Visual C 21?;5

Er e Wellis LT |_ AN I HILF

=B 5
KO Formal TRAINING in e
Visual Ci 2005 NEEDED! - ==

~ i -
ots of EXAMPLES illustrating]
application of CONCEFTS

8
Concise and thorough with
MINIMAL JARGON

8
Complete with chapter-ending
guizees and a FINAL EXAM

i'E._-i Jeff Kent B

Nesct b |

Visual c}ﬁj Visual C# 2005 Demystified
by Jeff Kent

McGraw-Hill/Osborne © 2006 (352 pages)
ISBN:0072261706

- 4 Simple enough for a beginner, but challenging enough for an advanced student, this book provides an effective, and
B illuminating way to learn to use this versatile programming language in the new release of its integrated development
environment.

Table of Contents

Visual C# 2005 Demystified

Introduction

Chapter 1

Getting Started with Your First Windows Program
Chapter 2

Writing Your First Code
Chapter 3

Controls

Chapter 4

Storing Information—Data Types and Variables
Chapter 5

Letting the Program Do the Math—Arithmetic Operators
Chapter 6

Making Comparisons—Comparison and Logical Operators
Chapter 7

Making Choices—If and Switch Control Structures
Chapter 8

Repeating Yourself—Loops and Arrays
Chapter 9

Organizing Your Code with Methods
Chapter 10

Helper Forms

Chapter 11

Menus
Chapter 12

Toolbars
Chapter 13

Accessing Text Files
Chapter 14

Databases
Chapter 15

Web Applications
Final Exam
Answers

Next k

4 Frevious

Mext b
2 Visual C# 2005 Demystified
I

Visual cﬁs Visual C# 2005 Demystified

by Jeff Kent
- = | McGraw-Hill/Osborne © 2006
=

Visual C# 2005
Demystified

JEFF KENT

The McGraw-Hill companies

McGraw-Hill

New York, Chicago, San Francisco, Lisbon, London, Madrid,
Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore
Sydney Toronto

McGraw-Hill

2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions,
premiums, or fund-raisers, please contact McGraw-Hill at the
above address.

Copyright © 2006 by The McGraw-Hill Companies.

All rights reserved. Printed in the United States of America. Except
as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the
prior written permission of publisher, with the exception that the
program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

1234567890 CUS CUS 0198765
ISBN 0-07-226170-6

Acquisitions Editor
Wendy Rinaldi

Project Editor
Samik Roy Chowdhury (Sam)

Acquisitions Coordinator
Alexander McDonald

Technical Editor
Ron Petrusha

Copy Editor
Bart Reed

Proofreader
Debbie Liehs

Indexer
WordCo Indexing Services

Composition
International Typesetting and Composition

lllustration
International Typesetting and Composition

Cover Series Design
Margaret Webster-Shapiro

Cover lllustration
Lance Lekander

This book was composed with Adobe® InDesign® CS Mac.

Information has been obtained by McGraw-Hill from sources
believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill , or
others, McGraw-Hill does not guarantee the accuracy, adequacy,
or completeness of any information and is not responsible for any
errors or omissions or the results obtained from the use of such
information.

About the Author

Jeff Kent is an Associate Professor of Computer Science at Los
Angeles Valley College in Valley Glen, California. He teaches a
number of programming languages, including C#, Visual Basic,
C++, Java, and—when he's feeling masochistic—Assembler. He

also manages a network for a Los Angeles law firm whose
employees are guinea pigs for his applications, and as an attorney
gives advice to young attorneys whether they want to hear it or
not. He also has written several books on computer programming,
recently Visual Basic. NET: A Beginner's Guide and C++
Demystified for McGraw-Hill, and wrote Visual Basic 2005
Demystified concurrently with this book.

Jeff has had a varied career—or careers. He graduated from
UCLA with a Bachelor of Science degree in economics and then
went on to obtain a Juris Doctor degree from Loyola (Los Angeles)
School of Law and to practice law. During this time, when

personal computers were still a gleam in Bill Gates's eye, Jeff was
also a professional chess master, earning a third place finish in
the United States Under-21 Championship and, later, an
international title.

Jeff does find time to spend with his wife, Devvie, which is not
difficult since she is also a computer science professor at Valley
College. In addition to his other career pursuits, he has a part-time
job as personal chauffeur for his teenage daughter Emily (his
older daughter Elise now has her own driver's license), and what
little spare time he has, he enjoys watching international chess
tournaments on the Internet. His goal is to resume running
marathons, since otherwise, given his losing battle to lose weight,
his next book may be Sumo Wrestling Demystified.

I would like to dedicate this book to the two most important women
in my life, my mom, Beatrice Baumgarten Kent, who gave up her
career as a chemist for the even more important career of a mom;
and my wife, Devvie Schneider Kent, who, in addition to being my
best friend and lover, also is the #1 expert in C# at our home.

Acknowledgments

It seems obligatory in acknowledgments for authors to thank their
publishers (especially if they want to write for them again), but |
really mean it. This is my sixth book for McGraw-Hill, and | hope
there will be many more. It truly is a pleasure to work with
professionals who are nice people as well as very good at what
they do (even when what they are very good at is keeping
accurate track of the deadlines | miss).

| first want to thank Wendy Rinaldi, who got me started with
McGraw-Hill back in 1998 (has it been that long?). Wendy was

also my first acquisitions editor. She has since received several
well-deserved promotions, but is still my acquisitions editor.
Indeed, this book was launched through a telephone call with
Wendy at the end of a vacation with my wife Devvie, who, being in
earshot, and with an are-you-insane tone in her voice, asked
incredulously "You're writing another book?" | replied, "Of course
not, honey ... " She interjected, "That's a relief!" | then continued,
"... I'm writing two books. " (I wrote Visual Basic 2005 Demystified
concurrently with this book).

I must also thank my Acquisitions Coordinator, Alexander
McDonald, and my Project Editor, Samik Roy Chowdhury (Sam).
Both were unfailingly helpful and patient, while still keeping me on
track in this deadline sensitive business (e.g., I'm so sorry you
broke both your arms and legs; you'll still have the next chapter
turned in by this Friday, right?").

Bart Reed did the copyediting. He was kind about my obvious
failure during my school days to pay attention to my grammar
lessons. He improved what | wrote while still keeping it in my
words (that way if something is wrong it is still my fault).

Ron Petrusha was my technical editor. Ron's suggestions were
quite helpful and added a lot of value to this book.

There were many other talented people working behind the
scenes who also helped get this book out to press, and as in an
Academy Award speech, | can't list them all. That doesn't mean |
don't appreciate all their hard work, because | do.

| truly thank my wife Devvie, who in addition to being my wife, best
friend (maybe my only one), and partner (I'm leaving out lover
because computer programmers aren't supposed to be interested
in such things), tolerated my incessant muttering about
unreasonable chapter deadlines and merciless editors (sorry,
Alex) while excusing myself from what she wanted to do (or
wanted me to do). Similarly, | would like to give thanks to my
daughters Elise and Emily and my mom, Bea Kent, for tolerating
my absent-mindedness while | was preoccupied with
unreasonable chapter deadlines and merciless editors (starting to
notice a pattern here?). | also should thank my family in advance
for not having me committed when | talk about writing my next
book.

4 Previous

Next k

4 Previous

Introduction

One of my favorite movie lines is in Rocky Ill when Mr. T
(playing a boxer called Clubber Lang), who had beaten up
Rocky badly in their first fight, says before their rematch, "Fool,
you never should have come back."

Visual Studio must be saying this to me. A few years ago |
wrote a book, Visual Basic .NET: A Beginner's Guide, timed to
be on the bookshelves for the release of Visual Basic. NET, a
component of Visual Studio NET. Writing such a "day and date"
book is added pressure, especially given that Microsoft is
famous (or infamous) for last-minute changes from their most
recent beta.

I must have a short memory or be a slow learner. With the next
major change in Visual Studio, version 2005, here | go again
writing another "day and date" book (actually two of them, as
mentioned later).

Why did | Write This Book?

Given my griping about writing another "day and date" book,
you may legitimately wonder why | wrote this book. | assure you
that the reason was not because | thought it would get me
riches, fame, or beautiful women. | may be misguided, but I'm
not completely delusional or, in the case of my wife's reaction to
the beautiful women part, suicidal.

To be sure, there likely will be many introductory-level books on
Visual C# 2005. Nevertheless, | wrote this book because |
believe | bring a different and, | hope, valuable perspective.

As you may know from my author biography, | teach computer
science at Los Angeles Valley College, a community college in
the San Fernando Valley area of Los Angeles, where | grew up
and have lived most of my life. | also write computer programs,
but teaching programming has provided me with insights into
how students learn that | could never obtain from just writing
programs. These insights are gained not just from answering
student questions during lectures. | spend hours each week in
our college's computer lab helping students with their programs,

HNext b

and more hours each week reviewing and grading their
assignments. Patterns emerge regarding which teaching
methods work and which don't, the order in which to introduce
programming topics, the level of difficulty at which to introduce a
new topic, and so on. | joke with my students that they are my
beta testers in my neverending attempt to become a better
teacher, but there is much truth in that joke.

Additionally, my beta testers... err, students, seem to complain
about the textbook no matter which book | adopt. Many ask me
why | don't write a book they could use to learn C#. They may
be saying this to flatter me (I'm not saying it doesn't work), or for
the more sinister reason that they will be able to blame the
teacher for a poor book as well as poor instruction.
Nevertheless, having written other books, these questions
planted in my mind the idea of writing a book that, in addition to
being sold to the general public, also could be used as a
supplement to a textbook.

4 Previous

Next k

4 Previous MNest b

Who should Read This Book

Anyone who will pay for it! Just kidding, although no buyers will
be turned away.

It is hardly news that publishers and authors want the largest
possible audience for their books. Therefore, this section of the
introduction usually tells you this book is for you, whoever you
may be and whatever you do. However, no programming book
is for everyone. For example, if you exclusively create game
programs using Java, this book may not be for you (though
being a community college teacher | may be your next customer
if you create a space beasts vs. community college
administrators game).

Although this book of course is not for everyone, it very well
may be for you. Many people need or want to learn C#, either
as part of a degree program, job training, or even a hobby.
Unfortunately, many books don't make learning C# any easier,
throwing at you a veritable telephone book of complexity and
jargon. By contrast, this book, as its title suggests, is designed
to "demystify" C#. Therefore, it goes straight to the core
concepts and explains them in logical order and in plain English.
4 Frewious MNaxt k

4 Previous

What This Book Covers

| strongly believe that the best way to learn programming is to
write programs. The concepts covered by the chapters in this
book are illustrated by programs you can write using tested and
thoroughly explained code. You can run this code yourself and
also use it as the basis for writing further programs that expand
on the covered concepts.

Because, in my opinion, the best way to learn programming is to
write programs, the first part of this book is designed to get you
up and running with Visual C# 2005. Chapter 1 is titled "Getting
Started with Your First Windows Program.” The first step in
programming in Visual C# 2005 is to obtain and install it. This
chapter advises you how. The chapter then shows you how you
can create your first Visual C# 2005 project. This chapter
concludes by explaining core concepts such as what a
computer program is, what a programming language is, and
how your code is translated for the computer.

Chapter 1 shows you how to create a working Windows
application without having to write any code. However, you will
need to write code for even the simplest program. Therefore,
Chapter 2, "Writing Your First Code," is about just that. This
chapter explains key programming concepts, such as classes,
objects, and properties, as well as gives you a tour of the Visual
C# 2005 Integrated Development Environment (IDE). The
chapter then describes the event-driven nature of a Windows
application. The chapter finally shows you how to put this theory
into practice by creating an event procedure.

Chapters 1 and 2 focus on the form, perhaps the most
important part of a Windows application's graphical user
interface (GUI). However, a form cannot possibly meet all the
requirements of a Windows application. For example, the form
does not have the functionality to permit the typing of text, listing
of data, selecting of choices, and so forth. You need other,
specialized controls for that additional functionality. Indeed, the
form's primary role is to serve as a host, or container, for other
controls that enrich the GUI of Windows applications, such as
menus, toolbars, buttons, text boxes, and list boxes. Chapter 3,

HNext b

titled "Controls," explains how to add controls to your form and
manipulate their properties. This chapter then uses a project to
demonstrate how you can use a control's events in an
application.

Now that you are up and running with Visual C# 2005, the next
part of this book covers the building blocks of your
programs—variables, data types and operators—starting with
Chapter 4, "Storing Information—Data Types and Variables."
Most computer programs store information, or data. Data comes
in different varieties, such as numeric or text. The type of
information, whether numeric, text, or Boolean, is referred to as
the data type, and often is stored in a variable, which not only
reserves the amount of memory necessary to store information,
but also provides you with a name by which that information
later may be retrieved. Finally, this chapter covers constants,
which are similar to variables, but differ in that their initial value
never changes while the program is running.

As a former professional chess player, | have marveled at the
ability of chess computers to play world champions on even
terms. The reason the chess computers have this ability is
because they can calculate far more quickly and accurately than
we can. Chapter 5, "Letting the Program Do the
Math—Arithmetic Operators,” covers arithmetic operators,
which we use in code to harness the computer's calculating
capabilities.

Now that we have covered the programming building blocks, it
is time to use them in the next part of this book, which concerns
controlling the flow of your program. As programs become more
sophisticated, they often branch in two or more directions based
on whether a condition is true or false. For example, although a
calculator program would use the arithmetic operators you learn
about in Chapter 5, your program first needs to determine
whether the user has chosen addition, subtraction,
multiplication, or division before performing the indicated
arithmetic operation. Chapters 6, "Making
Comparisons—Comparison and Logical Operators," introduces
comparison and logical operators, which are useful in
determining a user's choice. Chapter 7, "Making Choices—if
and switch Case Control Structures,” introduces the if and
switch statements, which are used to direct the path the code
will follow based on the user's choice.

When you were a child, your parents may have told you not to
repeat yourself. However, sometimes your code needs to repeat
itself. For example, if an application user enters invalid data,
your code may continue to ask the user whether they want to
retry or quit until the user either enters valid data or quits.
Chapter 8, "Repeating Yourself—Loops and Arrays," introduces
loops, which are used to repeat code execution until a condition
is no longer true. This chapter then discusses arrays. Unlike the
variables we had covered thus far in the book, which may hold
only one value at a time, arrays may hold multiple values at one
time. Additionally, arrays work very well with loops.

This book is a few hundred pages long. Imagine how much
harder this book would be to understand if it consisted of only
one, very long chapter, rather than being divided into multiple
chapters, with each one divided into sections? Chapter 9,
"Organizing Your Code with Methods," shows you how you
similarly can divide up your code into separate methods. This
has advantages in addition to making your code easier to
understand. For example, if a method performs a specific task,
such as sending output to a printer, which is performed several
times in a program, you only need to write once in a method the
code necessary to send output to the printer. Then you can call
that method each time you need to perform that task.
Otherwise, the code necessary to send output to the printer
would have to be repeated each time that task was to be
performed. Further, if you later have to fix a bug in how you
perform that task, or simply find a better way to perform the
task, you only have to change the code in one place rather than
many.

The next part of this book focuses on the graphical user
interface (GUI), starting with Chapter 10, "Helper Forms." Up
until now, our applications have had one form that serves as the
main application window. This one form may be sufficient for a
simple application, but as your applications become more
sophisticated, the main application form will become unable to
perform all the tasks required by the application and need help
from other forms. This chapter shows you how to create and
use two dialog forms that will be workhorses in your
applications—a built-in dialog form, the message box, and
programmer-designed dialog forms. Although these dialog
forms are helpful, they also present programming challenges
involving communication between the main form and the dialog

form. For example, the main form needs to know which button
was clicked on the dialog form, and should execute different
code depending on which button was clicked. Additionally,
because the dialog form contains controls, the main form needs
to know and take actions based on what the application user
typed, checked, or selected in the controls in the dialog form.
This chapter will show you how to solve these programming
challenges.

Application users give commands to an application, such as to
open, save, or close a file, print a document, and so on, through
the GUI of the application. Chapter 11, "Menus," and Chapter
12, "Toolbars," cover the three most common GUI elements
through which application users give commands to an
application: the menu, shortcut or context menus, and toolbars.
Additionally, commands such as Cut, Copy, and Paste often
may be duplicated in a menu, a context menu, and a toolbar,
providing the application user with the convenience of three
different ways to perform the same command. However, you
don't want to write the same code three times, so these
chapters show you how to connect corresponding items in
menus, context menus, and toolbars so they each execute the
same code.

When | was finished writing this book for the evening, | closed
Microsoft Word, and maybe even shut down my computer. Of
course, the next evening | did not have to start over; what | had
written the previous evening had been saved. However, up until
now the programs in this book don't save data so that it will be
available even after the applications exit. The next part of this
book shows you how to save data. Chapter 13, "Accessing Text
Files," explains how to write code that reads from and writes to
a text file. This chapter also shows you how to add to your
program Open and Save dialog boxes, such as those used in
sophisticated programs like Microsoft Word, so you can open a
text file to read from it, and save to a text file to write to it.
Chapter 14, "Databases," explains how to write programs that
access information stored in a database.

Throughout this book we have been writing Windows
applications, which to be sure are heavily used. However, many
of us are interacting ever more frequently with the subject of
Chapter 15, "Web Applications." This chapter shows you how to
create a web application that displays information from a

database, similar to the Windows application you created in
Chapter 14.

4 Previous MNest b

4 Previous

How to Read This Book

I have organized this book to be read from beginning to end.
Although this may seem patently obvious, my students often
express legitimate frustration about books (or teachers) that, in
discussing a programming concept, mention other concepts that
are covered several chapters later or, even worse, not at all.
Therefore, | have endeavored to present the material in a linear,
logical progression. This not only avoids the frustration of
material that is out of order, but also enables you in each
succeeding chapter to build on the skills you learned in the
preceding chapters.

4 Previous

HNext b

HNext b

4 Frewious MNeast b

Special Features

Each chapter has detailed code listings so you can put into
practice what you have learned. My overall objective is to get
you up to speed quickly, without a lot of dry theory or
unnecessary detail. So let's get started. It's easy and fun to
write C# programs.

4 Frawious MNeast b

4 Previous MNest b

Contacting the Author

Hmmm! | guess it depends why. Just kidding. Although | always
welcome gushing praise and shameless flattery, comments,
suggestions, and, yes, even criticism also can be valuable. The
best way to contact me is via e-mail; you can use
jkent@genghiskhent.com. The domain name is based on my
students' fond (?) nickname for me, Genghis Khent.
Alternatively, you can visit my website:
http://www.genghiskhent.com/. Don't be thrown off by the entry
page; | use this site primarily to support the online classes and
online components of other classes that | teach at the college,
but there will be a link to the section that supports this book.

4 Previous MNest b

http://www.genghiskhent.com/

4 Previous

Chapter 1: Getting Started with Your
First Windows Program

Overview

You probably have seen on television an interviewer ask a victorious athletes for
the secret of their success. Can you imagine the athletes replying that they never
trained but instead just read about their sport a lot? | doubt it. The only way to
become a good swimmer, runner, or weightlifter is to swim, run, or lift weights. Of
course, good coaching helps, but a good swimmer must swim, a good runner
must run, and a good weightlifter must lift weights.

Although computer programming is mental rather than physical exercise,
similarly you cannot become a good computer programmer only by reading
about computer programming. Instead, you have to write computer
programs—Ilots of them.

Don't get me wrong, I'm not trying to discourage you from buying a book,
especially this one! A good book is like a good coach, making your learning more
efficient and less frustrating. However, even with the best book, if you don't write
computer programs, it will be difficult for you to learn computer programming.
Fortunately, it is easy to start writing computer programs; this chapter will show
you how.

Newcomers to programming sometimes shy away from writing programs
because something may go wrong. They may think of scenes in action movies
where someone has only seconds to defuse a bomb and they have to guess
which one of several wires to cut. The consequences in those circumstances of
making a mistake are life and death.

However, you are not defusing a bomb. You are writing a computer program. If
you do make a mistake in your program, neither you nor your computer will
disappear in a fireball. You just correct the mistake. Indeed, you learn best from
your mistakes.

Since | have given you this speech on the importance of your writing programs, it
is only fair that | help you get started writing programs. The first step is for you to
obtain and install Visual C# 2005. In this chapter, | first will help you choose the
edition of Visual C# 2005 that is best for you, and assist you in ensuring that your
computer meets the hardware requirements of Visual C# 2005. After you install
Visual C# 2005, | will show you how to use it to create a Windows application.

HNext b

Finally, you will learn just what a computer program is.
4 FPrevious MNext ¥

4 Previous

Obtaining and Installing Visual C# 2005

Visual C# 2005 comes in several editions. This section will help you choose the
one right for you. However, before you buy any edition of Visual C# 2005, you
should confirm that the computer on which you will install Visual C# 2005 meets
the hardware requirements of Visual C# 2005.

Once you have purchased Visual C# 2005 and verified that the installation
computer meets the hardware requirements, you are ready to install Visual C#
2005. This section will give you tips on the installation.

System Requirements

Installing Visual C# 2005 requires not only the right software, but hardware
sufficient to run the software. Therefore, you should first confirm that the
computer on which you are going to install Visual C# 2005 meets the system
requirements, such as the operating system, processor, RAM, and available hard
disk space.

Note | will be referring in this chapter to Visual C# 2005, but my comments
apply whether you are buying Visual C# 2005 alone or one of the
editions of Visual Studio 2005, as discussed in the next section,
"Choosing the Right Version."

Here are my recommendations on the key requirements. Keep in mind these
system requirements are truly the minimum requirements; therefore, Visual C#
2005 may run quite slowly if your computer only meets these bare-minimum
requirements.

= Operating system You must have Windows 2003, XP, or 2000; Windows
NT, 95, 98, or Me will not work. If you have not yet purchased an operating
system and are considering XP, | would recommend the Professional over
the Home Edition, especially if you are developing web applications, which
are discussed in Chapter 15.

= Available hard drive space The requirement varies with the edition and
type of installation and whether other components such as Internet Explorer
(IE) already are installed on your computer. You should plan on the total
installation taking between 2GB (gigabytes) and 5GB. A large (at least
80GB) hard drive is relatively inexpensive and easy to install, so if
remaining space on your existing hard drive is scarce, you may wish to

HNext b

consider upgrading before installing Visual C# 2005.

» Processor According to Microsoft, a processor speed of 600MHz
(megahertz) is the minimum and 1GHz (gigahertz) is recommended. If you
are on the borderline, given that upgrading a processor by replacing the
motherboard is not so inexpensive or easy, another alternative is boosting
your system RAM, next discussed.

= RAM According to Microsoft, 128MB (megabytes) is the minimum, and
256MB is recommended. | would recommend 512MB, especially if you are
running other programs at the same time.

Additionally, Visual C# 2005, in order to work properly, needs other software to
be on your computer, in particular IE. If you are installing Visual C# 2005 at work
and your company restricts browsers to Netscape or other non-IE browsers, you
should check first with your system administrator before attempting to install
Visual C# 2005 there.

Choosing the Right Version

You can buy Visual C# 2005 either by itself or as part of Visual Studio 2005,
which includes, in addition to Visual C#, support for other programming
languages such as C++ and Visual Basic. | recommend Visual Studio 2005 if
your budget allows. The additional cost usually is not that substantial, and you
will have a program that works with other commonly used languages if your
education, employment, or interests prompt you to work with other programming
languages. This is more likely than you may think. Once you learn one
programming language, learning additional ones becomes much easier because
the concepts are essentially the same. Indeed, most programmers don't learn
just one language.

If you buy Visual C# 2005 by itself, you have one choice: the Express Edition. If
you instead buy Visual C# 2005 as part of Visual Studio 2005, you have three
choices: Standard, Professional, and Team System Editions.

If you already have a copy of Visual C# 2005 through your school or job, any of
the preceding choices should work fine for this book. If you do not already have a
copy of Visual C# 2005, | recommend that you obtain the Academic version of
the Professional Edition. The Academic version represents a substantial discount
for students and teachers.

Microsoft's website on Visual Studio 2005, http://lab.msdn.microsoft.com/vs2005/
at the time this book was written (Microsoft does reorganize its website from time

http://lab.msdn.microsoft.com/vs2005/

to time, so this location may change), has a product matrix that lists the
differences between the editions.

Installing Visual C# 2005

Now you are ready to install Visual C# 2005! You will find it easy. The Visual C#
2005 installation may consist of more than one CD, depending on the edition. It
is a large program, so it takes some time to install. However, Visual C# 2005 is
not difficult to install. Installation is simply a matter of following directions and
being patient. Patience is important in programming, and so it is with the
installation of Visual C# 2005.

One unusual feature is that the help for Visual C# 2005 is not built into the
program but instead is a separate program, MSDN Library. MSDN is an acronym
for Microsoft Developer Network. This help also comes on one or more CDs,
depending on the edition.

4 Previous

Next b

4 Previous MNest b

Starting Your First Visual C# 2005 Project

Now you're going to create your first Visual C# 2005 project. You not only will
use this project for this chapter, but you also will use it as the starting point for
the project in the next chapter.

Note The following instructions assume you purchased Visual Studio 2005.
However, the same basic information applies if you purchased Visual
C# 2005 Express Edition, though some of the screenshots may look
slightly different.

Starting the Program

Although you use Visual C# 2005 to create programs, it is itself a program. You
start Visual C# 2005 by choosing All Programs from the Start menu, selecting
the folder called Microsoft Visual Studio 2005, and then clicking the icon of the
same name that appears in the submenu.

When you first start Visual Studio 2005, a form will display, asking you to choose
your default environment settings (see Figure 1-1).

Choose Defaull Enviromment Setlings

I -,;

Visual Studio 2005
Beafore you Begen using Visusl Stucko For Ehe first tems, you nead Do specify the bype of
dervedoprment activily you enga0s in the most, such a5 Yieual Basc or Visual C++. Yieual Shudo

s B information to apoly & precefined collaction of ssttings to the development
ervironmant that B dedansd for pour developmant activity

You can choose bo use & dfferent collection of settings. st anmy bme. From the Took menu,
chooses brpoet and Export Settings ard then choose Reset IDE Settings

Choose your default environment settings:
Genwr ol Developensrt Satlings Descriphion:

sl Bariac Derveloprmert Settrgs Floase sebect o of the colections of
el salftings: from the st

| Exit vimual Studio

Figure 1-1: Choosing your default environment settings.

| chose General Development Settings, but you can choose the Development
Settings for Visual C# or one of the other programming languages. | don't
consider this choice an important issue because the various settings are not that

different. | chose General Development Settings because that setting is the most
generic and would work equally well if you are also programming in another
language supported by Visual Studio 2005, such as Visual Basic.

The Start Page will display next, as shown in Figure 1-2.

Figure 1-2: Start Page.

Now you are ready to begin. So let's get started!

Specifying the Type of New Project

Because we want to create a new project, choose New from the File menu and
then choose Project from the New submenu. This will display the New Project
dialog box shown in Figure 1-3.

[P L

Figure 1-3: New Project dialog box.

The left pane of the New Project dialog box lists project types. Project types are
included for each of the languages in Visual Studio 2005. In addition to Visual
C#, these are Visual Basic, Visual C++, and Visual J#. Because this book is
about Visual C# 2005, choose Visual C#.

The right pane of the New Project dialog box lists templates for the various types
of Visual C# applications you can create. A project template helps you get
started by creating the initial files, code, and other settings for the selected
project.

You certainly have a lot of templates to choose from. The ones starting with
Windows CE or Pocket PC can be run on handheld computers, and the ones
starting with Smartphone can be run from phones. However, for most of this
book, we will be creating Windows applications, so select Windows Application
from the right pane. | will be discussing in Chapter 2 what a Windows application
is. For now, just know that Microsoft Word and Excel are examples of Windows
applications. Each has a window (or windows) in which you work, with a menu,
toolbar, and other visual components with which you can interact.

As shown in Figure 1-3, when you choose the Windows Application project
template, the description beneath the Project Types frame becomes, "A project
for creating an application with a Windows user interface."

Specifying the Name and Location of the Project

The lower part of the New Project dialog box lists the name of and location for
your project. The default name for your first project is WindowsApplication 1, for
the second WindowsApplication2, and so on. You should change this default
name to one that will help you identify this project later. Otherwise, after you
have created many projects, you may not recall what WindowsApplication52 did

as opposed to WindowsApplications53.

The location for your project is up to you; the default location should work fine.
Whatever your decision, | recommend you have a consistent method for where
you store your projects so you can easily find them later.

In Figure 1-4, | have changed the name of the project to FirstProject and the
location of the project to another drive, D, on my computer.

......

Figure 1-4: Changing the default name of and location for the project.

Once you are satisfied with the name and location of the project, click OK. Visual
Studio 2005 then generates the files and folders for your first project. A folder
with the same name as the project is also created in the location displayed in the
Location field, which contains the parent folder where your project files will be
located. Thus, in Figure 1-4, because the project will be located in D:\Documents
and Settings\ JAK\Visual Studio Projects\Visual C# and the name of the project
is FirstProject, a folder named FirstProject will be created at the specified
location, and the project files will be stored at D:\Documents and
Settings\JAK\Visual Studio Projects\Visual C#\FirstProject.

Integrated Development Environment (IDE)

Figure 1-5 shows a view of the Windows application FirstProject that is created
after you click the OK button in the New Project dialog box.

el B * L]
PRER fobtas: Pt - e w |
[s —)

Figure 1-5: Newly created projec_t.

Figure 1-5 displays what is called an Integrated Development Environment (IDE).
The term "development environment” refers to Visual Studio 2005's role as an
application to assist you in developing applications. The term "integrated” means
that the tools to design your application, and the environment for writing, testing,
and running your code, are all together under one (software) roof.

The IDE is complex, with many windows that perform many different functions.
Don't worry; you don't need to know right away what they all do. Various
components of the IDE will be introduced, described, and explained in this and
succeeding chapters.

Run the Project!

We now will use the IDE to run the project. To run this project as an application,
you must build additional files. You do so, naturally enough, from the Build menu,
shown in Figure 1-6. From the Build menu, you choose one of the following four
options:

= Build Solution
= Rebuild Solution
= Build FirstProject

= Rebuild FirstProject

Build Solution Ctrl+5Shift+8

Rebuild Solution
Clean Solution

Build FirstProject

Rebuild FirstProject
Clean FirstProject
Publish FirstProject
Batch Build...

Configuration Manager...

Figure 1-6: BUI|d menu.

Note The name following "Build" in the third choice and "Rebuild" in the
fourth choice is FirstProject because we changed the name of the
project to FirstProject. If we had kept the default project name of
WindowsApplicationl, these menu items instead would be Build
WindowsApplication1l and Rebuild WindowsApplicationl.

As will be explained later in this chapter, building means using the compiler to
translate your code into machine language the computer can understand.

The difference between the Build menu items Build Solution and Build
FirstProject is that the first concerns a solution and the second a project. A
project contains all the files and links necessary for your application. A solution
may contain multiple projects. Because the current application is simple and
concerns only one project, there is no practical difference in this instance
between the two menu commands.

The difference between Build and Rebuild is that if you previously have built your
program, Build just builds the changes you made from the previous build,
whereas Rebuild starts over and rebuilds the whole program. Rebuild
consequently takes longer, so it is used when there have been extensive

changes since the last build.

As a practical matter, there is little difference between the two commands. If you
choose Build and the changes since the last build have been too extensive to
avoid a rebuild, Visual C# 2005 will perform a rebuild instead. The additional time
a rebuild requires over a build is very minor, especially if you have a fast
processor and ample RAM.

You now have a working Windows program without writing a single line of code!
From the Debug menu, choose either Start or Start Without Debugging. The
result is a window named Form 1, shown below in Figure 1-7.

P — @_{

|
R ——

Figure 1-7: Windows application running.

The state of your project while it is running is referred to as run time. The state of
your project before you run it, and after it stops running (such as when you click
the close button of the form) is referred to as design time.

You now have created a working computer program. However, just what exactly
is a computer program, and how does a programming language such as Visual
C# 2005 fit in? The next sections answer those questions.

4 Previous

Nest b |

4 Previous

What is a Computer Program?

You probably interact with computer programs many times during an average
day. | certainly do. The other day, | arrived at the community college where |
teach and found that my computer didn't work, so | called tech support. At the
other end of the telephone line, a computer program forced me to navigate a
voicemail menu maze and then tortured me while | was on perpetual hold with
repeated insincere messages about how important my call was and false
promises about how soon | would get through.

Finally my computer got fixed. To calm down, | decided to take a break and
logged onto my now-working computer to launch my favorite game program, in
which community college administrators do battle with hideous alien insects from
the planet Megazoid. While | was cheering on the insects, the network
administrator caught me goofing off using yet another computer program that
monitors employee computer usage. Fortunately, | was still employed, so an
accounts payable program generated my payroll check.

On my way home | decided | needed some cash and stopped at an ATM, where
a computer program confirmed (hopefully) | have enough money in my bank
account and then instructed the machine to dispense the requested cash and
(unfortunately) deduct that same amount from my account.

Computers are so widespread in our society because they have three
advantages over us humans. First, computers can store huge amounts of
information. Second, computers can recall that information quickly and
accurately. Third, computers can perform calculations with lightning speed and
perfect accuracy.

The advantages that computers have over us even extend to thinking sports
such as chess. | used to be a professional chess player. Although | have not
played seriously for many years and am out of practice, | still was surprised that
the chess program on my little Pocket PC handheld computer defeated me with
ease. Even worse, the program, Pocket Fritz, taunted me in a German accent:
"Dumpkopf, you have blundered again. You will now be liquidated!" My one
victory was finding the mute button to silence this insolent program.

At least | have good company in defeat. In 1997, the computer Deep Blue beat
the world chess champion, Garry Kasparov, in a chess match. In 2003, Kasparov
was out for revenge against another computer, Deep Junior, but only drew the
match. Kasparov, although perhaps the best chess player ever, is only human
and therefore no match for the computer's ability to calculate and to remember
prior games.

HNext b

However, we have one very significant advantage over computers. We think on
our own, whereas computers don't, at least not yet anyway. Indeed, computers
fundamentally are far more brawn than brain. A computer cannot do anything
without step-by-step instructions from us telling it what to do. These instructions
are called a computer program, and of course are written by a human, namely a
computer programmer. Computer programs enable us to harness the computer's
tremendous power.

What is a Programming Language?

When you enter a darkened room and want to see what is inside, you turn on a
light switch. When you leave the room, you turn the light switch off.

The first computers were not too different from that light switch. These early
computers consisted of wires and switches in which the electrical current
followed a path dependent on which switches were in the on (one) or off (zero)
position. Indeed, | built such a simple computer when | was a kid (which
according to my kids was when dinosaurs still ruled the earth).

Each switch's position could be expressed as a number, 1 for the on position and
0 for the off position. Thus, the instructions given to these first computers, in the
form of positions on switches, essentially were a series of ones and zeroes.

Today's computers of course are far more powerful and sophisticated than these
early computers. However, the language computers understand, called machine
language, remains the same, essentially ones and zeroes.

Although computers think in ones and zeroes, the humans who write computer
programs usually don't. Additionally, a complex program may consist of
thousands or even millions of step-by-step machine language instructions, which
would require an inordinately long amount of time to write. This is an important
consideration because, due to competitive market forces, the amount of time
within which a program has to be written is becoming increasingly less and less.

Fortunately, we do not have to write instructions to computers in machine
language. Instead, we can write instructions in a "higher-level” programming
language such as Visual C# 2005. The term "higher level* means Visual C#
2005 (and other languages such as C++, Java, Visual Basic, and so forth) are far
closer to the structure and syntax of human language than to the ones and
zeroes understood by a computer. By contrast, machine language, although a
programming language, is "low level" because it is far closer to the ones and
zeroes understood by a computer than it is to the structure and syntax of human
language. Additionally, code can be written much faster with programming
languages than machine language because of programming languages abstract

instructions; one programming language instruction can cover many machine
language instructions.

Visual C# is but one of many programming languages. Other popular
programming languages include Java, Visual Basic, and C++, and there are
many more. Indeed, new languages are being created all the time. However, all
programming languages have essentially the same purpose, which is to enable a
human programmer to give instructions to a computer.

There really is no one "best" programming language, but Visual C# is an
excellent choice. Although Visual C# is a relatively new language, it is
increasingly used in the industry.

You may be wondering how this discussion of programming language applies
given that you didn't have to write any code to achieve a working application.
Although you didn't have to write any code, that doesn't mean code wasn't
written. Remember when you chose the project template? Visual C# 2005 wrote
code for you to create a basic Windows application.

Translating the Code for the Computer

Although you will understand the Visual C# code you will write, the computer
won't. Computers don't understand Visual C# or any other programming
language. They understand only machine language.

Visual C# 2005 includes a compiler. In general, a compiler translates the code
you write into corresponding machine language instructions. There are different
compilers for different programming languages, but the purpose of the compiler
is essentially the same—the translation of a programming language into machine
language—no matter which programming language is involved.

Note As discussed in more detail in Chapter 2, the compiler in Visual C#
2005 translates the code into an intermediate language that then is
translated into machine language.

A compiler translates the code you write into corresponding machine language
instructions, or into instructions that an operating system can understand and act
on. However, the compiler can perform this translation only if your code is in the
proper syntax for that programming language. Visual C# 2005, like other
programming languages, and indeed most human languages, has rules for the
spelling of words and for the grammar of statements. If there is a syntax error,
the compiler cannot translate your code into machine language instructions and
instead will call your attention to the syntax errors. Thus, in a sense, the compiler
acts as a spell checker and grammar checker.

4 Previous MNest b

4 Frewious
Conclusion

The way to become a good computer programmer is to write programs. To get
started, you need to obtain and install Visual C# 2005. In this chapter, you
learned about the different editions of Visual C# 2005 that are available, and how
to ensure that your computer meets the hardware requirements of Visual C#
2005. After you installed Visual C# 2005, you learned how to use Visual C# 2005
to create a Windows application.

This chapter then discussed what a computer program is. Computers can store
huge amounts of information, recall that information quickly and accurately, and
perform calculations with lightning speed and perfect accuracy. However,
computers cannot think on their own; they need step-by-step instructions from us
telling them what to do. These instructions are called a computer program,
written be a human computer programmer in a programming language such as
Visual C# 2005. A compiler translates the computer program into machine
language that a computer understands.

The computer program in this chapter simply displayed an empty form, or
window. In the next chapter, you will examine that form further, and in the
process learn what a Windows application is and then write your first code!

4 Prewvious

HNext b

Next k

4 Previous MNest b

Quiz

1.

2.

What is the difference between Visual C# 2005 and Visual Studio 2005?
Which operating system do you need to install and run Visual C# 2005?

Which project template should you use to start creating a Windows
application?

What is an IDE?

What is a computer program?
What is a programming language?
What is machine language?

What does "higher level" mean in the context of a programming
language?

What does "lower level" mean in the context of a programming
language?

10. What is the purpose of a compiler?

Answers

1. Visual Studio 2005 includes, in addition to Visual C#, support for other programming
languages such as C++ and Visual Basic.

2. You need either the Windows 2003, XP, or 2000 operating system to install and run Visual
C# 2005.

3. You should use the Windows Application project template to start creating a Windows
application.

4. IDE is an acronym for Integrated Development Environment. The term "development
environment" refers to Visual C# 2005's role as an application to assist you in developing
applications. The term "integrated" means the tools to design your application and write, test,
and run your code are all together in one application.

5. A computer cannot do anything without step-by-step instructions from us telling it what to do.

These instructions, written by a computer programmer, are called a computer program.

10.

A programming language is used by computer programmers to write instructions for
computers.

Machine language is a programming language that is understood by computers.

The term "higher level" means that a programming language such as Visual C# 2005 is far
closer to the structure and syntax of human language than to the ones and zeroes
understood by a computer.

The term "lower level" means that a programming language such as machine language is far
closer to the ones and zeroes understood by a computer than it is to the structure and syntax
of human language.

In general, a compiler translates the code you write into corresponding machine language
instructions. The compiler in Visual C# 2005 translates the code into an intermediate
language that then is translated into machine language.

4 Previous MNest b

4 Previous MNest b

Chapter 2: Writing Your First
Code

Overview

When | was an elementary school student (back when
dinosaurs roamed the earth, as far as my daughters are
concerned), | learned through countless teacher-imposed
exercises to multiply and divide several-digit numbers in my
mind. Fast-forwarding more decades than | care to count, when
| ask my daughters to compute the answers to less complex
math homework problems, they whip out their calculators and
tell me the answer—quite quickly and accurately, to be sure.
When | then ask them instead to calculate the answer in their
heads, they look at me as a prehistoric relic and tell me, "Aw,
Dad, no one does that anymore."

Calculators do make our lives easier. Imagine the long line at
your local fast food outlet if orders had to be calculated by
pencil and paper rather than with the calculators built into cash
registers. In business, software programs such as Microsoft
Excel enable you to perform spreadsheet calculations in
minutes that might take you hours with pencil and paper.

Calculators also have a negative side effect, however. Human
nature being what it is, if we don't need to learn something, we
may decide it is not worth the time and trouble. Research
suggests that the availability of calculators has contributed
substantially to a decline in students' computational skills.
Despite calculators, computational skills still are necessary, not
just in everyday situations in which a calculator may not be
available, but also as a foundation for students to develop skills
in creating algorithms and analyzing problems—skills essential
in, among other areas, computer programming.

Just as calculators automate computation, Visual C# 2005
automates the creation of applications. For example, creating a
Windows application strictly through code is difficult. By
contrast, Chapter 1 shows that Visual C# 2005 enables you to
create a Windows application without writing a single line of

code! Granted, the resulting Windows application was basic,
being no more than a window with default functionality.
Nevertheless, even creating such a basic Windows application
strictly through code would be no small undertaking.

There is a danger of Visual C# 2005 doing too much for
beginning programmers. They may be seduced by how easy
Visual C# 2005 makes creating a Windows application.
Consequently, they may just plunge in and start writing
programs without really understanding the code they are writing
or how the different parts of the program fit together. | have
witnessed this with my programming students. They try to write
more complex programs, are unable to do so because they
don't understand the necessary foundation, become frustrated,
and quit.

Therefore, to make a long story short ("too late,” as my
daughters would say), this chapter will explain what an event-
driven Windows application is all about, including how and why
the code you write executes when the user takes an action such
as a mouse click. But don't worry, this chapter is not all theory.
You also will put in practice what you learned and write your first
code!

4 Previous

Next b

Starting an Existing Project

Because you learn programming best by writing programs, start
Visual C# 2005. In Chapter 1 you created a new Windows
application project. In this chapter, we will use that existing
project instead of creating a new one. Of course, we could
create a new project, but you already learned in Chapter 1 how
to do that. By instead using an existing project, you will learn
something new.

To open an existing project, choose Open from the File menu
and then Project/Solution from the Open submenu, as shown in
Figure 2-1. This will display the Open Project dialog box shown
in Figure 2-2.

Figure 2-1: Opening an existing project.

HNext b

eeeee

el

"o Carcel |

Figure 2-2: Open Project dialog box.

Using the Look In drop-down box, navigate to the folder where
you saved First-Project when you created it in Chapter 1. You
then will see a file with an .sln extension, named FirstProject.slIn
in Figure 2-2. The .sIn extension indicates a solution file. As
explained in Chapter 1, a solution contains one or more projects
(here, one) used for your application.

Choose the .sIn file and click the OK button in the Open Project
dialog box. The Open Project dialog box will close and your
FirstProject then should open, appearing as it did when you first
created it in Chapter 1.

One of the windows in the project is called Solution Explorer,
shown in Figure 2-3. If you don't see it, you can display it by
choosing Solution Explorer from the View menu, as shown in
Figure 2-4.

Solution Explorer - FirstProject [

W
o8 Sohution FirstProject’ (1 project)
CRE | FirstProject |
= [Propertes
® |z References
#- (5] Forml.cs
] Program.cs

& Solution Explorer | 53 Class Yiew

Figure 2-3: Solution Explorer.

Code

-
] Dwsigries

(Y Open
Open With. .
W Solution E plorer k4L
_:, Chass View —brlShiftC
‘:l. Resource Yiew ~brl-4-Shift+E
M Server Explover ChriRE4-S

T Properties Wirdow

Bookmark. Window Chri+k, Ctri+Ww
_.J: Cibject Broswser Chri4-Alt+)
. T 0 Chrl+Alk+
Bl start page

Property Manage

Web Browser k

har Windows 3

I Dars B
3 Full Screen Shift+Alt+Enter
s Navigate Backward Chrt-

Figure 2-4: View menu.

We will use Solution Explorer and the View menu to further
examine features of this project.

Design View and Code View

You learned in Chapter 1 that the state of your program when it
is running is referred to as run time, whereas the state of your
program when it is not running is referred to as design time. In
this section, we will be working in design time.

You can view your application two different ways during design
time: designer view and code view. You choose designer view
when you want to design your form, such as by resizing it, or
adding to it controls such as buttons, labels, and text boxes.
You choose code view when you want to view or write the code

of your application.

You implement designer view by first selecting Form1.cs (the
name of your form file) in Solution Explorer and then choosing
Design from the View menu. An alternative is to right-click the
form and choose View Designer from the shortcut menu. Either
way, you will see the form, as shown in Figure 2-5.

& et (940]

Figure 2-5: Form in designer view.

You implement code view by first selecting Form |.cs in Solution
Explorer and then by choosing Code from the View menu.
Again, the alternative is to right-click the form and choose View
Code from the shortcut menu. Either way, you will see code, as
shown in Figure 2-6.

Figure 2-6: Code view.

We will be working in both designer and code views in this
chapter.

Object Browser

While in designer view, display the Object Browser by choosing
Object Browser from the View menu. The Object Browser
should appear as shown in Figure 2-7.

Figure 2-7: Object Browser.

Click the expander (plus sign) next to FirstProject and then
highlight Form 1. The Object Browser then should appear as

shown in Figure 2-8.

Figure 2-8: Object Browser showing information on Form1.

The Object Browser, as its name suggests, permits you to
browse or examine objects in your project, including the form.
As Figure 2-8 shows, the lower-right pane of the Object Browser
refers to "public class Form1." A similar reference to "public
partial class Form1" is in the code shown in Figure 2-6.
Additionally, the lower-right pane of the Object Browser
indicates the following: "public class Form1l :
System.Windows.Forms.Form." This means that a "class”
named Forml "inherits" from System.Windows.Forms.Form.

What this terminology means is important in understanding how
your first project and your future Windows application projects
work. Therefore, let's now discuss this terminology.
4 Previous | Newxt b

4 Previous MNest b

Classes and Objects

Most programs keep track of information that relates to persons,
places, or things in the real world. Such information often is
complex, consisting of numerous items. For example, each of
my readers is a person, and as such share certain
characteristics common to all persons, such as a name, height,
weight, gender, age, and so forth.

Programming languages, including Visual C#, use classes to
represent a person, place, thing, or concept. Thus, in
programming parlance, each of us is an object of the Person
class. A class is a pattern or template for an object, and an
object is an instance of a class.

To illustrate, if my classroom contains 29 students and me as
the teacher, there would be 30 objects of the Person class.
Once again, each person's name, height, weight, gender, and
age may differ from another's, but each of us in the room, being
an object of the same class, Person, has certain common
characteristics, such as a name, height, weight, gender, and
age. The values of these characteristics are likely to vary—two
persons are likely to have different names and heights, for
example, but they share the characteristics themselves (that is,
having a name, a height, and so forth).

As another example, the form in our first project originated from
the Form class. The Form class represents, not surprisingly, a
form. A form has a number of characteristics, such as height,
width, background color, text on its title bar, and so forth.
Although all forms have these characteristics in common, the
values of these characteristics may differ from form to form.
Just as persons in a room may look different, so can forms.
Some forms may be short and wide and have a blue
background, and others may be tall and thin and have a yellow
background. However, each of these different-looking Form
objects is created from the same Form class.

Inherits

The actual name of the class of the form in our application is not
Form, but Form1. The Form1 class inherits, or starts out with, all

the characteristics of the Form class. However, we can
customize the Forml class, even adding characteristics. We
won't do that now, but we could.

Namespaces

As the lower-right pane of the Object Browser in Figure 2-8
indicates, the actual name of the Form class is System.
Windows.Forms.Form. This means that the Form class is part
of the System.Windows.Forms namespace.

To explain a namespace, let's make an analogy to the
taxonomy of life you may have learned about in a biology class.
All life is organized into separate kingdoms, the most commonly
known being Animalia for animals and Plantae for plants. The
animal kingdom is organized into several phylums, including
Chordata for vertebrates. The vertebrates in the phylum
Chordata are organized into several kingdoms, including
Mammalia for mammals. The mammals in Mammalia belong to
different orders, including Primates for primates. Primates are
subdivided into different families, including Hominidae, which in
turn are subdivided into different genera, including Homo, which
finally are subdivided into species, including Homo sapiens.
Thus, although in biology humans generally are referred to just
by their species name, Homo sapiens, that species belongs to
the Animalia.Chordota.Mammalia. Hominidae.Homo
namespace.

Similarly, the Form class is part of the System.Windows.Forms
namespace. The "Windows" in the namespace name stands for
Windows applications. One purpose of using namespaces is to
organize code in a hierarchal manner. Another purpose is the
ability to use the same class name, but in another namespace.
For example, there is another Form class in the
System.Web.Ul.MobileControls namespace. This hamespace is
used for forms in web applications accessed by mobile devices,
such as Pocket PCs. By contrast, the Form class in the
System.Windows.Forms namespace is used for Windows
applications that run from desktop or laptop computers. Both
classes have the same name, Form, but may do so because
each belongs to a different namespace.

NET Framework

The Form class and the System.Windows.Forms namespace
are defined in the .NET Framework. You will see references to
the .NET Framework and .NET throughout this book, so this
would be a good time to briefly explain what these terms mean.

.NET is the name for Microsoft's strategy of software that is
independent of a particular operating system or hardware. With
respect to hardware, .NET projects are not limited to the
traditional desktop computer. Instead, as you may recall from
Chapter 1, the available templates for a Visual C# project

include ones that can be run on handheld computers or phones.
Visual Studio is a tool for the development of .NET applications.

The .NET Framework consists of the Common Language
Runtime (CLR) and Class Libraries. As discussed in Chapter |,
a compiler translates the code you write into machine language
instructions that an operating system can understand and act
on. To make a long story short, the CLR acts as a middleman
between the compiler and the ultimate machine language
instructions, translating intermediate language created by the
compiler into the instructions. The Class Libraries include the
Form class and the System.Windows.Forms namespace, as
well as many other classes that we will be using in this book.

4 Previous

Next k

4 Previous

Properties

A class generally has properties. For example, the Form class
has properties such as Height for its height, BackColor for its
background color, and Text for text on its title bar. Thus, objects
created from the Form class have these properties. Similarly,
objects created by classes that inherit from the Form class,
such as the Form1 class, also have these properties.

Different classes may have some properties in common. For
example, the Form class has a Height property, as would a
Person class. However, often one class will have a property
another does not. For example, a Person class may have an
EyeColor property, which the Form class does not have,
whereas the Form class has a MinimizeBox property (pertaining
to the minimize button at the upper right), which a Person class
would not have. At least | have never seen a Person class with
a minimize box!

Properties Window

While in designer view, choose Properties Window from the
View menu. This will display the Properties window, as shown in
Figure 2-9.

HNext b

F'E:rpertizs

Forml System.Windows Forms,Form -
b
EIPINEIR
Bl Accessibility -
AccessibleDescription
AccessibleMame
AccessibleRole Default
B Appearance I
BackColor[EERECE v
Backgroundimage (] {none)
Backgroundimagelayout Tie
Ciursor Crf il
Font Microsoft Sams Serif, 8.25ptk
ForeColar - ControlText
FormBorderStyle Sizable
Right Toleft Mo
Right ToleftLayouk False
Text Formil
UsaW sitCursor Falza
E Behavior
AllewDrop False
Autovalidate EnablePreventFocusChange
ContextManuStrip (mone)
DoubleBuffered False
Enabled Trige
T ol sl Bl s | _V'
BackColor
The background color used to display text and graphics in
the contraol. I

Figure 2-9: Properties window.

The Properties window lists various attributes or characteristics
of the form, such as its height and width, background color, the
text that appears in its title bar, and so forth. These attributes or
characteristics, also referred to as properties, are listed in the
left column. The values of these properties are listed in the right
column. For example, in Figure 2-9, the value of the Text
property is Form1, which is the text that appears in the title bar
of the form in Figure 2-5.

The first button sorts the properties by category. This is the view
in Figure 2-9. The second button sorts the properties in
alphabetical order. This is the view in Figure 2-10. Don't worry
about the other three buttons for now. We'll discuss the fourth
icon from the left, which looks like a lightning bolt, later in this
chapter in the section "Creating an Event Procedure Stub."

Many of the properties in Figures 2-9 and 2-10 have values.
You did not assign those values to those properties. Rather, the
IDE assigned those values because the form needs some
background color, size, and so forth when you first create the
application. These IDE-assigned values are referred to as
default values. "Default” in this context refers to a property's
value if you do nothing to change that value.

Forml System.wlndw:sfgrms.Form -

su[al][@] 7

{ApphicationSettings) -
(DrakaBirichnigs)

(MName) Foarml

AcceptButton {rane)

AccessibleDescription

AccessibleNanme

AccessibleRaole Draf st
BllowDrop False
AutoScaledode Font b
AukoScrall False
B AutoScroliMargin 0,0
AutoScroliMinSize 0,0
AukoSze False
AukoSizeMode GrowOnky
Auko¥alidate EnablePreventFocusChange
BackColor] cControl
Backgroundlmage D {rone)
BackgroundImagelayout Tile
CancelButbon {rone)
CausesValidation True
ContextMenuStrip {rone)
ControlBox True
B s Fuala.di ?
AutoScaleMode

Determines how the form or control will scale when screen
resolution or Forts change.

I_:igure 2-10: Properties listed in alphab_éii-cal order.

However, as the next section discusses, you may change
default values.

Changing Properties at Design Time

You can use the Properties window to view the properties of the

form object in your first project. You also can use the Properties
window to change the value of properties of that form object at
design time. For example, in the Properties window, change the
value of the Text property to MyForm or some other name and
then press ENTER. The text in the form's title bar will change to
MyForm or whatever other text you typed.

However, you cannot use the Properties window to change the
value of properties of the form object at run time. Instead, you
need to write code to change the value of properties of the form
object at run time. You will learn in this chapter how to do that.
However, before we get there, let's first discuss what a
Windows application is, because the answer will help you
understand the code you will be writing.

4 Previous

HNext b

4 Previous

What is a Windows Application?

Nowadays the majority of applications are written for at least
one if not more of the Windows operating systems, which
include Windows 9x, NT, 2000, XP, and 2003. Figure 2-11
shows a familiar Windows application, Notepad, which is
included by default in the installation of all Windows operating
systems.

Figure 2-11: Notepad, a Windows application.

Although the Windows operating system has virtually taken over
the computer world, it has not been with us that long. Windows
was not introduced until 1985, and did not catch on until the
introduction of Windows 3.0 in the early 1990s. Prior to the
1990s, applications often ran in the DOS operating system.
Figure 2-12 shows a DOS text editor, the DOS equivalent of
Notepad in the Windows operating system. A comparison of the
DOS text editor in Figure 2-12 and Notepad in Figure 2-11 show
that DOS applications have a decidedly different and less rich
appearance than Windows applications.

HNext b

OV DO s b e . com = |O] =

3] :z Mol e

Figure 2-12: A console.

The difference between DOS and Windows applications is more
than skin deep. They also behave very differently. Let's now
look at both differences.

Windows Applications are "Gooey"

The hallmark of a Windows application is that the application is
displayed in ... you guessed it, a window. However, there is
more to a Windows application than a window. A Windows
application has a graphical user interface, which is often
referred to by the acronym GUI, pronounced "gooey."

A GUI usually includes a menu, such as the File, Edit, Format,
View, and Help menus in Notepad, as shown in Figure 2-11.
The DOS text editor in Figure 2-12 also includes a menu.
However, a GUI is not limited to a menu, and normally includes
other visual components, such as buttons to click, edit boxes in
which to type text, and so on. DOS applications have few of
these other visual components.

The GUI makes Windows applications prettier than console
applications, but it serves a more important purpose, which is to
make Windows applications easier to use. For example, the
menu in Notepad makes it easy for you to open a file. Clicking
the File menu and then the Open submenu displays another
visual component, the Open dialog box (shown in Figure 2-13),
from which you simply pick the file you want to open.

e J_I'".' [P-4
- LMy Pienmes

My Recent e VY Pk
Document iVieual Shudsy 2005

Deshiop
_-".
M it
]
48
My Campte
‘j fin e 1] - []
| Fles of e Tt Dipscaamesniy [* bt - =l
i

Figure 2-13: Open dialog box in Notepad.

Figure 2-14 shows the Open dialog box in the DOS text editor.
This Open dialog box is far clumsier to use than the Windows
counterpart in Figure 2-13.

o W IR WS e b 3 el omm
[Fils Edit Ferareh Uiew Optisne Help
Opan

D el
Cimcumamis snd SZettings il
iles: irecteries:

Desktop
| e 28

wad-on ly
inary

L) 22 Cancel o Help g

er=Exacule =t

Figure 2-14: Open dialog box in DOS text editor.

Of course, nothing is free in this world. The pretty GUI of a
Windows application comes at a programming price. Code, lots
of it, some of it rather complex, is required to create a window,
not to mention to create the menu and other controls in the
window.

This is where Visual C# once again eases your task. You do not
need to write copious, complex code to create a window.
Instead, Visual C# creates the window for you when you start a
new Windows application project, and it also writes the code
necessary to make that window work. This spares you

substantial grunt work.

Windows Applications Are Event-Driven

Windows applications behave differently, as well as look
different, from their predecessors. Before Windows, applications
often told the user what to do. For example, an application may
tell the operating system to print to the screen the text message
"Enter your name." The user would then input their name and
press the ENTER key. The user could not have entered their
name before this point, and they had to enter data at this point
or the program would not continue. The program then may tell
the operating system to print to the screen "Enter your age."
The user would then input their age and press the ENTER key.
Once again, the user could not have entered their age before
this point, and had to enter data at this point or the program
would not continue. Finally, the program may tell the operating
system to output to the screen a sentence that includes the
name and age entered, followed by whether the user is a minor,
adult, or senior citizen, based on the age that was entered. The
program input and output may look like this:

Enter your nane: Jeff
Enter your age: 53
Jeff, age 53, you are an adult.

In this type of program, often called procedural programming,
the application, not the user, determines the order in which
things happen. However, Windows applications are just the
opposite; the user tells the application what to do. What
happens next after you open Notepad? The answer is, it
depends. Specifically, it depends on what you, as the user, do
next. If you click the File | Open menu item, the Open dialog box
will display as shown previously in Figure 2-13. If instead you
click the Help | Help Topics menu item, Notepad Help will
display. Of course, you may decide you're tired of Notepad and
close it by using the File | Exit menu item or the close button.
Thus, in a Windows application, the user's actions, not the
application, determine the order in which things happen.

A procedural program can be analogized to a recipe. The
program follows the instructions step by step. By contrast, a
Windows application can be analogized to a paramedic. The
paramedic waits for a call. When a call comes, the paramedic

takes the equipment warranted by the call and goes to the
location. When finished, the paramedic returns to their station
and waits for the next call, and when it comes, takes the
equipment warranted by that call and goes to the next location.

In the parlance of Windows programming, the user's actions
create events that cause the operating system to send
messages to the application. For example, the user's act of
clicking Notepad's File | Open menu item is an event that
causes the operating system to send a message to the Notepad
window that the File | Open menu command has been clicked.
When Notepad receives that message, code in Notepad
displays the Open dialog box. Because the events resulting
from the user's actions drive the application, Windows
programming often is referred to as being event-driven.

Classes Have Events

An event does not exist by itself. Rather, an event is something
that happens to an object, usually as the result of user
interaction with the object, such as its being clicked. For
example, when the user clicks Notepad's File | Open menu
item, the event is a click, and the object of the event is the File |
Open menu item.

The File | Open menu item is an object that is created from a
class. That Menultem class, and classes generally, have events
in addition to having properties. For example, a Form object has
a Click event that occurs when the user clicks the mouse on the
form.

As with properties, different classes may have some events in
common, but usually would not share the exact same set of
events.

4 Prewvious

Next k

4 Previous

Creating an Event Procedure

As discussed in the section "Windows Applications Are Event-Driven," you
write code so the user's action in clicking the File | Open menu item in
Notepad will display an Open dialog box that permits the user to choose and
open a file. You want this code to execute when, and only when, your
application's user clicks the File | Open menu item. You use an event
procedure to solve this problem, by associating the code that displays the
Open dialog box with the Click event of the File | Open menu item object.
The event procedure connects the mouse click of the File | Open menu item
to the code you want to run when the menu item is clicked.

When the .NET Framework that underlies Visual C# 2005 detects an event
such as a mouse click that happens to an object such as the menu item, it
searches for an event procedure that matches the object and event. If the
.NET Framework finds such an event procedure, it calls that event
procedure, and the code inside the event procedure executes.

In this section, we will write code that will change the text displayed in the
form's title bar when you click the form. To accomplish this, we need to write
code for the Click event procedure of the form.

Writing code for an event procedure involves two steps. The first step is to
create the event procedure stub. As will be illustrated in the next section, an
event procedure stub is how the event procedure appears before you write
any code. Your writing code inside that event procedure code is the second
step.

Creating an Event Procedure Stub

To start creating an event procedure stub, go to designer view, as shown in
Figure 2-5, and display the Properties window, as shown in Figure 2-9 or
Figure 2-10. Click on the fourth icon from the left, which looks like a lightning
bolt. As shown in Figure 2-15, the Properties window then will display
categories such as Action, Appearance, Behavior, and so forth.

HNext b

Properties

Form1 System.Windows.Forms.Form -

=

Behavior

B pata
(Databindings)
Drag Drop

Focus

Key

H Layout

B Misc

B Mouse

[E Property Changed

Appearance

Figure 2-15: Categories of the Form1 class's events.

Expand the plus sign next to Action. As shown in Figure 2-16, this will
display various events, including Click and DoubleClick.

Properties

DoubleClick
MouseCaptureCl
MouseClick
MouseDoubleClic
ResizeBeqgin
ResizeEnd
Scroll
Appearance
& Behavior
=l Data
[(DataBindings)
E Drag Drop

Figure 2-16: Listing of the Form1 class's Action events.

Double-click on Click. As shown in Figure 2-17, this creates an event
procedure stub for the Click event of the Form1 class.

I

Figure 2-17: Event procedure stub.

The event procedure stub is shown here:

private void Fornml_Cick(CObject sender, EventArgs e)
{

}

The first line of code begins the event procedure and is the title of the event
procedure. It includes the name of the class object (Form1) and the name of
the event (Click) separated by an underscore (Form1_Click). Don't worry
about the rest of the first line of code for now; we'll cover more later in this
book.

The title of the event procedure is immediately followed by a left curly brace
(. The code you will write goes between this left curly brace and the right
curly brace (}), which marks the end of the event procedure. The next
section discusses writing that code.

Writing Code Inside the Event Procedure

The second step is to write code inside the event procedure that will change
the text displayed in the form's title bar when you click the form. Type the
following code inside the event procedure, between the two curly braces:

this. Text = "Eat at Joe's";

This code will be explained in the following sections on the semicolon and
the assignment operator.

Now your event procedure should read like so:

private void Forml_Cick(Object sender, EventArgs e)
{

}

this. Text = "Eat at Joe's";

Note | indented the code. This is not necessary, but it's a good habit, for
reasons that will become more apparent as your code becomes
more complex. Often the IDE will indent the code for you.

Run the project by choosing Start Without Debugging from the Debug menu,
as shown in Figure 2-18.

Debuq

;;ﬁirud-:rws 3
P Start FS
4 Start Without Debugging Ckrl+F5
S Attachto Process...

Exceptions... Ckrl+Alt+E
*= Step Into F11
(= Step Over F10

Toggle Breakpoinkt Fa

MNew Breakpoint »

Figure 2-18: Running the Project from the Debug menu.

When the form first appears, the text in its title bar is the same as the value
of the Text property shown in its Properties window. Now click on the form.
The text in the form's title bar now should change to "Eat at Joe's."”

The Semicolon

Notice that the code ends in a semicolon:

this. Text = "Eat at Joe's";

As discussed in Chapter 1, a computer program consists of step-by-step
instructions from the programmer telling the computer what to do. Each
instruction statement in C# ends in a semicolon. It does not matter if the
instruction is on one or more than one line, because in C# the end of a
statement is not the end of a line, but the semicolon. For example, the code
we just wrote could be placed on more than one line, with no change:

this. Text =
"Bat at Joe's";

Not all the code in C# ends in a semicolon. For example, the title of an event
procedure does not, and should not. Rather, instructions or statements end
in a semicolon.

Assignment Operator

The code also contains what looks like an equals sign (=):
this. Text = "Eat at Joe's";

However, this is not an equals sign at all. Instead, it is called an assignment
operator.

To the right of the assignment operator are words inside double quotation
marks. This is called a string. A string usually consists of two or more
characters, which may include a letter, a digit, a punctuation mark, or a
space. The double quotation marks indicate a string; numeric values are not
placed inside double quotation marks.

To the left of the assignment operator is the "this" keyword (a reference to
the current Form1 object) and Text (a property of that object) separated by a
dot, or period. The code this.Text thus refers to the Text property of the
current Form1 object.

The purpose of the assignment operator is to assign the value to its right to
the property to its left. Thus, the string "Eat at Joe's" is assigned to the Text
property of the current Form1 object.

This code, being inside the Click event procedure of the form object,
executes (or runs) when, and only when, the form is clicked. When the form
is clicked, the string "Eat at Joe's" is assigned to the Text property of the
current Form1 object, and therefore appears in the title bar of the form.

Comments

Change the line of code
this. Text = "Eat at Joe's";

to instead read as follows:
this. Text = "Eat at Joe's"; /[/Changes text in title bar

The program will run exactly the same. In fact, the code has not changed at
all. The portion of the line beginning with the two forward slashes (//)
followed by "Changes text in title bar" is a comment. The two forward
slashes indicate that they, and what follows them on the line, are not part of
the code, but rather are a comment.

A comment is for the benefit of a programmer reading the code. The
purpose usually is an explanation of the code. An explanation may not be
necessary for a line of code changing the value of the text shown in a form's
title bar. However, as your applications become more complex, explanations
may be helpful to fellow programmers who need to review your code.
Indeed, you may find your own explanation of your own code helpful to
refresh your memory if you have to return to your code months after you
wrote it, either to enhance the code or to fix a problem.

If your comment spans more than one line, you have two alternatives. One is
to precede each commented line with two forward slashes:

[/ first line of comments
// second |line of comments
/] third line of coments

The other option, which is preferable if you have many consecutive lines of
comments, is to precede the first line with a forward slash and an asterisk (/*)
and then end the last line with an asterisk and a forward slash (*/), as shown
here:

[* first line of comments
second |ine of comments
third l'ine of comments */

4 Previous

Next k

4 Previous

Conclusion

Visual C#, like other programming languages, represents each
of the persons, things, and concepts that are the subject of an
application as a class. Objects are created, or instantiated, from
classes.

A class, and therefore the objects created from the class,
usually have properties and events. A property is an attribute of
an object, such as its height. An event is something that
happens to an object, such as its being clicked.

A Windows application is displayed in a window that has a
graphical user interface, referred to by the acronym GUI.
Additionally, Windows applications are event-driven in that the
user's actions, such as clicking a mouse, create events that
cause the operating system to send messages to the
application. You can write code that will run when those
messages are received. That code is written inside an event
procedure, which executes, or runs, when a specified event
happens to an object.

4 Previous

HNext b

Next k

4 Previous MNest b

Quiz

1. What is designer view?

2. What is code view?

3. What is a class in a programming language?

4. What is an object of a class?

5. What are namespaces used for?

6. What is a property of a class?

7. What are characteristics of a Windows
application?

8. What is an event of a class?

9. What is an event procedure?

10. What is the purpose of the assignment
operator?

Answers

1. Designer view is the view of your form you would choose when you want to design your form,
such as resizing the form or adding controls to it.

2. Code view is the view of your form you would choose when you want to view or write the
code of your application.

3. Programming languages, including Visual C#, use classes to represent a person, place,
thing, or concept.

4. An object of a class is a single instance of a class, just like each of us could be said to be an
object or instance of a Person class.

5. Namespaces are used to organize code in a logical manner.

6. A property is a characteristic or attribute of a class.

7. A Windows application has a graphical user interface (GUI) and is event-driven.

8. An event is something that happens to an object of a class, such as a result of user
interaction.

9. An event procedure contains code that executes when a specific event happens to a specific
object.

10. The purpose of the assignment operator is to assign the expression to its right to the variable
or property to its left.

4 Previous Mext b

4 Previous MNest b

Chapter 3: Controls

Overview

Thus far we have focused on the Form class. The form is an
important part of your application's GUI, perhaps the most
important one. However, a form cannot possibly meet all the
requirements of a Windows application. For example, the form
does not have the functionality to permit the typing of text, listing
of data, selecting of choices, and so forth. You need other,
specialized controls for that additional functionality. Indeed, the
form's primary role is to serve as a host, or container, for other
controls that enrich the GUI of Windows applications, such as
menus, toolbars, buttons, text boxes, and list boxes.

You will learn in this chapter how to add controls to your form
using the Toolbox. You then will learn how to use the Forms
Designer to change the size or location of the controls on the
form.

These controls, like the form itself, have their own properties,
which can be changed both at design time and at run time. This
chapter will provide you with guidelines on whether to assign
values at design time or run time in a given situation.

This chapter culminates with a project that uses a particular

control, the Label control, for two purposes: first, to display data

that does not change during the running of the application and,

second, using event procedures, to display data that does

change during the running of the application. This project also

shows you how to use information called parameters that's

available to an event procedure.
4 Pravious Mest b

4 Frewious MNeast b

Adding Controls to the Form

I, and perhaps you, too, have been requested when first visiting
a website to fill out a registration form. Such forms may use
many specialized controls. | may type my name in a TextBox
control. | also may choose my state or country from a list
supplied by a ListBox control. The purposes of the TextBox and
ListBox controls are identified by Label controls displaying
"Name" and "Country," respectively. When | am finished filling in
the required information, | click a Button control often labeled
"Submit.”

Visual C# 2005 supports many specialized controls. However,
the TextBox, Label, ListBox, and Button controls are perhaps
the most commonly used.

The TextBox, Label, ListBox, Button, and other specialized
controls cannot exist on their own. They must be contained, or
hosted, in another specialized type of control—a container
control. The form is the usual choice for a container control.
Indeed, the form's primary purpose is to serve as a container or
host for other controls.

Adding controls to a form through code is no easy task.
Fortunately, Visual C# 2005 enables you to easily add available
controls to a form through the Toolbox.

Toolbox

Visual C# uses a Toolbox to display controls that you can add to
your form. Figure 3-1 shows the Toolbox, which you can display
by choosing Toolbox from the View menu.

| Menus & Toolbars
Containers

' Common Controls
All Windows Forms
Crystal Reports

"4 Server Explorer | % Toolbox

Figure 3-1: Toolbox.

Note In following along, you can either start a new project as
you did in Chapter 1 or open an existing project as you
did in Chapter 2.

As Figure 3-1 shows, the Toolbox has a number of categories,
each preceded by an expander (the + sign), to organize related
items. If you see only the General category, the reason probably
is that you are in code view rather than designer view. If so,
simply switch to designer view.

The All Windows Forms category includes the controls used,
naturally enough, in Windows forms. The Common Controls
category includes, as its name suggests, commonly used
controls. Figure 3-2 shows the Toolbox with both categories
expanded. The Label control, which we will use in the next
section, appears in both categories.

+ Components
+ Data

1 Menus & Toolbars
+ Containers

- Common Controls
[h- Pointer I
(3] Bukkon

] CheckBax

55 ChedosdlistBox

v ComboBiox

= DiakeTmePicker

A Labed

A LinkiLabel

v ListBon

tx LSk

2| MasedTextBox

5| ManthCalendar

Tf Motifyloon

1w MNumsricLinDown
o PictureBos

Prograssbar

*) RadoButton

A1 RichTextfi:

sbd TeodtBio:
b Todmp

T Treeliew

T ; We'abBrowgar

- All Windows Forms
K| Fointer

o BackgroundWorker L

M Database Explorer |5 Toob

Figure 3-2: Expanding of Toolbox categories.

Note The Toolbox may seem to disappear if you shift focus
to Solution Explorer or another part of the Integrated
Development Environment (IDE). This is a behavior
known as auto-hide. To make the Toolbox reappear,
click on the Toolbox icon on the left border of the IDE.
The idea of auto-hide behavior is to maximize screen
space by hiding visual elements not currently in use. If
you don't want the auto-hide behavior, click the
pushpin button at the top of the Toolbox. Clicking the
pushpin button toggles between auto-hide and no
auto-hide.

Copying a Control from the Toolbox to

the Form

You have several methods of adding a control from the Toolbox
to your form. One way is to double-click the control in the
Toolbox. The control will appear somewhere in the form, such
as the top-left corner. Another alternative is to click on the
control in the Toolbox, drag the control over the form, and then
drop the control onto the form, where the control will appear
where you dropped it. Thus, with the double-click method, the
IDE positions the control, whereas with the drag-and-drop
method, you position the control.

Expand either the All Windows Forms or the Common Controls
category to show the Label control; then use either the double-
click or drag-and-drop method to add the Label control to the
form. Figure 3-3 shows the Label control after it is added to the
form.

e

]

Figuré 3-3: Label control inserted on the form.

Changing the Control's Location

As mentioned earlier, the double-click method situates the
Label control somewhere in the form, whereas the drag-and-
drop method situates the Label control wherever you dragged
and dropped it onto the form. Either way, you can reposition the
Label control.

Put your mouse over the Label control. The mouse pointer

should change to four arrows, as shown in Figure 3-4.

i

labell |

Figure 3-4: Mouse pointer before relocating control.

Next, click down on the left mouse button (but don't release it)
and drag the Label control to another location. Release the
mouse button when the control is at the desired location.

You can also change the position of the Label control relative to
the form by selecting it and then choosing either the Format |
Center in Form | Horizontally menu command or the Format |
Center in Form | Vertically menu command, depending on
whether you want to center the control on the form horizontally
or vertically (or both).

If you have multiple labels, you can align the top, bottom, or
sides of the controls by selecting all labels involved (click each
label while holding down the SHIFT Of CTRL key) and then
choosing the Format | Align | Tops (or Middles, Bottoms, Lefts,
Centers, or Rights) menu command. The label selected first
(and shown with a darker highlight) will be the guide for the new
alignment of all labels selected.

Changing the Control's Size

Resizing the Label control involves an extra step. The Label
control has an Auto-Size property. This property, when set to
True (the default), automatically resizes the label so it can
display its text. Figure 3-5 shows the Label control's Properties
window and the AutoSize property.

Properties

labell System.Windows.Forms.Label ~
a=|2l||B]# | E
AccessibleRole Default
AllowDrop False
anchor Top, Left
AutoEllipsis False
Autosize True

BackColor [] control
BorderStyle MNone

CausesYalidatior True
ContextMenuStr (none)
Cursor Defaulk
Dock MNone
Enabled True
FlatStyle Standard

Fonk Microsoft Sans Se
ForeCalor B controlText
GenerateMembe True

Text

The text contained in the control,

LY.

Figure 3-5: AutoSize property in the Label control's
Properties window.

If you want to manually change the Label control's size, you first
need to set the AutoSize property to False, using the drop-down
box for the value of the AutoSize property. Next, select the
Label control you want to resize. As Figure 3-6 depicts, when
you select the Label control, eight small squares appear on a
box surrounding the Label control—four at the corners and four
halfway between the corners.

B
Figure 3-6: Resizing the Label control.

You can resize the label by holding the mouse over one of
these small boxes. The cursor should change to a two-headed
arrow. Hold the mouse down and drag it to resize the label.

If you have multiple labels, and their AutoSize properties are all
set to False, you can make them the same width, height, or size
by selecting all the labels involved (click each label while
holding down the SHIFT or CTRL key) and then choosing
Width, Height, or Both from the Format | Make Same Size
submenu. The size of the label selected first will become the
new width, height, or size of all the labels selected.

4 Previous

Nesct b |

4 Previous

Important Label Properties

The Label class has many properties, but the Text and the
Name properties likely are the most important.

Text Property

The primary role of a label is to display text, and the value of the
Text property determines the text that will be displayed.

The text is read-only to the application user, who cannot type on
the label to change the label's text. Other controls, in particular
the TextBox control, enable the user to type on the control to
change the text.

The Print dialog box shown in Figure 3-7, and displayed in most
Windows applications with the File | Print menu command,
illustrates two common purposes of the text in a Label control.

W

Sladuss Ready LIPtiofle | Predererces
]

LC St i

Comment [Fnd Prvtes._ |

Pa

OF] Murmbes of copees. |1 -

Pl [-. Caicosl _J

Figure 3-7: Print dialog box.

One common purpose of the text displayed by a label is to

identify another control. In Figure 3-7, the "Number of Copies"
label identifies the purpose of an adjacent control that enables
you to set (with the up and down arrows) the number of copies

Nest b |

you want to print.

Another common purpose is to display data, such as the Label
control showing "Ready" next to Status. As with the Form
object, you can change the value of the Label control's Text
property either at design time or through code. You generally
will use the Properties window if the purpose of the label is to
identify the purpose of another control because that information
usually will not change during the running of the application.
The "Number of Copies" label is an example.

By contrast, you generally will use code if the purpose of the
label is to display data that may change during the running of
the application. For example, the Text property of the label next
to Status should be set through code because, during the
running of the application, the printer's status may change
between being ready and going offline.

Name Property

The Name property is important because its value is how the
label is referred to in code. By default, the first label you add to
your form is named labell, the second label2, the third label3,
and so forth. The default name is fine if you will not be referring
to the label in your code. This would be the case if the purpose
of the label simply is to identify the purpose of another control.

However, using a default name can cause you difficulty if you
are referring to the label in code, such as if the purpose of the
label is to display information that may change when the
application is running. The difficulties you may encounter
increase as the number of the labels in your application
increase. For example, you may have difficulty remembering if
label53 is the one that displays weather information or the one
that displays your bank account balance.

| recommend you use a naming convention when naming your
controls. A naming convention simply is a consistent method of
naming controls. There are a number of naming conventions. It
is not particularly important which one you use. What is
important is that you use one and stick to it.

One often-used naming convention is to name a control with a
prefix, usually all lowercase and consisting of three letters, that

indicates the type of control it is, followed by a word, first letter
capitalized, that suggests its purpose. For example, IbIWeather
would indicate a label that displays weather information. If you
need more than one word to describe the control's purpose, you
should combine the words into one (because a name cannot
have embedded spaces) and capitalize the first letter of each
word. For example, IbIBankAccountBalance would indicate a
label that displays your bank account balance.

Tip Be careful when you use prefixes such as Ibl that you
use a lowercase letter 1 and not the number 1.
Interchanging the two can cause typos that are hard for
you to see and also will result in a compiler error
because control names cannot start with a number.

4 Previous

HNext b

4 Previous

The Label Control in Action

In this section you will create a project (or reuse an existing
project) to display the X and Y coordinates of the mouse pointer
while the mouse is moving over the form. Figure 3-8 shows
what the application looks like when it is running. Of course, the
X and Y coordinates displayed will vary depending on where the
mouse is located over the form.

| # Coordinate 1M

3

Y Coordinate 70

Figure 3-8: Application displaying mouse coordinates.

Mouse Coordinates

A brief explanation of how mouse coordinates work may be
helpful before explaining how the code works. Similar to the
concept of coordinates in graphing, mouse coordinates are
expressed in two numbers. The first is usually referred to as X
and measures a horizontal distance from a reference point. The
second is usually referred to as Y and measures a vertical
distance from a reference point. In the context of a mouse
moving over a form, the reference point is the top-left corner of
the form. Therefore, the X coordinate measures the horizontal
distance from the left side of the form, and the Y coordinate
measures the vertical distance from the top of the form.

Coordinates by convention are expressed with the following

Nest b |

syntax: X,Y. Therefore, the top-left corner of the form would be
the coordinates 0,0. If a coordinate is 60,77, the mouse is 60
units to the right of the left edge of the form and 77 units below
the top edge of the form.

The unit of measure is a pixel, a shortened term for "picture
element,” a dot representing the smallest graphic unit of
measure on a screen. Screen resolutions such as 1024 x 768
are expressed in pixels.

Creating the Application

Implement the following steps to create the application:

1.
2.

Either open an existing project or create a new one.

Using the Toolbox, add four labels to the form, one label
at a time.

Using the Properties window, change the AutoSize
property of all four labels from the default (True) to False.
This step will make easier the customization of the labels
in the following steps.

Size and align the four labels as shown in Figure 3-8. The
preceding sections "Changing the Control's Location" and
"Changing the Control's Size" explain how to align and
size multiple labels.

Using the Properties window, change the Text properties
of the two labels on the left to X coordinate and Y
coordinate, respectively, because the purpose of these
labels is to identify the two labels on the right. You are
changing the value of the Text property of these labels at
design time because the text on these labels will not
change while the project is running.

Using the Properties window, change the Name
properties of the two labels on the right to IbIX and IblY,
respectively. As discussed in the preceding section on the
Name property, the prefix Ibl (lowercase letter |, not the
number 1) identifies these controls as labels to
programmers reading the code, and the suffixes X and Y
note the purpose of the controls (to display the X and Y
coordinates, respectively). It is not so important to rename

10.

11.

the two labels on the left because it is unlikely you will
need to refer to them in code.

Again using the Properties window, change the BackColor
property of IbIX and IblY to White (so they will be more
visible after we delete their text in the next step). When
you click the value of the BackColor property, a tabbed
dialog box appears. Choose the Custom tab and then
click on a box that is white.

Also using the Properties window, delete any value in the
Text properties of IbIX and IblY so both are blank. We
don't want these labels' names to display as their text
when the project first starts up.

Create an event procedure stub for the MouseMove event
of the form. The process is similar to the one in Chapter 2,
when you created a Click event procedure for the form. In
designer view, display the Properties window for the form
and then click on the fourth icon from the left, which looks
like a lightning bolt. Next, expand (by clicking the plus
sign) the Action category and then double-click on
MouseMove to create an event procedure stub for the
MouseMove event. The event procedure stub is shown in
Figure 3-9.

Write the following code inside the event procedure stub:

| bl X. Text e. X. ToString();
| blY. Text e.Y. ToString();

The completed event procedure now is shown in Figure 3-
10 and reads as follows:

private void Fornl_MuseMve
(obj ect sender, MuseEvent Args e)
{

X. Text

I e. X. ToString();
Y. Text

b
b e.Y. ToString();

Compile the project from the Build menu and then run the
project from the Debug menu. Move your mouse over the
form. The two labels on the right should display numeric

values, as shown in Figure 3-8, that change as you move

the mouse.

W A me Awets Pt Bl e P el R ey
Sl ST - o bR = & AEaAEs
b B o s il e

T T T LX)

-
[
4 +

T TR
¥ . PLE— s . rwnr o ra— i a1 e A
fmary s = Pk

Figure 3-9: Event procedure stub for the MouseMove event

of the form.

P G e bt Pem B By fme e s Pomeis b
sl b a e B Ry b T =t (5 - Az axE
REIWN I LR EEm
Ty =y e ———p _®x
[—— C Ry - ————
——qr—
N
-
- -
I e
T e -
' g
= ta 2 ra

Figure 3-10: Completed MouseMove event procedure.

4 Previous Mext b

4 Previous MNest b

How the Code Works

Although you know that the code works, you also need to know

how the code works.
4 Pravious Mest b

4 Previous

Using Event Procedure Parameters

The following two lines of code display the X coordinate of the
mouse in the Text property of the Label control IbIX and the Y
coordinate of the mouse in the Text property of the Label
control IblY:

| bl X. Text
| bl Y. Text

e. X. ToString();
e. Y. ToString();

The "e" on the right side of the assignment operator also
appears in the parentheses of the event procedure:

(obj ect sender, MuseEvent Args e)

The parentheses of the event procedures contain its
parameters. A parameter represents information that is
available to a procedure.

An event procedure may have no parameters, one parameter,
or two or more parameters. An event procedure's parameters
are defined by Visual C# and the underlying .NET Framework;
you cannot change them.

When a procedure has two or more parameters, the parameters
are separated by a comma. The MouseMove event procedure
of the Form class has two parameters.

The second parameter, represented by e, is an object of the
MouseEventArgs class, which belongs to the
System.Windows.Forms namespace.

The MouseEventArgs class has two properties, X and Y, whose
values, in the case of the MouseMove event, are the current X
and Y coordinates of the mouse cursor. Because e represents
the instance of the MouseEventArgs class involved in the
current mouse movement, e.X represents the X coordinate of
the mouse when the mouse is moved, and e.Y represents the Y
coordinate of the mouse when the mouse is moved. With the
assignment operator, these X and Y coordinates are assigned
to the Text properties of IbIX and IblY, respectively, which then
display these coordinates. Each time the mouse moves, the
MouseMove event occurs, and therefore the code inside the

HNext b

event procedure executes, updating the text displayed in the
two labels.

What If You Type the Wrong Code?

The code on the right side of the assignment operator is not just
e.X and e.Y. It also calls the ToString method. Before | explain
that method, let's examine what happens if you typed the wrong
code, leaving out the ToString method, so your code read as
follows:

private void Fornl_MuseMve
(obj ect sender, MuseEvent Args e)
{

e. X

| bl X. Text
| bl e.Y;

Y. Text

Visual C# 2005 tries to warn you even before you attempt to
compile your code. As Figure 3-11 shows, e.X and e.Y both will
be underlined with a squiggly line similar to how Microsoft Word
highlights misspellings.

i od Wl P B e 4 a . A 1% e -
r v
¥

Figure 3-11: Incorrect code highlighted.

If you hold your mouse over the underline code, a ToolTip
shows with the following warning: "Cannot implicitly convert type
int' to 'string.™ This warning appears because e.X and e.Y are
both integers, whereas the Text properties of the two Label

controls are strings. Visual C# does not permit you to assign an
integer to a string.

Undeterred by this warning, you nevertheless attempt to build
the project. As Figure 3-12 shows, an Error List should display,
reporting the following, similarly to the ToolTip: "Cannot
implicitly convert type 'int' to 'string.™ Additionally, the lines
containing this error are identified.

Figure 3-12: Error List reporting an error.

Note If the Error List does not automatically display, you can
display it with the menu command View | Other
Windows | Error List.

ToString Method

Of course, you still need to correct the code. To do so, you
need to convert the integer value on the right side of the
assignment operator to its string representation. In other words,
if the integer is 123, its string representation is "123".

All classes have a ToString method. What that method does
depends on the class. In the case of the Int32 class, which
represents an integer, the ToString method converts an integer
to the string representation of the integer, so it can be assigned
to the Text property of the Label controls.

The ToString method is preceded by the integer value to be
converted and a dot or period. It is followed by empty

parentheses because this method has no parameters.

Note Though the parentheses are empty, do not omit them
because a compiler error will result.

Delegate

Figure 3-12 shows Solution Explorer with the expander next to
Form1l.cs to show two files under it, one of which is
Form1l.Designer.cs. (You may need to click the Show All Files
button to obtain this view.) Right-click that file name and choose
View Code from the shortcut menu. This will display the code in
Form 1.Designer. cs, as shown in Figure 3-13.

Figure 3-13: Code view of Forml.Designer.cs.

One of the lines of code reads (here on three lines because of
its length):
t hi s. MouseMove +=

new Syst em W ndows. For ns. MouseEvent Handl er
(this. Fornl_MuseMve) ;

As explained in Chapter 2, when the .NET Framework that
underlies Visual C# 2005 detects an event, such as the mouse
button being held down, that happens to an object such as a
form, its searches for an event procedure that handles that
event for that object. If the .NET Framework finds such an event
procedure, it calls that event procedure, and the code inside the
event procedure executes.

MouseEventHandler, part of the System.Windows.Forms
namespace, is a delegate. A delegate is used to specify which
procedure handles an event that happens to a particular object.
MouseEventHandler in particular specifies the procedure that
will handle the MouseDown, MouseUp, or MouseMove event of
a form, control, or other component.

The += operator is explained in Chapter 5 on arithmetic
operators. For now, treat it as an assignment operator.

On the left side of the += operator is this.MouseMove. The "this"

keyword refers to the current object of the Form1 class—that is,
the form over which the mouse button is being held down.
MouseDown is the event. Accordingly, this.MouseMove
specifies the event to be handled, which is the mouse moving
over the form.

On the right side of the += operator, the MouseEventHandler
delegate is followed in parentheses by the name of the
procedure that will handle the event, Form1_MouseMove.

Note If you delete an event procedure, you will get a
compiler error if you don't delete the line concerning
the corresponding delegate in Forml1.Designer.cs.

4 Previous

HNext b

4 Frewious
Conclusion

The form is perhaps the most important control. However, a
single form without controls could only satisfy the requirements
of the simplest Windows application. The form does not permit
the typing of text, listing data, selecting of choices, and many
other tasks that an application may need to perform. You need
other, specialized controls for that additional functionality.
Indeed, the form's primary role is to serve as a host, or
container, for controls such as menus, toolbars, and buttons,
which enrich the GUI of Windows applications.

This chapter showed you how to add controls to your form using
the Toolbox. You then learned how to use the Forms Designer
to change the size and location of the controls. The project also
showed you how to control the size and location of multiple
controls relative to each other.

The Label class, like the Form class, has properties. Perhaps
the most important properties of the Label class are its Name
and Text properties.

The Name property determines how you refer to a label in code.
You should use a naming convention when naming a label that
you will refer to in code. This chapter suggested a naming
convention using a prefix, usually all lowercase and consisting
of three letters, that indicates the type of control it is, followed by
a word, first letter capitalized, that suggests its purpose.

The Text property determines the value of the text displayed by
the label. Like the Text property of the Form class, you can
change the value of the Label control's Text property either at
design time or through code. You generally will use the
Properties window if the purpose of the label is to identify the
purpose of another control because that information usually will
not change during the running of the application. By contrast,
you generally will use code if the purpose of the label is to
display data that may change during the running of the
application. This code often will be located inside of an event
procedure.

This chapter included a project that uses the Label control for
both purposes—to display data that does not change during the

HNext b

running of the application and to display data that does change
during the running of the application. Finally, you learned how to
use information called parameters that's available to an event
procedure.

Although it is impressive that you can create a working Visual
C# 2005 program that displays information using controls by
writing only two lines of code, most programs need to save
information, or data. The next chapter will teach you about the
different data types as well as how to create and use
information storage locations called variables.

4 Previous

HNext b

4 Previous MNest b

Quiz

1.

2.

9.

What are examples of controls?

What is the purpose of the Toolbox?

How do you add a control from the Toolbox onto your form?
What is the purpose of the Name property of a control?
What is a naming convention?

What characteristic of the Label control does its Text property
determine?

What are purposes of the text displayed by a Label control?

Can a single statement in C# take up two or more lines in the code
editor?

What is a parameter of an event procedure?

10. What is a delegate?

Answers

TextBox, Label, ListBox, and Button are all controls.
The purpose of the Toolbox is to display controls that you can add to your form.

You may add a control from the Toolbox onto your form either by doubleclicking the control
in the Toolbox or by dragging the control from the Toolbox and then dropping it onto the
form,

The Name property of a control is used to identify that control in code.
A naming convention is a consistent method of naming, such as when naming controls.

The value of the Text property of a Label control determines the text that will be displayed by
the label.

The text displayed by a label may identify another, adjacent control, or it may display data.

8. A single statement in C# may take up two or more lines in the code editor.
9. A parameter represents information that is available to an event procedure.

10. A delegate is used to specify which procedure handles an event that happens to a particular
object.

4 Pravious Mest b

4 Previous MNest b

Chapter 4: Storing
Information—Data Types and
Variables

Overview

| often am asked for my autograph. Unfortunately, my autograph usually is
requested by those who want my money, such as on credit card receipts when
| purchase groceries or gas, or on checks to pay my mortgage or auto
insurance.

These companies that love sending me bills could not possibly keep track of
their thousands of customers using pencil and paper. Instead, they use
computer programs, which harness the computer's unparalleled ability to store
information and make computations using that data.

These companies are not the only ones that need to store and retrieve data.
Visual C# 2005 also needs to store and retrieve data, such as the height,
width, and background color of your startup form, necessary in order for your
projects to run.

Data comes in different varieties. Some data is numeric, such as the amount
of my gas bill or the height of a form. Some data is text, such as my name on
my gas bill or the text on the title bar of a form. Some data is Boolean (either
true or false), such as whether I qualify for the senior citizen discount or
whether a form is visible.

The type of information, whether numeric, text, or Boolean, is referred to as
the data type. | will explain in this chapter the different data types and how to
select the one that best fits your purpose.

You also will need to store data. Visual C# forms and controls have many built-
in properties to store data, such as the Text property of a Label or TextBox
control. However, these properties are limited to storing the information they
were designed for. The Height property of a form only can store a form's
height, not some other information you need to store.

Visual C# 2005 enables you to create your own information storage locations,
called variables. | will show you in this chapter how to create and use
variables.

Finally, certain values never change while a program is running. For example,

if you are writing a program to calculate the cost of a transaction, the

percentage of sales tax will not change while your program is running. Values

that do not change while your program is running are called constants. | will

also show you in this chapter how to create and use constants.
4 Previous MNewxt b

4 Previous MNest b

Data Types

Think of all the different types of information that you need to keep in your
mind. For example, if you as a student were driving to school for the first day
of class, you would not want to be late. Therefore, you would consider the
number of miles to school in deciding what time to leave. You may wonder if
you will be able to get into the class and try to remember the name of the
teacher you need to ask. Also, the class will be tough, so you think about the
effect the class might have on your grade point average.

Some of these items of information are numeric, such as the number of miles
to school and your grade point average. However, the name of the teacher is
not numeric, but text, and the answer to whether you will be able to get into the
class will be yes or no. The type of information, whether text, numeric, or
yes/no, is referred to as the data type.

Numeric Data Types

Visual C# has a number of data types—int (for integer) being the most
common—that may be used for whole numbers. A whole number may be
positive (say, 55) or negative (-55) or zero. However, the int data type should
not be used for floatingpoint numbers—that is, those that have numbers to the
right of the decimal point, such as -.5, .5, and 5.5.

The int keyword, for an integer data type, is an alias for the System.Int32 data
type in the .NET Framework. Indeed, each of the Visual C# data type
keywords we will be discussing is an alias for a corresponding .NET
Framework data type.

An int would be a good choice for the number of miles to school. Normally, you
would think it is 8 miles to school, for example, not 8.3 miles, because there is
no need to be so precise as to figure out tenths of miles.

Visual C# has three floating-point data types—float, double, and decimal—that
may be used for floating-point numbers, such as -.5, .5, and 5.5. One of these
data types would be a good choice for your grade point average (for example,
3.91), because for a grade point average you want to take into account the
digits to the right of the decimal point. After all, if you worked hard to earn a
3.91 grade point average, you would not want the .91 ignored, thus making
your grade point average 3.0.

Note The int and double data types can handle almost all numbers you
may use in a program. However, some numbers are too large for
either data type to handle, such as distances between galaxies in the
universe. Also, some numbers may be too small for the double data
type to handle, such as the size of an atom. However, these
circumstances are relatively rare.

The bool (for Boolean) data type has only two possible values: True and False.
The bool data type would be a good choice to report whether or not you got
into the class, because there are only two alternatives, yes (True) and no
(False).

Text Data Types

The string and char data types are used for text. A string is simply one or more
characters, usually enclosed in double quotes to indicate that a string is
intended. The characters may be alpha (A—Z or a—z), numeric (0-9), or
virtually any other character you can type from your keyboard. For example,
the name "R2D2" is a string even though it includes the numeric character 2.
The string data type would be a good choice for the teacher's name, such as
"Genghis Khent," my students' fond (?) nickname for me.

The char data type represents a single character, enclosed in single rather
than double quotes ('A’, not "A") to indicate that it is a character rather than a
string. As with a string, a char may be alpha (A—Z or a—z), numeric (0-9), or
virtually any other character you can type from your keyboard. The char data
type would be a good choice for the grade you hope to earn in the class, such
as an'A'.

There are other data types, some of which will be mentioned in later chapters.
However, these five data types—int, double, string, char, and bool—are the
ones principally used.

Data Types of Visual C# Properties

Visual C# 2005 needs to keep track of a lot of information. Take a look at the
Properties window of the form in your project. The form has many different
properties. These properties determine the form's height and width,
background color, caption, visibility, and so on. Visual C# 2005 uses these
properties when you start a project to determine the form's size, background
color, and so forth.

Each of these properties stores a particular value. The Height property stores

a number that represents the height of the form. The Text property stores a
string that represents the title displayed by the form. The Visible property
stores a Boolean value that represents whether the form is visible (True) or
hidden (False).

You can access the value of many properties when designing your application
(design time) simply by viewing their values in the Properties window. You also
can access the values of many properties while your application is running
through code (run time). In Chapter 2, we changed the Text property of the
form at run time, and in Chapter 3, we changed the Text property of labels at
run time.

However, whether you are at design time or run time, the new value of the
property must be of the correct data type. To confirm this, in the Properties
window of the form, type Jeff next to the Height property, which you can
access by expanding the Size property, as shown in Figure 4-1. Then press
ENTER. A dialog box will display, as in Figure 4-2, warning you of an "Invalid
property value."

Form1 System.Windows.Forms.Form -

| RightToLeft Mo
RightToLeftLayo False

&

Showlcon True

| ShowlInTaskbar True
B Size 300, 238

Width 300

I e
| SizeGripStyle Auto
StartPosition WindowsDefaultLs

| Tag

[Text MyForm

| TopMost False
Transparencyke: |:|

| UseWaitCursor False o

' Height

Properties Window

““ " Invalid property value.

{ oK E { Cancel

Figure 4-2: Invalid property value warning.

Click the Details button of the dialog box in Figure 4-3. The dialog box then will
display the message, "Jeff is not a valid value for Int32." As discussed earlier,

System.Int32 is the name used in the .NET Framework for the int data type.

Properties Window

Invalid property value,

| & Details | oK I l Cancel

Jeff is mat a valid value For Ink32,

Figure 4-3: Details of "Invalid property value" warning.

That Visual C# 2005 prevents you from changing the value of the Height
property to "Jeff" makes sense. The height must be a number. Visual C# does
not know how to make the form of the height "Jeff."

Try exploring the properties of the form in the Properties window. You will see
there are many different data types for the different properties.

Mest b |

4 Previous

Variables

You can store, access, and change the value of a property. However, you
cannot change what the property stands for. For example, the Height property
of a Form object represents the height of a form; you cannot change that
property so it instead represents the width of a form or the name of your
favorite ice cream.

Instead, you can create a variable to store data of your choosing, such as the
name of your favorite ice cream, your social security number, and so on.

Declaring a Variable

Visual C# knows that the form's Height property stands for the height of the
form and that its data type is numeric, because the Height property is built into
the .NET Framework class library. However, because you, not Visual C#,
create a variable, you need to tell Visual C# information about the variable.
You do so by declaring the variable.

You declare a variable with the following syntax:
[Access Specifier] [Data Type] [Variable Nane];

To make this syntax more understandable, here are two examples of declaring
a variable:

public int intScore;
private string strNaneg;

In the first example, public is the access specifier, int is the data type, and
intScore is the variable name. In the second example, private is the access
specifier, string is the data type, and strName is the variable name. In either
case, the statement declaring the variable is terminated with a semicolon, as
are other statements in C#.

The access specifier is used when the variable is declared as a class member,
not when it is declared locally. The section "Where Do | Declare a Variable?"
later in this chapter discusses declaring a variable locally or as a class
member, and the effect of the various access specifiers.

You can choose any of the data types discussed in the preceding section on
data types, though logically, you should choose a data type that is appropriate

HNext b

for the purpose of the variable. For example, if the variable represents
someone's name, you likely will choose string as the data type, whereas if the
variable represents someone's age, you instead may choose the int data type.

Naming a Variable

Variables, like people, have names. These names are used to identify the
variable to which you want to refer. There are only a few limitations on how
you can hame a variable:

= The variable name cannot begin with any character other than a letter of
the alphabet (A—Z or a—z) or an underscore (). Secret agents may be
code-named 007, but not variables.

= The variable name cannot contain embedded spaces, such as My
Variable, or punctuation marks other than the underscore character (),
such as a question mark (?), a comma (,), a period (.), a backslash (\), a
forward slash (/), or a parenthesis.

= The variable name cannot be longer than 255 characters (not that you
would want to create a variable name that long).

= The variable name cannot be the same as a keyword, such as int or
string, because that would confuse the compiler.

= The variable name cannot have the same name as another variable of
the same scope, because that also would confuse the compiler. Scope is
discussed later in this chapter.

Besides these limitations, you can name a variable pretty much whatever you
want. However, it is a good idea to give your variables names that are
meaningful. If you name your variables varl, var2, var3, and so on, through
varl7, you may find it difficult to remember later the difference between var8
and var9. And if you find it difficult, imagine how difficult it would be for another
programmer who has to make sense of your code.

In Chapter 3, | recommended you use a naming convention when naming
controls. I similarly recommend that you use a naming convention when
naming your variables. Analogous to Chapter 3, the convention | suggest is to
name a variable with a prefix, usually all lowercase and consisting of three
letters, that indicates its data type, followed by a word, first letter capitalized,
that suggests its purpose.

Here are some suggested prefixes for data types:

Data Type Prefix

int int
string str
bool bin
double dbl

Here are some examples that use these prefixes:
= intScore Integer variable representing a score, such as on a test
= strName String variable representing a name, such as a person's name

= blnResident Boolean variable representing whether or not someone is a
resident

= dbIGPA Double variable representing a student's GPA

If you need more than one word to describe the variable's purpose, you should
combine them into one word (because you cannot have embedded spaces)
but capitalize the first letter of each word, such as binDidUserQuit.

What Happens If | don't Declare a Variable?

Visual C# 2005 requires you to declare a variable before you refer to it in code.
For example, in either a new or existing Windows application, insert the code

intvVar = 10;

at the beginning of the class. This code, which attempts to assign 10 to intVar
without previously declaring intVar as a variable, will not compile:

public partial class FormlL : Form

{

i ntVar = 10:;
/! remai nder of code

Instead, on the line
i ntVar = 10;

the compiler will complain with the following error message: "Invalid token '="in
class, struct, or interface member declaration.” Although this error message is
not very illuminating, it tells you that your code is wrong.

Where Do | Declare a Variable?

You can declare a variable in one of two places: inside a procedure or at the
top of the code module. Where you declare a variable affects its scope.

Local Variable

If you declare a variable inside a procedure, you can refer to that variable only
in that procedure. Stated in programming parlance, the variable is a local
variable, having scope only inside the procedure in which it was declared. No
access specifier is used for local variables.

Assume the code in the Load and Click event procedures of the form read as
follows:

private void Fornl_Load(object sender, MuseEvent Args e)

{
}

private void Forml_Cick(object sender, MuseEventArgs e)
{

}

int intVar;

intvar = 10;

When you attempt to compile your project, the result will be a compile error
("the name 'intVar' does not exist in the current context") concerning the line
intVar = 10 inside the Click event procedure. The reason is that intVar only has
scope inside the Load event procedure in which it was declared, and therefore
is not visible in the Click event procedure. This is why no access specifier is
used for local variables; access to them already is restricted to the procedure
in which they are declared.

By contrast, assigning 10 to intVar inside the Load event is okay because
intVar was declared inside that event procedure. Try this by deleting the line of
code in the Click event procedure of your form and changing the code in the
Load event procedure of your form so it reads as follows:

private void Fornl_Load(object sender, MuseEvent Args e)

{

int intVar;
i ntVar = 10;

In this example, the variable intVar was declared in the first statement and
assigned a value in the second statement. You also can combine the two
statements as follows:

int intVar = 10;

Combining the declaration and assignment of a variable in one statement is
called initialization.

Note When you compile a program that either declares or initializes a
variable (here, intVar) but thereafter does not use that variable, you
may get the following warning: "The variable 'intVar' is declared but
never used." A warning is not a compile error. The program still will
run. Instead, a warning means that Visual C# is bringing to your
attention, as the programmer, that the issue may or may not be a
problem, and it is up to you to decide whether it is.

Class Member Variable

You also can declare a variable as a member of the class. In the following
code snippet, intMember is a class member variable because it is declared
within the class but not within an event procedure. By contrast, intLocal is a
local variable because it is declared within the Load event procedure for the
form.

public partial class FormlL : Form
{
i nt intMnber;
/'l nmore code
private void Fornil_Load
(obj ect sender, MuseEvent Args e)
{

int intLocal;
i nt Menber = 10;
}

/! nore code

Additionally, the statement intMember = 10 within the Load event procedure

for the form compiles because intMember, as a class member variable, has
scope throughout the class. By contrast, the scope of intLocal is limited to the
event procedure in which it was declared.

Also unlike local variables, class member variables may be declared with
access specifiers. Table 4-1 lists the access specifiers.

Table 4-1: Access Specifiers

Declared Meaning

Accessibility

public Access is unrestricted (that is, this type of access is
without any of the limitations of the other access
specifiers).

protected Access is limited to the class in which the variable

was declared or classes inherited from that class.

internal Access is limited to the classes in the current
assembly (or solution).

protected internal Combines access for protected and internal.

private Access is limited to the class in which the variable
was declared.

At this point in the book, we are writing code in only one class, so the access
specifier currently is unimportant as a practical matter. However, when you
later create more complex applications, the issue of the appropriate access
specifier will be revisited. As a general rule, you should use the most restrictive
access specifier consistent with the needs of your program, as discussed in
the next section, "Why Not Always Declare Variables as Class Members?"

If an access specifier is omitted, as in the following code, the access specifier
then is the default, private:

public partial class FormlL : Form

{
i nt intMenber; /'l public access inplied

/! nore code

The following code illustrates the syntax of the various access specifiers:
public partial class FormlL : Form

{
i nt intHeight; /'l private access inplied

public int intWeight;

protected int intAge;

internal int intShoeSize;

protected internal int intShirtSize;

private int intPinCode;
/'l nore code

You may declare a class-level variable using initialization:
private int intPinCode = 111,

However, you can assign a value to an already-declared variable only inside a
procedure; you cannot do so at the class level:

private int intPinCode;
i nt Pi nCode = 111; /'l conpiler error

Instead, you will get the following compile error: "Invalid token '=" in class,
struct, or interface member declaration."

Why Not Always Declare Variables as Class Members?

Given the potential for compiler errors resulting from variables being
referenced outside their scope, the temptation is to give your variables the
widest possible scope, to make them class members instead of local, and to
make their access public. Resist temptation! Indeed, as a general rule, you
should make the scope of your variables the least possible.

One reason is, when you're debugging your code, if a variable can be
accessed only from one location in your program, you only need to check the
code in that one place. However, if the variable can be accessed from ten
different locations in your program, you need to check the code in all ten
places, as well as determine the effect of any interrelationships between the
ten locations. In other words, the less scope the variable has, the easier your
task as a programmer. Why make your job harder than it has to be?

Of course, there often will be circumstances in which a variable should be a
class member. There also will be circumstances in which a class member
variable should be public rather than private. The point is that in determining
whether to declare a variable locally in an event procedure or instead as a
class member, or in determining the access specifier for a class member
variable, you need to justify to yourself any added scope you give the variable

before you do so.
4 Previous Newxt b

4 Previous

Constants

A constant is similar to a variable, except that a constant's value cannot
change during the life of the program.

Declaring a Constant

The syntax of declaring a constant is similar to declaring a variable (the syntax
is split into two lines because of the width of the printed page):

[Access Specifier] const [Data Type]
[Vari abl e Nane] = [val ue];

For example, the following statement declares a constant, MAX_SCORE, of
the int data type, whose value, 100, is the maximum score that can be
obtained on a test:

public const int MAX SCORE = 100;

Let's analyze the component parts of the constant declaration:

= public This is the access specifier. Access specifiers work the same way
with constants as they do with variables.

= const This is a keyword that indicates you are declaring a constant
instead of a variable.

= int This is the data type, again the same as with variables.

» MAX_SCORE This is the name of the constant. Constants, like variables,
have names. However, the naming convention for constants may be
different from the one for variables. By one convention which | use,
constant names, unlike variable names, do not have a prefix such as int
or str to specify the data type, but instead are entirely descriptive.
Additionally, by convention, the name consists of uppercase characters,
S0 words are separated by an underscore character (_), such as in
BRIBE_PAID.

= =100 This assigns a value to the constant. The main difference in syntax

HNext b

between declaring a variable and declaring a constant, other than the
const keyword, is that a constant must be assigned a value when
declared. The reason why a constant must be assigned a value when it is
declared is that the value of a constant cannot be changed after it is
declared. Therefore, a constant must be given a value when it is
declared; otherwise, it can never be given a value at all. Declaring a
constant without assigning a value (public const int MAX_SCORE;) will
result in the following compiler error: "A const field requires a value to be
provided."”

Where Do | Declare a Constant?

You can declare a constant locally or as a class member. The reasons why |
recommend you declare a variable locally, unless you have a specific reason
to declare the variable as a class member, don't apply to constants because,
as the next section shows, you can't change the value of a constant after you
declare it.

Where Do | Assign a Value to a Constant?

The answer is that you only can assign a value to a constant when you declare
it (that is, via initialization).

Because a constant's value cannot be changed during the life of the program,
even attempting to assign a value to a constant will cause an error. Try this
code in the Windows application you have been using in this chapter. The
result will be the following compile error: "Invalid token '=" in class, struct or
interface member declaration.”

public partial class FormlL : Form

{
public const int MAX SCORE = 100;
/'l nore code
private void Fornil_Load
(obj ect sender, MuseEvent Args e)
{
MAX SCORE = 200; [lerror
}
/'l more code
}

Why Use Constants?

Although it is important to know how a constant differs from a variable and how

to declare constants, you may be wondering, Why use constants at all? The
reason is that constants make your code easier to read and maintain.

Although constants are useful for values that never will change, constants
perhaps are even more useful for values that someday may change. For
example, we've all paid sales tax on purchases. Assuming the tax rate is 8%,
the amount of the tax is price * .08. Thus, throughout your code for a store you
may have calculations such as the following:

[price variable] * .08;

One day the government decides to increase the sales tax to 8.25%. Now you
have to find all the places in your code where you referred to the sales tax rate
and change all those references from .08 to .0825. This not only is a pain, but
the potential for error is obvious.

Alternatively, you could have declared the sales tax rate as a constant:
const doubl e SALES TAX RATE = . 08;

Thus, the tax calculation in your code would be this:
[price variable] * SALES TAX RATE;

Then, when the government increases the sales tax to 8.25%, you only have
to make the change in one place in your code, and you're done:

const doubl e SALES TAX RATE= = . 0825;

4 Previous

Next b

4 Frewious MNext b
Conclusion

Most programs need to keep track of information. That information may be
about the subject of the program, such as the names and addresses of
customers, or it may be about the program itself, such as the height, caption,
or visibility of a form.

Data comes in different forms. Data may be numeric (such as the height of a
form), text (such as the caption on a form), or Boolean (such as whether a
form is visible). The type of information, whether number, string, or Boolean, is
referred to as the data type.

Although the .NET Framework class library has many built-in properties to
store data, Visual C# 2005 also enables you to create your own information
storage locations, called variables. Variables must be declared before they are
used.

Variables may be declared at the top of the code module, in which case they
are called module level and will be available to all procedures in that module.
Variables also may be declared inside a procedure, in which case they are
called local and their scope is limited to the procedure in which they were
declared.

Finally, certain values never change during the life of the program. These
unchanging values are represented by constants, which are declared similarly
to variables. However, unlike variables, constants must be initialized when they
are declared, and their value cannot thereafter change during the lifetime of
the program.

In this chapter, you used the assignment operator to provide values to
variables. In the next chapter, you will learn about arithmetic operators, which
enable you to use the computer's unparalleled ability to quickly and accurately
perform mathematical calculations.
4 Previous MNewxt b

4 Previous MNest b

Quiz

1.

2.

8.

9.

What does a data type signify?
What is a floating-point number?

Can you change the data type of a built-in property of a form, such as Height
or Text?

What is the purpose of a variable?

Does C# require you to declare a variable before you refer to it in code?
What is a local variable?

What is a class member variable?

Do you have to assign a value to a variable when you declare it?

What is a difference between a constant and a variable?

10. Do you have to assign a value to a constant when you declare it?

Answers

1. A data type signifies whether the data is numeric, text, yes/no, and so forth.

2. A floating-point number is a number that may have a value to the right of the decimal point.
3. No, you cannot change the data type of a built-in property of a form.

4. The purpose of a variable is to store data of your choosing.

5. Yes, C# requires you to declare a variable before you refer to it in code.

6. A local variable is a variable declared inside of a procedure.

7. A class member-level variable is declared as a member of a class.

8. No, you do not have to assign a value to a variable when you declare it.

9. A constant's value cannot change during the life of the program, whereas a variable's value

may change during the life of the program.

10. Yes, you have to assign a value to a constant when you declare it.
4 Previous MNest b

4 Previous MNest b

Chapter 5: Letting the Program Do the
Math—Arithmetic Operators

Overview

It is only fair that since my students have to listen to my recycled jokes, you have to
read my recycled introductions. Back in Chapter 2, | complained that nowadays
students don't need to be able to calculate arithmetic in their heads because they can
rely on calculators. However, despite my complaining about calculators, they certainly
are far faster and more accurate than | could ever hope to be. The reason is that a
calculator is a computer, and computers are superstars when it comes to calculating.

You harness the computer's calculating ability using arithmetic operators. You will

learn in this chapter how to enable your applications to make fast and accurate

calculations using arithmetic operators. At the end of this chapter, you will put what

you learned into practice with the Change Machine project, a type of calculator that

converts a number of pennies into dollars, quarters, dimes, nickels, and pennies.
4 Previous MNest b

4 Previous MNest b

Arithmetic Operators

Visual C# 2005 can do your arithmetic, and because a computer is involved, it can do
so much faster and more accurately than any human could! Even better, the code is
relatively easy to write, because the syntax for arithmetic is quite similar to how you
would write the arithmetic calculation on paper or how you would use a calculator.

Table 5-1 lists the arithmetic operators.

Table 5-1: Arithmetic Operators

Operator Name What It Does

+ Addition Performs addition.

- Subtraction Performs subtraction.

* Multiplication = Performs multiplication.

/ Division Performs division; the remainder is preserved and

expressed as a decimal unless both operands are
whole-number data types.

% Modulus Used to obtain the remainder from division.

The Addition Operator

The addition operator works exactly as you would expect it to with numeric values. In

the following code snippet, the third line of code adds the values of the variables a and

b and assigns the sum, 5, to variable a, changing its value from 2 to 5:

int a

int b
a

2;
3;
a = b;

+ 1

The addition operator also works with string variables by concatenating, or appending,
one string to another. In the following code snippet, the third line of code adds the
values of the variables a and b and assigns the concatenated string, "JeffKent", to
variable a, changing its value from "Jeff" to "JeffKent":

string a = "Jeff";

string b = "Kent";

a=a+b;

The Subtraction Operator

The subtraction operator also works exactly as you would expect it to with numeric
values. In the following code snippet, the third line of code subtracts the value of
variable b from variable a and assigns the difference, -1, to variable a, changing its
value from 2 to -1:

int a = 2;
int b = 3;
a=a- b;

The Multiplication Operator

The multiplication operator also works exactly as you would expect it to with numeric
values. In the following code snippet, the third line of code multiplies the value of
variable a by the value of variable b and assigns the product to variable a, changing its
value from 2 to 6:

int a = 2;
int b = 3;
a=a?* b;

The Division Operators

Whereas there is only one addition, subtraction, and multiplication operator, there are
two division operators. The operators / and % both involve division. However, the two
division operators differ on how they report the results of the division. The % operator,
also referred to as the modulus operator, reports only the remainder. The / operator
reports the decimal equivalent of the quotient and remainder unless integer division
(explained next) is involved, in which case it reports only the quotient.

Note For those of us whose arithmetic classes are far in the past, assuming the
operation 11 divided by 4, the result of the division is 2, remainder 3, with 2
being the quotient and 3 the remainder.

Let's start first with the / operator by looking at the following code snippet:

double a = 11;
double b = 4;
a=a/l b;

The value of a after division is 2.75, the result you would expect.

Let's now change this example so both a and b are int instead of double variables:
int a = 11,
i nt b = 4;
al b;

The value of a after division is 2, not 2.75. The reason is that if both operands of the
division (here, 11 and 4) are int (or another whole-number data type), the division
operator reports only the quotient, 2, and drops the remainder, 3.

This effect of division dropping the remainder when both operands are a whole
number data type is called integer division. Note that integer division does not round
off. If it did, 11 / 4 would be 3, not 2. Because integer division reports only the quotient,
the result necessarily is a whole number.

Let's move on now to the % operator by looking at the following code snippet:

inta:11
int b =4
a:a%b,

The value of a after division is 3, which is the remainder.

Operator Precedence

So far the arithmetic expressions have been simple, involving just one arithmetic
operator. However, sometimes arithmetic expressions are more complex, involving two
or more arithmetic operators. For example, does the arithmetic expression 2 + 3 * 4
equal 20 (by performing addition before multiplication) or 14 (by performing
multiplication before addition)?

One and only one of these two answers can be correct. Rules of operator precedence
are necessary to determine which of the two answers is correct.

Table 5-2 lists the order of precedence, or priority, among arithmetic operators.

Table 5-2: Operator Precedence
Priority | Operator(s) Description
1 - Unary negation operator (not subtraction)
2 * 1, % Multiplication, division, and modulus

3 +, - Addition and subtraction

Thus, 2 + 3 * 4 equals 14, because multiplication has a higher priority than addition
and therefore is performed first.

Because multiplication and division have equal priority, when both operators occur
together in an expression, priority goes from left to right, so whichever of the two
operators is on the left is performed before the one on the right. The same left-to-right
priority rule applies between addition and subtraction. Priority, either left to right or right
to left, between operators of equal precedence is called associativity.

Parentheses can be used to override the order of precedence and force some parts of
an expression to be evaluated before others. Operations within parentheses are
always performed before those outside the parentheses. Thus, (2 + 3) * 4 equals 20,
not 14, because the parentheses force addition to be performed first.

Combining Arithmetic and Assignment Operators

As discussed earlier in this chapter, in the following code snippet, the third line of code
adds the values of the variables a and b and assigns the sum, 5, to variable a,
changing its value from 2 to 5:

int a=2;

int b =3;

a= = a + b;

A precedence issue arises in the third line of code. Even though there is only one
arithmetic operator, there are two operators—one arithmetic and the other assignment.
However, the precedence issue is easily resolved. Addition is performed before
assignment because all arithmetic operators have precedence over the assignment
operator.

The third statement can be shortened and still accomplish the same result:
a += b;

The combined arithmetic/assignment operators are shown in Table 5-3.

Table 5-3: Combined
Arithmetic/Assignment Operators

Operator Use Alternative

+= a +=b; a=a+b;

Operator Use Alternative

-= a -=b; a=a-b;
*= a *=b; a=a*b;
I= a l=b; a=alb;
%= a%=b;, a=a%hb;

These shorthand arithmetic/assignment operators make your code more readable.
The purpose of the following statement is to increment (increase by 1) the value of
variable a:

a += 1;

The purpose of the preceding statement is more readable (as well as shorter to type)
than the following statement:

a=a+ 1;

Increment and Decrement Operators

The last code snippet in the preceding section uses the combined arithmetic and
assignment operator to increase the value of a by 1:

a += 1;

The same result could be achieved by the increment operator ++ :
a++;

The increment operator can follow the value it is increasing, as in the last example, or
precede it, as follows:

++a;

Prefix increment refers to the increment operator preceding the value it is
incrementing. Postfix increment refers to the increment operator following the value it
IS incrementing. Here are two examples:

++a; [/ prefix increnent
at+; /I postfix increnent

The only difference between prefix and postfix increment is precedence. If the
increment operator is used in the same statement as other operators, incrementing
occurs first if prefix, last if postfix.

The counterpart to the increment operator is the decrement operator, --. The second
and third statements, using prefix and postfix decrement, are equivalent to the first,
which uses the combined subtraction and assignment operator:

a -=1;

- - a’

a++;

Prefix and postfix work the same way with the decrement operator as they do the
increment operator, affecting precedence with other operators.

The increment and decrement operators often are used with loops, which are covered
in Chapter 8.

4 Previous

Hext b

4 Previous MNest b

The Parse Method

As discussed earlier in this chapter, the addition operator works with string values as
well as with numeric values. With string values, the addition operator concatenates; or
appends, one string to another.

The ability of the addition operator to perform double-duty with string as well as
numeric values can backfire on you. To illustrate, assume your application has two
TextBox controls, txtOpl and txtOp2, in which the user types two numbers to be added,
with the sum displayed in a Label control named IbIResult. The application may use
the following code:

| bl Resul t. Text = txtQOpl.Text + txtOp2. Text;

The user wants to add 2 + 2 and therefore types 2 in each text box. However, the
answer is not the expected 4, but instead 22! This is not new math. Instead, Visual C#
assumed you intended to concatenate two strings ("2" + "2" = "22") instead of adding
two numbers (2 + 2 = 4) because the data type of the Text property of the two text
boxes is a string, not a number.

The solution is to explicitly direct, through code, that Visual C# convert the string
representation of these integers (the Text properties of txtOpl and txtOp2) into actual
integer values before performing addition and then assign that sum to be displayed in
IbIResult. This is the converse of the ToString method discussed in Chapter 3, which
converted an integer into the string representation of an integer.

You can accomplish this conversion through the Parse method of the Int32 structure.
As discussed in Chapter 4, the int keyword, for an integer data type, is an alias for the
System.Int32 data type in the .NET Framework. A structure is quite similar to a class.
Although there are differences between a structure and a class, for present purposes
they are essentially the same, so the two terms will be used interchangeably.

The Parse method of the Int32 structure converts its argument, the string
representation of an integer, into an actual integer value before that value is assigned
to an integer variable. The first statement in the following code snippet converts the
string representations of both of the two integers (the Text properties of txtOpl and
txtOp2) to actual integer values before adding those values and assigning the resulting
sum to another integer variable, intSum. The second statement uses the ToString
method to convert the integer value into its string representation before assigning it to
the Text property of a Label control:

int intSum = Int32. Parse(txtOpl. Text) +

I nt 32. Par se(txt Op2. Text);
| bl Resul t. Text = intSum ToString();

Now 2 + 2 =4, not 22!

Note The Double class also has a Parse method. It converts the string
representation of a floating-point number into an actual number (for example,
"123.45" into 123.45).

Class Methods

In previous chapters we have discussed how classes have properties and events. A
property is a characteristic of an object of a class, such as the Text property of the
Button class being the text displayed on the button, such as "Calculate" or "Clear." An
event is something that happens to an object of a class, such as the Click event of the
Button class being the event that occurs when a button is clicked.

Parse and ToString are not properties or events, but methods of a class or structure,
such as Int32. A method is something an object of a class does. For example, as
objects of the Person class, our methods could include breathe, walk, talk, and so on.
The Form class (among others) also has methods, as you will learn in later chapters.
4 Previous MNewxt b

Change Machine Project

My mother was not above using a change machine to distract cranky or mischievous
young grandchildren. The youngsters poured hundreds of pennies into the top of the
machine, and they watched with fascination (fortunately youngsters are easily
fascinated) as the machine sorted the pennies into amounts of change that could be
taken to the bank and exchanged for dollars, quarters, and so on. The youngsters
were motivated as well as fascinated, because guess who got to keep the quarters?

Your project will ask the user to input the number of pennies. You can assume the
user will input a positive whole number and then click the Calculate button. The code
then will output in controls the number of dollars, quarters, dimes, nickels, and
pennies. Figure 5-1 shows the result of running the program and inputting 392 for the
number of pennies:

‘*® Form1

Enter Pennies

Dollars 3

Quarters

Dimes

Mickels

P

Pennies

[Calculate]

Figure 5-1: Change Machine project in action.

Creating the Project

Implement the following steps to create the application:

Nest b |

10.

Start a new Windows application. | called my project name Change Machine.

Using the Toolbox, add controls to the form so it appears as shown in Figure 5-1.
All the controls are labels except for the two buttons on the bottom of the form
and the text box across from the label caption "Enter pennies."

Using the Properties window, change the Name property of the TextBox control
to txtPennies and then delete any value in its Text property.

Using the Properties window, change the AutoSize property of all labels from the
default (True) to False. This can be done by selecting all the labels first, which
changes the AutoSize property of each. This step will make easier the
customization of the labels in the following steps.

Using the Properties window, change the Text properties of the labels on the left
so they are captioned as they appear in Figure 5-1.

Using the Properties window, change the Name properties of the labels on the
right to IbIDollars, IblQuarters, IbIDimes, IbINickels, and IbIPennies, respectively.

Again using the Properties window, change the BackColor property of the labels
on the right to White (so they will be more visible after we delete their text in the
next step). When you click the value of the BackColor property, a tabbed dialog
box appears. Choose the Custom tab and then click on a box that is white.

Also using the Properties window, delete any value in the Text properties of the
labels on the right so they are blank, to avoid these labels' names displaying as
the labels' text when the project first starts up.

Using the Properties window, change the Name property of the button on the left
to btnCalculate and its Text property to Calculate. Similarly, change the Name
property of the button on the right to btnClear and its Text property to Clear.

Create an event procedure stub for the Click event of btnCalculate and write the
following code (to be explained in the following section, "The Algorithm") inside
the event procedure:

private void btnCal cul ate_Cick
(obj ect sender, EventArgs e)

{
int intLeftover;
intLeftover = Int32. Parse(txtPennies. Text);
| bl Dol I ars. Text = (intLeftover / 100). ToString();
intLeftover = intLeftover % 100;
| bl Quarters. Text = (intLeftover / 25) .ToString();
intLeftover = intlLeftover % 25;

| bl Di mes. Text = (intLeftover / 10).ToString();

nt Leftover = intlLeftover % 10;
bl Ni ckel s. Text = (intLeftover / 5).ToString();
nt Leftover = intlLeftover %5;

[
I
[
| bl Penni es. Text = intLeftover. ToString();

11. Create an event procedure stub for the Click event of btnClear and write the
following code inside the event procedure:

private void btnC ear_Cick(object sender, EventArgs e)
{
t xt Penni es. Text -
bl Dol | ars. Text .
| Quarters. Text = "";
| Di mes. Text = "";
| Ni ckel s. Text -

| Penni es. Text :

I
b
b
b
b

This code simply resets the Text properties of the TextBox and the Label controls on
the right to blank, as they were when the application first started. The result is shown
by Figure 5-2.

Enter Pennies

Dollars

Quarters

Dimes

Nickels

Pennies

| Calculate [Clear i

Figure 5-2: Form at run time after the Clear button is clicked.

The Algorithm

As you learned in Chapter 1, the purpose of Visual C# 2005, and indeed programming
languages generally, is to enable you, as the programmer, to give instructions to the
computer to carry out. Before you can formulate those instructions in code, you first
need to be able to articulate those instructions in English or whatever other language
you think in.

To write the Change Machine project, you need to come up with a step-by-step logical
procedure to convert the pile of pennies into neater stacks of dollars, quarters, dimes,
nickels, and pennies. A step-by-step logical procedure for solving a problem is called
an algorithm, pronounced "Al Gore rhythm."

One algorithm for converting the pile of pennies into dollars, quarters, dimes, nickels,
and pennies is to first determine how many stacks of 100 pennies you can make from
the pile. Each stack of 100 pennies would then represent one dollar. You then would
work with the number of pennies left over to determine the number of quarters, dimes,
nickels, and pennies.

For example, assume there are 392 pennies in the pile. You might use the following
steps to determine the number of quarters, dimes, nickels, and pennies in 392
pennies:

= There are 100 pennies in a dollar. You can make three stacks of 100 pennies
from 392 pennies. That means there are three dollars, with 92 pennies left over,
from which you will determine the number of quarters, dimes, nickels, and
pennies.

= There are 25 pennies in a quarter. You can make three stacks of 25 pennies
from 92 pennies. That means there are three quarters, with 17 pennies left over,
from which you will determine the number of dimes, nickels, and pennies.

» There are ten pennies in a dime. You can make one stack of ten pennies from 17
pennies. That means there is one dime, with seven pennies left over, from which
you will determine the number of nickels and pennies.

= There are five pennies in a nickel. You can make one stack of five pennies from
seven pennies. That means there is one nickel, with two pennies left over, which
is the number of pennies.

Let's now convert this algorithm from English to code.

The first step is to store the number of pennies entered by the user in the text box

txtPennies into the int variable intLeftover. The following code does this, first using the
Parse method of the Int32 structure (discussed in the earlier section "The Parse
Method") to convert the string representation of an integer (the Text property of
txtPennies) to the actual integer value before that value is assigned to the int variable
(intLeftover):

intLeftover = I nt32. Parse(txtPennies. Text);

When you divide the number of pennies (stored in intLeftover) by 100 (the number of
pennies in a dollar), the quotient is the number of dollars in the pennies, and the
remainder is the number of pennies left over. This division is integer division, because
both intLeftover and 100 are integers, so it provides you with the quotient but no
remainder. The % operator provides you with the remainder:

| bl Dol | ars. Text = (intLeftover / 100). ToString();
intLeftover = intLeftover % 100;

Note As explained in Chapter 3, the ToString method converts a number
(intLeftover / 100) into the string representation of that number so it can be
displayed as text in the Label control.

The quotient, representing the number of dollars in the pile of pennies, is displayed in
IblDollars. The remainder is stored in intLeftover, which will be used in the code to
determine the number of quarters, dimes, nickels, and pennies.

Next, you follow the same procedure, with two differences. First, you are not dividing
the total number of pennies, but instead the number of pennies left over, represented
by the current value of the variable intLeftover. Second, you are not dividing by 100,
but instead 25, the number of pennies in a quarter. We already have determined the
number of dollars in the pile of pennies. Now we want to determine the number of
quarters in the remaining pennies. Accordingly, the code reads as follows:

| bl Quarters. Text = (intLeftover / 25).ToString();
intLeftover = intLeftover % 25

The remainder of the code follows the same process, except that next the divisor is 10,
the number of pennies in a dime, then 5, the number of pennies in a nickel:

| bl Di mes. Text = (intLeftover / 10).ToString();

i ntLeftover = intLeftover % 10;
| bl Ni ckel s. Text = (intLeftover / 5).ToString();
i ntLeftover = intlLeftover %5;

The number of pennies left over after division by 5 cannot be converted into any higher

change, so there is no need for further division:
| bl Penni es. Text = intLeftover. ToString();

You frequently will need to create and implement algorithms in writing a computer
program. Creating algorithms is a skill that can be developed from any field that
requires analytical thinking, including but not limited to mathematics as well as
computer programming.
4 Previous MNest b

4 Previous

Conclusion

Computers, in addition to being able to store vast amounts of data, can calculate far
faster and more accurately than we can. You harness the computer's calculating ability
using arithmetic operators. Most of the arithmetic operators, such as those for addition
and multiplication, work the same as the arithmetic operators you use with pencil and
paper. However, there are two division operators: one the familiar / operator, the other
the modulus operator, %. The / operator reports the decimal equivalent of the quotient
and remainder (as does the / operator you use with pencil and paper or a calculator)
unless both operands (dividend and divisor) are a whole number data type such as an
int, in which case it's called integer division and reports only the quotient. The %
operator reports only the remainder.

In the next chapter, you will learn about relational and logical operators, which enable
your program to take different actions depending on choices the user makes while the
program is running.

4 Previous

HNext b

MNext b

4 Previous MNest b

Quiz

1.

2.

8.

9.

Which arithmetic operator works with string as well as numeric variables?
What is the significance of operator precedence?

How can you override default operator precedence?

Which operator increases the value of a numeric variable by one?

What is integer division?

Which operator provides only the remainder resulting from division?

Which operator has precedence, an arithmetic operator or the assignment
operator?

What is the purpose of the Parse method of the Int32 class?

What is the purpose of the ToString method of the Int32 class?

10. What is a method of a class?

Answers

1. The addition operator works with string as well as numeric variables.

2. Operator precedence determines, when there are two or more arithmetic operators, which
arithmetic operation is done first.

3. You can override default operator precedence with parentheses.

4. The increment (++) operator increases the value of a numeric variable by one.

5. Integer division is when both operands of division are a whole number data type when only
the quotient is reported and any remainder is dropped.

6. The % (modulus) operator provides only the remainder resulting from division.

7. All arithmetic operators have precedence over the assignment operator.

8. The Parse method of the Int32 class converts the string representation of an integer into

actual integer values.

9. The ToString method of the Int32 class converts an integer into its string representation.

10. A method is something an object of a class does.

4 Previous MNewt b

4 Previous MNest b

Chapter 6: Making
Comparisons—Comparison and Logical
Operators

Overview

Can you imagine going to a restaurant that had only one item on its menu? Although
this would make it easy for you to decide what you want to order, this one-item
restaurant likely would not be in business long, because people like choices. Indeed,
life is full of choices—some pleasant (a good menu) and some not so pleasant (do you
want to pay by cash, check, or credit card).

Up to now the programs we have discussed have been like the one-item restaurant,
offering no choices. However, as programs become more sophisticated, they often
branch in two or more directions. For example, a calculator program would first give the
user a choice of whether they want to add, subtract, multiply, or divide. The code then
would need to determine which choice the user made before performing the indicated
arithmetic operation, which would be different, and lead to a different result, depending
on the user's choice. The code would determine the user's choice by comparing it with
the alternatives—addition, subtraction, multiplication, or division. You will learn in this
chapter how to make that comparison using comparison operators.

A comparison operator can make only one comparison at a time. Sometimes you need
to combine several comparisons. For example, some years ago car washes had Ladies
Free Wednesdays, which meant that on Wednesdays (evidently a slow day for car
washes) women could have their cars washed for free. The car wash would need to
make two comparisons to determine eligibility for a free car wash. The customer's
gender must be equal to female, and the day of the week must be equal to Wednesday.
Either comparison just by itself would not be enough to determine eligibility for a free
car wash; the two comparisons must be done together. You will learn in this lesson how
to combine several comparisons using logical operators.

The comparison and logical operators lay the groundwork for the following chapters on

control structures and loops, which use these operators to determine whether a

condition, or a combination of conditions, evaluates as true or false.
4 Previous MNest b

Debugging

Before discussing the comparison and logical operators, let's take a brief detour into
debugging. The immediate benefit of debugging is that it will enable you to test code in
this chapter without going to the trouble of adding controls to your form. The longer-
term benefit of debugging, which you will use in later chapters, is that it enables you to
identify and solve "bugs," a term that usually means a logic error in your code (such as
2 + 2 = 22 instead of 4).

Note The origin of the term "bug " is in dispute. One story is that during the prePC
era, when mainframe computers ruled the earth, a mainframe was producing
illogical results. The programmers checked and rechecked their punch cards
but could find no errors. In desperation, they opened up the mainframe. Inside
they saw a moth fried on one of the circuits.

One useful class for debugging is named, not surprisingly, the Debug class. The Debug
class is part of the System.Diagnostics namespace. Accordingly, you should import this
namespace at the beginning of your code as follows:

usi ng System Di agnosti cs;

Now you can refer in your code just to Debug rather than the much longer System.
Diagnostics.Debug.

The Debug class has a WriteLine method. The syntax of the WriteLine method is
Debug. Wi t eLi ne(paranet er)

The WriteLine method outputs the value of its parameter to the Output window, which
you may display with the menu command View | Other Windows | Output. For example,
the following code outputs 10 to the Output window:

private void Fornl_Load(object sender, EventArgs e)
{.

int A= 10;

Debug. Wit eLi ne(A); /1l Qutputs 10

The WriteLine method only outputs to the Output window if you start your application
with the Debug | Start Debugging menu command. There will be no output to the
Output window if you instead start your application with the Debug | Start Without
Debugging menu command. This is logical because you need to be debugging to use

HNext b

the Debug class.

Finally, the output to the Output window from the WriteLine output usually is not the
only output in the Output window. The Output window normally also contains
information generated by Visual C# 2005. As Figure 6-1 shows, the output to the Output
window from WriteLine usually is the last output in the Output window.

Shiows output from: Db

Loaded "C:'WINDOVE,assandbly

L

al Skack 3 Breabpoints, [Command Win down

v] Irmmagckate: 'Window

VCAC HZ
: Loaded '"C:ZWWIKDOVE' assemk Ly ChC B

Loaded "C:yWINDOWVE), aesenb Ly GAC

Loaded I Documents and Eet
Hanaged': loaded 'C:\WINDOVE) assembly\CAC
Hanage a L VaFEEank Ly
Hanagad " [aEEamk Ly
e Chi | - T] h cods
Aansged’: Loadsd ‘[and Sat
Haraged': Loadad 'C:\WIKDOVS)assanblyy

tings\ JAK Visual Studio
CAC MEILvSystem. Configur
-

b

Figure 6-1: Output window.

When you're finished debugging, choose Stop Debugging from the Debug menu to stop

the running of the application.

4 Previous]

Nest b |

4 Previous Mext b
Comparison Operators

Often your programs will need to compare two values. The comparison may be whether
the two values are equal, or whether one value is greater than (or less than) another.
Regardless of which comparison is being made, the comparison may have only one of
two possible results, either true or false.

The earlier example of a calculator program was used to show one use of
comparisons—to determine which of several choices the user has made. Comparisons
also are used for error prevention. For example, in the calculator program, before
performing division, the program should compare the divisor to zero, because division
by zero is illegal and, if performed, will result in a run-time error. If the divisor is equal to
zero, the user should be warned and the division not performed. Otherwise, the division
may be performed.

Comparison operators usually are used to compare numerical values, but some of them
also may be used to compare strings, as discussed later in this chapter.

The syntax of a comparison is shown here:
[Expressionl 1] [conparison operator] [Expression2];

In the following discussion, the term "left expression” refers to the expression on the left
side of the comparison operator (Expressionl in the sample syntax). Similarly, the term
"right expression" refers to the expression on the right side of the comparison operator
(Expression2 in the sample syntax).

The left and right expressions both may be anything that has a value that can be
compared: literals, constants, variables, or properties. However, the data type of the two
expressions should be the same.

Numeric Comparison Operators

The following list describes the comparison operators used to compare numbers and
the circumstances under which they evaluate to true or false:

= The < (less than) operator results in the expression being true if the left expression
is less than the right expression, such as 4 <5, but false if the left expression is
greater than or equal to the right expression, such as 5 < 4 or 5<5.

= The <= (less than or equal to) operator results in the expression being true if the
left expression is less than or equal to the right expression, such as 4 <=5 or 5 <=
5, but false if the left expression is greater than the right expression, such as 5 <=

4.

= The > (greater than) operator results in the expression being true if the left
expression is greater than the right expression, such as 5 > 4, but false if the left
expression is less than or equal to the right expression, such as 4 > 5 or 5>5.

= The >= (greater than or equal to) operator results in the expression being true if
the left expression is greater than or equal to the right expression, such as 5 >=4
or 5 >=5, but false if the left expression is less than the right expression, such as
4 >=5,

= The == (equality) operator results in the expression being true if the left expression
is equal to the right expression, such as 5 == 5, but false if the left expression is
less than or greater than the right expression, suchas 4 ==5or 5 ==4.

Note A common rookie mistake is to use =for equality comparison. The = operator is
the assignment operator; it does not compare for equality.

The != (inequality) operator works the opposite of the equality operator. The inequality
operator results in the expression being true if the left expression is less than or greater
than the right expression, such as 4 != 5 or 5 != 4, but false if the left expression is
equal to the right expression, such as 5 = 5.

Try running the following code in a new or existing project. The output for each
Debug.WriteLine statement, true or false, is in the comment accompanying that line:

private void Fornl_Load(object sender, EventArgs e)

{

int A= 10;
int B = 8;
int C= 10;

Debug. WiteLine(A > B); [/ Qutputs True

Debug. WiteLine(A >= B); // Qutputs True
Debug. WiteLine(A == B); // Qutputs False
Debug. WiteLine(A !=B); [/ Qutputs True
Debug. WiteLine(A < B); [/ Qutputs Fal se
Debug. WiteLine(A <= B); // Qutputs False
Debug. WiteLine(A > C; [/ Qutputs Fal se
Debug. WiteLine(A >= C); [/ CQutputs True

Debug. WiteLine(A == C; [/ Qutputs True
Debug. WiteLine(A!'=C); [/ Qutputs False
Debug. WiteLine(A < C; [/ Qutputs False
Debug. WiteLine(A <= C; [/ ' Qutputs True

String Comparisons

Programs often need to make string comparisons. For example, code that authenticates
users who are logging in needs to compare the user name entered with a list of user
names, and the password entered with the password for that user name. Another
example is the Find feature in Microsoft Word, Internet Explorer, and other applications,
which enables you to search text for specific words.

You can use two of the comparison operators, equality and inequality, with strings. For
example, "Jeff" == "Jeff" evaluates to true, "Jeff" 1= "Jeff" evaluates to false, and "Jeff"
== "Kent" evaluates to false.

Note Conversely, the other comparison operators (>, >=, <, and <=) cannot be used
with strings.

The following code shows the use of the equality and inequality comparison operators
with strings:

private void Fornl_Load(object sender, EventArgs e)

{

string namel = "Jeffrey";
string nanme2 = "Jeffrey";
string name3 = "Jeff",;

string nanmed4 = "Jeffrey";

Debug. Wi teLi ne(nanel == nane2); //outputs Fal se
Debug. Wi teLi ne(nanel !'= nane3); //outputs True
Debug. Wit eLi ne(nanmel == naned); //outputs True

Let's discuss how the equality and inequality operators work behind the scenes.

String comparisons are based on positive integer values of the characters in the string.
For the English language, the character set adopted by ANSI (American National
Standards Institute) and ASCII (American Standards Committee for Information
Interchange) use the numbers 0-255 to cover all alphabetical characters (upper- and
lowercase), digits and punctuation marks, and even characters used in graphics and
line drawings. Table 6-1 lists the ASCII values of commonly used characters:

Table 6-1: ASCII Values of Commonly Used
Characters

Characters Values Comments

0 through 9 48-57 0is 48; 9is 57.

Characters Values Comments

AthroughZ 65-90 Ais 65; Z is 90.
a through z 97-122 Ais97;Zis 122.

Note The result of the comparison of string representations of numbers may not
always be what you expect. As you might expect, "5" is greater than "4"
because the ASCII value of 5 (53) is greater than the ASCII value of 4 (52).
However, "5" also is greater than "4444" for the same reason.

Precedence

The comparison operators (<, >, <=, and >=) are of equal precedence and are
evaluated from left to right.

The equality and inequality operators (== and !=) are below the comparison operators in
precedence, but are of equal precedence between themselves. They also are evaluated
from left to right.

The comparison, equality, and inequality operators all rank lower than the arithmetic
operators discussed in the previous chapter and higher than the logical operators
discussed in the next section.

4 Previous

HNext b

4 Frewious
Logical Operators

Sometimes a first comparison and a second comparison both must evaluate as true for
an action to take place. For example, a person may vote only if their age is at least 18
and they are a citizen:

= First comparison: age >= 18

= Second comparison: USA citizenship == true

= Only if both comparisons are true: Allowed to vote
= If either comparison is false: Not allowed to vote

By contrast, at other times it is sufficient if either a first comparison or a second
comparison evaluates as true for an action to take place. For example, to be admitted
to a community college, the prospective student must be either at least 18 years old or
have a high school diploma:

= First comparison: age >= 18

= Second comparison: High school diploma == true

» If either comparison is true: Eligible for admission

= Only if both comparisons are false: Not eligible for admission

The combining of comparisons in either the conjunctive (and) or disjunctive (or) involves
logical operators.

The && Operator

As Table 6-2 shows, the && operator performs an "And" comparison and returns false
unless both comparisons are true.

Table 6-2: The && Operator
If First Expression Is And Second ExpressionIs Resultls

true true true
true false false

false true false

HNext b

If First Expression Is And Second Expression Is Result Is
false false false

The following code shows the && operator in action:
private void Fornl_Load(object sender, EventArgs e)

{

int A= 10;
int B =8;
int C= 6;
Debug. WiteLine(A > B & B > C); [/ CQutputs True
Debug. WiteLine(A > B && C > B); [// Qutputs Fal se
Debug. WiteLine(B > A & B > C); [/ Qutputs Fal se

In the first use of the && operator (A > B && B > C), 10 > 8 is true, and 8 > 6 is true.
Because both expressions are true, the output is true.

By contrast, in the second use of the && operator (A > B && C > B), whereas 10 > 8 is
true, 6 > 8 is false. Because only one expression is true, and the other is false, the
output is false.

Similarly, in the third use of the && operator (B > A && B > C), 8 > 10 is false, so even
though 8 > 6 is true, because one of the two expressions is false, the output is false.
Actually, because the first expression is false, the second expression is not evaluated.
The overall expression will be false whether the second expression is true or false.

Of course, if both expressions are false, the output is false.

The voting eligibility example discussed earlier is a good case of when you would use
the && operator, because both conditions (adult age and citizenship) must be true or
the result (eligibility to vote) is false.

The & Operator

The & operator is almost identical to the && operator in comparing two Boolean
expressions. The only difference is that if the first expression is false, the second
expression still is evaluated. By contrast, with the && operator, if the first expression is
false, the second expression is not evaluated, because the overall expression will be
false whether the second expression is true or false.

Because with the && operator the evaluation of the second expression is conditional on
the evaluation of the first expression being true, the && operator is referred to as the
conditional And operator, whereas the & operator is referred to as the logical And

operator.

The || Operator

As Table 6-3 shows, the || operator performs an "Or" comparison and returns true
unless both comparisons are false.

Table 6-3: The || Operator

If First Expression Is And Second ExpressionIs ResultIs

true true true
true false true
false true true
false false false

The following code, which is the same as used for the && operator (except || is
substituted for &&), shows the || operator in action:

private void Fornml_ Load(object sender, EventArgs e)

{

int A= 10;
int B = 8;
int C= 6;

Debug. WiteLine(A >B || B> C; [/ Qutputs True

Debug. Wi teLi ne(A >

B || ; /] CQutputs True
Debug. WiteLine(B > A ||

C > B)
B>C,; [/ Qutputs True

In the first use of the || operator (A>B || B> C), 10 > 8 is true, and 8 > 6 is true.
Because both expressions are true, the output is true.

In the second use of the || operator (A > B || C > B), 10 > 8 is true, so even though 6 > 8
is false, because at least one expression is true, the output is true. Actually, because
the first expression is true, the second expression is not evaluated. The overall
expression will be true whether the second expression is true or false.

Similarly, in the third use of the || operator (B > A || B > C), whereas 8 > 10 is false, 8 >
6 is true, so again because at least one expression is true, the output is true.

Of course, if both expressions are false, the output is false.

The community college admission example discussed earlier is a good case of when
you would use the || operator, because only one of the two conditions (adult age or a
high school diploma) need be true for the result (eligibility for admission) to be true.

The || operator is implied in the comparison operators (>= and <=). For example, the
expression

A >= B;

is the same as
A>B|| A==B

The | Operator

The | operator is almost identical to the || operator in comparing two Boolean
expressions. The only difference is that if the first expression is true, the second
expression still is evaluated. By contrast, with the || operator, if the first expression is
true, the second expression is not evaluated, because the overall expression will be
true whether the second expression is true or false.

Because with the || operator the evaluation of the second expression is conditional on
the evaluation of the first expression being false, the || operator is referred to as the
conditional Or operator, whereas the | operator is referred to as the logical Or operator.

The ™ Operator

The " operator performs a logical exclusion operation on two Boolean expressions and
returns a Boolean value, which as Table 6-4 shows, is true if one and only one of the
expressions evaluates to true; otherwise, it is false.

Table 6-4: The » Operator

If First Expression Is And Second Expression Is Result Is

true true false
true false true
false true true
false false false

The following code shows how the ” operator works with Boolean expressions:

private void Fornl_Load(object sender, EventArgs e)

{

int A= 10;
int B =8;
int C= 6;
Debug. WiteLine(A >B " B >C,; /[//Qutputs false
Debug. WiteLine(A >B " C>B); [/ Qutputs true
Debug. WiteLine(B > A" B> C); [/ Qutputs true

In the first use of the ” operator (A > B~ B > C), 10 > 8 is true, and 8 > 6 is true.
Because both expressions are true, the output is false.

In the second use of the » operator (A > B~ C > B), 10 > 8 is true, and 6 > 8 is false.-
Because only one of the expressions is true, the output is true.

Similarly, in the third use of the ~ operator (B > A" B > C), whereas 8 > 10 is false, 8 >
6 is true. Because only one of the expressions is true, the output is true.

Of course, if both expressions are false, the output is false.

The ” operator also is known as the Xor operator, which is an acronym for the exclusive
Or operator.

The ! Operator

The ! (logical Not) operator changes true to false and false to true. An example is when
my youngest daughter tells me, "Dad, you look like Tom Cruise...NOT!"

The ! operator is useful in situations whether Not true appears more intuitive than false.
For example, in the calculator program discussed earlier in this chapter, in verifying
whether the divisor is equal to zero (division by zero being illegal), it may be more
intuitive to say that division may be performed if the divisor is not equal to zero than to
say that division may be performed if the divisor is greater than zero.

The ! operator is a unary operator, which means it operates on one operand. This is
different from the preceding operators, which are binary, operating on two operands.

Precedence

Logical operators rank lower than the comparison operators discussed earlier in this
chapter. Table 6-5 lists the order of precedence among comparison operators, from
highest to lowest.

Table 6-5: Precedence among Logical
Operators

Priority | Operator(s) Description

1 ! Not

2 & Logical And

3 A Logical Xor

4 | Logical Or

5 && Conditional And
6 I Conditional Or

If logical operators of equal priority appear in the same statement, precedence between
them is from left to right.

Why && and || in Addition to & and |?

As previously discussed, the only difference between the & and && operators is that the
&& operator does not evaluate the second expression if the first expression is false.
Similarly, the only difference between the | and || operators is that the || operator does
not evaluate the second expression if the first expression is true.

Not yet discussed is what difference it really makes whether you use & or &&, or | or ||.

The answer is, there is no real difference if the second expression is simply a
comparison, other than a slight savings in processor time for sometimes skipping the
evaluation of the second expression. However, the second expression may be more
complex, such as a function call that changes values. In that event, variables may have
different values depending on whether the second expression was evaluated.
4 Pravious Mest b

4 Previous

Conclusion

As programs become more sophisticated, they often branch in two or more directions
based on whether a condition is true or false. For example, as discussed at the
beginning of this chapter, a calculator program, before performing division, should
check to see if the divisor is equal to zero (division by zero being illegal) and, if
performed, result in a run-time error. The program branches by performing the division
if the divisor is not equal to zero, but warning the user if the divisor is equal to zero.

You use comparison operators to determine if the divisor is equal to (or is not equal to)
zero. There are comparison operators to test for equality and inequality, as well as
whether one value is greater than or less than another.

A comparison operator can make only one comparison at a time, and sometimes you
need to combine several comparisons. For example, to determine if someone is eligible
to vote, you have to compare both their age to the minimum voting age and their
country of citizenship to the United States. In this case, both comparisons must
evaluate as true or the person is not allowed to vote. However, in other comparisons,
only one of two conditions need be true. For example, you may be permitted to attend a
movie without having to pay for a ticket if you are either a child or a senior citizen.

You use logical operators to combine several comparisons. The logical operators
include And, when both comparisons must evaluate as true for an action to be taken,
and Or, when only one of two comparisons must evaluate as true for an action to be
taken. There are other logical operators as well.

The comparison and logical operators lay the groundwork for the following chapters,
which use these operators to determine if a condition, or a combination of conditions,
evaluates as true or false.

4 Previous

HNext b

Hext b

4 Previous MNest b

Quiz

1.

2.

8.

9.

What does the WriteLine method of the Debug class do?

What is the data type of the result of a comparison performed by a comparison
operator?

May the = operator be used for equality comparison?

Which comparison operators can you use with strings as well as with numeric data
types?

What is the ANSI or ASCII value of a character?

What is the difference between the && and & operators?
Which operators have precedence, comparison or arithmetic?
What is the purpose of a logical operator?

Which logical operator operates on only one operand rather than two?

10. Which operators have precedence, comparison or logical?

Answers

1. The WriteLine method of the Debug class outputs a line to the Output window.

2. The data type of the result of a comparison performed by a comparison operator is Boolean,
either true or false.

3. No, the == operator, not the = operator, is used for equality comparison.

4. Yes, you can use the equality and inequality (== and !'=) comparison operators with strings
as well as with numeric data types.

5. The ANSI or ASCII value of a character is a corresponding integer value.

6. With the & operator, if the first expression is false, the second expression still is evaluated.
By contrast, with the && operator, if the first expression is false, the second expression is not
evaluated.

7. Arithmetic operators have higher precedence than comparison operators.

8. A logical operator is used to combine multiple comparisons.
9. lis the logical operator that operates on only one operand rather than two.

10. Comparison operators have higher precedence than logical operators.
4 Pravious Mext b

4 Previous MNest b

Chapter 7. Making Choices—If and
Switch Control Structures

Overview

| showed you in Chapter 6 how to use comparison and logical operators to
evaluate an expression as true or false. | will show you in this chapter how to use
that information by employing a control structure—specifically an if control
structure or a switch control structure—so that different blocks of code execute
depending on whether an expression evaluates as true or false.

The application user interacts with your code, including if and switch control

structures, through the GUI of your application. You will learn in this chapter how

to use two controls that often are utilized with if and switch control structures: the

CheckBox and RadioButton controls.

4 Frevious et b

4 F'rexriu:uus] MNext P]

Creating a Test Project

Create a new Windows application so you can run the code in this chapter.

The default form will have two controls: a TextBox control and a Button control.
Name the text box txtinput and delete its Text property (if any). Name the button
btnTest and change its Text property to Test.

When you run the project, in Debug mode, you will enter a value in the text box,
click the button, and then view the output in the Output window. Figure 7-1
shows the form at run time with the value "George" entered.

Form1

Georgs)

Test

Figure 7-1: Test form.

L] F'rexriu:-us] Mext b]

4 Previous

The if Control Structure

The if control structure comes in three varieties, depending on the number of
alternative blocks of code:

= You use the if statement if you want a block of code to execute if a

condition is true but no block of code to execute if the condition is false. For

example, if a purchaser is eligible for a senior citizen discount, you adjust
the price, but if not, there is no price change to make.

= You use the if...else statement if you want one block of code to execute if a

condition is true, and a second, different block of code to execute if the
condition is false. This code structure often is used when there are two
alternatives, such as yes or no, or male or female.

= The if...else if statement is similar to the if...else statement except that the

if...else if statement is used when there are more than two choices. For
example, if your test score is 90 or better, your grade is an A. If your test

score is between 80 and 89, your grade is a B. If your test score is between

70 and 79, your grade is a C, and so on.

The if Statement

You use an if statement to execute code if, and only if, a condition is true. If the
condition is false, the code dependent on the if statement does not execute.
After the if statement finishes executing, execution continues with the code, if
any, following the statement.

The syntax of an if statement is shown here:

if (condition)
[Code] ;

Both lines together are called an if statement. The first line consists of the if
keyword followed by an expression, such as a relational expression, that
evaluates to a Boolean value (true or false). The relational (or other Boolean)
expression must be in parentheses, and it should not be terminated with a
semicolon.

The next line is called a conditional statement. The statement is conditional
because the statement executes only if the value of the relational expression
following the if keyword is true. If the value of the relational expression is false,
the conditional statement is not executed (in effect, it's skipped).

HNext b

Note There may be more than one conditional statement. If so, the multiple
conditional statements must be encased in curly braces. This is
illustrated in the following section "Multiple Conditional Statements."

Try the following code. It displays "You entered a positive number" to the Output
window only if the input is a positive number (greater than zero). However, it
displays "This line will always print" whether or not the input is a positive number,
because after the if statement finishes executing, execution continues with the
code following the if statement.

Note Because the Debug class is part of the System. Diagnostics
namespace, you should import that namespace with a using statement
as you did in Chapter 6.

private void btnTest Cick(object sender, EventArgs e)
{

string strScore;

i nt intScore;

strScore = txtlnput. Text;

intScore = |nt32. Parse(strScore);

if (intScore > 0)

Debug. Wi teLi ne("You entered a positive nunber");
Debug. WiteLine("This line will always print");

Note This code assumes that the user entered a number in the text box
before clicking the Test button. Otherwise, an error would result. The
"Input Validation" section later in this chapter will discuss how to guard
against this error.

The comparison may also use logical operators, as in the following code, which
validates a test score as being between 0 and 100:

private void btnTest_Cick(object sender, EventArgs e)
{
string strScore;
int intScore;
strScore = txtlnput. Text;
i nt Score = Int32. Parse(strScore);
if (intScore >= 0 && intScore <= 100)
Debug. Wit eLi ne
("You entered a valid test score (0 - 100)");
Debug. WiteLine("This line will always print");

This code displays "You entered a valid test score (0—100)" in the Output window
only if the input is between 0 and 100. However, it displays "This line will always
print" whether or not the input is between 0 and 100.

Multiple Conditional Statements

The first Debug.WriteLine statement in each of the preceding two examples
("You entered a positive number" and "You entered a valid test score (0-100),"
respectively) is indented to show that it is conditional (that is, it will execute only if
the if condition is true). This indenting is not required by the compiler. Rather, it is
helpful to the programmer to see the flow of the code, and will be used in this
and later chapters. Often the Visual C# 2005 IDE will add the indentation for you.

The second Debug.WriteLine statement ("This line will always print") is not
indented because it is not conditional (that is, it will execute whether the
condition is true or false).

As mentioned in the opening discussion on the if statement, unless you use curly
braces, only the first statement following the if keyword and relational expression
is conditional. That is fine in the preceding two examples, because logically the
second Debug.WriteLine statement should not be conditional. However,
sometimes you want more than one statement to be conditional.

For example, in the following code, only the first Debug. WriteLine statement is
conditional. The second Debug. WriteLine statement is not, so it will execute
whether the relational expression is true or false:

private void btnTest Cick(object sender, EventArgs e)

{

string strScore;
int intScore;
StrScore = txtlnput. Text;
i nt Score = Int32. Parse(strScore);
if (intScore %2 == 0)
Debug. Wi teLi ne("The nunber is even");
Debug. Wi teLi ne("And the nunber is not odd");

Thus, if the user enters an odd number such as 17 in the text box, the statement
"The number is even" will not display because the statement is conditional and
the relational expression is false. So far, so good. However, the following
statement "And the number is not odd" will display even on input of an odd
number because that statement is not conditional. This is not the logical result;
we want this second statement also to be conditional.

If you want more than one statement to be conditional, you must encase these
statements in curly braces:

private void btnTest. Click(object sender, EventArgs e)

{

string strScore;
int intScore;
strScore = txtlnput. Text;
intScore = Int32. Parse(strScore);
if (intScore %2 == 0)
{
Debug. Wi teLi ne("The numnber is even");
Debug. Wi teLi ne("And the nunber is not odd");

Now the second statement, "And the number is not odd," will execute only if the
if expression is true.

Common Mistakes

During years of teaching introductory programming classes, | have noticed
several common mistakes in the writing of if statements. Some of these mistakes
may result in compiler errors and therefore are easy to spot. However, other
mistakes are harder to spot because they do not cause an error, either at
compile time or run time, but rather give rise to illogical results.

Don't Put a Semicolon After the Relational Expression!

The first common mistake is to place a semicolon after the relational expression:
private void btnTest_Cick(object sender, EventArgs e)

{

int num = I nt32. Parse(txtlnput. Text);
if (num%2 ==0); // don't put a sem colon here!
Debug. Wi teLi ne(" The nunber is even");

Because the compiler generally ignores blank spaces, the following if statement
would be the same, and better illustrates visually the problem:
if (num%2 ==0)
; /] don't put a sem colon here!
Debug. Wi teLi ne("The nunber is even");

No compiler error will result, though there will be a warning about a possible
mistaken empty statement. The compiler will assume from the semicolon that it
is an empty statement. An empty statement does nothing. An empty statement is
perfectly legal in C#, and indeed sometimes has a purpose. Here, however, it is
not intended.

One consequence is that the empty statement will execute if the relational
expression is true. Of course, nothing will happen. So far, there is no harm done.

However, there is an additional consequence: an illogical result. The Debug.
WriteLine statement "The number is even" will execute whether or not the
relational expression is true. In other words, even if an odd number is entered in
the text box, the program will output "The number is even."

The reason the Debug.WriteLine statement "The number is even" will execute
whether or not the relational expression is true is that this statement is not
conditional. As explained in the preceding section, "Multiple Conditional
Statements," unless you use curly braces, only the first statement following the if
keyword and relational expression is conditional. That first, conditional statement
is the empty statement by virtue of the semicolon following the if expression. And
this leads us to the next common mistake.

Don't Forget Curly Braces for Multiple Conditional Statements

This issue already has been discussed in the preceding section "Multiple
Conditional Statements," but it bears repeating here because it is a very common
mistake. If you intend multiple statements to be conditional, you must encase
them in curly braces.

Don't Mistakenly Use the Assignment Operator!

The third common syntax error is to use the assignment operator instead of the
relational equality operator because the assignment operator looks like an equals
sign:

private void btnTest Cick(object sender, EventArgs e)

{

int num = Int32. Parse(txtlnput. Text);
if (num%2 =0) // wong operator!
Debug. Wi teLi ne("The nunber is even");

The result is a compiler error, because you are attempting to use an integer
value (01) in a Boolean expression.

The if...else Statement

You use the if...else statement if you want one block of code to execute if the
condition is true, and a second, different block of code to execute if the condition
is false. This differs from the if statement in that some code in the if...else
statement will execute; the only question is which. By contrast, with the if
statement, if the condition is false, no code dependent on the if statement
executes.

After the if...else statement completes executing, execution continues with the
code following the statement.

The syntax of an if...else statement is shown here:
if (condi tion)

[Code] ;
el se

[Code] ;

No express condition follows the else statement because the condition is implied
as being the negation of the condition following the if statement. In other words,
the code following the else statement executes if the condition following the if
statement is not true.

Try the following code. It displays in the Output window "You entered a valid test
score (0 — 100)" if the input is between 0 and 100, and it displays "You did not
enter a valid test score" if the input is less than O or greater than 100.

private void btnTest_Cick(object sender, EventArgs e)
{
string strScore;
i nt intScore;
strScore = txtlnput. Text;
i nt Score = Int32. Parse(strScore);
if (intScore >= 0 & & intScore <= 100)
Debug. Wit eLi ne
("You entered a valid test score (0 - 100)");
el se
Debug. Wit eLi ne
("You did not enter a valid test score");
Debug. WiteLine("This line will always print");

Although you can have an if without an else, as with the if statement, you cannot
have an else without an if. This is logical because else means "none of the

above," and without an if there is no "above."

Common Mistakes

Just as with the if statement, | have noticed while teaching introductory
programming classes several common syntax mistakes with the if...else
statement.

No Else Without an if Expression

You can have an if expression without an else part. However, you cannot have
an else part without an if part. The else must be part of an overall if statement.
This requirement is logical. The else part works as "none of the above." Without
an if part, there is no "above."

As a consequence, in the following code example, placing a semicolon after the
Boolean expression following the if keyword will result in a compiler error.
Because curly braces are not used, the if statement ends after the empty
statement created by the incorrectly placed semicolon. The Debug.WriteLine
statement "The number is even" is not part of the if statement. Consequently, the
else part is not part of an if...else statement and therefore will be regarded as an
else part without an if part.

private void btnTest Cick(object sender, EventArgs e)

{

int num = Int32. Parse(txtlnput. Text);

if (num%2 ==0); // don't put a sem colon here!
Debug. Wi teLi ne("The nunber is even");
el se

Debug. Wi teLi ne("The nunber is odd");

Don't Put a Relational Expression After the Else Keyword!

Another common mistake is to place a relational expression in parentheses after
the else keyword:

private void btnTest_Click(object sender, EventArgs e)
{
int num = Int32. Parse(txtlnput. Text);
if (num%2 == 0)
Debug. Wi teLi ne("The nunber is even");
else (num%2 == 1) // don't do this!
Debug. Wit eLi ne("The nunber is odd");

The program will not compile, and the end of the else expression will be
highlighted with an error description such as "; expected.”

Actually, the error description is misleading. The problem is not that a semicolon
is missing. Instead, no relational expression should follow the else keyword. The
reason is that the else acts like "none of the above" in a multiple-choice test. If
the if expression is not true, the conditional statements connected to the else
part execute.

Don't Put a Semicolon After the Else Expression!

Another common mistake is to place a semicolon after the else expression. This
will not cause a compiler or run-time error, but it often will cause an illogical
result.

For example, in the following code, the Debug.WriteLine statement "The number
is odd" will output even if the number input is even:

private void btnTest_Cick(object sender, EventArgs e)

{

int num = I nt32. Parse(txtlnput. Text);
if (num%2 == 0)
Debug. Wit eLi ne(" The nunber is even");
else; // don't put a sem colon here!
Debug. Wi teLi ne("The nunber is odd");

The Debug.WriteLine statement "The number is odd" will execute whether or not
the relational expression is true because that Debug.WriteLine statement no
longer is part of the if...else statement. Unless you use curly braces, as
explained already in connection with the if statement, only the first statement
following the else keyword is conditional. That first, conditional statement is the
empty statement by virtue of the semicolon following the if expression.

Therefore, the Debug.Write Line statement "The number is odd" is not part of the
if...else statement at all.

Curly Braces Needed for Multiple Conditional Statements

As with the if expression, if you want more than one conditional statement to
belong to the else part, you must encase the statements in curly braces.

The if...else if Statement

You use the if...else if statement if you have more than two alternative blocks of

code, the maximum possible with an if...else statement.

With an if...else if statement, the first block of code whose condition is true
executes, and all following blocks of code are skipped. The first block of code
follows the if clause, and each succeeding block of code coupled with a condition
is an else if clause. You can have as many else if clauses as you want. Finally,
you may optionally have an else clause that, as with an if...else statement, acts
as "none of the above." After the if...else if statement finishes executing,
execution continues with any code following the statement.

The syntax of an if...else if statement is shown here:
if (condition)

[Code] ;

else if (condition)
[Code] ;

else // optional
[Code] ;

Try the following code. It displays in the Output window "The test score is valid" if
the input is between 0 and 100, "Test score cannot be less than zero" if the input
is less than 0, or "Test score cannot be greater than 100" if the input is greater
than 100.

private void btnTest_ Cick(object sender, EventArgs e)
{

string strScore;

int intScore;

strScore = txtlnput. Text;

i nt Score = Int32. Parse(strScore);
if (intScore >= 0 && intScore <= 100)

Debug. WiteLine("The test score is valid");
else if (intScore < 0)

Debug. Wit eLi ne

("Test score cannot be less than zero");
el se

Debug. Wit eLi ne

("Test score cannot be greater than 100");
Debug. WiteLine("This line will always print");

Although you can have as many else if clauses as you want, none can appear
after an else clause. The else clause is optional; it serves the function of "none of
the above."

Common Syntax Errors

The common syntax errors for the if part discussed earlier in this chapter apply to
the else if part also. Don't put a semicolon after the relational expression, and
you must enclose multiple conditional statements in curly braces.

Additionally, just as you cannot have an else part withoupt a preceding if part,
you cannot have an else if part without a preceding if part.

You are not required to have an else part. The downside in omitting the else part
is you will not have code to cover the "none of the above" scenario in which none
of the relational expressions belonging to the if part and else if parts is true.

4 Previous

HNext b

4 Previous

Input Validation

The code used in the preceding section "The if...else if Statement" involves the
entry of a student's test score. No matter how badly a student performs on a test,
that student will do no worse than 0. Similarly, no matter how well a student
performs on a test, that student will do no better than 100.

However, it is not prudent to assume that the application user will enter a number
between 0 and 100 in the input box and click the OK button. Human error is
inevitable. An application user may not even read directions, much less follow
them. Further, even a conscientious application user will make data-entry errors.

For example, if the application user enters in the input box a number less than O
or larger than 100, that input necessarily is incorrect. If that incorrect input is
stored as the student's test score, the student's records will be wrong. Even
worse, under the saying "garbage in, garbage out," any calculation based on that
test score also will be wrong.

Accordingly, your code should guard against the possibility that the application
user's input is incorrect. This is called validating the user's input, or input
validation.

The code used in the preceding section "The if...else if Statement" does perform
input validation. The following portion of that code checks that the user's input is
between 0 and 100, and it warns the user that the input is incorrect if the input
isn't between 0 and 100:

if (intScore >= 0 & & intScore <= 100)

Debug. WiteLi ne("The test score is valid")
else if (intScore < 0)

Debug. WiteLi ne("Test score cannot be |less than zero");
el se

Debug. Wit eLi ne

("Test score cannot be greater than 100");

Exceptions

The code used in the preceding section "The if...else if Statement” performs
some input validation, but not enough. For example, that code does not guard
against the possibility that the application user could enter a nonnumeric string
and click the OK button. To demonstrate this, run the project with the Debug |
Start Without Debugging menu command, or simply press CTRL-F5. Enter Jeff

HNext b

in the text box and click the Test button. Your application will halt, and the
message box shown in Figure 7-2 will display with the message "Input string was
not in a correct format."

1. Parmastiscepdion s unhardied
Format

Traulskeahosting Hpe

Figure 7-2: The exception "Input string was not in a correct format".

Stop the project by clicking the Quit button. Run the project again with Debug |
Start Without Debugging menu command. Click the Test button without entering
anything in the text box. Your application will halt, and the message box shown in
Figure 7-2 again will display.

What Is an Unhandled Exception?

Figure 7-2 refers to an "unhandled exception." An exception is a problem that
occurs while the program is executing that must be dealt with before the program
can proceed. Examples of exceptions include the inability to open a file because
it cannot be found, the application not putting in the floppy drive the floppy disk
that contains the file, the file being corrupt, the operating system not having
enough available memory remaining to open the file, and so on. The exception
may be due to faulty code, application user error, or circumstances beyond the
control of either the programmer or the application user, such as a crash of the
operating system. Regardless of the cause, the program cannot proceed until the
exception is resolved.

It is possible through code to "handle" an exception. For example, if the
application user forgot to put in the floppy drive the floppy disk that contains the
file, code warns the user and gives the user an opportunity to either put the
floppy disk in the floppy drive or quit the application.

Exception handling is an advanced subject and therefore is not covered here.
For present purposes, exceptions generally do not crash programs; instead,
unhandled exceptions crash programs. That is why Figure 7-2 refers to an
"unhandled exception."

Determining Where the Exception Occurred

Although this explains what an unhandled exception is generally, what remains

to be explained is what caused the unhandled exception in this code. You can
determine the details of the exception by clicking the Details button. Figure 7-3
shows the result of clicking the Details button of the message box depicted in
Figure 7-2.

¥iew Detail 7K

Figure 7-3: Exception details.

The line of our code highlighted (in yellow) when the exception occurred is
i nt Score = Int32. Parse(strScore)

The reason for the error is that the Parse method of the Int32 class requires for
its parameter a string representation of an integer. Neither "Jeff" nor an empty
string is a string representation of an integer. Therefore, the Parse method is
unable to properly execute, and an exception occurs.

TryParse Method

The Int32 class has a TryParse method in addition to a Parse method. Both
methods convert the string representation of an integer into an integer. However,
the TryParse method also returns a Boolean value (true or false) indicating
whether the conversion was successful. If the conversion is not successful—for
example, because the argument is "Jeff" or an empty string—no exception
occurs. Rather, the return value is false.

Note Other numeric classes, such as Double, also have a TryParse method.
In the case of the Double class, the method attempts to convert the
string representation of a double into a double.

The syntax of the TryParse method of the Int32 class is shown here:
[Bool ean] = Int32. TryParse ([string], out [integer]);

The first parameter, the string, is the string representation of an integer. When

the TryParse method is called, the first argument usually is a variable, though it
also could be a property of the String data type, such as the Text property of a

Label control.

The second parameter, an integer, is where the integer equivalent of the string
representation will be stored. When the TryParse method is called, the second
argument usually is a variable, though it also could be a property of the Int32
data type.

The second parameter is preceded by the out keyword. The out keyword
indicates that the method may change the value of the argument. This is the
case here, because when the TryParse method is called, the value of the second
argument will be changed to the integer value of the first argument’s string
representation of that integer. By contrast, the first argument need not be
preceded by the out keyword because the string representation only is being
evaluated, not being changed.

The return value is Boolean and usually stored in a variable of that data type.

The following code snippet illustrates the TryParse method in action:

string strScore;
i nt intScore;
strScore = txtlnput. Text;
bool bl nl nput;
bl nl nput = I nt32. TryParse(strScore, out intScore);
if (blnlnput == fal se)
/] Conversion unsuccessful.
// Don't use intScore in further code
el se
/'l Conversion successful. Use intScore in further code

The following code implements this logic and modifies the code used in the
preceding section on the if...else if statement:

private void btnTest_Click(object sender, EventArgs e)
{
string strScore;
i nt intScore;
strScore = txtlnput. Text;
bool bl nl nput;
bl nl nput = I nt32. TryParse(strScore, out intScore);
if (blnlnput == fal se)
Debug. Wit eLi ne
("I nput does not evaluate to an integer");

else if (intScore >= 0 && i ntScore <= 100)
Debug. WiteLi ne("The test score is valid");
else if (intScore < 0)
Debug. Wi t eLi ne
("Test score cannot be |less than zero");
el se
Debug. Wit eLi ne
("Test score cannot be greater than 100");
Debug. WiteLine("This line will always print");

4 Pravious Mest b

4 Previous MNest b

Controls Used for the if Control Structure

The application user interacts with your code, including the if control structure,
through the graphical user interface (GUI) of your application. Two controls in
particular are used in conjunction with the if control structure. The CheckBox
control is used when a particular decision has only two choices, as in true or
false, yes or no, and so on. The RadioButton control is used when there are
multiple, mutually exclusive choices, such as whether a student's grade is an A,
B,C,D,orF.

CheckBox Control

CheckBox controls are commonly used in Windows applications. For example, in
the Print dialog box shown in Figure 7-4, there are check boxes for Print to File
and Collate.

Figure 7-4: Print dialog box.

The reason that CheckBox controls are often used is that they are ideal for
situations in which there are only two choices, such as yes or no, male or female,
and so on. The CheckBox control being checked is considered true, yes, or on,
with unchecked being false, no, or off.

Each CheckBox control is independent of the others. They may all be checked,

or all unchecked, or any combination of checked and unchecked.
The CheckBox control has two properties you will use often: Text and Checked.

The Text property essentially is a label, built into the CheckBox control, that
identifies to the application user the purpose of the check box. When you add the
CheckBox control to the form, you have to draw it large enough (after first setting
AutoSize to False in the Properties window) to show the text portion as well as
the check box portion. The Text properties of the two CheckBox controls in
Figure 7-4 are Print to File and Collate, respectively. The Text property usually is
set at design time.

The Checked property is of a Boolean data type. If the check box is checked, the
value of the Checked property is True. If the check box is not checked, the value
of the Checked property is False.

Because the Checked property has only two possible values, True and False,
often you use an if...else statement based on the Checked property, as the
following code snippet illustrates:

i f (chkPi zza. Checked == true)
Debug. WiteLine("l want pizza!");
el se
Debug. WiteLine("l don't want pizza. ");

RadioButton Control

RadioButton controls also are commonly used in Windows applications. Taking
again the example of the Print dialog box in Figure 7-4, there are radio buttons
for printing all pages, printing the current page, printing a range of pages, and
printing just the selected text.

The primary difference between CheckBox and RadioButton controls is that
whereas each check box is independent of another, all radio buttons in a group
are related in that only one of them can be chosen at any one time. Therefore,
the RadioButton control is ideal for situations in which there are choices, and one
choice, but only once choice, must be chosen.

Note If radio buttons are contained within a GroupBox or Panel control, those
radio buttons are in a group independent of any other radio buttons on
the form. This is useful when one set of radio buttons that, say,
concerns age is logically independent of another set of radio buttons
that, say, concerns income level.

As with the CheckBox control, the two properties you will use often with the

RadioButton control are Text and Checked. As with the CheckBox control, the
Checked property for a RadioButton control has only two possible values: True
and False.

In the event you have more than two RadioButton controls, often you use an
if...else if statement based on the Checked property, as shown here:

i f (radLarge. Checked == true)

Debug. WiteLine("l want a large pizza. ");
el se if (radMedi um Checked == true)

Debug. WiteLine("l want a nedium pizza. ")
el se

Debug. WiteLine("l want a small pizza. ");

4 Previous

Next k

4 Previous MNest b

Pizza Calculator

This project calculates the cost of the programmer’s food of choice, pizza, using
radio buttons and check boxes. The cost of the pizza is based initially on whether
the pizza is a small ($5.00), medium ($7.50), or large ($10.00). There is an
additional cost of 50 cents for each topping.

Figure 7-5 shows the project in action. Because the application user has
selected a large pizza ($10.00) with pepperoni and anchovies ($1.00 for two
toppings), the total cost is $11.00.

™ Form1

&) Large [] Mushroom

(] Pepperoni

O Medum
) Smal Anchowy

Total $11.00

Figure 7-5: Pizza Calculator project.

Creating the Project

Radio buttons are used to represent the three alternative pizza sizes: small,
medium, and large. The radio buttons are named radSmall, radMedium, and
radLarge, respectively. Similarly, their Text properties are, respectively, Small,
Medium, and Large.

Check boxes are used to represent each topping choice—mushrooms,
pepperoni, and my favorite, anchovies (because no one else wants anchovies, |
get the whole pizza for myself). The check boxes are named chkMushroom,
chkPepperoni, and chkAnchovy, respectively. Similarly, their Text properties are,

respectively, Mush room, Pepperoni, and Anchovy.

There are two Button controls. One is named btnCalculate, and its Text property
is Calculate. The other is named btnClear, and its Text property is Clear.

There also are two Label controls. The one that displays the total in Figure 7-5 is
named IblTotal. Its Text property initially is blank. | also have set its AutoSize
property to False and its BackColor property to white using the Properties
window to give it its white background. The other label has a Text property of
Total. It is not involved in the code, so you can retain its default name (mostly
likely, Labell or Label2).

How the Project Works

The cost of the pizza is based initially on whether the pizza is a small ($5.00),
medium ($7.50), or large ($10.00). There is an additional cost of 50 cents for
each topping.

Clicking the Calculate button calculates and displays the cost in the Label control
named IblTotal. Clicking the Clear button returns the application to its default
settings (large size, all toppings unchecked, cost blank).

The Code

The code will consist of three sections:

» Declaring constants to represent the cost of the pizza sizes and toppings.
This will be done in the Click event procedure of the Calculate button.

» Calculating the cost of the pizza. This also will be done in the Click event
procedure of the Calculate button.

» Restoring the application to its default settings. This will be done in the
Click event procedure of the Clear button.

Declaring the Constants

Declare the following constants in the Click event procedure of the Calculate
button:

private void btnCal cul ate_Cick
(obj ect sender, EventArgs e)
{

const doubl e LARCGE = 10;
const double MEDI UM = 7.5;
const double SMALL = 5;

const double TOPPI NG = 0. 5;

These constants represent the costs of the different sizes of pizza and the extra
cost of each topping. The actual values instead could have been used in the
code. However, using constants makes the code easier to change if the costs of
the different sizes or the toppings ever change, because only one change would
need to be made (the value of the constant) rather than changing the value in all
places it is used in the code. Similarly, the constants LARGE and SMALL are
declared as a double instead of an integer because someday the price may
involve cents, such as the price of a large pizza changing from $10.00 to $10.50.

Note These constants do not need to have broader scope than the Click
event procedure of the Calculate button because they only are referred
to in that event procedure.

Calculating the Price

Add the following code in the Click event procedure of the Calculate button after
the declaration of the constants:

private void btnCal culate Cick
(obj ect sender, EventArgs e)
{

const doubl e LARGE = 10;
const double MEDIUM = 7.5;
const double SMALL = 5;
const doubl e TOPPI NG
doubl e dbl Tot al ;
i f (radLarge. Checked == true)

dbl Total = LARGE
el se if (radMedi um Checked == true)

0.5;

dbl Total = MEDI UM
el se
dbl Total = SMALL,;
i f (chkMushroom Checked == true)
dbl Total += TOPPI NG
i f (chkPepperoni. Checked == true)
dbl Total += TOPPI NG
i f (chkAnchovy. Checked == true)
dbl Total += TOPPI NG
| bl Total. Text = dbl Total.ToString("c");

The variable dblTotal is used to store the total price. The data type of this
variable is a double instead of an integer because the number may be a floating-
point number (that is, it may have cents as well as dollars).

An if...else if statement is used to assign to dblTotal the cost of the size of pizza
selected, based on which radio button's value is true. An if...else if statement is
appropriate because one, and only one, of the radio buttons can be selected.

By contrast, independent if statements are used to determine whether to add 50
cents for each topping, based on whether each check box's value is true.
Independent if statements are appropriate because the value of each check box
is independent from that of the others. The user may choose all toppings, no
toppings, or any combination.

Finally, the value of dblTotal is displayed in the Total label. This involves two
steps. First, the value is converted from a double to a string data type using the
ToString method because that value is being assigned to a property (Text) that is
a string data type. Second, the argument "c" is passed to the ToString method so
the total is formatted as currency, starting with the dollar sign ($) and having two
numbers, no more and no less, to the right of the decimal point.

Note The argument "c" to the ToString method is a format specifier. There
are other format specifiers, such as "e" for exponential or scientific
notation, and "p" for a percentage.

Restoring the Application to its Initial Settings

Finally, the following code in the Click event procedure of the Clear button
returns the application to its default settings (large size, all toppings unchecked,
cost blank):

private void btnC ear_Cick(object sender, EventArgs e)
{

radLar ge. Checked = true;

radMedi um Checked = fal se;

radSmal | . Checked = fal se;
chkMushr oom Checked = fal se;
chkPepperoni . Checked = fal se;
chkAnchovy. Checked = fal se;
1bl Total . Text = "";

4 Previous

Next k

4 Previous MNest b

The Switch Control Structure

The switch control structure is quite similar to the if ... else if statement, but they
are not the same. The primary difference is that, in the if ... else if statement, the
if and else if clauses each may evaluate completely different expressions,
whereas a switch control structure may evaluate only one expression, which then
must be used for every comparison.

For example, the condition of an if clause could be whether Night > Day, the
condition of the following else if clause whether Citizenship == U.S., the condition
of the next else if clause whether NumberOfClasses >= 4, and so on. Usually the
conditions evaluated by the if and else if clauses are related, but they can be
completely independent of each other.

By contrast, the switch control structure evaluates one test expression, and that
test expression is used for all the following comparisons.

Syntax

The syntax of a switch control structure is shown here:
swtch [test expression]

{

case [integer literal constant]:
[code] ;
br eak;
/'l More case statenents optiona
default: //al so optional
[code] ;
br eak;

The test expression must be capable of being evaluated as an integer. A
character also may be evaluated as an integer because of its ANSI or ASCII
value, discussed in the last chapter. The grade program in the next section
demonstrates the use of a character as a test expression.

Each case keyword must be followed by an integer expression that is either a
literal (such as 5) or a constant. Consequently, a variable cannot follow a case
keyword. In the grade program in the next section, the constant is a character
literal, such as 'A’, 'B', and so on. A character literal works following the case
keyword because, as mentioned in the previous paragraph, the character's ANSI
or ASCII value is an integer value.

The default keyword serves the same purpose as an else partin anif ... else or
if ... else if statement, and therefore is not followed by an integer constant or
literal.

Each case block, and the default block, usually must be terminated by a break
statement. The exception to this rule is discussed in the later section on the
break keyword.

The Switch Control Structure in Action

Although the switch control structure differs from the if ... else if statement in that
it may evaluate only one expression that then must be used for every
comparison, it otherwise behaves quite similarly to the if ... else if statement:

If the condition following an if (or else if) clause in an if ... else if statement
evaluates as true, the code following that clause executes, and none of the
following else if (or else) clauses are evaluated. Similarly, if the literal or constant
following a case clause matches the test expression, the code following the case
clause executes, and any remaining case clauses are not evaluated because of
the break keyword at the end of the case clause. (An exception to this is
discussed in the later section on the break keyword).

If the condition following an if (or else if) clause in an if ... else if statement
instead evaluates as false, the code following that clause does not execute, and
each of the following else if (or else) clauses is evaluated in order. Similarly, if
the expression or expression list following a case clause does not match the test
expression, the code following that clause does not execute, and each of the
following case clauses is evaluated in order.

If none of the conditions following the if and else if clauses in an if ... else if
statement evaluates as true, the code following the else clause executes if there
is an else clause. Similarly, if none of the literals or constants following the case
clauses in a switch control structure match the test expression, the code
following the default clause executes if there is a default clause. The default
clause is analogous to the else clause, covering the "none of the above"
circumstance.

Once execution of the if ... else if statement is completed, the program continues
to the code following the if control structure. Similarly, once execution of the
switch control structure is completed, the program continues to the code
following the switch control structure.

Open the Windows application you created at the beginning of this chapter.
Comment out the existing code in the Click event of the button btnTest and then

insert the following code in that event procedure:
private void btnTest_ Cick(object sender, EventArgs e)

{
char grade;
grade = Convert. ToChar (txtl nput. Text);
switch (grade)

case 'A':
Debug. Wi teLi ne("Test score between 90-100");
br eak;

case 'B':
Debug. Wi teLi ne("Test score between 80-89");
br eak;

case 'C:
Debug. Wi teLi ne("Test score between 70-79");
br eak;

case 'D:
Debug. Wi teLi ne("Test score between 60-69");
br eak;

case 'F':
Debug. Wi teLi ne("Test score between 0-59");
br eak;

defaul t:
Debug. WiteLine("lInvalid grade");
br eak;

The one line of code that requires further explanation is
grade = Convert. ToChar (txtl nput. Text);

The Text property returns a string, but the grade variable's data type is a
character. The ToChar method of the Convert class returns the first character in
the string as a character, which then is assigned to the grade variable.

Run the project and input a letter for a grade. The switch control structure
evaluates the value of that variable and then either outputs the test score based
on that value or outputs "Invalid grade" if the grade is not an A, B, C, D, or F.

The Break Keyword

In an if ... else if statement, each if, else if, or else part is separate from all the
others. By contrast, in a switch control structure, once a matching case

statement is reached, unless a break statement is reached, execution tries to
"fall through" to the following case statements.

If a case or default statement contains at least one executable statement, such
as Debug.WriteLine, the lack of a following break statement would result in the
following compiler error: "Control cannot fall through from one case label to

another.”

This "falling through" behavior is not necessarily bad. In the following
modification of the grade program, the falling through behavior permits the user
to enter a lowercase grade in addition to an uppercase grade. There is no
compiler error because each case that lacks a break statement (such as case 'a’)

has no executable statement.
private void btnTest Cick(object sender,

{

char grade;

grade =

switch (grade)

{

case 'a':

case "'A':
Debug. Wit eLi
br eak;

case 'b':

case 'B':
Debug. Wit eLi
br eak;

case 'c':

case 'C:
Debug. Wit eLi
br eak;

case 'd':

case 'D:
Debug. Wit eLi
br eak;

case 'f':

case 'F':
Debug. Wit eLi
br eak;

defaul t:
Debug. Wit eLi

ne(" Test

ne(" Test

ne(" Test

ne(" Test

ne(" Test

ne("Invalid grade");

Convert. ToChar (t xt| nput. Text);

score between

score between

score between

score between

score between

Event Args e)

90- 100");

80- 89") ;

70-79");

60- 69") ;

0-59");

br eak;

You could not achieve the same result with a case statement such as the
following:

case:

a |l A

The reason is that the case keyword must be followed by an integral or character
literal (such as 4 or 'a’) or constant.

Choosing Between if...else if and Switch

The if ... else if statement and the switch control structure are similar. However,
in deciding whether to use if ... else if or switch, you may not have a choice.

Although any code you write using a switch control structure also can be written
using an if control structure, the reverse is not also true. If you need to evaluate
several different expressions in a block of code, you cannot use a switch control
structure, which may evaluate only one expression that then must be used for
every comparison.

Additionally, the switch control structure does not work well with ranges of
values. A statement such as

if (var >= 90 && var <= 100)

tests if the value of the variable var is between 90 and 100. You can't write the
same statement so easily in a switch statement because the case keyword must
be followed by an integer or constant. There would need to be a separate case
for 90, 91, 92, 93, and so forth to 100.

If you do have a choice, the decision is one of personal preference, concerning
which way is easier to write and easier to understand. Your choice may be the
switch statement in processing a menu choice such as 1, 2, or 3, or A, B, or C.
4 Previous MNewxt b

4 Previous

Conclusion

In Chapter 6, you learned how to use comparison and logical operators to
evaluate an expression as true or false. You learned in this chapter how to use
that information by employing control structures—specifically an if or switch
control structure—so that different blocks of code execute depending on whether
an expression evaluates as true or false.

The application user interacts with your code, including if and switch control
structures, through the GUI of your application. You learned in this chapter how
to use two controls that often are utilized with if and switch control
structures—the CheckBox and RadioButton controls.

In the next chapter, | will show you how to apply this information with loops,
which enable you to repeat the execution of code statements.

4 Previous

HNext b

Hext b

4 Fravious Hest ¢

Quiz

1. What does modal mean?

2. What is the converse of modal?

3. What is a conditional statement?

4. Which namespace should you import to use the Debug class?

5. What are the three varieties of an if control structure?

6. What is an exception?

7. What does the TryParse method of the Int32 class do?

8. Which two controls are commonly used with the if control structure?

9. What is the primary difference between the if ... else if statement and the switch
control structure?

10. What part of a switch control structure performs the same purpose as an else clause
in an if control structure?

Answers

1. Modal means a form must be closed before the application user can return to any other form
in the application.

2. Modeless.

3. The statement is conditional if the statement executes only if the value of the relational
expression following the if or else if keyword is true.

4. You should import the System.Diagnostics namespace to use the Debug class.

5. The three varieties of an if control structure are if, if ... else, and if ... else if.

6. An exception is a problem that occurs while the program is executing that must be dealt with

before the program can proceed.

7. The TryParse method of the Int32 class converts the string representation of an integer into
an actual integer value, but also returns a Boolean value (true or false) indicating whether the
conversion was successful.

8. The CheckBox and RadioButton controls.

9. The primary difference in the if ... else if statement and the switch control structure is that the
if and else if clauses both may evaluate completely different expressions, whereas a switch
control structure may evaluate only one expression, which then must be used for every
comparison.

10. The case default part of a switch control structure performs the same purpose as an else
clause in an if control structure.

4 Previous MNewt b

4 Previous MNest b

Chapter 8: Repeating
Yourself—Loops and Arrays

Overview

Parents customarily remind their children not to repeat themselves.
Indeed, parents often illustrate another saying ("Do as | say, not as |
do") by continually repeating that reminder.

Sometimes you want your code to repeat itself. For example, if the
user enters invalid data, you may want to ask the user whether they
want to retry or quit. If they retry and still enter invalid data, you again
would ask the user whether they want to retry or quit. This process
keeps repeating until the user either enters valid data or quits.

You use a loop to repeat the execution of code statements. A loop is a
structure that repeats the execution of code until a condition becomes
false. In the preceding example, the condition is that the data is invalid
and the user should retry. The repeating code is the prompt asking the
user whether they want to retry or quit and then permitting them to
retry if they want to.

I will show you in this chapter the different types of loops available and
how to implement them.

An array permits you to use a single variable to store many values.
The values are stored at consecutive indexes, starting with zero and
then incrementing by one for each additional element of the array. For
example, to store sales for each day of the week, you can create one
array with seven elements, rather than declaring seven separate
variables. Using an array has several advantages. It is easier to keep
track of one variable than seven. Additionally, you can use a loop to
access each consecutive element in an array, whether to assign a
value of that element or to display that value.

| will show you in this chapter how to create and use arrays.
4 Frewious MNext b

4 Frewious
Loops

This section will introduce four loop statements: for, foreach, while, and do
while. These loop statements differ in syntax and other details, but they all
have in common that they repeat the execution of code until a condition
becomes false, each repetition being called an iteration.

The for Statement

If you wanted to output the numbers between 1 and 10, you could write a
program such as the following, which will output 1 through 10, followed by
"This line will always print."

private void Fornl_Load(object sender, EventArgs e)

{
int num = 1;
Debug. Wit eLi ne(numt+) ;
Debug. Wi t eLi ne(numt+) ;
Debug. Wi t eLi ne(numt+) ;
Debug. Wi t eLi ne(numt+) ;
Debug. Wit eLi ne(numt+) ;
Debug. Wi t eLi ne(numt+) ;
Debug. Wi t eLi ne(numt+) ;
Debug. Wi t eLi ne(numt+) ;
Debug. Wit eLi ne(numt+) ;

Debug. Wi t eLi ne(numt+) ;
Debug. WiteLine("This line will always print");

Note Because the Debug class is part of the System. Diagnostics
namespace, you should import that namespace with a using
statement as you did in Chapter 6.

However, you could write the same program with far less code by using a for
statement:

private void Fornl_Load(object sender, EventArgs e)

{
for (int num= 1; num <= 10; numt+)
Debug. Wit eLi ne(num ;
Debug. WiteLine("This line will always print");

HNext b

Note As with the if control structure, only the first statement following the
for statement is conditional on the for statement unless curly braces
are used to enclose multiple conditional statements.

The difference between using and not using a loop structure becomes more
pronounced if you change the specification from outputting the numbers
between 1 and 10 to outputting the numbers between 1 and 100. | won't
rewrite the first program because it would take up too many pages; suffice it
to say you would have to add 90 more Debug.WriteLine(num++) statements.
However, here's the same program using a for statement:

private void Fornl_Load(object sender, EventArgs e)

{
for (int num= 1; num <= 100; numt+)
Debug. WiteLine(num;
Debug. WiteLine("This line will always print");

Indeed, by using the for statement, the same code could output the numbers
between 1 and 1000 or even 1 and 10000; you just would need to change
the 100 in the code to 1000 or 10000.

Syntax

Let's discuss the syntax of the for statement. The for keyword is followed by
parentheses that contain three expressions that will be discussed in a
moment. This line of code is followed by one or more statements.

for ([DataType counter] = [start val ue];
[conparison]; [update counter])
st at enment ;

If the execution of more than one statement is conditional on the for
statement, the statements must be enclosed with curly braces, as is the case
with the if control structure:

for ([DataType counter] = [start val ue];
[conparison]; [update counter])
{
st at enent ;
st at enent ;

The three expressions contained in the parentheses following the for
keyword are separated by semicolons; there is no semicolon after the third
expression because no expression follows it.

Let's use as an example the following portion of the code in the preceding
section, which displays the numbers 1 through 10:
for (int num= 1; num <= 10; numt+)
Debug. Wit eLi ne(num ;
Debug. WiteLine("This line wll always print");

The first expression is
int num= 1;

This expression may be referred to as the initialization part because its
purpose usually is to initialize the value of a variable (as explained shortly,
there are alternatives), typically referred to as a counter, to provide that
variable with a starting value. In this example, the integer variable num is the
counter, and it is initialized to the starting value of 0. This initialization is the
first action performed by the loop, and it's only performed once.

The second expression is
num < = 10;

This expression may be referred to as the comparison part because its
purpose usually is to make a comparison involving the counter. The result of
this comparison will evaluate to a Boolean value (true or false). The result
must be true for the conditional statements to execute. In this example, the
condition is whether the current value of num is less than or equal to 10.

The third expression is
numt+

This expression is referred to as the update part because its purpose usually
is to update the value of the counter. In this example, the integer variable
num is incremented. This expression executes at the end of each iteration,
and only executes if the condition was true at the beginning of the iteration.

Note Postfix incrementing was used in this example and generally is
employed by convention. However, the result would be the same if
prefix incrementing were used, because only one operator is
involved in this expression.

The conditional statement is
Debug. Wi t eLi ne(num ;

This statement will execute only if the result of the comparison is true.

The following statement is not conditional, so it will execute once—no more,
no less:

Debug. WiteLine ("This line will always print");

As mentioned earlier, similar to the if control structure, only the first
statement following the for statement is conditional on the for statement
unless curly braces are used to enclose multiple conditional statements.
Here, no curly braces were used, so this statement is not conditional.

Initialization and updating need not occur in the parentheses following the for
statement. In the following variation of the program that outputs from 1
through 10, num is initialized before the for statement and is incremented
inside the body of the loop:

private void Fornml_Load (object sender, EventArgs e)

{
int num= 1;
for (; num<= 10;)
{
Debug. Wi teLine(num;
numt+;
}
Debug. WiteLine("This line wll always print");

Even though initialization and incrementing are not done within the
parentheses, two semicolons nevertheless must be within the parentheses to
indicate where the three expressions would be. Although an expression may
be empty, the following semicolon nevertheless is necessary.

Although there are syntax variations, following the parentheses with a
semicolon is not one of them. Instead, this is simply is a mistake. The
semicolon is interpreted as an empty statement. Accordingly, in the following

code fragment, the only number that would output is 11:
private void Fornl_Load(object sender, EventArgs e)

{

int num

for (num= 1; num <= 10; numt+); // no sem -col on
Debug. Wit eLi ne(num ;

Debug. WiteLine("This line will always print");

The reason the only number that would output is 11 is that the loop
continues, and the empty statement executes, until the condition fails when
num is 11. The Debug. WriteLine(num) statement is not part of the for loop,
S0 it executes when the for loop completes, outputting 11, the value of num
after the loop finishes.

How the for Statement Works

Let's now analyze how the following for statement works, step by step:

for (int num= 1; num <= 10; numt+)
Debug. Wi teLi ne(num ;
Debug. WiteLine("This line will always print");

Here is the order of execution in the first iteration of the loop:
1. The integer variable num is initialized to 1.

2. The current value of num, 1, is compared to 10.

3. Because the comparison is true, num is less than or equal to 10. The
current value of num, 1, is output.

4. The value of num is incremented, becoming 2.

And here is the order of execution in the second iteration of the loop:
1. The current value of num, 2, is compared to 10.

2. Because the comparison is true, the current value of num, 2, is
outputted.

3. The value of num is incremented, becoming 3.

Note that the initialization that occurred during the first iteration of the loop
did not occur during the second iteration of the loop. As discussed
previously, initialization occurs only once, in the first iteration of the loop.
Were it otherwise, an endless loop would result.

This order of execution in the second iteration of the loop repeats during the
third and following executions of the loop, each time incrementing the value
of num through the tenth iteration of the loop, which executes in the following
order:

1. The current value of num, 10, is compared to 10.

2. Because the comparison is true (10 is less than or equal to 10), the
current value of num, 10, is outputted.

3. The value of num is incremented, becoming 11.

In the next iteration of the loop, the current value of num, 11, is compared to
10. Because the comparison is false (11 is not less than or equal to 10), the
for loop ends. The code inside the for loop does not execute, the value of
num is not incremented, and the code following the for loop executes:

Debug. WiteLine("This line will always print");

If you wanted the execution of this statement to be conditional on the for
statement, then it and the preceding conditional statement would be
enclosed in curly braces:

for (int num= 1; num <= 10; numt+)

Debug. Wi teLi ne(num ;
Debug. WiteLine("This line wll always print");

Table 8-1 summarizes the execution of the loop.

Table 8-1: Summary of Execution of for Statement

Value of x x<=10 Value of x Prints? New Value of x

1 True Yes 2
2 True Yes 3
3 True Yes 4
4 True Yes 5
5 True Yes 6
6 True Yes 7

Value of x x<=10 Value of x Prints? New Value of x

7 True Yes 8
8 True Yes 9
9 True Yes 10
10 True Yes 11
11 False No 11

The numbers need not be outputted in ascending order. Changing the for
statement to read as follows would result in the numbers between 1 and 10
being outputted in reverse:
for (int num= 10; num>= 1; num)

Debug. Wi teLi ne(num ;
Debug. WiteLine("This line will always print");

Beware the Infinite Loop

Let's return to the program that outputs the numbers 1 through 10:
private void Fornl Load (object sender, EventArgs e)

{
for (int num= 1; num <= 10; numt+)
Debug. Wi teLi ne(num ;
Debug. WiteLine("This line will always print");

If the statement num++ is omitted, the loop would never stop:
private void Fornl Load(object sender, EventArgs e)

{
for (int num= 1; num <= 10;)
Debug. Wi t eLi ne(num ;
Debug. WiteLine("This line will always print");

The reason is that the condition num <= 10 would never become false
because num would start at 1 and its value would never change because the
statement num++ is omitted.

This loop that never stops executing is called an infinite loop. Usually, it
manifests itself by nothing happening for a protracted period, with the

application never ending.

You would not intend to have an infinite loop in your code, but mistakes do
happen; | have made this mistake a lot more than once. If it happens to you,
don't panic. You can use the Stop Debugging button to end the program.
Knowing you have encountered an infinite loop, you then can correct the
code error that caused it.

A Factorial Example

So far, use of the for loop has been relatively trivial, counting numbers in
ascending or descending order. However, the for loop can be used for more
sophisticated programs.

The following program calculates the factorial of 5. A factorial is the product
of all the positive integers from 1 to that number. For example, the factorial

of 3is 3* 2 * 1, which is 6. Similarly, the factorial of 5 is 5*4*3*2* 1, which is
120:

private void Fornl Load(object sender, EventArgs e)

{
int total = 1;
for (int num= 2; num <= 5; numt+)
total *= num
Debug. WiteLi ne("The factorial of 5is " + total);

Breaking Out of the Loop

We previously used the break keyword in a switch statement. You also can
use the break keyword in a for statement. The break keyword is used within
the code of a for statement, commonly within an if statement nested inside

the for statement.

The break statement transfers control immediately to the statement following
the for statement. Stated another way, the break statement prematurely
ends the execution of the for statement before its condition becomes false.

For example, the following code will output only 5 through 7, not 5 through
10, because the loop ends prematurely when x equals a number evenly
divisible by 4 (here, 8):

private void Fornl Load(object sender, EventArgs e)

{

for (int num=5; num <= 10; numt+)

{

if (num%4 == 0)
br eak;
Debug. Wit eLi ne(num ;
}
Debug. WiteLine("This line will always print");

Although the break keyword is part of the C# language, | recommend you
use it sparingly. Normally, the for statement has one exit point—the condition
when it becomes false. However, when you use one or more break
statements, the for statement has multiple exit points. This makes your code
more difficult to understand and can result in logic errors.

In the following program, the logical && (And) operator is an alternative to
using the break keyword:

private void Fornl Load (object sender, EventArgs e)

{

for (int num=5; num<= 10 & num % 4 > 0; numt+)
Debug. Wi teLi ne(num ;
Debug. WiteLine("This line wll always print");

Before leaving the discussion of the break keyword, one additional use of it
(in conjunction with the parentheses following the for keyword being empty of
all three expressions) deserves mention simply because you may encounter
it. The following program is a variant of the one that outputs numbers
between 1 and 10, with the first and third expressions inside the parentheses
being empty because num is initialized before the for loop and incremented
inside the body of the loop. In this program, the second expression—the
condition—is missing as well. Instead, the break keyword inside the if/else
structure substitutes for that condition.

private void Fornl_Load(object sender, EventArgs e)

{

int num= 1;

for (;;)
{
if (num > 10)
br eak;
el se
{

Debug. Wi teLi ne(num+ " ");
NUMF+;

Without the break keyword, the for loop would be infinite due to the lack of a
second expression. Again, however, | do recommend against this use of the
break keyword, and point it out simply because other programmers believe
differently, and therefore you're likely to encounter it at some point in time.

The Continue Keyword

You also can use the continue keyword in a for statement. The continue
keyword, like the break keyword, is used within the code of a for statement,
commonly within an if/else structure. If the continue statement is reached,
the current iteration of the loop ends, and the next iteration of the loop
begins.

For example, in the following program, the user is charged $3 an item, but
not charged for a "baker's dozen." In other words, every 13th item is free (the
user is charged for only a dozen items, instead of 13). The program
assumes a project like the one we used in Chapter 7, in which the form
contains two controls, a TextBox control named txtinput (where the user will
enter the number of items) and a Button control named btnCalculate:

private void btnTest_Cick(object sender, EventArgs e)

{

string strltenmns;

int intltems, total = O;
stritens = txtlnput. Text;
intltenms = Int32. Parse(strltens);

for (int counter = 1; counter <= intltens; counter++)
{
if (counter % 13 == 0)
conti nue;
total += 3;

}
Debug. Wit eLi ne
("Total for " + intltenms + " itens is $" + total);

The price for 12 or 13 items is the same, $36. However, on the 14th item the
user again is charged an additional $3, for a total of $39. The reason why the
code charges the user no additional price for the 13th item is that the
continue statement is reached, preventing $3 from being added to the total.

Although the continue keyword is part of the C# language, | recommend, as |
do with the break keyword, that you use it sparingly. Normally, each iteration
of a for statement has one end point. However, when you use a continue
statement, each iteration has multiple end points. This makes your code
more difficult to understand, and can result in logic errors.

In the following program, the logical ! (Not) operator is an alternative to using
the continue keyword:

private void btnTest Cick(object sender, EventArgs e)

{

string strltens;

int intltenms, total = O;
stritens = txtlnput. Text;
intltems = Int32. Parse(strltens);

for (int counter = 1; counter <= intltens; counter++)

if (! (counter %13 == 0))
total += 3;

}
Debug. Wit eLi ne
("Total for " + intltens + " itens is $" + total);
}
Note You also could use the relational != (not equal) operator, changing
the if statement to if (counter % 13 != 0).
Nesting

You can nest a for statement just as you can nest if statements. For
example, the following program prints five rows of ten X characters:

private void Fornml_Load (object sender, EventArgs e)

{

for (int x = 1; x <= 5; x++)

{
for (int y =1; y <= 10; y++)
Debug. Wite("X");
Debug. WiteLine ("");
}

The for loop

for (int x =1; x <= 5; x++)

is the outer for loop, and the for loop
for (int ' y =1; y <= 10; y++)

is the inner for loop.

With nested for loops, for each iteration of the outer for loop, the inner for
loop goes through all its iterations. By analogy, in a clock, minutes are the
outer loop, seconds the inner loop. For each iteration of a minute, there are
60 iterations of seconds.

In the rows and columns example, for the first iteration of the outer for loop,
the inner for loop goes through all ten of its iterations, printing ten X
characters. Then, for the next iteration of the outer for loop, the inner for loop
again goes through all ten of its iterations, again printing ten X characters.
The same thing happens on the third, fourth, and fifth iterations of the outer
for loop, resulting in five rows of ten X characters. The outer for statement
represents the rows, and the inner for statement represents the columns.

The Foreach Statement

The foreach statement is similar to the for statement, but it executes the
statement block for each element in a collection, instead of a specified
number of times. A collection is a group of usually like objects. The syntax is
shown here:

foreach ([Data Type] [variable] in [Collection])
/| code

For example, a form has a Controls collection, which is a collection of all the
controls on a form. The following code displays in the Output window the
name of each control in the form, which is represented by the this keyword:

private void Fornl_Load(object sender, EventArgs e)

{
foreach (Control ctl in this.Controls)

Debug. Wi teLi ne(ctl. Nane);

The While Statement

The while loop is similar to a for loop in that both have the typical
characteristic of a loop: The code inside each continues to iterate until a
condition becomes false. The primary syntax difference between them is in
the parentheses following the for and while keywords.

The parentheses following the for keyword consists of three expressions:
initialization, condition, and update. By contrast, the parentheses following
the while keyword consists only of the condition; you have to take care of
initialization and update elsewhere in the code.

The following program first introduced earlier in this chapter outputs the
numbers between 1 and 10 using the for loop:

private void Fornl_Load(object sender, EventArgs e)

{
for (int num= 1; num <= 10; numt+)
Debug. Wi t eLi ne(num ;
Debug. WiteLine("This line will always print");

The same program using the while loop could be written like this:
private void Fornl_Load(object sender, EventArgs e)

{
int num= 1;
while (num <= 10)
{
Debug. Wi t eLi ne(num ;
numt+;

With the while loop, the integer variable num had to be declared and
initialized before the loop because this cannot be done inside the
parentheses following the while keyword. Further, num was updated inside
the code of the loop using the increment operator. This update also can be
done inside the parentheses following the while keyword, as shown by an
example later in this section.

The update of the variable is particularly important with the while loop.
Without that update, the loop would be infinite. For example, in the following
excerpt from this program, if num is not incremented, the loop would be
infinite. The value of num would not change from 1, so the condition num <=
10 always would remain true.

int num= 1;
while (num <= 10)
Debug. WiteLine (num;

Forgetting to update the value of the variable you are using in the condition
is a common mistake with a while statement. Forgetting the update is less
common with a for statement because that update is the usual purpose of
the third expression in the parentheses following the for keyword.

Otherwise, the syntax rules discussed earlier in this chapter concerning the
for statement apply equally to the while statement. For example, if more than
one conditional statement belongs to the while statement, the statements
must be contained within curly braces. That is why in the program that
outputs the numbers between 1 and 10 using the while loop, the two
statements in the body of the while loop are contained within curly braces:
while (num <= 10)
{

Debug. WitelLine (nunm;

numt+;

In the program we just analyzed, the update of the value of num was done
within the body of the loop. The update could also be done within the
condition itself:

private void Fornl_Load(object sender, EventArgs e)

{
int num = O;
while (num++ < 10)
Debug. Wi t eLi ne(nunm;

Updating the counter within the condition requires two changes from the
previous code. First, the value of num has to be initialized to 0 instead of to 1
because the increment inside the parentheses during the first iteration of the
loop would change that variable's value to 1. Second, the relational operator
in the condition is < rather than <= because the value of num is being
incremented before it is outputted.

Updating the counter within the condition raises the question, Given the
condition num++ < 10, which comes first, the comparison or the increment?
Because the increment is postfix, the answer is the comparison.

The counter also could be updated within the condition using a prefix
increment. However, then the condition should be ++num <= 10 to obtain the
desired output.

As with the for statement, the statement or statements following the while
keyword and parentheses will not execute if the parentheses are followed by
a semicolon, because that would be interpreted as an empty statement. Test
yourself on this; what would be the output if we placed a semicolon after the
while condition, as in the following code fragment?
int num= 0 ;
while (numt+ < 10);

Debug. Wi t eLi ne(num ;

The only number that would output is 11. The reason is that the loop
continues, and the empty statement executes, until the condition fails when
num is 10. The value of num still is incremented to 11 (the increment is
postfix so it occurs after the comparison), at which time the statement
following the loop executes and the value of num (11) is outputted.

Given the similarities between the for and while statements, a program that
uses one usually could have used the other as well. As a general rule, the for
statement often is preferred when the number of iterations is known in
advance, such as counting from 1 through 10. The while statement instead is
preferred if the number of iterations cannot be known in advance, such as if
the loop structure must continue until the user enters a valid input.

The Do While Construct

The do while loop is similar to the while loop. The primary difference is that
with a do while loop, the condition is tested at the bottom of the loop, unlike a
while loop where the condition is tested at the top. This means that a do
while loop will always execute at least once, whereas a while loop may never
execute at all if its condition is false at the outset.

The syntax of a do while loop is

do {
statenment (s);
} while (condition);

The do keyword starts the loop. The statement or statements belonging to
the loop are enclosed in curly braces. After the closing curly brace, the while
keyword appears, followed by the condition in parentheses, terminated by a

semicolon.

A do while loop often is preferred over a while loop in situations where the
loop structure must iterate at least once before the comparison may be
made.

4 Previous MNewt b

4 Previous MNest b

Arrays

In previous chapters, | showed you how to declare variables of different data
types, such as int and double. Those variables are scalar variables. They can
store only one value at a time.

An array permits you to use a single variable to store many values. The values
are stored at consecutive indexes. The index is a positive integer, starting with
zero and then incrementing by one for each additional element of the array.

Declaring Arrays

Array variables are declared the same as other variables, with one difference.
The data type is followed by empty square brackets, indicating that the variable
name that follows is an array rather than a scalar variable.

The following example will declare an array that represents sales for each day of
a week. | have chosen the name arrSalesPerDay for the array, and an integer
data type, though a floating-point data type also would be appropriate. The
following statement declares the array, starting with the data type (here, int),
followed by empty square brackets to indicate that an array rather than a scalar
variable is being declared, followed by the name of the variable that represents
the array, arrSalesPerDay:

int [] arrSal esPerDay;

The next step is to specify the size of the array—that is, the number of elements
it will contain. Because this array is supposed to represent sales for each day of
the week, it should have seven elements (we'll assume our store is open every
day).

The following statement creates seven elements for the array. The array name
(here, arrSalesPerDay) is followed by the assignment operator, which in turn is
followed by the new keyword, followed by the data type (here, int), followed by
the number of elements in the array within square brackets (here, seven):

arr Sal esPerDay = new int[7];

You also can declare the array and its size in one statement rather than in two:
int [] arrSalesPerDay = new int[7];

Note You also can assign values to the array at the same time as you declare
the array. This is discussed in the later section on initialization.

Assigning Values to the Array

Our array has seven elements, but we have not yet assigned values to any of
them. That does not mean that the array elements do not have a value. When
you first declare an array, each element of the array has a default value. The
specific default value depends on the data type of the array. If, as here, the data
type is integer, each element of the array has a default value of 0.

However, you rarely want to use the default value. Instead, you want to assign
your own values to the array elements. You can do so at two times—via
initialization when the array is declared and via assignment after the array is
declared.

Initialization

Initialization is when you assign values to a variable when you declare it. The
following example initializes the arrSalesPerDay array:

int [] arrSal esPerDay = newint [7] {8, 5, 7, 3, 2, 9, 11};

The values being assigned are enclosed in curly braces and separated by
commas.

You also may omit the size of the array during initialization:
int[]arrSal esPerDay = newint[] {8, 5 7, 3, 2, 9, 11};

This works because the number of values assigned (here, seven) tells the
compiler to allocate memory to hold seven integer elements.

Another syntax variation is that you can also omit the new operator if you are
using initialization:
int[]arrSal esPerDay = (8, 5, 7, 3, 2, 9, 11} ;

Assignment

You assign a value to an element of an array by using the index of the element.
The index of the first array element is always 0. Accordingly, the index of the last
array element is always one less than the total number of elements. Thus, if the

array has seven elements, the index of the last array element is six.

The following code fragment assigns 73 to the second element of the array:
arr Sal esPer Day[1] = 73;

Again, the index 1 indicates the second element of the array, not the first,
because the starting index of the array is O.

You can use a loop to efficiently assign values to each element of the entire
array. Try the following code, which uses two loops. The first loop assigns an
arbitrary value (double the amount of the index) to that array element. The
second loop outputs these elements:

private void Fornl_Load(object sender, EventArgs e)

{
int[]arrSal esPerDay = newint [7] ;

for (int x =0; x < 7; X++)
arr Sal esPerDay[x] = x * 2 ;
for (int x = 0; x < 7; X++4)
Debug. Wi t eLi ne(arr Sal esPer Day[x]);

The counter variable x starts at 0 because 0 is always the starting element of the
array. The comparison is true so long as x is less than 7. Although 7 is the
number of elements in the array, the highest index of the array is 6, not 7,
because the starting index is 0, not 1.

Setting the comparison to the counter being <= the number of elements in the
array rather than the counter being < the number of elements is a common
rookie mistake. The consequences of attempting to access arrSalesPerDay[7],
which is a nonexistent element of the array, are unpredictable, though never
good, because you are attempting to access an area of memory not reserved for
the array. One possibility is a run-time error if the area of memory you are
attempting to access is reserved, such as for the operating system.

You also can use arrays with loops to obtain a running total. Try the following
code, which outputs the total of the seven daily sales amounts entered by the
user:

private void Fornl_ Load(object sender, EventArgs e)

{
int total = O;
int[]arrSal esPerDay = new int [7] ;
for (int x =0; x < 7; X++)

{

arr Sal esPerDay[x] = x * 2;
total += arr Sal esPerDay| x] ;

}
Debug. WiteLine("Total Sales: " + total);

Note In the examples in this section, the lower and upper bounds of the array
(0 and 6, respectively) were known. You also can obtain these values
through code with the GetLowerBound and GetUpperBound methods of
the Array class (which represents arrays), and you can get the number
of elements in the array with the Length property of that class:

As you can see, loops are very useful with arrays.

The arrays in this chapter have one dimension. You can have arrays with two or
more dimensions, two often representing rows and columns in a table or
spreadsheet, three representing a cubic space, and so forth. You also can use
loops with a multidimensional array. For example, a two-dimensional array would
be accessed by a loop nested within another loop!

4 Previous MNewxt b

4 Frewious MNext b
Conclusion

Loops are used to repeat the execution of code statements. The for
statement is used to repeat code execution a fixed number of times.
The foreach statement is similar to the for statement, but it executes
the statement block for each element in a collection (a group of usually
like objects), instead of a specified number of times.

The while statement is more flexible than the for statement because
the number of times a while statement executes does not have to be
determined when you write the code, but may depend on user input.
The do while statement has the additional flexibility that it tests the
condition at the bottom rather than at the top of the loop, important
when the loop must execute at least once to obtain a value to
compare.

An array permits you to use a single variable to store many values.

The values are stored at consecutive indexes, which start with zero
and end at an index that is one less than the number of elements in
the array.

In the next chapter, you will learn how to use subroutines and functions
to organize your code more efficiently.
4 Prewvious Hext F

4 Previous MNest b

Quiz

1. Whatis a loop?

2. What is a difference between a while statement and a for statement?

3. What is a difference between the do ... while statement and the for and while
statements?

4. What is a difference between the for and foreach statements?

5. What are examples of nesting?

6. What is an array?

7. What is the difference between declaring an array variable and declaring a scalar
variable?

8. What is the lowest index of an array?

9. What is the relationship between the number of elements in an array and the highest
index in that array?

10. If you declare an array without assigning a value to its elements, do its elements
have a default value?

Answers

1. Aloop is a structure that repeats the execution of code until a condition becomes false.

2. A difference between a while statement and a for statement is that a for statement generally
is intended to run a fixed number of times, whereas a while statement may run an indefinite
number of times.

3. A difference between the do ... while statement and the for and while statements is that a do
... While statement tests a condition at the bottom of the statement, whereas the for and
while statements test a condition at the top of the statement.

4. The foreach statement executes the statement block for each element in a collection, instead
of a specified number of times, as is the case with the for statement.

5. Examples of nesting are a loop within a loop, and an if control structure within a loop.

6. An array permits you to use a single variable to store multiple values.

7. The difference between declaring an array variable and declaring a scalar variable is that
with an array variable, unlike with a scalar variable, the array name is followed by a pair of
square brackets, and within the square brackets you indicate the highest index of the array.

8. The lowest index of an array is zero.

9. The number of elements in an array is one greater than the highest index in that array
because the index of the first element is zero.

10. Yes, if you declare an array without assigning a value to its elements, its elements have a
default value, the value depending on the data type of the array.

4 Previous MNest b

4 Previous MNest b

Chapter 9: Organizing Your
Code with Methods

Overview

A method is a group of statements that together perform a task. So
far, the methods we have written have been event procedures, often
the Load event procedure of the form.

As you write more complex and sophisticated programs, you may
find that the code in your event procedures becomes extremely long.

Neither the compiler nor the Runtime cares if the code in an event
procedure is short or long. However, you should care. An event
procedure that continues for pages is difficult to understand or fix if
errors arise.

By analogy, this book is a few hundred pages long. It would be
harder to understand if each chapter was not divided into sections.
This book would be still harder to understand if it consisted of only
one, very long chapter. By dividing this book's content into chapters,
and each chapter into sections, this book is easier to understand.

Similarly, you can divide up your code into separate methods. How
you divide up your code among different methods is up to you, but
logically the division usually is so each method performs a specific
task.

For example, in a program that performs arithmetic calculations, one
method obtains user input, another method performs the calculation,
and a third method performs the output of the result. This is
analogous to how a book is divided up into chapters and sections.
Each chapter explores a different subject. One chapter focuses on
variables, another (this one) on methods.

There are advantages to dividing your code into separate methods
in addition to making your code easier to understand. For example, if
a method performs a specific task, such as sending output to a
printer, which is performed several times in a program, you only
need to write once in a method the code necessary to send output to
the printer, and then you can call that method each time you need to

perform that task. Otherwise, the code necessary to send output to
the printer would have to be repeated each time that task was to be
performed. Further, if you later have to fix a bug in how you perform
that task, or simply find a better way to perform the task, you only
have to change the code in one place rather than many.

Hopefully | have persuaded you that organizing your code into
separate methods can be useful. | will now show you how to do it.
4 Frewious MNaxt b

4 Previous MNest b

Defining and Calling a Method

Implementing any method involves two steps:
1. Defining the method.

2. Calling the method.
The explanation of these steps uses terminology we have not

discussed before, so that terminology is reviewed first.

Terminology of a Method

Let's look at a simple program with one method, the event procedure
or handler for the Load event of the form:

private void Fornl_Load(object sender, EventArgs e)

{
}

Debug. WiteLine("Hello world");

Note Up until now | have used the term "event procedure." A
method that handles an event, such as this one, which
handles the Load event of the form, also may be referred to
as an "event handler." Now that we are discussing methods,
| prefer and will be using in this chapter the term "event
handler” because | believe it better distinguishes this type of
method from others. However, the term "event procedure "
also is acceptable; the issue really is one of personal
preference.

The first line is the header. The header is the "signature” of the
method, describing its attributes or characteristics , and it consists of
the following four parts:

m Access specifier Here, the access specifier is private. Access
specifiers were discussed in Chapter 4 with respect to variables.
They serve the same purpose with methods.

= Return type Here, the return type is void, which indicates the
lack of a return value. Return values are discussed later in this

chapter.

= Name Here, the name is Form1l_Load. The name of an event
handler follows the Object_Event syntax. In this case, the object
is Form1 and the event is Load.

= Parameter list Here, the parameter list is (object sender,
EventArgs e). Parameters are information provided to a method
so that it may perform its task. Chapter 3 involved a project that
used parameters of an event handler to report mouse
coordinates. Parameters also are discussed in a later section of
this chapter.

When you're declaring and implementing a method, a header always
is followed by an open curly brace, which begins the body of the
method, which correspondingly ends with a closing curly brace.

The method body consists of one or more statements. In this
example, the method body consists of one statement, which writes
"Hello World" to the Output window. The method body may contain
additional curly braces, such as to enclose multiple statements that
belong to an if statement or a loop.

The method body must contain a return statement unless the return
type is void, as it is here, in which case the return statement is
optional. Further examples in this chapter will show you how to
implement a return statement.

The method header and body together are referred to as the method
definition. A method cannot execute until it is first defined. Once
defined, a method executes when it is called.

A method may be called by the occurrence of an event, code, or the
NET Runtime. The Form1_Load event handler is called by the
occurrence of an event, namely the loading of the startup form.

The header of an event handler is predefined by the .NET
Framework. You cannot change it. In order to invoke the event
procedure, the .NET Runtime needs to find the event handler
signature it expects for that event.

By contrast, you have relative freedom in writing the header of
methods you create. This includes naming the methods, which we'll
discuss next.

Naming a Method

The rules for naming a method are similar to those for naming a
variable. There are only a few limitations, such as no embedded
spaces within the method name. For example, Print Message is not a
valid method name.

Although Visual C# imposes few limitations on how you name a
method, as with naming variables, you should name your methods so
that what they do is reasonably clear to you and other programmers
who may have to review your code. Method names such as Method |,
Method2, Method3, and so on, are not very helpful. You, and even
more so your fellow programmers, will have trouble remembering
which of them does what. By contrast, descriptive method names
such as PrintName, PrintAddress, PrintCity, and so on, are quite
helpful in describing what each method does.

| agree with Microsoft's recommendation that you use the NounVerb
or Verb-Noun style to create a name that clearly identifies what the
method does. For example, the method name PrintName is a
concatenation of the verb "Print," which indicates the action the
method takes, and the noun "Name," which indicates the information
printed. You might have more than one noun, such as PrintCustomer-
Name. In any event, the first letter of each noun and verb is
capitalized when naming public methods. For private methods, the
first word by convention often is lowercase, such as the printMessage
method in the following examples.

The next sections will explain how to define your own method and
then call it.

Defining a Method

Let's take our "Hello world" example and divide the code into two
methods: the Load event handler and a printMessage method that
outputs "Hello world." The comments (beginning with //) indicate the
beginning and end of the definition of the printMessage method and
where that method is called.

private void Fornl_Load(object sender, EventArgs e)

{
}

/'l begins definition of printMssage nethod

print Message(); // calls printMessage nethod

private void printMssage ()

{
}

/'l ends definition of printMssage net hod

Debug. WiteLine("Hello world");

Note As mentioned in previous chapters, because the Debug
class methods are being used, you should import, with a
using statement, the System.Diagnostics namespace.

Let's first examine the definition of the printMessage method. The void
keyword preceding the method printMessage means that this method

does not return a value. The empty parentheses following the method
name means this method has no arguments.

The body of the printMessage method has one statement, which
outputs "Hello world." The method body does not need to contain an
explicit return statement because, since the return type is void, the
return statement is implied. However, you may include an explicit
return statement. If you did, then the printMessage method would
read as follows:

voi d print Message ()

{
Debug. WiteLine("Hello world");
return;

Calling a Method

Firefighters put out fires. However, they generally do not drive around
looking for fires. Instead, they go out to a fire when called upon to do
SO.

In the same way, a method does not just execute by itself. The
statements within a method do not execute until and unless the
method is called, usually by code, though also it could be by the
occurrence of an event or by the .NET Runtime. Indeed, unless the
printMessage method is called, it is the programming analogy of the
tree that falls in the forest without anyone seeing or hearing it; it is
there in the program, but it doesn't do anything.

The printMessage method may be called in the Load event handler of

the form with the following line:
print Message();

In this example, printMessage is the called method, because it is the
method being called from the Load event handler of the form. The
empty parentheses indicate that no arguments are being passed to
this method. | will show you later in this chapter how to pass
arguments, as well as how to use return values.

The order of execution is as follows:
1. Execution starts with the Load event handler of the form.

2. The first statement in the Load event handler, printMessage(), is
executed. This calls the printMessage method.

3. Execution next shifts to the printMessage method and then
begins with the first statement in that method, which outputs
"Hello world."

4. After the printMessage method completes executing, execution
returns to the Load event handler, which then ends execution
because there are no further statements in that event handler.

Continuing the firefighter analogy, when firefighters arrive at the scene
of the fire, they take control and maintain that control until they put out
the fire. Similarly, once the method is called, whether by user action or
code, it takes control of the application, and no other code executes
without being called by the method, until the method is finished. Thus,
control does not return to the Load event handler while the
printMessage method is executing.

Note An exception is that two methods may execute
independently in a multithreaded application. Such an
application is an advanced topic far beyond the introductory
scope of this book.

Completing the analogy, when the firefighters successfully put out the
fire, they pack up their equipment and go back to the fire station,
relinquishing control of the fire scene. Similarly, when the method
finishes executing, it relinquishes control of the application, and
whatever code (or user action) follows the call of the method
determines the further flow of the application. Thus, control returns to
the Load event handler when the printMessage method finishes
executing.

4 Previous MNest b

4 Previous MNest b

Parameters—Sending Information to a Method

As discussed earlier in this chapter, the parentheses following the method
name in the header contain the method's parameters. Parameters are
information that is provided to a method so that it may perform its task.

Returning to our firefighter analogy, when firefighters are called to a fire, they
need to know the location of the fire, the type of fire (house fire, chemical fire,
and so on) so they know what equipment to bring, and other pertinent
information. The particular location and type of fire may well vary from call to
call, but in each case this information is necessary in order for the firefighters to
do their job.

Similarly, a method often needs information in order to perform its task. For
example, a method that outputs the square of a number to the Output window
needs to know the number to be squared. The value of that number may vary
from call to call, but in each case the method will need to know the particular
number to be squared. This information is called an argument.

Some methods don't need further information to do their job. One example has
been the printMessage method, which simply outputs "Hello world." It does not
need any further information to do its job.

However, when we want to modify the printMessage method so that it does not
always output "Hello world" but instead outputs whatever message we ask it to,
we need to tell it the message we want it to output. We can do so by passing
the method an argument that specifies the message.

This chapter will discuss two ways of passing arguments—by value and by
reference.

Passing Arguments by Value

The following is a modification of the program that uses the printMessage
method to output a message. This time, the content of the message to be
output (here, the Text property of the form) is passed to the printMessage
method as an argument:

private void Fornl_Load(object sender, EventArgs e)

{
}

private void printMssage (string nsg)

{

print Message(this. Text);

Debug. WiteLi ne("The formis Text property is " + nsg);

Using the Argument

The following code calls the printMessage method:
print Message(this. Text);

The Text property of the form (represented by the "this" keyword) is passed as
an argument to the printMessage method. The value of this Text property then
is passed to the string variable msg, which is the parameter name in the header
of the printMessage method:

voi d printMessage (string nsQ)

The string variable msg then is used in the body of the printMessage method to
output the message:

Debug. WiteLine("The formis Text property is " + nsQ);

The header must include a parameter name as well as a data type so the value
being passed by the method call (this.Text in the Load event handler) may be
stored in a variable that can be used in the printMessage method. Otherwise,
the value passed would have no place to be stored for use in the printMessage
method.

Note As with variables and methods, you should name the parameter
descriptively.

Using Multiple Arguments

The program we just discussed uses one argument. However, a method may
have two or even more method arguments.

The following modification of the printMessage method uses two
arguments—the first for the form's Text property, the second for the number of
controls on the form:

private void Fornl_Load(object sender, EventArgs e)

{
}

private void printMssage (string txt, int count)

pri nt Message(this. Text, this.Controls. Count);

Debug. WiteLi ne _

("The forms Text property is " + txt);
Debug. Wi t eLi ne

("The formcontains " + count + " controls");

Here is some sample output (the form | used has two controls):

The form s Text property is Formnl
The formcontains 2 controls

As this example illustrates, the only difference between declaring a procedure
with a single parameter and declaring a procedure with more than one
parameter is that a comma separates the parameters:

(string txt, int count)

Similarly, when you call the procedure, a comma separates the arguments:
(this. Text, this.Controls.Count);

The Parameters and Arguments Must Match

The order of arguments in the call to the method must correspond to the order
of the arguments in the header. Here are the call and the header for this
example:

print Message(this. Text, this.Controls. Count);
private void printMessage (string txt, int count)

The first variable in the method call is this.Text. Therefore, the value of the
form's Text property is copied into the first parameter in the printMessage
header, txt. Similarly, because the second argument in the call is
this.Controls.Count, the value of that Count property is copied into the second
parameter in the printMessage header, count.

If the arguments in the method call were reversed, as in
pri nt Message(this. Controls. Count, this. Text);

the result would be the following compiler errors:
cannot convert argunment 1 from'string to 'int'

and
cannot convert argunment 2 from'int' to 'string'

This is because the compiler was expecting from the method header that the
first argument would be a string, not an int, and that the second argument
would be an int, not a string.

Similarly, when you call a method, you must pass the same number of
arguments as the number of parameters specified in the method's parameter
list. For example, if you tried to call the printMessage method with only one
argument, as in

print Message(this. Text);

the compiler would complain as follows:
No overload for nmethod 'printMessage' takes 1 argunent

This means that the compiler could not find a header for printMessage that
takes only one argument.

Too many arguments are no better than too few arguments. If you tried to call
the printMessage method with three arguments, as in

print Message(this. Text, this.Controls.Count, "oops");

the compiler would similarly complain:
No overload for method 'print Message' takes 3 argunents

Passing Arguments by Reference

Passing arguments by value is fine when you don't want to change their value
in the called method. The printMessage method did not change the value of its
arguments; it simply outputs them.

However, sometimes the intent of a method is to change the value of the
argument passed to it. Consider the following example, in which the doublelt
method is supposed to double the value of the argument passed to it:

private void Fornl_Load(object sender, EventArgs e)

int num =5;
Debug. Wit eLi ne

("Numin Forml_Load before call = + num ;
doubl el t (num ;
Debug. Wit eLi ne
("Numin Forml Load after call =" + num;
}
voi d doublelt (int x)
Debug. Wit eLi ne
("x in doublelt before doubling = + X);
X *= 2:
Debug. WiteLine("x in doublelt after doubling =" + X);

Here is some sample output:

numin Forml_Load before cal

x in doublelt before doubling
x in doublelt after doubling =1
numin Fornl Load after call =5

5
5
0

As the sample input and output reflects, the value of num in the Load event
handler was not changed by the doubling of its counterpart argument in the
doublelt method.

The reason the value of num was not changed in the Load event handler is that
a copy of it was passed to doublelt. The change was made to the copy, but the
original, the variable num in the Load event handler, was not affected by the
doubling of the copy. The logic is the same as if | gave you a copy of this page,
which you then proceeded to rip up. The original | kept would be unaffected.

In order for the called method to change the value in the Load event handler of
a variable passed to it, the variable must be passed by reference. The variable
in the called method is called a reference variable. The reference variable is not
a copy of the variable in the Load event handler. Instead, the reference variable
is an alias for the variable in the Load event handler. You may recall from
television that an alias is another name a person may use, such as James
Bond's alias of 007. However, whether you refer to him as James Bond or 007,
you are still referring to the same person.

In order to pass a variable by reference, the data type in the argument, both in
the method header and in the call, is preceded either by ref or out.

The Ref Keyword

The following program passes the variable to be doubled by reference:
private void Fornl_Load(object sender, EventArgs e)

{
i nt num =5;
Debug. Wi t eLi ne

("Numin Forml_Load before call =" + nunm;

doublelt(ref num;

Debug. Wit eLi ne

("Numin Forml_Load after call =" + num;
voi d doublelt (ref int x)
{

Debug. Wit eLi ne

("x in doublelt before doubling =" + x);

X *= 2;

Debug. WiteLine("x in doublelt after doubling =" + x);
}:

Here is some sample output:

numin Fornml Load before call =5
x in doublelt before doubling =5
X in doublelt after doubling = 10
numin Fornml Load before call 1

0

There are two changes from the program that passed a parameter by value.
First, the header was changed to insert the ref keyword:

voi d doublelt (ref int Xx)

Second, the call also was changed to insert the ref keyword:
doublelt(ref num;

You can pass multiple values by reference as well as by value. Indeed, you can
pass some values by reference and others by value. You pass by reference
those values you need to change, and you pass by value those values you are
not changing.

Note There is another difference between passing by value and passing by
reference. You can pass by value expressions and constants as well
as variables. However, you can only pass variables by reference.

The Out Keyword

The preceding program would not work with the out keyword instead of the ref
keyword. If the method header and call were changed respectively to

voi d doublelt (out int x)
doubl el t (out num;

the result would be a compiler error. In the method
voi d doublelt (out int x)

{
Debug. Wit eLi ne
("x in doublelt before doubling =" + x);
X * =2
Debug. WiteLine _
("x in doublelt after doubling =" + x);
}

the compiler would complain about the use of the unassigned out parameter x.

This means that x was not assigned an explicit value before its value was to be
outputted in the first Debug.WriteLine statement. This is a requirement for using
the out keyword.

Although out would not be a good choice in the doublelt program, it does have
an advantage over the ref keyword in that a variable passed with the ref
keyword must already have an assigned value, whereas one passed with the
out keyword need not.

For example, in Chapter 7, the following code, which assumes a Button control
named btnTest, uses the TryParse method of the Int32 class to check if a value
entered by the user in a TextBox named txtlnput may evaluate as an integer:

private void btnTest_Cick(object sender, EventArgs e)
{

String strScore;

int intScore;

StrScore = txtlnput. Text;

bool bl nl nput;

bl nl nput = I nt32. TryParse(strScore, out intScore);

if (blnlnput == fal se)

Debug. Wit eLi ne

("I nput does not evaluate to an integer");
else if (intScore >= 0 & & intScore <= 100)

Debug. WiteLi ne("The test score is valid");
else if (intScore < 0)

Debug. Wit eLi ne

("Test score cannot be |less than zero");
el se

Debug. Wit eLi ne

("Test score cannot be greater than 100");
Debug. WiteLine("This line will always print");

When the TryParse method is called, its second argument, intScore, has no
existing value. Rather, the TryParse method assigns intScore an integer value,
corresponding to the string representation of that integer in strScore, if strScore
is the string representation of an integer. Thus, the actual header of the
TryParse method uses the out keyword rather the ref keyword:

public static bool TryParse(string s, out int result)

Passing an Array as an Argument

You can also pass an array as an argument. To illustrate, let's start with this
program from Chapter 8, which uses two loops in the Load event handler. The
first loop assigns an arbitrary value (double the amount of the index) to that
array element. The second loop outputs these elements.

private void Fornl_Load(object sender, EventArgs e)

{
int []JarrSal esPerDay = new int[7];

for (int x =0; x < 7; X++)
arrSal esPerDay [x] = x * 2;
for (int x = 0; x < 7; X++)
Debug. Wit eLi ne(arr Sal esPer Day[x]) ;

Let's now revise this program by creating two additional methods, one,
assignValues, to assign values to the array elements, the other, outputValues,
to output those values:

private void Fornl_Load(object sender, EventArgs e)

{
int[]arrSal esPerDay = new int [7]

assi gnVal ues(arr Sal esPer Day) ;
out put Val ues(ar r Sal esPer Day) ;

}
private void assignValues(int[] arr)
{
for (int x = 0; x < 7; X++4)
arr [X] =x * 2 ;
}
private void outputValues(int [] arr)
{
for (int i =0; i <7; i++)
Debug. WiteLine(arr[i]);
}

The output of this program is the same as the version where all the code was in
the Load event handler. Several aspects of this revised program are significant.

First, the parameter of the two new methods have empty square brackets after
the data type, int[], rather than just int. This signifies that the parameter is an
integer array rather than a single integer.

Second, when the two new methods are called, the argument is the name of
the array in the Load event handler, arr. Thus, the entire array, or in reality its
address in memory, is passed to the methods.

Third, the assignValues method did change the value of the corresponding
argument in the Load event handler. However, the parameter seemingly was
not passed by reference; no ref or out keyword is in the parameter list. The
reason is that an array is a reference type; when an array name is an
argument, the value of that argument is the array's address in memory. This is
in contrast to when, for example, a single integer variable is an argument, when
the value of that argument, absent the ref or out keyword, is the value of that
variable, not its address.

Thus, with a reference type like an array, you can pass it by value and change,
via the called function, the values of its elements. However, you cannot, via the
called function, replace the array with a different array if you pass the array by

value. To do that, you must pass the array by reference.

4 Previous

Next k

4 Previous MNest b

Returning a Value from a Method

Arguments are used to pass values to a called method. A return value may
be used to pass a value from a called method back to the method that
called it.

Syntax

In the previous section, the method doublelt changed the value of its
argument both in that method and in the Load event handler that called it.
There, the header of the doublelt method was

voi d doublelt (ref int x)

Let's modify the doublelt method by passing its one parameter by value
rather than by reference (because we are not going to change its value in
this example) but also by adding a return value to the method. The return
value is added by indicating its data type (here, an int) in front of the
method name in the header:

int doublelt (int x)

Thus, the return value is changed from void, indicating no return value, to
int, indicating that a value is returned, and its data type is an integer.

We will now implement this revised doublelt method in the following

program:
private void Fornl_Load(object sender, EventArgs e)
{

int num =5;

i nt newNum = doubl el t (num;
Debug. Wit eLi ne

("newNumin FormlL Load after call =" + newNunj;
int doublelt (int x)
{

return x *= 2;
}

The output should be the following:

newNumin FormlL_Load after call = 10

How the Value Is Returned

Although the output of the preceding code shows that the variable newNum
was successfully assigned 10, double the value of num, how exactly did
that happen?

Let's start with the call of the doublelt method by the following line:
i nt newNum = doubl elt (nun);

The declaration of the doublelt method is

int doublelt (int x)
{

}

return x *= 2;

Because the value of the argument passed (num) is 5, the value of the
parameter in doublelt, x, is 5. Thus, the statement

return x *= 2;

in effect is
return 10;

With the return statement, the doublelt method finishes executing, and the
value 10 is returned to the right side of the assignment statement. After the
doublelt method finishes executing, the statement

i nt newNum = doubl el t (num;
in effect is
i nt newNum = 10;

Thus, the following code outputs that the value of newNum is 10:

Debug. Wit eLi ne
("newNumin FormlL_Load after call =" + newNum;)

Saving the Return Value

It is common that a method returning a value is called on the right side of
an assignment operator with a variable on the left side of the assignment
operator to capture the return value. However, this is not required. In the
program, the variable newNum was not necessary. Instead of the two
statememts

i nt newNum = doubl el t (num;
Debug. Wit eLi ne
("newNumin FormlL Load after call =" + newNunj;

the return value could have been displayed in one statement:

Debug. Wit eLi ne
("newNumin FormlL _Load after call =" + doublelt(num);

The only difference is that once this statement completes, the return value
of the method cannot be used in later statements because it was not stored
in a variable. In this program, that is not a problem because the return value
is not used again. However, if you are going to use a return value more
than once, it's generally a good idea to store that return value in a variable,
as in the example in the preceding section.

Returning a Boolean Value

Methods that return a Boolean value often are called in an if control
structure. For example, the following method, isEmptyString, returns true if
the string that is its parameter is an empty string, and otherwise returns
false:

private bool isEnptystring (string str)
{

}

return (str == "");

The method may then be called following an if clause, and passed a string
value (here, the Text property of the form). If the Text property is empty, the
method will return true, and the output will be "Text property has no value."
If the Text property has some value, the method will return false, and the
output will be "Text property has value."

private void Fornl_Load(object sender, EventArgs e)

{

if (isEnptyString(this. Text))
Debug. Wi teLi ne("Text property has no val ue");
el se

Debug. WiteLi ne("Text property has val ue");

The statement
if (isEnptyString(this. Text))

also could have been written as follows:
if (isEnptyString(this.Text)== true)

These two statements have the same effect. Because isEmptyString
returns a Boolean value, it is unnecessary to compare that Boolean value to
another Boolean value to obtain a Boolean result. Thus, the == true is
unnecessary, though harmless.

4 Previous

Hext b

4 Previous

Conclusion

A method is a group of statements that together perform a task. You
implement a method by first defining it and then calling it. A method
definition consists of a header and a body. The header consists of
an access specifier, a return type, a method name, and an argument
list. The header always is followed by an opening curly brace, which
begins the method's body. The body ends with a closing curly brace
and contains one or more statements. Unless the return value is
void, the body must end with a return statement.

You can pass information to a method by using arguments. You may
pass arguments by value or by reference. You pass an argument by
value when you don't intend any change to that variable in the called
method to affect that variable's value in the calling method.
Conversely, you pass a variable argument by reference when you
intend a change to that variable in the called method to affect that
variable's value in the calling method.

The order and data type of the arguments in the method's header
must correspond to the order and data type of the arguments in the
call to that method.

Although arguments are used to pass values to a called method, a
return value can be used to pass a value from a called method back
to the method that called it. However, although multiple values can
be passed to a method as arguments, multiple values cannot be
returned from methods.

There are several reasons why you might want to create your own
methods. As you write more complex and sophisticated programs,
your code will be easier to write, understand, and fix if you divide the
code up among different methods, each method performing a
specific task, than if one method contains pages of code.
Additionally, if you are performing essentially the same task from
several places in the program, you can avoid duplication of code by
putting the code that performs that task in one place, as opposed to
repeating that code in each place in the program that may call for
the performance of that task. Further, if you later have to fix a bug in
how you perform that task, or simply find a better way to perform the
task, you only have to change the code in one place rather than
many.

HNext b

In the next chapter we will start focusing on the "Visual" in Visual C#,
the user interface.
4 Previous Next b

4 Previous MNest b

Quiz

1.

2.

9.

What is a method?

What is the significance of the void return type?

What is the usual return type of an event procedure?

What does the private access specifier do when applied to a method?

May there be a return statement in a function whose return type is void?
What does calling a method do?

What is the difference between passing by value and passing by reference?

What parameter attribute performs a similar but not exactly the same purpose as the
out keyword?

What is the significance of an array being a reference type?

10. What are some reasons for writing your own methods?

Answers

1. A method is a block of one or more code statements that execute when called upon to do so.
2. The void return type indicates that a method does not return a value.

3. The usual return type of an event procedure is void.

4. The private access specifier limits access to the class in which the procedure was declared.
5. There optionally may be a return statement in a function whose return type is void.

6. Calling a method causes it to execute.

7. When a parameter is passed by value, any change to the value of the parameter in the

called method does not affect the value of the corresponding argument in the calling method.
By contrast, when a parameter is passed by reference, any change to the value of the
parameter in the called procedure does affect the value of the corresponding argument in the
calling procedure.

8. The ref parameter attribute performs a similar but not exactly the same purpose as the out
keyword.

9. The significance of an array being a reference type is when an array name is an argument,
the value of that argument is the array's address in memory.

10. Writing your own methods enables you to organize your code in smaller, easier-to-read code
blocks. Additionally, if you are performing essentially the same task from several places in
the program, you can avoid duplication of code by putting the code that performs that task in
one method, as opposed to repeating that code in each place in the program that may call
for the performance of that task. Further, if you later have to fix a bug in how you perform
that task, or simply find a better way to perform the task, you only have to change the code in
one place rather than many.

4 Previous Newxt b

4 Previous MNest b

Chapter 10: Helper Forms

Overview

Forms are the most common user interface element in Visual
C# applications. Indeed, it is difficult to conceptualize a
Windows application without at least one form. Forms are the
windows, literally, through which application users view
information and interact with the application.

Visual C#'s automated creation of a new Windows application
project includes a form that serves as the main application
window. However, although the main application window may
be the star of the show, that form needs a supporting cast of
helper forms, because Windows applications generally are far
too complex for the main application window to perform all the
tasks required by the application.

The message box is a helper form built into the .NET
Framework. The message box includes text that is either
informative or a question as well as buttons, such as OK, Yes,
No, Cancel, and so on, for the application user's response and
to close the message box.

Message boxes are very common in Windows applications. One
typical example, discussed later in this chapter, is if you make
changes to a document in Microsoft Word and then try to close
the document without saving the changes, you may be
presented with a message box asking if you want to save the
file before closing, with buttons for Yes, No, and Cancel. This
chapter will show you how to create and use a message box in
your application.

Although the message box is very useful, sometimes you want
the helper form to have functionality that is beyond the
capability of a message box to provide. For example, the text
displayed by a message box is limited to a prompt. However,
most Windows applications have an About dialog box,
summoned by the main form's Help | About menu command,
that displays more detailed information about the application
than can be provided in a message box.

The About dialog box is an example of a dialog form. However,
although the About dialog box simply is informational, dialog
forms are not limited to the role of passive purveyors of
information, and instead typically are interactive. For example,
the Print dialog box displayed with the File | Print menu
command enables the user to choose from among printers,
decide which pages to print, the number of copies to make, and
so forth, and then to start the print job by clicking the OK button.
This chapter will show you how to create and display a dialog
form.

The ability of the user to interact with the Print dialog box is
possible because it may contain controls that a message box
cannot contain, such as a drop-down list from which the user
may select a printer, radio buttons and a text box from which the
user may designate which pages to print, a check box through
which the user can designate whether the pages should be
collated, and so forth.

The ability of the user to interact with a dialog form presents
programming challenges involving communication between the
main and helper form. For example, the main form needs to
know which button was clicked on the helper form, and it should
execute different code depending on which button was clicked.
Additionally, because the dialog form contains controls, the
main form needs to know and take actions based on what the
application user typed, checked, or selected in the controls in
the helper form. This chapter will show you how to solve these
programming challenges.
4 Previous MNest b

4 Previous MNest b

Message Boxes

Because the actions of the application user cause a Windows application to receive
messages from the operating system, it seems only fair that a Windows application
can send a message to the application user. Windows applications often use
message boxes to inform and obtain a response from the application user.

Message boxes are valuable tools to use in applications. For example, one late
evening, working bleary-eyed to finish a chapter under unceasing pressure from my
heartless editor, | forgetfully close the document without first saving about an hour's
worth of changes. Mercifully, up pops the message box shown in Figure 10-1, asking
if | want to save my unsaved changes before the document is closed.

\
! x Do you want o save the changes 1 Documentl?

Yes B Mo | | Cancel

-

Figure 10-1: Message box in Microsoft Word.

This message box, in addition to conveying valuable information, also is able to
obtain and process my response. If | choose the Yes button, the unsaved changes
are saved before the document is closed. If | choose the No button (bad choice), the
unsaved changes are discarded and the document is closed. If | choose the Cancel
button, the state just before | attempted to close the document is restored; the
document is kept open, but the unsaved changes remain unsaved.

Creating the Project

In this project, you will create the message box shown in Figure 10-2, which asks the
user if they want to quit the application. If the user chooses Yes, the application
closes. If the user chooses No, the application will not close.

bxit Confirmation

! E Do you really want to quit?
L

| fes e Mo I

Figure 10-2: Project in action.

Create the project through the following steps:
1. Create a new Windows application.

2. Using the Toolbox, add a button to the form.

3. Use the Properties window to change the Name property of the button to
btnClose and the Text property of the button to Close.

4. Add this code to the Click event of btnClose:
private void btnC ose Cick(object sender, EventArgs e)

{

D al ogResult drQuit;

drQuit = MessageBox. Show("Do you really want to quit?",
"Exit Confirmation",
MessageBoxBut t ons. YesNo,
MessageBoxI con. Vr ni ng,
MessageBoxDef aul t But t on. But t on2) ;

if (drQuit == Di al ogResul t. Yes)
this.d ose();

Run the project and click the Close button to display the message box shown
previously in Figure 10-2. This type of message box is common in Windows
applications, providing the application user a last chance to decide whether they
really want to quit the application. If the application user chooses the Yes button, the
application will end. If instead the application user chooses the No button, just the
message box will close and the application user will be returned to the main form.
Thus, the clicking of the No button will restore the application to its state just before
the application user chose the Close button.

Message Boxes Are Modal

The code involves three logical steps:

1. Display the message box using the Show method.

2. Obtain the application user's choice (Yes or No) by the return value of the Show
method.

3. If the choice is Yes, close the application.

However, before we analyze the code, let's examine a feature that message boxes
share with the dialog forms discussed later in this chapter—both are modal.

The term "modal” refers to the fact that the user cannot return to the application until
the message box is closed by the user clicking one of the buttons of the message
box.

Message boxes are always modal. However, not all forms are modal. This issue will
be discussed further in connection with dialog forms later in this chapter in the section
"Modal vs. Modeless."

Show Method

You do not need to create or design the message box. The message box is a form
built into the .NET Framework. All you need to do to create and display a message
box, together with its buttons, icon, text, and title, is to call the aptly named Show
method of the MessageBox class, which is part of the class library of the .NET
Framework, and provide the appropriate arguments. The .NET Framework also takes
care of closing the message box. When you click a button, the message box closes,
automatically. You have to write the code that executes when the user clicks a given
button.

Parameters of Show Method

The Show method is overloaded. This means that you can call it several different
ways, depending on the number of parameters you include. The parameters of the
Show method are listed in Table 10-1.

Table 10-1: Parameters of the Show Method
Parameter Description Required?

Text The prompt inside the message Yes.
box that conveys a question or
information to the application
user (in this case, "Do you really
want to quit?").

Parameter
Title

MessageBoxButtons

MessageBoxIcon

MessageBoxDefaultButton

Description

The title of the message box (in
this case, "Exit application™),
which provides a visual cue to
the application user of the
purpose of the message box.

The buttons inside the message
box (in this case, Yes and No).
The choices are listed in Table
10-2.

The graphic inside the message
box, such as the exclamation
icon in Figure 10-2. The choices
are listed in Table 10-3.

The button outlined as a cue
that pressing ENTER is the
same as clicking the button (in
this case, the second button,
labeled No). The choices are
listed in Table 10-4.

Table 10-2: MessageBoxButtons Enumeration

Name Buttons Contained in Message Box

AbortRetrylgnore Abort, Retry, and Ignore.

OK OK. This is the default.
OKCancel OK and Cancel.
RetryCancel Retry and Cancel.
YesNo Yes and No.
YesNoCancel Yes, No, and Cancel.

Table 10-3: MessageBoxlcon Enumeration

Name Icon in Message Box

Required?
No. If omitted,
no title.

No. If omitted,
only one
button (OK).

No. If omitted,
no graphic.

No. If omitted,
first button is
the default.

Name Icon in Message Box

Asterisk White lowercase letter i in a circle with a blue background.
Error White X in a circle with a red background.

Exclamation Black exclamation point in a triangle with a yellow background.
Hand White X in a circle with a red background.

Information White lowercase letter i in a circle with a blue background.

None None.

Question Blue guestion mark in a circle with a white background.

Stop White X in a circle with a red background.

Warning Black exclamation point in a triangle with a yellow background.

Table 10-4: MessageBoxDefaultButton Enumeration

Member Name Description

Button 1 The first button on the message box is the default button.
Button2 The second button on the message box is the default button.
Button3 The third button on the message box is the default button.

The only parameter that is required is Text. In that case, the message box only will
have one button, OK, which closes the message box when clicked. This may be
sufficient if the message box simply provides information to the application user. For
example, when filling out a form in an application, you may have seen a message box
popping up telling you that you forgot to fill out a required field, or that the field only
takes numbers or that the password must be at least six characters, and so on.

Note The parameters are positional. This means you can't skip or omit an
argument. Therefore, if you want to specify a default button, which is the last
parameter, all of the previous arguments must also be supplied.

MessageBoxButtons Enumeration

Although a message box with only an OK button is sufficient if the message box's
purpose is purely information, the objective of this project is to give the application
user a choice of Yes or No concerning whether they really want to quit. You use
buttons—here, Yes and No buttons—to give the application user this choice. The
MessageBoxButtons enumeration contains the available button combinations, which

are listed in Table 10-2.

The term "enumeration” means a list of related choices, which in this case represents
the various available button combinations. The syntax of an enumeration is

[Enuneration Nane]. [Choice Nane]

For example, if the selected button combination is Yes and No, the syntax is
MessageBoxBut t ons. YesNo

Here, MessageBoxButtons is the name of the enumeration, and YesNo is the choice
from the enumerated list.

MessageBoxIcon Enumeration

The saying that a picture is worth a thousand words, while perhaps trite, has much
truth. The visual cue of an icon in a message box tells the application user the nature
and importance of the message, ranging from informational to warning or error.

Similar to the button choices, the available icon choices are contained in an
enumeration, this time named the MessageBoxIlcon enumeration. Table 10-3 lists the
available icon choices.

MessageBoxDefaultButton Enumeration

The users of your application may be using the keyboard in lieu of the mouse to
choose a button. This may not simply be a matter of preference. Users with certain
disabilities may not be able to use a mouse and have to use the keyboard to choose
a button. Accordingly, you should designate a default button, which means that the
user pressing the ENTER key is the same as the user clicking that button.

The choices of the default button are contained in yet another enumeration, this time
called the MessageBoxDefaultButton enumeration. Table 10-4 lists the available
button choices.

There are only three buttons in the enumeration because, as Table 10-2 indicates,
the maximum number of buttons is three—Abort, Retry, and Ignore, or Yes, No, and
Cancel.

Usually you choose as the default button the one whose choice would have the least
drastic effect, if for no other reason than if the application user absentmindedly
presses the ENTER key, nothing horrible will happen. Here, the button with the least
drastic effect is the No button, which will simply restore the status quo.

Using the Show Method's Return Value

The next step is to write code so the form knows if the application user clicked the
Yes or No button in the message box. The programming task is that one form needs
to know an action taken in another form, the other form here being the message box.

You solve this problem by using the return value of the Show method. The concept of
a method returning a value is discussed in Chapter 9 in the coverage of methods.

DialogResult Enumerations

The Show method returns a value that represents the button that the application user
clicked in the message box. Each button is represented by a member of the
DialogResult enumeration listed in Table 10-5.

Table 10-5: DialogResult Enumerations

Member Description
Name

The dialog box's return value is Abort, usually sent from a button
Abort

labeled Abort.

The dialog box's return value is Cancel, usually sent from a
Cancel

button labeled Cancel.

The dialog box's return value is Ignore, usually sent from a
Ignore

button labeled Ignore.
No The dialog box's return value is No, usually sent from a button

labeled No.
None Nothing is returned from the dialog box. This means that the

modal dialog box continues running.

The dialog box's return value is OK, usually sent from a button
OK

labeled OK.

The dialog box's return value is Retry, usually sent from a button
Retry

labeled Retry.
Yes The dialog box's return value is Yes, usually sent from a button

labeled Yes.

The DialogResult enumeration corresponds to the buttons in the MessageBoxButtons
enumeration listed previously in Table 10-2, and will be returned if the corresponding
button is chosen. Thus, if the application user clicks the Yes button, the Show

method returns the value DialogResult.Yes.

The return value usually is stored in a variable for later use in the application. The
data type of that return value should be the same as the data type returned by the
method.

Accordingly, you often use the DialogResult data type for the variable in which you
will save the return value of the Show method. You may declare that variable as
follows:

D al ogResult drQuit;

Once you have declared the variable, the next step is to use it to store the return
value of the Show method. The variable drQuit should be on the left side of the
assignment operator, so it will receive the return value of the Show method that is
called on the right side of the assignment operator:
drQuit = MessageBox. Show("Do you really want to quit?",
"Exit Confirmation",

MessageBoxBut t ons. YesNo,

MessageBoxI| con. Vr ni ng,

MessageBoxDef aul t But t on. Butt on2) ;

When this code statement executes, and the application user clicks a button in the
message box, closing the message box, the value of the variable drQuit will be either
DialogResult. Yes or DialogResult.No, depending on whether the application user
clicked the Yes or No button.

Processing the Returned DialogResult Value

The form object has a Close method that, as its name indicates, closes the form.
Because this is the only form in the project (other than the message box, which will
close when the user clicks the Yes or No button), closing the form ends the
application as well. However, we only want to close the form if the application user
chose Yes, not if the application user chose No.

The following code closes the form if, and only if, the application user's choice was
Yes:
if (drQuit == Dial ogResult. Yes)

this.d ose();

This code statement first compares the value of drQuit and DialogResult.Yes using
the if keyword. If the user chose Yes, the value of drQuit is DialogResult.Yes, so the
comparison drQuit == DialogResult.Yes will be true and the this.Close() statement is

executed. However, if the user chose No, the value of drQuit is DialogResult.No, so
the comparison drQuit == DialogResult.Yes will be false and the this.Close()
statement will not be executed.
4 Previous MNewxt b

4 Previous MNest b

Dialog Forms

Although the message box is a valuable tool, it is limited in that it only can
contain a text prompt, buttons, an icon, and a title. Further, the only
information a message box can obtain from the application user is which
button the user clicked. The message box does not permit the application
user to enter text in a text box, choose an item from a drop-down list,
select a check box or radio button, and so on.

If you need a user interface richer than the message box, you may create
a custom and more complex version of a message box—the dialog form.

Creating the Project

A good way to illustrate how to create and use a dialog form is with a
project. In this project, you will create the dialog form shown in Figure 10-3.
This dialog form enables the user to change the text of the title bar of the
main form, that title bar text currently being "Form1" in Figure 10-3.

0K [Cancel |

Mew Caption

Figure 10-3: Dialog form project in action.

Clicking either the OK or Cancel button will close the dialog form.
However, if the user chooses the OK button in the dialog form, the text of

the title bar of the main form will be changed to the text the user typed into
the text box of the dialog form. By contrast, if the user instead chooses the
Cancel button in the dialog form, the dialog form simply will close, with no
change made to the text of the title bar of the main form.

Try the following steps to create this project:

1.
2.

Create a new Windows application.

Using the Properties window, change the StartPosition property of
the form from the default (WindowsDefaultLocation) to CenterScreen
to center the form on the screen. This change is not required for the
program to function, but it will permit both forms to be centered on
the screen.

Using the Toolbox, add a button to the form.

Use the Properties window to change the values of the Name
property of the button to btnNewCaption and the Text property from
the default (for example, Button 1) to New Caption.

You need to add a second form to the project to serve as the dialog
form. Use the Project | Add Windows Form menu command to
display the Add New Item dialog box shown in Figure 10-4, highlight
Windows Form, and then click the Open button. You can keep the
default name Formz2.cs for the new form. Figure 10-5 shows the
Solution Explorer, in which the second form now appears.

Using the Properties window, change the values of the following
properties of the second form:

= Text Change from Form2 to Dialog so you have a visual cue
that you are looking at the dialog form.

= ControlBox Change from the default (True) to False. This
eliminates the close, minimize, and maximize buttons in the top-
right corner of the window and the system menu, which also has
close, minimize, and maximize commands, in the top-left corner
of the window. The purpose is so the dialog form cannot be
resized and can be closed only by clicking one of the buttons
that you will be adding next to the form.

» StartPosition Change from the default
(WindowsDefaultLocation) to CenterParent so the dialog box is

centered on the main form.

» FormBorderStyle Change from the default (Sizable) to
FixedDialog. This change is not required for the program to
function, but does give the form a more dialog box-like
appearance.

7. Using the Toolbox, add a button to the second form.

8. Use the Properties window to change the values of the following
properties of the button you just added to the dialog form:

= Name Change from Button 1 to btnOK.

= Text Change to OK.

= DialogResult Choose OK from the drop-down list. Because the
dialog box displayed by the MessageBox.Show method is a
built-in Visual C# .NET form, clicking the OK button
automatically returns OK as the DialogResult value. By contrast,
the dialog form is not a built-in Visual C# .NET form, but instead
one that you create, so you need to correlate the clicking of the
OK button with OK as the DialogResult value, both in order to
return a DialogResult value and to close the dialog form when
the button is clicked. You do so by setting the button's
DialogResult property to OK.

9. Using the Toolbox, add a second button to the dialog form.
10. Use the Properties window to change the values of the following

properties of the second button you just added to the dialog form:

= Name Change from the default name (likely Button 1 or
Button2) to btnCancel.

= Text Change to Cancel.

» DialogResult Choose Cancel from the drop-down list. This is
done for the same reason as we set the DialogResult property
of the OK button to OK.

11. Use the Properties window to change the values of the AcceptButton
property of the second dialog form to btnOK and the CancelButton
property of that form to btnCancel, using the drop-down list. Pressing
the ENTER key is the equivalent of clicking the button designated in
the AcceptButton property. Similarly, pressing the ESC key is the
equivalent of clicking the button designated in the CancelButton

property.
12. Using the Toolbox, add a TextBox control to the second form.

13. Use the Properties window to change the values of the following
properties of the TextBox control you just added to the dialog form:

Name Change to txtNewCaption.

Text Delete the default so it is blank so no text shows in the text
box when you run the application.

TabIndex Change to 0 so when the second form appears the
cursor will start at the text box.

Modifiersy Change from Private to Internal to permit the first
form to access this TextBox control in the second form.

14. Add the following code to the Click event of btnNewCaption in the
main form:

private void btnNewCaption _Cick
(obj ect sender, EventArgs e)
{

Form2 frmCaption = new FornR();

frnCapti on. ShowDi al og(this);

if (frnCaption. D al ogResult == Di al ogResul t. OK)
this. Text = frnCaption.txtNewCaption. Text;

ratial S el ool alled brnaplat ey -
2 aoj rtetace 5] Coute i
i e Corbral Camboem Conkral
Spinbante] Form Hrheseed i Conal Wy s, Covd vl
*Jl"rnnrl {="1"] 4 SR Databan brﬂl.wl
oL File) L St o L1 e
_.zll'lfl Fagp H‘rﬂm H Teak Fis
il Bt P by Curies Pl & fegort
[Crpital Bubue H ke] Wbt erve
g ke Thase)Tt Pis 3]st Fie
f]ikdm Terpl Haw! :JMI.—Iuer Al mte S onfvur st P
S EeEce P i} s P S Fwan
T wmt B ﬁl’.lr‘a.ln-'m\.‘."r Sl D
-
A Wi P
i Formd.
() Coma)

Figure 10-4: Add New Item dialog box.

Solution Explorer - Solution "Dialo... [¥]

[&% Solution 'Dialog' (1 project)
= L Dialog
- [=d| Properties
#- =3 References
@ =] Formi.cs
CREE | Form2. cs
C,ﬁl Program.cs

A Sokition Explorer (5 Class View

Figure 10-5: Solution Explorer after the second form is added.

Try out this code by running the project. Click the New Caption button in

the first form and then type some text in the second form. If you then click
OK, the second form will close, and the first form will have a new title, the
text you typed in the second form. If you instead click Cancel, the second
form will still close, but the title of the first form will not change.

Showing the Dialog Form and Returning Its
Result

The dialog form is similar to the MessageBox class. For example, both are
displayed by another form and are modal; that is, the application user
cannot return to the main form until they have dismissed the dialog form by
clicking one of its buttons. Another similarity is that both the dialog form
and the MessageBox class return a result based on which button was
clicked. However, there are important differences between the dialog form
and a message box, both in how they are shown and in how they return a
result.

ShowDialog Method

You use the ShowDialog method of the Form object to display a dialog
form. This method is similar to the Show method of the MessageBox class
in that it will show, modally, the form that is invoking the method.

Note You also could display the second form using the Show method
instead of the ShowDialog method, but then the second form
would not be modal. This is discussed further in the later section
"Modal vs. Modeless."

Because Form2 is a class (that is, a blueprint or template for an object),
the code first declares and creates an instance of Form2 before you show
it using the ShowDialog method. You do so via the following code, which
goes in the Click event procedure of the btnNewCaption button in the main
form:

Form2 frmCaption = new Forn2();
frmCapti on. ShowDi al og(this);

Let's go through this code one line at a time.

The first line creates an object named frmCaption of the Form2 class. You
use a class to instantiate (create) an object of that class. The class in this
example is Form2. The new keyword is used to create the object. The
object is represented by a variable (here, frmCaption).

The second line of code displays the dialog form object created in the first
line. The Form2 object, represented by the variable frmCaption, calls the
ShowDialog method to display itself as a dialog form. The this keyword is
passed as the argument. The this keyword refers to the current form,
which is the main form because we are writing this code in the main form.
This makes the current, main form instance the owner of the dialog form.

Returning a DialogResult

Another difference between the MessageBox class and the dialog form is
that whereas the Show method of the MessageBox class indicates the
button the user clicked by returning a DialogResult value, the ShowDialog
method of the Form object indicates the button the user clicked by
assigning that value to the dialog form's DialogResult property. Therefore,
the comparison is

if (frnCaption. D al ogResult == Di al ogResul t. CK)

You can make multiple comparisons. For example, if the dialog form had
three buttons, Yes, No, and Cancel, the comparison could be this:

if (frmCaption. D al ogResult == Di al ogResul t. Yes)
/1l do action based on user clicking yes button
else if (frnCaption. D al ogResult == Di al ogResul t. No)

/1l do action based on user clicking no button
el se
/1l do action based on user clicking cancel button

If the DialogResult is anything besides None, the dialog form is closed and
returns a DialogResult value. However, under certain circumstances you
may wish to prevent the dialog form from being closed, such as if the user
has made an input error that first needs to be corrected.

To prevent the dialog form from closing, the DialogResult property of the
dialog form needs to be set to None. The following code fragment sets the
value of the DialogResult property of the current form (represented by the
this keyword) to a DialogResult of None:

this. D al ogResult = Di al ogResul t. None

This code logically would be placed in the Click event of the OK button to
handle the situation where you want the user to fix an error on that dialog
form rather than closing the dialog form.

Accessing Values from the Dialog Form

If the value of the second form's DialogResult property is OK, all that is left
to do is to change the title of the first form to the text you typed in the
second form. The following code in the Click event procedure of
btnNewCaption therefore is indicated:

this. Text = frnCaption.txtNewCaption. Text;

The this keyword refers to the main form because this code is in its code
module. The Text property is the text in its title bar. It is possible to refer in
the code of the main form to the TextBox control txtNewCaption in the
dialog form because we changed that control's Modifiers property from
Private to Internal, which permits access from anywhere in the current
project.

The reference to txtNewCaption, the text box in the dialog form, is
preceded by the name of the dialog form object, frmCaption. The reason
why the name of the control is preceding by the name of the form that
contains it is that a reference to a control, not preceded by a form object, is
assumed to be to a control in the form whose code is executing. However,
the current code module is for the main form, and txtNewCaption is not in
that form, but instead in the dialog form. Therefore, a reference to
txtNewCaption.Text instead of frmCaption.txtNewCaption.Text would result
in the following compiler error message: "The name 'txtNewCaption' is not
declared."

Modal vs. Modeless

Whereas all message boxes are modal, not all forms are. The second form
in the application we just created is a dialog form because it was displayed
with the ShowDialog method rather than the Show method. Had we
instead displayed the second form using the Show method, the second
form would have been modeless. This means that the application user
could return to the main form without closing the second form.

Some forms in Windows applications are modeless. Examples include the
Find and Replace forms in Microsoft Word. Because the Find form is
modeless, you can return to the main application window and edit a found
word without having to close the Find form.

It usually is easier to write code for modal forms because you don't have to
be concerned about the user returning to the main application without first
closing the modal form. However, there are situations, such as the Find

form in Microsoft Word, in which a modeless form may be the better
choice.
4 Pravious Mext b

4 Previous

Conclusion

Visual C# 2005's automated creation of a new Windows
application project includes a form that serves as the main
application window. The main application window often needs a
supporting cast of other forms, because Windows applications
generally are far too complex for the main application window to
perform all the tasks required by the application.

This chapter first showed you how to display a message box
and determine which button the user clicked. You also learned
that a message box is modal, which means that the user cannot
return to the rest of the application until the message box is
closed, by clicking one of its buttons.

You next learned how to create and use a dialog form. The
dialog form is similar to the MessageBox class in that it is modal
and returns a value based on the button clicked to dismiss it.
However, a dialog form, unlike a MessageBox, also may contain
text boxes, check boxes, drop-down lists, and other controls.

There also are code differences between the dialog form and
the MessageBox. You use the ShowDialog instead of the Show
method to display a dialog form. Further, you first create an
instance of the dialog form to use the ShowDialog method.
Additionally, the return value of the MessageBox class is a
DialogResult value, whereas the return value of the dialog form
is in its DialogResult property. You also learned how through
code in the main form to determine values in controls in the
dialog form.

In the next chapter we will enhance the user interface of the
form with a menu.

4 Previous

HNext b

Next k

4 Frewious Mext b
Quiz

1. Is a message box modal or modeless?

2. What value is returned by the Show method of the MessageBox class?

3. Do you always have to call the Show method of the MessageBox class with the same
number of arguments?

4. Do buttons in a message box automatically have a DialogResult value?

5. What is the data type of a variable you use to store the return value of the Show
method of the MessageBox class?

6. What is an enumeration?

7. What method do you use to display a modal form?

8. What is the return value from showing a dialog form?

9. Do buttons in a dialog form you create automatically have a DialogResult value?
10. What method do you use to display a form as modeless rather than modal?

Answers

1. A message box is modal.

2. The Show method of the MessageBox class returns a member of the DialogResult
enumeration corresponding to the button the user clicked.

3. No, you may call the Show method of the MessageBox class with a different number of
arguments because that method is overloaded.

4. Yes, buttons in a message box automatically have a DialogResult value.

5. You would use the DialogResult data type for a variable you use to store the return value of
the Show method of the MessageBox class.

6. An enumeration is a list of related choices.

7. You use the ShowDialog method of the Form object to display a modal form.

8. The return value of showing a dialog form is the DialogResult property of that form.

9. No, buttons in a dialog form you create do not automatically have a DialogResult value; you
have to assign a value to the DialogResult property of each button.

10. You use the Show method of the Form object to display a modal form.

4 Pravious Mest b

4 Previous

Chapter 11: Menus

Overview

You often may encounter menus, perhaps at an elegant
restaurant, or in my case, in the drive through lane of a local
fast food restaurant. Regardless of the quality of the food, the
menus at the two places serve the same purpose: to inform you
of your choices and the corresponding prices.

A Windows application also has a menu, but that menu serves
a different purpose than a restaurant menu. The application
user generally knows what they want to do. The menu provides
a graphical user interface (GUI) to make it easier for the
application user to issue commands to the application, such as
to open a file, print a document, and so on.

The menu is not the only way through which the GUI may make
it easier for the application user to issue commands to the
application. For example, toolbars, which are covered in the
next chapter, are another alternative. However, the menu has
the advantage of enabling the programmer to organize
commands in a logical hierarchy. For example, commands
related to file operations, such as New, Open, and Save, are
under the File menu, whereas commands related to editing,
such as Cut, Copy, and Paste, are under the Edit menu.
Additionally, menus save valuable screen space, in that
submenu items collapse unless the menu item above them is
chosen. This enables your application to remain uncluttered, by
hiding commands that are not immediately needed.

There are two common types of menus. One is the main menu
that usually appears at the top of applications, with headings
such as File, Edit, View, and Help. The main menu is
represented by the MenuStrip class. The other menu that
appears when you right-click, sometimes called a shortcut or
context menu, is represented by the ContextMenuStrip class.

This chapter will show you how to create a main menu and a
context menu and how to link them to each other.

4 Previous

HNext b

HNext b

4 Previous MNest b

Creating a Main Menu

The MenuStrip class represents the main menu that usually
appears at the top of a Windows form. The MenuStrip object
contains a collection of ToolStripMenultem objects, each of
which is an item on the menu.

Each ToolStripMenultem can be a command for your
application. Figure 11-1 shows menu items under the File menu
in Microsoft Word. Many of the menu items are commands for
the application, such as to open or save a file.

e
3

Cpen.. Ciri+O

Ve Cri+5
Save As...

Save as Web Page...

k. K

(Fg)

aarch...
Permission 4
Wersions
Web Page Preview
Page Setup...

_l. Pririt Presviow

s Print.. Cirl+P
send To k|
Froperties

Acquire Text (OmniPage Fro 14.0), |

Acquire Text Settings (OmniFage Pro 14.0)...

L = |

Figure 11-1: Menu items under the File menu.

However, as Figure 11-2 shows, a menu item may also be a

parent menu for other menu items, each another
ToolStripMenultem. For example, Send To is the parent menu
item for other menu items, including Mail Recipient and
Microsoft Office PowerPoint.

—_

ki

b

Figure 11-2: Send To menu item as a parent to other menu
items.

Creating a main menu is a two-step process. You first add a
MenusStrip control to your form, and then you append
ToolStripMenultem objects to it.

Adding a MenuStrip Control to a Form

You add a MenuStrip control to a form using the following steps,
which are similar to how you would add a control such as a
Button to the form. Try the following, which you could do with an
existing project, though | would recommend a new project to
avoid any confusion with existing code:

1. View the form in designer view.

2. Double-click the MenuStrip component in the Toolbox. As
shown in Figure 11-3, the MenuStrip component is added
to the component tray below the form. When this
component is selected in the component tray, a
rectangular area appears underneath the top-left corner of

the form displaying the text "Type Here."

3. Using the Properties window, if not already set by default,
set the MainMenuStrip property of the form to the name of
your MenuStrip component (by default, menuStrip1). This
links the MenuStrip to your form.

Figure 11-3: MenuStrip added to form.

Adding Menu Items to the MenuStrip

Once you have added a MenuStrip component to your Windows
form, the next step is to add menu items to it. Each menu item
is an object of the ToolStripMenultem class. You can add
ToolStripMenultems to the MenuStrip by typing in the menu
items or by using the Items Collection Editor.

Typing in the Menu ltems

You may add a menu item to the MenuStrip component by
clicking the text "Type Here" (after selecting the MenuStrip
component in the component tray, as mentioned in step 2 in the
preceding section) and typing the display name of the desired
menu item to add it. For example, you may add a File menu
item by typing File because the File menu usually is the first
top-level item in Windows applications.

Typing the name of the menu item sets its Text property. You
also should change the menu item's Name property from the

default. You set the Name property of the menu item by right-
clicking it, choosing Properties from the shortcut menu to
display the Properties window, and then changing the Name
property in the Properties window. One logical name for the File
menu would be mnuFile, with the "mnu" prefix indicating a menu
item and "File" indicating the purpose of the menu item.

Figure 11-4 shows the menu after the File menu item is added.

Figure 11-4: File menu item added.

As Figure 11-4 shows, you now have "Type Here" options both
below and to the right of the File menu item. You may add items
below the File menu item, such as New and Open. You then
should change the Name property of these menu items. For
example, | would name a menu item Open under the File menu
mnuFileOpen, with "mnuFile" being the name of the parent File
menu and "Open" being descriptive of the subsidiary menu
item's purpose.

You may add menu items to the right of the File menu as well
as below it. For example, you might add an Edit menu item to
the right of the File menu item to be consistent with other
Windows applications. Following the same naming convention, |
would name the Edit menu item mnuEdit.

Tip If you forget a menu item, right-click the menu item
before which the new one will be inserted and then
choose Insert \ New from the context menu. If you
decide you no longer want a menu item you previously
added, right-click that item and choose Delete from the
context menu.

Items Collection Editor

One of the properties of the MenuStrip component is an ltems
collection, which is a collection of the ToolStripMenultems
belonging to the MenuStrip. For example, after you add the File
and Edit menu items, those menu items would belong to the
Items collection of the MenuStrip.

Figure 11-5 shows the Items collection listed in the Properties
window of the MenuStrip component.

Properties %]

menuStripl System. Windows . Forms =

sepl[@]ls o
AccessiblaDescri A
AccessbleMame
Accessiblefole Default
Allowlrap False
AllowltemReord: False
AllowMerge Trua
anchor Top, Left
AutoSize Trua
BackColor [] control
Backgroundimag[_] (none)
Backgroundimag Tile
ContextMeanuStr (none)

Dack Top
Enabled True

E Font Tahoma, &.25pt
GenerateMambe True

B GripMargn 2,222

GripStyle Hidden
ImagescalingSiz 16, 16
ImeMode MoConkrol

ST (cole<tion) (1)

LayoutStyle HorlzontalStackiwit

E Locaticn o,0

Locked False
E Margin 0,0,0,0
& Madmumsize 0,0 ~q
Items
Collection of tems to display on the
ToolStrip.

Figure 11-5: Properties window showing the Items collection
of MenuStrip.

Click the ellipsis (...) next to Iltems. This will open the Items
Collection Editor, which is shown in Figure 11-6 after two
ToolStripMenultems (for the File and Edit menus) have been
added.

Thewes Collection [ditor

[[com |
Figure 11-6: Iltems Collection Editor for MenuStrip.

You may add ToolStripMenultems to the MenuStrip by choosing
Menultem (the default selection) from the drop-down box and
then clicking the Add button. Once the ToolStripMenultem is
added, you then may select it and in the right pane change its
Name, Text, and other properties. Figure 11-6 shows properties
for the Edit menu item.

You also can add menu items to the File or Edit menu item. As
Figure 11-7 shows, the File menu item (as well as the Edit
menu item) has a DropDownltems collection property. This is a
collection of the ToolStripMenultems belonging to that menu
item. For example, after you add New and Open menu items to
the File menu, those menu items would belong to the
DropDownltems collection of the File menu.

Properties =)

minuFile Sysbem. Windows, Forms, Too =

suill[@ls =

AccessibleNamne ~
Accessiblefole Def ault
Abgriment Left

AukoSize True
AutaToxTip False
BackColor [contrel
BackgroundImag [| (none)
Backgroundimag Tile

Checked False
CheckonChick. Fabse
CheckState Umichecked
DizplayStyle ImageAndText
DoubleChckEnab Falce

Droplawn (none)
B (Collection) Q
Enablad True

B Fonk Tahoma, &, 25pt
ForeColor B conbrolText
GeneratetMembe True
Imane [(none)

Imageakign MiddleCenter
ImageScaling SizeToFit
Image Tr &S pur e B

B Margin 0,0,0,0
MergeAction Append
Mergelndex -1 1

DropDownltems

Specifies a ToolStripltem to display when
the: em s cicked.

Figure 11-7: Properties window showing DropDownltems
collection of the File menu item.

Clicking the ellipsis (...) next to DropDownltems will open the
Items Collection Editor for that menu item. Figure 11-8 shows
the Items Collection Editor for the Edit menu after menu items
have been added to that menu item.

It CollecRivn EdStor oo dit, Do pliesen e | m
S

Figure 11-8: ltems Collection Editor for the Edit menu item.

The procedure for adding subsidiary menu items to a menu item
is essentially the same as adding ToolStripMenultems to the
MenuStrip; you choose Menultem from the drop-down box and
then click the Add button. You then may select the added
subitem and in the right pane change its Name, Text, and other
properties.

Enhancing the Menu Items

You can enhance menu items in several ways. You can add
access or shortcut keys to facilitate keyboard access to menu
items. You also can add separator bars to group together
related menu items.

Access Keys

Although menu items usually are accessed by a mouse click,
you also should enable the user to access menu items via the
keyboard. Being able to access menu items via the keyboard
instead of a mouse is an important convenience, as | have
discovered on an airplane flight trying to use my laptop while
wedged between two sumo-sized passengers. Indeed, for users
with certain disabilities, the ability to access menu items via the
keyboard instead of a mouse can be a necessity.

An access key is one way of enabling the user to access menu
items via the keyboard. An access key is the keyboard
combination of the ALT key plus a letter in the menu item that is

underlined. For example, the keyboard combination for the File
menu item is ALT-F, with the letter F in File being underlined.

To add an access key, in the menu item's Text property, simply
type an ampersand (&) before the letter to be underlined. Figure
11-4 earlier in this chapter shows the result of typing &File as
the Text property for the File menu item (the letter F in File is
underlined).

The access shortcut may not appear when you run the
application until you press the ALT key. This is standard
behavior in Windows applications. As shown in Figure 11-9, in
the Effects dialog box (shown by choosing the Display applet
from the Control Panel | Appearance tab | Effects button), the
option "Hide keyboard navigation indicators until | use the ALT
key" is checked by default. If you want to change that behavior,
simply uncheck that box.

[#]use the following transktion effect for menus and tooltips:
Fade effect b

[#]use the following method o smooth edges of screen forts:

Standard b

-::.Ihl: Large kcons
[#show shadows under menus

[+| Show window contents wh ke dragging

g ".:'K : | Cancal

Figure 11-9: Setting whether the access shortcut is hidden
until the ALT key is pressed.

Shortcut Keys

Shortcut keys are another method of enabling the user to
access menu items via the keyboard. In Microsoft Word, the
New menu item under the File menu can be accessed with the
shortcut key CTRL-N.

You can add a shortcut key at design time by selecting the
menu item within the Menu Designer, selecting the
ShortcutKeys property from the Properties window, and clicking
the drop-down arrow. As Figure 11-10 shows, you can choose
one or more of CTRL, SHIFT, or ALT by checking a box and
then choosing one of the values offered in the drop-down list:

3
5
g
=
n
| 3
. 3
§
i
o
g
2
4

ForeColor B coriroltext
GenerateMembe Trus
Image [(mene)

Imageslign MiddleCeniter
ImagaScalng SizeToFik
tmageTranspare[|

B Margin 0,0,0,0
Mergedction Append
Mergelnde:x !
Modifiers Private
Crverflow Never

Padding 4,0,4,0

Right ToLeft o
Right ToLeftawutc False
ShortcukkeyDis

MNone e
Modfiers:

[<l [] shife [] 2k

Key:

'1}| Ressat
A Al
B BforeText
Back
C
Capital o
sHD
1]
JIru1 o 12 menu

Figure 11-10: Shortcut key options displayed in the
Properties window.

Note You normally would not assign a shortcut key to a top-
level menu item such as File or Edit because an
access key already can be used to open that menu.

Separator Bars

Separator bars are used to group related commands within a
menu and make menus easier to read. In Microsoft Word,
under the File menu, a separator bar separates the New, Open,
and Close menu items from the menu items that follow them.

You may add a separator bar by setting the Text property of a
menu item to a dash. Alternatively, in the Menu Designer, right-
click the location where you want a separator bar and choose
Insert | Separator.

Adding Functionality to the Menu Items

The purpose of a menu item is to do something when it is
clicked. Therefore, you use the Click event procedure of the
menu item to provide functionality for a menu item.

The Click event, of course, occurs when the user clicks the
menu item. However, the Click event also occurs if the user
selects the menu item using the keyboard and presses the
ENTER key, or if the user presses an access key or shortcut
key that is associated with the menu item.

The Click event is not raised for all menu items. It only is raised
for menu items that do not have subsidiary menu items. The
reason is when a menu item with subsidiary items is clicked, the
behavior is to display the subsidiary menu items. Therefore, the
Click event is not raised for parent menu items such as File and
Edit. Instead, the behavior when a parent menu item is clicked
is to display its subitems, such as, in the case of the File menu,
New, Open, and Close.

You write code for the Click event procedure for a menu item
by, in code view, choosing the menu item by name from the left
drop-down list and Click from the right drop-down list. You then
write within the created event procedure stub the code you wish
to run when the menu item is clicked. For example, the following
code outputs "New" to the Output window when a menu item
named mnuFileNew is clicked:

private void muFi | eNew C i ck
(obj ect sender, EventArgs e)
{

}

Debug. WiteLine("New');

Disabling Menu Items

Although menu items should be functional, there are times
when you may not want them to be functional. For example, in
Microsoft Word, the menu items Cut and Copy under the Edit
menu initially are grayed out, or disabled. They are grayed out
because no text is selected; therefore, there is nothing to cut or
copy. However, once you select text, Cut and Copy are no
longer grayed out—in other words, they are enabled.

A menu item should not be enabled when the command it
represents is not available. It would be frustrating for the
application user to click Cut or Copy and see nothing happen.
The application user might be misled into thinking there is
something wrong with your application. When you gray out, or
disable, a menu item, the application user is given a visual cue
that the menu item is not available.

Disabling a menu item that should not be available has an
additional advantage—error prevention. The code for cutting
text may understandably assume there is selected text. If there
IS no selected text, executing the code for cutting text may
cause an error. By disabling the menu item when no text is
selected, the code for cutting text cannot be executed when no
text is selected, thus avoiding the error.

Menu items are enabled by default when they are created.
However, you can disable a menu item by setting its Enabled
property to False. You can do this at design time, when the
menu item is selected in the Menu Designer, through the
Properties window. You also can disable a menu item via code:

muFi | eNew. Enabl ed = fal se;

If you want a menu item to be disabled when the application
starts up, you could put this code in the Load event of the form.

Disabling the first or top-level menu item in a menu, such as the
File menu item in a traditional File menu, disables all the menu
items contained within the menu. Similarly, disabling a menu
item that has submenu items disables the submenu items.

Tip

4 Previous

If all the commands on a given menu are unavailable to
the user, you should hide as well as disable the entire
menu. You hide the menu by setting the Visible property
of the top-most menu item to False. This presents a
cleaner user interface by not cluttering up your menu
structure with disabled items. However, one caution:
hiding the menu alone is not sufficient to disable it. You
must also disable the menu, because hiding alone does
not prevent access to a menu command via a shortcut
key.

HNext b

4 Previous

Creating a Context Menu

Many Windows applications have context menus, which are
displayed when the user clicks the right mouse button over an area
of the form or over a control on the form. Figure 11-11 shows a
context menu in Microsoft Word.

?: ‘{ U
|
e

8 Paste
Al Fort..
=4 Paragraph...
:= Bullets and Numbering...
%; ijerhnk :
ﬁé Look Up...

Synonyms »

Al Translate

Figure 11-11: Context menu.

The word "context" in context menu derives from the fact that the
particular menu items displayed often depend on the context, such
as the application state, or where on the form or control the right
mouse button was clicked. Indeed, in the .NET Framework, the
ContextMenusStrip class represents shortcut or context menus.

Context menus typically are used to make available different menu
items from a MenuStrip of a form that are useful for the user given
the context of the application. For example, you can use a context
menu assigned to a TextBox control to provide immediate access

to menu items also found in the MenuStrip to cut, copy, and paste
text, find text, change the text font, and so on.

The ability of a context menu to immediately access menu items of

Nest b |

the main menu that might take several mouse clicks to access may
be why a context menu also is called a shortcut menu, because the
menu items on the context menu are a shortcut to menu items on
the main menu. However, a context menu also may contain menu
items not found in the form's MenuStrip.

Adding a ContextMenuStrip to a Form

The process of adding a context menu to a Windows form at
design time and then adding menu items to it is similar to the
corresponding process discussed already in this chapter in
connection with the MenuStrip. You first add a ContextMenuStrip
object to your form, and then you append to it ToolStripMenultems
objects.

You add a context menu to a form by following these steps, which
are similar to how you add a MenuStrip to the form:

1. View the form in designer view.

2. Double-click the ContextMenuStrip component in the
Toolbox. As shown in Figure 11-12, this adds a
ContextMenuStrip component to the component tray.

3. In the Properties window for that form or control, choose the
ContextMenuStrip object (the default name may be
ContextMenuStrip 1) from the drop-down list for the form or
control's ContextMenuStrip property. This associates the
context menu with the form or a control on the form. You also
can change this value dynamically through code when the
program is running if the form has more than one context
menu.

1

|
Figure 11-12: Adding a ContextMenuStrip component to a
form.

Unlike with the main menu, you often will be adding a context menu
to a control on the form, rather than the form itself. For example, in
the Text Editor project later in this chapter, the context menu will
belong to a TextBox control rather than the form.

Adding Menu Items to the
ContextMenuStrip

Once you have added a ContextMenuStrip component to your
Windows form, the next step is to add menu items to it. You can do
so by typing in the menu items, by using the Items Collection
Editor, or by copying menu items from existing items on the main
menu and pasting them onto the context menu.

Typing in the Menu ltems

You can add menu items to a context menu using the same
method you used to add menu items to a main menu. You click the
text "Type Here" and type the name of the desired menu item to
add it. If the text "Type Here" is not displayed, you may display it by
clicking the ContextMenuStrip component on the Windows form. To
add another menu item, click another "Type Here" area within the
Menu Designer. You click the area below the current menu item to
add another menu item, or you can click the area to the right of the
current menu item to add submenu items.

You then should name these menu items. If the context menu item
parallels one on the main menu, one naming convention is to give
the context menu item the same name, other than the prefix, for
which you may use "cmnu” (instead of mnu), the letter ¢ standing
for "context." For example, if a context menu item parallels the
main menu item Open under the File menu (named mnuFileOpen),
you could name the corresponding context menu item
cmnuFileOpen.

Note One difference between a context menu and a main menu
is that a context menu usually does not have a top-level
item, such as File in the main menu.

Items Collection Editor

You also can use the Items Collection Editor to add items to a
context menu as well as to the main menu.

Figure 11-13 shows the Properties window for the
ContextMenuStrip.

Properties

contextMenuStripl System.Windo, =

{ApplicationSatt] ~
& {DataBindings)
(Mame) contextMenusSt
AccessibleDescri
| AccessibleName
AccessibleRole Default

AllowDrop False
| Alloveerge True
AukoZlose True
AukoSize True

BackColor [] control
Eack.gr-::undlm-;D {mone)
Backgroundlmag Tile
DropShadowEns Trope

Fant Tahoma, §.25pt
zenerateMembe True

ImagescalingSia 16, 16
IrneMode NoControl

| (Collection) [;]

LavoutStyle Flow

. Location 25,90

Margin 0,000

| %

Items

Collaction of items to display on tha
ToolStrip.

Figure 11-13: Properties window for the ContextMenusStrip.

You also can add items to the ContextMenuStrip. As Figure 11-13
shows, the ContextMenuStrip has an Items collection property.

Clicking the ellipsis (...) next to Iltems will open the Items Collection
Editor for the ContextMenuStrip, which is shown in Figure 11-14
after menu items have been added to the ContextMenuStrip.

Ttewns Callection Editer il

Figure 11-14: Items Collection Editor for ContextMenuStrip.

You add ToolStripMenultems to the ContextMenuStrip by choosing
Menultem from the drop-down box and then clicking the Add
button. You then may select the added ToolStripMenultem and in
the right pane change its Name, Text, and other properties. Figure
11-14 shows the properties for the first menu item on the context
menu.

Copying and Pasting

You may want the context menu to duplicate commands in the
main menu. For example, the Cut, Copy, and Paste menu
commands in Microsoft Word's Edit menu are often duplicated in a
menu when you click on the document.

You do not need to re-create the entire menu structure when you
want to duplicate a given menu's functionality. You may use the
Menu Designer to copy menus by following these steps:

1. Within the Menu Designer, choose the MenuStrip
component, select the menu item or items (using the SHIFT
key for multiple items) you would like to duplicate, right-click
them, and choose Copy, as shown in Figure 11-15.

2. Choose the ContextMenuStrip component, select the "Type
Here" area where you would like the first menu item to
appear, and then right-click and choose Paste, as shown in
Figure 11-16.

3. Figure 11-17 shows the end result.

b

43 Copy
Q}E Paste
P

Delete

Dacurment Ouklire
E "4 Properties

|
|

Figure 11-15: Copying items from the MenuStrip.

= Form1

Figure 11-16: Pésting items into the ContextMenusStrip.

Form1
File Edit

ContextMenustrip |
Cuk

Copy

Figure 11-17: Context menu now populated.

Adding Functionality to Context Menu
ltems

You add functionality to menu items in a ContextMenuStrip the
same way you add functionality to menu items in a MenuStrip—by
using the Click event procedure of the menu item.

Often a context menu item corresponds to a menu item on the
main menu. For example, on the main menu, you may have an Edit
| Select All menu item named mnuEditSelectAll, and on a context
menu, you may have a Select All context menu choice named
cmnuEditSelectAll. If the user chooses Select All from the context
menu, rather than writing a duplicate event procedure, you want the
Click event procedure of the Edit | Select All menu item to run. You
have two alternatives for having the Click event procedure for the
main menu item also handle the Click event for the corresponding
context menu item.

EventHandler Class

When you create a Click event procedure for a menu item named
mnuEditSelectAll, the following code is created in the Form1.
Designer.cs file (assuming the class name is Form 1):

this. muEditSel ectAll + =

new Event Handl er (t hi s. muEdi t Sel ect All _C i ck);

The object to which we are assigning an event handler is to the left
of the combined addition and assignment operator (+=). That
operator is followed by the new keyword, because a new event
handler is being created. The new keyword is followed by the
EventHandler class constructor, whose argument is the name of
the method that will be handling the event (here,
mnuEditSelectAll_Click).

You can have this event also handle the Click event of the context
menu item via the following code, which you could put in the Load
event procedure of the form:

cmuEdi t Sel ect Al +=
new Event Handl er (rmuEdi t Sel ect All _Cl i ck);

Other than the omission of the this keyword, which is unnecessary
in this code context, the only difference between this code and the
previous code snippet is that the object to which we are assigning
an event handler is cmnuEditSelectAll, not mnuEditSelectAll.
However, the argument for the EventHandler class constructor, the
name of the method that will be handling the Click event of
cmnuEditSelectAll, is the same, mnuEditSelectAll_Click.

Calling Another Event Procedure

The other alternative is to call the Click event procedure of the main
menu item from the Click event procedure of the context menu
item:

private void cnmuEditSel ectAll _Qick
(obj ect sender, EventArgs e)
{

}

muEdi t Sel ect Al _dick(sender, e);

Note You must pass the arguments sender and e to the
mnuEditSelectAll_Click call because the Click event
procedure of that main menu item expects those
arguments.

4 Previous

MNext b

4 Previous

Text Editor Project

This project is a text editor. The application user can type and use the main menu or
the context menu to cut, copy, and paste. Figure 11-18 shows the Text Editor project
at run time with the context menu displayed.

Form1

File Edit

blah blah blah blah blah blah Blak

blah bilak, blah blah
blah blah blah blah
blah blak blah blak
blak blaky blah blah
blah blah blak blak
blah blah_"2**® | blah blah |

blah

Figure 11-18: Text Editor project at run time.

Creating the Project

You can create the Text Editor project with the following steps:

1.

2.

Create a new Windows application.

Add a TextBox control to the form from the Toolbox. Name it txtEdit, set its
Multiline property to True, and delete any text in its Text property. You also
should resize the control so it is large enough to show multiple lines of text.

Add a MenuStrip component to the form from the Toolbox.

Using the Menu Designer, add a menu where the top-level menu is Edit and its
menu items are Cut, Copy, and Paste. Name the Edit menu item mnuEdit, the
Cut menu item mnuEditCut, the Copy menu item mnuEditCopy, and the Paste
menu item mnuEditPaste.

Using the Properties window, set the MainMenuStrip property of the form to the

Nest b |

10.

11.

12.

13.

name of your MenuStrip component.
Add a ContextMenuStrip component to the form from the Toolbox.

Using the Properties window, set the ContextMenuStrip property of the text box
to the name of your ContextMenuStrip component. Also set the
ShowlmageMargin property of the ContextMenuStrip control to False so the
context menu will not have a left-hand margin.

Copy the Cut, Copy, and Paste menu items from the MenuStrip to the
ContextMenuStrip. Name these menu items in the context menu cmnuEditCut,
cmnuEditCopy, and cmnuEditPaste, respectively.

In the Code editor, create a Click event procedure for the Edit | Cut menu item
(mnuEditCut) and write the following code in it:

private void muEdi tCut __Cick(object sender, EventArgs e)
{

}

txtEdit. Cut();

In the Code editor, create a Load event procedure for the form and write the
following code in it:

cmmuEdit Cut. dick += new Event Handl er (mmuEdi t Cut _Cl i ck);

In the Code editor, create a Click event procedure for the Edit | Copy menu
item (mnuEditCopy) and write the following code in it:

private void muEdi t Copy_C i ck(object sender, EventArgs e)
{

}

t xt Edi t. Copy();

In the Code editor, create a Click event procedure for the Edit | Copy context
menu item (cmnuEditCopy) and write the following code in it:

private void crmuEdi t Copy_dick
(obj ect sender, EventArgs e)
{

}

mmuEdi t Copy C i ck(sender, e);

In the Code editor, create a Click event procedure for the Edit | Paste menu
item (mnuEditPaste) and write the following code in it:

private void muEdi t Paste_Cick
(obj ect sender, EventArgs e)
{

}

txt Edi t. Paste()

14. In the Code editor, create a Click event procedure for the Edit | Paste context
menu item (cmnuEditPaste) and write the following code in it:

private void cnmuEdi t Paste_C i ck
(obj ect sender, EventArgs e)
{

}

mmuEdi t Paste _d i ck(sender, e);

Explanation of the Code

The TextBox class has Cut, Copy, and Paste methods. These methods work the
same as the Cut, Copy, and Paste menu items of the Edit menu item in Microsoft
Word and other Windows applications. The Cut method copies the selected text to
the clipboard, but removes the selected text from the text box. The Copy method also
copies the selected text to the clipboard, but does not remove the selected text from
the text box. The Paste method copies the text in the clipboard to the text box,
beginning with the cursor location in the text box.

The Cut, Copy, and Paste methods of the TextBox class are called in the Click event
procedures of the corresponding Edit menu items: Edit | Cut (mnuEditCut), Edit |
Copy (mnuEditCopy), and Edit | Paste (mnuEditPaste).

The Cut, Copy, and Paste methods of the TextBox class also could be called in the
Click event procedures of the corresponding context menu items: Cut (cmnuEditCut),
Copy (cmnuEditCopy), and Paste (cmnuEditPaste). However, this would be a
duplication of code. Here, the duplication is short, but in other circumstances it may
not be. Therefore, it is useful instead to have each context menu item's functionality
handled by the corresponding Edit main menu item.

The preceding section "Adding Functionality to ContextMenuStrip Menu Items”
discussed two different alternatives of having a context menu item's functionality
handled by the corresponding main menu item. To illustrate the use of both
alternatives, the EventHandler class alternative is used for the Cut context menu
item, and the calling of another event procedure alternative is used for the Copy and
Paste context menu items.

Run the application. Type some text in the text editor, select some text, and then cut,
copy, and paste, using the main menu and the context menu.

This text editor certainly is not ready for the commercial market. The Cut, Copy, and
Paste items need to be disabled at the appropriate times. Additionally, further
commands are needed, such as Undo, Select All, and so on. Nevertheless, the Text
Editor project is useful in demonstrating how to link corresponding items on a main
menu and a context menu, as well as showing some methods of the TextBox control.
4 Previous Newxt b

4 Previous

Conclusion

Application users need to give commands to the application,
such as to open, save, or close a file, to print a document, to
cut, copy, or paste text, and so on. Application users give such
commands through the GUI of the application. Two of the most
common GUI elements through which application users give
commands to an ap plication are the main menu and the
context or shortcut menu. In this chapter, you learned how to
create them and to handle and link their events.

There is another common GUI element through which
application users also give commands to an
application—toolbars. In the next chapter, you will learn how to
create toolbars and coordinate them with your menus.

4 Previous

HNext b

Next b

4 Previous MNest b

Quiz

1. What class represents a main menu?

2. What class represents each item on a main menu?

3. What is an access key?

4. Is the Click event raised for all menu items?

5. How do you gray out a menu item so it is not available when it should not be?

6. What does the Items collection of the MenuStrip component contain?

7. What class represents the shortcut or context menu?

8. What class represents each item on a context menu?

9. What does the Items collection of the ContextMenuStrip component contain?

10. What are different alternatives of having a context menu item's functionality handled
by the corresponding main menu item?

Answers

1. A main menu is represented by the MenuStrip class.

2. Each item on a main menu is represented by the ToolStripMenultem class.

3. An access key is the keyboard combination of the ALT key plus a letter in the menu item that
is underlined.

4. No, the Click event is raised only for menu items that do not have subsidiary menu items,
because when a menu item with subsidiary items is clicked, the behavior is to display the
subsidiary menu items.

5. You gray out a menu item so it is not available when it should not be by setting its Enabled
property to False.

6. The Items collection of the MenuStrip component contains a collection of the
ToolStripMenultems belonging to the MenuStrip.

7. The shortcut or context menu is represented by the ContextMenuStrip class.

8. Each item on a context menu is represented by the ToolStripMenultem class.

9. The Items collection of the ContextMenuStrip component contains the ToolStripMenultems
belonging to the ContextMenusStrip.

10. Different alternatives of having a context menu item's functionality handled by the
corresponding main menu item include using the EventHandler class and calling another
event procedure.

4 Frawious MNest b

4 Previous

Chapter 12: Toolbars

Overview

This lesson is all about bars, but not the kind that inspired the
song "Looking for Love in All the Wrong Places.” In this chapter,
we'll explore a kind of bar that will enable you to enhance your
application both visually and functionally.

The toolbar is a part of evpery Windows programmer's life. You
would be hard-pressed to find a Windows application that
doesn't have a toolbar. Indeed, most Windows applications
have several of them.

The functionality of a toolbar button generally duplicates the
functionality of a menu item. For example, the toolbar button
with the printer icon duplicates the functionality of the File | Print
menu item.

There are two good reasons for using a toolbar even though it
may duplicate the functionality of a menu. First, the buttons on
the toolbar are immediately accessible. By contrast, the items
on the menus may be nested several levels deep and can be
accessed only by multiple mouse clicks or keystrokes. Second,
a toolbar button usually has an image, whereas a menu item
usually is text. Quite simply, visual items are more attractive and
apparent to the application's user than text items. This is Visual
C#, after all!

This chapter will show you, through enhancing the Text Editor
project you created in Chapter 11, how to create toolbars for
your forms, add buttons to them, and add images to the
buttons. You also will learn how to associate the clicking of a
particular toolbar button with the clicking of a corresponding
menu item.

4 Previous

HNext b

HNext b

4 Previous
Creating a Toolbar

Just as the main menu is represented by the MenuStrip class,
the toolbar is represented by the ToolStrip class. A ToolStrip
object contains a collection of buttons or other types of controls.

Creating a toolbar is a two-step process: First, you add a
ToolStrip object to your form. Second, you add buttons or other
controls to the toolbar.

Adding a Toolbar to a Form

You add a ToolStrip object to a form using the following steps,
similar to adding a MenuStrip object to a form. Try the following
steps to add a ToolStrip to the Text Editor project you created in
Chapter 11:

1. Open the Text Editor project.
2. Open the form in designer view.

3. Double-click the ToolStrip component in the Toolbox to
add it to the form. Figure 12-1 shows the ToolStrip
component after it has been added to the form.

= pau e Yhust 4l [=T]

ol . i = b I - 1 + Gl

LI F_‘E _

0= e

.......

Figure 12-1: ToolStrip added to the form.

As Figure 12-1 shows, the ToolStrip control, like the MenuStrip

Nest b |

and ContextMenuStrip components, appears in the component
tray. The ToolStrip control also appears as a large gray area
under the menu area. This is where the toolbar will be located.

Figure 12-2 shows that, when the ToolStrip control has focus, or
you click the four vertical dots on the left side of the ToolStrip
control, a drop-down box appears on the left side of the
ToolStrip control, and what is called a smart task arrow appears
on the right side of the ToolStrip control.

2 M - Micirsof! ¥hoal dlodis

il OB & A5

B farrei B
}

ol

Figure 12-2: ToolStrip with drop-down box and smart task
arrow.

The ToolStrip control is automatically associated with the form.
This is unlike the ContextMenuStrip component, which is not
associated with the form without you first setting the
ContextMenuStrip property of the form.

Note The toolbar we just added has the default name of
toolBarl. You don't need to change this name because
this project uses only one toolbar. However, if your
application uses more than one toolbar, as many
applications do, then you should choose logical names
to differentiate among the different toolbars.

Adding Buttons to the Toolbar

The button, represented by the ToolStripButton class, is the
most common type of control on a toolbar, and therefore it's the

control covered in this section. However, toolbars may contain
other types of controls. For example, in Microsoft Word, the
formatting toolbar contains drop-down boxes for the type and
size of fonts.

There are several different alternative methods by which you
can add buttons or other controls to the toolbar. One alternative
is the Items Collection Editor, which we used in Chapter 11 to
add items to the main menu. Figure 12-3 shows the Items
Collection Editor for the toolbar.

B Collection Fditos b J:]

[aalSkrip tadRrp

L
[ot
Manlhars M ik aettinge
SSRGS et o

[
+ e

™

Figure 12-3: Iltems Collection Editor for the toolbar.

You can display the Items Collection Editor by displaying the
Properties window for the toolbar and then clicking the ellipsis
(...) next to the Items collection property shown in Figure 12-4.

Properties

toolStripl System.Windows.Farms.Tac =

22 1| [

Canwverflow True L
ContextMenuStr (none)
Dock Top
Enabled True
Fonk Tahoma, 8.25pt
zereratetember True
B GripMargin 2, 2,22
GripStyle Wisible
ImageScalingSize 16, 16
ImeMode MoConkrol
({Collection) D
LayoutStyle Horizonkalstackiwith
Location 0, 24
Locked False
B Margin 0,0,0,0

MaximumSize 0,0
MinimumSize 0,0

Modifiers Private
Padding 0,000
RenderMode ManagerRenderMot
Right TolLeft Mo
ShowltemToolTip True P
Items
Caollection of kems to display on the
ToolStrip.

Figure 12-4: Items Collection property of the toolbar.

You also can display the Items Collection Editor by first clicking
the smart task arrow at the rightmost edge of the toolbar. This
displays the ToolStrip Tasks pane shown in Figure 12-5.
Clicking Edit Items... at the bottom of this pane displays the
Items Collection Editor.

ToolStrip Tasks
Embed in ToolStripContainer

Insert Standard Items

RenderMode ManagerRenderMode v
Dock Top v
GripStyle Visible v

Edit Items...

Figure 12-5: ToolStrip Tasks pane.

Once you display the Items Collection Editor, you first select the
type of item to be added. The item usually is a button, but also
may be another control, as shown in Figure 12-6.

Figure 12-6: Drop-down box in Items Collection Editor.

Once you have chosen the control, you then click the Add
button to add the control to the toolbar. Figure 12-7 shows the
Items Collection Editor after three buttons have been added to
the toolbar.

Itevre Collecion Editor F{m

T vy] ik 10 e oo

Figure 12-7: Iltems Collection Editor after three buttons have
been added to the toolbar.

As Figure 12-7 also shows, choosing one of the buttons in the
left pane shows the button's properties in the right pane. You
should change each button's Name property. Later in this
chapter, we will be using these buttons to parallel the
functionality of the Edit | Cut, Edit | Copy, and Edit | Paste menu
items. Accordingly, | have named the three buttons tbtnEditCut,
tbtnEditCopy, and tbtnEditPaste. The "tbtn" prefix indicates a
toolbar button, and the suffix (EditCut, EditCopy, or Edit Paste)
indicates the functionality of the toolbar button.

Additionally, delete the value of the Text property of each
button, because these buttons will be displaying images, not
text.

Click OK to close the Items Collection Editor and create the
buttons you specified. Figure 12-8 shows the toolbar area after
several buttons have been added.

*® Form1

Fe Edit
Gl alad

|
Figure 12-8: Toolbar with added buttons.

Associating Images with Toolbar
Buttons

So far our toolbar is not very impressive. All the buttons look the
same, with a generic image that, as near as | can tell, looks like
a sun over a mountain.

The most common visual cue for a toolbar button is an image.
Figure 12-9 shows a toolbar in Microsoft Word. The images
show each toolbar button's purpose, such as New, Open, and
Save.

QsEdld azlo- B

Figure 12-9: Images on toolbar buttons in Microsoft Word.

We are now going to add images to the toolbar buttons.

The first step concerns the DisplayStyle property of the

ToolStripltem class. This property, which is an enumeration,
determines whether an image or text may be displayed on a
button. Table 12-1 lists the possible values for this property.

Table 12-1: DisplayStyle Enumeration Values
Value Description

Image The ToolStripltem may display only an
image. This is the default.

ImageAndText The ToolStripltem may display both an
image and text.

None The ToolStripltem may not display either
an image or text.

Text The ToolStripltem may display only text.

Using the Items Collection Editor, set each button's DisplayStyle
property to Image (if necessary, given that it is the default)
because we intend each button to display an image but no text.
Text is helpful to identify the purpose of a toolbar button.
However, the small area of the button would be crowded by
including text as well as an image.

Note You can set the ToolTipText property of the button to a
short textual hint of the button's purpose. For example,
you could set the ToolTipText property of tbnEditCut to
"Cut." Then, when the user hovers the mouse cursor
over the button, a ToolTip of "Cut" will appear. A
ToolTip has the advantage of a textual explanation of
the button's purpose without taking up space on the
small area of the button.

The next step is to set the Image property of each button. This
property, as its name suggests, sets the image to be displayed
in the button.

Using the Items Collection Editor, go to the Image property of a
button. Figure 12-10 shows the Image property of the Cut
button, which currently is set to System.Drawing.Bitmap and
shows the default image.

thtnEditCut System, Windows.Forms. TosStripButton -
=:[a1] @]
TheckStake Unechuached -~
DesplayStyle Imiage
Dol hckEnabled False E&
Enabled True
H Font Tahoma, B.25pt
ForeColos Bl controltest
Genarateember True
© P (2] Sstcm.Orawing Sitmop (L]
Imageilgn MiddkaCenter
ImageScalng SireToFt
Image Transpanent Cobor E Magenta
[Margin 01,02
MergeAction Append
Mergelndex -1 e
Image
The image that will be displayed on the bem.

Figure 12-10: Image property of ToolStripButton.

Click the ellipsis (...) next to System.Drawing.Bitmap. This will
display the Select Resource dialog box shown in Figure 12-11.
You use this dialog box to assign an image to a form or control
in a Windows application.

Select Resource

Resourcs oofted
(%) Local ressurce:

[o]

() Project rescurce fils:

Lo J{ cocs]

Figure 12-11: Select Resource dialog box.

Choose the Local Resource radio button and then click the
Import button associated with it. This displays the Open dialog
box shown in Figure 12-12, which you use to browse to and
select an image file to be displayed on the button.

2%
Look e | 1 (RETENR = O e
\ B 3w Fecpy (A:)
o wrlLocal Dush (1
MyFiecent | [SDESKI_WOLL 602D
[vt s 2h OO0 Drvem (E:)
- aslDELL_1703FP (F:)
*'i oy Shaind Doouments
Diesiking s Documenits
Hy L::r..nerf:-
iy Carpubsi
‘_'d File riame v " Open
W b Filew of fppen s Flel” o " pa” P ” Bing " el " prgl W l Carcel |

Figure 12-12: Open dialog box.

Visual Studio 2005 includes bitmap files you can use as toolbar
images. These files are located by default within the directory
C:\Program Files\Microsoft Visual Studio 8
\Common7\VS2005ImageLibrary. From there | went to the
folder bitmaps\commands\highcolor, shown in Figure 12-13. As
this figure shows, there are bitmap files (.bmp extension) for
Cut, Copy, and (if you scroll further in the dialog box depicted in

the figure) Paste.

DOpen
Losk i | I haghool W (3 "
& o brngs 1t e
:I) CompareVersions. bmp L
oy Pt o Conlfleh bing
0 eourmamils | Copry g

- ‘-. CingryFolder. bang
*'1' w Cut bevg

 Datiaontsiner_Horslirst, binp

WAL LA

Dasking 3
4 DatsContaines_Mowelast b
O Dol ot aing Merealisal Bing Eak [l ermat
',_.I" S Dt s ontisiner_Howedrevios. bmp 3k Tkl by
ki Decusaris S:L'.v?ir bimp wihope. bang
o DelstePoider big i chodad. b
% Dt T bk bomp eps_open. bmp
;! ™ Dialberg ool
J" i (Dbl ErC oo b FapandSnasce
b Compider
‘j Fibs e
Bl b et Fibes of iype e Fimel” g " e Bemp " el

-
0
g
b
#
w 1[5

Figure 12-13: Bitmap Files for Cut, Copy, and Paste.

Note You may not have these bitmap files installed, or they
may be installed at a different location, depending on
the particular edition you purchased or your installation
options.

Choose the Cut bitmap file for the Cut toolbar button and then
click the Open button. As Figure 12-14 shows, the Select
Resource dialog box now contains the image for Cut.

Select Resource
Resourcs conbext
G} Local resounce:

I Impot... ”_ Clear J
() Projoct nescurce fils:

Lo J[concs |

Figure 12-14: Select Resource dialog box containing the
image for Cut.

Click OK in the Select Resource dialog box. As Figure 12-15
shows, the Items Collection Editor now shows an image for the
Image property of the Cut button.

Properties

thtnEditCut System. Windows.Forms. ToolStripButton r
s:[pllf@lr =
CheckShabe Unchecked h
CesplanStyle Image
DionstsleChokE nabled Falsa
Enabled True
H Font Tahoma, 8.25pt
ForeColor Bl cControlText
Generatelember True
© (S | S stem.OrawingBitmap ()
Imageibon MiddkeCenter
Imagescaling SizeToFi
ImagaTransparentColor E Magenta
[Margin 0,1,0,2
[Hargaiction Appand
Iheroelndiex 1 bt
Image
Thie: irmsges thst vall b cesplavyed on this e,

Figure 12-15: Items Collection Editor showing the image for
the Cut button.

Repeat the same process for the Copy and Paste buttons,
except of course choose Copy.bmp for the Copy button and
Paste.bmp for the Paste button. When done, click OK to close
the Items Collection Editor. Figure 12-16 shows the toolbar, with
images for Cut, Copy, and Paste.

| ™ Form1

Figure 12-16: Toolbar buttons with images for Cut, Copy,
and Paste.

Note The size of the bitmap and the size of the toolbar
button may be different. You can set the ImageScaling
property to SizeToFit so the image will size to fit on the
toolbar button.
4 Frewious Next b

4 Previous MNest b

Associating Code with Clicks of Toolbar
Buttons

The toolbar buttons look prettier now that each has an image on it, but they
still don't do anything when they're clicked.

In this section, we'll write code so the Cut toolbar button provides the same
cut action as the Cut menu item and context menu item we worked on in
Chapter 11. Similarly, when you're finished with this section, the Copy
toolbar button will provide the same copy action as the Copy menu item and
context menu item, and the Paste toolbar button will provide the same paste
action as the Paste menu item and context menu item.

The Cut, Copy, and Paste methods of the TextBox class also could be called
in the Click event procedures of the corresponding toolbar buttons. However,
as discussed in Chapter 11 in connection with context menu items, this
would be a duplication of code. Here, the duplication is short, but in other
circumstances it may not be. Therefore, it is useful instead to have each
toolbar button's functionality handled by the corresponding Edit main menu
item.

Chapter 11, in the section "Adding Functionality to ContextMenuStrip Menu
Items," discussed two different alternatives of having a context menu item's
functionality handled by the corresponding main menu item. The same
discussion applies here to having a toolbar button's functionality handled by
the corresponding main menu item. To illustrate the use of both alternatives,
the EventHandler class alternative is used for the Cut context menu item,
and the calling of another event procedure alternative is used for the Copy
and Paste context menu items.

Add the following line of code to the Load event procedure of the form so the
Click event procedure of the Edit |Cut menu item handles the Click event of
the Cut toolbar button:

tbtnEditCut.dick += new Event Handl er (ruEdi t Cut _d i ck);

Create a Click event procedure for the Copy toolbar button so it calls the
Click event procedure of the Edit | Copy menu item (mnuEditCopy):

private void tbtnEditCopy Cick
(obj ect sender, EventArgs e)
{

mukEdi t Copy_C i ck(sender, e) ;

Finally, create a Click event procedure for the Paste toolbar button so it calls
the Click event procedure of the Edit | Paste menu item (mnuEditPaste):

private void tbtnEditPaste_Cick
(obj ect sender, EventArgs e)
{

}

mukEdi t Paste_Cl i ck(sender, e);

4 Previous MNewt b

4 Previous

Conclusion

Application users use toolbars as well as menu items to give
commands to an application. The functionality of a toolbar
button generally duplicates the functionality of a menu item.
However, the purpose of this duplication is that toolbar buttons
have two advantages over menu items. First, toolbar buttons
are immediately accessible, whereas menu items may be
nested several levels deep and can be accessed only by
multiple mouse clicks or keystrokes. Second, a toolbar button
uses an image, which gives a more visual interface than the text
of a menu item.

This chapter showed you how to create toolbars for your forms,
add buttons to them, and add images to the buttons.
Transitioning from the graphical user interface to code, you also
learned how to associate the clicking of a particular toolbar
button with the clicking of a corresponding menu item.

So far our Text Editor is not able to read from or write to any file
from the hard drive. This functionality will be added in the next
chapter.

4 Previous

HNext b

Next b

4 Previous MNest b

Quiz

1.

2.

8.

9.

What class represents a toolbar?

What class represents each item on a toolbar?

What does the Items collection of the ToolStrip component contain?
Is a toolbar item limited to a button?

What are advantages of a toolbar over a corresponding menu?

What are different alternatives of having a toolbar item's functionality handled by the
corresponding main or context menu item?

What does the DisplayStyle property of the ToolStripltem class determine?
What does the Image property of the ToolStripltem class determine?

What editor is useful in adding controls to a toolbar?

10. What is a good prefix for naming a toolbar button?

Answers

1. The toolbar is represented by the ToolStrip class.

2. Each item on the main menu is represented by the ToolStripltem class.

3. The Items collection of the ToolStrip component contains a collection of the ToolStripltems
belonging to the ToolStrip.

4. No, a toolbar item is not limited to a button, but instead may be one of several other types of
controls.

5. Toolbar buttons are immediately accessible, whereas menu items may be nested several
levels deep and can be accessed only by multiple mouse clicks or keystrokes. Additionally, a
toolbar button uses a graphic, which gives a more visual interface than the text of a menu
item.

6. Different alternatives of having a toolbar item's functionality handled by the corresponding

main or context menu item include using the EventHandler class and calling another event
procedure.

7. The DisplayStyle property of the ToolStripltem class determines whether an image or text
may be displayed on a button.

8. The Image property of the ToolStripltem class determines the image displayed on a button.
9. The Items Collection Editor is useful in adding controls to a toolbar.

10. One good prefix for naming a toolbar button is tbtn, with "t" standing for toolbar and "btn"
standing for button.

4 Previous MNest b

4 Previous MNest b

Chapter 13: Accessing Text
Files

Overview

Perhaps the most common purpose of Visual C# applications is
to access, view, and modify data. The data is stored on the
computer's hard drive as a file or files so it will be available even
after the application exits.

Text files long have been used to store data. Text files
preceded databases, but they often are not thought of as
advanced as databases such as Oracle, SQL Server, and
Access. Indeed, databases do have advantages over text files.
However, unlike databases, with each one having a different
format and therefore often can be understood only by
applications that have the software for that particular database
format, text files generally are universally understood by
applications. For this reason, text files are used as a common
language between applications that otherwise have
incompatible software for data transfer between them.

I will show you in this chapter how to read from and write to a
text file. First, however, | will show you how to add to your
program Open and Save dialog boxes, such as those used in
sophisticated programs like Microsoft Word, so you can open a
text file to read from it, and save to a text file to write to it.
4 Pravious Mest b

Open and Save File Dialog Boxes

In Microsoft Word and many other Windows programs, the application user
may open a file located with the Open dialog box, which they display with
the File | Open menu command or the Open toolbar button. Similarly, the
application user may save information to a file with the Save dialog box,
which they display with the File | Save menu command or the Save toolbar
button.

The Open dialog box is a control of the OpenFileDialog class, and the Save
dialog box is a control of the SaveFileDialog class. In this section, | will
show you how to add Open and Save dialog boxes to your application.

Adding an OpenFileDialog Control to Your
Form

Figure 13-1 shows an Open dialog box in Notepad.

Open il
Lok j Dby v T B
_ -
£) -
W Fpser e g N 1]
T e i e, o
Y TetFe. v
[iee by Pl
oy
o8
Wiy Computes
‘J Fie rowme - -_'--.-‘1'?“
i
Wy Mt Files of type B e

Figure 13-1: Open dialog box in Notepad.

You add an OpenFileDialog control to a form using the following steps,
similar to adding a MenuStrip or ToolStrip object to a form. Try the following
steps to add an OpenFileDialog control to the Text Editor project you
created in Chapter 11 and enhanced in Chapter 12:

1. Open the Text Editor project.

2. Open the form in designer view.

Nest b |

3. Double-click the OpenFileDialog control in the Toolbox (it is in the
Dialogs section) to add it to the form.

Figure 13-2 shows the OpenFileDialog control after it has been added to
the form. The OpenFileDialog won't appear directly on your form, but
instead in the component tray below the form, as shown in Figure 13-2.

SCRER 1 2 = B el = iy -
Tk ol Powm)as [Drign] P

1J|u|-1 r-_ml!

5= oa

i JEEEE L vl T v ol

Figure 13-2: OpenFileDialog in component tray.

The default name of this control likely is OpenFileDialogl. Give this control
a more logical name, such as digOpen. The "dIg" prefix indicates the
control is a dialog box and the "Open" suffix indicates that the purpose of
the dialog box is to open a file. You should also change the FileName
property so that it doesn't display the control's name in the dialog box. You
don't need to change any of the other default properties of this control.

Showing the OpenFileDialog Control

The MenuStrip, ContextMenuStrip, and ToolStrip controls also appear in
the component tray. However, unlike these controls, the OpenFileDialog
control won't appear on your form when you run your program. Instead, you
need to write code to display the OpenFileDialog control.

One of the methods of the OpenFileDialog class is ShowDialog. As the
name suggests, its purpose is to show the Open dialog box. You can call
the ShowDialog method via the following code, which starts with the name
of the object (dlgOpen), followed by a period separating the object name
from the method name (ShowDialog), followed by empty parentheses
(because this method has no parameters):

dl gOpen. Showbi al og();

Let's test this code in the Text Editor project. Add a button to the form
named btnRead with the Text property Read. Create the following Click
event procedure for this button:

private void btnRead_Cick(object sender, EventArgs e)
{

}

dl gOpen. ShowDi al og();

When you run the project and click the Read button, the OpenFileDialog
control will appear, similar to Figure 13-1. The OpenFileDialog control is
modal, meaning your application cannot continue until you close the Open
dialog box by clicking one of its two buttons—Open (after selecting a file) or
Cancel.

Determining Whether Open or Cancel is
Chosen

Although clicking either the Open or Cancel button will close the Open
dialog box, it is important to know which button was chosen. If the Open
button was chosen, we would want our code to open the selected file.
However, if the Cancel button was chosen, we would not want our code to
attempt to open a file because no file was selected.

From the code we have written so far, you can't tell whether the Open or
Cancel button was chosen. Now we will add to the code so we can
determine which button was chosen.

In addition to displaying the OpenFileDialog control, the ShowDialog
method also returns a DialogResult. The DialogResult was discussed in
Chapter 10 in connection with dialog forms. As discussed there, the value
of the DialogResult returned by the ShowDialog method corresponds to the
button the user selected to close the dialog box. For example, if the user
chose the OK button, the value returned by the ShowDialog method is
DialogResult.OK. However, if the user chose the Cancel button, the value
returned by the ShowDialog method is DialogResult.Cancel.

The Open dialog box has an Open button instead of an OK button, but the
DialogResult that corresponds to the user's choice of the Open button still
is DialogResult.OK. Not surprisingly, the DialogResult is
DialogResult.Cancel if the user instead chose the Cancel button to close

the Open dialog box.

Here is the syntax for using the return value of the ShowDialog method to
determine whether the user chose the Open or Cancel button:

Di al ogResul t dr;
dr = dl gOpen. Showhi al og() ;
if (dr == Di al ogResul t. OK)

/1 Open button was clicked
el se
[/ Cancel button was clicked

This first statement creates a DialogResult variable because that is the data
type returned by the ShowDialog method. The second statement calls the
ShowDialog method and assigns its return value to the DialogResult
variable we created in the first statement. The following if ... else statement
checks to see if the value of the DialogResult variable is DialogResult.OK. If
it is, the Open button was clicked. Otherwise, the Cancel button was
clicked.

Accordingly, modify the code in the Click event procedure of the Read
button so it reads as follows:

private void btnRead Cick(object sender, EventArgs e)

{
D al ogResul t dr;

dr = dl gOpen. Showbi al og() ;
if (dr == Di al ogResul t. OK)
MessageBox. Show(" OQpen button was clicked");

Run the project. Click the Read button to display the Open dialog box.
Select a file and click the Open button. The message box will display that
the Open button was clicked. Close the message box. Click the Read
button again to redisplay the Open dialog box. This time click the Cancel
button. No message box will display, indicating that the Cancel button was
clicked.

ldentifying the File to Open

We have made progress! We can now determine through code whether the
user chose the Open or Cancel button. The next step is to determine the
name of the file the user chose if they selected the Open button, because

we need that name to know which file to open.

The OpenFileDialog class has a FileName property whose value is a string
containing the path to and the name of the file selected in the file dialog
box. For example, if we chose the file data.txt in the C:\temp directory, the
FileName property would be C:\temp\data.txt.

Usually you are interested in the FileName property only if the user chose
the Open button. If the user chose the Cancel button instead, the FileName
property is an empty string.

Modify the code in the Click event procedure of the Read button so it reads
as follows:

private void btnRead Cick(object sender, EventArgs e)

{
Di al ogResul t dr;

dr = dl gOpen. Showbhi al og() ;
if (dr == Di al ogResul t. OK)
MessageBox. Show(dl gOpen. Fi | eNane) ;

Run the project. Click the Read button to display the Open dialog box.
Select a file and click the Open button. The message box will display the
path to and the name of the file. You can now close the message box and
then close the form.

SaveFileDialog Class

You use a SaveFileDialog control to add to your application the ability to
save files using the built-in Save dialog box, which is shown in Figure 13-3.

s,_J

L

Figure 13-3: Save dialog box.

Note The Save dialog box often is titled "Save As" rather than "Save,"
as in Figure 13-3. The title depends on, among other factors, if the
contents are being saved to a different file than the one opened, or
whether the file is being saved for the first time. The discussion in
this chapter about the Save dialog box applies equally to the Save
As dialog box.

Add a SaveFileDialog control to your form, as you did the OpenFileDialog
control earlier in this chapter. Name the SaveFileDialog control digSave.
You don't need to change any of this control's other default properties.

The SaveFileDialog control, like the OpenFileDialog control, is modal,
meaning your application cannot continue until you close the Save dialog
box by clicking one of its two buttons—Save or Cancel.

Once you have learned how to use an OpenFileDialog control, using the
SaveFileDialog control is easy. The reason is the ShowDialog method,
DialogResult return value, and FileName property work the same way with
a SaveFileDialog control as they do with an OpenFileDialog control. The
DialogResult returned by clicking the Save button is DialogResult.OK, just
as is the case with clicking the Open button in the OpenFileDialog control

Let's test this by adding to the Text Editor project another button to the
form, named btnWrite with the Text property Write. Create the following
Click event procedure for this button:

private void btnWite Cick(object sender, EventArgs e)

{
Di al ogResult dr;

dr = dl gSave. Showhi al og();
if (dr == Di al ogResul t. OK)
MessageBox. Show(dl gSave. Fi | eNane) ;

Run the project. Click the Write button to display the Save dialog box.
Select a file and click the Save button. A message box will display the path
to and the name of the file. Another message box always will advise you
that the file already exists and ask you if you want to replace it. Answer yes

to close the warning message box (don't worry, the file will not be replaced).

The Save dialog box will close. Next, click the Write button to display the
Save dialog box again. This time click the Cancel button. No message box
will display, indicating that the Cancel button was clicked. Finally, close the
form to end the application.

4 Previous

Next b

Reading from a Text File

| am always telling my students that the best way to learn computer
programming is to write programs. Therefore, you will learn in this section
how to display in the text box in the Text Editor project the contents of a
text file selected in an Open dialog box. When we are finished writing
code, clicking the Read button will display in the TextBox control the
contents of a text file. Figure 13-4 shows how the application will appear
after the Read button is clicked and the contents of a text file are
displayed in the TextBox control.

Jeff Kert lives in a house run by
two very spoiled [taban Greyhound
dogs, Micaela and Dante

Figure 13-4: Application displaying the contents of a text file.

Conversely, in the next section you will further enhance the project so that
when you click the Write button, the application will write to the text file the
contents of the TextBox control. Thus, if | make any changes to the text of
the TextBox control and click the Write button, the text file will be updated
with those changes.

StreamReader Class

We will use the StreamReader class to read from the text file. The word
"stream" refers to a stream of data, moving from one place to another, in
this case from a text file to your application. The word "reader" means the
file is being read. As you might now guess, when we want to write to the

Nest b |

file, we will use the StreamWriter class.

To use the StreamReader class, we first will declare a variable of that data
type:
| O StreanReader reader Var;

The term "10" must precede "StreamReader" or else the compiler will
complain that the term StreamReader is not defined. The reason is that
the StreamReader class is part of the System.lO namespace.

Importing the System.IO Namespace

The compiler will not look in the System.lO namespace unless we tell it to.
One way to tell the compiler to look in the System.IO namespace is to
precede StreamReader with System.IO.

There is an easier way to tell the compiler to look in the System.lO
namespace. At the top of the code module, type the following:

usi ng System |G,

Including this one using statement means that you don't have to precede
StreamReader (or StreamWriter) with System.lO each time you use that
term in your code. Now you can declare the StreamReader variable
readerVar in the Click event procedure of the Read button without
preceding StreamReader with 10:

St r eanReader reader Var ;

Revise the code in your Read button Click event procedure to appear as
follows:

private void btnRead Cick(object sender, EventArgs e)
{
St r eanReader reader Var;
Di al ogResul t dr;
dr = dl gOpen. Showbhi al og() ;
if (dr == Di al ogResul t. CK)
MessageBox. Show(dl gOQpen. Fi | eNane) ;

Instantiating a StreamReader Variable

Although we have created the StreamReader variable readerVar, right

now that variable does not relate to any text file. Therefore, the next step
is to connect the StreamReader variable readerVar to the text file we want
to read. This process is known as instantiating the variable.

We will instantiate the StreamReader variable with the following
statement:

reader Var = new StreanReader (dl gOpen. Fi | eName) ;

This line of code will replace the code that showed the message box,
MessageBox. Show(dlgOpen.FileName), because the message box was
for illustration purposes, and we are now actually about to open the
selected file for reading rather than just display its path and name.

Therefore, so far your Read button Click event procedure should read as
follows:

private void btnRead Cick(object sender, EventArgs e)
{

St reanReader reader Var;
Di al ogResul t dr;
dr = dl gOpen. Showbhi al og() ;
if (dr == Di al ogResul t. CK)
reader Var = new StreanReader (dl gOpen. Fi | eNane) ;

Now let's take a careful look at the statement we've just added, starting
from the right side of the assignment statement.

The New keyword is used to create a new StreamReader instance that
points to the text file to be read. The term "StreamReader" in the
statement New StreamReader(dlgOpen.FileName) indicates the type of
instance being created. When the name of the function (here,
StreamReader) is the same as the name of a class (also StreamReader),
as itis here, it is called a constructor. The constructor is used to
"construct” the new instance.

The constructor in this code example takes one argument—the name of
the file to be read. That file name is obtained from the FileName property
of the Open dialog box.

The right side of the assignment operator returns the new instance, which
then is assigned to the StreamReader variable readerVar on the left side
of the assignment operator. Now the StreamReader variable readerVar is
connected to the text file we want to read.

Reading the Text File into the TextBox

The StreamReader class has a ReadToEnd method that returns a string
representing the entire text of the text file. We then assign that string to
the Text property of txtEdit so that the text of the TextBox control will
display the entire text of the text file. Accordingly, add the following
statement to your Read button's Click event procedure:

txt Edi t. Text = reader Var. ReadToEnd();

Your Read button's Click event procedure now should read as follows
(note that because there are now two statements conditional on the if
control structure, they are enclosed in brackets):

private void btnRead_Cick(object sender, EventArgs e)
{

St r eanReader reader Var;
D al ogResul t dr;
dr = dl gOpen. Showbi al og() ;

if (dr == Di al ogResul t. CK)

{
reader Var = new StreanReader (dl gOpen. Fi | eNane) ;
txt Edit. Text = reader Var. ReadToEnd();

The StreamReader class has other methods that are alternatives to
ReadToEnd. The Read method reads a specified number of characters,
and the ReadLine method reads a line. For example, if you want to load
the data one line at a time into a row of a control, the ReadLine method
might be a logical choice.

Closing the Text File

Once we have read the entire contents of the text file, there is no further
need to read from it. Therefore, we should close the text file for reading.
The StreamReader class has a Close method to accomplish this.
Accordingly, add the following line of code to close the text file for reading:

reader Var . C ose() ;

This completes the Read button Click event procedure, which now should

read as follows:

private void btnRead_Cick(object sender, EventArgs e)
{

St r eanReader reader Var ;

D al ogResul t dr;

dr = dl gOpen. Showbi al og() ;

if (dr == Di al ogResul t. OK)

{
reader Var = new StreanReader (dl gOpen. Fi | eNane) ;
txt Edi t. Text = reader Var. ReadToEnd();
reader Var . Cl ose();

}

Closing the text file for reading frees system resources, specifically
memory. This is important. Memory is required to keep a file open for
reading (or writing). When you don't need to keep the file open anymore,
you should give the memory back to the operating system.

By analogy, a library would run out of books if patrons checked out books
but never returned them when they were finished reading the books.
Similarly, your computer only has so much available memory for
applications (some memory is needed by the operating system itself). If
applications don't return memory after checking it out, the operating
system eventually will run out of memory. The consequence of the
operating system running out of available memory for applications often is
a general protection fault or illegal exception, bringing the user's work to a
crashing halt.

Additionally, later in this chapter you may be writing to the same text file
that you read. Trying to open a file for writing that already is open for
reading may cause problems, which can be avoided by closing the file first
before reopening it for another purpose.

Run the project. Click the Read button. Use the resulting Open dialog box
to select and open a text file. The contents of that text file should be
displayed in the text box. You can then close the application.

4 Previous

MNext b

Writing to a Text File

The next step in enhancing the Text Editor project will be to write to the text
file by copying the contents of the text box to the text file. The code to do
this will be in the Click event procedure of the Write button.

StreamWriter Class

We will now change the code used previously in this chapter for the Click
event procedure for the Write button by replacing the code displaying the
message box with the following code:

StreamWiter witerVar;
witerVar = new StreanWiter(dl gSave. Fi | eNanme, fal se);

The code for the Click event procedure of the Write button should now look
like this:

private void btnWite Cick(object sender, EventArgs e)
{

Di al ogResul t dr;

dr = dl gSave. Showhi al og();

if (dr == Di al ogResul t. OK)

{
StreanWWiter witerVar;
witerVar = new Stream\Witer
(dl gSave. Fi | eNanme, fal se);
}

The two lines of code we just added may look familiar from the code we
wrote earlier in this chapter for the StreamReader. There, we declared a
StreamReader variable and then instantiated that variable using the
StreamReader constructor to read a text file. Here, we are declaring a
StreamWriter variable and then instantiating that variable using the
StreamWriter constructor to write to a text file. As the name suggests, the
StreamWriter class is used when writing to a text file.

The first argument of the StreamWriter constructor is the name of the text
file. This is the same as the first argument of the StreamReader
constructor. However, the StreamWriter constructor has an additional,

second argument.

Note The StreamWriter constructor, like the Show method of the
MessageBox class, is overloaded, which means that it may be
called with a different number of arguments.

The data type of the second argument of the StreamWriter constructor is
Boolean. The value of this second argument is true if you want to add to the
existing contents of the text file, and false if instead you want to overwrite
the existing contents of the text file.

In this project, we want to overwrite rather than add to the existing contents
of the text file. Accordingly, the value of the second argument is false.

If you instead wanted to add to the existing contents of the file, you would
use true instead of false as the second argument of the StreamWriter
constructor. One example would be a log file, which logs events or
problems. Normally you would want to add a new event or problem to the
prior list, not erase the prior list in the process.

Writing from the TextBox to the Text File

The StreamWriter class has a Write method that writes the contents of its
argument to the text file at which the StreamReader instance is targeted. In
this application, we want to write the contents of the text box to the text file.
Therefore, the argument is the Text property of the TextBox control.
Accordingly, add the following code to the Click event of the Write button:

witerVar. Wite(txtEdit. Text);

The code for the Click event procedure of the Write button should now look
like this:

private void btnWite Cick(object sender, EventArgs e)

{
Di al ogResul t dr;

dr = dl gSave. ShowDi al og() ;

if (dr == Di al ogResul t. OK)

{
StreanWiter witerVar;
witerVar = new StreanWiter
(dl gSave. Fi | eNanme, fal se);
witerVar. Wite(txtEdit. Text);
}

Closing the Text File

We are now finished writing to the text file. Accordingly, we should close the
text file for writing, as we closed the text file for reading earlier in this
chapter. Accordingly, add the following statement to the Click event of the
Write button:

writerVar. d ose();

The completed code for the Click event procedure of the Write button
should now look like this:

private void btnWite Cick(object sender, EventArgs e)
{

Di al ogResul t dr;

dr = dl gSave. ShowDi al og() ;

if (dr == Di al ogResul t. OK)

{
StreamWiter witerVar;
witerVar = new StreanWiter
(dl gSave. Fi | eNanme, fal se);
witerVar. Wite(txtEdit. Text);
writerVar.d ose();
}

Warning Your program may make changes to your text file, and you
don't want those changes to cause any problems on your
computer. Accordingly, before you test this project, create a
text file using Notepad or another plain text editor and then
type in whatever contents you would like. However, don't use
Microsoft Word or a comparable word processing program to
create the text file because these programs include formatting
characters as well as text.

Run the project. Click the Read button. Use the resulting Open dialog box
to select and open the text file you created. The contents of that text file
should be displayed in the text box. Then, make changes in the text box.
When you're done making changes in the text box, click the Write button.
When the Save dialog box displays, find and choose the text file you
created and then click the Save button. You may see a message box that

informs you that the file you are saving to already exists and asking you if
you want to replace it. Click the Yes button.

Run your application again and display the text file. The text should show
the changes you made when you first ran the application.

This application is not yet ready for prime time. For example, we should
disable the Write button until a file is opened with the Read button. We also
should create File | Open and File | Save menu items and link their Click
events to the Click events of the Read and Write buttons. You may wish to
try to implement these enhancements. Nevertheless, this project is useful in
demonstrating how to read from and write to a text file.
4 Previous MNewt b

4 Frewious MNext b
Conclusion

In this chapter, you learned how to add to your program Open
and Save dialog boxes that sophisticated programs like
Microsoft Word have. The Open dialog box is a control of the
OpenFileDialog class. Similarly, the Save dialog box is a control
of the SaveFileDialog class. You use the ShowDialog method to
display each dialog box, and you use the DialogResult property
to determine if the user chose the dialog box's Open or Save
button, or instead the Cancel button. If the user chose the Open
(or Save) button, you use the FileName property to retrieve the
file name chosen by the user from the dialog box.

You also learned how to read from a text file using the
StreamReader class and to write to a text file using the
StreamWriter class. Although text files may not seem as
advanced as databases, one advantage text files have over
databases is that text files are universally understood by
applications, whereas databases require specialized software.

However, databases also have their advantages, so the next
chapter will be about them.
4 Previous MNext b

4 Frewious MNext b
Quiz
1. The Open dialog box is a control of which class?
2. What method do you use to show an Open dialog box?
3. What is the return value of showing an Open dialog box?

4. What is the property of the OpenFileDialog class whose value is the file chosen by
the user in an Open dialog box?

5. The Save dialog box is a control of which class?
6. What method do you use to show a Save dialog box?
7. What is the return value of showing a Save dialog box?

8. What is the property of the SaveFileDialog class whose value is the name of the file
to be saved?

9. What class may you use to read from a text file?
10. What class may you use to write to a text file?

Answers

1. The Open dialog box is a control of the OpenFileDialog class.
2. You use the ShowDialog method of the OpenFileDialog class to show an Open dialog box.

3. The return value of showing an Open dialog box is either DialogResult.OK, if the user chose
the Open button, or DialogResult.Cancel, if the user chose the Cancel button.

4. The OpenFileDialog class has a FileName property whose value is a string containing the
path to and the name of the file selected in the Open dialog box.

5. The Save dialog box is a control of the SaveFileDialog class.
6. You use the ShowDialog method of the SaveFileDialog class to show a Save dialog box.

7. The return value of showing a Save dialog box is either DialogResult.OK, if the user chose
the Save button, or DialogResult.Cancel, if the user chose the Cancel button.

8. The SaveFileDialog class has a FileName property whose value is a string containing the
path to and the name of the file to be saved.

9. You may use the StreamReader class to read from a text file.

10. You may use the StreamWriter class to write to a text file.
4 Previous Mext b

4 Previous MNest b

Chapter 14: Databases

Overview

Up until now, we have saved data in a text file. But text files
have their limitations. One limitation is that it is difficult to quickly
retrieve specific data in a text file. There's usually no alternative
to searching the text file from beginning to end, which can take
a long time if the text file contains a lot of data.

Another limitation of a text file is its inability to link different but
related data. For example, a store may have both a list of
customers and a list of orders. Because the orders come from
customers, the two different lists are related. But with a text file,
there's no easy way to link an order in one list with a customer
in another list.

A database does not have these limitations—you can quickly
retrieve specific data using keys and indexes, and you can
easily link different data.

Although there are many types of databases, fundamentally
these different database types share a number of common
characteristics. Accordingly, you will be able to apply what you
learn here to different types of databases.

This chapter will get you started with databases. However, I'm

not going to start with a dry theoretical discussion of what a

database is because that information can be a little abstract if

you haven't first spent some time working with one. So let's roll

up our sleeves (figuratively, of course) and get started working

with a database.
4 Previous Mext b

4 Previous

Installing the Database

Databases come in different formats. Microsoft Access,
Microsoft SQL Server, and Oracle are among the most
common, but there are many others, each with their
advantages, disadvantages, followers, and detractors.

I'll be using a Microsoft Access database in this chapter solely
because | believe my readers are more likely to have Microsoft
Access than other database products such as Microsoft SQL
Server and Oracle. Additionally, it is easier to get started using
Microsoft Access than with most other database products.
However, you will be able to apply what you learn here to other
database formats such as Microsoft SQL Server and Oracle.

Obtaining the Northwind Traders
Database

We will be working with the Northwind Traders database. It is a
Microsoft Access database and is on the installation CD for
Microsoft Access.

However, you can use the Northwind Traders database with
Visual C# 2005 without having Microsoft Access. Microsoft
permits you to download, free of charge, a version of this
sample database for Access 2000. This version also will work if
you have Access XP or 2003.

The download link at the time of this book is
http://www.microsoft.com/downloads/details.aspx?
FamilylD=c6661372-8dbe-422b-8676-
€632d66c529c&displaylang=en. This link may change,
particularly when Microsoft periodically reorganizes its website.
In case you need to do a search, the title of the article is
"Access 2000 Tutorial: Northwind Traders Sample Database."

Installing the Northwind Traders
Database

The name of the installation file is Nwind.exe. Once you
download this file onto your hard drive, double-click on it to start

HNext b

http://www.microsoft.com/downloads/details.aspx?

the installation process. The installation program will ask you to
agree to a license to use the database and then ask where you
want to save the database. Save it wherever you wish on the
hard drive; just remember where you saved it.

The saved database may have the name Nwind.mdb or
Northwind.mdb. The ".mdb" extension is an abbreviation of
"Microsoft database" and is used for Access databases.

4 Previous

Next b

4 Previous

Connecting to the Database

If you have Access, you can view the Northwind Traders
database from that application.

You can also view the Northwind Traders database via Visual
C# 2005. You don't need to open or create a Windows
application. However, you first need to connect Visual C# 2005
to the database.

To start the process of connecting Visual C# 2005 to the
Northwind Traders database, choose the Tools | Connect to
Database menu command. This will display the Choose Data
Source dialog box similar to that shown in Figure 14-1 (yours
may have a different number of choices).

Choose Data Source El@

¢ | Adwuarys use this selection | Coancel |

Figure 14-1: Choose Data Source dialog box.

As Figure 14-1 shows, the upper pane of the Choose Data
Source dialog box lists different database formats, such as

Access, SQL Server, and Oracle. Because Northwind Traders is

an Access database, choose Microsoft Access Database File.
Figure 14-2 shows the Choose Data Source dialog box after
you choose Microsoft Access Database File.

Nest b |

Choose Data Source

Dats source:
Diescriphion
Microscit Acccss Dotabacse Fie
Microscift SDBC ks Source Lses this sedaction bo connact bo &
e roscit SO Sarver Microsoft Access database file using
Microsclt SO0 Server Databass Fis the nasthve Jat provider through the
Microsoft SOL Server Mobile Edition JMET Framewsork. Data Prowider for
Oracle Dk sbase DLE DE.
curspecified >
Data provider:
MET Framework Data Frovider for O 8
[#] Alwearys use this selaction [Conkire | Cancel |

Figure 14-2: Data Source dialog box after the data source is
selected.

As Figure 14-2 shows, the drop-down box below the upper
pane, blank in Figure 14-1, now lists the one available data
provider, .NET Framework Data Provider for OLE DB. A data
provider is a code component that is used by your application to
connect to a specific database format. There are many
database formats, so there are many providers, at least one for
each database format supported by the .NET Framework. The
.NET Framework may have several alternative data providers
for some database formats, but just has one, the .NET
Framework Data Provider for OLE DB, for the Microsoft Access
database format.

As Figure 14-2 also shows, the Description area to the right of
the upper pane, blank in Figure 14-1, now contains the following
text: "Use this selection to connect to a Microsoft Access
database file using the native Jet provider through the NET
Framework Data Provider for OLE DB." The reason for the term
"Jet" is that Microsoft Access uses the Jet database engine.

Finally, Figure 14-2 shows that once you have selected a data
source and a data provider, the Continue button, disabled in
Figure 14-1, now is enabled.

Click the Continue button. This will display the Add Connection
dialog box shown in Figure 14-3.

Add Connection

Enter information to connect ko the selected data source or
click "Change" to choose a different data source and/or

provider,
Data SOUrce:;

| [Microsoft Access Database File (OLE DB)
Database file name:

| Browse. ..

Log on to the database

User name: | &dmin

| Password: _
[]5ave my password
| |
[Test Connection [7 Cancei
=

Figure 14-3: Add Connection dialog box.

Use the Browse button to find and choose the nwind.mdb (or
Northwind.mdb) file you saved on your hard drive when you
installed the Northwind Traders database. Once you have done
this, as shown in Figure 14-4, the path to and the name of the
database should appear in the Database File Name text box.

Add Connection

Enter information to connect to the selected data source or
chick "Change” to choose a different data source andfor
provider,

Data source:
\Microsoft Access Database File (OLEDB) | [Change...
Database file name:

D:\Documents and Settings! JAK Visual Studi |

Lag on to the database

User name: | Admin

Password:
[[]save my password
i Test Connection] [Ok] [Cancel]

Figure 14-4: Add Connection dialog box after the database

is selected.

Note You don't need to worry about the user name and
password in the Add Connection dialog box, unless
you assigned a name and password to the database
(which you don't need to do). This may be an issue
with other database formats, but it's not an issue with

Microsoft Access.

The next step is to test the connection. Click the Test

Connection button. A message box stating "Test Connection

Succeeded" should display, as in Figure 14-5.

Microsoft Visual Studio

L]
- | J Test connection succeeded,

T

Figure 14-5: Test connection succeeded.

Click the OK button. This saves the changes you made and
closes the Add Connection dialog box.
4 Previous Mext b

4 Previous

Using Server Explorer

If you have Microsoft Access, you can use it to view the
Northwind Traders database. If you don't, Visual C# 2005 has a
tool called Server Explorer that permits you to view and make
changes to databases on your computer or on any other
computer to which you have network access and permissions.

Indeed, you should learn how to use Server Explorer even if you
have Microsoft Access on your computer. First, you may find
yourself working at another computer that doesn't have
Microsoft Access. Second, and perhaps more important, when
you're working with other database formats such as SQL Server
and Oracle, you won't be able to use Microsoft Access.

You can display Server Explorer using the View | Server
Explorer menu command. You don't need to first open or create
a Windows application. Figure 14-6 shows Server Explorer after
the Data Connections node was expanded by clicking the + sign
to its left.

Nest b |

Figure 14-6: Server Explorer.

Note Server Explorer on your machine will likely have
different content than what's shown in Figure 14-6. For
example, PCKIlub866 is listed under the Servers node

because that happens to be the name of the computer
| used.

The node underneath the Data Connections node should list the
path and file name of the Microsoft Access database to which
we just created a connection in the previous section
"Connecting to the Database.”

Exploring the Database

Click the + sign next to the Microsoft Access database under
the Data Connections node. As Figure 14-7 shows, four nodes
appear: Tables, Views, Stored Procedures, and Functions.

e e RIS S T T T
3 oy -
CIN R ata Connections
Lk AC0ESS. Do\Documents and Sattings! AN Visual Studio Projects|hwind . mdb
+ = | s

M Serves Explorer | %0 Tookbo

Figure 14-7: Server Explorer listing the Tables, Views,
Stored Procedures, and Functions nodes.

A table is a collection of data on a particular subject. In this
chapter, we'll be discussing a particular table, Customers. The
Northwind Traders database has other tables, too, including
those listing employees, products, orders, suppliers, and
shippers.

A view is a collection of data, often obtained from more than
one table. Examples of views in the Northwind Traders
database include "Product Sales for 1995" and "Ten Most
Expensive Products."

A stored procedure and a function each is generally a code
component that generates a predefined subset of the data.
Examples of stored procedures in the Northwind Traders
database include "Alphabetical List of Products” and "Summary
of Sales by Year." An example of a function in the Northwind
Traders database is "Sales by Year."

Exploring the Customers Table

Click the + sign next to the Tables node. As Figure 14-8 shows,
this displays the various tables in the Northwind Traders
database.

3] 30 % .
5 [Data Connection:
= Lk ACCESS.D\Doouments and Settrges]) Yeual Studio Frojscts|hvand. mdb
= | T bl
+ [Categories
+ T Cushomens
- [Employses
* 1 Order Detals
& [Orders
[Products
v] Shippers
3 Supplers
& [J Ve
+ [_d Tored Procedres
=l
W, Servers
W FochbBes
o» Crystal Reports Services

t.\d Evennt Loge
= Managemert Classes
:

P! Management Everts
i Massaps Crususs

¢ Perfarmance Counters
@ Services

AR A s T

"4, Server Explocer | 3 Tookbos

Figure 14-8: Server Explorer listing tables.

Click the + sign next to the Customers table. As Figure 14-9
shows, this displays the various fields of the Customers table.

Server Explorer (1]

ETRENRC . W——

E [l Data Conrmctions ~
= [ACCESS. De\Documents and Settings| MciVisusl Shudso Projpscts|Nwind.mdb

5 [Z3 Tables
@ O Categorics
= O Customers

“_‘j Customer D
T Companybiams
I Conkacthiams
Tl ConkactTie
1] Address
1 city
ﬂ Regon
T] PostalCode
Tl Courttry
1] Fhone
j Fax

I Employeas

- Onder Detads

T Orders

1 Products

= Shippers
s T Supplers

H L Vews

¥ [Stored Procsdures

vy

e R R

= Mg Servers
=l POKbEES
o Crystal Reports Services
54, Server Explorer |42 Toobox

| €

Figure 14-9: Fields of the Customers table.

Right-click the Customers table node and choose Show Table
Data from the shortcut menu. As Figure 14-10 shows, the data
in the Customers table then will be displayed.

vl | Vinssal 5l = B
2 o
L 4
A LT
L] (B
x i
o o
g e
i et
iy .
* e
i wal
L il S
F T
g e
ki s
ady E
il L
i -
kil s
aay iy
»

Figure 14-10: Data in the Customers table.

As Figure 14-10 shows, the data in the Customers table is

displayed in rows and columns. Each column, or field,
represents a different piece of information, such as a name,
title, or address. Each row, or record, concerns one customer.
Together, the rows and columns provide information, such as
the name, title, and address of each customer.

Different tables have different fields and a different number of
records. Additionally, the fields are not always of a String data
type, but instead may be of another data type, such as Integer
or Boolean. The one thing tables have in common is that they're
composed of fields (columns) and records (rows).

4 Previous

HNext b

4 Previous MNest b

Database Project

As you have heard me say several times already in this book, the best way to
learn programming is to write programs. So let's put that saying into practice
once again.

What the Project Does

This project, when finished, will, when the application starts up, fill a
DataGridView control with data from four fields of the Customers table:
CustomerlD, ContactTitle, CompanyName, and ContactName. Figure 14-11
shows the project in action.

Cuttomes|D ContactTile Comparablaems CortactM ame ""l
] Sakes Represend,,, Akeds Fulterksle Mana Anders

aMATH et Are Trple Emp.. Ans Togle

EMTON Clwaner Arkorsy Moena ... Anbonio Motero
AROUT Sabet Repoesend... Around the Hoen Theoemas Haedy .
EEAGS Ol Admarasti B asghundi sriab Chivitrs B anglurd |
BLAL cabes Flepresent, |, |Blaues See Del Harna Moo |
BLOWP hll ik kg b Blordel phis st s Frbcmgue Cis |
BOLIC Cwenan B dhdo Comdas Matin S ommer ."|

Figure 14-11: DataGridView control filled with data from the Customers table.

Creating the Form

Create a new Windows application. Add two controls to the default form.

The first control is an OpenFileDialog control. You learned about this control in
Chapter 13. Name this control digOpen and delete any value in its FileName
property. You do not need to change any of its other default properties.

The second control is a DataGridView control. This control displays data in a row
and column format, much like the Customers table shown in Figure 14-10, or a
spreadsheet.

When you add the DataGridView control, a DataGridView tasks pane displays,

as shown in Figure 14-12.

DataGridYiew Tasks
Auto Format..
Choose Data Source (none) v
Edit Colurmns..
Adg Column,
[] Enable Adding
[¥] Enable Editing
|¥] Enable Deleting
[Enable Column Reordering
I0Ck 1N parent container

Figure 14-12: DataGridView Tasks pane.

You may accept the default values in this pane. However, center the
DataGridView control in your form and rename it dgvData.

Importing Data Namespaces

The code components in the .NET class library used for database access are
referred to by the name ADO.NET. You've probably already figured out the
".NET" portion of that name. ADO was an acronym for ActiveX Data Objects, a
Microsoft data-access technology that preceded ADO.NET.

Several ADO.NET classes we will use in this chapter are part of the System.
Data.OleDb namespace. As you may remember from previous chapters, the
.NET library is organized in a hierarchal structure, each branch with its own
namespace. System is a top-level namespace. Data is one of several
namespaces belonging to System, and OleDb is one of several namespaces
belonging to System.Data.

Note There are other namespaces supporting other database types, such as
OracleClient for Oracle databases and SqlClient for SQL Server
databases.

Thus, the OleDbConnection class we will be using in the next section technically
is not just the OleDbConnection class but instead the System.Data.OleDb.

OleDbConnection class. However, typing a System.Data.OleDb prefix before
every reference to OleDbConnection or another ADO.NET class can quickly
become a pain.

Fortunately, you can avoid having to prefix every reference to an ADO.NET class
with System.Data.OleDb by inserting a using System.Data.OleDb statement
before your class declaration. While you are at it, also import the System.Data
namespace (if it has not already been imported by the IDE), because that
namespace also will come in handy later:

usi ng System Dat a;
usi ng System Dat a. A eDb;

If the compiler does not recognize the root System.Data namespace, you may

need to add a reference to the assembly that contains the namespace. Choose
Add Reference from the Project menu to display the Add Reference dialog box
shown in Figure 14-13.

Add Reference @!

Projects | Browse | Feoent

[, ; A

Figure 14-13: Add Reference dialog box.

Choose System.Data from the list and then click OK. The compiler will now
recognize the root System.Data namespace.

Creating a Connection

Your application will be giving commands to the database to retrieve certain
data. But before it can do so, your application needs to have a connection with
the database.

Persistent Connection vs. Disconnected Application

Although an application needs to have a connection to a database to retrieve or
change data, there is more than one way to design this connection. One
alternative is to create a single connection that remains active until the
application ends. This is called a persistent connection.

The other alternative is to create a connection only to retrieve data, end the
connection, make changes to a local copy of the data while disconnected from
the database, and connect back to the database only when necessary to
synchronize these changes with the database. This is called a disconnected
application because most of the time, the application is disconnected from the
database.

As with most choices in life, there are tradeoffs between a persistent connection
and a disconnected application. In general, Windows applications are more likely
to use persistent connections, whereas web applications are more likely to be
disconnected applications, but this is only a generalization, of course.

Because we are writing a Windows application, we will use a persistent
connection.

OleDbConnection Class

The OleDbConnection class represents a connection to a data source. The
following line of code not only declares an OleDbConnection variable, but also
instantiates it:

A eDbConnecti on nyConn = new O eDbConnection();

As explained in previous chapters, the term "instantiate” means to create a new
instance—in this case, a new connection. This instantiation is performed by
using the new keyword when declaring the OleDbConnection variable.

ConnectionString Property

The OleDbConnection class has a ConnectionString property. This property
includes the provider being used and the path to and the name of the data
source file.

The provider is "Microsoft.Jet. OLEDB.4.0." As mentioned in the previous section
"Connecting to the Database,” the reason for the term "Jet" is that Microsoft
Access uses the Jet database engine. Additionally, as the Description area of the
Choose Data Source dialog box shown earlier in Figure 14-2 reflects, the

connection to a Microsoft Access database uses the native Jet provider through
the NET Framework Data Provider for OLE DB. That native Jet provider is
Microsoft.Jet. OLEDB.4.0.

We will obtain the path to and the name of the data source file through the
OpenFileDialog control and its FileName property.

In this project, all the code will be written in the Load event of the form. Write the
following code:

private void Form _Load (Object sender, EventArgs e)
{

A eDbConnecti on nyConn = new O eDbConnection();

Di al ogResul t dr;

dr = dl gOpen. Showhi al og() ;

if (dr == Di al ogResul t. OK)

{
string strFile = dl gOpen. Fi | eNane;
nyConn. ConnectionString = "Provider=" +
"M crosoft. Jet. OLEDB. 4. 0; Dat a Sour ce="
+ strFile + ";";
}

Opening the Connection

Once you've instantiated an OleDbConnection object and created its connection
string, you may open the connection to your database using the
OleDbConnection object's Open method:

myConn. Open() ;

Accordingly, our code now reads as follows:

private void Form _Load (Object sender, EventArgs e)
{
A eDbConnecti on nyConn = new O eDbConnection();
Di al ogResul t dr;
dr = dl gOpen. Showhi al og() ;
if (dr == Di al ogResul t. OK)
{
string strFile = dl gQpen. Fi | eNane;
nyConn. ConnectionString = "Provider=" +
"M crosoft. Jet. OLEDB. 4. 0; Dat a Sour ce="
+ strFile +

nmyConn. Open() ;

Creating a Command

Once you establish a connection, you'll next want to execute commands, such as
to retrieve data that you want to view. You use an OleDbCommand object to
execute commands to a database. The OleDbCommand class, like the
OleDbConnection class, is part of the System.Data.OleDb namespace.

You instantiate an OleDbCommand object similar to how you instantiate an
OleDbConnection object:

A eDbConmmand nmyCVD = new A eDbCommand() ;

SQL Statement

Commands often are expressed in a SQL statement. SQL, alternatively
pronounced as separate letters ("S-Q-L") or as "sequel," is an acronym for
Structured Query Language. SQL is a standardized language for requesting
information from a database.

The following SQL SELECT statement retrieves data from the CustomerID,
ContactTitle, CompanyName, and ContactName fields in the Customers table:

SELECT Custonerl D, ContactTitle, CompanyNane,
Cont act Name FROM Cust oner s

SELECT is a keyword that indicates the SQL statement retrieves records. The
SELECT statement does not change records. Other SQL statements, such as
INSERT, UPDATE, and DELETE, do change records, by adding, editing, and

deleting, respectively.

The names following the SELECT keyword are the names of table fields.
Because there is more than one field, the field names are separated by commas.

FROM is also a keyword. The name following it, Customers, is the name of the
table to which the fields belong.

CommandText Property

The OleDbCommand object has a CommandText property whose value may be

a SQL statement. Accordingly, we will assign the SQL SELECT statement we
discussed in the preceding section to the OleDbCommand object's
CommandText property as follows:
myCVD. CommandText = "SELECT Custoner|I D, " +

"ContactTitle, ConmpanyNanme, ContactNanme " +

FROM Cust oner s";

Note The value of the CommandText property may also be a table name or
the name of a stored procedure.

Linking the Command to a Connection

The final step is to link the command to a connection to the database. The
OleDbCommand object has a Connection property whose value is the database
connection to be used by the command. Accordingly, the following code assigns
the existing OleDbConnection variable myConn to the Connection property of the
OleDbCommand object:

myCVD. Connecti on = nyConn;

Therefore, our code now reads as follows:

private void Form _Load (CObject sender, EventArgs e)
{

A eDbConnecti on nyConn = new O eDbConnection();

Di al ogResul t dr;

dr = dl gOpen. Showbi al og();

if (dr == Di al ogResul t. OK)

{
string strFile = dl gOpen. Fi | eNane;
myConn. ConnectionString = "Provider=" +
"M crosoft. Jet. OLEDB. 4. 0; Dat a Sour ce="
+ strFile + " ;" ;
nmyConn. Open() ;
A eDbConmand nmyCVD = new A eDbCommand() ;
myCVD. CormandText = "SELECT Custonerl D, " +
"ContactTitle, ConmpanyNane, ContactNane " +
FROM Cust oner s”;
myCVD. Connecti on = myConn;
}

Filling the DataGridView

We now have defined a database connection and command. Here are the
remaining tasks:

1. Package the database connection and database command in an
OleDbDataAdapter object.

2. Create a DataSet object.
3. Use the OleDbDataAdapter object to fill the DataSet.

4. Use the DataSet to fill the DataGridView.

Creating an OleDbDataAdapter

The OleDbDataAdapter class packages a database connection with a set of data
commands.

The first step is to instantiate an OleDbDataAdapter variable, similar to how
previously we instantiated the OleDbConnection and OleDbCommand variables:

A eDbDat aAdapt er nmyAdapter = new O eDbDat aAdapter();

The OleDbDataAdapter class has a SelectCommand property whose value is a
command that contains a SQL SELECT statement. Accordingly, the following
code sets the OleDbDataAdapter variable's SelectCommand property to the
OleDbCommand variable we instantiated and configured in the previous section:

myAdapt er. Sel ect Conmand = nmyCMVD;

This statement not only connects the OleDbDataAdapter variable to the data
command it will use, it also indirectly connects the OleDbDataAdapter variable to
the database connection, because the OleDbCommand variable is connected
through its Connection property to the OleDbConnection variable.

Accordingly, the code now reads like this:

private void Fornl_Load (CObject sender, EventArgs e)
{
A eDbConnecti on nyConn = new O eDbConnection();
Di al ogResult dr;
dr = dl gOpen. ShowDi al og();
if (dr == Di al ogResul t. OK)
{
string strFile = dl gOpen. Fi | eNane;
myConn. ConnectionString = "Provider=" +

"M crosoft.Jet. CLEDB. 4. 0; Dat a Sour ce="
+ strFile + ";";
myConn. Open() ;
A eDbConmand nyCVD = new O eDobCommand() ;
myCVD. CommandText = "SELECT CustonerlI D, " +
"ContactTitle, ConpanyName, ContactNanme " +
FROM Cust oner s";
myCVD. Connecti on = myConn;
A eDbDat aAdapt er nyAdapter = new O eDbDat aAdapter();
myAdapt er . Sel ect Conmand = myC\VD;

Creating a DataSet

The data used to fill the DataGridView cannot come directly from the hard drive
where the database is stored. Instead, an intermediate step is required. The data
from the hard drive first must be loaded into memory, or RAM. Then, the data in
RAM is loaded into the DataGridView.

Note This approach has advantages. For example, it frees the application
from having to exactly replicate the physical data and instead work with
subsets, supersets, calculated fields, and so forth.

A DataSet is a representation of the data (in this case, from several fields of the
Customers table) that is stored in RAM.

The DataSet class is part of the System.Data namespace, so you should add a
using System.Data statement if you (or the IDE) did not do so already earlier in
this chapter in the section "Importing Data Namespaces":

usi ng System Dat a;
usi ng System Dat a. A eDb;

You may also need to add a reference to the assembly that contains the
namespace System.XML. You do so the same way you added a reference to the
assembly that contains the namespace System.Data earlier in this chapter in the
section "Importing Data Namespaces," using the Add Reference dialog box
shown earlier in Figure 14-13.

You instantiate a DataSet variable via the following code, similar to how
previously we instantiated the OleDbConnection, OleDbCommand, and
OleDbDataAdapter variables:

Dat aSet ds = new Dat aSet () ;

The next steps are to clear and then fill the DataSet.

The DataSet object has a Clear method. This method, as its name suggests,
clears the DataSet of any leftover contents. There would be no leftover contents
here because the code is running on application startup, but often you will need
to use the Clear method, so it is a good idea to get into the habit of using it.

ds.C ear();

The OleDbDataAdapter object has a Fill method. This method, as its name
suggests, fills the DataSet with its contents, which, once the DataGridView is
connected to the DataSet as discussed in the next section, are then displayed in
the DataGridView that is bound to the DataSet. The first argument is the DataSet
to be filled. The second argument is the name of the source table (here,
Customers).

myAdapter.Fill (ds, "Custoners");

Accordingly, the code now reads as follows:

private void Fornl_Load (Object sender, EventArgs e)
{
A eDbConnecti on nyConn = new O eDbConnection();
D al ogResul t dr;
dr = dl gOpen. Showbi al og();
if (dr == Di al ogResul t. OK)
{
string strFile = dl gOpen. Fi | eNane;
nyConn. ConnectionString = "Provider=" +
"M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce="
+ StrFile + " ; "
myConn. Open() ;
A eDbConmmand nmyCVD = new A eDbCommand() ;
myCVD. CommandText = "SELECT CustonerlI D, " +
"ContactTitl e, ConmpanyNanme, ContactName " +
FROM Cust oner s";
myCVD. Connecti on = nmyConn;

A eDbDat aAdapt er nmyAdapter = new O eDbDat aAdapter();
myAdapt er. Sel ect Conmand = nmyCMD;

Dat aSet ds = new Dat aSet () ;

ds.C ear();

myAdapter. Fill (ds, "Custoners");

Connecting the DataGridView to the DataSet

The final step is to connect the DataGridView to the DataSet. This step involves
two properties of the DataGridView object: DataSource and DataMember.

The DataSource property is the data source of the data that the DataGridView is
displaying. That data source is represented by the DataSet variable ds:

dgvDat a. Dat aSour ce = ds;

The DataMember property is the name of the table (here, Customers) in the data
source of the data that the DataGridView is displaying:

dgvDat a. Dat aMenber = "Custoners”;

Accordingly, the completed code now reads like so:

private void Fornl_Load (Object sender, EventArgs e)
{
A eDbConnection nyConn = new O eDbConnection();
D al ogResul t dr;
dr = dl gOpen. Showbi al og();
if (dr == Di al ogResul t. OK)
{
string strFile = dl gOpen. Fi | eNane;
nyConn. ConnectionString = "Provider=" +
"M crosoft.Jet. CLEDB. 4. 0; Dat a Sour ce="
+ strFile + ";";
myConn. Open() ;
A eDbConmmand nmyCVD = new A eDbCommand() ;
myCVD. CommandText = "SELECT CustonerlI D, " +
"ContactTitl e, ConmpanyNanme, ContactName " +
FROM Cust oner s";
myCVD. Connecti on = nmyConn;
A eDbDat aAdapt er nyAdapter = new O eDbDat aAdapter ();
myAdapt er . Sel ect Contrand = myCMD;
Dat aSet ds = new Dat aSet () ;
ds. ear();

myAdapter. Fill (ds, "Custoners");
dgvDat a. Dat aSour ce = ds;
dgvDat a. Dat aMenber = "Custoners";

Run the project! The DataGridView control should fill with data as shown
previously in Figure 14-11.

4 Pravious Mest b

4 Frewious
Conclusion

Text files, which we've used up until now to save data, have
several limitations. One limitation is a text file's inability to
quickly retrieve specific data. There's usually no alternative to
searching the text file from beginning to end, which can take a
long time if the text file contains a lot of data.

Another limitation is the inability to store relations between
different data. For example, a store may have both a list of
customers and a list of orders—the orders come from
customers. With a text file, there's no easy way to link an order
in one list with a customer in another list.

A database does not have these limitations. Specific data may
be quickly retrieved through keys and indexes, and different
data may be easily linked.

This chapter used the Northwind Traders database. First, you
learned how to obtain and install this database. After creating a
new Windows application, you then created a connection
between Visual C# 2005 and the database. In doing so, you
selected the database format, a provider suitable for that
format, and the path to and the name of the database.

Next, you learned how to use Server Explorer, a tool provided
by Visual Studio 2005 that enables you to view databases on
your computer without having to open or create an application.

The code components used for database-access code are
organized in the .NET library under the name ADO.NET. ADO
was an acronym for ActiveX Data Objects, a Microsoft data-
access technology that was the predecessor to ADO.NET.

As you learned in this chapter, accessing the Northwind Traders
database involves the following steps:

1. Establish a connection to the database.
2. Define the commands you want to make to the database.

3. Define a data adapter that packages the database
connection and commands.

4. Create a DataSet and then fill it using the data adapter.

HNext b

5. Fill a control (in this chapter, a DataGridView) from the
DataSet.

You created an application that implemented these steps and
filled a DataGridView control with data from four fields of the
Customers table of the Northwind Traders database.

The project you created in this chapter is a Windows
application. In the next chapter, you will learn to create a similar
project that is a web application.

4 Previous

HNext b

4 Previous MNest b

Quiz

1.

2.

What is a data provider?

What does Server Explorer enable you to do?

What is a table?

What may each column in a table also be called?

What may each row in a table also be called?

What is ADO.NET?

What class represents a connection to a data source?

What class would you use to execute commands to a database?

What class would you use to package a database connection with a set of data
commands?

10. What is a DataSet?

Answers

1. A data provider is a code component that is used by your application to connect to a specific
database format.

2. Server Explorer enables you to view and make changes to databases on your computer or
on any other computer to which you have network access and permissions.

3. Atable is a collection of data, usually on a particular subject such as customers, employees,
and so on.

4. Each column in a table also may be called a field.

5. Each row in a table also may be called a record.

6. The code components used for database access in the .NET class library are referred to by
the name ADO.NET.

7. The OleDbConnection class represents a connection to a data source.

8. You use the OleDbCommand class to execute commands to a database.

9. You use the OleDbDataAdapter class to package a database connection with a set of data
commands.

10. A DataSet is a representation of the data stored in RAM.

4 Pravious Mest b

4 Previous

Chapter 15: Web Applications

Overview

Throughout this book we have been writing Windows
applications. Indeed, many of the applications with which you
interact are Windows applications. For me, it is a rare day that |
don't work with Microsoft Word and Outlook, for example.

However, |, and perhaps you as well, am interacting ever more
frequently with web applications. One common type of web
application is e-commerce, the e standing for electronic. For
example, if you go to the website of Amazon or another online
bookseller, you select a book (hint: this one) or another product,
put the selected product in a virtual shopping cart, when
finished go to a virtual check-out line, enter your credit card
information (which better not be virtual), and make a purchase.
You then can go to the website of the overnight delivery service
and track the shipment as it wends its way across the country
(or world) to you.

In this chapter, you will learn how to create a web application
that displays information from a database, similar to the
Windows application you created in Chapter 14.

4 Previous

HNext b

HNext b

4 Previous

ASP.NET

ASP.NET is a term you likely will hear of soon after you start
creating web applications. ASP.NET refers to the code
components used for web applications, similar to how ADO.NET
refers to the code components used for database access.

As with ADO.NET, you already know the ".NET" portion of
ASP.NET. ASP is an acronym for Active Service Pages, a
Microsoft web application technology that preceded ASP.NET.
For those of you who are familiar with ASP, ASP.NET is much
easier to work with. ASP intermixed HTML with script code. By
contrast, ASP. NET enables you to develop web applications in
almost the same manner as Windows applications.

ASP.NET started with Visual Studio 2005's predecessor, Visual
Studio.NET. The version number of ASP.NET then was
1.x—first 1.0, then 1.1. With Visual Studio 2005, the version
number is 2.x, starting with 2.0.

There are other, competing technologies for the creation of web
applications. ASP.NET is Microsoft's, and consequently the one
heavily supported in Visual Studio 2005.

4 Prewvious

HNext b

Next k

4 Previous

Internet Information Services

Visual Studio 2005 requires one of the following operating
systems: Windows 2000 Professional, Windows XP Home or
Professional, Windows 2000 Server, or Windows 2003 Server.
On all but Windows XP Home Edition, Internet Information
Services (IIS) is an optional component that may be installed
with the operating system. [IS may not actually be installed on
your computer because it may not be part of the default
installation of your operating system. However, if IIS is not
installed, you can add it as described in this section.

Note You cannot install IIS on Windows XP Home Edition
unless you make some Registry changes that are not
supported by Microsoft and therefore probably are not
a good idea to try.

Unlike ASP.NET 1.x and Visual Studio.NET, ASP.NET 2.x and

Visual Studio 2005 do not require you to install IIS to create web

applications that run locally (that is, on your computer).
Nevertheless, unless you have Windows XP Home Edition,
installing US does give you more options, such as making your

web pages accessible from more than your local computer, and

costs you nothing.

Determining If IS is Already Installed

To determine if IIS is already installed on your computer, open
Add/Remove programs from the Control Panel. From the left
menu bar, choose Add/Remove Windows Components. This
will display the Windows Components Wizard shown in Figure
15-1.

HNext b

Windows Components Wizard ‘
Windows Componaents _'i
0 add of e & component, chick e checkbos. & shaded box means hal caly pant of
B companest will b ieitsied. To sew what's induded in & component clok Dets
T
i T
= B i
® Tyt 5 bl
S i 1
£ i
TR .~ v P
Toind o o
A malah b onodmk
% Beack Fied >

Figure 15-1: Windows Components Wizard.

In Figure 15-1, Internet Information Services (lIS) is checked,
but with a dark background. This indicates some but not all of
the components of 1IS are installed. If IS is checked but with a
white background, as is Internet Explorer in Figure 15-1, then all
of the components of IIS are installed. If IS is unchecked, as is
the Indexing Service in Figure 15-1, then IIS is not installed.

If 11S is checked, but with a dark background as in Figure 15-1,
then you need to check which of its components are installed.
To do so, in the Windows Components Wizard, highlight
Internet Information Services (IIS) and click the Details button.
This will display, as shown in Figure 15-2, a dialog box showing
the individual components of Internet Information Services (11S).

Internet infarmation Services (I15) E

T acd or remove & component, click the chegs box A shaded box means that orly past ol e
aenpennl wall e critalag To e whars ncluded @ a comporent chek Detats
Buboompsonants ol inkemed infoemeabon Seraces ([ES]

Depoription =ilalls Fegurgd 15 program &l o
Toind detkc spmcn roquesd LR
Space svadabis on disk ¥529596 MB

Figure 15-2: 1IS components.

In Figure 15-2, almost all of the check boxes are checked
because those components happen to be installed on my
computer. This may not be the case on your computer,
depending on which components of IIS you previously may
have installed.

You don't need the FTP (File Transfer Protocol) and SMTP
(Simple Mail Transfer Protocol) services, but | recommend you
install the other components.

Installing IS

If you do need to install 1IS or components of it, first locate the
installation CD of your operating system, because you may
need it. If IIS is unchecked in the Windows Component Wizard
(refer to Figure 15-1), first check it and then click the Next
Button. If IS is checked in the Windows Component Wizard but
the check box has a dark background, just click the Next button.

Clicking the Next button displays the Internet Information
Services (IIS) dialog box shown in Figure 15-2. Choose all the
components by checking the boxes that are not already
checked, again with the possible exception of the FTP and
SMTP services. Then click the OK button, which will return you
to the Windows Components Wizard. In the Windows
Components Wizard, after verifying that you have your
operating system installation CD in your CD-ROM drive, click
the Next button and continue to proceed until you are finished
adding the IS components. If prompted to do so, restart your
computer.

Starting the 1IS Admin Service

The 1IS Admin Service is, as its name suggests, a service used
to administer 1IS. Although there are alternative methods of
administering 1IS, using the IIS Admin Service may be the
easiest.

Open the Administrative Tools folder in Control Panel. This
folder is shown in Figure 15-3.

" Ldadaiiinailey Toods

Figure 15-3: Administrative Tools folder in Control Panel.

Next, choose the Services shortcut to open the Services folder.
Click the Extended tab and highlight IIS Admin. As Figure 15-4
shows, to the left is a description of the [IS Admin service as
well as options to stop, pause, and restart the service.

Fe ACDON View Help
4 BEFOEB F 80w

118 Addrmin] Descrption | Status &
FoFast Usar Switc... Prosades n Starte
105 B serce Fa Bt
g e (e S A e

e

D=y o

Mcws ety atian of Wee
add FTP services. through e
bt [rdor mason Sarices

STap-n

Extaruled | Standard [

Figure 15-4: Services folder with the IS Admin Service
selected.

The options are to stop, pause, and restart the service because
the service already is started. In that event, you have confirmed
that the IIS Admin service has started, and you are done with
this step.

However, if the IIS Admin service has stopped or never started,

the option instead would be to start the service, as shown in
Figure 15-5. In that event, you would choose Start to start the
service.

e MOon View Hep
= B FRE @
115 Admin hiame | Desorplion | Stabs &
Wit User Switc... Provades m... Startes
Srat the servoe i a Eruabied vy
B FTE Pubkle Prenades F
oo s Support Enables He STt
Desterption: BHID ot Service Enables o Starte
Alcws. pdminestr ation of Wit RHTTF 55 This 4arve
and FTP servioes through the gL Bvent Mon St
It [rifor oy Sarvices 25 Admin A gdmi
A0 AR CO-Birrn.. Mareoss O
P lnchrang Service st oo
BPod Service pod bardw, .. Starts
B IPSEC Sarae g IF Ea e)
£ »
\ Exted { Standad [

Figure 15-5: Option to start the IIS Admin Service.

Starting the Default Website

Once you have confirmed that the [IS Admin service has
started, close the Services folder and go back to the
Administrative Tools folder shown in Figure 15-3. Next, choose
the Internet Information Services shortcut to open the Internet
Information Services dialog box shown in Figure 15-6.

A
“§ Internet Information Services

| Local | ernon ot
+ [MEOF (ocE compltsr) I,._L'.-\.'P fkca CorTaLRe Vs 15 W5 1

Figure 15-6: Internet Information Services dialog box.

Click the + sign next to the local computer name (mine is
JAKXP; yours is likely different) and the click the + sign next to
the Web Sites folder below it. Figure 15-7 shows a subfolder
named Default Web Site.

el
I Internet Information Services

Fle ACDON View Help

1 ¥

Figure 15-7: Default Web Site in the Internet Information
Services dialog box.

If Default Web Site is followed by a parenthetical indicating it is
stopped, right-click Default Web Site and choose Start from the
shortcut menu.

4 Previous | MNewst b |

4 Previous

URL

Your home or apartment has an address by which it may be
located. A web page similarly has an address by which you may
locate it through your web browser.

The address of your home or apartment usually is in the form of
a number followed by a street name, such as 1313 Mockingbird
Lane. The address of a web page, referred to as a URL, an
acronym for Uniform Resource Locator, similarly has a certain
form.

The following explanation will use as an example the URL for
Microsoft's home page, http://www.microsoft.com/default.aspx.

The first part of the address (here, http) indicates what protocol
to use. HTTP is an acronym for Hypertext Transfer Protocol.
HTTP defines how messages are formatted and transmitted,
and what actions web servers and browsers should take in
response to various commands. For example, when you enter a
URL in your browser, this actually sends an HTTP command to
the web server directing it to fetch and transmit the requested
web page.

There are protocols other than HTTP. One is similarly named
HTTPS, a secure form of HTTP often used for credit-card
transactions on the Internet. Another is FTP, the File Transfer
Protocol, used for transferring files.

The second part of the address (here,
http://www.microsoft.com/) is the domain name where the
resource is located. Domain names commonly start with www,
short for World Wide Web, and end with com (for commercial)
or another extension, such as net or org. In between is a name
(here, Microsoft) that often corresponds to the organization or
individual who owns the website. For example, my website is
http://www.genghiskhent.com/, based on my students' fond (?)
nickname for me, Genghis Khent.

The third part of the address is the specific web page being
accessed (here, default.aspx). Web pages are named in a
similar fashion to other files, a descriptive name followed by a
dot and an extension.

HNext b

http://www.microsoft.com/default.aspx.
http://www.microsoft.com/
http://www.genghiskhent.com/

In Windows applications, the extension indicates the application
used to open the file, such as .doc for Microsoft Word, .xlIs for
Microsoft Excel, and so forth. Web pages may have extensions
such as .htm or .html. The .aspx extension indicates that the
web page is part of an ASP.NET application.

Your Computer as the Web Server

A web server is a computer that delivers (serves up) web pages.
For example, if you visit Microsoft's home page,
http://www.microsoft.com/default.aspx, by entering that address
in your web browser (such as Internet Explorer, Netscape, or
Mozilla), a computer somewhere on the Internet fetches a page
on the Microsoft website and sends its content to your browser,
where that content then is displayed in your computer's web
browser.

In this chapter, however, your computer will act as the web
server for the web applications you will be creating.

Type the URL http://localhost/ in your web browser (this won't
work if you have Windows XP Home, as already mentioned).
Figure 15-8 shows the web page that then displays on the
Windows XP operating system.

A Welzome to Windews XP Server Internet Servicet - Mieracal internet Exploser [_ [O]

Bcerchwe - | @

/ s Microsoft
fl

'Windows

8] .

L/

] Weltome 1o BIS 51

Professional

Figure 15-8: Default web page.

You may legitimately wonder, what is localhost? You have
heard of microsoft. com and other .com and .net URLSs, but

http://www.microsoft.com/default.aspx
http://localhost/

localhost may be a new one for you. The answer is, localhost is
your computer, which now is acting as a web server.

Virtual and Physical Paths

When you type http://www.microsoft.com/ in your web browser,
you are accessing a page stored on the hard drive of a
computer Microsoft is using as a web server.

Similarly, when you typed http://localhost and the web page
shown in Figure 15-8 was displayed, that web page also was
stored on your computer's hard drive.

By default, http://localhost maps to the C:\Inetpub\Wwwroot
folder on your hard drive. You can confirm this by right-clicking
Default Web Site (refer to Figure 15-7) and choosing Properties
from the shortcut menu to display the Default Web Site
Properties dialog box, which is shown in Figure 15-9 with the
Home Directory tab chosen. The local path is
c:\inetpub\wwwroot.

Default Web Site Properties

| Halp

Figure 15-9: Default Web Site Properties dialog box.

The address bar in Figure 15-8 shows that the URL of the web
page is http:// localhost/localstart.asp. Therefore, the URL
http://localhost/1ocalstart.asp maps to the file

http://www.microsoft.com/
http://localhost/1ocalstart.asp maps to the file

C:\Inetpub\Wwwroot\localstart.asp on your hard drive.

The web URL http://localhost/localstart.asp is known as the
virtual path to the web page. The file path
C:\Inetpub\Wwwroot\localstart.asp is known as the physical
path to the web page. However, they both point to the same
place.
4 FPrevious MNext ¥

4 Previous MNest b

Creating a Database Web Application

We will now create a web application that parallels the Windows application we
created in Chapter 14. That Windows application displayed in a DataGridView
control the contents of four fields of the Customers table of the Northwind
Traders database. The web application you will create similarly will display the
contents of the same four fields of the Customers table of the Northwind
Traders database, but in a web browser, as shown in Figure 15-16.

Figure 15-16: Web application in action.

Adding a GridView Control

The Windows application we created in Chapter 14 has a DataGridView control
through which we viewed the database information. For whatever reason, the
web application equivalent of the Windows DataGridView control does not have
the same name, but a slightly different one, GridView.

Start with the web application you created in the previous section. View the web
form in designer view and click the Design tab. Then look in the Toolbox for a
GridView in the Data group, as shown in Figure 15-17.

Toolbox 5]
& Literal -~
5 Calendar
| = AdRotator
t.) FileUpload
e Wizard
2 il
Y Mukiview
[] Panel
4] Placatolder
L] Wiew
5] substitution
=l Data
& Pointer
= Gridiiew
] Datalist
] Detadsiiew
) Formiviews
= Repsster
[J salDatasource
[Jo AccessDstaSource
L@ ObjectDataScurce
Lk, #miDataSource
Ly, SiteMapDataSource
Gl ReportiViever
1= Validation
[=/ Mavigation
= Login
= WebParts b
‘-H.‘Ser-u':r Explorer’, 44+ Toolbox

Figure 15-17: GridView in Toolbox.

If you don't see the GridView in the Toolbox, you need to add it. Right-click the
Toolbox and choose "Choose Items..." from the shortcut menu. This will display
the Choose Toolbox Items dialog box shown in Figure 15-18.

Choase Toolbox [Rems ﬁg

S S Y —

T Haramace by Hame Eirnctony &

. | conel T ":
Figure 15-18: Choose Toolbox Items dialog box.

Select the check box for the GridView for which the namespace is
System.Web. Ul.Controls. Next, click the OK button to close the Choose
Toolbox Items dialog box. GridView should now be added to the Toolbox, as in
Figure 15-17.

Once the GridView is in the Toolbox, you add it to the web form by dragging
and dropping or double-clicking, just as you would add a control to a Windows
form.

When you add the GridView control, a GridView Tasks pane displays, as
shown in Figure 15-19. You may accept the default values in this pane.
However, using the Properties window, rename the GridView control (using its
ID property) dgvData to keep its name consistent with the DataGridView control
in the Windows application, because we are attempting to port the code from
the Windows application to this web application.

GridView Tasks

Auto Format.. .

Choose Data Source: |(None) v
Egit Columns. .

Add New Column. ..

Edit Templates

Figure 15-19: GridView Tasks pane.

Locating the Database on the Web Server

The GridView is the only control we will be adding to the web form. There is no
web application equivalent of the OpenFileDialog, which we used in the
Windows application in Chapter 14.

Additionally, we would not want the user to select the location of the database.
In a Windows application, the database often may be on the user's computer.
Therefore, it is logical to have the user locate and select the database file using
the OpenFileDialog control. By contrast, in a web application, the database will
not be on the user's computer, but rather a web server elsewhere on the
Internet. For security reasons, the user should not be permitted to browse the
files on the web server as the user would for the files on their own computer.
Instead, the web application should specify where the database file is.

Often the database is located in a subfolder of the web application to ease the
task of locating it through code, as next will be discussed. By default, the
ASP.NET application created by Visual Studio 2005 has a subfolder named
App Data, likely short for "application data." Copy the nwind.mdb (or
Northwind.mdb) file into the App_Data folder from wherever you saved
nwind.mdb in when creating the Windows database application in Chapter 14.

Now that you have located the database on your hard drive within the web
application files, the remaining task is how to locate the database in code.

As discussed in Chapter 14, the ConnectionString property of the
OleDbConnection object requires the path to and the name of the database file.
In the Windows database application in Chapter 14, you obtained the path to
and the name of the database file (represented by the String variable strFile) by
using the FileName property of the OpenFileDialog control:

A eDbConnecti on nyConn = new O eDbConnection();
Di al ogResult dr;

dr = dl gOpen. ShowDi al og();

if (dr == Di al ogResul t. OK)

{
string strFile = dl gOpen. Fi | eNane;
myConn. ConnectionString = "Provider=" +
"M crosoft. Jet. OLEDB. 4. 0; Dat a Sour ce="
+ strFile + ";";
}

You cannot obtain the path to and the name of the database file the same way
in this web application because there is no OpenFileDialog control. However,

you know where the database file is located, in the app_data subfolder of the
web application. Therefore, the virtual path to the database is
http://localhost:4096/Website/app_data/ nwind.mdb.

However, the ConnectionString property requires the physical path, not the
virtual path. In this case, you know the physical path because the database file
IS on your computer. However, when you are working with remote web servers,
you may not always know the physical path, or even if you did, the
administrator of that web server may change it. Therefore, you need to be able
to translate the virtual path into a physical path.

The HttpServerUtility class, which also can be referred to as the Server class,
has a MapPath method that returns the physical file path that corresponds to (is
mapped to) the specified virtual path on the web server. The following
statement assigns to the String variable strFile the physical path to the
database file:

string strFile = Server. MapPat h("app_dat a\\ nwi nd. ndb") ;

Note The double backslash (\\) is necessary because the backslash is an
escape character in the C# language. You may need to change the
reference to nwind.mdb to Northwind.mdb if the latter is the file name
on your computer.

The way this works is that the MapPath method starts by mapping the physical
path that corresponds with the virtual path to the web application,
http://localhost:4096/Website. The argument then is appended to that physical
path. The method then returns the physical path that corresponds the full virtual
path to the database file, http://localhost:4096/Website/app_data/nwind.mdb.

Accordingly, the preceding code from Chapter 14 would be replaced with the
following:

A eDbConnecti on nyConn = new O eDbConnection();
string strFile = Server. MapPat h("app_dat a\\ nwi nd. ndb") ;
nyConn. ConnectionString = "Provider=" +

"M crosoft. Jet. OLEDB. 4. 0; Dat a Sour ce="

+ strFile + ";";

Adding Code

The next step is to write code. To do so, go to the code view of the web form.

First, we will import the System.Data namespace (if not already imported by the

http://localhost:4096/Website/app_data/ nwind.mdb.
http://localhost:4096/Website. The argument then is appended to that physical

IDE) and the System.Data.OleDb namespace for the same reason as we did in
Chapter 14:

usi ng System Dat a;
usi ng System Dat a. A eDb;

Second, as in Chapter 14, all the code will go in the Load event, this time of the
web page. This event procedure belongs to the Page object, which represents
the web form.

To create an event procedure, similar to with Windows forms, you choose
(Page Events) from the left drop-down box and then the event (here, Load)
from the right drop-down box. This creates an event procedure stub. Then write
code so your Page_Load event procedure reads as follows:

private void Page_Load (Object sender, EventArgs e)
{

A eDbConnecti on nyConn = new O eDbConnection();

string strFile = Server. MapPat h("app_dat a\\ nwi nd. ndb") ;

nyConn. ConnectionString = "Provider=" +
"M crosoft. Jet. OLEDB. 4. 0; Dat a Sour ce="
+ strFile + ";";

nmyConn. Open() ;

A eDbConmand nmyCVD = new A eDbCommand() ;

myCVD. CormandText = "SELECT Custonerl D, " +

"ContactTitle, ConpanyNane, ContactNane " +
FROM Cust oner s";

myCVD. Connecti on = nmyConn;
A eDbDat aAdapt er nmyAdapter = new O eDbDat aAdapter();
myAdapt er . Sel ect Conmand = nyCMD;
Dat aSet ds = new DataSet ();
ds.C ear();
myAdapter. Fill (ds, "Custoners");
dgvDat a. Dat aSour ce = ds;
dgvDat a. Dat aMenber = "Custoners"”;
dgvDat a. Dat aBi nd() ;

This code differs in only two substantive respects from the corresponding code
in the Form Load event procedure in Chapter 14. First is the use of the
MapPath method as discussed in the previous section "Locating the Database
on the Web Server." The second is the last statement, the call to the DataBind
method of the GridView. This method is commonly used in web applications to
bind data from a source (here, a DataSet) to a control (here, a GridView).

Warning If you don't call the DataBind method, the web application will run
without error, but the GridView will be blank, because it was not

bound to the data source.

Run your web application from the Debug menu, again just as you would a
Windows application. The web page should display, with the GridView filled
with information, as shown earlier in Figure 15-16. When you are done, close
the web page using its close button to close the application.

4 Prewvious

Next k

4 Previous

Creating a Web Application

Creating a web application is different from creating a Windows
application. You use the File | New | Website menu command
instead of the File | New | Project menu command.

The File | New | Website menu command displays the New
Web Site dialog box shown in Figure 15-10.

.. N]

s Cr |

Figure 15-10: New Web Site dialog box.

The top pane shows available templates. Choose ASP.NET
Web Site. This is the proper choice for creating a website with
ASP.NET support, which is what we want to do here.

In the Location drop-down box, choose File System. The other
choices, FTP and HTTP, both protocols discussed earlier in this
chapter, are for creating ASP.NET websites on other
computers. In this chapter, you will be creating the website on
your computer.

In the Language drop-down box, choose Visual C#. The other
choices, Visual Basic and Visual J#, are other languages in
Visual Studio 2005 you may use to create an ASP.NET
application.

Click the Browse button to select where on your hard drive you
wish to create the files for the ASP.NET web application. |
chose a Visual C# folder | previously had created in the Visual
Studio Projects folder under My Documents. | typed after the

HNext b

path to the Visual C# folder (for example, D:\Documents and
Settings\JAK\My Documents\Visual Studio Projects\Visual C#\)
WebSite for the name of the project. Of course, you could
choose a different location or name for your project.

When finished, click the OK button, and Visual Studio 2005 will
create a bare-bones but working ASP.NET application.

ASP.NET Development Server

When Visual Studio 2005 is finished creating the ASP.NET
application, run the application by choosing Start or Start
Without Debugging from the Debug menu. The result will be a
blank web page, as shown in Figure 15-11.

D Vvt et Page - Wi roaess Ryteraat [apibosr

e Tesd el

Figure 15-11: ASP.NET web page.

The URL shown in the address bar of the web browser in Figure
15-11 is http://localhost:4096/Website/Default.aspx. The
http://localhost part of the URL is explained in the previous
section "Your Computer as the Web Server." Website is the
name of the web application, and default.aspx the name of the
web page (or web form) that Visual Studio 2005 creates by
default, much like a Windows form is created by default when
you create a Windows application.

What is new, and its meaning may not be immediately clear, is
the ":4096" following localhost. The colon (:) means that the
number following is a port number (here, 4096).

http://localhost part of the URL is explained in the

Note The particular port number assigned by Visual Studio
2005 may be different than 4096.

A port is a logical (as opposed to physical) connection in a
computer. For example, when you access a web page with your
web browser, your request, and the web server's response,
goes through port 80.

As mentioned in the previous section "Internet Information
Services," ASP.NET 2.x and Visual Studio 2005 do not require
you to install IIS to create web applications that run locally (that
IS, on your computer as opposed to a computer elsewhere on
the Internet). Instead, local web applications are handled
through the ASP.NET Development Server, which uses various
port numbers (here, 4096).

You may have an icon for the ASP.NET Development Server in
your system tray. If so, double-click it. The ASP.NET
Development Server dialog box will appear, as shown in Figure
15-12.

Py ASPUNET Developmant Server - Port 40%6

ASPNET Development Server
1 AP MET spchcations caly *

Phvsical Path: DolDocumnents and Settings| 1A Visusl Shodo Projects1 syl

Wirtual Fath Il we

Port: 406

Sop

Figure 15-12: ASP.NET Development Server dialog box.

The ASP.NET Development Server dialog box shows the
following information (though not in this order from top to down):

= Physical Path The location you chose in the New Web
Site dialog box shown in Figure 15-10

» Port The port chosen by the ASP.NET Development
Server for access to local web applications (here, 4096)

= Root URL The root or base for web applications,
http://localhost:4096, followed by the name of this web
application (here, WebSite)

= Virtual Path The path from the root URL of
http:/localhost:4096 to your web application

That is about all we can do for now with this blank web
application. Close the ASP.NET Development Server dialog box
shown in Figure 15-12 and the blank web page shown in Figure
15-11.

ASP.NET Application IDE

Figure 15-13 shows the Integrated Development Environment
(IDE) for the ASP. NET application we created by clicking OK in
the New Web Site dialog box shown in Figure 15-10.

Figure 15-13: ASP.NET application IDE.

As with Windows applications, the form in web applications,
often called a web form, also has both a design view (shown in
Figure 15-13), complete with a Toolbox and Solution Explorer,
and a code view, shown in Figure 15-14.

http://localhost:4096, followed by the name of this web

Figure 15-14: Code view.

This similarity between the IDEs for Windows applications and
web applications makes it easier for you to learn to develop web
applications.

Although the respective IDEs of Windows and web applications
are similar, they are not the same. For example, the web form
has, in addition to a design and code view, an HTML view,
shown in Figure 15-15 and accessed by clicking the Source tab,
in which you can view the HTML code of the form, which after
all is a web page.

Y— — fads duter SEes P e

Figure 15-15: HTML view of the form.

4 Previous Mext b

4 Previous

Conclusion

Of course, there is much more than this to web applications.
Entire courses and books are devoted to web applications.
However, this chapter should give you an overview of how to
create a working web application that displays information from
a database.

This is the last chapter in this book. However, it should not be
the last chapter in your learning Visual C# 2005. Rather, this
book hopefully has given you a good foundation for learning
more.

4 Previous

HNext b

Next k

4 Previous MNest b

Quiz

1. What is ASP.NET?

2. Whatis a URL?

3. What is HTTP?

4. What does the .aspx extension indicate?

5. What is the difference between a virtual path and a physical path to a web page?

6. What project template could you use to create a web application?

7. What is the web control that corresponds to the DataGridView control used in
Windows applications?

8. What is the method of the HttpServerUtility class that returns the physical file path
that corresponds to (is mapped to) the specified virtual path on a web server?

9. What is the name of the class that is the web application equivalent of the Form class
in a Windows application?

10. What is the method of the GridView that needs to be called in a web application so
the GridView will not be blank?

Answers

1. The code components used for web applications in the .NET class library are referred to by
the name ASP.NET.

2. A URL, an acronym for Uniform Resource Locator, represents an address of a web page.

3. HTTP is an acronym for Hypertext Transfer Protocol. HTTP defines how messages are
formatted and transmitted, and what actions web servers and browsers should take in
response to various commands.

4. The .aspx extension indicates that the web page is part of an ASP.NET application.

5. A URL such as http://localhost/localstart.asp would be the virtual path to a web page,

whereas a file path such as C:\Inetpub\Wwwroot\localstart.asp would be the physical path to
a web page.

6. You may use the ASP.NET Web Site project template to create a web application.

7. GridView is the web control that corresponds to the DataGridView control used in Windows
applications.

8. MapPath is the method of the HttpServerUtility class that returns the physical file path that
corresponds to (is mapped to) the specified virtual path on a web server.

9. Page is the name of the class that is the web application equivalent of the Form class in a
Windows application.

10. DataBind is the method of the GridView that needs to be called in a web application so the
GridView will not be blank.

4 Previous MNest b

4 Frevious

Final Exam

Questions

1.

What is an IDE?

2.

What is a computer program?

3.

What is a programming language?
4.

What is machine language?

5.

What does "higher level" mean in the context of a
programming language?

6.

What does "lower level" mean in the context of a
programming language?

7.

What is the purpose of a compiler?

8.

What is a class in a programming language?
9.

What is an object of a class?

10.

What are namespaces used for?

11.

What is a property of a class?

12.

What are characteristics of a Windows application?

13.

What is an event of a class?

14.

What is an event procedure?

15.

What is the purpose of the assignment operator?

16.

What is the purpose of the Toolbox?

17.

How do you add a control from the Toolbox onto your form?
18.

What is the purpose of the Name property of a control?
19.

What is a naming convention?

20.

What are purposes of the text displayed by a Label control?
21.

What is a parameter of an event procedure?

22.

What does a data type signify?

23.

What is the purpose of a variable?

24.

Does C# require you to declare a variable before you refer
to it in code?

25.
What is a local variable?
26.

Do you have to assign a value to a variable when you
declare it?

27.
What is a difference between a constant and a variable?
28.

Do you have to assign a value to a constant when you
declare it?

29.
What is the significance of operator precedence?
30.

Which operator provides only the remainder resulting from
division?

31.

Which operator has precedence, an arithmetic operator or
the assignment operator?

32.
What is the purpose of the Parse method of the Int32 class?
33.

What is the purpose of the ToString method of the Int32
class?

34.

What is a method of a class?

35.

What does the WriteLine method of the Debug class do?
36.

What is the data type of the result of a comparison
performed by a comparison operator?

37.

Which operators have precedence, comparison or
arithmetic?

38.
What is the purpose of a logical operator?
39.

Which logical operator operates on only one operand rather
than two?

40.

Which operators have precedence, comparison or logical?
41.

What does modal mean?

42.

What is a conditional statement?

43.

Which namespace should you import to use the Debug
class?

44.
What is an exception?

45.

What does the TryParse method of the Int32 class do?

46.

Which two controls are commonly used with the if control
structure?

47.

What is the primary difference between the if ... else if
statement and the switch control structure?

48.
What is a loop?

49.

What is a difference between the do ... while statement and
the for and while statements?

50.

What is a difference between the foreach statement and the
for loop?

51.
What is an array?
52.

What is the difference between declaring an array variable
and a scalar variable?

53.
What is the lowest index of an array?
54.

What is the relationship between the number of elements in
an array and the highest index in that array?

55.

What is a method?

56.
What is the significance of the void return type?
57.

What does the private access specifier do when applied to a
method?

58.

What does calling a method do?

59.

What is the significance of an array being a reference type?
60.

What are some reasons for writing your own methods?

61.

Is a message box modal or modeless?

62.

What value is returned by the Show method of the
MessageBox class?

63.

Do buttons in a message box automatically have a
DialogResult value?

64.

What is the data type of a variable you may use to store the
return value of the Show method of the MessageBox class?

65.

What method do you use to display a modal form?
66.

What is the return value from showing a dialog form?

67.

Do buttons in a dialog form you create automatically have a
DialogResult value?

68.

What method do you use to display a form as modeless
rather than modal?

69.

What class represents a main menu?

70.

Is the Click event raised for all menu items?
71.

How do you gray out a menu item so it is not available when
it should not be?

72.

What does the Items collection of the MenuStrip component
contain?

73.
What class represents the shortcut or context menu?
74.

What does the Items collection of the ContextMenuStrip
component contain?

75.

What are different alternatives of having a context menu
item's functionality handled by the corresponding main
menu item?

76.
What class represents a toolbar?
77.

What class represents each item on a toolbar?

78.

What does the Items collection of the ToolStrip component
contain?

79.

What are advantages of a toolbar over a corresponding
menu?

80.

What are different alternatives of having a toolbar item's
functionality handled by the corresponding main or context
menu item?

81.

What method do you use to show an Open dialog box?
82.

What is the return value of showing an Open dialog box?
83.

What is the property of the OpenFileDialog class whose
value is the file chosen by the user in an Open dialog box?

84.

What method of the SaveFileDialog class do you use to
show a Save dialog box?

85.
What is the return value of showing a Save dialog box?
86.

What is the property of the SaveFileDialog class whose
value is the name of the file to be saved?

87.
What class may you use to read from a text file?

88.

What class may you use to write to a text file?
89.

What is a data provider?

90.

What is a table?

91.

What may each column in a table also be called?
92.

What may each row in a table also be called?
93.

What is ADO.NET?

94.

What is a DataSet?

95.

What is ASP.NET?

96.

What is a URL?

97.

What is HTTP?

98.

What is the difference between a virtual and a physical path
to a web page?

99.

What is the method of the HttpServerUtility class that
returns the physical file path that corresponds to (is mapped
to) the specified virtual path on a web server?

100.

What is the name of the class that is the web application
equivalent of the Form class in a Windows application?

Answers
1.

IDE is an acronym for Integrated Development
Environment. The term "development environment” refers to
Visual C# 2005's role as an application to assist you in
developing applications. The term "integrated" means the
tools to design your application and write, test, and run your
code are all together in one application.

2.

A computer cannot do anything without step-by-step
instructions from us telling it what to do. These instructions,
written by a computer programmer, are called a computer
program.

3.

A programming language is used by computer programmers
to write instructions for computers.

4.

Machine language is a programming language that is
understood by computers.

5.

The term "higher level" means that a programming

language such as Visual C# 2005 is far closer to the
structure and syntax of human language than to the ones
and zeroes understood by a computer.

6.

The term "lower level® means that a programming language
such as machine language is far closer to the ones and
zeroes understood by a computer than it is to the structure
and syntax of human language.

7.

In general, a compiler translates the code you write into
corresponding machine language instructions. The compiler
in Visual C# 2005 translates the code into an intermediate
language that then is translated into machine language.

8.

Programming languages, including Visual C#, use classes
to represent a person, place, thing, or concept.

9.

An object of a class is a single instance of a class, just like
each of us could be said to be an object or instance of a
Person class.

10.

Namespaces are used to organize code in a logical manner.
11.

A property is a characteristic or attribute of a class.

12.

A Windows application has a graphical user interface (GUI)
and is event-driven.

13.

An event is something that happens to an object of a class,
such as a result of user interaction.

14.

An event procedure contains code that executes when a
specific event happens to a specific object.

15.

The purpose of the assignment operator is to assign the
expression to its right to the variable or property to its left.

16.

The purpose of the Toolbox is to display controls that you
can add to your form.

17.

You may add a control from the Toolbox onto your form
either by double-clicking the control in the Toolbox or by
dragging the control from the Toolbox and then dropping it
onto the form.

18.

The Name property of a control is used to identify that
control in code.

19.

A naming convention is a consistent method of naming,
such as naming controls.

20.

The text displayed by a label may identify another, adjacent
control, or it may display data.

21.

A parameter represents information that is available to an
event procedure.

22.

A data type signifies whether the data is numeric, text,
yes/no, and so forth.

23.

The purpose of a variable is to store data of your choosing.
24,

Yes, C# requires you to declare a variable before you refer
to it in code.

25.
A local variable is a variable declared inside of a procedure.
26.

No, you do not have to assign a value to a variable when
you declare it.

27.

A constant's value cannot change during the life of the
program, whereas a variable's value may change during the
life of the program.

28.

Yes, you have to assign a value to a constant when you
declare it.

29.

Operator precedence determines, when there are two or
more arithmetic operators, which arithmetic operation is
done first.

30.

The % (modulus) operator provides only the remainder
resulting from division.

31.

All arithmetic operators have precedence over the
assignment operator.

32.

The Parse method of the Int32 class converts the string
representation of an integer into an actual integer value.

33.

The ToString method of the Int32 class converts an integer
into its string representation.

34.
A method is something an object of a class does.
35.

The WriteLine method of the Debug class outputs a line to
the Output window.

36.

The data type of the result of a comparison performed by a
comparison operator is Boolean (true or false).

37.

Arithmetic operators have higher precedence than
comparison operators.

38.
A logical operator is used to combine multiple comparisons.
39.

I (Not) is the logical operator that operates on only one
operand rather than two.

40.

Comparison operators have higher precedence than logical
operators.

41.

Modal means a form must be closed before the application
user can return to any other form in the application.

42.

The statement is conditional if the statement executes only
if the value of the relational expression following the if or
else if keyword is true.

43.

You should import the System.Diagnostics namespace to
use the Debug class.

44.

An exception is a problem that occurs while the program is
executing that must be dealt with before the program can
proceed.

45.

The TryParse method of the Int32 class converts the string
representation of an integer into an actual integer value, but
also returns a Boolean value (true or false) indicating
whether the conversion was successful.

46.
The CheckBox and RadioButton controls.

47.

The primary difference in the if ... else if statement and the
switch control structure is that the if and else if clauses both
may evaluate completely different expressions, whereas a
switch control structure may evaluate only one expression,
which then must be used for every comparison.

48.

A loop is a structure that repeats the execution of code until
a condition becomes false.

49.

A difference between the do statement and the for and
while statements is that a do ... while statement tests a
condition at the bottom of the statement, whereas the for
and while statements test a condition at the top of the
statement.

50.

The foreach executes the statement block for each element
in a collection, instead of a specified number of times.

51.

An array permits you to use a single variable to store
multiple values.

52.

The difference between declaring an array variable and
declaring a scalar variable is that with an array variable,
unlike with a scalar variable, the array name is followed by a
pair of square brackets, and within the square brackets you
indicate the highest index of the array.

53.
The lowest index of an array is zero.
54,

The number of elements in an array is one greater than the
highest index in that array because the index of the first
element is zero.

55.

A method is a block of one or more code statements that
execute when called upon to do so.

56.

The void return type indicates that a method does not return
a value.

S57.

The private access specifier limits access to the class in
which the procedure was declared.

58.
Calling a method causes it to execute.
59.

The significance of an array being a reference type is when
an array name is an argument, the value of that argument is
the array's address in memory.

60.

Writing your own methods enables you to organize your
code in smaller, easier-to-read code blocks. Additionally, if
you are performing essentially the same task from several
places in the program, you can avoid duplication of code by
putting the code that performs that task in one method, as
opposed to repeating that code in each place in the
program that may call for the performance of that task.
Further, if you later have to fix a bug in how you perform
that task, or simply find a better way to perform the task,
you only have to change the code in one place rather than
many.

61.
A message box is modal.
62.

The Show method of the MessageBox class returns a
member of the DialogResult enumeration corresponding to
the button the user clicked.

63.

Yes, buttons in a message box automatically have a
DialogResult value.

64.

You would use the DialogResult data type for a variable
used to store the return value of the Show method of the
MessageBox class.

65.

You use the ShowDialog method of the Form object to
display a modal form.

66.

The return value of showing a dialog form is the
DialogResult property of that form.

67.

No, buttons in a dialog form you create do not automatically
have a DialogResult value; you have to assign a value to
the DialogResult property of each button.

68.

You use the Show method of the Form object to display a
modal form.

69.
A main menu is represented by the MenuStrip class.
70.

No, the Click event is raised only for menu items that do not
have subsidiary menu items, because when a menu item
with subsidiary items is clicked, the behavior is to display
the subsidiary menu items.

71.

You gray out a menu item so it is not available when it
should not be by setting its Enabled property to False.

72.

The Items collection of the MenuStrip component contains a
collection of the ToolStripMenultems belonging to the
MenuStrip.

73.

The shortcut or context menu is represented by the
ContextMenusStrip class.

74.

The Items collection of the ContextMenuStrip component
contains a collection of the ToolStripMenultems belonging
to the ContextMenuStrip.

75.

Different alternatives of having a context menu item's
functionality handled by the corresponding main menu item
are using the EventHandler class and calling another event

procedure.

76.

The toolbar is represented by the ToolStrip class.
7.

Each item on the main menu is represented by the
ToolStripltem class.

78.

The Items collection of the ToolStrip component contains a
collection of the ToolStripltems belonging to the ToolStrip.

79.

Toolbar buttons are immediately accessible, whereas menu
items may be nested several levels deep and can be
accessed only by multiple mouse clicks or keystrokes.
Additionally, a toolbar button uses a graphic, which gives a
more visual interface than the text of a menu item.

80.

Different alternatives of having a toolbar item's functionality
handled by the corresponding main or context menu item
are using the EventHandler class and calling another event
procedure.

81.

You use the ShowDialog method of the OpenFileDialog
class to show an Open dialog box.

82.

The return value of showing an Open dialog box is either
DialogResult.OK if the user chose the Open button or
DialogResult.Cancel if the user chose the Cancel button.

83.

The OpenFileDialog class has a FileName property whose
value is a string containing the path to and the name of the
file selected in the Open dialog box.

84.

You use the ShowDialog method of the SaveFileDialog
class to show a Save dialog box.

85.

The return value of showing a Save dialog box is either
DialogResult.OK if the user chose the Save button or
DialogResult.Cancel if the user chose the Cancel button.

86.

The SaveFileDialog class has a FileName property whose
value is a string containing the path to and the name of the
file to be saved.

87.

You may use the StreamReader class to read from a text
file.

88.
You may use the StreamWriter class to write to a text file.
89.

A data provider is a code component that is used by your
application to connect to a specific database format.

90.

A table is a collection of data, usually on a particular subject
such as customers, employees, and so on.

01.

Each column in a table also may be called a field.
92.

Each row in a table also may be called a record.
93.

The code components used for database access in the
.NET class library are referred to by the name ADO.NET.

94,
A DataSet is a representation of the data stored in RAM.

95.

The code components used for web applications in the
.NET class library are referred to by the name ASP.NET.

96.

A URL, an acronym for Uniform Resource Locator,
represents an address of a web page.

97.

HTTP is an acronym for Hypertext Transfer Protocol. HTTP
defines how messages are formatted and transmitted, and
what actions web servers and browsers should take in
response to various commands.

98.

A URL such as http://localhost/localstart.asp would be the
virtual path to a web page, whereas a file path such as
C:\Inetpub\Wwwroot\localstart.asp would be the physical
path to a web page.

99.

MapPath is the method of the HttpServerUtility class that
returns the physical file path that corresponds to (is mapped
to) the specified virtual path on the web server.

100.

Page is the name of the class that is the web application
equivalent of the Form class in a Windows application.

4 Previous

	Table of Contents
	Visual C# 2005 Demystified
	Intoduction
	Who should read this book
	What this book covers
	How to read this book
	Special Feature
	Contact author

	Chapter 1: Getting Started with Your First Windows Program
	Obtaining and Installing Visual C# 2005
	Starting Your First Visual C# 2005 Project
	What is a Computer Program
	Conclusion
	Quiz

	Chapter 2: Writing Your First Code
	Starting an Existing Project
	Classes and Objects
	Properties
	What is a Windows Application
	Creating an Event Procedure
	Conclusion
	Quiz

	Chapter 3: Controls
	Adding Controls to the Form
	Important Label Properties
	The Label Control in Action
	How the Code Works
	Using Event Procedure Parameters
	Conclusion
	Quiz

	Chapter 4: Storing Information-Data Types and Variables
	Data Types
	Variables
	Constants
	Conclusion
	Quiz

	Chapter 5: Letting the Program Do the Math-Arithmetic Operators
	Arithmetic Operators
	The Parse Method
	Change Machine Project
	Conclusion
	Quiz

	Chapter 6: Making Comparisons-Comparison and Logical Operators
	Debugging
	Comparison Operators
	Logical Operators
	Conclusion
	Quiz

	Chapter 7: Making Choices-If and Switch Control Structures
	Creating a Test Project
	The if Control Structure
	Input Validation
	Controls Used for the if Control Structure
	Pizza Calculator
	The Switch Control Structure
	Conclusion
	Quiz

	Chapter 8: Repeating Yourself-Loops and Arrays
	Loops
	Arrays
	Conclusion
	Quiz

	Chapter 9: Organizing Your Code with Methods
	Defining and Calling a Method
	Parameters-Sending Information to a Method
	Returning a Value from a Method
	Conclusion
	Quiz

	Chapter 10: Helper Forms
	Message Boxes
	Dialog Forms
	Conclusion
	Quiz

	Chapter 11: Menus
	Creating a Main Menu
	Creating a Context Menu
	Creating a Context Menu
	Conclusion
	Quiz

	Chapter 12: Toolbars
	Creating a Toolbar
	Associating Code with Clicks of Toolbar Buttons
	Conclusion
	Quiz

	Chapter 13: Accessing Text Files
	Open and Save File Dialog Boxes
	Open and Save File Dialog Boxes
	Writing to a Text File
	Conclusion
	Quiz

	Chapter 14: Databases
	Installing the Database
	Connecting to the Database
	Using Server Explorer
	Database Project
	Conclusion
	Quiz

	Chapter 15: Web Applications
	ASP.NET
	Internet Information Services
	URL
	Creating a Database Web Application
	Creating a Web Application
	Conclusion
	Quiz

	Final Exam

