The Gyroscope Demystified - How It Works

© Copyright 2001 Darel Rex Finley. All rights reserved. This article, with illustrations and copyright notice intact, may be freely distributed for educational purposes.

Why does a spinning object "want" to maintain its angular orientation? Many physics texts fail to explain this, and instead simply assert that it happens and you should accept it. But that always left me hungry for a real explanation. Here it is:

As expected, the disc tilts around its center, easily changing angular orientation.

Now we get the disc spinning at a high rate, and do the same experiment again. This time the whole disc moves down, without changing orientation, even though we pushed it near the edge. How did it do that?

Now let's do the experiments again, but this time use a red marking pen. Unlike your finger, the marker leaves red ink wherever it pushes an object.

Hey, that wasn't so mysterious after all, was it!

Gyroscope links:

How Stuff Works -- How Gyroscopes Work Gyroscopes As Propulsion Devices
 How A Gyroscope Works
 Operation Of A Gyroscope
 The Sperry Gyroscope

Other tutorial pages of mine:

Osmosis Demystified - How It Works
Third-Polarizing-Filter Experiment Demystified - How It Works

Determining Whether A Point Is Inside A Complex Polygon
 Lightsaber Rotoscoping In A Premiere Filmstrip Naboo Ship Bluescreening With Photoshop and Premiere

Reciprocal Links:

Ben Best's Science Pages

