

 Click to visit

http://www.getpedia.com/videogames/index.html

toc

C++ Demystified: A Self-Teaching Guide

by Jeff Kent ISBN:0072253703

McGraw-Hill/Osborne © 2004

This hands-on, step-by-step resource will guide you through
each phase of C++ programming, providing you with the
foundation to discover how computer programs and
programming languages work.

Table of Contents

C++ Demystified

Introduction

Chapter 1 - How a C++ Program Works

Chapter 2 - Memory and Data Types

Chapter 3 - Variables

Chapter 4 - Arithmetic Operators

Chapter 5 - Making Decisions: if and switch Statements

Chapter 6 - Nested if Statements and Logical Operators

Chapter 7 - The For Loop

Chapter 8 - While and Do While Loops

Chapter 9 - Functions

Chapter 10 - Arrays

Chapter 11 - What’s the Address? Pointers

Chapter 12 - Character, C-String, and C++ String Class Functions

Chapter 13 - Persistent Data: File Input and Output

Chapter 14 - The Road Ahead: Structures and Classes

Final Exam

Answers to Quizzes and Final Exam

Index

List of Figures

List of Tables

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/toc.html06.11.2004 22:51:06

backcover

Back Cover

If you’re looking for an easy way to learn C++ and want to immediately start
writing your own programs, this is the resource you need. The hands-on
approach and step-by-step instruction guide you through each phase of C++
programming with easy-to-understand language from start to finish.

Whether or not you have previous C++ experience, you’ll get an excellent
foundation here, discovering how computer programs and programming
languages work. Next, you’ll learn the basics of the language—what data types,
variables, and operators are and what they do, then on to functions, arrays,
loops, and beyond. With no unnecessary, time-consuming material included,
plus quizzes at the end of each chapter and a final exam, you’ll emerge a C++
pro, completing and running your very own complex programs in no time.

About the Author

Jeff Kent is an Associate Professor of Computer Science at Los Angeles Valley
College in Valley Glen, California. He teaches a number of programming
languages, including Visual Basic, C++, Java and, when he’s feeling
masochistic, Assembler, but mostly he teaches C++. He also manages a
network for a Los Angeles law firm whose employees are guinea pigs for his
applications, and as an attorney gives advice to young attorneys whether they
want it or not. He also has written several books on computer programming,
including the recent Visual Basic.NET A Beginner’s Guide for McGraw-Hill/
Osborne.

Jeff has had a varied career—or careers. He graduated from UCLA with a
Bachelor of Science degree in economics, then obtained a Juris Doctor degree
from Loyola (Los Angeles) School of Law, and went on to practice law.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/backcover.html06.11.2004 22:51:08

C++ Demystified

C++ Demystified

Jeff Kent

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London
 Madrid Mexico City Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact McGraw-Hill/Osborne at the above address. For information on
translations or book distributors outside the U.S.A., please see the International Contact
Information page immediately following the index of this book.

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

1234567890 FGR FGR 01987654

ISBN 0-07-225370-3

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Editorial Director
Wendy Rinaldi

Project Editor
Lisa Wolters-Broder

Acquisitions Coordinator
Athena Honore

Technical Editor
Jim Keogh

Copy Editor
Mike McGee

Proofreader
Susie Elkind

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0001.html (1 of 3)06.11.2004 22:51:09

C++ Demystified

Indexer
Irv Hershman

Composition
Apollo Publishing Services, Lucie Ericksen

Illustrators
Kathleen Edwards, Melinda Lytle

Cover Series Design
Margaret Webster-Shapiro

Cover Illustration
Lance Lekander

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our
sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from the use of such information.

About the Author

Jeff Kent is an Associate Professor of Computer Science at Los Angeles Valley College
in Valley Glen, California. He teaches a number of programming languages, including
Visual Basic, C++, Java and, when he’s feeling masochistic, Assembler, but mostly he
teaches C++. He also manages a network for a Los Angeles law firm whose employees
are guinea pigs for his applications, and as an attorney gives advice to young attorneys
whether they want it or not. He also has written several books on computer programming,
including the recent Visual Basic.NET A Beginner’s Guide for McGraw-Hill/Osborne.

Jeff has had a varied career—or careers. He graduated from UCLA with a Bachelor of
Science degree in economics, then obtained a Juris Doctor degree from Loyola (Los
Angeles) School of Law, and went on to practice law. During this time, when personal
computers still were a gleam in Bill Gates’s eye, Jeff was also a professional chess
master, earning a third-place finish in the United States Under-21 Championship and,
later, an international title.

Jeff does find time to spend with his wife, Devvie, which is not difficult since she also is a
computer science professor at Valley College. He also acts as personal chauffeur for his
teenaged daughter, Emily (his older daughter, Elise, now has her own driver’s license)
and in his remaining spare time enjoys watching international chess tournaments on the
Internet. His goal is to resume running marathons, since otherwise, given his losing battle
to lose weight, his next book may be Sumo Wrestling Demystified.

I would like to dedicate this book to my wife, Devvie Schneider Kent. There is not room
here to describe how she has helped me in my personal and professional life, though I do
mention several ways in the Acknowledgments. She also has been my computer
programming teacher in more ways than one; I wouldn’t be writing this and other
computer programming books if it wasn’t for her.

—Jeff Kent

Acknowledgments

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0001.html (2 of 3)06.11.2004 22:51:09

C++ Demystified

It seems obligatory in acknowledgments for authors to thank their publishers (especially if
they want to write for them again), but I really mean it. This is my fourth book for McGraw-
Hill/Osborne, and I hope there will be many more. It truly is a pleasure to work with
professionals who are nice people as well as very good at what they do (even when what
they are good at is keeping accurate track of the deadlines I miss).

I first want to thank Wendy Rinaldi, who got me started with McGraw-Hill/Osborne back in
1998 (has it been that long?). Wendy was also my first Acquisitions Editor. Indeed, I got
started on this book through a telephone call with Wendy at the end of a vacation with my
wife, Devvie, who, being in earshot, and with an “are you insane” tone in her voice, asked
incredulously, “You’re writing another book?”

I also must thank my Acquisitions Coordinator, Athena Honore, and my Project Editor,
Lisa Wolters-Broder. Both were unfailingly helpful and patient, while still keeping me on
track in this deadline-sensitive business (e.g., “I’m so sorry you broke both your arms and
legs; you’ll still have the next chapter turned in by this Friday, right?”).

Mike McGee did the copyediting, together with Lisa. They were kind about my obvious
failure during my school days to pay attention to my grammar lessons. They improved
what I wrote while still keeping it in my words (that way, if something is wrong, it is still my
fault). Mike also indicated he liked some of my stale jokes, which makes him a friend for
life.

Jim Keogh was my technical editor. Jim and I had a balance of terror going between us,
in that while he was tech editing this book, I was tech editing two books on which he was
the main author, Data Structures Demystified and OOP Demystified. Seriously, Jim’s
suggestions were quite helpful and added value to this book.

There are a lot of other talented people behind the scenes who also helped get this book
out to press, but, as in an Academy Awards speech, I can’t list them all. That doesn’t
mean I don’t appreciate all their hard work, because I do.

I truly thank my wife Devvie, who in addition to being my wife, best friend (maybe my only
one), and partner (I’m leaving out lover because computer programmers aren’t supposed
to be interested in such things), also was my personal tech editor. She is well-qualified for
that task, since she has been a computer science professor for 15 years, and also is a
stickler for correct English (yes, I know, you can’t modify the word “unique”). She made
this a much better book.

Finally, I would like to give thanks to my daughters, Elise and Emily, and my mom, Bea
Kent, for tolerating me when I excused myself from family gatherings, muttering to myself
about unreasonable chapter deadlines and merciless editors (sorry, Athena and Lisa). I
also should thank my family in advance for not having me committed when I talk about
writing my next book.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0001.html (3 of 3)06.11.2004 22:51:09

Introduction

Introduction

C++ was my first programming language. While I’ve since learned others, I’ve always
thought C++ was the “best” programming language, perhaps because of the power it
gives the programmer. Of course, this power is a double-edged sword, being also the
power to hang yourself if you are not careful. Nonetheless, C++ has always been my
favorite programming language.

C++ also has been the first choice of others, not just in the business world because of its
power, but also in academia. Additionally, many other programming languages, including
Java and C#, are based on C++. Indeed, the Java programming language was written
using C++. Therefore, knowing C++ also makes learning other programming languages
easier.

Why Did I Write this Book?

Not as a road to riches, fame, or beautiful women. I may be misguided, but I’m not
completely delusional.

To be sure, there are many introductory level books on C++. Nevertheless, I wrote this
book because I believe I bring a different and, I hope, valuable perspective.

As you may know from my author biography, I teach computer science at Los Angeles
Valley College, a community college in the San Fernando Valley area of Los Angeles,
where I grew up and have lived most of my life. I also write computer programs, but
teaching programming has provided me with insights into how students learn that I could
never obtain from writing programs. These insights are gained not just from answering
student questions during lectures. I spend hours each week in our college’s computer lab
helping students with their programs, and more hours each week reviewing and grading
their assignments. Patterns emerge regarding which teaching methods work and which
don’t, the order in which to introduce programming topics, the level of difficulty at which to
introduce a new topic, and so on. I joke with my students that they are my beta testers in
my never-ending attempt to become a better teacher, but there is much truth in that joke.

Additionally, my beta testers… err, students, seem to complain about the textbook no
matter which book I adopt. Many ask me why I don’t write a book they could use to learn C
++. They may be saying this to flatter me (I’m not saying it doesn’t work), or for the more
sinister reason that they will be able to blame the teacher for a poor book as well as poor
instruction. Nevertheless, having written other books, these questions planted in my mind
the idea of writing a book that, in addition to being sold to the general public, also could
be used as a supplement to a textbook.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0002.html06.11.2004 22:51:10

Who Should Read this Book

Who Should Read this Book

Anyone who will pay for it! Just kidding, though no buyers will be turned away.

It is hardly news that publishers and authors want the largest possible audience for their
books. Therefore, this section of the introduction usually tells you this book is for you
whoever you may be and whatever you do. However, no programming book is for
everyone. For example, if you exclusively create game programs using Java, this book
may not be for you (though being a community college teacher I may be your next
customer if you create a space beasts vs. community college administrators game).

While this book is, of course, not for everyone, it very well may be for you. Many people
need or want to learn C++, either as part of a degree program, job training, or even as a
hobby. C++ is not the easiest subject to learn, and unfortunately many books don’t make
learning C++ any easier, throwing at you a veritable telephone book of complexity and
jargon. By contrast, this book, as its title suggests, is designed to “demystify” C++.
Therefore, it goes straight to the core concepts and explains them in a logical order and in
plain English.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0003.html06.11.2004 22:51:10

What this Book Covers

What this Book Covers

I strongly believe that the best way to learn programming is to write programs. The
concepts covered by the chapters are illustrated by clearly and thoroughly explained
code. You can run this code yourself, or use the code as the basis for writing further
programs that expand on the covered concepts.

Chapter 1 gets you started. This chapter answers questions such as what is a computer
program and what is a programming language. It then discusses the anatomy of a basic C
++ program, including both the code you see and what happens “under the hood,”
explaining how the preprocessor, compiler, and linker work together to translate your
code into instructions the computer can understand. Finally, the chapter tells you how to
use an integrated development environment (IDE) to create and run a project.

Being able to create and run a program that outputs “Hello World!” as in Chapter 1 is a
good start. However, most programs require the storing of information of different types,
such as numeric and text. Chapter 2 first explains the different types of computer
memory, including random access memory, or RAM. The chapter then discusses
addresses, which identify where data is stored in RAM, and bytes, the unit of value for the
amount of space required to store information. Because information comes in different
forms, this chapter next discusses the different data types for whole numbers, floating
point numbers and text.

The featured star of Chapter 3 is the variable, which not only reserves the amount of
memory necessary to store information, but also provides you with a name by which that
information later may be retrieved. Because the purpose of a variable is to store a value,
a variable without an assigned value is as pointless as a bank account without money.
Therefore, this chapter explains how to assign a value to a variable, either at compile time
using the assignment operator or at run time using the cin object and the stream
extraction operator.

As a former professional chess player, I have marveled at the ability of chess computers
to play world champions on even terms. The reason the chess computers have this ability
is because they can calculate far more quickly and accurately than we can. Chapter 4
covers arithmetic operators, which we use in code to harness the computer’s calculating
ability.

As programs become more sophisticated, they often branch in two or more directions
based on whether a condition is true or false. For example, while a calculator program
would use the arithmetic operators you learned about in Chapter 4, your program first
would need to determine whether the user chose addition, subtraction, multiplication, or
division before performing the indicated arithmetic operation. Chapters 5 and 6 introduce
relational and logical operators, which are useful in determining a user’s choice, and the if
and switch statements, used to direct the path the code will follow based on the user’s
choice.

When you were a child, your parents may have told you not to repeat yourself. However,
sometimes your code needs to repeat itself. For example, if an application user enters
invalid data, your code may continue to ask the user whether they want to retry or quit
until the user either enters valid data or quits. The primary subject of Chapters 7 and 8
are loops, which are used to repeat code execution until a condition is no longer true.
Chapter 7 starts with the for loop, and also introduces the increment and decrement
operators, which are very useful when working with loops. Chapter 8 completes the

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0004.html (1 of 2)06.11.2004 22:51:11

What this Book Covers

discussion of loops with the while and do while loops.

Chapter 9 is about functions. A function is a block of one or more code statements. All of
your C++ code that executes is written within functions. This chapter will explain why and
how you should write your own functions. It first explains how to prototype and define a
function, and then how to call the function. This chapter also explains how you use
arguments to pass information from the calling function to a called function and a return
value to pass information back from the called function to a calling function. Passing by
value and by reference also are explained and distinguished. This chapter winds up
explaining variable scope and lifetime, and both explaining and distinguishing local, static,
and global variables.

Chapter 10 is about arrays. Unlike the variables covered previously in the book, which
may hold only one value at a time, arrays may hold multiple values at one time.
Additionally, arrays work very well with loops, which are covered in Chapters 7 and 8.
This chapter also distinguishes character arrays from arrays of other data types. Finally,
this chapter covers constants, which are similar to variables, but differ in that their initial
value never changes while the program is running.

Chapter 11 is about pointers. The term pointers often strikes fear in the heart of a C++
student, but it shouldn’t. As you learned back in Chapters 2 and 3, information is stored at
addresses in memory. Pointers simply provide you with an efficient way to access those
addresses. You also will learn in this chapter about the indirection operator and
dereferencing as well as pointer arithmetic.

Most information, including user input, is in the form of character, C-string, and C++ string
class data types. Chapter 12 shows you functions that are useful in working with these
data types, including member functions of the cin object.

Information is stored in files so it will be available after the program ends. Chapter 13
teaches you about the file stream objects, fstream, ifstream, and ofstream, and how to
use them and their member functions to open, read, write and close files.

Finally, to provide you with a strong basis to go to the next step after this introductory
level book, Chapter 14 introduces you to OOP, Object-Oriented Programming, and two
programming concepts heavily used in OOP, structures and classes.

A Quiz follows each chapter. Each quiz helps you confirm that you have absorbed the
basics of the chapter. Unlike quizzes you took in school, you also have an answers
appendix.

Similarly, this book concludes with a Final Exam in the first appendix, and the answers to
that also found in the second appendix.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0004.html (2 of 2)06.11.2004 22:51:11

How to Read this Book

How to Read this Book

I have organized this book to be read from beginning to end. While this may seem
patently obvious, my students often express legitimate frustration about books (or
teachers) that, in discussing a programming concept, mention other concepts that are
covered several chapters later or, even worse, not at all. Therefore, I have endeavored to
present the material in a linear, logical progression. This not only avoids the frustration of
material that is out of order, but also enables you in each succeeding chapter to build on
the skills you learned in the preceding chapters.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0005.html06.11.2004 22:51:12

Special Features

Special Features

Throughout each chapter are Notes, Tips, and Cautions, as well as detailed code listings.
To provide you with additional opportunities to review, there is a Quiz at the end of each
chapter and a Final Exam (found in the first appendix) at the end of this book. Answers to
both are contained in the following appendix.

The overall objective is to get you up to speed quickly, without a lot of dry theory or
unnecessary detail. So let’s get started. It’s easy and fun to write C++ programs.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0006.html06.11.2004 22:51:13

Contacting the Author

Contacting the Author

Hmmm… it depends why. Just kidding. While I always welcome gushing praise and
shameless flattery, comments, suggestions, and yes, even criticism also can be valuable.
The best way to contact me is via e-mail; you can use jkent@genghiskhent.com (the
domain name is based on my students’ fond nickname for me). Alternately, you can visit
my web site, http://www.genghiskhent.com/. Don’t be thrown off by the entry page; I use
this site primarily to support the online classes and online components of other classes
that I teach at the college, but there will be a link to the section that supports this book.

I hope you enjoy this book as much as I enjoyed writing it.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0007.html06.11.2004 22:51:13

mailto:jkent@genghiskhent.com
http://www.genghiskhent.com/

Chapter 1: How a C++ Program Works

Chapter 1: How a C++ Program Works

Overview

You probably interact with computer programs many times during an average day. When
you arrive at work and find out your computer doesn’t work, you call tech support. At the
other end of the telephone line, a computer program forces you to navigate a voicemail
menu maze and then tortures you while you are on perpetual hold with repeated insincere
messages about how important your call is, along with false promises about how soon
you will get through.

When you’re finally done with tech support, you decide to take a break and log on to your
now-working computer to do battle with giant alien insects from the planet Megazoid.
Unfortunately, the network administrator catches you goofing off using yet another
computer program which monitors employee computer usage. Assuming you are still
employed, an accounts payable program then generates your payroll check.

On your way home, you decide you need some cash and stop at an ATM, where a
computer program confirms (hopefully) you have enough money in your bank account
and then instructs the machine to dispense the requested cash and (unfortunately)
deducts that same amount from your account.

Most people, when they interact with computers as part of their daily routine, don’t need
to consider what a computer program is or how it works. However, a computer
programmer should know the answers to these and related questions, such as what is a
programming language, and how does a C++ program actually work? When you have
completed this chapter, you will know the answers to these questions, and also
understand how to create and run your own computer program.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0008.html06.11.2004 22:51:14

What Is a Computer Program?

What Is a Computer Program?

Computers are so widespread in our society because they have three advantages over us
humans. First, computers can store huge amounts of information. Second, they can recall
that information quickly and accurately. Third, computers can perform calculations with
lightning speed and perfect accuracy.

The advantages that computers have over us even extend to thinking sports like chess. In
1997, the computer Deep Blue beat the world chess champion, Garry Kasparov, in a
chess match. In 2003, Kasparov was out for revenge against another computer, Deep
Junior, but only drew the match. Kasparov, while perhaps the best chess player ever, is
only human, and therefore no match for the computer’s ability to calculate and remember
prior games.

However, we have one very significant advantage over computers. We think on our own,
while computers don’t, at least not yet anyway. Indeed, computers fundamentally are far
more brawn than brain. A computer cannot do anything without step-by-step instructions
from us telling it what to do. These instructions are called a computer program, and of
course are written by a human, namely a computer programmer. Computer programs
enable us to harness the computer’s tremendous power.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0009.html06.11.2004 22:51:15

What Is a Programming Language?

What Is a Programming Language?

When you enter a darkened room and want to see what is inside, you turn on a light
switch. When you leave the room, you turn the light switch off.

The first computers were not too different than that light switch. These early computers
consisted of wires and switches in which the electrical current followed a path dependent
on which switches were in the on (one) or off (zero) position. Indeed, I built such a simple
computer when I was a kid (which according to my own children was back when
dinosaurs still ruled the earth).

Each switch’s position could be expressed as a number: 1 for the on position, 0 for the off
position. Thus, the instructions given to these first computers, in the form of the switches’
positions, essentially were a series of ones and zeroes.

Today’s computers, of course, are far more powerful and sophisticated than these early
computers. However, the language that computers understand, called machine language,
remains the same, essentially ones and zeroes.

While computers think in ones and zeroes, the humans who write computer programs
usually don’t. Additionally, a complex program may consist of thousands or even millions
of step-by-step machine language instructions, which would require an inordinately long
amount of time to write. This is an important consideration since, due to competitive
market forces, the amount of time within which a program has to be written is becoming
increasingly less and less.

Fortunately, we do not have to write instructions to computers in machine language.
Instead, we can write instructions in a programming language. Programming languages
are far more understandable to programmers than machine language because
programming languages resemble the structure and syntax of human language, not ones
and zeroes. Additionally, code can be written much faster with programming languages
than machine language because programming languages automate instructions; one
programming language instruction can cover many machine language instructions.

C++ is but one of many programming languages. Other popular programming languages
include Java, C#, and Visual Basic. There are many others. Indeed, new languages are
being created all the time. However, all programming languages have essentially the
same purpose, which is to enable a human programmer to give instructions to a computer.

Why learn C++ instead of another programming language? First, it is very widely used,
both in industry and in education. Second, many other programming languages, including
Java and C#, are based on C++. Indeed, the Java programming language was written
using C++. Therefore, knowing C++ makes learning other programming languages easier.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0010.html06.11.2004 22:51:16

Anatomy of a C++ Program

Anatomy of a C++ Program

It seems to be a tradition in C++ programming books for the first code example to output
to a console window the message “Hello World!” (shown in Figure 1-1).

Figure 1-1: C++ program outputting “Hello World!” to the screen

Note The term “console” goes back to the days before Windows when the screen did
not have menus and toolbars but just text. If you have typed commands using
DOS or UNIX, you likely did so in a console window. The text “Press any key to
continue” immediately following “Hello World!” is not part of the program, but
instead is a cue for how to close the console window.

Unfortunately, all too often the “Hello World!” example is followed quickly by many other
program examples without the book or teacher first stopping to explain how the “Hello
World!” program works. The result soon is a confused reader or student who’s ready to
say “Goodbye, Cruel World.”

While the “Hello World!” program looks simple, there actually is a lot going on behind the
scenes of this program. Accordingly, we are going to go through the following code for the
“Hello World!” program line by line, though not in top-to-bottom order.
#include <iostream>
using namespace std;

int main(void)
{
 cout << "Hello World!";
 return 0;
}

Note The code a programmer writes is referred to as source code, which is saved in a
file that usually has a .cpp extension, standing for C++.

The main Function

As discussed in the “What Is a Programming Language?” section, the purpose of C++, or
any programming language, is to enable a programmer to write instructions for a
computer. Often, a task is too complex for just one instruction. Instead, several related
instructions are required.

A function is a group of related instructions, also called statements, which together
perform a particular task. The name of the function is how you refer to these related

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0011.html (1 of 4)06.11.2004 22:51:17

Anatomy of a C++ Program

statements. In the “Hello World!” program, main is the name of a function. A program may
have many functions, and in Chapter 9 I will show you how to create and use functions.
However, a program must have one main function, and only one main function. The
reason is that the main function is the starting point for every C++ program. If there was
no main function, the computer would not know where to start the program. If there was
more than one main function, the program would not know whether to start at one or the
other.

Note The main function is preceded by int and followed by void in parentheses. We
will cover the meaning of both in Chapter 9.

The Function Body

Each of the related instructions, or statements, which belong to the main function are
contained within the body of that function. A function body starts with a left curly brace, {,
and ends with a right curly brace, }.

Each statement usually ends with a semicolon. The main function has two statements:
 cout << "Hello World!";
 return 0;

Statements are executed in order, from top to bottom. Don’t worry, the term “executed”
doesn’t mean the statement is put to death. Rather, it means that the statement is carried
out, or executed, by the computer.

cout

The first statement is
 cout << "Hello World!";

cout is pronounced “C-out.” The “out” refers to the direction in which cout sends a stream
of data.

A data stream may flow in one of two directions. One direction is input—into your program
from an outside source such as a file or user keyboard input. The other direction is output
—out from your program to an outside source such as a monitor, printer, or file.

cout concerns the output stream. It sends information to the standard output device. The
standard output device usually is your monitor, though it can be something else, such as
a printer or a file on your hard drive.

The << following cout is an operator. You likely have used operators before, such as the
arithmetic operators +, –, *, and /, for addition, subtraction, multiplication, and division,
respectively.

The << operator is known as the stream insertion operator. It inserts the information
immediately to its right—in this example, the text “Hello World!” into the data stream. The
cout object then sends that information to the standard output device—in this case, the
monitor.

Note In Chapter 3, you will learn about the counterparts to the cout object and the <<
operator, the cin object, which concerns the input stream, and the >> operator
used with the cin object.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0011.html (2 of 4)06.11.2004 22:51:17

Anatomy of a C++ Program

The return 0 Statement

The second and final statement returns a value of zero to the computer’s operating
system, whether Windows, UNIX, or another. This tells the operating system that the
program ended normally. Sometimes programs do not end normally, but instead crash,
such as if you run out of memory during the running of the program. The operating
system may need to handle this abnormal program termination differently than normal
termination. That is why the program tells the operating system that this time it ended
normally.

The #include Directive

Your C++ program “knows” to start at the main function because the main function is part
of the core of the C++ language. We certainly did not write any code that told the C++
program to start at main.

Similarly, your C++ program seems to know that the cout object, in conjunction with the
stream insertion operator <<, outputs information to the monitor. We did not write any
code to have the cout object and the << operator achieve this result.

However, the cout object is not part of the C++ core language. Rather, it is defined
elsewhere, in a standard library file. C++ has a number of standard library files, each
defining commonly used objects. Outputting information to the monitor certainly is a
common task. While you could go to the trouble of writing your own function that outputs
information to the screen, a standard library file’s implementation of cout saves you the
trouble of “reinventing the wheel.”

While C++ already has implemented the cout object for you in a standard library file, you
still have to tell the program to include that standard library file in your application. You do
so with the #include directive, followed by the name of the library file. If the library file is a
standard library file, as opposed to one you wrote (yes, you can create your own), then
the file name is enclosed in angle brackets, < and >.

The cout object is defined in the standard library file iostream. The “io” in iostream refers
to input and output—“stream” to a stream of data. To use the cout object, we need to
include the iostream standard library file in our application. We do so with the following
include directive:
#include <iostream>

The include directive is called a preprocessor directive. The preprocessor, together with
the compiler and linker, are discussed later in this chapter in the section “Translating the
Code for the Computer.” The preprocessor directive, unlike statements, is not ended by a
semicolon.

Namespace

The final statement to be discussed in the Hello World! example is
using namespace std;

C++ uses namespaces to organize different names used in programs. Every name used
in the iostream standard library file is part of a namespace called std. Consequently, the
cout object is really called std::cout. The using namespace std statement avoids the need
for putting std:: before every reference to cout, so we can just use cout in our code.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0011.html (3 of 4)06.11.2004 22:51:17

Anatomy of a C++ Program

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0011.html (4 of 4)06.11.2004 22:51:17

Translating the Code for the Computer

Translating the Code for the Computer

While you now understand the “Hello World!” code, the computer won’t. Computers don’t
understand C++ or any other programming language. They understand only machine
language.

Three programs are used to translate your source code into an executable file that the
computer can run. These programs are, in their order of appearance:

1. Preprocessor

2. Compiler

3. Linker

Preprocessor

The preprocessor is a program that scans the source code for preprocessor directives
such as include directives. The preprocessor inserts into the source code all files included
by the include directives.

In this example, the iostream standard library file is included by an include directive.
Therefore, the preprocessor directive inserts the contents of that standard library file,
including its definition of the cout object, into the source code file.

Compiler

The compiler is another program that translates the preprocessed source code (the
source code after the insertions made by the preprocessor) into corresponding machine
language instructions, which are stored in a separate file, called an object file, having an .
obj extension. There are different compilers for different programming languages, but the
purpose of the compiler is essentially the same, the translation of a programming
language into machine language, no matter which programming language is involved.

The compiler can understand your code and translate it into machine language only if
your code is in the proper syntax for that programming language. C++, like other
programming languages, and indeed most human languages, has rules for the spelling of
words and for the grammar of statements. If there is a syntax error, then the compiler
cannot translate your code into machine language instructions, and instead will call your
attention to the syntax errors. Thus, in a sense, the compiler acts as a spell checker and
grammar checker.

Linker

While the object file has machine language instructions, the computer cannot run the
object file as a program. The reason is that C++ also needs to use another code library,
called the run-time library, for common operations, such as the translation of keyboard
input or the ability to interact with external hardware such as the monitor to display a
message.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0012.html (1 of 2)06.11.2004 22:51:17

Translating the Code for the Computer

Note The run-time library files may already be installed as part of your operating
system. If not, you can download the run-time library files from Microsoft or
another vendor. Finally, if you install an IDE as discussed in the next section,
the run-time library files are included with the installation.

The linker is a third program that combines the object file with the necessary parts of the
run-time library. The result is the creation of an executable file with an .exe extension.
The computer runs this file to display “Hello World!” on the screen.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0012.html (2 of 2)06.11.2004 22:51:17

Using an IDE to Create and Run the " Hello World! " Project

Using an IDE to Create and Run the “Hello World!” Project

You can use any plain-text editor such as Notepad to write the source code. You also can
download a free compiler, which usually includes a preprocessor and linker. You then can
compile and run your code from the command line. The command line may be, for
example, a DOS prompt at which you type a command that specifies the action you want,
such as compiling, followed by the name of the file you want to compile.

While there is nothing wrong with using a plain-text editor and command line tools, many
programmers, including me, prefer to create, compile, and run their programs in a C++
Integrated Development Environment, known by the acronym IDE. The term “integrated”
in IDE means that the text editor, preprocessor, compiler, and linker are all together under
one (software) roof. Thus, the IDE enables you to create, compile, and run your code
using one program rather than separate programs. Additionally, most IDEs have a
graphical user interface (GUI) that makes them easier for many to use than a command
line. Finally, many IDEs have added features that ease your task of finding and fixing
errors in your code.

The primary disadvantage of using IDEs is you have to pay to purchase them (though
there are some free ones). They also require additional hard drive space and memory.
Nevertheless, I recommend obtaining an IDE since it enables you to focus on C++
programming issues without distractions such as figuring out the right commands to use
on the command line.

There are several good IDEs on the market. Microsoft’s, called Visual C++, can be
obtained separately or as part of Microsoft’s Visual Studio product. Borland offers C++
Builder, both in a free and commercial version. IBM has a VisualAge C++ IDE. There are
a number of others as well.

In this book, I will use Microsoft’s Visual C++ .NET 2003 IDE since I happen to have it.
However, most IDEs work essentially the same way, and your code will compile and run
the same no matter which IDE you use as long as you don’t use any library files custom
to a particular IDE. The standard library files we will be using, such as iostream, are the
same in all C++ IDEs.

Additionally, I am running the code on a Windows 2000 operating system. The results
should be similar on other operating systems, not just Windows operating systems, but
additional types of operating systems as well, such as UNIX.

Let’s now use the IDE to write the source code for the “Hello World!” project, and then
compile and run it.

Setting Up the “Hello World!” Project

Once you have purchased and installed Visual C++ .NET 2003, either as a standalone
application or as part of Visual Studio .NET 2003, you are now ready to start your first
project, which is to create and run the “Hello World!” application.

1. Start Visual C++.

2. Open the New Project dialog box shown in Figure 1-2 using the File | New | Project
menu command. (The values in the Name and Location fields will be set in steps 5
and 6.)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (1 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

Figure 1-2: Creating a New Project

3. In the left or list pane of the New Project dialog box, choose Visual C++ Projects
from the list of Project Types, and then the Win32 subfolder, as shown in Figure 1-
2.

4. In the right or contents pane of the New Project dialog box, choose Win32 Console
Project from the list of templates. The word console comes from the application
running from a console window. Win32 comes from the Windows 32-bit operating
system, such as Windows 9x, 2000, or XP.

5. In the Location field, using the Browse button, choose an existing folder under
which you will create the subfolder where you will put your project.

6. In the Name field, type the name you’ve chosen for your project. This will also be
the name of the subfolder created to store your project files. I suggest you use a
name that describes your project so you can locate it more easily later.

7. Click the OK button. This will display the Win32 Application Wizard, shown in
Figure 1-3.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (2 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

Figure 1-3: Starting the Win32 Application Wizard

8. Click the Application Settings menu item on the left. The appearance of the Win32
Application Wizard then changes to that shown in Figure 1-4.

Figure 1-4: Win32 Application Wizard after choosing Application Settings

9. Choose, if necessary, Console Application under Application Type (this is the
default) and Empty Project under Additional Options. Choosing Empty Project will
disable both checkboxes under Add Support For, which should be disabled anyway.

Caution Make sure you follow this step carefully, particularly choosing Empty
Project, which is not the default. Not configuring Application Settings
properly is a common mistake and may require you to start over.

10. Click the Finish button. Figure 1-5 shows the new subfolder HelloWorld and its
parent folder. These were the name and location chosen in steps 5 and 6.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (3 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

Figure 1-5: Windows Explorer showing newly created subfolder and files

You now have created a project for your application. The project is a shell for your
application, containing files that will support the creation and running of your application.
However, right now the project is empty of any code you have written, so it won’t do
anything. Accordingly, the next step is to start writing code.

Writing the Source Code

Visual C++ has a view of a project that is similar to Windows Explorer. That view is called
Solution Explorer, shown in Figure 1-6. If Solution Explorer is not already displayed, you
can display it with the menu command View | Solution Explorer.

Figure 1-6: Viewing your project with Solution Explorer

Solution Explorer has folders for both source and header files. The file in which the code
for the “Hello World!” application will be written is a source file. Source files have a .cpp
extension, cpp standing for C++. By contrast, the iostream file that is included by the
include directive is a header file. Header files have an .h extension—the h standing for
header.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (4 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

We will use Solution Explorer to add a new source file to the project, after which we will
write code in that new source file.

You can use the following steps to add a new source file to the project:

1. Right-click Source Files in Solution Explorer. This will display a shortcut menu,
shown in Figure 1-7.

Figure 1-7: Source Files shortcut menu

2. Choose Add | Add New Item from the shortcut menu to add a new source to the
project. This will display the Add New Item dialog box, shown in Figure 1-8.

Figure 1-8: Adding a New Source File to your Project

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (5 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

Note If the source file already exists, you can add it to your project using the
Add | Add Existing Item shortcut menu item.

3. Generally, you will not change the Location field, which is the subfolder in which
the project files are stored. Type the name of the new source file in the Name field.
You do not need to type the .cpp extension; that extension will be appended
automatically since it is a source file. By typing hello, as shown in Figure 1-8, the
new file will be called hello.cpp.

4. When you are done, click the Open button. Figure 1-9 shows the new hello.cpp file
in Solution Explorer.

Figure 1-9: Solution Explorer showing the new .cpp file

Writing the code is easy. Double-click hello.cpp in Solution Explorer. As shown in Figure
1-10, this will display the hello.cpp file, which at this point is blank.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (6 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

Figure 1-10: The source file before typing code

Now just type your code. When finished, hello.cpp should appear as in Figure 1-11.

Figure 1-11: The source file after typing code

Caution You also can use Notepad or any other text editor to write the code. How-
ever, do not use Microsoft Word or any other word processing program to
write your code. While a word processing program enables you to neatly
format your code, it does so using hidden formatting characters that the
compiler does not understand and will regard as syntax errors.

Save your work, such as by pressing the Save toolbar button. We’re now ready to
compile.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (7 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

Building the Project

You compile your code from the Build menu. You may compile your code from any one of
the following different menu choices:

● Build | Solution

● Rebuild | Solution

● Build | HelloWorld

● Rebuild | HelloWorld

HelloWorld is the name of your project. A solution may contain more than one project.
Here the solution contains only one project, so there is no practical difference between
the project and the solution.

Build means to compile changes from the last compilation (if there was one). Rebuild
means to start compilation from the beginning. Build therefore is usually faster, but
Rebuild is used when there have been extensive changes since the last compilation. As a
practical matter, it rarely makes a difference which one you choose.

Before we compile, make one change to the code, changing cout to Cout (capitalizing the
C). Then choose one of the four compilation options. A Task List window should display,
noting a build error, as shown in Figure 1-12. The error description in the Task List
window is “error C2065: ‘Cout’ : undeclared identifier.”

Figure 1-12: The Task List window showing a compilation error

Tip If the description column is not wide enough to show the entire error description,
you can display the error description in a pop-up window by right-clicking the error
description and choosing Show Description Tooltip from the shortcut menu.

As explained in the earlier section on the Compiler, the compiler can understand your
code and translate it into machine language only if your code is in the proper syntax for
that programming language. As also explained there, C++ has rules for the spelling of
words and for the grammar of statements. If there is a violation of those rules, that is, a
syntax error, then the compiler cannot translate your code into machine language
instructions, and instead will call your attention to the syntax errors.

In C++, code is case sensitive. That is, a word capitalized is not the same as the word
uncapitalized. The correct spelling is cout; Cout is wrong. Since C++ does not know what

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (8 of 9)06.11.2004 22:51:19

Using an IDE to Create and Run the " Hello World! " Project

Cout is, you get the error message that it is an “undeclared identifier.”

While here the code is short, if your code is quite lengthy, it is not easy to spot where the
error is in the code. If you double-click the error in the Task List window, then a cursor will
blink at the line where Cout is, and an icon will display in the margin (as shown in Figure
1-13).

Figure 1-13: The error highlighted in the code window

Now change Cout to cout, and then compile your code again. This time compilation
should be successful. Using Windows Explorer, you can now see in the Debug subfolder
of your HelloWorld project folder a file called hello.obj and another file called hello.exe.
These are the object and executable files previously discussed in the section “Translating
the Code for the Computer.” Accordingly, building the project involved the preprocessor,
the compiler, and the linker.

Running the Code

The final step is to run the code. You do so from the Debug menu. You may choose either
Debug | Start or Debug | Start Without Debugging. The difference is whether you wish to
use the debugger, an issue which we will discuss in a later chapter. Since we are not
going to use the debugger this time, choose Debug | Start Without Debugging as it is
slightly faster. The result is the console window displaying “Hello World!” (shown way
back in Figure 1-1).

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0013.html (9 of 9)06.11.2004 22:51:19

Summary

Summary

Computers can store huge amounts of information, recall that information quickly and
accurately, and perform calculations with lightning speed and perfect accuracy. However,
computers cannot think by themselves, and need step-by-step instructions from us telling
them what to do. These instructions are called a computer program, written by a human
computer programmer in a programming language such as C++. A compiler, together
with a preprocessor and a linker, translates the computer program into machine language
that a computer understands.

We then analyzed a C++ program, which outputs “Hello World!” to the screen. The
program looks simple, but much is going on behind the scenes. We analyzed that code,
line by line. You then created and ran your own “Hello World!” C++ application.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0014.html06.11.2004 22:51:20

Quiz

Quiz
1. What is a computer program?

2. Name several advantages a computer has over humans in processing information?

3. What is a programming language?

4. Why is C++ a good programming language to learn?

5. What is a function?

6. How many main functions should a C++ program have?

7. What is a standard library file?

8. What is the purpose of an include directive?

9. What does a preprocessor do?

10. What does a compiler do?

11. What does a linker do?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0015.html06.11.2004 22:51:21

Chapter 2: Memory and Data Types

Chapter 2: Memory and Data Types

Overview

After I wrote my first book, I expectantly waited every day for my mail, hoping to receive
requests for my autograph. The result was proof of the adage “be careful what you ask
for.” My mailbox was stuffed with numerous requests for my autograph. Alas, these
requests came from those who wanted to share my money, not my fame. My autograph
was requested on checks to pay my mortgage, credit cards, insurance, phone service,
electricity; well, you get the picture.

These companies who love sending me bills could not possibly keep track of their
thousands of customers by using pencil and paper. Instead, they use computer programs,
which harness the computer’s ability to store very large amounts of information and to
retrieve that stored information very quickly.

We use our memory to store and recall information. So do computers. However, a
computer’s memory is very different from ours. This chapter will explain how a computer’s
memory works.

Information, also called data, comes in different forms. Some data is numeric, such as the
amount of my gas bill. Other data is text, such as my name on my gas bill. The type of
data, whether numeric, text, or something else, quite logically is referred to as the “data
type.” The data type you choose will affect not only the form in which the data is stored,
but also the amount of memory required to store it. This chapter will explain the different
data types.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0016.html06.11.2004 22:51:21

Memory

Memory

Computer programs consist of instructions and data. As discussed in Chapter 1,
instructions, written in a programming language such as C++ and then translated by the
compiler and linker into machine language, give the computer step-by-step directions on
what to do. The data is the information that is the subject of the program. For example, if
the user of your computer program wants a list of all students with a GPA of 4.0, the data
could be a list of all students and their GPAs. The program then would follow instructions
to determine and output the list of all students with a GPA of 4.0.

The computer program’s instructions and data have to be in the computer’s memory for
the program to work. This section will explain the different types of computer memory, as
well as how and where instructions and data are stored in computer memory.

Types of Memory

There are three principal memory locations on your computer.

● The central processing unit (CPU)

● Random access memory (RAM)

● Persistent storage

Cache Memory

The CPU is the brains of the computer. You may have thought about the CPU when you
last considered purchasing a computer, since the CPU’s speed often is an important
purchase consideration. The faster the CPU’s speed, the faster your computer runs.

Note A hertz, named after Heinrich Hertz, who first detected electromagnetic waves,
represents one cycle per second. CPU speed is measured in megahertz (MHz),
which represents one million cycles per second, or gigahertz (GHz), which
represents 1 billion cycles per second. For example, a CPU that runs at 800
MHz executes 800 million cycles per second. Each computer instruction
requires a fixed number of cycles, so the CPU speed determines how many
instructions per second the CPU can execute.

The CPU, in addition to coordinating the computer’s operations, also has memory, called
cache memory. The CPU’s cache memory includes a segment called a register. This
memory is used to store frequently used instructions and data.

The CPU can access cache memory extremely quickly because it doesn’t have far to go;
the memory is right on the CPU. However, the amount of available cache memory is quite
small; there is only enough room for the most frequently used instructions and data. The
remainder of the instructions and data have to be stored somewhere else.

Random Access Memory

That somewhere else is random access memory, or RAM. You may also have considered
RAM when you last purchased a computer, since the more RAM a computer has, the
more programs it can run at one time, and the faster it runs.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0017.html (1 of 5)06.11.2004 22:51:23

Memory

The CPU can access RAM almost as quickly as cache memory. Additionally, the amount
of RAM available to store instructions and data is much larger than the amount of
available cache memory.

However, RAM, like cache memory, is temporary. Instructions and data contained in main
memory are lost once the computer is powered down. You may have had the unpleasant
experience of losing unsaved data when your computer powered off during a power
failure, or had to be rebooted.

Additionally, we would want the data to remain intact after the program ended, even if the
computer is rebooted or powered off. That is not possible with RAM.

Furthermore, your computer likely has many other programs, for e-mail, Internet, word
processing, and so on, that you may not be using right now, but you may want to use in
the future. Likewise, your computer also may have other data files, such as term papers,
letters, tax spreadsheets, e-mail messages, and so on, that you also may not be using
right now, but that you may want to use in the future. Accordingly, we need another
memory location, which unlike cache memory or RAM, is persistent—that is, it will persist
even though the computer is rebooted or turned off.

Persistent Storage

That other, persistent type of computer memory is called, naturally enough, persistent
storage. This usually is a hard drive, but also could be, among other devices, a CD-ROM
or DVD-ROM, floppy or zip disk, or optical drive. However, no matter what storage device
is used, persistent storage is lasting; instructions and data remain stored even when the
computer is powered down. Thus, your computer can be turned off for months, but when
it is turned on, the files you previously saved are still there.

Persistent storage, in addition to being lasting, also has a much larger capacity than RAM
—about one hundred to one thousand times larger.

Since persistent storage is lasting and has a very large capacity, it is used to store both
programs and data. For example, if you installed Microsoft Word on your computer, the
files for this program would be stored on your hard drive. If you then prepared documents
using that program, those documents likewise would be saved as files on your hard drive.

While persistent storage has the advantages of being lasting and having a large capacity,
a computer program cannot execute instructions located in persistent storage. The
instructions must be loaded from persistent storage into RAM. Similarly, a computer
program cannot manipulate data located in persistent storage. This data likewise must be
loaded from persistent storage into RAM.

Note While beyond the scope of this chapter, persistent storage also can serve as a
backup to RAM, and when serving this purpose is called virtual memory or swap
space.

Generally, computer programs use RAM to store instructions and data, so RAM will be
our focus in discussing memory. However, much of the discussion of memory also may
apply to persistent storage. CPU cache memory is a different subject, discussed more in
connection with programming languages, such as assembly language, that are far closer
to machine language than is C++.

Addresses

When someone asks where you live, you may answer 1313 Mockingbird Lane. That is

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0017.html (2 of 5)06.11.2004 22:51:23

Memory

your address.

Addresses are used to locate persons or places. Addresses usually follow a logical
pattern. For example, the addresses on one block may be from 1300 to 1399, the next
from 1400 to 1499, and so on.

Locations in memory also are identified by address. These addresses often look quite
different than the street addresses we’re used to, since they usually are expressed as
hexadecimal (Base 16) numbers such as 0x8fc1. However, regardless of how the number
is written, as shown in Figure 2-1, memory addresses follow the same logical, sequential
pattern as do street addresses, one number coming after another.

Figure 2-1: Sequence of memory addresses

Note Hexadecimal Numbers—We usually use numbers that are decimal, or Base
10, in which each digit is between 0 and 9. By contrast, memory addresses
usually are expressed as hexadecimal, or Base 16, in which each digit is
between 1 and 15. Since 10, 11, 12, 13, 14, and 15 are not single digits, 10 is
expressed as a, 11 as b, 12 as c, 13 as d, 14 as e, and 15 as f. The number 16
in decimal is expressed as 10 in hexadecimal.

Memory address numbers can be large values, and thus may be written more
compactly in hexadecimal than in decimal. For example, 1,000,000 in decimal is
f4240 in hexadecimal.

Converting between hexadecimal and decimal is explained next in the upcoming
section, “Converting Between Decimal and Binary or Hexadecimal.”

Bits and Bytes

While people live at street addresses, what is stored at each memory address is a byte.
Don’t worry, I have not misspelled Dracula’s favorite pastime.

As discussed in Chapter 1, early computers essentially were a series of switches, 1
representing on, 0 representing off. In computer terminology, a bit is either a 1 or a 0.

However, while a computer may think in bits, it cannot process information as small as a
single bit. Eight bits, or one byte, is the smallest unit of information that a computer can
process.

Accordingly, each address may store up to one byte of information, represented by a
sequence of up to eight ones and zeroes. Thus, just as a street address may be used to
locate the persons who live there, a memory address can be used to locate the one byte
of information that is stored there. Figure 2-2 shows a sequence of memory addresses,
each with a value.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0017.html (3 of 5)06.11.2004 22:51:23

Memory

Figure 2-2: A sequence of memory addresses, each with a byte value

Binary Numbering System

The information stored at a memory address, a series of ones and zeroes, probably has
little meaning to most of us. However, to a computer, a sequence of ones and zeroes is
quite meaningful.

For example, to my computer, I was born in the year 11110100000. Before you tell me
that’s impossible, I will tell you I was born in the year 1952. How could I have been born
both in the year 11110100000 and in the year 1952?

The numbers with which we usually work are decimal, or base 10. Each number in
decimal is represented by a digit between 0 and 9. 1952 is a decimal number.

The sequence of ones and zeroes in a byte also is a number, though it may not look like
any number you have ever seen. My birth year, expressed as the number 11110100000,
is binary, or base 2. Each number in binary is represented by a digit that is either 0 or 1.

The reason both decimal and binary numbers are involved in computer programming is
because both humans and computers are involved. While humans think in decimal
numbers, computers “think” in binary numbers.

Converting Between Decimal and Binary or Hexadecimal

You can write computer programs without knowing how to convert between binary and
decimal numbers. However, knowing how to do so is not difficult and may help your
understanding of what happens behind the scenes. If you are interested, read on!

Converting a number from binary to decimal is simple. Going from right to left, the
rightmost binary digit is multiplied by 20, or 1, the second binary digit from the right is
multiplied by 21, or 2, the third binary digit from the right is multiplied by 22, or 4, and so
on, through all of the binary digits. The results of each multiplication are added, and the
result is the decimal equivalent of the binary number. Table 2-1 shows this calculation for
the binary equivalents of the numbers 1 through 5 in decimal.

Table 2-1: Binary Equivalents of the Numbers 1 Through 5 in Decimal

Binary Calculation Decimal

0 0 × 20 = 0 × 1 = 0

1 1 × 20 = 1 × 1 = 1

10 (0 × 20) + (1 × 21) = 0 + 2 2

11 (1 × 20) + (1 × 21) = 1 + 2 3

100 (0 × 20) + (0 × 21) + (1 × 22) = 0 + 0 + 4 4

101 (1 × 20) + (0 × 21) + (1 × 22) = 1 + 0 + 4 5

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0017.html (4 of 5)06.11.2004 22:51:23

Memory

Converting a number from decimal to binary is almost as easy. Let’s use 5 in decimal as
an example.

1. You find the largest power of 2 that can be divided into 5 with a quotient of 1. The
answer is 22, or 4.

2. Remember when converting from binary to decimal, the rightmost binary digit is
multiplied by 20, or 1, the second binary digit from the right is multiplied by 21, the
third binary digit from the right is multiplied by 22, and so on. Since the exponent is
2, a binary 1 goes into the third binary digit from the right, so the binary number
now is 1??, the ? representing each binary digit we still need to calculate.

3. When you divide 5 by 4, the remainder is 1. You next try to divide 1 by the next
lowest power of 2, 21, or 2. The quotient is 0, so a binary 0 goes into the second
binary digit from the right. The binary number now is 10?.

4. When you divide 1 by 2, the remainder is still 1. You next try to divide 1 by the next
lowest power of 2, 20, or 1. The quotient is 1, so a binary 1 goes into the rightmost
binary digit. The binary number now is 101, and we’re done.

You also can use the same techniques for converting between hexadecimal and decimal.
When converting from hexadecimal to decimal, multiply each hexadecimal digit
(converting a to 10, b to 11, and so on) by the appropriate power of 16. For example, 5c
in hexadecimal is (12 × 160) + (5 × 161), which is 12 + 80 or 92.

Conversely, when converting from decimal to hexadecimal, the highest power of 16 that
can be divided into 92 is 161, or 16. The quotient is 5, which goes into the second digit to
the right. The remainder is 12, which is c in hexadecimal. This goes into the rightmost
digit, resulting in the hexadecimal number 5c.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0017.html (5 of 5)06.11.2004 22:51:23

Data Types

Data Types

The ones and zeroes that may be stored at a memory address may represent text, such
as my name, Jeff Kent. These ones and zeroes instead may represent a whole number,
such as my height in inches, 72, or a number with digits to the right of the decimal point,
such as my GPA in high school, which I’ll say was 3.75 (I honestly don’t remember, it was
too long ago). Alternatively, the ones and zeroes may represent either true or false, such
as whether I am a U.S. citizen.

Data comes in many forms, and is generally either numeric or textual. Additionally, some
numeric data uses whole numbers, such as 6, 0, or –7, while other numeric data uses
floating-point numbers, such as .6, 7.3, and –6.1.

There are different data types for each of the many forms of data. The data type you
choose will affect not only the form in which the data is stored, but also the amount of
memory required to store the data. Let’s now take a look at these different data types.

Whole Number Data Types

We deal with whole numbers all the time. Think of the answers to questions such as how
many cars are in the parking lot, how many classes are you taking, or how many brothers
and sisters do you have? Each answer involves a number, with no need to express any
value to the right of the decimal point. After all, who has 3.71 brothers and sisters?

Often, you don’t need a large whole number. What unfortunate student would be taking
754,361 classes at one time? However, sometimes the whole number needs to be large.
For example, if you are studying astronomy, the moon is approximately 240,000 miles
from Earth. Indeed, sometimes the whole number may need to be very, very large. Pluto’s
minimum distance from the Earth is about 2.7 billion miles.

Many times, the whole number won’t be negative. No matter how badly you do on a test,
chances are you won’t score below zero points. However, some whole numbers may be
below zero, such as the temperature at the North Pole.

Because of the different needs whole numbers may have to meet, there are several
different whole number data types (shown in Table 2-2). The listed sizes and ranges are
typical, but may vary depending on the compiler and operating system. In the sizeof
operator project later in this chapter, you will determine through code the size of different
data types on your compiler and operating system.

Table 2-2: Whole Number Data Types, Sizes, and Ranges

Data Type Size (in Bytes) Range

short 2 –32,768 to 32,767

unsigned short 2 0 to 65,365

int 4 –2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,987,295

long 4 –2,147,483,648 to 2,147,483,647

unsigned long 4 0 to 4,294,987,295

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0018.html (1 of 7)06.11.2004 22:51:24

Data Types

Note You may be wondering about the purpose of the long data type, since its size
and range is the same as an int in Table 2-2. However, as noted just before that
table, the actual size, and, therefore, range of a particular data type varies
depending on the compiler and operating system. On some combinations of
compilers and operating systems, short may be 1 byte, int may be 2 bytes, and
long may be 4 bytes.

Beginning programmers sometimes see information like that shown in Table 2-2 and
panic that they can’t possibly memorize all of it. The good news is you don’t have to. To
be sure, some memorization is necessary for almost any task. However, since there really
is too much information to memorize, programmers frequently resort to online help or
reference books. Believe me, I do.

Far more important to a programmer than rote memorization is to understand how and
why a program works as it does. Therefore, this section will go into some detail as to how
data types work. Some arithmetic necessarily is involved, but it is not difficult, and if you
follow the arithmetic, you will have a good understanding of data types that will help you
in your programming in the following chapters.

Unsigned vs. Signed Data Type

Table 2-2 lists three data types: short, int, and long. Each of these three data types has
either the word unsigned in front of it or nothing at all—as in unsigned short and short.

Unsigned means the number is always zero or positive, never negative. Signed means
the number may be negative or positive (or zero). If you don’t specify signed or unsigned,
the data type is presumed to be signed. Thus, signed short and short are the same.

Since an unsigned data type means its value is always 0 or positive, never negative, in
Table 2-2 the smallest value of an unsigned short is therefore zero; an unsigned short
cannot be negative. By contrast, the smallest value of a short is –32767, since a signed
data type may be negative, positive, or zero.

Size

Each of the whole number data types listed in Table 2-2 has a size. Indeed, all C++ data
types have a size. However, unlike people, the size of a data type is not expressed in
inches or in pounds (a sore subject for me), but in bytes.

Since a byte is the smallest unit of information that a computer can process, no data type
may be smaller than one byte. Most data types are larger than one byte; all the whole
number data types listed in Table 2-2 are. However, regardless of the size, the number of
bytes is always a whole number. You cannot have a data type whose size is 3.5 bytes
because .5 bytes, or 4 bits, is too small for the computer to process.

Generally, the number of bytes for a data type is the result of a power of 2 since
computers use a binary number system. Thus, typical data type sizes are 1 byte (20), 2
bytes (21), four bytes (22), or eight bytes (23).

The size of a data type matters in two related respects: (1) the range of different values
that the data type may represent and (2) the amount of memory required to store the data
type.

Range

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0018.html (2 of 7)06.11.2004 22:51:24

Data Types

Range means the highest and lowest value that may be represented by a given data type.
For example, the range of the unsigned short data type is 0 to 65,365. These lowest and
highest values are not arbitrary, but instead can be calculated.

The number of different values that a data type can represent is 2n, n being the number of
bits in the data type. The size of a short data type is 2 bytes, or 16 bits. Therefore, the
number of different whole numbers that the short data type can represent is 216, which is
65,356.

However, the highest value that an unsigned short can represent is 65,355, not 65,356,
because the unsigned short data type starts at 0, not 1. Therefore, the highest number
that an unsigned data type may represent is 2n – 1; n again being the number of bits in
the data type, and the minus 1 being used because we are starting at 0, not 1.

Signed data types involve an additional issue. Since the range of a signed data type
includes negative numbers, there needs to be a way of determining if a number is positive
or negative. We determine if a decimal number is positive or negative by looking to see if
the number is preceded by a negative sign (–). However, a bit can be only 1 or 0; there is
no option for a negative sign in a binary number.

There are several different explanations in computer science for the representation of
negative numbers, such as signed magnitude, one’s complement, and two’s complement.
However, we don’t need to get into the complexities of these explanations.

For example, a signed short data type, like an unsigned short data type, can represent
216 or 65,356 different numbers. However, with a signed data type, these different
numbers must be split evenly between those starting at zero and going up, and those
starting at zero and going down. To do this, the two ranges would be 0 to 32,767 and –1
to –32,768. This can be confirmed by Table 2-2, which shows the range of a signed data
type as –32,768 to 32,767.

Another way of explaining the high and low numbers of the range of the signed short data
type is that one of the bits is used to store the sign, positive or negative. That leaves 15
bits. The highest number in the range is 215 – 1, or 32,767; the minus 1 being used
because we are starting at 0, not 1. The lowest number in the range is –(215), or –32,768;
there’s no minus 1 because we are starting at –1, not 0.

Storage

In binary, 65365 as an unsigned short is represented by sixteen ones:
1111111111111111. You cannot fit 16 bits into a single memory address. A memory
address can hold only 8 bits, or a byte. How then can you store this value in memory?

The answer is you need two memory addresses to store 65365 in decimal. This provides
two bytes of storage, sufficient to store this value. This is why the short data type requires
2 bytes of storage. Figure 2-3 shows how this value would be stored as a short data type.

Figure 2-3: Storage in memory of 65365 in decimal as an unsigned short data type

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0018.html (3 of 7)06.11.2004 22:51:24

Data Types

The int data type requires 4 bytes of storage. Figure 2-4 shows how 65365 in decimal
would be stored as an unsigned int data type.

Figure 2-4: Storage in memory of 65365 in decimal as an unsigned int data type

You may legitimately wonder why 65365 in decimal as an unsigned int data type requires
four bytes of storage when 65365 in decimal as an unsigned short data type requires only
two bytes of storage. In other words, if you specify int instead of short as the data type,
four bytes of storage will be reserved, even if you could store the number in less bytes.
The reason is that it is not known, when memory is reserved, what value will be stored
there. Additionally, the value could change. Accordingly, enough bytes of storage are
reserved for the maximum possible value of that data type.

Why Use a Smaller Size Data Type?

Given that an int can store a far wider range of numbers than a short, you also may be
wondering why you ever would use a short rather than an int. The answer is that the
wider range of an int comes at a price; it requires twice as much RAM as a short—four
instead of two bytes.

However, computers these days come with hundreds of megabytes of RAM, each
megabyte being 1,048,576 bytes; you still may wonder why you should care about two
measly extra bytes. If it was just 2 extra bytes, you wouldn’t care. However, if you are
writing a program for an insurance company that has one million customers, you won’t be
talking about 2 extra bytes, but instead 2 million extra bytes. Therefore, you should not
just reflexively choose the largest data type.

All this said, as a general rule, of the six whole number data types, you most often will use
int. However, it is good to know about the other choices.

Floating-Point Data Types

I was nearsighted my entire adult life until I had lasik surgery on my eyes. In this surgery,
the eye surgeon programs information that the laser used to reshape my eyeball by
shaving off very thin slices of my cornea, measuring only thousandths of an inch, in
certain areas of my eyeball, leaving untouched other areas, again only thousandths of an
inch away.

Can you imagine my reaction if the eye surgeon had told me his philosophy was “close
enough for government work,” so he was using only whole numbers, ignoring any values
to the right of the decimal point? You next would have seen my silhouette through the wall
after I ran through it to escape. (Since I still go to my eye surgeon, who, by the way,
earned his way through college as a computer programmer, and it is not in my best
interest to get on his bad side, let me hasten to add that he was very precise and the
surgery was successful.)

Whole numbers work fine for certain information where fractions don’t apply. For
example, who would say they have 2 ¾ children? Whole numbers also work fine for
certain information where fractions do apply but are not important. For example, it would

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0018.html (4 of 7)06.11.2004 22:51:24

Data Types

be sufficient normally to say the location is 98 miles away; precision such as 98.177 miles
usually is not necessary.

However, other times fractions, expressed as numbers to the right of the decimal point,
are very important. My lasik surgery is an extreme example, but there are many other
more common ones. If you had a 3.9 GPA, you probably would not want the school to just
forget about the .9 and say your GPA was 3. Similarly, a bank that kept track of dollars
but not cents with deposits and withdrawals would, with potentially millions of transactions
a day, soon have very inaccurate information as to how much money it has, and its
depositors have.

Accordingly, there are floating-point data types that you can use when a value to the right
of the decimal point is important. The term floating point comes from the fact that there is
no fixed number of digits before and after the decimal point; that is, the decimal point can
float. Floating-point numbers also are sometimes referred to as real numbers.

Table 2-3 lists each of the floating-point number data types. As with the whole number
data types, the listed sizes and ranges are typical, but may vary depending on the
compiler and operating system.

Table 2-3: Floating-point Number Data Types, Sizes, and Ranges

Data Type Size (in Bytes) Range (in E notation)

float 4 ±3.4E-38 to ±3.4E38

double 8 ±1.7E-308 to ±1.7E308

long double 10 ±3.4E-4932 to ±3.4E4932

Note The size of a long double on many combinations of compilers and operating
systems may be 8 bytes, not 10.

Scientific and E Notations

The range column in Table 2-3 may not look like any number you have ever seen before.
That is because these are not usual decimal numbers, but instead numbers expressed in
E notation, the letter E standing for exponent.

The float data types can store very large numbers, such as (in decimal)
10000000000000000000000000000000000000, which could be a distance across the
universe. The float data types also can store very small numbers, such
as .00000000000000000000000000000000000001, which could be the diameter of a
subatomic particle.

Rather than having digits running across the page, the number can be expressed more
compactly. One way is with scientific notation, another is with E notation. Table 2-4 shows
how certain floating-point numbers are represented in both notations.

Table 2-4: Scientific and E Notation Representations of Floating Point Values

Decimal Notation Scientific Notation E Notation

123.45 1.2345 x 102 1.2345E2

0.0051 5.1 x 10-3 5.1E-3

1,200,000,000 1.2 x 109 1.2E9

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0018.html (5 of 7)06.11.2004 22:51:24

Data Types

In scientific notation, the number before the multiplication operator, called the mantissa,
always is expressed as having a single digit to the left of the decimal point, and as many
digits as necessary to the right side of the decimal point to express the number. The
number after the multiplication operator is a power of 10, which may be positive for very
large numbers or negative for very small fractions. The value of the expression is the
mantissa multiplied by the power of 10.

E notation is very similar to scientific notation. The only difference is the multiplication
operator, followed by 10 and an exponent, is replaced by an E followed by the exponent.

Storage of Floating-Point Numbers

Since only ones and zeroes can be stored in memory, complex codes, well beyond the
scope of this book, are required to store floating-point numbers. Even with complex
codes, a computer can only approximately represent many floating-point values. Indeed,
in certain programs the programmer has to take care to ensure that small discrepancies
in each of a number of approximations don’t accumulate to the point where the final result
is wrong.

Note Because mathematics with floating-point numbers requires a great deal of
computing power, many CPUs come with a chip specialized for performing
floating-point arithmetic. These chips often are referred to as math coprocessors.

Text Data Types

There are two text data types. The first is char, which stands for character. It usually is 1
byte, and can represent any single character, including a letter, a digit, a punctuation
mark, or a space.

The second text data type is string. The string data type may store a number of
characters, including this sentence, or paragraph, or page. The number of bytes required
depends on the number of characters involved.

Note Unlike char and the other data types we have discussed, the string type is not a
data type built into C++. Instead, it is defined in the standard library file string,
which therefore must be included with an include directive (#include <string>) to
use the string data type. Chapter 1 covers the include directive, which in the
“Hello World!” program was #include <iostream>.

Storage of Character Values

There is a reason why the size of a character data type usually is 1 byte.

ANSI (American National Standards Institute) and ASCII (American Standards Committee
for Information Interchange) adopted for the English language a set of 256 characters,
which includes all alphabetical characters (upper- and lowercase), digits and punctuation
marks, and even characters used in graphics and line drawing. Each of these 256
different characters is represented by a number between 0 and 255 that it corresponds to.
Table 2-5 lists the ASCII values of commonly used characters.

Table 2-5: ASCII Values of Commonly Used Characters

Characters Values Comments

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0018.html (6 of 7)06.11.2004 22:51:24

Data Types

0 through 9 48–57 0 is 48, 9 is 57

A through Z 65–90 A is 65, Z is 90

a through z 97–122 a is 97, z is 122

Each of the 256 different values can be represented by different combinations of 8 bits, or
one byte. This is true because 28 equals 256. Thus, 00000000 is equal to 0, the smallest
ASCII value, and 11111111 is equal to 255, the largest ASCII value.

For example, the letter J has the ASCII code 74. The binary equivalent of 74 is 1001010.
Thus, 1001010 at a memory address could indicate the letter J.

Note 1001010 also could indicate the number 74; you wouldn’t know which value was
being represented unless you knew the data type associated with that memory
address. In the next chapter, you will learn about variables, which enable you to
associate a particular data type with a specific memory address.

Storage of Strings

The amount of memory required for a string depends on the number of characters in the
string. However, each memory address set aside for the string would store one character
of the string.

The bool Data Type

There is one more data type, bool. This data type has only two possible values, true and
false, and its size usually is one byte. The term “bool” is a shortening of Boolean, which is
usually used in connection with Boolean Algebra, named after the British mathematician,
George Boole.

The bool data type is mentioned separately since it does not neatly fit into either the
number or text categories. It could be regarded as a numeric data type in that zero is
seen as false, and one (or any other non-zero number) as true. While it may not seem
intuitive why zero would be false and one would be true, remember that computers
essentially store information in switches, where 1 is on, and 0 is off.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0018.html (7 of 7)06.11.2004 22:51:24

Project: Determining the Size of Data Types

Project: Determining the Size of Data Types

As discussed in the previous Data Types section, the size of each data type depends on
the compiler and operating system you are using. In this project, you will find out the size
of each data type on your system by using the sizeof operator.

The sizeof Operator

The sizeof operator is followed by parentheses, in which you place a data type. It returns
the size in bytes of that data type.

For example, on my computer, the expression sizeof(int) returns 4. This means that on
my compiler and operating system, the size of an int data type is 4 bytes.

Changing the Source File of Your Project

Try creating and running the next program using the steps you followed in Chapter 1 to
create the “Hello World!” program. While you could start a new project, in this example,
you will reuse the project you used in Chapter 1. It is good to know both how to create a
new project and how to reuse an existing one.

1. Start Visual C++.

2. Use the File | Open Solution menu command to display the Open Solution dialog
box shown in Figure 2-5.

Figure 2-5: Opening the Existing Solution

3. Navigate to the folder where you saved the project (C:\temp\helloworld on my
computer) and find the solution file. It has the extension .sln, which stands for
solution. The solution file is helloworld.sln in Figure 2-5.

4. Open the solution file. This should open your project.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0019.html (1 of 6)06.11.2004 22:51:26

Project: Determining the Size of Data Types

5. Display Solution Explorer using the View | Solution Explorer menu command, and
then click the Source Files folder to show the hello.cpp file, as depicted in Figure 2-
6.

Figure 2-6: Showing the Existing Source File in Solution Explorer

6. Right-click the hello.cpp file and choose Remove from the shortcut menu (shown in
Figure 2-7). Don’t worry, this will not delete the file, but instead simply remove it
from the project. You still will be able to use it later if you wish.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0019.html (2 of 6)06.11.2004 22:51:26

Project: Determining the Size of Data Types

Figure 2-7: Remove option on Shortcut Menu

7. Right-click the Source Files folder and choose Add New Item from the shortcut
menu. This will display the Add New Item dialog box, shown in Figure 2-8.

Figure 2-8: Adding a New Source File to your Project

8. Don’t change the Location field, which holds the subfolder in which the project files
are stored. Type the name of the new source file in the Name field, such as sizeof.
cpp.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0019.html (3 of 6)06.11.2004 22:51:26

Project: Determining the Size of Data Types

9. When you are done, click the Open button. Figure 2-9 shows the new sizeof.cpp
file in Solution Explorer.

Figure 2-9: Solution Explorer showing the new .cpp file

Double-click sizeof.cpp in Solution Explorer to display the sizeof.cpp file in the code
editing window. At this point, the sizeof.cpp is blank. In the next section, you will add code.

Code and Output

Write the following code in the source file you have created. I will explain the code in the
following sections.
#include <iostream>
using namespace std;
int main(void)
{
 cout << "Size of short is " << sizeof(short) << "\n";
 cout << "Size of int is " << sizeof(int) << "\n";
 cout << "Size of long is " << sizeof(long) << "\n";
 cout << "Size of float is " << sizeof(float) << "\n";
 cout << "Size of double is " << sizeof(double) << "\n";
 cout << "Size of long double is
 " << sizeof(long double) << "\n";
 cout << "Size of char is " << sizeof(char) << "\n";
 cout << "Size of bool is " << sizeof(bool) << "\n";
return 0;
}

Next, build and run the project, following the same steps you did for the “Hello World!”
Project in Chapter 1. The resulting output on my computer is

Size of short is 2

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0019.html (4 of 6)06.11.2004 22:51:26

Project: Determining the Size of Data Types

Size of int is 4
Size of long is 4
Size of float is 4
Size of double is 8
Size of long double is 8
Size of char is 1
Size of bool is 1

Note The numbers displayed on your computer may be different, because the size of
a data type depends on the particular compiler and operating system you are
using, and yours may not be the same as mine.

Expressions

The line of code
 cout << "Size of int is " << sizeof(int) << "\n";

displays the following output:
Size of int is 4

In essence, the code sizeof(int) is replaced by 4 in the output.

The code sizeof(int) is called an expression. An expression is a code statement that has a
value, usually a value that has to be evaluated when the program runs. An example of an
expression is 4 + 4, which has a value, 8, that would be evaluated when the program runs.

When the code runs, the expression sizeof(int) is evaluated as having the value 4, which
then is outputted.

By contrast, the portion of the statement within double quotes, “Size of int is ,” is outputted
literally as “Size of int is 4.” There is no need for an evaluation. Instead, this is considered
a literal string. The term string refers to the data type, a series of characters, and the term
literal refers to the fact that the string is outputted literally, without evaluation. The string
“Hello World!” in the cout statement in Chapter 1 also was a literal string.

Outputting an Expression

The expression sizeof(int) is separated by the stream insertion operator (<<) from the
literal string “Size of int is .” If the code statement instead were
 cout << "Size of int is sizeof(int)\n";

then the output would be quite different:
Size of int is sizeof(int)

The reason is sizeof(int), being encased inside the double quotes, would be treated as a
literal string, not an expression, and therefore would not be evaluated, but instead
displayed as is.

Since “Size of int is” is a literal string and sizeof(int) is an expression, they need to be
differentiated before being inserted into the output stream. This differentiation is done by
placing a stream insertion operator between the literal string and the expression.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0019.html (5 of 6)06.11.2004 22:51:26

Project: Determining the Size of Data Types

Note The string “Size of int is” ends with a space between “is” and the following 4.
Without that space, the output would be “Size of int is4.” You, as the
programmer, have the responsibility to ensure proper spacing; C++ won’t do it
for you.

Escape Sequences

The string “\n” following the expression sizeof(int) is also a literal string, so it, too, is
separated by a stream insertion operator from the sizeof(int) expression. However, “\n” is
a special type of string called an escape sequence.

C++ has many escape sequences, though this may be the commonest one. This
particular escape sequence causes the cursor to go to the next line for further printing.
Without it, all the output would be on one line.

The “\n” in a string is not displayed literally by cout even though it is encased in double
quotes. The reason is that the backslash signals cout that this is an escape sequence.

Table 2-6 shows some of the most common escape sequences.

Table 2-6: Common Escape Sequences

Escape
Sequence Name What It does

\a Alarm Causes the computer to beep

\n newline Causes the cursor to go to the next line

\t Tab Causes the cursor to go to the next tab
stop

\\ Backslash Causes a backslash to be printed

\' Single quote Causes a single quote to be printed

\” Double quote Causes a single quote to be printed

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0019.html (6 of 6)06.11.2004 22:51:26

Summary

Summary

A computer program’s instructions and data have to be in the computer’s memory for the
program to work. There are three principal memory locations on your computer: the
central processing unit (CPU), random access memory (RAM), and persistent storage.
Computer programs usually use RAM to store instructions and data.

Instructions and data are stored at addresses, represented by a sequential series of
numbers. A computer stores information in a series of ones and zeroes. Each one or zero
is a bit. However, a computer cannot process information as small as a single bit. Eight
bits, or one byte, is the smallest unit of information that a computer can process.
Therefore, each address stores one byte of information.

Some information is numeric; other data is textual. Each type of information is referred to
as a data type. The principal data type categories are whole numbers, floating-point
numbers, and text. However, all data types have in common a characteristic of size,
which is the number of bytes required to store information of that data type. A data type’s
size also determines its range, which is the highest and lowest number that can be stored
by that data type.

The size of a data type varies depending on the compiler and operating system. You may
use the sizeof operator to determine the size of a data type on your particular system.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0020.html06.11.2004 22:51:27

Quiz

Quiz
1. From which of the following types of memory can the CPU most quickly access

instructions or data: cache memory, RAM, or persistent storage?

2. Which of the following types of memory is not temporary: cache memory, RAM, or
persistent storage?

3. What is the amount of information that may be stored at a particular memory
address?

4. Is the size of a data type always the same no matter which computer you may be
working on?

5. What is meant by the range of a data type?

6. What is the difference between an unsigned and signed data type?

7. What decimal number is represented by 5.1E-3 in E notation?

8. What is an ASCII value?

9. What does the sizeof operator do?

10. What is a literal string?

11. What is an expression?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0021.html06.11.2004 22:51:27

Chapter 3: Variables

Chapter 3: Variables

Overview

Recently, while in a crowded room, someone yelled “Hey, you!” I and a number of other
people looked up, because none of us could tell to whom the speaker was referring. Had
the speaker instead yelled “Hey, Jeff Kent!,” I would have known he was calling me
(unless of course there happened to be another Jeff Kent in the room).

We use names to refer to each other. Similarly, when you need to refer in code to a
particular item of information among perhaps thousands of items of information, you do so
by referring to the name of that information item.

You name information by creating a variable. A variable not only gives you a way of
referring later to particular information, but also reserves the amount of memory
necessary to store that information. This chapter will show you how to create variables,
store information in them, and retrieve information from them.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0022.html06.11.2004 22:51:28

Declaring Variables

Declaring Variables

You learned in Chapter 2 that the information a program uses while it is running first
needs to be stored in memory. You need to reserve memory before you can store
information there. You reserve memory by declaring a variable.

Declaring a variable not only reserves memory, but also gives you a convenient way of
referring to that reserved memory when you need to do so in your program. You also
learned in Chapter 2 that memory addresses have hexadecimal values such as
0012FED4. These values are hard to remember. It is much easier to remember
information that, for example, relates to a test score by the name testScore. By declaring
a variable, you can refer to the reserved memory by the variable’s name, which is much
easier to remember and identify with the stored information than is the hexadecimal
address.

While declaring a variable is relatively simple, requiring only one line of code, much is
happening behind the scenes. The program at the end of this section will show you how
to determine the address and size of the memory reserved by declaring a variable.

Syntax of Declaring Variables

You have to declare a variable before you can use it. Declaring a variable involves the
following syntax:
[data type] [variable name] ;

The data type may be any of the ones discussed in Chapter 2, including int, float, bool,
char, or string. The data type tells the computer how much memory to reserve. As you
learned in Chapter 2, different data types have different sizes in bytes. If you specify a
data type with a size (on your compiler and operating system) of 4 bytes, then the
computer will reserve 4 bytes of memory.

You choose the variable name; how you name a variable is discussed later in the section
“Naming the Variable.” The name is an alias by which you can refer in code to the area of
reserved memory. Thus, when you name a variable that relates to a test score testScore,
you can refer in code to the reserved memory by the name testScore instead of by a
hexadecimal value such as 0012FED4.

Finally, the variable declaration ends with a semicolon. The semicolon tells the compiler
that the statement has ended. You can declare a variable either within a function, such as
main, or above all functions, just below any include directives. Since for now our
programs have only one function, main, we will declare all variables within main. When
our programs involve more than one function, we will revisit the issue of where to declare
variables.

The following statement declares in main an integer variable named testScore.
int main(void)
{
 int testScore;
 return 0;
}

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0023.html (1 of 5)06.11.2004 22:51:29

Declaring Variables

Note Unlike the code in Chapters 1 and 2, there is no include directive such as
#include <iostream> in this code because this code does not use cout or
another function defined in a standard library file.

You will receive a compiler error if you refer to a variable before declaring it. In the
following code, the reference to testScore will cause the compiler error “undeclared
identifier.”
int main(void)
{
 testScore;
 int testScore;
 return 0;
}

This compiler error will occur even though the variable is declared in the very next
statement. The reason is that the compiler reads the code from top to bottom, so when it
reaches the first reference to testScore, it has not seen the variable declaration.

This “undeclared identifier” compiler error is similar to the one in the “Hello World!” project
in Chapter 1 when we (deliberately) misspelled cout as Cout. Since testScore is not a
name built into C++, like main and int, the compiler does not recognize it. When you
declare a variable, then the compiler recognizes further references to the variable name
as referring to the variable that you declared.

Declaring Multiple Variables of the Same Data Type

If you have several variables of the same data type, you could declare each variable in a
separate statement.
 int testScore;
 int myWeight;
 int myHeight;

However, if the variables are of the same data type, you don’t need to declare each
variable in a separate statement. Instead, you can declare them all in one statement,
separated by commas. The following one statement declares all three integer variables:
 int testScore, myWeight, myHeight;

The data type int appears only once, even though three variables are declared. The
reason is that the data type qualifies all three variables, since they appear in the same
statement as the data type.

However, the variables must all be of the same data type to be declared in the same
statement. You cannot declare an int variable and a float variable in the same statement.
Instead, the int and float variables would have to be declared in separate statements.
 int testScore;
 float myGPA;

Naming the Variable

Variables, like people, have names, which are used to identify the variable so you can
refer to it in code. There are only a few limitations on how you can name a variable.

● The variable name cannot begin with any character other than a letter of the alphabet

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0023.html (2 of 5)06.11.2004 22:51:29

Declaring Variables

(A–Z or a–z) or an underscore (_). Secret agents may be named 007, but not
variables. However, the second and following characters of the variable name may
be digits, letters, or underscores.

● The variable name cannot contain embedded spaces, such as My Variable, or
punctuation marks other than the underscore character (_).

● The variable name cannot be the same as a word reserved by C++, such as main or
int.

● The variable name cannot have the same name as the name of another variable
declared in the same scope. Scope is an issue that will be discussed in Chapter 8.
For present purposes, this rule means you cannot declare two variables in main with
the same name.

Besides these limitations, you can name a variable pretty much whatever you want.
However, it is a good idea to give your variables names that are meaningful. If you name
your variables var1, var2, var3, and so on, up through var17, you may find it difficult to
later remember the difference between var8 and var9. And if you find it difficult, imagine
how difficult it would be for a fellow programmer, who didn’t even write the code, to figure
out the difference.

In order to preserve your sanity, or possibly your life in the case of enraged fellow
programmers, I recommend you use a variable name that is descriptive of the purpose of
the variable. For example, testScore is descriptive of a variable that represents a test
score.

The variable name testScore is a combination of two names: test and score. You can’t
have a variable name with embedded spaces such as test score. Therefore, the two
words are put together, and differentiated by capitalizing the first letter of the second
word. By the convention I use, the first letter of a variable name is not capitalized.

Naming Conventions

A naming convention is simply a consistent method of naming variables. There are a
number of naming conventions. In addition to the one I described earlier, another naming
convention is to name a variable with a prefix, usually all lowercase and consisting of
three letters, that indicate its data type, followed by a word with its first letter capitalized,
that suggests its purpose. Some examples:

● intScore Integer variable representing a score, such as on a test.

● strName String variable representing a name, such as a person’s name.

● blnResident Boolean variable, representing whether or not someone is a resident.

It is not particularly important which naming convention you use. What is important is that
you use one and stick to it.

The Address Operator

Declaring a variable reserves memory. You can use the address operator (&) to learn the
address of this reserved memory. The syntax is
&[variable name]

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0023.html (3 of 5)06.11.2004 22:51:29

Declaring Variables

For example, the following code outputs 0012FED4 on my computer. However, the
particular memory address for testScore on your computer may be different than
0012FED4. Indeed, if I run this program again some time later, the particular memory
address for testScore on my computer may be different than 0012FED4.
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 cout << &testScore;
 return 0;
}

The address 0012FED4 is a hexadecimal (Base 16) number. As discussed in Chapter 2,
memory addresses usually are expressed as a hexadecimal number.

The operating system, not the programmer, chooses the address at which to store a
variable. The particular address chosen by the operating system depends on the data
type of the variable, how much memory already has been reserved, and other factors.

You really do not need to be concerned about which address the operating system chose
since your code will refer to the variable by its name, not its address. However, as you will
learn in Chapter 11 when we discuss pointers, the address operator can be quite useful.

Using the Address and sizeof Operators with Variables

The amount of memory reserved depends on a variable’s data type. As you learned in
Chapter 2, different data types have different sizes.

In Chapter 2, you used the sizeof operator to learn the size (on your compiler and
operating system) of different data types. You also can use the sizeof operator to
determine the size (again, on your compiler and operating system) of different variables.

The syntax for using the sizeof operator to determine the size of a variable is almost the
same as the syntax for using the sizeof operator to determine the size of a data type. The
only difference is that the parentheses following the sizeof operator refers to a variable
name rather than a data type name.

The following code outputs the address and size of two variables:
#include <iostream>
using namespace std;
int main(void)
{
 short testScore;
 float myGPA;
 cout << "The address of testScore is "
 << &testScore << "\n";
 cout << "The size of testScore is "
 << sizeof(testScore) << "\n";
 cout << "The address of myGPA is " << &myGPA << "\n";
 cout << "The size of myGPA is "
 << sizeof(myGPA) << "\n";
 return 0;
}

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0023.html (4 of 5)06.11.2004 22:51:29

Declaring Variables

The output when I ran this program (yours may be different) is
The address of testScore is 0012FED4
The size of testScore is 2
The address of myGPA is 0012FEC8
The size of myGPA is 4

Figure 3-1 shows how memory is reserved for the two variables. Due to the different size
of the variables, the short variable, testScore, takes up two bytes of memory, and the float
variable, myGPA, takes up four bytes of memory.

Figure 3-1: Memory reserved for declared variables

As Figure 3-1 depicts, the addresses of the two variables are near each other. The
operating system often attempts to do this. However, this is not always possible,
depending on factors such as the size of the variables and memory already reserved.
There is no guarantee that two variables will even be near each other in memory.

In Figure 3-1, the value for both memory addresses is unknown. That is because we have
not yet specified the values to be stored in those memory locations. The next section
shows you how to do this.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0023.html (5 of 5)06.11.2004 22:51:29

Assigning Values to Variables

Assigning Values to Variables

The purpose of a variable is to store information. Therefore, after you have created a
variable, the next logical step is to specify the information that the variable will store. This
is called assigning a value to a variable.

A variable can be assigned a value supplied by the programmer in code. A variable also
can be assigned a value by the user, usually via the keyboard, when the program is
running.

You may use the assignment operator, which is discussed in the next section, to specify
the value to be stored in a variable. You use the cin object (discussed in the upcoming
section “Using the cin Object”) after the assignment operator, to obtain the user’s input,
usually from the keyboard, and then store that input in a variable.

Assignment Operator

You use the assignment operator to assign a value to a variable. The syntax is
[variable name] = [value];

The assignment operator looks like the equal sign. However, in C++ the = sign is not used
to test for equality; it is used for assignment. As you will learn in Chapter 5, in C++ the
equal sign is ==, also called the equality operator.

The variable must be declared either before, or at the same time, you assign it a value,
not afterwards. In the following example, the first statement declares the variable, and the
second statement assigns a value to that variable:
int testScore;
testScore = 95;

The next example concerns initialization, which is when you assign a value to a variable
as part of the same statement that declares that variable:
int testScore = 95;

However, the variable cannot be declared after you assign it a value. The following code
will cause the compiler error “undeclared identifier” at the line testScore = 95:
testScore = 95;
int testScore;

As mentioned earlier in the “Declaring Variables” section, this compiler error will occur
even though the variable is declared in the very next line because the compiler reads the
code from top to bottom, so when it reaches the line testScore = 95, it has not seen the
variable declaration.

The value assigned need not be a literal value, such as 95. The following code assigns to
one integer variable the value of another integer variable.
int a, b;
a = 44;
b = a;

The assignment takes place in two steps:

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (1 of 9)06.11.2004 22:51:31

Assigning Values to Variables

● First, the value 44 is assigned to the variable a.

● Second, the value of a, which now is 44, is assigned to the variable b.

You also can assign a value to several variables at once. The following code assigns 0 to
three integer variables:
int a, b, c;
a = b = c = 0;

The assignment takes place in three steps, from right to left:

1. The value 0 is assigned to the variable c.

2. The value of the variable c, which now is 0, is next assigned to the variable b.

3. The value of the variable b, which now is 0, is assigned to the variable a.

Finally, you can assign a value to a variable after it has already been assigned a value.
The word “variable” means likely to change or vary. What may change or vary is the
variable’s value. The following code demonstrates a change in the value of a variable that
was previously assigned a value:
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 testScore = 95;
 cout << "Your test score is " << testScore << "\n";
 testScore = 75;
 cout << "Your test score now is " << testScore << "\n";
 return 0;
}

The output is
Your test score is 95
Your test score now is 75

Assigning a “Compatible” Data Type

The value assigned to a variable must be compatible with the data type of the variable
that is the target of the assignment statement. Compatibility means, generally, that if the
variable that is the target of the assignment statement has a numeric data type, then the
value being assigned must also be a number.

The following code is an example of incompatibility. If it is placed in a program, it will
cause a compiler error.
 int testScore;
 testScore = "Jeff";

The description of the compiler error is “cannot convert from ‘const char [5]’ to ‘int’.” This
is the compiler’s way of telling you that you are trying to assign a string to an integer,
which of course won’t work; “Jeff” cannot represent an integer.

The value being assigned need not necessarily be the exact same data type as the
variable to which the value is being assigned. In the following code, a floating-point value,

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (2 of 9)06.11.2004 22:51:31

Assigning Values to Variables

77.83, is being assigned to an integer variable, testScore. The resulting output is “The
test score is 77.”
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 testScore = 77.83;
 cout << "The test score is " << testScore << "\n";
 return 0;
}

While the code runs, data is lost, specifically the value to the right of the decimal
point. .83. The fractional part of the number cannot be stored in testScore, that variable
being a whole number.

Overflow and Underflow

You may recall from Chapter 2 that the short data type has a range from –32768 to
32767. You can run the following program to see what happens when you attempt to
assign to a variable a value that is compatible (here a whole number for a short data type)
but that is outside its range.
#include <iostream>
using namespace std;
int main(void)
{
 short testScore;
 testScore = 32768;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

The output is “Your test score is –32768.” That’s right, not 32768, but –32768.

This is an example of overflow. Overflow occurs when a variable is assigned a value too
large for its range. The value assigned, 32768, is 1 too large for the short data type.
Therefore, the value overflows and wraps around to the data type’s lowest possible value,
–32768.

Similarly, an attempt to assign to testScore 32769, which is 2 too large for the short data
type, would result in an output of –32767, an attempt to assign to testScore 32770, which
is 3 too large for the short data type, would result in an output of –32766, and so on.
Figure 3-2 illustrates how the overflow value is reached.

Figure 3-2: Overflow

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (3 of 9)06.11.2004 22:51:31

Assigning Values to Variables

The converse of overflow is underflow. Underflow occurs when a variable is assigned a
value too small for its range. The output of the following code is “Your test score is
32767.” The value assigned, –32769, is 1 too small for the short data type. Therefore, the
value underflows and wraps around to the data type’s highest possible value, 32767.
#include <iostream>
using namespace std;
int main(void)
{
 short testScore;
 testScore = -32769;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

Similarly, an attempt to assign to testScore –32770, which is 2 too small for the short data
type, would result in an output of 32766, an attempt to assign to testScore –32771, which
is 3 too small for the short data type, would result in an output of 32765, and so on. Figure
3-3 illustrates how the underflow value is reached.

Figure 3-3: Underflow

Note Floating-point variables, of the float or double data type, also may overflow or
underflow. However, the result depends on the compiler used, and may be a run-
time error stopping your program, or instead an incorrect result.

Using the cin Object

Thus far, the programmer has supplied the values that are assigned to variables.
However, most programs are interactive, asking the user to provide information, which the
user then inputs, usually via the keyboard.

In Chapter 1, we used the cout object to output information to a standard output, usually
the monitor. Now we will use the cin object to obtain information from standard input,
which usually is the keyboard. The cin object, like the cout object, is defined in the
standard library file <iostream>, which therefore must be included (with an include
directive) if your code uses cin.

The syntax of a cin statement is
cin >> [variable name];

The cin object is followed by >>, which is the stream extraction operator. It obtains the
input, usually from the keyboard, and assigns that input to the variable to its right.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (4 of 9)06.11.2004 22:51:31

Assigning Values to Variables

Tip Knowing when to use >> instead of << can be confusing. It may be helpful to
remember that the >> and << operators each point in the direction that data is
moving. For example in the expression cin >> var, data is moving from standard
input into the variable var. By contrast, in the expression cout >> var, the <<
indicates that data is moving from the variable var to standard output.

When your program reaches a cin statement, its execution halts until the user types
something at the keyboard and presses the ENTER key. Try running the following
program. You will see a blinking cursor until you type a number. Once you type a number
and press ENTER, the program will output “Your test score is” followed by the number
you inputted. For example, if you inputted 100, the output will be “Your test score is 100.”
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 cin >> testScore;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

This program is not very user friendly. Unless the user happened to know what your
program did, they would not know what information is being asked of them. Accordingly, a
cin statement usually is preceded by a cout statement telling the user what to do. This is
called a prompt. The following code adds a prompt:
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 cout << "Enter your test score: ";
 cin >> testScore;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

The program input and output could be
Enter your test score: 78
Your test score is 78

Assigning a “Compatible” Data Type

As with the assignment operator, the value being assigned by the cin operator need not
necessarily be the exact same data type as that of the variable to which the value is being
assigned. In the previous program, entering a floating-point value, 77.83, at the prompt for
entry of the test score results in the following output: “The test score is 77.” Data is lost,
though, specifically the part of the number to the right of the decimal point. The cin
statement will not read the part of the number to the right of the decimal point because it
cannot be stored in a whole number variable.

However, the value being assigned by the cin operator must be compatible with the data
type of the variable to which the value is being assigned. In the preceding program, typing
“Jeff” at the prompt for entry of the test score results in the following output: “Your test
score is –858993460.”

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (5 of 9)06.11.2004 22:51:31

Assigning Values to Variables

Obviously, –858993460 is not a test score anyone would want. Less obvious is the
reason why that number is outputted.

The string literal “Jeff” cannot be assigned to an integer variable such as testScore.
Therefore, the cin operator will not assign “Jeff” to that integer variable. Therefore, when
the cout statement attempts to output the value of testScore, that variable has not yet
been assigned a value.

When testScore was declared, there was some value at its memory address left over
from programs previously run on the computer. The cout statement, when trying to output
the value of testScore, does the best it can and attempts to interpret this leftover value.
The result of that interpretation is –858993460.

Note Compile Time vs. Run-Time Difference When Incompatible Data Types Are
Assigned—Earlier in this chapter, the attempt to assign “Jeff” to testScore
(testScore = “Jeff”;) resulted in a compiler error. Here, the attempt to assign
“Jeff” to testScore using a cin statement instead results in an incorrect value.
The reason that this time there is no compiler error is because the value the
user would input could not be known at compile time, but instead would be
known only at run time. Therefore, there would be no compile error, since at the
time of compilation there was no attempt to assign an incompatible value.

Inputting Values for Multiple Variables

If you are inputting values for several variables, you could input them one line at a time.
#include <iostream>
using namespace std;
int main(void)
{
 int myWeight, myHeight;
 string myName;
 cout << "Enter your name: ";
 cin >> myName;
 cout << "Enter your weight in pounds: ";
 cin >> myWeight;
 cout << "Enter your height in inches: ";
 cin >> myHeight;
 cout << "Your name score is " << myName << "\n";
 cout << "Your weight in pounds is " << myWeight << "\n";
 cout << "Your height in inches is " << myHeight << "\n";
 return 0;
}

The output of the program, with the input of “Jeff” for the name, 200 for the pounds, and
72 for the height, is
Enter your name: Jeff
Enter your weight in pounds: 200
Enter your height in inches: 72
Your name is Jeff
Your weight in pounds is 200
Your height in inches is 72

Instead of having separate prompts and cin statements for each variable, you can have
one cin statement assign values to all three variables. The syntax is
cin >> [first variable] >> [second variable] >>

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (6 of 9)06.11.2004 22:51:31

Assigning Values to Variables

 [third variable];

The same syntax would work when using one cin statement to assign values to four or
more variables. The variables are separated by the stream extraction operator >>.

When you use one cin statement to assign values to multiple variables, the user
separates each input by one or more spaces. The space tells the cin object that you have
finished assigning a value to one variable and the next input should be assigned to the
next variable in the cin statement. As before, the user finishes input by choosing the
ENTER key.

The following program uses one cin statement to assign values to three variables:
#include <iostream>
using namespace std;
#include <string>
int main(void)
{
 int myWeight, myHeight;
 string name;
 cout << "Enter your name, weight in pounds and height
 in inches\n";
 cout << "The three inputs should be separated by a
 space\n";
 cin >> name >> myWeight >> myHeight;
 cout << "Your name is " << name << "\n";
 cout << "Your weight in pounds is " << myWeight << "\n";
 cout << "Your height in inches is " << myHeight << "\n";
 return 0;
}

The interaction between user input and the cin statement could be as follows:

● The user would type “Jeff,” followed by a space.

● The space tells the cin object that the first input has ended, so the cin object will
assign “Jeff” to the first variable in the cin statement, name.

● The user would type 200, followed by a space.

● The space tells the cin object the second input has ended, so the cin object will
assign 200 to the next variable in the cin statement, myWeight.

● The user would type 200, and then press the ENTER key.

● The ENTER key tells the cin object that the third and final input has ended, so the cin
object will assign 72 to the remaining variable in the cin statement, myHeight, which
completes execution of the cin statement.

The resulting program output would be
Enter your name, weight in pounds and height in inches
The three inputs should be separated by a space
Jeff 200 72
Your name is Jeff
Your weight in pounds is 200
Your height in inches is 72

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (7 of 9)06.11.2004 22:51:31

Assigning Values to Variables

Assigning a “Compatible” Data Type

The data types in the cin statement may be different. In this example, the data type of the
first variable is a string, whereas the data type of the second and third variables is an
integer.

What is important is that the order of the input matches the order of the data types of the
variables in the cin statement. The input order “Jeff,” 200, and 72 is assigned to the
variables in the order of their appearance in the cin statement, myName, myWeight, and
myHeight. Therefore, “Jeff” is assigned to the string variable myName, 72 to the integer
variable myWeight, and 200 to the integer variable myHeight.

The importance of the order of the input matching the order of the data types of the
variables in the cin statement is demonstrated by changing the order of the user’s input
from “Jeff,” 200, and 72, to 200, “Jeff,” and 72. The program output then would be
Enter your name, weight in pounds and height in inches
The three inputs should be separated by a space
200 Jeff 72
Your name is 200
Your weight in pounds is -858993460
Your height in inches is -858993460

While I would like to lose weight, –858993460 seems a bit extreme. Also, while it is
understandable why “Jeff” cannot be assigned to my weight, 72 was not assigned to my
height either.

The one output that is correct is the name. Any characters, including digits, can be part of
a string. Therefore, while 200 may be an unusual name to us, it is perfectly OK for cin,
which therefore assigns 200 to the string variable name.

Why –858993460 was outputted for myWeight also has been explained earlier in the
example in which the user entered “Jeff” at the prompt to enter a test score.

However, 72 would be a valid value for assignment to the integer variable myHeight. Why
then isn’t 72 the output for height?

The reason is that the next value for cin to assign is not 72, but instead “Jeff.” Since cin
was unable to assign “Jeff” to myWeight, the value “Jeff” remains next in line for
assignment, this time to the variable myHeight. Unfortunately, cin is unable to assign
“Jeff” to myHeight either, so the value of myHeight, like myWeight, also is outputted as –
858993460.

Inputting Multiple Words into a String

Finally, cin will only take the first word of a string. If in the following program you input
“Jeff Kent” at the prompt, the output will be “Your name is Jeff” not “Your name is Jeff
Kent.”
#include <iostream>
using namespace std;
#include <string>
int main(void)
{
 string name;
 cout << "Enter your name: ";
 cin >> name;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (8 of 9)06.11.2004 22:51:31

Assigning Values to Variables

 cout << "Your name is " << name;
 return 0;
}

The reason why the value of name is outputted only as “Jeff,” omitting “Kent,” is that the
cin object interprets the space between “Jeff” and “Kent” as indicating that the user has
finished inputting the value of the name variable.

The solution involves using either the get or getline method of the cin object. These
methods will be covered in Chapter 10.

Overflow and Underflow

The consequences of an overflow or underflow of whole number variables is more
unpredictable with cin than with the assignment operator. Inputting either 32768, which is
1 more than the highest number in the range of a short data type, or –32769, 1 less than
the lowest number in that range, results on my computer in the output “Your test score is –
13108.”
#include <iostream>
using namespace std;
int main(void)
{
 short testScore;
 testScore = 32768;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0024.html (9 of 9)06.11.2004 22:51:31

Summary

Summary

A variable serves two purposes. It provides you with a way of referring to particular
information, and also reserves the amount of memory necessary to store that information.

You must create a variable before you can start using it. You create a variable by
declaring it. You may declare multiple variables of the same type in one statement.

You can use the address operator, &, to determine the address of a variable, and the
sizeof operator to determine the size of a variable.

The purpose of a variable is to store information. Therefore, after you have created a
variable, the next logical step is to specify the information that the variable will store. This
is called assigning a value to a variable.

A variable can be assigned a value either by the programmer in code or by the user,
usually via the keyboard, when the program is running. You use the assignment operator
to assign a value supplied by code. You use the cin object to assign a value supplied by
the user.

In the next chapter, you will learn how to use variables to perform arithmetic.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0025.html06.11.2004 22:51:31

Quiz

Quiz
1. What is the effect of declaring a variable?

2. Can you refer to a variable before declaring it as long as you declare it later?

3. Can you declare several variables in the same statement?

4. What is a “naming convention” with respect to variables?

5. What is the difference between the address and sizeof operators?

6. What is initialization?

7. What is overflow?

8. What is the consequence of using an assignment operator to assign a string value
to an integer variable?

9. Do you use the cin object for compile time or run-time assignment of values to
variables?

10. Can you use one cin statement to assign values to several variables of different
data types?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0026.html06.11.2004 22:51:32

Chapter 4: Arithmetic Operators

Chapter 4: Arithmetic Operators

Overview

When I went to elementary school, which as far as my kids are concerned was when
dinosaurs roamed the earth, I had to perform arithmetic calculations by hand or in my
head. There were no calculators, only slide rules. (Warning: You may date yourself by
even admitting you know what a slide rule is!)

When it was my kids’ turn to go to school, and I’d ask them to perform an arithmetic
calculation while going over their homework or tests, they would whip out a calculator.
When I asked them to perform the calculation by hand or in their head, they would look at
me with mixed amazement and pity and exclaim “Aw, Dad, no one does it that way
anymore.”

Maybe my kids were right. When I write computer programs, I don’t do it “that way”
anymore either. I let the fastest, most accurate calculator I own do the work: my computer.

Many computer programs need to perform calculations. Computers, in addition to being
able to store vast amounts of data, also can calculate far more quickly and accurately
than we can. Thus, you use arithmetic operators to harness your computer’s calculating
ability, something which we will explore in this chapter.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0027.html06.11.2004 22:51:33

Arithmetic Operators

Arithmetic Operators

An operator is a symbol that represents a specific action. We have discussed and used
operators in prior chapters, including the assignment operator, =. C++ also supports
operators for arithmetic, specifically addition, subtraction, multiplication, and division.
Operators used for arithmetic are called, naturally enough, arithmetic operators. Table 4-1
summarizes them.

Table 4-1: Arithmetic Operators

Operator Purpose Example Result

+ Addition 5 + 2 7

- Subtraction 5 – 2 3

* Multiplication 5 * 2 10

/ Division (Quotient) 5 / 2 2

% Division (Remainder) 5 % 2 1

The % operator, also called the modulus operator, may look unfamiliar. It returns the
remainder in division, and will be explained in the “Division Operators” section later in this
chapter.

Arithmetic operators are binary operators because they operate on two operands, binary
being a reference to 2, and operand referring to each of the two values that is in the
arithmetic expression. For example, in the expression 5 + 2, the + sign is the operator,
and the 5 and 2 each is an operand.

Note Not all operators are binary. For example, in the expression –3, the negative
sign, or negation operator, is a unary operator because it operates on only one
operand, which is the integer 3 in this example. There also are ternary
operators, which operate on 3 operands. However, all arithmetic operators
involve two operands—no more, no less.

The arithmetic operators work with negative as well as positive numbers, and, with the
exception of the modulus operator, floating point numbers (numbers with values to the
right of the decimal point) as well as whole numbers. The addition operator also works
with strings as well as with numbers.

This chapter will demonstrate each of the arithmetic operators in a working program
which tracks student enrollment in a course. The scenarios in the program are real world,
based on my experience teaching computer science at a community college in the San
Fernando Valley area of Los Angeles.

The Addition Operator

At the community college where I teach computer science, students often will pre-register,
enrolling in a course before the semester starts. However, some students will add a
course during the first few weeks of the semester.

The following program has two integer variables, total and added. The program first
assigns to total the value inputted by the user for the number of preregistered students.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (1 of 9)06.11.2004 22:51:35

Arithmetic Operators

The program then assigns to added the value inputted by the user for the number of
students adding the course. Afterward, the program uses the addition operator to add two
operands, total and added. The resulting sum is then assigned to total, which now reflects
the number of all students in the course, both preregistered and added. That sum then is
outputted.
#include <iostream>
using namespace std;
int main(void)
{
 int total, added;
 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "Total number of students: " << total;
 return 0;
}

The input and output of the program could be
Enter number of registered students: 30
Enter number of students adding the course: 3
Total number of students: 33

Combined Assignment and Arithmetic Operator

New programmers sometimes are confused by statements such as total = total + added
because, in mathematics, a variable cannot equal itself plus another number. However,
this statement is not made in mathematics, but in C++ programming, in which the =
operator is not used for equality, but instead for assignment.

Nevertheless, there also is another way to express total = total + added:
 total += added;

To the compiler, it makes no difference whether you use total = total + added or total +=
added. However, many programmers prefer total += added, some because it looks more
elegant, others because it seems more readable, and still others for the practical reason
that it requires less typing.

This compact form of combining arithmetic and assignment operators is not limited to the
addition operator. As Table 4-2 shows, it also can be used with the other arithmetic
operators. In that table, it is assumed a is a previously declared integer variable.

Table 4-2: Combining Arithmetic and Assignment Operators

Statement Combining Operators

a = a + 2; a +=2;

a = a – 2; a –=2;

a = a * 2; a *=2;

a = a / 2; a /=2;

a = a % 2; a %=2;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (2 of 9)06.11.2004 22:51:35

Arithmetic Operators

Precedence Between Arithmetic and Assignment Operators

The statement total = total + added uses two operators, assignment and arithmetic. The
arithmetic operation has precedence over the assignment operation. This means the
addition is performed before the assignment. This makes more sense intuitively than the
other order. However, as I will explain in detail later in this chapter, precedence also
arises when more than one arithmetic operator is used in a statement, and there the
correct order is less intuitive.

Overflow and Underflow

Overflow and underflow applies to the results of addition. The range of the int data type
on my compiler and operating system is –2,147,483,648 to 2,147,483,647. Here is the
result of my class starting with a very large preregistration, 2,147,483,647, and then
adding one more student:
Enter number of preregistered students: 2147483647
Enter number of students adding the course: 1
Total number of students: -2147483648

While negative inputs make no sense in this program since you can’t have a negative
number of students enroll in or add a class, other programs may use negative numbers,
such as for below zero temperatures. Therefore, the following input uses negative
numbers to illustrate underflow with the addition operator.
Enter number of preregistered students: -2147483648
Enter number of students adding the course: -1
Total number of students: 2147483647

Adding Strings

While we think of addition as involving numeric operands, the addition operator also can
be used with string operands. The output of the following code is: “Your name is JeffKent.”
#include <iostream>
#include <string>
using namespace std;
int main(void)
{
 string firstName = "Jeff";
 string lastName = "Kent";
 cout << "Your name is " << firstName + lastName;
 return 0;
}

Adding two strings has the effect of appending the second string operand to the first string
operand. Appending means adding the contents of the second string to the end of the first
string.

While you can add numbers and numbers, or strings and strings, attempting to add a
number and a string will cause a compiler error. The addition operator may perform
arithmetic addition with two numeric operands, or appending with two string operands, but
it does not know how to add a numeric operand and a string operand.

The Subtraction Operator

At the community college where I teach, students leave the class as well as join it. Some

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (3 of 9)06.11.2004 22:51:35

Arithmetic Operators

of the preregistered students never show up. Other students who show up later decide to
drop the course.

The following program builds on the one we used with the addition operator by adding
one integer variable, dropped for students who I dropped because they never showed up,
or who dropped themselves from the course. The dropped variable is assigned a value by
the user. The program then uses the subtraction operator to update total.
#include <iostream>
using namespace std;
int main(void)
{
 int total, added, dropped;
 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "How many students dropped? ";
 cin >> dropped;
 total -= dropped;
 cout << "Total number of students: " << total << endl;
 return 0;
}

The input and output of the program could be
Enter number of pre-registered students: 30
Enter number of students adding the course: 3
How many students dropped? 5
Total number of students: 28

In this example, we used the combined assignment and arithmetic operator –= in the
expression total –= dropped, rather than total = total – dropped. As explained with the
addition operator, either alternative will work the same way.

The effect of overflow and underflow are the same with the subtraction operator as with
the addition operator. However, unlike the addition operator, the subtraction operator will
not work with string operands.

The Multiplication Operator

Returning to my community college course example, all students who enroll in a course
owe a tuition of $72, even if they don’t show up or later drop the course.

The following program builds on the one we used with the addition operator by adding the
following statement:
cout << "Total tuition owed: $" << (total + dropped) * 72
 << endl;

The program now reads
#include <iostream>
using namespace std;
int main(void)
{
 int total, added, dropped;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (4 of 9)06.11.2004 22:51:35

Arithmetic Operators

 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "How many students dropped? ";
 cin >> dropped;
 total -= dropped;
 cout << "Total number of students: " << total << endl;
 cout << "Total tuition owed:
 $" << (total + dropped) * 72
 << endl;
 return 0;
}

The input and output of the program could be
Enter number of preregistered students: 30
Enter number of students adding the course: 3
How many students dropped? 5
Total number of students: 28
Total tuition owed: $2376

The variables total and dropped are added so that total reflects all students ever enrolled,
even if they are no longer in the class, because all students owe tuition even if they don’t
show up or later drop the course.

The effect of overflow and underflow are the same with the multiplication operator as with
the addition and subtraction operators. Unlike the addition operator, but like the
subtraction operator, the multiplication operator will not work with string operands.

Precedence Between Arithmetic Operators

The statement we added has two arithmetic operators, for addition and multiplication. The
order in which the two arithmetic operations are performed makes a difference. If addition
is performed first, 28 + 5, and then the sum, 33, is multiplied by 72, the result is 2376.
However, if multiplication is performed first, 5 * 72, and then the product, 360, is added to
28, the result would be 388.

C++ has rules, called precedence, for determining which operation is performed first.
Precedence was discussed earlier in this chapter in the section on the addition operator
concerning the precedence of arithmetic operators over the assignment operator.
However, here the issue is precedence between arithmetic operators.

Table 4-3 lists the precedence between arithmetic operators.

Table 4-3: Precedence of Arithmetic Operators

Precedence Operator

Highest – (unary negation)

Middle * / %

Lowest + –

When there is more than one operator in a row in Table 4-3, those operators have equal

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (5 of 9)06.11.2004 22:51:35

Arithmetic Operators

precedence. Thus, the multiplication operator and the two division operators have equal
precedence. Similarly, the addition and subtraction operators have equal precedence.

Table 4-4 shows the results of applying precedence to several arithmetic expressions. We
have not reviewed the division operators yet, but in the examples in Table 4-4 the /
operator works exactly as it does in arithmetic.

Table 4-4: Precedence in Action

Expression Result

2 + 3 * 4 14, not 20

8 / 2 – 1 3, not 8

C++ also has rules called associativity for determining which operation is performed first
when two operators have equal precedence. Table 4-5 describes those rules.

Table 4-5: Associativity of Arithmetic Operators

Operator Associativity

(unary negation) Right to left

* / % Left to right

+ – Left to right

Therefore, the result of the expression 8 / 2 * 4 is 16, not 1, because division, being the
leftmost operator, is performed first.

However, there are times when you want to override the default precedence. For
example, in our program, in calculating tuition, the default precedence would be to
multiply dropped by 72, after which the product would be added to total. However, we
want to change the order of operations so that dropped is first added to total, and the sum
then multiplied by 72.

You can override the default precedence with parentheses. This is done in the statement:
cout << "Total tuition owed: $" << (total + dropped) * 72
 << endl;

Expressions in parentheses are done first. As a result of the parentheses, the expression
(total + dropped) * 72 is evaluated so that dropped is first added to total, and the sum is
then multiplied by 72.

Division Operators

Addition, subtraction, and multiplication each have one operator. However, division has
two. The / operator gives you the quotient, while the % (or modulus operator) gives you
the remainder.

Quotient and remainder, along with dividend and divisor, are terms that I first learned in
elementary school and then did not use very much again until many years later. If you are
rusty on your arithmetic terminology like I was, this example may help. In the problem 7
divided by 2, 7 is the dividend and 2 is the divisor. The result of this division is that 3 is the
quotient and 1 is the remainder.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (6 of 9)06.11.2004 22:51:35

Arithmetic Operators

The Division Operator

The division operator returns the quotient. However, the value of the quotient depends on
whether at least one of the operands is a floating point data type.

For example, the value of 10 / 4 is 2.5. However, in C++, the value is 2 because, when
both operands are an integer or other whole number data type, then the result is an
integer as well, and the remainder is not part of the quotient. This is true even if the result
is assigned to a floating point variable. The output of the following program is 10 / 4 = 2.
#include <iostream>
using namespace std;
int main(void)
{
 int firstOp = 10, secondOp = 4;
 float result = firstOp / secondOp;
 cout << firstOp << " / " << secondOp << " = " << result;
 return 0;
}

However, the value of 10.0 / 4 is 2.5 in C++. When at least one of the operands is a
floating point data type, and 10.0 would be interpreted as floating point, then the result is
a floating point as well. The output of the following program is 10 / 4 = 2.5 because we
changed the data type of firstOp from int to float:
#include <iostream>
using namespace std;
int main(void)
{
 float firstOp = 10, result;
 int secondOp = 4;
 result = firstOp / secondOp;
 cout << firstOp << " / " << secondOp << " = " << result;
 return 0;
}

Going back to the first example, if you want the result of the division of two integer
variables to be a float, then you have to cast one of the variables to a float. A cast does
not change the data type of the variable, just the data type of the value of the variable
during the completion of the operation. You cast the variable by putting the desired data
type in front of it in an expression, and placing either the desired data type or the variable
in parentheses. This is how the first example could be changed to make the result of
integer division a float:
#include <iostream>
using namespace std;
int main(void)
{
 int firstOp = 10, secondOp = 4;
 float result = (float) firstOp / secondOp;
 cout << firstOp << " / " << secondOp << " = " << result;
 return 0;
}

All of the following expressions would work
float result = (float) firstOp / secondOp;
float result = float (firstOp) / secondOp;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (7 of 9)06.11.2004 22:51:35

Arithmetic Operators

float result = firstOp / (float) secondOp;
float result = firstOp / float (secondOp);

However, in some programs you may want integer division so that the quotient will ignore
the fractional value. The Change Machine project later in the chapter is an example.

Let’s now put this into practice with the student enrollment program. In the last
modification to this program, tuition was calculated based on all students who ever
enrolled in the course, even if they no longer were in the course. The addition to the
program calculates and displays the average tuition per student still enrolled. An integer
variable tuition is added to store the total tuition collected, which is calculated using the
expression (total + dropped) * 72. The average tuition per student still enrolled then is
calculated and displayed with the statement:
cout << "Average tuition per enrolled student: $"
 << (float)
 tuition / total;

The code now reads
#include <iostream>
#include <string>
using namespace std;
int main(void)
{
 int total, added, dropped, tuition;
 cout << "Enter number of preregistered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "How many students dropped? ";
 cin >> dropped;
 total -= dropped;
 cout << "Total number of students: " << total << endl;
 tuition = (total + dropped) * 72;
 cout << "Total tuition owed: $" << tuition << endl;
 cout << "Average tuition per enrolled student: $"
 << (float) tuition / total;
 return 0;
}

The input and output could be
Enter number of preregistered students: 30
Enter number of students adding the course: 3
How many students dropped? 5
Total number of students: 28
Total tuition owed: $2376
Average tuition per enrolled student: $84.8571

The casting of one of the operands to a float is necessary. Otherwise, the average tuition
would be $84 instead of $84.8571.

The Modulus Operator

The modulus operator also involves division, but returns only the remainder. For example,
the result of 7 % 2 is not the quotient, 3, but the remainder, 1.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (8 of 9)06.11.2004 22:51:35

Arithmetic Operators

The modulus operator works only with whole number operands. The result of an attempt
to use it with a floating point operand is undefined. The result often is a compiler error, but
this is compiler dependent.

The modulus operator will be used in the Change Machine project later in this chapter.

Caution Whether you use the / or the % operator, you cannot divide by zero. The
result is an error.

Exponents

C++, unlike some other programming languages, does not have an exponent operator.
Instead, it has a built-in function named pow, which is defined in the standard library
cmath. The name pow is shorthand for power, since with exponents one number is raised
to the power of another.

The pow function has two arguments. The first argument is the number that is being
raised to a certain power. The second argument is the power the first argument is being
raised to. Therefore, the expression pow (4, 2) would be used to raise 4 to the power of 2,
the result being 16.

While in the example 4 to the power of 2, the result is a whole number, the pow function
returns a double data type. Floating point numbers also can be raised to a power,
resulting in another floating point number. Additionally, whole numbers can be raised to a
negative power, which also may result in a floating point number.

The pow function is useful for solving math problems. The formula for the area of a circle
is area = πr2. Assuming a value of π of 3.14159, two double variables area and radius,
and that radius has already been assigned a value, the code for determining the circle’s
area is
area = 3.14159 * pow(radius, 2);

The following program calculates the area of a circle based on a radius inputted by the
user.
#include <iostream>
#include <cmath>
using namespace std;
int main(void)
{
 double radius, area;
 cout << "Enter radius of circle: ";
 cin >> radius;
 area = 3.14159 * pow(radius, 2);
 cout << "The area is " << area << endl;
 return 0;
}

The input and output could be
Enter radius of circle: 6
The area is 113.097

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0028.html (9 of 9)06.11.2004 22:51:35

The Change Machine Project

The Change Machine Project

My mother was not above using a change machine to distract cranky or mischievous
young grandchildren. The youngsters poured hundreds of pennies into the top of the
machine, and watched with fascination (fortunately, youngsters are easily fascinated) as
the machine sorted the pennies into amounts of change that could be taken to the bank
and exchanged for dollars, quarters, and bigger loot. The youngsters were motivated as
well as fascinated, since guess who got to keep the quarters?

Program Description

This program will ask the user to input the number of pennies. You may assume the user
will input a positive whole number. The code then will output the number of dollars,
quarters, dimes, nickels, and pennies. The input and output could be
Enter number of pennies to make change for: 387
Dollars: 3
Quarters: 3
Dimes: 1
Nickels: 0
Pennies: 2

The next section will reproduce the code, and the section following will explain the code.
However, as a programming challenge, first try to write the code yourself. If you can,
great! If not, no problem; you still will learn more from the code and the explanation if you
first try to write this program.

As a hint (you don’t have to look), here are the first three lines of code in main:
 int total, dollars, quarters, dimes, nickels, leftover;
 cout << "Enter number of pennies to make change for: ";
 cin >> total;

The variable total will be assigned the total number of pennies entered by the user. The
variable dollar will be assigned the number of dollars in the pennies, 3 in the preceding
sample run for 387 total pennies. The variables quarters, dimes, and nickels will be
assigned the number of quarters, dimes, and nickels in the change, 3, 1, and 0,
respectively, in the previous sample run for 387 total pennies. The variable leftover
ultimately will be assigned the number of pennies in the change (2 in the prior sample run
for 387 total pennies), but also will be used for other purposes. Of course, you could write
this program with a few more, or a few less, variables.

The Code

There is more than one way to write this program. Here is how I wrote it:
#include <iostream>
#include <string>
using namespace std;
int main(void)
{
 int total, dollars, quarters, dimes, nickels, leftover;
 cout << "Enter number of pennies to make change for: ";
 cin >> total;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0029.html (1 of 3)06.11.2004 22:51:35

The Change Machine Project

 dollars = total / 100;
 leftover = total % 100;
 quarters = leftover / 25;
 leftover %= 25;
 dimes = leftover / 10;
 leftover %= 10;
 nickels = leftover / 5;
 leftover %= 5;
 cout << "Dollars: " << dollars << endl;
 cout << "Quarters: " << quarters << endl;
 cout << "Dimes: " << dimes << endl;
 cout << "Nickels: " << nickels << endl;
 cout << "Pennies: " << leftover << endl;
 return 0;
}

The Algorithm

You learned in Chapter 1 that in a computer program a computer programmer gives
instructions to a computer. These instructions are in a programming language such as C+
+. However, before you can write code, you need to formulate the instructions in English
or whatever other language you think in.

An algorithm, pronounced “Al Gore rhythm,” is a step-by-step logical procedure for solving
a problem. You frequently will need to create and implement algorithms. Implementing
algorithms in your code is computer programming. Creating algorithms is a skill that can
be developed from any field that requires analytical thinking, including, but not limited to,
mathematics as well as computer programming.

Let’s say you were given a number of pennies, such as 387, and you had to determine, in
your head, how many dollars, quarters, dimes, nickels, and pennies to give as change.
How would you do it?

A logical approach is to start with dollars. There are 100 pennies in a dollar. If 387 is
divided by 100, the quotient is the number of dollars in the pennies: 3.

One problem is that 387 divided by 100 could be 3.87, not 3. However, as discussed
earlier in this chapter in the “Division Operators” section, when an integer is divided by an
integer, then the result always is an integer unless one of the integer operands first is cast
to a float. We want the result of the division to be an integer, so we will not cast either of
the integer operands to a float.

Since the beginning number of pennies (387) is stored in the integer variable total, if total
is divided by 100, also regarded as an integer, the quotient is the number of dollars in the
pennies, 3.
 dollars = total / 100;

After you take out 300 pennies (3 dollars) from the pile of 387 pennies, 87 pennies are left
over. 87 is the remainder of the division total / 100. We obtain this remainder with the
modulus operator, and assign it to the integer variable leftover:
 leftover = total % 100;

Next, you follow the same procedure to determine the number of quarters in the 87
pennies left over. The only differences are that the divisor is 25 instead of 100 and the
number of pennies left is represented by leftover instead of total.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0029.html (2 of 3)06.11.2004 22:51:35

The Change Machine Project

 quarters = leftover / 25;
 leftover %= 25;

The same process is followed for determining the number of dimes and nickels:
 dimes = leftover / 10;
 leftover %= 10;
 nickels = leftover / 5;
 leftover %= 5;

The number of pennies left over after division by 5 cannot be converted into higher
change. Accordingly, there is no need for further division. There also is no need for a
separate variable for pennies because leftover stores the number of pennies left.

All that remains is to output the values of the variables representing the dollars, quarters,
dimes, nickels, and pennies.

This method of solving the problem by dividing the total number of pennies by the number
of pennies in a dollar, storing the quotient in a variable holding the number of dollars, and
dividing the remainder by the number of pennies in a quarter and so on, is an algorithm.
We will be discussing many algorithms in this book.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0029.html (3 of 3)06.11.2004 22:51:35

Summary

Summary

Many computer programs need to perform calculations. Computers, in addition to being
able to store vast amounts of data, also can calculate far faster and more accurately than
we can. You use arithmetic operators to harness the computer’s calculating ability.

C++ supports arithmetic operators for addition, subtraction, multiplication, and division.
While addition, subtraction, and multiplication each have one operator, division has two.
The / operator gives you the quotient, while the % (or modulus operator) gives you the
remainder.

The arithmetic operators all work with whole number operands. All but the modulus
operator also work with floating number operands. The addition operator also works with
string operands, appending one string to another.

C++, unlike some other programming languages, does not have an exponent operator.
Instead, it has a built-in function named pow which is defined in the standard library
cmath.

In the next chapter, you will learn about relational and logical operators and control
structures, which enable your program to take different actions depending on choices the
user makes while the program is running.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0030.html06.11.2004 22:51:36

Quiz

Quiz
1. Which of the four arithmetic operations has more than one operator?

2. Which of the arithmetic operators can operate on string as well as numeric
operands?

3. Which of the arithmetic operators cannot have a floating point operand?

4. Which of the arithmetic operators cannot have a zero as a second operand?

5. Assuming total is a variable, how else could you express in code total = total + 2?

6. What is the result of 2 + 3 * 4?

7. What is the result of the expression 8 / 2 * 4?

8. What is the result of the expression 10 / 4?

9. What operator or function do you use to raise a number to a certain power?

10. What is an algorithm?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0031.html06.11.2004 22:51:37

Chapter 5: Making Decisions: if and switch Statements

Chapter 5: Making Decisions: if and switch Statements

Overview

The famous poem “The Road Not Taken” by Robert Frost begins: “Two roads diverged in
a yellow wood, and sorry I could not travel both.” This poem illustrates that life, if nothing
else, presents us with choices.

Similarly, computer programs present their users with choices. So far, for the sake of
simplicity, the flow of each program has followed a relatively straight line, taking a
predetermined path from beginning to end. However, as programs become more
sophisticated, they often branch in two or more directions based on a choice a user
makes. For example, when I am buying books online, I am presented with choices such
as adding another item to my shopping cart, recalculating my total, or checking out. The
program does something different if I add another item to my shopping cart rather than
check out.

The program determines the action it takes by comparing my choice with the various
alternatives. That comparison is made using a relational operator. There are relational
operators to test for equality, inequality, whether one value is greater (or less) than
another, and other comparisons.

The code then needs to be structured so different code executes depending on which
choice was made. This is done using either the if statement or the switch case statement,
both of which we’ll discuss in this chapter.

We’ll also discuss flowcharting, which enables you to visually depict the flow of a
program. Flowcharting becomes increasingly helpful as we transition from relatively
simple programs that flow in a straight line to more complex programs that branch in
different directions.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0032.html06.11.2004 22:51:38

Relational Operators

Relational Operators

We make comparisons all the time, and so do programs. A program may need to
determine whether one value is equal to, greater than, or less than another value. For
example, if a program calculates the cost of a ticket to a movie in which children less than
12 get in free, it needs to find out if the customer’s age is less than 12.

Programs compare values by using a relational operator. Table 5-1 lists the relational
operators supported by C++:

Table 5-1: Relational Operators

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

Relational Expressions

Like the arithmetic operators discussed in the last chapter, the relational operators are
binary—that is, they compare two operands. A statement with two operands and a
relational operator between them is called a relational expression.

The result of a relational expression is a Boolean value, depicted as either true or false.
Table 5-2 lists several relational expressions, using different relational operators and their
values.

Table 5-2: Relational Expressions and Their Values

Relational Expression Value

4 == 4 true

4 < 4 false

4 <= 4 true

4 > 4 false

4 != 4 false

4 == 5 false

4 < 5 true

4 <= 5 true

4 >= 5 false

4 != 5 true

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0033.html (1 of 3)06.11.2004 22:51:39

Relational Operators

Table 5-2 uses operands that have literal values. A literal value is a value that cannot
change. 4 is a literal value, and cannot have a value other than the number 4.

Operands may also be variables (which were discussed in Chapter 3). The following
program outputs the results of several variable comparisons.
#include <iostream>
using namespace std;
int main(void)
{
 int a = 4, b = 5;
 cout << a << " > " << b << " is " << (a > b) << endl;
 cout << a << " >= " << b << " is " << (a >= b) << endl;
 cout << a << " == " << b << " is " << (a == b) << endl;
 cout << a << " <= " << b << " is " << (a <= b) << endl;
 cout << a << " < " << b << " is " << (a < b) << endl;
 return 0;
}

The program’s output is
4 > 5 is 0
4 >= 5 is 0
4 == 5 is 0
4 <= 5 is 1
4 < 5 is 1

In the output, 0 is false and 1 is true. 0 is the integer value of Boolean false, while 1 is the
usual integer value of Boolean true. As you may recall from Chapter 1, early computers
consisted of wires and switches in which the electrical current followed a path that
depended on which switches were in the on position (corresponding to the value one) or
the off position (corresponding to the value zero). The on position corresponds to Boolean
true, the off position to Boolean false.

Caution While the usual integer value of logical true is 1, any non-zero number may
be logical true. Therefore, in a Boolean comparison, do not compare a value
to 1, compare it to true.

The data types of the two operands need not be the same. For example, you could
change the data type of the variable b in the preceding program from an int to a float and
the program still would compile and provide the same output. However, the data types of
the two operands need to be compatible. As you may recall from Chapter 3, compatibility
means, generally, that if one of the variable operands in the relational expression is a
numeric data type, then the expression’s other variable operand must also be a numeric
data type.

For example, the program would not compile if you changed the data type of the variable
b in the preceding program from an int to a string.

Precedence

Relational operators have higher precedence than assignment operators and lower
precedence than arithmetic operators. Table 5-3 lists precedence among relational
operators.

Table 5-3: Precedence of Relational Operators

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0033.html (2 of 3)06.11.2004 22:51:39

Relational Operators

Precedence Operator

Highest > >= < <=

Lowest == !=

Operators in the same row have equal precedence. The associativity of relational
operators of equal precedence is from left to right.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0033.html (3 of 3)06.11.2004 22:51:39

Flowcharting

Flowcharting

A program, like a river, flows from beginning to end. Programmers may find it helpful, both
in writing code and in understanding someone else’s code, to visually depict the flow of
the program. After all, as the adage goes, a picture is worth a thousand words. The ability
to visualize the flow of a program becomes even more helpful as we transition from
relatively simple programs that flow in a straight line to more complex varieties that
branch in different directions based on the value of a relational expression.

Programmers use a flowchart to visually depict the flow of a program. Flowcharts use
standardized symbols prescribed by the American National Standard Institute (ANSI),
which prescribes other standards we will be using in this book. These flowcharting
symbols represent different aspects of a program, such as the start or end of a program,
user input, how it displays on a monitor, and so on. These symbols are joined by arrows
and other connectors which show the connections between different parts of the program
and the direction of the program flow. Figure 5-1 shows several commonly used flowchart
symbols. Others will be introduced later in this book as they are used.

Figure 5-1: Commonly used flowchart symbols

The following program from Chapter 4 can be depicted with a flowchart. As you may
recall, this program first assigns to the integer variable total the value inputted by the user
for the number of preregistered students. The program then assigns to the integer
variable added the value inputted by the user for the number of students adding the
course. The program then uses the addition operator to add two operands, total and
added. The resulting sum is then assigned to total, which now reflects the total number of
students in the course, both preregistered and added. That sum then is outputted.
#include <iostream>
using namespace std;
int main(void)
{
 int total, added;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0034.html (1 of 2)06.11.2004 22:51:39

Flowcharting

 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "Total number of students: " << total;
 return 0;
}

Figure 5-2 shows a flowchart of this program.

Figure 5-2: Flowchart of the program adding preregistered and added students

This program was relatively linear. By contrast, the following programs will branch in
different directions based on the value the user inputs. We will use flowcharts in later
sections of this chapter to help explain how different code executes depending on the
result of comparisons with the user’s input.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0034.html (2 of 2)06.11.2004 22:51:39

The if Statement

The if Statement

The if statement is used to execute code only when the value of a relational expression is
true. The syntax of an if statement is
if (Boolean value)
 statement;

Both lines together are called an if statement. The first line consists of the if keyword
followed by an expression, such as a relational expression, that evaluates to a Boolean
value, true or false. The relational (or other Boolean) expression must be in parentheses,
and should not be terminated with a semicolon.

The next line is called a conditional statement. As you may recall from Chapter 1, a
statement is an instruction to the computer, directing it to perform a specific action. The
statement is conditional because it executes only if the value of the relational expression
is true. If the value of the relational expression is false, then the conditional statement is
not executed—meaning, it’s essentially skipped.

The following program, which tests if a whole number entered by the user is even,
illustrates the use of an if statement.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a whole number: ";
 cin >> num;
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 return 0;
}

If the user enters an even number, then the program outputs that the number is even.
Enter a whole number: 16
The number is even

However, if the user enters an odd number, then there is no output that the number is
even.
Enter a whole number: 17

Figure 5-3 is a flowchart of this program. This flowchart has one new symbol: a diamond.
It’s used to represent the true/false statement being tested.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0035.html (1 of 4)06.11.2004 22:51:40

The if Statement

Figure 5-3: Flowchart of a program that determines whether a number is even

Let’s now analyze how the program works. You may find the flowchart a helpful visual aid
in following this textual explanation.

The program first prompts the user to enter a number. It then stores that input in the
integer variable num.

The program next evaluates the relational expression num % 2 == 0, which is enclosed in
parentheses following the if keyword. That expression involves two operators, the
arithmetic modulus operator (%) and the relational equality operator (===). Since
arithmetic operators have higher precedence than relational operators, the expression
num % 2 will be evaluated first, with the result then compared to zero.

A number is even if, when divided by two, the remainder equals zero. You learned in
Chapter 4 that the modulus operator will return the remainder from integer division.
Accordingly, the expression num % 2 will divide the number entered by the user by two,
and return the remainder. That remainder then will be compared to zero using the
relational equality operator.

If the relational expression is true, which it would be if the number inputted by the user is
even, then the conditional statement executes, outputting “The number is even.” If the
relational expression is false, which it would be if the number inputted by the user is odd,
then the conditional statement is skipped, and it will not execute.

Indenting

It is good practice to indent the conditional statement.
 if (num % 2 == 0); // don't put a semicolon here!
 cout << "The number is even" << endl;

While the compiler doesn’t care whether you indent or not, indentation makes it easier for
you, the programmer, to see that the statement is conditional.

Common Mistakes

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0035.html (2 of 4)06.11.2004 22:51:40

The if Statement

During several years of teaching C++ in an introductory programming class, I have
noticed several common mistakes in the writing of if statements. Some of these mistakes
may result in compiler errors and therefore are easy to spot. However, other mistakes are
harder to pick out since they do not cause an error, either at compile time or run-time, but
instead give rise to illogical results.

Don’t Put a Semicolon after the Relational Expression!

The first common mistake is to place a semicolon after the relational expression:
 if (num % 2 == 0); // don't put a semicolon here!
 cout << "The number is even" << endl;

Since the compiler generally ignores blank spaces, the following if statement would be the
same, and better illustrates visually the problem:
 if (num % 2 == 0)
 ; // don't put a semicolon here!
 cout << "The number is even" << endl;

No compiler error will result. The compiler will assume from the semicolon that it is an
empty statement. An empty statement does nothing, and though it is perfectly legal in C+
+, and indeed sometimes has a purpose, here it is not intended.

One consequence will be that the empty statement will execute if the relational
expression is true. If this comes about, nothing will happen. So far, there is no harm done.

However, there is an additional consequence, an illogical result. The cout statement “The
number is even” will execute whether or not the relational expression is true. In other
words, even if an odd number is entered, the program will output “The number is even.”
Enter a whole number: 17
The number is even

The reason the cout statement will execute whether or not the relational expression is
true is that the cout statement no longer is part of the if statement. Unless you use curly
braces as explained in the next section, only the first statement following the if keyword
and relational expression is conditional. That first conditional statement is the empty
statement, by virtue of the semicolon following the if expression.

Curly Braces Needed for Multiple Conditional Statements

As just discussed, unless you use curly braces (explained later in this section), only the
first statement following the if keyword and relational expression is conditional. For
example, in the following code, only the first cout statement is conditional. The second
cout statement is not, so it will execute whether the relational expression is true or false:
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 cout << "And the number is not odd" << endl;

Note The indentation tells the programmer which statement is conditional and which
is not. The compiler ignores indentation.

Thus, if the user enters an odd number such as 17, the cout statement “The number is
even” will not display because the relational expression is false. However, the following
statement “And the number is not odd” will display because that statement does not
belong to the if statement.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0035.html (3 of 4)06.11.2004 22:51:40

The if Statement

Enter a whole number: 17
And the number is not odd

If you want more than one statement to be part of the overall if statement, you must
encase these statements in curly braces:
 if (num % 2 == 0)
 {
 cout << "The number is even" << endl;
 cout << "And the number is not odd" << endl;
 }

Now the second cout statement will execute only if the if expression is true.

Forgetting these curly braces when you want multiple statements to be conditional is
another common syntax error.

Don’t Mistakenly Use the Assignment Operator!

The third most common syntax error is to use the assignment operator instead of the
relational equality operator because the assignment operator looks like an equal sign:
 if (num % 2 = 0) // wrong operator!
 cout << "The number is even" << endl;

The result is that the if expression will not evaluate as the result of a comparison. Instead,
it will evaluate the expression within the parentheses as the end result of the assignment,
with a non-zero value being regarded as true, a zero value being regarded as false.

Note Some compilers will treat this mistake as a compiler error.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0035.html (4 of 4)06.11.2004 22:51:40

The if / else Statement

The if / else Statement

One problem with the program that tests whether a number is even is that there is no
output if the number is odd. While there is a conditional statement if the relational
expression is true, there is no corresponding conditional statement (cout << “The number
is odd”) if the relational expression is false.

The solution is to add an else part to the if statement. The result is an if / else statement.
The syntax of an if / else statement is
if (relational expression)
 conditional statement;
else
 conditional statement;

Accordingly, the program may be modified to add an else part to the if statement:
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a whole number: ";
 cin >> num;
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 else
 cout << "The number is odd" << endl;
 return 0;
}

Run this code. If the inputted number is even, then the output once again is “The number
is even.” However, if the number is now odd, instead of no output, the output is “The
number is odd.”
Enter a whole number: 17
The number is odd

Figure 5-4 uses a flowchart to illustrate this program.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0036.html (1 of 4)06.11.2004 22:51:41

The if / else Statement

Figure 5-4: Flowchart of program output if number is even or odd

Conditional Operator

This program could be rewritten using the conditional operator.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a whole number: ";
 cin >> num;
 cout << "The number is " << (num % 2 == 0 ? "even" :
 "odd") << endl;
 return 0;
}

The syntax of the conditional operator is
[Relational expression] ? [statement if true] :
[statement if false]

In this example, the relational expression is num % 2 == 0. If the value of the relational
expression is true, then the output is “even.” However, if the value of the relational
expression is false, then the output is “odd.”

The conditional operator requires three operands, the relational expression and the two
conditional statements. Therefore, it is considered a ternary operator.

Common Mistakes

Just as with the if statement, I noticed several common syntax mistakes with the else
statement while teaching C++ in introductory programming classes.

No else Without an if

You can have an if expression without an else part. However, you cannot have an else
part without an if part. The else part must be part of an overall if statement. This
requirement is logical. The else part works as “none of the above”; without an if part there

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0036.html (2 of 4)06.11.2004 22:51:41

The if / else Statement

is no “above.”

As a consequence, placing a semicolon after the Boolean expression following the if
keyword will result in a compiler error. Since curly braces are not used, the if statement
ends after the empty statement created by the incorrectly placed semicolon. The cout
statement “The number is even” is not part of the if statement. Consequently, the else
part is not part of the if statement, and therefore will be regarded as an else part without
an if part.
 if (num % 2 == 0); // don't put a semicolon here
 cout << "The number is even" << endl;
 else (num % 2 == 1)
 cout << "The number is odd" << endl;

Don’t Put a Relational Expression after the else Keyword!

Another common mistake is to place a relational expression in parentheses after the else
keyword. This will not cause a compiler or run-time error, but it will often cause an illogical
result.
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 else (num % 2 == 1)
 cout << "The number is odd" << endl;

The program will not compile, and the cout statement following the else expression will be
highlighted with an error description such as “missing ‘;’ before identifier ‘cout’.”

Actually, the error description is misleading. There is nothing wrong with the cout
statement. Instead, no relational expression should follow the else keyword. The reason
is that the else acts like “none of the above” in a multiple choice test. If the if expression is
not true, then the conditional statements connected to the else part execute.

Don’t Put a Semicolon after the Else!

Another common mistake is to place a semicolon after the else expression. This too will
not cause a compiler or run-time error, but often will cause an illogical result.

For example, in the following code, the cout statement “The number is odd” will output
even if the number that’s input is even.
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 else; // don't put a semicolon here!
 cout << "The number is odd" << endl;

The result of inputting an even number will be
Enter a whole number: 16
The number is even
The number is odd

The cout statement “The number is odd” will execute whether or not the relational
expression is true because the cout statement no longer is part of the if statement. Unless
you use curly braces as explained already in connection with the if statement, only the
first statement following the else keyword is conditional. That first, conditional statement is
the empty statement by virtue of the semicolon following the if expression. Therefore, the
cout statement “The number is odd” is not part of the if statement at all.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0036.html (3 of 4)06.11.2004 22:51:41

The if / else Statement

Curly Braces Are Needed for Multiple Conditional Statements

As with the if expression, if you want more than one conditional statement to belong to the
else part, then you must encase the statements in curly braces. For example, in the
following code fragment, the cout statement “This also belongs to the else part” will
always display whether the number is even or odd since it does not belong to the if
statement.
if (num % 2 == 0)
 cout << "The number is even" << endl;
else
 cout << "The number is odd" << endl;
cout << "This also belongs to the else part";

The sample input and output could be
Enter a whole number: 16
The number is even
This also belongs to the else part

Encasing the multiple conditional statements in curly braces solves this issue.
if (num % 2 == 0)
 cout << "The number is even" << endl;
else
{
 cout << "The number is odd" << endl;
 cout << "This also belongs to the else part";
}

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0036.html (4 of 4)06.11.2004 22:51:41

The if /else if /else Statement

The if /else if /else Statement

The program we used to illustrate the if/else statement involved only two alternatives.
Additionally, these alternatives were mutually exclusive; only one could be chosen, not
both. A whole number is either even or odd; it can’t be both and there is no third
alterative. There are many other examples of only two mutually exclusive alternatives. For
example, a person is either dead or alive, male or female, child or adult.

However, there are other scenarios where there are more than two, mutually exclusive
alternatives. For example, if you take a test, your grade may be one of five types: A, B, C,
D, or F. Additionally, these grades are mutually exclusive; you can’t get an A and a C on
the same test.

Since you can have only one if expression and only one else expression in an if
statement, you need another expression for the third and additional alternatives. That
expression is else if.

You use the if / else if / else statement when there are three or more mutually exclusive
alternatives. The if / else if / else statement has an if part and an else part, like an if/else
statement. However, it also has one or more else if parts.

Note While the if part is required, the else part is not. Without it, the statement would
be named an if / else if statement.

The else if part works similarly to an if expression. The else if keywords are followed by a
relational expression. If the expression is true, then the conditional statement or
statements “belonging” to the else if part execute. Otherwise, they don’t.

While an if statement may include only one if part and one else part, it may include
multiple else if parts.

The following program shows the if /else if /else statement in action in a program that
determines your grade based on your test score.
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 cout << "Enter your test score: ";
 cin >> testScore;
 if (testScore >= 90)
 cout << "Your grade is an A" << endl;
 else if (testScore >= 80)
 cout << "Your grade is a B" << endl;
 else if (testScore >= 70)
 cout << "Your grade is a C" << endl;
 else if (testScore >= 60)
 cout << "Your grade is a D" << endl;
 else
 cout << "Your grade is an F" << endl;
 return 0;
}

Here are several sample runs, each separated by a dotted line:

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0037.html (1 of 2)06.11.2004 22:51:42

The if /else if /else Statement

Enter your test score: 77
Your grade is a C

Enter your test score: 91
Your grade is an A

Enter your test score: 55
Your grade is an F

Figure 5-5 uses a flowchart to illustrate this program.

Figure 5-5: Flowchart depiction of grading program

In this program, if your test score is 90 or better, then the conditional statement belonging
to the if part executes, displaying that you received an A. The relational expressions of
each of the following else if parts also are true; if your score is 90 or better, it also is 80 or
better, 70 or better, and so on. However, in an if / else if / else statement, only the
conditional statements in the first part whose relational expression is true will execute; the
remaining parts are skipped.

Common Syntax Errors

The common syntax errors for the if part discussed earlier in this chapter apply to the else
if part also. Don’t put a semicolon after the relational expression, and multiple conditional
statements must be enclosed in curly braces.

Additionally, just as you cannot have an else part without a preceding if part, you cannot
have an else if part without a preceding if part. However, you may have an if part and one
or more else if parts without an else part. The downside in omitting the else part is you will
not have code to cover the “none of the above” scenario in which none of the relational
expressions belonging to the if part and else if parts is true.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0037.html (2 of 2)06.11.2004 22:51:42

The switch Statement

The switch Statement

The switch statement is similar to an if /else if /else statement. It evaluates the value of an
integer expression and then compares that value to two or more other values to
determine which code to execute.

The following program shows a switch statement in action in a program that determines
your average based on your grade:
#include <iostream>
using namespace std;
int main(void)
{
 char grade;
 cout << "Enter your grade: ";
 cin >> grade;
 switch (grade)
 {
 case 'A':
 cout << "Your average must be between 90 - 100"
 << endl;
 break;
 case 'B':
 cout << "Your average must be between 80 - 89"
 << endl;
 break;
 case 'C':
 cout << "Your average must be between 70 - 79"
 << endl;
 break;
 case 'D':
 cout << "Your average must be between 60 - 69"
 << endl;
 break;
 default:
 cout << "Your average must be below 60" << endl;
 }
 return 0;
}

Here are several sample runs, each separated by a dotted line:
Enter your grade: C
Your average must be between 70 - 79

Enter your grade: A
Your average must be between 90 - 100

Enter your grade: F
Your average must be below 60

Figure 5-6 uses a flowchart to illustrate this program.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0038.html (1 of 6)06.11.2004 22:51:43

The switch Statement

Figure 5-6: Flowchart depiction of the grade determination program

Let’s now analyze the program.

The switch keyword evaluates an integer expression, grade. While grade is a character
variable, every character has a corresponding integer value.

Earlier in this chapter, we discussed flowchart symbols prescribed by the American
National Standard Institute (ANSI), and mentioned that ANSI also prescribes other
standards that we will be using in this book. One of those other standards is the ANSI
character set, which includes 256 characters, each having an integer value between 0
and 255. These values also are called ASCII values, since values 0 to 127 of the ANSI
character set are the same as in the ASCII (American Standard Code for Information
Interchange) character set.

Table 5-4 lists the ANSI/ASCII values for commonly used characters. Note that digits also
can be characters, and that the ANSI/ASCII value of an uppercase character is different
than the value of the corresponding lowercase character.

Table 5-4: Selected ANSI/ASCII Values

Character Value

0 48

9 57

A 65

Z 90

a 97

z 122

Each case keyword is followed by an integer expression that must be constant, that is, it
cannot change in value during the life of the program. Therefore, a variable cannot follow
a case keyword. In this program, the constant is a character literal, such as A, B, and so

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0038.html (2 of 6)06.11.2004 22:51:43

The switch Statement

on. Each character’s ANSI value is an integer value, and the integer expression is
followed by a colon.

Caution A common mistake is to follow the integer expression not with a colon but
with a semicolon, which is typically used to terminate statements. This will
cause a compiler error.

The default keyword serves the same purpose as an else part in an if /else if /else
statement, and therefore is not followed by an integer expression.

The integer expression following the switch keyword is evaluated and compared with the
integer constant following each case keyword, from top to bottom. If there is a match—
that is, the two integers are equal—then the statements belonging to that case are
executed. Otherwise, they are not. Thus, the statements belonging to a case are
conditional, just as are statements in an if, else if, or else part. However, unlike an if /else
if /else statement, multiple conditional statements belonging to a case do not need to be
enclosed in curly braces.

Differences Between switch and if /else if /else Statements

While a switch statement is similar to an if /else if /else statement, there are important
differences.

One difference is that in an if /else if /else statement, the comparison following the if part
may be independent of the comparison following an else if part. The following example,
while perhaps a bit silly, is illustrative of this concept:
if (apples == oranges)
 do this;
else if (sales >= 5000)
 do that;

By contrast, in a switch statement, the constant integer expression following a case
keyword must be compared with the value following the switch keyword, and nothing else.
The next chapter on logical operators discusses other differences between switch and if /
else if /else statements. However, two differences can be discussed now. One is
commonly known as “falling through.” The other concerns ranges of numbers.

Falling Through

In an if /else if /else statement, each part is separate from all the others. By contrast, in a
switch statement (once a matching case statement is found), unless a break statement is
reached, execution “falls through” to the following case statements that execute their
conditional statements without checking for a match. For example, if you removed the
break statements from the program, you could have the following sample run:
Enter your grade: A
Your average must be between 90 – 100
Your average must be between 80 - 89
Your average must be between 70 - 79
Your average must be between 60 - 69
Your average must be below 60

This “falling through” behavior is not necessarily bad. In the following modification of the
grade program, the falling-through behavior permits the user to enter a lowercase grade
in addition to an uppercase grade.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0038.html (3 of 6)06.11.2004 22:51:43

The switch Statement

#include <iostream>
using namespace std;
int main(void)
{
 char grade;
 cout << "Enter your grade: ";
 cin >> grade;
 switch (grade)
 {
 case 'a':
 case 'A':
 cout << "Your average must be between 90 - 100"
 << endl;
 break;
 case 'b':
 case 'B':
 cout << "Your average must be between 80 - 89"
 << endl;
 break;
 case 'c':
 case 'C':
 cout << "Your average must be between 70 - 79"
 << endl;
 break;
 case 'd':
 case 'D':
 cout << "Your average must be between 60 - 69"
 << endl;
 break;
 default:
 cout << "Your average must be below 60" << endl;
 }
return 0;
}

Another example occurs in the following program. Since the “D” (for deluxe) option
includes the feature in the “L” (for leather) option, case ‘D’ deliberately falls through the
case ‘L.’
#include <iostream>
using namespace std;
int main(void)
{
 char choice;
 cout << "Choose your car\n";
 cout << "S for Standard\n";
 cout << "L for Leather Seats\n";
 cout << "D for Leather Seats + Chrome Wheels\n";
 cin >> choice;
 cout << "Extra features purchased\n";
 switch (choice)
 {
 case 'D':
 cout << "Chrome wheels\n";
 case 'L':
 cout << "Leather seats\n";
 break;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0038.html (4 of 6)06.11.2004 22:51:43

The switch Statement

 default:
 cout << "None selected\n";}
 return 0;
}

The sample run could be
Choose your car
S for Standard
L for Leather Seats
D for Leather Seats + Chrome Wheels
D
Extra features purchased
Chrome wheels
Leather seats

Ranges of Numbers

Another difference between switch and if/else ifelse statements concerns the handling of
ranges of numbers. For example, earlier in this chapter we used an if /else if /else
statement to output the user’s grade based on the test score that was input by the user.
The issued grade was an A if the test score was between 90 and 100, a B if the test score
was between 80 and 89, and so on. The if /else if /else statement in that program was
 if (testScore >= 90)
 cout << "Your grade is an A" << endl;
 else if (testScore >= 80)
 cout << "Your grade is a B" << endl;
 else if (testScore >= 70)
 cout << "Your grade is a C" << endl;
 else if (testScore >= 60)
 cout << "Your grade is a D" << endl;
 else
 cout << "Your grade is an F" << endl;

By contrast, a case statement cannot be followed by an expression such as testScore >=
90 because the case statement keyword has to be followed by an integer constant.
Instead, a case statement would be necessary for each possible test score. The following
code fragment shows only the code for an A or B grade to avoid the code example being
unduly long, but the code for a C or D grade would be essentially a repeat (an F grade
would be handled with the default keyword).
 switch (testScore)
 {
 case 100:
 case 99:
 case 98:
 case 97:
 case 96:
 case 95:
 case 94:
 case 93:
 case 92:
 case 91:
 case 90:
 cout << "Your grade is an A";
 break;
 case 89:

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0038.html (5 of 6)06.11.2004 22:51:43

The switch Statement

 case 88:
 case 87:
 case 86:
 case 85:
 case 84:
 case 83:
 case 82:
 case 81:
 case 80:
 cout << "Your grade is an A";
 break;
 }

This code example illustrates that the switch statement is more cumbersome than the if /
else if /else structure in dealing with ranges of numbers.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0038.html (6 of 6)06.11.2004 22:51:43

Summary

Summary

Computer programs usually do not take a preordained path from beginning to end.
Instead, different code executes based on choices made by the user. Relational operators
are used to compare the user’s choice with various alternatives. The if, if/else, if /else if /
else, and switch statements are used to structure the code so different code executes
depending on which choice was made. You also learned about flowcharts, which help
make programs more understandable by visually depicting the program components and
flow.

In this chapter, only one comparison was made at a time. However, sometimes more than
one comparison needs to be made. For example, you are eligible to vote in the U.S. only
if you are a citizen and are at least 18 years old. You cannot vote unless both are true.
However, you may get into a movie free if you are either a senior citizen (65 years or
older) or a child (12 or under). Thus, you get in free if either is true. In the next chapter,
you will learn about how to use logical operators to combine comparisons.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0039.html06.11.2004 22:51:44

Quiz

Quiz
1. How many operands are in a relational expression?

2. What is the purpose of a flowchart?

3. What is the data type of the expression following the if keyword?

4. In an if /else if /else statement, which part must you have one, but only one, of?

5. In an if /else if /else statement, which part may you have more than one of?

6. In an if /else if /else statement, which part may you omit?

7. In a switch statement, what is the required data type of expression following the
switch keyword?

8. In a switch statement, may an expression of the character data type follow the
switch keyword?

9. In a switch statement, may the expression following a case keyword be a variable?

10. Which keyword in a switch statement corresponds to the else keyword in an if /else
if /else statement?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0040.html06.11.2004 22:51:45

Chapter 6: Nested if Statements and Logical Operators

Chapter 6: Nested if Statements and Logical Operators

Overview

Chapter 5 began with the opening words of the famous poem “The Road Not Taken” by
Robert Frost: “Two roads diverged in a yellow wood, and sorry I could not travel both.”

Not to be a poetry critic, but often there are more than two roads.

In Chapter 5, we evaluated only one Boolean expression at a time, and chose which of
the two roads our code would travel down depending on whether the expression was true
or false. However, sometimes two (or more) Boolean expressions need to be evaluated to
determine the path the code will travel.

For example, you are eligible to vote only if you are a citizen and you are at least 18 years
old. You cannot vote unless both conditions are true. Other times with Boolean
expressions, you are testing if either of two comparisons is true. For example, you may
get into a movie free if you are either a senior citizen (65 years or older) or a child (12 or
under). Thus, you get in free if either condition is true.

This chapter will cover two different approaches to evaluating two Boolean expressions to
determine which code should execute. The first approach nests one if statement inside
another. The second approach introduces another type of operator: logical operators.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0041.html06.11.2004 22:51:45

Nested if Statements

Nested if Statements

An if statement may appear inside another if statement. When this is done, the inner if
statement is said to be “nested” inside the outer if statement.

You can nest if statements to determine if both of two Boolean expressions are true, or if
either of the expressions is true.

Testing if Both Boolean Expressions Are True

The following program shows the use of nested if statements in determining if both of two
Boolean expressions are true. If the user’s input is that they are at least 18 years old and
a citizen, the program outputs that they are eligible to vote. Otherwise, the program
outputs that they are not eligible to vote.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 char choice;
 bool citizen;
 cout << "Enter your age: ";
 cin >> age;
 cout << "Are you a citizen (Y/N): ";
 cin >> choice;
 if (choice == 'Y')
 citizen = true;
 else
 citizen = false;
 if (age >= 18)
 if(citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";
 else
 cout << "You are not eligible to vote";
 return 0;
}

The following are several sample runs, each separated by ===:
Enter your age: 18
Are you a citizen (Y/N): Y
You are eligible to vote
===
Enter your age: 18
Are you a citizen (Y/N): N
You are not eligible to vote
===
Enter your age: 17
Are you a citizen (Y/N): Y
You are not eligible to vote
===

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0042.html (1 of 5)06.11.2004 22:51:47

Nested if Statements

Enter your age: 17
Are you a citizen (Y/N): N
You are not eligible to vote
===

Figure 6-1 depicts a flowchart of this program.

Figure 6-1: Flowchart of the voting eligibility program

The nested if portion of the program is
 if (age >= 18)
 if(citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";
 else
 cout << "You are not eligible to vote";

Note The statement if(citizen == true) could be rewritten as if(citizen). The
parentheses following the if keyword requires only an expression that evaluates
to a Boolean value. Since citizen is a Boolean variable, it evaluates to a Boolean
value without the need for any comparison.

The if/else structure comparing whether the user is a citizen is nested within the if/else
structure comparing whether the user is at least 18 years old. By this nesting, the
comparison of whether the user is a citizen is made only if the user is at least 18 years

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0042.html (2 of 5)06.11.2004 22:51:47

Nested if Statements

old. This approach is logical, since if the user is not at least 18 years old, they will not be
eligible to vote even if they are a citizen.

The if / else structure comparing whether the user is a citizen is referred to as the “inner”
if / else structure. The if / else structure comparing whether the user is at least 18 years
old is referred to as the “outer” if / else structure.

The entire inner if / else structure (comparing whether the user is a citizen) is nested
within the if part of the outer if / else structure (comparing whether the user is at least 18
years old). You also can nest an if / else structure (or an if structure, or an if /else if /else
structure) within the else if or else part of an outer if else/if else if else/if else structure.

This program illustrates a good use of nested if statements. It would be difficult to rewrite
this program using an if / else if / else structure without nested if statements. However,
later in this chapter we will cover another, equally good alternative: logical operators.

Testing if Either Boolean Expression Is True

The following program shows the use of the nested if statements in determining if either
of two Boolean expressions are true. If the user’s input indicates that they are either no
more than 12 years old or at least 65 years old, the program outputs that their admission
is free. Otherwise, the program outputs that they have to pay.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 cout << "Enter your age: ";
 cin >> age;
 if (age > 12)
 if (age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";
 else
 cout << "Admission is free";
 return 0;
}

The following shows several sample runs:
Enter your age: 12
Admission is free
===
Enter your age: 13
You have to pay
===
Enter your age: 65
Admission is free

Figure 6-2 depicts a flowchart of this program.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0042.html (3 of 5)06.11.2004 22:51:47

Nested if Statements

Figure 6-2: Flowchart of the movie admission program

The nested if portion of the program is
 if (age > 12)
 if (age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";
 else
 cout << "Admission is free";

The inner if/else structure, comparing whether the user is at least 65 years old, is nested
within the outer if/else structure, comparing whether the user is over 12 years old. By this
nesting, the comparison of whether the user is at least 65 years old is made only if the
user is over 12 years old. This approach is logical, since if the user is no more than 12
years old, they will be admitted free (and also could not possibly be 65 years or older).

This program also could have been written using the following if / else if / else structure in
place of the nested if statements:
 if (age <= 12)
 cout << "Admission is free";
 else if (age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";

Each of these two alternatives, the nested if statements and the if / else if / else structure,
have disadvantages. Nesting one if statement inside another by its very nature may be
somewhat difficult to write and understand. However, the if / elseif/else if / else structure
has the disadvantage of repeating the same cout statement for both the if and else if
parts. While this is just one line of repetitive code in this program, in more complex
programs the repetitive code could be many lines long.

C++ has a third and perhaps better alternative, the use of logical operators, which we will
discuss next.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0042.html (4 of 5)06.11.2004 22:51:47

Nested if Statements

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0042.html (5 of 5)06.11.2004 22:51:47

Logical Operators

Logical Operators

C++ has logical operators that enable you to combine comparisons in one if or else if
statement. Table 6-1 lists the logical operators supported by C++ and describes what
each does.

Table 6-1: Logical Operators

Operator Name What It Does

&& And Connects two relational expressions. Both
expressions must be true for the overall
expression to be true.

|| Or Connects two relational expressions. If either
expression is true, the overall expression is
true.

! Not Reverses the “truth” of an expression, making
a true expression false, and a false expression
true.

The && Operator

The && operator also is known as the logical And operator. It is a binary operator; it takes
two Boolean expressions as operands. It returns true only if both expressions are true. If
either expression is false, the overall expression is false. Of course, if both expressions
are false, the overall expression is false. Table 6-2 illustrates this.

Table 6-2: The Logical And Operator

Expression #1 Expression #2 Expression #1 && Expression #2

true true true

true false false

false true false

false false false

The following program shows the use of the logical And operator in determining whether
the user is eligible to vote, the criteria being that the user must be at least 18 years old
and a citizen.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 char choice;
 bool citizen;
 cout << "Enter your age: ";
 cin >> age;
 cout << "Are you a citizen (Y/N): ";
 cin >> choice;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0043.html (1 of 6)06.11.2004 22:51:48

Logical Operators

 if (choice == 'Y')
 citizen = true;
 else
 citizen = false;
 if (age >= 18 && citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";
 return 0;
}

The following are several sample runs, separated by ===:
Enter your age: 18
Are you a citizen (Y/N): Y
You are eligible to vote
===
Enter your age: 18
Are you a citizen (Y/N): N
You are not eligible to vote
===
Enter your age: 17
Are you a citizen (Y/N): Y
You are not eligible to vote
===
Enter your age: 17
Are you a citizen (Y/N): N
You are not eligible to vote

The part of the program that uses the logical And operator is
 if (age >= 18 && citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";

The comparison age >= 18 is referred to as the left part of the expression since it is to the
left of the logical And operator. Similarly, the comparison citizen == true is referred to as
the right part of the expression because it is to the right of the logical And operator.

If the user’s age is at least 18 years, then the program makes the second comparison,
whether the user is a citizen. If the user’s age is not at least 18 years of age, the second
comparison is not even made before the else part is executed. The reason is to avoid
wasting CPU time, since if the left expression is false, the overall expression is false
regardless of the result of the evaluation of the right expression.

Because the second comparison of whether the user is a citizen is made only if the user’s
age is at least 18, the flowchart in Figure 6-1 of this program using nested if statements
also applies to this program using the logical And operator.

The || Operator

The || operator is also known as the logical Or operator. Like the logical And operator, the
logical Or operator also is a binary operator, taking two Boolean expressions as
operands. It returns true if either expression is true. It returns false only if both
expressions are false. Of course, if both expressions are true, the overall expression is
true. Table 6-3 illustrates this.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0043.html (2 of 6)06.11.2004 22:51:48

Logical Operators

Table 6-3: The Logical Or Operator

Expression #1 Expression #2 Expression #1 || Expression #2

true true true

true false true

false true true

false false false

The following program shows the use of the logical Or operator in determining whether
you get into a movie free, the criteria being that the user must be either no more than 12
or at least 65 years old.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 cout << "Enter your age: ";
 cin >> age;
 if (age <= 12 || age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";
 return 0;
}

The following shows several sample runs:
Enter your age: 12
Admission is free
===
Enter your age: 18
You have to pay
===
Enter your age: 65
Admission is free

The part of the program that uses the logical Or operator is
 if (age <= 12 || age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";
 return 0;

As with the logical And operator, the comparison age <= 12 is referred to as the left part
of the expression and the comparison age >= 65 is referred to as the right part of the
expression.

If the user’s age is over 12 years, then the program makes the second comparison,
whether the user is at least 65 years of age. If the user is no more than 12 years of age,
the second comparison is not even made before the else part is executed. The reason, as
with the logical And operator, once again is to avoid wasting CPU time, since if the left
expression is true, the overall expression is true regardless of the result of the evaluation

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0043.html (3 of 6)06.11.2004 22:51:48

Logical Operators

of the right expression.

Because the second comparison of whether the user is at least 65 years old is made only
if the user’s age is over 12, the flowchart in Figure 6-2 of this program using nested if
statements also applies to this program using the logical Or operator.

The ! Operator

The ! operator also is known as the logical Not operator. My daughters have been using
the logical Not operator for years, telling me “Dad, you look just like Tom Cruise … not!”

The logical Not operator inverts the value of the Boolean expression, returning false if the
Boolean expression is true, and true if the Boolean expression is false. Table 6-4
illustrates this.

Table 6-4: The Logical Not Operator

Expression !Expression

true true

false true

Unlike the logical And and Or operators, the logical Not operator is a unary operator; it
takes only one Boolean expression, not two.

The following program shows the use of the logical Not operator, combined with the
logical And operator, in determining whether you get into a movie for free.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 cout << "Enter your age: ";
 cin >> age;
 if (!(age > 12 && age < 65))
 cout << "Admission is free";
 else
 cout << "You have to pay";
 return 0;
}

This program is almost identical to the one used to illustrate the logical Or operator. The
only difference is that the statement
 if (age <= 12 || age >= 65)

is replaced by the statement
 if (!(age > 12 && age < 65))

Note This change is an illustration of DeMorgan’s law, which is a rule of inference
pertaining to the logical And, Or, and Not operators that are used to distribute a
negative to a conjunction or disjunction. In this book, it is only referred to and not
covered, but in case you hear DeMorgan’s law mentioned in a programming
class or another book, you heard it here first!

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0043.html (4 of 6)06.11.2004 22:51:48

Logical Operators

The Not operator permits you to state a Boolean expression a different way that may be
more intuitive for you. In this example, expressing the condition for free admission as
being that the age is not between 13 and 64 may be more intuitive than expressing that
condition as being that the age is either no more than 12 or 65 or over.

Precedence

Table 6-5 lists precedence, from highest to lowest, among logical operators and between
them and the relational operators.

Table 6-5: The Precedence of Logical and Relational Operators

Operator (from highest to lowest)

!

Relational operators (>, >=, <, <=, ==. !=)

&&

||

Precedence and the Logical Not Operator

Since the logical Not operator has a higher precedence than the relational operators, the
program used to illustrate the logical Not operator uses an extra set of parentheses.
 if (!(age > 12 && age < 65))

Had the extra set of parentheses been omitted as follows, the result would always be that
the user has to pay. Thus, admission would never be free regardless of the age.
 if (!age > 12 && age < 65)

The reason why the user always has to pay regardless of age is that since the logical Not
operator has a higher precedence than the relational operators, the logical Not operator
operates on age, not the expression age > 12 && age < 65. If age is non-zero, then !age
is zero. Since 0 is not greater than 12, the left part of the logical And expression is false,
so the overall expression is false.

The result of the user always having to pay regardless of age is the same even if age is
zero. If age is zero, then !age is logical true, the integer equivalent of which usually is 1.
Since 1 is not greater than 12, once again the left part of the logical And expression is
false, so the overall expression is false.

Precedence and the Logical And and Or Operators

In contrast to the logical Not operator, the logical And and Or operators rank lower in
precedence than the relational operators. Therefore, parentheses normally are not
necessary to separate the logical And and Not operators from the relational operators.
For example, the following two statements (the first taken from the program that illustrated
the logical And operator) are equivalent.
 if (age >= 18 && citizen == true)
 if ((age >= 18) && (citizen == true))

However, parentheses are necessary when logical And and Or operators are used
together in one statement and you want the Or done before the And since the logical And
operator has higher precedence than the logical Or operator. This issue often arises when

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0043.html (5 of 6)06.11.2004 22:51:48

Logical Operators

you have more than two Boolean expressions.

For example, assume the voting rules were changed so legal residents (represented by
the Boolean variable resident having a value of true) as well as citizens who are at least
18 years old could vote. Given that assumption, the statement
 if (resident == true || citizen == true && age >= 18)

would be the same as the following since the logical And operator has higher precedence
than the logical Or operator.
 if (resident == true || (citizen == true && age >= 18))

In this expression, a resident under 18 years old would be able to vote. The reason is that
even if the expression (citizen == true && age >= 18) is false, as long as resident is true,
the overall expression is true, since with a logical Or operator only one of the two Boolean
expressions needs to be true for the overall expression to be true.

A resident under 18 years old being able to vote is not a correct result for this program.
To avoid this logic error, parentheses would be necessary, so the logical Or operation is
performed first.
 if ((resident == true || citizen == true) && age >= 18)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0043.html (6 of 6)06.11.2004 22:51:48

Using the switch Statement with Logical Operators

Using the switch Statement with Logical Operators

The switch statement was discussed at some length in Chapter 5. However, so far in this
chapter it has been conspicuous by its absence.

In Chapter 5, we discussed how the switch statement was cumbersome when dealing
with a range of numbers. The reason was that the case keyword cannot be followed by a
range of numbers because it must instead be followed by a single integer constant.

However, the switch statement may be used with expressions that use the logical And or
Or operator. The reason is that these expressions have only one of two possible values,
true or false. True and false are both constants; the value of true is always true and the
value of false is always false. While true and false are Boolean values, each has a
corresponding integer value: 1 and 0. Therefore, the case keyword may be followed by
true or false, just as in Chapter 5 where the case keyword can be followed by a character
since a character has a corresponding integer ANSI or ASCII value.

For example, earlier in this chapter the logical And operator was used in the following if/
else structure in determining whether the user is eligible to vote, the criteria being that the
user must be at least 18 years old and a citizen.
 if (age >= 18 && citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";

The corresponding switch statement is
 switch (age >= 18 && citizen == true)
 {
 case true:
 cout << "You are eligible to vote";
 break;
 case false:
 cout << "You are not eligible to vote";
}

Also earlier in this chapter, the logical Or operator was used in the following if/else
structure in determining whether the user gets into a movie free, the criteria being that the
user must be either under 18 or at least 65 years old.
 if (age <= 12 || age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";

The corresponding switch statement is
switch (age <= 12 || age >= 65)
{
 case true:
 cout << "Admission is free";
 break;
 case false:
 cout << "You have to pay";
}

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0044.html (1 of 2)06.11.2004 22:51:50

Using the switch Statement with Logical Operators

These examples illustrate that the switch statement can be employed as an alternative to
an if / else or if / else if /else structure in programs that evaluate Boolean expressions
using logical operators. However, it is not common for the switch statement to be
employed in this manner because, with Boolean expressions, there are always just two
alternatives, true and false, and switch statements generally are used when there are
many more alternatives than two.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0044.html (2 of 2)06.11.2004 22:51:50

Summary

Summary

In Chapter 5, we evaluated only one Boolean expression at a time to determine which of
two alternative blocks of code should execute. However, often two (or more) Boolean
expressions need to be evaluated to determine which block of code should execute. In
the example in which you are eligible to vote only if the user is a citizen and at least 18
years old, both Boolean expressions must be true in order for the program to output that
the user is eligible to vote. In another example, in which you get into a movie free if the
user is either a senior citizen (65 years or older) or a child (12 or under), the program
outputs that the user gets into the movie free if either Boolean expression is true.

This chapter covered two different approaches of evaluating two Boolean expressions to
determine which code should execute. The first approach nested one if statement inside
another. The second approach introduced three logical operators. The logical && (And)
operator is used when both Boolean expressions must be true. The logical || (Or) operator
is used when either Boolean expression must be true. Finally, the logical ! (Not) operator
inverts the value of a Boolean expression, from true to false, or false to true.

Finally, this chapter showed how you can use the switch statement as an alternative to an
if / else or if / else if /else structure in programs that evaluate Boolean expressions using
logical operators.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0045.html06.11.2004 22:51:50

Quiz

Quiz
1. Can you use nested if statements as an alternative to the logical And and Or

operators?

2. Can an if statement be nested in the else if or else part of an if / else if / else
statement, or just the if part?

3. For which of the logical operators do both Boolean expressions have to be true for
the overall Boolean expression to be true?

4. For which of the logical operators do both Boolean expressions have to be false for
the overall Boolean expression to be false?

5. Which of the logical operators reverses the “truth” of a Boolean expression, making
a true expression false and a false expression true?

6. Assuming resident is a Boolean variable, is if(resident) the same as if(resident ==
true)?

7. Which of the logical operators is a unary rather than binary operator?

8. Which of the logical operators has a higher precedence than the relational
operators?

9. Which logical operator has a higher precedence, And or Or?

10. Can a Boolean value of either true or false be used following the case keyword in a
switch statement?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0046.html06.11.2004 22:51:51

Chapter 7: The For Loop

Chapter 7: The For Loop

Overview

Parents customarily remind their children not to repeat themselves. Indeed, parents often
illustrate another saying (“Do as I say, not as I do”) by continually repeating that reminder.

This is my nifty way of introducing the idea that, in the world of computers, sometimes you
want your code to repeat itself, too. For example, if the user enters invalid data, you may
want to ask the user whether they want to retry or quit. If they retry and still enter invalid
data, you again would ask the user whether they want to retry or quit. This process keeps
repeating until the user either enters valid data or quits.

You use a loop to repeat the execution of code statements. A loop in C++ is a structure
that repeats the execution of code until a condition becomes false. In the preceding
example, the condition is that the data is invalid and the user wants to retry, thus the
repeating code is the prompt asking the user whether they want to retry or quit.

This chapter will show you how to use one type of loop: the for loop. However, before
discussing the for loop, I’ll show you how to use increment and decrement operators,
which are used in for and other types of loops. The next chapter will then show you how
to use two other kinds of loops: the while loop and the do while loop.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0047.html06.11.2004 22:51:52

Increment and Decrement Operators

Increment and Decrement Operators

Increment means to increase a value by one. Conversely, decrement means to decrease
a value by one. C++ has an increment operator that you can use to increase a value by
one and a decrement operator that you can use to decrease a value by one. This section
will show you how to use both, something that will be useful in the next section on the for
loop, which uses increment and decrement operators.

The Increment Operator

In the following program, the statement num += 1 increases the value of the integer
variable num, which was initialized to the value 2, by 1, so the output will be 3.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num += 1;
 cout << num;
 return 0;
}

Another way to accomplish the same result is by using the increment operator, ++. The
increment operator is unary—that is, it operates on one operand. That operand generally
is a whole number variable, such as an int. We can use the increment operator simply by
changing the program we just ran by replacing the statement num += 1 with the statement
num++:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num++;
 cout << num;
 return 0;
}

The same output would occur if you substituted the statement ++num for num++:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 ++num;
 cout << num;
 return 0;
}

Placing the ++ before the variable num is called prefix incrementing—the “pre” indicating
that the increment operator precedes its operand. Placing the ++ before the variable num
is called postfix incrementing—the “post” indicating that the increment operator follows its
operand.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0048.html (1 of 4)06.11.2004 22:51:53

Increment and Decrement Operators

In this example, it makes no difference to the output of the program whether you use
prefix or postfix incrementing. The reason is that the statement ++num has only one
operator; the same is true of the statement num++. However, there is a difference
between prefix and postfix incrementing when the statement has more than one operator.
This is discussed later in this chapter in the section “The Difference Between Prefix and
Postfix.”

The Decrement Operator

In the following program, the statement num –= 1 decreases the value of the integer
variable num, which was initialized to the value 2, by 1, so the output will be 1.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num -= 1;
 cout << num;
 return 0;
}

Another way to accomplish the same result is by using the decrement operator, --. The
decrement operator, like the increment operator, is unary, operating on one operand
which generally is a whole number variable, such as an int. We can use the decrement
operator simply by changing the program we just ran and replacing the statement num –=
1 with the statement num--:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num--;
 cout << num;
 return 0;
}

The same output would occur if you substituted the statement --num for num--:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 --num;
 cout << num;
 return 0;
}

As with the increment operator, placing the -- before the variable num is called prefix
decrementing, while placing the -- after the variable num is called postfix decrementing.

Also, as with the example of the increment operator, in this example it makes no
difference to the output of the program whether you use prefix or postfix decrementing
because the statement --num (or num--) has only one operator. However, as discussed in

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0048.html (2 of 4)06.11.2004 22:51:53

Increment and Decrement Operators

the next section, “The Difference Between Prefix and Postfix,” there is a difference
between prefix and postfix decrementing (or incrementing) when the statement has more
than one operator.

The Difference Between Prefix and Postfix

The following program is similar to the previous program that illustrated the increment
operator.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 cout << num++;
 return 0;
}

However, instead of two statements:
 num++;
 cout << num;

This program uses one statement:
 cout << num++;

There are two operators in this cout statement: the increment operator ++ and the stream
insertion operator <<. The issue is one of precedence; which operation occurs first.

The output of this program is 2. The reason is that when an increment or decrement
operator is postfix, that operation is the last to occur. Therefore, the output of num occurs
first while the variable’s value is still 2, and then the value of num is incremented from 2 to
3.

Now, change the line:
 cout << num++;

to the line:
 cout << ++num;

so the program now reads
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 cout << ++num;
 return 0;
}

This time, the output of this program is 3 instead of 2. The reason is that when an
increment or decrement operator is prefix, that operation is the first to occur. Therefore,
num first is incremented from 2 to 3 before the value of num is outputted.

The distinction between prefix and postfix also arises frequently with arithmetic operators.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0048.html (3 of 4)06.11.2004 22:51:53

Increment and Decrement Operators

In the following code fragment, the value of result is 15, not 18, because op2 is
incremented from 5 to 6 after the multiplication and assignment occurs.
int op1 = 3, op2 = 5, result;
result = op1 * op2++;

If prefix incrementing instead were used, as in the following code fragment, the value of
result is 18, not 15, because op2 is incremented from 5 to 6 before the multiplication and
assignment occurs.
int op1 = 3, op2 = 5, result;
result = op1 * ++op2;

The distinction between prefix and postfix arises as well with relational operators. In the
following code fragment, the output is 1 (the integer representation of Boolean true)
because the integer variable num is compared to 5 for equality before num is incremented
from 5 to 6.
int num = 5;
cout << (num++ == 5);

If prefix incrementing instead were used, as in the following code fragment, then the
output would be 0 (the integer representation of Boolean false) because the integer
variable num is incremented from 5 to 6 before it is compared to 5 for equality.
int num = 5;
cout << (++num == 5);

The increment and decrement operators generally are not used by themselves, but in
conjunction with loops. The next section covers one type of loop: the for loop.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0048.html (4 of 4)06.11.2004 22:51:53

The For Loop

The For Loop

If you wanted to output the numbers between 1 and 10, you could write a program such
as the following:
 #include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 return 0;
}

However, you could write the same program with far less code by using a for loop:
#include <iostream>
using namespace std;
int main(void)
{
 for (int num = 1; num <= 10; num++)
 cout << num << " ";
 return 0;
}

The difference between the two programs becomes more pronounced if you change the
specification from outputting the numbers between 1 and 10 to outputting the numbers
between 1 and 100. I won’t rewrite the first program because it would take up too many
pages; suffice it to say, you would have to add 90 more cout statements. However, the
same program using a for loop would be:
#include <iostream>
using namespace std;
int main(void)
{
 for (int num = 1; num <= 100; num++)
 cout << num << " ";
 return 0;
}

Indeed, by using the for loop, the same code could output the numbers between 1 and
1000 or even 1 and 10000; you just would need to change the 100 in the code to 1000 or
10000.

The for loop is one of three types of loops; the other two (while and do while) will be
covered in the next chapter. A loop is a structure that repeats the execution of code until a
condition becomes false. Each repetition is called an iteration.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (1 of 9)06.11.2004 22:51:54

The For Loop

In the example that printed out the numbers between 1 and 10, the output of the value of
num was repeated as long as the condition—the value of num being less than or equal to
10—remained true. There were ten iterations of this loop; that is, the current value of num
was outputted ten times.

The Syntax of the For Loop

Let’s discuss the syntax of the for loop. The for keyword is followed by parentheses that
contain three expressions that will be discussed in a moment. This line of code is followed
by one or more statements.

The three expressions contained in the parentheses following the for keyword are
separated by semicolons; there is no semicolon after the third expression since no
expression follows it.

The first expression usually is used to initialize the value of a variable, typically referred to
as a counter, to provide that variable with a starting value. In this example, the integer
variable num is initialized to the starting value of 0. This initialization is the first action
performed by the loop, and is only performed once.

The second expression is the condition, which must be true for the code inside the loop to
execute. In this example, the condition is whether the current value of num is less than or
equal to 10.

The third expression usually is used to update the value of the counter. In this example,
the integer variable num is incremented. This expression executes at the end of each
iteration, and only executes if the condition was true at the beginning of the iteration.

Note Postfix incrementing was used in this example and generally is employed by
convention. However, the result would be the same if prefix incrementing were
used, as only one operator is involved in this expression.

Therefore, the order of execution in the first iteration of the loop is

1. The integer variable num is initialized to 1.

2. The current value of num, 1, is compared to 10.

3. Since the comparison is true, the current value of num, 1, is outputted.

4. The value of num is incremented, becoming 2.

The order of execution in the second iteration of the loop is

1. The current value of num, 2, is compared to 10.

2. Since the comparison is true, the current value of num, 2, is outputted.

3. The value of num is incremented, becoming 3.

Note that the initialization that occurred during the first iteration of the loop did not occur
during the second iteration of the loop. As discussed previously, initialization occurs only
once, in the first iteration of the loop.

This order of execution in the second iteration of the loop repeats during the third and
following executions of the loop, each time incrementing the value of num through the

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (2 of 9)06.11.2004 22:51:54

The For Loop

tenth iteration of the loop, which executes in the following order:

1. The current value of num, 10, is compared to 10.

2. Since the comparison is true (10 is less than or equal to 10), the current value of
num, 10, is outputted.

3. The value of num is incremented, becoming 11.

In the next iteration of the loop, the current value of num, 11, is compared to 10. Since the
comparison is false (11 is not less than or equal to 10), the for loop ends. The code inside
the for loop does not execute, the value of num is not incremented, and the code
following the for loop executes. In this example, the code following the for loop is the
return 0 statement, so the program ends.

Note The preceding examples used the increment operator. However, you also can
use the decrement operator. Changing the parentheses following the keyword to
(int num = 10; num >= 1; num--) would result in the numbers between 1 and 10
being outputted in reverse. Note that the relational operator is changed from >=
to <=.

In the example of outputting the numbers between 1 and 10, only one statement
belonged to the for loop. However, as with the if structure, if more than one statement
belongs to the for loop, then the statements must be contained within curly braces.
 for (int num = 1; num <= 10; num++)
 {
 cout << num << " ";
 cout << "Next loop ";
 }

Also, as with the if structure, the statement or statements following the for keyword and
parentheses will not execute if the parentheses are followed by a semi-colon since that
would be interpreted as an empty statement. Accordingly, in the following code fragment,
the only number that would output is 11:
 for (int num = 1; num <= 10; num++);
 cout << num << " ";

The reason the output would be 11 is that the loop continues, and the empty statement
executes, until the condition fails when num is 11. The cout statement is not part of the for
loop, so it executes when the for loop completes, outputting 11, the value of num after the
loop finishes.

The expressions do not need be inside the parentheses following the for loop. In the
following program, num is initialized before the for loop, and is incremented inside the
body of the loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 for (; num <= 10;)
 {
 cout << num << " ";
 num++;
 }
 return 0;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (3 of 9)06.11.2004 22:51:54

The For Loop

}

Even though initialization and incrementing are not done within the parentheses, two
semicolons are nevertheless within the parentheses to separate where the three
expressions would be. While an expression may be empty, the semicolon nevertheless is
necessary.

Beware the Infinite Loop

In the preceding program, if the statement num++ was omitted, the loop would never stop:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 for (; num <= 10;)
 {
 cout << num << " ";
 }
 return 0;
}

The reason is that the condition num <= 10 would never become false since num would
start at 0 and its value would never change because the statement num++ was omitted.

This loop that never stops executing is called an infinite loop. Usually, it manifests itself by
a character or characters appearing in rapid succession in your console window, with the
application never ending.

You would not intend an infinite loop in your code, but mistakes do happen; I have made
this mistake a lot more than once. If it happens to you, don’t panic. You can use the
CTRL-BREAK keyboard combination to end the program. Knowing you have encountered
an infinite loop, you then can correct the code error that caused it.

A Factorial Example

So far, use of the for loop has been relatively trivial, counting numbers in ascending or
descending order. However, the for loop can be used for more sophisticated programs.

The following program calculates the factorial of a number inputted by the user. A factorial
is the product of all the positive integers from 1 to that number. For example, the factorial
of 3 is 3 * 2 * 1, which is 6, while the factorial of 5 is 5 * 4 * 3 * 2 * 1, which is 120.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, total = 1;
 cout << "Enter a number: ";
 cin >> num;
 cout << "The factorial of " << num << " is ";
 for (int counter = 1; counter <= num; counter++)
 total *= counter;
 cout << total;
 return 0;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (4 of 9)06.11.2004 22:51:54

The For Loop

}

Input and output could be
Enter a number: 4
The factorial of 4 is 24

Breaking Out of a Loop

We previously used the break keyword in a switch statement. You also can use the break
keyword in a for loop. The break keyword is used within the code of a for loop, commonly
within an if / else structure. If the break keyword is reached, the for loop terminates, even
though the condition still is true.

For example, in the following program, the user is given three tries to guess a number
(which happens to be 3) between 1 and 10. However, if the user guesses the number on
their first or second try, it would be pointless to ask them again to guess the number.
Accordingly, if the user guesses the number, the break statement is used to break out of
the loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, secret = 3;
 cout << "Guess a number between 1 and 10\n";
 cout << "You have 3 tries\n";
 for (int counter = 1; counter <= 3; counter++)
 {
 cout << "Enter the number now: ";
 cin >> num;
 if (num == secret)
 {
 cout << "You guessed the secret number!";
 break;
 }
 }
 cout << "Program over";
 return 0;
}

Here are two sample inputs and outputs. In the first one, the user tried three times without
guessing correctly. In the second one, the user guessed correctly on their second try, so
there was no third iteration of the loop due to the break keyword.
Guess a number between 1 and 10
You have 3 tries
Enter the number now: 2
Enter the number now: 4
Enter the number now: 6
Program over

Guess a number between 1 and 10
You have 3 tries
Enter the number now: 2
Enter the number now: 3
You guessed the secret number!

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (5 of 9)06.11.2004 22:51:54

The For Loop

Program over

While the break keyword is part of the C++ language, I recommend you use it sparingly.
Normally, the for loop has one exit point, the condition when it becomes false. However,
when you use one or more break statements, the for loop has multiple exit points. This
makes your code more difficult to understand, and can result in logic errors.

In the following program, the logical && (And) operator is an alternative to using the break
keyword.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, secret = 3;
 cout << "Guess a number between 1 and 10\n";
 cout << "You have 3 tries\n";
 bool keepgoing = true;
 for (int counter = 1; counter <= 3 && keepgoing == true;
 counter++)
 {
 cout << "Enter the number now: ";
 cin >> num;
 if (num == secret)
 {
 cout << "You guessed the secret number!";
 keepgoing = false;
 }
 }
 cout << "Program over";
 return 0;
}

Before leaving the discussion of the break keyword, one additional use of it (in
conjunction with the parentheses following the for keyword being empty of all three
expressions) deserves mention simply because you may encounter it. The following
program is a variant of the one that outputs numbers between 1 and 10 with the first and
third expressions inside the parentheses being empty because num is initialized before
the for loop and incremented inside the body of the loop. In this program, the second
expression—the condition—is missing as well. Instead, the break keyword inside the if/
else structure substitutes for that condition.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 for (;;)
 {
 if (num > 10)
 break;
 else
 {
 cout << num << " ";
 num++;
 }
 }

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (6 of 9)06.11.2004 22:51:54

The For Loop

 return 0;
}

Without the break keyword, the for loop would be infinite due to the lack of a second
expression. Again, however, I do recommend against this use of the break keyword, and
point it out simply because other programmers believe differently—thus, you’re likely to
encounter it at some point in time.

The Continue Keyword

You also can use the continue keyword in a for loop. The continue keyword, like the break
keyword, is used within the code of a for loop, commonly within an if/else structure. If the
continue statement is reached, the current iteration of the loop ends, and the next
iteration of the loop begins.

For example, in the following program, the user is charged $3 an item, but not charged for
a “baker’s dozen.” In other words, every 13th item is free—in other words, the user is charged for only
a dozen items, instead of 13.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 for (int counter = 1; counter <= num; counter++)
 {
 if (counter % 13 == 0)
 continue;
 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;
}

Here are three sample inputs and outputs, illustrating that the price for 12 or 13 items is
the same, but on the 14th item the user again is charged an additional $3. The reason
why the code charges the user no additional price for the 13th item is that the continue
statement is reached, preventing three dollars from being added to the total.
How many items do you want to buy: 12
Total for 12 items is $36

How many items do you want to buy: 13
Total for 13 items is $36

How many items do you want to buy: 14
Total for 14 items is $39

While the continue keyword is part of the C++ language, I recommend, as I do with the
break keyword, that you use it sparingly. Normally, each iteration of a for loop has one
end point. However, when you use a continue statement, each iteration has multiple end
points. This makes your code more difficult to understand, and can result in logic errors.

In the following program, the logical ! (Not) operator is an alternative to using the continue
keyword.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (7 of 9)06.11.2004 22:51:54

The For Loop

#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 bool keepgoing = true;
 for (int counter = 1; counter <= num; counter++)
 {
 if (! (counter % 13 == 0))
 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;
}

Note You also could use the relational != (not equal) operator, changing the if
statement to if (counter % 13 != 0).

Nesting For Loops

You can nest a for loop just as you can nest if statements. For example, the following
program prints five rows of ten X characters:
#include <iostream>
using namespace std;
int main(void)
{
 for (int x = 1; x <= 5; x++)
 {
 for (int y = 1; y <= 10; y++)
 cout << "X";
 cout << '\n';
 }
 return 0;
}

The for loop for (int x = 1; x <= 5; x++) is the outer for loop. The for loop for (int y = 1; y <=
10; y++) is the inner for loop.

With nested for loops, for each iteration of the outer for loop, the inner for loop goes
through all its iterations. By analogy, in a clock, minutes are the outer loop, seconds the
inner loop. In an hour, there are 60 iterations of minutes, but for each iteration of a
minute, there are 60 iterations of seconds.

In the rows and columns example, for the first iteration of the outer for loop, the inner for
loop goes through all ten of its iterations, printing ten X characters and one new line
character. Then, for the next iteration of the outer for loop, the inner for loop again goes
through all ten of its iterations, again printing ten X characters and one new line character.
The same thing happens on the third, fourth, and fifth iterations of the outer for loop,
resulting in five rows of ten X characters.

While nested for loops can be used to print rows and columns for tables, they also have
other uses. For example, the following program prompts the user for the total number of
salespersons as well as the number of sales per salespersons, and has the user input

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (8 of 9)06.11.2004 22:51:54

The For Loop

each sale of each salesperson, and then afterward displays the average sale for each
salesperson. The number of iterations of the outer for loop will be the number of
salespersons. The number of iterations of the inner for loop will be the number of sales
per salesperson.
#include <iostream>
using namespace std;
int main(void)
{
 int persons, int numSales;
 cout << "Enter number of salespersons: ";
 cin >> persons;
 cout << "Enter number of sales per salesperson: ";
 cin >> numSales;
 for (int x = 1; x <= persons; x++)
 {
 int sale, total = 0;
 float average;
 for (int y = 1; y <= numSales; y++)
 {
 cout << "Enter sale " << y << " for salesperson "
 << x <<": ";
 cin >> sale;
 total += sale;
 }
 average = (float) total / numSales;
 cout << "Average sales for salesperson #" << x
 << " is " << average << endl;
 }
 return 0;
}

The input and output could be
Enter number of salespersons: 2
Enter number of sales per salesperson: 3
Enter sale 1 for salesperson 1: 4
Enter sale 2 for salesperson 1: 5
Enter sale 3 for salesperson 1: 7
Average sales for salesperson #1 is 5.33333
Enter sale 1 for salesperson 2: 8
Enter sale 2 for salesperson 2: 3
Enter sale 3 for salesperson 2: 4
Average sales for salesperson #2 is 5

Note If you place a break or continue keyword in the inner loop, it will affect only that
inner loop, and have no effect on the outer loop.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0049.html (9 of 9)06.11.2004 22:51:54

Summary

Summary

You use a loop to repeat the execution of code statements. A loop is a structure that
repeats the execution of code until a condition becomes false.

You learned in this chapter how to use one type of loop: the for loop. However, before
discussing the for loop, I showed you how to use increment and decrement operators,
which are used in for and other types of loops. I then explained the difference between
prefix and postfix when using the increment and decrement operators.

You also learned in this chapter how to use the break keyword to prematurely terminate a
for loop and the continue keyword to prematurely terminate the current iteration of the
loop. You then learned how to use the logical operators as an alternative to the break and
continue keywords. You also learned about nesting one for loop inside another.

The for loop generally is used when the loop will execute a fixed number of times.
However, sometimes the number of times a loop will execute is unpredictable, depending
on user input during runtime. For example, in a data entry application, you may want a
loop that, upon entry of invalid data, asks the user whether they want to retry or quit, and
if they want to retry, gives the user another opportunity to enter data. The number of times
this loop may execute is unpredictable, since it will keep repeating until the user either
enters valid data or quits.

The next chapter will show you how to use two other types of loops, the while loop and
the do while loop, that work better than a for loop when the number of times a loop will
execute is unpredictable.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0050.html06.11.2004 22:51:55

Quiz

Quiz
1. What does the increment operator do?

2. What does the decrement operator do?

3. Which occurs first, decrementing or the outputting of the value of num, in the
statement cout << --num?

4. What is an iteration?

5. What is the usual purpose of the first expression in the parentheses following the
for keyword?

6. What is the purpose of the second expression in the parentheses following the for
keyword?

7. What is the usual purpose of the third expression in the parentheses following the
for keyword?

8. Can one or more of the expressions in the parentheses following the for keyword
be empty?

9. What is the purpose of the break keyword in a for loop?

10. What is the purpose of the continue keyword in a for loop?

11. If you were going to use nested for loops to print rows and columns, which for loop
would print the columns—inner or outer?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0051.html06.11.2004 22:51:56

Chapter 8: While and Do While Loops

Chapter 8: While and Do While Loops

Overview

The for loop generally is used when the loop will iterate a fixed number of times.
However, sometimes the number of times a loop will iterate is unpredictable, depending
on user input during runtime. For example, in a data entry application, you may want a
loop that, upon entry of invalid data, asks the user whether they want to retry or quit, and
if they want to retry, gives the user another opportunity to enter data. The number of times
this loop may iterate is unpredictable, since it will keep repeating until the user either
enters valid data or quits.

This chapter will show you how to use the while loop, which is a better choice than a for
loop when the number of times a loop will iterate is unpredictable.

While the total number of loop iterations may be unpredictable, there often are situations
in which the loop will iterate at least once. An example is a loop that displays a menu with
various choices, including exiting the program. In this menu example, the menu always
displays at least once; the user cannot choose to exit before being given that choice. In
such situations, a do while loop, which this chapter will show you how to use, is a better
choice than a while loop.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0052.html06.11.2004 22:51:57

The While Loop

The While Loop

The while loop is similar to a for loop in that both have the typical characteristics of a loop:
the code inside each continues to iterate until a condition becomes false. The difference
between them is in the parentheses following the for and while keywords.

The parentheses following the for keyword consists of three expressions, initialization,
condition, and update. By contrast, the parentheses following the while keyword consists
only of the condition; you have to take care of any initialization and update elsewhere in
the code.

This difference is illustrated by the following program that outputs the numbers between 1
and 10. Chapter 7 included the following program that outputs the numbers between 1
and 10 using the for loop.
#include <iostream>
using namespace std;
int main(void)
{
 for (int num = 1; num <= 10; num++)
 cout << num << " ";
 return 0;
}

The same program using the while loop could be
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 while (num <= 10)
 {
 cout << num << " ";
 num++;
 }
 return 0;
}

Note The two statements in the body of the while loop could have been combined into
one statement, cout << num++. Two statements are used instead to make this
example easier to understand by eliminating the precedence issue in the one
statement between the stream insertion and increment operators.

With the while loop, the integer variable num had to be declared and initialized before the
loop since this cannot be done inside the parentheses following the while keyword.
Further, num was updated inside the code of the loop using the increment operator. This
update also can be done inside the parentheses following the while keyword as shown by
an example later in this section.

The update of the variable is particularly important with the while loop. Without that
update, the loop would be infinite. For example, in the following excerpt from this
program, if num is not incremented, the loop would be infinite. The value of num would
not change from 1, so the condition num <= 10 always would remain true.
 int num = 1;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (1 of 9)06.11.2004 22:51:58

The While Loop

 while (num <= 10)
 cout << num << " ";

Forgetting to update the value of the variable you are using in the condition is a common
mistake with a while loop. Forgetting the update is less common with a for loop because
that update is the usual purpose of the third expression in the parentheses following the
for keyword.

Otherwise, the syntax rules discussed in Chapter 7 concerning the for loop apply equally
to the while loop. For example, if more than one statement belongs to the while loop, then
the statements must be contained within curly braces. That is why in the program that
outputs the numbers between 1 and 10 using the while loop, the two statements in the
body of the while loop are contained within curly braces.
 while (num <= 10)
 {
 cout << num << " ";
 num++;
 }

In the program we just analyzed, the update of the value of num was done within the body
of the loop. The update could also be done within the condition itself:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 0;
 while (num++ < 10)
 cout << num << " ";
 return 0;
}

Updating the counter within the condition requires two changes from the previous code.
First, the value of num has to be initialized to 0 instead of to 1 because the increment
inside the parentheses during the first iteration of the loop would change that variable’s
value to 1. Second, the relational operator in the condition is < rather than <= because the
value of num is being incremented before it is outputted.

Updating the counter within the condition raises the question: Given the condition num++
< 10, which comes first, the comparison or the increment? Since the increment is postfix,
the answer is the comparison.

The counter also could be updated within the condition using a prefix increment.
However, then the condition should be ++num <= 10 to obtain the desired output.

As with the for loop, the statement or statements following the while keyword and
parentheses will not execute if the parentheses is followed by a semicolon, as that would
be interpreted as an empty statement. Test yourself on this; what would be the output if
we placed a semicolon after the while condition as in the following code fragment?
 while (num <= 10);
 cout << num++ << " ";

The only number that would output is 11. The reason is that the loop continues, and the
empty statement executes, until the condition fails when num is 11, at which time the
statement following the loop executes and the value of num (11) is outputted.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (2 of 9)06.11.2004 22:51:58

The While Loop

Comparison of for and while Loops

The practical difference between the for and while loops is not apparent in a program with
a predictable number of iterations, such as the program we have been discussing thus far
that outputs the numbers between 1 and 10. Rather, a while loop is a superior choice to a
for loop in a program where the number of iterations is unpredictable, depending on user
input during runtime.

For example, in the following program, the program asks the user to enter a positive
number, and in a loop continues that request until the user does so. The number of times
this loop may execute is unpredictable. It may never execute if the user enters a positive
number the first time, or it may execute many times if it takes the user several tries to
enter a positive number.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a positive number: ";
 cin >> num;
 while (num <= 0)
 {
 cout << "Number must be positive; please retry: ";
 cin >> num;
 }
 cout << "The number you entered is " << num << " ";
 return 0;
}

Here is some sample input and output:
Enter a positive number: 0
Number must be positive; please retry: -1
Number must be positive; please retry: 3
The number you entered is 3

This program would be more difficult to write with a for loop. While it could be done, the
for loop is designed for situations in which the number of iterations is predictable.

Using the break Keyword

Even though the while loop is a better choice than a for loop for this program, which
requires the user to enter a positive number, there are two problems with this program:
one minor and one major.

The minor problem is that there is some repetition of code; the user is requested both
before and inside the loop to enter a positive number. A do while loop, which is explained
in the following section, avoids this repetition, but repeats other code (there are tradeoffs
in loops as well as in life).

The major problem is that the user is trapped inside the loop until they enter a positive
number. That is not a good programming design. While the user should be required to
enter good data if they are going to enter any data at all, they should have the option,
when told the data entered was not valid, of quitting the data entry.

The following modification of the program uses the break keyword to provide the user with

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (3 of 9)06.11.2004 22:51:58

The While Loop

the option of quitting the data entry:
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 cout << "Enter a positive number: ";
 cin >> num;
 while (num <= 0)
 {
 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;
 if (choice == 'Y')
 {
 cout << "Enter number: ";
 cin >> num;
 }
 else
 break;
 }
 cout << "The number you entered is " << num << " ";
 return 0;
}

Here is some sample input and output when the user eventually enters a positive number:
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter number: -1
Number must be positive; try again (Y/N): Y
Enter number: 3
The number you entered is 3

Here is some sample input and output when the user does not enter a positive number
but instead decides to quit:
Enter a positive number: -2
Number must be positive; try again (Y/N): N
The number you entered is -2

Flags

The flags modification is an improvement because the user no longer is trapped inside
the loop until they enter a positive number, but instead has the option of quitting data
entry. However, the second sample input and output, in which the user quits data entry,
illustrates a problem. The final cout statement outputs the number entered, even if the
number is invalid data.

Ideally, we would only want to output the data if it were valid. If the data were not valid,
then we would want to output that fact instead. However, the code thus far does not
enable us to differentiate whether the while loop ended because the user entered valid
data or because the user decided to quit after entering invalid data.

In Chapter 7, I recommended that you use the break keyword sparingly because it
created multiple exit points for the for loop, making your code more difficult to understand

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (4 of 9)06.11.2004 22:51:58

The While Loop

and increasing the possibility of logic errors. That advice also applies to the while loop. I
recommended then, and recommend now, as an alternative the use of a logical operator.
The following program modification adopts that alternative.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 bool quit = false;
 cout << "Enter a positive number: ";
 cin >> num;
 while (num <= 0 && quit == false)
 {
 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;
 if (choice != 'Y')
 {
 cout << "Enter number: ";
 cin >> num;
 }
 else
 quit = true;
 }
 if (quit == false)
 cout << "The number you entered is " << num << " ";
 else
 cout << "You did not enter a positive number";
 return 0;
}

Here is some sample input and output when the user eventually enters a positive number:
Enter a positive number: -3
Number must be positive; try again (Y/N): Y
Enter number: 3
The number you entered is 3

Here is some sample input and output when the user does not enter a positive number
but instead decides to quit. This time the final output is not of the number entered, but
rather that the user did not enter a positive number:
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter number: -1
Number must be positive; try again (Y/N): N
You did not enter a positive number

This program modification, in addition to using the logical && operator, uses a Boolean
variable named quit. This Boolean variable is used as a flag. A flag is a Boolean variable
whose value indicates whether a condition exists.

In this program, the while loop continues to loop as long as the data entered is invalid and
the user wants to keep going. Accordingly, the while keyword is followed by two
conditions, joined by the logical && operator.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (5 of 9)06.11.2004 22:51:58

The While Loop

Note A common programming mistake in a while condition using a logical operator is
to use && when you should use || or vice versa. While the logical && operator
may seem the obvious choice in this example, the correct choice in other
situations may be less intuitive. For example, if you want to loop while a number
is not between 1 and 10, would the loop be while (num < 1 && num > 10) or
while (num < 0 || num > 10)? The answer is the latter; the condition always
would be false using the && operator since a number cannot be both less than 1
and greater than 10. If you wanted to use the && operator, the condition instead
would be while (num >= 1 && num <= 10).

The first condition is if num <= 0. If this expression is false, the data is valid, so the issue
of whether the user wants to quit does not arise. Accordingly, the second condition,
whether quit is true, is not even evaluated. As discussed in Chapter 7, with a logical &&
operator, the right expression is evaluated only if the left expression is true. Therefore, the
while loop ends with the value of quit being false, its initialized value, and code execution
continues with the if / else statement following the while loop.

However, if num <= 0 is true, then the data is invalid, and the second condition, whether
quit is true, is evaluated.

The value of quit may be true under either of two possibilities. The first possibility is that
this is the user’s first attempt to enter data and the data was invalid. In this case, the user
has not yet been asked whether they want to quit. It is assumed they don’t, so they have
the opportunity to answer whether they want to retry. Therefore, the quit variable is
initialized to the value of false when it is declared.

The second possibility is that this is the user’s second or later attempt to enter data and
the data was invalid. In this case, the user has already been asked whether they want to
quit, so the value of quit is based on the user’s answer.

If the value of quit is false, the while loop continues. However, if the user wants to quit,
then the right expression quit == false will be false because the value of quit is true.
Therefore, the while loop ends with the value of quit being true, and code execution
continues with the if / else statement following the while loop.

At some point (hopefully) the while loop will end, either because the user has entered a
valid number or has not and decided to quit trying. Code execution then continues with
the if / else statement following the while loop.

The value of quit being false necessarily indicates that the user entered valid data,
because if they were still trying to do so, the loop would not have ended. Conversely, the
value of quit being true necessarily indicates that the user entered invalid data.

Accordingly, we use the value of quit in the if /else statement after the while loop to
differentiate whether the while loop ended because the user entered valid data or instead
decided to quit after entering invalid data.

Thus, inside the while loop, quit is a flag whose value indicates whether the user wants to
try again, and after the while loop ends, quit is a flag whose value indicates whether the
user entered valid data.

While (true)

In Chapter 7, we discussed the use of the for loop with the omission of the condition that
is the second expression, such as for (; ;). There, an infinite loop was avoided by using
the break keyword inside the loop. While I did not recommend this use of the for loop, I

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (6 of 9)06.11.2004 22:51:58

The While Loop

mentioned it because you may encounter it as programmers do use the for loop this way.

Similarly, programmers sometimes make the condition of the while loop always true, such
as while (true) or while (1), and break out of the while loop with, you guessed it, the break
keyword. Here is an example that is a modification of the program we have been using
that asks the user to enter a positive number.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 bool quit = false;
 while (true)
 {
 cout << "Enter a positive number: ";
 cin >> num;
 if (num > 0)
 break;
 else
 {
 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;
 if (choice != 'Y')
 {
 quit = true;
 break;
 }
 }
 }
 if (quit == false)
 cout << "The number you entered is " << num << " ";
 else
 cout << "You did not enter a positive number";
 return 0;
}

The one advantage of this modification is that it renders unnecessary having to prompt
the user both before and inside the loop to enter a positive number. However, the use of
the while (true) syntax has the disadvantage of making your code less readable because
the condition that stops the loop cannot be discerned from the parentheses following the
while keyword. The do while loop (explained later in this chapter) avoids this
disadvantage and would be a preferable choice.

The continue Keyword

You can use the continue keyword in a while loop just as you can in a for loop. As
discussed in Chapter 7, the continue keyword, like the break keyword, is used within the
code of a loop, commonly within an if / else structure. If the continue statement is
reached, the current iteration of the loop ends, and the next iteration of the loop begins.

Chapter 7 demonstrated the use of the continue keyword in a program in which the user
is charged $3 an item, but not charged for a “baker’s dozen,” so every 13th item is free—
that is, the user is only charged the price for a dozen items, even though they receive 13.
The following is a modification of that program using a while loop.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (7 of 9)06.11.2004 22:51:58

The While Loop

#include <iostream>
using namespace std;
int main(void)
{
 int num, counter = 0, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 while (counter++ < num)
 {
 if (counter % 13 == 0)
 continue;
 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;
}

Note The % (modulus) operator is used if the remainder is 0, 13, or a multiple of 13
items.

While this use of the continue keyword certainly works, as I cautioned in Chapter 7, you
should use it (as well as the break keyword) sparingly. Normally, each iteration of a for
loop has one end point. However, when you use a continue statement, each iteration has
multiple end points. This makes your code more difficult to understand, and can result in
logic errors.

I suggested in Chapter 7, in an example using the for loop, that you could use the logical !
(Not) operator as an alternative to using the continue keyword. Here is how you could do
so using the while loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter = 0, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 bool keepgoing = true;
 while (counter++ < num)
 {
 if (! (counter % 13 == 0))
 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;
}

Note You also could use the relational != (not equal) operator, changing the if
statement to if (counter % 13 != 0).

Nesting While Loops

In Chapter 7, I showed you how you can nest one for loop inside another. Similarly, you
can nest one while loop inside another. You also can nest a while loop inside of a for
loop, or a for loop inside of a while loop.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (8 of 9)06.11.2004 22:51:58

The While Loop

Chapter 7 demonstrated nested for loops with a program that prints 5 rows of 10 X
characters. The following is a modification of that program using nested while loops.
#include <iostream>
using namespace std;
int main(void)
{
 int x = 0;
 while (x++ < 5)
 {
 int y = 0;
 while (y++ < 5)
 cout << "X";
 cout << '\n';
 }
 return 0;
}

The variable y, used as a counter in the inner while loop, needs to be reinitialized in the
outer while loop. The variable y could be declared outside the loops, but it needs to be
assigned (or reassigned) the value of zero inside the outer loop since the inner loop goes
through all of its iterations for each iteration of the outer loop.

Since each loop has a predictable number of iterations, using nested for loops is
somewhat simpler than using nested while loops. However, both work.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0053.html (9 of 9)06.11.2004 22:51:58

The Do While Loop

The Do While Loop

The do while loop is similar to the while loop. The primary difference is that with a do
while loop the condition is tested at the bottom of the loop, unlike a while loop where the
condition is tested at the top. This means that a do while loop will always execute at least
once, whereas a while loop may never execute at all if its condition is false at the outset.

Syntax

The syntax of a do while loop is
do {
 statement(s);
} while (condition);

The do keyword starts the loop. The statement or statements belonging to the loop are
enclosed in curly braces. After the close curly brace, the while keyword appears, followed
by the condition in parentheses, terminated by a semicolon.

A Do While Loop Example

The following program is a modification of the one earlier in this chapter that used a while
loop to continue to prompt the user to enter a positive number until the user either did so
or quit, and then either outputted the positive number or a message that the user did not
enter a positive number. This modification uses a do while loop instead of a while loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 bool quit = false;
 do {
 cout << "Enter a positive number: ";
 cin >> num;
 if (num <= 0)
 {
 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;
 if (choice != 'Y')
 quit = true;
 }
 } while (num <= 0 && quit == false);
 if (quit == false)
 cout << "The number you entered is " << num << " ";
 else
 cout << "You did not enter a positive number";
 return 0;
}

The following are sample inputs and outputs. The first one has the user successfully enter
a positive number the first time.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0054.html (1 of 4)06.11.2004 22:51:59

The Do While Loop

Enter a positive number: 4
The number you entered is 4

The next sample input and output has the user enter a positive number after two
unsuccessful tries.
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter a positive number: -1
Number must be positive; try again (Y/N): Y
Enter a positive number: 4
The number you entered is 4

The final sample input and output has the user quit after two unsuccessful tries.
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter a positive number: -1
Number must be positive; try again (Y/N): N
You did not enter a positive number

Comparison of the Do While and While Loop

The preceding program, which used the do while loop, did not need to prompt the user
both before and inside the loop to enter a number as did the corresponding program that
used the while loop. However, this program using the do while loop repeats the num <= 0
condition inside the loop, whereas the corresponding program that used the while loop did
not need to do that.

As a general rule, I prefer a do while loop over a while loop in those situations in which
the loop must execute at least once before a condition may be tested, simply because
under these circumstances it seems illogical to test the condition prematurely on the first
iteration of the loop. As you may recall, in the program variation that used the while loop,
the value of quit could be true in the loop condition under either of two possibilities, one
being it was the user’s first attempt to enter data so the user has not yet been asked
whether they want to quit, and the other being it was the user’s second or later attempt to
enter data and the user answered that they wanted to quit. By contrast, using the do while
loop eliminates the first possibility.

The preceding program, in which the user had to enter a number, whether that number is
positive or not, is an example of the situation in which the loop must execute at least once
before a condition may be tested. Another common example of this situation is when a
menu is displayed. Assume the program displays a menu such as the following:
Menu
====
1. Add an entry
2. Edit an entry
3. Delete an entry
4. Exit

If the user chooses options 1, 2, or 3, the program performs the indicated operation (add,
edit, or delete) and then again displays the menu for the user’s next choice. If the user
chooses option 4, the program ends.

In this menu example, the menu always displays at least once; the user cannot choose to
exit before being given that choice. Accordingly, a do while loop normally is preferable to
a while loop when choosing a loop to display a menu.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0054.html (2 of 4)06.11.2004 22:51:59

The Do While Loop

Scope

With a do while loop, it is important that a variable used in the condition following the
while keyword not be declared inside the loop.

In the program that demonstrated the do while loop, the variables num and quit were
declared before the loop:
 int num;
 char choice;
 bool quit = false;
 do {
 // statements
 } while (num <= 0 && quit == false);

These variables could not be declared inside the do while loop, as in the following code
excerpt, because the code would not compile. The parentheses following the while
keyword is highlighted, and the compiler error is that num and quit are undeclared
identifiers.
 char choice;
 do {
 int num;
 bool quit = false;
 // more statements
 } while (num <= 0 && quit == false);

The reason why this alternative will not compile concerns variable scope.

As you know from Chapter 3, a variable must be declared before it can be referred to in
code. Once a variable is declared, it may be referred to wherever in the code it has scope.

Thus far, variables have been declared in main, just after the open curly brace which
begins the body of the main function. This gives these variables scope until the close
curly brace, which ends the body of the main function. Since thus far our programs have
had only one function, main, as a practical matter, the variables, once declared, could be
referred to throughout the entire program.

In this example, however, the variables num and quit are declared after the open curly
brace that begins the body of the do while loop. That means their scope is limited to the
area between that open curly brace and the close curly brace that ends the body of the do
while loop. This area between an open and close curly brace also is referred to as a
block.

The while keyword and the parentheses that follow it are outside the body of the do while
loop, or put another way, after the close curly brace that ends the body of the do while
loop. Since the variables num and quit were declared within the body of the do while loop,
they do not have scope outside the body of the loop where the while parentheses are
located. Therefore, these variables are regarded as undeclared when referred to within
those parentheses.

This issue arises far more often with the do while loop than with the for or while loops.
With for or while loops, the condition precedes the body of the loop, so any variables used
in the condition necessarily would be declared before the loop or, in the case of the for
loop, within the parentheses following the for keyword. By contrast, since the condition of
a do while loop comes after the body of the loop, it is an easy mistake to declare the

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0054.html (3 of 4)06.11.2004 22:51:59

The Do While Loop

variables used in the condition before it, in the body of the loop.

This is our first discussion of the variable scope issue. However, it is by no means our
last. This issue is not limited to the do while loop. It arises frequently when we start
adding other functions to our programs, as we will do in upcoming chapters.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0054.html (4 of 4)06.11.2004 22:51:59

Summary

Summary

Chapter 7 introduced the first of several loops: the for loop. The for loop works well in
situations where the loop will iterate a fixed number of times.

Often, however, the number of times a loop will iterate is unpredictable since the number
of iterations depends on user input during runtime. One example discussed in this chapter
is a data entry application in which the loop, upon entry of invalid data, asks the user
whether they want to retry or quit, and if they want to retry, gives the user another
opportunity to enter data. The number of times this loop may iterate is unpredictable,
since it will keep repeating until the user either enters valid data or quits.

This chapter showed you how to use the while loop, which works better than a for loop
when the number of times a loop will execute is unpredictable. While the parentheses
following the for keyword consists of three expressions, initialization, condition, and
update, the parentheses following the while keyword consists only of the condition; you
have to take care of initialization and update elsewhere in the code.

There also are situations in which, while the number of times this loop may execute is
unpredictable, the loop will execute at least once. An example discussed in this chapter is
a loop that displays a menu with various choices, including exiting the program. In this
menu example, the menu always displays at least once; the user cannot choose to exit
before being given that choice. In such situations, a do while loop is a better choice than a
while loop. This chapter showed you how to use a do while loop, and introduced the issue
of variable scope.

So far, all of our programs have had only one function, main. While all programs must
have a main function, a C++ program may have additional functions. As programs get
more sophisticated, it is helpful not to put all the code in main, but instead to allocate the
code among different functions. The next chapter will show you how to add and use
additional functions.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0055.html06.11.2004 22:52:00

Quiz

Quiz
1. Which of the three loops—for, while, or do while—executes at least once?

2. Which of the three loops—for, while, or do while—is the best choice when the
number of iterations is predictable?

3. Is the parenthetical expression following the while keyword for initialization,
condition or update?

4. May the parenthetical expression following the while keyword be true, such as
while (true)?

5. Can the parenthetical expression following the while keyword combine two
expressions?

6. What is the purpose of the break keyword in a while loop?

7. What is the purpose of the continue keyword in a while loop?

8. What is a flag?

9. If you were going to use nested while loops to print rows and columns, which for
loop would print the rows, inner or outer?

10. Does a variable declared inside the body of a do while loop have scope in the
parenthetical expression following the while keyword?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0056.html06.11.2004 22:52:00

Chapter 9: Functions

Chapter 9: Functions

Overview

A function is a group of statements that together perform a task. So far, our programs
have had one function, main. Additionally, at times we have used functions defined in a
standard library, such as the pow function in the cmath library, used to raise a number to
a certain power.

No program needs more than a main function. However, as you write more complex and
sophisticated programs, you may find your main function becoming extremely long.

Neither the compiler nor the runtime cares if your main function is short or long. However,
you should care. A main function that continues for pages is difficult to understand or fix if
errors arise.

By analogy, this book is several hundred pages long. It would be harder to understand if
each chapter was not divided into sections. This book would be still harder to understand
if it consisted of only one, very long chapter. By dividing this book’s content into chapters,
and each chapter into sections, this book is easier to understand.

Similarly, you can divide up your code into separate functions. How you divide up your
code among different functions is up to you, but logically the division usually is so each
function performs a specific task.

For example, in a program that performs arithmetic calculations, one function obtains user
input, another function performs the calculation, and a third function performs output of
the result. This is analogous to how a book is divided up into chapters and sections. Each
chapter explores a different subject. One chapter focuses on variables, another (this one)
on functions.

There are advantages to dividing your code into separate functions in addition to making
your code easier to understand. For example, if a function performs a specific task, such
as sending output to a printer, which is performed several times in a program, you only
need to write once in a function the code necessary to send output to the printer, and then
call that function each time you need to perform that task. Otherwise, the code necessary
to send output to the printer would have to be repeated each time that task was to be
performed.

Hopefully, I have persuaded you that organizing your code into separate functions can be
useful. I will now show you how to do it.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0057.html06.11.2004 22:52:01

Defining and Calling a Function

Defining and Calling a Function

Implementing any function in addition to main involves two steps:

1. Defining the function

2. Calling the function

The explanation of these steps uses terminology we have not discussed before, so that
terminology is reviewed first.

Terminology of a Function

Let’s look at a simple program with one function, main:
#include <iostream>
using namespace std;
int main ()
{
 cout << "Hello world!";
 return 0;
}

The first line, int main (), is the function header. Unlike a statement, the function header is
not followed by a semicolon.

The function header consists of a return type, a function name, and an argument list. The
data type int preceding main is the return type, main is the function name, and the
parentheses, empty in this example but not always, contains the argument list.

A function header always is followed by an open curly brace, which begins the function
body. The function body ends with a close curly brace. There may be other open and
curly braces between the open curly brace that begins the function body and the close
curly brace that ends it, such as to enclose multiple statements that belong to an if
statement or a loop.

The function body consists of one or more statements. In this example, the function body
consists of two statements. The last statement, return 0, is a return statement. The
function body must contain a return statement unless the return type is void, in which
case the return statement is optional.

The function header and body together are referred to as the function definition. A
function cannot execute until it is first defined. Once defined, a function executes when it
is called.

Normally, a function is called through code. The main function is the exception. The main
function is called automatically when your program begins to run.

The next sections will explain how to define your own function and then call it.

Defining a Function

Let’s take our “Hello World” example and divide the code into two functions, main and a
printMessage function that outputs “Hello world!” The comments (beginning with //)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0058.html (1 of 4)06.11.2004 22:52:02

Defining and Calling a Function

indicate the beginning and end of the definition of the printMessage function and where
that function is called.
#include <iostream>
using namespace std;

// begins definition of printMessage function
void printMessage (void)
{
 cout << "Hello world!";
}
// ends definition of printMessage function
int main ()
{
 printMessage(); // calls printMessage function
 return 0;
}

The printMessage function is defined first. The void keyword preceding the function name
printMessage means that this function does not return a value. The void keyword in
parentheses following the function name means this function has no arguments. The
parentheses also could be left empty, such as after main; empty parentheses following
the function name in a function header is the same as placing the void keyword within the
parentheses. Which syntax you choose is a matter of taste; one is no better or worse than
the other.

The body of the printMessage function has one statement, which outputs “Hello world!”
The function body does not need to contain an explicit return statement because, since
the return type is void, the return statement is implied. However, you may include an
explicit return statement. If you did, then the printMessage function would read
void printMessage (void)
{
 cout << "Hello world!";
 return;
}

Calling a Function

Unless the printMessage function is called, it is the programming equivalent of the tree
that falls in the forest without anyone seeing or hearing it; it is there in the program, but it
doesn’t do anything. The printMessage function is called in main with the line:
 printMessage();

In this example, printMessage is the called function, since it is the function being called
from main. The empty parentheses indicate that no arguments are being passed to this
function. I will show you later in this chapter how to pass arguments, as well as how to
use return values.

The order of execution is as follows:

1. Execution always starts with the main function.

2. The first statement in main, printMessage(), is executed.

3. Execution next shifts to the printMessage function, and begins with the first
statement in that function, which outputs “Hello world!”

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0058.html (2 of 4)06.11.2004 22:52:02

Defining and Calling a Function

4. After the printMessage function completes executing, execution returns to the main
function with the next unexecuted statement, return 0, which completes the main
function.

Figure 9-1 shows the order of execution graphically.

Figure 9-1: Order of execution of the Hello World Program

Prototyping

Since execution always starts with main, it seems more logical to place the main function
first, ahead of the printMessage function, such as in the following example:
#include <iostream>
using namespace std;

int main ()
{
 printMessage();
 return 0;
}
void printMessage (void)
{
 cout << "Hello world!";
}

However, this code will not compile. The call in main to printMessage() will be highlighted,
with the compiler error message being “undeclared identifier.”

The reason for this compiler error is that when the compiler, going from top to bottom in
your code, encounters a function call, it must already know of the function’s name, return
type, and arguments. This was not a problem when the printMessage function was
defined above the main function. However, when the printMessage function was defined
below the main function, when the compiler encounters the call in main to printMessage(),
it does not yet know of the printMessage function’s name, return type, and arguments.

One solution to this problem is to define all functions above main. However, this may
make your code difficult to read. A program’s execution always starts with main,
regardless of the order in which functions are defined. In a program with many functions,
the main function often acts as a “switchboard,” calling one function after another.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0058.html (3 of 4)06.11.2004 22:52:02

Defining and Calling a Function

Therefore, viewing the main function can provide an excellent overview of the order of
events. Burying the main function beneath numerous other functions requires someone
reviewing your code to hunt for main to obtain that overview. Additionally, in complex
programs in which one function calls another function which calls still another function,
the order in which to define these functions to avoid a compiler error can be confusing.

The solution of preference is to prototype each function, except main, which does not
have to be prototyped since it is required by every program. The following program shows
how to prototype the printMessage function in the Hello World program:
#include <iostream>
using namespace std;
void printMessage(void); // this is the prototype!

int main ()
{
 printMessage();
 return 0;
}
void printMessage (void)
{
 cout << "Hello world!";
}

The prototype is above all function definitions. This ensures that the compiler, compiling
the code from top to bottom, will encounter the prototype before any function.

The prototype is similar to a function header. The primary difference is that it has a
semicolon at the end because it is a statement. By contrast, a function header must not
be followed by a semicolon.

Note There are other differences between the prototype and the function header
when, unlike here, the parentheses following the function name includes one or
more arguments. Those differences will be discussed in the section “Sending
Information to a Function” later in this chapter.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0058.html (4 of 4)06.11.2004 22:52:02

Variable Scope and Lifetime

Variable Scope and Lifetime

Thus far, all variables have been defined at the top of the main function. In programs
where the only function is main, those variables can be accessed throughout the entire
program since main is the entire program. However, once we start dividing up the code
into separate functions, issues arise concerning variable scope and lifetime.

The issue of variable scope was introduced in Chapter 8 in connection with the do while
loop. The issue of variable lifetime is new.

Local Variables

You can call the same function multiple times. The following program attempts to call the
printMessage function in a loop until the user decides to stop, and each time outputs the
number of times the printMessage function has been called. The goal is that the first time
the printMessage function is called, the output will be “This function called 1
times” (pardon the bad grammar), the second time the printMessage function is called,
the output will be “This function called 2 times” and so on.
#include <iostream>
using namespace std;
void printMessage(void);

int main ()
{
 int times = 0;
 char choice;
 do {
 cout << "Enter Q to quit, any other character to continue:
";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();
 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{
 times++;
 cout << "This function called " << times << " times\n";
}

This code will not compile. The reference to the string variable times in the printMessage
function will be highlighted, the error message being that this variable is an “undeclared
identifier.”

The reason for the compiler error is that the scope of the variable times is limited to the
main function in which it was declared. The issue of variable scope was discussed in
Chapter 8 in connection with the do while loop. You cannot refer to a variable outside the
scope in which it was declared. A variable’s scope is within the curly braces in which it
was declared. Therefore, the scope of the variable times is limited to the main function.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0059.html (1 of 5)06.11.2004 22:52:03

Variable Scope and Lifetime

Stated another way, the variable times is a local variable, in this case local to the main
function. An attempt to access a local variable outside of the function in which it was
declared results in a compiler error.

This compiler error can be fixed by moving the declaration of times into the printMessage
function as in the following program:
#include <iostream>
using namespace std;
void printMessage(void);

int main ()
{
 char choice;
 do {
 cout << "Enter Q to quit, any other character to continue:
";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();
 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{
 int times = 0;
 times++;
 cout << "This function called " << times << " times\n";
}

Here is some sample input and output:
Enter Q to quit, any other character to continue: X
This function called 1 times
Enter Q to quit, any other character to continue: Y
This function called 1 times
Enter Q to quit, any other character to continue: Z
This function called 1 times
Enter Q to quit, any other character to continue: Q
Input stopped

While this program compiles, the output is not exactly what we wanted. The variable
times in the printMessage function does not “remember” the previous times that function
was called.

Variables, like people, have a lifetime. A person’s lifetime begins at birth. A variable’s
lifetime begins when it is declared. A person’s lifetime ends with death. A variable’s
lifetime ends when it goes out of scope.

The variable times is local to the printMessage function since it was declared in that
function. Being a local variable, each time the printMessage function is called, the
variable times is created, and each time the printMessage function ends, the variable
times is destroyed. Accordingly, the variable times the second time the printMessage
function is called is not a continuation of the variable times that was created the first time
the printMessage function was called. Rather, the variable times starts all over again each

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0059.html (2 of 5)06.11.2004 22:52:03

Variable Scope and Lifetime

time the printMessage function is called.

There are two alternative methods to having the value of a variable persist between
function calls. One is to make the variable global rather than local. The other is to keep
the variable local but make it static. These alternatives are covered next.

Global Variables

A variable may be global instead of local. The term global means that the variable has
scope throughout the program. Since the variable has scope throughout the program, its
lifetime does not end until the program ends.

To make a variable global, it must be declared above all function definitions, generally
with function prototypes. The following program makes only one change from the
previous one. The declaration of the variable times is moved from inside main to above
main, making times a global variable.
#include <iostream>
using namespace std;
void printMessage(void);
int times;

int main ()
{
 times = 0;
 char choice;
 do {
 cout << "Enter Q to quit, any other character to continue:
";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();
 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{
 times++;
 cout << "This function called " << times << " times\n";
}

Here is some sample input and output:
Enter Q to quit, any other character to continue: X
This function called 1 times
Enter Q to quit, any other character to continue: Y
This function called 2 times
Enter Q to quit, any other character to continue: Z
This function called 3 times
Enter Q to quit, any other character to continue: Q
Input stopped

This is the output we wanted!

Perhaps because of the ease of using global variables to solve the issue of the scope and

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0059.html (3 of 5)06.11.2004 22:52:03

Variable Scope and Lifetime

lifetime of the times variable, beginning programmers often make all variables global so
they can access these variables anywhere and anytime in their program. This is not a
good idea.

While the good news is that a global variable can be accessed throughout your program,
this also is the bad news. The fact that a global variable can be accessed and changed
anywhere in your program makes it more difficult to determine why, for example, a global
variable has an invalid value than if the variable’s scope was far more limited. This is
simply because the more limited a variable’s scope, the less places there are in the code
that might affect its value.

Therefore, global variables can make it more difficult to fix problems with your programs.
For this reason, some programmers, and programming teachers, go to the extreme and
pronounce that “all global variables are evil.” I’m not sure I would go that far, but I would
recommend that you not use global variables unless you have a very good reason to do
so, since there usually are better alternatives. One alternative, a static local variable, is
examined next.

Static Local Variables

Up until now a variable’s lifetime was dictated by its scope. Since a local variable’s scope
was limited to the function in which it was declared, the local variable’s lifetime ended
when that function ended. Since a global variable had scope throughout a program, the
global variable’s lifetime did not end until the entire program ended.

A static local variable is different. A static local variable has the scope of a local variable
but the lifetime of a global variable. This may seem counter-intuitive, so to illustrate let’s
modify the printMessage function we have been working with.

A static local variable is declared exactly like a local variable, within a function rather than
above all functions as with a global variable. The difference between the declaration of a
static local variable and a nonstatic, or automatic, local variable is that a static local
variable is declared with the static keyword, and usually also with a starting value. Thus,
in the following program, instead of the declaration
 int times;

the declaration is
 static int times = 0;

Here is the program in its entirety:
#include <iostream>
using namespace std;
void printMessage(void);

int main ()
{
 char choice;
 do {
 cout << "Enter Q to quit, any other character to continue:
";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0059.html (4 of 5)06.11.2004 22:52:03

Variable Scope and Lifetime

 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{
 static int times = 0;
 times++;
 cout << "This function called " << times << " times\n";
}

Here is some sample input and output:
Enter Q to quit, any other character to continue: X
This function called 1 times
Enter Q to quit, any other character to continue: Y
This function called 2 times
Enter Q to quit, any other character to continue: Z
This function called 3 times
Enter Q to quit, any other character to continue: Q
Input stopped

This output also is correct. Let’s now analyze how the program works.

The first time the printMessage function is called, the variable times is declared, and
initialized to zero, by the statement:
 static int times = 0;

The variable times then is incremented and outputted, resulting in the output:
This function called 1 times

So far, this is the same as when times was an automatic local variable rather than a static
local variable. The difference is that when the printMessage function ends, times, being a
static local variable, is not destroyed. That variable and its value remain in memory.

The next (second) time the printMessage function is called, the statement declaring and
initializing variable times is not executed because that variable, being static, still exists
from the first time the printMessage function was called. Further, the value of the times
variable at the end of the first call of the printMessage function, 1, remains in memory.
That value then is incremented to 2, and outputted, so the output to the second call of the
printMessage function is
This function called 2 times

Accordingly, we were able to persist the value of the times variable between function calls
by making that variable either global or static local. The difference was that as a static
local variable the scope of times still was limited to the printMessage function, as opposed
to having scope throughout the program if it were a global variable. This more limited
scope would make it easier to fix your program if the value of the times variable were
incorrect somewhere in your code.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0059.html (5 of 5)06.11.2004 22:52:03

Sending Information to a Function

Sending Information to a Function

The printMessage function in the Hello World program outputs “Hello world!” It does not
need any further information to do its job.

Let’s make the printMessage function more useful so that it does not always output “Hello
world” but instead outputs whatever message we ask it to. Of course, the printMessage
function is not a mind reader; we need to tell it the message we want it to output.

Let’s try to write a program in which the user enters in main the string to be outputted, that
user input is stored in a string variable str, and then the printMessage function attempts to
output the value of that str variable. One approach is to make the variable str global so it
can be accessed in both the main and printMessage functions:
#include <iostream>
#include <string>
using namespace std;
void printMessage();
string str;

int main ()
{
 cout << "Enter a string: ";
 cin >> str;
 printMessage();
 return 0;
}
void printMessage ()
{
 cout << "You inputted " << str;
}

Note With a string variable, a statement cin >> str does not compile unless you
include the <string> standard library. Additionally, the cin object and the stream
insertion operator (>>) will only accept the input of a string variable up to the first
embedded white space. Therefore, if the input were “Jeff Kent,” the output still
would be only “Jeff.” In Chapter 10, we will cover the getline function, which will
work with string input that has embedded spaces.

Here is some sample input and output:
Enter a string: Jeff
You inputted Jeff

While this works, as discussed in the previous section, global variables can make it more
difficult to fix problems with your programs. There is a better alternative here, involving
passing arguments.

As discussed earlier in this chapter, the parentheses following the function name in the
function header contain the function’s arguments. Arguments are information that is
provided to a function so that it may perform its task.

As also discussed earlier, some functions don’t need further information to do their job,
such as the printMessage function in the Hello World program, which simply outputs
“Hello world!” It does not need any further information to do its job.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (1 of 8)06.11.2004 22:52:05

Sending Information to a Function

However, when we want to modify the printMessage function so that it does not always
output “Hello world!” but instead outputs whatever message we ask it to, we need to tell it
the message we want it to output. We can do so by passing the function an argument that
specifies the message.

This chapter will discuss two ways of passing arguments, by value and by reference. A
third way, passing arguments by address, will be covered after we discuss pointers in
Chapter 11.

Passing Arguments by Value

The following is a modification of the program that uses the printMessage function to
output a message. This time, the content of the message to be output is passed to the
printMessage function as an argument:
#include <iostream>
#include <string>
using namespace std;
void printMessage(string);

int main ()
{
 string str;
 cout << "Enter a string: ";
 cin >> str;
 printMessage(str);
 return 0;
}
void printMessage (string s)
{
 cout << "You inputted " << s;
}

Here is some sample input and output:
Enter a string: Jeff
You inputted Jeff

The Function Prototype and Header

Both the function prototype and the function header have one argument, of the string data
type. However, the function prototype’s argument just has the argument’s data type
(string), whereas the function header’s argument has both a data type and an argument
name (string s).

The function prototype may include an argument name as well as data type, as in:
void printMessage(string someArg);

However, that argument is called a dummy argument because it serves no purpose.

By contrast, the function header’s argument must include an argument name as well as a
data type. The purpose of that argument name in the function header’s argument is
explained next.

Using the Function Argument

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (2 of 8)06.11.2004 22:52:05

Sending Information to a Function

The following code calls the printMessage function:
 printMessage(str);

The string variable str, whose value previously was assigned by user input, is passed as
an argument to the printMessage function. The value of str then is passed to the string
variable s, which is the argument name in the function header of the printMessage
function:
void printMessage (string s)

The string variable s then is used in the body of the printMessage function to output the
message:
 cout << "You inputted " << s;

Figure 9-2 shows how the value of the argument of the function call is passed to the
argument in the function header and then used in the body of the called function.

Figure 9-2: The passing of the function argument

The function header must include an argument name as well as a data type so the value
which is being passed by the function call, stored in str in main, may be stored in a
variable that can be used in the printMessage function. Otherwise, the value passed
would have no place to be stored for use in the printMessage function.

The argument name in the function header can be the same as the name of the variable
passed in the function argument:
printMessage(str);
void printMessage (string str)

Even if so, the str in main is a separate variable from the str in printMessage.
Nevertheless, I recommend, to avoid confusion, using different names in the program.

Using Multiple Function Arguments

The program we just discussed used one function argument. However, a function may
have two or even more function arguments.

The following modification of the printMessage function uses two arguments, one for the
first name and one for the last name:
#include <iostream>
#include <string>
using namespace std;
void printMessage(string, string);

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (3 of 8)06.11.2004 22:52:05

Sending Information to a Function

int main ()
{
 string name1, name2;
 cout << "Enter first name: ";
 cin >> name1;
 cout << "Enter last name: ";
 cin >> name2;
 printMessage(name1, name2);
 return 0;
}
void printMessage (string firstName, string lastName)
{
 cout << "Your name is " << firstName << " " << lastName <<
endl;
}

Here is some sample input and output:
Enter first name: Jeff
Enter last name: Kent
Your name is Jeff Kent

The order of arguments in the function call must correspond to the order of the arguments
in the function header. The function call and the function header here are
printMessage(first, last);
void printMessage (string firstName, string lastName)

The first variable in the function call is name1. Therefore, the value of name1 in main is
copied into the first variable in the printMessage function header, firstName. Similarly,
since the second variable in the function call is name2, the value of name2 in main is
copied into the second variable in the printMessage function header, lastName.

If the arguments in the function call were reversed, as in:
printMessage(last, first);

then the sample input and output instead would be
Enter first name: Jeff
Enter last name: Kent
Your name is Kent Jeff

In this example, not paying careful attention to the correspondence between the order of
arguments in the function call and the order of the arguments in the function header
resulted in my name being outputted backwards. However, the consequences of a lack of
correspondence between the order of arguments in the function call and the order of the
arguments in the function header is more drastic when the multiple function arguments
have different data types.

In the following program, the first argument, the person’s name, is a string, whereas the
second argument, the person’s age, is a different data type, an integer.
#include <iostream>
#include <string>
using namespace std;
void printMessage(string, int);

int main ()

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (4 of 8)06.11.2004 22:52:05

Sending Information to a Function

{
 string name;
 int age;
 cout << "Enter name: ";
 cin >> name;
 cout << "Enter age: ";
 cin >> age;
 printMessage(name, age);
 return 0;
}
void printMessage (string theName, int theAge)
{
 cout << "Your name is " << theName
 << " and your age is " << theAge << endl;
}

Here is some sample input and output (fortunately the program has no way to verify my
age):
Enter first name: Jeff Kent
Enter age: 21
Your name is Jeff Kent and your age is 21

The function call and the function header here are
printMessage(name, age);
void printMessage (string theName, int theName)

The first argument of the printMessage function expects a string, so it is critical that the
first argument in the function call is a string. Similarly, the second argument of the
printMessage function expects an integer, so it is critical that the second argument in the
function call is an integer. If the arguments in the function call were reversed, as in:
printMessage(age, name);

then the consequence would not be illogical output as in the prior example, but instead a
compiler error “cannot convert parameter 1 from ‘int’ to ‘string’.” This is because the
compiler was expecting from the function prototype that the first argument (or parameter)
would be a string, not an int.

Passing Arguments by Reference

Passing arguments by value is fine when you don’t want to change their value in the
called function. The printMessage function did not change the value of its arguments; it
simply outputted them.

However, sometimes the intent of a function is to change the value of the argument
passed to it. Consider the following example, in which the doubleIt function is supposed to
double the value of the argument passed to it:
#include <iostream>
using namespace std;
void doubleIt(int);

int main ()
{
 int num;
 cout << "Enter number: ";

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (5 of 8)06.11.2004 22:52:05

Sending Information to a Function

 cin >> num;
 doubleIt(num);
 cout << "The number doubled in main is " << num << endl;
 return 0;
}
void doubleIt (int x)
{
 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is "
 << x << endl;
}

Here is some sample input and output:
Enter number: 3
The number to be doubled is 3
The number doubled in doubleIt is 6
The number doubled in main is 3

As the sample input and output reflects, the value of num was not changed by the
doubling of its counterpart argument in the doubleIt function.

The reason the value of num was not changed in main is that a copy of it was passed to
doubleIt. The change was made to the copy, but the original, the variable num in main,
was not affected by the doubling of the copy. The logic is the same as if I gave you a copy
of this page, which you then proceeded to rip up. The original I kept would be unaffected.

In order for the called function to change the value in main of a variable passed to it, the
variable must be passed by reference. The variable in the called function is called a
reference variable. The reference variable is not a copy of the variable in main. Instead,
the reference variable is an alias for the variable in main. You may recall from television
that an alias is another name a person may use, such as James Bond’s alias of 007.
However, whether you refer to him as James Bond or 007, you are still referring to the
same person.

In order to pass a variable by reference, the data type in the argument, both in the
function header and in the prototype, is followed by an ampersand. Yes, this is the same
ampersand that is used as the address operator. Here, however, the ampersand is used
in a different context.

The following program passes the variable to be doubled by reference:
#include <iostream>
using namespace std;
void doubleIt(int&);

int main ()
{
 int num;
 cout << "Enter number: ";
 cin >> num;
 doubleIt(num);
 cout << "The number doubled in main is " << num << endl;
 return 0;
}
void doubleIt (int& x)
{

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (6 of 8)06.11.2004 22:52:05

Sending Information to a Function

 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is " << x << endl;
}

Here is some sample input and output:
Enter number: 3
The number to be doubled is 3
The number doubled in doubleIt is 6
The number doubled in main is 6

There were only two changes. The prototype and function header for doubleIt when the
argument is passed by value is
void doubleIt(int);
void doubleIt (int x)

By contrast, the prototype and function header for doubleIt when the argument is passed
by reference each includes the ampersand following the data types:
void doubleIt(int&);
void doubleIt (int& x)

However, the function call is the same whether the variable is passed by value or by
reference; there is no ampersand in either case. Whether the program passes an
argument in a function call by value or by reference is dictated by the function’s prototype.

You can pass multiple values by reference as well as by value. Indeed, you can pass
some values by reference and others by value. You pass by reference those values you
need to change, and you pass by value those values you are not changing.

Note There is another difference between passing by value and passing by reference.
You can pass by value expressions and constants (constants are covered in
Chapter 10) as well as variables. However, you can only pass variables by
reference.

For example, in the following program the function addNumbers has three arguments.
The first two arguments are the numbers to be added, and are passed by value. The third
argument will be the sum of the two numbers and will be passed by reference, since its
value is being changed in the called function:
#include <iostream>
using namespace std;
void addNumbers(int, int, int&);

int main ()
{
 int firstNum, secondNum, sum = 0;
 cout << "Enter first number: ";
 cin >> firstNum;
 cout << "Enter second number: ";
 cin >> secondNum;
 addNumbers (firstNum, secondNum, sum);
 cout << firstNum << " + " << secondNum << " = " << sum;
 return 0;
}
void addNumbers (int x, int y, int& z)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (7 of 8)06.11.2004 22:52:05

Sending Information to a Function

{
 z = x + y;
}

Here is some sample input and output:
Enter first number: 3
Enter first number: 6
3 + 6 = 9

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0060.html (8 of 8)06.11.2004 22:52:05

Returning a Value from a Function

Returning a Value from a Function

Arguments are used to pass values to a called function. A return value can be used to
pass a value from a called function back to the function that called it.

For example, in the previous program the function addNumbers had three arguments, the
first two being the numbers to be added, the third being their sum. The following program
modifies the previous one by eliminating the third argument, but adding a return value to
the function:
#include <iostream>
using namespace std;
int addNumbers(int, int);

int main ()
{
 int firstNum, secondNum, sum = 0;
 cout << "Enter first number: ";
 cin >> firstNum;
 cout << "Enter second number: ";
 cin >> secondNum;
 sum = addNumbers (firstNum, secondNum);
 cout << firstNum << " + " << secondNum << " = " << sum;
 return 0;
}
int addNumbers (int x, int y)
{
 return x + y;
}

The sample input and output may be the same as in the previous program:
Enter first number: 3
Enter first number: 6
3 + 6 = 9

The return value is added by indicating its data type, here an int, in front of the function
name in both the function prototype and header:
int addNumbers(int, int);
int addNumbers (int x, int y)

The function call is on the right side of the assignment operator. To the left of the
assignment operator is a variable of the same data type as the return value of the
function. The concept is that the return value from the function call is assigned to the
variable sum on the left side of the assignment operator.
 sum = addNumbers (firstNum, secondNum);

The body of the called function has the return keyword followed by a value of the data
type compatible with the function prototype and header, here int. The function’s return
value is the value that follows the return keyword, here the sum of the two arguments:
 return x + y;

That sum of x + y then is assigned to the variable sum in main.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0061.html (1 of 2)06.11.2004 22:52:06

Returning a Value from a Function

Figure 9-3 shows the order of execution graphically.

Figure 9-3: The order of execution of the return value of a function

It is common that a function returning a value is called on the right side of an assignment
operator with a variable on the left side of the assignment operator to capture the return
value. However, this is not required. In the program, the variable sum was not necessary.
Instead of the lines
 sum = addNumbers (firstNum, secondNum);
 cout << firstNum << " + " << secondNum << " = " << sum;

the return value could have been displayed as:
 cout << firstNum << " + " << secondNum << " = "
 << addNumbers (firstNum, secondNum);

The only difference is that once this cout statement completes, the return value of the
function cannot be used in later statements since it was not stored in a variable. In this
program, that is not a problem because the return value is not used again. However, if
you are going to use a return value more than once, it’s generally a good idea to store
that return value in a variable. This is typically done by calling the function on the right
side of an assignment operator with a variable on the left side of the assignment operator
to capture the return value.

While multiple values can be passed to a function as arguments, at this point, multiple
values cannot be returned from functions using the data types we have covered so far.
This will change when we cover arrays in the next chapter, and structures and classes in
later chapters.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0061.html (2 of 2)06.11.2004 22:52:06

Summary

Summary

A function is a group of statements that together perform a task. While no program needs
more than a main function, as you write more complex and sophisticated programs, your
code will be easier to write, understand, and fix if you divide the code up among different
functions, each function performing a specific task.

You implement a function in addition to main by first defining it and then calling it. A
function definition consists of a function header and a function body. The function header
consists of a return type, a function name, and an argument list. The function header
always is followed by an open curly brace, which begins the function body. The function
body ends with a close curly brace and contains one or more statements, generally
ending with a return statement. Additionally, unless the function is defined above where it
is called, it must be prototyped.

In programs where the only function is main, all variables defined at the top of that
function necessarily can be accessed throughout the entire program. However, once we
start dividing up the code into separate functions, issues arise concerning variable scope
and lifetime. A variable’s scope determines where it can be referred to in the code. A
variable’s lifetime determines when it is destroyed. A local variable’s scope and lifetime is
limited to the function in which it was declared. By contrast, a global variable’s scope and
lifetime are throughout the entire program. Finally, a static local variable’s scope is limited
to the function in which it was declared like a local variable, but its lifetime lasts
throughout the entire program like a global variable.

You can pass information to a function by using arguments, and pass arguments by value
or by reference. You can also pass a variable argument by value when you don’t intend
any change to that variable in the called function to affect that variable’s value in the
calling function. Conversely, you pass a variable argument by reference when you intend
a change to that variable in the called function to affect that variable’s value in the calling
function. The order and data type of the arguments in the function prototype must
correspond to the order and data type of the arguments in the function header. Similarly,
the order and data type of the arguments in the function call must correspond to the order
and data type of the arguments in the function header.

While arguments are used to pass values to a called function, a return value can be used
to pass a value from a called function back to the function that called it. However, while
multiple values can be passed to a function as arguments, multiple values cannot be
returned from functions.

So far, the variables we’ve used have only been able to hold one value at a time. In the
next chapter, we’ll discuss a type of variable that can hold multiple values simultaneously.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0062.html06.11.2004 22:52:06

Quiz

Quiz
1. What is the difference between variable scope and lifetime?

2. Must a function other than main be prototyped?

3. Is a function required to have at least one argument?

4. Can a function have more than one argument?

5. What is the effect on a variable in main if it is passed by value to another function
which changes the argument corresponding to that variable?

6. What is the effect on a variable in main if it is passed by reference to another
function which changes the argument corresponding to that variable?

7. Must a function have a return value?

8. Can a function have more than one return value?

9. May a function have neither a return value nor any arguments?

10. May a function have both a return value and arguments?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0063.html06.11.2004 22:52:07

Chapter 10: Arrays

Chapter 10: Arrays

Overview

The variables we have worked with so far can hold only one value at a time. For example,
if you declare an integer variable named testScore to represent a student’s test score,
that variable can hold only one test score.

The fact that the variable testScore can hold only one test score is not a problem so long
as that student only takes one test. However, if the same student takes another test, or
another student takes the same test, where do you store the second test score? If you
store the second score in testScore, then you lose the ability to retrieve the first score
from the variable testScore, since that variable can hold only one test score at a time.

Therefore, if you wanted to keep track of, for example, 100 test scores, your code might
look like this:
 int testScore1;
 int testScore2;
 int testScore3;
 int testScore4;
 int testScore5;
 int testScore6;
 int testScore7;
 int testScore8;
 int testScore9;
 int testScore10;
 // declare testScore11 through testScore99
 int testScore100;

Yikes! That’s a lot of code to write. Wouldn’t it be easier just to declare 1 variable that can
hold 100 values, like this:
 int testScore[100];

The good news is you can do exactly that, using an array! An array enables you to use a
single variable to store many values. The values are stored at consecutive indexes,
starting with zero and then incrementing by one for each additional element of the array.

Using 1 array variable to store 100 values has many advantages over having to declare
100 separate variables that can hold only 1 value each. In addition to being a lot less
code to write, it is far easier to keep track of 1 variable than 100. Furthermore, and more
important, as I will show you in this chapter, you can use a loop to access each
consecutive element in an array, whereas this is not possible with three separate
variables.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0064.html06.11.2004 22:52:08

Declaring an Array

Declaring an Array

An array is a variable. Therefore, like the other variables we have covered so far, an array
must be declared before it can be used.

The syntax for declaring an array is almost identical to the syntax for declaring integers,
characters, or other variables. For example, you would declare an integer variable
testScore as follows:
 int testScore;

By contrast, you would declare an array of three test scores this way:
 int testScore[3];

This declaration contains an array of integers. You instead could declare an array of
floats, characters, or strings in the following manner:
 float GPA [5];
 char grades[7];
 string names[6];

While an array may be one of several data types, all the values in a particular array must
be of the same data type. You cannot have an array in which some elements are floats,
others are strings, still others are integers, and so on.

The declaration of both a single variable and an array of variables begins with the data
type followed by a variable name and ending with a semicolon. The only difference
between declaring a variable that holds a single value and an array is that, when
declaring an array, the variable name is followed by a number within square brackets.
That number is the array’s size declarator.

Note There is one exception to the necessity of having a size declarator. As
discussed later in this chapter in the section on “Initialization,” the square
brackets may be empty if you initialize the array when you declare it.

The purpose of the size declarator is to tell the computer how much memory to reserve.
The size declarator, combined with the data type of the array, determines how much
memory to reserve.

As you may recall from Chapter 3, the declaration of a variable reserves memory for the
number of bytes required by the data type of that variable, that number of bytes
depending on the particular operating system and compiler. For example, if an integer
variable required 4 bytes on your operating system and compiler, then declaring the
integer variable testScore would reserve 4 bytes. If instead you declared an array of three
integer variables, then the amount of memory reserved by that declaration would be 12
bytes, 4×3.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0065.html (1 of 5)06.11.2004 22:52:09

Declaring an Array

Tip You should give careful consideration to the number of elements in an array
before you declare the array since you can’t resize an array in the middle of a
program in the event the array is too small or unnecessarily large. Sometimes, the
number of elements is obvious; an array of the days in a week will have seven
elements. However, other times the number of elements is not intuitive. In those
circumstances, you should err on the side of declaring too many rather than too
few elements. The reason is that the consequence of declaring too many
elements, wasted memory, is less severe than the consequence of declaring too
few elements, the inability to store values in the array.

Constants

Each of the size declarators used in the previous section was a literal. A literal is a value
that is written exactly as it is meant to be interpreted. For example, the number 3 is a
literal. Its value cannot be anything other than 3. You can’t change the number 3 to have
some different value. Accordingly, the number 3 may be used in the following program as
the size declarator:
#include <iostream>
using namespace std;
int main ()
{
 int testScore[3];
 return 0;
}

The size declarator may not be a variable. The following program attempts,
unsuccessfully, to use a variable numTests in declaring the size of an array:
#include <iostream>
using namespace std;
int main ()
{
 int numTests;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int testScore[numTests];
 return 0;
}

The result is a compiler error. The compiler will flag the declaration of the array (int
testScore[numTests]) and complain that a constant expression was expected.

Note It is possible to declare the size of an array with a variable if you use a different
array declaration technique, dynamic memory allocation, which is covered in
Chapter 11.

The term constant is new. A constant is a name that represents the same value
throughout a program. That value may be any one you specify. This is different than
mathematical constants such as PI, which correspond to a given value.

A constant is the converse of a variable, while a variable is a name that may represent
different values during the execution of a program. However, the value of a constant
cannot change during the execution of a program.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0065.html (2 of 5)06.11.2004 22:52:09

Declaring an Array

Note While neither a literal nor a constant changes its value during the execution of a
program, they are not the same. While a constant is a name that represents a
value, a literal is not a name, but instead the value itself.

You may use a constant instead of a literal as a size declarator. The size declarator in the
following program uses a constant for the value 3 rather than the literal 3.
#include <iostream>
using namespace std;
int main ()
{
 const int numTests = 3;
 int testScore[numTests];
 return 0;
}

Going back to the definition of a constant, a name that represents the same value
throughout a program, the name is numTests, and it represents the value 3.

The syntax for declaring a constant is similar to, but not the same as, a syntax for
declaring a variable. Each requires a data type (here int) and a variable name (here
numTests) and ends in a semicolon. However, there are two differences.

First, the declaration of a constant must begin with the const keyword. This tells the
compiler that you are declaring a constant instead of a variable.

Second, the declaration terminates by assigning the constant a value. You also may
assign a variable a value when you are declaring it; you learned in Chapter 3 this is called
initialization. However, assigning a variable a value when you declare it is optional. On
the other hand, assigning a constant a value when you are declaring it is mandatory; the
declaration of the constant will not compile if you don’t, the compiler error being that a
constant object must be initialized. The reason is, since you cannot assign a value of a
constant after you declare it, the only time you can assign a value to a constant is when
you declare it.

Note The declaration of a constant does reserve memory just as does the declaration
of a variable. The difference is that with a constant the value stored at the
memory address cannot change during the life of the program.

The following program illustrates that you cannot assign a value of a constant after you
declare it:
#include <iostream>
using namespace std;
int main ()
{
 const int numTests = 3;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int testScore[numTests];
 return 0;
}

The result is a compiler error. The compiler will flag the attempt to assign a value to the
constant (cin >> numTests) and complain that the stream extraction operator >> cannot
have a right-hand operand that is a constant. This is simply another way of saying you
can’t assign a value to a constant after you declare it.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0065.html (3 of 5)06.11.2004 22:52:09

Declaring an Array

The following program modifies the previous one by assigning the user input to a variable
(so far so good) and then attempting to assign that variable to the constant (not good):
#include <iostream>
using namespace std;
int main ()
{
 const int numTests = 3;
 int num;
 cout << "Enter the number of test scores:";
 cin >> num;
 numTests = num;
 int testScore[numTests];
 return 0;
}

Once again, the result is a compiler error. The compiler will flag the attempt to assign a
value to the constant (numTests = num); the error message will be different than in the
previous example, that “l-value specifies const object.” The 1 in “l-value” is a small L, not
the number one, and refers to the value to the left of the assignment operator. This again
is another way of saying you can’t assign a value to a constant after you declare it.

While you can use a constant instead of a literal array to declare the size of an array, the
question remains: why would you go to the trouble of doing so? The reason is that in your
code you may need to often refer to the size of the array, not only when declaring it, but
also, as shown later in this chapter, when assigning values to, and displaying them from,
the array. However, the needs of the program may require you to modify the code to
change the size of the array, usually to make it larger. For example, if as a teacher I
change my policy from giving three tests to giving five tests, I need to change the size of
the testScore array from three to five. If I use the literal number 3, I have to find that
number each time it is referred to in the program and change it to 5. Not only is this time-
consuming, but the potential exists that I could miss a reference I needed to change. By
contrast, if I use a constant, such as const int numTests = 3, then all I need to do is
change the 3 to 5 in that one place, and I’m done.

You may be thinking, “Wait a second, you just told me earlier in this chapter that you can’t
resize an array.” Yes, you cannot resize an array while the program is running. However,
you can change the size of the array in the code, and then recompile the program.

Constants have many uses in addition to signifying the size of an array, and those uses
will be covered in this and further chapters of this book.

Array Index

The entire array has only one name. However, you need to be able to refer to individual
elements of the array. You can refer to the individual elements of the array by their
position within the array. This position is referred to as an index or subscript. I will use the
term index in this book, but both terms are used, and are equally correct.

The first index in an array is always 0. There are no exceptions. The last index in an array
is always 1 less than the number of elements in the array; again, with no exceptions.

The fact that the first index in an array is 0 instead of 1 is explained by the concept of an
offset. An offset refers to a value added to a base address to produce a second address.

Figure 10-1 may be helpful in illustrating how offsets work with arrays. This figure shows

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0065.html (4 of 5)06.11.2004 22:52:09

Declaring an Array

graphically the result of declaring a three-element integer array such as int testScore[3].
The base address of an array is the address where the array begins. In Figure 10-1, the
base address of the testScore array is 101.

Figure 10-1: Indices of a three-element integer array

The address of the first element of the array in Figure 10-1, 101, is the same as the base
address of the array itself. Therefore, the value that would be added to the base address
of the array to obtain the address of the first element of the array is 0, which is the index
of the first element of the array.

The address of the second element of the array is the base address of the array, 101,
plus 1 times the size of the data type of the array, 4, which is 101 + (1 × 4), or 105.
Similarly, the address of the third element of the array is the base address of the array,
101, plus 2 times the size of the data type of the array, 4, which is 101 + (2 × 4), or 109.

Thus, the address of any element of the array is the base address of the array plus the
offset, and in turn the offset is determined by the index of the array multiplied by the size
of the array’s data type.

Note We will revisit addresses and offsets in the next chapter on pointers.

Since the first index in an array must always be 0, the last index in an array must always
be 1 less than the number of elements in the array. If you were counting three numbers,
starting at 1, the last element would be number 3. However, if you are starting at 0
instead of 1, then the last number would be 2, not 3.

Caution A common beginning programming mistake is to assume the index of the
last element of the array is equal to the number of elements in the array. As
you will learn later in this chapter, this can result in (depending on the
compiler) run-time errors or unpredictable results, neither of which is good.

At this point, we have not assigned a value to any of the elements of the array. The value
of each element likely will be some strange number such as –858993460. As discussed in
Chapter 3, the program does its best to interpret whatever value is at a given memory
address, perhaps left over from some other program, but the resulting output often makes
little sense.

Note If the array variable is declared globally rather than locally, then each element is
initialized to a default value, 0 for numeric data types and the null character for a
character array. However, I already have given you my lecture against global
variables.

You can assign values to an array after you declare it, and later in this chapter I will show
you how. However, it is also possible to assign values to an array at the same time that
you declare it, as I will show you in the very next section.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0065.html (5 of 5)06.11.2004 22:52:09

Initialization

Initialization

As first discussed in Chapter 3, initialization is when you assign a value to a variable in
the same statement in which you declare that variable. By contrast, assignment is when
you assign a value to a variable in a statement after the one in which you declare that
variable.

We will discuss assigning values to an array later in this chapter in the section “Assigning
and Displaying Array Values.” This section covers initialization of an array.

You have two alternative methods of initializing an array. The first alternative is explicit
array sizing, in which the square brackets contain a numerical constant that explicitly
specifies the size of the array. The second alternative is implicit array sizing, in which the
square brackets are empty and the size of the array is indicated implicitly by the number
of elements on the right side of the assignment operator.

Explicit Array Sizing

The following are examples of explicit array sizing:
 int testScore[3] = { 74, 87, 91 };
 float milesPerGallon[4] = { 44.4, 22.3, 11.6, 33.3};
 char grades[5] = {'A', 'B', 'C', 'D', 'F' };
 string days[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"};

The syntax of initialization, with both explicit and implicit array sizing, is that the array
declaration, such as int testScore[3], is followed by an assignment operator and then,
enclosed in curly braces, the values to be assigned to each array element, in order, are
separated by commas. For example, in the following statement, the value of the first
element of the array (testScore[0]) would be 74, the value of the second element of the
array 87, and the value of the third element of the array 91.
 int testScore[3] = { 74, 87, 91 };

The number of elements on the right-hand side of the assignment operator cannot be
greater than the number within the square brackets. Thus, the following statement will not
compile, the error message being “too many initializers.”
float milesPerGallon[4] = { 44.4, 22.3, 11.6, 33.3, 7.4}; //
won't compile

You do not have to assign values to each element of the array; the number of elements
on the right-hand side of the assignment operator may be less than the number within the
square brackets:
float milesPerGallon[4] = { 44.4, 22.3, 11.6};

If you do not initialize all of the elements of an array, the uninitialized elements have a
default value that depends on the data type of the array. For example, the default value is
0 for an integer array, 0.0 for a float array, and the null character, ‘\0’, for a character
array.

Note The null character is discussed later in this chapter in the section “Initializing a
Character Array.”

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0066.html (1 of 4)06.11.2004 22:52:10

Initialization

Additionally, if you leave an element uninitialized, all elements that follow it must be
uninitialized. You can’t, for example, alternate initializing and not initializing array
elements. For example, the following statement won’t compile:
float milesPerGallon[4] = { 44.4, , 11.6, 33.3}; // won't compile

Implicit Array Sizing

The following are examples of implicit array sizing:
 int testScore[] = { 74, 87, 91 };
 float milesPerGallon[] = { 44.4, 22.3, 11.6, 33.3};
 char grades[] = {'A', 'B', 'C', 'D', 'F' };
 string days[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"};

The first array, testScore, allocates memory for three integers. Since the square brackets
are blank, the compiler allocates memory based on the number of elements to the right
side of the assignment statement.

Similarly, the second array, milesPerGallon, allocates memory for four floats, the third
array, grades, allocates memory for five characters, and the fourth array, days, allocates
memory for seven strings.

The compiler only allocates memory based on the number of elements to the right side of
the assignment statement if the square brackets are empty. Otherwise, memory is
allocated based on the number in the square brackets. Thus, in the following example,
the declaration of the array testScore would allocate memory for five integers even
though only three integers are in the initialization statement because memory allocation is
determined by the number within the square brackets. As discussed in the previous
section, the fourth and fifth elements of the array would be initialized to a default value, 0.

int testScore[5] = { 74, 87, 91 };

However, you must tell the compiler one way or the other how much memory to allocate.
Therefore, when declaring an array, you cannot have both empty square brackets and no
initialization, as in the following example:
int testScore[];

The compiler error message will be that the array is of unknown size. This of course is a
problem since the computer has no way of knowing how much memory to allocate for the
array.

Initializing a Character Array

As the previous section showed, you can initialize a character array using the same
syntax as you would to initialize an array of another data type such as an integer or a
float. However, as you will see in this chapter, there are some important differences
between character arrays and arrays of numeric data types. This section will show you
the first difference.

The following two initializations of a character array to my first name are different in
syntax but identical in effect:
 char name[] = {'J', 'e', 'f', 'f', '/0' };
 char name = "Jeff";

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0066.html (2 of 4)06.11.2004 22:52:10

Initialization

The latter syntax usually is preferred by programmers simply because it is easier to type.

The character ‘\0’ is the escape sequence for a null character. The 0 in ‘\0’ is a zero, not a
big letter o. The zero corresponds to the ASCII value of the null character.

Chapter 2 introduced escape sequences, starting with ‘\n’, the newline character, which
causes the cursor to go to the next line for further printing. The ‘\n’ in a string is not
displayed literally by cout because the backslash signals cout that ‘\n’ is an escape
sequence.

The null character has a different purpose, which is to signal cout when to end the output
of a character array. For example, the following program outputs, as expected, “Jeff”:
#include <iostream>
using namespace std;
int main ()
{
 char name[] = {'J', 'e', 'f', 'f', '/0' };
 cout << name;
 return 0;
}

The result would be the same if the alternate syntax of char name = “Jeff’ was used to
initialize the character array.

By contrast, the following program outputs “Jeff¦¦¦¦+ ?.”
#include <iostream>
using namespace std;
int main ()
{
 char name[] = {'J', 'e', 'f', 'f'};
 cout << name;
 return 0;
}

The strange characters after “Jeff” (which may differ when you run the program)
sometimes are referred to as “garbage characters.” However, that really is not a fair or
accurate description. What really is happening is that cout keeps outputting the values at
each succeeding address after the end of the array until it reaches a value that it
interprets as a null character. As discussed earlier in this chapter, the program does its
best to interpret whatever value is at a given memory address, perhaps left over from
some other program, but the resulting output often makes little sense. In general,
“garbage characters” are ASCII representations of integers stored in a memory address.

All this does not mean that the last element of a character array always should be a null
character. When each element of a character array is separate from the other, such as a
separate grade for each test, there is no need to use a null character. However, if the
character array elements are related, such as a character array representing a person’s
name, then usually the last element should be a null character. The syntax of char name
= “Jeff” accomplishes that, automatically inserting a null character as the fifth element of
the array.

Finally, the alternate syntax of char name = “Jeff” is quite similar to how you initialize a
string data type:
 char name[] = "Jeff";

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0066.html (3 of 4)06.11.2004 22:52:10

Initialization

 string name = "Jeff";

Indeed, a character array that ends with a null character often is referred to colloquially as
a string. However, a character array that ends with a null character is not thereby
converted to a string data type; it is still a character array. Indeed, there is no guarantee
that a compiler’s implementation of the string data type will result in the last character of a
true string being a null character.

Thus, while character arrays and strings have many similarities, they are not the same.
There are important differences. One is you cannot safely assume that a string ends with
a null character. Other differences will be discussed later in this chapter in the sections on
the cin Object’s get and getline member functions.

Constant Arrays

You can create arrays that are constants. For example, the following array contains the
number of days in each month (for February, we assume a non–leap year).
 const int daysInMonth [] = { 31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31 };

Using a constant array here is a good choice since the number of days in each month will
not change.

You must use initialization when creating a constant array, just as you must use
initialization when creating a constant variable. Since you cannot change the values later,
you must specify the values when you create the constant.

When to Use Initialization

C++ gives you the option of just declaring an array, with the values of the array elements
unassigned, and initializing an array, assigning values to some or all of the array
elements.

Initialization usually is the better choice when you know in advance some or all of the
array element values, but it is not limited to that scenario. Initialization sometimes is used
to provide each array element with an initial default value. For example, we might initialize
each element of the testScore array to –1 as a signal that no test score has yet been
assigned. The number –1 is a better choice for this purpose than 0 since a student could
get a zero on a test, but not a –1.

However, initializing to a default value can be cumbersome when there are many array
elements. Additionally, when you don’t know in advance the array values, such as for test
scores, you may decide against initializing for a default value. Further, even if you do use
initialization, you may later want to change the values of some or all of the array
elements. Accordingly, you need to know how to assign values to an array. You also will
want to display array values. The next section shows you how.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0066.html (4 of 4)06.11.2004 22:52:10

Assigning and Displaying Array Values

Assigning and Displaying Array Values

The following program shows how to assign values to an array, one element at a time.
The assignment starts with the first index, 0, and ends with the last index, 2, which is one
less than the number of elements, 3. The program then outputs the array values, one at a
time.
#include <iostream>
using namespace std;
int main ()
{
 int testScore[3];
 cout << "Enter test score #1: ";
 cin >> testScore[0];
 cout << "Enter test score #2: ";
 cin >> testScore[1];
 cout << "Enter test score #3: ";
 cin >> testScore[2];
 cout << "Test score #1: " << testScore[0] << endl;
 cout << "Test score #2: " << testScore[1] << endl;
 cout << "Test score #3: " << testScore[2] << endl;
 return 0;
}

Some sample input and output could be:
Enter test score #1: 77
Enter test score #2: 91
Enter test score #3: 84
Test score #1: 77
Test score #2: 91
Test score #3: 84

However, this one-element-at-a-time approach has no advantage over the following
program, which does not use an array at all, but just three separate variables:
#include <iostream>
using namespace std;
int main ()
{
 int testScore1, testScore2, testScore3;
 cout << "Enter test score #1: ";
 cin >> testScore1;
 cout << "Enter test score #2: ";
 cin >> testScore2;
 cout << "Enter test score #3: ";
 cin >> testScore3;
 cout << "Test score #1: " << testScore1 << endl;
 cout << "Test score #2: " << testScore2 << endl;
 cout << "Test score #3: " << testScore3 << endl;
 return 0;
}

The advantage of an array over using separate variables is the ability to use a loop. This
is shown by the following program:

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0067.html (1 of 7)06.11.2004 22:52:12

Assigning and Displaying Array Values

#include <iostream>
using namespace std;
int main ()
{
 int testScore[3];
 for (int i = 0; i < 3; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 for (i = 0; i < 3; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << testScore[i] << endl;
 }
 return 0;
}

Better yet, you can use a constant instead of an integer literal for the number of array
elements:
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 for (i = 0; i < MAX; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << testScore[i] << endl;
 }
 return 0;
}

This example illustrates an advantage of using constants rather than literals for the size
declarator. Assume I wrote this program to keep track of a student’s test grades at a time
when my policy is to give three tests during a semester. However, later I change my
policy to giving five tests during a semester. Since I used a constant as a size declarator,
I only need to make one code change, which is to initialize the constant MAX to 5 instead
of 3. In contrast, had I instead used the numeric literal 3 as the size declarator, I have to
find that number each time it is referred to in the program, once in the array declaration,
and once each in the two for loops. This means only three changes, but in a more
complex program the number could be much higher. Not only is this time-consuming, but
the potential exists that I could miss a reference to 3 which I needed to change to 5.

In this example, the constant MAX is global. However, making the constant MAX global is
not contrary to my recommendation in Chapter 9 against making variables global. The
primary reason for my recommendation against global variables is that a global variable
may be changed from anywhere in the program, making it more difficult to trace—for
example, why such a variable has an incorrect value. By contrast, the value of a constant
cannot be changed at all. Consequently, the reason for the recommendation that a

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0067.html (2 of 7)06.11.2004 22:52:12

Assigning and Displaying Array Values

variable should not be global simply does not apply to a constant. Therefore, global
constants, as opposed to global variables, are relatively common.

However, whether you use a constant or an integer literal for the number of array
elements, you must take care not to go beyond the bounds of the array. The following
program demonstrates a common programming mistake.
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i <= MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ":";
 cin >> testScore[i];
 }
 for (i = 0; i <= 3; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << testScore[i] << endl;
 }
 return 0;
}

This program is the same as the previous program, expect that the relational operator in
the condition of each for loop has been changed from < to <=. The result is an attempt to
access index 3 of the array. The problem, of course, is that there is no such index in a
three-element array; the last index is 2. The result depends on the particular compiler and
operating system, varying from weird output to run-time errors to the computer locking up,
but the result is never good.

Using the cin and cout Objects with Arrays

You can assign values to a character array using the same technique as you used in the
previous section to assign values to an integer array:

#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 char grades[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter grade for test #" << i + 1 << ":";
 cin >> grades[i];
 }
 return 0;
}

This technique is a logical choice when each element of the array is separate from the
other, such as a separate grade for each test. However, sometimes the character array
elements are related, such as a character array representing a person’s name.

As discussed previously in this chapter in connection with initialization, there are

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0067.html (3 of 7)06.11.2004 22:52:12

Assigning and Displaying Array Values

important differences between character arrays and arrays of numeric data types.
Another difference is the ability to use the cin object and the stream extraction operator
>> to assign a value to all elements of a character array, and the cout object and the
stream insertion operator << to display the values of all elements of a character array.
This is demonstrated by the following program:
#include <iostream>
using namespace std;
int main ()
{
 char name[80] = {'J', 'e', 'f', 'f', '/0' };
 cout << "Enter your name: ";
 cin >> name;
 cout << "Your name is " << name;
 return 0;
}

Some sample input and output could be
Enter your name: Jeff
Your name is Jeff

This approach has the advantage of not requiring two loops for input and display,
respectively. The assignment takes place in one step with the cin object and the stream
extraction >> operator. Similarly, the display takes place in one step with the cout object
and the stream insertion << operator.

Using the cout Object with Numeric Arrays

You can use the cout object and the stream insertion << operator with a numeric array
rather than a character array without experiencing a compiler or run-time error, but you
will likely not get the result you expect. The following program modifies a previous one by,
instead of using a second loop to display test scores, attempting to display the test scores
in one step with the cout object and the stream insertion << operator.
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 cout << "The test scores are: " << testScore;
 return 0;
}

Some sample input and output could be
Enter test score #1: 76
Enter test score #2: 84
Enter test score #3: 91
The test scores are: 0012FECC

What happened is that the value of the name of the array is the base address of the

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0067.html (4 of 7)06.11.2004 22:52:12

Assigning and Displaying Array Values

array. Therefore, the output of cout << testScore is the base address of the testScore
array, which happens to be the hexadecimal address 0012FECC.

This explains why you obtain an address rather that array values when you use the
stream insertion operator << with a numeric array. However, it does not explain why you
obtain array values rather than an address when you use the stream insertion operator <<
with a character array. After all, the name of a character array, like the name of a numeric
array, is a constant whose value is the base address of the array.

The answer simply is that the C++ programming language treats the stream extraction
operator >> differently with a character array than with a numeric array. When so used,
the character array name is not interpreted as a constant whose value is the base
address of the array, but rather the starting point for display. This is just another example
of the differences between character arrays and numeric arrays.

Using the cin Object with Numeric Arrays … Not!

While you can use the cout object and the stream insertion operator << with numeric
arrays as well as character arrays (albeit with different results), you can use the cin object
and the stream extraction operator >> only with a character array. You cannot use the cin
object and the stream extraction operator >> with numeric arrays. This is demonstrated
by the following program:
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 cin >> testScore;
 return 0;
}

The result is a compiler error. The compiler will highlight the statement cin >> testScore
and complain that the stream extraction operator >> cannot have a right-hand operand
that is an integer array.

This compiler error may sound familiar. Previously in this chapter, an attempt to use the
stream extraction operator to assign a value to the constant, such as cin >> numTests
when numTests was an integer constant, resulted in a compiler error, the message being
that the stream extraction operator >> cannot have a right-hand operand that is a
constant.

This is essentially the same problem. As you will learn more about in Chapter 11, the
name of the integer array, testScore, is a constant whose value is the base address of the
array.

While this explains why you can’t use the stream extraction operator >> with an integer
array, you may now be wondering why you can use the stream extraction operator >>
with a character array since the name of a character array, like the name of an integer
array, is a constant whose value is the base address of the array. The answer is
essentially the same as the one to the similar question in the preceding section regarding
the stream insertion operator <<. The C++ programming language supports use of the
stream extraction operator >> with a character array. When so used, the character array
name is not interpreted as a constant whose value is the base address of the array. This
is just another example of how the C++ programming language treats character arrays
differently than arrays of other data types.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0067.html (5 of 7)06.11.2004 22:52:12

Assigning and Displaying Array Values

The cin Object’s getline Function

The following program from the previous section worked fine when the input had no
embedded spaces, such as “Jeff.”
#include <iostream>
using namespace std;
int main ()
{
 char name[80] = {'J', 'e', 'f', 'f', '/0' };
 cout << "Enter your name: ";
 cin >> name;
 cout << "Your name is " << name;
 return 0;
}

However, examine the following sample input and output:
Enter your name: Jeff Kent
Your name is Jeff

We examined this same issue in Chapter 3 with the following program, which used a
string variable instead of a character array:
#include <iostream>
using namespace std;
#include <string>
int main(void)
{
 string name;
 cout << "Enter your name: ";
 cin >> name;
 cout << "Your name is " << name;
 return 0;
}

The explanation in Chapter 3 of why the value of name is outputted only as “Jeff”, omitting
“Kent”, is that the cin object interprets the space between “Jeff” and “Kent” as indicating
that the user has finished inputting the value of the name variable. The solution is to use
the getline function of the cin object.

Note The cin object also has a get function that would solve this issue. The only
difference between the two is that the get function reads the user’s input up to,
but not including, the newline character (the ENTER key that terminates input,
whereas the getline function reads the user’s input up to and including the
newline character. This difference makes the getline function easier to use than
the get function when working with character arrays. The get function usually is
used with single characters, not character arrays.

The getline function of the cin object is overloaded. By overloaded I do not mean
overworked. Rather, the term overloaded when used in connection with the function
means the function may be called more than one way, each way differing by the number,
data type, or order of arguments.

The following program uses the getline function to read the user’s input and assign that
input to the character array:

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0067.html (6 of 7)06.11.2004 22:52:12

Assigning and Displaying Array Values

#include <iostream>
using namespace std;
int main ()
{
 char name[80] = {'J', 'e', 'f', 'f', '/0' };
 cout << "Enter your name: ";
 cin.getline(name, 80);
 cout << "Your name is " << name;
 return 0;
}

Now, as shown by the following sample input and output, you can input a string such as
“Jeff Kent” that includes an embedded space:
Enter your name: Jeff Kent
Your name is Jeff

The first argument is the name of the character array into which the input will be stored.
The second argument is one more than the number of characters that will be read from
standard input, here the keyboard. Since the second argument is 80, the number of
characters that will be read from standard input is 79, the 80th character saved for the null
character. Since the declared size of the character array in this example is 80, and one
element is needed for the null character, that leaves 79 characters for user input.

Another variant of the overloaded getline function has three arguments, such as in the
following example:
 cin.get(name, 80, '\n');

The third argument is the character that should terminate the reading in of input if it is
encountered before the number of characters specified in the second argument. Here the
third argument is the newline character, created when the user presses the ENTER key.
Since the pressing of the ENTER key will end input anyway, the third argument of ‘\n’
often is superfluous. However, you could use another character as the third argument if it
fits the needs of your program.

You cannot use the get or getline functions of the cin object with strings. Instead, you use
the standalone getline function. By standalone, I mean the getline function is not called
with a preceding cin and a dot (cin.getline) as in the case of character arrays.

The following code fragment shows how to use the getline function with a string:
 String name;
 getline(cin, name);

The first argument is the cin object. The second argument is the string into which the
input will be stored. Since you do not have to specify the size of a string, there is no
argument limiting the number of characters for input.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0067.html (7 of 7)06.11.2004 22:52:12

Passing Arrays as Function Arguments

Passing Arrays as Function Arguments

Previously in this chapter, we used the following program to demonstrate how loops are
effective in assigning and displaying array values:
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 for (i = 0; i < MAX; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << testScore[i] << endl;
 }
 return 0;
}

Now we are going to make this program more modular by writing one function to assign
values to the array, and another function to display values from the array, rather than
doing all that work in the main function.
#include <iostream>
using namespace std;
void assignValues(int[], int);
void displayValues(int[], int);
const int MAX = 3;

int main ()
{
 int testScore[MAX];
 assignValues(testScore, MAX);
 displayValues(testScore, MAX);
 return 0;
}

void assignValues(int tests[], int num)
{
 for (int i = 0; i < num; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> tests[i];
 }
}

void displayValues(int scores[], int elems)
{
 for (int i = 0; i < elems; i++)
 {

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0068.html (1 of 2)06.11.2004 22:52:13

Passing Arrays as Function Arguments

 cout << "Test score #" << i + 1 << ": "
 << scores[i] << endl;
 }
}

The assignValues function is used to assign values to the array. The displayValues
function is used to display values from the array.

Each function has two arguments. The first argument is the array. The second argument
is the number of elements in the array. Each function loops through the array, its first
argument, using as an index limit the number of elements in the array, the second
argument.

Since the first argument is not just an integer, but an array of integers, the argument is
specified with brackets, [], signifying that what is being passed is an array.

Note You do not, and should not, put a number in the square brackets in the
argument list of either the prototype or the function header.

There is one remaining question. The assignValues function changes the values in the
array in main that was passed as its argument. As discussed in Chapter 9, for that to
happen, the argument should be passed by reference rather than value. However, the
array is not passed by reference.

Actually, Chapter 9 mentioned a third way of passing arguments: by address. Passing by
address works the same way as passing by reference in that the called function can
change in the calling function the value of a variable passed to it. As discussed previously
in this chapter, the value of the name of an array is the base address of the array. Thus,
in a function call such as assignValues(testScore, MAX), in which the first argument is the
array name, the first argument is being passed by address. There will be much more on
passing by address in Chapter 11.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0068.html (2 of 2)06.11.2004 22:52:13

Summary

Summary

The variables we have worked with before this chapter could hold only one value at a
time. In this chapter, you learned about an array, which permits you to use a single
variable to store many values. The values are stored at consecutive indexes, starting with
zero and then incrementing by one for each additional element of the array.

The data type of an array may be integer, float, or character. However, a particular array
cannot contain integers, floats, and characters. All the elements of an array must be of
the same data type.

You need to declare an array before you can use it. The syntax for declaring an array is
almost identical to the syntax for declaring integer, character, or other variables. The only
difference between declaring a single scalar variable and an array of scalar variables is
that, when declaring an array, the variable name is followed by a number within square
brackets. That number is the array’s size declarator.

The size declarator must be a literal or a constant. A literal is a value that is written
exactly as it is meant to be interpreted. A constant is a name that represents the same
value throughout a program. You learned in this chapter how to declare and use a
constant.

You also can create an array through initialization. Initialization is when you assign a
value to a variable in the same statement in which you declare that variable, as
contrasted to assignment, which is when you assign a value to a variable in a statement
after the one in which you declare that variable.

You have two alternative methods of initializing an array. The first alternative is explicit
array sizing, in which the square brackets contain a numerical constant that explicitly
specifies the size of the array. The second alternative is implicit array sizing, in which the
square brackets are empty and the size of the array is indicated implicitly by the number
of elements on the right side of the assignment operator.

You learned in this chapter how to assign values to an array using a loop. You also
learned how to use the cin object’s get and getline functions to assign values to a
character array.

Finally, you learned how to pass an array as a function argument. When you do so, the
argument is being passed by address.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0069.html06.11.2004 22:52:13

Quiz

Quiz
1. Can a particular array contain integers, floats, and characters?

2. What is the number of the starting index of an array?

3. What is the number of the ending index of an array?

4. What is the difference between initialization and assignment?

5. What are the two alternative methods of initializing an array?

6. What is the purpose of the null character?

7. What is the value of the name of an array?

8. Should the last element of a character array always be a null character?

9. What is the difference between the get and getline functions of the cin object?

10. When you pass an array name as a function argument, are you passing it by value,
reference, or address?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0070.html06.11.2004 22:52:14

Chapter 11: What's the Address? Pointers

Chapter 11: What’s the Address? Pointers

Overview

My parents told me when I was a child that it was not polite to point. However, each
semester I teach my computer programming students how to point. No, I am not trying to
promote rude behavior. Rather, I am teaching my students about pointers, which “point”
to another variable or constant.

You yourself may have acted as a pointer in the past. Have you ever been asked where
someone lives? If that house was nearby, you may have pointed it out.

The pointer performs a similar function. A pointer points to another variable or constant.
Of course, the pointer does not point with an arm and fingers as you would. Rather, the
pointer’s value is the address of the variable or constant to which it points. Indeed, you
may have done something similar. If you were asked where someone lives and that
house was not close enough to physically point out, you instead may have provided an
address by which the house could be located.

Pointers have had a reputation among programming students for being difficult to learn. I
think that reputation is overblown; pointers are not difficult if you take the time to
understand what they do. In any event, difficult or not, it is important to learn about
pointers. Some C++ tasks are performed more easily with pointers, and other C++ tasks,
such as dynamic memory allocation, cannot be performed without them.

So, on that note, let’s now learn how to create and work with pointers.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0071.html06.11.2004 22:52:15

Declaring a Pointer

Declaring a Pointer

Like any variable or constant, you must declare a pointer before you can work with it. The
syntax of declaring a pointer is almost the same as declaring a variable which stores a
value rather than an address. However, the meaning of the pointer’s data type is quite
different than the meaning of the data type of a variable which stores a value rather than
an address.

Syntax of a Pointer Declaration

The syntax of declaring a pointer is almost the same as the syntax of declaring the
variables we have worked with in previous chapters. The following statement declares an
integer pointer variable:
 int* iPtr;

The asterisk you use to declare a pointer is the same asterisk that you use for
multiplication. However, in this statement the asterisk is being used in a declaration, so in
this context it is being used to designate a variable as a pointer. Later in this chapter, we
will use the asterisk for a third purpose, as an indirection operator.

Note It is common in C++ for a symbol to have different meanings depending on the
context. For example, an ampersand (&) in an argument list means you are
passing an argument by reference, whereas an ampersand in front of a variable
name is the address operator.

The integer pointer variable also can be declared with the asterisk preceding the variable
name instead of following the data type:
 int *iPtr;

Either alternative syntax is equally correct because the compiler generally ignores white
spaces between an operator and a variable name, constant name, or number. Indeed, the
following pointer declaration also works:
 int*ptr;

My preference is the first example, in which the asterisk follows the data type and is
separated by a white space from the variable name, since (in my opinion) it best signifies
that the variable is a pointer. However, all three syntax variations are correct. In any of
these variations, the only difference between declaring a pointer variable and a variable
which stores a value rather than an address is the asterisk between the data type and the
pointer name.

The Meaning of Pointer Data Types

While the syntax of declaring a pointer is almost the same as declaring the variables and
constants which store a value rather than an address, the meaning of the data type in the
declaration of a pointer is different than in the declaration of those other variables and
constants.

With the variables we have worked with previously, the data type in the variable
declaration describes the type of data that can be stored in that variable. Thus, the value
of an integer variable or constant is an integer, the value of a character variable or
constant is a character, and so forth.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0072.html (1 of 2)06.11.2004 22:52:16

Declaring a Pointer

However, with a pointer, the data type in the declaration means something different,
namely the data type of another variable (or constant) whose memory address is the
value of the pointer. In other words, the value of an integer pointer must be the address of
an integer variable or constant, the value of a float pointer must be the address of a float
variable or constant, and so forth.

The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address.
The only difference between pointers of different data types is the data type of the
variable or constant that the pointer points to. This is demonstrated by the following
program, which uses the sizeof operator to show that the sizes of pointers of different
data types are the same (a long data type uses 4 bytes on my operating system and
compiler) even though the different data types (int, float, char) are not all the same size:
#include <iostream>
using namespace std;

int main ()
{
 int* iPtr;
 float* fPtr;
 char *cPtr;
 cout << "The size of iPtr is " << sizeof(iPtr) << endl;
 cout << "The size of fPtr is " << sizeof(fPtr) << endl;
 cout << "The size of cPtr is " << sizeof(cPtr) << endl;
 return 0;
}

The output is therefore:
The size of iPtr is 4
The size of fPtr is 4
The size of cPtr is 4

Otherwise, a pointer is similar to the variables or constants we have studied previously. A
pointer itself may be a variable or a constant, and like other variables or constants, it is
also stored at a memory address. What distinguishes a pointer is that its value is the
memory address of another variable or constant.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0072.html (2 of 2)06.11.2004 22:52:16

Assigning a Value to a Pointer

Assigning a Value to a Pointer

This section will explain how you assign a value to a pointer. Though, before I explain
how, perhaps I should explain why.

Why You Should Not Try to Use an Unassigned Pointer

Back in elementary school we were taught a verse: “I shot an arrow into the air, where it
lands, I don’t care.” Looking back, I wonder why young children were taught this verse. It
may rhyme, but its message is really not appropriate for little ones. However, when you
declare a pointer but then use it without first assigning it a value, you are, alas, doing the
programming equivalent of that verse.

The following program declares a pointer and then attempts to output its value without
first assigning it a value:
#include <iostream>
using namespace std;

int main ()
{
 int* iPtr;
 cout << "The value of iPtr is " << iPtr << endl;
 return 0;
}

The result, depending on your compiler and operating system, may be a compiler error, a
runtime error, or a computer that locks up. Regardless, attempting to use a declared
pointer without first assigning it a value is not a good idea.

As you may recall from previous chapters, when you declare a variable and then attempt
to output its value without first assigning it a value, the result is a so-called “garbage
value” that makes little sense. The reason for this result is that the computer attempts to
interpret whatever value is left over from previous programs at the address of the variable.

When the variable is a pointer, that leftover value is interpreted as another memory
address, which the pointer then tries to access when you attempt to use it. There are a
number of memory address ranges that you are not permitted to access
programmatically, such as those reserved for use by the operating system. If the leftover
value is interpreted as one of those prohibited addresses, the result is an error.

Null Pointers

If it is too early in your code to know which address to assign to the pointer, then you first
assign the pointer NULL, which is a constant with a value of zero defined in several
standard libraries, including iostream. The following program does so:
#include <iostream>
using namespace std;

int main ()
{
 int* iPtr;
 iPtr = NULL;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0073.html (1 of 3)06.11.2004 22:52:16

Assigning a Value to a Pointer

 cout << "The value of iPtr is " << iPtr << endl;
 return 0;
}

Note You also could use initialization instead of declaration followed by assign-ment,
thus combining the first two statements in main to int* iPtr = NULL.

The resulting output is
The address of x using iPtr is 00000000

A pointer that is assigned NULL is called a null pointer.

On most operating systems, programs are not permitted to access memory at address 0
because that memory is reserved by the operating system. You may now be thinking:
“Wait a minute! He just told me how bad it was to risk having pointers point to memory
addresses reserved by the operating system. Now he’s having us do that on purpose.”
However, the memory address 0 has special significance; it signals that the pointer is not
intended to point to an accessible memory location. Thus, if it is too early in your code to
know which address to assign to a pointer, you should first assign the pointer to NULL,
which then makes it safe to access the value of a pointer before it is assigned a “real”
value such as the address of another variable or constant.

Assigning a Pointer the Address of a Variable or Constant

Let’s now assign a pointer a “real” value, the address of another variable or constant. To
do so, you need to access the address of the variable or constant before you can assign
that address to the pointer. You use the address operator, covered in Chapter 3, to
accomplish this task.

The following program shows how to use the address operator to assign the address of a
variable to a pointer. This program also demonstrates that the value of a pointer is the
same as the address to which the pointer points.
#include <iostream>
using namespace std;

int main ()
{
 int num = 5;
 int* iPtr = #
 cout << "The address of x using &num is " << &num << endl;
 cout << "The address of x using iPtr is " << iPtr << endl;
 return 0;
}

The output on my computer (the following addresses likely will be different on yours) is
The address of x using &num is 0012FED4
The address of x using iPtr is 0012FED4

Figure 11-1 shows graphically how the pointer points to the integer variable.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0073.html (2 of 3)06.11.2004 22:52:16

Assigning a Value to a Pointer

Figure 11-1: Pointer pointing to an integer variable

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0073.html (3 of 3)06.11.2004 22:52:16

Indirection Operator and Dereferencing

Indirection Operator and Dereferencing

The primary use of a pointer is to access and, if appropriate, change the value of the
variable that the pointer is pointing to. In the following program, the value of the integer
variable num is changed twice.
#include <iostream>
using namespace std;

int main ()
{
 int num = 5;
 int* iPtr = #
 cout << "The value of num is " << num << endl;
 num = 10;
 cout << "The value of num after num = 10 is "
 << num << endl;
 *iPtr = 15;
 cout << "The value of num after *iPtr = 15 is "
 << num << endl;
 return 0;
}

The resulting output is
The value of num is 5
The value of num after num = 10 is 10
The value of num after *iPtr = 15 is 15

The first change should be familiar, by the direct assignment of a value to num, such as
num = 10. However, the second change is accomplished a new way, using the indirection
operator:
 *iPtr = 15;

The indirection operator is an asterisk, the same asterisk that you used to declare the
pointer or to perform multiplication. However, in this statement the asterisk is not being
used in a declaration or to perform multiplication, so in this context it is being used as an
indirection operator.

Note As mentioned earlier in this chapter, this is another example of a symbol having
different meanings in the C++ programming language depending on the context
in which it was used.

The placement of the indirection operator before a pointer is said to dereference the
pointer. Indeed, some texts refer to the indirection operator as the dereferencing operator.
The value of a dereferenced pointer is not an address, but rather the value at that address
—that is, the value of the variable that the pointer points to.

For example, in the preceding program, iPtr’s value is the address of num. However, the
value of iPtr dereferenced is the value of num. Thus, the following two statements have
the same effect, both changing the value of num:
 num = 25;
 *iPtr = 25;

Similarly, a dereferenced pointer can be used in arithmetic expressions the same as the

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0074.html (1 of 2)06.11.2004 22:52:17

Indirection Operator and Dereferencing

variable to which it points. Thus, the following two statements have the same effect:
 num *= 2;
 *iPtr *= 2;

In these examples, changing a variable’s value using the indirection operator rather than
through a straightforward assignment seems like an unnecessary complication. However,
there are instances covered later in this chapter, such as looping through an array using a
pointer, or using dynamic memory allocation, in which using the indirection operator is
helpful or even necessary.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0074.html (2 of 2)06.11.2004 22:52:17

The Pointer as a Variable or a Constant

The Pointer as a Variable or a Constant

A pointer may be a variable or a constant. Let’s examine both possibilities.

Pointer as a Variable

The preceding program had the pointer pointing to one integer variable. However, a
pointer variable, being a variable, can point to different variables at different times in the
program. In the following program, the value of the pointer is changed to point to two
different integer variables.
#include <iostream>
using namespace std;

int main ()
{
 int num1 = 5, num2 = 14;
 int* iPtr = &num1;
 cout << "The value of num1 is " << num1 << endl;
 *iPtr *= 2;
 cout << "The value of num1 after *iPtr *= 2 is "
 << *iPtr << endl;
 iPtr = &num2;
 cout << "The value of num2 is " << num2 << endl;
 *iPtr /= 2;
 cout << "The value of num after *iPtr /= 2 is "
 << *iPtr << endl;
 return 0;
}

The resulting output is therefore:
The value of num1 is 5
The value of num1 after *iPtr *= 2 is 10
The value of num2 is 14
The value of num after *iPtr /= 2 is 7

The Array Name as a Constant Pointer

While the pointer may be a variable, it also may be a constant. Indeed, in the previous
chapter we actually discussed a constant pointer: the name of an array.

As you may recall from Chapter 10, the value of the name of an array is the base address
of the array, which also is the address of the first element of an array. Thus, in the
following program, both testScore and &testScore[0] have the same value.
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 cout << "The address of the array using testScore is "

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0075.html (1 of 2)06.11.2004 22:52:18

The Pointer as a Variable or a Constant

 << testScore << endl;
 cout << "The address of the first element of the array "
 "using &testScore[0] is " << &testScore[0] << endl;
 cout << "The value of the first element of the array "
 "using *testScore is " << *testScore << endl;
 cout << "The value of the first element of the array "
 "using testScore[0] is " << testScore[0] << endl;
 return 0;
}

The resulting output is
The address of the array using testScore is 0012FECC
The address of the first element of the array using &testScore[0]
is 0012FECC
The value of the first element of the array using *testScore is 4
The value of the first element of the array using testScore[0] is
4

Similarly, if you dereference the name of an array, its value is the same as the value of
the first element of the array. Therefore, in the preceding program, both *testScore and
testScore[0] have the same value.

However, you cannot change the value of the name of the array. For example, a
statement such as testScore++ would result in a compiler error, the error message being
“++ needs l-value.” As you may recall from Chapter 10, the term l-value refers to the value
to the left of the assignment operator. This error message is another way of saying you
can’t increment a constant because that would be changing the value of a constant after
you declare it.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0075.html (2 of 2)06.11.2004 22:52:18

Pointer Arithmetic

Pointer Arithmetic

The value of a pointer, even though it is an address, is a numeric value. Therefore, you
can perform arithmetic operations on a pointer just as you can a numeric value.

Using a Variable Pointer to Point to an Array

Pointer arithmetic is done often with arrays. However, since you cannot change the value
of the name of an array, it being a constant pointer, you first should declare a variable
pointer and then assign it to the address of an array.

So, we begin with an established point of reference, let’s start with the following program,
which outputs the address and value at each element of an array using the name of the
array:
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 for (int i = 0; i < MAX; i++)
 {
 cout << "The address of index " << i
 << " of the array is "<< &testScore[i] << endl;
 cout << "The value at index " << i
 << " of the array is "<< testScore[i] << endl;
 }
 return 0;
}

The resulting output is
The address of index 0 of the array is 0012FECC
The value at index 0 of the array is 4
The address of index 1 of the array is 0012FED0
The value at index 1 of the array is 7
The address of index 2 of the array is 0012FED4
The value at index 2 of the array is 1

This program used the name of the array, testScore, to access, by index, each element of
the array. The name of the array is a constant pointer. The following program modifies the
previous program by using a variable pointer, iPtr, to access by index each element of the
array.
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = testScore;
 for (int i = 0; i < MAX; i++)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0076.html (1 of 5)06.11.2004 22:52:19

Pointer Arithmetic

 {
 cout << "The address of index " << i
 << " of the array is "<< & iPtr[i] << endl;
 cout << "The value at index " << i
 << " of the array is "<< iPtr[i] << endl;
 }
 return 0;
}

The following statement in this program sets the variable pointer iPtr to point to the same
address as the array name testScore:
int* iPtr = testScore;

The array name is not preceded with the address operator (&) because the array name
already is an address, namely, the base address of the array. Therefore, after this
assignment, iPtr and testScore both point to the beginning of the array. Accordingly, as
shown in Figure 11-2, iPtr[2] and testScore[2] have the same value.

Figure 11-2: Variable and constant pointers used to access array elements

Incrementing a Pointer

An important reason for declaring a variable pointer so it points to the same address as
the array name is so the variable pointer can be incremented, unlike the array name
which cannot be incremented because it is a constant pointer. The following program
increments the variable pointer to access each succeeding element of the array:
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = testScore;
 for (int i = 0; i < MAX; i++, iPtr++)
 {
 cout << "The address of index " << i
 << " of the array is "<< iPtr << endl;
 cout << "The value at index " << i

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0076.html (2 of 5)06.11.2004 22:52:19

Pointer Arithmetic

 << " of the array is "<< *iPtr << endl;
 }
 return 0;
}

Incrementing an integer variable increases its value by 1. However, incrementing a
pointer variable increases its value by the number of bytes of its data type. This is an
example of pointer arithmetic. When you run this program, the first address outputted is
0012FECC, the second 0012FED0, and the third 0012FED4. These hexadecimal
addresses are 4 bytes apart because, on the compiler and operating system used by me
to run this program, the integer data type takes 4 bytes.

For this reason, as shown in Figure 11-3, iPtr + 1 is not the base address plus 1, but
instead is the base address + 4. The same is true of testScore + 1. Consequently, the
value at the second element of the array can be expressed one of four ways:

● testScore[1];

● *(testScore + 1);

● iPtr[1];

● *(iPtr + 1);

Figure 11-3: Effect of incrementing or adding 1 to an address

Comparing Addresses

Addresses can be compared like any other value. The following program modifies the
previous one by incrementing the variable pointer so long as the address to which it
points is either less than or equal to the address of the last element of the array, which is
&testScore[MAX - 1]:
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = testScore;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0076.html (3 of 5)06.11.2004 22:52:19

Pointer Arithmetic

 int i = 0;
 while (iPtr <= &testScore[MAX - 1])
 {
 cout << "The address of index " << i
 << " of the array is "<< iPtr << endl;
 cout << "The value at index " << i
 << " of the array is "<< *iPtr << endl;
 iPtr++;
 i++;
 }
 return 0;
}

As Figures 11-2 and 11-3 depict, the comparison to &testScore[MAX - 1] instead could
have been made to testScore + MAX – 1.

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value by
the number of bytes of its data type. Decrementing a pointer can be used to step
“backwards” through an array.
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = &testScore[MAX - 1];
 int i = MAX - 1;
 while (iPtr >= &testScore[0])
 {
 cout << "The address of index " << i
 << " of the array is "<< iPtr << endl;
 cout << "The value at index " << i
 << " of the array is "<< *iPtr << endl;
 iPtr--;
 i--;
 }
 return 0;
}

The output is therefore
The address of index 2 of the array is 0012FED4
The value at index 2 of the array is 1
The address of index 1 of the array is 0012FED0
The value at index 1 of the array is 7
The address of index 0 of the array is 0012FECC
The value at index 0 of the array is 4

The key statement is
int* iPtr = &testScore[MAX - 1];

This statement has the variable pointer point to the last address in the array. That

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0076.html (4 of 5)06.11.2004 22:52:19

Pointer Arithmetic

address then is decremented in the loop so that the pointer variable points to the
preceding address in the array. The loop continues so long as the address pointed to by
the pointer variable is not before the base address of the array.

As discussed previously, the pointer variable also could have been initialized as follows:
int* iPtr = testScore + MAX - 1;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0076.html (5 of 5)06.11.2004 22:52:19

Pointers as Function Arguments

Pointers as Function Arguments

Pointers may be passed as function arguments. Pointer notation usually is used to note
that an argument is a pointer. However, if the pointer argument is the name of an array,
subscript notation alternatively may be used.

Passing an Array Using Pointer Notation

In Chapter 10, we employed the following program that used one function to assign
values to the array and another function to display values from the array, rather than
doing all that work in the main function.
#include <iostream>
using namespace std;
void assignValues(int[], int);
void displayValues(int[], int);
const int MAX = 3;

int main ()
{
 int testScore[MAX];
 assignValues(testScore, MAX);
 displayValues(testScore, MAX);
 return 0;
}

void assignValues(int tests[], int num)
{
 for (int i = 0; i < num; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> tests[i];
 }
}

void displayValues(int scores[], int elems)
{
 for (int i = 0; i < elems; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << scores[i] << endl;
 }
}

As discussed in Chapter 10, the two functions, assignValues and displayValues, passed
their first argument, the array, by address. An argument passed by address can be
changed in the calling function (here main) by the called function (here assignValues) just
as if the argument had been passed by reference. Thus, the assignValues function
changed the value of the testScore array in main by assigning values to the elements of
that array.

The function prototypes and headers of the assignValues and displayValues functions
used a subscript [] to indicate that an array is being passed. However, you can also use
pointer notation—for instance, asterisk * instead of a subscript []—as the following

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0077.html (1 of 4)06.11.2004 22:52:20

Pointers as Function Arguments

example demonstrates:
#include <iostream>
using namespace std;
void assignValues(int*, int);
void displayValues(int*, int);
const int MAX = 3;

int main ()
{
 int testScore[MAX];
 assignValues(testScore, MAX);
 displayValues(testScore, MAX);
 return 0;
}

void assignValues(int* tests, int num)
{
 for (int i = 0; i < num; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> tests[i];
 }
}

void displayValues(int* scores, int elems)
{
 for (int i = 0; i < elems; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << scores[i] << endl;
 }
}

The following comparison of the prototypes of the assignValues function using subscript
and pointer notation, respectively, shows that the only difference is whether a subscript []
or an asterisk * is used to denote that the argument is an array:
void assignValues(int[], int);
void assignValues(int*, int);

Similarly, the following comparison of the function headers of the assignValues function
using subscript and pointer notation, respectively, shows that the only difference is
whether a subscript [] or an asterisk * is used to denote that the argument is an array.
This time, however, the asterisk precedes the variable name, whereas the subscript
follows the variable name.
void assignValues(int tests[], int num)
void assignValues(int* tests, int num)

Whether you use subscript or pointer notation to pass an array really is a matter of
preference. There is no programming advantage one way or the other. However, the next
section discusses a situation in which subscript notation is not an option, so pointer
notation is the only choice.

Passing a Single Variable Using Pointer Notation

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0077.html (2 of 4)06.11.2004 22:52:20

Pointers as Function Arguments

Passing an array name by address is relatively simple because the value of the array
name is an address. However, you may often want to pass a single variable by address.
By single variable I don’t mean a variable that is unmarried, but instead, for example, an
int as opposed to an int array.

With a single variable, subscript notation is not an option. Subscripts make sense only
with an array. Rather, you need to use pointer notation to pass a single variable by
address.

Passing an argument by reference or by address both enable the passed argument to be
changed in the calling function by the called function—only the syntax is different. For
comparison, let’s start with the following program from Chapter 9 that passes the variable
to be doubled by reference:
#include <iostream>
using namespace std;
void doubleIt(int&);

int main ()
{
 int num;
 cout << "Enter number: ";
 cin >> num;
 doubleIt(num);
 cout << "The number doubled in main is " << num << endl;
 return 0;
}
void doubleIt (int& x)
{
 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is " << x << endl;
}

Here is some sample input and output:
Enter number: 3
The number to be doubled is 3
The number doubled in doubleIt is 6
The number doubled in main is 6

Let’s now modify this program so it passes the variable to be doubled by address instead
of by reference:
#include <iostream>
using namespace std;
void doubleIt(int*);

int main ()
{
 int num;
 cout << "Enter number: ";
 cin >> num;
 doubleIt(&num);
 cout << "The number doubled in main is " << num << endl;
 return 0;
}
void doubleIt (int* x)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0077.html (3 of 4)06.11.2004 22:52:20

Pointers as Function Arguments

{
 cout << "The number to be doubled is " << *x << endl;
 *x *= 2;
 cout << "The number doubled in doubleIt is " << *x << endl;
}

There are four syntax differences between these two programs.

1. In the function prototype, you use an ampersand (&) for passing by reference but
an asterisk (*) for passing by address:
void doubleIt(int&); // by reference
void doubleIt(int*); // by address

2. Similarly, in the function header, you use an ampersand (&) for passing by
reference but an asterisk (*) for passing by address:
void doubleIt (int& x) // by reference
void doubleIt (int* x) // by address

3. When you call the function, you don’t need the address operator (&) for passing by
reference, but you do need one for passing by address since you are supposed to
be passing by the address of x.:
doubleIt(num); // by reference
doubleIt(&num); // by address

4. In the body of the called function, you don’t need to dereference the argument
when you pass it by reference, but you do need to when you pass by address
since x, being passed by address, is not a value but is instead a pointer:

// by reference - no dereference
{
 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is " << x << endl;
}
// by address - need to dereference
{
 cout << "The number to be doubled is " << *x << endl;
 *x *= 2;
 cout << "The number doubled in doubleIt is " << *x << endl;
}

You may legitimately be wondering why, with a single variable argument, I would want to
pass it by address when the syntax for passing it by reference seems easier. The pat
answer I give my students is that there are certain sadistic computer science teachers
(I’m not mentioning any names here) who insist their students pass by address to make
them suffer. All kidding aside though, there are actually certain library functions that do
use pass by address. Additionally, when using dynamic memory allocation and returning
pointers from functions (to be covered in the following sections), passing by address may
be the only option.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0077.html (4 of 4)06.11.2004 22:52:20

Dynamic Memory Allocation

Dynamic Memory Allocation

As discussed in Chapter 10, when declaring an array, the size declarator must be either a
literal or a constant, and may not be a variable. The following program from Chapter 10
attempts, unsuccessfully, to use a variable numTests in declaring the size of an array:
#include <iostream>
using namespace std;
int main ()
{
 int numTests;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int testScore[numTests];
 return 0;
}

The result is a compiler error. The compiler will flag the declaration of the array (int
testScore[numTests]) and complain that a constant expression was expected. The reason
a constant (or literal) expression is required is that in this program we are allocating
memory for the array at compile time. The compiler needs to know exactly how much
memory to allocate. However, if a variable is the size declarator, the compiler does not
know how much memory to allocate because a variable’s value may change. Indeed, in
the preceding example, the value of the variable used as the size declarator is not even
known until runtime.

Having said this though, it is often desirable to have the user determine at runtime the
size of the array so it is neither too small nor too large, but just right. To accomplish this,
you need to declare the array using dynamic memory allocation. The following program
modifies the previous one to use dynamic memory allocation:
#include <iostream>
using namespace std;
int main ()
{
 int numTests;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int * iPtr = new int[numTests];
 for (int i = 0; i < numTests; i++)
 {
 cout << "Enter test score #" << i + 1 << " : ";
 cin >> iPtr[i];
 }
 for (i = 0; i < numTests; i++)
 cout << "Test score #" << i + 1 << " is "
 << iPtr[i] << endl;
 delete [] iPtr;
 return 0;
}

Some sample input and output follows:
Enter the number of test scores: 3
Enter test score #1: 66

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0078.html (1 of 3)06.11.2004 22:52:21

Dynamic Memory Allocation

Enter test score #2: 88
Enter test score #3: 77
Test score #1 is 66
Test score #2 is 88
Test score #3 is 77

Dynamic memory allocation works, even though using a variable as a size declarator
does not, because with dynamic memory allocation, memory is not being allocated at
compile time. Instead, memory is being allocated at runtime, and from a different place
(the “heap”) rather than where it is allocated at compile time (the “stack”).

Note The terms heap and stack also have meaning in data structures. Here, however,
these terms are used to identify different areas of memory: the stack for memory
allocated at compile time; the heap for memory allocated at runtime.

While you could dynamically allocate a single variable, normally dynamic memory
allocation is used with arrays (as in this example), or with objects such as structures or
classes, which are discussed in Chapter 14.

You need to use a pointer to dynamically allocate memory. The pointer must be of the
same data type as the array that is to be allocated dynamically. An assignment statement
is used, as in the following statement from the program:
 int * iPtr = new int[numTests];

The pointer is on the left side of the assignment operator. Immediately to the right of the
assignment statement is the new operator, whose purpose is to dynamically allocate
memory. The array that is to be allocated dynamically immediately follows the new
operator, described by data type and a size declarator in a subscript [], but with no array
name. The size declarator may be a variable instead of a literal or constant.

Since the array has no name, it and its elements are referred to through the pointer that
created it, such as iPtr[i] in the for loops used to assign values to and output the values of
the array elements. Therefore, the scope of the dynamically created array is the same as
the scope of the pointer used to declare it.

The significance of dynamic memory allocation is not scope, but lifetime. Like a global
variable or a static local variable, the lifetime of a dynamically created variable is as long
as that of the program’s execution. However, if before the end of the program the pointer
that points to a dynamically created variable goes out of scope, you no longer have any
way of accessing the dynamically created memory. Therefore, the dynamically created
variable still takes up memory, but is inaccessible. This is called a memory leak.

Having programs that dynamically allocate memory but never release it is akin to a library
where patrons check out books but never return them. Sooner or later the library will run
out of books, and the computer will run out of memory.

A memory leak is not a particular concern in the preceding program since the pointer that
points to the dynamically allocated memory does not go out of scope until immediately
before the program ends. However, if you dynamically allocate memory inside a function
using a local pointer (as in a program in the next section), then when the function
terminates, the pointer will be destroyed but the memory will remain, orphaned since
there is no longer a way of accessing it for the remainder of the program.

You release dynamically allocated memory with the delete operator. Just as the new
operator is used to create dynamically allocated memory, the delete operator is used to
return dynamically allocated memory to the operating system. The syntax is the delete

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0078.html (2 of 3)06.11.2004 22:52:21

Dynamic Memory Allocation

operator followed by the pointer that points to the dynamically created memory.
Additionally, if the dynamically created memory is an array as opposed to a single
variable, then empty subscripts [] are placed between the delete operator and the pointer,
as in the following statement from the program:
delete [] iPtr;

While the delete operator operates on a pointer, the delete operator does not delete the
pointer. Instead, the delete operator deletes the memory at the address pointed to by the
pointer.

Note You should only use the delete operator with a pointer that points to dynamically
created memory. Using the delete operator with a pointer that points to memory
created on the stack rather than from the heap can lead to unpredictable results.

Finally, since the pointer is the only way to which you can refer to the dynamically
allocated variable, you should not change the value of the pointer to point to a different
address unless you first assign a different pointer to the dynamically allocated memory.
Otherwise, you no longer have a way of accessing the dynamically created memory. The
result would be a memory leak.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0078.html (3 of 3)06.11.2004 22:52:21

Returning Pointers from Functions

Returning Pointers from Functions

In Chapter 10, you learned several ways to initialize a character array. The following
program shows you an additional way:
#include <iostream>
using namespace std;
char * setName();

int main (void)
{
 char* str = "Jeff Kent";
 cout << str;
 return 0;
}

With some sample input and output:
Enter your name: Jeff Kent
Your name is Jeff Kent

The key statement is
 char* str = "Jeff Kent";

This statement is almost the same as:
 char str[] = "Jeff Kent";

In both statements, str is a character pointer, and implicit array sizing is used. The
difference is that str in the first statement (char* str) is a variable pointer whereas str in
the second statement (char str[]) is a constant pointer.

Returning a Pointer to a Local Variable (Not a Good Idea)

Now, following the advice in Chapter 9 to make your program more modular, you try to
write a separate function, setName, to obtain the user input. The setName function
creates a character array, assigns user input to that array using the getline function of the
cin object, and then returns a pointer to that character array. The address which is
returned by the setName function then is assigned to the character pointer str in main.
The following program implements this concept:
#include <iostream>
using namespace std;
char * setName();

int main (void)
{
char* str = setName();
cout << str;
return 0;
}

char* setName (void)
{
char name[80];

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0079.html (1 of 3)06.11.2004 22:52:22

Returning Pointers from Functions

cout << "Enter your name: ";
cin.getline (name, 80);
return name;
}

The following is some sample input and output:
Enter your name: Jeff Kent
..................D8

While the outputted name is interesting, it certainly would be difficult to write, and in any
event, it is not what I inputted. What went wrong is that the pointer returned by the
setName function points to a local character array whose lifetime ended when that
function finished executing and returned control to main.

Accordingly, the indicated solution is to extend the lifetime of that character array to the
life of the program execution itself. Of course, one way to accomplish this is by making
the character array a global variable, but as you should recall from Chapter 9, there are
other and better alternatives.

Returning a Pointer to a Static Local Variable

One superior alternative is to make the character array in setName static, as in the
following program:
#include <iostream>
using namespace std;
char * setName();

int main (void)
{
char* str = setName();
cout << str;
return 0;
}

char* setName (void)
{
 static char name[80];
 cout << "Enter your name: ";
 cin.getline (name, 80);
 return name;
}

The output from the following sample input now looks much better:
Enter your name: Jeff Kent
Jeff Kent

This works because while the scope of a static local value is limited to the function in
which it is declared, its lifetime is not similarly limited, but instead lasts as long as the
execution of the program. Therefore, the pointer returned by the setName function points
to a local character array whose lifetime, since it was declared with the static keyword,
persisted after the setName function finished executing and returned control to main.

Returning a Pointer to a Dynamically Created Variable

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0079.html (2 of 3)06.11.2004 22:52:22

Returning Pointers from Functions

Another alternative, which you learned in this chapter, is dynamic memory allocation:
#include <iostream>
using namespace std;
char * setName();

int main (void)
{
char* str;
str = setName();
cout << str;
delete [] str;
return 0;
}

char* setName (void)
{
char* name;
name = new char[80];
cout << "Enter your name: ";
cin.getline (name, 80);
return name;
}

This works because the pointer returned by the setName function points to a character
array whose lifetime, since it was declared using dynamic memory allocation, persisted
after the setName function finished executing and returned control to main.

As discussed in the previous section, if you dynamically allocate memory inside a function
using a local pointer, then when the function terminates, the pointer will be destroyed but
the memory will remain, orphaned since there is no longer a way of accessing it for the
remainder of the program. This problem is avoided in this program since the local
pointer’s address is returned by the setName function and is assigned in main to another
pointer variable, str. The pointer variable str then is used at the end of main with the
delete operator to deallocate the character array which was dynamically allocated in the
setName function.

This is an example where different pointers point to the same memory address. However,
in the case of dynamically created memory, once you use one of those pointers with the
delete operator, don’t make the common mistake of using another of the pointers with the
delete operator. You should only use the delete operator with a pointer that points to
dynamically created memory. If that dynamically allocated memory already has been
deallocated using the delete operator, using the delete operator the second time will lead
to unpredictable results.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0079.html (3 of 3)06.11.2004 22:52:22

Summary

Summary

A pointer is a variable or constant whose value is the address of another variable or
constant. Some C++ tasks are performed more easily with pointers, while other C++
tasks, such as dynamic memory allocation, cannot be performed without pointers.

Like any variable or constant, you must declare a pointer before you can work with it. The
only difference between declaring a pointer and a variable or constant which stores a
value instead of an address is that the pointer declaration includes an asterisk between
the data type and the pointer name. However, the data type in the declaration of a pointer
is not the data type of its value, as is the case with a variable or constant which stores a
value instead of an address. The actual data type of the value of all pointers, whether
integer, float, character, or otherwise, is the same, a long hexadecimal number that
represents a memory address. Rather, the data type in the declaration of a pointer refers
to the data type of another variable (or constant) whose memory address is the value of
the pointer. In other words, the value of an integer pointer variable must be the address of
an integer variable or constant, the value of a float pointer variable must be the address of
a float variable or constant, and so forth.

You should always explicitly assign a pointer a value before you use it; otherwise, you risk
a runtime error or worse. When you are ready to assign a pointer the address of another
variable or constant, you use the address operator with the target variable or constant.
However, if it is too early in your code to know which address to assign to the pointer, you
first assign the pointer NULL, which is a constant defined in several standard libraries,
including iostream. The value of NULL, the memory address 0, signals that the pointer is
not intended to point to an accessible memory location.

The indirection operator is used on a pointer to obtain the value of the variable or
constant to which the pointer points. This operation is said to dereference the pointer.

A pointer may be a variable or a constant. The name of an array is a constant pointer,
pointing to the base address of the array. A pointer variable, being a variable, may point
to different variables or constants at different times in the program.

A pointer variable may be incremented. Incrementing a pointer variable is common when
looping through consecutive indices of an array. Incrementing a pointer variable does not
necessarily increase its value by 1. Instead, incrementing a pointer variable increases its
value by the number of bytes of its data type.

Pointers may be passed as function arguments. This is called passing by address.
Pointer notation usually is used to note that an argument is a pointer. The difference in
syntax between passing by reference and passing by address is that, in the function
prototype and header, you use an ampersand (&) for passing by reference, but an
asterisk (*) for passing by address. Additionally, if the pointer argument is the name of a
single variable as opposed to an array, there are two further differences in syntax
between passing by reference and passing by address. First, when you call the function,
you don’t need the address operator (&) for passing by reference, but you do for passing
by address. Second, in the body of the called function, you don’t need to dereference the
argument when you pass it by reference, but you do when you pass by address.

You can use a variable as a size declarator for an array if you use dynamic memory
allocation because memory is allocated at runtime from a different place—the heap—than
where memory is allocated for variables declared at compile time on the stack. You need
to use a pointer with the new operator to dynamically allocate memory, and the pointer

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0080.html (1 of 2)06.11.2004 22:52:23

Summary

must be of the same data type as the array which is to be allocated dynamically.

The lifetime of a dynamically allocated variable may be as long as that of the program’s
execution. However, if before the end of the program the pointer that points to a
dynamically created variable goes out of scope, you no longer have any way of accessing
the dynamically created memory. Therefore, the dynamically created variable still takes
up memory, but is inaccessible. This is called a memory leak. To avoid memory leaks,
you use the delete operator on the pointer that points to the dynamically allocated
memory. This deallocates the dynamically allocated memory.

The return value of a function may be a pointer. If so, the pointer should point to either a
static local variable or a dynamically created variable, not a local variable.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0080.html (2 of 2)06.11.2004 22:52:23

Quiz

Quiz
1. What is a pointer?

2. Name a C++ task that requires a pointer to be performed.

3. What is the difference between declaring an integer variable and declaring an
integer pointer variable?

4. What is the meaning of the data type in the declaration of a pointer?

5. What is the meaning and purpose of NULL?

6. What operator do you use to assign a pointer the address of another variable or
constant?

7. What is the purpose of the indirection operator?

8. May a pointer point to different memory addresses at different times in the
program?

9. May more than one pointer point to the same memory address?

10. What is the effect of incrementing a pointer variable?

11. What are the purposes of the new and delete operators?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0081.html06.11.2004 22:52:23

Chapter 12: Character, C-String, and C++ String Class Functions

Chapter 12: Character, C-String, and C++ String Class
Functions

Overview

The word “character” has many meanings. One complimentary definition is used to
denote a person with good character. A less complimentary meaning, which I heard more
than once from my parents and teachers, was that I was a character.

The word character has a third meaning in programming, though—as a data type. As you
learned in Chapter 2, each printable (letter, digit, punctuation) or whitespace (ENTER,
TAB, SPACEBAR) key on the keyboard has a corresponding ANSI, ASCII, or Unicode
value. Thus, you can assign any single user input to a character variable without fear of a
data type mismatch.

Of course, often a user’s input may consist of more than one character. As you learned in
Chapter 10, individual characters may be organized together as a character array.
Usually, a character array is ended by a null character, so its value can be outputted by
the cout object and the stream insertion operator (<<). Such a null-terminated character
array often is referred to as a “C-string.” The “C” in “C-string” refers to this character array
being used in the C programming language, which was the predecessor to the C++
programming language.

C-strings often are used for data entry. For example, if the user is supposed to enter a
four-digit number, but instead enters “Jeff,” an attempt to assign that input directly to an
integer variable will result in either a run-time error or the integer variable having a so-
called “garbage” value such as –858993460. However, if the user input is first assigned to
a five-element character array (the fifth element for the null character), no run-time error
would occur since any input can be represented as a character, and each character in the
character array can be verified as a digit. If proper input is verified, then you can use
standard library functions, as I will show you in this chapter, to convert the character array
representation of an integer, long, or float value into an actual integer, long, or float value.

The C++ programming language introduced the string data type, also referred to as the C+
+ string class. The C++ string class often is used instead of a C-string. The functions used
by C-strings and the C++ string class, respectively, will be compared and contrasted in
this chapter.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0082.html06.11.2004 22:52:24

Reading a Character

Reading a Character

You may legitimately be wondering why I am devoting an entire section of this chapter to
reading a character. After all, reading a character usually is relatively simple. You just use
the cin object and the stream insertion operator (>>) as in the following code fragment:
 char grade;
 cout << "Enter a grade: ";
 cin >> grade;

However, in programming, as in life, matters rarely are as simple as they first appear to
be, and this is no exception. The seemingly minor detail of the ENTER key being pressed
to end input gives rise to several interesting, and fortunately quite solvable, problems.

The “Press Any Key to Continue” Problem

The preceding code fragment had the user enter a character which was then assigned to
a character variable. However, the purpose of a user inputting a character is not always to
assign that input to a variable.

For example, programs often prompt the user to press any key to continue. Indeed, a
standard technical support joke concerns a user who complains that their keyboard does
not have an “any” key. Of course, any key means any key on the keyboard, including the
ENTER key.

While this joke may be entertaining, implementing the “press any key to continue”
functionality to include the ENTER key is more complicated than is first apparent.

Let’s examine the following program:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue:
";
 cin >> ch;
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";
 else
 cout << "You quit";
 } while (ch != 'Q' && ch != 'q');
return 0;
}

The program works fine if you press Q or q to quit. The program also works fine if you
press any other printable character to continue, such as a letter other than Q or q, a digit,
or a punctuation mark.

However, what if you press the ENTER key to continue? The answer is: nothing happens;
cin is still waiting for you to enter something. You have to enter a printable character to
continue. The reason is that the stream extraction operator (>>) ignores all leading

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (1 of 10)06.11.2004 22:52:26

Reading a Character

whitespace characters, such as the newline character caused by pressing the ENTER
key.

The cin.get Function

In Chapter 10, we discussed the getline function of the cin object. The getline function is
called a member function. A member function is a function that is not called by itself, as
is, for example, the pow function we used in Chapter 4 to raise a number to a certain
power. Instead, a member function is called from an object. Here, getline is a member
function of cin. It is called from cin, and separated by a dot, as in cin.getline(name, 80).

Here we will use another member function of cin, get. The get member function was
briefly explained in Chapter 10. There, the get function, like the getline function, could be
called with two or three arguments, the first argument being a character array.

In addition to the two and three argument versions, the get member function also may be
called with no arguments or with one argument. Unlike the two and three argument
versions, the zero and one argument versions of the get member function are used to
read a single character rather than a character array. The one-argument version will be
discussed in this section. The no-argument version will be discussed in the next section,
titled “The cin.ignore Function.”

The data type of the one argument is a character, and the value of this argument changes
to whichever keyboard key the user pressed. This is true even if the keyboard key is the
ENTER key. Thus, the get member function, unlike the cin object with the stream
insertion operator (<<), may be used to assign to a character variable the newline
character resulting from pressing the ENTER key.

We will make one change to the previous program. We will change the statement cin >>
ch to cin.get(ch), so the program now reads as follows:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue:
";
 cin.get(ch);
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";
 else
 cout << "You quit";
 } while (ch != 'Q' && ch != 'q');
return 0;
}

Now, as the following input and output show, the program works if you press the ENTER
key to continue:
Press Q or q to quit, any other key to continue:
You want to continue?
Press Q or q to quit, any other key to continue: q
You quit

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (2 of 10)06.11.2004 22:52:26

Reading a Character

However, as shown by the following input, if you press a printable character to continue,
you are not able to input at the next prompt, which is seemingly skipped:
Press Q or q to quit, any other key to continue: x
You want to continue?
Press Q or q to quit, any other key to continue: You want to
continue?
Press Q or q to quit, any other key to continue:

As this output reflects, by curing the problem of a whitespace character not being
recognized, we have introduced a new problem when a printable character is inputted.

A description of why this new problem occurred first requires a brief explanation of the
term input buffer. The input buffer is an area of memory that stores input, such as from
the keyboard, until that input is assigned, such as by cin and the stream extraction
operator (>>) or by the get or getline member functions of the cin object.

When the loop begins, the input buffer is empty. Accordingly, execution of the loop halts
at the statement cin.get(ch) until you enter some input.

As shown in Figure 12-1, if you press the ENTER key, the only character in the input
buffer is the newline character. That character, being the first (and only) one in the input
buffer, is removed from the input buffer to be assigned to the variable ch. Thus, at the
next iteration of the loop, the input buffer again is empty.

Figure 12-1: The input buffer when only the enter key is pressed

By contrast, if you type the letter x and then press the ENTER key to end input, then, as
depicted in Figure 12-2, the input buffer contains not one but two characters, x and the
ENTER key, shown by the newline character.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (3 of 10)06.11.2004 22:52:26

Reading a Character

Figure 12-2: The input buffer after typing the letter x and pressing the enter key

The get member function of the cin object removes the first character, x, from the input
buffer and assigns that value to the variable ch. As shown in Figure 12-2, the newline
character still remains in the input buffer.

Since the newline character remains in the input buffer, at the next iteration of the loop,
you do not have the opportunity to enter input. Instead, the get member function, which
reads whitespace as well as printable characters, removes the newline character from the
input buffer and assigns that newline character to the variable ch. Now the input buffer is
empty, so at the next loop iteration you will have the opportunity to enter input.

The cin.ignore Function

The solution is to clear the newline character out of the input buffer before calling the
getline function. You do this by using the ignore member function of the cin object.

The ignore member function, like the get and getline member functions, also is
overloaded. It can be called with no arguments, one argument, or two arguments.

Calling the ignore function with no arguments will cause the next character in the input
buffer to be read, and then discarded—that is, it won’t be assigned to anything. This is
exactly what we want. We don’t need to assign the newline character left over in the input
buffer into some variable. Rather, we just need to get rid of it.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (4 of 10)06.11.2004 22:52:26

Reading a Character

Note The one- and two-argument versions of the ignore member function are used
with character arrays instead of with an individual character. In the one
argument version of the ignore member function, the one argument is the
maximum number of characters to be removed from the input buffer. For
example, the statement cin.ignore(80) removes up to the next 80 characters
from the input buffer. In the two-argument version, the second argument is a
character which, if encountered before the number of characters specified in the
first argument, causes the removal from the input buffer to stop. Thus, the
statement cin.ignore(80, '\n') skips the next 80 characters or until a newline is
encountered, whichever comes first.

You also could use the get member function with no arguments to the same effect as the
ignore member function with no arguments. The following two statements do the same
thing:
•••cin.ignore();
•••cin.get();

This section will use the no-argument version of the ignore member function, but you
could substitute the no argument version of the get member function to the same effect.

Accordingly, the following program modifies the previous one by following the call of the
get member function with a call to the ignore member function:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue:
";
 cin.get(ch);
 cin.ignore();
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";
 else
 cout << "You quit";
 } while (ch != 'Q' && ch != 'q');
return 0;
}

Now, as the following input and output show, the program works if you press a printable
character to continue:
Press Q or q to quit, any other key to continue: x
You want to continue?
Press Q or q to quit, any other key to continue: q
You quit

The reason this works is that the no-argument ignore member function removes the next
character from the input buffer. As Figure 12-3 shows, this removes the leftover newline
character from the input buffer.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (5 of 10)06.11.2004 22:52:26

Reading a Character

Figure 12-3: The input buffer after cin.ignore()

However, as the following input and output show, if you press the ENTER key to continue,
you have to do so twice since the first attempt seems to be skipped:
Press Q or q to quit, any other key to continue:

You want to continue?
Press Q or q to quit, any other key to continue: q
You quit

This is getting frustrating! We can get either printable or whitespace input to work
properly, but not both at the same time.

It is normal to experience frustration in programming. It is how you react to the frustration
that is important. Persistence pays in programming, both figuratively and literally. Almost
always there is a solution, and there is one here. First, though, you should understand the
problem you are trying to solve.

The reason you have to press the ENTER key twice after we added the call to the no-
argument ignore member function is that the no argument ignore member function
removes the next character from the input buffer. However, as shown in Figure 12-4,
there is nothing in the input buffer when the no-argument ignore member function is
called. Accordingly, the ENTER key needs to be pressed a second time to put something
in the input buffer for the no-argument ignore member function to remove.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (6 of 10)06.11.2004 22:52:26

Reading a Character

Figure 12-4: Why pressing the enter key twice is required

As the previous programs and sample inputs and outputs show, we need to call the
ignore member function after the get member function if, and only if, a newline character
remains in the input buffer. Therefore, the suggested solution is to use an if statement to
call the ignore member function only if the character inputted by the user was not a
newline character. If it was, then the input buffer would be empty after the newline
character was assigned to the variable ch, so the ignore member function should not be
called. However, if a printable character was entered, then the newline character would
remain in the input buffer after the printable character is assigned to the variable ch, so
the ignore function should be called. The following code fragment illustrates this:
•••if (ch != '\n')
 •••cin.ignore();

The following program implements this solution, modifying the previous one by calling the
ignore member function only if the input was not a newline character:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue:
";
 cin.get(ch);
 if (ch != '\n')
 cin.ignore();
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (7 of 10)06.11.2004 22:52:26

Reading a Character

 else
 cout << "You quit";
 } while (ch != 'Q' && ch != 'q');
return 0;
}

Now the program works properly regardless of whether a printable character or the
ENTER key is used to continue.

Note The condition for both the if and while statements is ch != 'Q' && ch != 'q'. A
common rookie mistake is to use the || operator when the && should be used,
and vice versa. Were the || operator used, as in ch != 'Q' && ch != 'q', the
condition would always be true. A variable can have only one value at a time, so
the value of ch will never equal Q or q, since it cannot equal both at the same
time. Of course, the expression could be recast using the || operator as !(ch ==
'Q' && ch == 'q').

Combining Use of cin, cin.get, and cin.getline

The problem of a newline character remaining in the input buffer is not limited to the
situation in which the ENTER key is pressed in response to a prompt to press any key to
continue. This problem also arises when cin and the get or getline member functions are
used together in one program, since the ENTER key also is used to end input.

The following program is an example of cin and the getline member function used
together in one program:
#include <iostream>
using namespace std;

int main(void)
{
 char name[80];
 int courseNum;
 cout << "Enter course number: ";
 cin >> courseNum;
 cout << "Enter your name: ";
 cin.getline(name, 80);
 cout << "Course number is: " << courseNum << endl;
 cout << "Your name is: " << name << endl;
 return 0;
}

Here is some sample input and output:
Enter course number: 802
Enter your name: Course number is: 802
Your name is:

You did not have the opportunity to enter a name. The reason is similar to the situation in
the last section in which the user did not have a chance to enter input.

As Figure 12-5 shows, when you typed 802 and then pressed the ENTER key to end
input, the input buffer contained not only the number 802 but also the newline character
resulting from pressing the ENTER key. The cin with the stream extraction operator (>>)
removed from the input buffer and then assigned to the variable courseNum, everything
up to, but not including, the newline character, which remained in the input buffer.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (8 of 10)06.11.2004 22:52:26

Reading a Character

Figure 12-5: The input buffer after cin >> courseNum followed by cin.getline
(name,80)

Since the newline character remains in the input buffer, you do not have the opportunity
to enter input at the next statement: the call of the getline member function. Instead, as
Figure 12-5 depicts, the getline member function, which reads whitespace as well as
printable characters, removes the newline character from the input buffer and assigns that
newline character to the character array name. While the character array name has been
assigned a value, it is not a printable character, so it appears in the output that name has
no value.

The solution, as pointed out in the previous section, is to follow use of the cin object and
the stream extraction operator (>>) with the no-argument version of the ignore (or get)
member function. However, unlike the previous section, there is no need for an if
statement, since a cin statement with the stream extraction operator (>>) always leaves a
newline character in the input buffer. The following modification of the previous program
implements this solution by adding a call to the no-argument version of the ignore
member function after use of the cin object with the stream extraction operator (>>):
#include <iostream>
using namespace std;

int main(void)
{
 char name[80];
 int courseNum;
 cout << "Enter course number: ";
 cin >> courseNum;
 cin.ignore();
 cout << "Enter your name: ";
 cin.getline(name, 80);
 cout << "Course number is: " << courseNum << endl;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (9 of 10)06.11.2004 22:52:26

Reading a Character

 cout << "Your name is: " << name << endl;
return 0;
}

As the following sample input and output show, the program now works properly:
Enter course number: 802
Enter your name: Jeff Kent
Course number is: 802
Your name is: Jeff Kent

Rules to Live By

Here are three simple rules that will avoid the problem caused by a newline character left
in the input buffer (assuming, of course, you do not have a programming reason to keep
the newline character in the input buffer).

Rule #1: Always follow cin and the stream extraction operator (>>) with the ignore
member function.

Explanation: The cin object with the stream extraction operator (>>) always leaves a
newline character in the input buffer. Clear it out with the ignore member function. For
example:
 char ch;
 cin >> ch;
 cin.ignore();

Rule #2: Don’t follow the getline member function with the no-argument ignore member
function.

Explanation: The getline member function removes the newline character that terminated
input from the input buffer. Therefore, it should not be followed with the ignore member
function.

Rule #3: After using the get member function with one argument, such as cin.get(ch),
check to see if you have a newline character in the input buffer. If you do, clear it with the
ignore member function. If you don’t, don’t.

Explanation: The get member function with one argument being a single character will
leave a newline character in the input buffer if you type a character and then press
ENTER. It won’t if you just press ENTER. Therefore, you need to check to see if you need
to clear the buffer. For example:
 char ch;
 cin.get(ch);
 if (ch != '\n')
 cin.ignore();

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0083.html (10 of 10)06.11.2004 22:52:26

Useful Character Functions

Useful Character Functions

The C++ standard library cctype contains a number of functions that are useful when
working with characters. Two of these functions convert the case of a letter, either from
lower to upper or vice versa. The other functions are used to test the value of a character.

Case Conversion Functions

The toupper and tolower functions each have one argument, a character. If the character
represents a letter, A through Z or a through z, the toupper function returns the upper
case of that letter. Conversely, the tolower function returns the lower case of that letter. If
the argument is not a letter, both functions simply return the same character that is the
argument.

The toupper and tolower functions can be useful. For example, the following program
from a previous section of this chapter requires that you check, both in an if condition and
a while condition, for an uppercase Q and a lowercase q to determine if the user elected
to quit:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue:
";
 cin.get(ch);
 if (ch != '\n')
 cin.ignore();
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";
 else
 cout << "You quit";
 } while (ch != 'Q' && ch != 'q');
return 0;
}

The use of the toupper function eliminates the need to check for the lowercase q:
#include <iostream>
#include <cctype>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue:
";
 cin.get(ch);
 ch = toupper(ch);
 if (ch != '\n')

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0084.html (1 of 3)06.11.2004 22:52:27

Useful Character Functions

 cin.ignore();
 if (ch != 'Q')
 cout << "You want to continue?\n";
 else
 cout << "You quit";
 } while (ch != 'Q');
return 0;
}

Pressing the lowercase q still will cause the program to recognize that the user quit even
though the if condition and the while condition only compare to an uppercase Q:
Press Q or q to quit, any other key to continue: q
You quit

The first modification was to include the cctype standard library in addition to the iostream
standard library. This is because the toupper and tolower functions are not defined in the
iostream standard library but instead in the cctype standard library.

The other modification is to call the toupper function:
 ch = toupper(ch);

The call of the toupper function passes as an argument the character variable into which
the user’s input was stored. The return value of the function is assigned to the same
character value.

It is important to use the return value. The toupper function does not change the value of
its argument from lower- to uppercase. Rather, it returns the uppercase version of the
argument if the argument is a letter.

Note This program also could have employed the tolower function instead of the
toupper function and then compared it to a lower case q.

Functions that Check the Value of a Character

A number of functions in the cctype standard library permit you to determine the value of
a character—that is, whether it is a letter, digit, or whitespace. These functions each take
one argument, a character, and return a Boolean value, true or false. Table 12-1
summarizes these functions.

Table 12-1: Functions that Check the Value of Characters

Function Description

isalpha Returns true if the argument is a letter of the alphabet; false if
otherwise.

isalnum Returns true if the argument is a letter of the alphabet or a digit;
false if otherwise.

isdigit Returns true if the argument is a digit; false if otherwise.

islower Returns true if the argument is a lower case letter of the
alphabet, false otherwise.

isprint Returns true if the argument is a printable character (including a
space created by pressing the spacebar); false if otherwise.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0084.html (2 of 3)06.11.2004 22:52:27

Useful Character Functions

ispunct Returns true if the argument is a punctuation character (printable
character other than a letter, digit or space); false if otherwise.

isupper Returns true if the argument is an uppercase letter of the
alphabet; false if otherwise.

isspace Returns true if the argument is a whitespace character (tab,
newline, or space); false if otherwise.

You can use these functions to validate user input. For example, the following code
fragment illustrates use of a function to validate a three letter password which, to be valid,
must consist of an uppercase letter followed by a digit followed by a lowercase letter,
such as “Z3s.”
bool isValidPassWord(char* pw)
{
 if (!isupper(pw[0])
 return false;
 if (!isdigit(pw[1])
 return false;
 if (!islower(pw[2])
 return false;
 return true;
}

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0084.html (3 of 3)06.11.2004 22:52:27

Useful C-String and C++ String Functions

Useful C-String and C++ String Functions

The cstring standard library provides a number of functions that are useful when working
with null terminated character arrays, or C-strings. The string standard library provides a
number of functions that are useful when working with the C++ string class. This section
will discuss together the functions you use with a C-string and the C++ string class,
respectively, to perform several common tasks.

Determining the Length of a String

You use the strlen function to determine the length of a C-string. The strlen function takes
one argument, which may be a character array, a pointer to a character array, or a literal
string. This function returns an integer representing the number of characters, not
including the null character. The following code fragment illustrates the use of the strlen
function:
int len;
len = strlen("Jeff") // len is 4
char* stinkydog = "Dante";
len = strlen(stinkydog); // len is 5
char name[80] = "Devvie";
len = strlen(name); // len is 6
char crazydog[80] = "Micaela";
len = strlen(crazydog); // len is 7

The strlen function is particularly useful in determining the length of a character array. For
example, the following code fragment illustrates use of the strlen and isdigit functions to
validate a social security number which, to be valid, must be exactly 11 characters long
and consist of three digits, a dash, two digits, a dash, and four digits:
bool isValidSSN(char* strInput)
{
 if (!strlen(strInput) == 11)
 return false;
 for (int x = 0; x < 11; x++)
 {
 if (x == 3 || x == 6)
 {
 if (strInput[x] != '-')
 return false;
 }
 else
 {
 if (!isdigit(strInput[x])
 return false;
 }
 }
 return true;
}

The C++ string class member functions that are comparable to the effect of strlen are
length and size. Neither has any arguments, and both return an integer representing the
length of the string. The following code fragment illustrates the use of the length and size
member functions:

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0085.html (1 of 6)06.11.2004 22:52:28

Useful C-String and C++ String Functions

 string s = "Jeff Kent";
 cout << s.length(); // outputs 9
 cout << s.size(); // also outputs 9

Assigning a Value to a String

You cannot assign the value of one C-string to another with an assignment operator, such
as in the following code fragment:
char* target = "Jeff Kent";
char source[80] = "Micaela";
target = source;

The value of source is the base address of the target array. Thus, the assignment
operator assigns the address of source to target, not the value of source to target.

Instead, you use the strcpy function to assign the value of one C-string (the source string)
to another C-string (the target string). The strcpy function takes two arguments. The first
argument, the target string, is a pointer to a character array. This argument cannot be a
string literal since a value is being assigned to it. The second argument, the source string,
may be a character array, a pointer to a character array, or a string literal. The following
code fragment illustrates the use of the strcpy function:
 char* target = "Jeff Kent";
 char source[80] = "Micaela";
 strcpy(target, source);

You need to be careful when using the strcpy function that the source C-string is not
larger than the target C-string. To avoid this problem, you can use the strncpy function.
This function has a third argument, an integer, representing how many characters to copy
from the source C-string to the target C-string. The following code fragment illustrates the
use of the strncpy function:
 char* target = "Jeff Kent";
 char source[80] = "Micaela";
 strncpy(target, source, 9);

In contrast to C-strings, you may use the assignment operator to assign the value of one C
++ string class variable to another, such as in the following code fragment:
 string target = "Jeff Kent";
 string source = "Micaela";
 target = source;

Appending to a String

The strcpy function overwrites the contents of the target C-string with the contents of the
source C-string. Sometimes you don’t want to overwrite the contents of the target C-
string, but instead add, or append, to its contents with the contents of the source C-String.
Under these circumstances, use the strcat function, the “cat” being shorthand for
“concatenate,” which is a longer way of saying append.

The strcat function, like the strcpy function, takes two arguments, the source target, a
variable pointer to a character array, and the source C-string, which may be a character
array, a pointer to a character array, or a string literal. The following code fragment
illustrates the use of the strcat function:
 char target[80] = "Jeff";

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0085.html (2 of 6)06.11.2004 22:52:28

Useful C-String and C++ String Functions

 char* source= " Kent";
 strcat(target, source);
 cout << target; // outputs "Jeff Kent"

As with the strcpy function, you need to make sure when using the strcat function that the
source string is large enough to accommodate the addition of the target C-string.

You can append the value of one C++ string class variable to another with the combined
addition and assignment operator, such as in the following code fragment:
 string target = "Jeff";
 string source = " Kent";
 target += source;
 cout << target; // outputs "Jeff Kent"

Comparing Two Strings

You cannot use relational operators to compare the value of one C-string to another, such
as in the following code fragment:
 char str1[80] = "Devvie Kent";
 char str2[80] = "Devvie Kent";
 if (str1 == str2)
 cout << "The two C-strings are equal";
 else
 cout << "The two C-strings are not equal";

The output will always be: “The two C-strings are not equal.” The reason is that the value
of each array name is the base address of that array. Thus, the comparison is not of
values, but of addresses. Two variables cannot have the same address, so the result of
the comparison for equality will be false.

Instead, you use the strcmp function to compare the values of two C-strings. The strcmp
function has two arguments, the two C-strings to be compared. This function returns 0 if
the two C-strings are equal in value. This is demonstrated by the following code fragment:
 char str1[80] = "Devvie Kent";
 char str2[80] = "Devvie Kent";
 if (strcmp(str1, str2 == 0))
 cout << "The two C-strings are equal";
 else
 cout << "The two C-strings are not equal";

The call to the strcmp function could be changed to:
 if (!strcmp(str1, str2))

This works since 0 is logical false, so with the logical ! operator the result of logical false is
changed to logical true.

The strcmp function returns a negative value if the first C-string is “less than” the second
one, a positive value if the first C-string is “greater than” the second one. In this context of
comparing two C-strings, whether one string is less or greater than another involves a
comparison of the ASCII value of the two strings, starting with the first character, and
continuing to each succeeding character as long as it takes to “break the tie.” Table 12-2
illustrates the results of several comparisons:

Table 12-2: Results of String Comparisons

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0085.html (3 of 6)06.11.2004 22:52:28

Useful C-String and C++ String Functions

First String
(str1)

Second String
(str2)

strCmp(str1,
str2) Reason

Jeff jeff negative j has a higher ASCII
value than J

aZZZ Zaaa positive a has a higher ASCII
value than Z

chess check positive First three characters
are the same, but
fourth letter of first C-
string, s, has higher
ASCII value than fourth
character of second C-
string, c.

Jeff Jeffrey negative First four characters
are the same, but fifth
character of second C-
string, r, has a higher
ASCII value than null
character in the fifth
position of the first C-
string

Because three different return values are possible, the strcmp function often is used in an
if / else if / else structure, as in the following program:
#include <iostream>
#include <cstring>
using namespace std;

int main(void)
{
 char str1[80], str2[80];
 cout << "Enter first string: ";
 cin >> str1;
 cout << "Enter second string: ";
 cin >> str2;
 if (strcmp(str1, str2) == 0)
 cout << "The two C-strings are equal";
 else if (strcmp(str1, str2) > 0)
 cout << "The first C-string is larger";
 else
 cout << "The second C-string is larger";
return 0;
}

The following are several sample inputs and outputs:
Enter first string: Jeff
Enter second string: Jeff
The two C-strings are equal
===
Enter first string: Jeff
Enter second string: jeff
The second C-string is larger

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0085.html (4 of 6)06.11.2004 22:52:28

Useful C-String and C++ String Functions

===
Enter first string: chess
Enter second string: check
The first C-string is larger
===
Enter first string: Jeff
Enter second string: Jeffrey
The second C-string is larger
===

By contrast, you can use relational operators to compare two variables of the C++ string
class. Whether one string is “less than” or “greater than” another works the same way for
the C++ string class as it does for C-strings. The following code fragment is illustrative:
 string str1 = "Jeff";
 string str2 = "jeff";
 string str3 = "Jeffrey";
 str1 < str2; // true
 str3 > str1; // true
 str2 > str3; // true

Conversion Between a C-String and a Number

The cstdlib standard library provides several functions for converting the C-string
representation of a number to a numeric data type, as well as the reverse.

The atoi function’s name is an acronym for “ASCII to integer.” This function has one
argument, a C-string, and returns the integer that the C-string represents. The following
code fragment demonstrates how the atoi function works:
int num = atoi("7654");

The atoi function does not check if its argument can be converted to a numeric value.
Additionally, the C++ programming language does not define the consequences if the
argument cannot be converted to a numeric value. For example, the return value of an
expression such as atoi("12Jeff") might be 12, the compiler attempting to perform the
conversion from a character array to a number until a non-digit is reached. However, the
return value instead could be 0, indicating the conversion could not be completed
successfully.

The atoi function often is used in connection with a program that first has the user input a
number into a character array, then checks if the character array represents a number
before using the atoi function. This is demonstrated by the following program:
#include <iostream>
#include <cstring>
using namespace std;

int main(void)
{
 char input[80];
 int num;
 cout << "Enter an integer: ";
 cin >> input;
 for (int x = 0; x < strlen(input); x++)
 {
 if (x == 0)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0085.html (5 of 6)06.11.2004 22:52:28

Useful C-String and C++ String Functions

 {
 if (!isdigit(input[x]) && input[x] != '-')
 return false;
 }
 else
 {
 if (!isdigit(input[x]))
 return false;
 }
 }
 num = atoi(input);
 cout << num;
 return 0;
}

The advantage of having the user input a number into a character array instead of an
integer is to avoid a run-time error or garbage data if the input is non-numeric. The
character array then is checked to see if its value is the representation of a number. Since
the number may be negative, the first character may be a dash as well as a digit. If the
value of the character array is confirmed to be the representation of a number, then the
atoi function is used to assign that value to an integer variable.

The atol function, standing for “ASCII to Long,” and the atof function, meaning “ASCII to
Float,” work the same way as the atoi function except that their arguments are C-string
representations of a long and float, respectively, and their return values likewise are a
long and a float, respectively.

The C++ string class has no member functions that correspond to atoi, atol, or atof.
However, a useful alternative is to first assign the value of a string to a character array
using the c_str member function, after which atoi, atol, or atof could be used with the
character array:
 string name = "123";
 char str1[80];
 strcpy(str1, name.c_str());
 int num = atoi(str1);

The data member function of the C++ string class also could be used to the same effect.
The call to the strcpy function then would be the following:
 strcpy(str1, name.data());

Finally, the itoa function is the converse of the atoi function, standing for “Integer to
ASCII.” The itoa function takes three arguments, the integer value to be converted, a
pointer to the C-string to which the string representation of that integer will be assigned,
and the number that represents the base of the converted value. The following code
fragment shows how the itoa function may be used to assign to the character array
intArray the C-string representation of the number 776 in base 10:
 char intArray[20];
 itoa (776, intArray, 10);

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0085.html (6 of 6)06.11.2004 22:52:28

Summary

Summary

The three subjects of this chapter were the character data type, a C-String (a null-
terminated character array), and the C++ string class.

We first discussed the issues involved in reading a character when a newline character
may be left in the input buffer, and derived the following three rules.

The first rule is to always follow cin and the stream extraction operator (>>) with the no-
argument ignore member function. The reason is that the cin object with the stream
extraction operator >> always leaves a newline character in the input buffer, so calling the
no-argument ignore member function will dispose of that leftover newline character.

The second rule is not to use the ignore member function after using the getline member
function. The reason is that the getline member function removes the newline character
that terminated input from the input buffer.

The third rule is that after using the get member function with one character argument,
such as cin.get(ch), check to see if you have a newline character in the input buffer, and if
you do, clear it with the ignore member function. If you don’t, don’t. The reason is that the
get member function with one argument being a single character will leave a newline
character in the input buffer if you type a character and then press ENTER, but it won’t if
you just press ENTER.

The C++ standard library cctype contains a number of functions that are useful with
characters. The toupper and tolower functions each have one argument, a character. If
the character represents a letter, A through Z or a through z, the toupper function returns
the uppercase of that letter. Conversely, the tolower function returns the lowercase of that
letter. If the argument is not a letter, both functions simply return the same character that
is the argument. A number of other functions in the cctype standard library, including but
not limited to isalpha and isdigit, permit you to determine the value of a character, such as
whether it is a letter, digit, or whitespace.

The cstring standard library provides a number of functions that are useful when working
with C-strings. Similarly, the string standard library provides a number of functions that
are useful when working with the C++ string class.

You use the strlen function to determine the length of a C-string, the length or size
member functions to return the length of a C++ string class variable. You use the strcpy
function to assign a value to a C-string, and the assignment operator = to assign a value
to a C++ string class variable. You use the strcat function to append a value to a C-string,
and the combined addition and assignment operator += to append a value to a C++ string
class variable. You use the strcmp function to compare two C-strings, and the relational
operators to compare two C++ string class variables.

The cstdlib standard library provides several functions for converting the C-string
representation of a number to a numeric data type, as well as the reverse. These are atoi,
or “ASCII to integer,” atol, or “ASCII to Long,” atof, or “ASCII to float,” and itoa, or “Integer
to ASCII.”

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0086.html06.11.2004 22:52:29

Quiz

Quiz
1. Which of the following will ignore a leading newline character in the input buffer,

the cin object with the stream extraction operator (>>), the get member function, or
the getline member function?

2. Which of the following will not leave a newline character in the input buffer, the cin
object with the stream extraction operator (>>), the get member function, or the
getline member function?

3. Which of the following should you always follow with the no-argument ignore
member function, the cin object with the stream extraction operator (>>), the get
member function, or the getline member function?

4. Which of the following should you never follow with the no-argument ignore
member function, the cin object with the stream extraction operator (>>), the get
member function, or the getline member function?

5. Is the argument of the isdigit function a character, a C-string, or a C++ string class
variable?

6. Is the argument of the atoi function a character, a C-string, or a C++ string class
variable?

7. May a C++ string class variable use the atoi function to convert the string
representation of a number to a number?

8. Are the functions in the C++ standard library cctype used with characters, C-
strings, or C++ string class variables?

9. Are the functions in the C++ standard library cstdlib used with characters, C-
strings, or C++ string class variables?

10. Can you use an assignment operator to assign the value of one C-string to
another?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0087.html06.11.2004 22:52:30

Chapter 13: Persistent Data: File Input and Output

Chapter 13: Persistent Data: File Input and Output

Overview

As a kid, I had to listen patiently, or not so patiently, to endless (so it seemed at the time)
lectures from my parents on how I could be better, or do better. After I became an adult, I
realized to my amazement that my parents more often than not were right. Indeed, after I
became a parent, I realized to my horror that I was repeating their lectures to my own
children, who, of course, today enjoy these “talks” about as much I used to.

One of my parents’ favorite lectures was about how important it is to be persistent. Once
again, mom and dad showed true insight, because, though persistence is a very valuable
trait in any person, it is particularly important in programmers.

Data, as well as programmers, should be persistent. By persistent, I mean the data
should survive when the program is finished. Can you imagine if, after typing this chapter,
when I exited Microsoft Word, everything I typed was lost?

With the programs we have written so far, this is exactly what would happen. Whatever
values we have stored in variables do not persist, or survive, when the program is
finished. Instead, the data is lost because the data is stored in RAM (random access
memory), which is cleared when the program (or the computer) stops running.

Fortunately, Microsoft Word (and most programs for that matter) has the capability to
save data to a file on the computer’s hard drive or other storage medium so that data later
can be retrieved when needed. That data persists after the termination of the program or
even after the computer is turned off.

This chapter will show you how to make your data persistent by saving it to a file. Of
course, saving the data accomplishes little unless you can later retrieve it, so this chapter
also will show you how to retrieve data from a file.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0088.html06.11.2004 22:52:31

Text vs. Binary Files

Text vs. Binary Files

If you work on a computer, you work with files. You may have worked with hundreds if not
thousands of files. However, have you ever stopped to think about what a file exactly is?

A file is a collection of data, and is located on persistent storage (discussed in Chapter 2)
such as a hard drive, a CD-ROM, or other storage device.

A file is referred to by a name (called, naturally enough, a filename), which often is
descriptive of the nature or contents of the file. For example, the Microsoft Word
document for this chapter may be named chapter13.

A filename usually has an extension, beginning with a period (.). For example, if the file
for this chapter is named chapter13.doc, the extension is .doc.

The purpose of the file extension is to indicate the type of date in the file and the program
that normally is used to access the file. Accordingly, by convention, .doc is the extension
for files normally accessed by Microsoft Word, .xls is the extension for files normally
accessed by Microsoft Excel, and so forth. One extension you may have used frequently
when working with this book is .cpp, for C++ source files.

As there are many types of programs, there are many types of files, and many different
file extensions. However, fundamentally, there are two types of files: text and binary.

A text file is, as the name suggests, a file that contains text. An example is a file you
might create in Notepad or another plain-text editor.

The meaning of binary in a binary file is less intuitive. View a Microsoft Word document in
Notepad or another plain-text editor, such as the one I used to type this chapter. You will
see, in addition to the text, strange characters such as ã6, ÌL, h5, and dark vertical lines
that most definitely do not appear in the text. These are formatting codes used by
Microsoft Word to format the text, such as for tables, bulleted and numbered lists, and so
forth.

Text files can only store text. By contrast, binary files can store other types of information,
such as images, database records, executable programs, and so forth. Consequently,
more complex programs, such as Microsoft Word, Excel, or Access, store data in binary
files.

Text files are somewhat simpler than binary files to access, read, and write.
Consequently, file access usually is introduced using text files, with binary files a more
advanced topic. This being an introductory-level book, I will use text files when explaining
file access. However, when pertinent during this chapter, I also will refer to binary files.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0089.html06.11.2004 22:52:31

The fstream Standard Library

The fstream Standard Library

We have been using the iostream standard library, which supports, among other
functionalities, cin for reading from standard input (usually the keyboard), and cout for
outputting to standard output (usually the monitor).

Reading or writing from a file requires another standard library, fstream. The fstream
standard library is included with the statement:
#include <fstream>

Both iostream and fstream have in common the word “stream.” This is no accident. Both
standard libraries concern streams of bytes. The iostream library concerns streams of
bytes resulting from the “io” in iostream, input and output. The fstream standard library
concerns streams of bytes resulting from the “f” in fstream, a file.

The fstream header file defines three new data types:

● ofstream This data type represents the output file stream—the “o” in ofstream
standing for output. The direction of output is from your program out to a file. The
ofstream data type is used to create files and to write information to files. It cannot be
used to read files.

● ifstream This data type represents the input file stream—the “i” in ifstream standing
for input. The direction of input is from a file into your program. The ifstream data type
is used to read information from files. It cannot be used to create files or to write
information to them.

● fstream This data type represents the file stream generally, and has the capabilities
of both ofstream and ifstream. It can create files, write information to files, and read
information from files.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0090.html06.11.2004 22:52:32

The File Access Life Cycle

The File Access Life Cycle

When your program accesses a file, whether to read it, write to it, or both, it goes through
the following steps.

The file first must be opened. This establishes a path of communication between the file
and a stream object in your program—fstream, ofstream, or ifstream—used to access the
file.

Your program then reads from, or writes to, the file (or both). This section will discuss
writing to a file before reading to it, but in your program the order could be reversed.
Additionally, your program may only read from a file, or only write to a file.

Finally, your program closes the file. Maintaining the path of communication between the
file and the stream object in your program requires system resources, so closing the file
frees those resources when they are no longer needed. Additionally, you may not be able
to access the file later in your program if you did not close it after the previous access.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0091.html06.11.2004 22:52:33

Opening a File

Opening a File

A file must be opened before you can read from it or write to it. As discussed in the
introduction to this section, opening a file establishes a path of communication between
the file and a stream object in your program. Opening a file for writing is first discussed.

Opening a File for Writing

Either the ofstream or fstream object may be used to open a file for writing. However, the
ifstream object cannot be used for this purpose because it only may be used to read from
a file.

Both the ofstream and fstream objects may open a file one of two ways. The first way is
using a member function named, as you might expect, open. The second alternative is
using a constructor, which is explained in the “The fstream or ofstream Constructor”
section later in this chapter.

The Open Member Function

Both the ofstream and fstream objects use an open member function, whose first
argument is the name and location of the file to be opened. However, whether you include
a second argument may depend on whether the ofstream or fstream object is calling the
open member function, or whether you want to access the file in a different “mode” than
the default.

First Argument—Specifying the File to Be Opened

The file to be opened for writing need not already exist. If it does not, attempting to open it
for writing to it automatically will create it with the specified name at the specified location.
However, whether or not the file yet exists, you need to specify a file name and location.

Accordingly, whether the ofstream or fstream object is calling the function, the first
argument specifies the name and location of the file to be opened. This information may
be provided by using either the relative path or absolute path of the file. The terms relative
path and absolute path are new, so let’s discuss them now.

The relative path is the path relative to the location of your program. For example, the
following statements open for writing a file, students.dat, that is in the same directory as
the program:
 ofstream outfile;
 outfile.open("students.dat");

By contrast, the absolute path is the path starting with the drive letter, and including each
directory and subdirectory until the file is reached. For example, if the students.dat file is
in the Classes subdirectory of the College directory of my C drive, it would be opened for
writing, using the absolute path, as follows:
 ofstream outfile;
 outfile.open("c:\\college\classes\\students.dat");

Note Two backslashes are necessary because one backslash is used to note an
escape sequence. Two backslashes is the escape sequence for one backslash.

Whether you use a relative or absolute path, the argument for the open function need not

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0092.html (1 of 6)06.11.2004 22:52:34

Opening a File

be a string literal. It also may be a string variable, as in the following code fragment:
 ofstream outfile;
 char filename[80];
 cout << "Enter name of file: ";
 cin >> filename;
 outfile.open(filename);

Note As a general rule, using a relative path is preferable, particularly if the program
will be used on different machines. While the location of the data file relative to
the program directory may remain the same, there is no guarantee that the
particular placement of the program on one computer’s directory structure will
be the same as another’s.

Second Argument—File Mode

The second argument of the open member function defines the mode in which the file
should be opened. One choice is whether the file should be opened for writing, reading,
or both. However, there are other choices, each called a file mode flag. Table 13-1 lists
the file mode flags:

Table 13-1: File Mode Flags

File Mode Flag Description

ios::app Append mode. The file's existing contents are preserved
and all output is written to the end of the file.

ios::ate If the file already exists, the program goes directly to the
end of it. Output may be written anywhere in the file. This
flag usually is used with binary mode.

ios::binary Binary mode. Information is written to the file in binary
format, rather than in the default text format.

ios::in Input mode. Information will be read from the file. The file
will not be created if it does not exist.

ios::out Output mode. Information will be written to the file. By
default, the existing file contents will be overwritten.

ios::trunc If the file already exists, its contents will be truncated,
another word for deleted or overwritten. This is the default
mode of ios::out.

If you use the ofstream object to open a file, you do not need any file mode flags. Indeed,
the examples in the previous section did not use any file mode flags. An ofstream object
may only be used to open a file for writing, and cannot be used to open a file for reading.
Therefore, there is no need to specify the ios::out flag; use of that flag is implied by use of
the ofstream object to open the file.

However, you may want to use one or more file mode flags with the open member
function of the ofstream object if you do not want the default, which is to open the file in
text rather than binary mode and overwrite rather than append to the existing file
contents. One example of when you might want to append is an error log file, which
keeps track of errors that may occur in a program. When a new error occurs, you don’t
want to erase the history of prior errors, but rather you want to add to that history.

You can combine two or more flags when opening a file. For example, the following

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0092.html (2 of 6)06.11.2004 22:52:34

Opening a File

statements open a file in binary mode and to append rather than to overwrite. The two file
mode flags are combined using the bitwise or operator (|):
 ofstream outfile;
 outfile.open("students.dat", ios::binary | ios::app);

Note The bitwise or operator | is not the same as the logical or operator || even
though they share the name or and the keystroke |.

While you don’t need to specify any file mode flags if you use the ofstream object to open
a file, you should specify file mode flags if you use the fstream object to open a file.
Whereas an ofstream object may only be used to open a file for writing and not reading,
an fstream object may be used for both purposes. Therefore, you should specify whether
you are using the open member function of the fstream object to open the file for writing,
reading, or both.

The following code fragment uses the open member function of the fstream object to
open the file for writing only:
 fstream afile;
 afile.open("students.dat", ios::out);

The fstream or ofstream Constructor

You also may use the fstream or ofstream constructor to open a file for writing. A
constructor is a function that is automatically called when you attempt to create an
instance of an object.

An object instance is akin to a variable of a primitive data type, such as an int. For
example, the following statement could be characterized as creating an instance, named
age, of an integer:
 int age;

Similarly, the following statement creates an fstream instance named afile:
 fstream afile;

Object constructors may be overloaded, such that for the same object there may be a
constructor with no arguments, a constructor with one argument, a constructor with two
arguments, and so forth. For example, the previous statement, fstream afile, is called the
no-argument constructor of the fstream object.

The following statement calls the one-argument constructor of the ofstream object, both
creating an ofstream instance and opening the file students.dat for output:
 ofstream outFile(“students.dat", ios:out);

The following statement calls the two-argument constructor of the fstream object, both
creating an fstream instance and opening the file students.dat for output:
 fstream aFile(“students.dat", ios:out);

In essence, declaring an ofstream (or fstream) variable in one statement and then calling
the open member function in a second statement is analogous to declaring a primitive
variable in one statement and then assigning it a value in a second statement, such as:
 int age;
 age = 39;

By contrast, using the one or two argument ofstream (or fstream) constructor is

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0092.html (3 of 6)06.11.2004 22:52:34

Opening a File

analogous to initializing a primitive variable, such as:
 int age = 39;

One alternative is not inherently better than the other. Usually, the specific needs of a
particular program will dictate which alternative better fits your needs.

Opening a File for Reading

The discussion in the previous section concerning opening a file for writing also applies to
opening a file for reading. The primary difference is that the object that calls the open
member function, or whose constructor you may use, may be, in addition to an fstream
object, an ifstream object instead of an ofstream object. Additionally, the file to be opened
for reading must already exist. Unlike opening a file for writing, attempting to open a file
for reading will not automatically create it if it does not yet exist. This issue is discussed
further in the next section.

The following statements use the open member function of the ifstream object to open a
file for reading:
 ifstream infile;
 infile.open("students.dat");

You could accomplish the same purpose using the fstream object, specifying by a file
mode flag that the file is being opened for reading only:
 fstream afile;
 afile.open("students.dat", ios::in);

The following statement uses the ifstream constructor to open a file for reading:
 ifstream infile ("students.dat");

You could accomplish the same purpose using the fstream constructor, specifying in the
second argument the file mode flag that the file is being opened for reading only:
 fstream afile ("students.dat", ios::in);

Opening a File for Reading and Writing

You can use the fstream object to open a file for reading and for writing. You cannot use
either the ofstream or ifstream object for this purpose, as an ofstream object cannot be
used to read files, and an ifstream object cannot be used to write to files.

The following code fragment uses the open member function of the fstream object for this
purpose:
 fstream afile;
 afile.open("students.dat", ios::in | ios::out);

Alternatively, you can use the two-argument fstream constructor:
 fstream afile ("students.dat", ios::in | ios::out);

Both alternatives use the bitwise or operator (|) discussed in the earlier section “Second
Argument—File Mode” to combine the file mode flags for input and output.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0092.html (4 of 6)06.11.2004 22:52:34

Opening a File

Note Combining the ios::in and ios::out flags changes expected defaults. The ios::out
flag by itself causes an existing file to be overwritten, and the ios::in flag by itself
requires that the file already exist. However, when the ios::in and ios::out files
are used together, the file’s existing contents are preserved, and the file will be
created if it does not already exist.

Checking if the File Was Opened

You should not assume that a file was successfully opened with the open member
function or the constructor. There are several reasons why the file may not have been
successfully opened. If the file was not successfully opened, but your code casually
assumes it was and attempts to read from, or write to, the file, errors may occur.

The primary difference between opening a file for reading and for writing is that while you
can write to a file that does not exist—the operating system simply creates the file—you
cannot read from a file unless it already exists. Therefore, you should check if the file was
opened successfully for reading before you attempt to read it.

If the file could not be opened for reading, then the value of the ifstream object that called
the open function is NULL. As you may recall from Chapter 11, NULL is a constant
defined in several standard library files whose value is zero.

Alternatively, if the file could not be opened for reading, then the ifstream object’s fail
member function returns true, which is the fail function’s return value if a file operation, in
this case attempting to open a file, was not successful.

The following code illustrates the use of both checking if the ifstream object used to call
the open function is NULL and whether the ifstream object’s fail member function returns
true:
#include <fstream>
#include <iostream>
using namespace std;

int main ()
{
 ifstream infile;
 infile.open("students.dat");
 cout << "(infile) = " << infile << endl;
 cout << "(infile.fail()) = " << infile.fail() << endl;
 return 0;
}

If the students.dat file does not yet exist, the output would be
(infile) = 00000000
(infile.fail()) = 1

However, if there was a file named students.dat in the same directory as your program,
then the output would be
(infile) = 0012FE40
(infile.fail()) = 0

The value, 0012FE40, is the address of the ifstream variable infile, and of course could be
different if you run this program.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0092.html (5 of 6)06.11.2004 22:52:34

Opening a File

Unlike an ifstream object, an ofstream object that attempts to open a file that does not yet
exist is not NULL, and its fail member function would return false, because the operating
system will create the file if it does not already exist. However, opening a file for writing is
not always successful. For example, before you run the following program, create a file
named students.dat in the same directory as your program but, through its properties,
check read only:
#include <fstream>
#include <iostream>
using namespace std;

int main ()
{
 ofstream outfile;
 outfile.open("students.dat");
 cout << "(outfile) = " << outfile << endl;
 cout << "(outfile.fail()) = " << outfile.fail() << endl;
 return 0;
}

The following output reflects that the ofstream object is NULL, and its fail function returns
true, because you cannot open for writing a file that is read only.
 (outfile) = 00000000
 (outfile.fail()) = 1

If you cannot open a file for reading or writing, then you do not want to proceed to execute
the code that reads from, or writes to, the file. Instead, you may want to stop execution of
the function, as in the following code fragment:
 ifstream infile;
 infile.open("students.dat");
 if (infile == NULL)
 {
 cout << "Error in opening file for reading";
 return 0;
 }
 // code to read from file

Note For purposes of brevity and avoiding repetitive code, some of the following code
in this chapter omits checking if a file was opened successfully.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0092.html (6 of 6)06.11.2004 22:52:34

Closing a File

Closing a File

Of course, you are not going to close a file as soon as you open it. You will read or write
to the file first. However, closing a file is relatively simple, so I will discuss this issue out of
order before discussing the more complex subjects of writing to, and reading from, a file.

You should close a file when you are finished reading or writing to it. While the file object
will be closed when the program ends, your program’s performance will be improved if
you close a file when you are finished with it because each open file requires system
resources. Additionally, some operating systems limit the number of open “handles” to
files. Finally, you will avoid a “sharing” problem caused by trying in one part of your
program to open a file that in another part of the program previously was opened but not
closed.

You close a file using, naturally enough, the close member function, which takes no
arguments. The following example closes a file opened for writing:
 ofstream outfile;
 outfile.open("students.dat");
 // do something
 outfile.close();

The same syntax applies to closing a file for reading.
 ifstream infile;
 infile.open("students.dat");
 // do something
 infile.close();

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0093.html06.11.2004 22:52:35

Writing to a File

Writing to a File

You output or write information to a file from your program using the stream insertion
operator (<<) just as you use that operator to output information to the screen. The only
difference is that you use an ofstream or fstream object instead of the cout object.

The following program writes information inputted by the user to a file named students.
dat, which is created if it does not already exist.
#include <fstream>
#include <iostream>
using namespace std;

int main ()
{
 char data[80];
 ofstream outfile;
 outfile.open("students.dat");
 cout << "Writing to the file" << endl;
 cout << "===================" << endl;
 cout << "Enter class name: ";
 cin.getline(data, 80);
 outfile << data << endl;
 cout << "Enter number of students: ";
 cin >> data;
 cin.ignore();
 outfile << data << endl;
 outfile.close();
 return 0;
}

The input and output could be
Writing to the file
===================
Enter class name: Programming Demystified
Enter number of students: 32

Open the file in a plain-text editor such as Notepad. The contents with the preceding
sample input would be as follows:
Programming Demystified
32

The statement that wrote to the file included the endl keyword:
 outfile << data << endl;

The reason is to write the name of the class (“Programming Demystified”) to a different
line than the number of students, 32. Otherwise, the file contents would be
Programming Demystified32

Note The call to the ignore member function after cin >> data follows the advice in
Chapter 12 to clear the newline character from the input buffer after using the
cin object with the stream extraction operator (>>).

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0094.html (1 of 2)06.11.2004 22:52:36

Writing to a File

You instead could have used an fstream object to write to the file. You would have
changed the data type of outfile from ofstream to fstream and then changed the call to the
open method to include two arguments:
 fstream outfile;
 outfile.open("students.dat", ios::out);

Alternatively, you could have used the fstream constructor:
 fstream outfile ("students.dat", ios::out);

If you want to append, you only need to add an ios:app flag to the second argument of the
constructor or the open member function using the bitwise or operator (|).

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0094.html (2 of 2)06.11.2004 22:52:36

Reading from a File

Reading from a File

You input or read information from a file into your program using the stream extraction
operator (>>) just as you use that operator to input information from the keyboard. The
only difference is that you use an ifstream (or fstream) object instead of the cin object.

The following program builds on the previous one. After writing information inputted by the
user to a file named students.dat, the program reads information from the file and outputs
it onto the screen:
#include <fstream>
#include <iostream>
using namespace std;

int main ()
{
 char data[80];
 ofstream outfile;
 outfile.open("students.dat");
 cout << "Writing to the file" << endl;
 cout << "===================" << endl;
 cout << "Enter class name: ";
 cin.getline(data, 80);
 outfile << data << endl;
 cout << "Enter number of students: ";
 cin >> data;
 cin.ignore();
 outfile << data << endl;
 outfile.close();
 ifstream infile;
 cout << "Reading from the file" << endl;
 cout << "=====================" << endl;
 infile.open("students.dat");
 infile >> data;
 cout << data << endl;
 infile >> data;
 cout << data << endl;
 infile.close();
 return 0;
}

Sample input and output:
Writing to the file
===================
Enter class name: Programming
Enter number of students: 32
Reading from the file
=====================
Programming
32

Reading a Line of a File

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0095.html (1 of 5)06.11.2004 22:52:37

Reading from a File

With the same program, try entering a class name with an embedded space. The
following is some sample input and output:
Writing to the file
===================
Enter class name: Programming Demystified
Enter number of students: 32
Reading from the file
=====================
Programming
Demystified

The following are the contents of the file after the inputted data was written to it:
Programming Demystified
32

The first read of the file did not read the first line of the file, “Programming Demystified.”
Instead, the first read of the file only read the word “Programming” and then stopped.
Consequently the second line of the program read the remainder of the first line of the file,
“Demystified,” instead of the number of students.

The ifstream object together with the stream extraction operator reads the file
sequentially, starting with the first byte of the file. The first attempt to read the file starts at
the beginning of the file and goes to the first whitespace character (a space, tab, or new
line) or the end of the file, whichever comes first. The second attempt starts at the first
printable character after that whitespace, and continues to the next whitespace character
or the end of the file, whichever comes first.

The first read attempt only read “Programming,” not “Programming Demystified,” because
the read stopped at the whitespace between “Programming” and “Demystified.” The
second attempt read “Demystified.” There were no further read attempts, so the number
of students, 32, was never read.

This should seem like déjà vu. We encountered a similar issue in Chapter 10 using the
cin object with the stream extraction operator (>>). As in Chapter 10 with the cin object,
the solution is to use getline.

If you are working with C-strings, then you should use the getline member function. The
only difference between using the getline member function here and in Chapter 10 is that
here the getline member function is called by an ifstream or fstream object instead of a
cin object. Accordingly, we need to replace the two calls to infile >> data with the following:
 infile.getline(data, 80);

You also can use getline with the C++ string class. The only difference between using the
getline member function here and in Chapter 10 is that here the first argument of the
getline member function is an ifstream or fstream object instead of a cin object.
Accordingly, we need to replace the two calls to infile >> data with the following:
 getline(infile, data);

The following modification of the previous program uses the getline function with the C++
string class:
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0095.html (2 of 5)06.11.2004 22:52:37

Reading from a File

int main ()
{
 string data;
 ofstream outfile;
 outfile.open("students.dat");
 cout << "Writing to the file" << endl;
 cout << "===================" << endl;
 cout << "Enter class name: ";
 getline(cin, data);
 outfile << data<< endl;
 cout << "Enter number of students: ";
 cin >> data;
 cin.ignore();
 outfile << data<< endl;
 outfile.close();
 ifstream infile;
 cout << "Reading from the file" << endl;
 cout << "=====================" << endl;
 infile.open("students.dat");
 getline(infile, data);
 cout << data << endl;
 getline(infile, data);
 cout << data << endl;
 infile.close();
 return 0;
}

As the following sample input and output reflects, the first read now reads the entire first
line of the file even when that line contains embedded spaces:
Writing to the file
===================
Enter class name: Programming Demystified
Enter number of students: 32
Reading from the file
=====================
Programming Demystified
32

Looping Through the File

In the previous program, exactly two read attempts were made because we knew there
were two lines of data in the file, no more, no less. However, often we may not know the
number of pieces of data to be read. All we want is to read the file until we have reached
the end of it.

The ifstream object has an eof function, eof being an abbreviation for end of file. This
function, which takes no arguments, returns true if the end of the file has been reached,
and false if otherwise.

However, the eof function is not as reliable with text files as it is with binary files in
detecting the end of the file. The eof function’s return value may not accurately reflect if
the end of the file was reached if the last item in the file is followed by one or more
whitespace characters. This is not an issue with binary files since they do not contain
whitespace characters.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0095.html (3 of 5)06.11.2004 22:52:37

Reading from a File

A better choice is the fail member function, discussed in the earlier section “Checking if
the File Was Opened.” The following code fragment shows how to use the fail member
function in reading a file until the end of the file is reached:
 ifstream infile;
 infile.open("students.dat");
 infile >> data;
 while(!infile.fail())
 {
 infile >> data;
 cout << data;
 }
 infile.close();

The preceding code fragment has two infile >> data statements, one before the loop
begins, the other inside the loop. The reason is that the end of file is not detected until
after a read attempt is made. Thus, if the infile >> data statement before the loop was
omitted and the file was empty, the cout << data statement would execute before an
attempt was made to detect if the end of file had been reached.

Note A do while loop could be used instead of a while loop. This would dispense with
the need to check for end of file before entering the loop, but add the
requirement to check inside the loop if (using an if statement) end of file had
been reached. This is the usual tradeoff between while and do while loops.

Modifying the previous program, the code now would read
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

int main ()
{
 string data;
 ofstream outfile;
 outfile.open("students.dat");
 cout << "Writing to the file" << endl;
 cout << "===================" << endl;
 cout << "Enter class name: ";
 getline(cin, data);
 outfile << data<< endl;
 cout << "Enter number of students: ";
 cin >> data;
 cin.ignore();
 outfile << data<< endl;
 outfile.close();
 ifstream infile;
 cout << "Reading from the file" << endl;
 cout << "=====================" << endl;
 infile.open("students.dat");
 getline(infile, data);
 while(!infile.fail())
 {
 cout << data << endl;
 getline(infile, data);

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0095.html (4 of 5)06.11.2004 22:52:37

Reading from a File

 }
 infile.close();
 return 0;
}

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0095.html (5 of 5)06.11.2004 22:52:37

File Stream Objects as Function Arguments

File Stream Objects as Function Arguments

Chapter 9 explained how you can use functions to make your code more modular. In that
spirit, let’s rewrite the previous program to add two functions, each to be called from main:
writeFile to open a file for writing using an ofstream object, and readFile to open a file for
reading using an ifstream object. Each function includes code to check if the file was
opened successfully and returns a Boolean value indicating whether the file was opened
successfully:
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
bool writeFile (ofstream&, char*);
bool readFile (ifstream&, char*);

int main ()
{
 string data;
 bool status;
 ofstream outfile;
 status = writeFile(outfile, "students.dat");
 if (!status)
 {
 cout << "File could not be opened for writing\n";
 cout << "Program terminating\n";
 return 0;
 }
 else
 {
 cout << "Writing to the file" << endl;
 cout << "===================" << endl;
 cout << "Enter class name: ";
 getline(cin, data);
 outfile << data<< endl;
 cout << "Enter number of students: ";
 cin >> data;
 cin.ignore();
 outfile << data<< endl;
 outfile.close();
 }
 ifstream infile;
 status = readFile(infile, "students.dat");
 if (!status)
 {
 cout << "File could not be opened for reading\n";
 cout << "Program terminating\n";
 return 0;
 }
 else
 {
 cout << "Reading from the file" << endl;
 cout << "=====================" << endl;
 getline(infile, data);

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0096.html (1 of 2)06.11.2004 22:52:38

File Stream Objects as Function Arguments

 while(!infile.fail())
 {
 cout << data << endl;
 getline(infile, data);
 }
 infile.close();
 }
 return 0;
}

bool writeFile (ofstream& file, char* strFile)
{
 file.open(strFile);
 if (file.fail())
 return false;
 else
 return true;
}

bool readFile (ifstream& ifile, char* strFile)
{
 ifile.open(strFile);
 if (ifile.fail())
 return false;
 else
 return true;
}

For each function, the file stream object is passed by reference instead of by value even
though neither function changes the contents of the file. The reason is that the internal
state of a file stream object may change with an open operation even if the contents of
the file may not change.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0096.html (2 of 2)06.11.2004 22:52:38

Summary

Summary

Data is persistent when it survives after the program is finished or even after the
computer is turned off. Data stored in variables does not persist because RAM, where the
variables are stored, is cleared when the program (or the computer) stops running. It is
necessary to save data to a file on the computer’s hard drive or other storage medium so
that data later can be retrieved when needed.

This chapter showed you how to make your data persistent by saving it to a file. Since
saving the data accomplishes little unless you can later retrieve it, this chapter also
showed you how to retrieve data from a file.

A file is a collection of data. It is located on persistent storage, such as a hard drive, CD-
ROM, or other storage device.

Files store data in one of two formats, text and binary. Text files store data that has been
converted into strings of ASCII characters. By contrast, binary files store data in the same
format in which data is stored in RAM, fundamentally ones and zeroes. Notepad and
other plain-text editors use text files. Binary files may store more complex data, and
therefore are used in more complex programs, such as word processing, spreadsheet, or
database programs.

You should include the fstream standard library when your program reads from, or writes
to, files. This standard library defines three data types. The ofstream data type represents
the output file stream, the direction of output being from your program out to a file. The
ifstream data type represents the input file stream, the direction of input being from a file
into your program. Finally, the fstream data type represents the file stream generally, and
has the capabilities of both ofstream and ifstream in that it may both write information to
files and read information from files.

The process of accessing a file, whether to read it, write to it, or both, goes through the
following steps. First, the file first must be opened to establish a path of communication
between the file and a stream object in your program—fstream, ofstream, or ifstream—
used to access the file. Second, your program then reads from, or writes to, the file. Third,
and finally, your program closes the file, using the close member function, to free system
resources that are required to maintain the path of communication between the file and
the stream object in your program, and also to avoid a “sharing” problem caused by trying
in one part of your program to open a file that in another part of the program previously
was opened but not closed.

You use either the open member function or a constructor to open a file. A constructor is
a function that is automatically called when you attempt to create an instance of an object,
such as an fstream, ofstream, or ifstream object. Either the open member function or a
constructor may use two arguments. The first argument is the relative or absolute path to
the file. The second argument, which may be optional, is one or more file mode flags,
which define how the file should be opened, whether for input, output, appending, or
something else.

You cannot assume that a file was successfully opened for reading or writing. You can
use the fail member function to check if a file was successfully opened. You also can
check to see if the file stream object used to open the file is NULL.

You write information to a file from your program using the stream insertion operator (<<)
just as you use that operator to output information to the screen, except that you use an

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0097.html (1 of 2)06.11.2004 22:52:38

Summary

ofstream or fstream object instead of the cout object. Similarly, you read information from
a file into your program using the stream extraction operator (>>) just as you use that
operator to input information from the keyboard, except that you use an ifstream (or
fstream) object instead of the cin object.

You read a line of a file using either the getline member function if you are working with C-
strings or the getline function if you are working with the C++ string class. You use the fail
member function to test for the end of the file as you read line by line through a file.

File stream objects may be passed as function arguments. They should be passed by
reference rather than by value since the internal state of a file stream object may change
with an open operation even if the contents of the file have not changed.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0097.html (2 of 2)06.11.2004 22:52:38

Quiz

Quiz
1. What does it mean for data to be persistent?

2. What is a file?

3. What are the two formats in which files store data?

4. What standard library should you include when your program reads from, or writes
to, files?

5. Which of the three objects, fstream, ifstream, or ofstream, may be used both for file
input and file output?

6. What are the two functions you can use to open a file?

7. What is the purpose of opening a file?

8. What is the purpose of closing a file?

9. What is a constructor?

10. Which is a better choice for detecting end of file in a text file, the eof member
function or the fail member function?

11. Should file stream objects be passed as function arguments by value or by
reference?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0098.html06.11.2004 22:52:39

Chapter 14: The Road Ahead: Structures and Classes

Chapter 14: The Road Ahead: Structures and Classes

Overview

Late one evening, at the end of the final session of a computer programming class I
taught that left off where the last several chapters do, one of my students asked me:
“Where do I go from here?” My suggestion was: “Home.”

My answer, while technically accurate, was not very helpful, so my student attempted to
follow up: “No, I mean, what can I expect from the next class?” My prediction was, quoting
from Mr. T when asked his prediction for the outcome of his upcoming rematch with
Rocky Balboa in Rocky III: “Pain.”

That answer too might have been accurate (depending on which teacher he took next)
but it also was not very helpful, so I then spared my student further stale humor and
described to him what I am about to tell you in this chapter. Of course, the student
received a much more condensed explanation since it was late in the evening. Before
getting to that though, I have a question for you: “Why are you reading this book?”

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0099.html06.11.2004 22:52:40

Your Reasons for Reading This Book?

Your Reasons for Reading This Book?

I knew the student well from other classes he had taken with me, so I knew his future
plans, which were relevant to the answer I gave him. However, I don’t know yours.
Therefore, I need to ask you, or perhaps you need to ask yourself, which of the following
best describes why you are reading this book:

● I am reading this book to help me with a course I am taking as part of my plan to
obtain a degree.

● I am reading this book to help me upgrade my skills for my current job or to retrain for
a new job.

● I am reading this book because programming is my hobby.

● I am reading this book because I have nothing better to do.

If you chose the last statement, then you may need to get out more often. Otherwise,
whether your primary reason for reading this book is higher education, a job, or a hobby
will, of course, influence your next steps in programming. For example, if you are
retraining for a particular programming position, your focus will be much more specific
than a student who is planning to obtain a higher degree in computer science.

Nevertheless, regardless of whether your focus is specific or general, the major area that
follows the subjects covered in this book is Object-Oriented Programming, often known by
its acronym OOP. OOP (described in the following section) heavily uses two
programming concepts: structures and classes. Therefore, this chapter, and book,
concludes by covering these two concepts.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0100.html06.11.2004 22:52:41

Object-Oriented Programming

Object-Oriented Programming

Object-Oriented Programming, often known by its acronym, OOP, is a term used more
than it is understood. However, understanding OOP principles is important, since OOP
really is the next step. Indeed, the previous chapters have given you the foundation to
learn OOP.

I am not going to attempt to cover the entire subject of OOP in this chapter; entire books
are written about OOP. Indeed, one of the companion books in the Demystified series to
which this book belongs is Object-Oriented Programming Demystified. Nevertheless, let
me try to briefly describe OOP.

While game programs are fun, the usual purpose of a program is to provide a solution to
real-world tasks, which involve persons, places, things, or concepts. Programs use
objects to represent a real-world person, place, thing, or concept.

Objects generally are abstractions, simplifying the real-world person, place, thing, or
concept they represent. Just as you don’t need to know how an internal combustion
engine works to drive a car, you don’t need to understand the inner workings of the object
to know how to use it.

For example, as recently as the last chapter, we used objects, specifically the file stream
objects, fstream, ofstream, and ifstream. We did not need to understand the inner
workings of these objects, as detailed in the fstream standard library, to use them to
open, read from, write to, and close files.

Objects are not limited to something as abstract as a file stream object, however. You are
a person object. This book is a book object. The car you drive is a car object. A character
in a game also is an object. The number and variety of possible objects is limited only by
the programmer’s imagination and creativity.

Real-world objects also have relationships with other real-world objects. These
relationships are either an “is a” relationship or a “has a” relationship.

An example of an “is a” relationship is that a teacher is a person. Some of my students
have questioned this in respect to certain teachers, but then we call a truce after I remind
them that a student also “is a” person, even though there are a few whom I’ve had my
doubts about.

An “is a” relationship is important because if you already have created a person class,
when you write the teacher class you don’t need to write code for those attributes that a
teacher has in common with all persons, such as a name, birthday, height, weight and so
forth. Rather, the teacher class can “inherit” those attributes from the person class, so you
only need to write code for those attributes that a teacher has in addition to, or different
than, all persons generally, such as tenure status, a higher education level, and so on.

This ability of one class to inherit from another is called, naturally enough, inheritance.
Inheritance enables you to reuse existing code, such as the person class, when creating
classes that represent more specialized objects, like teachers.

An example of a “has a” relationship is that a car has an engine. This type of relationship
also is referred to as composition or, the term I will use, containership. Containership also
enables you to reuse existing code, such as the engine class, when creating classes that
represent the containing object, like cars.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0101.html (1 of 2)06.11.2004 22:52:41

Object-Oriented Programming

Code reusability makes application development faster since you don’t have to “reinvent
the wheel.” Additionally, the applications you develop are less buggy since the code you
are reusing already has been tested (hopefully).

Since structures and classes are heavily used in OOP, let’s discuss them now.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0101.html (2 of 2)06.11.2004 22:52:41

Structures

Structures

Objects generally are too complex to be described by a single variable. An array can
store multiple values, but all the values in that array must be of the same data type.

The restriction that all values must be of the same data type usually is not workable for
objects. For example, each of us as human beings shares common characteristics such
as a name and height. The value of each may be stored in a variable. However, these
variables have different data types. Height may be stored in an integer or other numeric
variable, but a name would be stored in a C-string or a C++ string class variable.

The name and height variables are related in the sense that they both describe different
characteristics of the same person. However, if you declare them as follows, they do not
belong together, but instead simply are two separate, independent variables:
 string name;
 int height;

C++ enables you to package related variables together into a structure. A structure may
contain multiple variables of different data types, permitting the program to more faithfully
emulate the complexity of a real-world object.

A structure, in reality, is a data type. However, it is not a data type built into C++, such as
an int or a C-string. Instead, it is a programmer-defined data type.

Declaring a Structure

Since a structure is a programmer-defined data type, you must declare it so the compiler
will understand what it is. The following code fragment declares a structure representing a
person with two characteristics, name and height:
struct Person {
 string name;
 int height;
};

The declaration commences with struct, which is a keyword indicating that a structure is
being declared. “Person” is the name I gave for this structure. I could have used another
name. As with naming variables, you should give the structure a name which indicates
what it represents.

The open and close curly braces define the body of the structure. Structures, like
functions, have a body, enclosed in open and close curly braces. However, unlike
functions, the close curly brace must be followed by a semicolon.

Note Forgetting the semicolon after the close curly brace is a common rookie
mistake. You may not experience a compiler error, but instead a run-time error,
particularly on multiple file projects, with the error message providing little or no
clue that the real reason for the error is that you forgot the semicolon.

The variables that are related to each other are declared in the body of the structure.
Each such variable is referred to as a member variable. A structure may have many
member variables. Indeed, as discussed in a later section in this chapter, “Nesting
Structures,” a variable of one structure may be a member variable of another structure.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (1 of 12)06.11.2004 22:52:43

Structures

A structure may be declared pretty much anywhere in your code. However, by
convention, a structure usually is declared just below the preprocessor directives and
above main, as in the following code fragment:
#include <iostream>
#include <string>
using namespace std;
struct Person {
 string name;
 int height;
};
int main ()
{
 // code
 return 0;
}

You may be wondering: “Wait a minute! He is declaring a structure the same place a
global variable would be declared and he taught us not to use global variables unless
absolutely necessary.”

Don’t worry, this is not a case of “Do what I say, not what I do.” When we declare a
structure, we are not declaring a variable. Instead, we are declaring a data type. By
declaring the data type globally, we will be able to use that data type throughout the
program. The reasons for not making variables global don’t apply to declaring a data type.
For example, you can’t assign a value to a Person structure any more than you can
assign a value to an int. Instead, you need to declare variables of the structure. That
issue is discussed next.

Declaring a Structure Variable

Late on a Saturday evening, I drove to a party to pick up my teenage daughter. The party
was noisy, packed with perhaps one hundred teenagers, each in programming parlance
an instance of a Person structure, with their own name and height. Some also had nose
rings, but I won’t talk about that variable. Anyway, I was looking for just one particular
person, my daughter. When I went up to the parent hosting the party, I did not ask if they
knew where a generic Person was. Instead, I asked if they knew where I could find a
particular person, identifying her specifically.

A generic person is the Person structure that in the previous section I showed you how to
declare. However, each particular person is an instance of the Person structure, and each
such instance needs to be declared as a Person structure variable.

You declare a structure variable essentially the same as you declare a variable of a built-
in data type. The following code declares a Person variable:
 Person p1;

As with the declaration of a variable of a built-in data type, the declaration of a structure
variable starts with the data type, then a variable name, and closes with a semicolon to
indicate to the compiler the end of the statement.

You also can declare multiple Person variables, such as:
 Person p1, p2, p3;

Indeed, for the mob scene at the party where I went to pick up my daughter, you might

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (2 of 12)06.11.2004 22:52:43

Structures

want to declare an array of Person variables:
 Person p[100];

You may declare a structure variable essentially anywhere in your program; the same
scope and lifetime rules apply just the way they do for integer, float, and other types of
variables.

Accessing Structure Member Variables

Declaring a structure variable does not assign values to its member variables. You can
access a member variable by the name of a structure variable, a dot operator, which
looks like a period, and the name of the member variable. The following code assigns the
value “Emily Kent” to the name member variable of the Person variable p1:
 p1.name = "Emily Kent";

Similarly, you could output the value of the member variable using the same syntax:
 cout << "The name of p1 is " << p1.name;

Don’t make the beginner’s mistake of using the name of the structure, rather than the
name of the structure variable, as in the following example:
 Person.name = "Emily Kent"; // won't work!

The following program declares a three-element Person array, assigns values to the
member variables of each element, and then outputs their values:
#include <iostream>
#include <string>
using namespace std;
const int MAX = 3;
struct Person {
 string name;
 int height;
};
int main ()
{
 Person p[MAX];
 for (int x = 0; x < MAX; x++)
 {
 cout << "Enter person's name: ";
 getline(cin, p[x].name);
 cout << "Enter height in inches: ";
 cin >> p[x].height;
 cin.ignore();
 }
 cout << "Outputting person data\n";
 cout << "======================\n";
 for (x = 0; x < MAX; x++)
 cout << "Person #" << x + 1 << "'s name is "
 << p[x].name << " and height is "
 << p[x].height << endl;
 return 0;
}

Some sample input and output could be

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (3 of 12)06.11.2004 22:52:43

Structures

Enter person's name: Genghis Khent
Enter height in inches: 78
Enter person's name: Jeff Kent
Enter height in inches: 72
Enter person's name: Dante Kent
Enter height in inches: 10
Outputting person data
======================
Person #1's name is Genghis Khent and height is 78
Person #2's name is Jeff Kent and height is 72
Person #3's name is Dante Kent and height is 10

Initializing a Structure

There are two ways you may initialize a structure. The first way is to use an initialization
list. The second way is to use a constructor.

Initialization Lists

The following code fragment demonstrates how you can initialize a structure with an
initialization list:
 Person p1 = {"Jeff Kent", 72};

This may seem like déjà vu, since an array is similarly initialized with an initialization list.
However, there is an important difference. While all of the elements of an array share the
same data type, the member variables of a structure may have different data types. This
makes the order of the values in the initialization list particularly important. For example,
the following code will result in a compiler error because the first member variable of the
structure is a C-string and you cannot assign an integer to a C-string:
 Person p1 = {72, "Jeff Kent"}; // won't work

Constructors

The constructor was discussed in Chapter 13 in connection with file stream objects. The
constructor is a function that is automatically called when you attempt to create an
instance of an object.

Default Constructors

You do not need to write a constructor. Indeed, we did not write a constructor in the
previous program that declared a three-element Person array, assigned values to the
member variables of each element, and then outputted their values.

If you do not write a constructor, then a default constructor is called. The term default
means the constructor is supplied by default since you did not write one.

The following program demonstrates the use of the default constructor:
#include <iostream>
#include <string>
using namespace std;
const int MAX = 3;
struct Person {
 string name;
 int height;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (4 of 12)06.11.2004 22:52:43

Structures

};

int main ()
{
 Person p1;
 cout << "The person's name is "
 << p1.name << " and height is "
 << p1.height << endl;
 return 0;
}

The output is
The person's name is and height is -858993460

The default constructor was called by the following statement, which created a Person
instance:
 Person p1;

The result was that a Person instance was created by the default constructor. However,
the member variables were not assigned values. Consequently, the value of the name
member variable is an empty string and the value of the height member variable is a
“garbage” value.

No-Argument Constructors

You can write a no-argument constructor that, unlike the default constructor, assigns
default values to the member variables. The following code shows the addition of a no-
argument constructor inside the body of the declaration of the Person structure:
struct Person {
 string name;
 int height;
 Person()
 {
 name = "No name assigned";
 height = -1;
 }
};

The constructor itself reads
 Person()
 {
 name = "No name assigned";
 height = -1;
 }

The name of the constructor is always the same as the name of the structure itself; no
exceptions. Additionally, the constructor has no return value; again, no exceptions.
Indeed, some compilers will object if you put a void return value in the function header.

Modify the program by adding the no-argument constructor to the declaration of the
Person structure. The program now reads
#include <iostream>
#include <string>
using namespace std;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (5 of 12)06.11.2004 22:52:43

Structures

const int MAX = 3;
struct Person {
 string name;
 int height;
 Person()
 {
 name = "No name assigned";
 height = -1;
 }
};

int main ()
{
 Person p1;
 cout << "The person's name is "
 << p1.name << " and height is "
 << p1.height << endl;
 return 0;
}

The output now reflects the default values:
The person's name is No name assigned and height is -1

Note This no-argument constructor, like the default constructor, is called by the
statement Person p1. Though a no argument constructor is called, there are
no empty parentheses following p1 since it is not a function call but instead a
variable declaration.

Constructors with Arguments

Declaring a no-argument constructor is an improvement over the default constructor since
now the member variables have default values. However, it would be even better if we
could truly initialize the member variables with values supplied by the user when the
program is running. This is possible if we add arguments to the constructor, each
argument being the value used to initialize a member variable. Accordingly, add the
following two-argument constructor to the definition of the Person structure:
 Person(string s, int h)
 {
 name = s;
 height = h;
 }

The program now reads
#include <iostream>
#include <string>
using namespace std;
const int MAX = 3;
struct Person {
 string name;
 int height;
 Person()
 {
 name = "No name assigned";
 height = -1;
 }

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (6 of 12)06.11.2004 22:52:43

Structures

 Person(string s, int h)
 {
 name = s;
 height = h;
 }
};

int main ()
{
 int inches;
 string strName;
 cout << "Enter person's name: ";
 getline(cin, strName);
 cout << "Enter height in inches: ";
 cin >> inches;
 cin.ignore();
 Person p1(strName, inches);
 cout << "The person's name is "
 << p1.name << " and height is "
 << p1.height << endl;
 return 0;
}

The sample input and output could be
Enter person's name: Jeff Kent
Enter height in inches: 72
The person's name is Jeff Kent and height is 72

The two-argument constructor is called by the following declaration of a Person instance:
 Person p1(strName, inches);

The parentheses are necessary because there are arguments. The arguments must be in
the order the constructor is expecting. If the constructor expects the first argument to be a
string and the second to be an integer, a compiler error will result if you declare the
Person instance with the first argument being an integer and the second a string.

Separating the Constructor Prototype and Implementation

The following code modifies the previous program by separating the prototype of the
constructors from the implementation of the constructors. The prototypes are inside the
declaration of the structure. However, the implementations are outside the declaration of
the structure:
#include <iostream>
#include <string>
using namespace std;
const int MAX = 3;
struct Person {
 string name;
 int height;
 Person();
 Person(string, int);
};

 Person::Person()
 {

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (7 of 12)06.11.2004 22:52:43

Structures

 name = "No name assigned";
 height = -1;
 }
 Person::Person(string s, int h)
 {
 name = s;
 height = h;
 }

int main ()
{
 int inches;
 string strName;
 cout << "Enter person's name: ";
 getline(cin, strName);
 cout << "Enter height in inches: ";
 cin >> inches;
 cin.ignore();
 Person p1(strName, inches);
 cout << "The person's name is "
 << p1.name << " and height is "
 << p1.height << endl;
 return 0;
}

In the function header of each of the constructors, the function name is preceded by the
class name and the scope resolution operator (::):
 Person::Person()
 Person::Person(string s, int h)

The reason is that since the function implementation is outside of the class, preceding the
function name with the structure name and the scope resolution operator (::) is necessary
to tell the compiler that the function belongs to the structure rather than being just another
standalone function like the ones you created in Chapter 9.

While the preceding discussion should explain how you can separate the prototype and
implementation of the constructors, the question thus far unanswered is why. The reason
is in OOP—one principle is to separate what a function does from how it does it. This
enables programmers to later improve how a function does its job without affecting the
function’s signature (arguments and return value) on which existing programs using the
function depend.

Passing Structures as Function Arguments

The following program passes a Person structure instance as an argument to two
functions. The setValues function assigns values to the member variables of the structure
instance, whereas the getValues function outputs the values of the member variables of
the structure instance:
#include <iostream>
#include <string>
using namespace std;
struct Person {
 string name;
 int height;
};

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (8 of 12)06.11.2004 22:52:43

Structures

void setValues(Person&);
void getValues(const Person&);

int main ()
{
 Person p1;
 setValues(p1);
 cout << "Outputting person data\n";
 cout << "======================\n";
 getValues(p1);
 return 0;
}

void setValues(Person& pers)
{
 cout << "Enter person's name: ";
 getline(cin, pers.name);
 cout << "Enter height in inches: ";
 cin >> pers.height;
 cin.ignore();
}

void getValues(const Person& pers)
{
 cout << "Person's name is " << pers.name
 << " and height is " << pers.height << endl;
}

The following is some sample input and output:
Enter person's name: Genghis Khent
Enter height in inches: 78
Outputting person data
======================
Person's name: Genghis Khent
Person's height in inches is: 78

Unlike an array name, a structure’s value is not an address. Therefore, to change the
values of its member variables when passing a structure as a function argument, the
structure needs to be passed by reference or by address. Therefore, in the setValues
function, which changes the member variables of the structure passed to it, the structure
is passed by reference.

However, the structure also is passed by reference to the getValues function even though
that function does not change the value of its member variables. The reason is that less
memory is required to pass the address of an object than the object itself, which may take
up a lot of bytes. However, here the structure instance in the getValues function’s
argument list is preceded with the const keyword to prevent the function from
inadvertently changing the values inside the structure instance.

Nesting Structures

In previous chapters, we have nested if statements within if statements, and loops within
loops. You also may nest a structure within another structure.

Of course, your mother may have told you (or at least mine told me) “Just because you

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (9 of 12)06.11.2004 22:52:43

Structures

can do something doesn’t mean you should do it.” Here, however, nesting structures is a
good idea.

Using our Person structure example, every person has a birthday. A birthday is a date. A
date, in turn, may be defined by a structure that contains three member variables, all
integers, which represent the month, day, and year of the particular date. The Date
structure could be declared as follows:
struct Date
{
 int month;
 int day;
 int year;
};

The Person structure declaration then would be modified to add a member variable, of the
structure Date, named bDay, to represent the person’s birthday:
struct Person {
 string name;
 int height;
 Date bDay;
};

The following code modifies the previous one by adding the Date structure and the bDay
Date member variable to the Person structure, as well as modifying the setValues
function to also assign a value to the bDay Date member variable and the getValues
function to output the value of that member variable:
#include <iostream>
#include <string>
using namespace std;
struct Date
{
 int month;
 int day;
 int year;
};
struct Person {
 string name;
 int height;
 Date bDay;
};
void setValues(Person&);
void getValues(const Person&);

int main ()
{
 Person p1;
 setValues(p1);
 cout << "Outputting person data\n";
 cout << "======================\n";
 getValues(p1);
 return 0;
}

void setValues(Person& pers)
{

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (10 of 12)06.11.2004 22:52:43

Structures

 cout << "Enter person's name: ";
 getline(cin, pers.name);
 cout << "Enter height in inches: ";
 cin >> pers.height;
 cin.ignore();
 cout << "Enter month, day and year of birthday separated by
spaces: "
 cin >> pers.bDay.month >> pers.bDay.day >> pers.bDay.year;
 cin.ignore();
}

void getValues(const Person& pers)
{
 cout << "Person's name: " << pers.name << endl;
 cout << "Person's height in inches is: " << pers.height <<
endl;
 cout << "Person's birthday in mm/dd/yyyy format is: "
 << pers.bDay.month << "/" << pers.bDay.day
 << "/" << pers.bDay.year << endl;
}

The following is some sample input and output:
Enter person's name: Genghis Khent
Enter height in inches: 78
Enter month, day and year of birthday separated by spaces: 3 4
1211
Outputting person data
======================
Person's name: Genghis Khent
Person's height in inches is: 78
Person's birthday in mm/dd/yyyy format is: 3/4/1211

The Date structure must be declared before the Person structure. Otherwise, the compiler
would not know what Date was in the declaration of the bDay member variable of the
Person structure.

The setValues function sets the value of the person’s birthday. It cannot do so by:
 cin >> pers.bDay

The reason is that bDay is not an integer that can be assigned user input of an integer.
Instead, it itself is also a structure. Therefore, it is necessary to drill down further into the
member variables of bDay, month, day, and year, as in the following statement:
 cin >> pers.bDay.month >> pers.bDay.day >> pers.bDay.year;

Similarly, the getValues function cannot output the person’s birthday with the statement:
 cout << pers.bDay;

Instead, it must also drill down further into the member variables of bDay, month, day,
and year, as in the following statement:
 cout << "Person's birthday in mm/dd/yyyy format is: "
 << pers.bDay.month << "/" << pers.bDay.day
 << "/" << pers.bDay.year << endl;

The nesting of a Date structure variable in a Person structure is an example of

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (11 of 12)06.11.2004 22:52:43

Structures

containership (discussed previously in this chapter in the section “Object-Oriented
Programming”) in that a person “has a” birthday.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0102.html (12 of 12)06.11.2004 22:52:43

Classes

Classes

Most of the previous discussion on structures applies also to classes. Indeed, for the most
part you can simply substitute the class keyword for the struct keyword when declaring
the class.

However, there is an important difference between structures and classes. To illustrate
that difference, let’s run the following program which is identical to the one in the earlier
section, “Passing Structures as Function Arguments,” with one exception: the class
keyword has been substituted for the struct keyword when declaring the Person class:
#include <iostream>
#include <string>
using namespace std;
class Person {
 string name;
 int height;
};
void setValues(Person&);
void getValues(const Person&);

int main ()
{
 Person p1;
 setValues(p1);
 cout << "Outputting person data\n";
 cout << "======================\n";
 getValues(p1);
 return 0;
}

void setValues(Person& pers)
{
 cout << "Enter person's name: ";
 getline(cin, pers.name);
 cout << "Enter height in inches: ";
 cin >> pers.height;
 cin.ignore();
}

void getValues(const Person& pers)
{
 cout << "Person's name: " << pers.name << endl;
 cout << "Person's height in inches is: " << pers.height <<
endl;
}

The unfortunate result is a number of compiler errors in getValues and setValues. Each
reference to pers.name and pers.height is flagged by an error message that you are
unable to access a private member declared in class Person. What happened?

The reason why we experienced compiler errors when Person is a class but not when it is
a structure is that, by default, member variables of a class are private, whereas member
variables of a structure are public.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0103.html (1 of 4)06.11.2004 22:52:44

Classes

A public member variable may be accessed anywhere in the program. Therefore, when
Person was a structure instead of a class, the compiler did not object when we attempted
to access pers.name and pers.height in getValues and setValues because name and
height are public variables.

By contrast, a private member variable may be accessed only by a member function of
the same class. The getValues and setValues functions are not member functions of the
Person class, as a Person constructor would be, for example. Since the getValues and
setValues functions are outside the class, they are not permitted to access the Person
private member variables name and height. The result of this impermissible attempt is a
compiler error.

The solution is to create public member functions to read from, and write to, the private
member variables. These member functions are public so they can be accessed outside
the class.

In the following program, the getName member function reads from the name member
variable and the setName member function writes to it. Similarly, the getHeight member
function reads from the height member variable, and the setHeight member function
writes to it.
#include <iostream>
#include <string>
using namespace std;

class Person {
 private:
 string name;
 int height;
 public:
 string getName() const;
 void setName(string);
 int getHeight() const;
 void setHeight(int);
};

 string Person::getName() const
 { return name; }

 void Person::setName(string s)
 {
 if (s.length() == 0)
 name = "No name assigned";
 else
 name = s;
 }

 int Person::getHeight() const
 { return height; }

 void Person::setHeight(int h)
 {
 if (h < 0)
 height = 0;
 else
 height = h;

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0103.html (2 of 4)06.11.2004 22:52:44

Classes

 }

void setValues(Person&);
void getValues(const Person&);

int main ()
{
 Person p1;
 setValues(p1);
 cout << "Outputting person data\n";
 cout << "======================\n";
 getValues(p1);
 return 0;
}

void setValues(Person& pers)
{
 string str;
 int h;
 cout << "Enter person's name: ";
 getline(cin,str);
 pers.setName(str);
 cout << "Enter height in inches: ";
 cin >> h;
 cin.ignore();
 pers.setHeight(h);
}

void getValues(const Person& pers)
{
 cout << "Person's name: " << pers.getName() << endl;
 cout << "Person's height in inches is: " << ••••••••pers.
getHeight() << endl;
}

Note The earlier section on “Passing Structures as Function Arguments” explains why
the getValues function passes its argument by reference and why that argument
is preceded by the const keyword. Similarly, the getName and getHeight
member functions are followed by the const keyword to indicate they will not
change the values of the Person object that calls them.

Now the program compiles and runs and provides the expected output:
Enter person's name: Jeff Kent
Enter height in inches: 72
Outputting person data
======================
Person's name: Jeff Kent
Person's height in inches is: 72

While this program works fine, you legitimately may wonder why we went to the trouble of
using public member functions to read from, and write to, private member variables,
rather than just make the member variables public.

When Person was a structure instead of a class, there was nothing in the structure to
prevent invalid values from being assigned to its member variables since the structure
permitted direct access to these variables from outside the structure. Therefore, the

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0103.html (3 of 4)06.11.2004 22:52:44

Classes

assigned input could be a blank name and negative height:
Enter person's name:
Enter height in inches: -5
Outputting person data
======================
Person's name:
Person's height in inches is: -5

However, when Person is a class, the member functions could perform input validation
before assigning the input value to the member variable. In this regard, the setName
member function checks if the input string is blank, and if it is, assigns “No name
assigned” rather than a blank string to the name member variable. Similarly, the setHeight
member function checks if the input number is negative, and if it is, assigns zero instead
of the negative number to the height member variable. The following sample input and
output demonstrates this:
Enter person's name:
Enter height in inches: -5
Outputting person data
======================
Person's name: No name assigned
Person's height in inches is: 0

This demonstrates another aspect of OOP, encapsulation or information-hiding. The
applicability of information hiding is that the class’ data or information, contained in its
member variables, is hidden from the “outside world” and access to them is restricted to
member functions. Encapsulation applies because a member variable is packaged
together with the member functions that read or write to it.

One benefit, as this example demonstrated, is for the member functions that write to
member variables to perform input validation. Another benefit could be for the member
functions that read from member variables and return their values to restrict read access
to only those users who in the particular system have the right to access that information.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0103.html (4 of 4)06.11.2004 22:52:44

Summary

Summary

Object-Oriented Programming (often known by its acronym, OOP) concerns, as its name
indicates, objects. A common purpose of a program is to provide a solution to real-world
tasks, which involve persons, places, things, or concepts. Programs use objects to
represent real-world persons, places, things, or concepts.

Real-world objects also have relationships with other real-world objects. These
relationships are either an “is a” relationship or a “has a” relationship.

An example of an “is a” relationship is that a teacher is a person. This type of relationship
is referred to as inheritance. Inheritance enables you to reuse existing code, such as the
person class, when creating classes that represent more specialized objects, like
teachers.

An example of a “has a” relationship is that a car has an engine. This type of relationship
also is referred to as containership. In addition, containership enables you to reuse
existing code, such as the engine class, when creating classes that represent the
containing object, like cars.

Code reusability makes application development faster since you don’t have to “reinvent
the wheel.” Additionally, the applications you develop are less buggy since the code you
are reusing already has been tested. Accordingly, OOP enables programmers to model
programming objects after complex real-world objects, and reuse existing, tested code.

Objects generally are too complex to be described by a single variable. Additionally, the
several variables necessary to describe an object may have different data types, so an
array is not an option.

A solution is to use a structure to describe complex objects. A structure is a programmer-
defined data type that enables you to package related variables together, even if the
variables are of different data types. The variables that belong to a structure are called
member variables.

This chapter showed you how to declare a structure. The declaration commences with
struct, which is a keyword indicating that a structure is being declared. The struct keyword
is followed by a name that indicates what the structure represents.

Structures, like functions, have a body, enclosed in open and close curly braces.
However, unlike functions, the close curly brace must be followed by a semicolon. The
body of the structure contains the member variables of the structure.

The effect of declaring a structure is similar to declaring your own data type. Accordingly,
you need to declare a structure variable to create an instance of a structure. If you have
many structure instances, you may declare a separate variable for each instance, or
instead declare an array of structure instances.

You use the dot operator (.) with the structure instance name to access the member
variables, whether the access is to obtain the value of the variable or to assign a value to
it.

There are two ways you may initialize a structure. The first way is to use an initialization
list. The second way is to use a constructor. As you learned in Chapter 13, a constructor
is a function that is automatically called when you attempt to create an instance of an

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0104.html (1 of 2)06.11.2004 22:52:45

Summary

object. You may create more than one constructor, such as one with no arguments and
one with several arguments.

In OOP, one principle is to separate what a function does from how it does it. In this spirit,
programmers often separate a constructor’s prototype from its implementation,
implementing the constructor outside of the body of the structure. If you do this, then in
the function header of the constructor’s implementation, you need to precede the
constructor name with the structure name and the scope resolution operator (::) to tell the
compiler that the implementation is of a structure member function.

A structure may be passed as a function argument. Unlike an array name, a structure’s
value is not an address. So, to change the values of its member variables, a structure
needs to be passed by reference or address. However, a structure often is passed by
reference even if the function will not change the value of its member variables because
less memory is required to pass the address of an object than the object itself, which may
take up a lot of bytes. You precede the structure instance in the function argument list
with the const keyword to prevent the function from inadvertently changing the values
inside the structure instance.

You may nest a structure within another structure. Using the Person structure example,
every person has a birthday. A birthday is a date, and a date, in turn, may be defined by a
Date structure that contains three member variables which represent the month, day, and
year of the particular date. You then could add to the Person structure declaration a
member variable of the structure Date to represent the person’s birthday. This is an
example of the OOP concept of containership in that a person “has a” birthday.

Classes are quite similar to structures. You declare a class similarly to how you declare a
structure, just substituting the class keyword for the struct keyword.

An important difference between a structure and a class is that member variables are, by
default, public in a structure but private in a class. A public member variable may be
accessed anywhere in the program. By contrast, a private member variable may be
accessed only by a member function of the same class.

In classes, typically member functions are used to read from, and write to, the private
member variables. These member functions are public so they can be accessed outside
the class. One benefit of keeping the member variables private and using public member
functions for read and write access is input validation. Keeping the member variables
private is an example of the OOP concepts of encapsulation and information-hiding.

I hope you enjoyed this book as much as I enjoyed writing it, and I wish you the best of
luck in your future programming endeavors.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0104.html (2 of 2)06.11.2004 22:52:45

Quiz

Quiz
1. What are some major benefits of OOP?

2. What is an example of information hiding or encapsulation?

3. What type of relationship is involved in inheritance?

4. What type of relationship is involved in containership?

5. What is a structure?

6. When you declare a structure, are you declaring an instance or a data type?

7. What are the two ways to initialize a structure?

8. Can you nest one structure within another structure?

9. Why may a structure be passed by reference even if the function will not change
the value of its member variables?

10. What is an important difference between a structure and a class?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0105.html06.11.2004 22:52:45

Final Exam

Final Exam
1. What is a computer program?

2. What is a programming language?

3. What is a function?

4. How many main functions should a C++ program have?

5. What is a standard library file?

6. What is the purpose of an include directive?

7. What does a preprocessor do?

8. What does a compiler do?

9. What does a linker do?

10. Which of the following types of memory is not temporary: cache memory, RAM, or
persistent storage?

11. What is the amount of information that may be stored at a particular memory
address?

12. Is the size of a data type always the same no matter which computer you may be
working on?

13. What is the difference between an unsigned and a signed data type?

14. What is an ASCII value?

15. What is a literal string?

16. What is an expression?

17. What is the effect of declaring a variable?

18. Can you refer to a variable before declaring it as long as you declare it later?

19. What is the difference between the address and sizeof operators?

20. What is the difference between initialization and assignment?

21. What is overflow?

22. Do you use the cin object for compile-time or run-time assignment of values to
variables?

23. Which of the four arithmetic operations has more than one operator?

24. Which of the arithmetic operators cannot have a floating-point operand?

25. Which of the arithmetic operators cannot have a zero as a second operand?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0106.html (1 of 5)06.11.2004 22:52:47

Final Exam

26. Assuming total is an integer variable, how else could you express in code total =
total + 5?

27. What is the result of 4 + 3 * 2?

28. What is the result of the expression 8 / 2 * 4?

29. What is the result of the expression 15 / 4?

30. What operator or function do you use to raise a number to a certain power?

31. What is an algorithm?

32. How many operands are in a relational expression?

33. What is the data type of the expression following the if keyword?

34. In an if / else if / else statement, which part must you have one, but only one, of?

35. In an if / else if / else statement, which part may you have more than one of?

36. In an if / else if / else statement, which part may you omit?

37. In a switch statement, what is the required data type of expression following the
switch keyword?

38. In a switch statement, may the expression following a case keyword be a variable?

39. Which keyword in a switch statement corresponds to the else keyword in an if /
else if / else statement?

40. Can you use nested if statements as an alternative to the logical And and Or
operators?

41. For which of the logical operators do both Boolean expressions have to be true for
the overall Boolean expression to be true?

42. For which of the logical operators do both Boolean expressions have to be false for
the overall Boolean expression to be false?

43. Which of the logical operators reverses the “truth” of a Boolean expression, making
a true expression false and a false expression true?

44. What does the increment operator do?

45. What does the decrement operator do?

46. In the statement cout << --num, which occurs first, decrementing num or the
outputting of the value of num?

47. What is an iteration?

48. What is the usual purpose of the first expression in the parentheses following the
for keyword?

49. What is the purpose of the second expression in the parentheses following the for
keyword?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0106.html (2 of 5)06.11.2004 22:52:47

Final Exam

50. What is the usual purpose of the third expression in the parentheses following the
for keyword?

51. Can one or more of the expressions in the parentheses following the for keyword
be empty?

52. What is the purpose of the break keyword in a for loop?

53. What is the purpose of the continue keyword in a for loop?

54. If you were going to use nested for loops to print rows and columns, which for loop
would print the columns—inner or outer?

55. Which of the three loops—for, while, or do while—executes at least once?

56. Which of the three loops—for, while, or do while—is the best choice when the
number of iterations is predictable?

57. Is the parenthetical expression following the while keyword for initialization,
condition, or update?

58. What is a flag?

59. What is the difference between variable scope and lifetime?

60. Must a function other than main be prototyped?

61. Is a function required to have at least one argument?

62. May a function have more than one argument?

63. What is the effect on a variable in main if it is passed by value to another function
that changes the argument corresponding to that variable?

64. What is the effect on a variable in main if it is passed by reference to another
function that changes the argument corresponding to that variable?

65. Must a function have a return value?

66. May a function have more than one return value?

67. May a function have neither a return value nor any arguments?

68. May a function have both a return value and arguments?

69. Can a particular array contain integers, floats, and characters?

70. What is the number of the starting index of an array?

71. What is the number of the ending index of an array?

72. What are the two alternative methods of initializing an array?

73. What is the purpose of the null character in a character array?

74. What is the value of the name of an array?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0106.html (3 of 5)06.11.2004 22:52:47

Final Exam

75. When you pass an array name as a function argument, are you passing it by value,
reference, or address?

76. What is a pointer?

77. What is the difference between declaring an integer variable and declaring an
integer pointer variable?

78. What is the meaning of the data type in the declaration of a pointer?

79. What is the meaning and purpose of NULL when being assigned to a pointer?

80. What operator do you use to assign a pointer the address of another variable or
constant?

81. What is the purpose of the indirection operator?

82. What is the effect of incrementing a pointer variable?

83. What are the purposes of the new and delete operators?

84. Can you use an assignment operator to assign the value of one C-string to
another?

85. What does it mean for data to be persistent?

86. What is a file?

87. What standard library should you include when your program reads from, or writes
to, files?

88. Which of the three objects, fstream, ifstream, or ofstream, may be used both for file
input and file output?

89. What are the two functions you can use to open a file?

90. What is the purpose of opening a file?

91. What is the purpose of closing a file?

92. What is a constructor?

93. Should file stream objects be passed as function arguments by value or by
reference?

94. What type of relationship is involved in inheritance?

95. What type of relationship is involved in containership?

96. What is a structure?

97. What are the two ways to initialize a structure?

98. Can you nest one structure within another structure?

99. Why may a structure be passed by reference even if the function will not change
the value of its member variables?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0106.html (4 of 5)06.11.2004 22:52:47

Final Exam

100. What is an important difference between a structure and a class?

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0106.html (5 of 5)06.11.2004 22:52:47

Answers to Quizzes and Final Exam

Answers to Quizzes and Final Exam

Chapter 1
1. A computer program consists of step-by-step instructions to the computer from a

computer programmer.

2. Computers can store greater amounts of information, can recall that information
more quickly and accurately, and can perform calculations faster and more
accurately.

3. A programming language is a language that resembles the structure and syntax of
human language, and that is used by computer programmers to write instructions
for computers.

4. C++ is a good programming language to learn because it is very widely used in
industry and in education, and also because many other programming languages,
including Java and C#, are based on C++.

5. A function is a group of related instructions, also called statements, which together
perform a particular task.

6. A C++ program must have one main function, no more, no less.

7. A standard library file is a file that defines commonly used objects, such as cout.

8. The purpose of an include directive is to tell the program to include a particular
standard library file in your application.

9. A preprocessor is a program that scans the source code for include directives, and
then inserts them into the source code of all files included by the include directives.

10. The compiler is a program that translates the preprocessed source code (the
source code after the insertions made by the preprocessor) into corresponding
machine language instructions that are stored in an object file.

11. The linker is a program that combines the object file with the necessary parts of the
run-time library and creates an executable file.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0107.html06.11.2004 22:52:48

Chapter 2

Chapter 2
1. The CPU can most quickly access instructions or data from cache memory

because that memory is on the CPU itself.

2. Persistent storage is not temporary like the other two: cache memory and RAM.

3. One byte of information may be stored at a particular memory address.

4. No. The size of a data type may vary depending on the compiler and operating
system.

5. The range of a data type is the highest and lowest value that that data type may
represent.

6. The value of an unsigned data type is either zero or positive, never negative,
whereas the value of a signed data type may be negative also.

7. .0051 is represented by 5.1E-3 in E notation.

8. An ASCII value is a number between 0 and 255 that corresponds to a particular
character.

9. The sizeof operator returns the size in bytes of a data type on the compiler and
operating system on which the program is running.

10. A literal string is a string, generally encased in double quotes, that is outputted
literally, without evaluation.

11. An expression is a code statement with a value that has to be evaluated when the
program runs.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0108.html06.11.2004 22:52:49

Chapter 3

Chapter 3
1. Declaring a variable reserves memory for the storage of information and provides a

name by which that information later can be referred to in code.

2. No. An “undeclared identifier” compiler error will occur even though the variable is
declared after it is referred to because the compiler reads the code from top to
bottom, so when it reaches the first reference to the variable, it has not seen the
variable declaration.

3. Yes, as long as the variables are of the same data type.

4. A naming convention is a consistent method of naming variables.

5. The address operator is used to obtain the hexadecimal value of a variable's
memory address, whereas the size of operator is used to determine the number of
bytes in memory required to store the variable.

6. Initialization is when you assign a value to a variable as part of the same statement
that declares that variable.

7. Overflow occurs when a variable is assigned a value too large for its range.

8. A compiler error is the consequence of using an assignment operator to assign a
string value to an integer variable.

9. You use the cin object for run-time assignment of values to variables.

10. Yes. You can use one cin statement to assign values to several variables of
different data types.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0109.html06.11.2004 22:52:49

Chapter 4

Chapter 4
1. Division has more than one operator, / and %.

2. The addition operator can operate on string as well as numeric operands.

3. The modulus operator cannot have a floating point operand.

4. The two division operators, / and %, cannot have zero as a second operand.

5. total + = 2

6. The result of 2 + 3 * 4 is 14, not 20, because multiplication has precedence over
addition.

7. The result of the expression 8 / 2 * 4 is 16, not 1, because of associativity.
Multiplication and division have equal precedence, so the operations are performed
from left to right.

8. The result of the expression 10 / 4 is 2, not 2.5, because of integer division.

9. C++, unlike some other programming languages, does not have an exponent
operator. Instead, you use the pow function, defined in the cmath standard library,
to raise a number to a certain power.

10. An algorithm is a step-by-step logical procedure for solving a problem.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0110.html06.11.2004 22:52:50

Chapter 5

Chapter 5
1. There are two operands in a relational expression.

2. The purpose of a flowchart is to visually depict the flow of a program.

3. The data type of the expression following the if keyword is Boolean.

4. In an if /else if / else statement, you must have one, but only one, if part.

5. In an if /else if / else statement, you may have more than one else if part.

6. In an if /else if / else statement, you may omit the else part, in which case the
statement becomes an if/else if statement.

7. In a switch statement, the required data type of expression following the switch
keyword is integer.

8. In a switch statement, an expression of the character data type may follow the
switch keyword because the ANSI or ASCII value of a character is an integer.

9. In a switch statement, the expression following a case keyword must be a constant
and therefore cannot be a variable.

10. The default keyword in a switch statement corresponds to the else keyword in an if /
else if / else statement.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0111.html06.11.2004 22:52:51

Chapter 6

Chapter 6
1. You can use nested if statements as an alternative to the logical And and Or

operators.

2. An if statement can be nested in the else if or else part of an if / else if / else
statement, as well as the if part.

3. With the logical And operator, both Boolean expressions have to be true for the
overall Boolean expression to be true.

4. With the logical Or operator, both Boolean expressions have to be false for the
overall Boolean expression to be false.

5. The logical Not operator reverses the “truth” of a Boolean expression, making a
true expression false and a false expression true.

6. Assuming resident is a Boolean variable, if(resident) is the same as if(resident ==
true).

7. The logical Not operator is a unary rather than binary operator.

8. The logical Not operator has a higher precedence than the relational operators.

9. The logical And operator has a higher precedence than the logical Or operator.

10. A Boolean value of either true or false can be used following the case keyword in a
switch statement since both true and false have corresponding integer values.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0112.html06.11.2004 22:52:52

Chapter 7

Chapter 7
1. The increment operator increases a value by one.

2. The decrement operator decreases a value by one.

3. In the statement cout << --num, decrementing occurs before the outputting of the
value of num because the decrementing is prefix.

4. An iteration is each time a loop repeats.

5. The usual purpose of the first expression in the parentheses following the for
keyword is to initialize a variable which usually serves as the counter.

6. The purpose of the second expression in the parentheses following the for keyword
is to set the condition which must be true for the loop to continue to execute.

7. The usual purpose of the third expression in the parentheses following the for
keyword is to update a value, usually a counter.

8. One or more of the expressions in the parentheses following the for keyword may
be empty if handled elsewhere in the code.

9. The purpose of the break keyword in a for loop is to prematurely terminate the loop.

10. The purpose of the continue keyword in a for loop is to prematurely terminate the
iteration of a loop.

11. If you were going to use nested for loops to print rows and columns, you would use
the inner for loop to print the columns.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0113.html06.11.2004 22:52:53

Chapter 8

Chapter 8
1. The do while loop executes at least once.

2. The for loop is the best choice when the number of iterations is predictable.

3. The parenthetical expression following the while keyword is for the condition.

4. The parenthetical condition following the while keyword may always be true, such
as while (true). However, to avoid an infinite loop, the break keyword would need to
be used in the body of the loop.

5. The parenthetical condition following the while keyword may combine two
expressions using a logical && or || operator.

6. The purpose of the break keyword in a while loop is the same as it is in a for loop—
to prematurely terminate the loop.

7. The purpose of the continue keyword in a while loop is the same as it is in a for
loop, to prematurely terminate the iteration of a loop.

8. A flag is a Boolean variable whose value indicates whether a condition exists.

9. If you were going to use nested while loops to print rows and columns, you would
use the outer for loop to print the rows.

10. A variable declared inside the body of a do while loop does not have scope in the
parenthetical expression following the while keyword.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0114.html06.11.2004 22:52:54

Chapter 9

Chapter 9
1. A variable’s scope determines where it can be referred to in the code. A variable’s

lifetime determines when it is destroyed.

2. No. A function other than main does not have to be prototyped if it is defined above
where it is called. However, it is a good idea to prototype each function other than
main.

3. No. A function need not have any arguments. If it has none, then the void keyword
may be used in the parentheses following the function name.

4. Yes. A function may have more than one argument. If so, the arguments are
separated by commas.

5. If a variable in main is passed by value to another function which changes the
argument corresponding to that variable, the variable in main is not changed.

6. If a variable in main is passed by reference to another function which changes the
argument corresponding to that variable, the variable in main is changed.

7. No. A function does not have to have a return value. If it doesn’t have a return
value, the keyword void is used in its place.

8. No. A function may not have more than one return value.

9. Yes. A function does not have to have a return value nor any arguments.

10. Yes. A function may have both a return value and arguments.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0115.html06.11.2004 22:52:54

Chapter 10

Chapter 10
1. While the data type of an array may be integer, float, or character, a particular

array cannot contain integers, floats, and characters. All the elements of an array
must be of the same data type.

2. The number of the starting index of an array is zero.

3. The number of the ending index of an array is one less than the number of
elements in the array.

4. Initialization is when you assign a value to a variable in the same statement in
which you declare that variable. By contrast, assignment is when you assign a
value to a variable in a statement after the one in which you declare that variable.

5. The two alternative methods of initializing an array are explicit initialization, in
which the square brackets contain a numerical constant indicating the size of the
array, or implicit initialization, in which the square brackets are empty and the size
of the array is indicated by the number of elements on the right side of the
assignment operator.

6. The purpose of the null character is to signal cout when to end the output of a
character array.

7. The value of the name of an array is the base address of the array.

8. The last element of a character array need not always be a null character. When
each element of a character array is separate from the other, such as a separate
grade for each test, there is no need to use a null character. However, if the
character array elements are related, such as a character array representing a
person’s name, then usually the last element should be a null character.

9. The get function reads the user’s input up to, but not including, the newline
character, whereas the getline function reads the user’s input up to and including
the newline character.

10. When you pass an array name as a function argument, you are passing it by
address.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0116.html06.11.2004 22:52:55

Chapter 11

Chapter 11
1. A pointer is a variable or constant whose value is the address of another variable

or constant.

2. Dynamic memory allocation requires a pointer to be performed.

3. The only difference between declaring an integer variable and an integer pointer
variable is that the pointer variable declaration includes an asterisk, which either
follows the data type or precedes the variable name.

4. The data type in the declaration of a pointer refers to the data type of another
variable (or constant) whose memory address is the value of the pointer.

5. NULL is a constant defined in several standard libraries, including iostream. You
assign a pointer NULL if it is too early in your code to know which address to
assign to the pointer. The value of NULL, the memory address 0, signals that the
pointer is not intended to point to an accessible memory location.

6. You use the address operator to assign a pointer the address of another variable
or constant.

7. The purpose of the indirection operator is to obtain the value of the variable or
constant to which the pointer points. This operation is said to dereference the
pointer.

8. A pointer may point to different memory addresses at different times in the program
if the pointer is declared as a variable instead of as a constant.

9. Yes. More than one pointer may point to the same memory address.

10. Incrementing a pointer variable increases its value by the number of bytes of its
data type.

11. The purpose of the new operator is to dynamically allocate memory. The purpose
of the delete operator is to deallocate dynamically created memory.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0117.html06.11.2004 22:52:56

Chapter 12

Chapter 12
1. The cin object with the stream extraction operator (>>) will ignore a leading newline

character in the input buffer.

2. The getline member function will not leave a newline character in the input buffer.

3. You should always follow the cin object with the stream extraction operator (>>)
with the no-argument ignore member function because the cin object with the
stream extraction operator (>>) always leaves a newline character in the input
buffer.

4. You should never follow the getline member function with the no-argument ignore
member function because the getline member function always removes the
newline character that terminated input from the input buffer.

5. The argument of the isdigit function is a character.

6. The argument of the atoi function is a C-string.

7. A C++ string class variable cannot directly use the atoi function to convert the
string representation of a number to a number. However, it can copy its contents to
a C-string using either the c_str or data member functions, after which the C-string
can use the atoi function.

8. The functions in the C++ standard library cctype, such as toupper and isdigit, are
used with characters.

9. The functions in the C++ standard library cstdlib, such as atoi and itoa, are used
with C-strings.

10. You cannot use an assignment operator to assign the value of one C-string to
another. You will be assigning an address instead of a value.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0118.html06.11.2004 22:52:57

Chapter 13

Chapter 13
1. Data is persistent when it survives after the program is finished.

2. A file is a collection of data that is located on persistent storage, such as a hard
drive, a CD-ROM, or other storage device.

3. Files store data in either text or binary format.

4. You should include the fstream standard library when your program reads from, or
writes to, files.

5. The fstream object may be used both for file input and file output.

6. You can open a file with either the open member function or a constructor.

7. The purpose of opening a file is to establish a path of communication between the
file and a file stream object in your program.

8. The purpose of closing a file is to free system resources that are required to
maintain the path of communication between the file and the file stream object in
your program.

9. A constructor is a function that is automatically called when you attempt to create
an instance of an object.

10. The fail member function is a better choice than the eof member function for
detecting end of file in a text file.

11. File stream objects should be passed as function arguments by reference rather
than by value.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0119.html06.11.2004 22:52:57

Chapter 14

Chapter 14
1. OOP enables programmers to model programming objects after complex real-

world objects, and to reuse existing, tested code.

2. An example in this chapter of information hiding or encapsulation is the use of
public member functions to govern read and write access to private member
variables.

3. Inheritance involves an “is a” relationship. An example is a student is a person.

4. Containership involves a “has a” relationship. Examples include that a car has an
engine and a person has a birthday.

5. A structure is a programmer-defined data type that enables you to package related
variables that may be of different data types.

6. When you declare a structure, you are declaring a data type. You need to declare
a variable of that structure to create an instance of it.

7. You may initialize a structure using either an initialization list or a constructor.

8. You can nest one structure within another structure, such as a birthday member
variable of a Person structure being a Date structure itself.

9. A structure may be passed by reference even if the function will not change the
value of its member variables because less memory is required to pass the
address of an object than the object itself, which may take up a lot of bytes. In this
situation, you may precede the structure instance in the function argument list with
the const keyword to prevent the function from inadvertently changing the values
inside the structure instance.

10. Member variables are, by default, public in a structure but private in a class.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0120.html06.11.2004 22:52:58

Final Exam

Final Exam
1. A computer program consists of step-by-step instructions to the computer from a

computer programmer.

2. A programming language is a language that resembles the structure and syntax of
human language, and that is used by computer programmers to write instructions
for computers.

3. A function is a group of related instructions, also called statements, which together
perform a particular task.

4. A C++ program must have one main function, no more, no less.

5. A standard library file is a file that defines commonly used objects, such as cout.

6. The purpose of an include directive is to tell the program to include a particular
standard library file in your application.

7. A preprocessor is a program that scans the source code for include directives, and
then inserts them into the source code of all files included by the include directives.

8. The compiler is a program that translates the preprocessed source code (the
source code after the insertions made by the preprocessor) into corresponding
machine language instructions that are stored in an object file.

9. The linker is a program that combines the object file with the necessary parts of the
run-time library and creates an executable file.

10. Persistent storage is not temporary like the other two: cache memory and RAM.

11. One byte of information may be stored at a particular memory address.

12. No. The size of a data type may vary depending on the compiler and operating
system.

13. The value of an unsigned data type is either zero or positive, never negative, while
the value of a signed data type may be negative also.

14. An ASCII value is a number between 0 and 255 that corresponds to a particular
character.

15. A literal string is a string, generally encased in double quotes, that is outputted
literally, without evaluation.

16. An expression is a code statement with a value that has to be evaluated when the
program runs.

17. Declaring a variable reserves memory for the storage of information and provides a
name by which that information later can be referred to in code.

18. No. An “undeclared identifier” compiler error will occur even though the variable is
declared after it is referred to because the compiler reads the code from top to
bottom, so when it reaches the first reference to the variable, it has not yet seen
the variable declaration.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0121.html (1 of 6)06.11.2004 22:53:00

Final Exam

19. The address operator is used to obtain the hexadecimal value of a variable’s
memory address, whereas the sizeof operator is used to determine the number of
bytes in memory required to store the variable on the compiler and operating
system where the program is running.

20. Initialization is when you assign a value to a variable in the same statement in
which you declare that variable. By contrast, assignment is when you assign a
value to a variable in a statement after the one in which you declare that variable.

21. Overflow occurs when a variable is assigned a value too large for its range.

22. You use the cin object for run-time assignment of values to variables.

23. Division has more than one operator, / and %.

24. The modulus operator cannot have a floating-point operand.

25. The two division operators, / and %, cannot have zero as a second operand.

26. total + = 5

27. The result of 4 + 3 * 2 is 10, not 14, because multiplication has precedence over
addition.

28. The result of the expression 8 / 2 * 4 is 16, not 1, because of associativity.
Multiplication and division have equal precedence, so the operations are performed
from left to right.

29. The result of the expression 15 / 4 is 3, not 3.75, because of integer division.

30. C++, unlike some other programming languages, does not have an exponent
operator. Instead, you use the pow function, defined in the cmath standard library,
to raise a number to a certain power.

31. An algorithm is a step-by-step logical procedure for solving a problem.

32. There are two operands in a relational expression.

33. The data type of the expression following the if keyword is Boolean.

34. In an if / else if / else statement, you must have one, but only one, if part.

35. In an if / else if / else statement, you may have more than one else if part.

36. In an if / else if / else statement, you may omit the else part, in which case the
statement becomes an if / else if statement.

37. In a switch statement, the required data type of expression following the switch
keyword is integer.

38. In a switch statement, the expression following a case keyword must be a constant
or a literal and therefore cannot be a variable.

39. The default keyword in a switch statement corresponds to the else keyword in an
if / else if / else statement.

40. You can use nested if statements as an alternative to the logical And and Or

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0121.html (2 of 6)06.11.2004 22:53:00

Final Exam

operators.

41. With the logical And operator, both Boolean expressions have to be true for the
overall Boolean expression to be true.

42. With the logical Or operator, both Boolean expressions have to be false for the
overall Boolean expression to be false.

43. The logical Not operator reverses the “truth” of a Boolean expression, making a
true expression false and a false expression true.

44. The increment operator increases a value by one.

45. The decrement operator decreases a value by one.

46. In the statement cout << --num, decrementing num occurs before the outputting of
the value of num because the decrementing is a prefix.

47. An iteration is each time a loop repeats.

48. The usual purpose of the first expression in the parentheses following the for
keyword is to initialize a variable which usually serves as the counter.

49. The purpose of the second expression in the parentheses following the for keyword
is to set the condition which must be true for the loop to continue to execute.

50. The usual purpose of the third expression in the parentheses following the for
keyword is to update a value, usually a counter.

51. One or more of the expressions in the parentheses following the for keyword may
be empty if handled elsewhere in the code.

52. The purpose of the break keyword in a for loop is to prematurely terminate the loop.

53. The purpose of the continue keyword in a for loop is to prematurely terminate the
iteration of a loop.

54. If you were going to use nested for loops to print rows and columns, you would use
the inner for loop to print the columns.

55. The do while loop executes at least once.

56. The for loop is the best choice when the number of iterations is predictable.

57. The parenthetical expression following the while keyword is for the condition.

58. A flag is a Boolean variable whose value indicates whether a condition exists.

59. A variable’s scope determines where it can be referred to in the code. A variable’s
lifetime determines when it is destroyed.

60. No. A function other than main does not have to be prototyped if it is defined above
where it is called. However, it is a good idea to prototype each function other than
main.

61. No. A function need not have any arguments. If it has none, then the void keyword
may be used in the parentheses following the function name.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0121.html (3 of 6)06.11.2004 22:53:00

Final Exam

62. Yes. A function may have more than one argument. If so, the arguments are
separated by commas.

63. If a variable in main is passed by value to another function that changes the
argument corresponding to that variable, the variable in main is not changed.

64. If a variable in main is passed by reference to another function that changes the
argument corresponding to that variable, the variable in main is changed.

65. No. A function does not have to have a return value. If it doesn’t have a return
value, the keyword void is used in its place.

66. No. A function may not have more than one return value.

67. Yes. A function does not have to have a return value nor any arguments.

68. Yes. A function may have both a return value and arguments.

69. While the data type of an array may be integer, float, or character, a particular
array cannot contain integers, floats, and characters. All the elements of an array
must be of the same data type.

70. The number of the starting index of an array is zero.

71. The number of the ending index of an array is one less than the number of
elements in the array.

72. The two alternative methods of initializing an array are explicit initialization, in
which the square brackets contain a numerical constant indicating the size of the
array, or implicit initialization, in which the square brackets are empty and the size
of the array is indicated by the number of elements on the right side of the
assignment operator.

73. The purpose of the null character is to signal cout when to end the output of a
character array.

74. The value of the name of an array is the base address of the array.

75. When you pass an array name as a function argument, you are passing it by
address.

76. A pointer is a variable or constant whose value is the address of another variable
or constant.

77. The only difference between declaring an integer variable and an integer pointer
variable is that the pointer variable declaration includes an asterisk, which either
follows the data type or precedes the variable name.

78. The data type in the declaration of a pointer refers to the data type of another
variable (or constant) whose memory address is the value of the pointer.

79. NULL is a constant defined in several standard libraries, including iostream. You
assign a pointer NULL if it is too early in your code to know which address to
assign to the pointer. The value of NULL, the memory address 0, signals that the
pointer is not intended to point to an accessible memory location.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0121.html (4 of 6)06.11.2004 22:53:00

Final Exam

80. You use the address operator to assign a pointer the address of another variable
or constant.

81. The purpose of the indirection operator is to obtain the value of the variable or
constant to which the pointer points. This operation is said to dereference the
pointer.

82. Incrementing a pointer variable increases its value by the number of bytes of its
data type.

83. The purpose of the new operator is to dynamically allocate memory at run-time.
The purpose of the delete operator is to deallocate dynamically created memory.

84. You cannot use an assignment operator to assign the value of one C-string to
another. You will be assigning an address instead of a value.

85. Data is persistent when it survives after the program is finished.

86. A file is a collection of data that is located on persistent storage, such as a hard
drive, a CD-ROM, or other storage device.

87. You should include the fstream standard library when your program reads from, or
writes to, files.

88. The fstream object may be used both for file input and file output.

89. You can open a file with either the open member function or a constructor.

90. The purpose of opening a file is to establish a path of communication between the
file and a file stream object in your program.

91. The purpose of closing a file is to free system resources that are required to
maintain the path of communication between the file and the file stream object in
your program.

92. A constructor is a function that is automatically called when you attempt to create
an instance of an object.

93. File stream objects should be passed as function arguments by reference rather
than by value.

94. An “is a” relationship is involved in inheritance. An example is a student is a person.

95. A “has a” relationship is involved in containership. Examples include that a car has
an engine and a person has a birthday.

96. A structure is a programmer-defined data type that enables you to package related
variables that may be of different data types.

97. You may initialize a structure using either an initialization list or a constructor.

98. You can nest one structure within another structure, such as a birthday member
variable of a Person structure being a Date structure itself.

99. A structure may be passed by reference even if the function will not change the
value of its member variables because less memory is required to pass the
address of an object than the object itself, which may take up a lot of bytes. In this

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0121.html (5 of 6)06.11.2004 22:53:00

Final Exam

situation, you may precede the structure instance in the function argument list with
the const keyword to prevent the function from inadvertently changing the values
inside the structure instance.

100. Member variables are, by default, public in a structure but private in a class.

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0121.html (6 of 6)06.11.2004 22:53:00

Index

Index
Symbols
&& operators, 115–117

#include directives, 6–7

| | operators, 117–119

! operators, 119–120

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0122.html06.11.2004 22:53:00

Index_A

Index
A
Access, file, 272

Adding strings, 69–70

Addition operators, 67–70
adding strings, 69–70
combined assignment and arithmetic operators, 68
overflow and underflow, 69
precedence between arithmetic and assignment operators, 68–69

Address operators, 49–50

Addresses, 24–25, 213–241
comparing, 225–226
using with variables, 50–51
of variables and constants, 218–219

Algorithms, 79–80

Allocation, dynamic memory, 233–235

American National Standards Institute (ANSI), 35, 87

American Standards Committee for Information Interchange (ASCII), 35

And operators
logical, 115, 116
precedence and logical, 121–122

ANSI (American National Standards Institute), 35, 87

Appending strings, 261

Argument constructors; See No-argument constructors

Arguments
constructors with, 302–304
file stream objects as function, 287–289
function, 175–176
passing arrays as function, 208–210
passing by reference, 178–181
passing structures as function, 305–307
square brackets and arguments, 209

Arguments, passing by value, 174–178
function argument, 175–176
function prototype and header, 175
multiple function arguments, 176–178

Arguments, pointers as function, 228–232
passing arrays using pointer notations, 228–230
passing single variables using pointer notations, 230–232

Arithmetic, pointer, 222–228

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0123.html (1 of 3)06.11.2004 22:53:02

Index_A

comparing addresses, 225–226
decrementing pointers, 227–228
incrementing pointers, 224–225
using variable pointers to point to arrays, 222–224

Arithmetic and assignment operators, precedence between, 68–69

Arithmetic operators, 65, 66–77
addition operator, 67–70
combined assignment and, 68
division operators, 73–76
exponents, 76–77
multiplication operator, 71–72
precedence between, 72–73
project - change machine, 77–80
subtraction operator, 70–71

Array indexes, 193–194

Array names as constant pointers, 221–222

Array sizing
explicit, 194, 195
implicit, 194–195, 196

Array values, assigning and displaying, 199–208
cin and cout objects with arrays, 202–205
cin object’s getline function, 205–208

Arrays, 187
assigning array values, 199–208
cin and cout objects with, 202–205
cin objects and numeric, 204–205
constant, 198
cout objects and numeric, 203–204
displaying array values, 199–208
initialization, 194–199
initializing character, 196–198
passing arrays as function arguments, 208–210
passing as function arguments, 208–210
passing using pointer notations, 228–230
using variable pointers to point to, 222–224

Arrays, declaring, 188–194
array indexes, 193–194
constants, 189–192

ASCII (American Standards Committee for Information Interchange), 35

Assessing structure member variables, 298–299

Assigning
array values, 199–208
compatible data type, 60–61
compatible data types, 53–54, 57–58
pointers the addresses of variables and constants, 218–219

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0123.html (2 of 3)06.11.2004 22:53:02

Index_A

values to strings, 260–261
values to variables, 51–62

Assignment and arithmetic operators, combined, 68

Assignment operators, 52–56, 93
assigning compatible data types, 53–54
overflow and underflow, 54–56
precedence between arithmetic and, 68–69

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0123.html (3 of 3)06.11.2004 22:53:02

Index_B

Index
B
Binary files, text vs., 270–271

Binary numbering system, 26

Binary or hexadecimal, converting between decimal, 26–27

Bits and bytes, 25–26

Bodies, function, 5

Bool data types, 36

Boolean expressions, 110–115

Braces, curly, 92–93

Brackets, square, 209

Break keyword, 147–148

Building projects, 17–19

Bytes, bits and, 25–26

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0124.html06.11.2004 22:53:02

Index_C

Index
C
C++, how program works, 1–20

anatomy of C++ program, 3–7
computer program defined, 2
IDE and Hello World project, 9–19
programming language defined, 2–3
translating code for computers, 7–9

C++ program, anatomy of, 3–7
#include directive, 6–7
cout, 5–6
function body, 5
main function, 5
namespaces, 7
return 0 statement, 6

C++ string class function, 243

C++ string functions, C-string and, 259–266

Cache memory, 22–23

Calling functions, 164–165
defining and, 162–166

Case conversion functions, 256–257

Change machine project, 77–80
algorithms, 79–80
code, 78–79
program description, 78

Character arrays, initializing, 196–198

Character functions, 243, 256–258
case conversion functions, 256–257
functions that check values of characters, 258

Character values, storage of, 35–36

Characters, functions that check values of, 258

Characters, reading, 244–255
cin.get function, 245–248
cin.ignore function, 248–252
combining use of cin, cin.get, and cin.getline, 252–255
press any key to continue problem, 245–252
rules to live by, 255

Cin, 252–255

Cin and cout objects with arrays, 202–205

Cin objects, 56–62

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0125.html (1 of 3)06.11.2004 22:53:04

Index_C

assigning compatible data type, 60–61
assigning compatible data types, 57–58
getline function, 205–208
inputting multiple words into strings, 61
inputting values for multiple variables, 58–60
and numeric arrays, 204–205
overflow and underflow, 62

Cin.get, 252–255

Cin.get function, 245–248

Cin.getline, 252–255

Cin.ignore function, 248–252

Classes, 309–314

Classes, structures and, 293–316
classes, 309–314
object-oriented programming (OOP), 294–295
reasons for reading book, 294
structures, 296–309

Closing files, 280

Code
and output, 40
running, 19
writing source, 13–17

Code, translating for computers, 7–9
compilers, 8
linkers, 8–9
preprocessors, 8

Common syntax errors, 100

Comparing
addresses, 225–226
two strings, 262–264

Compatible data type, assigning, 60–61

Compatible data types, assigning, 53–54, 57–58

Compilers, 8

Computer program defined, 2

Computers, translating code for, 7–9
compilers, 8
linkers, 8–9
preprocessors, 8

Computers doing math, letting, 65–81

Conditional operators, 94–95

Conditional statements, curly braces and multiple, 92–93

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0125.html (2 of 3)06.11.2004 22:53:04

Index_C

Constant arrays, 198

Constant pointers, array names as, 221–222

Constants, 189–192
assigning pointers the addresses of variables and, 218–219

Constants, pointers as variables or, 220–222
array names as constant pointers, 221–222
pointers as variables, 221

Constructor prototypes, separating, 304–305

Constructors, 300–305
with arguments, 302–304
default, 300–301
fstream or ofstream, 275–276
no-argument, 301–302
separating constructor prototypes, 304–305

Continue keyword, 138–139, 152–153

Conventions, naming, 49

Conversion between C-strings and numbers, 264–266

Conversion functions, case, 256–257

Cout, 5–6
objects and numeric arrays, 203–204

Creating Hello World project, 9–19

C-string and C++ string functions, 259–266
appending strings, 261
assigning values to strings, 260–261
comparing two strings, 262–264
conversion between C-strings and numbers, 264–266
determining lengths of strings, 259–260

C-string function, 243

C-strings and numbers, conversion between, 264–266

Curly braces, and multiple conditional statements, 92–93

Cycle, file access life, 272

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0125.html (3 of 3)06.11.2004 22:53:04

Index_D

Index
D
Data, persistent, 269–291

Data types, 28–36
assigning compatible, 53–54, 57–58, 60–61
bool, 36
declaring multiple variables of same, 47–48
floating-point data types, 32–35
memory and, 21
pointer, 215–216
projects - determining size of data types, 36–42
text, 35–36
using smaller size, 32
whole number data types, 28–32

Data types, determining size of, 36–42
changing source files of projects, 37–40
code and output, 40
escape sequences, 42
expressions, 41
outputting expressions, 41–42
sizeof operator, 37

Data types, floating-point, 32–35
scientific and E notations, 34
storage of floating-point numbers, 34–35

Data types, text, 35–36
storage of character values, 35–36
storage of strings, 36

Data types, whole number, 28–32
range, 30–31
size, 30
storage, 31–32
unsigned vs. signed data type, 29–30
using smaller size data types, 32

Decimal, binary, or hexadecimal, converting between, 26–27

Decisions, making, 83

Declaration, syntax of pointer, 214–215

Declaring
arrays, 188–194
multiple variables of same data type, 47–48
pointers, 214–216
structure variables, 297–298
structures, 296–297

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0126.html (1 of 2)06.11.2004 22:53:05

Index_D

Declaring variables, syntaxes of, 46–47

Decrement operators, 127–128
increment and, 125, 126–130

Decrementing pointers, 227–228

Default constructors, 300–301

Dereferencing, indirection operator and, 219–220

Directive, #include, 6–7

Displaying array values, 199–208

Division operators, 73–76
division operator, 74–76
modulus operator, 76

Do while loop, 143, 154–158
comparison of do while and while loops, 156–157
do while loop example, 155–156
example, 155–156
scope, 157–158
syntax, 155

Dynamic memory allocation, 233–235

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0126.html (2 of 2)06.11.2004 22:53:05

Index_E

Index
E
E notations, scientific and, 34

Errors, common syntax, 100

Escape sequences, 42

Examples
do while loop, 155–156
factorial, 135

Explicit array sizing, 194, 195

Exponents, 76–77

Expressions, 41
Boolean, 110–115
outputting, 41–42
relational, 85–86
semicolons and relational, 92

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0127.html06.11.2004 22:53:06

Index_F

Index
F
Factorial example, 135

File access life cycle, 272

File input and output, 269–291
closing files, 280
file access life cycle, 272
file stream objects as function arguments, 287–289
fstream standard library, 271–272
opening files, 272–279
reading from files, 282–287
text vs. binary files, 270–271
writing to files, 280–282

File modes, 274–275

File stream objects as function arguments, 287–289

Files
closing, 280
looping through, 285–287
opening for reading, 276–277
opening for reading and writing, 277
source, 37–40
text vs. binary, 270–271
writing to, 280–282

Files, opening, 272–279
checking if file was opened, 278–279
opening files for reading, 276–277
opening files for reading and writing, 277
opening files for writing, 272–276

Files, opening for writing, 272–276
checking if they were opened, 278–279
fstream or ofstream constructor, 275–276
open member function, 273–275

Files, reading from, 282–287
looping through files, 285–287
reading lines of files, 283–285

Files, reading lines of, 283–285

Flags, 148–151

Floating-point data types, 32–35
scientific and E notations, 34
storage of floating-point numbers, 34–35

Floating-point numbers, storage of, 34–35

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0128.html (1 of 3)06.11.2004 22:53:07

Index_F

Flowcharting, 87–89

For and while loops, comparison of, 146–147

For loops, 125, 130–141
beware infinite loops, 134–135
breaking out of loops, 135–138
continue keyword, 138–139
factorial example, 135
nesting, 139–141
nesting for loops, 139–141
syntax of, 132–134
syntaxes of, 132–134

Fstream
or ofstream constructor, 275–276
standard library, 271–272

Function arguments, 175–176
file stream objects as, 287–289
multiple, 176–178
passing arrays as, 208–210
passing structures as, 305–307

Function arguments, pointers as, 228–232
passing arrays using pointer notations, 228–230
passing single variables using pointer notations, 230–232

Function body, 5

Functions, 161
C++ string class, 243
calling, 164–165
case conversion, 256–257
character, 243
cin object’s getline, 205–208
cin.get, 245–248
cin.ignore, 248–252
C-string, 243
defining, 163–164
main, 5
prototype and header, 175
returning values from, 182–183
returning values from functions, 182–183
sending information to functions, 173–181
terminology of, 162–163
that check values of characters, 258
variable scope and lifetime, 167–172

Functions, character, 256–258
case conversion functions, 256–257
functions that check values of characters, 258

Functions, C-string and C++ string, 259–266

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0128.html (2 of 3)06.11.2004 22:53:07

Index_F

appending strings, 261
assigning values to strings, 260–261
comparing two strings, 262–264
conversion between C-strings and numbers, 264–266
determining lengths of strings, 259–260

Functions, defining and calling, 162–166
calling functions, 164–165
defining functions, 163–164
prototyping, 165–166
terminology of functions, 162–163

Functions, open member, 273–275
file modes, 274–275
specifying files to be opened, 273–274

Functions, returning pointers from, 236–239
returning pointers to created variables, 238–239
returning pointers to local variables, 236–237
returning pointers to static local variables, 237–238

Functions, sending information to, 173–181
passing arguments by reference, 178–181
passing arguments by value, 174–178

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0128.html (3 of 3)06.11.2004 22:53:07

Index_G

Index
G
Getline function, cin object’s, 205–208

Global variables, 169–170

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0129.html06.11.2004 22:53:08

Index_H

Index
H
Header, function prototype and, 175

Hello World project, IDE and, 9–19
building projects, 17–19
running code, 19
setting up Hello World project, 10–13
writing source code, 13–17

Hello World project, setting up, 10–13

Hexadecimal, converting between decimal, binary, or, 26–27

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0130.html06.11.2004 22:53:08

Index_I

Index
I
IDE and Hello World project, 9–19

If / else if / else statements, 98–100

If / else if / else statements, switch and, 103–107
falling through, 104–106
ranges of numbers, 106–107

If / else statements, 94–98
common mistakes, 96–98
conditional operator, 94–95
curly braces and conditional statements, 97–98
no else without an if, 96
relational expressions and else keywords, 96–97
semicolons and else expression, 97

If and switch statements, 83

If statements, 89–93
assignment operator, 93
common mistakes, 91–93
curly braces and conditional statements, 92–93
indenting, 91
semicolons and relational expressions, 92

If statements, nested, 109, 110–115

Implicit array sizing, 194–195, 196

Increment and decrement operators, 125, 126–130

Increment operators, 126–127

Incrementing pointers, 224–225

Incrementing pointers; See also Decrementing pointers

Indexes, array, 193–194

Indirection operators and dereferencing, 219–220

Infinite loops, beware, 134–135

Initialization, 194–199
constant arrays, 198
explicit array sizing, 195
implicit array sizing, 196
initializing character arrays, 196–198
lists, 300
when to use, 199

Initializing
character arrays, 196–198
structures, 300–305

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0131.html (1 of 2)06.11.2004 22:53:09

Index_I

Input, file, 269–291

Iteration defined, 131

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0131.html (2 of 2)06.11.2004 22:53:09

Index_K

Index
K
Keywords

break, 147–148
continue, 138–139, 152–153

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0132.html06.11.2004 22:53:10

Index_L

Index
L
Language, programming, 2–3

Libraries, fstream standard, 271–272

Life cycle, file access, 272

Linkers, 8–9

Lists, initialization, 300

Local variables, 167–169
returning pointers to, 236–237
returning pointers to static, 237–238
static, 171–172

Logical And operators, 115, 116
precedence and, 121–122

Logical Not operators, 119
precedence and, 121

Logical operators, 109, 115–122
&& operator, 115–117
| | operator, 117–119
! operator, 119–120
precedence, 120–122
using switch statements with, 122–123

Logical Or operators, 117, 118
precedence and, 121–122

Looping through files, 285–287

Loops
breaking out of, 135–138
comparison of do while and while, 156–157
comparison of for and while, 146–147
do while, 143
for, 125
nesting while, 154
syntaxes of for, 132–134
while, 143

Loops, do while, 154–158
comparison of do while and while loops, 156–157
do while loop example, 155–156
scope, 157–158
syntax, 155

Loops, for, 130–141
beware infinite loops, 134–135
breaking out of loops, 135–138

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0133.html (1 of 2)06.11.2004 22:53:11

Index_L

continue keyword, 138–139
factorial example, 135
nesting for loops, 139–141

Loops, while, 144–154
comparison of for and while loops, 146–147
continue keyword, 152–153
flags, 148–151
nesting while loops, 154
using break keyword, 147–148
while (true), 151–152

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0133.html (2 of 2)06.11.2004 22:53:11

Index_M

Index
M
Main function, 5

Math, letting computers to, 65–81

Member variables, assessing structure, 298–299

Memory, 22–27
addresses, 24–25
binary numbering system, 26
bits and bytes, 25–26
cache, 22–23
converting between decimal, binary, or hexadecimal, 26–27
and data types, 21
types of, 22–24

Memory, types of, 22–24
cache memory, 22–23
persistent storage, 24
RAM (random access memory), 23

Memory allocation, dynamic, 233–235

Modes, file, 274–275

Modulus operators, 76

Multiple conditional statements, curly braces and, 92–93

Multiple function arguments, 176–178

Multiple variables
declaring, 47–48
inputting values for, 58–60

Multiple words, inputting into strings, 61

Multiplication operators, 71–72
precedence between arithmetic operators, 72–73

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0134.html06.11.2004 22:53:12

Index_N

Index
N
Names, array, 221–222

Namespaces, 7

Naming conventions, 49

Naming variables, 48–49

Nested if statements, 109, 110–115

Nesting
for loops, 139–141
structures, 307–309
while loops, 154

No-argument constructors, 301–302

Not operators
logical, 119
precedence and logical, 121

Notations
passing arrays using pointer, 228–230
passing single variable is using pointer, 230–232
scientific and E, 34

Null pointers, 217–218

Numbering system, binary, 26

Numbers
conversion between C-strings and, 264–266
storage of floating-point, 34–35

Numeric arrays
cin objects and, 204–205
cout objects and, 203–204

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0135.html06.11.2004 22:53:13

Index_O

Index
O
Object-oriented programming (OOP), 294–295

Objects
cin, 204–208
cout, 203–204
file stream, 287–289

Objects, cin, 56–62
assigning compatible data type, 60–61
assigning compatible data types, 57–58
inputting multiple words into strings, 61
inputting values for multiple variables, 58–60
overflow and underflow, 62

Objects with arrays, cin and cout, 202–205

Ofstream constructor, fstream or, 275–276

OOP (object-oriented programming), 294–295

Open member functions, 273–275
file modes, 274–275
specifying files to be opened, 273–274

Opening files for reading, 276–277
and writing, 277

Operators
!, 119–120
&&, 115–117
| |, 117–119
address, 49–50
assignment, 93
combined assignment and arithmetic, 68
conditional, 94–95
decrement, 127–128
division, 74–76
increment, 126–127
increment and decrement, 125, 126–130
indirection, 219–220
logical, 109
logical And, 115, 116
logical Not, 119
logical Or, 117, 118
modulus, 76
precedence and logical And, 121–122
precedence and logical Not, 121
precedence and logical Or, 121–122
precedence between arithmetic, 72–73

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0136.html (1 of 2)06.11.2004 22:53:14

Index_O

precedence between arithmetic and assignment, 68–69
sizeof, 37
subtraction, 70–71
using switch statements with logical, 122–123

Operators, addition, 67–70
adding strings, 69–70
combined assignment and arithmetic operators, 68
overflow and underflow, 69
precedence between arithmetic and assignment operators, 68–69

Operators, arithmetic, 65, 66–77
addition operators, 67–70
division operators, 73–76
exponents, 76–77
multiplication operators, 71–72
project - change machine, 77–80
subtraction operators, 70–71

Operators, assignment, 52–56
assigning compatible data types, 53–54
overflow and underflow, 54–56

Operators, division, 73–76
division operators, 74–76
modulus operators, 76

Operators, logical, 115–122
&& operators, 115–117
| | operators, 117–119
! operators, 119–120
precedence, 120–122

Operators, multiplication, 71–72
precedence between arithmetic operators, 72–73

Operators, relational, 84–87
precedence, 86–87
relational expressions, 85–86

Or operators
logical, 117, 118
precedence and logical, 121–122

Output
code and, 40
file, 269–291

Overflow and underflow, 54–56, 62, 69

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0136.html (2 of 2)06.11.2004 22:53:14

Index_P

Index
P
Persistent data, 269–291

Persistent storage, 24

Person classes, 310

Pointer arithmetic, 222–228
comparing addresses, 225–226
decrementing pointers, 227–228
incrementing pointers, 224–225
using variable pointers to point to arrays, 222–224

Pointer data types, 215–216

Pointer declaration, syntax of, 214–215

Pointer notations
passing arrays using, 228–230
passing single variables using, 230–232

Pointers, 213–241
array names as constant, 221–222
assigning values to, 216–219
declaring, 214–216
decrementing, 227–228
dynamic memory allocation, 233–235
as function arguments, 228–232
incrementing, 224–225
indirection operator and dereferencing, 219–220
null, 217–218
pointer arithmetic, 222–228
returning pointers from functions, 236–239
returning pointers to created variables, 238–239
returning pointers to static local variables, 237–238
returning to local variables, 236–237
unassigned, 216–217
variable, 222–224
as variables or constants, 220–222

Pointers, assigning values to, 216–219
assigning pointers the addresses of constants, 218–219
assigning pointers the addresses of variables, 218–219
null pointers, 217–218
unassigned pointers, 216–217

Pointers, declaring, 214–216
meaning of pointer data types, 215–216
syntax of pointer declaration, 214–215

Pointers, returning from functions, 236–239

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0137.html (1 of 2)06.11.2004 22:53:15

Index_P

returning pointers to created variables, 238–239
returning pointers to local variables, 236–237
returning pointers to static local variables, 237–238

Pointers as function arguments, 228–232
passing arrays using pointer notations, 228–230
passing single variables using pointer notations, 230–232

Pointers as variables or constants, 220–222
array names as constant pointers, 221–222
pointers as variables, 221

Postfix, differences between prefix and, 128–130

Postfix incrementing, 132

Precedence, 86–87, 120–122
between arithmetic and assignment operators, 68–69
between arithmetic operators, 72–73
defined, 72
and logical And operator, 121–122
and logical Not operator, 121
and logical Or operators, 121–122

Prefix and postfix, differences between, 128–130

Preprocessors, 8

Problem, press any key to continue, 245–252

Programming language defined, 2–3

Programs, anatomy of C++, 3–7
#include directive, 6–7
cout, 5–6
function body, 5
main function, 5
namespaces, 7
return 0 statement, 6

Programs, computer, 2

Projects
building, 17–19
change machine, 77–80
changing source files of, 37–40

Prototype and header, function, 175

Prototypes, separating constructor, 304–305

Prototyping, 165–166

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0137.html (2 of 2)06.11.2004 22:53:15

Index_R

Index
R
RAM (random access memory), 23

Random access memory (RAM), 23

Reading
characters, 244–255
from files, 282–287
lines of files, 283–285
opening files for, 276–277

Reading and writing, opening files for, 277

Reference, passing arguments by, 178–181

Referencing; See Dereferencing

Registers defined, 23

Relational expressions, 85–86
semicolons and, 92

Relational operators, 84–87
precedence, 86–87
relational expressions, 85–86

Return 0 statement, 6

Rules to live by, 255

Running
code, 19
Hello World project, 9–19

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0138.html06.11.2004 22:53:16

Index_S

Index
S
Scientific and E notations, 34

Semicolons and relational expressions, 92

Sequences, escape, 42

Signed data type, unsigned vs., 29–30

Single variables, passing using pointer notations, 230–232

Sizeof operators, 37
using with variables, 50–51

Sizing
explicit arrays, 194, 195
implicit arrays, 194–195, 196

Source code, writing, 13–17

Source files, changing of projects, 37–40

Square brackets and arguments, 209

Statements
curly braces and multiple conditional, 92–93
nested if, 109
return 0, 6
switch, 122–123
switch and if / else if / else, 103–107

Statements, if, 89–93
assignment operator, 93
common mistakes, 91–93
curly braces and conditional statements, 92–93
indenting, 91
semicolons and relational expressions, 92

Statements, if and switch, 83
flowcharting, 87–89
if / else if / else statement, 98–100
if / else statement, 94–98
if statement, 89–93
relational operators, 84–87
switch statement, 100–107

Statements, if / else, 94–98
common mistakes, 96–98
conditional operator, 94–95
curly braces and conditional statements, 97–98
no else without an if, 96
relational expressions and else keywords, 96–97
semicolons and else expression, 97

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0139.html (1 of 3)06.11.2004 22:53:17

Index_S

Statements, if / else if / else, 98–100
common syntax errors, 100

Statements, nested if, 110–115

Statements, switch, 100–107
switch and if / else if / else statements, 103–107

Statements, switch and if / else if / else
falling through, 104–106
ranges of numbers, 106–107

Static local variables, 171–172
returning pointers to, 237–238

Storage
of character values, 35–36
of floating-point numbers, 34–35
persistent, 24
of strings, 36

String functions, C-string and C++, 259–266
appending strings, 261
assigning values to strings, 260–261
comparing two strings, 262–264
conversion between C-strings and numbers, 264–266
determining lengths of strings, 259–260

Strings
adding, 69–70
appending, 261
assigning values to, 260–261
comparing two, 262–264
determining length of, 259–260
inputting multiple words into, 61
storage of, 36

Structure member variables, assessing, 298–299

Structure variables, declaring, 297–298

Structures, 296–309
accessing structure member variables, 298–299
declaring, 296–297
declaring structure variables, 297–298
initializing, 300–305
nesting, 307–309
passing structures as function arguments, 305–307

Structures, initializing, 300–305
constructors, 300–305
initialization lists, 300

Structures and classes, 293–316
classes, 309–314
object-oriented programming (OOP), 294–295
reasons for reading book, 294

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0139.html (2 of 3)06.11.2004 22:53:17

Index_S

structures, 296–309

Subtraction operators, 70–71

Switch and if / else if / else statements, 103–107
falling through, 104–106
ranges of numbers, 106–107

Switch statements, 100–107
if and, 83
switch and if / else if / else statements, 103–107
using with logical operators, 122–123

Syntax errors, common, 100

Syntax of declaring variables, 46–47

Syntax of for loop, 132–134

Syntax of pointer declaration, 214–215

System, binary numbering, 26

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0139.html (3 of 3)06.11.2004 22:53:17

Index_T

Index
T
Text data types, 35–36

storage of character values, 35–36
storage of strings, 36

Text vs. binary files, 270–271

Types
assigning compatible data, 53–54, 57–58, 60–61
data, 28–36
data pointer, 215–216
declaring multiple variables of same data, 47–48
floating-point data, 32–35
memory and data, 21
text data, 35–36
using smaller size data, 32
whole number data, 28–32

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0140.html06.11.2004 22:53:18

Index_U

Index
U
Unassigned pointers, 216–217

Underflow, overflow and, 54–56, 69

Unsigned vs. signed data type, 29–30

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0141.html06.11.2004 22:53:18

Index_V

Index
V
Values

assigning to strings, 260–261
assigning to variables, 51–62
inputting for multiple variables, 58–60
returning from functions, 182–183
storage of character, 35–36

Values, assigning and displaying array, 199–208
cin and cout objects with arrays, 202–205
cin object’s getline function, 205–208

Values, assigning to pointers, 216–219
assigning pointers the addresses of constants, 218–219
assigning pointers the addresses of variables, 218–219
null pointers, 217–218
unassigned pointers, 216–217

Values, assigning to variables
assignment operator, 52–56
cin object, 56–62

Values, passing arguments by, 174–178
function argument, 175–176
function prototype and header, 175
multiple function arguments, 176–178

Values of characters, functions that check, 258

Variable pointers, using to point to arrays, 222–224

Variable scope and lifetime, 167–172
global variables, 169–170
local variables, 167–169
static local variables, 171–172

Variables, 45–63
address operator, 49–50
assessing structure member, 298–299
assigning pointers the addresses of, 218–219
assigning values to, 51–62
declaring, 45–51
declaring multiple, 47–48
declaring structure, 297–298
global, 169–170
inputting values for multiple, 58–60
local, 167–169
naming, 48–49
naming conventions, 49
passing single, 230–232

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0142.html (1 of 2)06.11.2004 22:53:20

Index_V

pointers as, 221
returning pointers to created, 238–239
returning pointers to local, 236–237
returning pointers to static local, 237–238
static local, 171–172
syntax of declaring, 46–47
syntax of declaring variables, 46–47
using addresses with, 50–51
using sizeof operators with, 50–51
using sizeof operators with variables, 50–51

Variables and constants, addresses of, 218–219

Variables or constants, pointers as, 220–222
array names as constant pointers, 221–222
pointers as variables, 221

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0142.html (2 of 2)06.11.2004 22:53:20

Index_W

Index
W
While (true), 151–152

While loops, 143, 144–154
comparison of do while and, 156–157
comparison of for and, 146–147
continue keyword, 152–153
flags, 148–151
nesting, 154
nesting while loops, 154
using break keyword, 147–148
while (true), 151–152

While loops, do, 154–158
comparison of do while and while loops, 156–157
do while loop example, 155–156
scope, 157–158
syntax, 155

Whole number data types, 28–32
range, 30–31
size, 30
storage, 31–32
unsigned vs. signed data type, 29–30
using smaller size data types, 32

Words, inputting multiple, 61

Writing
to files, 280–282
source code, 13–17

Writing, opening files for, 272–276
fstream or ofstream constructor, 275–276
open member function, 273–275

Writing, opening files for reading and, 277

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0143.html06.11.2004 22:53:20

List of Figures

List of Figures

Chapter 1: How a C++ Program Works

Figure 1-1: C++ program outputting “Hello World!” to the screen

Figure 1-2: Creating a New Project

Figure 1-3: Starting the Win32 Application Wizard

Figure 1-4: Win32 Application Wizard after choosing Application Settings

Figure 1-5: Windows Explorer showing newly created subfolder and files

Figure 1-6: Viewing your project with Solution Explorer

Figure 1-7: Source Files shortcut menu

Figure 1-8: Adding a New Source File to your Project

Figure 1-9: Solution Explorer showing the new .cpp file

Figure 1-10: The source file before typing code

Figure 1-11: The source file after typing code

Figure 1-12: The Task List window showing a compilation error

Figure 1-13: The error highlighted in the code window

Chapter 2: Memory and Data Types

Figure 2-1: Sequence of memory addresses

Figure 2-2: A sequence of memory addresses, each with a byte value

Figure 2-3: Storage in memory of 65365 in decimal as an unsigned short data type

Figure 2-4: Storage in memory of 65365 in decimal as an unsigned int data type

Figure 2-5: Opening the Existing Solution

Figure 2-6: Showing the Existing Source File in Solution Explorer

Figure 2-7: Remove option on Shortcut Menu

Figure 2-8: Adding a New Source File to your Project

Figure 2-9: Solution Explorer showing the new .cpp file

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0144.html (1 of 3)06.11.2004 22:53:22

List of Figures

Chapter 3: Variables

Figure 3-1: Memory reserved for declared variables

Figure 3-2: Overflow

Figure 3-3: Underflow

Chapter 5: Making Decisions: if and switch Statements

Figure 5-1: Commonly used flowchart symbols

Figure 5-2: Flowchart of the program adding preregistered and added students

Figure 5-3: Flowchart of a program that determines whether a number is even

Figure 5-4: Flowchart of program output if number is even or odd

Figure 5-5: Flowchart depiction of grading program

Figure 5-6: Flowchart depiction of the grade determination program

Chapter 6: Nested if Statements and Logical Operators

Figure 6-1: Flowchart of the voting eligibility program

Figure 6-2: Flowchart of the movie admission program

Chapter 9: Functions

Figure 9-1: Order of execution of the Hello World Program

Figure 9-2: The passing of the function argument

Figure 9-3: The order of execution of the return value of a function

Chapter 10: Arrays

Figure 10-1: Indices of a three-element integer array

Chapter 11: What’s the Address? Pointers

Figure 11-1: Pointer pointing to an integer variable

Figure 11-2: Variable and constant pointers used to access array elements

Figure 11-3: Effect of incrementing or adding 1 to an address

Chapter 12: Character, C-String, and C++ String Class Functions

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0144.html (2 of 3)06.11.2004 22:53:22

List of Figures

Figure 12-1: The input buffer when only the enter key is pressed

Figure 12-2: The input buffer after typing the letter x and pressing the enter key

Figure 12-3: The input buffer after cin.ignore()

Figure 12-4: Why pressing the enter key twice is required

Figure 12-5: The input buffer after cin >> courseNum followed by cin.getline(name,80)

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0144.html (3 of 3)06.11.2004 22:53:22

List of Tables

List of Tables

Chapter 2: Memory and Data Types

Table 2-1: Binary Equivalents of the Numbers 1 Through 5 in Decimal

Table 2-2: Whole Number Data Types, Sizes, and Ranges

Table 2-3: Floating-point Number Data Types, Sizes, and Ranges

Table 2-4: Scientific and E Notation Representations of Floating Point Values

Table 2-5: ASCII Values of Commonly Used Characters

Table 2-6: Common Escape Sequences

Chapter 4: Arithmetic Operators

Table 4-1: Arithmetic Operators

Table 4-2: Combining Arithmetic and Assignment Operators

Table 4-3: Precedence of Arithmetic Operators

Table 4-4: Precedence in Action

Table 4-5: Associativity of Arithmetic Operators

Chapter 5: Making Decisions: if and switch Statements

Table 5-1: Relational Operators

Table 5-2: Relational Expressions and Their Values

Table 5-3: Precedence of Relational Operators

Table 5-4: Selected ANSI/ASCII Values

Chapter 6: Nested if Statements and Logical Operators

Table 6-1: Logical Operators

Table 6-2: The Logical And Operator

Table 6-3: The Logical Or Operator

Table 6-4: The Logical Not Operator

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0145.html (1 of 2)06.11.2004 22:53:23

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/viewer.asp?bookid=8151&chunkid=962828349

List of Tables

Table 6-5: The Precedence of Logical and Relational Operators

Chapter 12: Character, C-String, and C++ String Class Functions

Table 12-1: Functions that Check the Value of Characters

Table 12-2: Results of String Comparisons

Chapter 13: Persistent Data: File Input and Output

Table 13-1: File Mode Flags

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/LiB0145.html (2 of 2)06.11.2004 22:53:23

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D01%5F0%2Ejpg06.11.2004 22:53:25

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D02%5F0%2Ejpg06.11.2004 22:53:26

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D03%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D03%5F0%2Ejpg06.11.2004 22:53:26

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D04%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D04%5F0%2Ejpg06.11.2004 22:53:27

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D05%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f12%2D05%5F0%2Ejpg06.11.2004 22:53:27

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f11%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f11%2D02%5F0%2Ejpg06.11.2004 22:53:28

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f11%2D03%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f11%2D03%5F0%2Ejpg06.11.2004 22:53:29

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/other%2Df10%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/other%2Df10%2D01%5F0%2Ejpg06.11.2004 22:53:30

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f09%2D03%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f09%2D03%5F0%2Ejpg06.11.2004 22:53:31

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f09%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f09%2D02%5F0%2Ejpg06.11.2004 22:53:32

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f09%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f09%2D01%5F0%2Ejpg06.11.2004 22:53:32

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f06%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f06%2D01%5F0%2Ejpg06.11.2004 22:53:35

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f06%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f06%2D02%5F0%2Ejpg06.11.2004 22:53:35

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D06%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D06%5F0%2Ejpg06.11.2004 22:53:37

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D05%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D05%5F0%2Ejpg06.11.2004 22:53:37

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D04%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D04%5F0%2Ejpg06.11.2004 22:53:38

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D03%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D03%5F0%2Ejpg06.11.2004 22:53:39

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D01%5F0%2Ejpg06.11.2004 22:53:39

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f05%2D02%5F0%2Ejpg06.11.2004 22:53:40

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f03%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f03%2D02%5F0%2Ejpg06.11.2004 22:53:43

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f03%2D03%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f03%2D03%5F0%2Ejpg06.11.2004 22:53:43

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f03%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f03%2D01%5F0%2Ejpg06.11.2004 22:53:44

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D05%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D05%5F0%2Ejpg06.11.2004 22:53:44

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D08%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D08%5F0%2Ejpg06.11.2004 22:53:45

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D03%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D03%5F0%2Ejpg06.11.2004 22:53:45

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D04%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D04%5F0%2Ejpg06.11.2004 22:53:46

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D01%5F0%2Ejpg06.11.2004 22:53:47

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f02%2D02%5F0%2Ejpg06.11.2004 22:53:47

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D02%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D02%5F0%2Ejpg06.11.2004 22:53:48

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D03%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D03%5F0%2Ejpg06.11.2004 22:53:49

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D04%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D04%5F0%2Ejpg06.11.2004 22:53:49

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D05%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D05%5F0%2Ejpg06.11.2004 22:53:50

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D06%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D06%5F0%2Ejpg06.11.2004 22:53:50

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D07%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D07%5F0%2Ejpg06.11.2004 22:53:51

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D08%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D08%5F0%2Ejpg06.11.2004 22:53:52

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D09%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D09%5F0%2Ejpg06.11.2004 22:53:52

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D10%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D10%5F0%2Ejpg06.11.2004 22:53:53

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D11%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D11%5F0%2Ejpg06.11.2004 22:53:53

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D12%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D12%5F0%2Ejpg06.11.2004 22:53:54

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D13%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D13%5F0%2Ejpg06.11.2004 22:53:54

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D01%5F0%2Ejpg

file:///D|/((%20CMH%20Decompiled%20))/C++%20Demystified/8151final/images/f01%2D01%5F0%2Ejpg06.11.2004 22:53:55

	important.pdf
	Local Disk
	articlopedia.gigcities.com

	1.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/desktop/pictures/getpedia.html

