\vec{Q}(0, 0)\) is independent. Any choice of \(s\) and \(t\) satisfying this equation will produce a pair of closest points on the lines. The simplest choice is \(s = -d/a\) and \(t = 0\). The pseudocode is

```c
float SquaredDistanceLineLine (Line line0, Line line1, float& s, float& t)
{
 diff = line0.B - line1.B;
 a = Dot(line0.M, line0.M);
 b = -Dot(line0.M, line1.M);
 c = Dot(line1.M, line1.M);
 d = Dot(line0.M, diff);
 f = Dot(diff, diff);
 det = |a*c-b*b|; // = |Cross(line0.M, line1.M)|^2 > 0

 if (Positive(det))
 {
 // lines are not parallel
 e = -Dot(line1.M, diff);
 invDet = 1/det;
 s = (b*e-c*d)*invDet;
 t = (b*d-a*e)*invDet;
 return s*(a*s+b*t+2*d)+t*(b*s+c*t+2*e)+f;
 }
 else
 {
 // lines are parallel, select any closest pair of points
 s = -d/a;
 t = 0;
 return d*s+f;
 }
}
```

The code `Positive(det)` is a tolerance test for parallelism. If \(\delta = |ac - b^2| = |\vec{M}_0 \times \vec{M}_1|\), a simple absolute error test such as \(\delta \geq \epsilon\) is possible, but assumes the error tolerance is based on knowing the lengths of the direction vectors. It would be better to use a relative error that takes into account the lengths of the line directions, \(\delta \geq \epsilon|\vec{M}_0||\vec{M}_1|\). The lengths of the line directions can be stored with the lines to be used for this test. If that is not desired, the squared lengths should be used and the test becomes \(\delta^2 \geq \epsilon^2|abc|\).
Line to Ray or Segment

Similar algorithms can be written for line to ray and line to segment. The source code on the CD-ROM contains implementations for them.

Ray to Ray or Segment, and Segment to Segment

These cases are slightly more complicated because of the presence of the corner points in the $st$-domain. The description here is for segment-to-segment calculations. Similar algorithms can be written for the other cases, and the source code on the CD-ROM contains implementations for them.

When $ac - b^2 > 0$, the line segments are not parallel. The gradient of $Q$ is zero only when $\bar{s} = (be - cd)/(ac - b^2)$ and $\bar{t} = (bd - ae)/(ac - b^2)$. If $(\bar{s}, \bar{t}) \in [0, 1]^2$, then the minimum of $Q$ is found. Otherwise, the minimum must occur on the boundary of the square. The eight regions referred to in the remaining discussion are those shown in Figure 2.1.

Suppose $(s, t)$ is in region 1. The level curves of $Q$ are those curves in the $st$-plane for which $Q$ is a constant. Since the graph of $Q$ is a paraboloid, the level curves are ellipses. At the point where $\nabla Q = (0, 0)$, the level curve degenerates to a single point $(\bar{s}, \bar{t})$. The global minimum of $Q$ occurs there, call it $V_{\text{min}}$. As the level values $V$ increase from $V_{\text{min}}$, the corresponding ellipses are increasingly further away from $(\bar{s}, \bar{t})$. There is a smallest level value $V_0$ for which the corresponding ellipse (implicitly defined by $Q = V_0$) just touches the unit square edge $s = 1$ at a value $t = t_0 \in [0, 1]$. For level values $V < V_0$, the corresponding ellipses do not intersect the unit square. For level values $V > V_0$, portions of the unit square lie inside the corresponding ellipses. In particular, any points of intersection of such an ellipse with the edge must have a level value $V > V_0$. Therefore, $Q(1, t) < Q(1, t_0)$ for $t \in [0, 1]$ and $t \neq t_0$. The point $(1, t_0)$ provides the minimum squared distance between two points on the 3D line segments. The point on the first line segment is an end point, and the point on the second line segment is interior to that segment. Figure 2.2 illustrates the idea by showing various level curves.

An alternate way of visualizing where the minimum distance point occurs on the boundary is to intersect the graph of $Q$ with the plane $s = 1$. The curve of intersection is a parabola and is the graph of $F(t) = Q(1, t)$ for $t \in [0, 1]$. Now the problem has been reduced by one dimension to minimizing a function $F(t)$ for $t \in [0, 1]$. The minimum of $F(t)$ occurs either at an interior point of $[0, 1]$, in which case $F'(t) = 0$ at that point, or at an end point $t = 0$ or $t = 1$. Figure 2.2 shows the case when the minimum occurs at an interior point. At that point the ellipse is tangent to the line $s = 1$. In the end point cases, the ellipse may just touch one of the corners of the unit square but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partitioning idea applies in the one-dimensional case. The interval $[0, 1]$ partitions the real line into three intervals, $t < 0$, $t \in [0, 1]$, and $t > 1$. Let $F'(t) = 0$. If $t < 0$, then $F(t)$ is an increasing function for $t \in [0, 1]$. The minimum restricted to $[0, 1]$ must occur
at \( t = 0 \), in which case \( Q \) attains its minimum at \((s, t) = (1, 0)\). If \( \dot{t} > 1 \), then \( F(t) \) is a decreasing function for \( t \in [0, 1] \). The minimum for \( F \) occurs at \( t = 1 \), and the minimum for \( Q \) occurs at \((s, t) = (1, 1)\). Otherwise, \( \dot{t} \in [0, 1] \), \( F \) attains its minimum at \( \dot{t} \), and \( Q \) attains its minimum at \((s, t) = (1, \dot{t})\).

The occurrence of \((\dot{s}, \dot{t})\) in region 3, 5, or 7 is handled in the same way as when the global minimum is in region 0. If \((\dot{s}, \dot{t})\) is in region 5, then the minimum occurs at \((s_0, 1)\) for some \(s_0 \in [0, 1]\). If \((\dot{s}, \dot{t})\) is in region 5, then the minimum occurs at \((0, s_0)\) for some \(s_0 \in [0, 1]\). Finally, if \((\dot{s}, \dot{t})\) is in region 7, then the minimum occurs at \((s_0, 0)\) for some \(s_0 \in [0, 1]\). Determining if the first contact point is at an interior or end point of the appropriate interval is handled the same as discussed earlier.

If \((\dot{s}, \dot{t})\) is in region 2, it is possible the level curve of \( Q \) that provides first contact with the unit square touches either edge \( s = 1 \) or edge \( t = 1 \). Because the global minimum occurs in region 2, the gradient at the corner \((1, 1)\) cannot point inside the unit square. If \( \nabla Q = (Q_s, Q_t) \), where \( Q_s \) and \( Q_t \) are the partial derivatives of \( Q \), it must be that the partial derivatives cannot both be negative. The choice of edge \( s = 1 \) or \( t = 1 \) can be made based on the signs of \( Q_s(1, 1) \) and \( Q_t(1, 1) \). If \( Q_s(1, 1) > 0 \), then the minimum must occur on edge \( t = 1 \) since \( Q(s, 1) < Q(1, 1) \) for \( s < 1 \) but close to 1.
Similarly, if $Q(1, 1) > 0$, then the minimum must occur on edge $s = 1$. Determining whether the minimum is interior to the edge or at an end point is handled as in the case of region 1. The occurrence of $(s, t)$ in regions 4, 6, and 8 is handled similarly.

When $ac - b^2 = 0$, the gradient of $Q$ is zero on an entire $st$-line, $s = -(bt + d)/a$ for all $t \in \mathbb{R}$. If any pair $(s, t)$ satisfying this equation is in $[0, 1]$, then that pair leads to two points on the 3D lines that are closest. Otherwise, the minimum must occur on the boundary of the square. Rather than solving the problem using minimization, we take advantage of the fact that the line segments lie on parallel lines.

The origin of the first line is assumed to be $\vec{B}_0$ and the line direction is $\vec{M}_0$. The first line segment is parameterized as $\vec{B}_0 + s \vec{M}_0$ for $s \in [0, 1]$. The second line segment can be projected onto the first line. The end point $\vec{B}_1$ can be represented as

$$\vec{B}_1 = \vec{B}_0 + \sigma_0 \vec{M}_0 + \vec{U}_0,$$

where $\vec{U}_0$ is a vector orthogonal to $\vec{M}_0$. The coefficient of $\vec{M}_0$ is

$$\sigma_0 = \frac{\vec{M}_0 \cdot (\vec{B}_1 - \vec{B}_0)}{\vec{M}_0 \cdot \vec{M}_0} = \frac{-d}{a},$$

where $a$ and $d$ are some coefficients of $Q(s, t)$ defined earlier. The other end point $\vec{B}_1 + \vec{M}_1$ can be represented as

$$\vec{B}_1 + \vec{M}_1 = \vec{B}_0 + \sigma_1 \vec{M}_0 + \vec{U}_1,$$

where $\vec{U}_1$ is a vector orthogonal to $\vec{M}_0$. The coefficient of $\vec{M}_0$ is

$$\sigma_1 = \frac{\vec{M}_0 \cdot (\vec{B}_1 + \vec{B}_0)}{\vec{M}_0 \cdot \vec{M}_0} = \frac{b + d}{a},$$

where $b$ is also a coefficient of $Q(s, t)$. The problem now reduces to determining the relative position of $[\max(\sigma_0, \sigma_1), \min(\sigma_0, \sigma_1)]$ with respect to $[0, 1]$. If the two intervals are disjoint, then the minimum distance occurs at end points of the two 3D line segments. If the two intervals overlap, then there are many pairs of points at which the minimum distance is attained. In this case the implementation returns a pair of points, an end point of one line and an interior point of the other line.

The implementation of the algorithm is designed so that at most one floating-point division is used when computing the minimum distance and corresponding closest points. Moreover, the division is deferred until it is needed. In some cases no division is needed.

Quantities that are used throughout the code are computed first. In particular, the values computed are $\vec{D} = \vec{B}_0 - \vec{B}_1$, $a = \vec{M}_0 \cdot \vec{M}_0$, $b = -\vec{M}_0 \cdot \vec{M}_1$, $c = \vec{M}_1 \cdot \vec{M}_1$, $d = \vec{M}_0 \cdot \vec{D}$, $e = -\vec{M}_1 \cdot \vec{D}$, and $f = \vec{D} \cdot \vec{D}$. It must be determined immediately whether or not the two line segments are parallel. The quadratic classifier is $\delta = ac - b^2$ and is also computed initially. The code actually computes $\delta = |ac - b^2|$ since it is possible for
nearly parallel lines that some floating-point round-off errors lead to a small negative quantity. Finally, \( \delta \) is compared to a floating-point tolerance value. If larger, the two line segments are nonparallel and the code for that case is processed. If smaller, the two line segments are assumed to be parallel and the code for that case is processed.

In the theoretical development, \( \tilde{s} = (be - cd)/\delta \) and \( \tilde{t} = (bd - ae)/\delta \) were computed so that \( \bar{V} Q(\tilde{s}, \tilde{t}) = (0, 0) \). The location of the global minimum is then tested to see if it is in the unit square \([0, 1]\). If so, then all the information to compute the minimum distance is known. If not, then the boundary of the unit square must be tested. To defer the division by \( \delta \), the code instead computes \( \tilde{s} = be - cd \) and \( \tilde{t} = bd - ae \) and tests for containment in \([0, \delta] \). If in that set, then the divisions are performed. If not, then the boundary of the unit square is tested. The general outline of the conditionals for determining which region contains \((\tilde{s}, \tilde{t})\) is

\[
\text{det} = a*c - b*d; \quad s = b*e - c*d; \quad t = b*d - a*e;
\]

\[
\text{if} ( s > 0 ) \{
\text{if} ( s <= \text{det} ) \{
\text{if} ( t >= 0 ) \{ \text{if} ( t <= \text{det} ) \{ \text{region 0} \} \text{else} \{ \text{region 3} \} \} \text{else} \{ \text{region 7} \} \}
\}
\text{else} \{
\text{if} ( t > 0 ) \{ \text{if} ( t <= \text{det} ) \{ \text{region 1} \} \text{else} \{ \text{region 2} \} \} \text{else} \{ \text{region 8} \} \}
\}
\text{else} \{
\text{if} ( t > 0 ) \{ \text{if} ( t <= \text{det} ) \{ \text{region 5} \} \text{else} \{ \text{region 4} \} \} \text{else} \{ \text{region 6} \} \}
\]

The block of code for handling region 0 is

\[
\text{invDet} = 1/det;
\text{invdet} = \text{invDet};
\text{t} *= \text{invDet};
\]

and requires a single division. The block of code for handling region 1 is

// \( F(t) = \bar{Q}(1,t) = (a + 2*d + f) + 2*(b*e)*t + (c)*t^2 \)
2.6 Distance Methods

\[
\begin{align*}
// F(t) &= 2*(b+e+c*t) \\
// F'(t) &= 0 \text{ when } t = -(b+e)/c \\
s &= 1; \\
tmp &= b+e; \\
if (\ tmp > 0 ) \ // T < 0, \text{ so minimum at } t = 0 \\
\quad t &= 0; \\
else if (\ -tmp > c ) \ // T > 1, \text{ so minimum at } t = 1 \\
\quad t &= 1; \\
else \ // 0 < T < 1, \text{ so minimum at } t = T \\
\quad t &= \ -tmp/c; \\
\end{align*}
\]

Notice that at most one division occurs in this block during run time. Code blocks for regions 3, 5, and 7 are similar.

The block of code for handling region 2 is

\[
\begin{align*}
// Q_s(1,1)/2 &= a+b+d, \quad Q_t(1,1)/2 = b+c+e \\
tmp &= b+d; \\
if (\ -tmp < a ) \ // Q_s(1,1) > 0 \\
\{ \\
\quad // F(s) = Q(s,1) = (c+2*e+f)+2*(b+d)*s+(a)*s^2 \\
\quad // F'(s) = 2*((b+d)+a*s), F'(S) = 0 \text{ when } s = -(b+d)/a < 1 \\
\quad t &= 1; \\
\quad if (\ tmp > 0 ) \ // S < 0, \text{ so minimum at } s = 0 \\
\quad \quad s &= 0; \\
\quad else \ // 0 < S < 1, \text{ so minimum at } s = S \\
\quad \quad s &= \ -tmp/a; \\
\} \\
else \ // Q_s(1,1) <= 0 \\
\{ \\
\quad s &= 1; \\
\quad tmp &= b+e; \\
\quad if (\ -tmp < c ) \ // Q_t(1,1) > 0 \\
\quad \{ \\
\quad \quad // F(t) = Q(1,t) = (a+2*d+f)+2*(b+e)*t+(c)*t^2 \\
\quad \quad // F'(t) = 2*((b+e)+c*t), F'(T) = 0 \text{ when } T = \\
\quad \quad // -(b+e)/c < 1 \\
\quad \quad if (\ tmp > 0 ) \ // T < 0, \text{ so minimum at } t = 0 \\
\quad \quad \quad t &= 0 \\
\quad \quad else \ // 0 <= T < 1, \text{ so minimum at } t = T \\
\quad \quad \quad t &= \ -tmp/c; \\
\} \\
else \ // Q_t(1,1) <= 0, \text{ gradient points to region 2, so} \\
\quad // \text{ minimum at } t = 1 \\
\quad t &= 1; \\
\}
\end{align*}
\]
Notice that at most one division occurs in this block during run time. Code blocks for regions 4, 6, and 8 are similar.

For parallel line segments, the first information to be computed is the ordering of \( q_0 = -d/a \) and \(-(b + d)/a\). Once the ordering is known, the two \( s \)-intervals can be compared to determine minimum distance. Note that \(-d/a\) corresponds to \( t = 0 \) and \(-(b + d)/a\) corresponds to \( t = 1 \).

```c
if (b > 0)
{
 // compare intervals [-(b+d)/a,-d/a] to [0,1]
 if (d >= 0)
 // -d/a <= 0, so minimum is at s = 0, t = 0
 else if (-d < a)
 // 0 < -d/a <= 1, so minimum is at s = -d/a, t = 0
 else
 // minimum occurs at s = 1, need to determine t (see // below)
}
else
{
 // compare intervals [-d/a, -(b+d)/a] to [0,1]
 if (-d >= a)
 // 1 <= -d/a, so minimum is at s = 1, t = 0
 else if (d <= 0)
 // 0 <= -d/a < 1, so minimum is at s = -d/a, t = 0
 else
 // minimum occurs at s = 0, need to determine t (see // below)
}
```

When \( b > 0 \), the remaining problem is to determine on which side of \( s = 1 \) is the quantity \(-(b + d)/a\). This is done by first finding that value of \( t \) for which \(-(b + d)/a \in [-(b + d)/a, -d/a] \) corresponds to \( s = 1 \). Simply set \(-(b + d)/a = 1\) and solve for \( t = -(a + d)/b \). By the time this case is reached at run time, it is known that \( a + d < 0 \), so \( t > 0 \). If \( t \leq 1 \), then the quantity can be used as is. But if \( t > 1 \), then clip to \( t = 1 \). The block of code is

```c
tmp = a+d;
if (-tmp >= b) t = 1; else t = -tmp/b;
```

Again note that the division is deferred until actually needed.

When \( b < 0 \), the remaining problem is to determine on which side of \( s = 0 \) is the quantity \(-(b + d)/a\). Set \(-(b + d)/a = 0\) and solve for \( t = -d/b \). By the time this
case is reached at run time, it is known that \( d > 0 \), so \( t > 0 \). If \( t \leq 1 \), then the quantity can be used as is. But if \( t > 1 \), then clip to \( t = 1 \). The block of code is

\[
\text{if } (d > 0) \text{ then } t = 1; \text{ else } t = -d/b;
\]

Just as in the algorithm for distance from point to line segment, the algorithm for distance from line segment to line segment can be implemented without divisions as long as the line segments are represented as \( \vec{C} + t\vec{U} \) for unit-length \( \vec{U} \) and \( t \in [-r, r] \).

### 2.6.3 Point to Triangle

The problem is to compute the minimum distance between a point \( \vec{P} \) and a triangle \( \vec{T}(s, t) = \vec{B} + s\vec{E}_0 + t\vec{E}_1 \) for \( (s, t) \in D = \{(s, t): s \in [0, 1], t \in [0, 1], s + t \leq 1\} \). The minimum distance is computed by locating the values \( (\vec{s}, \vec{t}) \in D \) corresponding to the point on the triangle closest to \( \vec{P} \). The squared-distance function for any point on the triangle to \( \vec{P} \) is \( Q(s, t) = |\vec{T}(s, t) - \vec{P}|^2 \) for \( (s, t) \in D \). The function is quadratic in \( s \) and \( t \),

\[
Q(s, t) = as^2 + 2bst + ct^2 + 2ds + 2et + f,
\]

where \( a = \vec{E}_0 \cdot \vec{E}_0, b = \vec{E}_0 \cdot \vec{E}_1, c = \vec{E}_1 \cdot \vec{E}_1, d = \vec{E}_0 \cdot (\vec{B} - \vec{P}), e = -\vec{E}_1 \cdot (\vec{B} - \vec{P}), \) and \( f = (\vec{B} - \vec{P}) \cdot (\vec{B} - \vec{P}) \).

Quadratics are classified by the sign of \( ac - b^2 \). For function \( Q \),

\[
ac - b^2 = (\vec{E}_0 \cdot \vec{E}_0)(\vec{E}_1 \cdot \vec{E}_1) - (\vec{E}_0 \cdot \vec{E}_1)^2 = |\vec{E}_0 \times \vec{E}_1|^2 > 0.
\]

The positivity is based on the assumption that the two edges \( \vec{E}_0 \) and \( \vec{E}_1 \) of the triangle are linearly independent, so their cross product is a nonzero vector. The goal is to minimize \( Q(s, t) \) over \( D \). Since \( Q \) is a continuously differentiable function, the minimum occurs either at an interior point of \( D \) where the gradient \( \nabla Q = 2(as + bt + d, bs + ct + e) = (0, 0) \) or at a point on the boundary of \( D \).

The gradient of \( Q \) is zero only when \( \vec{s} = (be - ce)/(ac - b^2) \) and \( \vec{t} = (bd - ae)/(ac - b^2) \). If \( (\vec{s}, \vec{t}) \in D \), then the minimum of \( Q \) is found. Otherwise, the minimum must occur on the boundary of the triangle. To find the correct boundary, consider Figure 2.3, which shows a partitioning of the plane analogous to that shown in Figure 2.1. The central triangle labeled region 0 is the domain of \( Q \), \( (s, t) \in D \). If \( (s, t) \) is in region 0, then the point on the triangle closest to \( \vec{P} \) is interior to the triangle.

Suppose \( (s, t) \) is in region 1. The level curves of \( Q \) are those curves in the \( st \)-plane for which \( Q \) is a constant. Since the graph of \( Q \) is a paraboloid, the level curves are ellipses. At the point where \( \nabla Q = (0, 0) \), the level curve degenerates to a single point \( (s, t) \). The global minimum of \( Q \) occurs there, call it \( V_{\text{min}} \). As the level values \( V \) increase from \( V_{\text{min}} \), the corresponding ellipses are increasingly further away from \( (s, t) \). There is a smallest level value \( V_0 \) for which the corresponding ellipse
**Figure 2.3** Partitioning of the $st$-plane by triangle domain $D$.

(implicitly defined by $Q = V_0$) just touches the triangle domain edge $s + t = 1$ at a value $s = s_0 \in [0, 1], t_0 = 1 - s_0$. For level values $V < V_0$, the corresponding ellipses do not intersect $D$. For level values $V > V_0$, portions of $D$ lie inside the corresponding ellipses. In particular, any points of intersection of such an ellipse with the edge must have a level value $V > V_0$. Therefore, $Q(s, 1 - s) > Q(s_0, t_0)$ for $s \in [0, 1]$ and $s \neq s_0$. The point $(s_0, t_0)$ provides the minimum squared distance between $P$ and the triangle. The triangle point is an edge point. Figure 2.4 illustrates the idea by showing various level curves.

An alternate way of visualizing where the minimum distance point occurs on the boundary is to intersect the graph of $Q$ with the plane $s = 1$. The curve of intersection is a parabola and is the graph of $F(s) = Q(s, 1 - s)$ for $s \in [0, 1]$. Now the problem has been reduced by one dimension to minimizing a function $F(s)$ for $s \in [0, 1]$. The minimum of $F(s)$ occurs either at an interior point of $[0, 1]$, in which case $F'(s) = 0$ at that point, or at an end point $s = 0$ or $s = 1$. Figure 2.4 shows the case when the minimum occurs at an interior point of the edge. At that point the ellipse is tangent to the line $s + t = 1$. In the end point cases, the ellipse may just touch one of the vertices of $D$, but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partitioning idea applies in the one-dimensional case. The interval $[0, 1]$ partitions the real line into three intervals, $s < 0, s \in [0, 1], s > 1$. Let $F'(s) = 0$. If $s < 0$, then $F(s)$ is an increasing function for $s \in [0, 1]$. The minimum restricted to $[0, 1]$ must occur at $s = 0$, in which case $Q$ attains its minimum at $(s, t) = (0, 1)$. If $s > 1$, then $F(s)$ is a decreasing function for $s \in [0, 1]$. The minimum for $F$ occurs at $s = 1$ and the minimum for $Q$ occurs at $(s, t) = (1, 0)$. Otherwise, $s \in [0, 1], F$ attains its minimum at $s = s_0$, and $Q$ attains its minimum at $(s, t) = (s_0, 1 - s_0)$.

The occurrence of $(s, t)$ in region 3 or 5 is handled in the same way as when the global minimum is in region 0. If $(s, t)$ is in region 3, then the minimum occurs at $(0, t_0)$ for some $t_0 \in [0, 1]$. If $(s, t)$ is in region 5, then the minimum occurs at $(s_0, 0)$ for some $s_0 \in [0, 1]$. Determining if the first contact point is at an interior or end point of the appropriate interval is handled the same as discussed earlier.

If $(s, t)$ is in region 2, it is possible the level curve of $Q$ that provides first contact with the unit square touches either edge $s + t = 1$ or edge $s = 0$. Because the global minimum occurs in region 2, the negative of the gradient at the corner $(0, 1)$ cannot
point inside $D$. If $\nabla Q = (Q_s, Q_t)$, where $Q_s$ and $Q_t$ are the partial derivatives of $Q$, it must be that $(0, -1) \cdot \nabla Q(0, 1)$ and $(1, -1) \cdot \nabla Q(0, 1)$ cannot both be negative. The two vectors $(0, -1)$ and $(1, -1)$ are directions for the edges $s = 0$ and $s + t = 1$, respectively. The choice of edge $s + t = 1$ or $s = 0$ can be made based on the signs of $(0, -1) \cdot \nabla Q(0, 1)$ and $(1, -1) \cdot \nabla Q(0, 1)$. The same type of argument applies in region 6. In region 4, the two quantities whose signs determine which edge contains the minimum are $(1, 0) \cdot \nabla Q(0, 0)$ and $(0, 1) \cdot \nabla Q(0, 0)$.

The implementation of the algorithm is designed so that at most one floating-point division is used when computing the minimum distance and corresponding closest points. Moreover, the division is deferred until it is needed, and in some cases no division is needed.

Quantities that are used throughout the code are computed first. In particular, the values computed are $\delta = \nabla Q(0, 0)$, $a = \hat{E}_0 \cdot \hat{E}_1$, $b = \hat{E}_0 \cdot \hat{E}_1$, $c = \hat{E}_1 \cdot \hat{E}_0$, $d = \hat{E}_0 \cdot \hat{E}_1$, $e = \hat{E}_0 \cdot \hat{D}$, and $f = \hat{D} \cdot \hat{D}$. The code actually computes $\delta = |ac - b^2|$ since it is possible for small edge lengths that some floating-point round-off errors lead to a small negative quantity.

In the theoretical development, $\delta = (be - cd)/\delta$ and $(bd - ae)/\delta$ were computed so that $\nabla Q(\hat{s}, \hat{t}) = (0, 0)$. The location of the global minimum is then tested to see if it is in the triangle domain $D$. If so, then the information to compute the minimum distance is known. If not, then the boundary of $D$ must be tested. To deter the division by $\delta$, the code instead computes $\hat{s} = be - cd$ and $\hat{t} = bd - ae$ and tests for
containment in a scaled domain, \( s \in [0, \delta], t \in [0, \delta], \) and \( s + t \leq \delta. \) If in that set, then the divisions are performed. If not, then the boundary of the unit square is tested. The general outline of the conditionals for determining which region contains \((s, t)\) is

\[
\text{det} = a*c-b*b; \quad s = b*e-c*d; \quad t = b*d-a*e;
\]

if ( s+t <= det )
{
    if ( s < 0 ) { if ( t < 0 ) { region 4 } else { region 3 } } 
    else if ( t < 0 ) { region 5 } 
    else { region 0 }
}
else
{
    if ( s < 0 ) { region 2 }
    else if ( t < 0 ) { region 6 }
    else { region 1 }
}

The block of code for handling region 0 is

\[
\text{invDet} = 1/\text{det};
\]

\[
s *= \text{invDet};
\]

\[
t *= \text{invDet};
\]

and requires a single division.

The block of code for region 1 is

\[
// F(s) = Q(s,1-s) - (a-2b+c)s^2 + 2(b+c+d-e)s + (c+2e+f)
// F(s)/2 = (a-2b+c)s + (b+c+d-e)
// F(S) = 0 when S = (c+e-b-d)/(a-2b+c)
// a-2b+c = |E0-E1|^2 > 0, so only sign of c+e-b-d need be
// considered
\]

if ( numer <= 0 )
{
    s = 0;
}
else
{
    \[ \text{denom} = a-2b+c; \]  // positive quantity
    s = ( numer > denom ? 1 : numer/denom );
}
\[
t = 1-s;
\]
The block of code for region 3 is given below. The block of code for region 5 is similar.

```c
// F(t) = Q(0,t) = ct^2 + et + f
// F'(t)/2 = ct+e
// F'(T) = 0 when T = -e/c
s = 0;
t = (e > 0 ? 0 : (e > -c ? 1 : -e/c));
```

The block of code for region 2 is given below. The blocks of code for regions 4 and 6 are similar.

```c
// Grad(Q) = 2(as+bt+d,bS+ct+e)
// (0,-1)*Grad(Q(0,1)) = (0,-1)*(b+d,c+e) = -(c+e)
// (1,-1)*Grad(Q(0,1)) = (1,-1)*(b+d,c+e) = (b+d)-(c+e)
// min on edge s=t-1 if (1,-1)*Grad(Q(0,1)) > 0
// min on edge s=0 otherwise

tmp0 = B+D;
tmp1 = C+E;
if (tmp1 > tmp0) // minimum on edge s=t-1
{
 numer = tmp1 * tmp0;
 denom = A-2*B+C;
 s = (numer > denom ? 1 : numer/denom);
 t = 1-s;
}
else // minimum on edge s=0
{
 s = 0;
 t = (tmp1 < 0 ? 1 : (E > 0 ? 0 : -E/C));
}
```

### 2.6.4 Linear Component to Triangle

**Source Code**

**Library**

Distance

**Filename**

DistLin3Tri3

The problem is to compute the minimum distance between a linear component $\tilde{L}(r) = \tilde{B} + r\tilde{M}$ for $r \in I$ and a triangle $\tilde{T}(s,t) = \tilde{A} + s\tilde{E}_0 + t\tilde{E}_1$ for $(s,t) \in D = \{(s,t): s \in [0,1], t \in [0,1], s + t \leq 1\}$. The squared-distance function between a point on the line and point on the triangle is $Q(s,t,r) = |\tilde{T}(s,t) - \tilde{L}(r)|^2$ for $(s,t,r) \in D \times I$, so

$$Q(s,t,r) = a_{00}s^2 + a_{11}t^2 + a_{22}r^2 + 2a_{01}st + 2a_{02}sr + 2a_{12}tr + 2hs + 2ht + 2h_2r + c,$$
where \( a_{00} = \vec{E}_0 \cdot \vec{E}_0, a_{11} = \vec{E}_1 \cdot \vec{E}_1, a_{22} = \vec{M} \cdot \vec{M}, a_{01} = \vec{E}_0 \cdot \vec{E}_1, a_{02} = -\vec{E}_0 \cdot \vec{M}, a_{12} = -\vec{E}_1 \cdot \vec{M}, b_0 = \vec{E}_0 \cdot (\vec{A} - \vec{B}), b_1 = \vec{E}_1 \cdot (\vec{A} - \vec{B}), b_2 = -\vec{M} \cdot (\vec{A} - \vec{B}), \) and \( c = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B}). \)

The partitioning of \( \mathbb{R}^3 \) into regions is similar to that shown in Figure 2.3, except that the regions are extruded along the \( r \)-axis and split based on whether \( f \) is \( \mathbb{R}, [0, \infty), \) or \([0, 1]. \) For example, region 0 is an infinite prism (line case), semi-infinite prism (ray case), or finite prism (segment case). As in the other distance calculation algorithms, if the solution \((\vec{x}, \vec{t}, \vec{r})\) to \( \vec{V}Q = (0, 0, 0) \) lies in region 0, then the minimum occurs at an interior point that is determined by the solution. Otherwise, the minimum occurs on a face separating regions. The region that contains the zero gradient solution must be determined and the correct faces between the regions must be analyzed to see which one contains the global minimum. Also analogous to the other algorithms, it is possible that the determinant of the system for \( \vec{V}Q = (0, 0, 0) \) is zero. In this case the linear component is parallel to the triangle and must be handled separately.

**Line to Triangle**

The partitioning of \( \mathbb{R}^3 \) yields eight regions. The system of equations from \( \vec{V}Q = (0, 0, 0) \) is \( A\vec{p} = -\vec{b}, \) where \( A = [a_{ij}], \vec{b} = [b_j], \) and \( \vec{p} = [s \, t \, r]^T. \) The skeleton of the pseudocode to handle the various regions is

```cpp
bool SquaredDistanceLineTriangle (Line line, Triangle triangle) {
 a00 = Dot(triangle.E0, triangle.E0);
 a01 = Dot(triangle.E0, triangle.E1);
 a02 = -Dot(triangle.E0, line.M);
 a11 = Dot(triangle.E1, triangle.E1);
 a12 = -Dot(triangle.E1, line.M);
 a22 = Dot(line.M, line.M);
 diff = triangle.A - line.B;
 b0 = Dot(triangle.E0, diff);
 b1 = Dot(triangle.E1, diff);
 b2 = -Dot(line.M, diff);
 c = Dot(diff, diff);

 // cofactors to be used for determinant and inversion of
 // matrix A
 cof00 = a11*a22 - a12*a21;
 cof01 = a02*a21 - a01*a22;
 cof02 = a01*a12 - a02*a11;
 det = a00*cof00 + a01*cof01 + a02*cof02;
 if (det < 0)
 {
 // avoids having to do dual cases for each region
 }
}
```
\[
\begin{align*}
det &= -\det; \\
b0 &= -b0; \\
b1 &= -b1; \\
b2 &= -b2; \\
\end{align*}
\]

if \( \text{Positive}(\text{det}) \)
\{
    \begin{align*}
    \text{cof}11 &= a00*a22 - a02*a02; \\
    \text{cof}12 &= a02*a01 - a00*a12; \\
    s &= -(\text{cof}00*b0 + \text{cof}01*b1 + \text{cof}02*b2); \\
    t &= -(\text{cof}01*b0 + \text{cof}11*b1 + \text{cof}12*b2); \\
    \end{align*}
\]

if \( s+t \leq \text{det} \)
\{
    if \( s < 0 \) \( \{ \text{if } t < 0 \} \) \{ region 4 \} \) else \{ region 3 \} \\
    else if \( t < 0 \) \{ region 5 \} \\
    else \{ region 0 \}
\}
else
\{
    if \( s < 0 \) \{ region 2 \} \\
    else if \( t < 0 \) \{ region 6 \} \\
    else \{ region 1 \}
\}
else
\{
    // Line is parallel to triangle. A closest pair of
    // points can be found by computing distance from line
    // to triangle edges (at most three line-to-segment
    // tests).
\}

The code \text{Positive}(\text{det}) \ should be a relative error test on the determinant with an application-specified tolerance. The code for the case when the minimum occurs at an interior point (region 0) is

\[
\begin{align*}
\text{invDet} &= 1/\text{det}; \\
    s &= s*\text{invDet}; \\
    t &= t*\text{invDet}; \\
    \text{cof}22 &= a00*a11 - a01*a01; \\
    r &= -(\text{cof}02*b0 + \text{cof}12*b1 + \text{cof}22*b2)*\text{invdet}; \\
\end{align*}
\]
The other regions involve the recursion in dimension. For example, in the case of region 3, the minimum must occur when \( s = 0 \). The quadratic function to minimize is \( Q_1(t, r) = a_{11}t^2 + a_{22}r^2 + 2a_{12}tr + 2b_{11}t + 2b_{22}r + c \) for \((t, r) \in [0, 1] \times \mathbb{R}\). The \( tr\)-plane is partitioned into three pieces, an infinite strip and two half planes. The solution \((t, \tilde{r})\) to \( \tilde{V}_Q = (0, 0) \) is computed. If it lies in the infinite strip, then the minimum of \( Q_1 \) (and hence \( Q \)) is found. Otherwise it lies in one of the half planes and the minimum must occur on the corresponding line boundary between the half plane and the infinite strip. This is yet one more recursion in dimension.

Suppose that \( i < 0 \). The minimum must occur when \( t = 0 \). The quadratic function to minimize is \( Q_2(r) = a_{22}r^2 + 2b_{22}r + c \) for \( r \in \mathbb{R} \). The solution occurs when \( dQ_2/dr = 0, \) so \( r = -b_{22}/a_{22} \). Similarly, if \( i > 1 \), the quadratic function to minimize is \( a_{12}r^2 + 2(a_{12} + b) - (a_{11} + 2b_1 + c), \) so \( t = -(a_{12} + b_2)/a_{22} \). The pseudocode for region 3 is

```plaintext
s = 0;
t = a12*b2 + a22*b1;
if (t >= 0)
{
 // det = all*a22-a12*a12-cof00 -
 // |Cross(triangle.E1, line.M)| > 0
 if (t <= det)
 {
 invDet = 1/cof00;
 t *= invDet;
 r = (a12*b1 - a22*b2)/invDet;
 }
 else
 {
 t = 1;
 r = -(b2+a12)/a22;
 }
}
else
{
 t = 0;
 r = -b2/a22;
}
```

The determinant is positive since it was already determined by this time that the line is not parallel to the triangle, so it cannot be parallel to an edge of the triangle. The code for the other regions is structured in a similar fashion.
Ray to Triangle and Segment to Triangle

These are straightforward modifications of the line-to-triangle algorithm where the domain of $Q(s, t, r)$ is $D \times [0, \infty)$ or $D \times [0, 1]$. The partitioning of $\mathbb{R}^3$ for a ray now has 16 components, 8 for $r > 0$ and 8 for $r < 0$. The partitioning for a segment has 24 components, 8 for $r < 0$, 8 for $r \in [0, 1]$, and 8 for $r > 1$. The source code on the CD-ROM contains an implementation of this algorithm.

2.6.5 POINT TO RECTANGLE

The distance algorithm for point to rectangle appears to be nearly the same as the distance algorithm for point to triangle except that the parameter domain is $(s, t) \in [0, 1]^2$. The parameter plane is partitioned into nine regions by the lines $s = 0$, $s = 1$, $t = 0$, and $t = 1$. This partition is shown in Figure 2.1, the lower-right diagram. There is, however, one main difference. If the zero of the gradient of $Q$ occurred in regions 2, 4, or 6 in the partition of the plane by the triangle parameters, then the minimum of $Q$ could occur on one of two edges. For rectangles, this is not the case. If the zero of the gradient of the quadratic is in region 2, then the minimum must occur at the vertex. The same argument is made for regions 4, 6, and 8. Because the edges of the rectangle meet at a right angle, the level sets of the squared-distance function are in fact circles, not ellipses. The closest point on the rectangle to the specified point $\hat{P}$ is obtained by projecting $\hat{P}$ onto the plane of the rectangle; call this point $\hat{P}_0$. If $\hat{P}_0$ is inside the rectangle, then it is the closest point. If it is in regions 1, 3, 5, or 7, then the closest point is obtained by projecting $\hat{P}$ onto the rectangle edge for that region. Otherwise, $\hat{P}_0$ is in one of region 2, 4, 6, or 8, and the closest point is the rectangle vertex of that region.

Let the rectangle be $\hat{B} = \hat{P} + s\hat{E}_0 + t\hat{E}_1$ for $(s, t) \in [0, 1]^2$. Define $\hat{D} = \hat{P} - \hat{B}$. The projection onto the plane of the rectangle is $\hat{P}_0 = \hat{P} + s\hat{E}_0 + t\hat{E}_1$, where $s = \hat{D} \cdot \hat{E}_0$ and $t = \hat{D} \cdot \hat{E}_1$. Determination of the correct region and closest point requires a simple analysis of $s$ and $t$. The pseudocode is

```c
float SquaredDistancePointRectangle (Rectangle rectangle, Point P)
{
 D = P - rectangle.B;
 s = Dot(rectangle.E0, D);
 if (s > 0)
 {
 dot0 = Dot(rectangle.E0, rectangle.E0);
 if (s < dot0)
 D = D - (s/dot0)*rectangle.E0;
 }
 // Continue with code for other regions...
}
else
 D = D - rectangle.E0;
}

 t = Dot(rectangle.E1,D);
 if (t > 0)
 [
 dot1 = Dot(rectangle.E1,rectangle.E1);
 if (t < dot1)
 D = D - (t/dot1)*rectangle.E1;
 else
 D = D - rectangle.E1;
]

 return Dot(D,D);
}

2.6.6 Linear Component to Rectangle

The problem is to compute the minimum distance between a linear component \(\vec{L}(r) \) = \(\vec{B} + r \vec{M} \) for \(r \in I \) and a rectangle \(\vec{R}(s, t) = \vec{A} + s \vec{E}_0 + t \vec{E}_1 \) for \((s, t) \in D = \{(s, t) : s \in [0, 1], t \in [0, 1], s + t \leq 1\} \). The squared-distance function between a point on the line and a point on the rectangle is

\[
Q(s, t, r) = |\vec{R}(s, t) - \vec{L}(r)|^2 \text{ for } (s, t, r) \in D \times I,
\]

so

\[
Q(s, t, r) = a_{00} s^2 + a_{11} t^2 + a_{22} r^2 + 2 a_{01} s t + 2 a_{02} s r + 2 a_{12} t r + 2 b_{00} s + 2 b_{11} t
+ 2 b_{22} r + c,
\]

where

\[
a_{00} = \vec{E}_0 \cdot \vec{E}_0, a_{11} = \vec{E}_1 \cdot \vec{E}_1, a_{22} = \vec{M} \cdot \vec{M}, a_{01} = \vec{E}_0 \cdot \vec{E}_1, a_{02} = -\vec{E}_0 \cdot \vec{M},
a_{12} = -\vec{E}_1 \cdot \vec{M}, b_{00} = \vec{E}_0 \cdot (\vec{A} - \vec{B}), b_{11} = \vec{E}_1 \cdot (\vec{A} - \vec{B}), b_{22} = -\vec{M} \cdot (\vec{A} - \vec{B}),\text{ and } c = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B}).
\]

The partitioning of \(\mathbb{R}^3 \) into regions is similar to that shown in Figure 2.1, the lower-right diagram, except that the regions are extruded along the \(r \)-axis and split based on whether \(I \) is \(\mathbb{R} \), \([0, \infty)\), or \([0, 1]\). For example, region 0 is an infinite square column (line case), semi-infinite square column (ray case), or cube (segment case). As in the other distance calculation algorithms, if the solution \((\hat{s}, \hat{t}, \hat{r})\) to \(\nabla Q = (0, 0, 0) \) lies in region 0, then the minimum occurs at an interior point that is determined by the solution. Otherwise, the minimum occurs on a face separating regions. The region that contains the zero gradient solution must be determined and the correct faces between the regions must be analyzed to see which one contains the global minimum. Also analogous to the other algorithms, it is possible that the determinant of the system for
\(\bar{V} Q = (0, 0, 0) \) is zero. In this case the linear component is parallel to the rectangle and must be handled separately.

The partitioning of \(\mathbb{R}^3 \) yields nine regions. The system of equations from \(\bar{V} Q = (0, 0, 0) \) is \(A \bar{p} = -b \), where \(A = [a_{ij}] \), \(b = [b_j] \), and \(\bar{p} = [s \ t \ r] \). The skeleton of the pseudocode to handle the various regions is

```c
bool SquaredDistanceLineRectangle (Line line, Rectangle rectangle)
{
    a00 = Dot(rectangle.E0,rectangle.E0);
    a01 = Dot(rectangle.E0,rectangle.E1);
    a02 = -Dot(rectangle.E0,line.M);
    a11 = Dot(rectangle.E1,rectangle.E1);
    a12 = -Dot(rectangle.E1,line.M);
    a22 = Dot(line.M,line.M);
    diff = rectangle.A - line.B;
    b0 = Dot(rectangle.E0,diff);
    b1 = Dot(rectangle.E1,diff);
    b2 = -Dot(line.M,diff);
    c = Dot(diff,diff);

    // cofactors to be used for determinant and inversion of
    // matrix A
    cof00 = a11*a22 - a12*a21;
    cof01 = a02*a21 - a01*a22;
    cof02 = a01*a22 - a02*a21;
    det = a00*cof00 + a01*cof01 + a02*cof02;
    if ( det < 0 )
    {
        // avoids having to do dual cases for each region
        det = -det;
        b0 = -b0;
        b1 = -b1;
        b2 = -b2;
    }

    if ( Positive(det) )
    {
        cof11 = a00*a22 - a02*a20;
        cof12 = a02*a01 - a00*a22;
        s = -(cof00*b0 + cof01*b1 + cof02*b2);
        t = -(cof01*b0 + cof11*b1 + cof12*b2);
    }
```
if (s < 0)
{
 if (t < 0) { region 6 }
 else if (t <= det) { region 5 }
 else { region 4 }
}
else if (s <= det)
{
 if (t < 0) { region 7 }
 else if (t <= det) { region 0 }
 else { region 3 }
}
else
{
 if (t < 0) { region 8 }
 else if (t <= det) { region 1 }
 else { region 2 }
}
else
{
 // Line is parallel to rectangle. A closest pair of
 // points can be found by computing distance from line
 // to rectangle edges (at most four line-to-segment
 // tests).
}

The code Positive(det) should be a relative error test on the determinant with
an application-specified tolerance. Code for the various regions is implemented in
exactly the way that the line-to-triangle code is built. That code is based on the same
recursive descent on dimension that was discussed earlier.

Ray to Rectangle and Segment to Rectangle

These are straightforward modifications of the line-to-rectangle algorithm where the
domain of \(Q(s, t, r) \) is \(D \times [0, \infty) \) or \(D \times [0, 1] \). The partitioning of \(\mathbb{R}^3 \) for a ray
now has 18 components, 9 for \(r > 0 \) and 9 for \(r < 0 \). The partitioning for a segment
has 27 components, 9 for \(r < 0 \), 9 for \(r \in [0, 1] \), and 9 for \(r > 1 \). The source code on
the CD-ROM contains an implementation of this algorithm.
2.6.7 **Triangle to Triangle**

The quadratic function for squared distance between two triangles is $Q(s_0, t_0, s_1, t_1) = (\bar{T}_0(s_0, t_0) - \bar{T}(s_1, t_1))^2$, where $(s_i, t_i) \in D$ for $0 \leq i \leq 1$, the triangular domain defined earlier. The domain of Q is the Cartesian product $D \times D \subset \mathbb{R}^4$. The code structure is straightforward, but there are a lot of cases. Since D partitions \mathbb{R}^2 into 7 regions, $D \times D$ partitions \mathbb{R}^4 into 49 regions. That is the number of cases within the code. The pseudocode is not presented here because it is quite lengthy. The implementation is given in the source code on the CD-ROM.

2.6.8 **Triangle to Rectangle**

The quadratic function for squared distance between a triangle and a rectangle is $Q(s_0, t_0, s_1, t_1) = (\bar{T}(s_0, t_0) - \bar{R}(s_1, t_1))^2$, where $(s_0, t_0) \in D$, the triangular domain defined earlier, and $(s_1, t_1) \in [0, 1]^2$. The domain of Q is the Cartesian product $D \times [0, 1]^2 \subset \mathbb{R}^4$. As in the triangle-to-triangle case, the code structure is straightforward, but there are a lot of cases. Since D partitions \mathbb{R}^2 into 7 regions and $[0, 1]^2$ partitions \mathbb{R}^2 into 9 cases, $D \times [0, 1]^2$ partitions \mathbb{R}^4 into 63 regions, again the number of cases within the code. The pseudocode is not presented here, but the implementation is given in the source code on the CD-ROM.

2.6.9 **Rectangle to Rectangle**

The largest chunk of code occurs for this case. The quadratic function for squared distance between two rectangles is $Q(s_0, t_0, s_1, t_1) = (\bar{R}_0(s_0, t_0) - \bar{R}(s_1, t_1))^2$, where $(s_i, t_i) \in [0, 1]^2$ for $0 \leq i \leq 1$. The domain of Q is $[0, 1]^4 \subset \mathbb{R}^4$. Since $[0, 1]$ partitions \mathbb{R}^2 into 9 regions, $[0, 1]^4$ partitions \mathbb{R}^2 into 81 cases, the number of cases within the code. The pseudocode is not presented here as it is quite lengthy. The implementation is given in the source code on the CD-ROM.

2.6.10 **Point to Oriented Box**

The first algorithm treats the box as a solid. Any point inside the box has distance zero from the box. Let the box have center \bar{C}, orthonormal axes \hat{U}_i, and extents e_i. Let the point be written as $\bar{P} = \bar{C} + s_0\hat{U}_0 + s_1\hat{U}_1 + s_2\hat{U}_2$. Solving for the coefficients yields $s_i = \hat{U}_i \cdot (\bar{P} - \bar{C})$ for all i. Depending on the values of (s_0, s_1, s_2) relative to parameter domain $[-e_0, e_0] \times [-e_1, e_1] \times [-e_2, e_2]$, the closest point is either \bar{P} itself, a face point, an edge point, or a vertex. The pseudocode is
float SquaredDistancePointSolidBox (Box box, Point P) {
 D = P - box.C;
 s0 = Dot(box.U0, D);
 s1 = Dot(box.U1, D);
 s2 = Dot(box.U2, D);

 if (s0 <= -box.e0)
 D = D + box.e0*box.U0;
 else if (s0 < box.e0)
 D = D - s0*box.U0;
 else
 D = D - box.e0*box.U0;

 if (s1 <= -box.e1)
 D = D + box.e1*box.U1;
 else if (s1 < box.e1)
 D = D - s1*box.U1;
 else
 D = D - box.e1*box.U1;

 if (s2 <= -box.e2)
 D = D + box.e2*box.U2;
 else if (s2 < box.e2)
 D = D - s2*box.U2;
 else
 D = D - box.e2*box.U2;

 return Dot(D, D);
}

For computing the distance from a point to a box treated just as a shell, the algorithm is different for points inside the box. Points outside the box will have the same distance whether we use the previous code or we use the code about to be discussed. For a point \hat{P} inside the box, it must be determined for each pair of parallel faces which of the two faces the point is closest to. This determines to which face the point must be projected in order to find the closest point on the shell. The pseudocode is

float SquaredDistancePointHollowBox (Box box, Point P) {
 D = P - box.C;
 s0 = Dot(box.U0, D);
\[s1 = \text{Dot(box.U1, } D) ; \]
\[s2 = \text{Dot(box.U2, } D) ; \]

\[
\text{if (} s0 \leq -\text{box.e0 } \) \\
\{ \\
 D = D + \text{box.e0*box.U0}; \\
 \text{if (} s1 \leq -\text{box.e1 } \) \\
 D = D + \text{box.e1*box.U1}; \\
 \text{else if (} s1 < \text{box.e1 } \) \\
 D = D - s1*\text{box.U1}; \\
 \text{else} \\
 D = D - \text{box.e1*box.U1}; \\
 \text{if (} s2 \leq -\text{box.e2 } \) \\
 D = D + \text{box.e2*box.U2}; \\
 \text{else if (} s2 < \text{box.e2 } \) \\
 D = D - s2*\text{box.U2}; \\
 \text{else} \\
 D = D - \text{box.e2*box.U2}; \\
\} \\
\text{else if (} s0 < \text{box.e0 } \) \\
\{ \\
 D = D - s0*\text{box.U0}; \\
 \text{if (} s1 \leq -\text{box.e1 } \) \\
 \{ \\
 D = D + \text{box.e1*box.U1}; \\
 \text{if (} s2 \leq -\text{box.e2 } \) \\
 D = D + \text{box.e2*box.U2}; \\
 \text{else if (} s2 < \text{box.e2 } \) \\
 D = D - s2*\text{box.U2}; \\
 \text{else} \\
 D = D - \text{box.e2*box.U2}; \\
 \} \\
 \text{else if (} s1 < \text{box.e1 } \) \\
 \{ \\
 D = D - s1*\text{box.U1}; \\
 \text{if (} s2 \leq -\text{box.e2 } \) \\
 \{ \\
 D = D + \text{box.e2*box.U2}; \\
 \} \\
 \} \\
\} \]
else if (s2 < box.e2)
{
 // P is inside the box
 dist = min(box.e0-|s0|,box.e1-|s1|,box.e2-|s2|);
 return dist*dist;
}
else
{
 D = D - box.e2*box.U2;
}
}
else
{
 D = D - box.e1*box.U1;

 if (s2 <= -box.e2)
 D = D + box.e2*box.U2;
 else if (s2 < box.e2)
 D = D - s2*box.U2;
 else
 D = D - box.e2*box.U2;
}
}
else
{
 D = D - box.e0*box.U0;

 if (s1 <= -box.e1)
 D = D + box.e1*box.U1;
 else if (s1 < box.e1)
 D = D - s1*box.U1;
 else
 D = D - box.e1*box.U1;

 if (s2 <= -box.e2)
 D = D + box.e2*box.U2;
 else if (s2 < box.e2)
 D = D - s2*box.U2;
 else
 D = D - box.e2*box.U2;
}

return Dot(D,D);
2.6.11 MISCELLANEOUS

A library of distance calculation methods can be arbitrarily complex. There are many other cases that can arise in an application. Chapter 6 discusses intersections of moving spheres, caps, or lozenges. Those routines require distance calculations not specifically derived here: parallelogram to point, segment, rectangle, or parallelogram; and parallelepiped to point, segment, rectangle, parallelogram, or parallelepiped. All of these follow the pattern for setting up a quadratic function on a compact set and analyzing the regions obtained by partitioning the parameter space appropriately. Other cases might involve distance from point to quadric surface, distance from point to circle (in 3D) or disk, point to cylinder, line segment to these same quadratic-style objects, ad infinitum. At any rate, such a library is never complete and will continually evolve.

Point to Ellipse

We only need to solve this problem when the ellipse is axis-aligned. Oriented ellipses can be rotated and translated to an axis-aligned ellipse centered at the origin and the distance can be measured in that system. The basic idea can be found in an article by John Hart (on computing distance, but between point and ellipsoid) in Graphic Gems IV (Heckbert 1994).

Let \((u, v)\) be the point in question. Let the ellipse be \((x/a)^2 + (y/b)^2 = 1\). The closest point \((x, y)\) on the ellipse to \((u, v)\) must occur so that \((x - u, y - v)\) is normal to the ellipse. Since an ellipse normal is \(\nabla((x/a)^2 + (y/b)^2) = (x/a^2, y/b^2)\), the orthogonality condition implies that \(x - u = t \times x/a^2\) and \(y - v = t \times y/b^2\) for some \(t\). Solving yields \(x = a^2u/(t + a^2)\) and \(y = b^2v/(t + b^2)\). Replacing in the ellipse equation yields

\[
\left(\frac{au}{t + a^2}\right)^2 + \left(\frac{bv}{t + b^2}\right)^2 = 1.
\]

Multiplying through by the denominators yields the quartic polynomial

\[F(t) = (t + a^2)^2(t + b^2)^2 - a^4u^2(t + b^2)^2 - b^4v^2(t + a^2)^2 = 0.\]

The largest root \(t\) of the polynomial corresponds to the closest point on the ellipse.

A closed-form solution for the roots of a quartic polynomial exists and can be used to compute the largest root. This root also can be found by a Newton’s iteration scheme. If \((u, v)\) is inside the ellipse, then \(t_0 = 0\) is a good initial guess for the iteration. If \((u, v)\) is outside the ellipse, then \(t_0 = \max\{a, b\}\sqrt{u^2 + v^2}\) is a good initial guess. The iteration itself is

\[t_{i+1} = t_i - F(t_i)/F'(t_i), \quad i \geq 0.\]
Some numerical issues need to be addressed. For \((u, v)\) near the coordinate axes, the algorithm is ill-conditioned because of the divisions of values near zero in the equations relating \((x, y)\) to \((u, v)\). Those cases need to be handled separately. Also, if \(a\) and \(b\) are large, then \(F(t_i)\) can be quite large. In these cases consider uniformly scaling the data to \(O(1)\) as floating-point numbers first, computing the distance, then rescaling to get the distance in the original coordinates.

Point to Ellipsoid

The method of measuring distance is a straightforward generalization of that for an ellipse. Let \((u, v, w)\) be the point in question. Let the ellipse be \((x/a)^2 + (y/b)^2 + (z/c)^2 = 1\). The closest point \((x, y, z)\) on the ellipsoid to \((u, v, w)\) must occur so that \((x-u, y-v, z-w)\) is normal to the ellipsoid. Since an ellipsoid normal is \(V((x/a)^2 + (y/b)^2 + (z/c)^2) = (x/a^2, y/b^2, z/c^2)\), the orthogonality condition implies that \(u-x = t \cdot x/a^2, v-y = t \cdot y/b^2,\) and \(w-z = t \cdot z/c^2\) for some \(t\). Solving yields \(x = a^2u/(t + a^2), y = b^2v/(t + b^2),\) and \(z = c^2w/(t + c^2)\). Replacing in the ellipsoid equation yields

\[
\left(\frac{au}{t + a^2} \right)^2 + \left(\frac{bv}{t + b^2} \right)^2 + \left(\frac{cw}{t + c^2} \right)^2 = 1.
\]

Multiplying through by the denominators yields the sixth-degree polynomial

\[
F(t) = (t + a^2)^2(t + b^2)^2(t + c^2)^2 - a^2u^2(t + b^2)^2(t + c^2)^2
- b^2v^2(t + a^2)^2(t + c^2)^2 - c^2w^2(t + a^2)^2(t + b^2)^2 = 0.
\]

The largest root \(t\) of the polynomial corresponds to the closest point on the ellipse.

The largest root can be found by a Newton's iteration scheme. If \((u, v, w)\) is inside the ellipse, then \(t_0 = 0\) is a good initial guess for the iteration. If \((u, v, w)\) is outside the ellipse, then \(t_0 = \max\{a, b, c\} \sqrt{u^2 + v^2 + w^2}\) is a good initial guess. The iteration method is the same as before, \(t_{i+1} = t_i - F(t_i)/F'(t_i)\) for \(i \geq 0\). The same numerical issues that occur in the ellipse problem need to be addressed for ellipsoids. For \((u, v, w)\) near the coordinate planes, the algorithm is ill-conditioned because of the divisions of values near zero in the equations relating \((x, y, z)\) to \((u, v, w)\). These cases can be handled separately. Also, if \(a, b,\) and \(c\) are large, \(F(t_i)\) can be quite large. In these cases consider uniformly scaling the data to \(O(1)\) as floating-point numbers first, computing the distance, then rescaling to get the distance in the original coordinates.
Point to Quadratic Curve or Quadric Surface

This subsection describes an algorithm for computing the distance from a point in 2D to a general quadratic curve defined implicitly by a second-degree quadratic equation in two variables or from a point in 3D to a general quadric surface defined implicitly by a second-degree quadratic equation in three variables.

The general quadratic equation is

\[Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = 0, \]

where \(A \) is a symmetric \(N \times N \) matrix \((N = 2\) or \(N = 3\) not necessarily invertible, for example, in the case of a cylinder or paraboloid), \(\mathbf{b} \) is an \(N \times 1 \) vector, and \(c \) is a scalar. The parameter is \(\mathbf{x} \), an \(N \times 1 \) vector. Given the surface \(Q(\mathbf{x}) = 0 \) and a point \(\mathbf{y} \), find the distance from \(\mathbf{y} \) to the surface and compute a closest point \(\mathbf{x} \).

Geometrically, the closest point \(\mathbf{x} \) on the surface to \(\mathbf{y} \) must satisfy the condition that \(\mathbf{y} - \mathbf{x} \) is normal to the surface. Since the surface gradient \(\nabla Q(\mathbf{x}) \) is normal to the surface, the algebraic condition for the closest point is

\[\mathbf{y} - \mathbf{x} = \mathbf{t} \nabla Q(\mathbf{x}) = \mathbf{t}(2A\mathbf{x} + \mathbf{b}) \]

for some scalar \(\mathbf{t} \). Therefore,

\[\mathbf{x} = (I + 2\mathbf{t}A)^{-1}(\mathbf{y} - \mathbf{t}\mathbf{b}), \]

where \(I \) is the identity matrix. You could replace this equation for \(\mathbf{x} \) into the general quadratic equation to obtain a polynomial in \(\mathbf{t} \) of at most sixth degree.

Instead of immediately replacing \(\mathbf{x} \) in the quadratic equation, the problem can be reduced to something simpler to code. Factor \(A \) using an eigendecomposition to obtain \(A = RDR^T \), where \(R \) is an orthonormal matrix whose columns are eigenvectors of \(A \) and where \(D \) is a diagonal matrix whose diagonal entries are the eigenvalues of \(A \). Then

\[\hat{\mathbf{x}} = (I + 2\mathbf{t}A)^{-1}(\mathbf{y} - \mathbf{t}\mathbf{b}) \]

\[= (RR^T + 2\mathbf{t}RDR^T)^{-1}(\mathbf{y} - \mathbf{t}\mathbf{b}) \]

\[= [R(I + 2\mathbf{t}D)R^T]^{-1}(\mathbf{y} - \mathbf{t}\mathbf{b}) \]

\[= R(I + 2\mathbf{t}D)^{-1}R^T(\mathbf{y} - \mathbf{t}\mathbf{b}) \]

\[= R(I + 2\mathbf{t}D)^{-1}(\mathbf{\tilde{a}} - \mathbf{t}\mathbf{\tilde{b}}), \]
where the last equation defines α and β. Replacing in the quadratic equation and simplifying yields

$$0 = (\alpha - t\beta)^T (I + 2tD)^{-1} D (I + 2tD)^{-1} (\alpha - t\beta) + \beta^T (I + 2tD)^{-1} (\alpha - t\beta) + c.$$

The inverse diagonal matrix is

$$(I + 2tD)^{-1} = \text{diag}[1/(1 + 2td_0), 1/(1 + 2td_1)]$$

for 2D or

$$(I + 2tD)^{-1} = \text{diag}[1/(1 + 2td_0), 1/(1 + 2td_1), 1/(1 + 2td_2)]$$

for 3D. Multiplying through by $((1 + 2td_0)(1 + 2td_1))^2$ in 2D leads to a polynomial of at most fourth degree. Multiplying through by $((1 + 2td_0)(1 + 2td_1)(1 + 2td_2))^2$ in 3D leads to a polynomial equation of at most sixth degree.

The roots of the polynomial are computed and $\bar{X} = (I + 2tA)^{-1} (\bar{Y} - t\bar{b})$ is computed for each root t. The distances between \bar{X} and \bar{Y} are computed and the minimum distance is selected from them.

Point to Circle in 3D

A circle in 3D is represented by a center \bar{C}, a radius R, and a plane containing the circle, $\bar{N} \cdot (\bar{X} - \bar{C}) = 0$, where \bar{N} is a unit length normal to the plane. If \bar{U} and \bar{V} are also unit-length vectors so that \bar{U}, \bar{V}, and \bar{N} form a right-handed orthonormal coordinate system, then the circle is parameterized as

$$\bar{X} = \bar{C} + R (\cos(\theta) \bar{U} + \sin(\theta) \bar{V}) = : \bar{C} + R \bar{W}(\theta)$$

for angles $\theta \in [0, 2\pi)$. Note that $|\bar{X} - \bar{C}| = R$, so the \bar{X} values are all equidistant from \bar{C}. Moreover, $\bar{N} \cdot (\bar{X} - \bar{C}) = 0$ since \bar{U} and \bar{V} are perpendicular to \bar{N}, so the \bar{X} lie in the plane.

For each angle $\theta \in [0, 2\pi)$, the squared distance from a specified point \bar{P} to the corresponding circle point is

$$F(\theta) = |\bar{C} + R \bar{W}(\theta) - \bar{P}|^2 = R^2 + |\bar{C} - \bar{P}|^2 + 2R (\bar{C} - \bar{P}) \cdot \bar{W}.$$

The problem is to minimize $F(\theta)$ by finding θ_0 such that $F(\theta_0) \leq F(\theta)$ for all $\theta \in [0, 2\pi)$. Since F is a periodic and differentiable function, the minimum must occur when $F'(\theta) = 0$. Also, note that $(\bar{C} - \bar{P}) \cdot \bar{W}$ should be negative and as large in magnitude as possible to reduce the right-hand side in the definition of F. The derivative is
\[F'(\theta) = 2R(\tilde{C} - \tilde{P}) \cdot \tilde{W}'(\theta), \]

where \(\tilde{W} \cdot \tilde{W}' = 0 \) since \(\tilde{W} \cdot \tilde{W} = 1 \) for all \(\theta \). The vector \(\tilde{W}' \) is unit length since \(\tilde{W}'' = -\tilde{W} \) and \(0 = \tilde{W} \cdot \tilde{W}' \) implies \(0 = \tilde{W} \cdot \tilde{W}'' + \tilde{W}' \cdot \tilde{W}'. \) Finally, \(\tilde{W}' \) is perpendicular to \(\tilde{N} \) since \(\tilde{N} \cdot \tilde{W} = 0 \) implies \(0 = \tilde{N} \cdot \tilde{W}' \). All conditions imply that \(\tilde{W} \) is parallel to the projection of \(\tilde{P} - \tilde{C} \) onto the plane and points in the same direction.

Let \(\tilde{Q} \) be the projection of \(\tilde{P} \) onto the plane. Then

\[\tilde{Q} - \tilde{C} = \tilde{P} - \tilde{C} - \left(\tilde{N} \cdot (\tilde{P} - \tilde{C}) \right) \tilde{N}. \]

The vector \(\tilde{W}(\theta) \) must be the normalized projection \((\tilde{Q} - \tilde{C})/|\tilde{Q} - \tilde{C}| \). The closest point on the circle to \(\tilde{P} \) is

\[\tilde{X} = \tilde{C} + R \frac{\tilde{Q} - \tilde{C}}{|\tilde{Q} - \tilde{C}|} \]

assuming that \(\tilde{Q} \neq \tilde{C} \). The distance from point to circle is then \(|\tilde{P} - \tilde{X}| \).

If the projection of \(\tilde{P} \) is exactly the circle center \(\tilde{C} \), then all points on the circle are equidistant from \(\tilde{C} \). The distance from point to circle is the length of the hypotenuse of any right triangle whose vertices are \(\tilde{C} \), \(\tilde{P} \), and any circle point. The lengths of the adjacent and opposite triangle sides are \(R \) and \(|\tilde{P} - \tilde{C}| \), so the distance from point to circle is \(\sqrt{R^2 + |\tilde{P} - \tilde{C}|^2} \).

Circle to Circle in 3D

The previous subsection described the formulation for a circle in three dimensions. Using this formulation, let the two circles be \(\tilde{C}_0 + R_0 \tilde{W}_0(\theta) \) for \(\theta \in [0, 2\pi) \) and \(\tilde{C}_1 + R_1 \tilde{W}_1(\phi) \) for \(\phi \in [0, 2\pi) \). The squared distance between any two points on the circles is

\[F(\theta, \phi) = |\tilde{C}_1 - \tilde{C}_0 + R_1 \tilde{W}_1 - R_0 \tilde{W}_0|^2 \]

\[= |\tilde{D}|^2 + R_1^2 + R_0^2 + 2R_1 \tilde{D} \cdot \tilde{W}_1 - 2R_0 R_1 \tilde{W}_0 \cdot \tilde{W}_1 - 2R_0 \tilde{D} \cdot \tilde{W}_0, \]

where \(\tilde{D} = \tilde{C}_1 - \tilde{C}_0 \). Since \(F \) is doubly periodic and continuously differentiable, its global minimum must occur when \(\nabla F = (0, 0) \). The partial derivatives are

\[\frac{\partial F}{\partial \theta} = -2R_0 \tilde{D} \cdot \tilde{W}_0 - 2R_0 R_1 \tilde{W}_0' \cdot \tilde{W}_1 \]
and

\[
\frac{\partial F}{\partial \phi} = 2R_1 \hat{D} \cdot \hat{W}_1 - 2R_0 R_1 \hat{W}_0 \cdot \hat{W}_1.
\]

Define \(c_0 = \cos(\theta), c_3 = \cos(\phi), \) and \(s_1 = \sin(\phi). \) Then \(\hat{W}_0 = c_0 \hat{U}_0 + s_0 \hat{V}_0, \) \(\hat{W}_1 = c_1 \hat{U}_1 + s_1 \hat{V}_1, \) \(\hat{W}_0' = -s_0 \hat{U}_0 + c_0 \hat{V}_0, \) and \(\hat{W}_1' = -s_1 \hat{U}_1 + c_1 \hat{V}_1. \) Setting the partial derivatives equal to zero leads to

\[
\begin{align*}
0 &= s_0(a_0 + a_1 c_1 + a_2 s_1) + c_0(a_3 + a_4 c_1 + a_5 s_1) \\
0 &= s_1(b_0 + b_1 c_0 + b_2 s_0) + c_1(b_3 + b_4 c_0 + b_5 s_0),
\end{align*}
\]

where

\[
\begin{align*}
a_0 &= -\hat{D} \cdot \hat{U}_0, a_1 &= -R_1 \hat{U}_0 \cdot \hat{V}_1, a_2 &= -R_1 \hat{U}_0 \cdot \hat{V}_0, a_3 &= \hat{D} \cdot \hat{V}_0, a_4 &= R_1 \hat{U}_1 \cdot \hat{V}_0, \\
a_5 &= R_1 \hat{U}_0 \cdot \hat{V}_1, \\
b_0 &= -\hat{D} \cdot \hat{V}_1, b_1 &= R_0 \hat{U}_0 \cdot \hat{V}_1, b_2 &= R_0 \hat{U}_1 \cdot \hat{V}_0, b_3 &= \hat{D} \cdot \hat{V}_1, b_4 &= -R_0 \hat{U}_0 \cdot \hat{V}_1, \\
b_5 &= -R_0 \hat{V}_0 \cdot \hat{V}_1.
\end{align*}
\]

In matrix form,

\[
\begin{bmatrix}
m_{00} & m_{01} \\
m_{10} & m_{11}
\end{bmatrix}
\begin{bmatrix}
s_0 \\
c_0
\end{bmatrix}
= \begin{bmatrix}
a_0 + a_1 c_1 + a_2 s_1 & a_3 + a_4 c_1 + a_5 s_1 \\
b_2 s_1 + b_4 c_1 & b_1 s_1 + b_3 c_1
\end{bmatrix}
\begin{bmatrix}
s_0 \\
c_0
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix},
\]

Let \(M \) denote the \(2 \times 2 \) matrix on the left-hand side of the equation. Multiplying by the adjoint of \(M \) yields

\[
\det(M) \begin{bmatrix}
s_0 \\
c_0
\end{bmatrix} = \begin{bmatrix}
m_{11} & -m_{01} \\
-m_{10} & m_{00}
\end{bmatrix} \begin{bmatrix}
0 \\
\lambda
\end{bmatrix} = \begin{bmatrix}
-m_{01} \lambda \\
m_{00} \lambda
\end{bmatrix}.
\]

(2.17)

Summing the squares of the vector components and using \(s_0^2 + c_0^2 = 1 \) yields

\[
(m_{00} m_{11} - m_{01} m_{10})^2 = \lambda^2 (m_{00}^2 + m_{11}^2).
\]

The above equation can be reduced to a polynomial of degree 8 whose roots \(c_1 \in [-1, 1] \) are the candidates to provide the global minimum of \(F. \) Formally computing the determinant and using \(s_1^2 = 1 - c_1^2 \) leads to

\[
m_{00} m_{11} - m_{01} m_{10} = p_0(c_1) + s_1 p_1(c_1),
\]
where \(p_0(z) = \sum_{i=0}^{2} p_{0i} z^i \) and \(p_1(z) = \sum_{i=0}^{1} p_{1i} z \). The coefficients are

\[
\begin{align*}
p_{00} &= a_2 b_1 - a_5 b_2 \\
p_{01} &= a_0 b_4 - a_3 b_5 \\
p_{02} &= a_5 b_2 - a_2 b_1 + a_4 b_4 - a_1 b_5 \\
p_{10} &= a_0 b_1 - a_3 b_2 \\
p_{11} &= a_1 b_1 - a_5 b_5 + a_2 b_4 - a_4 b_2.
\end{align*}
\]

Similarly,

\[
m_{00}^2 + m_{01}^2 = q_0(c_1) + s_1 q_1(c_1),
\]

where \(q_0(z) = \sum_{i=0}^{2} q_{0i} z^i \) and \(q_1(z) = \sum_{i=0}^{1} q_{1i} z \). The coefficients are

\[
\begin{align*}
q_{00} &= a_0^2 + a_2^2 + a_3^2 + a_5^2 \\
q_{01} &= 2(a_0 a_1 + a_3 a_4) \\
q_{02} &= a_1^2 - a_2^2 + a_4^2 - a_5^2 \\
q_{10} &= 2(a_0 a_2 + a_3 a_5) \\
q_{11} &= 2(a_1 a_2 + a_4 a_5).
\end{align*}
\]

Finally,

\[
\lambda^2 = r_0(c_1) + s_1 r_1(c_1),
\]

where \(r_0(z) = \sum_{i=0}^{2} r_{0i} z^i \) and \(r_1(z) = \sum_{i=0}^{1} r_{1i} z \). The coefficients are

\[
\begin{align*}
r_{00} &= b_0^2 \\
r_{01} &= 0 \\
r_{02} &= b_3^2 - b_0^2 \\
r_{10} &= 0 \\
r_{11} &= 2b_0 b_3.
\end{align*}
\]

Combining these yields

\[
0 = \left[(p_0^2 - r_0 q_0) + (1 - c_1^2)(p_1^2 - r_1 q_1) \right] + s_1 \left[2p_0 p_1 - r_0 q_1 - r_1 q_0 \right]
= g_0(c_1) + s_1 g_1(c_1).
\]
where \(g_0(z) = \sum_{i=0}^{4} g_{0i} z^i \) and \(g_1(z) = \sum_{i=0}^{3} g_{1i} z^i \). The coefficients are

\[
\begin{align*}
g_0 &= p_{00}^2 + p_{10}^2 - q_{00} r_{00} \\
g_0 &= 2(p_{00} p_{01} + p_{10} p_{11}) - q_{00} r_{00} - q_{10} r_{11} \\
g_0 &= 2(p_{00} p_{02} + p_{10} p_{12}) - p_{10}^2 - q_{00} r_{02} - q_{10} r_{12} \\
g_0 &= 2(p_{00} p_{03} - p_{10} p_{13}) - q_{00} r_{03} - q_{10} r_{13} \\
g_0 &= 2(p_{00} p_{10} - p_{10}^2 - q_{00} r_{00} + q_{10} r_{10}) \\
g_0 &= 2(p_{00} p_{11} + p_{00} p_{11}) - q_{11} r_{00} - q_{01} r_{11} \\
g_0 &= 2(p_{00} p_{12} + p_{00} p_{13}) - q_{10} r_{02} - q_{01} r_{11} \\
g_0 &= 2(p_{11} p_{10} - q_{11} r_{02} - q_{01} r_{11})
\end{align*}
\]

The \(s_1 \) term can be eliminated by solving \(g_0 = -s_1 g_1 \) and squaring to obtain

\[
0 = g_0^2 - (1 - c_1^2) g_1^2 = h(c_1),
\]

where \(h(z) = \sum_{i=0}^{8} h_i z^i \). The coefficients are

\[
\begin{align*}
h_0 &= g_{00}^2 - g_{10}^2 \\
h_1 &= 2(g_{01} g_{00} - g_{00} g_{01}) \\
h_2 &= g_{00}^2 + g_{10}^2 - g_{11}^2 + 2(g_{00} g_{02} - g_{10} g_{12}) \\
h_3 &= 2(g_{01} g_{02} + g_{00} g_{03} + g_{10} g_{11} - g_{11} g_{12} - g_{10} g_{13}) \\
h_4 &= g_{02}^2 + g_{11}^2 - g_{12}^2 + 2(g_{01} g_{03} + g_{00} g_{04} + g_{10} g_{12} - g_{11} g_{13}) \\
h_5 &= 2(g_{02} g_{03} + g_{01} g_{04} + g_{11} g_{12} + g_{10} g_{13} - g_{11} g_{12}) \\
h_6 &= g_{03}^2 + g_{12}^2 - g_{13}^2 + 2(g_{02} g_{04} + g_{11} g_{13}) \\
h_7 &= 2(g_{03} g_{04} + g_{12} g_{13}) \\
h_8 &= g_{04}^2 + g_{13}^2
\end{align*}
\]

To find the minimum squared distance, all the real-valued roots of \(h(c_1) = 0 \) are computed. For each \(c_1 \), compute \(s_1 = \pm \sqrt{1 - c_1^2} \) and choose either (or both)
of these that satisfies Equation (2.18). For each pair \((c_1, s_1)\), solve for \((c_0, s_0)\) in Equation (2.17). The main numerical issue to deal with is how close to zero is \(\det(M)\).

Ellipse to Ellipse in 3D

An ellipse in 3D is represented by a center \(\bar{C}\), unit-length axes \(\bar{U}\) and \(\bar{V}\) with corresponding axis lengths \(a\) and \(b\), and a plane containing the ellipse, \(\bar{N} \cdot (\bar{X} - \bar{C}) = 0\), where \(\bar{N}\) is a unit length normal to the plane. The vectors \(\bar{U}, \bar{V}\), and \(\bar{N}\) form a right-handed orthonormal coordinate system. The ellipse is parameterized as

\[
\bar{X} = \bar{C} + a \cos(\theta)\bar{U} + b \sin(\theta)\bar{V}
\]

for angles \(\theta \in [0, 2\pi)\). The ellipse is also defined by the two polynomial equations

\[
\bar{N} \cdot (\bar{X} - \bar{C}) = 0
\]

\[
(\bar{X} - \bar{C})^T \left(\frac{\bar{U} \bar{U}^T}{a^2} + \frac{\bar{V} \bar{V}^T}{b^2} \right) (\bar{X} - \bar{C}) = 1,
\]

where the last equation is written as a quadratic form. The first equation defines a plane, and the second equation defines an ellipsoid. The intersection of plane and ellipsoid is an ellipse.

Solution as Polynomial System

The two ellipses are \(\bar{N}_0 \cdot (\bar{X} - \bar{C}_0) = 0\) and \((\bar{X} - \bar{C}_0)^T A_0 (\bar{X} - \bar{C}_0) = 1\), where \(A_0 = \bar{U}_0 \bar{U}_0^T/a_0^2 + \bar{V}_0 \bar{V}_0^T/b_0^2\), and \(\bar{N}_1 \cdot (\bar{Y} - \bar{C}_1) = 0\) and \((\bar{Y} - \bar{C}_1)^T A_1 (\bar{Y} - \bar{C}_1) = 1\), where \(A_1 = \bar{U}_1 \bar{U}_1^T/a_1^2 + \bar{V}_1 \bar{V}_1^T/b_1^2\).

The problem is to minimize the squared distance \(|\bar{X} - \bar{Y}|^2\) subject to the four constraints mentioned above. The problem can be solved with the method of Lagrange multipliers (Thomas and Finney 1988). Introduce four new parameters, \(\alpha, \beta, \gamma,\) and \(\delta\), and minimize

\[
F(\bar{X}, \bar{Y}; \alpha, \beta, \gamma, \delta) = |\bar{X} - \bar{Y}|^2 + \alpha((\bar{X} - \bar{C}_0)^T A_0 (\bar{X} - \bar{C}_0) - 1)
+ \beta(\bar{N}_0 \cdot (\bar{X} - \bar{C}_0) - 0) + \gamma((\bar{Y} - \bar{C}_1)^T A_1 (\bar{Y} - \bar{C}_1) - 1)
+ \delta(\bar{N}_1 \cdot (\bar{Y} - \bar{C}_1) - 0).
\]
Taking derivatives yields

\[F_{\tilde{x}} = 2(\tilde{x} - \tilde{y}) + 2\alpha A_0(\tilde{x} - \tilde{c}_0) + \beta \tilde{n}_0 \]

\[F_{\tilde{y}} = -2(\tilde{x} - \tilde{y}) + 2\gamma A_1(\tilde{y} - \tilde{c}_1) + \delta \tilde{n}_1 \]

\[F_{\alpha} = (\tilde{x} - \tilde{c}_0)^T A_0(\tilde{x} - \tilde{c}_0) - 1 \]

\[F_{\beta} = \tilde{n}_0 \cdot (\tilde{x} - \tilde{c}_0) \]

\[F_{\gamma} = (\tilde{y} - \tilde{c}_1)^T A_1(\tilde{y} - \tilde{c}_1) - 1 \]

\[F_{\delta} = \tilde{n}_1 \cdot (\tilde{y} - \tilde{c}_1). \]

Setting the last four equations to zero yields the four original constraints. Setting the first equation to the zero vector and multiplying by \((\tilde{x} - \tilde{c}_0)^T\) yields

\[\alpha = -2(\tilde{x} - \tilde{c}_0)^T(\tilde{x} - \tilde{y}). \]

Setting the first equation to the zero vector and multiplying by \(\tilde{n}_0^T\) yields

\[\beta = -2\tilde{n}_0^T(\tilde{x} - \tilde{y}). \]

Similar manipulations of the second equation yield

\[\gamma = 2(\tilde{y} - \tilde{c}_1)^T(\tilde{x} - \tilde{y}) \]

and

\[\delta = 2\tilde{n}_1^T(\tilde{x} - \tilde{y}). \]

The first two derivative equations become

\[M_0(\tilde{x} - \tilde{y}) = \left(\tilde{n}_0 \tilde{n}_0^T + A_0(\tilde{x} - \tilde{c}_0)(\tilde{x} - \tilde{c}_0)^T - I \right)(\tilde{x} - \tilde{y}) = \tilde{0} \]

\[M_1(\tilde{x} - \tilde{y}) = \left(\tilde{n}_1 \tilde{n}_1^T + A_1(\tilde{y} - \tilde{c}_1)(\tilde{y} - \tilde{c}_1)^T - I \right)(\tilde{x} - \tilde{y}) = \tilde{0}. \]

Observe that \(M_0\tilde{n}_0 = \tilde{0}, M_0A_0(\tilde{x} - \tilde{c}_0) = \tilde{0}, \) and \(M_0(\tilde{n}_0 \times (\tilde{x} - \tilde{c}_0)) = -\tilde{n}_0 \times (\tilde{x} - \tilde{c}_0). \) Therefore, \(M_0 = -\tilde{w}_0 \tilde{w}_0^T/|\tilde{w}_0|^2, \) where \(\tilde{w}_0 = \tilde{n}_0 \times (\tilde{x} - \tilde{c}_0). \) Similarly, \(M_1 = -\tilde{w}_1 \tilde{w}_1^T/|\tilde{w}_1|^2, \) where \(\tilde{w}_1 = \tilde{n}_1 \times (\tilde{y} - \tilde{c}_1). \) The previous displayed equations are equivalent to \(\tilde{w}_0^T(\tilde{x} - \tilde{y}) = 0 \) and \(\tilde{w}_1^T(\tilde{x} - \tilde{y}) = 0. \)

The points \(\tilde{x} = (x_0, x_1, x_2)\) and \(\tilde{y} = (y_0, y_1, y_2)\) that attain minimum distance between the two ellipses are solutions to six quadratic equations in six unknowns:
2.6 Distance Methods

\[p_0(x_0,x_1,x_2) = \vec{N}_0 \cdot (\vec{X} - \vec{C}_0) = 0 \]
\[p_1(x_0,x_1,x_2) = (\vec{X} - \vec{C}_0)^\top A_0 (\vec{X} - \vec{C}_0) = 1 \]
\[p_2(x_0,x_1,x_2,y_0,y_1,y_2) = (\vec{X} - \vec{Y}) \cdot \vec{N}_0 \times (\vec{X} - \vec{C}_0) = 0 \]
\[q_0(y_0,y_1,y_2) = \vec{N}_1 \cdot (\vec{Y} - \vec{C}_1) = 0 \]
\[q_1(y_0,y_1,y_2) = (\vec{Y} - \vec{C}_1)^\top A_1 (\vec{Y} - \vec{C}_1) = 1 \]
\[q_2(x_0,x_1,x_2,y_0,y_1,y_2) = (\vec{X} - \vec{Y}) \cdot \vec{N}_1 \times (\vec{Y} - \vec{C}_1) = 0. \]

On a computer algebra system that supports the resultant operation for eliminating polynomial variables, the following set of operations leads to a polynomial in one variable. Let resultant \([P,Q,z]\) denote the resultant of polynomials \(P\) and \(Q\) where the variable \(z\) is eliminated (for information on resultants, see Wee and Goldman 1993a, 1993b):

\[r_0(x_0,x_1,y_0,y_1,y_2) = \text{resultant}[p_0,p_2,x_2] \]
\[r_1(x_0,x_1) = \text{resultant}[p_1,p_2,x_2] \]
\[r_2(x_0,x_1,y_0,y_1) = \text{resultant}[r_0,q_2,y_2] \]
\[s_0(x_0,x_1,x_2,y_0,y_1) = \text{resultant}[q_0,q_2,y_2] \]
\[s_1(y_0,y_1) = \text{resultant}[q_1,q_2,y_2] \]
\[s_2(x_0,x_1,y_0,y_1) = \text{resultant}[s_0,p_2,x_2] \]
\[r_3(x_0,y_0,x_1) = \text{resultant}[r_2,r_1,x_1] \]
\[r_4(x_0,y_0) = \text{resultant}[r_3,s_1,y_1] \]
\[s_3(x_0,x_1,y_0) = \text{resultant}[s_2,s_1,y_1] \]
\[s_4(x_0,y_0) = \text{resultant}[s_3,r_1,x_1] \]
\[\phi(x_0) = \text{resultant}[r_4,s_4,y_0]. \]

For two circles, the degree of \(\phi\) is 8. For a circle and an ellipse, the degree of \(\phi\) is 12. For two ellipses, the degree of \(\phi\) is 16.

Trigonometric Solution

Let the two ellipses be

\[\vec{X} = \vec{C}_0 + a_0 \cos(\theta) \vec{U}_0 + b_0 \sin(\theta) \vec{V}_0 \]
\[\vec{Y} = \vec{C}_1 + a_1 \cos(\theta) \vec{U}_1 + b_1 \sin(\theta) \vec{V}_1 \]
for $\theta \in [0, 2\pi)$ and $\phi \in [0, 2\pi)$. The squared distance between any two points on the
ellipses is $F(\theta, \phi) = |\vec{X}(\theta) - \vec{Y}(\phi)|^2$. The problem is to minimize $F(\theta, \phi)$.

Define $c_0 = \cos(\theta), s_0 = \sin(\theta), c_1 = \cos(\phi), s_1 = \sin(\phi)$. Compute derivatives $F_\theta = (\vec{X}(\theta) - \vec{Y}(\phi)) \cdot \vec{X}'(\theta)$ and $F_\phi = -(\vec{X}(\theta) - \vec{Y}(\phi)) \cdot \vec{Y}'(\phi)$. Setting these
equal to zero leads to the two polynomial equations in c_0, s_0, c_1, s_1. The two
polynomial constraints for the sines and cosines are also listed:

\begin{align*}
p_0 &= (a_0^2 - b_0^2)s_0c_0 + a_0(a_{00} + a_{01}s_1 + a_{02}c_1)s_0 + b_0(b_{00} + b_{01}s_1 + b_{02}c_1)c_0 = 0 \\
p_1 &= (a_1^2 - b_1^2)s_1c_1 + a_1(a_{10} + a_{11}s_0 + a_{12}c_0)s_1 + b_1(b_{10} + b_{11}s_0 + b_{12}c_0)c_1 = 0 \\
q_0 &= s_0^2 + c_0^2 - 1 = 0 \\
q_1 &= s_1^2 + c_1^2 - 1 = 0.
\end{align*}

This is a system of four quadratic polynomial equations in four unknowns and can be
solved with resultants:

\begin{align*}
r_0(s_0, s_1, c_1) &= \text{resultant}[p_0, q_0, c_0] \\
r_1(s_0, s_1, c_0) &= \text{resultant}[p_1, q_1, c_1] \\
r_2(s_0, s_1) &= \text{resultant}[r_0, q_1, c_1] \\
r_3(s_0, s_1) &= \text{resultant}[r_1, q_0, c_0] \\
\phi(s_0) &= \text{resultant}[r_2, r_3, s_1].
\end{align*}

Alternatively, we can use the simple nature of q_0 and q_1 to do some of the elimi-
nation. Let $p_0 = a_0s_0 + b_0c_0 + \gamma_0s_0c_0$, where a_0 and b_0 are linear polynomials in s_1
and c_1. Similarly, $p_1 = a_1s_1 + b_1c_1 + \gamma_1s_1c_1$, where a_1 and b_1 are linear polynomials
in s_0 and c_0. Solving for c_0 in $p_0 = 0$ and c_1 in $p_1 = 0$, squaring, and using the q_i
constraints leads to

\begin{align*}
r_0 &= (1 - s_0^2)(\gamma_0 s_0 + b_0)^2 - a_0^2 s_0^2 = 0 \\
r_1 &= (1 - s_1^2)(\gamma_1 s_1 + b_1)^2 - a_1^2 s_1^2 = 0.
\end{align*}

Using the q_i constraints, write $r_i = r_{i0} + r_{i1}s_1 + r_{i2}s_1^2$, $i = 0, 1$, where the r_{ij} are polyno-
mials in s_0 and s_1. The terms r_{i0} are degree 4 and the terms r_{i1} are degree 3. Solving
for c_0 in $r_0 = 0$ and c_1 in $r_1 = 0$, squaring, and using the q_i constraints leads to
\[w_0 = (1 - s_1^2) r_{01}^2 - r_{00}^2 = \sum_{j=0}^{8} w_{0j} s_0^j = 0 \]

\[w_1 = (1 - s_0^2) r_{11}^2 - r_{10}^2 = \sum_{j=0}^{4} w_{1j} s_1^j = 0. \]

The coefficients \(w_{ij} \) are polynomials in \(s_1 \). The degrees of \(w_{00} \) through \(w_{08} \), respectively, are 4, 3, 4, 3, 4, 3, 2, 1, and 0. The degree of \(w_{1j} \) is \(8 - j \). The total degree for each of \(w_j \) is 8.

The final elimination can be computed using a Bézout determinant, \(\phi(s_1) = \text{det}[e_{ij}] \), where the underlying matrix is \(8 \times 8 \) and the entry is

\[e_{ij} = \min(8,17-i-j) \sum_{k=\max(9-i,9-j)}^{\min(8,17-i-j)} v_{k,17-i-j-k}, \]

where \(v_{i,j} = w_{0j} w_{1i} - w_{0i} w_{1j} \). If the \(i \) or \(j \) index is out of range in the \(w \) terms, then the term is assumed to be zero. The solutions to \(\phi = 0 \) are the candidate points for \(s_1 \).

For each \(s_1 \), two \(c_1 \) values are computed using \(s_1^2 + c_1^2 = 1 \). For each \(s_1 \), the roots of the polynomial \(w_{1j}(s_0) \) are computed. For each \(s_0 \), two \(c_0 \) values are computed using \(s_0^2 + c_0^2 = 1 \). Out of all such candidates, \(|\tilde{X} - \tilde{Y}|^2 \) can be computed and the minimum value is selected.

Numerical Solution

Neither algebraic method above seems reasonable. Each looks very slow to compute, and the usual numerical problems with polynomials of large degree must be handled. An iterative alternative is to implement a distance calculator for point to ellipse in three dimensions. This involves a function of a single parameter, say, \(F(\theta) \) for \(\theta \in [0, 2\pi] \). Use a numerical minimizer that does not require derivative calculation (Powell’s method, for example) and minimize \(F \) on the interval \([0, 2\pi]\). The scheme is iterative and should converge rapidly to the solution.
In a nutshell, a game engine is responsible for managing the data and artistic content of the game and deciding what to draw on the computer screen and how to draw it. The decisions are made at both a high and a low level. The high-level decisions are handled by the game AI and by a scene graph management system. Game AI is specific to the game itself and is not discussed in this book. Scene graph management is a general topic that applies to most games and is discussed in this book. Chapter 4 provides the foundations for scene graphs and their manipulation. Chapters 5 through 12 cover specific types of objects and algorithms that are part of the scene graph system.

The low-level decisions on what and how to draw are the topic of this chapter. Aspiring game programmers invariably want to implement a renderer whose job it is to draw objects in the 3D world on a 2D computer screen. At first glance, building a renderer appears to be an easy task, but the frequency of questions occurring in the graphics newsgroups about how to build a renderer is evidence that the task can be quite formidable. The main goal of this chapter is to describe the three responsibilities of a renderer; examining each responsibility in turn should make it easier to understand how to implement a renderer.

The first responsibility of a renderer is to transform the 3D data in world space into 3D data in view space, the latter specified by a camera model. View space provides
a convenient coordinate system that supports the decision on what to draw. A second transformation converts the data in view space to 2D data in screen space, a process called projection. In this form the data can be drawn as pixels on the computer screen. Sections 3.1, 3.2, and 3.3 describe the various spaces and the transformations between them.

The second responsibility of a renderer is to eliminate portions of the data that are not visible to the observer whose location is specified as part of the camera model. This involves the concepts of culling (a process that determines if an object is completely out of view) and clipping (a process that splits an object into smaller pieces, some of them visible; the invisible pieces are discarded by the renderer, and the visible pieces are further processed). Section 3.4 describes culling and clipping in general terms. Section 3.7 contains a specific algorithm for clipping that is quite efficient.

The third responsibility of a renderer is to draw the 2D data that has been transformed to screen space. This process is called rasterization and the component of the renderer that does the work is called a rasterizer. The majority of time for rendering is spent in the rasterizer. Current-generation graphics cards are designed to accelerate the rasterization, but it is possible to implement one that uses only the CPU. Sections 3.5 and 3.6 describe the ideas of rasterization, including how to compute the final colors of the pixels based on various effects such as lighting, materials, textures, transparency, and fogging. A discussion of higher-level special effects is found in Chapter 13, but the application of these effects is usually the responsibility of the scene graph management system.

3.1 Model and World Coordinates

Artists develop most game content in coordinate systems specific to each model, called the model coordinate system. In a typical game, many objects are built. Each must be placed relative to the other objects by applying transformations (translation, scaling, orientation). Moreover, the transformations that position and orient an object might be relative to another object, not to the final world coordinate system of the game. A hierarchical organization of data, a topic described in Chapter 4, becomes essential at this point. For each object to be drawn, the hierarchical organization provides a single transformation that converts the model coordinate system of the object into the world coordinate system. Once in world coordinates, the data can be further transformed into view space coordinates and projected onto the viewing plane. Section 3.2 defines and discusses perspective projection. View space and viewing planes are considered in Section 3.3.

3.2 Perspective Projection

Consider a point \(\vec{E} \), called the eye point, and a plane \(\vec{N} \cdot \vec{X} = d \), called the view plane, not containing the point. Without loss of generality, assume that \(\vec{E} \) is on the positive
3.2 Perspective Projection

side of the plane; that is, $\vec{N} \cdot \vec{E} > d$. The perspective projection of a point \vec{X} onto the view plane is the intersection of the ray starting at \vec{E} that also contains \vec{X}. The projection exists as long as $\vec{N} \cdot \vec{E} > \vec{N} \cdot \vec{X}$. If $\vec{Y} = (1 - t)\vec{E} + t\vec{X}$ is the projection, then, since it lies on the plane, it must be that $\vec{N} \cdot \vec{Y} = d$. This equation can be solved for t to obtain

$$t = \frac{\vec{N} \cdot \vec{E} - d}{\vec{N} \cdot \vec{E} - \vec{N} \cdot \vec{X}}. \quad (3.1)$$

Both the numerator and denominator are positive, so $t > 0$ is necessary. A canonical model for perspective projection makes it somewhat easier to express the concepts. Let the eye point be the origin $\vec{E} = (0, 0, 0)$, and let the view plane be $z = n > 0$. The plane normal is $\vec{N} = (0, 0, -1)$, and the plane constant is $d = -n$. Equation (3.1) yields $t = n/z$. The perspective projection of (x, y, z) onto the view plane is $(nx/z, ny/z, n)$. Because the view plane remains fixed at $z = n$, the projected points can be written as 2-tuples, $(nx/z, ny/z)$. A convenient variable to define is $w = z/n$. The view plane is $w = 1$, and the projected point is $(x/w, y/w)$.

3.2.1 Lines Project to Lines

In perspective projections, line segments are projected to line segments. Consider a line segment with end points $\vec{Q}_i = (x_i, y_i, z_i)$ for $i = 0, 1$. Let the corresponding projected points be $\vec{P}_i = (x_i/w_i, y_i/w_i)$ with $w_i = z_i/n$ for $i = 0, 1$. The 3D line segment is $\vec{Q}(s) = \vec{Q}_0 + s(\vec{Q}_1 - \vec{Q}_0)$ for $s \in [0, 1]$. For each s, let $\vec{P}(s)$ be the projection of $\vec{Q}(s)$. Thus,

$$\vec{Q}(s) = (x_0 + s(x_1 - x_0), y_0 + s(y_1 - y_0), z_0 + s(z_1 - z_0))$$

and

$$\vec{P}(s) = \left(\frac{x_0 + s(x_1 - x_0)}{w_0 + s(w_1 - w_0)}, \frac{y_0 + s(y_1 - y_0)}{w_0 + s(w_1 - w_0)}\right)$$

$$= \left(\frac{x_0}{w_0} + \frac{w_1 s}{w_0 + (w_1 - w_0)s} \left(\frac{x_1}{w_1} - \frac{x_0}{w_0}\right), \frac{y_0}{w_0} + \frac{w_1 s}{w_0 + (w_1 - w_0)s} \left(\frac{y_1}{w_1} - \frac{y_0}{w_0}\right)\right)$$

$$= \vec{P}_0 + \frac{w_1 s}{w_0 + (w_1 - w_0)s} (\vec{P}_1 - \vec{P}_0).$$

$$= \vec{P}_0 + \tilde{s}(\vec{P}_1 - \vec{P}_0),$$
where the last equality defines

$$\tilde{s} = \frac{w_1 s}{w_0 + (w_1 - w_0) s},$$

(3.2)

a quantity that is also in the interval $[0, 1]$. We have obtained a parametric equation for a 2D line segment with end points \tilde{P}_0 and \tilde{P}_1, so in fact line segments are projected to line segments. It is possible that the projected segment is a single point, a degenerate case. The inverse mapping $s(\tilde{s})$ is actually important for perspective correct rasterization, as we will see later:

$$s = \frac{w_0 \tilde{s}}{w_1 + (w_0 - w_1) \tilde{s}},$$

(3.3)

Equation (3.2) has more to say about perspective projection. Assuming $w_1 > w_0$, a uniform change in s does not result in a uniform change in \tilde{s}. The graph of $\tilde{s} = F(s)$ is shown in Figure 3.1. The first derivative is $F'(s) = w_0 w_1 / [w_0 + s(w_1 - w_0)]^2 > 0$, and the second derivative is $F''(s) = -2w_0 w_1 / [w_0 + s(w_1 - w_0)]^3 < 0$. The slopes of the graph at the end points are $F'(0) = w_1 / w_0 > 1$ and $F'(1) = w_0 / w_1 < 1$. Since the second derivative is always negative, the graph is concave. An intuitive interpretation is to select a set of uniformly spaced points on the 3D line segment. The projections of these points are not uniformly spaced. More specifically, the spacing between the projected points decreases as \tilde{s} increases from 0 to 1. The relationship between s and \tilde{s} and limited floating-point precision are what contribute to depth buffering artifacts, to be discussed later.
3.2.2 Triangles Project to Triangles

Because line segments project to line segments, we can immediately assume that triangles project to triangles, although possibly degenerating to a line segment. However, let's derive the parametric relationships that are analogous to those of Equations (3.2) and (3.3) anyway.

Let $\vec{Q}_i = (x_i, y_i, z_i)$ for $i = 0, 1, 2$ be the vertices of a triangle. The triangle is specified parametrically as $\vec{Q}(s, t) = s\vec{Q}_0 + t\vec{Q}_1 + (1 - s - t)\vec{Q}_2$ for $0 \leq s \leq 1,$ $0 \leq t \leq 1,$ and $s + t \leq 1.$ Let the projected points for the \vec{Q}_i be $\vec{P}_i = (x_i/w_i, y_i/w_i)$ for $i = 0, 1, 2.$ For each s and $t,$ let $\vec{P}(s, t)$ be the projection of $\vec{Q}(s, t).$ Some algebra will show that

$$\vec{P}(s, t) = \left(\frac{x_0 + s(x_1 - x_0) + t(x_2 - x_0)}{w_0 + s(w_1 - w_0) + t(w_2 - w_0)}, \frac{y_0 + s(y_1 - y_0) + t(y_2 - y_0)}{w_0 + s(w_1 - w_0) + t(w_2 - w_0)} \right)$$

$$= \left(\frac{x_0}{w_0} + \frac{w_1 s}{w_0 + (w_1 - w_0)s + (w_2 - w_0)t} \left(\frac{x_1}{w_1} - \frac{x_0}{w_0} \right), \frac{y_0}{w_0} + \frac{w_1 s}{w_0 + (w_1 - w_0)s + (w_2 - w_0)t} \left(\frac{y_1}{w_1} - \frac{y_0}{w_0} \right) \right)$$

$$= \vec{P}_0 + \frac{w_1 s}{w_0 + (w_1 - w_0)s + (w_2 - w_0)t} (\vec{P}_1 - \vec{P}_0)$$

$$+ \frac{w_2 t}{w_0 + (w_1 - w_0)s + (w_2 - w_0)t} (\vec{P}_2 - \vec{P}_0).$$

Define

$$(\vec{s}(s, t), \vec{t}(s, t)) = \left(\frac{w_1 s, w_2 t}{w_0 + (w_1 - w_0)s + (w_2 - w_0)t} \right).$$ \hspace{1cm} (3.4)

The inverse mapping can be used by the rasterizers for perspectively correct triangle rasterization. The inverse is

$$(s(\vec{s}, \vec{t}), t(\vec{s}, \vec{t})) = \left(\frac{w_0 w_2 \vec{s}, w_0 w_1 \vec{t}}{w_1 w_2 + w_2 (w_0 - w_1) \vec{s} + w_1 (w_0 - w_2) \vec{t}} \right).$$ \hspace{1cm} (3.5)

3.2.3 Conics Project to Conics

Showing that the projection of a conic section is itself a conic section requires a bit more algebra. Let $\vec{Q}_i = (x_i, y_i, z_i)$ for $i = 0, 1, 2$ be points such that $\vec{Q}_1 - \vec{Q}_0$ and $\vec{Q}_2 - \vec{Q}_0$ are unit length and orthogonal. The points in the plane containing the \vec{Q}_i are represented by $\vec{Q}(s, t) = s(\vec{Q}_1 - \vec{Q}_0) + t(\vec{Q}_2 - \vec{Q}_0)$ for $s \in \mathbb{R}$ and $t \in \mathbb{R}.$
Within that plane a conic section is defined by

$$As^2 + Bst + Ct^2 + Ds + Et + F = 0.$$ (3.6)

To show that the projection is also a conic, substitute the formulas in Equation (3.5) into Equation (3.6) to obtain

$$\tilde{A}s^2 + \tilde{B}st + \tilde{C}t^2 + \tilde{D}s + \tilde{E}t + \tilde{F} = 0,$$ (3.7)

where

\[
\begin{align*}
\tilde{A} &= w_2^2 \left(w_0^2 A + w_0(w_0 - w_1)D + (w_0 - w_1)^2 F \right) \\
\tilde{B} &= w_1 w_2 \left(w_0^2 B + w_0(w_0 - w_2)D + w_0(w_0 - w_1)E + 2(w_0 - w_1)(w_0 - w_2)F \right) \\
\tilde{C} &= w_2^2 \left(w_0^2 C + w_0(w_0 - w_2)E + (w_0 - w_2)^2 F \right) \\
\tilde{D} &= w_1 w_2^2 \left(w_0 D + 2(w_0 - w_1)F \right) \\
\tilde{E} &= w_1^2 w_2 \left(w_0 E + 2(w_0 - w_2)F \right) \\
\tilde{F} &= w_1^2 w_2^2 F.
\end{align*}
\]

A special case is \(D = E = F = 0 \), in which case the conic is centered at \(\tilde{Q}_0 \) and has axes \(\tilde{Q}_1 - \tilde{Q}_0 \) and \(\tilde{Q}_2 - \tilde{Q}_0 \). Consequently, \(\tilde{A} = w_1^2 w_0^2 A \), \(\tilde{B} = w_1 w_2 w_0^2 B \), \(\tilde{C} = w_1^2 w_2^2 C \), and \(\tilde{B}^2 - 4\tilde{A}\tilde{C} = B^2 - 4AC \). The sign of \(B^2 - 4AC \) is preserved, so ellipses are mapped to ellipses, hyperbolas are mapped to hyperbolas, and parabolas are mapped to parabolas.

3.3 Camera Models

The world is a very big place. And not all of it can be completely processed in a reasonable amount of time to be displayed on a computer screen. We can make things easier by limiting the processing to those objects in a region of space called the **view volume**. All objects that are completely outside the view volume are not processed. Such objects are said to be **clipped**. All objects totally inside the view volume are processed for display on the computer screen. Objects that intersect the boundary of the view volume must be **clipped** against the boundary, then processed for display on the computer screen.

The display process includes **projection** onto a **view plane**. Moreover, only a portion of the view plane can be displayed on a computer screen at one time. A rectangular region of interest, called a **viewport**, is selected for display. Although parallel projection
is possible, most 3D game engines use perspective projection, so we will restrict further
discussion to this case. An infinite pyramid is formed by the eye point as vertex and
four planar sides, each side containing the eye point and an edge of the viewport. If
additionally the pyramid is limited by two planes, both parallel to the view plane, the
resulting view volume is called the view frustum. The parallel plane closest to the eye
point is called the near plane and the plane farthest from the eye point is called the far
plane. The combination of an eye point, a view plane, a viewport, and view frustum
is called a camera model. In this book we will assume that the view plane is the same
as the near plane.

3.3.1 Standard Camera Model

The simplest camera model for perspective projection occurs when the eye point is
the origin (0, 0, 0), the near plane is z = n > 0, the far plane is z = f > n, and the
viewport is the rectangle defined by l ≤ x ≤ r and b ≤ y ≤ t. The view frustum is
limited on the sides by the left plane x = Lz/n, the right plane x = rz/n, the top plane
y = tz/n, and the bottom plane y = bz/n. In nearly all applications, the viewport
is chosen with l = −r and b = −t so that the frustum is part of an orthogonal
pyramid. The camera is assumed to be located at the eye point and has a set of
coordinate axes associated with it, the left direction L = (1, 0, 0), the up direction
U = (0, 1, 0), and the view direction D = (0, 0, 1). Figure 3.2 illustrates the camera
model. A typical point (x, y, z) inside the view frustum is shown together with its
projection (nx/z, ny/z, n) = (x/w, y/w, n) onto the view plane.

The axis of the view frustum is the ray that contains both the origin and the center
point of the viewport. This ray is parameterized as (r + t)z/(2n), (t + b)z/(2n), z
for z ∈ [n, f]. It is convenient to transform the (possibly) skewed view frustum into
an orthogonal frustum with viewport \([-1, 1]^2\). We accomplish this by removing the skew, then scaling the result:

\[
\begin{align*}
x' &= \frac{2}{r-l} \left(x - \frac{(r+l)z}{2n} \right) \\
y' &= \frac{2}{t-b} \left(y - \frac{(t+b)z}{2n} \right).
\end{align*}
\] (3.8)

The view frustum is now delimited by \(x' \in [-1, 1]\), \(y' \in [-1, 1]\), and \(z \in [n, f]\). The projection is \((x'/w, y'/w)\) with \(w = z/n\).

It is also convenient to transform the \(z\) values in \([n, f]\) so that the new range is \([0, 1]\). This is somewhat tricky because the transformation should be consistent with the perspective projection. The linear transformation \(z' = (z - n)/(f - n)\) is not the correct one to use. Equation (3.2) saves the day. The \(z\) values in \([n, f]\) can be written as \(z = (1 - s)n + sf\) for \(s \in [0, 1]\). We can use \(z' = \tilde{s}(s)\) to rescale so that \(z' \in [0, 1]\). Solving for \(s = (z - n)/(f - n)\), using \(w_0 = 1\) and \(w_1 = f/n\), and replacing in Equation (3.2) yields

\[
z' = \frac{f}{f-n} \left(1 - \frac{n}{z} \right). \] (3.9)

The point \((x', y', z')\) is specified in a right-handed coordinate system. However, the computer screen is treated as a left-handed system. The \(x\)-axis points to the right, the \(y\)-axis points up, and the \(z\)-axis points into the screen. A simple way to change handedness is to change sign on one of the coordinates. For an engine that includes its own geometric pipeline (e.g., one built on top of Glide), any coordinate is as good as another. For an engine that is built on top of an API (e.g., OpenGL or Direct3D), the choice is determined since those APIs have a predetermined format for the transformation specified as a \(4 \times 4\) homogeneous matrix \(H\). Typically, the entries of the \(z\)-column of the matrix have their signs changed. The matrix specification of the projection may lead to some confusion because of the properties of homogeneous matrices and vectors.

Let \(\tilde{V}\) be a \(4 \times 1\) homogeneous vector. The projected values obtained from \(H\tilde{V}\) and \(cH\tilde{V}\) for any \(c \neq 0\) are the same because of the division by the \(w\)-term. Even more confusing is that OpenGL maps the \(z\) values into \([-1, 1]\), but the above derivation and Direct3D map the \(z\) values into \([0, 1]\). Homogeneous matrices representing the projection are

\[
P_{[0,1]} = \begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{2n} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{2n} & 0 \\
0 & 0 & -\frac{f}{f-n} & -\frac{fn}{f-n} \\
0 & 0 & -1 & 0
\end{bmatrix} \] (3.10)
and

\[
P_{[-1,1]} = \begin{bmatrix}
\frac{2n}{f+n} & 0 & \frac{r-t}{r-f} & 0 \\
0 & \frac{2n}{f-n} & \frac{r+t}{r-f} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & 0 & -1
\end{bmatrix}.
\]

(3.11)

In either case, let \(H_{\text{proj}} \) denote the homogeneous projection matrix.

3.3.2 General Camera Model

In the standard camera model, we assume that the eye point is at the origin and that the camera looks in the direction of the \(z \)-axis. In general, the eye point can occur anywhere in space and the camera can be arbitrarily oriented. Specifically, let \(\tilde{E} \) be the eye point and let the camera have left direction \(\tilde{L} \), up vector \(\tilde{U} \), and view direction \(\tilde{D} \) so that \(\tilde{L}, \tilde{U}, \) and \(\tilde{D} \) form a right-handed coordinate system. Consequently, the matrix \(\mathbf{R} = [\tilde{L} \mid \tilde{U} \mid \tilde{D}] \) whose columns are the specified vectors is orthonormal and has determinant one. The view plane origin is \(\tilde{P} = \tilde{E} + n\tilde{D} \), a point that is \(n \) units of distance from the eye point. Let the viewport be defined by the rectangle in the view plane whose corners are \(\tilde{P} + r\tilde{L} + i\tilde{U}, \tilde{P} + r\tilde{L} + b\tilde{U}, \tilde{P} + i\tilde{L} + b\tilde{U}, \) and \(\tilde{P} + i\tilde{L} + b\tilde{U} \).

We can write any world point \(\tilde{X} \) in terms of the camera’s coordinate system as \(\tilde{X} = \tilde{E} + R\tilde{Y} \) and then solve to obtain \(\tilde{Y} = R^T(\tilde{X} - \tilde{E}) \). This transformation is called the view transformation. The camera model in the \(\tilde{Y} \) coordinate system is in standard form. The homogeneous transformation representing the view transformation is

\[
H_{\text{view}} = \begin{bmatrix}
R^T & -R^T \tilde{E} \\
0^T & 1
\end{bmatrix}.
\]

(3.12)

The matrix that maps the view frustum into normalized projection coordinates is \(H_{\text{proj}} H_{\text{view}} \), where \(H_{\text{proj}} \) is either Equation (3.10) or (3.11). In the implementation of a camera, the two matrices are stored separately and applied in sequence. The matrix \(H_{\text{proj}} \) is typically constructed at the initialization of the application and remains static. The matrix \(H_{\text{view}} \) is a dynamic quantity that changes every time the camera moves to a new location or changes orientation.

3.3.3 Model-to-View Transformation

The total transformation from the model space coordinates to the view space coordinates of the object to be drawn is

\[
H_{\text{total}} = H_{\text{proj}} H_{\text{view}} H_{\text{world}}.
\]
where H_{proj} is given in Equation (3.10) or (3.11), H_{view} is given in Equation (3.12), and H_{world} is the transformation from the object's model coordinates to its world coordinates,

$$H_{\text{world}} = \begin{bmatrix} M_w & \vec{T}_w \\ \vec{0}^T & 1 \end{bmatrix}.$$

Because the matrix H_{proj} is based solely on the intrinsic properties of the camera, and the matrix H_{view} changes whenever the camera changes position or orientation, an implementation of a camera model should maintain these two matrices separately. The matrix H_{world} is dependent on each rendered object and can change any time the application desires.

From the point of view of efficiency, and assuming there is no hardware support for geometric transformations, the actual matrix product should be computed as follows. (We will use the projection of Equation (3.10) for the following discussion, but a similar one can be made for the other projection matrix.)

The goal is to compute H_{total} so that it can be used in transforming a collection of homogeneous points of the form $(x, y, z, 1)$ to a collection of preprojected triples of the form (x', y', w'). The third component really is the homogeneous term w' and not z'. As we shall see, depth information is not necessarily required for rasterization depending on what the application knows about the objects it is rendering. The depth values can be computed later in the pipeline when they are needed. This observation allows us to use a slightly different projection matrix than H_{proj}.

$$H_{\text{proj}} = \begin{bmatrix} \frac{2}{r-l} & 0 & -\frac{r+l}{n(r-l)} & 0 \\ 0 & \frac{2}{r+l} & \frac{r+l}{n(r+l)} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{n} & 0 \end{bmatrix}.$$

The difference is that the z-value of the point to be transformed need not be carried along since the term $w = z/n$ already contains the information about z. The total transformation is

$$H_{\text{total}}' = H_{\text{proj}}H_{\text{view}}H_{\text{world}}.$$

The presence of a row of zeros in the matrix allows us to skip formal calculations that might otherwise be performed in a general routine to multiply matrices. The order of calculation for H_{total}' that minimizes the number of operations is $H_{\text{total}}' = (H_{\text{proj}}H_{\text{view}})H_{\text{world}}$. The camera implementation maintains the product $H_{\text{proj}}H_{\text{view}}$ as the camera model, position, or orientation changes. During a rendering pass, the renderer need only take the current camera’s matrix product and multiply it times the object’s model-to-world transform to produce a single matrix that is used to
transform vertices. In this last product, the zero row in $H_{\text{proj}} H_{\text{view}}$ need not participate in the actual computations. Effectively, the renderer has a 3×4 matrix, $[M|\vec{T}]$, for transforming points rather than a full 4×4 homogeneous matrix. The matrix M is 3×3 and the vector \vec{T} is 3×1. The 3×4 matrix is obtained by removing the row of zeros from the product H_{total}. The total transform applied to input points is

$$
M \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} + \vec{T} = \begin{bmatrix} x' \\ y' \\ u' \\ \end{bmatrix}.
$$

(3.13)

More precisely, the matrix M and vector \vec{T} can be generated by swapping the row of zeros with the last row of H_{proj} and computing products of 4×4 matrices. That is,

$$
H_{\text{proj}} = \begin{bmatrix} C & \vec{0} \\ \vec{0}^T & 0 \\ \end{bmatrix} = \begin{bmatrix} \frac{2}{r-l} & 0 & -\frac{r+l}{n(r-l)} & 0 \\ 0 & \frac{2}{r-l} & -\frac{r+l}{n(r-l)} & 0 \\ 0 & 0 & \frac{1}{n} & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}
$$

and

$$
H_{\text{total}} = \begin{bmatrix} M & \vec{T} \\ \vec{0}^T & 0 \\ \end{bmatrix} = \begin{bmatrix} C & \vec{0} \\ \vec{0}^T & 0 \\ \end{bmatrix} \begin{bmatrix} R^T & -R^T \vec{E} \\ \vec{0}^T & 1 \\ \end{bmatrix} \begin{bmatrix} M_w & \vec{T}_w \\ \vec{0}^T & 1 \\ \end{bmatrix}
$$

$$
= \begin{bmatrix} CR^T M_w & CR^T \left(\vec{T}_w - \vec{E} \right) \\ \vec{0}^T & 0 \\ \end{bmatrix}.
$$

(3.14)

The quantity CR^T is maintained by the camera implementation. The difference $\vec{T}_w - \vec{E}$ is computed once the model-to-world transform for the object is known.

3.3.4 Mapping to Screen Coordinates

The raster display has its own (\tilde{x}, \tilde{y}) coordinates called screen coordinates. This coordinate system is right-handed with its origin in the lower-left corner of the display. The \tilde{x} values increase from left to right and the \tilde{y} values increase from bottom to top. The full screen has dimensions (S_x, S_y) such that $0 \leq \tilde{x} < S_x$ and $0 \leq \tilde{y} < S_y$. The
mapping from normalized projection coordinates \((x, y) \in [-1, 1]^2\) to screen coordinates \((\tilde{x}, \tilde{y})\) is a straightforward transformation,

\[
\tilde{x} = \frac{(S_x - 1)(x + 1)}{2}, \quad \tilde{y} = \frac{(S_y - 1)(y + 1)}{2}.
\]

The subtractions by 1 from the screen dimensions are necessary since \(\tilde{x} \leq S_x - 1\) and \(\tilde{y} \leq S_y - 1\) are required for the final integer-based screen coordinates.

The transformation to screen coordinates can be applied before or after clipping. In this chapter, clipping is implemented in view space using the viewport \([-1, 1]^2\).

If the transformation to screen coordinates is performed first, then clipping must be implemented against the viewport \([0, S_x - 1] \times [0, S_y - 1]\).

Another issue for screen coordinates is the aspect ratio, \(\rho = S_x/S_y\). Typical display hardware has square pixels and an aspect ratio of \(4/3\), although high-definition television has an aspect ratio of \(16/9\). In order for the world to be rendered properly, the view frustum should be constructed to maintain the aspect ratio of the screen. In this case \((r - l)/(t - b) = \rho\) should be enforced in the camera model.

3.3.5 Screen Space Distance Measurements

Consider a camera model with \(l = -r\) and \(b = -t\). The upper-left matrix of the homogeneous matrix is \(C = \text{diag}(n/r, n/t, -1)\). Given a line segment with midpoint \(\tilde{V}\), unit direction \(\hat{A}\), and length \(L_w\), we want to measure the length \(L\) of the screen space projection of the line segment. The model-to-world transform is assumed to be the identity. The world end points are \(\tilde{V}_0 = \tilde{V} - (L_w/2)\hat{A} = (x_0, y_0, z_0)\) and \(\tilde{V}_1 = \tilde{V} + (L_w/2)\hat{A} = (x_1, y_1, z_1)\).

From Equation (3.14), the normalized projection coordinates of the end points are \(\tilde{T}_0 = CR^1(\tilde{V} - \tilde{E}) - (L_w/2)CR^T\hat{A}\) and \(\tilde{T}_1 = CR^1(\tilde{V} - \tilde{E}) + (L_w/2)CR^T\hat{A}\). Define \(\tilde{P} = CR^1(\tilde{V} - \tilde{E}) = (P_0, P_1, P_2)\) and \(\tilde{B} = CR^T\hat{A} = (B_0, B_1, B_2)\). The screen space transformation of \(\tilde{T}_0\) and \(\tilde{T}_1\) yields \(\tilde{Q}_0 = (\sigma_x(1 + x_0/w_0), \sigma_y(1 + y_0/w_0)) = (x_0, y_0)\) and \(\tilde{Q}_1 = (\sigma_x(1 + x_1/w_1), \sigma_y(1 + y_1/w_1)) = (x_1, y_1)\) for some \(\sigma_x > 0\) and \(\sigma_y > 0\). The screen space coordinates are measured in pixels, so \(\sigma_x\) measures the number of pixels per unit of distance along the \(\tilde{x}\)-axis on the view plane at \(w = 1\) and \(\sigma_y\) measures the number of pixels per unit of distance along the \(\tilde{y}\)-axis on the view plane.

The squared length of the screen space segment is

\[
L_s^2 = (\tilde{x}_1 - \tilde{x}_0)^2 + (\tilde{y}_1 - \tilde{y}_0)^2 = \sigma_x^2 \left(\frac{x_1}{w_1} - \frac{x_0}{w_0} \right)^2 + \sigma_y^2 \left(\frac{y_1}{w_1} - \frac{y_0}{w_0} \right)^2,
\]

where

\[
\frac{x_1}{w_1} - \frac{x_0}{w_0} = \frac{x_1w_0 - x_0w_1}{w_1w_0} = \frac{L_w(P_0B_0 - P_1B_2)}{P_2^2 - L_w^2B_2^2/4}
\]
and

\[
y_1 - y_0 = \frac{y_1w_0 - y_0w_1}{w_1w_0} = \frac{L_w(P_2 B_1 - P_1 B_2)}{P_1^2 - L_w^2 D_2^2 / 4}.
\]

Using the definitions of \(\tilde{P}, \tilde{B} \), defining \(\Delta = \tilde{V} - \tilde{E} \), and assuming that the view frustum maintains the screen aspect ratio \(\sigma_z / r = \sigma_z / t \), some algebra leads to

\[
L_z^2 = \frac{\lambda^2 n^2 L_w^2 \Delta^T (\tilde{\Phi} \tilde{\Phi}^T + \tilde{\Psi} \tilde{\Psi}^T) \Delta}{(\Delta \cdot \Delta)^2 - L_w^2 (\Delta \cdot \Delta_2^T / 4)^2},
\]

(3.15)

where \(\lambda = \sigma_z / r \), \(\tilde{\Phi} = (\tilde{L} \cdot \tilde{A}) \tilde{D} - (\tilde{D} \cdot \tilde{A}) \tilde{L} \), and \(\tilde{\Psi} = (\tilde{U} \cdot \tilde{A}) \tilde{D} - (\tilde{D} \cdot \tilde{A}) \tilde{U} \). The vectors \(\tilde{L}, \tilde{U}, \) and \(\tilde{D} \) are the coordinate frame for the camera. The numerator of the right-hand side of Equation (3.15) is a quadratic function and the denominator is a quartic function in \(\Delta \).

In the special case of \(\Delta = (0, 0, 1) \), we can reduce Equation (3.15) to a more amenable form. Since \(R = [L \mid U \mid D] \) is orthonormal and has determinant one, it must be that \(\tilde{L} \times \tilde{U} = \tilde{D}, \tilde{U} \times \tilde{D} = \tilde{L}, \) and \(\tilde{L} \times \tilde{L} = \tilde{U} \). If \(\tilde{L} = (L_x, L_y, L_z), \tilde{U} = (U_x, U_y, U_z), \) and \(\tilde{D} = (D_x, D_y, D_z), \) then \(\tilde{\Phi} = (L_x D_z - L_z D_x, L_z D_y - L_y D_z, L_y D_x - L_x D_y, 0) = (U_z, U_y, 0) \) and \(\tilde{\Psi} = (U_z, U_y, 0) \). Consequently, \(\tilde{\Phi} \cdot \Delta = -U_x \Delta_x + U_y \Delta_y \) and \(\tilde{\Psi} \cdot \Delta = L_x \Delta_x - L_y \Delta_y \). Because \(R \) is orthonormal, its rows are unit length and mutually perpendicular. This provides the relationships \(L_x^2 + U_x^2 = 1 - D_y^2 = D_x^2 + D_z^2 \), \(L_y^2 + U_y^2 = 1 - D_x^2 = D_y^2 + D_z^2 \), and \(L_z^2 + U_z^2 = 1 - D_y^2 = D_x^2 + D_z^2 \) and \(L_x L_y + U_x U_y = -D_x D_y \). Thus, \((\tilde{\Phi} \cdot \Delta)^2 + (\tilde{\Psi} \cdot \Delta)^2 = D_x^2 (\Delta_x^2 + \Delta_y^2) + (D_x \Delta_x + D_z \Delta_y)^2 \), and the relationship between world height and screen space distance is

\[
L_z^2 = \frac{\lambda^2 n^2 L_w^2 [D_x^2 (\Delta_x^2 + \Delta_y^2) + (D_x \Delta_x + D_z \Delta_y)^2]}{(D_x \Delta_x + D_y \Delta_y + D_z \Delta_y)^2 - L_w^2 D_2^2 / 4^2}.
\]

(3.16)

3.4 Culling and Clipping

Culling and clipping of objects reduces the amount of data sent to the rasterizer for drawing. Culling refers to eliminating portions of an object, possibly the entire object, that are not visible to the eye point. For an object represented by a triangle mesh, the typical culling operations amount to determining which triangles are outside the view frustum and which triangles are facing away from the eye point. Clipping refers to computing the intersection of an object with the view frustum, and with additional planes provided by the application such as in a portal system (see Section 12.2), so that only the visible portion of the object is sent to the rasterizer. For an object represented
by a triangle mesh, the typical clipping operations amount to splitting triangles by the various view frustum planes and retaining only those triangles inside the frustum.

3.4.1 Object Culling

Object culling involves deciding whether or not an object as a whole is contained in the view frustum. If an object is not in the frustum, there is no point in consuming CPU cycles to process the object for the rasterizer. Typically, the application maintains a bounding volume for each object. The idea is to have an inexpensive test for nonintersection between bounding volume and view frustum that can lead to quick rejection of an object for further processing. If the bounding volume of an object does intersect the view frustum, then the entire object is processed further even if that object does not lie entirely inside the frustum. It is also possible that the bounding volume and view frustum intersect, but the object is completely outside the frustum. Chapter 4 discusses a variety of bounding volumes that can be used for object culling.

Regardless of choice of bounding volume, culling attempted on a plane-by-plane basis has the problem that the bounding volume is not necessarily culled even though it is outside the view frustum. This feature could be viewed as a flaw in a plane-by-plane culling system, but it is in fact beneficial to use this system as an aid in reducing clipping time. If a bounding volume for an object is tested against a frustum plane and is found to be on the frustum side of the plane, that plane need not be processed by the clipping system if indeed the object is not culled and must be clipped against the view frustum. Before handing the renderer the object to be processed, the application can specify which frustum planes need to be clipped against. Moreover, in a portal system where additional clipping planes are present, the application can likewise attempt to cull against those planes and inform the renderer which ones need to be used when clipping. In an implementation, the camera can maintain an array of clipping planes and an array of Boolean flags that indicate whether or not each clipping plane is enabled (renderer uses in clipping) or disabled (renderer ignores in clipping).

3.4.2 Back Face Culling

Object culling is an attempt to eliminate the entire object from being processed by the renderer. If an object is not culled based on its bounding volume, then the renderer has the opportunity to reduce the amount of data it must draw. The next level of culling is called *back face culling*. The triangles are oriented so that their normal vectors point outside the object whose surface they comprise. If the triangle is oriented away from the eye point, then that triangle is not visible and need not be drawn by the renderer.

For a perspective projection, the test for a back facing triangle is to determine if the eye point is on the negative side of the plane of the triangle (the triangle is a "back face" of the object to be rendered). If \mathbf{E} is the world eye point and if the plane of the triangle is $\mathbf{N} \cdot \mathbf{X} = d$, then the triangle is back facing if $\mathbf{N} \cdot \mathbf{E} < d$. Figure 3.3 shows the
Figure 3.3 Object with front facing and back facing triangles indicated.

front view of an object. The front facing triangles are drawn with solid lines. The back facing triangles are indicated with dotted lines (although they would not be drawn at all by the renderer).

If the application stores a triangle as an array of three vertices, the renderer would need to compute the normal vector for back face culling. This cost can be eliminated if the application also stores a triangle normal vector, called a facet normal, in addition to the vertices. Moreover, if the triangle is stored as model coordinates and the facet normal is in model coordinates, the renderer still needs to know the vertices and normal in world coordinates. Rather than transforming all vertices and normal, it is cheaper to inverse-transform the camera to the model space coordinates of the triangle, especially if this is done for a triangle mesh that contains many triangles in the same model coordinate system. Let \(\hat{E} \) be the world coordinates of the eye point for the camera. If the model-to-world transform involves only translation \(T \), rotation \(R \), and uniform scale \(s \), then the coordinates of the eye point in the model space coordinates for the triangle are

\[
\hat{E}_m = \frac{1}{s} R^T (\hat{E} - \hat{T}).
\]

If the model space facet plane is \(\hat{N}_m \cdot \hat{X} = d_m \), then the triangle is back facing if

\[
\hat{N}_m \cdot \hat{E}_m < d_m.
\]

3.4.3 Clipping

Clipping is the process by which the front facing triangles of an object in the world are intersected with the view frustum planes. A triangle either is completely inside the frustum (no clipping necessary), is completely outside the frustum (triangle is culled), or intersects at least one frustum plane. In the last case the portion of the triangle that lies on the frustum side of the clipping plane must be calculated. That portion is either a triangle itself or a quadrilateral that is partitioned into two triangles. The triangles in the intersection are then clipped against the remaining clipping planes. After all
clipping planes are processed, the renderer has a list of triangles that are completely inside the view frustum.

The splitting of a triangle by a frustum plane is accomplished by computing the intersection of the triangle edges with the plane. The three vertices of the triangle are tested for inclusion in the frustum. If the frustum plane is \(\mathbf{N} \cdot \mathbf{X} = d \) and if the vertices of the triangle are \(\mathbf{V}_i \) for \(i = 0, 1, 2 \), then the edge with end points \(\mathbf{V}_0 \) and \(\mathbf{V}_1 \) intersects the plane if \(p_{i0} p_{i1} < 0 \), where \(p_i = \mathbf{N} \cdot \mathbf{V}_i - d \) for \(i = 0, 1, 2 \). This simply states that one vertex is on the positive side of the plane and one vertex is on the negative side of the plane. The point of intersection, called a *clip vertex*, is

\[
\mathbf{V}_{\text{clip}} = \mathbf{V}_{i0} + \frac{p_{i0}}{p_{i0} - p_{i1}} \left(\mathbf{V}_{i1} - \mathbf{V}_{i0} \right). \tag{3.17}
\]

Figure 3.4 illustrates the possible configurations for the triangle. The vertices \(\mathbf{V}_{i0} \), \(\mathbf{V}_{i1} \), and \(\mathbf{V}_{i2} \) are assumed to be in counterclockwise order. The pseudocode for clipping a single triangle against a plane is given below. After splitting, the new triangles have vertices that are in counterclockwise order.
ClipConfiguration (p10,p11,p12,V10,V11,V12)
{
 // assert: p10*p11 < 0
 Vc0 = V10+(p10/(p10-p11))*(V11-V10);
 if (p10 > 0)
 {
 if (p12 > 0) // figure. top left
 {
 Vc1 = V11+(p11/(p11-p12))*(V12-V11);
 add triangle <Vc0,Vc1,V10> to triangle list;
 add triangle <Vc1,V12,V10> to triangle list;
 }
 else // figure. top right
 {
 Vc1 = V10+(p10/(p10-p12))*(V12-V10);
 add triangle <Vc0,Vc1,V10> to triangle list;
 }
 }
 else
 {
 if (p12 > 0) // figure. bottom left
 {
 Vc1 = V10+(p10/(p10-p12))*(V12-V10);
 add triangle <Vc0,V11,V12> to triangle list;
 add triangle <Vc0,V12,Vc1> to triangle list;
 }
 else // figure. bottom right
 {
 Vc1 = V11+(p11/(p11-p12))*(V12-V11);
 add triangle <Vc0,V11,Vc1> to triangle list;
 }
 }
}

ClipTriangle ()
{
 remove triangle <V0,V1,V2> from triangle list;
 p0 = Dot(N,V0)-d;
 p1 = Dot(N,V1)-d;
 p2 = Dot(N,V2)-d;
 if (p0*p1 < 0)
 {

// triangle needs splitting along edge <v0,v1>
ClipConfiguration(p0,p1,p2,v0,v1,v2);
}
else if (p0*p2 < 0)
{
 // triangle needs splitting along edge <v0,v2>
 ClipConfiguration(p2,p0,p1,v2,v0,v1);
}
else if (p1*p2 < 0)
{
 // triangle needs splitting along edge <v1,v2>
 ClipConfiguration(p1,p2,p0,v1,v2,v0);
}
else if (p0 > 0 || p1 > 0 || p2 > 0)
{
 // triangle is completely inside frustum
 add triangle <v0,v1,v2> to triangle list;
}
}

To avoid copying vertices, the triangle representation can store pointes to vertices in a vertex pool. However, the above pseudocode has a drawback in that information about shared edges is not maintained. A shared edge will be clipped as many times as there are triangles sharing the edge. For manifold geometry, the shared edge is typically clipped twice when the edge has two triangles sharing it. Clipping pipelines also typically interpolate vertex attributes at the same time the clip vertices are computed. Multiple processing of shared edges and premature calculation of vertex attributes is extremely inefficient. A better approach is to use a triangle mesh data structure that supports single clipping of an edge. The same structure supports deferred vertex attribute calculation and interpolation so that a minimal set of initial vertices need to be lit and only visible clip vertices are interpolated. Details of how to do this are discussed in Section 3.7.

Regardless of data structures used for triangle representation in the clipping pipeline, a choice must be made about the order of clipping and transformation to view space coordinates. The costs associated with each order vary. Let \(N_{ov} \) be the number of vertices of the object. Let \(N_0 \) be the number of vertices remaining after back face culling. Of course, \(N_0 \leq N_{ov} \). Let \(N_i \) be the number of vertices after clipping against the \(i \)th frustum plane, \(1 \leq i \leq 6 \). The \(N_i \) may be larger or smaller than \(N_0 \) depending on the object and how it is positioned with respect to each frustum plane. Various per-vertex costs are associated with the stages of clipping:

- \(C_{tr} \), the cost of transforming as \(M \bar{V} + \bar{T} \). The cost includes nine multiplications and nine additions.
3.4 Culling and Clipping

- C_{wp}, the cost of computing the world plane equation, $\vec{N} \cdot \vec{V}$. The cost includes three multiplications, two additions, and one comparison to the plane constant d.
- C_{vp}, the cost of computing the view plane equation. The view planes are $x \leq w$, $x \geq -w$, $y \leq w$, $y \geq -w$, $w \geq 1$, and $w \leq K$ for a fixed constant K. For each plane the cost is one comparison. The cost of the sign changes is considered to be negligible.

The cost of back-face culling is the same regardless of choice of clipping pipeline, so it is not included in the comparative costs of the pipelines.

Clip World, Transform World to View

The first choice is to clip in world space and transform the postclip vertices from world space to view space. The sequence of operations is:

1. If world coordinates of object vertices require updating, then transform the model coordinates to world coordinates.
2. Back-face cull in world space.
3. Inverse transform the frustum planes from view space to world space (or let the camera maintain world space frustum planes).
4. Clip against the world space frustum planes.
5. Transform the postclip vertices from world space to view space.

This style of clipping is possibly of use if the object maintains world coordinates in addition to model coordinates for purposes other than rendering. For example, the application might use a collision detection system that requires knowledge of world coordinates of an object even if that object is not currently visible.

The cost of transforming from model coordinates to world coordinates for such an application may be considered a necessity, so it is not necessarily included in the cost of rendering. For the record, the cost of the transform is $C_{tr}N_{m}$. The inverse transform of the frustum planes is negligible as long as the object has a significant number of vertices. The rendering costs are incurred mainly from the clipping and transforming from world space to view space:

$$C_1 = C_{wp} \sum_{i=0}^{5} N_i + C_{tr}N_b$$

The first part of the cost comes from computing on which side of the frustum planes the vertices lie. The second part is from the world space to view space transformation.
Clip Model, Transform Model to View

The second choice is to clip in the model space of the object and transform the postclip vertices from model space to view space. The sequence of operations is

1. Inverse transform the camera from world space to the model space of the object.
2. Back-face cull in the model space of the object.
3. Inverse transform the frustum planes from view space to model space.
4. Clip against the model space frustum planes.
5. Transform the postclip vertices from model space to view space.

As in the first choice, the main rendering costs are incurred from the clipping and transforming from model space to view space. The cost is effectively the same as before:

\[C_2 = C_{wp} \sum_{i=0}^{5} N_i + C_{tr} N_6. \]

Transform Model to View, Clip View

The third choice is to transform the vertices to view space and clip. The sequence of operations is

1. Inverse transform the camera from world space to the model space of the object.
2. Back-face cull in the model space of the object.
3. Transform the vertices from model space to view space.
4. Clip against the view space frustum planes.

The main rendering costs are incurred from transforming from model space to view space and clipping. The cost is

\[C_3 = C_{tr} N_0 + C_{vp} \sum_{i=0}^{5} N_i. \]

The third choice is faster than the second whenever \(C_3 \leq C_2 \), in which case

\[N_0 \leq \frac{C_{wp} - C_{vp}}{C_{tr}} \sum_{i=0}^{5} N_i + N_6. \]
3.5 Surface and Vertex Attributes

On an Intel Pentium processor, floating-point multiplications and additions each take 3 cycles. A floating-point comparison takes 4 cycles. Thus, C_{tr} is 54 cycles, C_{wp} is 19 cycles, and C_{vp} is 4 cycles. The third choice is faster than the second whenever

$$N_0 \leq \frac{13}{41} \sum_{i=1}^{5} N_i + \frac{54}{41} N_6.$$

If the number of clip vertices increases with each frustum plane, then $N_i \geq N_0$ for $i \geq 1$. In this case the inequality is clearly satisfied (replace N_i by N_0). If the number of clip vertices is reduced by a fraction for each frustum plane, say, $N_{i+1} = r N_i$ for $i \geq 0$ and for some $r \in [0, 1]$, then the inequality reduces to a sixth-degree polynomial inequality in r that is true for $r \geq 0.76$. Therefore, if there is a 3/4 (or greater) reduction of vertices from each frustum plane, the third method is slower. This situation does not typically happen because reasonable scenes tend to have the majority of the vertices well inside the frustum. The values N_i should be about equal to N_0 or larger. Note that the performance comparisons here are theoretical; in practice the costs are also affected by availability of data in memory cache.

3.5 Surface and Vertex Attributes

Triangles are drawn by the renderer as colored entities, the color of each pixel determined by vertex attributes assigned to the vertices of the triangle. The pixels at nonvertex locations are computed via interpolation by the rasterizer, the final values in total called surface attributes. In screen space the projected vertices have locations (x', y'), derived in Equation (3.8), that are used to control the interpolation process. Each vertex is endowed with a list of attributes depending on how the application wants the triangle to be drawn.

3.5.1 Depth

The first vertex attribute that always exists is the depth value z or, equivalently, the value $w = z/n$ where $z \in [n, f]$ and $w \in [1, f/n]$. The projected values were derived earlier in Equation (3.9), $z' = f(1 - 1/w)/(f - n) \in [0, 1]$. These quantities are perspective interpolated by the rasterizer to compute the depth values (more appropriately, pseudodepth values) on a per-pixel basis that are used for sorting at the pixel level.

3.5.2 Colors

Each vertex can be assigned a vertex color $\mathbf{c} = (r, g, b)$, where r is the red channel, g is the green channel, and b is the blue channel. Channels from other color models
could be used instead, but standard renderers and graphics hardware support the RGB model. A rasterized triangle whose vertices are assigned only colors is not that visually appealing since interpolation of three color values over a triangle does not produce a wide variation in color. However, using only vertex colors may be necessary either on systems with a limited amount of memory, which prevents having a large number of textures at hand, or on systems with slow processors that take many cycles to combine multiple colors. Vertex colors are typically used in conjunction with textures to add more realism to the rendering. Moreover, the vertex colors can be used in conjunction with lights in the scene to generate dynamic effects, such as a flaming fireball traveling down a corridor and lighting portions of the walls near its path. This is termed dynamic lighting and is described in the next section.

3.5.3 LIGHTING AND MATERIALS

Dynamic lighting effects can be achieved by using light sources to illuminate portions of the scene and by assigning material properties to various objects in the scene.

Lights

The standard light sources in a real-time engine are

- Directional lights. The light source is assumed to be infinitely far away so that the directions of the light rays are all parallel. The sun is the classic example of a directional light.
- Point lights. The light source has a location in space and emits light in all directions.
- Spot lights. The light source has a location in space, but emits light only within a cone.

Figure 3.5 illustrates the three possible sources. Real light sources emit light from an area or volume source. Point light sources are a reasonable approximation in a real-time setting but do not always produce visually correct information. For example, shadows generated by a point source have hard edges, but shadows generated by a real light source have soft edges.

Light sources have various attributes in addition to position and direction. Each light can be monochrome or can have an RGB color associated with it. Instead of a single color for the light, multiple colors can be used to represent the contribution to ambient, diffuse, and specular lighting. The light can also maintain an intensity parameter that applies to the various colors, and a Boolean parameter can be used to indicate whether the light is on or off, a quick way to enable or disable lights in the rendering system. Other attributes assigned to lights depend on type. Point lights and
3.5 Surface and Vertex Attributes

![Light Diagram]

Figure 3.5 Various light sources.

Spot lights can have their light attenuated with distance from the light source, with the parameter usually specified as an inverse quadratic:

\[
d_{\text{att}} = \frac{1}{a + b|\vec{P} - \vec{V}| + c|\vec{P} - \vec{V}|^2}
\]

where \(\vec{P}\) is the light position and \(\vec{V}\) is a point to be illuminated. The physically correct model is \(a = b = 0\) and produces the inverse square relationship that we expect. However, the \(a\) and \(b\) parameters give an application more control over how the attenuation is to occur. Moreover, choosing \(a > 0\) guards against floating-point overflow when \(|\vec{P} - \vec{V}|\) is nearly zero.

Materials

Associating a material with an object is an attempt to give the object surface characteristics based on the material parameters and the light sources. The material parameters include emissive, ambient, diffuse, and specular color components and can include scalar parameters for shininess and alpha blending. The emissive color represents the fact that a material itself can emit light rather than simply reflect it. The ambient, diffuse, and specular colors are intended to be terms that interact with the light sources. Shininess is used to control how sharp or diffuse a specular highlight is. The alpha value is used to support transparent materials as an alternative to applying texture images with an alpha channel.

Lighting and Shading

The term *lighting* refers to the process of computing colors based on light sources and materials. The term *shading* refers to the process of computing pixel colors after any
lighting has been calculated. The three standard shading models are flat, Gouraud, and Phong. Flat shading uses the same color for all pixels in a rendered triangle. Thus, a color is assigned to the entire triangle rather than separate colors assigned to the three vertices. Gouraud shading calculates the vertex colors of the triangle based on light sources and materials, then interpolates those colors to fill out the remaining pixels in the triangle. Phong shading takes the three vertex normals and interpolates them to compute a normal vector per pixel. Each pixel is then lit according to the light sources and materials that affect the triangle. Flat shading and Gouraud shading are supported in hardware graphics cards, but Phong shading is more expensive and is not supported on consumer machines. This is actually surprising because the discrete methods that are used in line and circle drawing algorithms can be applied to interpolating normal vectors. Specifically, if the three vertex normals are plotted on a unit sphere, the normal at any triangle interior point corresponds to a point on the unit sphere contained in the spherical triangle formed by the original three normals. A discretization of the spherical triangle is quite possible and not expensive (Andres 1994; Andres and Jacob 1997), so it is conceivable that consumer graphics hardware could support normal interpolation in this way.

The colors at the triangle vertices are computed via a lighting model. The models used in real-time graphics involve decomposition into ambient, diffuse, and specular components. The model described here assumes that each light has an ambient color \(L_{\text{amb}} \), a diffuse color \(L_{\text{diff}} \), a specular color \(L_{\text{spec}} \), and an intensity \(L_{\text{int}} \) that is applied equally to all three colors. Point and spot lights also have an attenuation value \(L_{\text{att}} \). Each material has an emissive color \(M_{\text{emiss}} \), an ambient color \(M_{\text{amb}} \), a diffuse color \(M_{\text{diff}} \), a specular color \(M_{\text{spec}} \), a shininess parameter \(M_{\text{shin}} \), and an alpha component \(M_{\alpha} \).

Ambient Light

A light ray in the real world follows a path that has it reflecting off many surfaces and decreasing in intensity along the way. The global effect from all the rays is termed ambient lighting. The light model incorporates this effect by combining the light's ambient color with the material's ambient color,

\[
\mathbf{c}_{\text{amb}} = M_{\text{amb}} \circ (L_{\text{int}} L_{\text{amb}}).
\]

The operator \(\circ \) can represent componentwise multiplication (modulated color model) or componentwise addition (additive color model). To support operations between colors, it is necessary to represent the colors in a normalized way. The standard way is to store all color channels (including alpha) as floating-point numbers in [0, 1]. If \(\circ \) represents multiplication, then the product of two normalized colors is a normalized color. However, multiplication produces a darkening effect since the product of \(c_0 < 1 \) and \(c_1 < 1 \) yields a product \(c_0 c_1 < \min\{c_0, c_1\} < 1 \). One way to counteract the darkening is to adjust the light intensity parameter. Another way to avoid darkening is to choose \(\circ \) to represent addition. The pitfall here is that the sum of two colors can
result in channel values being larger than 1. Clamping the sum per channel to 1 can be used but might possibly change the perceived color value since the ratios between pairs of red, green, and blue are not preserved. Instead, the maximum channel value is determined and, if larger than 1, is used to scale all three channels to be within [0, 1]. Rescaling comes at a price since two divisions are required per color, whereas clamping does not require any divisions. Either clamping or rescaling is necessary even when \(\odot \) represents multiplication since the final lighting equation will involve sums of various color components in the lighting model.

For spot lights with a unit-length cone axis \(\hat{U} \) and angle \(\theta \), the light direction is \(\hat{D} = (\hat{V} - \hat{P})/||\hat{V} - \hat{P}|| \). The ambient color is attenuated depending on the angle formed by \(\hat{D} \) and \(\hat{U} \). If \(\hat{D} \cdot \hat{U} = \cos(\theta) \), then \(\hat{D} \) is on the cone boundary and the attenuation coefficient is 0. The drop-off from cone axis to cone boundary is generally chosen as \((\hat{D} \cdot \hat{U})^\epsilon \), where \(\epsilon > 0 \) is called the spot exponent. The attenuation coefficient is therefore

\[
d_{\text{spot}} = \begin{cases}
\left(\frac{\hat{D} \cdot \hat{U} - \cos \theta}{(\hat{D} \cdot \hat{U}) \sin \theta} \right)^\epsilon, & \hat{D} \cdot \hat{U} \geq |\hat{D}| \cos \theta \\
0, & \hat{D} \cdot \hat{U} < |\hat{D}| \cos \theta
\end{cases}
\]

and the ambient component is written as

\[
\tilde{C}_{\text{ambi}} = d_{\text{spot}} \tilde{M}_{\text{ambi}} \odot (L_{\text{int}} \tilde{I}_{\text{ambi}}).
\]

For directional lights and point lights the value of \(d_{\text{spot}} \) is simply set to 1, indicating it has no effect on the final color.

Diffuse Light

Diffuse lighting is based on Lambert's law, which says for a matte surface, the intensity of the reflected light is determined by the cosine of the angle between the surface normal \(\vec{N} \) and the light direction vector \(\vec{D} \). Moreover, the intensity drops to zero when the angle between \(\vec{N} \) and \(\vec{D} \) is \(\pi/2 \) radians or larger. The light model incorporates diffuse lighting by

\[
\tilde{C}_{\text{diff}} = d_{\text{spot}} \max(|\vec{N} \cdot \vec{D}, 0)| \tilde{M}_{\text{diff}} \odot (L_{\text{int}} \tilde{I}_{\text{diff}}),
\]

where \(d_{\text{spot}} \) is the spot angle attenuation factor described in the previous subsection.

The light direction depends on light type. Moreover, spot lights have an attenuation based on the angle between light direction and cone axis. For directional lights, the light direction \(\vec{D} \) is already known. For point lights, the light direction is \(\vec{D} = (\vec{V} - \vec{P})/||\vec{V} - \vec{P}|| \) for light source location \(\vec{P} \) and for each point \(\vec{V} \) to be illuminated. For spot lights with a unit-length cone axis \(\vec{U} \) and angle \(\theta \), the light direction is \(\vec{D} = (\vec{V} - \vec{P})/||\vec{V} - \vec{P}|| \).
Specular Light

Diffuse lighting represents reflection of light on matte surfaces. Specular lighting represents reflection of light on shiny surfaces. In particular, specular highlights can show up on highly reflective surfaces. These are places where the surface normal and light direction are parallel. The tightness of the region of brightness is something that can be controlled by the material's shininess parameter. Let \(\vec{E} \) be the eye point. Let \(\vec{U} = (\vec{E} - \vec{V})/|\vec{E} - \vec{V}| \) be the view direction for a point \(\vec{V} \) that is to be illuminated. Let \(\vec{D} \) be the light direction, specified for directional lights but computed to be \(\vec{D} = (\vec{V} - \vec{P})/|\vec{V} - \vec{P}| \) for point and spot lights. The reflection vector of the light direction through the vertex normal \(\vec{N} \) is \(\vec{R} = 2(\vec{N} \cdot \vec{D})\vec{N} - \vec{D} \). The specular coefficient is \((\vec{R} \cdot \vec{D})^{\text{spec}} \), assuming that the dot product is nonnegative. The light model incorporates specular lighting by

\[
\vec{C}_{\text{spec}} = d_{\text{spot}} \left(\max(\vec{R} \cdot \vec{D}, 0) \right)^{\text{shininess}} \vec{M}_{\text{spec}} \odot (L_{\text{int}} \vec{L}_{\text{spec}}).
\]

The attenuation coefficient \(d_{\text{spot}} \) is the same one discussed in the subsection on ambient lights.

The Light Equation

The final equation for lighting a vertex with a single material and using multiple light sources, given below, includes the attenuation factors for distance as well as for spot angles. The superscripts are indices for the array of active lights.

\[
\vec{C}_{\text{final}} = \vec{C}_{\text{ambient}} + \vec{C}_{\text{diff}} + \vec{C}_{\text{spec}}
\]

\[
\vec{M}_{\text{ambient}} \odot \sum_{i=1}^{n} d_{\text{spot}}^{i} L_{\text{int}}^{i} \vec{L}_{\text{ambient}}^{i}
\]

\[
\vec{M}_{\text{diff}} \odot \sum_{i=1}^{n} d_{\text{spot}}^{i} d_{\text{dist}}^{i} \max(\vec{N} \cdot \vec{D}, 0) L_{\text{int}}^{i} \vec{L}_{\text{diff}}^{i}
\]

\[
\vec{M}_{\text{spec}} \odot \sum_{i=1}^{n} d_{\text{spot}}^{i} d_{\text{dist}}^{i} \max(\vec{R} \cdot \vec{D}, 0) M_{\text{shininess}}^{i} L_{\text{int}}^{i} \vec{L}_{\text{spec}}^{i}
\]

Note that if no lights are present and the material emits light, the final vertex color is not black. It is also possible to include a global ambient light term \(\vec{M}_{\text{ambient}} \odot \vec{G}_{\text{ambient}} \), where the global ambient color is specified by the application.
3.5.4 Textures

Textured images, or simply textures, provide the most realism in a model and can be used effectively to hide the model's polygonal aspects. A triangle is assigned a textured image \(\tilde{c}(u, v) = (r(u, v), g(u, v), b(u, v)) \), where \((u, v) \in [0, 1]^2\). The tuple \((u, v, \tilde{c}(u, v))\) is called a texture element, or texel for short. Each triangle vertex is assigned a texture coordinate \(t = (u, v) \) so that a color lookup can be done in the image. The texture coordinates at the vertices are perspective interpolated by the rasterizer to obtain texture coordinates at other pixels in the triangle. Each interpolated coordinate is also used to do a color lookup in the image.

Coordinate Modes

It is not necessary that a texture coordinate at a vertex be in \([0, 1]^2\). This allows for efficient use of textures and for interesting effects. The two standard texture coordinate modes are clamping and wrapping. A coordinate \((u, v)\) is clamped by setting

\[
(u', v') = (\min(\max(0, u), 1), \min(\max(0, v), 1)).
\]

One special effect obtained by clamping is to place a small detail in the interior of a triangle. For example, a triangle that represents part of a glass window can have a texture applied to make it appear as if the window has a bullet hole in it. The texture image for the bullet hole can be quite small (to minimize memory usage), and the texture coordinates for the vertices can be set to quantities well outside the range of \([0, 1]^2\) to control the size and placement of the bullet hole.

A coordinate \((u, v)\) is wrapped by setting

\[
(u', v') = (u - \lfloor u \rfloor, v - \lfloor v \rfloor),
\]

where \(\lfloor u \rfloor\) is the largest integer smaller or equal to \(u\). The typical special effect obtained by wrapping is to allow a texture to repeat, thereby producing a doubly periodic effect. The texture in this case is said to be toroidal, and great care must be taken so that the left/right edges and top/bottom edges of the texture match (otherwise the texture boundaries are noticeable) in the replication. For example, a brick wall can be built from a small number of triangles with a small texture representing a few bricks.

The coordinates can be mixed in a texture, one coordinate being clamped and the other being wrapped. The texture in this case is said to be cylindrical, and the edges corresponding to the wrapped coordinate must match to hide the texture boundaries. Some hardware drivers might not support mixed coordinate modes.
Filtering Modes

The texture image is defined on a discrete lattice of points, so it is not a continuous quantity. A texture coordinate \((u, v)\) computed at a pixel via interpolation usually is not in the lattice. The method of computing a lattice point for the coordinate is called texture filtering. There are two standard ways to select a lattice point. The first method selects the nearest lattice point,

\[(u', v') = ([u + 1/2], [v + 1/2]).\]

This gives the textured triangles a blocky appearance, especially when the texture image is high frequency in its data.

The second method uses bilinear interpolation as a way of smoothing the results and avoiding the aliasing problem from selection of the nearest lattice point. Let the texture image be \(N \times M\), and let the image lattice coordinates \((i, j)\) correspond to texture coordinates \((u, v) = (\delta_u i, \delta_v j)\), where \(\delta_u = 1/(N - 1)\) and \(\delta_v = 1/(M - 1)\). The lattice coordinates satisfy \(0 \leq i < N\) and \(0 \leq j < M\). For a specified texture coordinate \((u, v) \in [0, 1]^2\), the base lattice coordinate is \((i, j) = ([N - 1]u, [M - 1]v)\). The corresponding base texture coordinate is \((u', v') = (\delta_u i, \delta_v j)\). Setting \(s = u - u'\) and \(t = v - v'\), the texture value \(\tilde{c}'\) to be used at the pixel is

\[
\tilde{c}' = (1 - s)(1 - t)c(i, j) + (1 - s)t\tilde{c}(i, j + 1) + s(1 - t)c(i + 1, j) \\
+ st\tilde{c}(i + 1, j + 1).
\]

Mipmapping

Even bilinear filtering can have aliasing problems when a textured triangle is in the distance. As the distance from the eye point increases, the perceived frequency in the texture increases because the same range of texture coordinates is applied over the smaller set of pixels covered by the triangle. This produces a temporal aliasing of the textures on objects close to the far plane. A method for reducing the aliasing is **mipmapping** (Williams 1983). The prefix *mip* is an acronym for the Latin *multum in parvo*, which means “many things in a small place.” The idea is that a pyramid of textures is built from the original by downsampling via averaging or blurring. If the original texture is a square of size \(2^n \times 2^n\), there are \(n\) downsampled textures of sizes \(2^{n-1} \times 2^{n-1}\) for \(0 \leq i \leq n\), \(i = n\) representing the original texture. For a nonsquare texture, the recursive downsampling is applied until one of the dimensions is 1.

The selection of texture to use from the pyramid is based on determining the number of texels that cover a pixel. As the number of texels per pixel increases, the amount of averaging will increase. The relationship between screen space point \((x, y)\) and the texture coordinates \((u, v)\) at that point is constructed as follows. Let the triangle have vertices \((x_i, y_i)\) and corresponding texture coordinates \((u_i, v_i)\) for \(0 \leq i \leq 2\). As a function of world space triangle parameters \((s, t)\),
\[(u, v) = (u_0, v_0) + s(u_1 - u_0, v_1 - v_0) + t(u_2 - u_0, v_2 - v_0).\]

Recall from the section on perspective projection that

\[(x, y) = (x_0, y_0) + \tilde{s}(x_1 - x_0, y_1 - y_0) + \tilde{t}(x_2 - x_0, y_2 - y_0),\]

where \((\tilde{s}, \tilde{t})\) and \((s, t)\) are related by Equations (3.4) and (3.5). The previous equation can be inverted to obtain

\[
\begin{bmatrix}
\tilde{s} \\
\tilde{t}
\end{bmatrix}
= \frac{1}{(x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)} \begin{bmatrix}
y_2 - y_0 \\
-(y_1 - y_0)
x_2 - x_0 \\
-x_1 - x_0
\end{bmatrix}
\times \begin{bmatrix}
x - x_0 \\
y - y_0
\end{bmatrix}.
\]

Replacing this in Equation (3.5) produces \((s, t)\) as a function of \((x, y)\). Finally, replacing this in the equation for \((u, v)\) produces

\[
u(x, y) = \frac{a_0x + b_0y + c_0}{dx + ey + f},
\]

\[
v(x, y) = \frac{a_1x + b_1y + c_1}{dx + ey + f},
\]

where the various coefficients depend on the \((x_i, y_i)\) and \((u_i, v_i)\) quantities. This function is a mapping from \(\mathbb{R}^2\) to \(\mathbb{R}^2\). From standard multivariate calculus it is known that the absolute value of the determinant of the first derivative matrix is a measure of how the infinitesimal area at \((x, y)\) is magnified to an infinitesimal area at \((u, v)\). The magnification factor is

\[
d = \left| \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \right|
\]

and is an approximate measure of how many texels are required to cover the pixel \((x, y)\). A mapping from \(d\) to the mipmap index \(i \in \{0, \ldots, n\}\) must be selected. If \(d \leq 1\), then \(i = n\) (the original texture) is the obvious choice. As \(d\) increases, \(i\) decreases to 0.

The final problem is to select a texel value given \((x, y, d)\). The choices are many, but the standard ones are the following:

- Select the nearest mipmap to \(d\) and select the nearest texel to \((x, y)\).
- Select the nearest mipmap to \(d\) and bilinearly interpolate using the appropriate four pixels for \((x, y)\).
- Select the two bounding mipmap values for \(d\), select the nearest texels to \((x, y)\) on the two mipmap, then linearly interpolate using the relationship of \(d\) to the mipmap \(d\) values.
Select the two bounding mipmaps for d, bilinearly interpolate using the appropriate four pixels for (x, y) on each mipmap, then linearly interpolate using the relationship of d to the mipmap d values. This choice is called trilinear interpolation and is supported by most hardware cards.

The value d measures a change in infinitesimal area in an isotropic way. It does not contain information about magnification in individual directions. The pixel covers a square area, but the region of the texture image corresponding to it is a quadrilateral that can be quite narrow. The end result in using d for mipmapping is that overblurring occurs in the direction of the narrow width of the quadrilateral. An attempt to reduce this effect is to use ripples (McReynolds et al. 1998). The averaging process to obtain a sequence of blurred images is applied independently in each dimension. The lookup process now involves two parameters, one related to the length of the gradient of u and one related to the length of the gradient of v.

Multitexture

The number of texture images associated with a triangle does not always have to be one. Multiple textures, or multitextures, allow for a lot of special effects that enhance the realism of the rendered scene. For example, multitextures can add variations in lighting to textures on the walls in a room. This is a form of static multitexture—the secondary texture corresponding to the lighting is combined with the primary texture corresponding to the walls in a view-independent manner. Combining such textures is a way to add visual variation in a scene without an exponential growth in texture memory usage. N primary textures and M secondary textures can be combined in $N M$ ways, but only $N + M$ textures are required in memory rather than storing $N M$ textures. Moreover, an artist can generate the smaller number of textures in less time.

Here's another example: A character moves along a textured floor in a scene with a light and casts a shadow on the floor. The shadow can be dynamically computed as a texture and is applied to the floor triangles. This is a form of dynamic multitexture—the secondary texture is generated on the fly. The triangles on which the shadow is cast must be selected by the application, and the corresponding texture coordinates must also be computed on the fly.

In either case, the natural question is, How should the various texels be combined to produce the final colors on the triangles? Combining colors and texels is discussed in Section 3.5.7.

3.5.5 Transparency and Opacity

A texture image can have an additional channel, called the alpha channel, used to control transparency or opacity of the applied texture. The image is $c(u, v) =$
(r(u, v), g(u, v), b(u, v), α(u, v)). A value of $\alpha = 1$ indicates the texel is completely opaque. That is, any previous color drawn at a pixel is overwritten by the texture RGB color. A value of $\alpha = 0$ indicates the texel is completely transparent. That is, any previous color drawn at a pixel is unaffected by the texture RGB color. For $0 < \alpha < 1$, the texture RGB color $\tilde{c}_{\text{texture}}$ is combined with the current pixel color \tilde{c}_{pixel} to obtain the final color,

$$
\tilde{c}_{\text{final}} = (1 - \alpha)\tilde{c}_{\text{pixel}} + \alpha\tilde{c}_{\text{texture}}.
$$

3.5.6 Fog

The addition of fog to an image adds to the realism of the image and also helps to hide clipping artifacts at the far plane. Without fog, as the eye point moves away from an object, the object approaches the far plane and is noticeably clipped when the far plane intersects it. With fog, if the fog density increases with distance from the eye point, the effect is to provide a depth cue for objects in the distance. And if the fog density increases to full opacity at the far plane, clipping is substantially hidden and the objects disappear in a more natural fashion. If \tilde{c}_{fog} is the designated fog color, \tilde{c}_{pixel} is the current pixel color, and $\phi \in [0, 1]$ is the fog factor and is proportional to distance from the eye point, then the final color \tilde{c}_{final} is

$$
\tilde{c}_{\text{final}} = (1 - \phi)\tilde{c}_{\text{pixel}} + \phi\tilde{c}_{\text{fog}}.
$$

There are a variety of ways to generate the fog factor. The standard way, called linear fog, is based on the z value (or w value) of the pixel to be fogged. Moreover, the fog can be applied to a subset $[z_0, z_1] \subseteq [n, f]$ of the view frustum. The linear fog factor is

$$
\phi = \begin{cases}
0, & z < z_0 \\
\frac{z - z_0}{z_1 - z_0}, & z \in [z_0, z_1] \\
1, & z > z_1
\end{cases}.
$$

Since the z values or w values are computed by the renderer for other purposes, linear fog is relatively inexpensive to compute compared to other fog methods.

Exponential fog is obtained by allowing the fog to increase exponentially with the z value of the pixel to be fogged.

$$
\phi = \exp(\lambda z),
$$

where $\lambda > 0$ is a parameter that controls the rate of increase with respect to z.

Range-based fog assigns the fog factor based on the distance r from eye point to pixel. A subset of radial values $[r_0, r_1]$ can be used, just as in linear fogging.
\[
\phi = \begin{cases}
0, & r < r_0 \\
\frac{r-r_0}{r_1-r_0}, & r \in [r_0, r_1] \\
1, & r > r_1
\end{cases}
\]

This type of fog is more expensive to compute than linear fog since the distance must be calculated for each rendered pixel.

Another possibility for fog is to assign a factor per triangle vertex and let the rasterizer interpolate the factors over the entire triangle. This effect is used in volumetric fogging (see Section 13.4). If the number of triangles to be fogged is small, noticeable artifacts can occur with this type of fogging. Rather than interpolation, renderers can allow fog tables to be used with lookup per pixel based either on \(z \) value or on depth. The table lookup can be done with a nearest-neighbor selection or with linear interpolation between two bounding table values. Moreover, the table can be constructed with values that do not necessarily increase with \(z \) or depth, which allows for some interesting visual effects.

3.5.7 Combining Attributes

The various attributes described in this section all contribute to the final pixel color. An important observation to make is that the final color depends on the order of combination. Unfortunately, not all graphics hardware cards perform the combination in the same order. For a single texture rendering, the two possible orders are vertex colors first and texture colors second or texture colors first and vertex colors second. The last combination appears to be the right choice since vertex colors tend to be used for dynamic lighting and modulation, so they should be applied after the texture colors are set up. The pixel color pipeline described here uses the vertex-colors-last scheme. The order of application is

1. Texture 1
2. Texture 2 through texture \(n \) (multitextures, if any)
3. Vertex colors
4. Fog
5. Alpha blending

For a single texture and vertex colors, the colors are denoted \(\tilde{C} \) and the alpha channel is denoted \(\tilde{\alpha} \). A subscript \(V \) corresponds to the vertex attributes, a subscript \(T \) corresponds to the texture attributes, and a subscript \(F \) corresponds to the final combined color. If a texture does not have an alpha channel, then the alpha values are assumed to be 1 in the combinations. Table 3.1 shows the standard combinations.

Let \(\tilde{C}_fog \) denote the RGB fog color and let \(\phi \) be the fog factor for the given vertex. The output of the texture-vertex blending is updated by the fog color using
Table 3.1 Combining a single texture and vertex colors.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Equations</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace</td>
<td>$\tilde{C}_F = \tilde{C}_T$</td>
<td>Texture colors only, no lighting.</td>
</tr>
<tr>
<td></td>
<td>$\alpha_F = \alpha_T$</td>
<td></td>
</tr>
<tr>
<td>Decal</td>
<td>$\tilde{C}_F = (1 - \alpha_T)\tilde{C}_V + \alpha_T\tilde{C}_T$</td>
<td>Decal application such as bullet-hole texture on vertex-colored surface.</td>
</tr>
<tr>
<td></td>
<td>$\alpha_F = \alpha_V$</td>
<td></td>
</tr>
<tr>
<td>Multiply</td>
<td>$\tilde{C}_F = \tilde{C}_T + \tilde{C}_V$</td>
<td>Modulate the texture by vertex colors to support dynamic lighting effects.</td>
</tr>
<tr>
<td></td>
<td>$\alpha_F =$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\begin{cases} \alpha_T, & \text{if texture has alpha} \ \alpha_V, & \text{otherwise} \end{cases}$</td>
<td></td>
</tr>
<tr>
<td>Multiply Alpha</td>
<td>$\tilde{C}_F = \tilde{C}_T \ast \tilde{C}_V$</td>
<td>Modulate the texture by vertex colors to support dynamic lighting effects. The vertex alpha values allow more control over transparency and can be adjusted over time.</td>
</tr>
<tr>
<td></td>
<td>$\alpha_F = \alpha_T \ast \alpha_V$</td>
<td></td>
</tr>
<tr>
<td>Inverse MultiplyAlpha</td>
<td>$\tilde{C}_F = \tilde{C}_T \ast (\tilde{1} - \tilde{C}_V)$</td>
<td>Same as Multiply Alpha, but the normalized vertex colors are inverted ($\tilde{1} = (1, 1, 1)$).</td>
</tr>
<tr>
<td></td>
<td>$\alpha_F = \alpha_T \ast \alpha_V$</td>
<td></td>
</tr>
</tbody>
</table>

$\tilde{C}_F = (1 - \phi)\tilde{C}_F + \phi\tilde{C}_{\text{iso}}$.

The source alpha values are not modified. The semantics of using both fog and transparency is dependent on context. If an observer is looking through a partially transparent window at a fogged landscape, the alpha blending should occur after the fogging. However, if the landscape contains a lake with partially transparent ice, then the alpha blending for the ice should occur before fogging. Moreover, if the observer is looking through the window at the lake, the sorting of triangles for purposes of transparency becomes an issue.

For multitextures, the textures are combined first before blending with vertex colors. A subscript 0 indicates the first texture of the pair to be combined and in a two-texture system is the primary texture. A subscript 1 indicates the second texture of the pair and in a two-texture system is the secondary texture. A subscript F corresponds to the final combined color of the pair. Table 3.2 shows some standard combinations.
Table 3.2 Combining multitextures.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Equation</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply</td>
<td>(\mathbf{C}_F = \mathbf{C}_0 \ast \mathbf{C}_1)</td>
<td>RGB light maps. Texture 0 is the base texture, texture 1 is the light map.</td>
</tr>
<tr>
<td>Multiply Inverse</td>
<td>(\mathbf{C}_F = \mathbf{C}_0 \ast (1 - \mathbf{C}_1))</td>
<td>RGB dark maps.</td>
</tr>
<tr>
<td>Add</td>
<td>(\mathbf{C}_F = \mathbf{C}_0 + \mathbf{C}_1)</td>
<td>Specular light maps. Texture 1 is used to whiten portions of texture 0.</td>
</tr>
<tr>
<td>Primary Alpha Blend</td>
<td>(\mathbf{C}_F = \alpha_0 \mathbf{C}_0 + (1 - \alpha_0)\mathbf{C}_1)</td>
<td>Advanced environment maps. Texture 0 represents the surface RGB colors; the alpha channel represents the shininess of the surface. Texture 1 represents the environment colors that are reflected by the object.</td>
</tr>
<tr>
<td>Secondary Alpha Blend</td>
<td>(\mathbf{C}_F = \alpha_1 \mathbf{C}_1 + (1 - \alpha_1)\mathbf{C}_0)</td>
<td>Decal maps. Texture 0 is the base texture. Texture 1 contains the decal.</td>
</tr>
<tr>
<td>Multiply Alpha</td>
<td>(\mathbf{C}_F = \alpha_1 \mathbf{C}_0)</td>
<td>Monochrome light maps. The alpha channel of texture 1 is used as an intensity on the colors of texture 0.</td>
</tr>
<tr>
<td>Multiply Alpha Add Color</td>
<td>(\mathbf{C}_F = \alpha_1 \mathbf{C}_0 + \mathbf{C}_1)</td>
<td>Advanced light maps. The RGB channels of texture 1 are used for color specular highlights. The alpha channel of texture 1 is used for intensity adjustment of texture 0.</td>
</tr>
<tr>
<td>Multiply Color Add Alpha</td>
<td>(\mathbf{C}_F = \mathbf{C}_0 \mathbf{C}_1 + \alpha_1 \mathbf{C}_1)</td>
<td>Advanced light maps. The RGB channels of texture 1 are used for modulating texture 0. The alpha channel of texture 1 is used for adding specular highlights.</td>
</tr>
</tbody>
</table>
3.6 RASTERIZING

Rasterization is the process of taking a geometric entity in screen space and selecting those pixels to be drawn that correspond to the entity. The standard objects that most engines rasterize are line segments and triangles, but rasterization of circles and ellipses is also discussed here. The constructions contained in this section all assume integer arithmetic since the main goal is to rasterize as fast as possible—floating-point arithmetic tends to be more expensive than integer arithmetic.

3.6.1 LINES

Given two screen points \((x_0, y_0)\) and \((x_1, y_1)\), a line segment must be drawn that connects them. Since the pixels form a discrete set, decisions must be made about which pixels to draw in order to obtain the "best" line segment. Figure 3.6 illustrates this. If \(x_1 = x_0\) (vertical segment) or \(y_1 = y_0\) (horizontal segment), it is clear which pixels to draw. And if \(|x_1 - x_0| = |y_1 - y_0|\), the segment is diagonal and it is clear which pixels to draw. But for the other cases it is not immediately apparent which pixels to draw. The algorithm should depend on the magnitude of the slope. If the magnitude is larger than 1, each row that the segment intersects should have a pixel drawn. If the magnitude is smaller than 1, each column that the segment intersects should have a pixel drawn. Figure 3.7 illustrates the cases. The two blocks of pixels on the left illustrate the possibilities for drawing pixels for a line with slope whose magnitude is larger than 1. The left case draws one pixel per column. The right case draws one pixel per row, the correct decision. The two blocks of pixels on the right illustrate the possibilities for drawing pixels for a line with slope whose magnitude is less than 1. The top case draws one pixel per row. The bottom case draws one pixel per column, the correct decision.

The process of pixel selection, called Bresenham's algorithm (Bresenham 1965), uses an integer decision variable that is updated for each increment in the appropriate

$$
\begin{array}{cccccccccccc}
\circ & \circ \\
\circ & \circ \\
\circ & \bullet & \bullet \\
\circ & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\circ & \circ \\
\circ & \circ \\
\end{array}
$$

Figure 3.6 Pixels that form the best line segment between two points.
input variable. The sign of the decision variable is used to select the correct pixel to draw at each step. Define \(dx = S_1 - S_0 \) and \(dy = y_1 - y_0 \). For the sake of argument, assume that \(dx > 0 \) and \(dy \neq 0 \). The decision variable is \(d_i \), and its value is determined by the pixel \((x_i, y_i)\) that was drawn at the previous step. Figure 3.8 shows two values \(s_i \) and \(t_i \), the fractional lengths of the line segment connecting two vertical pixels. The value of \(s_i \) is determined by \(s_i = y_0 + (dy/dx)(x_i + 1 - x_0) \) and \(s_i + t_i = 1 \). The decision variable is \(d_i = dx(s_i - t_i) \). From the figure it can be seen that

- If \(d_i \geq 0 \), then the line is closer to the pixel at \((x_i + 1, y_i + 1)\), so draw that pixel.
- If \(d_i < 0 \), then the line is closer to the pixel at \((x_i + 1, y_i)\), so draw that pixel.

Now consider
\[
\begin{align*}
d_{i+1} - d_i &= dx(s_{i+1} - t_{i+1}) - dx(s_i - t_i) \\
&= 2dx(s_{i+1} - s_i) \\
&= 2dy(x_{i+1} - x_i) - 2dx(y_{i+1} - y_i).
\end{align*}
\]

The initial decision value is \(d_0 = 2dy - dx \). The figure indicates that the slope has magnitude less than 1, so \(x \) is incremented in the drawing, \(x_{i+1} = x_i + 1 \). The decision equation is therefore
\[
d_{i+1} = d_i + 2dy - 2dx(y_{i+1} - y_i)
\]
and the rules for setting the next pixel are

- If \(d_i \geq 0 \), then \(y_{i+1} = y_i + 1 \) and the next decision value is \(d_{i+1} = d_i + 2(dy - dx) \).
- If \(d_i < 0 \), then \(y_{i+1} = y_i \) and the next decision value is \(d_{i+1} = d_i + 2dy \).

A concise implementation is given below. The special cases of horizontal, vertical, and diagonal lines can be factored out if desired.
Figure 3.8 Deciding which line pixel to draw next.

```c
void DrawLine (int x0, int y0, int x1, int y1)
{
    // starting point of line
    int x = x0, y = y0;

    // direction of line
    int dx = x1 - x0, dy = y1 - y0;

    // increment or decrement depending on direction of line
    int sx, sy;
    if (dx > 0)
    {
        sx = 1;
    }
    else if (dx < 0)
    {
        sx = -1;
        dx = -dx;
    }
    else
    {
        sx = 0;
    }
```
if (dy > 0)
{
 sy = 1;
}
else if (dy < 0)
{
 sy = -1;
 dy = -dy;
}
else
{
 sy = 0;
}

int ax = 2*dx, ay = 2*dy;

if (dy <= dx)
{
 // single-step in x-direction
 for (int decy = ay-dx; /**/; x += sx, decy += ay)
 {
 DrawPixel(x,y);

 // take Bresenham step
 if (x == xl)
 break;
 if (decy >= 0)
 {
 decy -= ax;
 y += sy;
 }
 }
}
else
{
 // single-step in y-direction
 for (int decx = ax-dy; /**/; y += sy, decx += ax)
 {
 DrawPixel(x,y);

 // take Bresenham step
 if (y == yl)
 break;
 }
}
if (decx >= 0)
{
 decx -= ay;
 x += sx;
}
}

In the line drawing algorithm, the calls `DrawLine(x0, y0, x1, y1)` and `DrawLine(x1, y1, x0, y0)` can produce different sets of drawn pixels. It is possible to avoid this by using a variation called the *midpoint line algorithm*; the midpoint $(x_m, y_m) = ((x_0 + x_1)/2, (y_0 + y_1)/2)$ is computed, then two line segments are drawn, `DrawLine(xm, ym, x0, y0)` and `DrawLine(xm, ym, x1, y1)`. This is particularly useful if a line segment is drawn twice, something that happens when rasterizing triangles that share an edge. If the original line drawer is used for the shared edge, but the line is drawn the second time with the end points swapped, gaps (undrawn pixels) can occur because the two sets of drawn pixels cause an effect called cracking. Another way to avoid cracking is to always draw the line starting with the vertex of the minimum y-value. This guarantees that the shared edge is drawn in the same order each time.

3.6.2 Circles

The Bresenham line drawing algorithm has a counterpart for drawing circles using only integer arithmetic. Let the circle be $x^2 + y^2 = r^2$, where r is a positive integer. The algorithm will draw one-eighth of the circle for $y \geq x \geq 0$. The remaining parts are drawn by symmetry.

Let (x_0, y_0) be the last drawn pixel. Let $\tilde{A} = (x_0 + 1, y_0)$ and $\tilde{B} = (x_0 + 1, y_0 - 1)$.

A decision must be made about which of the two points should be drawn next. Figure 3.9 illustrates the various possibilities. The selected pixel will be the one closest to the circle measured in terms of radial distance from the origin. The squared distance will be calculated to avoid square roots.

Define $D(x, y) = x^2 + y^2$; then $D(\tilde{A}) = (x_0 + 1)^2 + y_0^2$ and $D(\tilde{B}) = (x_0 + 1)^2 + (y_0 - 1)^2$. Define $f(x, y) = D(x, y) - r^2$. If $f(\tilde{P}) > 0$, then \tilde{P} is outside the circle. If $f(\tilde{P}) < 0$, then \tilde{P} is inside the circle. Finally, if $f(\tilde{P}) = 0$, then \tilde{P} is on the circle. The rules for setting pixels are:

- If $|f(\tilde{A})| > |f(\tilde{B})|$, then \tilde{B} is closer to the circle, so draw that pixel.
- If $|f(\tilde{A})| < |f(\tilde{B})|$, then \tilde{A} is closer to the circle, so draw that pixel.
- If $|f(\tilde{A})| = |f(\tilde{B})|$, the pixels are equidistant from the circle, so either one can be drawn.
Figure 3.9 Deciding which circle pixel to draw next.

The decision variable is \(d = f(\tilde{A}) + f(\tilde{B}) \). In the left part of Figure 3.9, \(f(\tilde{A}) \) and \(f(\tilde{B}) \) are both negative, so \(d < 0 \). In the right part of the figure, \(f(\tilde{A}) \) and \(f(\tilde{B}) \) are both positive, so \(d > 0 \). In the middle part of the figure, \(f(\tilde{A}) \) is positive and \(f(\tilde{B}) \) is negative. If \(\tilde{A} \) is closer to the circle than \(\tilde{B} \), then \(|f(\tilde{A})| < |f(\tilde{B})| \) and \(d < 0 \). If \(\tilde{B} \) is closer, then \(|f(\tilde{A})| > |f(\tilde{B})| \) and \(d > 0 \). In all cases,

- If \(d > 0 \), draw pixel \(\tilde{B} \).
- If \(d < 0 \), draw pixel \(\tilde{A} \).
- If \(d = 0 \), the pixels are equidistant from the circle, so draw pixel \(\tilde{A} \).

The current decision variable is constructed based on its previous value. Let \(d_i = (x_i + 1)^2 + y_i^2 - r^2 + (x_i + 1)^2 + (y_i - 1)^2 - r^2 = 2(x_i + 1)^2 + y_i^2 + (y_i - 1)^2 - r^2 \). Then

\[
d_{i+1} - d_i = \begin{cases}
4x_i + 6, & y_{i+1} = y_i \\
4x_i + 6 - 4y_i + 4, & y_{i+1} = y_i - 1
\end{cases}
\]

The circle is centered at the origin. For a circle centered elsewhere, a simple translation of each pixel will suffice before drawing. Concise code is

```c
void DrawCircle(int xcenter, int ycenter, int radius) {
    for (int x = 0, y = radius, dec = 3 - 2*radius; x <= y; x++) {
        DrawPixel(xcenter+x, ycenter+y);
        DrawPixel(xcenter+x, ycenter-y);
        DrawPixel(xcenter-x, ycenter+y);
        DrawPixel(xcenter-x, ycenter-y);
        DrawPixel(xcenter+y, ycenter+x);
        DrawPixel(xcenter+y, ycenter-x);
    }
}
```
3.6 Rasterizing

\begin{verbatim}
DrawPixel(xcenter-y, ycenter+x);
DrawPixel(xcenter-y, ycenter-x);

if (dec >= 0)
 dec += 4*(y-1)+4;
 dec += 4*x+6;

...
\end{verbatim}

3.6.3 Ellipses

Rasterizing an ellipse is conceptually like rasterizing a circle, but the anisotropy of ellipses makes an implementation more challenging. The following material discusses how to conveniently specify the ellipse, how to draw an axis-aligned ellipse, and how to draw general ellipses.

Specifying the Ellipse

The algorithm described here draws ellipses of any orientation on a 2D raster. The simplest way for an application to specify the ellipse is by choosing an oriented bounding box with center \((x_a, y_c)\) and axes \((x_a, y_a)\) and \((x_b, y_b)\), where all components are integers. The axes must be perpendicular, so \(x_ay_b + y_ay_b = 0\). It is assumed that \((x_a, y_a)\) is in the first quadrant (not including the \(y\)-axis), so \(x_a > 0\) and \(y_a \geq 0\) are required. It is also required that the other axis is in the second quadrant, so \(x_b \leq 0\) and \(y_b > 0\). There must be integers \(n_a\) and \(n_b\) such that \(n_b(x_b, y_b) = n_a(-y_a, x_a)\), but the algorithm does not require knowledge of these. The ellipse axes are the box axes and have the same orientation as the box.

All pixel computations are based on the ellipse with center \((0, 0)\). These pixels are translated by \((x_a, y_c)\) to obtain the ones for the original ellipse. A quadratic equation for the ellipse centered at the origin is

\[
\frac{(x_a + y_a)^2}{x_a^2 + y_a^2} + \frac{(y_b + y_b)^2}{x_b^2 + y_b^2} = 1.
\]

In this form it is easy to see that \((x_a, y_a)\) and \((x_b, y_b)\) are on the ellipse. Multiplying the matrices and multiplying through by denominators yields the quadratic equation

\[
Ax^2 + 2Bxy + Cy^2 = D,
\]
where the integer coefficients are

\[
A = x_a^2(x_b^2 + y_b^2) + x_b^2(x_a^2 + y_a^2)
\]

\[
B = x_a y_a(x_b^2 + y_b^2) + x_b y_b(x_a^2 + y_a^2)
\]

\[
C = y_a^2(x_b^2 + y_b^2) + y_b^2(x_a^2 + y_a^2)
\]

\[
D = (x_b^2 + y_b^2)(x_a^2 + y_a^2).
\]

For standard-size rasters, since these integers can be quite large, an implementation should use 64-bit integers.

Axis-Aligned Ellipses

The algorithm for an axis-aligned ellipse draws the arc of the ellipse in the first quadrant and uses reflections about the coordinate axes to draw the other arcs. The ellipse centered at the origin is \(b^2 x^2 + a^2 y^2 = a^2 b^2 \). Starting at \((0, b)\), the arc is drawn in clockwise order. The initial slope of the arc is 0. As long as the arc has a slope smaller than 1 in absolute magnitude, the \(x \) value is incremented. The corresponding \(y \) value is selected based on a decision variable, just as in Bresenham's circle drawing algorithm. The remaining part of the arc in the first quadrant has a slope larger than 1 in absolute magnitude. That arc is drawn by starting at \((a, 0)\) and incrementing \(y \) at each step. The corresponding \(x \) value is selected based on a decision variable.

While drawing the arc starting at \((0, b)\), let \((x, y)\) be the current pixel that has been drawn. A decision must be made to select the next pixel \((x + \delta, y + \lambda)\) to be drawn, where \(\delta \) is either 0 or \(-1\). The ellipse is defined implicitly as \(Q(x, y) = 0\), where \(Q(x, y) = b^2 x^2 + a^2 y^2 - a^2 b^2\). Each choice for the next pixel lies on its own ellipse defined implicitly by \(Q(x, y) = \lambda\) for some constant \(\lambda\) that is not necessarily zero. The idea is to choose \(\delta\) so that the corresponding level curve has \(\lambda\) as close to zero as possible. This is the same idea that is used for Bresenham's circle algorithm. For the circle algorithm, the choice is based on selecting the pixel that is closest to the true circle. For ellipses, the choice is based on level set value and not on the distance between two ellipses (a much harder problem).

Given current pixel \((x, y)\), for the next step the ellipse must do one of three things:

1. Pass below \((x + 1, y)\) and \((x + 1, y - 1)\), in which case \(Q(x + 1, y) \geq 0\) and \(Q(x + 1, y - 1) \geq 0\).
2. Pass between \((x + 1, y)\) and \((x + 1, y - 1)\), in which case \(Q(x + 1, y) \geq 0\) and \(Q(x + 1, y - 1) \leq 0\).
3. Pass above \((x + 1, y)\) and \((x + 1, y - 1)\), in which case \(Q(x + 1, y) \leq 0\) and \(Q(x + 1, y - 1) \leq 0\).
In the first case the next pixel to draw is \((x + 1, y)\). In the second case the pixel with \(Q\) value closest to zero is chosen. In the third case the next pixel to draw is \(Q(x + 1, y - 1)\). The decision in all three cases can be made by using the sign of
\[
\sigma = Q(x + 1, y) + Q(x + 1, y - 1) + Q(x - 1, y - 1).
\]
If \(\sigma < 0\), then the next pixel is \((x + 1, y - 1)\). If \(\sigma > 0\), then the next pixel is \((x + 1, y)\). For \(\sigma = 0\), either choice is allowed, so \((x + 1, y)\) will be the one selected.

The decision variable \(\sigma\) can be updated incrementally. The initial value is \(\sigma_0 = Q(1, b) + Q(1, b - 1) = 2b^2 + a^2(1 - 2b)\). Given current pixel \((x, y)\) and decision variable \(\sigma_i\), the next decision is
\[
\sigma_{i+1} = \begin{cases}
Q(x + 2, y) + Q(x + 2, y - 1), & \sigma_i \geq 0 \\
Q(x + 2, y - 1) + Q(x + 2, y - 2), & \sigma_i < 0
\end{cases}
\]

The choice is based on whether or not the chosen pixel after \((x, y)\) is \((x + 1, y)\) [when \(\sigma_i > 0\)] or \((x + 1, y - 1)\) [when \(\sigma_i \leq 0\)]. Some algebra leads to
\[
\sigma_{i+1} = \sigma_i + \begin{cases}
2b^2(2x + 3), & \sigma_i \geq 0 \\
2b^2(2x + 3) + 4a^2(1 - y), & \sigma_i < 0
\end{cases}
\]

On this arc \(x\) is always incremented at each step. The processing stops when the slope becomes 1 in absolute magnitude. The slope \(dy/dx\) of the ellipse can be computed implicitly from \(Q(x, y) = 0\) as \(Q_x + Q_y dy/dx = 0\), where \(Q_x\) and \(Q_y\) are the partial derivatives of \(Q\) with respect to \(x\) and \(y\). Therefore, \(dy/dx = -Q_x/Q_y = -(2b^2x)/(2a^2y) = -(b^2x)/(a^2y)\). The iteration on \(x\) continues as long as \(-b^2x)/(a^2y) \geq -1\). The termination condition of the iteration using only integer arithmetic is \(b^2x \leq a^2y\).

The code for the iteration is

```c
int a2 = a*a, b2 = b*b, fa2 = 4*a2;
int x, y, sigma;
for (x = 0, y = b; sigma = 2*b2+a2*(1-2*b); b2*x <= a2*y; x++)
{
    DrawPixel(xc+x,yc+y);
    DrawPixel(xc-x,yc+y);
    DrawPixel(xc+x,yc-y);
    DrawPixel(xc-x,yc-y);
    if ( sigma >= 0 )
    {
        sigma += fa2*(1-y);
        y--;
    }
    sigma += b2*(4*x+6);
}
```
The code for the other half of the arc in the first quadrant is symmetric in \(x\) and \(y\) and in \(a\) and \(b\):

```c
int a2 = a*a, b2 = b*b, fb2 = 4*b2;
int x, y, sigma;

for (x = a, y = 0, sigma = 2*a2+b2*(1-2*a); a2*y <= b2*x; y++)
{
    DrawPixel(xc+x,yc+y);
    DrawPixel(xc-x,yc+y);
    DrawPixel(xc+x,yc-y);
    DrawPixel(xc-x,yc-y);

    if (sigma >= 0)
    {
        sigma += fb2*(1-x);
    }
    sigma += a2*(4*y+6);
}
```

General Ellipses

An attempt could be made to mimic the case of axis-aligned ellipses by drawing the arc from \((x_0, y_0)\) to \((x_r, y_r)\) and reflecting each pixel \((x, y)\) through the appropriate lines. For example, given pixel \(\vec{u} = (x, y)\), the pixel reflected through \(\vec{v} = (x_b, y_b)\) given by

\[
(x', y') = \vec{u} - 2 \left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \right) \vec{v} = (x, y) - 2 \left(\frac{x_b x + y_b y}{x_b^2 + y_b^2} \right) (x_b, y_b)
\]

would also be drawn. The right-hand side requires a division. Moreover, even if the division is performed (whether as float or integer), the resulting pixels are not always contiguous and noticeable gaps occur. The general orientation of the ellipse requires a better method for selecting the pixels. Instead, the arc is generated from \((-x_0, -y_0)\) to \((x_r, y_r)\), and pixels \((x_c + x, y_c + y)\) and their reflections through the origin \((-x, -y)\) are plotted.

The algorithm is divided into two cases:

1. Slope at \((-x_0, -y_0)\) is larger than 1 in absolute magnitude. Five subarcs are drawn.
 (a) Arc from \((-x_0, y_0)\) to a point \((x_0, y_0)\) whose slope is infinite. For all points between, the ellipse has a slope larger than 1 in absolute magnitude, so \(y\) is always incremented at each step.
(b) Arc from \((x_0, y_0)\) to a point \((x_1, y_1)\) whose slope is 1. For all points between, the ellipse has a slope larger than 1 in absolute magnitude, so \(y\) is always incremented at each step.

(c) Arc from \((x_1, y_1)\) to a point \((x_2, y_2)\) whose slope is 0. For all points between, the ellipse has a slope less than 1 in absolute magnitude, so \(x\) is always incremented at each step.

(d) Arc from \((x_2, y_2)\) to a point \((x_3, y_3)\) whose slope is \(-1\). For all points between, the ellipse has a slope larger than 1 in absolute magnitude, so \(x\) is always incremented at each step.

(e) Arc from \((x_3, y_3)\) to \((x_n, y_n)\). For all points between, the ellipse has a slope less than 1 in absolute magnitude, so \(y\) is always decremented at each step.

2. Slope at \((-x_n, -y_n)\) is smaller than 1 in absolute magnitude. Five subarcs are drawn.

(a) Arc from \((-x_n, -y_n)\) to a point \((x_0, y_0)\) whose slope is \(-1\). For all points between, the ellipse has a slope less than 1 in absolute magnitude, so \(x\) is always decremented.

(b) Arc from \((x_0, y_0)\) to a point \((x_1, y_1)\) whose slope is infinite. For all points between, the ellipse has a slope larger than 1, so \(y\) is always incremented.

(c) Arc from \((x_1, y_1)\) to a point \((x_2, y_2)\) whose slope is 1. For all points between, the ellipse has a slope larger than 1 in absolute magnitude, so \(y\) is always incremented at each step.

(d) Arc from \((x_2, y_2)\) to a point \((x_3, y_3)\) whose slope is 0. For all points between, the ellipse has a slope less than 1 in absolute magnitude, so \(x\) is always incremented at each step.

(e) Arc from \((x_3, y_3)\) to \((x_n, y_n)\). For all points between, the ellipse has a slope less than 1 in absolute magnitude, so \(x\) is always incremented at each step.

Each subarc is computed using a decision variable as in the case of an axis-aligned ellipse. The decision to switch between the three subarcs is based on the slope of the ellipse. The ellipse is implicitly defined by \(Q(x, y) = 0\), where \(Q(x, y) = Ax^2 + 2Bxy + Cy^2 - D = 0\). The derivative \(dy/dx = -(Ax + By)/(Bx + Cy)\) is obtained by implicit differentiation. The numerator and denominator of the derivative can be maintained incrementally. Initially, the current pixel \((x, y) = (-x_n, -y_n)\) and the numerator and denominator of the slope are \(dy = Ax_n + By_n\) and \(dx = -(Bx_n + Cy_n)\).

The decision variable \(\sigma\) is handled slightly differently than in the case of an axis-aligned ellipse. In the latter case, the decision was made to use the pixel whose own level curve is closest to the zero level curve. In the current case, a general ellipse handled in the same way can lead to gaps at the end points of the arc and the reflected arc. To avoid the gaps, the decision is made to always select the ellipse with the smallest positive
level curve value rather than the smallest magnitude level curve value. The selected pixels are always outside the true ellipse. The decision variable is not incrementally maintained because it is not expensive to compute, although it is possible to maintain it so.

Each of the algorithms for the 10 subarcs are similar in structure. Case 1(a) is described here. The initial values are \(x = -x_0, y = -y_0, dx = Bx_0 + Cy_0, \) and \(dy = -(Ax_0 + By_0). \) As \(y \) is incremented, eventually the leftmost point in the \(x \)-direction is encountered where the slope of the ellipse is infinite. At each step the two pixels to test are \((x, y + 1)\) and \((x - 1, y + 1)\). It is enough to test \(\sigma = Ax^2 + 2Bx(y + 1) + C(y + 1)^2 - D < 0 \) to see if \((x, y + 1)\) is inside the true ellipse. If it is, then \((x - 1, y + 1)\) is the next pixel to draw. If \(\sigma \geq 0 \), then \((x, y + 1)\) is outside the true ellipse and closer to it than \((x - 1, y + 1)\), so the next pixel is \((x, y + 1)\). The code is

```c
while (dx <= 0) // loop until point with infinite slope occurs
{
    DrawPixel(xc+x, yc+y);
    DrawPixel(xc-x, yc-y);
    y++;
    sigma = a*x*x + 2*b*x*y + c*y*y - d;
    if (sigma < 0)
    {
        dx = -b;
        dy = a;
        x++;
    }
    dx = c;
    dy = b;
}
```

The other nine cases are structured similarly.

3.6.4 Triangles

Drawing a triangle as a white object on a black background is a simple process that determines the pixels with minimum and maximum \(x \) values on each scan line intersected by the triangle, then draws the pixels between. This is accomplished by keeping two buffers for the minimum and maximum, with each buffer having a number of elements equal to the height of the screen, and using the Bresenham line drawing algorithm to draw the three edges of the triangle. The line drawer updates the buffers when necessary. It is useful to sort the vertices on \(y \) so that the line drawer can update only one of the buffers at a time. This also helps to trap degenerate triangles that are passed to the rasterizer; the degeneracy is caused by triangles seen nearly edge on by the eye point, with numerical round-off errors leading to the projection being
a line segment. Pseudocode is given for a triangle with integer-valued vertices \((x_i, y_i)\) for \(0 \leq i \leq 2\) that are listed in counterclockwise order. There are 13 cases, 6 of the form \(y_0 < y_1 < y_2\), 3 of the form \(y_0 = y_1 < y_2\), 3 of the form \(y_0 < y_1 = y_2\), and 1 of the form \(y_0 = y_1 = y_2\). Only a couple of the cases are listed in the pseudocode. It is assumed that there are two update routines, one that updates the minimum buffer (UpdateMin) and one that updates the maximum buffer (UpdateMax). The return value of \texttt{false} indicates a degenerate triangle, \texttt{true} otherwise.

```c
// global quantities
xmin[0..H-1] = minimum x-values for scan lines 0 <= y <= H-1;
xmax[0..H-1] = maximum x-values for scan lines 0 <= y <= H-1;
ymin = last minimum y-value for scan lines;
ymax = last maximum y-value for scan lines;
pixel[0..H-1][0..W-1] = frame buffer;

bool ComputeEdgeBuffers ()
{
    //*** case: y0 < y1 < y2
    dx0 = x1-x0; dy0 = y1-y0; dx1 = x2-x0; dy1 = y2-y0;
    det = dx0*dy1-dx1*dy0;
    // assert: det <= 0 since vertices are counterclockwise and
    // screen space has left-handed coordinates
    if ( det < 0 )
    {
        UpdateMin(x0,y0,x1,y1);
        UpdateMin(x1,y1,x2,y2);
        UpdateMax(x0,y0,x2,y2);
        return true;
    }
    else
    {
        // degenerate triangle
        return false;
    }

    //*** case: y0 < y1 - y2
    // assert: x1 <= x2 since vertices are counterclockwise and
    // screen space has left-handed coordinates
    if ( x1 < x2 )
    {
        UpdateMax(x0,y0,x2,y2);
        UpdateMin(x0,y0,x1,y1);
        return true;
    }
```

else
{
 // degenerate triangle
 return false;
}

Lines are always drawn starting from the vertex with the smaller \(y \)-value. This avoids the cracking between triangles that was mentioned in Section 3.6.1. The triangle rasterizer is

```c
void DrawWhiteTriangle () {
    clear xmin[ymin..ymax];
    clear xmax[ymin..ymax];

    if ( ComputeEdgeBuffers() )
    {
        for (y = ymin; y <= ymax; y++)
        {
            for (x = xmin[y]; x <= xmax[y]; x++)
                pixel[y][x] = WHITE;
        }
    }
}
```

3.6.5 INTERPOLATION DURING RASTERIZATION

Obviously, we don't usually draw solid colored triangles in rendering. The vertex attributes must be interpolated to obtain the final colors of the pixels. In the context of perspective projection, all the vertex attributes should be interpolated in a perspective way. This is an expensive operation for a software renderer, so usually only the texture coordinates are perspective interpolated. Vertex colors and other attributes are linearly interpolated, under the assumption that the visual differences between the two types of interpolation are not significant. In the discussion, let \((x_0, y_0, \alpha_0)\) and \((x_1, y_1, \alpha_1)\) be end points of a line that are endowed with vertex attribute \(\alpha\). The edge buffers that stored the extreme \(x\) values per scan line are extended to store the interpolated attributes at those extremes.

Linear Interpolation

The edge buffer updates can be set up to iterate over the \(y\)-value of the triangle edges. Floating-point operations are used to compute the \(x\)-values and \(\alpha\)-values, so the
3.6 Rasterizing

Bresenham line drawing method is not used here. The idea is to avoid interpolation over long horizontal runs of pixels that are generated by edges with a slope of nearly zero.

The x-value of the line can be viewed as an interpolated value,

$$x = x_0 + \frac{x_1 - x_0}{y_1 - y_0} (y - y_0) = \frac{(x_0y_1 - x_1y_0) + (x_1 - x_0)y}{y_1 - y_0},$$

and applies to the minimum or maximum buffer calculations. The pseudocode for computing this is

```plaintext
dx = x1 - x0;
dy = y1 - y0; // dy > 0 is guaranteed by sorting in
            // ComputeEdgeBuffers
inv = 1.0/dy; // floating-point division
det = x0*y1 - x1*y0;
c0 = det*inv;
c1 = dx*inv;
for (y = y0+1; y < y1; y++)
    x[y] = c0 + c1*y;
```

The attribute α is linearly interpolated in the same way,

$$\alpha = \frac{(\alpha_0y_1 - \alpha_1y_0) + (\alpha_1 - \alpha_0)y}{y_1 - y_0},$$

and the pseudocode is

```plaintext
da = a1 - a0;
dy = y1 - y0; // dy > 0 is guaranteed by sorting in
            // ComputeEdgeBuffers
inv = 1.0/dy; // floating-point division
det = a0*y1 - a1*y0;
c0 = det*inv;
c1 = dx*inv;
for (y = y0+1; y < y1; y++)
a[y] = c0 + c1*y;
```

Although division is usually an expensive operation, there are only $n + 1$ divisions per triangle edge, one for the x-value and n for the list of attributes to be interpolated, so the cost is acceptable. The computations also involve conversions from floating-point numbers to integers. The conversions can come at some expense if left to a compiler to decide which method to use, but there may be methods using hand-coded assembly that provide for a faster conversion.
When all three edges of the triangle are processed, the edge buffers contain the extreme x-values and the corresponding interpolated attributes. An iteration over the relevant scan lines is performed, and the attributes for the vertical run of pixels between the extreme x-values are themselves computed by linear interpolation of the edge buffer attributes. In order to make the inner loop as fast as possible, integer arithmetic is possible (in the style of Bresenham's line drawing algorithm) as long as the attributes are mapped to an appropriate range of integer values. The pseudocode for rasterizing a triangle with a single vertex attribute is

```plaintext
<bringing vertex attributes for the edge buffer algorithm goes here>:<br />
ComputeEdgeBuffers();
for (y = ymin; y <= ymax; y++)
{
  x0 = xmin[y];
  x1 = xmax[y];
  a0 = amin[y];
  a1 = amax[y];

  <map a0 and a1 to integer range, use the same names a0 and a1>:<br />
  dx = x1 - x0;
  if ( dx > 1 )
  {
    if ( a1 > a0 )
    {
      sx = 1;
      tx = 2*(a1 - a0);
    }
    else if ( a1 < a0 )
    {
      sx = -1;
      tx = 2*(a0 - a1);
    }
    else
    {
      sx = 0;
      tx = 0;
    }
  
  dec = tx - dx;
```
for (x = x0, ax = 2*dx; x <= x1; x++)
{
 pixel[y][x] = a0;
 if (dec >= 0)
 {
 dec -= ax;
 a0 += sx;
 }
 dec += tx;
}
else if (dx == 1)
{
 pixel[y][x0] = a0;
 pixel[y][x1] = a1;
}
else
{
 pixel[y][x0] = a0;
}

Perspective Interpolation

As before, the x-values of the triangle edges are computed using linear interpolation. A vertex attribute α is computed using perspective interpolation. Let (x_0, y_0, α_0) and (x_1, y_1, α_1) be endpoints of a line that are endowed with vertex attribute α. The edge buffers that stored the extreme x-values per scan line are extended to store the interpolated attributes at those extremes.

Equation (3.3) provides the relationship between the parameter $s \in [0, 1]$ of a line segment in the world and the parameter $\bar{s} \in [0, 1]$ of the perspective projection of the line segment on the screen. The attribute α is linearly interpolated in world space, so

$$ s = \frac{\alpha - \alpha_0}{\alpha_1 - \alpha_0}. $$

The value y is linearly interpolated in screen space, so

$$ \bar{s} = \frac{y - y_0}{y_1 - y_0}. $$
Replacing this in Equation (3.3) and performing some algebra manipulation yield the perspective interpolation

$$\alpha = \frac{(\alpha_0 u_1 y_1 - \alpha_1 w_0 y_0) + (\alpha_1 w_0 - \alpha_0 u_1) y}{(u_1 y_1 - w_0 y_0) + (w_0 - u_1) y}.$$

The perspective aspect is clear since the right-hand side is a ratio of two linear functions of y. The vertex attribute that is always perspective interpolated is the depth value z or, equivalently, $w = z/n$. Replacing α by z or w in the interpolation equation yields

$$z = \frac{z_0 z_1 (y_1 - y_0)}{(z_1 y_1 - z_0 y_0) + (z_0 - z_1) y}$$

or

$$w = \frac{w_0 w_1 (y_1 - y_0)}{(u_1 y_1 - w_0 y_0) + (w_0 - u_1) y}.$$

This interpolator is used to compute the depth values per pixel that are used for depth buffer sorting. The calculated value at each pixel is compared to the corresponding value in the depth buffer to control whether or not the pixel is written.

The pseudocode for the edge buffer setup is

```plaintext
b0 = w1*y1 - w0*y0;
b1 = w0 - w1;
t0 = w0*a1;
t1 = w1*a0;
c0 = t1*y1 - t0*y0;
c1 = t0 - t1;
for (y = y0+1; y < y1; y++)
a[y] = (c0+c1*y)/(b0+b1*y);
```

Linear interpolation involves one division per edge per attribute. Perspective interpolation involves one division per pixel per attribute, so a greater cost is incurred.

When all three edges of the triangle are processed, the edge buffers contain the extreme x-values and the corresponding interpolated attributes. An iteration over the relevant scan lines is performed, and the attributes for the vertical run of pixels between the extreme x-values are themselves computed by perspective interpolation of the edge buffer attributes. The pseudocode for rasterizing a triangle with a single vertex attribute is
for (int y = ymin; y <= ymax; y++)
{
 x0 = xmin[y];
 x1 = xmax[y];
 a0 = amin[y];
 a1 = amax[y];

 dx = x1 - x0;
 if (dx > 1)
 {
 b1 = w0 - w1;
 b0 = w1*x1 - w0*x0;
 t0 = w0*a1;
 t1 = w1*a0;
 cl = t0 - t1;
 c0 = t0*x1 - t0*x0;

 pixel[y][x0] = a0;

 for (x = x0+1; x < x1; x++)
 {
 pixel[y][x] = (c0+cl*x)/(b0+b1*x);
 }
 pixel[y][x1] = a1;
 }
 else if (dx == 1)
 {
 pixel[y][x0] = a0;
 pixel[y][x1] = a1;
 }
 else
 {
 pixel[y][x0] = a0;
 }
}
and integer unit to work in parallel. The division is performed at every \(N \)th pixel (typically, \(N = 4 \) or 8 or 16), and the other pixels are linearly interpolated using integer arithmetic. The first pixel and last pixel in a run have their divisions calculated. The last pixel of the current run becomes the first pixel of the next run. The last pixel of the next run is started. While the floating-point unit stalls to complete the division, the intermediate pixels of the current run are linearly interpolated from the known values of the first and last pixels of that run. This is done using integer arithmetic, so the integer unit and floating-point unit are executing in parallel.

There is a very nicely written set of articles on the topic of perspective interpolation that includes source code for a PC (Hecker 1995a, 1995b, 1995c, 1995d, 1996).

3.7 An Efficient Clipping and Lighting Pipeline

The graphics pipeline illustrated here is built with the goal of saving as much information as possible to minimize execution time. The object is represented as a triangle mesh with manifold geometry. Object culling can be performed as indicated earlier, whether with bounding spheres, oriented bounding boxes, or any other preferred bounding volume. The clipping pipeline used is the one that transforms vertices to view space, then clips in view space. The workhorse of the pipeline is the clipping of the triangle mesh, a process described here in detail. Only clipping of vertices is performed. Lighting of vertices and interpolation of vertex attributes is deferred until after the completion of clipping. The triangle mesh retains enough information to allow us to light the minimum number of vertices and to interpolate the minimum number of clip vertices. Projection into screen space is straightforward.

3.7.1 Triangle Meshes

An object representation that is well suited for efficient clipping is a triangle mesh. The meshes considered here have manifold geometry; that is, each edge is shared by at most two triangles and there are no degenerate vertex junctions. Triangle fans, triangle strips, and triangle soups fall into this category.

The triangle mesh stores an array of vertices that are contained in the mesh. Other quantities are stored but not shown here, for example, facet plane normals (for back face culling) and vertex attributes (color, alpha, texture coordinates, fog). The minimum connectivity structure for supporting the geometric clipping is

Vertex: point in 3-space

Edge Record:
- indices for vertex end points of edge \((V_0, V_1)\)
- indices for triangles sharing the edge \((T_0, T_1)\)
Triangle Record:
indices for vertices of triangle \((V_0, V_1, V_2)\)
indices for edges of triangle \((E0 = \langle V_0, V_1 \rangle, E1 = \langle V_1, V_2 \rangle, E2 = \langle V_2, V_0 \rangle)\)

Triangle Mesh:
number of Vertices, \(NV\)
number of Edges, \(NE\)
number of Triangles, \(NT\)
array\([0..NV-1]\) of Vertex
array\([0..NE-1]\) of Edge Record
array\([0..NT-1]\) of Triangle Record

The renderer appends to this data structure additional information that supports minimum execution time for clipping and deferred lighting calculations:

Per Vertex:
visibility flags
pseudodistance to current clip plane
old edge index for clip vertex
new edge index for clip vertex
clip parameters

Per Edge:
visibility flags
index of clip vertex on edge (if any)

Per Triangle:
visibility flags

The reasons for the design of Edge Record and Triangle Record and for the additional information in the renderer will become clear shortly.

The renderer maintains a single extended triangle mesh that can contain any application triangle mesh to be rendered. Initially, the extended mesh dynamically resizes itself as the scene graph is rendered piece by piece. Eventually, a steady state is reached, at which time the resizing is no longer necessary.

3.7.2 Clipping a Triangle Mesh

Each frustum plane in view space is of the form \(Ax + By + Cw + D = 0\). A point \((x, y, w)\) is said to be on the frustum side of the plane when \(Ax + By + Cw +
$D \geq 0$. The quantity $Ax + By + Cw + D$ is referred to as a **pseudo-distance**. The actual distance of point to plane is $|Ax + By + Cw + D|/\sqrt{A^2 + B^2 + C^2}$. The only important thing to determine is on which side of a plane the point lives. The distance to plane is not needed, so the expensive square root evaluation is avoided. The near plane is $w = 1$, the far plane is $-w + f/n$, the left plane is $x + w = 0$, the right plane is $-x + w = 0$, the bottom plane is $y + w = 0$, and the top plane is $-y + w = 0$. The frustum side conditions use \geq instead of $=$ in the plane equations.

The vertex visibility flags are used to determine which vertices need to be processed by the clipper. If a vertex is tagged as visible and is outside the currently processed frustum plane, it is tagged as not visible and the next frustum plane test ignores the vertex. A pass is made over the visible vertices, and the pseudo-distances are computed and saved.

The edge visibility flags are used to determine which edges need to be tested for clipping. If both pseudo-distances are nonpositive, then the edge is culled and is tagged as invisible. If both pseudo-distances are nonnegative, then the edge is on the frustum side of the plane and remains visible for the next plane test. If an edge is currently visible and the product of the pseudo-distances is negative, then the edge is split by the frustum plane. The clip vertex is computed according to Equation (3.17). To support deferred lighting calculations, the parameter $p_0/(p_0 - p_1)$ is saved in an array of clip parameters that is stored by the renderer. The new vertex is appended to the vertex array of the mesh and is tagged as visible. The old vertex that is outside the frustum is tagged as invisible. The new edge is the portion of the old edge that is on the frustum side of the plane. It is appended to the edge array of the mesh and tagged as visible. The old edge is tagged as invisible so that it will not be tested against the next frustum plane.

The technical challenge is in updating the triangle and edge connectivity information. The edges themselves were clipped against the frustum plane. If two edges in a single triangle are clipped, the corresponding clip vertices must be connected by adding a new edge to the mesh. The old triangle must also be subdivided into one or two triangles. The old triangle is then tagged as invisible and the new triangles are tagged as visible. Figure 3.10 shows the three possible configurations. The original triangle T_0 consists of vertices $\{V_0, V_1, V_2\}$ and edges $\{E_0, E_1, E_2\}$, where $E_0 = \{V_0, V_1; T_0, \infty\}$, $E_1 = \{V_1, V_2; T_0, \infty\}$, and $E_2 = \{V_2, V_0; T_0, \infty\}$. The edge format contains the two vertices that form its end points (stored in the actual data structure as indices into the vertex array) and the two triangles that share the edge (stored in the actual data structure as indices into the triangle array, an ∞ indicating no adjacent triangle). The triangle format is $T_0 = \{V_0, V_1, V_2; E_0, E_1, E_2\}$ (stored in the actual data structure as indices into the appropriate arrays).

In case 1, the vertex array is expanded to $\{V_0, V_1, V_2, V_3, V_4\}$, the edge array is expanded to $\{E_0, E_1, E_2, E_3, E_4, E_5\}$, and the triangle array is expanded to $\{T_0, T_1\}$. The bars over the vertices, edges, and triangles indicate that those objects have been tagged as invisible. The new edges are $\hat{E}_3 = \{V_3, V_1; T_1, \infty\}$, $\hat{E}_4 = \{V_4, V_1; T_1, \infty\}$, and $\hat{E}_5 = \{V_5, V_2; T_1, \infty\}$. The new triangle is $\hat{T}_1 = \{V_3, V_4, V_1; \hat{E}_3, \hat{E}_4, \hat{E}_5\}$. The
In case 2, the vertex array is expanded to \(\{ \bar{V}_0, V_1, V_3, V_4 \} \), the edge array is expanded to \(\{ \bar{E}_0, E_1, E_2, E_3, E_4 \} \), and the triangle array is expanded to \(\{ T_0, T_1 \} \). The new edges are \(E_3 = \{ V_3, V_1; T_1, \infty \} \) and \(E_4 = \{ V_3, V_2; T_1, \infty \} \). The new triangle is \(T_1 = \{ V_3, V_2, V_1; E_4, E_1, E_3 \} \).

In case 3, the vertex array is expanded to \(\{ \bar{V}_0, V_1, V_3, V_4 \} \), the edge array is expanded to \(\{ \bar{E}_0, E_1, E_2, E_3, E_4, E_5, E_6 \} \), and the triangle array is expanded to \(\{ T_0, T_1, T_2 \} \). The new edges are \(E_3 = \{ V_3, V_1; T_1, \infty \} \), \(E_4 = \{ V_4, V_2; T_2, \infty \} \), \(E_5 = \{ V_3, V_2; T_1, \infty \} \), and \(E_6 = \{ V_4, V_3; T_2, \infty \} \).
T_1, T_2, and $E_3 = \{V_0, V_4; T_3, \infty\}$. The new triangles are $T_1 = \{V_3, V_2, V_1; E_5, E_1, E_3\}$ and $T_2 = \{V_3, V_4, V_5; E_6, E_4, E_5\}$.

Figure 3.10 is slightly misleading about the complexity of the algorithm. First, T_0 consists of vertices $\{U_{0u}, U_{1u}, U_{1v}\}$ and edges $\{F_{1u}, F_{2u}, F_{3u}\}$. These must be mapped onto the V and E terms so that the ordering of the U and F values is consistent with what is shown in the figure. The old edge indices that are stored by the renderer are used to assist in calculating the ordering. Second, if T_0 happened to share edge E_0 with another triangle S_0, then both T_0 and S_0 must be subdivided. The new edge is $E_3 = \{V_3, V_1; T_1, S_1\}$, where T_1 and S_1 are the appropriate subtriangles. The problem is that T_0 is the first of the two triangles to be processed. S_0 has not yet been subdivided, and S_1 does not exist in the triangle array at the time that E_3 is constructed. In this situation the algorithm sets $E_3 = \{V_3, V_1; T_1, S_0\}$. S_0 is immediately processed after T_0 because when E_0 is processed, both of its adjacent triangles are analyzed for splitting. Once S_0 is processed, the triangle index for S_0 in the edge record for E_3 is updated to S_1.

3.7.3 Computing Vertex Attributes

Vertex lighting and interpolation is performed in four steps. The first step is to make a pass over the visible original vertices and mark them as needing to be lit. The second step is to make a pass over the visible clip vertices and determine which of the original vertices (at most three) contributed to it. The edge clipping algorithm and data structures implicitly contain a directed acyclic graph of related vertices. The algorithm amounts to a traversal of the graph and tagging the appropriate original vertices. Note that an invisible original vertex can contribute to a visible clip vertex, so this pass may tag additional vertices as needing to be lit, even though those vertices are invisible. In particular, this is the case when an edge just straddles the frustum. One vertex is inside and one vertex is outside. The outside vertex is invisible, but its attributes need to be computed so that the clip vertex attributes can also be computed. The third step is to make a pass over the original vertices that need to be lit and actually do the lighting calculations. The process of lighting was described earlier. The fourth step is to make a pass over the visible clipped vertices and interpolate their attributes. This pass also uses the directed acyclic graph of vertices and uses the clip parameters that have been stored by the renderer.

The directed acyclic graphs of vertices corresponding to the three cases in Figure 3.10 are shown in Figure 3.11. The graphs consisting solely of vertices are weighted. The arcs connecting vertices contain the appropriate clip parameter values that produced the clip vertex. The graphs can become more complicated if a triangle is split by more than one frustum plane.
Figure 3.11 Three configurations for clipped triangle.
3.8 Issues of Software, Hardware, and APIs

In summary, this chapter describes the relevant issues in building a renderer without regard to whether the work is done by a general-purpose CPU, in part by a hardware-accelerated graphics card, or totally by specialized graphics hardware. Independent of software or hardware, the rendering pipeline was also described without regard to integration with existing software that provides an application programmer interface (API). The reality of building a real-time computer graphics engine requires an understanding of what platforms are to be supported and what other existing systems can be used rather than implemented from scratch.

APIs such as Direct3D, OpenGL, or Glide for consumer graphics accelerators can be viewed as providing a boundary between the scene graph management and the rendering system. Direct3D and OpenGL are fairly high-level rendering APIs, and both attempt to hide the underlying hardware to allow an application to be portable across multiple hardware cards. Glide is a low-level rasterizing API specifically for 3dfx cards. Writing to this API clearly makes the application nonportable, but if the only intended platform is one that uses a 3dfx card (an arcade machine, for example), then there is a lot to be gained by using the specific features of the low-level API.

Heated debates arise in the computer graphics and games newsgroups about whether Direct3D or OpenGL is the “best” system to build on. This is an unanswerable question—and in fact is not the question to ask. Each system has its advantages and disadvantages. As with most of computer science, the issue is more about understanding the trade-offs between using one system or another. OpenGL is clearly superior with respect to portability simply by its design. An application can be written to run on a high-end SGI machine or on a consumer machine such as a PC or Macintosh. Direct3D was intended only to provide portability among cards in a PC. On the other hand, OpenGL insists on handling many details that an application might like to control but cannot. Direct3D provides much more fine-grained control over the rendering process. Both APIs are constantly evolving based on what the end programmers want, but evolution takes time. Moreover, the consumer hardware cards are evolving at a fast enough rate that the drivers that ship with them are buggy but are not always corrected because the next-generation card is almost ready to ship. This requires patching the layer on top of the APIs with work-arounds for specific cards. Evolution is good, but fast evolution is painful, especially for a company producing a commercial product that runs on top of those cards and drivers.

As hardware evolves and begins doing the higher-level work that the scene graph management system has been doing, the APIs should become easier to work with. However, there will always be work necessary on the scene graph side to feed data through the API. The next-generation cards that are shipping as of the time of this writing will be providing support for hardware transforming and lighting. The model data is expected to be in some compacted format and may require conversion from the natural format for the application to the required format of the graphics card. If two hardware cards require different formats and the APIs do not hide this difference
from the application, then portability among cards becomes a difficult issue again. Repackaging of data does incur some cost.

Another part of the evolution of graphics on a consumer machine involves the CPUs themselves. Both Intel's Pentium III and AMD's K6 chipsets have new instructions to support a small amount of parallelism (SIMD: single instruction, multiple data) and to provide for faster operations such as inverse square roots (for normalizing vectors). To make the most of the new instructions, the registers of the CPUs must be loaded quickly. For the Pentium III, the natural format for storing an array of points to support fast register loading is to have three arrays, one for x-values, one for y-values, and one for z-values. However, most applications have tended to store points as an array of structures, not as a structure of arrays. Repackaging points to feed the registers quickly invariably offsets most of the speedup for using SIMD. Again, portability between platforms becomes a significant issue simply because of data formats. The new CPUs also tend to have data alignment requirements that are not necessarily guaranteed by current-generation compilers, so either a memory manager must be written to handle the alignment or the chip companies must supply a compiler. In fact, current compilers have to catch up and provide support for the new machine instructions, so it is essential to have additional compiler support from the chip companies.

Finally, one of the most important low-level aspects of building a renderer is cache coherence. Experience has shown that even with the best-designed high-level algorithms, the performance can be significantly reduced if the data is organized in such a way as to cause many cache misses. Unless those implementing the system are experts for the particular CPU's instruction set, the most reliable way to determine cache problems or floating-point unit stalls is to use performance tools. Intel provides a profiler, called VTune, that does give a lot of information, showing if cache misses or floating-point stalls have occurred. At a high level, a rearrangement of statements can help eliminate some of these problems; the necessity of rearranging is the result of the optimizing compiler not being powerful enough to recognize the problems and rearrange transparently. But in many cases, a low-level solution is required, namely, writing parts of the code in assembly language. And once again portability becomes a problem.

All of these issues must be weighed and the trade-offs made when building a renderer. This is where the art of renderer construction really kicks in. Someone who does not understand all the issues will be unlikely to succeed in building a good renderer.
The graphics pipeline discussed in Chapter 3 requires that each drawable object be tested for culling against the view frustum and, if not culled, be passed to the renderer for clipping, lighting, and rasterizing. Given a 3D world with a large number of objects, the simplest method for processing the objects is to group them into a list and iterate over the items in the list for culling and rendering. Although this approach may be simple, it is not efficient since each drawable object in the world must be tested for culling.

A better method for processing the objects is to group them hierarchically according to spatial location. The grouping structure discussed in this chapter is a tree. The tree has leaf nodes that contain geometric data and internal nodes that provide a grouping mechanism. Each node has one parent (except for the root node, which has none) and any number of child nodes. It is possible to use a directed acyclic graph as an attempt to support high-level sharing of objects. Each node in the graph can have multiple parents, each parent sharing the object represented by the subgraph rooted at the node. However, the memory costs and code complexity to maintain such a graph do not justify using it. Sharing should occur at a lower level so that leaf nodes can...
share vertices, texture images, and other data that tends to use a lot of memory. The implied links from sharing are not part of the parent-child relationships in the hierarchy. Regardless of whether trees or directed acyclic graphs are used, the resulting set of grouped objects is called a scene graph.

The organization of content in a scene graph is quite important for games in many ways, of which four are listed here. First, the amount of content to manage is typically large and is built in small pieces by the artists. The level editor can assemble the content for a single level as a hierarchy by concentrating on the local items of interest. The global ramifications are effectively the responsibility of the hierarchy itself. For example, a light in the world can be chosen to illuminate only a subtree of the graph. The level editor's responsibility is to assign that light to a node in the graph. The effect of the light on the subtree rooted at that node is automatically handled by the scene graph management system. Second, hierarchical organization provides a form of locality of reference, a common concept in memory management by a computer system. Objects that are of current interest in the game tend to occur in the same spatial region. The scene graph allows the game program to quickly eliminate other regions from consideration for further processing. Although minimizing the data sent to the renderer is an obvious goal to keep the game running fast, focusing on a small amount of data is particularly important in the context of collision detection. The collision system can become quite slow when the number of potentially colliding objects is large. A hierarchical scene graph supports grouping only a small number of potentially colliding objects, those objects occurring only in the local region of interest in the game. Third, many objects are naturally modeled with a hierarchy, most notably humanoid characters. The location and orientation of the hand of a character is naturally dependent on the locations and orientations of the wrist, elbow, and shoulder. Fourth, invariably the game must deal with persistence issues. A player wants to save the current game, and the game is to be continued at a later time. Hierarchical organization makes it quite simple to save the state of the world by asking the root node of the scene graph to save itself, the descendants saving themselves in a naturally recursive fashion.

Section 4.1 provides the basic concepts for management of a tree-based representation of a scene, including specification and composition of local and world transforms, construction of bounding volumes for use both in rapid view frustum culling and fast determination of nonintersection of objects managed by a collision system, selection and scope of renderer state at internal or leaf nodes, and control of animated quantities.

Changes in the world environment of the game are handled by changing various attributes at the nodes of the tree. A change at a single node affects the subtree for which that node is the root. Therefore, all nodes in the subtree must be notified of the change so that appropriate action can be taken. One typical action that requires an update of the scene graph is moving an object by changing its local transform. The world transforms of the object's descendants in the tree must be recalculated. Additionally, the object's bounding volume has changed, in turn affecting all the bounding volumes of its ancestors in the tree. The new bounding volume at a node
involves computing a single bounding volume that contains all the bounding volumes of its children, a process called merging. Another typical action that requires an update of the scene graph is changing render state at a node. The render state at all the leaf nodes in the affected tree must be updated. The update process is the topic of Section 4.2.

After a scene graph is updated, it is ready for processing by the renderer. The drawing pass uses the bounding volumes to cull entire subtrees at once, thereby reducing the amount of time the renderer has to spend on low-level processing of objects that ultimately will not appear on the computer screen. Section 4.3 presents culling algorithms for various bounding volumes compared to a plane at a time in the view frustum. The general drawing algorithm for a hierarchy is also discussed.

4.1 Tree-Based Representation

A simple grouping structure for objects in the world is a tree. Each node in the tree has exactly one parent, except for the root node, which has none. The root is the first node to be processed when attempting to render objects in the tree. The simplest example of a tree is illustrated in Figure 4.1. The top-level node is a grouping node (bicycle) and acts as a parent for the two child nodes (wheels). The children are grouped because they are part of the same object both spatially and semantically.

To take advantage of this structure, the nodes must maintain spatial and semantic information about the objects they represent. The main categories of information are transforms, bounding volumes, render state, and animation state. Transforms are used to position, orient, and size the objects in the hierarchy. Bounding volumes are used for hierarchical culling purposes and intersection testing. Render state is used to set up the renderer to properly draw the objects. Animation state is used to represent any time-varying node data.

![Figure 4.1](image_url) A simple tree with one grouping node.
4.1.1 Transforms

In Figure 4.1, it is not enough to know the semantic information that the two wheels are part of the bicycle. The spatial information, the location of the wheels, must also be specified. Moreover, it is necessary to know a coordinate system in which to specify that information. The parent node has its own coordinate system, and the location of a child is given relative to its parent’s coordinates.

Local Transforms

The location of a node relative to its parent is represented abstractly as a homogeneous matrix with no perspective component. The matrix, called a local transform, represents any translation, rotation, scaling, and shearing of the node within the parent’s coordinate system. While an implementation of scene graph nodes could directly store the homogeneous matrix as a 4×4 array, it is not recommended. The last row of the matrix is always $[0 \ 0 \ 0 \ 1]$. Less memory is used if the homogeneous matrix is stored as a 3×3 matrix representing the upper-left block and a 3×1 vector representing the translation component of the matrix. This also avoids the inefficient general multiplication of homogeneous matrices and vectors since in that multiplication, there would be three multiplies by 0 and one multiply by 1. Given a homogeneous matrix with no perspective component, the matrix is denoted by

$$\begin{bmatrix} M & \tilde{t} \\ 0^T & 1 \end{bmatrix}.$$

(4.1)

Using this compressed notation, the product of two homogeneous matrices is

$$\begin{bmatrix} M_1 & \tilde{t}_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} M_2 & \tilde{t}_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} M_1 M_2 & M_1 \tilde{t}_2 + \tilde{t}_1 \\ 0 & 1 \end{bmatrix}$$

(4.2)

and the product of a homogeneous matrix with a homogeneous vector $[\tilde{v} \ 1]^T$ is

$$\begin{bmatrix} M & \tilde{t} \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} \tilde{v} \\ 1 \end{bmatrix} = M \tilde{v} + \tilde{t}.$$

(4.3)

To keep the update time to a minimum and to avoid using numerical inversion of matrices in various settings, it is better to require that the local transform have only translation, rotation, and uniform scaling components. The general form of such a matrix is

$$\begin{bmatrix} s R & \tilde{t} \\ 0^T & 1 \end{bmatrix}$$

(4.4)
and is called an \textit{SRT-transform}. The uniform scaling factor is $s > 0$, the rotational component is the orthogonal matrix R whose determinant is one, and the translational component is \vec{T}. The product of two SRT-transforms is

$$\begin{pmatrix} s_1 R_1 & \vec{T}_1 \end{pmatrix} \begin{pmatrix} s_2 R_2 & \vec{T}_2 \end{pmatrix} = \begin{pmatrix} s_1 s_2 R_1 R_2 & s_1 R_1 \vec{T}_2 + \vec{T}_1 \end{pmatrix},$$

(4.5)

the product of an SRT-transform and a vector \vec{V} is

$$\begin{pmatrix} s R & \vec{T} \end{pmatrix} \vec{V} = s R \vec{V} + \vec{T},$$

(4.6)

and the inverse of an SRT-transform is

$$\begin{pmatrix} s R & \vec{T} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{s} R^T & -\frac{1}{s} R^T \vec{T} \end{pmatrix}.$$

(4.7)

\textbf{World Transforms}

The local transform at a node specifies how the node is positioned with respect to its parent. The entire scene graph represents the world itself. The world location of the node depends on all the local transforms of the node and its predecessors in the scene graph. Given a parent node P with child node C, the \textit{world transform} of C is the product of P’s world transform with C’s local transform,

$$\begin{pmatrix} \mathbf{M}^{(C)}_{\text{world}} & \vec{T}^{(C)}_{\text{world}} \end{pmatrix} = \begin{pmatrix} \mathbf{M}^{(P)}_{\text{world}} & \vec{T}^{(P)}_{\text{world}} \end{pmatrix} \begin{pmatrix} \mathbf{M}^{(C)}_{\text{local}} & \vec{T}^{(C)}_{\text{local}} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{M}^{(P)}_{\text{world}} \mathbf{M}^{(C)}_{\text{local}} & \mathbf{M}^{(P)}_{\text{world}} \vec{T}^{(C)}_{\text{local}} + \vec{T}^{(P)}_{\text{world}} \end{pmatrix}.$$

(4.8)

The world transform of the root node in the scene graph is just its local transform. The world position of a node N_k in a path $N_0 \cdots N_k$, where N_0 is the root node, is generated recursively by the above definition as

$$\begin{pmatrix} \mathbf{M}^{(N_k)}_{\text{world}} & \vec{T}^{(N_k)}_{\text{world}} \end{pmatrix} = \begin{pmatrix} \mathbf{M}^{(N_0)}_{\text{local}} & \vec{T}^{(N_0)}_{\text{local}} \end{pmatrix} \cdots \begin{pmatrix} \mathbf{M}^{(N_k)}_{\text{local}} & \vec{T}^{(N_k)}_{\text{local}} \end{pmatrix}.$$

(4.9)

\textbf{4.1.2 Bounding Volumes}

Object-based culling within a scene graph is very efficient whenever the bounding volumes of the nodes are properly nested. If the bounding volume of the parent node encloses the bounding volumes of the child nodes, culling of entire subtrees is supported. If the bounding volume of the parent node is outside the view frustum, then
the child nodes must be outside the view frustum and no culling tests need be done
on the children. Hierarchical culling provides a fast way for eliminating large portions
of the world from being processed by the renderer. The same nested bounding vol-
umes support collision detection. If the bounding volume of the parent node does not
intersect an object of interest, then neither do the child nodes. Hierarchical collision
detection provides a fast way for determining that two objects do not intersect. The
bounding volumes that are discussed in this chapter include spheres, oriented boxes,
capsules, lozenges, cylinders, and ellipsoids.

A leaf node containing geometric data will also contain a bounding volume based
on the model space coordinates of the data. However, the leaf node has a world space
representation based on the product of local transforms from scene graph root to that
leaf. That means the leaf node must also contain a world bounding volume, obtained
by applying the world transform to the model bounding volume.

To support the efficiencies of a hierarchical organization of the world, an internal
node requires a world bounding volume that contains the world bounding volumes of
all its children. It is not necessary to maintain a model bounding volume at an internal
node since such a node does not contain its own geometric data. While transforms
are propagated from the root of the scene graph toward the leaf nodes, the bounding
sphere calculations must occur from leaf node to root. A parent bounding volume
cannot be known until its child bounding volumes are known. A recursive traversal
downward allows computation of the world transforms. The upward return from the
traversal allows computation of the world bounding volumes.

4.1.3 RENDERER STATE

Renderer state can also be maintained in a hierarchical fashion. For example, if a
subtree rooted at a node has all leaf nodes that want their textures to be alpha blended,
the node can be tagged with state information that indicates alpha blending should be
enabled for the entire subtree. Alternatively, tagging all the leaf nodes with the same
renderer state information is an efficient use of memory. A traversal along a single
path in the tree from root to leaf node accumulates the renderer state necessary to
draw the geometry of the leaf node. Just before a leaf node is about to be drawn, the
renderer processes the state information at that node and decides whether or not it
needs to change its own internal state. As changes in rendering state can be expensive,
the number of changes should be minimal. A typical expensive change involves using
different textures. If a texture is in system memory but not in video memory, the
texture must be copied to video memory, and that takes time. For sorting purposes,
it is convenient to allow each leaf node to store a copy of the renderer state. A sorter
can select a renderer state for which it wants to minimize changes, then sort the leaf
nodes accordingly.
4.2 Updating a Scene Graph

The scene graph represents the state of the world at a given time. If the state changes for whatever reason, the scene graph must be updated to represent the new state. Typical state changes include model data changing at a node, local transforms changing at a node, the topological structure of the tree changing, renderer state changing, or some animated quantity changing. Updating the scene graph is only necessary in those subtrees affected by the changes. For example, if a local transform is changed at a single node, then only the subtree rooted at that node is affected. The world transforms of descendants must be recalculated to reflect the new position and orientation of the subtree's root node. It is possible that more than one change has been made at different locations in the scene graph. An implementation of a scene graph manager can attempt to maintain the minimum number of subtree root nodes that need to be updated. For example, if the local transforms are changed at nodes A and B, and if B is a descendant of A, the update of the subtree rooted at node A will automatically update the subtree rooted at B. It would be inefficient to first update the subtree at B, then update the subtree at A.

The updating is done in a recursive pass. Transforms are updated on the downward pass; bounding volumes are updated on the upward pass that is initiated as a return from the recursive calls. Note that the upward pass should not terminate at the node at which the initial update call was made. If the bounding volume of this node has changed as a result of changes in bounding volumes of the descendants, then the parent's bounding volume might also change. Thus, the upward pass must proceed...
all the way to the root of the scene graph. If transforms are animated, the update pass is responsible for asking the controllers to make the necessary adjustments to the quantities they manage before the world transform is computed. Finally, if renderer state has changed, that information must be propagated to the leaf nodes (to support sorting as mentioned earlier). A single update call can be implemented to handle all changes in the scene graph, but since renderer state tends to change independently of geometry and transform changes, it might be desirable to have separate update passes.

The computation of model bounding volumes for geometric data was already discussed in Chapter 2. The main focus in the remainder of this section is on computing the parent’s bounding volume from the child bounding volumes. The expense and algorithmic complexity depends on the type of volume used. It is possible to consider all child bounds simultaneously, but practice has shown that it is easier and faster to incrementally bound the children. For a node with three or more children, a bound is found for the first two children. That bound is increased in size to include the third child bound, and so on.

4.2.1 Merging Two Spheres

The algorithm described here computes the smallest sphere containing two spheres. Let the spheres S_i be $|\vec{X} - \vec{C}_i|^2 = r_i^2$ for $i = 0, 1$. Define $L = |\vec{C}_1 - \vec{C}_0|$ and unit-length vector $\vec{U} = (\vec{C}_1 - \vec{C}_0)/L$. The problem can be reduced to one dimension by projecting the spheres onto the line $\vec{C}_0 + t\vec{U}$. The projected intervals in terms of parameter t are $[-r_0, r_0]$ for S_0 and $[L - r_1, L + r_1]$ for S_1.

If $[-r_0, r_0] \subseteq [L - r_1, L + r_1]$, then $S_0 \subseteq S_1$ and the two spheres merge into S_1. The test for this case is $r_0 \leq L + r_1$ and $L - r_1 \leq -r_0$. A single test covers both conditions, $r_1 - r_0 \geq L$. To avoid the square root in computing L, compare instead $L = L + r_1 + r_0$ and $(r_1 - r_0)^2 \geq L^2$.

If $[L - r_1, L + r_1] \subseteq [-r_0, r_0]$, then $S_1 \subseteq S_0$ and the two spheres merge into S_0. The test for this case is $L + r_1 \leq r_0$ and $-r_0 \leq L - r_1$. A single test covers both conditions, $r_1 - r_0 \leq -L$. Again to avoid the square root, compare instead $r_1 \leq r_0$ and $(r_1 - r_0)^2 \geq L^2$.

Otherwise, the intervals either have partial overlap or are disjoint. The interval containing the two projected intervals is $[-r_0, L + r_1]$. The corresponding merged sphere whose projection is the containing interval has radius

$$r = \frac{L + r_1 + r_0}{2}.$$

The center t-value is $(L + r_1 - r_0)/2$ and corresponds to the point

$$\vec{C} = \vec{C}_0 + \frac{L + r_1 - r_0}{2} \vec{U} = \vec{C}_0 + \frac{L + r_1 - r_0}{2L} \left(\vec{C}_1 - \vec{C}_0 \right).$$
The pseudocode is

```
Input: Sphere(C0,r0) and Sphere(C1,r1)
centerDiff = C1 - C0;
radiusDiff = r1 - r0;
radiusDiffSqr = radiusDiff*radiusDiff;
Lsqr = centerDiff.SquaredLength();
if ( radiusDiffSqr >= Lsqr )
{
    if ( radiusDiff >= 0.0f )
        return Sphere(C1,r1);
    else
        return Sphere(C0,r0);
}
else
{
    L = sqrt(Lsqr);
t = (L+r1-r0)/(2*L);
    return Sphere(C0+t*centerDiff,(L+r1+r0)/2);
}
```

4.2.2 Merging Two Oriented Boxes

If two oriented boxes were built to contain two separate sets of data points, it is possible to build a single oriented bounding box that contains the union of the sets. That box might not contain the two original oriented boxes—something that is not desired in a hierarchical decomposition of an object. Moreover, the time it takes to build the single oriented box could be expensive.

An alternative approach is to construct an oriented box from only the original boxes and that contains the original boxes. This can be done by interpolation of the box centers and axes, then growing the box to contain the originals. Let the original two boxes have centers \bar{C}_i for $i = 0, 1$. Let the box axes be stored as columns of a rotation matrix R_i. Now represent the rotation matrices by unit quaternions q_i such that the dot product of the quaternions is nonnegative, $q_0 \cdot q_1 \geq 0$. The final box is assigned center $\bar{C} = (C_0 + C_1)/2$. The axes are obtained by interpolating the quaternions. The unit quaternion representing the final box is $q = (q_0 + q_1)/|q_0 + q_1|$, where the absolute value signs indicate length of the quaternion as a four-dimensional vector. The final box axes can be extracted from the quaternion using the methods described in Section 2.3. The extents of the final box are computed by projecting the vertices of the two original boxes onto the final box axes and computing the extreme values.
The pseudocode is

```plaintext
// Box has center, axis[3], extent[3]
input:  Box box0, Box box1
output: Box box

// compute center
box.center = (box0.center + box1.center)/2;

// compute axes
Quaternion q0 = ConvertAxesToQuaternion(box0.axis);
Quaternion q1 = ConvertAxesToQuaternion(box1.axis);
Quaternion q = q0*q1;
Real length = Length(q);
q /= Length(q);
box.axis = ConvertQuaternionToAxes(q);

// compute extents
for each vertex V of box0 do
{
    Point3 delta = V - box.center;
    for (j = 0; j < 3; j++)
    {
        Real adot = |Dot(box0.axis[j], delta)|
        if (adot > box.extent[j])
            box.extent[j] = adot;
    }
}
for each vertex V of box1 do
{
    Point3 delta = V - box.center;
    for (j = 0; j < 3; j++)
    {
        Real adot = |Dot(box1.axis[j], delta)|
        if (adot > box.extent[j])
            box.extent[j] = adot;
    }
}
```

The function `ConvertAxesToQuaternion` stores the axes as columns of a rotation matrix, then uses the algorithm to convert a rotation matrix to a quaternion. The function `ConvertQuaternionToAxes` converts the quaternion to a rotation matrix, then extracts the axes as columns of the matrix.
4.2.3 Merging Two Capsules

Two capsules may be merged into a single capsule with the following algorithm. If one capsule contains the other, just use the containing capsule. Otherwise, let the capsules have radii $r_i > 0$, end points P_i, and directions D_i for $i = 0, 1$. The center points of the line segments are $C_i = P_i + D_i/2$. Unit-length directions are $U_i = D_i/|D_i|$.

The line L containing the final capsule axis is computed below. The origin of the line is the average of the centers of the original capsules, $C = \overline{(C_0 + C_1)/2}$. The direction vector of the line is obtained by averaging the unit direction vectors of the input capsules. Before doing so, the condition $\hat{U}_0 \cdot \hat{U}_1 \geq 0$ should be satisfied. If it is not, replace \hat{U}_1 by $-\hat{U}_1$. The direction vector for the line is $\hat{U} = (\hat{U}_0 + \hat{U}_1)/|\hat{U}_0 + \hat{U}_1|$.

The final capsule radius r must be chosen sufficiently large so that the final capsule contains the original capsules. It is enough to consider the spherical ends of the original capsules. The final radius is

$$r = \max(\text{dist}(\hat{P}_0, L) + r_0, \text{dist}(\hat{P}_0 + \hat{D}_0) + r_0, \text{dist}(\hat{P}_1, L) + r_1, \text{dist}(\hat{P}_1 + \hat{D}_1) + r_1).$$

Observe that $r \geq r_i$ for $i = 0, 1$.

The final capsule direction \hat{D} will be a scalar multiple of line direction \hat{U}. Let \hat{E}_0 and \hat{E}_1 be the end points for the final capsule, so $\hat{P} = \hat{E}_0$ and $\hat{D} = \hat{E}_1 - \hat{E}_0$. The end points must be chosen so that the final capsule contains the end spheres of the original capsules. Let the projections of \hat{P}_0, $\hat{P}_0 + \hat{D}_0$, \hat{P}_1, and $\hat{P}_1 + \hat{D}_1$ onto $\hat{C} + t\hat{U}$ have parameters τ_0, τ_1, τ_2, and τ_3, respectively. Let the corresponding capsule radii be denoted ρ_i for $0 \leq i \leq 3$. Let $\hat{E}_j = \hat{C} + T_j\hat{D}$ for $j = 0, 1$. The T_j are determined by “supporting” spheres that are selected from the end point spheres of the original capsules. If \hat{Q} is the center of such a supporting sphere of radius ρ for end point \hat{E}_1, then T_1 is the smallest root of the equation $|\hat{C} + T\hat{U} - \hat{Q}| + \rho = r$. Since $r \geq \rho$, the equation can be written as a quadratic

$$T^2 + 2\hat{U} \cdot (\hat{C} - \hat{Q})T + |\hat{C} - \hat{Q}|^2 - (r - \rho)^2 = 0.$$

This equation must have only real-valued solutions. Similarly, if the \hat{Q} is the center of the supporting sphere corresponding to end point \hat{E}_0, then T_0 is the largest root of the quadratic. The quadratics are solved for all four end points of the original capsules, and the appropriate minimum and maximum roots are chosen for the final T_0 and T_1.

4.2.4 Merging Two Lozenges

Two lozenges may be merged into a single lozenge that contains them with the following algorithm. Let the lozenges have radii $r_i > 0$, origins P_i, and edges E_{ij} for $i = 0, 1$ and $j = 0, 1$. The center points of the rectangles of the lozenge are $\hat{C}_i = \hat{P}_i + \overline{(\hat{E}_{0i} + \hat{E}_{1i})/2}$. Unit-length edge vectors are $\hat{U}_{ij} = \hat{E}_{ij}/|\hat{E}_{ij}|$. Unit-length normal vectors are $\hat{N}_i = \hat{U}_{0i} \times \hat{U}_{1i}$.
The center point of the final lozenge is the average of the centers of the original lozenges, $\overline{C} = (\overline{C}_0 + \overline{C}_1)/2$.

The edge vectors are obtained by averaging the coordinate frames of the original lozenges using a quaternion representation. Let q_i be the unit quaternion that represents the rotation matrix $\{\hat{U}_0 \hat{U}_1 ; \hat{N}\}$. If $q_0 \cdot q_1 < 0$, replace q_1 by $-q_1$. The final lozenge coordinate frame is extracted from the rotation matrix $\{\hat{U}_0 \hat{U}_1 ; \hat{N}\}$ corresponding to the unit quaternion $q = (q_0 + q_1)/(|q_0| + 1)$.

The problem now is to compute r sufficiently large so that the final lozenge contains the original lozenges. Project the original lozenges onto the line containing \hat{P} and having direction \hat{N}. Each projection has extreme points determined by the corners of the projected rectangle and the radius of the original lozenge. The radius r of the final lozenge is selected to be the length of the smallest interval that contains all the extreme points of projection. Observe that $r \geq r_i$ is necessary.

Project the rectangle vertices of original lozenges onto the plane containing \hat{P} and having normal \hat{N}. Compute the oriented bounding rectangle in that plane where the axes correspond to \hat{U}_i. This rectangle is associated with the final lozenge and produces the edge $\hat{E}_i = L_i \hat{U}_i$ for some scalars $L_i > 0$. The origin point for the final lozenge is $\hat{P} = \overline{C} - E_0/2 - E_1/2$.

4.2.5 Merging Two Cylinders

To keep the merging algorithm simple, the original two cylinders are treated as capsules; their representations are converted to those for capsules, end points are \hat{P}_i, directions are \hat{D}_i, and radii are r_i. The capsule merging algorithm is applied to obtain the cylinder radius r. Rather than fitting a capsule to the points $\hat{P}_i \pm r_i \hat{U}$ and $\hat{P}_i + \hat{D}_i \pm r_i \hat{U}$, the points are projected onto the line $\hat{P} + t \hat{D}$, where \hat{P} is suitably chosen from one of the fitting algorithms. The smallest interval containing the projected points determines cylinder height h.

4.2.6 Merging Two Ellipsoids

Computing a bounding ellipsoid for two other ellipsoids is done in a way similar to that of oriented boxes. The ellipsoid centers are averaged, and the quaternions representing the ellipsoid axes are averaged and then the average is normalized. The original ellipsoids are projected onto the newly constructed axes. On each axis, the smallest interval of the form $[-\sigma, \sigma]$ is computed to contain the intervals of projection. The σ-values determine the minor axis lengths for the final ellipsoid.

4.2.7 Algorithm for Scene Graph Updating

The pseudocode for updating the spatial information in a scene graph is given below. Three abstract classifications are used: Spatial, Geometry, and Node. In an object-
oriented implementation, the last two classes are both derived from \texttt{Spatial}. The \texttt{Spatial} class manages a link to a parent, local transforms, and a world transform. It represents leaf nodes in a tree. The \texttt{Node} class manages links to children. It represents internal nodes in the tree. The \texttt{Geometry} class represents leaf nodes that contain geometric data. It manages a model bounding volume.

The entry point into the update system for geometric state (GS) is

```cpp
void Spatial::UpdateGS (float time, bool initiator)
{
    UpdateWorldData(time);
    UpdateWorldBound();
    if (initiator)
        PropagateBoundToRoot();
}
```

The input parameter to the call is set to \texttt{true} by the node at which the update is initiated. This allows the calling node to propagate the world bounding volume update to the root of the scene graph.

The function \texttt{UpdateWorldData} is virtual and controls the downward pass that computes world transforms and updates time-varying quantities:

```cpp
virtual void Spatial::UpdateWorldData (float time)
{
    // update dynamically changing render state
    for each render state controller rcontroller do
        rcontroller.Update(time);

    // update local transforms if managed by controllers
    for each transform controller tcontroller do
        tcontroller.Update(time);

    // Compute product of parent's world transform with this object's
    // local transform. If no parent exists, the child's world
    // transform is just its local transform.
    if (world transform not computed by a transform controller)
    {
        if (parent exists)
        {
            worldScale = parent.worldScale*localScale;
            worldRotate = parent.worldRotate*localRotate;
            worldTranslate = parent.worldTranslate +
                                parent.worldScale*(parent.worldRotate*localTranslate);
        }
```
else
{
 // node is the root of the scene graph
 worldScale = localScale;
 worldRotate = localRotate;
 worldTranslate = localTranslate;
}
}

The function UpdateWorldBound is also virtual and controls the upward pass and allows each node object to update its world bounding volume. Base class Spatial has no knowledge of geometric data and in particular does not manage a model bounding sphere, so the function is pure virtual and must be implemented both by Geometry, which knows how to transform a model bounding volume to a world bounding volume, and by Node, which knows how to merge world bounding volumes of its children.

Finally, the propagation of world bounding volumes is not virtual and is a simple recursive call:

```cpp
void Spatial::PropagateBoundToRoot ()
{
   if ( parent exists )
   {
      parent.UpdateWorldBound();
      parent.PropagateBoundToRoot();
   }
}
```

The derived classes override the virtual functions. Class Geometry has nothing more to say about updating world data, but it must update the world bound,

```cpp
virtual void Geometry::UpdateWorldBound ()
{
   worldBound = modelBound.TransformBy(worldRotate,
                                       worldTranslate,worldScale);
}
```

The model bound is assumed to be correct. If model data is changed, the application is required to update the model bound.

Class Node updates are as shown:

```cpp
virtual void Node::UpdateWorldData (float time)
{
   Spatial::UpdateWorldData(time);
```
for each child do
 child.UpdateGS(false); // child not initiator of
 // original UpdateGS call
}

virtual void Node::UpdateWorldBound()
{
 worldBound = firstChild.GetWorldBound();
 for each additional child do
 worldBound = Merge(worldBound, child.worldBound);
}

The downward pass is controlled by UpdateWorldData. The node first updates its
world transforms by a call to the base class update of world transforms. The children of
the node are each given a chance to update themselves, thus yielding a recursive chain
of calls involving UpdateGS and UpdateWorldData. The update of world bounds is
done incrementally. The world bound is set to the first child's world bound. As each
remaining child is visited, the current world bound and the child world bound are
merged into a single bound that contains both. Although this approach usually does
not produce the tightest bound, it is much faster than methods that do attempt the
tightest bound. For example, if bounding spheres are used, it is possible to compute
the parent world bound as the minimum volume sphere containing any geometric
data of the descendants. Such a computation is expensive and will severely affect the
frame rate of the application. The trade-off is to obtain a reasonable world bounding
volume for the parent that is inexpensive to compute.

Updating the set of current renderer states at the leaf nodes is also a recursive
system just as UpdateGS is. Class Geometry maintains a set of such states; call that
member stateSet. Each state can be attached to or detached from an object of this
class. A state object itself has information that can be modified at run time. If the
information is changed, then an update must occur starting at that node. The global
renderer state set is maintained by the renderer, so any changes to renderer state by the
objects must be communicated to the renderer. Class Spatial provides the virtual
function foundation for the renderer state (RS) update:

void Spatial::UpdateRS(RenderState parentState)
{
 // update render states
 if (parentState exists)
 {
 // parentState must remain intact to restore state after
 // recursion
 currentState = parentState;
 modify currentState with thisState;
 }
}
else
{
 // this object is initiator of UpdateRS: use default
 // renderer states
 currentState = defaultRenderState;
 PropagateStateFromRoot(currentState);
}

UpdateRenderState(currentState);
}

The initial call to UpdateRS is typically applied to a node in the tree that is not the root node. Any renderer state from predecessors of the initiating node must be accumulated before the downward recursive pass. The function PropagateStateFromRoot does this work:

void Spatial::PropagateStateFromRoot (RenderState currentState)
{
 // traverse to root to allow downward state propagation
 if (parent exists)
 parent.PropagateStateFromRoot(currentState);

 // update parent state by current state
 modify currentState with thisState;
}

The call UpdateRenderState is pure virtual. Class Geometry implements this to update its renderer state at leaf nodes. Class Node implements this to perform the recursive traversal of the call on its children.

void Geometry::UpdateRenderState (RenderState currentState)
{
 modify thisState with currentState;
}

void Node::UpdateRenderState (RenderState currentState)
{
 for each child do
 child.UpdateRS(currentState);
}

Notice that UpdateRS and UpdateRenderState form a recursive chain just as UpdateGS and UpdateWorldData form a recursive chain.
4.3 Rendering a Scene Graph

The renderer manages a camera whose job it is to define the view frustum, the portion of the world to be viewed. The process of rendering the scene graph in the frustum at a given instant is typically referred to as the camera click. This process involves a traversal of the scene graph, and the graph is assumed to be current (as established by the necessary UpdateScene() and UpdateWorld() calls at the relevant nodes).

Scene graph traversal includes object level culling as described earlier. If the world bounding volume for a node is outside the view frustum, then the subtree rooted at that node need not be traversed. If a subtree is not culled, then the traversal is recursive. The renderer states are collected during traversal until a leaf node of the scene graph is reached. At this point the renderer has all the state information it requires to be able to properly draw the geometry represented by the leaf node. The leaf node has the responsibility of providing the renderer with its geometric data such as vertices, triangle connectivity information, triangle normals (for back face culling), and surface attributes including vertex normals, colors, and texture coordinates.

Before the actual rendering of the leaf node object, it is useful to allow the object to perform any preparations that are necessary for proper display. For example, culling is based on world bounding volumes. The classes derived from Geometry have the liberty of keeping current the world bounding sphere via the UpdateWorldBound call. If an object is to be culled, then computing any expensive world data in the call to UpdateWorldData is wasteful. Instead, the Geometry classes could provide a Boolean flag indicating whether or not the world data is current. The call to UpdateWorldData updates world transforms, but additionally sets only the Boolean flag indicating the world data is not current. A prerendering function called after it is determined that an object is not to be culled can test the Boolean flag, find out the world data is not current, make the data current, then set the flag to indicate the data is current.

Another use of a prerendering function involves dynamic tessellation of an object. Chapter 10 discusses objects represented by a triangular mesh whose triangles are increased or reduced based on a continuous level-of-detail algorithm involving a preprocessed set of incremental mesh changes. The prerendering function can select the appropriate level of detail based on the current camera and view frustum. Chapter 8 discusses objects represented by curved surfaces. The prerendering function can dynamically tessellate the surfaces to the appropriate level of detail.

The complement of a prerendering function is a postrendering function that gives the object a chance to do any cleanup associated with prerendering and actual rendering.

4.3.1 Culling by Spheres

The test for intersection of bounding volume with view frustum is performed in world space since the world bounding information is kept current by the object and the world view frustum information is kept current by the camera. Let the world
Figure 4.2 Examples of culled and unculled objects.

bounding sphere have center \tilde{C} and radius r. Let a view frustum plane be specified by $\tilde{N} \cdot \tilde{X} = d$, where \tilde{N} is a unit-length vector that points to the interior of the frustum. The bounding sphere does not intersect the frustum when the distance from \tilde{C} to the plane is larger than the sphere radius. An object is completely culled if its bounding sphere satisfies

$$\tilde{N} \cdot \tilde{C} - d < -r$$

(4.8)

for one of the frustum planes. The left-hand side of the inequality is the signed distance from \tilde{C} to the plane. The right-hand side is negative and indicates that to be culled, \tilde{C} must be on the outside of the frustum plane and must be at least the sphere radius units away from the plane. The test requires 3 multiplications and 3 additions. The pseudocode is

```c
bool CullSpherePlane (Sphere sphere, Plane plane)
{
    return Dot(plane.N, sphere.C) + plane.d < -sphere.r;
}
```

It is possible for a bounding sphere to be outside the frustum even if all six culling tests fail. Figure 4.2 shows examples of an object that is culled by the tests. It also shows examples of objects that are not culled, one object whose bounding sphere intersects the frustum and one object whose bounding sphere does not intersect the frustum. In either case, the object must be further processed in the clipping pipeline. Alternatively, the exact distance from bounding sphere to frustum can be computed at greater expense than the distances from sphere to planes.

Better-fitting bounding volumes can lead to rejection of an object when the bounding sphere does not, thereby leading to savings in CPU cycles. However, the
application must keep the bounding volume current as the object moves about the
world. For each change in a rigid object’s orientation, the bounding volume must be
rotated accordingly. This leads to a trade-off between more time to update bounding
volume and less time to process objects because they are more accurately culled.

The following sections describe the culling algorithms for oriented boxes, capsules,
lozenges, cylinders, and ellipsoids. In each section the frustum plane is \(\vec{N} \cdot \vec{X} = d \) with
unit-length normal pointing to frustum interior.

4.3.2 CULLING BY ORIENTED BOXES

An oriented bounding box is outside the frustum plane if all its vertices are outside
the plane. The obvious algorithm of testing if all eight vertices are on the “negative
side” of the plane requires eight comparisons of the form \(\vec{N} \cdot \vec{V} < d \). The vertices are
of the form

\[
\vec{V} = \vec{C} + \sigma_0 \vec{a}_0 \vec{A}_0 + \sigma_1 \vec{a}_1 \vec{A}_1 + \sigma_2 \vec{a}_2 \vec{A}_2,
\]

where \(|\sigma_i| = 1 \) for all \(i \) (eight possible choices, two for each \(\sigma_i \)). Each test requires
computing signed distances

\[
\vec{N} \cdot \vec{V} - d = (\vec{N} \cdot \vec{C} - d) + \sigma_0 \vec{a}_0 \vec{N} \cdot \vec{A}_0 + \sigma_1 \vec{a}_1 \vec{N} \cdot \vec{A}_1 + \sigma_2 \vec{a}_2 \vec{N} \cdot \vec{A}_2.
\]

The 4 dot products are computed once, each dot product using 3 multiplications
and 2 additions. Each test requires an additional 3 multiplications and 4 additions
(the multiplications by \(\sigma_i \) are not counted). The eight tests therefore require 36
multiplications and 40 additions.

A faster test is to project the box and plane onto the line \(\vec{C} + s \vec{N} \). The symmetry
provided by the box definition yields an interval of projection \([\vec{C} - r \vec{N}, \vec{C} + r \vec{N}]\).
The interval is centered at \(\vec{C} \) and has radius

\[
r = \sigma_0 |\vec{N} \cdot \vec{A}_0| + \sigma_1 |\vec{N} \cdot \vec{A}_1| + \sigma_2 |\vec{N} \cdot \vec{A}_2|.
\]

The frustum plane projects to a single point

\[
\vec{P} = \vec{C} + (d - \vec{N} \cdot \vec{C}) \vec{N}.
\]

The box is outside the plane as long as the projected interval is outside, in which case
\(\vec{N} \cdot \vec{C} < d < -r \). The test is identical to that of sphere-versus-plane, except that \(r \) is
known for the sphere but must be calculated for each test of an oriented bounding
box. The test requires 4 dot products, 3 multiplications, and 3 additions for a total
operation count of 15 multiplications and 11 additions. The pseudocode is
Figure 4.3 Examples of culled and unculled objects.

```cpp
bool CullBoxPlane (Box box, Plane plane)
{
  r = box.a0 * Dot(plane.N, box.A0) +
     box.a1 * Dot(plane.N, box.A1) +
     box.a2 * Dot(plane.N, box.A2);
  return Dot(plane.N, box.C) - plane.d < -r;
}
```

As with the sphere, it is possible for an oriented bounding box not to be culled when tested against each frustum plane one at a time, even though the box is outside the view frustum. Figure 4.3 illustrates such a situation.

4.3.3 Culling by Capsules

A capsule consists of a radius \(r \geq 0 \) and a parameterized line segment \(\vec{P} + t \vec{D} \), where \(\vec{D} \neq 0 \) and \(t \in [0, 1] \). The signed distances from plane to end points are \(\delta_0 = \vec{N} \cdot \vec{P} - d \) and \(\delta_1 = \vec{N} \cdot (\vec{P} + \vec{D}) - d \). If either \(\delta_0 \geq 0 \) or \(\delta_1 \geq 0 \), then the capsule is not culled since it is either intersecting the frustum plane or on the frustum side of the plane. Otherwise, both signed distances are negative. If \(\vec{N} \cdot \vec{D} \leq 0 \), then end point \(\vec{P} \) is closer in signed distance to the frustum plane than is the other end point \(\vec{P} + \vec{D} \). The distance between \(\vec{P} \) and the plane is computed and compared to the capsule radius. If \(\vec{N} \cdot \vec{P} - d \leq -r \), then the capsule is outside the frustum plane and it is culled; otherwise it is not culled. If \(\vec{N} \cdot \vec{D} > 0 \), then \(\vec{P} + \vec{D} \) is closer in signed distance to the frustum plane than is \(\vec{P} \). If \(\vec{N} \cdot (\vec{P} + \vec{D}) - d \leq -r \), then the capsule is culled; otherwise it is not culled. The pseudocode for the culling algorithm is given below. The Boolean result is `true` if and only if the capsule is culled.
4.3 Rendering a Scene Graph

```cpp
bool CullCapsulePlane (Capsule capsule, Plane plane)
{
    sd0 = Dot(plane.N, capsule.P) - plane.d;
    if (sd0 < 0 )
    {
        sdl = sd0 + Dot(plane.N, capsule.O);
        if (sdl < 0 )
        {
            if (sd0 <= sdl )
            {
                // P0 closest to plane
                return sd0 <= -capsule.r;
            }
            else
            {
                // P1 closest to plane
                return sdl <= -capsule.r;
            }
        }
    }
    return false;
}
```

4.3.4 Culling by Lozenges

A lozenge consists of a radius \(r > 0 \) and a parameterized rectangle \(\hat{P} + s \hat{E}_0 + t \hat{E}_1 \), where \(\hat{E}_0 \neq 0, \hat{E}_1 \neq 0, \hat{E}_0 \cdot \hat{E}_1 = 0 \), and \((s,t) \in [0,1]^2\). The four rectangle corners are \(P_{00} = \hat{P} \), \(P_{01} = \hat{P} + \hat{E}_0 \), \(P_{10} = \hat{P} + \hat{E}_1 \), and \(P_{11} = \hat{P} + \hat{E}_0 + \hat{E}_1 \). The signed distances are \(\delta_{ij} = \hat{N} \cdot \hat{P}_{ij} - d \). If any of the signed distances are nonnegative, then the lozenge either intersects the plane or is on the frustum side of the plane and is not culled. Otherwise, all four signed distances are negative. The rectangle corner closest to the frustum plane is determined, and its distance to the plane is compared to the lozenge radius to determine if there is an intersection. The pseudocode for the culling algorithm is

```cpp
bool CullLozengePlane (Lozenge lozenge, Plane P)
{
    sd00 = Dot(plane.N, lozenge.P) - plane.d;
    if (sd00 < 0 )
    {
        dotNE0 = Dot(plane.N, lozenge.E0);
        sd10 = sd00 + dotNE0;
    }
```
if (sd10 < 0)
{
 dotNE1 = Dot(plane.N,lozenge.E1);
 sd01 = sd00 + dotNE1;
 if (sd01 < 0)
 {
 sd11 = sd10 + dotNE1;
 if (sd11 < 0)
 {
 // all rectangle corners on negative side
 // of plane
 if (sd00 <= sd10)
 {
 if (sd00 <= sd01)
 {
 // P00 closest to plane
 return sd00 <= lozenge.r;
 }
 else
 {
 // P01 closest to plane
 return sd01 <= lozenge.r;
 }
 }
 else
 {
 if (sd10 <= sd11)
 {
 // P10 closest to plane
 return sd10 <= lozenge.r;
 }
 else
 {
 // P11 closest to plane
 return sd11 <= lozenge.r;
 }
 }
 }
 }
}

return false;
4.3 Rendering a Scene Graph

4.3.5 Culling by Cylinders

A cylinder consists of a radius \(r > 0 \), a height \(h \in [0, \infty] \), and a parameterized line segment \(\vec{C} + t \vec{W} \), where \(|\vec{W}| = 1 \) and \(t \in [-h/2, h/2] \). Figure 4.4 shows a typical no-cull situation. Let the plane be \(\vec{N} \cdot \vec{X} = d \), where \(|\vec{N}| = 1 \). Let \(\vec{U}, \vec{V}, \) and \(\vec{W} \) form an orthonormal set of vectors. Any cylinder point \(\vec{X} \) can be written as \(\vec{X} = \vec{C} + y_0 \vec{U} + y_1 \vec{V} + y_2 \vec{W} \), where \(y_0^2 + y_1^2 = r^2 \) and \(|y_2| \leq h/2 \). Let \(y_0 = r \cos(A) \) and \(y_1 = r \sin(A) \). Substitute \(\vec{X} \) in the plane equation to get

\[-(\vec{N} \cdot \vec{W})y_2 = (\vec{N} \cdot \vec{C} - d) + (\vec{N} \cdot \vec{U})r \cos(A) + (\vec{N} \cdot \vec{V})r \sin(A) .\]

If \(\vec{N} \cdot \vec{W} = 0 \), then the plane is parallel to the axis of the cylinder. The two intersect if and only if the distance from \(\vec{C} \) to the plane satisfies

\[|\vec{N} \cdot \vec{C} - d| \leq r .\]

In this situation the cylinder is culled when \(\vec{N} \cdot \vec{C} - d \leq -r \).

If \(\vec{N} \cdot \vec{W} \neq 0 \), then \(y_2 \) is a function of \(A \). The minimum and maximum values can be found by the methods of calculus. The extreme values are

\[d - \frac{\vec{N} \cdot \vec{C} \pm \sqrt{1 - (\vec{N} \cdot \vec{W})^2}}{\vec{N} \cdot \vec{W}} .\]

The plane and cylinder intersect if and only if

\[\min(y_2) \leq h/2 \quad \text{and} \quad \max(y_2) \geq -h/2 .\]
In this situation the cylinder is culled when the previous tests show no intersection and $\hat{N} \cdot \hat{C} - d \leq -r$. The pseudocode is

```cpp
bool CullCylinderPlane (Cylinder cylinder, Plane plane)
{
    sd0 = Dot(plane.N,cylinder.P) - plane.d;
    if ( sd0 < 0 )
    {
        dotND = Dot(plane.N,cylinder.D);
        sd1 = sd0 + dotND;
        if ( sd1 < 0 )
        {
            dotDD = Dot(cylinder.D,cylinder.D);
            r2 = cylinder.r*cylinder.r;
            if ( sd0 <= sd1 )
            {
                // P0 closest to plane
                return dotDD*sd0*sd0 >= r2*(dotDD-dotND*dotND);
            }
            else
            {
                // P1 closest to plane
                return dotDD*sd1*sd1 >= r2*(dotDD-dotND*dotND);
            }
        }
    }
    return false;
}
```

The quantities $\hat{D} \cdot \hat{D}$ and r^2 can be precomputed and stored by the cylinder as a way of reducing execution time for the intersection test.

4.3.6 CULLING BY ELLIPSOIDS

An ellipsoid is represented by the quadratic equation $Q(\vec{X}) = (\vec{X} - \hat{C})^T M (\vec{X} - \hat{C}) = 1$, where \hat{C} is the center of the ellipsoid, where M is a positive definite matrix, and where \vec{X} is any point on the ellipsoid. An ellipsoid is outside a frustum plane whenever the projection of the ellipsoid onto the line $\hat{C} + s \hat{N}$ is outside the frustum plane. The projected interval is $[-r, r]$. Figure 4.5 shows a typical no-cull situation. The ellipsoid is culled whenever
The construction of r is as follows. The points \tilde{X} that project to the end points of the interval must occur where the normals to the ellipsoid are parallel to \tilde{N}. The gradient of $Q(\tilde{X})$ is a normal direction for the point, $\nabla Q = 2M(\tilde{X} - \tilde{C})$. Thus, \tilde{X} must be a solution to $M(\tilde{X} - \tilde{C}) = \lambda \tilde{N}$ for some scalar λ. Inverting M and multiplying yields $\tilde{X} - \tilde{C} = \lambda M^{-1} \tilde{N}$. Replacing this in the quadratic equation yields $1 = \lambda^2 (M^{-1} \tilde{N})^T M (M^{-1} \tilde{N}) = \lambda^2 \tilde{N}^T M^{-1} \tilde{N}$. Finally, $r = \tilde{N} \cdot (\tilde{X} - \tilde{C}) = \lambda \tilde{N}^T M^{-1} \tilde{N}$, so $r = \sqrt{\tilde{N}^T M^{-1} \tilde{N}}$. The pseudocode is

```csharp
bool CullEllipsoidPlane(Ellipsoid ellipsoid, Plane plane)
{
    sd0 = Dot(plane.N, ellipsoid.C) - plane.d;
    if ( sd0 < 0 )
    {
        r2 = Dot(plane.N, ellipsoid.Minverse*plane.N);
        return sd0*sd0 >= r2;
    }

    return false;
}
```
4.3.7 ALGORITHM FOR SCENE GRAPH RENDERING

An abstract class Renderer has a method that is the entry point for drawing a scene graph:

```cpp
void Renderer::Draw (Spatial scene)
{
    scene.OnDraw(thisRenderer);
}
```

Its sole job is to start the scene graph traversal and pass the renderer for camera access and for accumulating render state. The method is virtual so that any derived class renderer can perform any setup before, and any cleanup after, the scene graph is drawn.

The class Spatial implements

```cpp
void Spatial::OnDraw (Renderer renderer)
{
    if ( forceCulling )
        return;

    savePlaneState = renderer.planeState;

    if ( !renderer.Cull(worldBound) )
        Draw(renderer);

    renderer.planeState = savePlaneState;
}
```

The class Spatial provides a Boolean flag to allow the application to force culling of an object. If the object is not forced to be culled, then comparison of the world bounding volume to the camera frustum planes is done next. As mentioned in Section 3.4, if the bounding volumes are properly nested, once a bounding volume is inside a frustum plane there is no need to test bounding volumes of descendants against that plane. In this case the plane is said to be inactive. The renderer keeps track of which planes are active and inactive (the plane state). The current object must save the current plane state since the state might change during the recursive pass and the old state must be restored.

The member function Draw of class Spatial is also a pure virtual function. Class Geometry manages the leaf node renderer state and uses the Draw function to tell the renderer about the state it should use for drawing that leaf node. Class Node again provides for the recursive propagation to its children.
void Geometry::Draw (Renderer renderer)
{
 renderer.SetState(thisState);
}

void Node::Draw (Renderer renderer)
{
 for each child do
 child.OnDraw(renderer);
}

Notice the pattern of recursive chains provided by classes Spatial and Node. In this case Draw and OnDraw form the recursive chain.

Finally, for a specific class derived from Geometry that has actual data, the renderer must implement how to draw that data. For example, if TriMesh is derived from Geometry and manages a triangle mesh with vertices, normals, colors, and texture coordinates, the class must implement the virtual function as

void TriMesh::Draw (Renderer renderer)
{
 Geometry::Draw(renderer);
 renderer.Draw(this);
}

The call to the base class Draw tells the renderer to use the current rendering state at the leaf node. The next call allows the renderer to do its specific work with the triangle mesh. The Draw call in the renderer is a pure virtual function. If class SoftRender is derived from Renderer and represents software rendering, then the entire geometric pipeline of transformation, clipping, projection, and rasterizing is encapsulated in Draw for SoftRender. On the other hand, if class HardRender is derived from Renderer and represents a hardware-accelerated renderer, then Draw probably does very little work and can feed the hardware card directly.
The term picking typically refers to the process of selecting a 3D object from its 2D projection on the screen by pointing and clicking with a mouse. For a perspective camera model, the idea is to build a ray whose origin is the eye point and whose direction is from the eye point to a world point that projects onto the screen at the selected location. The ray is converted to world coordinates and a search is made to find those objects that are intersected by the ray. This chapter considers a more general picking process where the ray can have any origin, not just the eye point. The general picking operation supports collision detection where linear probing is used to determine if the camera or an object can move unimpeded in various directions. It also supports various special effects—for example, determining if a projectile or laser beam fired from a character’s gun hits an intended target. Other uses for general picking include determining height of objects above a terrain, establishing visibility of objects from current eye point, and avoiding collisions with obstacles while an object attempts to follow a desired path. In these examples the common theme is estimation of distance from objects to obstacles.

Support for picking in a hierarchical scene graph amounts to recursively traversing the graph until each leaf node is reached. The triangles represented by a leaf node are tested one by one to see if the ray intersects them. All sorts of information can be
reported about an intersection, including the point of intersection, normal vector at
the intersection, surface attributes at the point such as color or texture coordinate,
or other information that an object might have been tagged with by the application.
Given a list of triangles intersected by the ray, additional processing might be required
such as sorting the list or computing the closest triangle to the ray’s origin.

An exhaustive test of intersection by ray with triangles can be expensive, especially
if the ray does not intersect any of the triangles at a leaf node. To avoid this, the
hierarchical structure of the graph can be exploited. The picking operation at a node
is propagated to the children of the node only if the ray intersects a bounding volume
associated with the original node. A test for intersection of ray with bounding volume
is usually inexpensive. If the ray does not intersect the volume, then a small amount
of time is required to show this, and time is not wasted on searching that portion of
the scene graph contained in the bounding volume. The pseudocode for the process is

```c
void DoPick (Node node, Ray ray, PickResults results)
{
    if ray intersects node.boundingVolume
    {
        if node is a leaf
        {
            for each triangle of node do
            {
                if (ray intersects triangle)
                    add intersection information to results;
            }
        }
        else
        {
            for each child of node do
                DoPick(child,ray,results);
        }
    }
}
```

// application code
Node root = <root of scene graph to be tested>;
Ray ray = <origin and direction of ray to be tested>;
PickResults results;
DoPick(root,ray,results);

The key tests here involve the intersection of a ray with bounding volumes or with
triangles. It is possible that an application requires information about the intersection
of objects with lines or with line segments. Although the intersection tests are
algorithmically similar, the implementations might take advantage of the knowledge
that a line, ray, or line segment is involved and avoid some unnecessary calculations. The remainder of the chapter deals with the mathematical algorithms and their implementations for intersection of linear components (lines, rays, or line segments) with bounding volumes and triangles. In all sections, the line is parameterized as
\[L(t) = \vec{P} + t \vec{D}, \] where \(\vec{P} \) is the line origin and \(\vec{D} \) is a unit-length direction vector. For a line, there is no restriction on \(t \). For a ray, \(t \geq 0 \) is required. For a line segment, \(t \in [0, T] \) is required for some specified value \(T > 0 \).

5.1 Intersection of a Linear Component and a Sphere

A sphere with center \(\vec{C} \) and radius \(R \) is specified by \(|\vec{X} - \vec{C}|^2 - R^2 = 0 \). Replacing \(\vec{X} \) by \(\vec{L}(t) \) leads to the quadratic equation

\[
0 = |t \vec{D} + \vec{P} - \vec{C}|^2 - R^2 = t^2 + 2t \vec{D} \cdot (\vec{P} - \vec{C}) + |\vec{P} - \vec{C}|^2 - R^2.
\]

The quadratic formula may be used to solve the equation. The discriminant is

\[
\Delta = 4 \left(\vec{D} \cdot (\vec{P} - \vec{C}) \right)^2 - 4 \left(|\vec{P} - \vec{C}|^2 - R^2 \right)
\]

\[
= 4 \left(R^2 - (\vec{P} - \vec{C})^\top (I - \vec{D} \vec{D}^\top) (\vec{P} - \vec{C}) \right).
\]

The projection matrix \(I - \vec{D} \vec{D}^\top \) is nonnegative definite, so the discriminant is possibly negative. If \(\Delta < 0 \), then the line does not intersect the sphere. If \(\Delta = 0 \), the line is tangential to the sphere. The parameter at the point of intersection is \(t = -\vec{D} \cdot (\vec{P} - \vec{C}) \). If \(t < 0 \), then the line is tangent to the sphere but neither the ray nor line segment intersect the sphere. If \(t > T \), then the line and ray are tangent to the sphere but the line segment does not intersect the sphere. If \(\Delta \geq 0 \), then the line intersects the sphere in two locations. The parameters at the points of intersection are

\[
t = -\vec{D} \cdot (\vec{P} - \vec{C}) \pm \sqrt{R^2 - (\vec{P} - \vec{C})^\top (I - \vec{D} \vec{D}^\top) (\vec{P} - \vec{C})}.
\]

Analysis of the \(t \)-values (comparison to 0 and \(T \)) determines whether or not the ray or the line segment intersect the sphere.

In the recursive traversal of the hierarchical scene graph, it may not be necessary to determine where a linear component intersects a bounding volume, only if the linear component intersects the bounding volume. Existence of an intersection may be determined more cheaply for some situations. For example, the quadratic equation for a ray intersecting a sphere has constant term \(|\vec{P} - \vec{C}|^2 - R^2 \). If this term is negative, then \(\vec{P} \) is inside the sphere and the ray must necessarily intersect the sphere. This leads to a quick return from the intersection routine, and the propagation of the test to node
children commences. The pseudocode for determining the existence of an intersection of a ray with a sphere is

```cpp
bool TestIntersection (Ray ray, Sphere sphere) {
    // quadratic is t^2 + 2*a1*t + a0 = 0
    Q = ray.P - sphere.C;
    a0 = Q.Dot(Q) - sphere.R*sphere.R;
    if (a0 <= 0) {
        // ray.P is inside the sphere
        return true;
    }
    // else ray.P is outside the sphere
    a1 = ray.D.Dot(Q);
    if (a1 > 0) {
        // acute angle between P-C and D, C is "behind" ray
        return false;
    }
    // quadratic has a real root if discriminant is nonnegative
    return (a1*a1 >=- a0);
}
```

Similarly structured code can be written for comparison of a line or a line segment to a sphere. Actual points of intersection may also be computed by solving the quadratic equation for its roots.

5.2 Intersection of a Linear Component and a Box

Finding the points of intersection between a linear component and a box is the classic clipping problem. For parametric lines, an effective method is Liang-Barsky clipping (Liang and Barsky 1984; Foley et al. 1990). We first describe the algorithm for an axis-aligned box. The adaptation to an oriented box requires a change in coordinate system. Although we describe the method for line segments, it can easily be extended to rays and lines.

Consider the axis-aligned box centered at the origin with extents e_i for $0 \leq i \leq 2$. The region of space filled by the box is $[-e_0, e_0] \times [-e_1, e_1] \times [-e_2, e_2]$. The idea is to clip the line segment $(p_0, p_1, p_2) + t(a_0, a_1, a_2)$ for $t \in [0, 1]$ against the three
sets of parallel faces, one pair at a time. The initial interval for the line segment is $[t_0, t_1] = [0, 1]$, and the values of t_0 and t_1 are updated appropriately for the clipping against the faces.

The intersection of a line with the face $x_0 = -e_0$ is determined by $p_0 + t_0 d_0 = -e_0$. If $d_0 \neq 0$, then the line is not parallel to the face and the point of intersection occurs when $t_0 = -(e_0 + p_0)/d_0$. Moreover, if $d_0 > 0$, then the line parameter t increases as x_0 increases. If $t_1 > t_0$, then the line segment is outside the face and is completely clipped. If $t_1 \leq t_0$, then the line segment is inside the face and no adjustments are needed on t_0. Otherwise, $t_1 \in (t_0, t_1]$ and the minimum parameter value is updated to $t_0 = t_1$. In the event that $t_1 = t_1$, the line segment intersects the face in a single point. For geometric intersection testing, this point may be of interest. For clipping against a view frustum, this point may be ignored by using the test $t_1 \geq t_1$ instead. Figure 5.1 illustrates the three cases when $d_0 > 0$. If $d_0 < 0$, the line parameter t decreases as x_0 increases. If $t_1 \leq t_0$, then the line segment is outside the face and is completely clipped. If $t_1 \geq t_1$, then the line segment is inside the face and no adjustments are needed on t_1. Otherwise, $t_1 \in (t_0, t_1)$ and the maximum parameter value is updated to $t_1 = t_1$. Figure 5.2 illustrates the three cases when $d_0 < 0$. Finally, if $d_0 = 0$, the line is parallel to the face. A sign test must be made on $-e_0 - p_0$ to determine if the line segment is inside
the face \((-e_0 - p_0 > 0)\) or outside the face \((-e_0 - p_0 \leq 0)\). In the latter case the line segment is completely clipped. Figure 5.3 illustrates the two cases when \(d_0 = 0\).

Similar tests can be made for all six faces. A single clipping function can be derived that handles the tests. The pseudocode as shown in most graphics texts is given below. A return value of \texttt{false} means the line segment is completely clipped (culled). A return value of \texttt{true} means the line segment was clipped or needed no adjustments.

```c
bool Clip (float denom, float numer, float& t0, float& tl)
{
    if ( denom > 0 )
    {
        tl = numer/denom;
        if ( tl > tl )
            return false;
        if ( tl > t0 )
            t0 = tl;
        return true;
    }
    else if ( denom < 0 )
    {
        tl = numer/denom;
        if ( tl < t0 )
            return false;
        if ( tl < tl )
            tl = tl;
        return true;
    }
    else
    {
        return numer > 0;
    }
}
```
5.2 Intersection of a Linear Component and a Box

For hardware with fast multiplication and slow division, a version that defers the divisions until absolutely needed will have on average a smaller execution time. The worst case for a single call is the use of two additional multiplications. The pseudocode is

```c
bool Clip (float denom, float numer, float& t0, float& t1)
{
    if (denom > 0)
    {
        if (numer > denom*t1)
            return false;
        if (numer > denom*t0)
            t0 = numer/denom;
        return true;
    }
    else if (denom < 0)
    {
        t1 = numer/denom;
        if (numer > denom*t0)
            return false;
        if (numer > denom*t1)
            t1 = numer/denom;
        return true;
    }
    else
    {
        return numer > 0;
    }
}
```

The clipper itself is given by the following pseudocode. A return value of false indicates the line segment is outside the box. A return value of true indicates the line segment has been clipped or is completely inside the box. On return, the end points of the clipped segment are \(\tilde{P} + t_0 \tilde{D} \) and \(\tilde{P} + t_1 \tilde{D} \). To maintain the format for line segments, the new segment is \(\tilde{P}' + s \tilde{D}' \) for \(s \in [0, 1] \), where \(\tilde{P}' = \tilde{P} + t_0 \tilde{D} \) and \(\tilde{D}' = (t_1 - t_0) \tilde{D} \).

```c
bool Clip3D (Point E, Point P, Point D, float& t0, float& t1)
{
    // extents E = (e0,e1,e2), all positive components
    // line point P = (p0,p1,p2)
    // line direction D = (d0,d1,d2)

    t0 = 0;
    t1 = 1;
```
Figure 5.4 Typical separating axis for a line segment and a box.

```java
return Clip(+d0, -p0\cdot e0, t0, t1) and Clip(-d0, +p0\cdot e0, t0, t1) and
        Clip(+d1, -p1\cdot e1, t0, t1) and Clip(-d1, +p1\cdot e1, t0, t1) and
        Clip(+d2, -p2\cdot e2, t0, t1) and Clip(-d2, +p2\cdot e2, t0, t1);
```

Clipping against an oriented box requires some transformations. Let the box have center \tilde{C}, axes \tilde{U}_i, and extents e_i for $0 \leq i \leq 2$. The line point \tilde{P} and direction vector \tilde{D} must be represented in terms of the coordinate system of the box. The p_i and d_i used in the axis-aligned case are now defined by $\tilde{P} = \tilde{C} + \sum_{i=0}^{2} p_i \tilde{U}_i$ and $\tilde{D} = \sum_{i=0}^{2} d_i \tilde{U}_i$. Thus, $p_i = \tilde{U}_i \cdot (\tilde{P} - \tilde{C})$ and $d_i = \tilde{U}_i \cdot \tilde{D}$.

Testing whether or not a line, ray, or line segment intersects a box can be done more cheaply than with a clipping algorithm by separating axes. It can be determined if the linear component does not intersect the box by analyzing the projections of the linear component and the box onto a small number of lines and testing if the projections are disjoint. This approach for comparing line segment and box is used in Gregory et al. (1998). In the following sections, the oriented box has center \tilde{C}, axes \tilde{U}_i, and corresponding extents e_i for $i = 0, 1, 2$. Although they are not necessary to compute in the algorithm, the vertices of the box are $\tilde{C} + \sum_{i=0}^{2} \sigma_i e_i \tilde{U}_i$, where $|\sigma_i| = 1$ (eight possible choices, two per i).

5.2.1 LINE SEGMENT

Let the line segment have midpoint \tilde{M} and end points $\tilde{M} \pm \tilde{V}$. The six potential separating axes have directions \tilde{U}_i and $\tilde{V} \times \tilde{U}_i$ for $i = 0, 1, 2$. Figure 5.4 shows the general situation of projecting onto an axis with direction \tilde{W}, with the direction not necessarily unit length. Let $\tilde{D} = \tilde{M} - \tilde{C}$. The radius of the interval corresponding to the projected line segment is

$$R_e = \left| \tilde{M} \cdot \frac{\tilde{W}}{|\tilde{W}|} \right|.$$
Table 5.1 Separating axis tests for a line segment and a box.

<table>
<thead>
<tr>
<th>(\tilde{W})</th>
<th>(R_b)</th>
<th>(R_c)</th>
<th>(R_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{U}_0)</td>
<td>(e_0)</td>
<td>(</td>
<td>\tilde{W} \cdot \tilde{U}_0</td>
</tr>
<tr>
<td>(\tilde{U}_1)</td>
<td>(e_1)</td>
<td>(</td>
<td>\tilde{W} \cdot \tilde{U}_1</td>
</tr>
<tr>
<td>(\tilde{U}_2)</td>
<td>(e_2)</td>
<td>(</td>
<td>\tilde{W} \cdot \tilde{U}_2</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\tilde{V} \times \tilde{U}_0 & \left(e_0 |\tilde{V} \cdot \tilde{U}_0| + e_1 |\tilde{V} \cdot \tilde{U}_1| \right) / |\tilde{V}| = 0 \quad \tilde{U}_0 \cdot \tilde{V} \times \tilde{D} / |\tilde{V}| \\
\tilde{V} \times \tilde{U}_1 & \left(e_0 |\tilde{V} \cdot \tilde{U}_2| + e_1 |\tilde{V} \cdot \tilde{U}_0| \right) / |\tilde{V}| = 0 \quad \tilde{U}_1 \cdot \tilde{V} \times \tilde{D} / |\tilde{V}| \\
\tilde{V} \times \tilde{U}_2 & \left(e_0 |\tilde{V} \cdot \tilde{U}_1| + e_1 |\tilde{V} \cdot \tilde{U}_0| \right) / |\tilde{V}| = 0 \quad \tilde{U}_2 \cdot \tilde{V} \times \tilde{D} / |\tilde{V}|
\end{align*}
\]

The radius of the interval corresponding to the projected box is

\[
R_b = \sum_{i=0}^{2} e_i \left| \tilde{U}_i \cdot \frac{\tilde{W}}{|\tilde{W}|} \right|.
\]

The distance between the projected centers is the length of the projection of \(\tilde{D} \),

\[
R_d = \left| \tilde{D} \cdot \frac{\tilde{W}}{|\tilde{W}|} \right|.
\]

The axis separates the line segment and box if

\[
R_d > R_b + R_c.
\]

Table 5.1 shows the potential separating axes and the corresponding quantities required for showing the projected intervals are disjoint. The divisions in the last three cases can be avoided by multiplying the test inequality by \(|\tilde{W}| \).

5.2.2 Ray

Let the ray have origin \(\tilde{P} \) and direction \(\tilde{V} \). The six potential separating axes are the same as for a line compared to a box. Figure 5.5 shows two typical situations for projection of a ray and a box onto a potential separating axis with direction \(\tilde{W} \). Let \(\tilde{D} = \tilde{P} - \tilde{C} \). The radius of the interval corresponding to the projected box is

\[
R_b = \sum_{i=0}^{2} e_i \left| \tilde{U}_i \cdot \frac{\tilde{W}}{|\tilde{W}|} \right|.
\]
The distance between the projected box center and projected ray origin is the length of the projection of \vec{D}.

$$R_d = \left| \vec{D} \cdot \frac{\vec{W}}{|\vec{W}|} \right|.$$

The axis separates the line segment and box if the projection of the ray origin is outside the projection of the box and if the ray direction forces the projected ray to point away from the box. The tests are

$$R_d > R_b \quad \text{and} \quad (\vec{W} \cdot \vec{V})(\vec{W} \cdot \vec{D}) \geq 0.$$

For the first three potential separating axes, the tests are

$$|\vec{U}_0 \cdot \vec{D}| > e_0, \quad (\vec{U}_0 \cdot \vec{D})(\vec{U}_0 \cdot \vec{V}) \geq 0$$

$$|\vec{U}_1 \cdot \vec{D}| > e_1, \quad (\vec{U}_1 \cdot \vec{D})(\vec{U}_1 \cdot \vec{V}) \geq 0$$

$$|\vec{U}_2 \cdot \vec{D}| > e_2, \quad (\vec{U}_2 \cdot \vec{D})(\vec{U}_2 \cdot \vec{V}) \geq 0.$$

For the last three potential separating axis tests the secondary test is always true. The tests are

$$|\vec{U}_0 \cdot \vec{V} \times \vec{D}| > e_1|\vec{V} \cdot \vec{U}_2| + e_2|\vec{V} \cdot \vec{U}_0|$$

$$|\vec{U}_1 \cdot \vec{V} \times \vec{D}| > e_0|\vec{V} \cdot \vec{U}_2| + e_2|\vec{V} \cdot \vec{U}_0|$$

$$|\vec{U}_2 \cdot \vec{V} \times \vec{D}| > e_0|\vec{V} \cdot \vec{U}_1| + e_1|\vec{V} \cdot \vec{U}_0|.$$
5.3 Intersection of a Linear Component and a Capsule

5.2.3 Line

Let the line have origin \(P \) and direction \(\vec{V} \). The projection of the line onto at least one of the axes with direction \(\vec{U}_i \) will intersect the projection of the box. The only potential separating axes are \(\vec{V} \times \vec{U}_i \) for \(i = 0, 1, 2 \). The tests are

\[
\begin{align*}
|\vec{U}_0 \cdot \vec{V} \times \vec{D}| &> e_1|\vec{V} \cdot \vec{U}_2| + e_2|\vec{V} \cdot \vec{U}_1| \\
|\vec{U}_1 \cdot \vec{V} \times \vec{D}| &> e_0|\vec{V} \cdot \vec{U}_2| + e_2|\vec{V} \cdot \vec{U}_0| \\
|\vec{U}_2 \cdot \vec{V} \times \vec{D}| &> e_0|\vec{V} \cdot \vec{U}_1| + e_1|\vec{V} \cdot \vec{U}_0|.
\end{align*}
\]

5.3 Intersection of a Linear Component and a Capsule

Testing for the existence of an intersection between a linear component and a capsule is relatively inexpensive compared to finding the actual points of intersection. The test involves computing the distance between the capsule line segment and the linear component and comparing it to the capsule radius. Section 2.6.2 gives algorithms for computing the distance between linear components.

Finding the points of intersection is more expensive. Let the capsule line segment be \(\vec{P}_0 + s \vec{D}_0 \) for \(s \in [0, 1] \) and let the capsule radius be \(R \). Let the line be \(\vec{P}_1 + t \vec{D}_1 \). If \(\vec{D}_0 \cdot \vec{D}_1 \neq 0 \), then the line must intersect the planes on which the capsule hemispheres connect to the cylindrical body. The planes are \(\vec{D}_0 \cdot (\vec{X} - \vec{P}_0) = 0 \) and \(\vec{D}_0 \cdot (\vec{X} - \vec{P}_1 - \vec{D}_1) = 0 \). The intersections of the line with the planes occur at \(t_0 = \frac{\vec{D}_0 \cdot (\vec{P}_0 - \vec{P}_1)}{\vec{D}_0 \cdot \vec{D}_1} \) and \(t_1 = t_0 + \frac{\vec{D}_0 \cdot \vec{D}_0}{\vec{D}_0 \cdot \vec{D}_1} \). For the sake of argument, let \(\vec{D}_0 \cdot \vec{D}_1 > 0 \) so that \(t_1 < t_0 \). Similar arguments can be made when the dot product is negative and \(t_1 < t_0 \). The points of intersection (if any) are computed

- between the ray with \(t \leq t_0 \) and the capsule hemisphere with origin \(\vec{P}_0 \),
- between the ray with \(t \geq t_1 \) and the capsule hemisphere with origin \(\vec{P}_0 + \vec{D}_0 \), and
- between the line segment with \(t \in [t_0, t_1] \) and the capsule cylindrical wall.

Each of these requires finding the roots of a quadratic equation. In the first case, the points of intersection are at a distance \(R \) from \(\vec{P}_0 \). The squared distance between the ray and end point is \(|\vec{D}_0 \times (\vec{Q} - \vec{P}_0)|^2 \) for \(t \leq t_0 \), a quadratic polynomial in \(t \). In the second case, the squared distance between the ray and end point is \(|\vec{D}_0 \times (\vec{P}_1 - \vec{P}_0)|^2 \) for \(t \geq t_1 \), and the third case, the distance between any point \(\vec{Q} \) (lying between the two planes) and the capsule line segment is \(|\vec{D}_0 \times (\vec{Q} - \vec{P}_0)| \). The squared distance between the line segment with \(t \in [t_0, t_1] \) and the capsule line segment is \(|\vec{D}_0 \times (t \vec{D}_1 + \vec{P}_1 - \vec{P}_0)|^2 \). Each of the squared-distance quadratic polynomials
is set to \(r^2 \), and the real roots (if any) of the polynomial are computed. Once two roots
are found, other cases do not have to be processed because there are at most two points
of intersection between the linear component and the capsule.

If \(D_0 \cdot E_1 = 0 \), then the line is contained between the two planes mentioned earlier.
In this case only a single quadratic equation must be processed (the third case in the
previous paragraph but with no restriction on \(t \)).

Figure 5.6 illustrates in two dimensions the partitioning of the line by the capsule,
including points of intersection.

5.4 Intersection of a Linear Component and
A Lozenge

Testing for the existence of an intersection between a linear component and a lozenge
is similar to that for capsules. The test involves computing the distance between the
lozenge rectangle and the linear component and comparing it to the lozenge radius.
Section 2.6.6 gives algorithms for computing the distance between linear components
and rectangles.

Finding points of intersection is also similar to that of capsules. The algorithm
uses partitions of the line and analyzes each partition separately. The lozenge is \(\vec{P}_0 + u \vec{E}_0 + v \vec{E}_1 \), where \(\vec{E}_0 \cdot \vec{E}_1 = 0 \), \((u, v) \in [0, 1] \), and has radius \(r \). The line is \(\vec{P}_1 + t \vec{D} \).

If \(\vec{D} \cdot \vec{E}_0 \times \vec{E}_1 \neq 0 \), the line is partitioned by the planes \(\vec{E}_0 \cdot (\vec{X} - \vec{P}_0) = 0 \), \(\vec{E}_0 \cdot (\vec{X} - \vec{P}_0 - \vec{E}_0) = 0 \), \(\vec{E}_1 \cdot (\vec{X} - \vec{P}_0) = 0 \), and \(\vec{E}_1 \cdot (\vec{X} - \vec{P}_0 - \vec{E}_1) = 0 \). Two of the
clipped components are rays. There are at most three clipped components that are
line segments. In the plane of the lozenge rectangle, the partition planes split that
plane into nine pieces: the lozenge rectangle itself, four edge regions, and four corner
regions. Figure 5.7 illustrates in two dimensions the partitioning of a line by the
lozenge. The number of clipped components in this example is five, as shown by
the projection of the line onto the horizontal axis with tick marks at the points of
intersection with the partition lines. If a clipped component corresponds to a corner
region, a squared-distance function is computed between the component and the
corner point for that region. If a component corresponds to an edge region, the
squared distance between that component and the edge line segment is computed.
Figure 5.7 Partitioning of a line by a lozenge.

This process is exactly the one that occurs in the case of intersections between lines and capsules. If a component corresponds to the lozenge rectangle region, then the squared-distance function is computed. The squared distance between any point \(\vec{Q} \) in the rectangle region and the lozenge rectangle is

\[
|\vec{Q} - \vec{P}_0|^2 = \frac{|\vec{E}_0 \cdot (\vec{Q} - \vec{P}_0)|^2}{|\vec{E}_0|^2} - \frac{|\vec{E}_1 \cdot (\vec{Q} - \vec{P}_0)|^2}{|\vec{E}_1|^2}.
\]

Point \(\vec{Q} \) is replaced by \(\vec{P}_1 + t\vec{D} \) to obtain the quadratic polynomial. Any of the computed polynomials is set to \(r^2 \) and solved. The corresponding values of \(t \) provide the points of intersection between the line and the lozenge.

If \(\vec{D} \cdot \vec{E}_0 \times \vec{E}_1 = 0 \), the line is perpendicular to the lozenge rectangle. The appropriate region of the nine possible ones is determined, and the squared-distance polynomial is computed between the line and the corresponding lozenge component (quarter sphere, half cylinder, or rectangle slab).

5.5 Intersection of a Linear Component and a Cylinder

In the case of capsules, testing for intersections involves measuring the distance between the linear component and the capsule line segment. For cylinders the test is more complicated since there are no hemispherical caps. The portion of the linear component between the two planes of the cylinder ends must be computed. The distance between the clipped linear component and the cylinder line segment is measured and compared to the cylinder radius.

Finding the intersections with the cylinder is similar to that with capsules, but again the clipped linear component is used. The same quadratic equation arises when measuring the distance between the clipped linear component and the cylinder line segment. However, the linear component might also intersect the circular disks at the ends of the cylinder. If the clipped component has an end point on a plane containing
a circular disk, there must be a test to see if that end point is inside the circle. If so, the end point is a point of intersection.

5.6 Intersection of a Linear Component and an Ellipsoid

An ellipsoid is represented by the quadratic equation \((\vec{X} - \vec{C})^T M (\vec{X} - \vec{C}) = 1\), where \(\vec{C}\) is the center of the ellipsoid and where \(M\) is a positive definite matrix. The matrix can be factored as \(M = R^T D R\), where \(R\) is a rotation matrix and \(D\) is a diagonal matrix whose diagonal entries are positive. The rows of \(R\) are the axes of the ellipsoid, and the diagonal entries of \(D\) are the axis lengths. If the line is \(\vec{P} + t \vec{V}\), then substitution into the ellipsoid equation produces a quadratic equation

\[
(\vec{V}^T M \vec{V}) t^2 + (2 \vec{V}^T M (\vec{P} - \vec{C})) t + (\vec{P} - \vec{C})^T M (\vec{P} - \vec{C}) - 1 = 0.
\]

The points of intersection are determined by the real roots of this equation. If there are no real roots, the line does not intersect the ellipsoid. If there is one real root, the line is tangent to the ellipsoid. If there are two real roots, then the line penetrates the ellipsoid at two distinct locations.

5.7 Intersection of a Linear Component and a Triangle

An excellent article for computing ray-triangle intersections is Möller and Trumbore (1997). The general strategy for lines, rays, or segments is described below.

Let the triangle have vertices \(V_0, V_1 = V_0 + \vec{E}_0\), and \(V_2 = V_0 + \vec{E}_1\). The plane of the triangle is given by \(N \cdot (X - V_0) = 0\), where \(N = \vec{E}_0 \times \vec{E}_1\). Let the line be \(L(t) = \vec{P} + t \vec{D}\), where the direction vector is not necessarily unit length. The ray satisfies \(t \geq 0\), and the line segment satisfies \(t \in [0, 1]\).

The first problem is to determine if the linear component intersects the plane of the triangle. If \(\vec{D}\) is not perpendicular to \(N\), then the line must intersect the plane. The corresponding \(t\) value is computed by substitution of \(L(t)\) into the plane equation,

\[
T = \frac{\vec{N} \cdot (V_0 - \vec{P})}{\vec{N} \cdot \vec{D}}.
\]

The point of intersection is \(\vec{L}(T)\). If the linear component is a ray, then the point of intersection is valid if \(T \geq 0\). If the linear component is a line segment, then the point of intersection is valid if \(T \in [0, 1]\).

For a valid point of intersection, the second problem is to determine if the point is inside the triangle. Writing \(L(T) = V_0 + s_0 \vec{E}_0 + s_1 \vec{E}_1\), the coefficients are determined
by the linear system shown below, where \(\tilde{Q} = \tilde{L}(T) - \tilde{V}_0 \):

\[
\begin{bmatrix}
\tilde{E}_0 \cdot \tilde{E}_0 & \tilde{E}_0 \cdot \tilde{E}_1 \\
\tilde{E}_0 \cdot \tilde{E}_1 & \tilde{E}_1 \cdot \tilde{E}_1
\end{bmatrix}
\begin{bmatrix}
s_0 \\
s_1
\end{bmatrix}
=
\begin{bmatrix}
\tilde{E}_0 \cdot \tilde{Q} \\
\tilde{E}_1 \cdot \tilde{Q}
\end{bmatrix}.
\]

Define \(e_{ij} = \tilde{E}_i \cdot \tilde{E}_j \), \(q_i = \tilde{E}_i \cdot \tilde{Q} \), and \(\Delta = e_{00}e_{11} - e_{01}^2 = |\tilde{E}_0 \times \tilde{E}_1|^2 = |\tilde{N}|^2 \); then \(s_0 = (e_{11}q_0 - e_{01}q_1)/\Delta \) and \(s_1 = (e_{00}q_1 - e_{01}q_0)/\Delta \). The point is inside the triangle if \(s_0 \geq 0, s_1 \geq 0 \), and \(s_0 + s_1 \leq 1 \). The division can be avoided by setting \(\sigma_0 = e_{11}q_0 - e_{01}q_1 \), \(\sigma_1 = e_{00}q_1 - e_{01}q_0 \), and testing \(\sigma_0 \geq 0, \sigma_1 \geq 0 \), and \(\sigma_0 + \sigma_1 \leq \Delta \).

If the line is parallel to, but not contained in the plane, then the linear component does not intersect the triangle. This condition occurs when \(\tilde{N} \cdot \tilde{D} = 0 \) and \(\tilde{N} \cdot (\tilde{V}_0 - \tilde{P}) \neq 0 \). Otherwise, the line is contained in the plane of the triangle. A 3D application could consider this case as not meaningful (transverse intersections are the only important cases). If not, more work must be done to decide if the linear component actually intersects the triangle.

First consider the case of a line. The line intersects the triangle if at least one of the vertices is on the line or if at least two vertices straddle the line. These conditions can be tested by projecting the vertices onto a line in the plane of the triangle that is perpendicular to the test line, \(\tilde{P} + s\tilde{N} \times \tilde{D} \). In fact, this has the same flavor as separating axes. It is enough to consider the signs of the numerators of the projection components, \(\tilde{V}_i \cdot \tilde{N} \times \tilde{D} \). Define \(m_0 = \min_i (\tilde{V}_i \cdot \tilde{N} \times \tilde{D}) \) and \(m_1 = \max_i (\tilde{V}_i \cdot \tilde{N} \times \tilde{D}) \). The line intersects the triangle if and only if \(0 \in [m_0, m_1] \).

Segments and rays are handled using the method of separating axes (see Sections 5.2.1 and 5.2.2). In addition to the triangle edges already defined, set \(\tilde{E}_2 = \tilde{V}_1 - \tilde{V}_0 \).

For rays the potential separating axes have directions \(\tilde{N} \times \tilde{E}_i \) for \(0 \leq i \leq 2 \) and \(\tilde{N} \times \tilde{D} \). In this case, though, let the potential separating axis contain the ray origin \(\tilde{P} \). Assuming the potential separating axis direction \(\tilde{W} \) is not perpendicular to the ray direction \(\tilde{D} \), the ray projects to a semi-infinite interval \([0, +\infty)\) or \((-\infty, 0]\) depending on the sign of \(\tilde{W} \cdot \tilde{D} \). If \(\tilde{W} \cdot \tilde{D} = 0 \), then the ray projects to the singleton point set \([0]\). The vertices of the triangle project to \(\tilde{W} \cdot (\tilde{V}_i - \tilde{P}) \) for \(0 \leq i \leq 2 \). Let \(m_0 \) and \(m_1 \) be the minimum and maximum values of these projections. If \(\tilde{W} \cdot \tilde{D} > 0 \), the ray does not intersect the triangle if \([m_0, m_1] \cap [0, +\infty) = \emptyset \). If \(\tilde{W} \cdot \tilde{D} < 0 \), the ray does not intersect the triangle if \([m_0, m_1] \cap (-\infty, 0] = \emptyset \). If \(\tilde{W} \cdot \tilde{D} = 0 \), the ray does not intersect the triangle if \(0 \notin [m_0, m_1] \).

For line segments the potential separating axes are the same as for rays. The midpoint representation should be used, \(\tilde{M} = \tilde{P} + 0.5\tilde{D} \), and \(\tilde{U} = 0.5\tilde{D} \), so the line segment has midpoint \(\tilde{M} \) and end points \(\tilde{M} \pm \tilde{U} \). The potential separating axis with direction \(\tilde{W} \) is required to contain \(\tilde{M} \), in which case the line segment projects to an interval of the form \([-\mu, \mu] \), where \(\mu = \tilde{W} \cdot \tilde{U} \). The triangle vertices project to an interval \([m_0, m_1] \). The line segment and triangle do not intersect when \([-\mu, \mu] \cap [m_0, m_1] = \emptyset \).
Collision Detection

Collision detection is a very broad topic, relevant to computer games and to other applications such as navigation and robotics. The classic example for collision detection in a third-person perspective, indoor game is having the main character move around in a set of rooms that contain obstacles. The character is controlled by an input device, typically a joystick, keyboard, or mouse, and must not be allowed to walk through the walls or obstacles. Moreover, if the character walks into a wall, he might be allowed to slide along the wall in a direction that is oblique to the one implied by the event from the input device. A standard technique for preventing the character from walking through a wall is to enclose the character with a tight-fitting bounding volume and testing if it intersects the plane of the wall. The collision detection system must provide support for this test even when the character (and bounding volume) are moving. Preventing the character from walking through an obstacle is as simple as enclosing the obstacle with its own bounding volume and testing for intersection between the character and obstacle bounding volumes. Other typical situations in a game that require collision detection are keeping vehicles moving over a terrain without dropping through it, monitoring racing cars on a track and detecting when two cars hit or when a car hits a wall, determining when a projectile hits an intended...
target, bouncing objects off other objects, providing feedback about character control
when two characters are fighting, and determining if an object can pass through an
opening, such as when a character attempts to walk through a doorway that may or
may not be tall enough.

Implementing a robust collision detection system is a difficult and elusive task, as
many game programmers have found. The algorithms for dynamic (moving) objects
tend to be somewhat more difficult to implement than for static (nonmoving) objects,
particularly because of the implied increase in dimension (four dimensions, three in
space and one in time).

Collision detection is determining if, when, and where two objects intersect. De-
termining if two objects intersect is referred to in this chapter as testing inter-
section—typically easy to implement and inexpensive in CPU time. However, testing
intersection only provides a Boolean result—the objects either do or do not intersect.
Determining when two moving objects intersect involves computing the first time of
contact. This is slightly more expensive to compute than the Boolean result from
testing for intersection, but conceptually still doable. Determining where two objects
intersect is referred to in this chapter as finding intersection. This is the most difficult
part of collision detection, both conceptually and in terms of the use of CPU time,
and involves finding first point(s) of contact. For strictly convex objects such as ellip-
soids that are initially separated, the first time of contact results in a single first point
of contact. Finding isolated contact points is relatively easy. However, for other con-
 vex objects such as oriented boxes or capsules, the first time of contact might result
in a continuum of first contact points (two boxes can collide edge-to-edge, edge-to-
face, or face-to-face). A collision system must deal with these pathological cases. In a
typical system, most of the code deals with the pathologies.

The types of objects that are handled in this chapter are the same ones found dis-
cussed in Chapter 2: linear components, planes, triangles, rectangles, oriented boxes,
spheres, capsules, lozenges, cylinders, and ellipsoids. Complex objects can be arbitrary
unions of these, but for game engine purposes, the only complex objects to consider
are those that are unions of triangles. Later in the chapter is a discussion on the use of
bounding volume trees to assist in collision detection between two complex objects.

The types of intersections considered fall into three categories: linear component
versus object (picking), object versus plane (navigation or culling), and object versus
object (general collision). For static objects, Chapter 5 already described intersec-
tion testing and finding. Chapter 4 described intersection testing between objects and
planes for culling purposes. Later in this chapter, picking moving objects and moving
object navigation among a collection of planes are discussed. Object-object intersec-
tions, whether static or dynamic, are discussed separately.

6.1 Design Issues

One of the most important concepts in designing a collision system is how to organize
the data. Because the world might contain a large number of interacting objects,
an exhaustive comparison of the objects is too expensive. The objects should be
organized into collision groups. For example, in an indoor environment, rooms are natural candidates for partitioning dynamic objects into groups. Each room can act as a collision group. Only objects moving within a room are compared to each other. However, if an object moves from one room into another, then the object must switch groups, but not before possibly comparing it to objects within the group of the current room followed by comparing it to objects within the group of the adjacent room.

Given a single complex object, it is also important how the object is structured. Using a scene graph representation and bounding volumes at the nodes of the graph, quick rejection testing is supported for determining that two objects do not intersect. While the rejection testing is done at a coarse level, the geometric data at the leaf nodes of the graph can be further decomposed using bounding volume trees. Comparison of these trees can lead to further rejections or might eventually result in computing the intersections of triangles represented by the leaf nodes of those trees. The following issues come up in using a hierarchical representation of objects for collision purposes:

- Should the hierarchy be built top-down or bottom-up?
- Should the bounding volumes be built manually or automatically?
- How should intersection information be reported?
- How should the propagation of the test/find collision calls be controlled?
- How much information should be retained about the current collision state to support future test/find collision calls?

Bottom-up construction of hierarchies is natural for building the world from small models. Bounding volumes at the leaf nodes are based on geometric data. Bounding volumes at interior nodes contain child bounding volumes, as described in Section 4.3. Top-down construction is good for a decomposition of complex objects, in particular, triangle meshes. The bounding volumes can be built using recursive subdivision methods.

The automatic generation of bounding volumes is desirable to minimize the work of artists and programmers, but it does not always generate a good set of volumes. Manual generation gives better control for fitting the data and using a minimum number of bounding volumes for maximum coverage of space in which the object lives. But manual generation can be time-consuming and perhaps is not a good use of artist/programmer resources. The best approach appears to be a mixture of the two. An automatic generation algorithm can be applied, but the output is subject to manual inspection and tweaking. Tools that support this process are highly desirable.

A reasonable mechanism for reporting intersection information is to use callbacks. Each object involved in the collision test has a callback that is executed when an intersection is predicted or detected. Relevant information about the intersection (location, time, normal vectors, surface attributes, etc.) is passed to the callback. The application has the responsibility for deciding what to do with the information. The callback mechanism provides for collision response and maintains an abstract separation between the response and the detection. In particular, this scheme integrates nicely with
physics systems: any collision detection back end can be fit with any physics system front end.

Hierarchical organization of data allows the application to tag each node with a set of flags indicating how the collision test should propagate. The simplest choice is whether or not to recurse on the call or to terminate immediately. Other choices involve specifying what types of calculations should occur (test only, first time only, first point of contact, do only bounding volume comparisons but not triangle-triangle tests, go all the way to triangle-triangle tests, etc.).

Remembering information about a previous intersection may help in localizing the search for the next call of the collision system. The usual space-time trade-off applies: more memory is used to retain state information in exchange for a faster execution. Whether space or time is important depends on the application and its data. For example, retaining state information is a key feature in the GJK and extended GJK algorithms (Gilbert, Johnson, and Keerthi 1988; Cameron 1996; van den Bergen 1999), but bounding volume trees typically do not retain state information and are designed to localize the search by fast intersection tests between the bounding volumes (Gottschalk, Lin, and Manocha 1991; Gregory et al. 1998). Both approaches are viable, but in this chapter we will discuss only the bounding volume tree ideas.

6.2 **INTERSECTION OF DYNAMIC OBJECTS AND LINES**

In the following sections, the line is stationary and defined by $\tilde{P} + s \tilde{D}$ for $s \in \mathbb{R}$. The other objects are moving with constant linear velocity \tilde{W} over a time interval $t \in [0, t_{max}]$. If $\tilde{D} \times \tilde{W} = 0$, then the object is moving parallel to the line. The static test for intersection is sufficient for this case.

The algorithms presented here determine only if the line and object will intersect on the time interval. Computation of the first time of contact is typically more expensive. For the sphere, capsule, and lozenge, finding the first time of contact involves solving a quadratic equation, which requires taking a square root.

6.2.1 **SPHERES**

The moving sphere has center $\tilde{C} + t \tilde{W}$ for $t \in [0, t_{max}]$ and radius $r > 0$. The distance between a point and a line is given by Equation 2.14. Replacing the time-varying center in this equation leads to a quadratic function in t that represents the squared distance,

$$Q(t) = \left(\tilde{W} - \frac{\tilde{D} \cdot \tilde{W}}{\tilde{D} \cdot \tilde{D}} \tilde{D} \right) t + \left(\tilde{C} - \tilde{P} - \frac{\tilde{D} \cdot (\tilde{C} - \tilde{P})}{\tilde{D} \cdot \tilde{D}} \tilde{D} \right) \tilde{D} =: at^2 + 2bt + c.$$

The coefficient a is positive because of the assumption that the direction of motion is not parallel to the line. If $Q(t) \leq r^2$ for some $t \in [0, t_{max}]$, then the line intersects the sphere during the specified time interval. The problem is now one of determining the
minimum of Q on the interval. Solve $Q'(T) = 0$ for $T = -b/a$. If $T \in [0, t_{\text{max}}]$, then the minimum is $Q(T)$. If $T < 0$, the minimum is $Q(0)$. If $T > t_{\text{max}}$, the minimum is $Q(t_{\text{max}})$. The minimum value is then compared to r^2. The coefficients each simplify to a fraction whose denominator is $D \cdot D$. To avoid the division, Q and r^2 can be multiplied through and the minimization is performed using those quantities. The pseudocode is

```cpp
bool TestSphereLine ( Sphere sphere, Line line, Velocity W, float tmax )
{
    E = sphere.C - line.P;
    dotDW = Dot(line.D,W);
    dotDD = Dot(line.D,line.D);
    dotWW = Dot(W,W);
    dotWE = Dot(W,E);
    dotDE = Dot(line.D,E);
    dotEE = Dot(E,E);
    ddr2 = dotDD*sphere.r*sphere.r;
    a = dotDD*dotWW - dotDW*dotDW; // = |Cross(line.D,W)|^2 >= 0
    b = dotDD*dotWE - dotDE*dotDW;
    c = dotDD*dotEE - dotDE*dotDE; // = |Cross(line.D,E)|^2 >= 0
    if ( a > 0 )
    {
        t = -b/a;
        if ( t < 0 )
        {
            // minimum occurs at t = 0
            return c <= ddr2;
        }
        else if ( t > tmax )
        {
            // minimum occurs at t = tmax
            return tmax*(a*tmax+2*b)+c <= ddr2;
        }
        else
        {
            // minimum occurs at t
            return t*(a*t+2*b)+c <= ddr2;
        }
    }
    else
    {
        // a = 0, sphere moving parallel to line. Just need to
        // test t = 0
        return c <= ddr2;
    }
}
```
6.2.2 Oriented Boxes

In Section 5.2 it was shown that the three separating axis tests for a line versus a static oriented box are

\[
\begin{align*}
|\vec{U}_0 \cdot \vec{D} \times (\vec{C} - \vec{P})| &> e_1|\vec{D} \cdot \vec{U}_1| + e_3|\vec{D} \cdot \vec{U}_3| \\
|\vec{U}_1 \cdot \vec{D} \times (\vec{C} - \vec{P})| &> e_0|\vec{D} \cdot \vec{U}_1| + e_3|\vec{D} \cdot \vec{U}_3| \\
|\vec{U}_2 \cdot \vec{D} \times (\vec{C} - \vec{P})| &> e_0|\vec{D} \cdot \vec{U}_1| + e_1|\vec{D} \cdot \vec{U}_1|.
\end{align*}
\]

If any of these tests are true, then the line and box do not intersect. For the motion case, \(\vec{C}\) is replaced by \(\vec{C} + t\vec{W}\) for \(t \in [0, t_{\text{max}}]\). Squaring the terms in the inequalities, the three tests are of the form \(Q_i(t) := a_i t^2 + 2b_i t + c_i > d_i\) for \(0 \leq i \leq 2\). The line and box intersect on the given interval if all three tests fail. That is, if there is a time \(T \in [0, t_{\text{max}}]\) for which \(Q_i(T) \leq d_i\) for all \(i\), then an intersection must occur. If \(I_i\) is the interval (possibly empty) for which \(Q_i(t) \leq c_i\), then the line and box must intersect if \(I_0 \cap I_1 \cap I_2 \cap [0, t_{\text{max}}] \neq \emptyset\).

6.2.3 Capsules

The moving capsule is \(\vec{C} + u\vec{E} + t\vec{W}\), where the capsule origin is \(\vec{C}\) and the capsule axis has direction \(\vec{E}\). The parameter domain is \((u, t) \in [0, 1] \times [0, t_{\text{max}}]\). Replacing this in Equation 2.14 leads to a quadratic equation in \(u\) and \(t\) that represents the squared distance,

\[
Q(u, t) = |\vec{u} + \vec{b}t + \vec{y}|^2,
\]

where

\[
\begin{align*}
\vec{u} &= \vec{E} - \frac{\vec{D} \cdot \vec{E}}{\vec{D} \cdot \vec{D}} \\
\vec{b} &= \vec{W} - \frac{\vec{D} \cdot \vec{W}}{\vec{D} \cdot \vec{D}} \\
\vec{y} &= (\vec{C} - \vec{P}) - \frac{\vec{D} \cdot (\vec{C} - \vec{E})}{\vec{D} \cdot \vec{D}} \vec{D}.
\end{align*}
\]

If \(Q(u, t) \leq r^2\) for some \((u, t) \in [0, 1] \times [0, t_{\text{max}}]\), then the line and capsule must intersect during the given time interval. Just as for the line-sphere test, the division can be avoided by multiplying through by \(\vec{D} \cdot \vec{D}\) and comparing the minimum of the modified quadratic to \(r^2 \vec{D} \cdot \vec{D}\). The minimization problem is solved in the same way as for measuring the distance from a point to a rectangle.
6.2.4 LOZENGES

The moving lozenge is \(\vec{C} + u \vec{E_0} + v \vec{E_1} + t \vec{W} \), where the lozenge origin is \(\vec{C} \) and the lozenge edge directions are \(\vec{E_0} \) and \(\vec{E_1} \). The parameter domain is \((u, v, t) \in [0, 1]^2 \times [0, t_{\text{max}}]\). Replacing this in Equation 2.14 leads to a quadratic equation in \(u, v, \) and \(t \) that represents the squared distance,

\[
Q(u, v, t) = |\vec{a}u + \vec{b}v + \vec{c}t + \vec{d}|^2,
\]

where

\[
\vec{a} = \vec{E_0} - \frac{\vec{D} \cdot \vec{E_0}}{\vec{D} \cdot \vec{D}} \vec{D}
\]

\[
\vec{b} = \vec{E_1} - \frac{\vec{D} \cdot \vec{E_1}}{\vec{D} \cdot \vec{D}} \vec{D}
\]

\[
\vec{c} = \vec{W} - \frac{\vec{D} \cdot \vec{W}}{\vec{D} \cdot \vec{D}} \vec{D}
\]

\[
\vec{d} = (\vec{C} - \vec{P}) - \frac{\vec{D} \cdot (\vec{C} - \vec{E})}{\vec{D} \cdot \vec{D}} \vec{D},
\]

If \(Q(u, v, t) \leq r^2 \) for some \((u, v, t) \in [0, 1]^2 \times [0, t_{\text{max}}]\), then the line and lozenge must intersect during the given time interval. Just as for the line-sphere test, the division can be avoided by multiplying through by \(\vec{D} \cdot \vec{D} \) and comparing the minimum of the modified quadratic to \(r^2 \). The minimization problem is solved in the same way as for measuring the distance from a point to an oriented box.

6.2.5 CYLINDERS

Testing for the intersection of a line with a moving cylinder is an extremely complicated and somewhat expensive process. For that reason, cylinders are not recommended for use as bounding volumes. Capsules are a better choice. The algorithm for picking a moving cylinder is not presented here.

6.2.6 ELLIPSOIDS

Given the line \(\vec{P} + s \vec{D} \) and static ellipsoid \((\vec{X} - \vec{C})^T M (\vec{X} - \vec{C}) = 1\), the line intersects the ellipsoid whenever the quadratic equation \(a s^2 - 2bs + c = 0 \) has a real-valued
root; the coefficients are \(a = (\tilde{D}^T M \tilde{D}) \), \(b = 2 \tilde{D}^T M \tilde{\Delta} \) with \(\tilde{\Delta} = \tilde{C} - \tilde{P} \), and \(c = \tilde{\Delta}^T M \tilde{\Delta} - 1 \). The condition for having a real-valued root is \(b^2 - ac \geq 0 \).

For a moving ellipsoid, the center is \(\tilde{C} + t \tilde{W} \) for \(t \in [0, t_{\text{max}}] \). The \(b \) and \(c \) coefficients of the quadratic in \(y \) now become functions of \(t \), \(b = b_0 + b_1 t + b_2 t^2 \) and \(c = c_0 + c_1 t + c_2 t^2 + c_3 t + c_4 \), where \(b_0 = \tilde{D}^T M \tilde{\Delta}, b_1 = \tilde{D}^T M \tilde{W}, b_2 = \tilde{\Delta}^T M \tilde{W}, \) \(c_0 = \tilde{\Delta}^T M \tilde{\Delta} - 1, c_1 = \tilde{\Delta}^T M \tilde{W}, \) and \(c_2 = \tilde{W}^T M \tilde{W} \). The condition for having a real-valued root is

\[
Q(t) = (b_0 + b_1 t + b_2 t^2)^2 - a(c_0 t^2 + c_1 t + c_2) \geq 0.
\]

The minimum of \(Q(t) \) can be computed on \([0, t_{\text{max}}]\) and compared to zero.

6.2.7 Triangles

The moving triangle has vertices \(\tilde{V}_0 + t \tilde{W}, \tilde{V}_1 = \tilde{V}_0 + \tilde{E}_0, \) and \(\tilde{V}_0 + \tilde{E}_2 \). The plane of the triangle at time \(t \) is \(\tilde{N} \cdot (\tilde{X} - \tilde{V}_0) = t \tilde{N} \cdot \tilde{W} \), where \(\tilde{N} = \tilde{E}_0 \times \tilde{E}_1 \). Let the line be \(\tilde{P} + s \tilde{D} \) for \(s \in \mathbb{R} \). If \(\tilde{N} \cdot \tilde{D} \), then the line must intersect each plane regardless of \(t \). In this case the point of intersection occurs when

\[
s = \frac{t \tilde{N} \cdot \tilde{W} + \tilde{N} \cdot (\tilde{V}_0 - \tilde{P})}{\tilde{N} \cdot \tilde{D}}.
\]

The intersection point can be represented as \(\tilde{L}(s) = \tilde{V}_0 + t \tilde{W} + u_0 \tilde{E}_0 + u_1 \tilde{E}_1 \) for some choice of \(u_0 \) and \(u_1 \). Defining \(\bar{Q} = \tilde{L}(s) - \tilde{V}_0 \) and using the same notation as in the intersection test for a line and a static triangle, the coefficients are computed as \(u_0 = (c_1 u_0 - c_0 u_1) / \Delta \) and \(u_1 = (c_0 u_0 - c_1 u_1) / \Delta \). The point is inside the triangle if \(u_0 \geq 0, u_1 \geq 0 \), and \(u_0 + u_1 \leq 1 \).

However, for the moving case, \(u_1 = u_1(t) = (a_1 t + b_1) / \Delta \) for some coefficients \(a_1 \) and \(b_1 \). The test for a point inside a triangle is \(a_0 t + b_0 \geq 0, a_1 t + b_1 \geq 0 \), and \((a_0 + a_1) t + (b_0 + b_1) \leq \Delta \). To show an intersection of a line and a moving triangle, it is enough to show that there is a \(t \in [0, t_{\text{max}}] \) for which these three inequalities are all true. If \(I_0 \) is the set of \(t \) for which \(a_0 t + b_0 \geq 0 \), \(I_1 \) is the set of \(t \) for which \(a_1 t + b_1 \geq 0 \), and \(I_2 \) is the set of \(t \) for which \((a_0 + a_1) t + (b_0 + b_1) \leq \Delta \), then the line and moving triangle intersect whenever \(I_0 \cap I_1 \cap I_2 \cap [0, t_{\text{max}}] \neq \emptyset \).

For the case of \(\tilde{N} \cdot \tilde{D} \), if there is no \(t \in [0, t_{\text{max}}] \) for which the corresponding plane of the triangle contains the line, then there is no intersection. If there is such a \(t \), it is computed and the problem reduces to determining if the line intersects the triangle within that plane, a two-dimensional problem. However, note that the triangle may very well be moving in that plane. The two-dimensional problem itself has a time component, and the algorithm shown earlier for the static case needs to be slightly modified to handle time.
6.3 Intersection of Dynamic Objects and Planes

In the following sections, the plane is stationary and defined by \(\vec{N} \cdot \vec{X} = d \). The other objects are moving with constant linear velocity \(\vec{W} \) over a time interval \(t \in [0, t_{\text{max}}] \). The problem is to determine if the moving object intersects the plane within the specified interval of time. Typically, in a game environment, the objects start out in nonintersecting positions. The algorithms presented here only report an intersection time of \(t = 0 \) when the object and plane are initially intersecting. The intersection set is usually a continuum of points, and the time necessary to calculate the full set is sometimes expensive.

The following sections use notations that were introduced, and formulas that were derived, in Section 4.3. They are not redefined or rederived here.

6.3.1 Spheres

Consider a sphere of radius \(r \) with moving center \(\vec{C}(t) = \vec{C}_0 + t\vec{W} \). The distance between center and plane is \(|\vec{N} \cdot \vec{C}(t) - d| \). If \(|\vec{N} \cdot \vec{C}_0 - d| \leq r \), then the sphere is already intersecting the plane. The first time of contact is \(t = 0 \), and the intersection set is a point (distance is exactly \(r \)) or a circle. If not initially intersecting, then the intersection testing depends on the motion of the sphere relative to the plane. That is, the sign of \(\vec{N} \cdot \vec{W} \) is important. The first time of contact \(T \) of the sphere with the plane is a solution to \(|\vec{N} \cdot \vec{C}(T) - d| = r \),

\[
T = \frac{d - \vec{N} \cdot \vec{C}_0 - \text{sign}(\vec{N} \cdot \vec{C}_0) r}{\vec{N} \cdot \vec{W}} \tag{6.1}
\]

If \(T > 0 \), then the sphere will intersect the plane. If \(T < 0 \), the sphere is moving away from the plane.

In an implementation, the division does not have to be performed first. The numerator and denominator are computed, and if they have different signs, then there is no intersection. If the signs are the same, then there is an intersection and the division is performed to obtain \(T \). The first point of contact, if required by the application, is computed by evaluating \(\vec{C}(T) \). The pseudocode for test intersection is given below. A return value of \text{true} indicates the intersection will occur. In this case the \(T \) value is set to the first time of contact. If no intersection occurs, the return value is \text{false} and the \(T \) parameter is invalid.

```cpp
bool TestSpherePlane (Sphere sphere, Plane plane, Velocity W, float& T) {
    sdist = Dot(plane.N, sphere.C) - plane.d;
    ...
```
if (sdist > sphere.r)
{

dotNW = Dot(plane.N,W);
if (dotNW < 0)
{
 T = (sphere.r - sdist)/dotNW;
 return true;
}
else
{
 return false;
}
}
else if (sdist < -sphere.r)
{

dotNW = Dot(plane.N,W);
if (dotNW > 0)
{
 T = -(sphere.r + sdist)/dotNW;
 return true;
}
else
{
 return false;
}
}
else
{
 T = 0;
 return true;
}
}

An implementation can also provide the maximum time allowed, t_{max}, with the obvious changes to the code to compare T to that time. An implementation for FindSpherePlane will have additional code to compute the first point of contact.

6.3.2 ORIENTED BOXES

Consider an oriented box with center \tilde{C}_0 and fixed coordinate axes \tilde{A}_i and extents a_i for $0 \leq i \leq 2$. The quantity $r = \sum_{i=0}^{2} a_i |\tilde{N} \cdot \tilde{A}_i|$ is the radius of the interval of the projected box onto a normal line to the plane. Computation of the first time of contact T (if any) is identical to that of a sphere versus a plane; see Equation (6.1). The pseudocode is
```c
bool TestBoxPlane (Box box, Plane plane, Velocity W, float& T)
{
    r = box.a0*[Dot(plane.N, box.A0)] +
        box.a1*[Dot(plane.N, box.A1)] +
        box.a2*[Dot(plane.N, box.A2)];

    sdist = Dot(plane.N, box.C) - plane.d;
    if ( sdist > r )
    {
        dotNW = Dot(plane.N, W);
        if ( dotNW < 0 )
        {
            T = (r - sdist)/dotNW;
            return true;
        }
        else
        {
            return false;
        }
    }
    else if ( sdist < -r )
    {
        dotNW = Dot(plane.N, W);
        if ( dotNW > 0 )
        {
            T = -(r + sdist)/dotNW;
            return true;
        }
        else
        {
            return false;
        }
    }
    else
    {
        T = 0;
        return true;
    }
}
```

Determining the first point of contact is more difficult for boxes. If there is a first time of contact, then the intersection set depends on the orientation of \(\overrightarrow{N} \) to the box axes. If \(\overrightarrow{N} \) is aligned with a box axis (it is perpendicular to two box axes), then the intersection set is an entire face of the box. If \(\overrightarrow{N} \) is not aligned with a single
axis, but is perpendicular to one axis, then the intersection set is an entire edge of the box. Otherwise, the intersection set is a vertex of the box. How you implement FindBoxPlane depends on the application’s requirements. Choices on what to return from the function include (1) the entire set of intersection; (2) a representative point in the intersection; or (3) a flag indicating that there are multiple contact points, probably with information about type such as vertex, edge, or face.

6.3.3 Capsules

Consider a capsule whose axis is the line segment \(\bar{P}(t) + s\bar{D} \) for \(s \in [0, 1] \) and where \(\bar{P}(t) = \bar{P}_0 + t\bar{W} \). Define the signed distances \(\delta_0 = \bar{N} \cdot \bar{P}_0 - d \) and \(\delta_1 = \bar{N} \cdot \bar{P}_1 - d \), where \(\bar{P}_0 = \bar{P}_0 + \bar{D} \). If \(\delta_0\delta_1 \leq 0 \), then the capsule is already intersecting the plane. Otherwise, the sign of \(\bar{N} \cdot \bar{D} \) is analyzed to decide which of \(\bar{P}_0 \) and \(\bar{P}_1 \) is closer to the plane. Once that is known, it is enough to apply the intersection testing algorithm between a sphere and a plane. The pseudocode is

```cpp
bool TestCapsulePlane (Capsule capsule, Plane plane, Velocity W, float & T) {
    sd0 = Dot(plane.N, capsule.P) - plane.d;
    sd1 = sd0 + Dot(plane.N, capsule.D);
    if (sd0*sd1 > capsule.r*capule.r) {
        // Both end points of capsule on same side of plane and
        // the capsule is not initially intersecting the plane.
        if (|sd0| <= |sd1|) {
            // P is closer to plane than P+D
            Sphere sphere(capsule.P, capsule.r);
            return TestSpherePlane(sphere, plane, W, T);
        }
        else {
            // P+D is closer to plane than P
            Sphere sphere(capsule.P+capsule.D, capsule.r);
            return TestSpherePlane(sphere, plane, W, T);
        }
    }
    // capsule already intersecting plane
    T = 0;
    return true;
}
```
An implementation should inline the sphere-plane tests since the signed distances to \(\vec{P}_0 \) and \(\vec{P}_1 \) have already been computed, yet \(\text{TestSpherePlane} \) computes them again. An implementation for \(\text{FindCapsulePlane} \) must deal with the fact that the intersection set at first contact time is either a point or, if \(\vec{N} \cdot \vec{D} = 0 \), a line segment.

6.3.4 Lozenges

Source Code

```c
bool TestLozengePlane (Lozenge lozenge, Plane plane, Velocity W, float& T) {
    r2 = lozenge.r*lozenge.r;
    sd00 = Dot(plane.N,lozenge.P) - plane.d;
    sd10 = sd00 + Dot(plane.N,lozenge.E0);
    if (sd00*sd10 > r2) {
        // P00 and P10 on same side of plane and the capsule
        // connecting them is not intersecting the plane.
        dotN1 = Dot(plane.N,lozenge.E1);
        sd01 = sd00 + dotN1;
        if (sd00*sd01 > r2) {
            // P00 and P01 on same side of plane and the capsule
            // connecting them is not intersecting the plane.
            sd11 = sd10 + dotN1;
            if (sd11*sd10 > r2) {
                // All rectangle corners on same side of plane and the
                // lozenge containing them is not intersecting the plane.
                if (sd00 <= sd10) {
                    if (sd00 <= sd01) {
                        // P00 closest to plane
                        Sphere sphere(lozenge.P,lozenge.r);
                    }
                }
            }
        }
    }
}
```
return TestSpherePlane(sphere, plane, W, T);
}
else
{
 // P01 closest to plane
 Sphere sphere(lozenge.P + lozenge.E1, lozenge.r);
 return TestSpherePlane(sphere, plane, W, T);
}
}
else
{
 if (|sd10| <= |sd11|)
 {
 // P10 closest to plane
 Sphere sphere(lozenge.P + lozenge.E0, lozenge.r);
 return TestSpherePlane(sphere, plane, W, T);
 }
 else
 {
 // P11 closest to plane
 Sphere sphere(lozenge.P + lozenge.E0 + lozenge.E1, lozenge.r);
 return TestSpherePlane(sphere, plane, W, T);
 }
}
}

// lozenge already intersecting plane
T = 0;
return true;

An implementation should inline the sphere-plane tests since the signed distances to \(P_j \) have already been computed, yet \(\text{TestSpherePlane} \) computes them again. An implementation for \(\text{FindLozengePlane} \) must deal with the fact that the intersection set at first contact time is either a point, a line segment, or a rectangle.

6.3.5 Cylinders

This algorithm is similar to the one discussed for the culling of cylinders. If \(\delta_0 \) and \(\delta_1 \) are the signed distances for the end points, then the four important cases are where
both are positive (two cases based on order of the distances) or both are negative (again
two cases). The pseudocode is

```c
bool TestCylinderPlane (Cylinder cylinder, Plane plane,
                       Velocity W, float & T)
{
    dotND = Dot(plane.N, capsule.D);
    sd0 = Dot(plane.N, capsule.P) - plane.d;
    sd1 = sd0 + dotND;
    if (sd0*sd1 > 0 )
    {
        // both end points of cylinder on same side of plane
        lenD = Length(cylinder.D);
        lenNxD = Length(Cross(plane.N, cylinder.D));
        ratio = lenNxD/lenD;
        if (sd0 > 0 )
        {
            if (sd0 <= sd1 )
            {
                // P is closest to plane
                sdq = sd0 - cylinder.r*ratio;
            }
            else
            {
                // P+D is closest to plane
                sdq = sd1 - cylinder.r*ratio;
            }
        }
        if (sdq > 0 )
        {
            // cylinder not initially intersecting plane
            dotNW = Dot(plane.N, W);
            if (dotNW < 0 )
            {
                // cylinder moving towards plane
                T = -sdq/dotNW;
                return true;
            }
            else
            {
                // cylinder moving away from plane
                return false;
            }
        }
    }
}
```


Here is where the first snag with cylinders shows up. In order to find the first time of contact, a square root must be taken, an expensive operation. Even if the length of \vec{D} is precomputed and stored with the cylinder, the length of $\vec{N} \times \vec{D}$ must be computed at run time. For this reason, capsules are better bounding volumes to use than cylinders.
6.3.6 ELLIPSOIDS

The algorithm for ellipsoids is similar to that for spheres and oriented boxes. One
difference is in the computation of the radius of the interval of projection; here the
square root is avoided. The pseudocode is

```cpp
bool TestEllipsoidPlane (Ellipsoid ellipsoid, Plane plane, Velocity W, float& T)
{
    sdist = Dot(plane.N,sphere.C) - plane.d;
    if ( sdist > 0 )
    {
        r2 = Dot(plane.N,ellipsoid.Minverse*plane.N);
        if ( sdist*sdist > r2 )
        {
            dotNW = Dot(plane.N,W);
            if ( dotNW < 0 )
            {
                // ellipsoid moving toward plane
                r = sqrt(r2);
                T = (r - sdist)/dotNW;
                return true;
            }
            else
            {
                // ellipsoid moving away from plane
                return false;
            }
        }
    }
    else if ( sdist < 0 )
    {
        r2 = Dot(plane.N,ellipsoid.Minverse*plane.N);
        if ( sdist*sdist > r2 )
        {
            dotNW = Dot(plane.N,W);
            if ( dotNW > 0 )
            {
                // ellipsoid moving toward plane
                r = sqrt(r2);
                T = -(r + sdist)/dotNW;
                return true;
            }
        }
    }
}```
else
{
  // ellipsoid moving away from plane
  return false;
}
}

T = 0;
return true;

6.3.7 Triangles

Let the three vertices be \( \vec{V}_i \) and three signed distances be \( \delta_i = \vec{N} \cdot \vec{V}_i - d \) for \( 0 \leq i \leq 2 \).

If the signed distances are not all positive or not all negative, the triangle is already intersecting the plane. Otherwise, the closest vertex to the plane is determined and an intersection test is applied to it. The pseudocode is

```cpp
bool TestTrianglePlane (Triangle triangle, Plane plane,
 Velocity W, float& T)
{
 sd0 = Dot(plane.N,triangle.V0);
 if (sd0 > 0)
 {
 sd1 = Dot(plane.N,triangle.V1);
 if (sd1 > 0)
 {
 sd2 = Dot(plane.N,triangle.V2);
 if (sd2 > 0)
 {
 // vertices all on same side of plane
 GetMinimumDistanceAndVertex(sdMin,VMin);
 dotNW = Dot(plane.N,W);
 if (dotNW < 0)
 {
 // triangle moving toward plane
 T = -sdMin/dotNW;
 return true;
 }
 else
 {
 // triangle moving away from plane
```
return false;
}
}
}
}

else if ( sd0 < 0 )
{
  sdl = Dot(plane.N,triangle.V1);
  if ( sdl < 0 )
  {
    sd2 = Dot(plane.N,triangle.V2);
    if ( sd2 < 0 )
    {
      // vertices all on same side of plane
      GetMinimumDistanceAndVertex(sdMin,VMin);
      dotNW = Dot(plane.N,W);
      if ( dotNW < 0 )
      {
        // triangle moving toward plane
        T = -sdMin/dotNW;
        return true;
      }
      else
      {
        // triangle moving away from plane
        return false;
      }
    }
  }
}

// triangle already intersecting plane
T = 0;
return true;
}

The function GetMinimumDistanceAndVertex finds the minimum value of [δ₀, δ₁, δ₂] and the corresponding vertex.

6.4 Static Object-Object Intersection

The algorithms in this section determine if two of the same type or stationary objects intersect, but it is also possible to develop intersection testing algorithms for mixed
Table 6.1 Relationship between sphere-swept volumes and distance calculators (pnt, point; seg, line segment; rct, rectangle).

<table>
<thead>
<tr>
<th></th>
<th>Sphere</th>
<th>Capsule</th>
<th>Lozenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>dist(pnt,pnt)</td>
<td>dist(pnt,seg)</td>
<td>dist(pnt,rct)</td>
</tr>
<tr>
<td>Capsule</td>
<td>dist(seg,pnt)</td>
<td>dist(seg,seg)</td>
<td>dist(seg,rct)</td>
</tr>
<tr>
<td>Lozenge</td>
<td>dist(rct,pnt)</td>
<td>dist(rct,seg)</td>
<td>dist(rct,rct)</td>
</tr>
</tbody>
</table>

types. In the case of spheres, capsules, and lozenges, this is not a difficult process, and the details are presented here. For a case such as an oriented box and an ellipsoid, the details are sufficiently complex and beyond what was intended for the scope of this book. When analyzing intersections between objects there is a difference between treating the objects as three-dimensional solids and treating them as two-dimensional shells. The testing here assumes that the objects are solids since that is the natural setting for bounding volumes. Finally, the return value of any “test” pseudocode functions is true if there is an intersection, false otherwise.

The objects for which intersection testing is relatively inexpensive are considered here and include spheres, capsules, lozenges, oriented boxes, and triangles. Testing for the intersection of two ellipsoids can be solved by a constrained minimization that leads to three polynomial equations in three unknowns. The methods in Wee and Goldman (1995a, 1995b) can be used to solve the system, but they are too expensive for a real-time application on current hardware. Testing for the intersection of two cylinders requires a lot of special-case handling based on how the cylinders are oriented with respect to each other and is also too expensive for real time.

6.4.1 SPHERES, CAPSULES, AND LOZENGES

Spheres, capsules, and lozenges are examples of sphere-swept volumes. Intersection testing between pairs of objects is equivalent to measuring distances between the medial structures and comparing to the sum of the radii. Table 6.1 shows the relationship between the volumes and the corresponding distance calculators.

The pseudocode for the six distinct cases is

```c
bool TestSphereSphere (Sphere sphere0, Sphere sphere1)
{
 diff = sphere0.C - sphere1.C;
 rsum = sphere0.r + sphere1.r;
 return Dot(diff, diff) <= rsum*rsum;
}
```
6.4 Static Object-Object Intersection

bool TestSphereCapsule (Sphere sphere, Capsule capsule)
{
    rsum = sphere.r + capsule.r;
    Segment seg(capsule.P,capsule.D);
    return SquaredDistancePointSegment(sphere.C,seg) <= rsum*rsum;
}

bool TestSphereLozenge (Sphere sphere, Lozenge lozenge)
{
    rsum = sphere.r + lozenge.r;
    Rectangle rct(lozenge.P,lozenge.E0,lozenge.E1);
    return SquaredDistancePointRectangle(sphere.C,rct) <= rsum*rsum;
}

bool TestCapsuleCapsule (Capsule capsule0, Capsule capsule1)
{
    rsum = capsule0.r + capsule1.r;
    Segment seg0(capsule0.P,capsule0.D);
    Segment seg1(capsule1.P,capsule1.D);
    return SquaredDistanceSegmentSegment(seg0,seg1) <= rsum*rsum;
}

bool TestCapsuleLozenge (Capsule capsule, Lozenge lozenge)
{
    rsum = capsule.r + lozenge.r;
    Segment seg(capsule.P,capsule.D);
    Rectangle rct(lozenge.P,lozenge.E0,lozenge.E1);
    return SquaredDistanceSegmentRectangle(seg,rct) <= rsum*rsum;
}

bool TestLozengeLozenge (Lozenge lozenge0, Lozenge lozenge1)
{
    rsum = lozenge0.r + lozenge1.r;
    Rectangle rect0(lozenge0.P,lozenge0.E0,lozenge0.E1);
    Rectangle rect1(lozenge1.P,lozenge1.E0,lozenge1.E1);
    return SquaredDistanceRectangleRectangle(rect0,rect1) <= rsum*rsum;
}

The functions for computing the various distances can be found in Chapter 2.

6.4.2 ORIENTED BOXES

The method of separating axes is used to determine whether or not two boxes intersect. Let the first box have center $\tilde{C}_0$, axes $\tilde{A}_0$, $\tilde{A}_1$, $\tilde{A}_2$, and extents $a_0$, $a_1$, $a_2$. Let the second
Box have center $\bar{C}_1$, axes $\bar{B}_0$, $\bar{B}_1$, $\bar{B}_2$, and extents $b_0$, $b_1$, $b_2$. The potential separating axes are of the form $\bar{C}_0 + s\bar{L}$, where $\bar{L}$ is one of $\bar{A}_i$, $\bar{B}_j$, or $\bar{A}_i \times \bar{B}_j$ for $0 \leq i \leq 2$ and $0 \leq j \leq 2$.

The projections of the vertices of the first box onto the line $\bar{C}_0 + s\bar{L}$ relative to origin $\bar{C}_0$ are

$$\sum_{i=0}^{2} \sigma_i a_i \frac{\bar{L} \cdot \bar{A}_i}{\bar{L} \cdot \bar{L}}.$$  

The interval of projection is $[-r_0, r_0]$ and contains all the vertex projections. The radius is obtained by making the summation as large as possible by choosing $\sigma_i$ to be the sign of $\bar{L} \cdot \bar{A}_i$. Thus,

$$r_0 = \sum_{i=0}^{2} a_i \frac{|\bar{L} \cdot \bar{A}_i|}{\bar{L} \cdot \bar{L}}.$$  

The projections of the vertices of the second box onto the same line are

$$\frac{\bar{L} \cdot \bar{D}}{\bar{L} \cdot \bar{L}} + \sum_{i=0}^{2} \sigma_i b_i \frac{\bar{L} \cdot \bar{B}_i}{\bar{L} \cdot \bar{L}},$$  

where $\bar{D} = \bar{C}_1 - \bar{C}_0$. The interval of projection is $[r - r_1, r + r_1]$, where

$$r_1 = \sum_{i=0}^{2} b_i \frac{|\bar{L} \cdot \bar{B}_i|}{\bar{L} \cdot \bar{L}}$$  

and

$$r = \frac{\bar{L} \cdot \bar{D}}{\bar{L} \cdot \bar{L}}.$$  

The two projected intervals do not intersect whenever the distance between interval centers is larger than the sum of the radii of the intervals: $|r| > r_0 + r_1$. Each of the quantities involved has in its denominator $\bar{L} \cdot \bar{L}$. The division is therefore not necessary. Define $R = |r|\bar{L} \cdot \bar{L}$, $R_0 = r_0 \bar{L} \cdot \bar{L}$, and $R_1 = r_1 \bar{L} \cdot \bar{L}$. The nonintersection test is

$$|\bar{L} \cdot \bar{D}| = R > R_0 + R_1 = \sum_{i=0}^{2} a_i |\bar{L} \cdot \bar{A}_i| + \sum_{i=0}^{2} b_i |\bar{L} \cdot \bar{B}_i|.$$  

That is, the line with direction $\bar{L}$ is a separating axis if $R > R_0 + R_1$. 


The axes of the second box can be written as combinations of axes of the first,
\[
\vec{B}_i = c_{i0} \vec{A}_0 + c_{i1} \vec{A}_1 + c_{i2} \vec{A}_2
\]
for \(0 \leq i \leq 2\). Let A be the matrix whose columns are the \(\vec{A}_i\), let B be the matrix whose columns are the \(\vec{B}_i\), and let C be the matrix whose entries are \(c_{ij}\); then \(B = AC\), in which case \(C = A^T B\). The components of \(C\) are just \(c_{ij} = \vec{A}_i \cdot \vec{B}_j\). Similarly, the axes of the first box can be written as linear combinations of axes of the second box,
\[
\vec{A}_i = c_{i0} \vec{B}_0 + c_{i1} \vec{B}_1 + c_{i2} \vec{B}_2
\]
for \(0 \leq i \leq 2\). These relationships allow computation of the various dot products between the separating axis directions and the box axes in terms of the \(c_{ij}\) and \(|c_{ij}|\). In particular, the nonintersection tests involve various triple scalar products involving the box axes:
\[
\vec{A}_{i0} \cdot (\vec{A}_{i1} \times \vec{B}_j) = \text{sign}(i_0, i_1) c_{ij}, \quad \text{and} \quad \vec{B}_{j0} \cdot (\vec{A}_{i1} \times \vec{B}_j) = \text{sign}(j_0, j_0) c_{ij}, \tag{6.2}
\]
where \(\text{sign}(0, 1) = \text{sign}(1, 2) = \text{sign}(2, 0) = +1\) and \(\text{sign}(1, 0) = \text{sign}(2, 1) = \text{sign}(0, 2) = -1\). For two boxes there are 15 potential separating axes, which include 6 box axes (3 per box) and 9 axes obtained as cross products of box axes, one chosen from each box. Table 6.2 summarizes the quantities that must be computed for the separating axes tests.

Testing for intersection amounts to processing each axis of the 15 potential separating axes. If a separating axis is found, the remaining ones of course are not processed. The various entries \(c_{ij}\) and \(|c_{ij}|\) are computed only when needed, avoiding unnecessary calculations in the event that a separating axis is found quickly and some of the \(c_{ij}\) do not need to be computed. The basic separating axis test involves computing \(R_0, R_1\), and \(R\) and then testing for nonintersection by comparing \(R > R_0 + R_1\).

### 6.4.3 Oriented Boxes and Triangles

Let the triangle have vertices \(\vec{U}_i\) for \(0 \leq i \leq 2\). The edges of the triangle are \(\vec{E}_0 = \vec{U}_1 - \vec{U}_0\), \(\vec{E}_1 = \vec{U}_2 - \vec{U}_0\), and \(\vec{E}_2 = \vec{E}_1 - \vec{E}_0\). A normal for the triangle is \(\vec{N} = \vec{E}_0 \times \vec{E}_1\) and is not necessarily unit length. The triangle and its interior are given by
\[
\left\{ \vec{U}_0 + s \vec{E}_0 + t \vec{E}_1 : 0 \leq s \leq 1, \ 0 \leq t \leq 1, \ s + t \leq 1 \right\}.
\]

Let the box have center \(\vec{C}\), axes \(\vec{A}_i\), and extents \(a_i\) for \(0 \leq i \leq 2\). Define \(\vec{D} = \vec{U}_0 - \vec{C}\). The potential separating axes are of the form \(\vec{C} + s \vec{L}\), where \(\vec{L}\) is one of \(\vec{N}\), \(\vec{A}_i\), or \(\vec{A}_i \times \vec{E}_j\) for \(0 \leq i \leq 2\) and \(0 \leq j \leq 2\).
Table 6.2 Values for $R$, $R_0$, and $R_1$ for the separating axis tests.

<table>
<thead>
<tr>
<th>$\tilde{L}$</th>
<th>$R_0$</th>
<th>$R_1$</th>
<th>$R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{A}_0$</td>
<td>$a_0$</td>
<td>$b_0[c_{00}] + b_1[c_{01}] + b_2[c_{02}]$</td>
<td>$[\tilde{A}_0 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_1$</td>
<td>$a_1$</td>
<td>$b_0[c_{10}] + b_1[c_{11}] + b_2[c_{12}]$</td>
<td>$[\tilde{A}_1 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_2$</td>
<td>$a_2$</td>
<td>$b_0[c_{20}] + b_1[c_{21}] + b_2[c_{22}]$</td>
<td>$[\tilde{A}_2 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{B}_0$</td>
<td>$a_0[c_{00}] + a_1[c_{10}] + a_2[c_{20}]$</td>
<td>$b_0$</td>
<td>$[\tilde{B}_0 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{B}_1$</td>
<td>$a_0[c_{01}] + a_1[c_{11}] + a_2[c_{21}]$</td>
<td>$b_1$</td>
<td>$[\tilde{B}_1 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{B}_2$</td>
<td>$a_0[c_{02}] + a_1[c_{12}] + a_2[c_{22}]$</td>
<td>$b_2$</td>
<td>$[\tilde{B}_2 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_0 \times \tilde{B}_0$</td>
<td>$a_1[c_{20}] + a_2[c_{10}]$</td>
<td>$b_1[c_{02}] + b_2[c_{01}]$</td>
<td>$[c_{10} \tilde{A}<em>2 \cdot \tilde{D} - c</em>{20} \tilde{A}_1 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_0 \times \tilde{B}_1$</td>
<td>$a_1[c_{21}] + a_2[c_{11}]$</td>
<td>$b_0[c_{02}] + b_2[c_{00}]$</td>
<td>$[c_{11} \tilde{A}<em>2 \cdot \tilde{D} - c</em>{21} \tilde{A}_1 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_0 \times \tilde{B}_2$</td>
<td>$a_1[c_{22}] + a_2[c_{12}]$</td>
<td>$b_0[c_{01}] + b_1[c_{00}]$</td>
<td>$[c_{12} \tilde{A}<em>2 \cdot \tilde{D} - c</em>{22} \tilde{A}_1 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_1 \times \tilde{B}_0$</td>
<td>$a_0[c_{20}] + a_2[c_{00}]$</td>
<td>$b_1[c_{12}] + b_2[c_{11}]$</td>
<td>$[c_{20} \tilde{A}<em>0 \cdot \tilde{D} - c</em>{00} \tilde{A}_2 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_1 \times \tilde{B}_1$</td>
<td>$a_0[c_{21}] + a_2[c_{01}]$</td>
<td>$b_0[c_{12}] + b_2[c_{10}]$</td>
<td>$[c_{21} \tilde{A}<em>0 \cdot \tilde{D} - c</em>{01} \tilde{A}_2 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_1 \times \tilde{B}_2$</td>
<td>$a_0[c_{22}] + a_2[c_{02}]$</td>
<td>$b_0[c_{11}] + b_1[c_{10}]$</td>
<td>$[c_{22} \tilde{A}<em>0 \cdot \tilde{D} - c</em>{02} \tilde{A}_1 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_2 \times \tilde{B}_0$</td>
<td>$a_0[c_{10}] + a_1[c_{00}]$</td>
<td>$b_2[c_{12}] + b_1[c_{11}]$</td>
<td>$[c_{00} \tilde{A}<em>0 \cdot \tilde{D} - c</em>{10} \tilde{A}_2 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_2 \times \tilde{B}_1$</td>
<td>$a_0[c_{11}] + a_1[c_{01}]$</td>
<td>$b_2[c_{12}] + b_0[c_{10}]$</td>
<td>$[c_{01} \tilde{A}<em>1 \cdot \tilde{D} - c</em>{11} \tilde{A}_0 \cdot \tilde{D}]$</td>
</tr>
<tr>
<td>$\tilde{A}_2 \times \tilde{B}_2$</td>
<td>$a_0[c_{12}] + a_1[c_{02}]$</td>
<td>$b_2[c_{11}] + b_1[c_{10}]$</td>
<td>$[c_{02} \tilde{A}<em>1 \cdot \tilde{D} - c</em>{12} \tilde{A}_0 \cdot \tilde{D}]$</td>
</tr>
</tbody>
</table>

The interval of projection for the box is $[-r, r]$, where

$$r = \sum_{i=0}^{2} a_i \frac{|\tilde{L} \cdot \tilde{A}_i|}{\tilde{L} \cdot \tilde{L}}.$$

The projections of the triangle's vertices relative to the line origin are

$$\frac{\tilde{L} \cdot (\tilde{U}_i - \tilde{C})}{\tilde{L} \cdot \tilde{L}}$$

for $0 \leq i \leq 2$. The projection of the triangle does not have a natural center or radius as does the box. Nonintersection now amounts to showing that the minimal interval containing the three projected triangle vertices is separated from the projected box interval. As before, the division by $\tilde{L} \cdot \tilde{L}$ is not necessary. Define $R = r \tilde{L} \cdot \tilde{L}$ and $p_i = \tilde{L} \cdot (\tilde{U}_i - \tilde{C})$ for $0 \leq i \leq 2$. Note that $p_0 = \tilde{L} \cdot (\tilde{U}_0 - \tilde{C}) = \tilde{L} \cdot \tilde{D}$, $p_1 = \tilde{L} \cdot (\tilde{U}_1 - \tilde{C}) = \tilde{L} \cdot (\tilde{D} + \tilde{E}_0) = p_0 + \tilde{L} \cdot \tilde{E}_0$, and $p_2 = \tilde{L} \cdot (\tilde{U}_2 - \tilde{C}) = \tilde{L} \cdot (\tilde{D} + \tilde{E}_1) = p_0 + \tilde{L} \cdot \tilde{E}_1$. Table 6.3 summarizes the quantities that must be computed for the separating axis tests.
Table 6.3 Values for $R$, $p_0$, $p_1$, and $p_2$ for the separating axis tests.

<table>
<thead>
<tr>
<th>$\tilde{L}$</th>
<th>$\tilde{N}$</th>
<th>$p_0$</th>
<th>$p_1$</th>
<th>$p_2$</th>
<th>$R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{N}$</td>
<td>$\tilde{N} \cdot \tilde{D}$</td>
<td>$p_0$</td>
<td>$p_0$</td>
<td>$a_0</td>
<td>\tilde{N} \cdot \tilde{A}_0</td>
</tr>
<tr>
<td>$\tilde{A}_0$</td>
<td>$\tilde{A}_0 \cdot \tilde{D}$</td>
<td>$p_0 + \tilde{A}_0 \cdot \tilde{E}_0$</td>
<td>$p_0 + \tilde{A}_0 \cdot \tilde{E}_1$</td>
<td>$a_0$</td>
<td></td>
</tr>
<tr>
<td>$\tilde{A}_1$</td>
<td>$\tilde{A}_1 \cdot \tilde{D}$</td>
<td>$p_0 + \tilde{A}_1 \cdot \tilde{E}_0$</td>
<td>$p_0 + \tilde{A}_1 \cdot \tilde{E}_1$</td>
<td>$a_1$</td>
<td></td>
</tr>
<tr>
<td>$\tilde{A}_2$</td>
<td>$\tilde{A}_2 \cdot \tilde{D}$</td>
<td>$p_0 + \tilde{A}_2 \cdot \tilde{E}_0$</td>
<td>$p_0 + \tilde{A}_2 \cdot \tilde{E}_1$</td>
<td>$a_2$</td>
<td></td>
</tr>
<tr>
<td>$\tilde{A}_3 \times \tilde{E}_0$</td>
<td>$\tilde{A}_3 \times \tilde{E}_0 \cdot \tilde{D}$</td>
<td>$p_0$</td>
<td>$p_0 + \tilde{A}_3 \cdot \tilde{N}$</td>
<td>$a_1</td>
<td>\tilde{A}_2 \cdot \tilde{E}_0</td>
</tr>
<tr>
<td>$\tilde{A}_3 \times \tilde{E}_1$</td>
<td>$\tilde{A}_3 \times \tilde{E}_1 \cdot \tilde{D}$</td>
<td>$p_0 - \tilde{A}_3 \cdot \tilde{N}$</td>
<td>$p_0$</td>
<td>$a_1</td>
<td>\tilde{A}_2 \cdot \tilde{E}_1</td>
</tr>
<tr>
<td>$\tilde{A}_3 \times \tilde{E}_2$</td>
<td>$\tilde{A}_3 \times \tilde{E}_2 \cdot \tilde{D}$</td>
<td>$p_0 - \tilde{A}_3 \cdot \tilde{N}$</td>
<td>$p_0 - \tilde{A}_3 \cdot \tilde{N}$</td>
<td>$a_1</td>
<td>\tilde{A}_2 \cdot \tilde{E}_2</td>
</tr>
<tr>
<td>$\tilde{A}_4 \times \tilde{E}_0$</td>
<td>$\tilde{A}_4 \times \tilde{E}_0 \cdot \tilde{D}$</td>
<td>$p_0$</td>
<td>$p_0 + \tilde{A}_4 \cdot \tilde{N}$</td>
<td>$a_0</td>
<td>\tilde{A}_2 \cdot \tilde{E}_0</td>
</tr>
<tr>
<td>$\tilde{A}_4 \times \tilde{E}_1$</td>
<td>$\tilde{A}_4 \times \tilde{E}_1 \cdot \tilde{D}$</td>
<td>$p_0 - \tilde{A}_4 \cdot \tilde{N}$</td>
<td>$p_0$</td>
<td>$a_0</td>
<td>\tilde{A}_2 \cdot \tilde{E}_1</td>
</tr>
<tr>
<td>$\tilde{A}_4 \times \tilde{E}_2$</td>
<td>$\tilde{A}_4 \times \tilde{E}_2 \cdot \tilde{D}$</td>
<td>$p_0 - \tilde{A}_4 \cdot \tilde{N}$</td>
<td>$p_0 - \tilde{A}_4 \cdot \tilde{N}$</td>
<td>$a_0</td>
<td>\tilde{A}_2 \cdot \tilde{E}_2</td>
</tr>
</tbody>
</table>

For axis direction $\tilde{N}$, the projected triangle vertices are identical, so the nonintersection test amounts to showing $\tilde{N} \cdot \tilde{D}$ is not in the interval $[-R, R]$. For axis directions $\tilde{A}_1$, the projected triangle vertices may all be distinct. For axis directions $\tilde{A}_2 \times \tilde{E}_1$, at most two of the projected vertices are distinct. If the triangle interval is $[\min(p_0, p_1, p_2), \max(p_0, p_1, p_2)]$ and the box interval is $[-R, R]$, then the triangle and box do not intersect whenever $\min(p_0, p_1, p_2) > R$ or $\max(p_0, p_1, p_2) < -R$.

Testing for intersection amounts to processing each axis of the 13 potential separating axes. If a separating axis is found, the remaining ones are not processed. Any quantities that are needed multiple times are calculated only once and only when needed. Pseudocode that shows how to minimize the calculations is given below for each type of axis test.

**Axis $\tilde{N}$**

The nonintersection test is $|\tilde{N} \cdot \tilde{D}| > R$. The pseudocode for testing if $p$ is not in $[-R, R]$ is

```plaintext
if (|p| > R)
 return no_intersection;
```
Axes \( \vec{A}_k \)

The nonintersection test is \( \min(p_0, p_1, p_2) > R \) or \( \max(p_0, p_1, p_2) < -R \). The pseudocode is

```c
if (p0 > R)
{
 if (p1 > R and p2 > R)
 return no_intersection;
}
else if (p0 < -R)
{
 if (p1 < -R and p2 < -R)
 return no_intersection;
}
```

Axes \( \vec{A}_j \times \vec{E}_j \)

The triangle projects to at most two values \( u_0 \) and \( u_1 \). The nonintersection test is \( \min(u_0, u_1) > R \) or \( \max(u_0, u_1) < -R \). The pseudocode is

```c
if ((u0 > R and u1 > R) or (u0 < -R and u1 < -R))
 return no_intersection;
```

### 6.4.4 Triangles

Two fast tests for the intersection of triangles are the interval overlap test (Möller 1997) and an algorithm in the ERIT package (Held 1997). The underlying idea is effectively the same for both methods. If the two triangles intersect, the set of intersection must occur on the line of intersection of the two planes containing the triangles, and it must be an interval. Each method attempts to find that interval in its own way. Both methods are discussed in detail in Möller and Haines (1999). The method presented here uses separating axes. This approach easily extends to the case of moving triangles; the interval overlap test and the ERIT algorithm do not have a simple extension.

Let the first triangle have vertices \( \vec{A}_0, \vec{A}_1, \vec{A}_2 \), edges \( \vec{E}_0 = \vec{A}_1 - \vec{A}_0, \vec{E}_1 = \vec{A}_2 - \vec{A}_0, \vec{E}_2 = \vec{E}_1 - \vec{E}_0 \), and normal \( \vec{N} = \vec{E}_0 \times \vec{E}_1 \) (not necessarily unit length). Let the second triangle have vertices \( \vec{B}_0, \vec{B}_1, \vec{B}_2 \), edges \( \vec{F}_0 = \vec{B}_1 - \vec{B}_0, \vec{F}_1 = \vec{B}_2 - \vec{B}_0, \vec{F}_2 = \vec{F}_1 - \vec{F}_0 \), and normal \( \vec{M} = \vec{F}_0 \times \vec{F}_1 \) (not necessarily unit length). Define \( \vec{D} = \vec{B}_0 - \vec{A}_0 \).

Triangles in three dimensions present an interesting problem for nonintersection by the separating axis approach. The set of potential separating axes depends on whether or not the triangles are parallel. If the two triangles are parallel but not
coplanar, then the triangle normals will provide separating axes. However, if the
triangles are non-coplanar, then neither normal provides a separating axis. Moreover, cross
Table 11.1 Values for \( r_{\min} \) and \( r_{\max} \) based on eye point location.

<table>
<thead>
<tr>
<th>Region</th>
<th>( r_{\min}^2 )</th>
<th>( r_{\max}^2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( E_x \leq x_{\min} \cap y_{\max} \leq E_y )</td>
<td>( dx_0^2 + dy_1^2 )</td>
<td>( dx_1^2 + dy_0^2 )</td>
</tr>
<tr>
<td>( E_x \leq x_{\min} \cap y_{\min} \leq E_y \leq y_{\max} )</td>
<td>( dx_0^2 )</td>
<td>( dx_1^2 + \max{dy_0^2, dy_1^2} )</td>
</tr>
<tr>
<td>( E_x \leq x_{\min} \cap E_x \leq y_{\min} )</td>
<td>( dx_0^2 + dy_0^2 )</td>
<td>( dx_1^2 + dy_1^2 )</td>
</tr>
<tr>
<td>( x_{\min} \leq E_x \leq x_{\max} \cap y_{\max} \leq E_y )</td>
<td>( dy_1^2 )</td>
<td>( \max{dx_0^2, dx_1^2} + dy_0^2 )</td>
</tr>
<tr>
<td>( x_{\min} \leq E_x \leq x_{\max} \cap y_{\min} \leq E_y \leq y_{\max} )</td>
<td>0</td>
<td>( \max{dx_0^2, dx_1^2} + dy_1^2 )</td>
</tr>
<tr>
<td>( x_{\min} \leq E_x \leq x_{\max} \cap E_x \leq y_{\min} )</td>
<td>( dy_0^2 )</td>
<td>( \max{dx_0^2, dx_1^2} + dy_1^2 )</td>
</tr>
<tr>
<td>( x_{\max} \leq E_x \cap y_{\min} \leq E_y \leq y_{\max} )</td>
<td>( dx_1^2 + dy_1^2 )</td>
<td>( dx_0^2 + dy_0^2 )</td>
</tr>
<tr>
<td>( x_{\max} \leq E_x \cap E_x \leq y_{\min} )</td>
<td>( dx_1^2 + dy_0^2 )</td>
<td>( dx_0^2 + \max{dy_0^2, dy_1^2} )</td>
</tr>
<tr>
<td>( x_{\max} \leq E_x \cap E_x \leq y_{\min} )</td>
<td>( dx_1^2 + dy_0^2 )</td>
<td>( dx_0^2 + \max{dy_0^2, dy_1^2} )</td>
</tr>
</tbody>
</table>

To make \( F(\tilde{A}) \) as small as possible, it is clear that for a given \((\Delta_x, \Delta_y)\), \( \Delta_z^2 \) should be made as large as possible:

\[
\Delta_z^2 = \max\{(z_{\min} - E_z)^2, (z_{\max} - E_z)^2\}.
\]

As before, \( F \) is treated as a function of \( r \), \( F(r) = r/(r^2 + h_{\max}^2) \), where \( h_{\max} \) is the fixed value of \( \Delta_z \) given in the displayed equation. The minimum of \( F \) on \([r_{\min}, r_{\max}]\) is

\[
F_{\min}(\tilde{E}) = \min\left\{ \frac{r_{\min}}{r_{\min}^2 + h_{\max}^2}, \frac{r_{\max}}{r_{\max}^2 + h_{\max}^2} \right\}.
\]

Finally, \( r_{\min}^2 \) and \( r_{\max}^2 \) are computed in the following way. Let \( dx_0 = |x_{\min} - E_x|, dx_1 = |x_{\max} - E_x|, dy_0 = |y_{\min} - E_y|, \) and \( dy_1 = |y_{\max} - E_y| \). The values are specified in Table 11.1.

11.3.2 Close Terrain Assumption

In Inequality (11.2), define \( F(\tilde{\mathbf{V}} - \tilde{E}) \) by \( F(\tilde{\mathbf{V}} - \tilde{E}) = F(\tilde{A}) = 1/(D_0 + \Delta_x + D_0 + \Delta_y) \). The inequality is rewritten as \( L_x(\tilde{\mathbf{V}}) = \lambda L_{\text{sw}}(\tilde{\mathbf{V}}) F(\tilde{\mathbf{V}} - \tilde{E}) \leq \tau \) for \( V \in B \). The same construction that was used for the distant terrain assumption can be applied here, but
for the current function $F$. The conditions in Equations (11.4) and (11.5) apply. The problem now is to compute $F_{\text{min}}(\bar{E})$ and $F_{\text{max}}(\bar{E})$. Note that

$$F_{\text{min}}(\bar{E}) = \min_{v \in B} \frac{1}{|D_x(V_x - E_x) + D_y(V_y - E_y)|} = \max_{v \in B} |D_x(V_x - E_x) + D_y(V_y - E_y)|$$

and

$$F_{\text{max}}(\bar{E}) = \max_{v \in B} \frac{1}{|D_x(V_x - E_x) + D_y(V_y - E_y)|} = \min_{v \in B} |D_x(V_x - E_x) + D_y(V_y - E_y)|.$$

The $z$-components of the vectors do not matter in the optimization, so the problem is two-dimensional. Figure 11.6 illustrates the case when $(D_x, D_y) = (1, 0)$. In this special setting, the optimum values to compute are those of $|V_x - E_x|$. Clearly, these occur at the extreme values of the two-dimensional box in the $x$-direction, and the occurrences are at two of the corners of the box. For general $(D_x, D_y)$, the optimization process consists of computing $|D_x(V_x - E_x) + D_y(V_y - E_y)|$ at the four $xy$-corners of box $B$ and selecting the minimum and maximum values.

### 11.3.3 No Assumption

In Inequality (11.3), define

$$G(L_w, \tilde{\Delta}) = \frac{L_w \sqrt{D_x^2(\Delta_x^2 + \Delta_y^2) + (D_x \Delta_x + D_y \Delta_y)^2}}{(D_x \Delta_x + D_y \Delta_y + D_z \Delta_z)^2 - L_w^2 D_z^2 / 4}.$$

For a fixed $\tilde{\Delta}$, define $g(\xi) = G(\xi, \tilde{\Delta})$. In short format, $g(\xi) = a\xi / (b - c\xi^2)$ for positive constants $a$, $b$, and $c$. The derivative is $g'(\xi) = a(b + c\xi^2) / (b - c\xi^2)^2 > 0$. Thus, $g$ is an increasing function. Consequently, $G(L_w, \tilde{\Delta}) \leq G(\tilde{\Delta}_\text{max}, \tilde{\Delta})$, where
\[ \delta_{\max} = \max_{\vec{v} \in B} L_w(\vec{v}), \text{ and } G(L_w, \Delta) \geq G(\delta_{\min}, \Delta), \text{ where } \delta_{\min} = \min_{\vec{v} \in B} L_w(\vec{v}). \]

The extreme values for \( L_x \) over the set \( B \) are

\[ \max_{\vec{v} \in B} L_x(\vec{v}) = \lambda n \max_{\vec{v} \in \text{in } B} G(\delta_{\max}, \vec{v} - \vec{E}) \]

and

\[ \min_{\vec{v} \in B} L_x(\vec{v}) = \lambda n \min_{\vec{v} \in \text{in } B} G(\delta_{\min}, \vec{v} - \vec{E}). \]

Let \( \vec{v}_{\max} \) and \( \vec{v}_{\min} \) be those vectors in \( B \) that optimize the \( G \) function. The constraints on \( \delta_{\min} \) and \( \delta_{\max} \) that are equivalent to those in Equations (11.4) and (11.5) are

\[ \lambda n G(\delta_{\max}, \vec{v}_{\max} - \vec{E}) \leq \tau \]

and

\[ \lambda n G(\delta_{\min}, \vec{v}_{\min} - \vec{E}) \geq \tau. \]

Both equations are implicit constraints, but they are quadratic. Using the short format

\[ G(\delta_{\max}, \vec{v}_{\max} - \vec{E}) = a \delta_{\max}^2 / (b - c \delta_{\max}^2), \]

the implicit maximum constraint is

\[ \frac{\lambda n a \delta_{\max}}{b - c \delta_{\max}^2} \leq \tau. \]

The denominator of the fraction is positive, so multiplying by it and collecting terms on the left-hand side yields

\[ Q(\delta_{\max}) := c \tau \delta_{\max}^2 + \lambda n a \delta_{\max} - b \tau. \]

Note that \( Q(0) < 0 \) and \( Q'(0) = \lambda n a > 0 \), so the unique positive value \( \delta_0 \) for which \( Q(\delta_0) = 0 \) provides the upper bound test, \( \delta_{\max} \leq \delta_0 \). Computing the root for \( Q \) is expensive and is in fact not necessary. The quadratic inequality itself may be evaluated in the implementation. Similarly, a quadratic function can be established for \( \delta_{\min} \), and the threshold test is \( \delta_{\min} \geq \delta_1 \), where \( \delta_1 \) is the unique positive root of the quadratic function.

The problem now is to compute \( \vec{v}_{\max} \) and \( \vec{v}_{\min} \) so that the coefficients in the quadratic inequality constraints can be evaluated. As in the distant terrain assumption, \( G \) is a decreasing function of \( \Delta_x \). The vector \( \vec{v}_{\max} \) must occur at a point for which \( \Delta_x = \delta_{\min} \), the minimum \( z \)-value for the box. Similarly, \( \vec{v}_{\min} \) must occur at a point for which \( \Delta_x = z_{\max} \). This limits the search for the optimum points to eight edges of the box. On one such edge where \( \Delta_y \) is fixed, \( G \) is a rational function in \( \Delta_x \), whose numerator is quadratic and whose denominator is quartic. The minimum
and maximum of the rational function must be computed. The derivative is also a rational function whose numerator is a cubic polynomial and whose denominator is positive. The search for extreme points along the edge amounts to computing the roots of the cubic polynomial, evaluating the rational function at those points, and comparing among themselves and the rational function at the end points (up to five points to test). This is done for all eight edges to find the global minimum and maximum. The construction also yields the points \( V_{\text{max}} \) and \( V_{\text{min}} \) at which the extrema occur.

11.4 VERTEX DEPENDENCIES

After block-based simplification, the five candidate vertices of each block are analyzed for simplification. At this stage adjacent blocks may have cracks that need to be removed. The problem is that one higher-resolution block contains a vertex in its mesh and the adjacent lower-resolution block does not contain the same vertex. The vertex forms a T-junction, and a crack occurs in the mesh. The cracks are removed by keeping track of vertex dependencies. If a vertex is determined to be in the final mesh, then any dependent vertices must also be in the final mesh. For a block treated as a 3 x 3 array of vertices, the dependencies are shown in Figure 11.7. The four corners of each active block must occur in the mesh.

As an example, consider a 5 x 5 height field. The corresponding quadtree has three levels: 1 root block, 4 interior blocks, and 16 leaf blocks. Figure 11.8 illustrates there was enough variation in the screen space vertex heights for the vertices represented by the root block that its four children needed to be analyzed for further simplification. The figure also illustrates that the lower-left child block itself needed to be analyzed for further simplification. There are 7 active blocks. The minimal triangulation for each active block is shown. If only the triangles shown are drawn, there are two cracks in the mesh, one between the upper-left and lower-left children of the root block and one between the lower-right and lower-left children of the root block.

The left half of Figure 11.9 illustrates the vertex dependencies (large solid dots) generated by the midpoint (small solid dot) of the edge shared by the lower-left and lower-right children of the root block. The right half of Figure 11.9 shows the additional vertices (large solid dots), edges (bold lines), and triangles that are generated because of the vertex dependencies of the two midpoints (small solid dots).

Finally, suppose that a vertex in the lower-right child of the lower-left child of the root block was added to the mesh because its screen space height was large enough. The presence of the vertex and its dependencies force the mesh to be further refined. The upper-left part of Figure 11.10 shows the added vertex (small solid dot) and the dependencies (large solid dots) generated by its left dependent. The upper-right part of Figure 11.10 shows the dependencies generated by the right dependent. The lower part of Figure 11.10 shows the additional edges and triangles that are generated by the
Figure 11.7 Vertex dependencies for an even block (left) and an odd block (right).

Figure 11.8 Minimal triangulation after block-based simplification.

Figure 11.9 Triangulation after vertex dependencies are satisfied.
The upper-left block shows one set of dependents for the added vertex. The upper-right block shows the other set of dependents. The lower block is the triangulation based on all dependents.

full set of dependencies. The dependencies for a vertex form a binary tree since each vertex has two immediate dependents. However, the nodes of the binary tree are not necessarily distinct, as is clear from Figure 11.10.

11.5 **Block Rendering**

After simplification, the triangles in each active block must be rendered. Computing the triangles is straightforward because the triangles form a binary tree that can be recursively traversed. For example, consider the lower-right child of the root block shown in Figure 11.10. After block simplification, the block consisted of two triangles. After vertex simplification, the block was subdivided into smaller triangles. Figure 11.11 shows the original configuration and the subdivided configuration.

Figure 11.12 shows the corresponding binary tree for the block. The root node of the binary tree corresponds to the block itself and is not a triangle. All other nodes represent isosceles right triangles. The dotted lines indicate where a parent node is split to form the two child nodes. The triangle of a node is split only when the midpoint of its hypotenuse is a vertex that is required to be in the final mesh, as determined by
The left block is the configuration after block simplification. The right block is the configuration after vertex simplification.

Figure 11.12 Binary tree for the right block in Figure 11.11.

the screen space height calculations during vertex simplification. Thus, a leaf node of the binary tree is one whose triangles cannot be split because either the hypotenuse does not contain an enabled vertex from simplification or is a triangle in the highest-resolution mesh for the height field, in which case the length of a leg of the triangle is the spacing between consecutive samples in the height field.

The binary tree is traversed in depth-first order. When a leaf node is encountered, either the corresponding triangle can be rendered immediately or information about it can be saved for deferred rendering. The choice depends on how the renderer itself is structured.
11.6 The Full Algorithm

This section provides a detailed description of an algorithm for the simplification and rendering of a height field. The height field itself is characterized by a size of \(2^N + 1\) for \(N \geq 1\) and a two-dimensional array of height values, \(H_{ij}\) for \(0 \leq i \leq 2^N\) and \(0 \leq j \leq 2^N\). In an implementation, a height value is usually stored as a 1-byte or 2-byte unsigned integer type to minimize memory usage. The application must then also supply parameters to relate the height array to world coordinates. In particular, the following parameters should be specified: minimum elevation \(z_{\text{min}}\) and maximum elevation \(z_{\text{max}}\) (corresponding to zero and the maximum representable value \(M\) of the unsigned integer type), the spacing between spatial samples \(\sigma\) (assumed to be uniform in both spatial dimensions), and the spatial location \((x_{\text{min}}, y_{\text{min}})\) of the point with height \(H_{00}\). The world coordinates of the sample corresponding to height \(H_{ij}\) are \((x, y, z) = (x_{\text{min}} + i\sigma, y_{\text{min}} + j\sigma, z_{\text{min}} + ((z_{\text{max}} - z_{\text{min}})/M) H_{ij})\) for \(0 \leq i \leq 2^N\) and \(0 \leq j \leq 2^N\).

A quadtree of blocks is maintained. For a size of \(2^N + 1\), the quadtree has \((4^N - 1)/3\) nodes. Since the quadtree is complete, it can be stored in memory as an array of structures, each structure containing information relative to a block. The array is assumed to have zero-based indexing. Given a parent node with index \(p\), the four child nodes have indices \(c = 4p + i\) for \(1 \leq i \leq 4\). Given a child node with index \(c\), the parent node has index \(p = \lfloor (c - 1)/4 \rfloor\).

A queue of blocks is maintained to keep track of the current blocks that are at the correct level of detail (based on the block simplification algorithm) and are potentially in the view frustum. Theoretically, the queue must be large enough to hold the entire set of blocks from the quadtree, so an implementation needs to provide enough space for this case, however improbable.

Finally, a two-dimensional array of vertex information is maintained, one vertex per height sample. Each item has a Boolean flag storing whether or not the vertex is currently in the mesh that is to be rendered (based on the vertex simplification algorithm). The item also stores information about who are its two dependent vertices.

The choice of data structures is of course dependent on implementation. The usual space-time trade-offs come into play, and each implementor has to decide what is the best trade-off for his application. The vertex information structure is the simplest one. It contains two pointers to its dependent vertices and a Boolean flag indicating whether or not the vertex is currently in the mesh to be rendered.

The block structure contains information to index into various arrays, such as the height array or related surface attribute arrays including normals and vertex colors. Minimally, it contains an index into the global arrays, the index corresponding to the origin point of the block. This is typically the upper-left point when viewing the block in row-major order with row indices increasing from top to bottom. The block must also contain the stride information so that it can be manipulated as an entity representing a \(3 \times 3\) array of points. To distinguish between even and odd blocks, the block stores a Boolean flag. Since the vertex simplification occurs more often than
most other processes in the system, it is too expensive to constantly be calculating
the world space heights of the line segments corresponding to the five candidate vertices.
Therefore, the block structure saves the world space heights for those five points. The
calculations of the heights are done during program initialization. The maximum
of the five heights is also saved at leaf blocks. At interior blocks, the maximum of
the five heights and of the maximum heights for the four child blocks is saved. The
minimum and maximum heights \( \delta_0 \) and \( \delta_1 \) that change with eye point are computed
and stored whenever necessary. Finally, the block stores the axis-aligned bounding
box that contains all the highest-resolution vertices covered by the spatial extent of
the block.

The queue is implemented in bounded memory as a circular queue. The queue
items contain the block indices and two flags, one to indicate whether or not the block
has already been processed during the current simplification phase and one to indicate
whether or not the block is potentially visible. It is possible to implement the flags
using the two high-order bits of the block indices as long as the total number of blocks
is representable by an integer with two less bits than the total number of bits for the
integer type of the index.

The processing of the height field is in three stages: initialization of the blocks,
vertices, and queue; simplification based on current eye point; and rendering of the
active blocks. The camera represents both the eye point and view frustum.

```c
InitBV();
InitQ();
for (each frame) do
{
 if (camera.eye point has changed since last frame) then
 {
 ResetBlocks();
 SimplifyBlocks(camera);
 SimplifyVertices(camera);
 }
 RenderBlocks();
}
```

Block initialization involves a recursive traversal of the quadtree. The interval
values for all blocks are initialized to \( \delta_0 = 0 \) and \( \delta_1 = \infty \). The origin indices for
the root block are \((0, 0)\), the upper-left corner of the height field, and the stride
is \( 2^{N-1} \). The root block is an even block, and its quadtree index is 0. Generally,
if a block has quadtree index \( q \), origin indices \((x, y)\), stride \( s \), and Boolean \( e \)
indicating whether or not the block is even, then \( \text{InitBV(block, q, x, y, s, e)} \),
shown below, provides a recursive initialization of all blocks. The initial call is
\( \text{InitBV(rootBlock, 0, 0, 0, 2^{N-1}, true)} \).
InitBV (block, q.x, y.s, e)
{
    block.xOrigin = x;
    block.yOrigin = y;
    block.stride = s;
    block.even = e;
    block.delta0 = 0;
    block.delta1 = infinity;

    // delta values for five candidate vertices
    block.delta[0] = (P(x,y).z + P(x+s,y))/2 - P(x+s,y);
    block.delta[1] = (P(x+s,y).z + P(x+s,y+s))/2 - P(x+s,y+s);
    block.delta[2] = (P(x,y+2s).z + P(x+s,y+2s))/2 - P(x+s,y+2s);
    block.delta[3] = (P(x,y).z + P(x,y+2s))/2 - P(x,y+s);
    if ( block.even )
        block.delta[4] = (P(x,y+2s).z + P(x+s,y+2s))/2 - P(x+s,y+s);
    else
        block.delta[4] = (P(x,y).z + P(x+s,y+2s))/2 - P(x+s,y+s);
    block.deltaMax = maximum of block.delta[i];

    // vertex dependencies
    V(x+s,y).dependent0 = V(x+s,y+s);
    V(x,y+s).dependent1 = V(x+s,y+s);
    V(x+2s,y+s).dependent0 = V(x+s,y+s);
    V(x+s,y+2s).dependent1 = V(x+s,y+s);
    if ( block.even )
        {
            V(x+s,y+s).dependent0 = V(x,y+2s);
            V(x+s,y+s).dependent1 = V(x+2s,y);
        }
    else
        {
            V(x+s,y+s).dependent0 = V(x,y);
            V(x+s,y+s).dependent1 = V(x+2s,y+2s);
        }

    // recursively handle remaining blocks
    if ( block is interior )
        {
            InitBV(block.childUL, 4*quadIndex+1, x,y,s/2, even);
            InitBV(block.childUR, 4*quadIndex+2, x+s,y,s/2, even);
            InitBV(block.childLL, 4*quadIndex+3, x,y+s,s/2, even);
        }
InitBV(block.childLR, 4*quadIndex+4, x+s, y+s, s/2, even);

block.min = minimum of block.childIJ.min;
block.max = maximum of block.childIJ.max;
block.deltaMax = max(block.deltaMax, block.childIJ.deltaMax);
}
else
{
    // leaf block, stride = 1
    block.min = minimum of nine world vertices with indices (i,j)
    with x <= i <= x+2, y <= j <= y+2;
    block.max = maximum of nine world vertices with indices (i,j)
    with x <= i <= x+2, y <= j <= y+2;
}

The function InitQ() creates a circular queue stored as an array of unsigned short indices. The queue represents those currently active blocks for which vertex simplification must occur. The number of elements is the number of leaf nodes in the quadtree, the maximum possible number of active blocks at any one time. The queue is initially empty.

After each frame the vertices of an active block are tagged as either enabled or disabled for the final tessellation. Function ResetBlocks iterates over the active blocks and resets the vertices to be disabled. If a vertex is currently enabled and must be disabled, the dependents of that vertex must be informed to disable themselves, too. Thus, a call to ResetBlocks requires traversing the vertex dependency trees, an operation that typically is not inexpensive. A more complicated scheme for updating vertex dependencies by Lindstrom et al. (1996) attempts to maintain the correct current state for each vertex.

Function SimplifyBlocks does the block simplification as described earlier. The blocks in the queue are considered to be unprocessed and may need to be replaced by four child blocks (need more detail) or, together with its three siblings, may need to be replaced by a parent block (need less detail).

while ( queue.ExistsUnprocessedBlocks() )
{
    block = queue.GetFrontAndRemove();
    if ( not block.Processed() )
    {
        queue.DecrementUnprocessedCount();
        if ( block.IsFirstChild() )
        {
            // test if block and siblings need to be replaced by parent
if ( queue.ContainsSiblings(block) )
{
    for ( each child of block )
        child.ComputeDeltaInterval(eyepoint.tolerance);

    if ( child.deltaMax <= child.delta0 for all children )
    {
        // need to replace by parent, first remove children
        // blocks
        for ( each child of block )
        {
            queue.RemoveFront();
            if ( not child.Processed() )
                queue.DecrementUnprocessedCount();
        }

        // add parent (may need further reductions later)
        parent = block.GetParent();
        parent.SetProcessed(false);
        queue.AddRear(parent);
        queue.IncrementUnprocessedCount();
        continue with while loop;
    }
}

if ( not block.VisibilityTested() )
    block.TestForIntersectionWithFrustum();

if ( block.IsInteriorNode() )
{
    // subdivide only if block intersects view frustum
    if ( block.IsVisible() )
    {
        for ( each child of block )
            child.ComputeDeltaInterval(eyepoint.tolerance);

        if ( child.deltaMax > child.delta0 for some child )
        {
            // subdivide if at least one child requires it
            for ( each child of block )
            {
                // add child (may need further processing)
                child.SetProcessed(false):
queue.AddRear(child);
queue.IncrementUnprocessedCount();
}

continue with while loop:
}
}
}

block.SetProcessed(true);
}

// place processed blocks at rear of queue
queue.AddRear(block);
}

The function ComputeDeltaInterval implements the simplification constraint based on which type of constraint is desired: distant terrain assumption, close terrain assumption, or no assumptions.

Function SimplifyVertices does the vertex simplification as described earlier. The pseudocode is

for ( each block in queue )
{
  if ( block.IsVisible() )
    block.SimplifyVertices();
}

Each visible block attempts to simplify its five noncorner vertices and automatically enables two of its four corner points depending on the parity of the block. The pseudocode is

for ( each noncorner vertex )
{
  if ( vertex.IsEnabled() )
  {
    if ( block.delta0 <= vertex.delta0 )
    {
      if ( vertex.delta0 <= block.deltal )
      {
        // not sure vertex is needed, test
        // simplification constraint
        if ( not vertex.SatisfiesConstraint(tolerance) )
          vertex.SetEnabled(true);
      }
    }
  }
}
else
{
    // absolutely certain vertex is needed in
    // tessellation
    vertex.SetEnabled(true);
}
}
}

if ( block.IsEvenParity() )
[
    vertex[lowerLeft].Enable(true);
    vertex[upperRight].Enable(true);
]
else
{
    vertex[upperLeft].Enable(true);
    vertex[lowerRight].Enable(true);
}

Finally, the function RenderBlocks traverses the binary tree of triangles for the
block, as illustrated in Figure 11.12. Let the corner vertices be $V_{ij}$ for $0 \leq i \leq 1$ and
$0 \leq j \leq 1$. The pseudocode is

if ( block.IsEven() )
{
    RenderTriangle(V00,V10,V01);
    RenderTriangle(V11,V01,V10);
}
else
{
    RenderTriangle(V10,V11,V00);
    RenderTriangle(V01,V00,V11);
}

The function RenderTriangle does the recursive traversal of the binary tree. The
pseudocode is

```c
void RenderTriangle (T,L,R)
{
 // T = top vertex, L = left vertex, R = right vertex
 if (triangle is interior node of tree)
 {
```
// compute midpoint, recurse only if it is enabled
M = (L+R)/2;
if ( M.IsEnabled() )
{
    // split the triangle and recurse
    RenderTriangle(M,T,L);
    RenderTriangle(M,R,T);
    return;
}

// Code for adding triangle <T,L,R> to tessellation goes
// here. Alternatively, the triangle can be sent directly
// to the rendering engine to be drawn now.

An implementation must have structures that keep track of the vertices and their
state (enabled/disabled). Rather than passing vertex locations, it is possible to pass
indices into vertex arrays and perform arithmetic on them to do the splitting and
state lookup.

Plate 5 illustrates subdivision of a height field terrain using tessellation based on
the continuous level-of-detail algorithm described in this chapter. The terrain system
is an implementation of a continuous level-of-detail algorithm. The top-left image is
the rendering at a particular level of detail for a small screen space error tolerance.
The bottom-left image is a wireframe view of that image. The top-right image is the
rendering at a level of detail with a larger screen space error tolerance. The bottom-
right image is a wireframe view of that image. While the top two images look the same,
the wireframe images show the difference in tessellation. In the demo, there is some
noticeable popping of triangles as you move about the terrain with the larger error
tolerance.

11.7 Other Issues

Although the tessellation algorithm itself is the core of the terrain system, other
issues must be handled in a real game environment. This section describes the most
important of these: paging and memory management, use and construction of vertex
colors and normals, and height calculations.

11.7.1 Terrain Pages and Memory Management

The terrain algorithm was described for a single-height \((2^N + 1) \times (2^N + 1)\) height
field. To keep the memory usage at a minimum (unsigned short for heights and
queue indices), the restriction is \(N \leq 7\). A height field of size 129 × 129 is not really
large enough to represent an expansive terrain in a game. Thus, a rectangular lattice of height fields can be used, with each height field in the lattice called a terrain page.

There are two problems with this. The first problem is that if two adjacent pages are dynamically tessellated independently, each page has no cracking, but the common boundary will. The second problem is that the memory usage is still a concern for a single page, especially if additional per-vertex information needs to be stored, such as texture coordinates, vertex colors, or vertex normals.

The first problem is straightforward to handle. Recall in the pseudocode for block initialization the lines of code where the vertex dependencies are established. For a single page this code only initializes one of the two dependents for any vertex on the boundary of the page. In an implementation using pointers to dependents, the uninitialized pointer will be set to null, and any vertex dependency tree traversing will test to make sure that a dependent pointer is not null before traversing a branch of the tree. If two terrain pages are adjacent, then in fact the null dependent pointers of one page can be set to point to vertices in the other page by a stitching process. If an adjacent page is unloaded from memory, then the dependent pointers for the page remaining in memory must be reset to null by an unstitching process. The pseudocode for stitching is given below. The vertex information is assumed to be stored as a two-dimensional array in row-major order. The dependents are indexed by 0 and 1, just as in the block initialization pseudocode, and are consistently named to work with that code.

// for two pages that are adjacent on a left-right edge

void StitchLeftRight (TerrainPage pageL, TerrainPage pageR)
{
    for (row = 1; row < 2^N; row++)
    {
        pageR.vertex[row][0].dependent0 = pageL.vertex[row][2^N];
        pageL.vertex[row][2^N].dependent1 = pageR.vertex[row][0];
    }
}

void UnStitchLeftRight (TerrainPage pageL, TerrainPage pageR)
{
    for (row = 1; row < 2^N; row++)
    {
        pageR.vertex[row][0].dependent0 = null;
        pageL.vertex[row][2^N].dependent1 = null;
    }
}

// for two pages that are adjacent on a top-bottom edge

void StitchTopBottom (TerrainPage pageT, TerrainPage pageB)
for (col = 1; col < 2^N; col++)
    [pageT.vertex[2^N][col].dependent0 = pageB.vertex[0][col];
     pageB.vertex[0][col].dependent1 = pageT.vertex[2^N][col];
    ]
}
}

void UnstitchTopBottom (TerrainPage pageT, TerrainPage pageB)
{
    for (col = 1; col < 2^N; col++)
    {
        pageT.vertex[2^N][col].dependent0 = null;
        pageB.vertex[0][col].dependent1 = null;
    }
}

The memory usage problem is a more complicated one. Given a set of terrain pages that are required to be coexistent in memory, one way to minimize the use of memory is to share as much as possible between pages. While the height information is typically unique to each page, it can be shared if the application wishes to repeat height fields, much like texture coordinates are allowed to repeat to conserve texture memory usage. The texture images themselves can be shared between pages, but at the cost of having some parts of the world looking the same as other parts. Some of this effect can be lessened by applying small, yet different, secondary textures that contain noise or light maps to the terrain pages. If the tessellation of a page is stored in memory so that the renderer can be fed all the triangles at once, as compared to sending one triangle at a time when it is known it will be in the tessellation, the storage used by the tessellation algorithm can be shared among all pages. While this does keep memory usage to a minimum, the tessellation data is not persistent. If a picking operation is initiated for a set of terrain pages, the pages have to be retessellated for that operation rather than having the tessellation available from the previous rendering pass. However an application decides to share memory, there are always trade-offs like these to consider.

Given an expansive terrain, not all pages can fit into memory at once, even with an optimum amount of sharing. This requires what is effectively a virtual memory manager whose job it is to load and unload terrain pages on demand or based on a predictive system. If the terrain pages are organized as a rectangular lattice, a subset of the pages called the working set (the same concept found in operating systems) is maintained in memory. As the camera moves about the world, pages must be unloaded and new pages must be loaded. Before unloading an old page, the unstitching process is applied to all its adjacent pages. After loading the new page, the stitching process is applied to all its adjacent pages. The loading process will be affected by any design choices, such as which pages will share a single texture. In such a case, the texture image will not be reloaded when the new height field is streamed in.

A recommended system for predictive loading is to use a multiresolution approach. Suppose the working set is a $(2^P + 1) \times (2^P + 1)$ lattice of pages. The center
11.7 Other Issues

page, and possibly some set of immediate neighbors, is stored in memory in its highest resolution. That is, the height field and texture image are fully loaded in memory. However, pages more distant from the center can be only partially loaded in memory. Consider that even if a distant page were fully loaded in memory, it is sufficiently far from the camera that the tessellation algorithm would produce a small number of large triangles. The active blocks in the quadtree are nearer to the root of the tree than they are to the leaf nodes of the tree. The quadtree is effectively truncated and represents a height field of smaller resolution than the original. Thus, it is sufficient to load only a small portion of the height field to support a coarse tessellation. As the camera gets closer to that page, more height field data is loaded to allow a finer tessellation. If the camera moves farther from the page, then the coarse-level data can be unloaded to make room for data in pages that the camera is getting closer to. This scheme requires that the height field not be stored as an array in row-major order. The height data must be arranged to support the coarse-to-fine requirements. The coarsest level of detail corresponds to the root block and uses the four corner points, the midpoints of the edges, and the center point, a $3 \times 3$ array of values. The next level of detail fills in the heights to form a $5 \times 5$ array, and so on. The implementation of a working set manager includes tagging each entry in the $(2P + 1) \times (2P + 1)$ lattice with the desired level of detail that must occur for the height fields that are stored there. Each time the camera moves, the system must decide to load/unload the height field data at the specified levels.

11.7.2 VERTEX ATTRIBUTES

A terrain has to look good to be effective in a game. That means an application will require textures, multitexture, and lighting (prelit with vertex colors or dynamically lit using vertex normals). Each of these increases the memory usage for the terrain system. Whether prelighting or dynamic lighting is used, the lighting requires knowing or computing normals at the vertices of the height field. From a modeling point of view, it is better to automatically generate normals rather than require an artist to generate them. The normals can be computed using central differences. If $(x_i, y_j, z_{i,j})$ is a height sample at an interior point ($0 < i < 2^N$ and $0 < j < 2^N$), then an estimate of the normal vector is obtained by using the fact that $(-\partial H/\partial x, -\partial H/\partial y, 1)$ is a (not necessarily unit-length) normal to the graph of $z = H(x, y)$.

$$\tilde{N}_{i,j} = \left( \frac{z_{i-1,j} - z_{i+1,j}}{2\delta_y}, \frac{z_{i,j-1} - z_{i,j+1}}{2\delta_y}, 1 \right),$$

where $\delta_x$ and $\delta_y$ are the sample spacings in world coordinates. The height samples $z_{i,j}$ are also measured in world units. If the heights are stored as unsigned short, then a conversion to world coordinates is necessary, so each page must store such conversion factors. The normal vector in the previous equation is then normalized, a requirement by the lighting system.
Normals at points on edges or corner points of the height field must be calculated differently. If an edge is shared between two adjacent terrain pages, then central differences again can be used for normal vector estimates. In this case both pages contribute to the estimate. For example, if a point \((x_i, y_0, z_{i,0})\) is on the top edge of a page, but not a corner \((0 < i < 2^N)\), and there is an adjacent page, then a normal is

\[
\vec{N}_{i,0} = \left( \frac{z_{i-1,0} - z_{i+1,0}}{2\delta_x}, \frac{z_{i,2^N-1} - z_{i,1}}{2\delta_y}, 1 \right),
\]

where the superscript \((C)\) indicates height data from the current page and \((T)\) indicates height data from the adjacent top page. The normal is also then normalized. Similar formulas can be derived for edge points on left, right, or bottom edges when there are adjacent pages. At a corner point, information is required from two adjacent pages, the ones adjacent to the edges forming the corner. For example, consider the point \((x_0, y_0, z_{0,0})\). A normal is

\[
\vec{N}_{0,0} = \left( \frac{z_{L,0} - z_{L,1}}{2\delta_x}, \frac{z_{T,1} - z_{0,1}}{2\delta_y}, 1 \right),
\]

where the superscript \((C)\) indicates height data from the current page, \((T)\) indicates height data from the top page, and \((L)\) indicates height data from the left page. Similar formulas can be derived for the other corner points when the adjacent pages exist.

At edges or corners when adjacent pages do not exist, the application can assign a zero vector to the normals since typically such a page will not occur in the view frustum (unless fogging is used to hide the end of the world). Another possibility is to use one-sided differences for derivative estimation. For example, at \((x_i, y_0, z_{i,0})\) on the top edge of a page, but not a corner, a normal that uses only the current page data is

\[
\vec{N}_{i,0} = \left( \frac{z_{i-1,0} - z_{i+1,0}}{2\delta_x}, \frac{z_{i,0} - z_{i,1}}{\delta_y}, 1 \right).
\]

The \(x\)-derivative estimate is centralized, whereas the \(y\)-derivative estimate is one-sided. The one-sided estimates are not recommended on an edge shared by two pages. The problem is that a triangle is computed, one per page, and the triangle shares an edge along the common page boundary. Because the two pages might duplicate vertices along the shared edge (if that is how the pages are implemented), the one-sided estimates will produce different normal vectors for the duplicated vertices, so a discontinuity in lighting will most likely occur.

The normals as calculated here can be used for prelighting to generate vertex colors. In a terrain-based game that has the concept of long-term time (that is, the sun may vary its position in the sky during play), dynamic lighting may be too expensive since it is calculated each frame even when the position of the sun has not changed. A better choice would be to use vertex colors that are recalculated only when the position of the sun has changed.
11.7.3 Height Calculations

The height field provides information at points on a lattice. However, if the game requires sublattice calculations to support picking, collision detection, or simply to have smooth motion of a vehicle over the terrain, then there is a need to calculate heights at points other than those of the lattice. A simple method for continuous height is to use linear interpolation. If \((x, y)\) is the world spatial location at which an estimate is required for height \(z\), it is necessary to find the three bounding samples in the height field. The column index is \(c = \lfloor x/\delta_x \rfloor\), and the row index is \(r = \lfloor y/\delta_y \rfloor\), where \(\delta_x\) and \(\delta_y\) are the world values for the sample spacing. The row and column indices determine the square that contains the test sample. A further check must be made to determine in which of two triangles forming the block the point lives. The pseudocode for the height estimate is given below.

```plaintext
float Height (float world_x, float world_y)
{
 // world_delta_x is world spacing in x-direction;
 // world_delta_y is world spacing in y-direction;
 c = floor(world_x/world_delta_x);
 r = floor(world_y/world_delta_y);
 dx = world_x - c;
 dy = world_y - r;

 if (parity(c) == parity(r))
 {
 if (dx > dy)
 z = (1-dx)*H[r][c]+(dx-dy)*H[r+1][c]+dy*H[r+1][c+1];
 else
 z = (1-dy)*H[r][c]+(dy-dx)*H[r][c+1]+dx*H[r+1][c+1];
 }
 else
 {
 if (dx + dy <= 1)
 z = (1-dx-dy)*H[r][c]+dx*H[r+1][c]+dy*H[r][c+1];
 else
 z = (dx+dy-1)*H[r+1][c]+(1-dy)*H[r+1][c]+(1-dx)
 *H[r][c+1];
 }

 return z;
}
```

For a smoother interpolation, it is also possible to use bilinear interpolation or some higher-order scheme.
11.8 **Height Fields from Point Sets or Triangle Meshes**

Although it is easy enough to model the terrain for a game by building the height fields directly on a rectangular lattice, it is also possible to construct the fields from unordered point sets or from already constructed triangle meshes. In the case of point sets, each element must be of the form \((x, y, f(x, y))\). The spatial locations \((x, y)\) can be triangulated, typically with a Delaunay triangulation (see O'Rourke 1994; Watson 1981). This reduces the problem of generating height fields from triangle meshes, a process that can be done using interpolation.

### 11.8.1 Linear Interpolation

Given a triangular mesh \(\{(x_i, y_i, z_i)\}\) that represents the graph of a function, an axis-aligned bounding rectangle can be constructed to contain the spatial locations of the vertices: \(x_{\min} = \min_i x_i, \ x_{\max} = \max_i x_i, \ y_{\min} = \min_i y_i, \ y_{\max} = \max_i y_i, \) and \(z_{\min} = \min_i z_i, \ z_{\max} = \max_i z_i.\) It is assumed that outside the planar extent of the mesh the heights are provided procedurally, the simplest method being the assignment of zero to the heights. The bounding rectangle can be partitioned into an \(R \times C\) array of terrain pages, where each page is to be sampled as a \((2^R + 1) \times (2^C + 1)\) array of vertices. Adjacent pages overlap by one row or one column.

If \((x, y)\) is the spatial location for one of the vertices in a page, a corresponding height \(z\) must be computed for it. Simply locate a triangle in the original mesh that contains \((x, y)\). This is accomplished by using barycentric coordinates. If the three vertices of a triangle are \((x_j, y_j, z_j)\) for \(0 \leq j \leq 2,\) then any point \(\tilde{P} = (x, y)\) can be written as a barycentric combination of the \(\tilde{V}_j = (x_j, y_j, z_j).\)

\[
\tilde{P} = c_0 \tilde{V}_0 + c_1 \tilde{V}_1 + c_2 \tilde{V}_2,
\]

where \(c_0 + c_1 + c_2 = 1.\) If \(c_j \in [0, 1]\) for all \(j,\) then \(\tilde{P}\) is contained by the triangle, either at an interior point (all \(c_j \in (0, 1));\) at an edge \((c_j = 0\) for exactly one \(j);\) or at a vertex \((c_j = 0\) for exactly two \(j\) values). Using \(c_0 = 1 - c_0 - c_2,\)

\[
\tilde{P} = \tilde{V}_0 + c_1 (\tilde{V}_1 - \tilde{V}_0) + c_2 (\tilde{V}_2 - \tilde{V}_0) = \tilde{V}_0 + c_1 \tilde{E}_1 + c_2 \tilde{E}_2.
\]

The coefficients \(c_1\) and \(c_2\) can be computed by solving a linear system,

\[
\begin{bmatrix}
\tilde{E}_1 \cdot \tilde{E}_1 & \tilde{E}_1 \cdot \tilde{E}_2 \\
\tilde{E}_2 \cdot \tilde{E}_1 & \tilde{E}_2 \cdot \tilde{E}_2
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
\tilde{P} \cdot \tilde{E}_1 \\
\tilde{P} \cdot \tilde{E}_2
\end{bmatrix}.
\]

Defining \(e_{ij} = \tilde{E}_i \cdot \tilde{E}_j,\) \(\delta = e_{11} e_{22} - e_{12}^2,\) and \(p_i = \tilde{P} \cdot \tilde{E}_i,\) the solution is \(c_1 = (e_{22} p_1 - e_{12} p_2) / \delta,\) \(c_2 = (e_{11} p_2 - e_{12} p_1) / \delta,\) and \(c_0 = 1 - c_1 - c_2.\)
If the solution satisfies the conditions \( c_j \in [0, 1] \) for all \( j \), then \( \hat{P} \) is contained by the projected triangle in the plane. The barycentric coefficients are used to compute the z-value of \( \hat{P} \) so that \( \hat{P} \) is in the plane of the unprojected triangle, \( z = c_0 z_0 + c_1 z_1 + c_2 z_2 \).

### 11.8.2 Quadratic Interpolation

The height fields generated by linear resampling of the triangle mesh are piecewise planar. Such a mesh is not visually appealing. Instead, it is possible to create a smooth mesh by local quadratic interpolation (Cendes and Wong 1987). This method requires specifying first-order partial derivatives at the original samples. These can be estimated from the original mesh itself. Let's look closer at the algorithm.

The input points are of the form \((x_0, y_0, f(x_0, y_0)), (x_1, y_1, f_1(x_1, y_1)), \ldots\) and a triangulation of the spatial locations is assumed. The algorithm consists of two parts:

- **Subdivision.** Each triangle is subdivided into six triangles. The subdivision requires knowledge of the inscribed centers of the triangle and its three adjacent triangles.
- **Bézier net construction.** Each subtriangle is further partitioned into four triangles. This subdivision is affine, and the partition is used to build a quadratic function (via the Bézier triangle method described in Chapter 18 of Farin 1990).

The quadratics are of course \( C^1 \) functions, but additionally the interpolation is \( C^1 \) at any interface with other triangles, whether they are part of the current subdivision or part of the subdivision of an adjacent triangle. Thus, the interpolation is globally \( C^1 \). Moreover, the interpolation has local control. If the function or derivative values are modified at a single data point, then the affine subdivision of the triangles sharing the data point does not change, but the function values at the additional control points must be recalculated. If the spatial component of a single data point is modified, then the affine subdivisions of the triangles sharing the data point change. These changes are propagated to any immediately adjacent triangles of those that share the data point, but no further.

#### Barycentric Coefficients as Areas

The algorithm makes use of barycentric coordinates, as described in the last section. The coefficients have a geometric interpretation,

\[
    c_0 = \frac{\text{Area}(\hat{P}, \hat{V}_1, \hat{V}_2)}{\text{Area}(\hat{V}_0, \hat{V}_1, \hat{V}_2)}, \quad c_1 = \frac{\text{Area}(\hat{V}_0, \hat{P}, \hat{V}_2)}{\text{Area}(\hat{V}_0, \hat{V}_1, \hat{V}_2)}, \quad c_2 = \frac{\text{Area}(\hat{V}_0, \hat{V}_1, \hat{P})}{\text{Area}(\hat{V}_0, \hat{V}_1, \hat{V}_2)}.
\]

The center of the inscribed circle for the triangle can be written in barycentric form. The triangle formed by \( \hat{P}, \hat{V}_1, \) and \( \hat{V}_2 \) has base length \( |\hat{V}_1 - \hat{V}_2| \) and height given by the radius \( r \) of the inscribed circle. Thus, \( \text{Area}(\hat{P}, \hat{V}_1, \hat{V}_2) = |\hat{V}_1 - \hat{V}_2| r / 2 \). Similarly,
Area($\vec{V}_0, \vec{P}, \vec{V}_2$) = $|\vec{V}_0 - \vec{V}_2| r/2$ and Area($\vec{V}_0, \vec{V}_1, \vec{P}$) = $|\vec{V}_0 - \vec{V}_1| r/2$. The total area is the sum of these three values,

$$A = \frac{r}{2} \left( |\vec{V}_1 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_1| \right).$$

The barycentric coordinates of the inscribed center are therefore

$$c_0 = \frac{|\vec{V}_1 - \vec{V}_2|}{|\vec{V}_1 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_1|}, \quad c_1 = \frac{|\vec{V}_0 - \vec{V}_2|}{|\vec{V}_1 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_1|},$$

$$c_2 = \frac{|\vec{V}_0 - \vec{V}_1|}{|\vec{V}_1 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_2| + |\vec{V}_0 - \vec{V}_1|}.$$ 

These are just ratios of the lengths of the triangle sides to the triangle perimeter.

**Inscribed Circles**

One of the properties of the inscribed center is that each line from a vertex to the center bisects the angle corresponding to that vertex. This property may be used to prove the following result, which is needed in the subdivision algorithm: The line segment connecting the inscribed centers of two adjacent triangles must intersect the common edge of the triangles at an interior point.

If two adjacent triangles form a convex quadrilateral, then clearly the line segment connecting the inscribed centers has the desired property. If the triangles do not form a convex quadrilateral, as is shown in Figure 11.13, some work must be done to prove the result. The inscribed centers are $\bar{K}_0$ and $\bar{K}_1$. Set up the intersection equations as

$$(1 - s)\bar{K}_0 + s\bar{K}_1 = (1 - t)\bar{c} + t\bar{b}.$$ 

Note that $\bar{K}_0$ and $\bar{K}_1$ lie on different sides of the common edge $(\bar{b}, \bar{c})$, so the line segment connecting the centers must intersect the line containing the common edge, implying $0 < s < 1$. The geometry of the setting also implies that the intersection must occur on the $\bar{c}$ side of $\bar{b}$, which implies $t < 1$. If it can additionally be shown that $t > 0$, then the line segment connecting the inscribed centers must intersect the interior of the common triangle edge.

Subtracting $\bar{c}$, rearranging terms, and dotting with $\bar{b} - \bar{c}$ yields

$$t|\bar{b} - \bar{c}|^2 = (1 - s)\left( (\bar{K}_0 - \bar{c}) \cdot (\bar{b} - \bar{c}) \right) + s\left( (\bar{K}_1 - \bar{c}) \cdot (\bar{b} - \bar{c}) \right)$$

$$= (1 - s)|\bar{K}_0 - \bar{c}| |\bar{b} - \bar{c}| \cos(\theta_0/2) + s|\bar{K}_1 - \bar{c}| |\bar{b} - \bar{c}| \cos(\theta_1/2),$$ 

where $\theta_0$ and $\theta_1$ are the angles at vertices 0 and 1, respectively.
where \( \theta_0 \) is the angle formed by edges \( \bar{a} - \bar{c} \) and \( \bar{b} - \bar{c} \), and \( \theta_1 \) is the angle formed by edges \( \bar{a} - \bar{c} \) and \( \bar{b} - \bar{c} \). The half-angles in the formula occur because of the bisection property mentioned earlier. Since \( 0 < \theta_i < \pi \) for interior angles in a triangle, it follows that \( 0 < \theta_i/2 < \pi/2 \) and \( \cos(\theta_i/2) > 0 \). The convex combination in the above formula is therefore positive, which implies that \( r > 0 \).

**Bézier Triangles**

Define a *multi-index on three indices* as \( I = (i_0, i_1, i_2) \), where \( 0 \leq i_j \leq |I| \) and \( |I| = i_0 + i_1 + i_2 \). Define \( E_0 = (1, 0, 0) \), \( E_1 = (0, 1, 0) \), and \( E_2 = (0, 0, 1) \). Given a triangular array of points \( \bar{b}_I \in \mathbb{R}^3 \), where \( |I| = n \), and given a barycentric coordinate \( \bar{u} = (u_0, u_1, u_2) \), recursively define

\[
\tilde{b}_I^0(\bar{u}) = \bar{b}_I
\]

and

\[
\tilde{b}_I^r(\bar{u}) = \sum_{k=0}^2 u_k \tilde{b}_{I+E_k}^{r-1}(\bar{u}),
\]

where \( 1 \leq r \leq n \) and \( |I| = n - r \). The point \( \tilde{b}_I^r(\bar{u}) \) is a point on the Bézier triangle determined by the original array. The iterative algorithm is called the *de Casteljau algorithm*.

When \( n = 1 \), this states that the point on the Bézier triangle is just the barycentric combination of the three vertices \( \bar{b}_{(r,0,0)} \), \( \bar{b}_{(0,r,0)} \), and \( \bar{b}_{(0,0,r)} \). The interpolation
algorithm is concerned with the case \( n = 2 \). The triangle array is organized as

\[
\begin{array}{c}
\tilde{b}_{0,0,0} \\
\tilde{b}_{0,0,1} \\
\tilde{b}_{0,1,0} \\
\tilde{b}_{0,1,1} \\
\tilde{b}_{0,2,0} \\
\tilde{b}_{0,2,1} \\
\tilde{b}_{1,0,0} \\
\tilde{b}_{1,0,1} \\
\tilde{b}_{1,1,0} \\
\tilde{b}_{1,1,1} \\
\tilde{b}_{2,0,0} \\
\tilde{b}_{2,0,1} \\
\tilde{b}_{2,1,0} \\
\tilde{b}_{2,1,1}
\end{array}
\]

The barycentric coordinates are listed as \((u, v, w)\). For \( r = 1 \),

\[
\begin{align*}
\tilde{b}_{1,0,0}^1 &= u\tilde{b}_{0,0,0} + v\tilde{b}_{0,0,1} + w\tilde{b}_{0,0,2} \\
\tilde{b}_{1,1,0}^1 &= u\tilde{b}_{0,1,0} + v\tilde{b}_{0,1,1} + w\tilde{b}_{0,1,2} \\
\tilde{b}_{0,1,1}^1 &= u\tilde{b}_{0,0,1} + v\tilde{b}_{0,1,1} + w\tilde{b}_{0,0,2}
\end{align*}
\]

For \( r = 2 \),

\[
\begin{align*}
\tilde{b}_{0,0,0}^2 &= u\tilde{b}_{0,0,0}^1 + v\tilde{b}_{0,0,1}^1 + w\tilde{b}_{0,0,2}^1 \\
&= \begin{bmatrix} u & v & w \end{bmatrix} \begin{bmatrix}
\tilde{b}_{2,0,0} \\
\tilde{b}_{1,0,0} \\
\tilde{b}_{1,1,0} \\
\tilde{b}_{0,1,0} \\
\tilde{b}_{0,2,0} \\
\tilde{b}_{0,1,1} \\
\tilde{b}_{1,0,1} \\
\tilde{b}_{0,0,1}
\end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix},
\end{align*}
\]

so the triangular Bézier patch is a quadratic function. This formula is a nice generalization of tensor products for rectangular grids.

**Derivatives**

Given a surface vector \( \tilde{x}(\tilde{u}) \), where \( \tilde{u} = (u_0, u_1, u_2) \) are barycentric coordinates \((u_0 + u_1 + u_2 = 1)\), and a barycentric direction \( \tilde{d} = (d_0, d_1, d_2) \) with \( d_0 + d_1 + d_2 = 0 \), the derivative in the given direction is the tangent vector

\[
D_{\tilde{d}} \tilde{x}(\tilde{u}) = \sum_{i=0}^{2} d_i \tilde{x}_{u_i},
\]

where \( \tilde{x}_{u_i} \) denotes the partial derivative of \( \tilde{x} \) with respect to barycentric component \( u_i \). The second-order directional derivative is

\[
D_{\tilde{d}}^2 \tilde{x}(\tilde{u}) = \begin{bmatrix} d_0 & d_1 & d_2 \end{bmatrix} \begin{bmatrix}
\tilde{x}_{u_0u_0} & \tilde{x}_{u_0u_1} & \tilde{x}_{u_0u_2} \\
\tilde{x}_{u_1u_0} & \tilde{x}_{u_1u_1} & \tilde{x}_{u_1u_2} \\
\tilde{x}_{u_2u_0} & \tilde{x}_{u_2u_1} & \tilde{x}_{u_2u_2}
\end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ d_2 \end{bmatrix}.
\]
A general formulation can be made by using Bernstein polynomials,

\[ B_{i,j,k}^n(\tilde{u}) = \frac{n!}{i!j!k!} u^i v^j w^k, \]

where \( i + j + k = n \). The \( r \)-th order directional derivative is

\[ D_d^r \tilde{x}(\tilde{u}) = \sum_{l=0}^r \tilde{a}^{(r)}(\tilde{u}) B_l^{(r)}(d), \]

where \( l = (i_0, i_1, i_2) \) and \( \tilde{a}^{(r)} = \partial^{(r)} \tilde{x} / \partial u_i^n \partial u_j^n \partial u_k^n \). For a Bézier triangle, the \( r \)-th order directional derivative is given in terms of de Casteljau iterates and Bernstein polynomials:

\[ D_d^r \tilde{b}^n(\tilde{u}) = \frac{n!}{(n-r)!} \sum_{l=0}^{n-r} \tilde{b}^{n-r}(\tilde{u}) B_l^{(r)}(d). \]

For the quadratic case \( n = 2 \), the first and second directional derivatives of \( \tilde{b}^2(\tilde{u}, \tilde{v}, \tilde{w}) \) are

\[ D_{u,v,w}^1 \tilde{b}^2(\tilde{u}, \tilde{v}, \tilde{w}) = 2 \begin{bmatrix} u & v & w \end{bmatrix} \begin{bmatrix} \tilde{b}_{(2,0,0)} & \tilde{b}_{(1,1,0)} & \tilde{b}_{(0,2,0)} & \tilde{b}_{(1,0,1)} & \tilde{b}_{(0,1,0)} \end{bmatrix} \begin{bmatrix} d \end{bmatrix} \]

and

\[ D_{u,v,w}^2 \tilde{b}^2(\tilde{u}, \tilde{v}, \tilde{w}) = 2 \begin{bmatrix} d & e & f \end{bmatrix} \begin{bmatrix} \tilde{b}_{(2,0,0)} & \tilde{b}_{(1,1,0)} & \tilde{b}_{(0,2,0)} & \tilde{b}_{(1,0,1)} & \tilde{b}_{(0,1,0)} \end{bmatrix} \begin{bmatrix} d \end{bmatrix}. \]

Note that the second derivative is constant with respect to \( u, v, \) and \( w \), as expected for a quadratic function.

**Derivative Continuity**

Farin (1990) provides a comprehensive development of derivative continuity on the common boundary between two adjacent triangular patches. The main result is that derivatives up through order \( s \) of \( \tilde{b}^n \) depend only on the \( s + 1 \) rows of control points "parallel" to the boundary in question. The cases discussed are those relevant to the quadratic interpolation, \( s = 0 \) and \( s = 1 \). Figure 11.14 illustrates two adjacent triangular patches \( (n = 2) \). The patches define two functions \( \tilde{b}^2(\tilde{u}, \tilde{v}, \tilde{w}) \) and \( \tilde{c}^2(\tilde{u}, \tilde{v}, \tilde{w}) \).
Adjacent Bézier triangle patches.

Continuity of the functions is guaranteed if

\[ \tilde{b}_{(0,0,0)} = \tilde{c}_{(2,0,0)}, \quad \tilde{b}_{(1,1,0)} = \tilde{c}_{(1,1,0)}, \quad \tilde{b}_{(0,2,0)} = \tilde{c}_{(0,2,0)}. \]

Continuity of the derivatives is guaranteed if

\[ \tilde{c}_{(1,0,1)} = u\tilde{b}_{(1,0,1)} + v\tilde{b}_{(2,0,0)} + w\tilde{b}_{(1,1,0)} \]
\[ \tilde{c}_{(0,1,1)} = u\tilde{b}_{(0,1,1)} + v\tilde{b}_{(1,1,0)} + w\tilde{b}_{(0,2,0)}. \]

Each pair of shaded triangles in the figure is coplanar. Moreover, the two pairs have the same barycentric coordinates. The two continuity conditions are referred to as coplanarity and coaffinity. Note that coaffinity implies coplanarity.

The Algorithm

In this section we will describe the Cendes-Wong algorithm. The input is a set of points of the form \((x_i, y_i, f(x_i, y_i), f_x(x_i, y_i), f_y(x_i, y_i))\) for \(0 \leq i < N\). The input also includes a triangle mesh of the spatial locations of the samples. The output is a globally \(C^1\) quadratic interpolating function that takes as input spatial points \((x, y)\) and produces as output function values \(f(x, y)\) and derivatives \(f_x(x, y)\) and \(f_y(x, y)\).

The idea is to subdivide the triangles and fit the subtriangles as quadratic Bézier triangles so that derivative continuity is achieved on each shared triangle edge. The Cendes-Wong paper (Cendes and Wong 1987) provides a construction that stresses the coplanarity condition for derivative continuity. The coaffinity condition is a consequence of the affine subdivision of the planar triangles. Consider one of the triangles
shown in Figure 11.15. The points \( b_2, b_4, \text{ and } b_6 \) are the vertices of the triangle (spatial components in the xy-plane). The point \( b_0 \) is the inscribed center. The points \( A_i \) are the inscribed centers for the adjacent triangles. The points \( b_1, b_3, \text{ and } b_5 \) are the intersections of the triangle edges with the line segments connecting the inscribed center with those of its adjacent triangles. In the case that the triangle does not have an adjacent triangle for one of its edges (the edge is on the boundary of the mesh), then the midpoint of the edge is used in lieu of an intersection. The spatial relationships for the subdivision points are as follows:

\[
\begin{align*}
\tilde{b}_0 &= \delta_0 \tilde{b}_2 + \delta_1 \tilde{b}_4 + \delta_2 \tilde{b}_6, \quad \delta_0 + \delta_1 + \delta_2 = 1, \\
\tilde{b}_3 &= \alpha_0 \tilde{b}_2 + \alpha_1 \tilde{b}_4, \quad \alpha_0 + \alpha_1 = 1, \\
\tilde{b}_5 &= \beta_1 \tilde{b}_2 + \beta_2 \tilde{b}_4, \quad \beta_1 + \beta_2 = 1, \\
\tilde{b}_7 &= (\tilde{b}_2 + \tilde{b}_3)/2, \\
\tilde{b}_9 &= (\tilde{b}_4 + \tilde{b}_5)/2, \\
\tilde{b}_{10} &= (\tilde{b}_4 + \tilde{b}_6)/2, \\
\tilde{b}_{11} &= (\tilde{b}_6 + \tilde{b}_5)/2, \\
\tilde{b}_{12} &= \gamma_0 \tilde{V}_2 + \gamma_2 \tilde{V}_6, \quad \gamma_0 + \gamma_2 = 1, \\
\tilde{b}_{13} &= \gamma_0 \tilde{b}_4 + \gamma_2 \tilde{b}_6, \\
\tilde{b}_{14} &= \beta_1 \tilde{b}_16 + \beta_2 \tilde{b}_18.
\end{align*}
\]
The 3D mesh points are denoted $(\tilde{h}, \phi_i)$. The indices are convenient for identifying the six Bézier control points for each of the six subdivision triangles. If $i$ is the index for a triangle, $1 \leq i \leq 6$, then the indices of the control points for that triangle are $0, 12 + i, 13 + i \text{mod} 6, i, 6 + i$, and $1 + i \text{mod} 6$.

The goal now is to specify functions and derivatives at the three vertices and to choose function values at the remaining 16 so that the coplanarity and coaffinity conditions are satisfied in the Bézier triangle construction. Figures 11.16 and 11.17 are from Cendes and Wong (1987). The shaded regions must be coplanar for derivative continuity to occur. The shaded quadrilateral straddling the interface of two triangles must be planar. To see this let $A$, $B$, $C$, and $D$ be any four points in $\mathbb{R}^3$. Let $e$, $f$, $g$, and $h$ be points along the line segments $AB$, $BC$, $CD$, and $DA$, respectively. If

\[
\frac{\text{length } Ae}{\text{length } AB} = \frac{\text{length } Dg}{\text{length } DC} = \rho_1 \quad \text{and} \quad \frac{\text{length } Bf}{\text{length } BC} = \frac{\text{length } Ah}{\text{length } AD} = \rho_2,
\]

then the four points $e$, $f$, $g$, and $h$ are coplanar.

The proof involves showing $eg = (\rho_1/\rho_2)ef + ((1 - \rho_1)/\rho_2)eh$, in which case $eg$, $ef$, and $eh$ are linearly dependent vectors and must be coplanar. The quadrilateral $ABCD$ is constructed so that the desired length ratios hold and the result applies.

Now for the construction of the function values at the control points. Let $\phi_i$ denote the function values at the 19 control points, $0 \leq i \leq 18$. The vertex values $\phi_0$, $\phi_1$, and
Figure 11.17  Illustration for geometric relationships between the vertices.

\( \phi_0 \) are already specified. The derivative values at the vertices are also specified, call them \( \nabla \phi_i, i = 2, 4, 6 \).

To satisfy coplanarity at vertex \( \tilde{V}_0 \):

\[
\phi_7 = \phi_2 + \nabla \phi_2 \cdot (\tilde{b}_7 - \tilde{b}_2) \\
\phi_8 = \phi_2 + \nabla \phi_2 \cdot (\tilde{b}_8 - \tilde{b}_2) \\
\phi_9 = \phi_2 + \nabla \phi_2 \cdot (\tilde{b}_9 - \tilde{b}_2).
\]

To satisfy coplanarity at vertex \( \tilde{V}_1 \):

\[
\phi_4 = \phi_4 + \nabla \phi_4 \cdot (\tilde{b}_9 - \tilde{b}_4) \\
\phi_{10} = \phi_4 + \nabla \phi_4 \cdot (\tilde{b}_{10} - \tilde{b}_4) \\
\phi_{16} = \phi_4 + \nabla \phi_4 \cdot (\tilde{b}_{16} - \tilde{b}_4).
\]

To satisfy coplanarity at vertex \( \tilde{V}_2 \):

\[
\phi_{11} = \phi_6 + \nabla \phi_6 \cdot (\tilde{b}_{11} - \tilde{b}_6) \\
\phi_{12} = \phi_6 + \nabla \phi_6 \cdot (\tilde{b}_{12} - \tilde{b}_6) \\
\phi_{18} = \phi_6 + \nabla \phi_6 \cdot (\tilde{b}_{18} - \tilde{b}_6).
\]
To satisfy coplanarity of the quadrilaterals containing \( \vec{E}_0, \vec{E}_1, \) and \( \vec{E}_2 \):
\[
\phi_3 = \alpha_0 \phi_2 + \alpha_1 \phi_4 \\
\phi_5 = \beta_1 \phi_4 + \beta_2 \phi_6 \\
\phi_1 = \gamma_0 \phi_2 + \gamma_2 \phi_6.
\]

To satisfy coplanarity of the large triangle containing \( \vec{C} \):
\[
\phi_{15} = \alpha_0 \phi_{14} + \alpha_1 \phi_{16} \\
\phi_{17} = \beta_1 \phi_{16} + \beta_2 \phi_{18} \\
\phi_{13} = \gamma_0 \phi_{14} + \gamma_2 \phi_{18} \\
\phi_0 = \delta_0 \phi_{14} + \delta_1 \phi_{16} + \delta_2 \phi_{18}.
\]

Verifying coaffinity in the spatial components is straightforward. The triangle vertices are related by \( \vec{a}_0 = u \vec{b}_0 + v \vec{b}_3 + w \vec{b}_5 \). The midpoints are \( \vec{b}_1 = (\vec{b}_0 + \vec{b}_3)/2 \), \( \vec{b}_2 = (\vec{b}_0 + \vec{b}_3)/2 \), \( \vec{b}_4 = (\vec{b}_3 + \vec{b}_5)/2 \), \( \vec{a}_1 = (\vec{a}_0 + \vec{b}_3)/2 \), and \( \vec{a}_2 = (\vec{a}_0 + \vec{b}_5)/2 \). Consider
\[
\vec{a}_1 = (\vec{a}_0 + \vec{b}_3)/2
\]
\[
= (u/2)\vec{b}_0 + ((v + 1)/2)\vec{b}_3 + (w/2)\vec{b}_5
\]
\[
= (u/2)\vec{b}_0 + ((v + u + v + w)/2)\vec{b}_3 + (w/2)\vec{b}_5
\]
\[
= u(\vec{b}_0 + \vec{b}_3)/2 + v\vec{b}_3 + w(\vec{b}_3 + \vec{b}_5)/2
\]
\[
= u\vec{b}_1 + v\vec{b}_3 + w\vec{b}_5.
\]
Similarly,
\[
\vec{a}_2 = (\vec{a}_0 + \vec{b}_5)/2
\]
\[
= (u/2)\vec{b}_0 + (v/2)\vec{b}_3 + ((w + 1)/2)\vec{b}_5
\]
\[
= (u/2)\vec{b}_0 + (v/2)\vec{b}_3 + ((w + u + v + w)/2)\vec{b}_5
\]
\[
= u(\vec{b}_0 + \vec{b}_3)/2 + v(\vec{b}_3 + \vec{b}_5)/2 + w\vec{b}_5
\]
\[
= u\vec{b}_1 + v\vec{b}_3 + w\vec{b}_5.
\]
Therefore, the midpoint subdivision satisfies the coaffinity conditions. It must be verified that the function values assigned to the control points also satisfy the coaffinity conditions. This turns out to be a consequence of the midpoint subdivision and the coplanarity of certain triangles in the Bézier net.
For example, let $\tilde{b}_1 = u\tilde{b}_3 + v\tilde{b}_0 + w\tilde{b}_2$ for some barycentric coordinates $(u, v, w)$. The midpoint subdivision guarantees that $\tilde{b}_7 = u\tilde{b}_8 + v\tilde{b}_{14} + w\tilde{b}_2$. The plane at the vertex $\tilde{b}_2$ is of the form $\phi = K + \tilde{N} \cdot \tilde{b}$. Therefore,

$$
\phi_7 - u\phi_8 - v\phi_{14} - w\phi_2 = (K + \tilde{N} \cdot \tilde{b}_7) - u(K + \tilde{N} \cdot \tilde{b}_8) - v(K + \tilde{N} \cdot \tilde{b}_{14})
$$

$$
- w(K + \tilde{N} \cdot \tilde{b}_2)
$$

$$
= K(1 - u - v - w) + \tilde{N} \cdot (\tilde{b}_7 - u\tilde{b}_8 - v\tilde{b}_{14} - w\tilde{b}_2)
$$

$$
= K(0) + \tilde{N} \cdot \tilde{b}_2
$$

$$
= 0,
$$

so $\phi_7 = u\phi_8 + v\phi_{14} + w\phi_2$. The midpoint subdivision also guarantees that $\tilde{b}_{13} = u\tilde{b}_{15} + v\tilde{b}_0 + w\tilde{b}_{14}$. The plane containing control points $\tilde{b}_i$ for $i = 0$ and $13 \leq i \leq 18$ is also of the form $\phi = K + \tilde{N} \cdot \tilde{b}$. A similar argument shows that $\phi_{13} = u\phi_{15} + v\phi_0 + w\phi_{14}$. Thus, the two subtriangles satisfy the coaffinity condition. The same argument holds for any pair of subtriangles, both within a single triangle and across a triangle boundary.
Chapter 12

Spatial Sorting

The process of rendering a hierarchically structured scene is discussed in Chapter 4. The objects in the scene are drawn in the order determined by the depth-first traversal of the scene. In almost all cases the rendered scene will be incorrectly drawn using this approach. For example, if two disjoint objects along the line of sight of the eye point are to be drawn, the object that is most distant should be drawn first. If that object occurs after the closest object in a depth-first traversal, the scene will be incorrectly drawn. Therefore, correct drawing of a scene can only be accomplished through sorting. The example just given illustrates why sorting is needed. In a real game it might be possible to simply sort the objects as they are modeled, for example, in a cityscape that contains a lot of buildings. The actual sorting mechanism might need to be more complex, especially if the objects are not disjoint and are intertwined to some degree. In fact, if a scene contains transparent objects, the correct order for drawing can be difficult to determine and might even require splitting the objects. This is definitely the case for outdoor environments containing trees that are each modeled by two intersecting alpha-blended polygons.

The basic idea behind spatial sorting is to avoid drawing a pixel on the screen multiple times. The term depth complexity refers to how many times a pixel is written.
Since the entire screen is drawn each frame, the desired depth complexity is 1; that is, each pixel is drawn once. The higher the depth complexity, the slower the frame rate.

The typical sorting method used is depth buffering, as discussed in Chapter 3. This method is on a per-pixel basis. The depth, measured between near and far planes, is stored in a z-buffer. The color of each pixel is stored in the frame buffer. Assuming the z-buffer is enabled for both testing and writing, a pixel is drawn in the frame buffer only if its depth indicates it is in front of the pixel previously drawn. This is a slow process for a software renderer, but with hardware-accelerated support, z-buffers are a good general solution for sorting by depth.

Depth buffering requires a triangle to be processed, even if most or all of the enclosed pixels are not drawn. It would be better to avoid sending triangles to the renderer at all if they are not going to be drawn. Determination of this information is on a per-object rather than a per-pixel basis. The methods discussed in this chapter are for higher-level sorting. Section 12.1 is a summary of quadtrees and octrees, two tree-based structures that provide a regular decomposition of the world. A quadtree is used for subdivision of a planar rectangle, and an octree is used for subdivision of a rectangular solid. However, many game environments require sorting that is naturally related to the world data. For an indoor environment, a natural sorting method relies on the use of portals, the topic of Section 12.2. For outdoor environments and for correct drawing of scenes that contain alpha-blended polygons, binary space partitioning trees are quite useful. Section 12.3 gives a description of such trees, including how to construct them and how they are used for hidden surface removal, visibility determination, and picking or collision detection.

12.1 QUADTREES AND OCTREES

The scene graph provides a basic mechanism for culling objects. A comparison of the bounding volume of a node to the view frustum can eliminate many objects from being sent to the renderers. If the bounding volume does intersect the frustum, then the subtree rooted at that node is further processed, but the processing is done based solely on bounding volume information. The application may have higher-level information about the structure of the world that can be exploited. For example, in a terrain-based system it is possible to build a visibility graph to help eliminate entire terrain pages that cannot be seen from the current camera location. Specifically, if one terrain page has high mountains that hide the terrain behind them, then the hidden pages do not have to be processed, even if their bounding boxes intersect the view frustum.

Quadtrees or octrees can be used to partition the world into cells. The visibility graph is also cell based. Since the camera is situated in one cell, a list of potentially visible cells can be made that relate to that cell. At best this is a crude way of handling visibility, but it can be quite effective if the world environment is carefully designed to support it.
Construction of a scene graph to support cell-based visibility can be based either on planar locations, in which case the plane can be decomposed into a quadtree, or on full spatial locations, in which case space can be decomposed into an octree. The scene graph nodes represent the particular quadtree blocks or octree blocks. If a node represents a quadtree block, then it has four child nodes. If it represents an octree block, then it has eight child nodes. Additional child nodes are used to represent the actual objects that live in those cells. If the objects move about over time, the scene graph needs to be reconfigured on the fly by attaching and detaching the additional children. However, the basic quadtree or octree structure remains constant over the application lifetime.

The pseudocode for the processing of a quadtree or octree scene graph is given below. The visible list for a quadtree block stores pointers to all the nodes whose blocks are potentially visible from the current block.

```plaintext
cameraBlock = GetBlockOf(renderer.camera);
visibleList = GetVisibleCellsFrom(cameraBlock);
for (each node in visibleList)
 renderer.Draw(node);
```

As mentioned in Chapter 4, the `Draw` call recursively traverses the specified subtree and attempts to cull based on bounding volumes before drawing. It is quite possible that portions of the subtree corresponding to the quadtree structure are culled away based on the bounding volume comparisons.

Of course the difficult part of the process is establishing the visibility lists. An excellent reference for visibility determination is the doctoral dissertation by Seth Teller (1992). The two-volume set by Hanan Samet (1989, 1990) provides everything you ever wanted to know about quadtrees and octrees.

## 12.2 Portals

The quadtree and octree sorting attempts to set up a visibility graph based on meta-knowledge that the application has about the structure of the world and the objects in it. The game writers have the responsibility for setting up the visibility graph by hand or by some automatic method. An approach that requires less interaction is a portal-based system. In this system, rather than using an explicitly built visibility graph, the game writers can specify additional planes that trim down the view frustum into smaller pieces. The classic situation is where the camera is positioned outside a room, but looking into it. The doorway is a *portal* that allows you to see inside the room, but the walls surrounding the doorway occlude the view of much of the room's contents. When drawing the room, objects hidden by the walls about the doorway can be culled. Moreover, if objects are partially hidden, the planes formed by the frame of the doorway and the camera location can be used to establish planes that can be used for clipping in addition to culling. Portals are particularly useful for indoor-style
games because there are many walls and other objects that obstruct the view enough so that a sufficient amount of culling can be performed. However, the use of portals is not restricted to an indoor environment. For example, a character visible to the camera might walk behind a building. Assuming the building is tall enough, it is known that the top of the character will never be visible above the rooftops. The plane formed by the camera location and the edge of the side of the building that the character passes by before disappearing from view can be used in a portal system. Once the character is completely behind the building (that is, the character is on the invisible side of the plane), it can be culled completely and not sent to the renderer for processing.

Figure 12.1 illustrates the classic situation for a portal. The gray area in the diagram on the left shows what the renderer attempts to process in the standard view frustum. The gray area in the diagram on the right shows how the portal planes restrict what must be considered. Support for additional planes for culling is trivial using the hierarchical scheme mentioned in Chapter 4. The culling mechanism kept track of a flag of six bits, with each bit indicating whether or not the object is culled against the corresponding frustum plane. The flag can be extended to have any number of bits, and the camera can store additional planes for culling purposes. The same planes can be used for clipping, but in a hardware-accelerated system APIs such as OpenGL and Direct3D tend to allow only a small number of additional clipping planes. A portal system wanting to take advantage of the API must restrict its number of additional planes accordingly.

An indoor level for which portals are used must be partitioned into convex regions. By doing so, the order in which the components of the region are rendered is unimportant. The portals themselves are convex polygons that live in a plane separating two convex regions. The portal provides a connection between the regions through which one region can be seen from the other. In this sense a portal is bidirectional, although for interesting effects, it is not necessary to be so. It is possible to construct two adjacent regions such that one region is viewed from the other, but once in the other region, the first is not visible. In fact, the second region may not even have a portal connecting it to the first. This represents the notion of one-way teleportation. In this chapter, we will assume that portals are unidirectional. If two adjacent regions
are to be viewable through a common geometric portal, then both regions must have a
portal associated with them, and the two portals coexist in space in identical locations.

The regions and portals together can form an arbitrarily complex scene. For
example, it is possible to stand in one region, look through a portal into an adjacent
region, and see another portal from that region into yet another region. The rendering
algorithm must draw the regions in a back-to-front order to guarantee the correct
visual results. This is accomplished by constructing an abstract directed graph for
which the regions are the graph nodes and the portals are directed graph edges.
This graph is not the parent-child scene graph, but represents relationships about
adjacency of the regions. Each region is represented as a scene graph node that contains
enough state information to support traversal of the adjacency graph. The portals are
represented by scene graph nodes but are not drawable objects. Moreover, the portal
does are attached as children to the region nodes to allow culling of portals. If a region
is currently being visited by the adjacency graph traversal, it is possible that not all
portals of that region are in the view frustum (or part of the current set defined by the
intersection of the frustum and additional portal planes). The continued traversal of
the adjacency graph can ignore such portals, effectively producing yet another type of
culling. Finally, the region nodes can have additional child nodes that represent the
bounding planes of the regions (the walls, so to speak, if the region is a room) and the
objects that are in the regions and that need to be drawn if visible. The pseudocode for
rendering a convex region in the portal system is given below. The object planeSet is
the current set of planes that the renderer uses for culling and (possibly) clipping. The
planes maintained by the portal are those formed by the edges of the convex polygon
of the portal and the current camera location.

```java
void Render (Region region)
{
 if (not region.beingVisited)
 {
 region.beingVisited = true;
 for (each portal in region)
 {
 if (portal.isVisibleWithRespectTo(planeSet))
 {
 planeSet.Add(portal.planes);
 Render(portal.adjacentRegion);
 planeSet.Remove(portal.planes);
 }
 }
 Render(region.boundingPlanes);
 Render(region.containedObjects);
 region.beingVisited = false;
 }
}
```
The visitation flag is required in case a region has a bidirectional portal into an adjacent region or if the region has a unidirectional portal into, and a unidirectional portal out of, an adjacent room. This avoids traversing cycles in the abstract graph. Figure 12.2 shows a simple set of convex regions, portals, and the corresponding adjacency graph.

Although the regions must be convex, a nonconvex region can be processed in a portal system by decomposing it as a union of convex regions with portals acting as "invisible walls." This use of a portal deviates from the classic setting whereby the portal represents a cutout (door, window) in a wall. Figure 12.3 shows how an L-shaped region can be represented in the portal system.

As mentioned earlier, the portal planes can be used for both culling and clipping; however, the renderer performance must be considered. If a scene has a lot of portals, there is the potential for having a large number of additional planes active at one time. The time spent culling and clipping can quite possibly be large enough that a better alternative is to just allow the renderer to use a few planes to reduce its clipping load and rely on its depth buffer.
12.3 Binary Space Partitioning

An extremely popular sorting method is binary space partitioning, in which n-dimensional space is recursively partitioned into convex subsets by hyperplanes. For \( n = 2 \) the partitioning structure is a line, and for \( n = 3 \) the partitioning structure is a plane. A binary space partitioning tree, or BSP tree, is the data structure used to represent the partitioning. For \( n = 3 \), the root node represents all of space and contains the partitioning plane that divides space into two subsets. The first child, or front child, represents the subset corresponding to that portion of space on the positive side of the plane. That is, if the partitioning plane is \( \mathbf{N} \cdot \mathbf{X} - d = 0 \), then the left child represents those points for which \( \mathbf{N} \cdot \mathbf{X} - d > 0 \). The use of the term front is relevant when sorting for reasons of visibility. If the partitioning plane is generated by a face of an object, and if the eye point is on the positive side of the plane, then the face is visible and is called front facing. The second child, or back child, represents the subset corresponding to the negative side of the plane. Either of the subsets can be further subdivided by other planes, in which case those nodes store the partitioning plane and their children represent yet smaller convex subsets of space. The leaf nodes represent the final convex sets in the partition. These sets can be bounded or unbounded. Figure 12.4 illustrates a BSP tree in two dimensions. The square is intended to represent all of \( \mathbb{R}^2 \). The interior nodes indicate which planes they represent, and the leaf nodes indicate which convex regions of space they represent.

BSP trees are more general than quadtrees and octrees because there is no constraint on the orientation of the planes. Moreover, quadtrees and octrees can be implemented as BSP trees. Given a parent node and four sibling nodes in a quadtree, a new parent node is added for the first two siblings, making the old parent a grandparent. A new parent node is similarly added to the other two parents. The new parent of the first two siblings represents the left half of the quad, and the siblings represent a partitioning of that half into quarters. The same idea applies to an octree, where a parent and eight siblings are replaced by a tree that makes the old parent a great-grandparent and adds two grandparents and four parents.
Although a BSP tree is a partitioning of space, it may also be used to partition objects in space. If an object is on the positive side of a partition plane, then that object is associated with the front child of the node representing the plane. Similarly, if an object is on the negative side of the plane, it is associated with the back child. The difficulty in classification occurs when the object straddles the plane. In this case the object can be split into two subobjects, each associated with a child node. If the objects are polytopes, then the subobjects are also polytopes that share a common face on the partition plane. An implementation of BSP trees that treats the objects in the world as a polygon soup may store the common face with the node of the partition plane. Because of the potential to do a lot of splitting, this saves memory since the common face data is stored once and shared by the polytopes. The pseudocode for construction is given below. A precondition is that the initial polygon list is not empty.

```c
void ConstructTree(BspTree tree, PolygonList list) {
 PolygonList posList, negList;
 Edgelist sharedList;

 tree.plane = SelectPartitionPlane(list); // Dot(N,X)-c = 0
 for (each polygon in list) do
 if (type == POSITIVE) then
```
{ // Dot(N,X)-c >= 0 for all vertices with at least
 // one positive
     posList.Add(polygon);
 } else if (type == NEGATIVE) then
 { // Dot(N,X)-c <= 0 for all vertices with at least
 // one negative
     negList.Add(polygon);
 } else if (type == TRANSVERSE) then
 { // Dot(N,X)-c is positive for at least one vertex
 // and negative for at least one vertex.
     Polygon posPoly, negPoly;
     Edge sharedEdge;
     Split(polygon, tree.plane, posPoly, negPoly, sharedEdge);
     positiveList.Add(posPoly);
     negativeList.Add(negPoly);
     sharedList.Add(sharedEdge);
 } else // type == COINCIDENT
 { // Dot(N,X)-c = 0 for all vertices
     tree.coincident.Add(polygon);
 }

 if (sharedList is not empty)
 { // Find all disjoint polygons in the intersection of
 // partition plane with polygon list.
     PolygonList component;
     ComputeConnectedComponents(sharedList.component);
     tree.coincident.Append(component);
 }

 if (posList is not empty)
 { // Create a new BspTree for positive polygones.
     tree.positive = new BspTree;
     ConstructTree(tree.positive.posList);
 }
if ( negList is not empty )
{
    tree.negative = new BspTree;
    ConstructTree(tree.negative, negList);
}

The function SelectPartitionPlane chooses a partition plane based on what the application wants. The input is the polygon list because typically a plane containing one of the polygons is used, but it is possible to select other planes based on the list data. For example, the ideas in building oriented bounding box trees (see Chapter 2) may be applied. An oriented bounding box can be fit to the polygons in the list, and the selected partition plane is the one whose normal vector corresponds to the axis with greatest extent. This latter choice is an attempt to create a balanced BSP tree. Other choices can be designed to meet a criterion such as minimizing the number of polygon splits.

The function Split for triangle lists is essentially the first clipping algorithm mentioned in Chapter 3. More generally, the loop over the polygon list represents the general Boolean operation of splitting a polygonal object by a plane. This allows a BSP tree to be used for computational solid geometry operations. The pseudocode is structured to indicate that the positive and negative polygons in a split share vertices. The shared edges are processed later to compute the polygons of intersection in the partition plane. For many applications, having access to these polygons is not necessary, so the shared edge code can be safely removed.

Finally, note that the recursive call of ConstructTree terminates when the corresponding tree node contains only coincident polygons. Other criteria for stopping can be used, such as termination (1) when the number of polygons in a positive or negative list is smaller than an application-specified threshold or (2) when the tree reaches a maximum depth. Both of these criteria were mentioned in oriented bounding box tree construction.

12.3.2 Hidden Surface Removal

BSP trees provide an efficient method for sorting polygons by way of a depth-first traversal of the tree. The price for sorting is that polygons have to be split in the process. For static geometry, the trees can be built as a preprocessing step, so the expense of sorting is not incurred at run time.

Back-to-Front Drawing

Drawing objects farthest from the eye point first, followed by drawing those closer to the eye point, is the essence of the painter's algorithm. The objects are drawn in an
order much like a painter draws on canvas, background first and foreground last. The condition for this method to be correct is that any two visible polygons in the scene must be separated by a plane. Figure 12.5 shows a situation where the separation is not possible. However, the BSP tree construction will partition the overlapping polygons into disjoint subpolygons. The polygons represented by the leaf nodes of the tree are correctly ordered to be drawn back-to-front. The pseudocode for the traversal is shown below and assumes the BSP tree construction does not use the shared list scheme mentioned earlier. The test against view direction eliminates portions of space that are approximately behind the view frustum and are not visible.

```c
void DrawBackToFront(BspTree tree, Camera camera)
{
 // compute signed distance from eye point E to plane
 // Dot(N,X) - c = 0
 float sd = Dot(tree.plane.N, camera.E) - tree.plane.c;
 if (sd > 0)
 {
 if (-Dot(tree.plane.N, camera.D) >= camera.cos(A))
 {
 if (tree.negative is not empty)
 DrawBackToFront(tree.negative, camera.E);
 }
 DrawPolygons(tree.coincident);
 }
 else if (sd < 0)
 {
 if (Dot(tree.plane.N, camera.D) >= camera.cos(A))
 {
```
if (tree.positive is not empty)
  DrawBackToFront(tree.positive, camera.E);

  DrawPolygons(tree.coincident);
}

if (tree.negative is not empty)
  DrawBackToFront(tree.negative, camera.E);
else
  if (Dot(tree.plane.N, camera.D) >= 0)
    if (-Dot(tree.plane.N, camera.D) >= camera.cos(A))
      if (tree.negative is not empty)
        DrawBackToFront(tree.negative, camera.E);

        DrawPolygons(tree.coincident);
    
    if (tree.positive is not empty)
      DrawBackToFront(tree.positive, camera.E);
  
  else
    if (Dot(tree.plane.N, camera.D) >= camera.cos(A))
      if (tree.positive is not empty)
        DrawBackToFront(tree.positive, camera.E);

        DrawPolygons(tree.coincident);

    if (tree.negative is not empty)
      DrawBackToFront(tree.negative, camera.E);

The view direction of the camera is \( \vec{D} \) and the field of view for the frustum is angle 2\( \alpha \). The cosine of \( \alpha \) is precomputed and stored in the camera object for culling purposes. When \( sd < 0 \), the comparison of dot products is used to determine if \( \vec{N} \) is in the cone of the view frustum. If it is, then the partition plane is oriented in a way that it
possibly intersects the view frustum, and the subtree must be processed. If it is not, then the negative side of the plane does not intersect the frustum and is invisible, so it is not drawn. A more accurate culling could be implemented by testing for separation between view frustum and partition plane. In this case the sign of the dot product between plane normal and view direction is important, not the field of view of the frustum.

Front-to-Back Drawing

Back-to-front drawing with BSP tree support accurately draws the scene, but pixel overdraw can be significant. The depth complexity is sufficient that such an algorithm is not fast enough for real-time rendering. It is better to first draw the polygons closest to the eye point. Now once a pixel is written, it should not be overwritten by any other polygon because of the correctness of the sorting. This requires some type of pixel mask that indicates whether or not a pixel has been drawn. Note that the mask is not the same as a depth buffer. The depth buffer is used when it is not known what order the polygons are in. Depth values are compared before an attempt to write a pixel. Moreover, a pixel can be written more than once using a depth buffer approach.

Scan Line Masks

There are a couple of ways that BSP trees can be used to assist in maintaining the pixel mask. One way is to keep track of each scan line separately. When a triangle is rasterized, each scan line that intersects the triangle has an interval of pixels that are written (interval length is one or larger). A one-dimensional BSP tree can be used to keep track of the written intervals. Each node represents an interval $[x_0, x_1]$, where the left end point is included and the right end point is not. The half-open interval supports the idea that each triangle is responsible for its left and vertical edges, thereby guaranteeing that shared edges and shared vertices of triangles do not have their pixels drawn more than once. Initially, an empty scan line is represented by a single-node BSP tree. If the screen width is $W$ pixels, then the interval for the node is $[0, W)$. Now if a triangle is rasterized on that scan line in the interval $[x_0, x_1]$, the value $x_0$ causes a split into $[0, x_0)$ and $[x_0, W)$. The left interval is associated with the left child of the root node and the right interval is associated with the right child. The value $x_1$ causes a split of the node for $[x_0, W)$ into a left child representing $[x_0, x_1)$ and a right child representing $[x_1, W)$.

Figure 12.6 illustrates the BSP tree representing rasterization of a single interval of points. The figure shows the split intervals and the $x$-value that caused the split. Consider a new interval $[x_2, x_3]$ to be rasterized on that scan line. For the sake of argument, suppose that $0 \leq x_0 < x_2 < x_1 < x_3 \leq W$. Value $x_2$ is processed first. Comparing it against $x_0$ at the root node, $x_2$ is larger so the right child is the next node to visit. Comparing $x_2$ against $x_3$ shows it is smaller. Since the left child is an interval of drawn pixels, no splitting occurs. Value $x_3$ is now processed. The tree is traversed and the comparisons cause the leaf node for $[x_1, W)$ to be reached. That
interval has undrawn pixels, so a split occurs into \([x_1, x_3]\) and \([x_3, W]\). The left interval is tagged as drawn and the right interval is tagged as undrawn.

This method of masking is very well suited for software renderers that need to conserve as many cycles as possible. Keep in mind that the triangle edge setup for interpolation of vertex attributes must still be performed. Moreover, if a prepared interval is additionally clipped by the scan line BSP tree, the vertex attributes for the end points of the clipped interval must also be interpolated.

**Region Masks**

The scan line mask concepts can be extended to two dimensions. A BSP tree represents the current drawn state of pixels on the screen. When a triangle is to be rasterized, each line containing a triangle edge is processed by the tree. The line normal is chosen to point to the triangle side, the side on which pixels will be drawn. After the three lines are processed, the BSP tree has at most seven leaf nodes, with one of them corresponding to the triangle to be rasterized. The next triangle to be rasterized has its edges processed by the BSP tree, but overlap is possible. The technical challenge is tagging the nodes appropriately so that the leaf nodes are correctly tagged as drawn or undrawn. In effect the region mask algorithm produces a BSP tree whose drawn leaf nodes form a disjoint union of all pixels that will be drawn on the screen for the given frame.

**12.3.3 Visibility Determination**

Given the eye point, *visibility determination* refers to the process of deciding what parts of the world are visible from that location. In a world populated with polygonal objects, knowing what is visible helps to minimize the data that is sent to the renderer. The concept of *occlusion* is related. Objects that are occluded in the scene do not have to be processed by the renderer. Visibility information can be used for *occlusion culling*, the process of determining those objects that are not visible from the current eye point. For a static scene where the eye point cannot move, the visibility information can be computed as a preprocessing step. However, if the eye point can move, what is
visible changes over time. Determining exactly what is visible dynamically is usually an expensive process. Most systems attempt to get an approximation and minimize the number of objects that are sent to the renderer but are unknowingly invisible.

The portal system described earlier is a reasonable way to deal with dynamic visibility as long as the number of portals is small. BSP trees can also be used for visibility determination. Two methods are described here, one that works in view space (3D) and one that works in screen space (2D). In both cases, a BSP tree already exists that represents the partitioned world and is used for front-to-back sorting. Call this tree the world tree. A second BSP tree is used to store the visibility information. Call this the visibility tree.

**View Space Method**

The visibility tree lives in three dimensions and initially represents the view frustum. The partitioning planes in the tree are the six forming the frustum. Given the current eye point, the world tree is traversed. Each polygon encountered in the traversal is processed by the visibility tree and factored into subpolygons, each of which is totally visible or totally invisible. Each visible subpolygon is used to define a new set of partitioning planes that are formed by the eye point and the edges of the subpolygon (compare with portal systems). The eye point and corresponding planes form a pyramid. Any portions of the world in the pyramid but behind the subpolygon are invisible to the eye. The visibility tree now stores that pyramid and uses it for further clipping of polygons that are visited in the world tree traversal.

**Screen Space Method**

The visibility tree lives in two dimensions and initially represents the rectangle corresponding to the drawable pixels on the screen. Given the current eye point, the world tree is traversed. Each polygon encountered in the traversal is projected to screen space, then is processed by the visibility tree and factored into subpolygons, each of which is totally visible or totally invisible. Because the world tree sorts the polygons from front to back, any visible subpolygon obtained in the clipping will remain visible throughout the visibility tree calculations. These subpolygons can be stored in a list for whatever purposes the application requires.

12.3.4 **Picking and Collision Detection**

Given a BSP tree representing the world, a picking operation involves determining if a linear component (line, ray, or segment) intersects any objects in the world. The idea is to traverse the BSP tree and recursively split the linear component. If any linear subcomponent exists once a leaf node representing a world polygon is reached, then
the original linear component does intersect an object in the world. The exact point of intersection can be computed when the intersected leaf node is reached in the traversal.

Collision detection between two polygonal objects is a more complicated problem to solve. If two BSP trees are used to represent the objects, and if the objects are not moving, the BSP trees can be used to compute the intersection of the objects. If the intersection is not empty, then the objects are currently in a colliding state. Although Boolean operations between BSP trees can be implemented to provide general support for computational solid geometry, they can be somewhat expensive because they involve splitting each polygonal face in one tree against all the polygonal faces of the other tree. Moreover, if the objects are moving but not changing shape, the BSP trees represent model space information, and the partitioning planes must be transformed into world space coordinates each time the objects move. The intersection testing is much more complicated by the motion, and Boolean operations between the trees are generally very expensive. The methods for bounding volume trees are much cheaper to use since they are based on separating axis testing or distance calculations that take advantage of geometric information about the bounding volumes to localize polygon-polygon intersection testing rather than doing an exhaustive comparison of pairs of triangles.
This chapter describes some special effects that can be used to provide a more realistic rendering of a scene. So far this book has discussed only the mechanisms that a game engine provides for drawing whatever content the game designers can dream up. But generating the content for special effects and combining them in just the right way is essentially an art. In this chapter we will give only a high-level summary of the ideas, with examples presented in the color plates that accompany the book. For a more detailed description of special effects and references, see Moller and Haines (1999) and many of the articles that appear in Game Developer Magazine.

13.1 Lens Flare

_Lens flare_ occurs when the lens of a camera is pointed near a bright light source. The flare typically consists of a set of annular regions of brightness that occur approximately along a line and a set of various length line segments emanating from the light source. The effects are due to refraction of light in the lens and to variation of density of material in the lens. Adding lens flare to a rendered scene is quite popular. The basic method is to create textures for the flare components, then place them in the scene.
along a ray emanating from the light source with direction dependent on the view direction. The textures are placed as billboards that are required to be screen aligned. The starlike texture can also be animated as the eye point moves to give a more realistic effect. Plate 6 provides an illustration of the concept.

13.2 Environment Mapping

Environment mapping is a method that allows surfaces to be drawn with a reflection of the environment in which the surface lives. Blinn and Newell (1976) introduced the concept. A ray is drawn from the eye point to each point on the surface and reflected through the outward pointing unit-length normal at that point. The direction of the reflection vector is used as a lookup into a texture map that represents the surrounding environment. Figure 13.1 illustrates the idea. If \( \vec{E} \) is the eye point and \( \vec{P} \) is the surface point with normal \( \vec{N} \), the unit-length view vector is \( \vec{V} = (\vec{P} - \vec{E})/(|\vec{P} - \vec{E}|) \). The unit-length reflection vector \( \vec{R} \) must be computed. Observe that the projections of \( \vec{V} \) and \( \vec{R} \) onto the tangent plane must be the same vector; therefore, \( \vec{R} - (\vec{N} \cdot \vec{R}) \vec{N} = \vec{V} - (\vec{N} \cdot \vec{V}) \vec{N} \). The angle between \( \vec{N} \) and \( \vec{R} \) and the angle between \( \vec{N} \) and \( -\vec{V} \) are the same, in which case \( \vec{N} \cdot \vec{R} = -\vec{N} \cdot \vec{V} \). The reflection vector is therefore \( \vec{R} = \vec{V} - 2(\vec{N} \cdot \vec{V}) \vec{N} \).

In spherical coordinates it is

\[
\vec{R} = (R_x, R_y, R_z) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi),
\]

where \( \theta \in [0, 2\pi] \) and \( \phi \in [0, \pi] \). The texture coordinates are chosen as \( u = \theta/(2\pi) \) and \( v = \phi/\pi \), so

\[
u = \frac{1}{2\pi} \text{atan} 2(R_y, R_x), \quad R_x \geq 0 \quad \text{and} \quad v = \frac{1}{\pi} \text{acos}(R_z).
\]

Applying environment mapping on a per-pixel basis is an expensive operation because it requires calculating an inverse square root (to create unit vector \( \vec{V} \)), an inverse tangent, and an inverse cosine for each point \( \vec{P} \) on the surface. The cost can be significantly reduced in three ways by using approximations. First, in a real-time system the objects are polygonal models or dynamically tessellated surfaces that result in polygonal models. Assuming each vertex in the model has been assigned a surface normal, only the vertices need to be assigned texture coordinates using the reflection vector. The texture coordinates for other points in the polygons are computed via interpolation by the rasterizer. This reduces the number of points for which \((u, v)\) must be computed. Second, if the object is approximately convex and the eye point somewhat distant from the object, a central point \( \bar{C} \) can be selected to represent the object. For example, the central point can be chosen as the average of the model vertices or as the center of a bounding sphere for the object. The view direction is computed to be \( \vec{V} = (\bar{C} - \vec{E})/(|\bar{C} - \vec{E}|) \) and is used for all model vertices. Thus, the inverse
13.3 Bump Mapping

Bump mapping is a method for changing the visual appearance of a surface by using a different set of normals for lighting than the surface normals (Blinn 1978). The classical method is to vary the normal per pixel, but this is not suitable for real-time graphics. An approach involving derivatives of the texture image requires multiple rendering passes to an offscreen buffer and the ability to do multitexturing. The effect in this method is to provide an embossed surface. The original texture is a gray-scale image. The triangle mesh is rendered to an offscreen buffer with this texture and with diffuse lighting. The texture coordinates at the vertices are then offset by a differential vector \((u, v)\) whose length is small (on the order of a pixel or two), and the mesh is rendered to a second offscreen buffer. The difference of the values in the two offscreen buffers produces an image with an embossed effect. The mesh is rendered to the screen in the usual way, and the difference texture is combined as a secondary texture. Other
more sophisticated methods have been proposed for bump mapping, but a standard across current hardware-accelerated cards is not yet agreed upon. A good survey of the various techniques is found in Möller and Haines (1999). Plate 7 provides an illustration of derivative-based bump mapping.

13.4 Volumetric Fogging

Depth-based fogging was described in Chapter 3. The general use of such fogging is to hide clipping artifacts at the far plane when new objects enter the view frustum at that plane. The fog also helps add to the perception of depth of faraway objects. Depth-based fogging cannot help an application generate dense fog that occurs close to the eye point. Instead, the method of volumetric fogging can be used. The idea is to select a region of space that is to contain fog. For each visible vertex in the scene, calculate the length of intersection with the region and the segment from the eye point to the vertex. A fog value proportional to the length of intersection and in the range $[0, 1]$ is assigned to the vertex as an attribute that will be interpolated during rasterization. This provides fog values for the other points of the triangles sharing that vertex. Color combination is the same as for depth-based fogging, $c_{\text{final}} = (1 - f)c_{\text{vertex}} + f c_{\text{log}}$.

One example is to create a layer of fog over a terrain. The fog region is chosen as the region of space between two parallel planes. If $\mathbf{E}$ is the eye point, $\mathbf{V}$ is the vertex, and $\mathbf{N} \cdot \mathbf{X} = c_i$ are the planes for $i = 0, 1$, then the segment is $\mathbf{E} + t(\mathbf{V} - \mathbf{E})$ for $t \in [0, 1]$, and the intersection of the line of the segment and the planes occurs when $t_i = (c_i - \mathbf{N} \cdot \mathbf{E}) / \mathbf{N} \cdot (\mathbf{V} - \mathbf{E})$. Let $[t_0, t_1] = [0, 1] \cap [t_0, t_1]$. The length of the intersection is

$$L(\mathbf{V}) = |(\mathbf{E} + t_1(\mathbf{V} - \mathbf{E}) - (\mathbf{E} + t_0(\mathbf{V} - \mathbf{E}))| = (t_1 - t_0)|\mathbf{V} - \mathbf{E}|.$$ 

Assuming that the fog range is $[0, 1]$, the values $L(\mathbf{V}) \in [0, \infty)$ must be mapped to the range. There are many choices, but a simple one is to use a rational function $f(L) = cL/(L + 1)$ for constant $c > 0$. The choice of $c$ allows control over how large $L$ must be before $f(L)$ is sufficiently close to 1. Plate 8 provides an illustration of volumetric fogging.

13.5 Projected Lights

Projected lighting is a dynamic multitexturing technique that can be used to create a wide variety of interesting special effects. The idea is to select a location in space that corresponds to the projector, a projection frustum that is much like the view frustum but allows for skewing (the pyramid is not necessarily orthogonal), a texture to project into the environment, and a set of triangles in the environment that are to receive that image as a secondary texture. A classic example is to set up a projected light that casts light through a stained glass window. While there is technically no light source present,
the stained glass texture is projected onto the walls and floor of the room that contains the window. Moreover, the projector can be moved over time so that the projected texture itself moves, thus giving the appearance that the sun is slowly moving across the sky. Other examples include creating the effects of a vehicle’s headlamps shining onto a road, a flashlight shining onto portions of a room, or even projecting cloud shadow textures onto the ground.

The secondary texture coordinates of the triangles that are to receive the projected texture must be computed on the fly. For each triangle vertex, a ray is cast from the projector location to that vertex. The intersection of the ray with the near plane of the projection frustum generates a relative coordinate \((x, y) \in [0, 1]^2\) that is used as a lookup into the projected texture image. Thus, the projection is as if a light shines onto a texture that is coincident with the near plane of the frustum, with the corresponding color projected onto the receiving triangle. Once the secondary texture coordinates are known for the triangle, the projected image is combined with the base texture of the triangle just as in the multitexturing system. The application has the choice of how to combine the textures, whether as an additive process (brightening effect), a multiplicative process (darkening effect), or some other combination mode that is supported by the system.

While the projection process is much like that of the camera and view frustum, there are some differences that must be considered. First, the projection frustum should not usually have a far plane since that might abruptly terminate the light effect in an unnatural way. The other planes can be used for clipping the receiving triangles, but depending on the application that might also cause strange artifacts. If only one or two vertices of a triangle are influenced by the projector, the third can be assigned some texture coordinate so that the entire triangle is multitextured in a way to cause some type of gradual attenuation of the projected texture. Finally, back facing triangles do not have to receive the projected texture. If back facing triangles are omitted, there can be noticeable artifacts along the terminator, the polyline that separates the front facing triangles from the back facing ones. An alternative to eliminate the artifact is to use culling based on vertex normals rather than triangle normals. The triangles that share the terminator will have some front facing and some back facing normals. An interpolation can split the triangle into two halves, one half that receives the projection and one half that does not. For a tessellated sphere, this method will project the texture onto exactly the front facing hemisphere. Plate 3 provides an illustration of projected light in the disco ball dots.

13.6 Projected Shadows

Projected shadows are very much related to projected lights. Rather than projecting a texture onto the environment, a projected shadow system consists of a projector that corresponds to a dark source rather than a light source. The system has a set of objects that are used to occlude the projector as a light source or enhance the projector as a dark source. The occluding objects will cast shadows on a receiving set of triangles.
The associated projected texture is actually generated on the fly rather than selected a priori as for projected lights. The idea is to treat the projector as another camera and render the occluding objects to an offscreen texture. This is necessary since the occluding objects can be arbitrarily complex, such as a moving character in the scene. The background color of the rendering is white, and the triangles of the occluders are rendered with only black vertex colors. The resulting texture appears as a shadow with hard edges. Support by some hardware cards for this process uses a block of memory called a stencil buffer. Blending the shadow texture as a secondary texture is done with any of the usual combination modes in the multitexturing system.

For an occluder that is a convex triangular mesh, the general rendering of the mesh is not necessary to obtain the shadow edge. The terminator of the mesh can be computed very rapidly. The idea is to treat the triangle mesh as an abstract graph whose nodes correspond to the triangles and whose arcs connect nodes corresponding to adjacent triangles. Each node has an associated value that is the signed distance of the projector location to the plane of the triangle (with outward facing normal). The arcs that connect two nodes with opposite signs correspond to the edges on the terminator. Starting with a single triangle, a linear walk of the graph is started to find an arc connecting opposite-signed nodes. Once found we have an edge of the terminator. A second linear walk occurs along the remaining edges of the terminator. This requires a vertex-edge-triangle data structure for which the vertices store all adjacent edges. Abstractly, the determination of all node pairs with opposite-signed distances is similar to a zero contour extraction of a planar image. The graph nodes are the pixels, and the signed distances are the pixel values. However, the image is defined on a closed surface rather than on a plane. The terminator extraction for a convex mesh can be extended to general meshes using the analogy to zero contour extraction in an image. The terminator now consists of a union of polylines, each polyline representing a connected component of the zero contour of signed distances.

Once the terminator is computed for the convex occluder, it can be projected onto the offscreen buffer. The projection of the terminator is a convex polygon in the projection plane, so it can be fanned into a set of triangles and processed by the rasterizer. Or the convex polygon itself can be rasterized without the partitioning into triangles as long as the rendering system has support for it. Plate 9 provides an illustration of projected shadows. The harlequin is an animated skin-and-bones character that performs a tumble roll into a kneeling position. The image shows the first part of the sequence. A projected shadow system is used to render the harlequin with a second camera and renderer to an offscreen texture that is black at a pixel whenever that pixel is occluded by the harlequin. That texture is rendered as a secondary texture by the multitexturing system.

13.7 Particle Systems

In its simplest form, a particle system consists of a set of points, each having an associated color. The point locations are time-dependent and can change based on
just about any algorithm the user can think of. Usually, a physically based model is
applied. For example, the particles might represent smoke and move randomly to
simulate Brownian motion. Another example is to use particles to represent water
droplets spewing from a fountain. The path of each particle is parabolic and depends
on the initial velocity of the particle and the acceleration due to gravity. Although such
caplace systems are easy to render, they can be limited in visual effect.

An extension is to allow the elements of the particle system to be short line
segments with vertex colors assigned to the end points. These can be used to simulate
effects such as sparks shooting from a fire. The leading point of the spark is colored red
or orange and the trailing point is a darker hue. The vertex colors themselves change
over time to represent that the spark is cooling. Although line segments allow more
significant effects than points, they can also be limiting in visual effect.

One of the best ways to represent a particle is as a square with center point
$C$ and half-width $r$. The square is always screen aligned, and the four corners are
$C \pm r\hat{U} \pm r\hat{R}$, where $\hat{U}$ is the view frustum up vector and $\hat{R}$ is the view frustum
right vector. Moreover, the particle has assigned to it a color, a normal vector, and
a textured image. In this sense the particle is rendered as a two-triangle square with
the same surface attributes that any rendered triangle mesh can have. The textured
image is mapped fully onto the square and in almost all cases has an alpha channel.
The idea is that a spherical particle can be drawn with a textured image that contains
a sphere in its center and is fully transparent outside that part of the image. Because
the particle now has a size, the distance from the eye point makes a difference in the
rendering. The color and normal vector can be used for modulation of the texture,
usually via dynamic lighting. One nice use of particles in this form is as leaves of a tree.
The particle can represent a single leaf or a collection of leaves. Multiple systems can be
used, each system having its own leaf texture, so that some variation of leaves occurs in
the final rendering. Plates 10 and 11 provide illustrations of particle systems. In Plate
10, the pond has fireflies swarming over it, generated as a particle system. The light
shafts are alpha-blended polygons with an additive effect to produce the brightness.
The view is taken with the observer just slightly under a downed tree trunk with moss
hanging from it.

In Plate 11, the renderings are from the same part of the data set, but with lighting
that conforms to day, dusk, and night (top to bottom images). There is a wind blowing
from top left to bottom right in the images and the trees are animated to display the
effect of the wind. The dust clouds are also moving and are built as a particle system.
The waterfall is built with static geometry, but animated texture coordinates to give
the effect of flow.

13.8 Morphing

Morphing is the process of deforming an object over time. In a graphics setting only the
surface of the object is deformed. In particular, the vertices of a mesh are allowed to
change with time, and in many applications the topology of the mesh is preserved,
although this constraint is not essential. Because morphing involves time-varying quantities, it can be implemented as a controller, as discussed in Chapter 4.

While there are infinitely many ways to control a morph, two standard ones are useful in a real-time setting. The first way is to control the individual vertices while preserving the mesh topology. A vertex location can be controlled through user interaction with some input device. For example, a vertex can be selected with the mouse (by a three-dimensional picking operation) and dragged. In this sense the vertex location is a function of time, but is indeterminate. Vertex locations can also be controlled procedurally, in which case the locations are deterministic functions of time. For example, a pool of water might have a triangle mesh representing the surface of the water. The mesh is rigidly attached to the pool walls, but the interior vertices are allowed to move. To give the impression that the surface is slightly moving, each interior vertex can be slightly perturbed in the normal direction to the plane of the original mesh and perturbed with a somewhat greater amplitude within the plane of the original mesh.

The second way for defining a morph is to blend between two objects. This is what most people tend to think of as morphing. A correspondence must be defined between the surfaces of the two objects, and a blending function is selected that uses the correspondence. The simplest morph for two triangular meshes with the same number of vertices involves choosing a one-to-one correspondence between vertices and applying a linear blend. If \( V_0 \) is a vertex in the first mesh and \( V_1 \) is its corresponding vertex in the second mesh, then the morph is \( \tilde{V}(t) = (1 - t)V_0 + tV_1 \) for a normalized time \( t \in [0, 1] \). If the two objects are not significantly different in shape, the objects obtained by blending will have a natural look about them. Attempts to linearly blend two somewhat different-shaped objects will produce in-between objects that usually are not what you expect. It is more difficult to establish a reasonable correspondence between vertices if the two meshes have different topologies. It is even more difficult to control the blending so that the in-between objects look reasonable. Morphing based on shape information is possible, but gets heavily into differential geometric concepts and is not covered in this book.

Morphing can be implemented using the controller system described in Chapter 4. Modeling packages that allow morphing by providing the pairing between two sets of vertices can have their data exported as objects in a class `MorphController`. The update routine of this controller performs the linear interpolation for the specified time between the paired vertices. Plate 12 provides an illustration of morphing.
A game engine is a large and complicated software system. The principles of object-oriented software engineering and large library design apply just as they would to any other large system. This appendix presents a review of some basic issues of object-oriented infrastructure. In addition, specific issues related directly to implementation of object-oriented support in the game engine are also addressed, including naming conventions and namespaces, run-time type information, single and multiple inheritance, templates (parameterized data types), shared objects and reference counting, streaming, and startup and shutdown mechanisms.

A.1 Object-Oriented Software Construction

A good reference on object-oriented software engineering is Meyer (1988). Extensive in-depth coverage of abstract data types including stacks, lists, strings, queues, maps, sets, trees, and graphs can be found in Booch (1987).
A.1.1 **Software Quality**

The goal of software engineering is to help produce quality software, both from the point of view of the end users and of the software writers. The desired qualities in software fall into two categories:

- **External**: Software is fast, reliable, and easy to use. The end users care about these qualities. End users also include team members who will use the code, so ease of use is important.
- **Internal**: Software is readable, modular, and structured. The programmers care about these qualities.

The external qualities are the more important since the goal of software construction is building what a client wants. However, the internal qualities are key to attaining the external qualities. Object-oriented design is intended to deal with the internal, but the end result should be to satisfy the following external qualities:

- **Correctness**: the ability of software to exactly perform tasks, as defined by the requirements and specification
- **Robustness**: the ability of software to function even in abnormal conditions
- **Extendability**: the ease with which software may be adapted to changes of specifications
- **Reusability**: the ability of software to be reused, in whole or in part, from new applications
- **Compatibility**: the ease with which software products may be combined with others
- **Efficiency**: the good use of hardware resources such as processor, memory, and storage, both in space and time
- **Portability**: the ease with which software may be transferred to various hardware and software platforms
- **Verifiability**: the ease of preparing test data and procedures for detecting and locating failures of the software
- **Integrity**: the ability of software systems to protect their various components against unauthorized access and modification, whether or not the access or modification is intentional
- **Ease of use**: the ease of learning how to use software, including executing the programs, preparing input data, interpreting output data, and recovering from exceptions

Software maintenance is the process of modifying already existing code either to correct deficiencies, enhance efficiency, or extend the code to handle new or modi-
A.1 Object-Oriented Software Construction

ified specifications. The following is a representative breakdown of maintenance time (Meyer 1988):

- Changes in user requirements (41.8%). Inevitable, but is the large percentage due to a lack of extendability?
- Changes in data formats (17.4%). Also inevitable since initial design may have lacked insight into how data might evolve.
- Emergency fixes (12.4%).
- Routine debugging (9.0%). For example, fixes need to be made, but the software can still run without them.
- Hardware changes (6.2%). Also inevitable, but isolation of hardware-dependent code can minimize these changes by encapsulation of the dependent code into device drivers.
- Documentation (5.5%). All of us are taught to do this as code is developed, but the reality is the client always wants the code yesterday.
- Efficiency improvements (4.0%).

A.1.2 MODULARITY

Modules are autonomous, coherent, robust, and organized packages. Not that this really defines what a module is, but all of us have an idea of what a module should be. The following criteria should help in deciding what it means for a software construction method to be modular:

- Decomposability. The design method helps decompose a problem into several subproblems whose solution may be pursued separately.
  - Example: Top-down design.
  - Counterexample: Initialization modules.
- Composability. The design method supports production of software elements that may be freely combined to produce new systems.
  - Example: Math libraries.
  - Counterexample: Combined GUI and database libraries.
- Understandability. The design method helps produce modules that can be separately understood by a human reader or can be understood together with a few other modules.
  - Example: A math library with exported functions clearly specified and for which no other libraries are required for linking.
  - Counterexample: Sequentially dependent modules, module A depends on module B, module B depends on module C, and so on.
Continuity. A small change in the problem specification results in a change of just one (or a few) modules. Changes should not affect the architecture of the system.

- Examples: Symbolic constants (do not hard-code numbers), the Principle of Uniform Reference (services of a module should be available through a uniform notation; in C++ this becomes a design question about public versus private members).
- Counterexample: Failing to hide the data representation from the user when that representation may change later.

Protection. The design method yields an architecture in which the effect of abnormal conditions at run time in a module remains confined to that module (or a few modules).

- Example: Validation of input and output at their sources. This is the notion of preconditions and postconditions in abstract data types.
- Counterexample: Undisciplined exceptions. An exception is a signal that is raised by one code block and handled in another, possibly remote part of the system. This separates algorithms for normal cases from error processing in abnormal cases, but the mechanism violates the criterion of confining the abnormal conditions to the module. This also violates the continuity criterion.

The five criteria lead to five principles that should be followed to ensure modularity. The criteria that lead to each principle are listed in parentheses.

- Linguistic modular units. Modules must correspond to syntactic units in the language used. (decomposability, composability, protection)
- Few interfaces. Every module should communicate with as few others as possible. (continuity, protection)
- Small interfaces. If two modules must communicate, they should exchange as little information as possible. This is termed weak coupling. (continuity, protection)
- Explicit interfaces. Whenever two modules communicate, this must be obvious from the text of the modules. This is termed direct coupling. (decomposability, composability, continuity, understandability)
- Information hiding. All information about the module should be private unless it is declared public. (continuity, not necessarily protection)

The Open-Closed Principle

This is one final requirement for a good modular decomposition. It states that a module must be both open and closed.
A.1.1 Object-Oriented Software Construction

- **Open module**: The module is still available for extension. For example, it is still possible to add fields to data structures or to add new functions that operate on the structures.

- **Closed module**: The module is available for use by other modules. This assumes that the module has a well-defined, stable interface, with the emphasis being on "stable." For example, such a module would be compiled into a library.

At first glance, being both open and closed appears to be contradictory. If the public interface to a module remains constant, but the internal implementations are changed, the module may be considered open and closed (it has been modified, but dependent code does not need to be changed or recompiled). However, most modifications of modules are to add new functionality. The concept of *inheritance* allows for open-closed modules.

A.1.3 Reusability

Reusability is a basic issue in software engineering. Why spend time designing and coding an algorithm when it probably already exists elsewhere? But this question does not have a simple answer. It is easy to find already-written code for searching and sorting lists, handling stacks, and other basic data structure manipulations. However, other factors may compound the issue. Some companies provide libraries that have capabilities you need, but to use the libraries you need to purchase a license and possibly pay royalties. If the acquired components have bugs in them, you must rely on the provider to fix them, and that will probably not occur in the time frame in which you need the repairs.

At least in your local environment, you can attempt to maximize reuse of your own components. Here are some issues for module structures that must be resolved to yield reusable components:

- **Variation in types**: The module should be applicable to structures of different types. Templates or parameterized data types can help here.

- **Variation in data structures and algorithms**: The actions performed during an algorithm might depend on the underlying structure of the data. The module should allow for handling variations of the underlying structures. Overloading can help here.

- **Related routines**: The module must have access to routines for manipulating the underlying data structure.

- **Representation independence**: The module should allow a user to specify an operation without knowing how it is implemented or what underlying data structures have been used. For example,

\[
x_{\text{is in table } t} = \text{search}(x,t);
\]
is a call to search for item x in a table t and return the (Boolean) result. If many
types of tables are to be searched (lists, trees, files, etc.), it is desirable not to have
massive control structures such as

```latex
if (t is of type A)
apply search algorithm A
else if (t is of type B)
apply search algorithm B
else if ...
```

whether it be in the module code or in the client code. Overloading and polymor-
phism can help here.

- Commonality within subgroups. Extract commonality, extract commonality, ex-
tract commonality! Avoid the repetition of similar blocks of code because if a
change is required in one block, it is probably also required in the other similar
blocks, which will require a lot of time spent on maintenance. Build an abstract
interface that doesn’t expose the underlying data structures.

## A.1.4 Functions and Data

Which comes first, functions or data? The key element in answering this question is
the problem of extendability, and in particular, the principle of continuity. During the
full life cycle, functions tend to change quite a bit since requirements on the system
also tend to change regularly. However, the data on which the functions operate tend
to be persistent and change very little. The object-oriented approach is to concentrate
on building modules based on objects.

A classical design method is the top-down functional approach—specifying the
system’s abstract function, then applying stepwise refinement to smaller, more man-
ageable functions. The approach is logical, well-organized, and encourages orderly
development. The drawbacks are as follows:

- The method ignores the evolutionary nature of software systems. The problem
  is continuity. The top-down approach yields short-term convenience, but as the
  system changes, there will be constant redesigning, with a large potential for long-
  term disaster.
- The notion of a system being characterized by one function is questionable. An
  operating system is the classic case of a system not characterized by a single “main”
  function. Real systems have no top.
- The method does not promote reusability. The designers tend to decompose the
  functions based on current specifications. The subroutines are reflections of the
  initial design. As the system evolves, the subroutines may no longer be relevant to
  the new requirements.
A.1.5 **Object Orientation**

Object-oriented design leads to software architectures based on the objects every system or subsystem manipulates rather than "the function" it is meant to ensure. Issues are

- How to find the objects. A well-organized software system may be viewed as an operational model of some aspect of the world. The software objects will simply reflect the real-world objects.

- How to describe the objects. The standard approach to describing objects is through abstract data types. Specification for an abstract data type involves types (type becomes a parameter of the abstraction), functions (what operations are applied), preconditions (these must be satisfied before operations are applied), postconditions (these must be satisfied after operations are applied), and axioms (how compositions of the functions behave).

Object-oriented design is also the construction of software systems as structured collections of abstract data type implementations. Issues are

- Object-based modular structure. Systems are modularized on the basis of their data structures.

- Data abstraction. Objects should be described as implementations of abstract data types.

- Automatic memory management. Unused objects should be deallocated by the underlying language system, without programmer intervention.

- Classes. Every nonsimple type is a module, and every high-level module is a type. This is implemented as the one-class-per-module paradigm.

- Inheritance. A class may be defined as an extension or restriction of another.

- Polymorphism and dynamic binding. Program entities should be permitted to refer to objects of more than one class, and operations should be permitted to have different realizations in different classes.

- Multiple and repeated inheritance. It should be possible to declare a class as heir to more than one class, and more than once to the same class.

Whether or not a language can support all the various features mentioned in this section is questionable. Certainly, Smalltalk and Ada make claims that they are fully featured. However, fully featured languages come at a price in performance. The object-oriented code that accompanies this book is written in C++. While not a "pure" object-oriented language, C++ supports the paradigm fairly well, yet allows flexibility in dealing with situations where performance is important. One of the common fallacies about C++ is that its performance is unacceptable compared to that
A.2 Style, Naming Conventions, and Namespaces

One of the software engineering goals mentioned previously is that code should be readable. In an environment with many programmers developing small pieces of a system, each programmer tends to have his or her own style, including choice of identifier names, use of white space, alignment and indentation of code, placement of matching braces, and internal comments. If a team of programmers develops code that will be read both internally (by other team members) and externally (by paying clients), ideally the code should have as consistent a style as possible purely from the point of view of readability. Inconsistent style distracts from the client's main purpose—to understand and use the code for his or her own applications. A management-imposed style certainly is a possibility, but beware of the potential religious wars. Many of today's C++ programmers learned C first and learned their programming style at that time. Although a lot of the conventions in that language are not consistent with an object-oriented philosophy, the programmers are set in their ways and will still use what they originally learned.

Naming conventions are particularly important so that a reader of the code knows what to expect across multiple files that were written by multiple programmers. One of the most useful naming conventions used in the code on the CD-ROM that accompanies this book allows the reader to distinguish between class members, local variables, and global variables, including whether they are nonstatic or static. This makes it easy to determine where to look for definitions of variables and to understand their scope. Moreover, the identifier names have type information encoded in them. The embedded information is not as verbose as Microsoft's Hungarian notation, but it is sufficient for purposes of readability and understandability of the code.

Because a game engine, like any other large library, will most likely be integrated with software libraries produced by other teams, whether internal or external, there is the possibility of clashes of class names and other global symbols. Chances are that you have named your matrix class Matrix and so has someone else who has produced header files and libraries for your use. Someone has to make a name change to avoid the clash. C++ provides the concept of namespace to support avoiding the clashes, but a method that is popular among many library producers is to use a prefix on class names and global symbols in hopes that the prefix is unique among all packages that will be integrated into the final product. The namespace construct implicitly mangles the class names, whereas the manual selection of prefix makes the mangling explicit.
The conventions used for the accompanying code are the following. The class names and global symbols are prefixed by Mgc. Function names are capitalized; if multiple words make up the name, each distinct word is capitalized. For example, given a class that represents a string, a class member function to access the length of the string would be named GetLength. Identifier names are capitalized in the same way that function names are, but with prefixes. Nonstatic class data members are prefixed with m_, and static class data members are prefixed with ms_. The m refers to “member” and the s indicates “static.” A static local variable is prefixed with s_. A global variable is prefixed with g_, and a static global variable is prefixed with gs_. The type of the variable is encoded and is a prefix to the identifier name, but follows the underscore (if any) for member or global variables. Table A.1 lists the various encoding rules. Identifier names do not use underscores, except for the prefixes as described earlier. Class constants are capitalized and may include underscores for readability. Combinations of the encodings are also allowed, for example.

\[
\text{unsigned int* auiArray = new int[16];}
\]
\[
\text{void ReallocArray (int iQuantity, unsigned int*& rauiArray)}
\]
\[
\quad \text{delete[]} \text{rauiArray;}
\]
\[
\quad \text{rauiArray = new unsigned int[iQuantity];}
\]
\[
\text{short sValue;}
\]
\[
\text{short& rsValue = sValue;}
\]
\[
\text{short* psValue = &sValue;}
\]
\[
\text{class MgcSomeClass}
\]
\[
\quad \{\}
\]
\[
\quad \text{public:}
\]
\[
\quad \text{MgcSomeClass ();;}
\]
\[
\quad \text{MgcSomeClass (const MgcSomeClass& rkObject);}\
\]
\[
\quad \text{protected:}
\]
\[
\quad \text{enum \{ NOTHING, SOMETHING, SOMETHING ELSE \};}
\]
\[
\quad \text{unsigned int m_eSomeFlag;}
\]
\[
\quad \text{typedef enum \{ ZERO, ONE, TWO \} Counter;}
\]
\[
\quad \text{Counter m_eCounter;}
\]
\[
\};
\]

The rules of style in the code are not listed here and can be inferred from reading any of the source files.
Table A.1 Encoding for the various types to be used in identifier names.

<table>
<thead>
<tr>
<th>Type</th>
<th>Encoding</th>
<th>Type</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>c</td>
<td>unsigned char</td>
<td>uc</td>
</tr>
<tr>
<td>short</td>
<td>s</td>
<td>unsigned short</td>
<td>us</td>
</tr>
<tr>
<td>int</td>
<td>i</td>
<td>unsigned int</td>
<td>ui</td>
</tr>
<tr>
<td>long</td>
<td>l</td>
<td>unsigned long</td>
<td>ul</td>
</tr>
<tr>
<td>float</td>
<td>f</td>
<td>double</td>
<td>d</td>
</tr>
<tr>
<td>pointer</td>
<td>p</td>
<td>smart pointer</td>
<td>sp</td>
</tr>
<tr>
<td>reference</td>
<td>r</td>
<td>array</td>
<td>a</td>
</tr>
<tr>
<td>enumerated type</td>
<td>e</td>
<td>class variable</td>
<td>k</td>
</tr>
<tr>
<td>template</td>
<td>t</td>
<td>function pointer</td>
<td>o</td>
</tr>
<tr>
<td>void</td>
<td>v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.3 Run-Time Type Information

Polymorphism provides abstraction of functionality. A polymorphic function call can be made regardless of the true type of the calling object. But there are times when you need to know the type of the polymorphic object, or you need to determine if the object's type is derived from a specified type—for example, to safely typecast a base class pointer to a derived class one, a process called *dynamic typecasting*. Run-time type information (RTTI) provides a way to determine this information while the program is executing.

A.3.1 Single-Inheritance Systems

A single-inheritance object-oriented system consists of a collection of directed trees where the vertices represent classes and the edges represent inheritance. Suppose vertex $V_0$ represents class $C_0$ and vertex $V_1$ represents class $C_1$. If $C_1$ inherits from $C_0$, then the directed edge from $V_1$ to $V_0$ represents the inheritance relationship between $C_1$ and $C_0$. The directed edges indicate an is-a relationship. Figure A.1 shows a simple single-inheritance hierarchy.

The root of the tree is Polygon. Rectangle is a Polygon, and Square is a Rectangle. Moreover, Square is a Polygon indirectly. Triangle is a Polygon, EquilateralTriangle is a Triangle, and RightTriangle is a triangle. However, Square is not a Triangle, and RightTriangle is not an EquilateralTriangle.

An RTTI system is a realization of the directed trees. The basic RTTI data type stores any class-specific information an application might require at run time. It also
stores a link to the base class (if any) to allow an application to determine if a class is inherited from another class. The simplest representation stores no class information and only the link to the base class. However, it is useful to store a string encoding the name of the class. In particular, the string will be used in the streaming system that is described later. The string may also be useful for debugging purposes in quickly identifying the class type.

class MgcRTTI
{
    public:
        MgcRTTI (const char* acName, const MgcRTTI* pkBaseRTTI) :
            m_kName(acName)
        {
            m_pkBaseRTTI = pkBaseRTTI;
        }

        const MgcRTTI* GetBaseRTTI () const
        {
            return m_pkBaseRTTI;
        }

        const MgcString& GetName () const
        {
            return m_kName;
        }
}
private:
    const MgcRTTI* m_pkBaseRTTI;
    const MgcString& m_kName;
};

The root class MgcObject in an inheritance tree must contain basic support for the RTTI system. Minimally, the class is structured as

class MgcObject
{
    public:
        static const MgcRTTI ms_kRTTI;

        virtual const MgcRTTI* GetRTTI () const
        {
            return &ms_kRTTI;
        }

        bool IsExactlyClass (const MgcRTTI* pkQueryRTTI) const
        {
            return ( GetRTTI() == pkQueryRTTI );
        }

        bool IsDerivedFromClass (const MgcRTTI* pkQueryRTTI) const
        {
            const MgcRtti* pkRTTI = GetRTTI();
            while ( pkRTTI )
            {
                if ( pkRTTI == pkQueryRTTI )
                    return true;
                pkRTTI = pkRTTI->GetBaseRTTI();
            }
            return false;
        }

        void* DynamicCast (const MgcRTTI* pkQueryRTTI)
        {
            return ( IsDerivedFromClass(pkQueryRTTI) ? this : 0 );
        }
};
Each derived class in the inheritance tree has a static MgCRTTI and must minimally be structured as

class MgCDerivedClass : public MgCBaseClass
{
public:
    static const MgCRTTI ms_kRTTI;

    virtual const MgCRTTI* GetRTTI () const
    {
        return &ms_kRTTI;
    }
};

where MgCBaseClass is, or is derived from, MgCObject. Note that the unique identification is possible since the static MgCRTTI members all have distinct addresses in memory at run time. The source file for the derived class must contain

const MgCRTTI MgCDerivedClass::ms_kRTTI("MgCDerivedClass",
&MsCBaseClass::ms_kRTTI);

A.3.2 **MULTIPLE-INHERITANCE SYSTEMS**

A multiple-inheritance object-oriented system consists of a collection of directed acyclic graphs where the vertices represent classes and the edges represent inheritance. Suppose vertices $V_i$ represent classes $C_i$ for $i = 0, 1, 2$. If $C_2$ inherits from both $C_0$ and $C_1$, then $V_2$ has directed edges to both $V_0$ and $V_1$ that represent the multiple inheritance. Figure A.2 shows a multiple-inheritance hierarchy. An RTTI system in the context of multiple inheritance is a realization of the directed acyclic graphs. While the RTTI data type for a singly inherited system has a single link to a base class, the RTTI data type for a multiply inherited system requires a list of links to the base classes (if any). The simplest representation stores no class information and only the links to the base classes. To support a to-be-determined number of base classes, the C-style ellipses are used in the constructor, thus requiring standard argument support. For most compilers, including stdarg.h gives access to the macros for parameter parsing.

class MgCRTTI
{
public:
    MgCRTTI (const char* acName, unsigned int uiNumBaseClasses,...) :
        m_kName(acName)
Figure A.2  Multiple-inheritance hierarchy. Class AB inherits from both class A and class B and indirectly inherits from the root class.

```c
{
 if (uiNumBaseClasses == 0)
 {
 m_uiNumBaseClasses = 0;
 m_apkBaseRTTI = 0;
 }
 else
 {
 m_uiNumBaseClasses = uiNumBaseClasses;
 m_apkBaseRTTI = new const MgcRTTI*[uiNumBaseClasses];
 va_list list;
 va_start(list,uiNumBaseClasses);
 for (unsigned int i = 0; i < uiNumBaseClasses; i++)
 m_apkBaseRTTI[i] = va_arg(list, const MgcRTTI*);
 va_end(list);
 }
}

~MgcRTTI ()
{
 delete[] m_apkBaseRTTI;
}

unsigned int GetNumBaseClasses () const
{
return m_uiNumBaseClasses;
}

const MgcRTTI* GetBaseRTTI (unsigned int uiIndex) const
{
 return m_apkBaseRTTI[uiIndex];
}

private:
unsigned int m_uiNumBaseClasses:
const MgcRTTI** m_apkBaseRTTI;
const MgcString m_kName;
};

The root class in a single-inheritance tree provided the member functions for searching the directed tree to determine if one class is the same or derived from another class. A technical problem with a multiple-inheritance directed graph is that there may be more than one vertex with no edges; that is, the hierarchy may have multiple root classes. To avoid this situation, always provide a single root class whose sole job is to provide an interface for any systems used by the entire inheritance graph.

The root class in the multiple-inheritance graph is structured exactly as in the single-inheritance tree, except that the implementation of member function IsDerivedFromClass must handle the list of base class RTTI pointers.

bool MgcObject::IsDerivedFromClass (const MgcRTTI* pkQueryRTTI) const
{
 const MgcRTTI* pkRTTI = GetRTTI();
 if (pkRTTI == pkQueryRTTI)
 return true;

 for (unsigned int i = 0; i < pkRTTI->NumBaseClasses(); i++)
 if (IsDerivedFromClass(pkRTTI->GetBaseRTTI(i)))
 return true;

 return false;
}

The derived classes still provide the same static RTTI member and a virtual function to access its address. For example, consider

class MgcDerived : public MgcBase0, MgcBase1
{
public:
 static const MgcRTTI ms_kRTTI;

 virtual const MgcRTTI* GetRTTI () const
 {
 return &ms_kRTTI;
 }
};

where both MgcBase0 and MgcBase1 are either MgcObject or are derived from MgcObject. The source file for this derived class must contain

const MgcRTTI MgcDerived::ms_kRTTI("MgcDerived", Z, &MgcBase0::ms_kRTTI, &MgcBase1::ms_kRTTI);

A.3.3 MACRO SUPPORT

Macros can be used to simplify use by an application and to hide the verbosity of the code. The following macros apply to both single-inheritance and multiple-inheritance systems:

// macros in MgcRTTI.h
#define MgcDeclareRTTI public:
 static const MgcRTTI ms_kRTTI;
 virtual const MgcRTTI* GetRTTI () const { return &ms_kRTTI; }

#define MgcImplementRootRTTI(rootclassname) const MgcRTTI rootclassname::ms_kRTTI(#rootclassname, 0)

// macros in MgcObject.h and MgcObjectM.h
#define MgcIsExactlyClass(classname, pObject) (pObject ? pObject->IsExactlyClass(&classname::ms_kRTTI) : false)
#define MgcIsDerivedFromClass(classname, pObject) (pObject ? pObject->IsDerivedFromClass(&classname::ms_kRTTI) : false)
#define MgcStaticCast(classname, pObject) ((classname*)pObject)
#define MgcDynamicCast(classname, pObject) (pObject ? (classname*)pObject->DynamicCast(&classname::ms_kRTTI) : 0)
The macro `MgcDeclareRTTI` is placed in the class declaration in the header file. Note that the scope is public, so any other class declarations following the macro call will need to declare other scopes if needed.

The following macro applies to the single-inheritance case:

```c++
#define MgcImplementRTTI(classname, baseclassname) \  
    const MgcRTTI classname::ms_kRTTI(classname, &baseclassname::ms_kRTTI);
```

and should be called in the source file for the class definition. A similar macro for multiple-inheritance systems is not possible because C-style macros do not allow for a variable number of arguments.

A.4 Templates

Templates, sometimes called *parameterized data types*, are used to share code among classes that all require the same structure. The classic example is a stack of objects. The operations for a bounded stack are `Push`, `Pop`, `IsEmpty`, `IsFull`, and `GetTop` (read top element without popping the stack). The operations are independent of the type of object stored on the stack. A stack could be implemented for both `int` and `float`, each using array storage for the stack elements. The only difference between the two implementations is that the integer stack code uses an array of `int` and the float stack code uses an array of `float`. A template can be used instead so that the compiler generates object code for each type requested by an application.

```c++
template <class T> class Stack
{
    public:
        Stack (int iStackSize)
        {
            m_iStackSize = iStackSize;
            m_iTop = -1;
            m_akStack = new T[iStackSize];
        }

        ~Stack () { delete[] m_akStack; }

        bool Push (const T& rkElement)
        {
            if ( m_iTop < m_iStackSize )
            {
                m_akStack[++m_iTop] = rkElement;
                return true;
            }
            return false;
        }
    }
```
bool Pop (T& rkElement)
{
 if (m_iTop == 0)
 {
 rkElement = m_akStack[m_iTop--];
 return true;
 }
 return false;
}

bool GetTop (T& rkElement) const
{
 if (m_iTop >= 0)
 {
 rkElement = m_akStack[m_iTop];
 return true;
 }
 return false;
}

bool IsEmpty () const { return m_iTop == -1; }
bool IsFull () const { return m_iTop == m_iStackSize-1; }

protected:
 int m_iStackSize;
 int m_iTop;
 T* m_akStack;
};

Macros could be used to generate code for different types, but the macros are not
typescript and are susceptible to side effects. Although it is possible to implement the
stack code for both int and float, this poses a problem for code maintenance. If
one file changes, the other must be changed accordingly. The maintenance issue is
magnified even more so when there are a large number of types sharing the same
code. Templates provide a way of localizing those changes to a single file.

Templates are a good choice for container classes for various data structures such
as stacks, arrays, lists, and so on. Standard template libraries are available that can
be integrated into a game engine. One problem to be aware of when dealing with a
container of objects (in this case, objects of type NxCObject) is that certain side effects
of the class are necessary, especially in construction and destruction. If a standard
template library container class has a need to resize itself, it might do so by creating an
array of the new size, placing a memory copy of the old array into the new array, then
deleting the old array. This scheme has the implicit assumption that the underlying
data is native. If the data consists of class objects where the constructor allocates
memory and the destructor deallocates memory, the memory copy causes memory leaks and misses side effects that occur because of object construction or destruction. This will definitely be the case for shared objects and reference counting, the topic of the next section. If the standard template library does not support side effects, the game engine code will need to implement its own template container classes.
hyperbolic: wave and shock
phenomena, 501
midpoint method, 497
ordinary, 496–499
parabolic: heat transfer, population
dynamics, 500–501
partial, 499–503
Runge-Kutta fourth-order method, 498
Runge-Kutta with adaptive step,
498–499
second-order form, 496–497
source code, 496
See also numerical methods
diffuse color, 102
diffuse light, 103, 429
diffusion of heat, 500
Direct3D, 138, 414
direction vectors, 285
directional lights, 100
discrete level of detail, 360, 361–362
defined, 361
morphing, 362
for multiresolution models, 369–370
popping effect, 362
source code, 361
See also level of detail (LOD)
distance methods, 38–77
calculation, 38
circle to circle in 3D, 69–73
circle to ellipse in 3D, 73–77
linear component to linear
component, 41–49
linear component to rectangle, 58–60
linear component to triangle, 53–57
point to circle in 3D, 68–69
point to ellipse, 65–66
point to ellipsoid, 66
point to linear component, 38–41
point to oriented box, 61–64
point to quadratic curve/surface,
67–68
point to rectangle, 57–58
point to segment, 39
point to triangle, 49–53
rectangle to rectangle, 61
triangle to rectangle, 61
triangle to triangle, 61
distant terrain assumption, 370
block-based simplification, 376–378
vertex-based simplification, 373–374
See also close terrain assumption
division
approximation instructions, 131
floating-point, 45
slow, 175
dynamic collision detection, 251–256
collision points, finding, 253–256
collision testing, 252–253
See also collision detection; oriented
bounding box (OBB) trees
dynamic lighting, 100, 395
defined, 100
expense, 396
See also lighting
dynamic object-object intersections,
214–243
capsules and capsules, 216, 217
defined, 214–215
oriented boxes and triangles, 223–232
triangles and triangles, 232–243
See also intersections
dynamic objects, 186
capsules, 190, 196–197
cylinders, 191, 198–200
ellipsoids, 191–192, 201–202
intersection of lines with, 188–192
intersection of planes with, 193–203
lozenges, 191, 197–198
oriented boxes, 190, 194–196
spheres, 188–189, 193–194
triangles, 192, 202–203
See also objects

E
dedge buffer setup, 130
cigensystems, 472
ellipse rasterization, 119–124
axis-aligned ellipses, 120–122
defined, 119
ellipse specification, 119–120
general ellipses, 122–124
See also rasterization
ellipse to ellipse in 3D, 73–77
 defined, 73
numeric solution, 77
solution as polynomial system, 73–75
trigonometric solution, 75–77
See also distance methods
eLLipses
 axes, 119
 axis-aligned, 65, 120–122
centered at origin equation, 119
closest point on, 65
mapped to ellipses, 84
oriented, 65
parameterized, 73
plane/ellipsoid intersection, 73
points to, 65–66
polynomial equations, 73
with smallest positive level curve, 123–124
 specifying, 119–120
ellipsoid subdivision, 328–338
 algorithm data structures, 329–331
 initial mesh, 329, 330
 midpoint projection phase, 331
 subdivision algorithm, 331–338
 working set of vertices, edges, triangles, 332
ellipsoids, 36–38
 axis directions, 36
 axis-aligned, 37
 bounding, computing, 152
 center, 164, 192
 with center and axes, 37
 closest point on, 66
culling by, 164–165
defined, 36
dynamic, 191, 201–202
fitting points with Gaussian distribution, 37
general form, 37
intersection of linear component and, 182
line intersection with, 191–192
merging, 152
minimum-volume, 37–38
outside frustum plane, 164
plane intersection, 73, 201–202
 points to, 66
projection of, 165
quadratic equation, 164, 182
See also 3D objects
eLLiptic paraboloid, 305
end effector
 best position, 350
defined, 348
formula, 348
position selection for, 348
environment mapping, 428–429
 applying on per-pixel basis, 428
cubic, 429
defined, 428
illustrated, 429
See also special effects
Euler angles, 18–26
 factor product of two, 24–26
 factoring rotation matrices, 19–24
source code, 18
Euler's identity, 12
Euler's method, 249, 497
exponential fog, 109
eye point, 85
defined, 80
parallel plane closest to, 85
in standard camera model, 85

F
 facet normal, 93
 far plane, 85
fast function evaluation, 503–507
 CORDIC methods, 507
cosine, 505
inverse square root, 503–504
inverse tangent, 505–506
sine, 504–505
source code, 503
square root, 503–504
tangent, 505
See also numerical methods
fast subdivision
 for cubic curves, 283–285
 source code, 283
See also subdivision
finding intersection, 186
finite cylinders, 35–36
first point(s) of contact, 186
for boxes, 195
for spheres, 193
flat shading, 102
floating-point
comparison, 99
division, 45
multiplication, 99
number conversion, 127
overflow, 101
precision, 82
round-off errors, 46, 51
fog, 109–110
density, 109
exponential, 109
factor, 109
linear, 109
range-based, 109–110
transparency and, 111
volumetric, 110
See also attributes
frame buffer, 412
Frenet frame
defined, 259
orientation using, 285–286
Frenet-Serret formulas, 259
front-to-back drawing, 423–424
region masks, 424
scan line marks, 423–424
See also hidden surface removal
frustum planes, 94
bounding volume inside, 166
clip vertices increase and, 99
ellipsoid outside of, 164
inactive, 166
inverse transform of, 97
projection of, 163, 165

G
game AI, 2
game design, 2
Garland-Heckbert algorithm, 362
Gaussian curvature
computing, 293
defined, 290
Gaussian distribution
covariance matrix, 29
defined, 29
fitting points with (ellipsoid), 37
fitting points with (oriented boxes), 29–31
fitting triangles with, 32
lozenge fit with, 34–35
mean, 29
Gaussian quadrature, 260, 495–496
general camera model, 87
generalized cylinder surface, 301–302
geographical methods, 7–77
geometric clipping, 132–133
geometric level of detail, 359–368
Glide, 138
global maximum, 377
global minimum, 49, 50, 54, 58, 69, 381
Gouraud shading, 102
Gram-Schmidt orthonormalization, 249
Graphics Gems, 5, 65, 488, 503, 504
graphics pipeline, 3, 7, 79–139
clipping and lighting, 132–137
renderer responsibilities, 79–80
grouping node, 143

H
H-adjacent triangles, 325, 326
defined, 325
vertex dependencies for, 327
Handbook of Mathematical Functions, 503
height fields, 370, 386
linear interpolation and, 398–399
from point sets, 398–409
quadratic interpolation and, 399–409
single-height, 392
subdivision, 382
from triangle meshes, 398–409
See also terrain
Hermite interpolation basis, 271
hidden surface removal, 420–424
back-to-front drawing, 420–423
front-to-back drawing, 423–424
one-dimensional, 424
hidden surface removal (continued)

See also binary space partitioning (BSP) trees

homogeneous coordinates, 9
homogeneous matrices, 9, 86
with no perspective component, 144
product of, 144
of projection, 86–87
homogeneous transformations, 9–10
product of, 9
representation, 10, 87
See also transformations
Householder transformations, 472
hyperboloids mapped to hyperbolas, 84
hyperbolic paraboloid, 305
hypotenuse, 324

I

identity matrix, 8, 19
implicit surface
application to finding principal curvatures, 292–293
curvatures for, 290–293
defined, 288
maxima of quadratic forms, 290–291
maxima of restricted quadratic forms, 291–292
See also surfaces
imposters, See sprites
infinite cylinders, 35
infinite pyramid formation, 85
infinite square column, 58
inscribed circles, 400–401
integration, 491–496
Gaussian quadrature, 260, 495–496
Romberg, 260, 491–495
See also numerical methods
intermediate tensor, 270, 302, 304
interpolation
angular cubic, 347
bilinear, 106, 397
Catmull–Rom, 271
during rasterization, 126–132
exact, 264
Hermite, 271
for lattice of control points, 302
linear, 126–129, 398–399
of location rotations, 341
perspective, 129–132
quadratic, 399–409
of quaternions, 149
spherical cubic, 345
spherical linear, 343–344
spline, 346–347
intersections
capsule and capsule (dynamic), 216, 217
capsule and capsule (static), 205
capsule and line, 190
capsule and lozenge, 205
capsule and plane, 196–197
collision detection and, 186
cylinder and line, 191
cylinder and plane, 198–200
dynamic object and line, 188–192
dynamic object and plane, 193–203
dynamic object–object, 214–243
ellipsoid and line, 191–192
ellipsoid and plane, 201–202
finding, 186
geometric, testing, 173
information about, 169–170
line segment with box, 176–177
line segment with triangle, 182–183
line with box, 179
line with triangle, 183
linear component, 171
linear component and box, 172–179
linear component and capsule, 179–180
linear component and cylinder, 181–182
linear component and ellipsoid, 182
linear component and lozenge, 180–181
linear component and triangle, 182–183
lozenge and line, 191
lozenge and lozenge, 205
lozenge and plane, 197–198
normal vector at, 170
OBB, 253
object–object, 186, 203–243
oriented box and line, 190
oriented box and oriented box (dynamic), 217–223
oriented box and oriented box (static), 205–207
oriented box and plane, 194–196
oriented box and triangle (dynamic), 223–232
oriented box and triangle (static), 207–210
point of, 170
ray and bounding volume, 170
ray and box, 177–178
ray and triangle, 182–183
sphere and capsule, 205
sphere and line, 188–189
sphere and lozenge, 205
sphere and plane, 193–194
sphere and sphere, 204
sphere, capsule, lozenge (dynamic), 215–217
sphere, capsule, lozenge (static), 204–205
static object-object, 203–214
surface attributes at, 170
testing, 170, 186
tests between bounding volumes, 188
triangle and line, 192
triangle and plane, 202–205
triangle and triangle (dynamic), 232–243
triangle and triangle (static), 210–214
types of, 186
interval
end points, 228
overlap test, 210
of uncertainty, 376
inverse kinematics, 348–356
defined, 342
numerical solution by cyclic coordinate descent, 351–356
numerical solution by Jacobian methods, 350–351
numerical solution by nonlinear optimization, 351
prismatic joint, 350
problem, 348, 349
revolute joint, 350
source code, 348
See also animation
inverse mapping, 82
inverse tangent approximations, 503–506
J
Jacobian matrix, 350
K
key frame animation, 342–347
defined, 341, 342
key frame node update, 347
quaternion calculus, 342–343
spherical cubic interpolation, 345
spherical linear interpolation, 343–344
spline interpolation of quaternions, 346–347
See also animation
key frames
defined, 341
nodes, updating, 347
kinematics
defined, 348
inverse, 348–356
Kochanek–Bartels splines, 271–276
bias, 271
continuity, 271
defined, 271
implementation of, 347
parameter examples, 273–276
source code, 271
tension, 271
See also curves
L
leaf nodes, 141, 157
OBB, 250
quadtree, 370
triangle representation by, 169
See also nodes
least-squares fit, 33, 295, 298
least-squares fitting, 472–481
 circle to 2D points, 476–478
defined, 472
 hyperplanar fitting of points using
 orthogonal regression, 473–474
 linear fitting of points, 472–473
 linear fitting of points using
 orthogonal regression, 473–474
 planar fitting of points, 474–475
 quadratic curve to 2D points, 480–481
 quadric surface to 3D points, 481
 sphere to 3D points, 478–480
See also numerical methods
least-squares line, 36
left-handed coordinate system, 10, 86
 lens flare, 427–428
level editor, 142
level of detail (LOD), 359
 continuous, 360, 362–368
 discrete, 360, 361–362
 geometric, 359–368
 nodes, 361
light equation, 104
lighting
 ambient, 102–103
 defined, 101
 diffuse, 103, 429
 dynamic, 100, 395, 396
 intensity, 102
 model, 102
 prelighting, 395
 projected, 430–431
 specular, 104
 of vertices, 132
See also attributes
lights
 attenuated with distance, 101
 directional, 100
 intensity parameter, 100
 point, 100
 sources, 100, 101
 spot, 100
line segments
 3D, 43
 axis tests, 177
 closed point to, 38
 distance to, 38
end points, 176
inside/outside face determination,
 173–174
intersection with box, 176–177
intersection with triangle, 182–183
line to, 43
midpoint, 176
parallel, 48
project to line segments, 83
rays to, 43–49
to rectangles, 60
represented as oriented boxes, 39
to segments, 43–49
separating axes, 183
to triangles, 57
uniformly spaced points on, 82
linear component to linear component,
 41–49
defined, 41
goal, 41
line to line, 42
line to ray, 43
line to segment, 43
ray to ray, 43–49
ray to segment, 43–49
segment to segment, 43–49
See also distance methods
linear component to rectangle, 58–60
defined, 58
ray to rectangle, 60
region partitioning, 58
segment to rectangle, 60
squared-distance function, 58
See also distance methods
linear component to triangle, 53–57
defined, 53
line to triangle, 54–56
ray to triangle, 57
region partitioning, 54
segment to triangle, 57
squared-distance function, 53
See also distance methods
linear components
intersection with box, 172–179
intersection with capsule, 179–180
intersection with cylinder, 181–182
intersection with ellipsoid, 182
intersection with lozenge, 180–181
intersection with sphere, 171–172
intersection with triangle, 182–183
intersections, 171
parallel to rectangle, 59
point to, 38–41
linear fitting of points, 472–474
 with orthogonal regression, 473–474
 source code, 473
See also least-squares fitting
linear fog, 109
linear interpolation, 126–129
 for continuous height, 397
 height fields and, 398–399
 implementation of, 347
 one division per edge per attribute, 130
See also interpolation
linear polynomials, 76
linear systems, 469–470
linear transformations, 8, 13–14
lines
 direction lengths, 42
 intersection of capsules and, 190
 intersection of cylinders and, 191
 intersection of dynamic objects and, 188–192
 intersection of ellipsoids and, 191–192
 intersection of lozenges and, 191
 intersection of oriented boxes and, 179, 190
 intersection of spheres and, 188–189
 intersection of triangles and, 183, 192
to lines, 42
partitioning, by capsule, 180
partitioning, by lozenge, 181
project to, 81–82
rasterizing, 113–117
to ray, 43
to segment, 43
to triangle, 54–56
link IDs, 460, 462–463
 defined, 460
 persistence of, 462
 storage of, 462, 463
list manipulator, 352–355
initial point, 352
lengths, 352
with multiple end effectors, 354–355
with one end effector, 352–354
rotate to line, 352
rotate to plane, 353
rotate to point, 352
slide to line, 354
slide to plane, 354
slide to point, 354
two-segment, 354–355
See also manipulators
loading data, 460
local control, 267
local transforms, 144–145
 defined, 144
 SRT-transform, 145
See also transforms
lozenges, 34–35
 capsule intersection with, 205
 centers, 152
culling by, 161–162
defined, 34
 dynamic, 191, 197–198
dynamic, 191
 edge directions, 191
dynamic
 edges, 35
 fit with Gaussian distribution, 34–35
 intersection of linear component and,
 180–181
 line intersection with, 191
 lozenge intersection with, 205
 minimization method, 35
 origin, 191
dynamic, 191
 parameterized rectangle, 161
 partitioning line by, 181
 plane intersection with, 197–198
 radius, 161
dynamic, 191
 rectangle corners, 197
dynamic, 191
 rectangle parameters, 35
dynamic, 191
 rectangle vertices, 152
 sphere intersection with, 205
See also 3D objects

M
macros, 450–451, 452
manipulators
 defined, 348
manipulators (continued)
 joints, optimized, 351–352
 joints, parameter restricted, 355
 linearly linked, 349
 list, 352–355
 tree, 355
 as trees of segments, 350

mapping
 bump, 429–430
 environment, 428–429
 parabolic, 429
 to screen coordinates, 89–90
 sphere, 429

masks
 region, 424
 scan line, 423–424

matrices
 2 x 2, 70, 289
 adjoint, 367
 blending, 268, 302
 companion, 487
 covariance, 29
 diagonal, 8, 67, 68
 homogeneous, 9, 86
 identity, 8, 19
 Jacobian, 350
 norm of, 487
 orientation, 286, 306
 orthonormality, 149
 quadric, 365
 rotation, 8, 15–16, 17–18, 19–24
 scaling, 8
 skew-symmetric, 8, 15
 symmetric, 8
 trace of, 16
 transpose of, 8
 zero, 8

mean curvature
 computing, 293
 defined, 290

merging
 capsules, 151
 cylinders, 152
 ellipsoids, 152
 lozenges, 151–152
 oriented boxes, 149–150
 spheres, 148–149

mesh triangles, 250
 OBB based on distribution of, 250
 submeshes, 250–251
metric tensors, 289
midpoint
 line algorithm, 117
 method, 497
subdivision, 408–409
minimization, 35, 481–485
 Brent’s method, 482
 conjugate gradient search, 483–484
 methods in many dimensions, 482–485
 methods in one dimension, 481–482
 Powell’s direction set method, 31, 484–485
source code, 481, 484
steepest descent search, 483
See also numerical methods
minimum-volume box, 31
minimum-volume OBB, 250
minimum-volume sphere, 28
mipmapping, 106–108
 defined, 106
 index, 107
 magnification factor, 107
model coordinate system, 80
model space
 clipping in, 98
 coordinate transformation to view space, 87–88
 coordinates, 93
 facet plane, 93
 transforming, to view space, 98
model-to-view transformation, 87–89
modularity, 437–439
 criteria, 437–438
 defined, 437
 open-closed principle, 438–439
morphing, 362, 433–434
 control, 434
 defined, 433
 defining, 434
 implementation, 434
 source code, 434
motion equations, 246–248
moving objects
along a curved path, 258
closed-form algorithm, 248
equations, 246–248
motion equations, 246–248
processing, 245–250
multiple-inheritance systems, 447–450
elements, 447
hierarchy illustration, 448
macros, 450–451
multiple root classes, 449
RTTI, 447
multiplication
fast, 175
floating-point, 99
quaternions, 11, 12, 13
multitextures, 108
combining, 111–112
defined, 108
See also textures

N
naming conventions, 442–443
natural splines, 266
Newton’s iteration scheme, 65, 66
Newton’s method, 486, 490
nodes
binary tree, 383
bounding volume at, 142–143
child, 141, 143
collectors, 147
defined, 141
grouping, 143
key frame, 347–348
leaf, 141, 157
level of detail (LOD), 361
OBB, 250, 252
parent, 141, 143, 417
portal, 415
region, 415
root, 141, 142, 145
switch, 361
See also scene graphs; tree
nonlinear optimization, 351
nonparametric B-spline curves, 258, 267–271
defined, 268
evaluation pseudocode, 270–271
source code, 268
See also curves
nonparametric B-spline rectangle patches, 288, 302–304
blending matrices, 302
evaluation pseudocode, 302
intermediate tensor, 302, 304
nonuniform rational B-splines (NURBS), 258
nonuniform subdivision
Bézier cylinder surfaces, 328
Bézier rectangle patches, 313–316
Bézier triangle patches, 323–328
See also subdivision
normals
at points on edges, 396
for prelighting, 396
weighted averages of, 366
numerical methods, 469–507
differential equations, 496–503
eigensystems, 472
fast function evaluation, 503–507
integration, 491–496
least-squares fitting, 472–481
minimization, 481–485
root finding, 485–490
systems of equations, 469–472

O
object culling, 91, 92
object-object intersections, 186
dynamic, 214–243
static, 203–214
object-oriented design, 441–442
object-oriented infrastructure, 435–468
run-time type information, 444–451
shared objects and reference counting, 453–459
software construction, 435
source code, 435
startup and shutdown, 464–468
streaming, 459–464
object-oriented infrastructure (continued)
 style, naming conventions, 442–444
 namespaces, 451–453
object-oriented software construction, 435–442
 functions and data, 440
 modularity, 437–439
 object orientation, 441–442
 reusability, 439–440
 software quality, 436–437
objects
 bounding volume, 92, 142
 clipped, 84
 colliding, 142
 culled, 84, 158, 160
 dynamic, 186, 188–203
 moving, 245–250, 258
 orientation on curved paths, 285–286
 rotating, processing, 245–250
 shared, 453–459
 static, 186
 top-level, 459
 unculled, 158, 160
occlusion culling, 424
octrees, 412–413
 BSP trees vs., 417
 for partitioning into cells, 412
 processing pseudocode, 413
 sorting, 413
See also quadtree(s)
opacity, 108–109
OpenGL, 138, 414
operational model, 441
optimization, nonlinear, 351
orientation
 adjacent triangle, 335
 with fixed “up” vector, 286
 with Frenet frame, 285–286
 matrix, 286, 306
 objects, on curved paths, 285–286
oriented bounding box (OBB) trees, 244–245
 application-specified maximum
 depths of traversal for, 252
 automatic generation of, 245
 collision testing between, 251
 constant linear/angular velocities and,
 244
 constructing, 250–251
 defined, 244
 dual recursion on, 251
 function, 244
 nodes, 250, 252
 root, 244
oriented bounding boxes (OBBs), 420
 algorithm based on numerical
 ordinary differential equation
 solver, 249–250
 based on distribution of mesh points,
 250
 based on distribution of mesh
 triangles, 250
 center, 247, 249
 comparison, 251
 computing, for triangle mesh, 250
 coordinate frame, 249
 equations of motion, 247–248
 intersection between, 253
 linear velocity, 249
 minimum-volume, 250
 time-varying, 247
 velocity, 250
oriented boxes, 8, 29–32
 axes, 30
 axis-aligned, 29
 center, 29, 194
 coordinate axes, 194
 culling by, 159–160
 defined, 29
 dynamic, 190, 194–196
 finding first time of intersection,
 218–219
 finding point of intersection, 219–223
 first point of contact, 195
 fitting to convex hull of vertices, 32
 fitting triangles with Gaussian
 distribution, 32
 fixed points with Gaussian
 distribution, 29–31
 line intersection with, 190
 line segment representation as, 39
 merging, 149–150
minimum-volume, 31
nonintersection test, 206, 207
oriented boxes intersection with
 (dynamic object-object), 217–223
oriented boxes intersection with
 (static object-object), 205–207
plane intersection with, 194–196
points to, 61–64
separating axes, 217–218
as shell, 62
as solid, 61
See also 3D objects
oriented boxes and triangles intersection
 additional axes, 223
 coefficients for unique points, 232, 233, 234, 235
constant velocities, 223
dynamic object-object, 223–232
finding first time intersection,
 223–227
finding point of intersection, 227–232
nonintersection test, 224, 225
projected box interval, 224
separating axes, 223
static-object-object, 207–210
See also intersections
orthogonal regression
hyperplanar fitting of points using,
 475–476
linear fitting of points using, 473–474
orthonormal transformations, 14
overshooting, 272

patches, 288
parent nodes, 143, 417
 bounding volume of, 145
 defined, 141
 multiple, 141
See also nodes
partial subdivision, 317–320
 defined, 318
 illustrated, 318, 319, 320
 with one subdividing edge, 320
 with parent’s topological constraint,
 319, 320
 with three subdividing edges, 318
 with two adjacent subdividing edges,
 319
 with two opposing subdividing edges,
 320
See also subdivision
particle systems, 432–433
patches
 Bezier rectangle, 293–297
 Bezier triangle, 297–301
 nonparametric B-spline rectangle,
 302–304
 parametric surface, 288
 rectangular, 288
 triangular, 288
See also surfaces
path controlling, 285
Pentium III CPU, 139
perspective interpolation, 129–132
 defined, 130
 depth value, 130
 one division per pixel per attribute,
 130
See also interpolation
perspective projection, 10, 80–84
 canonical model, 81
 conics project to conics, 83–84
 defined, 81
 lines project to lines, 81–82
 on view plane, 81
 triangles project to triangles, 83
Phong shading, 102
physics engines, 342
picking, 169–183
BSP tree, 425
picking (continued)
defined, 4, 169
general, 169
support for, 169–170
uses, 169
pixels
circle, draw decision, 118
decision equation, 114
drawing technique, 122–123
forming best line segment between
two points, 113
level of detail (LOD), 359
draw algorithm, 113, 117
selection based on slope, 114
selection of, 113
setting, rules for, 117
planar curves, 258–259
coordinate frame, 258
curvature, 259
defined, 258
See also curves
planar fitting of points, 474–476
with orthogonal regression, 475–476
source code, 475
See also least-squares fitting
planes
cutting, 92, 414
facet, 93
far, 85
frustum, 94, 97
intersection of capsules with, 196–197
intersection of cylinders with,
198–200
intersection of dynamic objects with,
193–203
intersection of ellipsoids with,
201–202
intersection of lozenges with, 197–198
intersection of oriented boxes with,
194–196
intersection of spheres with, 193–194
intersection of triangles with, 202–203
normal, 81
parallel, 85
union of, 305
view, 80
point lights, 100
points
2D, fitting circles to, 476–478
2D, fitting quadratic curves to,
480–481
3D, fitting quadric surface to, 481
3D, fitting spheres to, 478–480
to circle in 3D, 68–69
closest, 38, 39, 45
collision, 253–256
contact, 44, 50, 186
to circle, 296, 298
ellipses, 65–66
ellipsoids, 66
end, 43, 44, 176, 228, 238–239
eye, 80, 85
input, 89
interior, 43, 44, 50
to linear component, 38–41
minimum distance, 43, 50
on frustum side of the plane, 133–134
to oriented boxes, 61–64
to rectangles, 57–58
square distance between, on circle, 69
subdivision, 276
to triangles, 49–53
polygonal models, 287
polygons
bounding convex, 417
coincident, 420
many-sided convex, 417
sorting, 420
subpolygons, 425
tree, 358
polymorphism, 456
polynomial roots, 486–489
bounding, by derivative sequences,
487–488
bounding, by Sturm sequences,
488–489
of multiplicity larger than 1, 486
source code, 486
See also root finding
polynomial systems, 470–472
general handling of, 472
source code, 470
Index 545

portals, 413–417
 connection between regions, 414
defined, 413
 example illustration, 416
L-shaped region, 416
 nodes, 415
plane restriction, 414
 planes maintained by, 415
regions, 414–416
two, 415–414
visibility through, 414
Powell's direction set method, 31, 484–485
prelighting, 395, 396
prerendering function, 157
principal curvatures, 289
 application to finding, 292–293
defined, 289
 is 2D generalized eigenvector, 290
principal directions, 289
prismatic joint, 350
progressive meshes, 362
projected lighting, 430–431
defined, 430
 projection process, 431
texture coordinates, 431
See also special effects
projected shadows, 431–432
defined, 431
occluder, 432
 projected texture, 432
See also special effects
projection
defined, 80
 frustum, 430
homogeneous matrices projection, 86–87
 matrix specification, 86
onto view plane, 84
parallel, 84–85
perspective, 10, 80–84
projectors, 430
pseudodistance, 134

Q
 quadratic classifier, 45, 49

quadratic equations
 ellipsoid, 164, 182
general, 67
polynomial, 76
quadric surfaces, 304
second-degree, 67
 simultaneous, 471
 sphere, 171
two, solving for, 471
quadric forms
 defined, 290
 expanding, 291
 maxima of, 290–291
 restricted, maxima of, 291–292
quadric function, 56
quadric interpolation, 399–409
algorithm, 404–409
 algorithm parts, 399
 barycentric coefficients as areas, 599–400
 Bézier net construction, 399
 Bézier triangles, 401–402
derivative continuity, 403–404
derivatives, 402–403
 inscribed circles, 400–401
 local control, 399
 subdivision, 399
See also height fields; terrain
quadric error metrics, 362–364
quadric matrices, 365
quadric surfaces, 304–305
defined, 288
 one nonzero eigenvalue, 305
 quadratic equation, 304
 source code, 304
 three nonzero eigenvalues, 304–305
two nonzero eigenvalues, 305
See also surfaces
quadtree(s), 412–413
blocks, 370, 375, 385, 413
BSP trees vs., 417
defined, 370
leaf nodes, 370
for partitioning into cells, 412
processing pseudocode, 413
 recursive traversal, 386
 representation illustration, 371
quadtree(s) (continued)
 sorting, 413
 subdivision, 317
quaternion calculus, 342–343
quaternions, 11–18
 addition of, 11
 algebra, 11–13
 angle axis to, 16–17
 to angle-axis, 17
 conjugate of, 11
 conversion (angle-axis), 16–17
 conversion (rotation matrix), 17–18
 cubic interpolation of, 345
 defined, 11
 dot product of, 12
 intermediate, 346
 interpolating, 149
 log, 13
 multiplication of, 11, 12, 13
 multiplicative inverse of, 11
 norm of, 11
 relationship to rotations, 13–15
 to rotation matrix, 17
 rotation matrix to, 17–18, 150
 source code, 11
 spline interpolation of, 346–347
 subtraction of, 11
 unit, logarithm of, 12
 unit, power of, 12
queues
 circular, 386, 388
 empty, 388
 unprocessed blocks in, 388

R
 range-based fog, 109–110
rasterization, 113–132
 acceleration, 80
 circle, 117–119
 defined, 80, 113
 ellipse, 119–124
 interpolation during, 126–132
 line, 113–117
 perspective correct, 82
 triangle, 83, 124–126, 130–131
 rasterizers
 defined, 80
 inverse mapping, 83
rays
 direction, 177
 intersection with bounding volume, 170
 intersection with box, 177–178
 intersection with sphere, 172
 intersection with triangle, 182–183
 lines to, 43
 origin, 177
 to rays, 43–49
 to rectangles, 60
 to segments, 43
 to triangles, 57
rectangle mesh, 328
rectangles
 Bézier, 288
 closest point on, 57
 linear components to, 58–60
 points to, 57–58
 rays to, 60
 rectangles to, 61
 segments to, 60
 triangles to, 61
rectangular patches
 Bézier, 293–297
 defined, 288
 nonparametric B-spline, 302–304
 subdivisions of parameter space for, 307
 See also surfaces
recursion formula, 281
recursive subdivision, 284–285
reference counting, 453–459
reflection vector, 428
region masks, 424
regions, 414–416
 adjacent, 414
 bounding planes of, 415
 convex, 416
 nonconvex, 414, 416
 See also portals
rejection testing, 187
render state, 146
 defined, 143
global, 155
hierarchical maintenance of, 146
updating, 148, 155–156
renderers
building, 79
defined, 79
responsibilities, 79–80
rendering
block, 383–384
costs, 97, 98
time, 80
rendering scene graph, 157–167
algorithm, 166–167
camera click, 157
culling by capsules, 160–161
culling by cylinders, 163–164
culling by ellipsoids, 164–165
culling by lozenges, 161–162
culling by oriented boxes, 159–160
culling by spheres, 157–159
See also scene graphs
reusability, 439–440
revolute joint, 350
Richardson extrapolation, 491–493
right-handed coordinate system, 10, 68, 86
riplmaps, 108
Romberg integration, 260, 491–495
method, 494–495
Richardson extrapolation, 491–493
source code, 491
trapezoid rule, 493
See also integration
root finding, 485–490
bisection, 486, 490
methods in many dimensions, 489–490
methods in one dimension, 485–489
Newton’s method, 486, 490
polynomial roots, 486–489
See also numerical methods
root node, 141, 142
defined, 141
world transform of, 145
See also nodes
rotating objects
closed-form algorithm, 248
motion equations, 246–248
processing, 243–250
rotation, 8–9
about x-axis, 18
about y-axis, 18
about z-axis, 18
angle, 8, 14
quaternions relationship to, 13–15
unit length axis, 8
See also transformations
rotation matrix, 8, 246
about x-axis, 18
to angle-axis, 16
angle-axis to, 15–16
axes storage as columns of, 150
conversion (angle-axis), 15–16
conversion (quaternion), 17–18, 150
factoring, 19–24
in minimum-volume box, 31
to quaternion, 17–18
quaternion to, 17
Runge-Kutta fourth-order method, 498
Runge-Kutta with adaptive step, 498–499
run-time type information, 444–451
macro support, 450–451
multiple-inheritance systems, 447–450
single-inheritance systems, 444–447
See also object-oriented infrastructure
S
saving data, 459–460
scaling, 8
scan line masks, 423–424
scene graphs
colliding objects and, 142
constructing, 413
content organization, 142
defined, 142
hierarchical organization, 142
implementation, 147
management, 3, 4, 7, 79, 141–167
rendering, 157–167
subtree, 142
traversal of, 157
updating, 147–156
screen coordinates
 aspect ratio, 90
 defined, 89
 mapping to, 89–90
 transformation to, 90
screen dimensions, 89
screen space
 coordinates, 90
 data conversion to, 80
 distance measurements, 90–91
 distance threshold, 375
 linear polarization in, 129
 projected vertices in, 99
 segments, squared length of, 90–91
 transformation, 90
visibility determination method, 425
semi-infinite square column, 58
shading, 101–102
 defined, 101–102
 flat, 102
 Gouraud, 102
 models, 102
 Phong, 102
shared objects, 453–459
simplification
 block-based, 375–381
 defined, 371–372
 fine-level, 370
 vertex-based, 373–375, 385–386
sine approximations, 504–505
single-inheritance systems, 444–447
 derived classes, 447
 elements, 444
 hierarchy illustration, 445
 macros, 450–451
root class, 449
skew-symmetric matrix, 8, 15
skin, 356–357
 controller, 357
 defined, 356
skinning, 356–358
 bone hierarchy, 356
 defined, 342, 356
 progression of events, 357
source code
 axis-aligned boxes, 29
 Bézier curves, 261
 Bézier cylinder surfaces, 301
 Bézier cylinder surfaces subdivision, 328
 Bézier rectangle patches, 294
 Bézier rectangle patches subdivision, 306
 Bézier triangle patches, 297
 Bézier triangle patches subdivision, 322
billboards, 360
bisection, 486, 490
capsules, 33
circle to circle in 3D, 69
continuous level of detail (CLOD), 363
culling by capsules, 160
culling by cylinders, 163
culling by ellipsoids, 164
culling by lozenges, 161
culling by oriented boxes, 159
culling by spheres, 158
curvatures for implicit surfaces, 290
curvatures for parametric surfaces, 289
cylinders, 36
differential equations, 496
discrete level of detail, 361
smart pointers, 453
 as function parameters, 458
 reference count and, 457
 templates, 454–455
software
 commonality, 440
 maintenance, 436–437
 modularity, 437–439
 naming conventions, 442–443
 quality, 436–437
 reusability, 439–440
sorting
 defined, 411
 octree, 413
 polygons, 420
 quadtree, 413
 spatial, 411–426
SmallTalk, 441
eigensystems, 472
ellipsoids, 37
Euler angles, 18
fast function evaluation, 503
fitting circles to 2D points, 476
fitting points with Gaussian
distribution, 29
fitting quadratic curves to 2D points,
480
fitting quadric surface to 3D points,
481
fitting spheres to 3D points, 478
intersection of capsules and lines, 190
intersection of capsules and planes,
196
intersection of cylinders and lines, 191
intersection of cylinders and planes,
199
intersection of ellipsoids and lines,
192
intersection of ellipsoids and planes,
201
intersection of linear component and
box, 172
intersection of linear component and
capsule, 179
intersection of linear component and
cylinder, 181
intersection of linear component and
ellipsoid, 182
intersection of linear component and
lozenge, 180
intersection of linear component and
sphere, 171
intersection of linear component and
triangle, 182
intersection of lozenges and planes,
197
intersection of oriented boxes and
lines, 190
intersection of oriented boxes and
planes, 195
intersection of oriented boxes and
triangles (dynamic object-object),
223
intersection of oriented boxes and
triangles (static object-object), 207
intersection of oriented boxes
(dynamic object-object), 218
intersection of oriented boxes (static
object-object), 206
intersection of spheres and lines, 188
intersection of spheres and planes,
193
intersection of spheres, capsules and
lozenges (static object-object), 204
intersection of spheres, capsules,
lozenges (dynamic object-object),
215
intersection of triangles and lines, 192
intersection of triangles and planes,
202
intersection of triangles (dynamic
object-object), 232
intersection of triangles (static
object-object), 210
inverse kinematics, 348
key frame node update, 347
Kochanek-Bartels splines, 271
linear component to linear
component, 41
linear component to rectangle, 58
linear component to triangle, 53
linear fitting of points, 473
linear resampling of triangle mesh,
398
linear systems, 470
lozenges, 34
merging capsules, 151
merging cylinders, 152
merging ellipsoids, 152
merging lozenges, 152
merging oriented boxes, 149
merging spheres, 148
minimum-volume box, 31
minimum-volume sphere, 28
morphing, 434
natural splines, 264
nonparametric B-spline curves, 268
numerical ordinary differential
equation solver, 249
object-oriented infrastructure, 435
particle systems, 433
planar fitting of points, 475
source code (continued)
point to circle in 3D, 68
point to ellipse, 65
point to ellipsoid, 66
point to linear component, 38
point to quadratic curve/surface, 67
point to rectangle, 57
point to triangle, 49
polynomial roots, 486
polynomial systems, 470
quadratic resampling of triangle
mesh, 399
quadric surfaces, 304
quaternion calculus, 343
quaternions, 11
rectangle to rectangle, 61
Romberg integration, 491
scene graph rendering algorithm, 166
scene graph updating, 153
skinning, 356
sphere centered at average of points,
27
sphere containing axis-aligned box,
26
spherical cubic interpolation, 345
spherical linear interpolation, 343
spline interpolation of quaternions,
346
subdivision, 276
subdivision of spheres and ellipsoids,
329
terrain, 369
transformations, 8
triangle to rectangle, 61
triangle to triangle, 61
tube surfaces subdivision, 339
space curve, 259–260
defined, 259
Frenet frame, 259
torsion, 259
See also curves
spatial sorting, 411–426
special effects, 427–434
bump mapping, 429–430
environment mapping, 428–429
lens flare, 427–428
morphing, 433–434
particle systems, 432–433
projected lights, 430–431
projected shadows, 431–432
volumetric fogging, 430
spectral radius, 487
specular color, 102
specular light, 104
sphere mapping, 429
sphere subdivision, 328–338
algorithm, 331–339
algorithm data structures, 329–331
initial mesh, 329, 330
midpoint projection phase, 331
working set of vertices, edges,
triangles, 332
See also subdivision
spheres, 8, 26–28
bounding, computation, 26
center, 171, 188, 193
centered at average of points, 27
containing axis-aligned box, 26–27
culling by, 157–159
defined, 26
dynamic, 188–189, 193–194
exactly two, three, and four points, 28
first point of contact, 193
intersection of capsules with, 205
intersection of linear component
with, 171–172
intersection of lines with, 188–189
intersection of lozenges with, 205
intersection of planes with, 193–194
intersection of spheres with, 204
merging, 148–149
minimum-volume, 28
quadratic equation, 171
radius, 171, 188, 193
See also 3D objects
sphere-swept volumes
distance calculators relationship, 204
distance calculators relationship
(when second object moving), 215
effects of, 204
intersection of, 210–215
spherical cubic interpolation, 345
spherical linear interpolation, 343–344
boundary conditions, 344
defined, 344
derivative, 344
extra spins, 344
formula construction, 343
source code, 343
for unit quaternions, 344
spline interpolation, of quaternions, 346–347
splitting methods, 490
spot lights, 100
sprites, 360
square root/inverse square root, 503–504
squared-distance function, 49, 53, 58
SRT-transforms, 145
standard camera model, 85–87
eye point, 85
illustrated, 85
view frustum, 85–86
viewport, 85
See also camera models
startup/shutdown, 464–468
static object-object intersections, 203–214
defined, 203–204
oriented boxes, 205–207
oriented boxes and triangles, 207–210
spheres, capsules, lozenges, 204–205
triangles, 210–214
See also intersections
steady-state distribution of heat, 502
steepest descent search, 483
stencil buffer, 432
stitching process, 393
streaming, 459–464
defined, 459
loading data, 460
saving data, 459–460
support, 461–464
See also object-oriented infrastructure
Sturm sequences, 488–489
subdivision, 276–285
by arc length, 276–277
of Bézier cylinder surfaces, 328
of Bézier rectangle patches, 306–321
of Bézier triangle patches, 321–328
of child blocks, 318
with cracking, 316, 318
defined, 276
of ellipsoids, 328–338
fast, for cubic curves, 283–285
height fields, 382
by midpoint distance, 277–278
by minimizing variation, 282–283
nonuniform, 313–316
partial, 317–320
points, 276
of polyhedron, 329
quadtree, 317
recursive, 284–285
source code, 276
of spheres, 328–338
triangle, 405
of tube surfaces, 339–340
by uniform sampling, 276, 277
uniform, 306–313
by variation, 278–282, 284
See also curves
sublattice calculations, 397
subtraction, quaternions, 11
subtrees, 142
subtriangles, 406, 409
surface area, 288
surface attributes, 99–112
defined, 99
at intersection, 170
selecting, 366–368
See also attributes
surfaces, 287–340
Bézier cylinder, 288, 301–302
Bézier rectangle patches, 293–297
Bézier triangle patches, 297–301
curved, 258, 287
cylinder, 301
definitions, 288–289
developable, 301
generalized cylinder, 301–302
implicit, 288, 290–293
parametric, 289–290
quadric, 288, 304–305
rectangular patches, 288
of revolution, 306
special, 293–306
swept, 306
triangular patches, 288
surfaces (continued)
tube, 288, 306
swept surfaces, 306
switch node, 361
systems of equations, 469–472
 linear systems, 469–470
 polynomial systems, 470–472
 See also numerical methods

T
tangent approximations, 505
Taylor series, 284
templates, 451–453
 defined, 451
 example, 451
 smart pointer system, 454–455
 uses, 452–453
 using, 451–452
 See also object-oriented infrastructure
temporary instances, 458–459
terrain, 369–409
 algorithm, 385–392
 block rendering, 383–384
 continuous height, 397
data, 369
 height calculations, 397
 height field, 370, 386, 392
 issues, 392–397
 memory usage problem, 394–395
 primitive blocks, 370
 source code, 369
 systems, 369, 392
topology, 370–373
 vertex attributes, 395–396
 vertex dependencies, 381–383
 See also blocks
terrain pages
 defined, 393
 memory usage, 394–395
predictive loading, 394
problems, 393
stitching process, 393
unstitching process, 393, 394
working set, 394

tessellation, 392
texels
 defined, 105
 value selection, 107–108
texture coordinates, 105
 defined, 105
 lattice point, computing, 106
 mixed, 105
 modes, 105
 wrapped, 105
textures, 105–108
 boundaries, hiding, 105
cylindrical, 105
 defined, 105
 filtering, 106
 mipmapping, 106–108
 multitexture, 108, 111–112
toroidal, 105
 vertex colors combination, 111
 See also attributes
top-level objects, 459
torsion, 259
transformations, 7, 8–10
 homogeneous, 9–10, 87
 Householder, 472
 linear, 8, 13–14
 model-to-view, 87–89
 orthonormal, 14
 rotation, 8–9
 scaling, 8
 to screen coordinates, 90
 screen space, 90
 source code, 8
 translation, 9
view, 87
 transforms, 144–145
 defined, 143
 local, 144–145
 SRT, 145
 updating, 147
 world, 145
translation, 9
transparency, 108–109
 controlling, 108
 fog and, 111
trapezoid rule, 493
tree generation algorithm, 250–251
tree manipulator, 355
tree polygons, 358
trees, 143–147
 binary, 393
 bounding volume, 426
 BSP, 417–426
 defined, 141
 illustration, 143
 nodes, 141
OBB, 244–245
subtrees, 142
vertex dependency, 388
visibility, 425
world, 245
triangle meshes, 132–133, 250–251
 clipping with, 133–136
 defined, 132
 height fields from, 398–409
 linear resampling of, 398–399
 quadratic resampling of, 399–409
 vertices storage, 132
triangle patches
 Bézier, 297–301
 defined, 288
 parameter space subdivision, 322
 See also surfaces
triangles
 adjacent, 335–337, 401
 back facing, 93
 Bézier, 401–402
 clipped, configurations, 135
 coefficient, 297
 coplanar, 211
 domain edges, 50
 dynamic, 192, 202–203
 fitting, with Gaussian distribution, 32
 front facing, 93
 H-adjacency for, 325, 326
 hypotenuse, 324
 inside/outside of frustum, 93
 intersection of line and, 183
 intersection of line segment and,
 182–183
 intersection of linear component and,
 182–183
 intersection of ray and, 182–183
 interval overlap test, 210
 leaf node representation, 169
 line intersection with, 192
 linear components to, 53–57
 lines to, 54–56
 mesh, 250
 nonintersection test, 208, 209–210,
 213–214
 nonparallel, 211
 normal vector, 93
 normals, 211
 oriented boxes intersection of oriented
 boxes and, 207–210
 plane intersection with, 202–203
 points to, 49–53
 project to triangles, 83
 projections of vertices relative to line
 origin, 208
 rasterization, 83, 124–126, 130–131
 rasterized, 100
 rays to, 57
 to rectangles, 61
 segments to, 57
 separating axes, 207–209, 211–212
 splitting configurations, 94
 subdivision, 324, 405
 subdivision pattern, 327
 subtriangles, 406, 409
 in three dimensions, 210
 to triangles, 61
 vertices, 192
 vertices, projection distances, 211, 231
 as white object on black background,
 124
triangles and triangles intersection
 additional axes, 232
 coefficients for unique points, 243
 constant velocities, 233
 dynamic object-object, 232–243
 finding a point of intersection,
 238–243
 finding first time of intersection,
 233–238
 interval end points, 238–239
 relative velocities, 233
 separating axes, 232
 static object-object, 210–214
 vertices projection, 239, 240, 242
 See also intersections
tube surfaces, 306
 defined, 288, 306
parameter space, 339
subdivision, 339–340
tessellation of, 339
See also surfaces

U
unconstrained recursion, 314–315
undershooting, 272
uniform scaling, 8
uniform subdivision, 276, 277
 Bézier cylinder surfaces, 328
 Bézier rectangle patches, 306–313
 Bézier triangle patches, 322–323
 recursive, 310–313
See also subdivision
unstitching process, 393, 394
updating
 animation, 148
 bounding volumes, 147
 child nodes, 155
 key frame nodes, 347
 render state, 148, 155–156
 scene graphs, 147–156
 transforms, 147
 vertex dependencies, 388
world transforms, 155
updated scene graph, 147–156
algorithm, 152–156
animation state, 148
bounding volumes, 147
downward pass, 147, 155
merging two capsules, 151
merging two cylinders, 152
merging two ellipsoids, 152
merging two lozenges, 151–152
merging two oriented boxes, 149–150
merging two spheres, 148–149
recursive pass, 147
render state, 148
transforms, 147
upward pass, 147–148
See also scene graphs

V
vertex attributes, 99–112
 computing, 136–137
 defined, 99
 terrain, 395–396
See also attributes
vertex clustering, 363
vertex color, 99–100
 defined, 99
 texture combination, 111
 use of, 100
See also attributes
vertex dependencies, 317, 381–383
 binary tree, 383
 for even/odd blocks, 382
 for H-adjacent triangles, 327
 triangulation after, 382
 updating, 388
vertex-based simplification, 373–375, 385–386
 close terrain assumption, 374–375
 defined, 373
 distant terrain assumption, 373–374
 no assumption, 375
See also simplification
view frustum
 bounding volume intersection with, 92, 157
 clipping against, 173
 defined, 85
 defining, 157
 skewed, 85–86
 standard camera model, 85–86
 world, 157
view plane
 computation cost, 97
 defined, 80
 display, 84
 fixed, 81
 perspective projection on, 81
 projection onto, 84
view space, 79–80
 clipping in, 98–99
 data conversion from, 80
model space coordinate
 transformation to, 87–88
 transforming model space to, 98
transforming world space to, 97
visibility determination method, 425
view transformation, 87
view volume, 84
viewport, 85
defined, 84
standard camera model, 85
visibility
flags, 134
graphs, 412
lists, 413
through portals, 414
tree, 425
visibility determination, 424–425
defined, 424
screen space method, 425
view space method, 425
See also binary space partitioning (BSP) trees
visitation flag, 416
volumetric fogging, 110, 430
VTune, 139

W
world coordinate system, 80
world plane, 97
world space
clipping in, 97
transforming, to view space, 97
world transforms, 145
defined, 145
downward recursive transversal and, 146
of root node, 145
updating, 155
See also transforms
world tree, 425

Z
z-buffers, 412
zero matrix, 8
About the Author

David Eberly is the President of Magic Software, Inc. (www.magic-software.com), a company known for its Web site that offers free source code and documentation for computer graphics, image analysis, and numerical methods. Previously he was the Director of Engineering at Numerical Design Limited, the company responsible for the real-time 3D game engine, NetImmerse. His background includes a B.A. degree in mathematics from Bloomsburg University, M.S. and Ph.D. degrees in mathematics from the University of Colorado at Boulder, and M.S. and Ph.D. degrees in computer science from the University of North Carolina at Chapel Hill. He is co-author with Philip Schneider of the forthcoming Geometry Tools for Computer Graphics, to be published by Morgan Kaufmann.

As a mathematician, Dave did research in the mathematics of combustion, signal and image processing, and length-biased distributions in statistics. He was a research associate professor at the University of Texas at San Antonio with an adjunct appointment in radiology at the U.T. Health Science Center at San Antonio. In 1991 he gave up his tenured position to retrain in computer science at the University of North Carolina. During his stay at U.N.C., MAGIC (My Alternate Graphics and Image Code) was born as an attempt to provide an easy-to-use set of libraries for image analysis. Since its beginnings in 1991, MAGIC has continually evolved into the "net library" that it currently is, now managed by the company Magic Software, Inc. After graduating in 1994, he remained for one year as a research associate professor in computer science with a joint appointment in the Department of Neurosurgery working in medical image analysis. His next stop was the SAS Institute working for a year on SAS/Insight, a statistical graphics package. Finally, deciding that computer graphics and geometry were his real calling, Dave went to work for Numerical Design Limited, then later to Magic Software, Inc. Dave's participation in the newsgroup comp.graphics.algorithms and his desire to make 3D graphics technology available to all are what has led to the creation of this book. The evolution of Magic will continue and the technology transfer is not yet over.
ABOUT THE CD-ROM

Contents of the CD-ROM

The accompanying CD-ROM contains source code that illustrates the ideas in the book. A partial listing of the directory structure is

/WildMagic 0.4
\LinuxReadMe.txt
\WindowsReadMe.txt
\Linux
 \WildMagic
 \Applications
 \Include
 \Library
 \Licenses
 \Object
 \SourceFree
 \SourceGameEngine
\Windows
 \WildMagic
 \Applications
 \Include
 \Library
 \Licenses
 \SourceFree
 \SourceGameEngine
 \Tools

The read-me files contain the installation instructions and other notes. The path Windows/WildMagic contains the distribution for use on a computer whose operating system is one of Windows 95, Windows 98, Windows NT, or Windows 2000. The path Linux/WildMagic contains the distribution for use on a computer whose operating system is Linux. Compiled source code is already on the CD-ROM. The application directories, located in Applications, contain compiled executables that are ready to run.

The distributions are nearly identical. The Windows text files have lines that are terminated by carriage return and line feed pairs whereas the Linux text files are terminated by line feeds. The Windows distribution contains an OpenGL renderer and a Win32 application layer, both dependant on the operating system. The Windows distribution also has a rudimentary software renderer and it has a tool for converting bitmap (*.bmp) files to Magic image files (*.mif). Both the Windows and Linux distributions contain an OpenGL renderer and an application layer that is dependent on GLUT. The Windows code is supplied with Microsoft Developer Studio Projects
(*.dsp) and Microsoft Developer Studio Workspaces (*.dsw). The Linux code is supplied with make files. The other portions of the distributions are the same.

License Agreements

Each source file has a preamble stating which of two license agreements governs the use of that file. The license agreements are located in the directory Licenses. The source code in the path SourceGameEngine is governed by the license agreement Licenses/3DGameEngine.pdf. The remaining source code is governed by the license agreement Licenses/free.pdf. All source code may be used for commercial or noncommercial purposes subject to the constraints given in the license agreements.

Installation on a Windows System

These directions assume that the CD-ROM drive is drive D and the disk drive to which the contents are to be copied is drive C. Of course you will need to substitute the drive letters that your system is using. Copy the CD-ROM subtree D:\Wild Magic 0.4\Windows\WildMagic to C:\SomePath\WildMagic. Since the files are copied as read-only, execute the following two commands, in order, from a command window: cd C:\SomePath\WildMagic and attrib -r *..* /s. The distribution comes precompiled, but if you want to rebuild it, open the workspace C:\SomePath\BuildAll.dsw and select the BuildAll project (the default one that shows up in the project list box is BzierSurface). Build both the Debug and Release configurations. This builds the SourceFree, SourceGameEngine, and Application source trees, in that order. Each of the directories SourceFree, SourceGameEngine, and Applications has a top level workspace to build only those pieces.

Installation on a Linux System

Mount the CD-ROM drive by: mount -t iso9660 /dev/cdrom /mnt. If your desired top level directory is /HomeDirectory/SomePath (substitute the actual path to your home directory), and if your current working directory is /HomeDirectory/SomePath then use cp "*/mnt/Wild Magic 0.4/Linux/WildMagic" -r . to generate the source tree /HomeDirectory/SomePath/WildMagic. Note that "*" is the last argument of "cp". Since the files are copied as read-only, execute the following two commands, in order, (assumes your current working directory is still /HomeDirectory/SomePath): cd WildMagic and chmod a+rwx -R *. The distribution comes precompiled, but if you want to rebuild it, run make on the makefile in the WildMagic subdirectory. Build the Debug configuration by make CONFIG=Debug and the Release configuration by make CONFIG=Release. Each of the directories SourceFree, SourceGameEngine, and Applications has a top-level makefile to build only those pieces.

You need some form of OpenGL and GLUT on your machine. I downloaded Mesa packages from the Red Hat site, Mesa-3.2-2.1.686.rpm, Mesa-devel-3.202.1.686.rpm, and Mesa-glut-3.1-1.1.686.rpm, and used the Gnome RPM tool to install them. I told the tool to ignore the fact that GLUT is 3.1 and Mesa is 3.2. The installation puts the libraries in /usr/X11R6/lib and the headers in /usr/X11R6/include. The makefiles for applications use the libraries 11bGL.1a, 11bGLU.1a, and 11bglut.1a.
TRADEMARKS

The following trademarks, mentioned in this book and the accompanying CD-ROM, are the property of the following organizations.

- K6 is a trademark of Advanced Micro Devices, Inc.
- Macintosh is a trademark of Apple Corporation.
- Myst is a trademark of Cyan, Inc.
- Pentium II, Pentium III, and VTune are trademarks of Intel Corporation.
- DirectX, Direct3D, Visual C++, Windows, and X-Box are trademarks of Microsoft Corporation.
- Prince of Persia 3D is a trademark of Brøderbund Software, Inc.
- Dolphin is a trademark of Nintendo Corporation.
- BoundsChecker is a trademark of NuMega Technologies, Inc.
- NetImmerse is a trademark of Numerical Design, Ltd.
- GeForce, TNT, and TNT2 are trademarks of nVidia Corporation.
- Eclipse is a trademark of Random Games.
- Dreamcast is a trademark of Sega Enterprise, Ltd.
- OpenGL is a trademark of Silicon Graphics, Inc.
- Playstation2 is a trademark of Sony Computer Entertainment, Inc.
- Glide is a trademark of 3Dfx Interactive, Inc.

All other product names are trademarks or registered trademarks of their respective companies. Where trademarks appear in this book and Morgan Kaufmann Publishers was aware of a trademark claim, the trademarks have been printed in initial caps or all caps.
Libraries on the CD-ROM
(alphabetical order, related chapters and sections)

Animation (9): Key frame animation, inverse kinematics, skin and bones.

Application: Application layer that hides the underlying operating system, command line parsing, binding of keyboard to changing a transformation.

Approximation (15.3): Fitting of point sets with circles, ellipses, ellipsoids, Gaussian distributions, lines, planes, paraboloids, quadratic curves, quadratic surfaces, spheres.

Containment (2.4, 6.7): Bounding volume trees (box, capsule, lozenge, sphere), containment by circles, boxes, capsules, cylinders, ellipsoids, lozenges, spheres.

Core (2.1, 2.2, 2.3, 2.4): Geometric objects (box, capsule, circle, cylinder, disk, ellipse, ellipsoid, line, lozenge, parallelogram, plane, ray, rectangle, segment, sphere), vector and matrix algebra, quaternions, polynomials, colors, strings, template container classes.

Curve (7): Abstract curve class (position, derivatives, tangents, speed, arc length, reparameterization by arc length, subdivision algorithms), 2D curves (curvature, normals), 3D curves (curvature, torsion, normals, binormals), polynomial curves, Bézier curves, B-spline curves, cubic spline curves, tension-bias-continuity curves.

Detail (10): Discrete level of detail, continuous level of detail.

Distance (2.5): Distance between pairs of objects of type point, segment, ray, line, triangle, rectangle, parallelogram, ellipse, ellipsoid, quadratic curve, quadratic surface.

Engine (3.1, 3.2, 3.3, 3.4.1, 4, Appendix A): Scene graph management (tree structures, internal nodes, abstract leaf node, abstract geometric leaf node, point primitives [particles], line primitives [polylines], triangle primitives [meshes], bounding spheres, render state [alpha blending, dithering, fog, lighting, material, shading, texturing, multitexturing, wireframe, z-buffering], abstract renderer layer, camera and view frustum, object-oriented infrastructure (abstract object base class, run-time type information, streaming, smart pointers for reference counting, cloning for mixed shallow-deep copying of objects, controllers for time-varying quantities).

Intersection (4.3, 5, 6): Picking (segment, ray, line versus box, capsule, cylinder, ellipsoid, lozenge, sphere, triangle), culling (plane versus box, capsule, cylinder, ellipsoid, lozenge, plane, sphere), collision (box, capsule, lozenge, sphere, triangle).

Numerics (Appendix B): root finding via bisection, eigensolver for symmetric matrices, fast function evaluation, integration, linear system solving, systems of ordinary differential equations (Euler, midpoint, Runge-Kutta), minimization without derivative calculations, special functions.

OglRenderer (3): OpenGL-based renderer (supports hardware acceleration).

Sorting (12): Portals, BSP trees.

Surface (8): Abstract surface class (metric tensor, curvature tensor, principal curvatures and directions), parametric surfaces (position, derivatives, tangents, normals), implicit surfaces, polynomial surfaces.

Terrain (11): Continuous level of detail for height fields.
LIBRARY DEPENDENCIES

Animation Detail OglRenderer Soft Renderer Sorting Terrain

Engine Intersection

Application Core Distance

Numerics

Curve Surface Containment Approxiation
Plate 1 The images are screen shots from the Surface Sample, courtesy of Numerical Design, Ltd. The top image is a rendering of a creature built as a mesh of Bézier triangle and rectangle patches. The tessellation is based on uniform sampling in parameter space. The bottom image is a wireframe view to show that the tessellation is independent of the mesh curvature.

Plate 2 The images are screen shots from the Surface Sample, courtesy of Numerical Design, Ltd. The top image is a rendering of a creature built as a mesh of Bézier triangle and rectangle patches. The tessellation is based on a continuous level of detail algorithm that depends on mesh curvature and view frustum parameters. The bottom image is a wireframe view to show that the tessellation is dependent on the mesh curvature (low tessellation in flat regions, high tessellation in curved regions).
The images are screen shots from the Dancer Demo, courtesy of Numerical Design, Ltd. See page 357 for detailed comments.
Plate 4

The images are screen shots from the Eclipse Demo, courtesy of Random Games. See page 358 for detailed comments.
Plate 5 The images are screen shots from the Terrain Flyer Demo, courtesy of Numerical Design, Ltd. See page 392 for detailed comments.

Plate 6 The images are screen shots from the Priority 12 Demo, courtesy of Numerical Design, Ltd. The images are taken at two separate times and show how the direction of the flare changes. The flare was generated by using five alpha-blended grayscale textures.
Plate 7 The words "EMBOSS TEXT" were generated as white letters on a black background. To generate a derivative-style bump map, the directional derivative of the white-on-black image was computed in the direction (2,1) and added back to the original image, a process called image sharpening. The values of the sharpened image were used to control the color that was applied to the text.

Plate 8 The image is a screen shot from the Explosion Demo, courtesy of Numerical Design, Ltd. The volumetric fog layer is generated by the intersections of rays from the eye point to terrain vertices with a slab of finite thickness but infinite extent.
Plate 9

The image is a screen shot from the Advanced Multitexture Sample, courtesy of Numerical Design, Ltd. See page 432 for detailed comments.

Plate 10

The image is a screen shot from the Eclipse Demo, courtesy of Random Games. See page 433 for detailed comments.
Plate 11

The images are screen shots from the Eclipse Demo, courtesy of Random Games. See page 433 for detailed comments.
Plate 12 The images show various time samples of a morphed face. The data set consists of five targets, each having 1330 vertices, leading to 1330 sets of five vertices. At a selected time each set of vertices is blended using a set of convex weights to generate an output vertex for that time. Initially, the first few targets have the most weight in the morph. Later, the last few targets have the most weight.