

ASPeNET 2.0
DEMYSTIFIED

This page intentionally left blank

ASP.NET 2.0
DEMYSTIFIED

JIM KEOGH

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

McGraw-HiIYOsborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact McGraw-HiWOsborne at the above address.

ASP.NET 2.0 Demystified

Copyright O 2005 by The McGraw-Hill Companies. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written
permission of publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced for
publication.

1234567890 FGR FGR 0198765

ISBN 0-07-22614 1-2

Acquisitions Editor
Wendy Rinaldi

Project Editor
Carolyn Welch

Acquisitions Coordinator
Alexander McDonald

Technical Editor
Ron Petrusha

Copy Editor
Bob Campbell

Proofreader
Susie Elkind

This book was composed with Adobe InDesign.

Indexer
Claire Splan

Composition
ITC

Illustration
ITC

Cover Series Design
Margaret Webster-Shapiro

Cover Illustration
Lance Lekander

Information has been obtained by McGraw-HiWOsborne from sources believed to be reliable. However, because of the possibility
of human or mechanical error by our sources, McGraw-HilVOsborne, or others, McGraw-HiWOsborne does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained
from the use of such information.

This book is dedicated to Anne, Sandy,
Joanne, Amber-Leigh Christine, and GrafJ
without whose he@ and support this book
couldn't have been written.

Jim Keogh is on the faculty of Columbia University and Saint Peter's College
in Jersey City, New Jersey. He developed the e-commerce track at Columbia
University. Keogh has spent decades developing applications for major Wall
Street corporations and is the author of more than 65 books including J2EE: The
Complete Reference, Java Demystijied, JavaScript Demystijied, Data Structures
Demystijied, XML Demystijied, and others in the Demystified series.

CHAPTER 1

CHAPTER 3

CHAPTER 8

CHAPTER 11

APPENDIX B

An Inside Look a t ASPoNET

The ASPoNET Web Page

Building an ASPoNET Web Page Application

Variables and Expressions i n ASPONET

Conditional Statements

Arrays

Subroutines and Functions

Drop-Down Lists, Radio Buttons, Check Boxes

Data bases

Interacting with Databases

SQL

Binding Data t o Controls

Final Exam

Answers t o Final Exam

Index

This page intentionally left blank

Introduction

CHAPTER 1 An Inside Look at ASP.NET
The Static over Static Web Pages

Serving Up Static Web Pages:
Are You Being Served?

The Pros and Cons o f Static Pages
Dynamic Web Pages: Viagra for Web Sites

Parles-tu Visual Basic .NET?
The Pros and Cons o f Dynamic Pages

Are You Ready for Some ASP.NET?
Building an ASP.NET Web Page
Publishing Your ASP.NET Web Page

Looking Ahead
Quiz
Answers

CHAPTER 2 The ASP.NET Web Page
HTML and XHTML: A Short Review
Kick-starting Visual Web Developer

Tools o f the Trade

ASPONET 2.0 Demystified

The Moment of Truth: Creating Your First
ASP.NET Web Page

Testing Your ASP.NET Web Page
Writing HTML Code Yourself: Watch Out!

Digging into the Source Code
Object-Oriented Programming: A Class Act
Events: I'll Wait for Your Call
Defining the Source Code Portion

HTML Server Controls
Web Controls

HTML Server Controls vs. Web Controls
Looking Ahead
Quiz
Answers

Building an ASP.NET Web Page Application
Designing an ASP.NET Web Page Application

Design Phase
Development Phase
Testing
Implementation
Maintenance

Designing Your First ASP.NET Web Application
Client Side
Server Side

Developing Your First ASP.NET Web Application
Server-Side Development

Running an ASP.NET Web Page Application
Implementing an ASP.N ET Web Page Application
Looking Ahead
Quiz
Answers

CONTENTS

CHAPTER 4 Variables and Expressions i n ASP.NET
Values and Variables

Values
Variables
Declaring a Variable
In i t ia l iz ing a Variable
Scope
Assigning a Value t o a Variable

Operators and Expressions
Parts o f an Expression
Multiple Operations
Types o f Operators

Order o f Operations
Concatenation
Constants
Casting: Converting Data Types
Looking Ahead
Quiz
Answers

CHAPTER 5 Conditional Statements
Conditional Statements
The I f ... Then Statement

The I f ... Then Statement i n Action
The I f ... Then ... Else Statement
The I f ... Then ... Elseif Statement
If.. .Then.. . Elseif.. . Else Statement

The Nested I f ... Then Statement
The Case Statement

A Variation o f the Case Statement
Loops

The For Loop
A Variation o f the For Loop

ASP.NET 2.0 Demystified

The Do While Loop
The Do Loop While Loop
The Do Until Loop
The Do Loop Until Loop

Looking Ahead
Quiz
Answers

CHAPTER 6 Arrays
What Is an Array?
Declaring an Array

Initializing an Array
Array Elements
Looping the Array
Adding an Array Element
Multidimensional Arrays

Declaring a Multidimensional Array
Referencing a Multidimensional Array

Arrays and the Array Class
How Many Elements Are There i n

the Array?
There Are Methods to Our Madness

Array Using Different Data Types
Looking Ahead
Quiz
Answers

CHAPTER 7 Subroutines and Functions
Dividing Your Application into

Subroutines and Functions
Subroutine Versus Function
Creating a Subroutine

Calling a Subroutine
Subroutines and Parameters

CONTENTS

Passing Parameters
Multiple Parameters
Passing Multiple Arguments

Functions
Return Value
Calling a Function

Passing an Array
Returning an Array from a Function

Looking Ahead
Quiz
Answers

Drop-Down Lists, Radio Buttons, Check Boxes
Drop-Down Lists

Creating a Drop-Down List Box
Accessing the Selected Item from

a Drop-Down List Box
Radio Buttons

Creating a Radio Button
Accessing the Selected Radio Button

Check Boxes
Creating a Check Box
Accessing a Check Box
Selecting Check Boxes from

Within Your Application
Looking Ahead
Quiz
Answers

CHAPTER 9 Databases
An Overview
Data, Database, and Tables
Relating Tables
Designing Your Database

ASP.NET 2.0 Demystified

The Process
Identi fying Information
Change Information in to Data
Define Data
Organize Data in to Groups
Ident i fy Columns Used t o Ident i fy

a Row of Data
Indexes
Looking Ahead
Quiz
Answers

Interacting with Databases
The ADO.NET Connection

Namespaces and Classes
Opening a Connection t o a DBMS
Creating a Database and Tables
Sending a Query t o the DBMS

Were Any Rows Returned?
Retrieving a Specific Row
Query Parameters
Insert ing a Row
Updating a Row
Deleting a Row
Stored Procedures

Creating a Stored Procedure
Calling a Stored Procedure
Passing Parameters t o a Stored Procedure

Looking Ahead
Quiz
Answers

CONTENTS

CHAPTER 11 SQL
Tables
Indexing
Inserting a Row
Selecting Data from a Table

Relational Operators
Updating Tables
Deleting Data from a Table
Joining Tables
Calculating Columns
Grouping and Ordering Data
Looking Ahead
Quiz
Answers

APTER 12 Binding Data to Controls
Data Binding Basics
The Repeater Control
A Closer Look a t Templates
Drop-Down List
Radio Button
Check Box
List Box
Hyperlin ks
Quiz
Answers

DIX A Final Exam

APPENDIX B Answers to Final Exam

Index

This page intentionally left blank

Most of us have gone online to check our bank account, pay bills, or place an order
from an e-commerce web site, and we were probably amazed at how these companies
were able to display our personal information on their web pages.

Within seconds of entering our user ID and password we can view our records
on the screen. This seems like a miracle considering the amount of time you
spend creating your web page. At first you might think they have an army of web
builders quickly looking up your information in their databases and then creating
a customized web page for you. That's not practical, so there might be a secret
method they use-and there is.

The secret is ASP.NET.
Web developers us ASPNET to perform tasks normally performed by employees

to serve the needs of their customers, such as:

Verifying that the person is a customer

Understanding the needs of the customer

Retrieving the customer's information from the company's database

Building a web page

Transmitting the customized web page containing customer information to
the customer

ASPNET is server-side software used to create interactive, dynamic web sites
that can interface with databases that are also used by other corporate systems such
as accounting, order entry, and shipping systems.

If you want to learn how to build high traffic web sites, then you've purchased the
right book because ASPNET has been adopted by some of the most popular, high
demand sites on the Internet.

ASP.NET 2.0 Demystified

The Home Shopping Network uses ASP.NET to process orders from thousands
of customers every day. Microsoft uses ASP.NET for their web site to meet the
needs of their customers 24 hours a day, seven days a week.

You might be a little apprehensive learning ASP.NET, especially if you are
a web developer and not a computer programmer. ASP.NET can be mystifying;
however, it becomes demystified as you read ASPNET 2.0 Demystijied because
your knowledge of HTML is used as the foundation for learning to write ASP.NET
dynamic web pages.

As you'll see when you write your first ASP.NET application, each element of
ASP.NET is introduced by combining a working web page with just the ASP.NET
element you need. You already know 90 percent of the code that creates the web
page because it is HTML. The remaining 10 percent of the code is ASP.NET, which
is clearly explained in every chapter.

Like many developers, you probably learn by doing. You'll like reading
ASRNET 2.0 Demyst@ed because it uses a hands-on approach to teaching
ASP.NET. You can copy examples illustrated in this book from our web site and
experiment with each ASPNET concept presented in this book. Load the web page
and see the effect of ASP.NET. Copy the ASP-NET and reload the web page and
see how the web page reacts without the ASP.NET. You can then incorporate the
ASP.NET into your own web page and move on to the next topic.

By the end of this book you'll be able to make your own classy web site that will
leave even the sophisticated web surfer in awe and web developers scratching their
heads, asking, "How did he do that?"

A Look Inside
ASP.NET can be challenging to learn unless you follow the step-by-step approach
that is used in this book. Topics are presented in the order in which many developers
like to learn them, starting with basic components and then gradually moving on to
those features found on classy web sites.

Each chapter follows a time-tested formula that first explains the topic in an
easy-to-read style and then shows how it is used in a working web page that you can
copy and load yourself. You can then compare your web page with the image of the
web page shown in the chapter to be assured that you've coded the web page
correctly. In addition, each chapter also includes a practice quiz and answer section.
There is little room for you to go wrong.

INTRODUCTION

Chapter 1: An Inside Look at ASPONET
Ever wondered how high traffic web sites work? Scratch the surface and you'll be
surprised what you won't find-web pages. Few static web pages are stored on
these web sites because nearly all their web pages are generated by a program
tailored to meet the needs of each visitor to the web site. You can make your web
site come alive with a professional flare by using ASP.NET. In Chapter 1, you'll
learn everything you need to get started to put ASP.NET to work for you on your
web site.

Chapter 2: The ASPONET Web Page
The content of a dynamic web page is a blend of HTML markup code and source
code, and can include data retrieved from a database or from a nonweb-based
application, depending on the nature of your application.

In this chapter, you'll learn how to build an ASPNET web page using the Visual
Web Developer. The Visual Web Developer is an all-in-one editor and development
environment where you build ASP.NET applications by dragging and dropping
elements and source code from a toolbox onto your ASP.NET page. Best of all, the
Visual Web Developer writes the code for you.

Chapter 3: Building an ASPoNET Web Page Application
Building web pages dynamically is more involved than creating static web pages
because you must design, develop, and test the client-side and server-side of the
application. The client-side is what the visitor sees. The server-side is the ASP.NET
program that interacts with a database and generates the web page.

In this chapter, you'll learn techniques developers use to create the server-side
program that generates an ASP.NET web page. You'll find this more challenging
than building static web pages, but the step-by-step instructions presented in the
chapter get you up and running in no time.

Chapter 4: Variables and Expressions in ASPONET
The ASP.NET engine is the brain behind every ASP.NET application because it
processes and responds to requests from visitors to your web site. Your job is to
write instructions that tell the ASP.NET engine how to process and respond to
those requests.

ASP.NET 2.0 Demystified

You'll write these instructions using Visual Basic .NET. In this chapter, we'll
explore the foundation of nearly every instruction that you'll write. These are
values, variables, and expressions. If you know how to add 1 + 1, then you will
breeze through this chapter.

Chapter 5: Conditional Statements
Commercial web sites powered by ASP.NET make intelligent decisions on the fly
while processing a visitor's request, such as validating his or her login and knowing
what personal information should be displayed on the web page.

You can write instructions telling ASP.NET how to make decisions by using
conditional statements. You'll learn how to write conditional statements in this
chapter that tell ASP.NET when to make a decision, how to make a decision, and
what to do after a decision is made.

Chapter 6: Arrays
Visitors to your web site want information and they want it fast. Developers meet
this demand by placing large amounts of information in memory in an array so the
information can be retrieved at nearly the speed of light.

In this chapter, you'll learn about arrays and how to use them in your ASP.NET
application to store and manipulate large amounts of information.

Chapter 7: Subroutines and Functions
An ASP.NET application is inherently complex because it requires a lot of instruc-
tions. This makes an ASP.NET application difficult to write, difficult to read, and
difficult to change. Developers reduce the complexity of an ASPNET application
by grouping the application into logical pieces that are later assembled into the
complete application.

Groups are called a subroutine and function and in this chapter you'll learn
how to use subroutines and functions to simplify the complexity of your ASP.NET
application.

Chapter 8: Drop-Down Lists, Radio Buttons,
Check Boxes
Visitors to your web site expect to see web forms that contain drop-down list boxes,
radio buttons, check boxes, and other graphic user interface (GUI) controls found

on commercial web sites. These controls enable visitors to pick and choose selec-
tions using a mouse, and minimize the amount of information they need to enter
from the keyboard.

You're already familiar with these GUI controls since they are widely used on
e-commerce web sites. In this chapter, you'll learn how to create these GUI controls
on your ASP web page. You'll also learn how to retrieve values selected by visitors
to your web site.

Chapter 9: Databases
Many commercial web sites are data driven and use the web to enable customers
to complete transactions online. The heart of a data-driven web site is the data-
base that contains account information, product information, and other data that is
necessary for a transaction.

This is the first of four chapters that teach you how to create a data-driven web
site. In this chapter, you'll learn database concepts and how to design a database for
your application.

Chapter 10: Interacting with Databases
Your ASP.NET application must use a series of routines behind the scenes that,
among other things, links your web site to a database. This connection enables you
to store information in the database and retrieve information from the database,
which can be incorporated directly into your web page.

In this chapter, you'll learn how to create an ADO.NET connection that becomes
your pipeline into popular commercial database management software (DBMS),
such as Microsoft SQL Server, Oracle database server, and Microsoft Access. You'll
also learn how to write simple SQL statements in a query that direct the DBMS to
perform tasks that are commonly used in many commercial web sites.

Chapter 11: SQL
Real world ASP.NET web applications require sophisticated queries to retrieve
information from multiple tables, perform complex calculations, and efficiently
organize information so it can be displayed on a web page.

In the previous chapter you learned how to connect your application to database
management software and how to request and store data in a database by writing
simple queries. This chapter focuses on writing sophisticated queries that perform
commonly used tasks in commercial applications.

ASP.NET 2.0 Demystified

Chapter 12: Binding Data to Controls
An efficient way to streamline your data-driven ASPNET application is to link data
directly to web controls so data automatically appears every time a web page is
displayed. For many applications, the data is information stored in a database. In
this chapter, you'll learn how to bind data contained in a database to a web control
and then use that data and web control in your application.

Appendixes
This book also includes a final exam (Appendix A) and final exam answers
(Appendix B). The questions in the final exam are practical and are drawn from all
chapters in the book. Take the exam when you have finished all the chapters and
have completed all the quizzes.

CHAPTER

An Inside Look
at AS P. N ET

Scratch the surface of an e-commerce web site and you’ll be surprised at what you
won’t find-web pages. Few web pages are stored in files on an e-commerce web
server, because a program generates nearly all web pages that visitors see. Pro-
grams also respond to requests visitors make, such as to display their account status
and to process an order. And programs are used to personalize web pages.

Web pages you build are static web pages, since their content stays the same
once you save the pages to your web server. Web pages generated by a program are
dynamic web pages because the program can tailor the content of the web pages to
meet the needs of each visitor to the web site.

You can make your web site come alive with a professional flare by using ASP
.NET to create dynamic web pages that individually respond to each request made
by visitors to your site. You’ll learn everything you need to know to put ASP.NET
to work for you throughout this book, beginning with an introduction to ASP.NET
in this chapter.

ASPONET 2.0 Demystified

The Static over Static Web Pages
Before embarking on a journey into the world of ASP.NET, let's quickly review
how static web pages are used on a web site so that you can later appreciate the
power of dynamic web pages. A static web page is a web page whose content
doesn't change after the developer saves the web page to the web server. The web
page simply remains the same until the developer replaces it with an updated static
web page (Figure 1 - 1).

With one exception, static web pages are not tailored to each visitor, since every
visitor to the web site sees exactly the same web page. In order to personalize the
content of the web page, the developer must know something about the visitor and
then update and replace the existing web page on the web server. Obviously, this is
impossible to do for every visitor.

The exception is to personalize a web page by using a client-side script such as
JavaScript that is incorporated into the web page. JavaScript is a limited object-
oriented programming language that developers use to enhance the capabilities of
HTML.

A developer uses JavaScript to create portions of the web page dynamically
after the browser loads the web page. For example, the visitor's name might have
been saved to a cookie during a previous visit to the web site. On the next visit, the
JavaScript reads the cookie and then uses the visitor's name to write a personal
greeting on the web page.

Developers also use JavaScript to dynamically modify an HTML form while the
visitor is interacting with the form. For example, the visitor might be prompted to
enter a telephone number onto the form. The JavaScript then properly formats the
telephone number.

It is important to remember that scripts written in JavaScript or a similar script-
ing language run on the visitor's computer. ASP.NET runs on the web server, which
gives developers far-reaching capabilities to tie together corporate databases and

Figure 1-1 A static web page is stored on a web server and sent to a browser.

CHAPTER l An Inside Look at ASP.NET

non-web applications into a web page. Pick up a copy of my JavaScript Demystified
(McGraw-Hill/Osbome, 2005) if you want to learn more about how to enhance
your web page with JavaScript.

Serving Up Static Web Pages: Are You Being Served?
A web server is like a sales clerk who stands behind the counter waiting to respond
to customers' requests.

The customer in this case is called a client, which is typically the browser used
by the visitor to retrieve the web page. However, a client can be any program that
accesses the Intemet, such as Microsoft Office products and customized programs
that you might write yourself using Visual Basic, C++, or other popular program-
ming languages.

The client requests either to receive a file or to run a program. The file is usually
a web page, but it could be a file containing a graphic image, a Flash movie, an
audio file, or a Java applet used by a browser plug-in.

The program on the server side can perform any number of operations, which
may include processing information supplied by the visitor and generating dynamic
web pages. You'll learn more about this throughout this chapter.

The client's request takes the form of a URL such as www.mywebsite.com/
FileName and is followed by a series of strange-looking characters. The first part of
the request (www.mywebsite.com) identifies the domain on the web server. The
second part is the name of the file located within the domain. The strange-looking
characters forrn the query string, which is information that the server-side program
needs to process the client's request.

When a request is received, the web server locates the file and sends the file to
the client; then it waits to receive another request from any client. The client then
processes the file; if the file is a web page, the browser displays its content on the
screen (Figure 1-2).

Figure 1-2 A dynamic web page is generated by a program and sent to a browser.

ASP.NET 2.0 Demystified

CGI stands for common gateway inte6ace, and it refers to software running on
the server that is called when a client submits a form. The CGI program uses infor-
mation contained in the form to process the client's request.

The Pros and Cons of Static Pages
Static web pages have been the mainstay of web sites for decades because they are
relatively simple to build and easy to host, and because for many web sites they
effectively present information to visitors.

Static web pages are simple to build because they can be created by dragging and
dropping HTML elements using a web development tool such as Dreamweaver or
Frontpage.

Static web pages are easy to host because you don't require additional software
on the web server such as the ASP.NET engine, which you'll learn about later in
this chapter. All you require is a web server to host a static web page.

Static web pages effectively present information to visitors to a web site because
many web sites display information that doesn't change frequently and doesn't
require the personalization and interactions found on e-commerce web sites.

However, static web pages do have drawbacks, one of which is the lack of a capa-
bility to personally communicate with visitors-a requirement of many enterprises.
Businesses that use the web as a source of revenue or to improve customer support
require web pages to give visitors a warm, cozy, personalized experience that can
only be achieved by dynamically generating web pages.

For example, static web pages are incapable of displaying customer account infor-
mation because account information could change frequently during the day, requiring
the developer to manually update the page, and there would simply be too many
static web pages+ne per account. Also, static web pages are incapable of enacting
e-commerce business strategies such as dynamic pricing, where a business adjusts the
selling price of an item according to the customer's profile stored in a database.

Businesses turn to dynamic web pages to provide customers with the up close
and personal relationship expected when doing business online.

Dynamic Web Pages: Viagra for Web Sites
A dynamic web page is a web page that doesn't exist until a program generates it in
response to a request from a client. Sounds a bit like web magic. One second there
isn't a web page, and then poof-there it is.

C l An Inside Look at ASP.NET

Here's the trick: A dynamic web page contains the same HTML markup code as
a static web page, except the code is written by a program at the time that the web
server receives the client's request. The HTML markup code isn't written to a file.
Instead, it is sent directly to the client.

Here's how this works. Typically, index.htm1 is the first web page a client re-
quests from a web site. This is a static web page in many cases, because the client's
request usually doesn't identify the visitor. You've seen this happen whenever you
go online to view your benefit statement. The first web page that appears prompts
you to log in.

The second request usually contains information that identifies the visitor, such
as an employee ID and password, and asks the web server to run a program rather
than return a web page. You might be wondering how the client knows what pro-
gram to run. The URL for the program is contained in a hyperlink on the first web
page requested by the client.

When this URL is requested, the web server passes the request to software that
is specifically designed to run the program, which is commonly called an engine.
For example, if the URL is for a myprogram.aspx, the web server passes the request
to the ASP.NET engine to run this program.

The information provided by the client is used by the program to customize the
next web page that is sent to the client. How the program customizes the web page
depends on the nature of the application.

For example, a program that validates your login executes when you submit your
employee ID and password to gain access to the benefits web site. If your login
information is invalid, the program generates a dynamic web page prompting you
to re-enter it. If it is valid, then the program retrieves your benefits information
from the company's database and generates a dynamic web page that blends your
benefit information with general information that explains the status of your ac-
count (Figure 1-3).

A dynamic web page looks the same as a static web page to a client. In fact, you
couldn't tell the difference if you viewed the source code of both of them. Another
way of looking at this is that you already know how to write most of the program
that generates a dynamic web page, since you know how to write a web page using
HTML.

Parles-tu Visual Basic .NET?
Do you speak Visual Basic .NET? Visual Basic .NET is one programming language
that developers use to write ASP.NET programs to generate dynamic web pages.
(Another language is C#.) Any .NET-compliant programming language can be used
to write an ASP.NET program.

ASP.NET 2.0 Demystified

Figure 1-3 Dynamic web pages usually blend general information with personalized
information obtained from a database.

The Pros and Cons of Dynamic Pages
The capability to create web pages dynamically opens new horizons for developers,
for now they can create web-based applications that can tap into corporate data-
bases and that can interact with existing non-web-based applications.

You've probably experienced such interactions when making an online purchase,
but you may not have realized what was happening behind the scenes. You entered
your credit card information into a web page and clicked the Submit button, which
kicked off a program on the web server that probably passed along your credit card
information to a non-web-based application for validation. This application deter-
mines if your credit card is valid by comparing your information with information
stored in a database. Once your card is validated, a web page confirming your pur-
chase is dynamically created and sent to your browser.

You simply can't do this with a static web page.
Here are some other benefits of using dynamic web pages:

They save money and trouble updating applications Before web-based
applications were developed, the IT department had to install software on
every computer in the company each time an application was upgraded.
Today many of the applications are stored on a web server and are accessed
using a browser.

An Inside Look a t ASP.NET

They give you access from any place with an Internet connection A web-
based application is never out of reach from anyone who is authorized to
access it.

They increase customer satisfaction Customers go online rather than
wait in line registering for class, placing an order, paying a bill, or checking
their account status.

You can't do this with a static web page.
And there are drawbacks to using dynamic web pages, too:

Security A web-based application that generates dynamic web pages might
expose corporate applications and databases to hackers.

Decreased customer satisfaction There is a tendency to keep customers at
arm's length and force the customer to do business with the firm online, while
concealing ways in whch a customer can talk to a company representative.

Complex programming Creating dynamic web pages and linking them to
corporate databases and non-web-based applications requires programming,
something that isn't necessary when using static web pages.

Additional software An engine-not a web server-executes programs.
Therefore, the engine must be installed and maintained. The web server
processes static web pages without requiring help from an engine.

Are You Ready for Some ASP.NET?
ASP.NET is the latest incarnation of Microsoft's Active Server Pages and is the
engine that executes ASP.NET web pages. An ASP.NET web page is the program
that you create to generate a dynamic web page, which you'll learn how to do in
the next chapter. For now we'll take a few moments to introduce the concept of an
ASP.NET web page.

Two sets of instructions must be executed in order for a visitor to view a dy-
namic web page. The first set is executed on the web server. Developers call this the
server side. The second set is executed on the visitor's computer. Developers call
this the client side. Both sets of instructions are written in an ASPNET web page.

The ASP.NET web page is organized into two sections that correspond to the
two sets of instructions. These are the HTML markup code section and the con-
trols section.

ASP.NET 2.0 Demystified

The HTML markup code section contains HTML markup code that forms the
dynamic web page sent to the visitor's computer by the ASP.NET engine. These
instructions are executed on the client side by the browser.

The controls section contains instructions that tell the ASP.NET engine how to
generate the dynamic web page. These instructions are executed on the server side
by the ASPNET engine. The controls section is divided into two subsections called
HTML controls and web controls. You'll learn the difference between these two
subsections in the next chapter.

The ASP.NET engine that executes the ASPNET web page needs to run within
the .NET Framework. This simply means that the ASPNET engine needs help from
a group of programs and related files that are collectively called the .NET Frame-
work. There are two key elements of the .NET Framework: .NET programming
languages and Framework classes.

A .NET programming language is a language developers use to write instructions
telling the ASP.NET engine what to do. VB.NET and C# are each a .NET prograrn-
ming language. Framework classes are like building blocks used to write ASPNET
web pages. You'll learn more about Framework classes in the next chapter.

Building an ASP.NET Web Page
An ASPNET web page can be built using an editor such as Microsoft's Notepad that
comes with Windows. All that's needed is for you to write the HTML markup code
section and the control sections using VB.NET or C#, and then save the page to a file
that has the .aspx file extension. You'll learn how to do this in the next chapter.

The next step is to execute your ASPNET web page. This is the tricky part be-
cause to do this, you need a web server that has access to the ASP.NET engine, and
chances are you don't have these on your computer. Don't be too concerned,
because you have three options available, depending on which operating system
you have running on your computer.

ASP.NET Web Matrix Web Sewer
ASP.NET Web Matrix is your best option if you are running Windows NT, Win-
dows XP Professional, Windows XP Home, or Windows Server 2003 (unlikely
unless your computer is also running a web server) on your computer because it is
a free, all-in-one development tool and web server.

It'll take you about five minutes to download this tool, and ASPNET Web Matrix
installs in no time. You'll also need to download and install the .NET Framework if

An Inside Look a t ASP.NET

you don't already have it installed on your computer. (.NET Framework is already
installed if you are running Microsoft Windows Server 2003, Windows 2000, or
Windows XP.) The .NET Framework is also free. You can download it from www
.asp.net or http://msdn.microsoft.com/net.

The greatest benefit of using the ASP.NET Web Matrix is that you can build your
ASP.NET web page using WYSIWYG (what you see is what you get) by dragging
and dropping components from a toolbox onto the page. And you can test your
ASP.NET web page with a click of a button, since the ASP.NET Web Matrix has the
Web Matrix Web Server built in.

ASP.NET Web Matrix has its drawbacks. First, it doesn't run on Windows 98 or
Windows ME, and besides, the ASP.NET Web Matrix Web Server is limited to re-
quests coming from the computer running it. This means that you cannot access the
ASP.NET Web Matrix Web Server from outside your computer even if your com-
puter is connected to the Internet, because the ASP.NET Web Matrix web server is
not designed as a product web server.

Web Hosting
If you're running Windows 98 or Windows ME or simply don't want to download
the ASPNET Web Matrix to your computer, then you'll need to make arrangements
with a web hosting company to run your ASP.NET web page.

A web hosting company provides space on its web server for your web site, usu-
ally for a nominal monthly charge. The company will also help you register your own
domain name (e.g., www.mydomain.com) and link your domain to your web site.

TIP: GO to www.net~ol.~om tojnd out what domains are still available.

There are thousands of web hosting companies. Visit www.hostindex.com or
www.tophosts.com for a listing of web hosting companies and their offerings. When
selecting a web hosting company, make sure that the company supports ASP.NET.
If it doesn't, then their web servers cannot handle your ASP.NET web pages.

You can get your feet wet with ASPNET without spending money for web hosting
by using the educational package offered by www.brinkster.com. The educational
package provides you with a free web hosting account that you can use to run your
ASP.NET web page. You simply copy and paste your ASP.NET web page into a
text area available on the www.brinkster.com web site to upload your ASP.NET
web page to their web server. Visit www.brinkster.com for complete instructions on
how to do this.

ASP.NET 2.0 Demystified

Internet Information Sewer (11s)
You can install Microsoft's Internet Information Server (11s) if you are running a
Windows 2000, Windows XP Professional, or Windows 2003 web server. However,
Internet Information Server is a bit of overkill, since it is the web server used by
many web-hosting companies.

Developers rarely run such a powerful web server on their desktop, since they
can use the ASP.NET Web Matrix web server to test and debug their ASP.NET
web pages.

Publishing Your ASPoNET Web Page
The last step in creating an ASP.NET web page is to publish it on your web site. The
process of publishing your ASP.NET web page is basically the same process used
to publish a static web page: you copy the ASP.NET web page file to the proper
location on the web server using the File Transfer Protocol utility that is built into
most browsers.

The exact location to place your ASP.NET web page file is up to you. Many
developers store all their ASP.NET web pages in the same subdirectory on the web
server to keep their web site files organized.

You won't be able to FTP your files if you are using the www.brinkster.com edu-
cational package, since FTP is provided only to paid accounts. Instead, you'll need
to copy and paste your ASP.NET Web Page into their web page.

Here are a few things to review before publishing your ASP.NET Web Pages:

Make sure your web hosting company supports ASP.NET. Some support
ASP, but not ASP.NET.

Make sure that the hyperlink that references your ASPNET web page has
the path to the subdirectory that contains the ASP.NET web page file and
includes the filename; otherwise, an error is displayed by the browser.

Make sure you thoroughly test your ASP.NET web page and stamp out
all bugs.

Make sure that resources used by your ASPNET web page such as
databases and non-web-based applications, if any, are available to your
ASP.NET web page.

After publishing your ASP.NET web page, pretend to be a visitor to your
web site and make sure that your ASPNET web page is accessible and
working properly online.

CHAPTER 1 An Inside Look a t ASP.NET

Looking Ahead
ASP.NET is used to generate dynamic web pages in response to requests made by
visitors to your web site. Dynamic web pages are web pages that don't exist on a
web server. Instead, a program generates them.

The content of a dynamic web page can be tailored for each visitor according to
information provided by the visitor. For example, it could contain the visitor's ac-
count status or order information that is retrieved from databases and non-web-based
applications.

The program that generates the dynamic web page is called an ASPNET web
page. An ASP.NET web page contains two sets of instructions. These are HTML
markup code and controls. The HTML markup code forms the dynamic web page
that is sent to the client. Controls are instructions that tell the ASPNET engine how
to generate the dynamic web page. The ASP.NET engine is the application on the
server side that executes the ASP.NET web page.

In the next chapter, you'll learn how to create ASP.NET web pages using the
ASPNET Web Matrix.

Quiz
1. ASP.NET web pages are written using

a. VB.NET

b. C#

c. C++

d. VBScript

2. The ASP.NET engine requires

a. .NET OS

b. .NET Framework

c. .NET Source Code

d. None of the above

3. ASP.NET can be used to create

a. E-commerce web sites

b. Intranet web sites

c. Corporate web sites

d. All of the above

ASP.NET 2.0 Demystified

4. ASP.NET web pages run on

a. The server side

b. The client side

c. Both the server side and the client side

d. None of the above

5. The ASl'.NET engine runs on

a. The server side

b. The client side

c. Both the server side and the client side

d. None of the above

6. The .NET Framework contains

a. Customer information

b. Classes

c. Account information

d. All of the above

7. You can write an ASP.NET web page using any editor.

a. True

b. False

8. All dynamic web pages must be generated by ASPNET web pages.

a. True

b. False

9. There is a visible difference between HTML markup code in a static web
page and a dynamic one.

a. True

b. False

10. A dynamic web page cannot contain images or audio.

a. True

b. False

CHAPTER 1 An Inside Look a t ASP.NET

Answers
1. a. VB.NET and b. C#

2. b. .NETFramework

3. d. All of the above

4. a. The server side

5. a. The server side

6. b. Classes

7. a. True

8. b. False

9. b. False

10. b. False

This page intentionally left blank

CHAPTER

The ASP.NET
Web Page

An ASP.NET web page is an extension of HTML markup code that includes
instructions called source code that tell the ASP.NET engine how to generate
a dynamic web page. The content of a dynamic web page is a blend of HTML
markup code and source code; it can include data retrieved from a database or from
a non-web-based application, depending on the nature of your application.

In this chapter you’ll learn how to build an ASP.NET web page using the
ASPNET Web Matrix Project, which is an all-in-one editor and development
environment that enables you to drag and drop HTML elements and source
code from a Toolbox onto your ASP.NET web page. Best of all, the Visual Web
Developer writes the code for you.

/--

HTML and XHTML: A Short Review
Before plowing ahead learning how to create an ASPNET

2.0 Demystified

web page, let's take
a very brief side trip to review HTML and XHTML. Skip this section if you already
know how to build static web pages using HTML and XHTML; otherwise, refresh
your memory by reading the rest of this section.

HTML markup code consists of tags that tell the client, which is usually the
browser, how to display information contained in the web page and instruct it on
how to link to other pages and files.

An HTML tag has a start tag (<TagName>) and an end tag (</TagName>). Infor-
mation that is affected by the tag is placed between these tags. For example, suppose
you want text to appear in italics. Here's what you write. The <i> is the start tag and
the d i > is the end tag. The text "Some text" is the text that the browser displays
in italics.

There are many tags that can be used to describe how information contained in
a web page should be displayed on the screen.

TIP: Some HTML tags have only a start tag and not an end tag, such as
,
which signifies a new line and the <hr> tag that tells the browser to draw
a horizontal line.

HTML tags are typically grouped together so that multiple tags can apply to the
same information. This is referred to as nesting the HTML tags. Let's say that you
want the previous example to display in bold italics. Here are the HTML tags that
you need to write: The italics tag (<i>) is nested within the bold () tag. This tells
the browser to display the text "Some text" in bold italic.

You can change the order of nested tags as long as the tags are properly nested.
Properly nested HTML tags require that each end tag appear in the reverse
sequence from the start tags. The preceding example is properly nested; however,
the next example is improperly nested because the bold end tag (a>) comes
before the italic end tag (di>).

TIP: HTML tags are not case sensitive.

HAPTER 2 The ASP.NET Web Page

XHTML is a variation of HTML that is used to create the HTML markup portion
of an ASP.NET web page and requires stricter formatting than that found in HTML.
XHTML is a blend of HTML and Extensible Markup Language (XML), which
among other things has strict tag formatting.

XHTML is case sensitive and requires all tags to be in lowercase. Furthermore,
all XHTML tags must have an end tag, including HTML tags such as
 and
<hr> that don't require an end tag in HTML.

TIP: Combine the start and end tags into one tag by using the form <TagName />,
such as <hr />.

Kick-starting Visual Web Developer
You can create an ASP.NET web page by using a simple text editor such as Notepad
that comes with Windows. However, you'll find yourself having to write each line
of HTML markup code and source, which is time-consuming and tedious.

Many professional developers choose to use a development environment that
includes a WYSIWYG editor that you can use to drag and drop elements onto the
ASPNET web page. You don't have to write all the code, because the WYSIWYG
editor writes some of it for you.

The Visual Web Developer is a commonly used WYSIWYG editor for building
ASP.Net web pages. The Visual Web Developer is a component of Microsoft
Visual Studio 2005, which is available at www.microsoft.com.

Once Microsoft Visual Studio 2005 is installed, start by following these steps:

1. Click the Windows's Start button.

2. Select Programs.

3. Select the Microsoft Visual Studio 2005 folder.

4. Select the Microsoft Visual Studio 2005 application.

After Visual Studio 2005 is displayed, select File I New Web Site and then select
the ASP.NET Web Site icon to create a new ASP.NET web page. A screen opens
displaying two tabs along the bottom-left corner: Design and Source.

The Design tab (Figure 2-1) is used to design the content of your ASP.NET web
page by dragging HTML elements from the Toolbox and dropping them onto the
page. Anything you drop on the Design tab appears on the ASP.NET web page.

ASP.NET 2.0 Demystified

Figure 2-1 The Design tab is where you design content for your ASP.NET web page.

You display the Toolbox by selecting the Toolbox tab located in the upper-left
side of the window (Figure 2-2). Place the mouse cursor on the Toolbox tab and
wait a second for the Toolbox to open.

The Source tab displays the HTML markup code for the ASP.NET web page.
The Visual Web Developer generates this code for you, although you can enter
HTML markup code there too.

Notice that the Design tab is empty. This is because you haven't designed your
ASP.NET web page yet. However, the Source tab contains HTML markup code. At
first this may seems unusual, but it isn't, because the Visual Web Developer auto-
matically creates the basic HTML server control that is required for all ASP.NET
web pages.

An HTML server control looks like HTML markup code, except that an HTML
control contains the runat="server" attribute (Figure 2-3). The runat="serverW
attribute tells the ASPNET engine to run the HTML server control on the server

The ASP.NET Web Page

Figure 2-2 The Toolbox contains controls that you drag and drop into your web page.

side rather than on the client side (see Chapter l). You'll learn how the HTML
control is run on the server side in the section "HTML Server Controls" later in
this chapter.

For now it is important to understand that in the absence of the runat="server"
attribute, the ASP.NET engine treats the HTML markup as an HTML control, but
not an HTML server control. This means that the HTML markup code is sent
directly to the client (i.e., browser) by the ASP.NET engine if you leave out the
runat="server" attribute.

Tools of the Trade
Along the left side of the Visual Web Developer is the Toolbox that contains
elements and controls that you can drag and drop onto your ASP.NET web page in
the Design tab.

ASP.NET 2.0 Demystified

Figure 2-3 The Code tab displays an HTML control that is generated for you.

The Moment of Truth: Creating
Your First ASP.NET Web Page

Let's create the traditional first ASP.NET web page-Hello world! Here's what you
need to do:

Select the Design tab.

Select the Toolbox panel.

Drag and drop the Label from the Standard section of the Toolbox onto the
Design tab. Remember that the open space in the Design tab is the ASPNET
web page that the client will see. Drag and drop by pointing to the Label
in the Toolbox. Hold down the left mouse button while moving the mouse
cursor from the Toolbox to the ASPNET web page in the Design tab.

The ASP.NET Web Page

4. Release the mouse button and you'll notice that the Toolbox automatically
closes.

5. Point to the label on the Design tab. Select the right mouse button to
display a pop-up menu and then select the Property option to display
the Property panel.

6. Select the label on the Design tab and then locate the Text property in the
Appearance section of the Property panel. Enter Hello world!

7. Move the mouse cursor to anywhere on the Design tab and then click
the left mouse button. "Hello world!" appears on the ASP.NET web page
(Figure 2-4). You may have to drag the sizing box that appears around the
label to resize the label so that the text appears on one line.

That's all you need to do.
Select the Code tab and you'll see code that Visual Web Developer wrote for

you. You must admit that dragging and dropping is more convenient that writing the
code yourself.

Figure 2-4 Dragging and dropping the label is easier than writing the code yourself.

ASPONET 2.0 Demystified

Testing Your ASP.NET Web Page
You can test your ASP.NET web page by pressing CTRL-FS. Visual Web Developer
cranks away and opens the web page in your browser (Figure 2-5).

Very little can go wrong with the Hello world! web page. However, a real-world
ASP.NET application is more complex than the Hello world! web page and must be
thoroughly tested before you release it on your web site.

In order to thoroughly test your ASP.NET application, you'll need to run it using
the debugger that comes with Visual Web Developer. The debugger is a tool that is
used to execute your web page so that you can see what happens when each instruc-
tion executes.

You'll find the debugger by selecting the Debug menu option. Don't do this now,
because we'll show you how to use the debugger later in this book.

Writing HTML Code Yourself: Watch Out!
There are still some diehards among us who like to get their hands dirty and write
HTML markup code themselves. Dragging and dropping is simple for lazy devel-
opers. If you're one of those hands-on developers, though, then there are a few facts
you need to know before you starting writing HTML markup code using Visual
Web Developer.

Figure 2-5 Test your ASPNET web page by selecting CTRL-~5.

APTER 2 The ASP.NET Web Page

Figure 2-6 An error is displayed if you write buggy code.

The Source tab of the Visual Web Developer is the place to insert your own
HTML markup code into the ASP.NET web page. Code that you enter here is prop-
erly displayed when you switch to the Design tab. However, you must make sure
that you properly write your code; otherwise, you'll see an error displayed in the
Design tab (Figure 2-6).

Digging into the Source Code
The source code section of the ASP.NET web page contains instructions written in
a .NET-compliant programming language such as Visual Basic .NET or C#. Source
code tells the ASP.NET engine how to generate the dynamic web page in response
to a client's request. Source code is inserted into the ASP.NET web page using
the Source tab.

ASP.NET 2.0 Demystified

You'll learn how to write source code in the remaining chapters; for now, how-
ever, it is important that you take a closer look at what source code is and how the
ASP.NET engine calls it.

Object-Oriented Programming: A Class Act
Source code is written using object-oriented programming. Object-oriented pro-
gramming is a style of programming that resembles the way we naturally look at
things. We see the world as objects such as a computer keyboard. We don't see the
world as a group of parts such as keys, springs, diodes, and other components of the
keyboard.

An object is defined as having data and actions. For example, a keyboard has
a specific length and width. These are two of many data that defines the keyboard.
Also, a key on the keyboard can be pressed and released. These are two actions that
also define the keyboard.

In object-oriented programming, a class defines an object. Data that is associated
with the object is called a property, and actions are called methods. It is important
to keep in mind that a class is a definition and not a real object. Some developers
who are new to object-oriented programming find this a difficult concept to grasp.

Think of a class as a stencil of the letter W The stencil isn't the letter W. Instead
it defines what the letter W looks like. A real W is created when you place the sten-
cil on a piece of paper and trace the stencil. The real W is seen once you remove the
stencil from the paper. You can use the stencil over and over again to create many
copies of the letter K and all those copies are identical because they come from the
same definition.

In object-oriented programming, copies of a class are called instances, or simply
objects. Each instance is identical to other instances of the same class. That is, each
instance has properties and methods that are defined in the class. For example,
when we create an instance of the keyboard, the instance will have a width and
length and keys that can be pressed and released.

Visual Basic .NET (and C#) use the .NET Framework library of classes that
you'll be using to build the source code for your ASP.NET web page.

Classes will have properties whose values you can modify and other properties
that cannot be modified. For example, you can't change the width and length of
a keyboard, but you might be able to select the color of the keyboard.

A class has built-in methods and methods that you write. For example, pressing and
releasing a key on the keyboard are built-in methods of a keyboard. Picking up and
moving the keyboard is a method that you define (i.e., you can use one hand or two).

CHAPTER 2 The ASP.NET Web Page

Let's take a look at a method that you'll use when writing source code for your
ASPNET web page. This is the Response.Write() method, which is used to send
a response to the client who initiated the request.

Response is the object, and Write() is the built-in method. Notice that a dot is used
to link them together. In a sense this is saying to the ASPNET engine, use the Write()
method that is defined in the Response object. Developers refer to this as calling the
method. You'll learn a lot more about calling methods throughout this book.

The Write() method sends a series of characters from the ASP.NET engine to the
client, which is usually a browser. These characters are typically HTML markup
code that creates the dynamic web page. Characters are placed within quotations
between the parentheses as shown in the following example, which causes "Hello
world." to be displayed in bold on the client's computer.

Events: I'll Wait for Your Call
The source code portion of an ASP.NET web page is subdivided into one or more
groups, each of which is associated with an event. An event is an action such as
your pressing ENTER on the keyboard. The source code that is associated with the
event is called an event handlez

When an event occurs, the ASPNET engine executes any source code in the
event handler that is associated with the event. Developers say that an event has
fired when an event occurs, causing its event handler to execute.

For example, a 911 operator might receive a call for an ambulance. This is an
event. The 911 operator follows a specific set of instructions when a call for an
ambulance is received. These instructions (source code) are the event handler that
dispatches an ambulance.

TIP: Programming languages that execute source code in response to an event
are called event-driven programming languages. Programming languages that
execute source code in sequence are called procedural programming languages.

There are many events that can happen, which you'll learn about throughout this
book. For now let's take a look at an event that you'll respond to most often. It is
called the Page-Load event. As the name implies, the Page-Load event occurs
whenever the client loads the ASP.NET web page. Associated with this event is the
Page-Load event handler. The Page-Load event handler contains source code that
executes each time the ASP.Net web page is loaded by a client.

ASP.NET 2.0 Demystified

You'll need to define the Page-Load event handler. Here's how this is done:

1. Select the Source tab.

2. Change AutoEventWireup to True.

3. Click the right mouse button.

4. Select View Code from the pop-up menu.

5. Enter the following source code:

Sub Page-Load(sender as Object, e as EventArgs)
Response.Write (I1Hello world.I1)

End Sub

That's all you need to do!
Let's walk through this example. First of all remember that we're using Visual

Basic .NET as the programming language for the source code, so your source code
will look different if you decide to use C# to write it.

Sub and End Sub define the sequence of source code instructions that forms the
event handler. Sub is short for subroutine. Each event handler must have a unique
name. Page-Load is the name of this event handler.

ASP.NET passes the event handler two pieces of information in order for it to
process the event. First, the event handler needs to know who made the request, and
then it needs to know any additional data about the event.

These are given to the event handler by the ASP.NET engine and are stored in
arguments that are identified within the parentheses of the event handler. You don't
need to know about arguments right now, because you'll learn about them later in
this book. However, if you can't wait, then read the next section, "Arguments:
A Preview"; otherwise, skip that section.

Between the Sub and End Sub lines is where you place the source code that
you want the ASP.NET engine to execute whenever the Page-Load event occurs.
Source code is executed sequentially. You'll learn how to write source code through-
out this book.

Our example has one line of source code that sends Hello world.&> to the
client when the client loads the ASP.NET web page. You probably recognize this as
HTML markup code.

Arguments: A Preview
The term argument might sound strange to you; however, think of an argument as
information. For example, a person's name, the address of the emergency, and the
nature of the emergency constitute information (arguments) that the 91 1 operator
needs to respond to a call for an ambulance.

2 The ASP.NET Web Page

The developer needs a way to identify arguments (information) so that it can be
referenced in the event handler. This is done by assigning a name to the argument
and by identifying the kind of augment within the parentheses of the event handler.

Think of this as the form that the 91 1 operator fills in when an emergency call is
received. The form has Caller, Address, and Nature of Emergency as labels. The
91 1 operator writes down the name of the caller, the address of the emergency, and
the nature of the emergency alongside the corresponding label.

While the emergency call is being processed, the 91 1 operator and other emer-
gency personnel refer to the labels (Caller, Address, Nature of Emergency)
whenever this specific information is required. For example, the paramedic might
radio the 911 operator, "We're at the address speaking to the caller." The 911
operator and the paramedics refer to the form for the specific address and the
caller's name.

The argument name is like the label on the form. The ASP.NET engine "writes"
the specific information to each label. Developers call this assigning a value to the
argument. You'll learn more about this in the next chapter.

The Page-Load event handler has two arguments. The first argument is called
sender and is a kind of Object. You'll recall that an Object is an instance of a class.
This identifies the source of the event. The second argument is called e and is a kind
of EventArgs, which is information about the event. You'll learn more about this
later in the book.

Defining the Source Code Portion
Before event handlers can respond to an event, you need to define the source code
portion of your ASPNET web page. You do this by defining a Page directive and a
script. A directive tells the ASP.NET engine how to execute the source code. You'll
learn about directives later in this book. For now it is important for you to under-
stand the Page directive in order to test the source code.

A directive begins with <% @ and ends with %>. Between these are the directive
name and any directive attributes. A Page directive tells the ASP.NET engine how
to execute the source code portion of the ASP.NET web page. It uses the Language
attribute to tell the ASP.NET engine which programming language is used to write
the source code. Here's the Page directive that is written for you by Visual Web
Developer. The AutoEventWireup attribute is set to True, but you'll need to set this
to False.

<%@ Page Lang~age=IlVB~~ AutoE~entWireup=~~False~~
CompileWith=~Default.aspx.vb~
ClassName=I1Def ault-aspx1I %>

ASPONET 2.0 Demystified

Beneath the Page directive is a script. A script consists of one or more lines
of code that can be executed at the server or at the client. For example, any code
written in JavaScript is a script that is executed by the client. Event handlers are
part of a script that is executed by the server.

You define a script by using the <script> .. . dscript> HTML markup code.
The <script> start tag must include the runat="server" attribute, which tells the
ASP.NET engine that the script is to be executed by the server.

Here's the complete source code portion of our example. Make sure that the
Source tab contains this source code and then test it (see the section "Testing Your
ASPNET Web Page" earlier in the chapter).

<script runat="serverM>
Sub Page-Load(sender as Object, e as EventArgs)

Response. Write (I1Hello world. I1)
End Sub

</script>

HTM L Server Controls
As you learned in Chapter 1, you can drag and drop elements from the Toolbox onto
the Design tab and the Visual Web Developer automatically writes the correspond-
ing HTML markup code for you and displays it in the HTML tab. Every time the
ASP.NET engine encounters HTML markup code on your ASP.NET web page, the
ASP.NET engine passes it along to the client without modifying the code.

HTML server controls take the form of HTML markup code but contain the
runat="server" attribute, which tells the ASPNET engine that this is an instruction
for the ASP.NET engine and not HTML markup code that is passed along to the
client. You insert HTML controls on your ASP.NET web page by hand.

Earlier in this chapter you learned about classes, methods, and properties.
The .NET Framework that you installed to run the Visual Web Developer contains
a library of classes that are used to create source code for an ASP.NET web page.
Think of this as a library of source code that other programmers wrote and you can
use in your ASP.NET web page.

An HTML control tells the ASP.NET engine to use the corresponding .NET
Framework class in place of the HTML control. The class contains related methods
and properties used by the ASP.NET engine to generate the corresponding HTML
markup code.

CHAPTER 2 The ASP.NET Web Page

Web Controls
Web controls are similar in concept to HTML controls in that they are instructions
to the ASPNET engine to use the corresponding class in the .NET Framework to
generate HTML markup code. HTML server controls are closely tied to the output
HTML control; ASP.NET server controls are not.

Web controls are declared using the following format:

The declaration begins with <asp: followed by the name of the web control. Next
is the runat="server" property, which tells the ASP.NET engine to run the code.
Depending on the nature of the web control, there may be other properties. If so,
then they are also listed along with their values. The name of the property and its
value are dependent on the web control. The web control ends with the end tag.

You insert web controls on your ASP.NET web page by dragging and dropping
them from the Web Controls portion of the Toolbar onto the Design tab. When the
ASP.NET engine encounters a web control, it uses the corresponding .NET Frame-
work class to generate HTML markup code that is sent to the client.

HTML Sewer Controls vs. Web Controls
HTML server controls seem to do the same thing as web controls. Why both?
HTML controls are used to make it easy to import and export dynamic web pages
between ASPNET and ASP, since no changes are necessary. On the other hand,
changes must be made when web controls are used, since they are not compatible
with ASP.

Besides the compatibility issue, web controls have more properties than HTML
controls, giving you greater control than with the comparable HTML control. Web
controls can be dragged and dropped from the Toolbox, whereas HTML controls
must be entered by hand.

Looking Ahead
The Visual Web Developer is a development environment that is used to build and
test ASPNET web pages. It has two sections that are identified by tabs: Design and
Source. The Design tab is where you drag and drop elements and controls to form the
ASPNET web page. The Source tab is where you enter source for your ASPNET
web page that instructs the ASPNET engine how to generate the dynamic web page.

ASPONET 2.0 Demystified

The Toolbox contains all the elements that you need to build an ASPNET web
page. You insert them into the Design tab by dragging and dropping them from the
Toolbox.

Once you've built your ASP.NET web page, you must test it by pressing CTRL-FS

to pop up the web page in the browser.
Now that you have a good understanding of how to create an ASP.NET web page

using the Visual Web Developer, it is time to create a more robust ASP.NET web
page than Hello world!-which you'll do in the next chapter.

Quiz
1. An HTML server control is

a. Another term for HTML markup code

b. Instructions for the ASP.NET engine to use an HTML class in .NET
Framework

c. Instructions for the ASP.NET engine to use a web control class in
.NET Framework

d. Another term for web control

2. A class is an instance of an object.

a. True

b. False

3. The Response. Write() method

a. Sends HTML controls to the client

b. Sends web controls to the client

c. Sends characters to the client

d. None of the above

4. An event handler is

a. Something that occurs while the ASPNET executes

b. A block of code that executes in reaction to a specified event

c. Another term for an event

d. Code that sends an event to an ASP.NET web page

The ASP.NET Web Page

5. Page-Load

a. Is the way a client requests a page from the web server

b. Starts the web server

c. Starts the ASP.NET engine

d. Is the name of the event handler for the Page-Load event

6. An ASPNET web page is divided into an HTML portion and a source
code portion.

a. True

b. False

7. Event handlers must be defined within the script tag.

a. True

b. False

8. A method is

a. An action associated with a class

b. Data associated with a class

c. An instance of a class

d. None of the above

9. The runat="server" attribute means

a. Start the web server

b. Start the ASP.NET engine

c. Execute the code on the server side

d. None of the above

10. The sequence c%@ Page Language="VB7' %> is a directive.

a. True

b. False

Answers
1. b. Instructions for the ASP.NET engine to use an HTML class in .NET

Framework

2. b. False

ASP.NET 2.0 Demystified

3. c. Sends characters to the client

4. b. A block of code that executes in reaction to a specified event

5. d. Is the name of the event handler for the Page-Load event

6. a. True

7. a. True

8. a. An action associated with a class

9. c. Execute the code on the server side

10. a. True

CHAPTER

Building an
ASP.NET Web

Page Application

Developing an ASP.NET web page application is more involved than creating
a web site using static web pages because you must design, develop, and test both
the client side and the server side. The client side is what the visitor sees. The
server side is how the ASP.NET web page generates what the visitor sees.

As you learned in previous chapters, an ASP.NET web page application can link
together web pages with databases and non-web-based application, which is some-
thing that cannot be done using static web pages. It is for this reason that an
ASP.NET web page application can be more challenging to build than a web site
that has only static web pages.

In this chapter, you’ll learn techniques developers use to create an ASP.NET web
page application.

ASP.NET 2.0 Demystified

Designing an ASP.NET Web Page Application
All applications, including an ASP.Net web page application, are developed using
the same general road map, called the application life cycle. The application life
cycle divides the development process of an application into phases, each of which
must be completed before the next phase can begin. A phase specifies things that
must be done in order to create the application successfully.

The life cycle that we'll use have five phases: design, development, testing, im-
plementation, and maintenance. You might come across other versions of the life
cycle that have different phases, but they generally all help you accomplish the
same objective: to create an application.

You might be wondering why they call this a life cycle. The reason is that the
road map to creating an application is similar to the development of living things.
Think about plants. A new plant develops from a seed, matures, and dies. During
this cycle it gives off other seeds that begin the life cycle again.

An application also dies when it outlives its usefulness. Usually by this time, the
application has been modified many, many times in order to conform to changing
business requirements. At some point, developers decide it is more economical to
build a replacement application than to simply continue to modify the existing
application. When this happens, the existing application dies. The developers start
at the beginning of the life cycle to create the replacement application.

Design Phase
The first phase of the life cycle is the design phase. This is where you determine the
objective of the application. That is, what is the application going to do? You then
define all the features that will be necessary to reach the objective.

Let's say that you're a building a house. In the design phase, you determine your
housing needs and relay this to the architect. The architect draws up a detail plan for
the house based on your needs.

Your goal for the design phase is to develop a detail plan for building your
application. This plan must describe how both the user side and the server side look
and work.

It is best to begin your design using a top-down approach. First, determine what
your application is going to do, such as accept an online order.

Building an ASP.NET Web Page Application

Client Side
Next, focus on the information needed to achieve this objective. That is, what
information is necessary to place an order online? Make a list and describe each
piece of information by name, kind of information (e.g., money, quantity, name,
calculation), and source.

For example, you'll need to display product information on the screen before the
customer places the order. Typically, product information includes a product name,
a product description, a product number, a price, and possibly a product picture.
This information is generated by the ASP.NET engine using product data stored in
a database.

Once you make a list of this information, then design the user interface. A user
interface is the client side of an application that the visitor uses to interact with your
application. The list of information is your guide to determine what HTML ele-
ments are needed to design the user interface. For example, labels can be used to
display a product name, a product description, a product number, and a price. An
image element is used to display a product picture.

Your user interface design must define how the user interacts with your web
page. Suppose you expect the visitor to place an order using your web page; you
must then decide how they are going to place the order. That is, what information
must they enter, where do they enter this information, what button do they click to
submit the order, and so on. This is all part of the design phase.

TIP: During the design phase, focus on what you need and not how you are
going to build it. Building occurs in the development phase.

Your job is to describe the user interface and how it works the best way you can
without building it. This plan is then given to a developer to build, although in some
situations you'll be both the designer and the developer.

Server Side
During the design phase, you must specify what you want to happen on the server
side of your application. Remember from previous chapters that the server side is
where the ASPNET engine processes requests and generates a dynamic web page
that is sent to the visitor. Therefore, you must explicitly itemize steps needed to
process the request and generate a dynamic web page.

ASP.NET 2.0 Demystified

These steps depend on the nature of your application. Some applications will
require the ASP.NET engine to retrieve data from a database and insert that data,
such as product information, into a dynamic web page. Other applications might
require the ASP.NET engine to access a non-web application, for instance, to verify
login information provided by the visitor.

Whatever the process, it is your responsibility to list all the steps in the process
so that a developer can write the code to have the ASP.NET engine perform those
steps. The best way to specify a process is by using pseudocode. Pseudocode is an
informal language that is a mixture of plain English and a programming language.

Let's say that you want the process to verify login information provided by the
visitor. The ASP.NET engine calls a non-web application to do the verification, and
that application sends back an approval or rejection notice.

Here's the pseudocode that describes this process:

Read ID and password submitted by visitor
Send ID and password to verification program
if verification program approves then

Dynamically create an approval web page and sent it to the visitor
else

Dynamically create a rejection web page and sent it to the visitor
end if

Everything except the if ... else ... end if is in plain English. The if ... else ... end if is part
of a programming language that specifies a condition for making a decision. If the
condition is true, then one set of instructions is executed. Another set of instructions
is executed if the condition is false.

A developer translates pseudocode into a programming language that the
ASP.NET understands. As a designer, you only need to describe every process as
best as you can using pseudocode.

Development Phase
The development phase is the segment of the life cycle where your application is
built. It is here that a developer brings your plans to life by creating the user inter-
face and the server-side processing. Think of this as the general contractor taking
the plans for your house from the architect and then building your house.

You might be the developer of your application, but typically in larger commer-
cial applications, there are teams of designers and developers working on the
project. Therefore, it is important that the plans clearly convey the specification for
the application; otherwise, times may come during development when the builder
will be left wondering what you want to happen.

3 Building an ASP.NET Web Page Application

Imagine if the architect planned for a window but didn't specify its location. The
carpenter is left wondering and might put the window where helshe thinks it
belongs, but not necessarily where the architect wanted it.

Throughout the remaining chapters of this book you'll learn the techniques for
building an application.

Testing
Testing is the third and probably the most important phase of the life cycle because
this is where you identify flaws in your planning and development. Testing is where
you determine if the application performs as planned.

There are various types of testing. Four important tests are unit testing, integra-
tion, quality assurance, and user acceptance.

Unit testing is where a piece of the application called a unit is tested. For exam-
ple, a unit might be verification of login information. Typically, a unit test is
performed by the developer who built the unit.

Integration testing is where all the pieces (i.e., units) are tested together to deter-
mine if they work. On large commercial applications, there is usually a group
of technicians who perform integration testing. These technicians are not usually
developers of the application.

Quality assurance testing is where a group of testers verify that the application
performs according to specification. Their objective (among others) is to try to break
the application before the application is used for business. Each time they find
a problem, called a bug, they report it to the developer for fixing and further testing.

User acceptance testing is where members of the business unit who are going to
use the application to run the business verify that the application meets their objec-
tives. Think of this as walking through your new house for the first time. You open
every door and window and go into every room-and, of course, flush the toilet.

Once the users accept the application-and the application passes all the other
tests-the application is ready to be used by the business.

Implementation
Implementation is where the business uses the new application and turns off older
applications that are being replaced. This is a critical moment because in some situ-
ations, the business cannot fall back on the older application once the new
application is in place.

ASP.NET 2.0 Demystified

In large commercial applications, teams of technicians from various areas of the
firrn develop a formal implementation plan that specifies everything that must be in
place before they turn off the old application and turn on the new application. Fur-
thermore, the implementation plan also specifies how to test once the new application
is installed-and steps to take if the new application fails the test.

Typically, implementation occurs over a long weekend. This gives the team time
to install and test the new application-and time to back out the new application and
reinstall the older application in case the installation of the new application fails.

TIP: You won't have to develop an elaborate implementation plan for most of
your applications unless they are large commercial applications.

Maintenance
Maintenance is the last and longest phase of the life cycle. This is where your
application is used to run the business. Needs of a business change, and therefore
your application will need to reflect those changes by adding new features to the
application. These changes are made during maintenance of the application.

The maintenance phase begins as soon as the business unit begins using the
application. It continues until it is decided that it is more economical to create
a replacement application than it is to change the current application. This results in
the life cycle starting over again.

Designing Your First ASP.NET
Web Application

Let's design a simple ASPNET web application. The application will create a new
account number for a visitor and display it on the screen. Although an application
that creates a new account number usually gets the new account number from a
database, our application will generate the number by combining the visitor's first
and last names with the number 54321. We'll do it this way because you haven't
learned how to interact with a database yet.

The first step in the design process is to clearly state the objective of the applica-
tion. The objective of our application is to use a visitor's first and last names to
create a new account number.

HAPT Building an ASP.NET Web Page Application

The next step is to list the information that we need. Here's the list:

Visitor's first name

Visitor's last name

New account number

Client Side
Next we need to focus on the user interface. The user interface should have a place
for the visitor to enter his or her first name and last name and a button that can be
clicked to submit this information to the server side for processing.

Once the server side generates the new account number, we'll need to display the
visitor's first and last names and the new account number. We don't need the button
displayed. Furthermore, we must make sure that the visitor cannot edit the first and
last names and the new account number once they are displayed.

Server Side
Our design must specify how the server side is going to process the request for
a new account number. The objective of the server side is to read the visitor's first
and last names, combine them with the number 54321, and then display the new
account number on the screen.

However, we need to be very specific in how we describe this process; other-
wise, the developer won't know what we want the ASP.NET engine to do. We
specify the process using the following pseudocode.

Read the visitor's first name
Read the visitor's last name
Create the new account number by combining the visitor's
first name and last name with 54321.
Make the visitor's first name read only
Make the visitor's last name read only
Make the Create new account number button invisible
Display the new account number as read only

Notice how specific we have to be when describing how the ASPNET engine
processes the request for a new account number. We need to state that the visitor's
first and last names and the new account number are displayed as read only. Read
only means that the visitor can see the information but cannot change it.

ASPONET 2.0 Demystified

Developing Your First ASP.NET
Web Application

Now it is time to transform your design into a working ASP.NET web application.
We'll begin by creating the user interface and then write the program on the client
side to create and display the new account number.

Start by opening a new ASP.NET web site in the Visual Web Developer
(see "Kick-starting Visual Web Developer" in Chapter 2).

Our design calls for two screens. One screen prompts the visitor to enter first and
last names and then click a button to get a new account number. The other screen
displays the first and last names and the new account number.

We can achieve the same results by using one screen that includes all the ele-
ments. We'll then use the Visible property to make an element visible or invisible,
depending on the activity that is occurring at the time. Setting the Visible property
to True makes an element visible on the screen. Setting the Visible property to False
hides the element.

For example, initially, the label and text box for the new account number are
invisible. Once the visitor enters his or her name and clicks the button, the new
account number label and text box will be visible and the button will be invisible.

Here are the steps to create the user interface for our application:

1. Drag and drop a Label.

2. Change the Text property under Appearance in the Properties panel to First
Name: and press ENTER.

3. Drag and drop an HTML Textbox and place it alongside the label.

4. Change the ID property in the Properties frame to FName (Figure 3-1) and
press ENTER.

TIP: The ID prop% is used on the server side to identlfy a specifrc control.

5. Select the first name label and use the sizing handles to stretch the label
box so that there is a space between it and the text box, if needed.

6. Press ENTER to move to the next line.

7. Drag and drop a Label.

8. Change the Text property in the Properties frame to Last Name: and
press ENTER.

9. Drag and drop a Textbox and place it alongside the label.

10. Change the ID property in the Properties frame to LName and press ENTER.

Building an ASP.NET Web Page Application

Figure 3-1 The ID property is located at the top of the properties list.

11. Select the last name label and use the sizing handles to stretch the label box
so that there is a space between it and the text box, if necessary.

12. Press ENTER to move to the next line.

13. Drag and drop an HTML Button.

14. Change the Value property to Create New Account Number.

15. Change the ID property to CreateAccount and press ENTER.

16. Press ENTER to move to the next line.

17. Drag and drop a Label.

18. Change the Text property to New Account Number.

19. Change the ID property to NewAccountNumberLabe1.

20. Change the Visible property to False and press ENTER.

21. Drag and drop a Textbox and place it alongside the label.

22. Change the ID property in the Properties frame to NewAccountNumberTxBx.

ASPONET 2.0 Demystified

Figure 3-2 Here is the user interface for your application.

23. Change the Visible property to False and set the ReadOnly property to
ReadOnly, and then press ENTER.

24. Select the new account label and use the sizing handles to stretch the
label box so that there is a space between it and the text box.

Figure 3-2 shows the completed user interface for your application. Select the
Source tab and you'll see the code that the Visual Web Developer generated for you
as shown here:

c%@ Page Language="VBl1 AutoEventWireup="falseH CompileWith=~Default.aspx.vb"
Cla~sName=~Default-aspx" % s

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//ENU
~1http://www.w3.org/T~/xhtmlll/~~~/xhtmlll.dtd11>
ehtml xmlns="http://www.w3.org/l999/xhtml" >

<head runat="serverUs
<titlesuntitled Page</titles

</head>]
<body>

3 Building an ASP.NET Web Page Application

<form id=I1formlu runat="serverN>
<div>

<asp : Label ID=I1Labellu1 Runat=I1serveru Text=I1First Name : Width=11102px11
Height="l9px"></asp:Label>

<input id="FNameU type="textU / >

<br / >
<asp : Label ID="Label2 Runat=I1serveru Text="Last Name : l1 Width=11102pxu

Height=n19px"></asp:Label>
<input id="LNamefl type=l1textU / >
<br / >
<input id="CreateAccount l1 type=llbutton" value=I1Create New Account Numberu / >
<br / >
<asp:Label ID=~NewAccountNumberLabelN Runat="server" Text="New AccountNumber:

Width="158pxU
Height="19px11 Visible="False"></asp:Label>

<input id=~NewAccountNumberTxBx~ type="textU ~isible=~false~ / >

</dim
</form>

</body >

</html>

Server-Side Development
Now we'll turn to the server side and write the code that is necessary to generate the
new account number. Select the Create New Account Number button and press the
right mouse button to display the pop-up menu. Select Run At Server Control.

Double-click the Create New Account Number button to create an event handler
that responds when the visitor to your web site clicks the Create New Account
Number button.

This automatically displays a screen that contains the Partial Class Default-aspx,
in which the Sub ... End Sub for the button's Click event handler is already inserted.
All you need to do is insert the code that you want to execute when the event
occurs.

First let's make the new account number label and text box visible by changing
its Visible property to True. You do this by using the assignment operator as shown
here:

NewAccountNumberLabel.Visible = True
NewAccountNumberTxBx.Visible = True

We use the ID of the element to identify the element that we want to change. We use
the name of the property to specify what we want to change. The ID and the name
of the property must be separated by a dot.

The value of the property is changed by using the equal sign followed by the new
value. In both of these statements we're telling the ASP.NET engine to change
the Visible property to True, making these elements visible.

ASP.NET 2.0 Demystified

TIP: Each property has its own values. Review the property in the Property pane
to determine available values for a particular property.

Next let's create the new account number. Remember that according to the
design the new account number is a combination of the first name, the last name,
and the number 54321. Therefore, we must write code that reads the first and last
names that are entered by the visitor and then combine them with 54321.

The visitor enters the first name in the text box that has the ID FName. The value
entered into the text box becomes the value of the Text property for the text box. In
order to access the value of a text box from within the code, we need to reference
the text box's Text property as shown here:

Remember that FName is the ID you gave to the text box when you created the
user interface. Value is the name of its Value property. We link them together using
a dot. Therefore, anytime we want to refer to the contents of the first name text box,
we simply use FName.Value. The same is true for the last name text box, except we
use the ID for that text box, which is LName.

The plus sign is used to combine values. If we're using a literal value such as the
number 54321, then we must enclose the literal value within quotations, such as
"54321". If we're using the contents of a text box, then we use the ID followed by
the Value property as shown in the previous paragraph.

Here's how we create the new account number:

FName .Value+LName .Val~e+~~54321~~

Our next job is to store the new account number into the new account number
text box. This is done by using the equal sign to copy the new account number into
the Text property as shown here:

The NewAccountNumberTxBx is the ID for the text box that will contain the new
account number, and Text is the Text property for that text box. At this point in the
code, the new account is created and stored in the new account number text box.

We have one final step before the out event handler is completed. We need
to hide the Create New Account button. To do this, we simply change its Visible
property to False as shown here:

CreateNewAccount.Visible = False

Figure 3-3 shows you how your Code tab should look after entering code for the
event handler. Notice that we indented the code. This makes it easy for you to read.

CHAPTER 3 Building an ASP.NET Web Page Application

Figure 3-3 Here is the code for your application.

Running an ASP.NET Web Page Application
The moment of truth has arrived. It is time to run your ASP-NET web page applica-
tion. All you need to do is to run the application by pressing CTRL-FS in the Visual
Web Developer. In a large commercial application, you would follow more elaborate
testing procedures, as described in the earlier section of this chapter "Testing."

Here's how to test your application:

1. Press CTRL-F5 .
2. Enter Bob into the first name text box and Smith into the last name text

box (Figure 3-4) or use any name.

3. Click Create New Account Number.

4. The ASP.NET engine follows instructions that you wrote in the event handler
to generate the new account and displays it on the screen (Figure 3-5).

ASP.NET 2.0 Demystified

Figure 3-4 First enter a name and then click Create New Account Number.

Figure 3-5 The server side generates the new account number.

CHAPTER 3 Building an ASP.NET Web Page Application

Implementing an ASPAET
Web Page Application

As mentioned previously in this chapter, implementing an ASPNET web page
application is the process of making the application available to the business unit.
This can be an involved process. ASP.NET files must be stored in the proper
directories within the proper server. Any databases used by the application must be
available. Non-web-based applications, if any, must be accessible to the ASP.NET
application. And all these components must work together perfectly.

You must also develop and follow an implementation plan for turning the old
application off and the new application on without disrupting business operations.
This entails a great deal of planning, which is beyond the scope of this book.

However, implementing your simple application requires you to place the
ASP.NET application file in the appropriate directory on your web server. You'll
also need to create a static web page called index.html that has a hyperlink to your
ASP.NET application. This too must be placed on the web server.

The visitor then will request the index.html web page and click the hyperlink to
run your application.

Looking Ah.ead
In this chapter you learned how to use the life cycle to create an ASPNET web page
application. The life cycle defines five phases: design, development, testing, imple-
mentation, and maintenance. Each application that you build will pass through each
of these phases.

The design phase is when you identify the objective of the application and spe-
cifically how it achieves that objective. The development phase translates the design
into a working application. The testing phase tracks down bugs and design flaws
and fixes them. The implementation phase turns off the old application and turns on
the new application. The maintenance phase is where minor modifications are made
to the application to conform to changes in the business.

You also learned in this chapter how to identify the elements in your code by
using the ID property and how to change the value of a property. In addition, you
learned how to read the value the user entered into a text box and use that value
within the code of your application.

Now that you know how to build a simple ASPNET web page application, we'll
move on to learn new programming techniques that are used to create commercial

ASPONET 2.0 Demystified

ASP.NET web page applications. In the next chapter, you'll learn about variables
and expressions. Variables are used to store information into memory, and expres-
sions are used to manipulate that information within your application.

Quiz
1. The ID property is

a. Used as the text for an element

b. Used as the value for an element

c. Used to uniquely ID an element

d. None of the above

2. The design phase is where you write code for your application.

a. True

b. False

3. You prevent a visitor from changing the value of a text box element by

a. Setting the Visible property

b. Setting the Invisible property

c. Setting the ReadOnly property to True

d. None of the above

4. Values can be combined by using

a. The equal sign

b. The assignment operator

c. The equivalence operator

d. The plus sign

5. You store information into a text box from within your code by using

a. The equal sign

b. The copy property

c. The equivalence operator

d. The plus sign

6. The testing phase is where bugs are discovered and fixed.

a. True

b. False

CHAPTER 3 Building an ASP.NET Web Page Application

7. You create an event handler for a button control by double-clicking a button
on the Design tab.

a. True

b. False

8. You can change the property of an element by

a. Using the Property pane

b. Using the Visible property of the element

c. Using the ReadOnly property of the element

d. None of the above

9. CreateAccount.Visible = False means

a. Making an element visible

b. Making an element invisible

c. Making an element accessible

d. None of the above

10. Literal values must be enclosed with quotations in your code.

a. True

b. False

Answers
1. c. Used to uniquely ID an element

2. b. False

3. c. Setting the ReadOnly property to True

4. d. The plus sign

5. a. The equal sign

6. a. True

7. a. True

8. a. Using the Property pane

9. b. Making an element invisible

10. a. True

This page intentionally left blank

CHAPTER

Variables and
tmressi ons
in ASP.NET

The brain behind every ASPNET application is the code executed by the ASPNET
engine that processes and responds to requests from visitors to a web site. As you’ve
seen in previous chapters, code consists of instructions that tell the ASP.NET
engine how to process and respond to requests. Your job is to write that code.

Code for ASPNET web pages is written using one of two programming lan-
guages: Visual Basic .NET or C#. A programming language is similar to English in
that it has words that are grouped to form sentences. Throughout this book you’ll
learn how to write the words and sentences of Visual Basic .NET to tell ASP.NET
what to do when a request is received from a visitor to your web site.

In this chapter, we’ll explore the foundation of nearly every line of code that
you’ll write. These are the values, variables, and expressions that are used beginning

ASPONET 2.0 Demystified

in the next chapter to tell your browser how to make decisions. If you know how to
add 1 + 1, then you will breeze through this chapter.

Values and Variables
ASP.NET web pages contain a lot of information along with a few pictures sprin-
kled about to catch your attention. You place information that you want to display
on the web page between a variety of HTML tags, such as between the open and
close level-l heading tags, <hl> and dhl>. Information placed on the screen is
referred to as a value. Some developers call this a literal because it is exactly the
information you want displayed. Values can also be placed in the code of your
ASP.NET web page.

As mentioned, any information that you place in the code of an ASP-NET web page
is called a value. For example, "Hello world!" is a value. The number 10 is also
a value. So is True, which is the value you assigned to the Visible property in the
last chapter to make an HTML element visible on the web page.

As you can imagine, all kinds of values can be used in the code portion of your
ASP.NET application, depending on the nature of your application. For example,
a person's first name is a value and so is their street address. Their user IDs and
passwords are also values.

Values are grouped into four categories: numbers, strings, Boolean values,
and dates.

Number
A number is, well, a number that can be directly used in a calculation. Numbers are
written in code without enclosing them in double quotations. For example, 10 is
a number, which seems obvious until you run into something like this "10", which
is a string and not a number value. More about strings in a moment.

Numbers are further categorized as integers and decimal values. An integer is
a whole number that can be positive or negative. That is, the number doesn't have
a fractional component. A decimal is a mixed number that can have a whole number
and a decimal value. It too can be positive or negative. Developers refer to decimal
values as floating-point values.

4 Variables and Expressions i n ASP.NET

String
A string is a series of characters that are enclosed within quotations. "Hello, world!"
is a string, and so is "121 Gordon Street". Notice that a string can contain numbers,
but those numbers won't normally be used in a calculation.

However, numbers that are contained within a string can be used in a calculation
if the string is converted to a number. For example, " 1 0 is a string and not a num-
ber value. Removing the quotations transforms the string into a number. You'll
learn how to convert strings to number values and number values to strings in the
section "Casting: Converting Data Types" later in this chapter.

Boolean
A Boolean value is either true or false and cannot be any other value; it is written
using the word True or False without placing it in quotations. This can be a little
confusing at first because the words True and False look as if they are strings and
should be enclosed in quotations. If you enter "True" in your code, you'll be enter-
ing a string. If you enter True, you'll be entering a Boolean value.

Boolean values are used a lot for setting the property values of HTML elements.
You've seen this in the previous chapter, where you assigned True to the Visible
property to make an HTML element appear on the web page.

Date
A date value is a date or a portion of a date. For example, 1/1/07 is a full date.
January is a portion of that date, as are the day and year. Time is also considered
part of a date. A date is written using a standard date format and is enclosed within
pound signs (#1/1/07#).

Variables
Values are fine to use, if you know what the value is when you write your code.
However, most times the value isn't known until your ASP.NET engine is ready to
process a request. Let's say that ASP.NET needs to calculate the sales tax on the
purchase price of an item. You probably know the percentage value of the sales tax
when you write the ASP.NET web page, so you can write the value of the percent-
age into your code. However, you don't know the purchase price of the item until
the customer selects the item while your ASP.NET web page runs. This poses a
dilemma. How can you write the sales tax calculation into your code without know-
ing the purchase price of the item?

ASPONET 2.0 Demystified

The solution is to use a variable in place of the purchase price. Think of a vari-
able as an empty cardboard box sitting on a table. You place a label on the box on
which you write a name. You place a value inside the box. Each time you want to
refer to the value, you simply refer to the name of the box.

Let's return to our sales tax example to see how this works. First we'll need a box
to store the purchase price. Let's write PurchasePrice on the label of the box. We
could write any name on the label, but it is less confusing if the name used repre-
sents the value stored inside the box.

Next, we'll write the math expression to calculate the sales tax.

PurchasePrice * .06

TIP: The asterisk (*) is the symbol for multiplication.

Notice that we use the name on the label of the box when we're referring to the
purchase price in this calculation. We could have used the actual purchase price, but
we don't know the purchase price until the customer enters the purchase price into
the ASP.NET web page. Until then, all we can do is refer to the box where the pur-
chase price will be stored.

When the ASPNET engine sees PurchasePrice in the code, it knows that Pur-
chaseprice is a label for a box that contains the value of the purchase price. The
ASP.NET engine then goes to the box, copies the value, replaces PurchasePrice
with the value, and performs the calculation.

The box is actually a piece of computer memory. The label on the box is a vari-
able name and is used to refer to a location in computer memory.

Data Types: What Kind of Data Is in the Box?
A variable is a temporary storage place-a box-in computer memory where val-
ues are placed while the ASPNET engine is processing a request. You need to
specify the type of information that can be placed into the box. You do this by
specifying a data type for the variable.

A data type describes the kind and range of values that can be placed into the
box. There are 15 date types in Visual Basic .NET. We are covering the ten data
types that you'll use the most. The ten data types that you'll need to know are:

Integer
As you learned previously in this chapter, an integer is a whole number. An Integer
data type specifies a temporary memory location that can hold a whole number.

Variables and Expressions in ASP.NET

However, the number must range from -2,147,483,648 to 2,147,483,647. Any
number outside of this range won't fit into this location.

Long
The Long data type specifies a temporary memory location that can hold a whole
number within the range -9,223,372,036,854 to 9,223,372,036,854,775,807. This
hold values smaller and greater than the Integer data type can hold.

Short
The Short data type is used to store whole numbers in the range -32,768 to 32,767.

Single
The Single data type is used to store mixed numbers, which are called floating
point. A mixed number contains both a whole number and a decimal value. It can
hold negative values ranging from -3.4028235E+38 through -1.40 1298E-45 and
positive values ranging from 1.40 1 298E-45 through 3.4028235E+3 8.

TIP: The E specijies the number of decimal places for the numbex For example,
7.52E-8 is O.OOOOOOO752.

Double
The Double data type is used to store more precise mixed numbers. Negative numbers
can range from -1.797693 1348623 1570E+308 through -4.94065645841246544E+
308, and positive numbers can range from 4.94065645841246544E-324 through
1 .797693 1348623 1570E-308.

TIP: Precision is the accuracy of a number to a specijic decimal value.

Decimal
The Decimal data type provides more precision and is much less subject to rounding
errors than the Single and Double data type. The Decimal data can store a whole num-
ber; the largest it can store is 79,228,162,5 14,264,337,593,543,950,335, and the smallest
is -79,228,162,514,264,337,593,543,950,335. The Decimal data type can also store up
to 28 decimal places. The largest of these is 7.9228 1625 14264337593543950335.

ASPONET 2.0 Demystified

Boolean
The Boolean data type is used to store a Boolean value, which is described previ-
ously in this chapter. These values are either True or False.

String
The String data type is used to store a string, which is a series of characters that are
enclosed within quotations.

The Date data type is used to store dates.

Object
The Object data type is used to store any kind of data; however, you should use
another data type in preference to using an Object data type, if possible. When you
use an Object data type, Visual Basic .NET has to convert the data stored in the
Object to the proper data type before processing the data. This takes up more com-
puting time than if you used the proper data type and also runs the risk of errors
while your application is running.

Declaring a Variable
Remember that the box in the preceding section is really called a variable. Before
you can use a variable, you must tell the ASP.NET engine to create a variable by
declaring a variable in the code of your ASPNET web page.

In order to tell the ASP.NET engine to do anything, you must write a statement
within the code of your ASP.NET web page. Think of a statement as a sentence that
tells the ASP.NET engine to do something. The statement must contain words that
the ASP.NET engine understands. Those words are contained in the Visual Basic
.NET programming language.

The statement that tells the ASPNET engine to create a variable has three parts.

Dim
Dim is a word that tells the ASPNET engine that you want to create a variable.

4 Variables and Expressions in ASP.NET

Variable Name
The variable name is the name you give to this variable. Think of this as the label
on the box that we spoke about earlier in this chapter. A variable name must begin
with either an alphabetic character or an underscore.

If it begins with an alphabetic character, then you don't need any other character
in the name, although typically the variable name will have additional characters.

If it begins with an underscore, at least one other character must follow the
underscore.

A variable name can have from 1 character to 16,383 characters. Variable names
are not case sensitive, so salary and SALARY are the same.

It is best to choose a variable name that reflects the data stored in the variable.
Let's say that you are going to use the variable to store a person's first name. You
could name the variable A, but the letter A doesn't imply the contents of the vari-
able. FirstName or FName might be a better choice for the name of the variable
because it gives you a clue as to the data stored in the variable.

The variable name must be unique within the scope of the variable (see the later
section "Scope").

As Data Type
The data type describes the kind and at times the size of the data that can be stored
in the variable (see the earlier section "Data Types: What Kind of Data Is in the
Box?"). The data type can be

Integer

Long

Short

Single

Double

Decimal

Boolean

String

Date

Object or a specific type of object

ASPONET 2.0 Demystified

Now that you know the rules for declaring a variable, let's declare a variable for
a person's first name. The following is a statement that tells the ASP.NET engine to
create a variable called FirstName as a String:

Dim FirstName As String

You use this same format to create any variable, except you use the appropriate
variable name and data type.

Here are a couple of techniques that you can use to declare more than one vari-
able in the same statement. If you are declaring variables of different data types,
then you can use one Dim keyword followed by each declaration. A comma must
separate declarations as shown here:

Dim FirstName As String, HireDate As Date, Salary As Decimal

If the variables are the same data type, then you only need to specify the data type
once as shown here:

Dim FirstName, LastName As String

Initializing a Variable
Declaring a variable simply tells the ASP.NET engine to create a variable. It doesn't
place a value in the variable. This isn't a problem, because the ASPNET engine
assumes that another statement later in your code will tell it to place a value in
the variable.

The ASP.NET engine automatically places a zero in all numeric variables and
a false in a Boolean variable; strings are left empty (as what are called null strings),
and objects are left empty because the ASPNET engine doesn't know what kind of
data will be assigned to an object.

Developers typically place a value in a variable when the variable is declared.
This is called initializing the variable because this is the initial value assigned to the
variable. You initialize a variable by using the equal sign to assign a value to the
variable as shown here:

Dim FirstName As String = "BobH

In a statement that declares multiple variables, you can initialize some variables
and leave others uninitialized except for any default value that the ASP.NET engine
assigns to them. The next statement initializes the HireDate only:

Dim FirstName As String
Dim HireDate As Date = #1/1/2007#
Dimsalary As Decimal

CHAPTER 4 Variables and Expressions in ASP.NET

Scope
As you learned in the preceding chapter, statements are typically grouped into event
handlers and functions (you'll learn about functions later in this book). No event
handler or function knows what's going on inside any other one.

Suppose you have two HTML button elements on your ASP.NET web page.
We'll call them Add and Remove. You will have a click-event handler for each of
them. Each event handler is a group of statements.

Statements in the event handler for the Add button cannot access statements in
the event handler for the Remove button. Statements in the event handler for the
Remove button are said to have different scope than for the event handler for the
Add button.

If you declare a variable called FirstName in the Add button event handler, you
can declare another variable called FirstName in the Remove button event handler
and the variables won't conflict with each other. This is because the variable is out
of scope from the other event handler.

The scope of a variable is determined by where the variable is declared in
your code.

Assigning a Value to a Variable
It is very common for the value of a variable to change while the ASP.NET engine
processes a request. The current value of the variable is overwritten by the new
value. Think of this as replacing the value in the box (variable) with another value.

You assign a value to a variable by using the name of the variable, the equal sign,
and then the new value. For example, suppose we want to change the value of the
FirstName variable from "Bob" to "Mary". Here's what we need to do:

Dim FirstName As String = "Bobu
FirstName = "Maryn

The first statement declares the variable and initializes it with "Bob". The second
statement tells the ASP.NET engine to replace the value of FirstName with "Mary".

Operators and Expressions
Many statements that you'll write include an expression that tells the ASP.NET
engine to perform a mathematical operation. Math may not be one of your strong
points, but that shouldn't stop you from learning how to write a mathematical

ASP.NET 2.0 Demystified

expression, simply because you already know how to do it. You've probably written
the following. You may think of this as a simple addition problem, but it is techni-
cally a mathematical expression that performs two operations. First 1 and 1 are
added together, and then the sum is placed on the left side of the equal sign:

Here's another mathematical expression that you've already seen:

FirstName = I1Maryl1

In this example, the ASP.NET engine is told to assign "Mary" to the FirstName
variable.

Let's take a closer look and see how to write an expression.

Parts of an Expression
A mathematical expression consists of two parts. These are the operand(s) and the
operator. An operand is the value. An operator is the symbol that tells the ASP.NET
engine how to evaluate the mathematical expression using the operand.

Think of operands as the numbers and the addition symbol as the operator. The
ASPNET engine evaluates this mathematical expression by adding the value on the
right side of the operator to the value on the left side of the operator.

Multiple Operations
The assignment operator is an operator that tells the ASP.NET engine to perform
another operation. The left side of the assignment operator must be a single value.
The right side can be a single value or an expression. Let's insert the assignment
operator into the previous mathematical expression and see how the second opera-
tion is evaluated.

The ASP.NET engine is told to perform two operations. The first operation is to
add the value on the left side of the plus sign to the value on the right side of the plus
sign. If you could see the mathematical expression after the first operation is com-
pleted, it would look like this:

The second operation is performed once the first operation is completed. This
operation uses the assignment operator (equal sign) to assign the result of the

CHAPTER 4 Variables and Expressions in ASP.NET

expression on the right side to the operand on the left. Here's how this mathematical
expression looks after the assignment operation is completed:

Performing more than one operation in the same mathematical expression can
lead to confusion-not for the ASP.NET engine, but for you and me, because we
may be unsure of the order in which the operations are performed.

Two operations were performed in the previous example: addition and the as-
signment operation. ASP.NET performed addition before performing the assignment
operation. However, you won't know which operation is performed first until you
read the section "Order of Operations" later in this chapter.

Types of Operators
Visual Basic .NET has four types of operators. These are arithmetical operators,
logical operators, assignment operators, and comparison operators.

Arithmetical Operators
Let's begin with arithmetical operators (see Table 4-1). No doubt these are familiar
to you because they are they same operators that you use to perform everyday arith-
metic. However, at least one of these operators is probably something you haven't
seen before.

This is the modulus operator (Mod). The modulus operator tells the ASP.NET
engine to divide the value on its left by the value on its right. The modulus operator
returns the remainder. This is shown in the following examples:

23 Mod 10 is equal to 3.

7Mod 10isequal to7.

Operator

4-

Table 4-1 Arithmetical Operators

Description

Addition

-

*
I

Mod
A

\

Subtraction

Multiplication

Division

Modulus

Exponent

Integer division

ASPONET 2.0 Demystified

Logical Operators
Logical operators combine two logical expressions into one expression. A logical
expression is an expression that evaluates to either true or false. The concept of
a logical expression might be new to you because we normally don't write logical
expressions during the course of the day.

Logical expressions are used in conjunction with other statements to tell the
ASPNET engine to make decisions. You'll see how this is done in the next chapter,
but for now suppose your ASPNET engine needs to validate a user ID. Here's the
logical expression that you'll need to use:

if userID = "BobI1 then
'Some statements

end if

The expression is userID = "Bob". We placed the expression in an if ... then state-
ment so that you don't confuse this logical expression with the expression that
assigns the value "Bob" to the variable userID. Besides, this example illustrates
how a logical expression is typically used in an application.

As you'll learn in the next chapter, the if ... then statement tells the ASP.NET
engine to evaluate the logical expression and to execute a group of statements if the
logical expression is true. That is, if the value of the variable userID is "Bob", then
the logical expression is true; otherwise, the logical expression is false and the
group of statements are skipped.

Let's look at each of the different logical operators ASP.NET offers.

And Logical Operator
It is common that you'll combine two logical expressions together to form a third
logical expression. This probably sounds confusing, but let's take a look at an example
to illustrate this technique.

Suppose the visitor to your site entered "Bob" as the user ID and "Bob555" as
the password. We need to ask the ASP.NET engine to determine if both are valid.
Looking at the preceding example, you probably realize that we'll use a logical
expression to evaluate each of them.

The first logical expression is

and the second logical expression is

password = "Bob555"

However, both logical expressions must be true in order for the user ID and pass-
word to be valid. Therefore, we need to join these to form a third logical expression
by using the And logical operator. The And logical operator tells the ASPNET
engine that both expressions must be true for the third logical expression to be true.

Variables and Expressions i n ASP.NET

Let's place these logical expressions in an if ... end statement so that you can see
how this works.

if userID = "BobM And password = "Bob555" then
'Valid login

end if

If the value of the userID variable is "Bob", then the userID = "Bob" logical expres-
sion is true. If the value of the password variable is "Bob555", then the password =
"Bob555" logical expression is true. If both logical expressions are true, then the
login is valid and statements within the if ... then statement are executed by the
ASP.NET engine. However, the third logical expression is false if either the first
logical expression or the second logical expression is false. Both must be true for
the third logical expression to be true.

Or Logical Operator
The Or logical operator provides another way for you to join together two logical
expressions. The Or logical operator also forms a third logical expression. How-
ever, the third logical expression is true if either the first logical expression or the
second logical expression is true.

This too might sound confusing, so let's create another example to illustrate how
this works. Suppose there are two valid user IDs. These are "Bob" and "Mary". For
now we won't require a password. We'll use the following logical expressions to
determine if the value of the userID variable is either "Bob" or "Mary":

if userID = "Bobu Or userID = "Maryl' then
'Valid login

end if

Here are the three logical expressions that are shown in this example:

UserID = "Bob1'

if userID = "Bob1' Or userID = "Maryl' then
'Valid login

end if

If the value of the userID variable is Bob, then the first logical expression is true,
and so the third logical expression is true also. It doesn't matter if the second logical
expression is true or not, because we used the Or logical operator to join together
the first and second logical expressions.

If the value of the userID variable is Mary, then the second logical expression is
true, and so the third logical expression is true also. It doesn't matter if the first
logical expression is true or not.

ASPONET 2.0 Demystified

XOr Logical Operator
There can be rare occasions when you want a group of statements to execute only
if the first logical expression or the second logical expression is true-but not if
both logical expressions are true. To do this, we need to join together the first and
second logical expressions using the XOr logical operator.

The XOr logical operator tells the ASP.NET engine to evaluate both logical
expressions. As long as only one of them is true, then the third logical expression is
true; otherwise, the third logical expression is false.

Let's see this in action. The first logical expression in the following example
determines if the value of the doorone variable is "Open". The second logical
expression determines if the value of the doorTwo variable is "Open". The third
logical expression is true if only one of the doors is open. The third logical expres-
sion is false if both doors are closed or if both doors are open.

if doorone = llOpenll X O r doorTwo = "OpenI1 then
'Only one door is open

end i f

Not Logical Operator
The Not logical operator reverses the logic of a logical expression. For example, we
can tell the ASP.NET engine to determine that the value of the user ID is not "Bob"
by using the Not logical operator. This is like saying, "I passed that test-not!"
meaning that you didn't pass the test.

Here is how we write this expression:

i f Not userID = "Bobf1 then
'The value of the userID i s other than I1Bobl1

end i f

The ASP.NET engine initially evaluates the userID = "Bob" expression to deter-
mine if this expression is true. If it is true, then the Not logical operator tells the
ASP.NET engine to reverse this logic, making the expression false. Likewise, if the
user ID is not "Bob", the Not operator reverses this logic, making the logical ex-
pression true.

AndAlso
The AndAlso logical operator combines two logical expressions. If the first logical
expression isn't true, then the ASP.NET engine doesn't evaluate the second logical
expression. The second logical expression is evaluated only if the first logical ex-
pression is true.

TIP: This replaces the And operatox

CHAPTER 4 Variables and Expressions i n ASP.NET

The following example illustrates how to use the AndAlso logical operator. If the
value of varl is equal to or greater than var2, then the first logical expression is
false, and therefore the third expression is also false. The ASP.NET engine doesn't
evaluate the second expression.

if varl c var2 AndAlso var3 > var4 then
'Execute these statements

end if

OrElse
The OrElse logical operator works much like the AndAlso logical operator. How-
ever, if the first logical expression is true, then the ASPNET engine doesn't evaluate
the second logical expression.

TIP: This replaces the Or operatol:

The following example shows you how to use the OrElse logical operator. If the
value of variable varl is less than the value of variable var2, then the first logical
operator is true and the third logical expression is true. Therefore, ASP.NET skips
the second logical expression:

if varl c var2 OrElse var3 > var4 then
'Execute these statements

end if

Assignment Operator
The assignment operator (Table 4-2) assigns the value from the right side of the
operator to the variable on the left side of the operator, as you saw done earlier in
this chapter when you assigned a value to a variable as shown here:

Dim FirstName As String
FirstName = llBobll

Typically, the assignment operator is used with an arithmetic operator to perform
two operations in one. In the next example, we'll take a look at the += assignment
operator to see how two operations are combined into one operator.

You are familiar with the first two lines of this example. Each declares a variable
and initializing it with a value. The last line is new to you. The += assignment
operator tells the ASP.NET engine to add the value of variable b to variable a and
then replace (assign) the value of variable a with the sum of variable a and b.

Dim a As Integer = 10
Dim b As Integer = 2
a += b

ASP.NET 2.0 Demystified

Operator
- -

+=
-- -

Table 4-2 Assignment Operators

Description

Assign

Add value and then assign

Subtract value and then assign

* =

l=

\=

A=

No doubt this is confusing, so let's take apart the last line to see the two actions
the ASP.NET engine is taking. First it is told to add the values stored in variable
a and variable b. The sum is 12. This is the same as the following:

Multiply value and then assign

Divide value and then assign

Integer division and then assign

Exponentiation assignment

Next the ASP.NET engine is told to replace the value of variable a, which is 10,
with the sum, which is 12. This is the same as the following:

The value of variable a is 12 after the ASP.NET engine finishes.
The other combinations of operators shown in Table 4-2 cause the ASP.NET

engine to perform actions similar to that of the += operator, except each performs
a different combination of operations. For example, the -= operator subtracts vari-
able b from variable a and then assigns the difference to variable a.

Comparison Operators
A comparison operator (Table 4-3) compares two values. The result of the com-
parison is either true or false. Typically comparison operators are used to set the

Operator I Description
1 l

- -

>

Equivalence

Greater than
p-

c

>=

Table 4-3 Comparison Operators

p-

Less than

Greater than or equal to

c=

c>

Less than or equal to

Not equal

CHAPTER 4 Variables and Expressions in ASP.NET

criteria for ASP.NET to make a decision using the if ... then statement. You were
briefly introduced to the if ... then statement previously in this chapter. You'll be
formally introduced to it in the next chapter.

The first comparison operator on the list is the equivalence operator (=), which
you already learned how to use when you learned how to use logical operators.

The equivalence operator tells the ASP.NET engine to compare the value on its
right side to the value on its left side. If these values are the same, then the expres-
sion is true; otherwise, the expression is false.

In the next example the ASP.NET engine is told to compare "Bob" with the
value of the variable userID. If they are the same, then statements within the if ...
then statement are executed; otherwise, those statements are skipped.

if userID = "Bobu then
'Execute these statements

end if

Next on the list is the greater-than operator (>). The greater-than operator tells
the ASPNET engine to determine if the value on the left side of the operator is
greater than the value on the right side of the operator.

Here's how this works:

Dim a As Integer = 10
Dim b As Integer = 2
if a > b then

'Execute these statements
end if

The ASP.NET engine is told to determine if the value of a is greater than the value
of b. If so, then the expression is true; otherwise, the expression is false. This ex-
pression is true because 10 is greater than 2.

Next we'll look at the less-than operator (<). The less-than operator tells the
ASPNET engine to determine if the value on the left side of the operator is less than
the value on the right side of the operator. If this is the case, then the expression is
true; otherwise, the expression is false.

The last line in the next example determines if the value of variable a is less than
the value of variable b. This expression is false because 10 is not less than 2:

Dim a As Integer = 10
Dim b As Integer = 2
if a c b then

'Execute these statements
end if

The next two comparison operators on the list combine two operations into one.
These are the equal-to or less-than operator (<=) and the greater-than or equal-to
operator (>=).

ASP.NET 2.0 Demystified

The equal-to or less-than operator tells the ASPNET engine to determine if the
value on the left side of the operator is less than or equal to the value on the right side
of the operator. If so, then the expression is true. If not, then the expression is false.

The greater-than or equal-to operator performs a similar operation except that
the value on the left side of the operator must be either greater than or equal to the
value on the right side of the operator; otherwise, the expression is false.

The last two lines of the following example show how to use these operators.
The first of these expressions is false because the value of a is greater than the value
of b. The second expression is true for the same reason:

Dim a As Integer = 10
Dim b As Integer = 2
if a c= b then

'Execute these statements
end if
if a >= b then

'Execute these statements
end if

Order of Operations
Test your skills in arithmetic. Is the answer to the following expression 56 or 110?

It depends.
If addition is performed before multiplication, then the answer is 110.
If multiplication is performed before addition, then the answer is 56.
You can avoid any confusion by learning the order of operation. The order of

operation is a set of rules that specifies the order in which an expression is evalu-
ated by the ASP.NET engine. These are the same rules that you learned back in your
high school math class. Here is the order of operation:

1. Calculations in parentheses are performed first. When there is more than
one set of parentheses, the expression in the inner set of parentheses is
performed first.

2. Exponentiation operations are performed next.

3. Multiplication and division are next. If both operations are at an equal level
of precedence, then perform calculations left to right.

4. Modulus operations are performed next.

5. Addition and subtraction are next. If both operations are at an equal level of
precedence, then perform calculations left to right.

Variables and Expressions in ASP.NET

If you forget the order of operations, simply use parentheses to tell the ASP.NET
engine the order to evaluate an expression. Portions of an expression that are en-
closed within parentheses are evaluated before those portions that are outside of the
parentheses.

Suppose you write the following expression but you are unsure which operation
is performed first. By placing parentheses around the addition expression, you force
ASP.NET to add those values before performing multiplication. The value of this
expression is 1 10:

Concatenation
Another operator that you'll probably use frequently is the concatenation operator,
which is symbolized as & or +. Concatenation means that one string is joined with
another string to form a third string.

TIP: Remember that a string is a series of characters that are enclosed within
quotations.

The following example shows how to do this. Here we declare and initialize a
variable called FullName. We initialize it by concatenating two strings using the
concatenation operator. The value of FullName after concatenation is completed is
"Bob Smith":

TIP: Notice there is a space between the last b and the last quotation mark. The
space separates the first name from the last name when the words are joined
together:

Dim FullName As String = "Bob & llSmithll

Constants
You can use literal values such as the number 10 and the name "Bob" directly in your
code as you've seen throughout this chapter. However, there might be occasions
when you want to use the same literal value over and over again within your code.

Let's say that your state sales tax is 6 percent and you need to use the state sales
tax several times throughout your code. One alternative is to simply use the literal
value .06 whenever you need to refer to the sales tax in a calculation.

ASP.NET 2.0 Demystified

A better way is to define a constant as .06 and use the constant instead of the
literal value .06.

Developers prefer to use a constant to using a literal value for a couple of rea-
sons. First, a constant has a name that usually implies that purpose of the literal
value that is represented by the constant. For example, we could call the constant
SalesTax. This is more informative as you read your code than if you simply read
the literal value .06.

Another reason is that you can easily update your code should the value of the
sales tax change. Suppose you use the literal sales tax value in ten places within
your code. If the sales tax changes, you'll need to replace all ten values with the
updated value. This is time-consuming and leaves open the chance that you might
overlook a few of those places. If you use a constant, however, you only need to
change this in one place-where you define the constant-and that change affects
your entire code.

Here's how to declare a constant:

Const SalesTax As Single = 0.06

You'll notice that this statement is very similar to the statement used to declare
a variable, except that we use Const instead of Dim. Typically, you'll define a con-
stant at the beginning of your code.

Casting: Converting Data Types
As we mentioned previously in this chapter, there is a difference between 10 and
"10". The first is a number, and the second is a string. You can use a number in an
arithmetical operations, but you can't use a string in arithmetic without first con-
verting the string to a numeric data type. In other words, remove the quotations
from "10.

The task of converting from one data type to another is called casting and is
performed by calling an appropriate conversion function (see Table 4-4). Each
function converts a literal value, the contents of a variable, or the results of an ex-
pression into a particular data type. The function then returns the converted value.

Let's see how this works. We'll convert "10" to the number 10, which is an Inte-
ger data type. To do this, we'll use the CInt() function. As you'll learn in later
chapters, there are three parts to a function:

Function name

Arguments

Return value

Variables and Expressions in ASP.NET

The function name is what the function is called; CInt() is a function name.
Arguments are values the function needs to perform its task. These values are

placed within parentheses that appear to the right of the function name. Some func-
tions require one argument. Other functions require multiple arguments, and still
others don't require any arguments. It all depends on the specific function. More on
this when we talk about functions later in this book. For now, just remember that
conversion functions usually require one argument, which is the value that is being
converted.

The return value is the value that the function returns to your program after it
performs its task. The value returned by a conversion function is the converted value.
You typically assign the return value to a variable, although occasionally the return
value is used directly in an expression.

Let's get back to converting the string "10" to the number 10. Here's how this
is done:

Convert To

Integer

Long

Short

Single

Double

Decimal

Boolean

String

Date

Object

Dim TenAsANumber As Integer
TenAsANumber = CInt (I1lOl1)

Conversion Function

CInt()

CLngO

CShort()

CS%()

CDbl()

CDec()

CBool()

CStr()

CDate()

c o b j 0

The value of the TenAsANumber variable is 10 and not "10. You can use TenAsA-
Number in a calculation.

Here's another way you can use the CInt() function. In this example "10" is as-
signed to a variable and then the variable is passed to CInt(). This has the same
effect as if we passed the function a literal value:

Table 4-4 Conversion Functions

Dim TenAsAString As String = 1110"
Dim TenAsANumber As Integer
TenAsANumber = C~nt(TenAsAString)

ASRNET 2.0 Demystified

Looking Ahead
In this chapter you learned how to store information into memory using variables
and then use operators to tell the ASPNET engine how to manipulate variables and
literal values. Think of a variable as a box in computer memory where you store
data. The box has a label called a variable name and can hold a specific type of data,
which is called a data type.

You create a variable by declaring the variable, which you do by specifying the
variable name and the data type of the variable. A value can be placed into a vari-
able by using the assignment operator either when the variable is declared or after
the variable is declared.

You also learned about various operators that are available in Visual Basic .NET.
An operator is a symbol that tells the ASPNET engine to perform a specific opera-
tion. An operator usually requires two operands, although some operators require
one operand. An operand is a value or variable that is used by an operator.

Operators and operands are joined together to form an expression. An expression
is used in a statement to give an instruction to the ASP.NET engine.

One of the many instructions that you'll give an ASP.NET engine to perform is
to make a decision. You were introduced in this chapter to how this is done through
use of the if ... then statement. You'll learn more in the next chapter about the if.. .
then statement and how to have the ASPNET engine make decisions.

Quiz
1. "Bob" is a(n)

a. Integer

b. Short

c. Long

d. None of the above

2. A comparison operator is used to define the condition for ASP.NET to make
a decision.

a. True

b. False

4 Variables and Expressions in ASP.NET

3. Initialization is assigning

a. The first value to a variable

b. A value to a variable

c. A string to a variable

d. An integer to a variable

4. The c operator is used to determine if the value on the left side of the
operator is

a. Equal to the value on the right side of the operator

b. Not equal to the value on the right side of the operator

c. Less than the value on the right side of the operator

d. Greater than the value on the right side of the operator

5. A variable is

a. A temporary storage place in memory

b. A constant value

c. A value that cannot be changed

d. None of the above

6. String values must be enclosed within quotations.

a. True

b. False

7. An expression using the XOr operator is true if both the logical expressions
joined together by the XOr operator are true.

a. True

b. False

8. The AndAlso logical operator tells the ASP.NET engine

a. Not to evaluate the second logical expression if the first logical
expression is true

b. To evaluate the second logical expression if the first logical expression
is true

c. Not to evaluate the second logical expression if the first logical
expression is false

d. None of the above

ASP.NET 2.0 Demystified

9. The Not operator tells the ASPNET to

a. Skip evaluating the expression

b. Skip evaluating the expression only if the expression is false

c. Reverse the logic of the expression after evaluating the expression

d. None of the above

10. You can convert from one data type to another using casting.

a. True

b. False

Answers
1. d. None of the above. It is a String.

2. a. True

3. a. The first value to a variable

4. c. Less than the value on the right side of the operator

5. a. A temporary storage place in memory

6. a. True

7. b. False. The XOr operator returns true only if the two logical expressions
have different values.

8. c. Not to evaluate the second logical expression if the first logical
expression is false.

9. c. Reverse the logic of the expression after evaluating the expression

10. a. True

CHAPTER

Conditional
Statements

The ASPNET engine performs intelligently if you give it the intelligence to make
decisions on the fly while processing requests from visitors to your web site. Com-
mercial web sites do this all the time to personalize a visitor’s experience by
tailoring the content to match the visitor’s behavior.

The secret to giving the ASP.NET engine intelligence to make a decision is to
combine a conditional expression that you learned to write in the last chapter with
a conditional statement, which you’ll learn to write in this chapter.

This mix enables you to tell the ASP.NET engine

When to make a decision
How to make a decision
What to do after a decision is made

ASP.NET 2.0 Demystified

Conditional Statements
A conditional statement tells the ASPNET engine to evaluate a condition. Using
the result of the evaluation, the ASP.NET either executes code or skips over code.
For example, a conditional statement tells the ASPNET engine to compare a user
ID with valid user IDs. If there is a match, then one set of code is executed; other-
wise, a different set of code executes.

There are three types of conditional statements. These are the If ... Then state-
ment, the case statement and the loop.

The If ... Then statement tells the APS.NET engine to execute one or more state-
ments if a conditional expression is true, for instance, if a user ID matches one of
the valid user IDs. You'll see how the If ... Then statement works in the section "The
If ... Then Statement" of this chapter.

The case statement compares a selection to one or more known values. Each
known value is referred to as a case. Each case has one or more statements that are
executed if the selection matches the case. This is used frequently in menus where
a person enters a selection and then the selection is compared to menu options. If
there is a match, then the menu option is processed. You'll see how this is done in
the section "The Case Statement" of this chapter.

The loop statement tells the ASP.NET engine to repeatedly execute statements
as long as a condition is true. If the condition is false, then statements are not
executed. Think of a quiz game where a contestant can continue to play as long as
he correctly answers each question. The conditional statements might ask, is the
answer correct? If so, then play on. If not, then stop. You'll learn more about how
to use a loop statement in the section "Loops" of this chapter.

The If...Then Statement
The If ... Then statement enables you to have the ASPNET engine execute some
statements only if conditions are right while the ASP.NET engine is processing the
visitor's request.

There are four versions of the If ... Then statement. Let's begin by looking at the
simplest version. The other versions work basically the samq way but offer addi-
tional features. The If.. .Then statement has four parts. These are the If.. .Then
keywords, the conditional expression, the code block that contains statements that
are executed if the expression is true, and the End If keywords.

CHAPTER 5 Conditional Statements

Here's how the If ... Then statement is structured:

If conditional expression then
'This is the code block. Place statements here

End If

When the ASP.NET engine comes across this code, it evaluates the conditional
expression. The conditional expression evaluates to either a true or a false. If true,
then statements within the code block are executed by the ASP.NET engine. The
code block is the space between the If ... Then keywords and the End If keywords.
However, these statements are skipped over by the ASP.NET engine if the condi-
tional expression evaluates to false.

The If...Then Statement in Action
Let's take a look at how to use the If ... Then to validate a user ID. In this example,
we'll prompt the visitor to enter a user ID and click the Submit button. The ASP.NET
engine then deterrnines if the user ID is valid or not. If the user ID is valid, then the
ASP.NET engine displays text stating "Valid User ID". If the user ID is invalid,
then the ASP.NET engine doesn't display anything new.

Notice that this example is very similar to the example shown in Chapter 3
in that the web page is designed with all the objects on it and then we hide those
objects we don't want shown by setting the Visible property to false.

This example contains a label and text box object for the user ID, a Submit
button, and a label and text box object for the login status (Figure 5-1). The label
and text box for the login status are invisible when the visitor is prompted to enter
a user ID.

Let's begin by opening a new Web Site project. Here's what you need to do:

1. Select File I New Web Site.

2. Select Visual Basic as the Project Types.

3. Double-click ASPNET Web Site.

4. Select the Source tab and enter the code shown at the bottom of this list.

5. Press cm-FS to run the application.

6. Enter the user ID Bob and click Submit (Figure 5-2).

ASPONET 2.0 Demystified

Figure 5-1 Here is how this example looks in the designer.

7. If the text of the UserID text box is Bob, then the ASP.NET engine does the
following:

a. It sets the Enabled property of the userID text box to false, which
prevents the visitor from changing the contents of this text box.

b. It sets the Visible property of the LoginStatus label to true, making the
LoginStatus label visible on the web page.

c. It sets the Visible property of the LStatus text box to true, making the
LStatus text box visible on the web page.

d. It places the text "Valid User ID" into the LStatus text box.

e. It sets the Enabled property of the LStatus text box to false, preventing
the visitor from changing its contents.

8. The status of the validation process is then displayed on the web page
(Figure 5-3).

CHAPTER 5 Conditional Statements

Figure 5-2 The visitor is prompted to enter a user ID into the application.

Figure 5-3 Here is what the visitor sees if a valid user ID is entered.

ASP.NET 2.0 Demystified

cscript runat="serverM>
Sub Submit-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)

If UserID.Text = "Bob" Then
UserID.Enabled = False
LoginStatus.Visible = True
LStatus.Visible = True
LStatus.Text = "Valid User ID"
LStatus.Enabled = False

End If
End Sub
</script >

chtml>
<head>
</head>
<body>

cform id="FormlW runat="serverfl>

<P>
<asp:Label id=lllabell" runat="servern Width="92px">User ID:
</asp:~abel>
<asp:TextBox id="UserID" r~nat=~server">c/asp:TextBox>

</P>
<P>

casp:Button id="Submit" on~lick=~~Submit-Click" runat="serverM
Text="Submit"></asp:Button>

</P>
<P>

<asp:Label id="LoginStatusU runat="serverU Width="156pxU
Visible="FalseM>Login
Status: </asp:~abel>

<asp:TextBox id="LStatusM runat="sewer" Width="210pxn
~isible=~False~>c/asp:~extBox>

</P>
</form>

</body>
</html>

The If...Then ... Else Statement
The next version of the If. ..Then statement is the If.. .Then. ..Else statement. The If ...
Then ... Else statement simply tells the ASPSET engine, "If the condition is true,
then execute these statements, or else execute these other statements."

There are six parts to the If... Then ... Else statement. The first three parts are the
same as the first three parts of the If ... Then statement. The fourth part is the Else key-
word. The fifth part is a second code block that contains statements that are executed
if the conditional expression is false, and the sixth part is the End If keywords.

CHAPTER 5 Conditional Statements

Here's how to construct the If. ..Then.. .Else statement:

If expression Then
'Place statements here that are executed if the condition is true

Else
'Place statements here that are executed if the condition is false

End If

If the condition is true, then only statements placed in the first code block are
executed. The ASP-NET engine skips statements in the second code block.

If the condition is false, then only statements placed in the second code block are
executed. The ASP.NET engine skips statements in the first code block.

What follows is a revised version of the previous example. The only difference
is that the ASP.NET engine is provided a statement to execute if the user ID doesn't
match a valid user ID.

The revision takes places in the code that is executed when the visitor clicks the
Submit button as shown here. This is what the ASPNET engine is told to do:

1. Set the Enabled property of the UserID text box to false to prevent the
visitor from changing its contents.

2. Set the Visible property of the Loginstatus label to true.

3. Set the Visible property of the LStatus text box to true.

4. Determine if the value of the UserID text box is Bob.

5. If it is, then set the Text property of the LStatus text box to "Valid User ID."

6. If it isn't, then set the Text property of the LStatus text box to "Invalid User
ID" (Figure 5-4).

7. Set the Enabled property of the LStatus text box to false so that the visitor
cannot change the validation status.

Sub Submit-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)
UserID.Enabled = False
LoginStatus.Visible = True
LStatus.Visible = True
If UserID.Text = llBobll Then

LStatus.Text = "Valid User IDn
Else

LStatus-Text = "Invalid User ID"
End If
LStatus.Enabled = False

End Sub

ASP.NET 2.0 Demystified

Figure 5-4 The visitor is told whenever an invalid user ID is entered into the application.

The If...Then...Elseif Statement
Another version of the If.. .Then statement is the If.. .Then.. .Elseif statement. This is
similar to the If ... Then ... Else statement, except that the ASP.NET engine executing
it evaluates another condition if the first condition is false.

The If.. .Then.. .Elseif statement tells the browser, "If the condition is true, then
execute statements in the first code block, or else evaluate another condition. If the
other condition is true, then execute statements in the second code block. If the
second condition is false, then skip statements in the second code block."

Here's how to write the If.. .Then.. .Elseif statement:

If expression Then
'Place statements here that are executed if the first condition is true

Elseif expression
'Place statements here that are executed if the second condition is true

End If

Let's modify the previous example to illustrate how to use the If ... Then ... Elseif
statement in your application. In this example, we'll tell the ASP.NET engine that
Bob and Mary are valid user IDs. Here is the code:

CHAPTER 5 Conditional Statements

1. Set the Enabled property of the UserID text box to false to prevent the
visitor from changing its contents.

2. Set the Visible property of the Loginstatus label to true.

3. Set the Visible property of the LStatus text box to true.

4. Determine if the value of the UserID text box is Bob.

5. If it is, then set the Text property of the LStatus text box to "Valid User ID."

6. If it isn't, then determine if the value of the UserID text box is Mary.

7. If it is, then set the Text property of the LStatus text box to "Valid User ID."

8. Set the Enabled property of the LStatus text box to false so that the visitor
cannot change the validation status.

Sub Submit-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)
UserID.Enabled = False
LoginStatus.Visible = True
LStatus.Visible = True
If UserID.Text = "Bobn Then

LStatus.Text = "Valid User ID"
Elseif UserID.Text = "MaryU

LStatus.Text = "Valid User ID"
End If
LStatus.Enabled = False

End Sub

If...Then...Elseif...Else Statement
The last version of the If. ..Then statement is the If.. .Then...Elseif.. .Else statement.
This statement is a combination of the second and third versions of this code, ex-
cept there is another Else part to the statement.

The If. .. Then ... Elseif.. .Else statement tells the ASP.NET engine, "If the condi-
tion is true, then execute statements in the first code block, or else evaluate another
condition. If the other condition is true, then execute statements in the second code
block, or else execute statements in the third code block if the second condition is
false."

Here's the structure of the If.. .Then.. .Elseif.. .Else statement:

If expression Then
'Place statements here that are executed
'if the first condition is true Else if (expression)
'Place statements here that are executed if the second condition is true

Else
'Place statements here that are executed if the second condition is false

End If

ASPONET 2.0 Demystified

Notice that the If.. .Then.. .Elseif.. .Else statement contains three code blocks.
Statements in the first code block execute if the first conditional is true. Statements
in the second code block execute if the second conditional is true. Statements in the
third code block execute if the second conditional expressions are false.

Let's revise our previous example to use the If.. .Then.. .Elseif.. .Else statement.
This is nearly identical to the previous example except that the ASP.NET engine is
told to display "Invalid User ID" in the LStatus text box if the user ID is neither
Bob nor Mary.

Here's what we do:

1. Set the Enabled property of the UserID text box to false to prevent the
visitor from changing its contents.

2. Set the Visible property of the Loginstatus label to true.

3. Set the Visible property of the LStatus text box to true.

4. Determine if the value of the UserID text box is Bob.

5. If it is, then set the Text property of the LStatus text box to "Valid
User ID."

6. Determine if the value of the UserID text box is Mary.

7. If it is, then set the Text property of the LStatus text box to "Valid User ID."

8. If it isn't, then set the Text property of the LStatus text box to "Invalid
User ID."

9. Set the Enabled property of the LStatus text box to false so that the visitor
cannot change the validation status.

Sub Submit-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)
UserID.Enabled = False
LoginStatus.Visible = True
LStatus.Visible = True
If UserID.Text = "Bob" Then

LStatus.Text = "Valid User ID"
Elseif UserID.Text = "MaryU

LStatus.Text = "Valid User IDu
else

LStatus.Text = "Invalid User IDu
End If
LStatus.Enabled = False

End Sub

CHAPTER 5 Conditional Statements

The Nested If...Then Statement
We purposely used simple examples in this chapter so that you don't become
confused as you learn how to write the If ... Then statement. Real-world ASP.NET
applications make decisions more complex than those shown in this book. Let's
look at a more challenging example of the If ... Then statement, one that is similar to
those you'll find in real-world applications.

Let's say that you built an ASP.NET web page that displays and processes an
order form that requires a customer to enter country and postal codes among other
information regarding the order. You probably want to have data validated on the
client side and then have the ASPNET engine validate the data too.

Here are the decisions that the ASP.NET engine must make:

1. Did the customer enter a country code?

2. Did the customer enter a postal code?

3. If the customer entered both a country code and a postal code, then is the
country code a valid country code?

4. If the country code is a valid country code, then is the postal code a valid
postal code for that country?

By now you realize that a series of If ... Then statements are used to make these
decisions. However, positioning them can be tricky because a second decision is
made only if a first condition is true; otherwise, the second decision is skipped.

The solution is to use a nested If ... Then statement. Nested simply means that one
If ... Then statement is within the code block of another If ... Then statement. This is
illustrated in the next example.

Assume that if the CountryCode variable and the PostalCode variable have a
value of less than 1, then the customer didn't enter them on the order form. Also
assume that another process validated the country code and postal code and assign
a value to the Valid variable indicating if these codes are valid.

The code follows this paragraph. Notice that this is more complicated to read
that other examples of the If ... Then statements that you've seen in this chapter. This
is because we are asking the ASP.NET engine to make up to a four-step decision.
First the ASP.NET engine evaluates the value of the CountryCode variable to deter-
mine if the visitor entered the country code. Next it determines if the visitor entered
the postal code. The third step is to determine if the country code is valid. And the
last decision is to determine if the postal code is valid.

ASP.NET 2.0 Demystified

If Countrycode > 1 Then
If PostalCode > 1 Then

If Countrycodevalid == Valid Then
If PostalCodeValid == Valid Then

//valid country code and valid postal code
Else

//Invalid postal code
End If

Else
//Invalid country code

End If
Else

//Postal code is blank
End If

Else
//Country code is blank

End If

The Case Statement
The If statement can become unwieldy when there are a series of decisions that
have to be made on the basis of a single value. Think of this: Suppose you offered
ten menu options on your web site. You'll need a very long If ... Then ... Elseif state-
ment to determine which option the visitor selects. Each menu option needs its own
If ... Then or Elseif followed by a conditional expression to determine if the visitor's
selection matches the menu option. This becomes unnecessarily complicated. You
can avoid writing a series of If statements by using a case statement.

A case statement tells the ASP.NET engine to compare a selected value with a
series of case values. If the selected value matches a case value, then statements
placed beneath the case value are executed.

There are five parts to a case statement:

The Select Case keywords

The Select value, the value to be compared to case values, which can be an
expression

The Case keyword

The Case value-the value compared to the select value

The End Select keywords

Conditional Statements

Here's how a case statement is structured. Only two case values are shown here,
but you can have as many case values as your application requires:

Select Case v a l u e
Case first Case v a l u e

'Statements that are executed if the select
'value matches the first case value.

Case second Case v a l u e
'Statements that are executed if the select
'value matches the second case value.

End Select

Here's how the Select Case statement works:

1. The ASP.NET engine compares the select value to the first Case value.

2. If there is a match, then statements beneath the first Case value are
executed and the rest of the Case values are skipped.

3. If there isn't a match, then the ASP.NET engine skips statements beneath
the first Case value and compares the select value to the next Case value
and repeats this process.

4. If none of the Case values match the select value, then none of the
statements beneath any of the Case values are executed.

Try this next ASP.NET web page and see how the Select Case statement works.
This example is very similar to the If ... Then ... Elseif example that you saw earlier in
this chapter; however, the If ... Then ... Elseif statement is replaced with a Select Case
statement.

Here we are telling the ASP.NET engine to compare the value of the UserID text
box with Bob and Mary. If there is a match, then set the LStatus text box accordingly:

Sub Submit-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)
UserID-Enabled = False
LoginStatus.Visible = True
LStatus.Visible = True
LStatus.Text = "Valid User IDu
LStatus.Enabled = False
Select Case LStatus.Text

Case I1Bobl1
LStatus.Text = "Valid User ID"

Case llMaryll
LStatus.Text = "Valid User ID"

End Select
LStatus.Enabled = False

End Sub

ASPONET 2.0 Demystified

A Variation of the Case Statement
Sometimes you'll want one or more statements to execute if the Select value doesn't
match any of the Case values. Think of this as the default action. You can specify a
default action by using a Case Else in the case statement.

The Case Else is positioned at the end of the Case values and basically tells the
ASPNET engine that "If the select value doesn't match any of the Case values, then
execute statements placed beneath the Case Else clause."

Here's how to use Case Else:

Select Case v a l u e
Case first Case v a l u e

'Place statements that are executed if the
'select value matches the first Case value.

Case second Case v a l u e
'Place statements that are executed if the
'select value matches the second Case value.

Case Else
'Place statements that are executed if the select
'value matches none of the Case values.

End Case

Let's revise the previous example to include a Case Else that sets the value of the
LStatus text box to "Invalid User ID" if the value of the UserID text box doesn't
match any Case values. Here's the revised code:

Sub Submit-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)
UserID.Enabled = False
LoginStatus.Visib1e = True
LStatus-Visible = True
LStatus.Text = "Valid User ID"
LStatus.Enabled = False
Select Case LStatus.Text

Case "Bobu
LStatus.Text = "Valid User IDu

Case I1MaryM
LStatus.Text = "Valid User ID"

Case Else
LStatus.Text = "Invalid User IDu

End Select
LStatus.Enabled = False

End Sub

Conditional Statements

Loops
A loop is used to execute one or more statements repeatedly without your having
to write those statements more than once in your code. A loop is something you
wish you had back when you were in school and the teacher told you to write "I will
keep quiet in class" 25 times on a piece of paper. A loop lets you write it once and
have the ASP.NET engine write it 25 times.

There are three types of loops. These are the For loop, the Do While loop, and
the Do Until loop.

The For Loop
The For loop tells the ASP.NET engine to execute statements within a specific
number of times. This is like saying, "Write 'I will keep quiet in class' 25 times."
The ASP.NET exits the For loop and continues with the next statement below the
loop once the maximum value is reached.

There are five parts to a For loop:

The For keyword

The For variable, which stores the current count

The count range-a starting value and an ending value

The code block that contains statements that are executed each time the
For loop is executed

The Next keyword

Here's how to structure a For loop:

For i = 1 to 10
'Place statements here

Next i

The For variable is like any variable that you use in your program (see Chapter 4),
except it serves as the loop counter.

The count range specifies the starting and ending values for the count. In this
example, the count range is from 1 to 10. When the For loop begins, the start value,
which is 1, is assigned to the For variable. The next time the For loop loops, the For
variable is incremented by one. This process continues until the outer count range
is exceeded, causing the ASPNET engine to stop looping and continue with the
statement that follows the next keyword at the end of the For loop. In this example,
this means that the ASP.NET engine loops ten times.

ASP.NET 2.0 Demystified

Statements that you want to execute each time the For loop is looped must be
placed between the For keyword and the Next keyword.

Try this example of a For loop. Here's what is happening: The visitor is prompted
to enter a starting value for the counters. This is the value that is assigned to the For
variable. The ASP.NET engine is then told to count by one until it reaches ten, when
it stops and displays the last count on the screen.

Figure 5-5 shows the design of the web page. You'll notice that we include all the
objects on the web page and then make some invisible until we need them, using
the same technique as you saw used in previous examples in this chapter.

The code follows after this list. Here is what is happening in the code:

1. The ASP.NET engine displays the web page. Notice that the Visible
property of the Result label and that of Resultvalue text box are set to false
so that they are not displayed (Figure 5-6).

2. The visitor then enters the starting number and clicks the Count button.
We're assuming that the number is less then ten; otherwise, statements in
the loop are not executed.

Figure 5-5 Be sure to include all these objects in your design.

5 Conditional Statements

Figure 5-6 The visitor is prompted to enter a starting value for the count.

3. The ASP.NET engine then declares an Integer variable called i.

4. The For loop is then entered. The start number that the visitor entered is
a string data type (see Chapter 4). The For loop requires an Integer value.
Therefore, the ASPNET engine is told to convert the start number to an integer
using the CM() conversion function that you learned about in Chapter 4.

5. The ASP.NET engine adds 1 to the variable until the value of the variable
equals 10, at which time it breaks out of the For loop. Notice there is no
need to insert statements within the For loop, because we're only interested
in the final value of the variable.

6. The Enabled property of the Startvalue text box is set to false so that the
visitor cannot change this value.

7. The visible properties of the Result label and the ResultValue are set to true
so that the visitor can see these objects.

8. The value of the variable is then placed into the ResultValue text box.
Remember that the ResultValue text box needs a string and that the variable
is an Integer. Therefore, we use the CStr() conversion function to change
the Integer to a string before placing it into the text box.

ASPONET 2.0 Demystified

Figure 5-7 If the visitor enters 1 as the start value, the ASPNET displays 11 as the result.

9. The Enabled property of the ResutlValue text box is set to false so that the
visitor cannot change this value. Figure 5-7 shows the web page after the
visitor enters 1 as the starting value.

<script runat="serverU>
Sub Count-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)

Dim i As Integer
For i = CInt(StartVa1ue.Text) To 10
Next I
StartValue.Enabled = False

Result.Visible = True
ResultValue.Visible = True
ResultValue.Text = CStr(i)
ResultValue.Enabled = False

End Sub
</script>
ehtmls
<head>
/head>

CHAPTER 5 Conditional Statements

<form id=I1Formlt1 runat=I1servert1>

<P>
<asp:Label id="Labellu runat="serverW Width="92pxI1>Start Value:
</asp:Label>
<asp:TextBox id=lfStartValue" runat=~servern></asp:TextBox>

</P>

<P>
<asp : Button id="CountI1 ~nclick=~~Count-Click~~ runat=I1serverw Te~t=~~Count 1 1 >

</asp:Button>

</P>
<P>

<asp:Label id=I1ResultM runat=ll~erver~~ Width=I1156pxl1 Vi~ible=~~False~~>Result :

</asp:Label>
<asp : TextBox id=llResultValuetl r~nat=I~server~~ Width=I12lOpxl1 Vi~ible=~~False" >

</asp:TextBox>

</P>
</form>

</body>
</htmls

A Variation of the For Loop
The For loop increments the count variable by one each time the For loop is iter-
ated. However, you can increment or decrement the count variable by a particular
value if you use the Step keyword in your For loop.

The Step keyword tells the ASPNET engine how to increment or decrement the
count variable. Let's say that you want to increment the count variable by two in-
stead of one. Here's what you need to write:

For i = 1 to 10 Step 2
'Place statements here

Next i

In this example, the ASPNET engine is told to start with 1 and increment the loop
counter by 2 after each loop. This means it starts by assigning 1 to variable i. After
the first loop, variable i is incremented by 2, making it 3. After the second loop,
variable i is again incremented by 2, making it 5. This process continues until the
value of the For variable is greater than 10.

You can count backward by using a negative value to decrement the for value.
Let's see how this works. The next example has an unusual count range. It begins
with 10 and ends with 1. Notice that the Step value is -2. This means that after each
loop, the value of the For variable is decreased by 2. This process continues until
the value of the For variable is less than 1, at which time the loop ends and the
ASPNET engine executes the statement following the next keyword.

For i = 10 to 1 Step -2
'Place statements here

Next i

ASP.NET 2.0 Demystified

The Do While Loop
The Do While loop also causes the ASP.NET engine to repeatedly execute one or
more statements; however, this is done differently than using a For loop. The Do
While loop is basically saying to the ASP.NET engine, "Do these statements while
this condition is true." The condition is a conditional expression, which you learned
about in Chapter 4.

There are four parts to a Do While loop:

The Do While keywords

The condition

The code block that contains statements that are executed if the condition
is true

The Loop keyword

Here's how to structure the Do While loop:

Do While condition
'Place statements that are executed if the condition is true.

Loop

The condition is a logical expression that evaluates to either true or false. The
ASPNET engine evaluates the expression.

If the condition is true, then statements within the Do While loop are executed
and then the ASPNET engine reevaluates the expression. Statements are executed
again if the expression continues to evaluate to true.

If the condition is false when the Do While loop is first encountered, then
statements within the Do While loop are skipped, causing the ASP.NET engine to
execute the statement below the Loop keyword.

Try this example of the Do While loop. This is a modification of the For loop
example that you saw previously in this chapter. In this example, we're still asking
the visitor to enter the start value for the count. However, the ASP.NET engine uses
a Do While loop to count.

Here's what is happening:

1. An Integer variable called i is declared.

2. The contents of the Startvalue text box, which is a string, is converted to an
Integer and assigned to the variable.

3. As long as the value of the variable is less than 10, then the ASP.NET
engine adds 1 to the variable and assigns the sum to the variable.

Conditional Statements

4. The remainder of the code is the same as in the For loop.

Sub Count-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)
Dim i As Integer
i = CInt(StartValue.Text)
Do While i c 10

i = i + l
Loop
StartValue.Enabled = False
Result.Visible = True
ResultValue.Visible = True
Resultvalue .Text = CStr (i)
ResultValue.Enab1ed = False

End Sub

The Do Loop While Loop
The Do Loop While loop is a variation of the Do While loop, except the ASP.NET
engine doesn't evaluate the conditional expression until code within the Do Loop
code block executes at least once.

There are four parts to a Do Loop While loop:

The Do keyword

The code block that contains statements that are executed at least once even
if the condition is false

The Loop While keywords

The condition

Here's how to structure the Do Loop While loop:

Do
'Place statements that are executed at least once.

Loop While condition

The ASP.NET engine enters the code block of the Do Loop, executes the code,
and then evaluates the condition following the While keyword.

If the condition is true, then statements within the Do Loop are executed again
and then the ASP.NET engine reevaluates the expression.

If the condition is false, then statements within the Do Loop are skipped the
second time, causing the ASP.NET engine to execute the statement below the Loop
While keyword.

Try this example of the Do Loop While. In this example, we're still asking the
visitor to enter the start value for the count. However, the ASP.NET engine uses
a Do Loop While to count.

ASP.NET 2.0 Demystified

Here's what is happening:

1. An Integer variable called i is declared.

2. The contents of the StartValue text box, which is a string, is converted to an
Integer and assigned to the variable.

3. The ASPNET engine adds 1 to the variable and assigns the sum to the variable.

4. The ASP.NET engine then evaluates the condition.

5. If the condition is true, then the ASl?.NET reenters the code block and adds
1 to the variable and assigns the sum to the variable.

6. If the condition is false, then the ASPNET no longer reenters the code block
but instead executes statements that follow the Loop While keywords.

Sub Count-Click(ByVa1 sender As Object, ByVal e As System.EventArgs)
Dim i As Integer
i = CInt (StartValue .Text)
Do

i = i + l
Loop While i c 10
StartValue.Enabled = False
Result.Visible = True
ResultValue.Visible = True
Resultvalue .Text = CStr (i)
ResultValue.Enabled = False

End Sub

The Do Until Loop
The Do Until loop tells the ASP.NET engine to execute one or more statements
until the condition is true. That is, as long as the condition is false, the ASP.NET
engine executes statements within the code block of the Do Until loop.

There are four parts to a Do Until loop:

The Do Until keyword

The conditional expression

The code block

The Loop keyword

Here is the structure of the Do Until loop:

Do Until condition
'Place statements that are executed if the condition is false.

Loop

CHAPTER 5 Conditional Statements

Let's take a look at a simple example that illustrates how to use a Do Until loop.
This is basically the same as the Do While example, except we are using a Do
Until loop. The ASPNET engine is told to add l to the value of the variable and
assign the sum to the variable until the value of the variable is equal to 10.

Sub Count-Click(ByVa1 sender As Object, ByVal e As Systern.EventArgs)
Dim i As Integer
i = CInt (Startvalue .Text)
Do Until i = 10

i = i + l
Loop
StartValue.Enabled = False
Result.Visible = True
ResultValue.Visible = True
Resultvalue. Text = CStr (i)
ResultValue.Enab1ed = False

End Sub

The Do Loop Until Loop
The Do Loop Until loop is a variation of the Do Until loop, except the ASP.NET
engine doesn't evaluate the conditional expression until code within the Do Loop
code block executes at least once.

There are four parts to a Do Loop Until loop:

The Do keyword

The code block that contains statements that are executed at least once even
if the condition is false

The Loop Until keywords

The condition

Here's how to structure the Do Loop Until loop:

Do
'Place statements that are executed at least once.

Loop Until condition

The ASP.NET engine enters the code block of the Do Loop and executes the
code and then evaluates the condition following the Until keyword.

If the condition is false, then statements within the Do Loop are executed again
and then the ASPNET engine reevaluates the expression.

If the condition is true, then statements within the Do loop are skipped the sec-
ond time, causing the ASP.NET engine to execute the statement below the Loop
Until keywords.

ASPONET 2.0 Demystified

Try this example of the Do Loop Until. In this example, we're still asking the
visitor to enter the start value for the count. However, the ASP.NET engine uses a
Do Loop Until to count.

Here's what is happening:

An Integer variable called i is declared.

The contents of the Startvalue text box, which is a string, is converted to an
Integer and assigned to the variable.

The ASPNET engine adds l to the variable and assigns the sum to the
variable.

The ASP.NET engine then evaluates the condition.

If the condition is false, then the ASPNET reenters the code block and adds
1 to the variable and assigns the sum to the variable.

If the condition is true, then the
but instead executes statements

Sub Count-Click (ByVal sender As
Dim i As Integer
i = CInt(StartVa1ue.Text)
Do

i = i + l
Loop Until i > 10
StartValue.Enabled = False
Result.Visible = True
ResultValue.Visible = True
Resultvalue. Text = CStr (i)
ResultValue.Enab1ed = False

End Sub

ASP.NET no longer reenters the code block
that follow the Loop Until keywords.
Object, ByVal e As System.EventArgs)

Looking Ahead
In this chapter you learned how to have the ASP.NET engine make decisions for
you while processing a request from a visitor to your web site. The simplest way to
do this is to use an If ... Then statement, which specifies a condition that if true
causes the ASP.NET engine to execute a set of statements contained within its code
block. These statements are skipped if the condition isn't true.

You can have a block of code executed if a condition is false by using the If ...
Then ... Else statement. This statement contains two blocks of code. The first block
is executed if the condition is true, and the second block executes if the condition
is false.

CHAPTER 5 Conditional Statements

Sometimes you'll need to have the ASPNET engine evaluate a second condition
if the first condition is false. To do this, you'll need to use the If ... Then ... Elseif
statement. The Elseif portion of this statement defines another condition. Only if
this condition is true are statements within the Elseif code block executed by the
ASP.NET engine.

In more complex situations, you may find yourself having to make another deci-
sion if a condition is true; for instance, if the user ID is valid, then validate the user
password. This situation calls for nested If.. .Then statements. The outer If.. .Then
statement determines if the user ID is valid. The inner If ... Then statement deter-
mines if the user password is valid.

Processing a menu selection poses a challenge. You could use a series of If ...
Then statements to compare the selection to each menu option, but then you'll end
up with a long list of If ... Then statements that can be difficult to read. The case
statement is the better choice because it enables you to efficiently compare the se-
lection to many items.

You also learned in this chapter how to have ASP.NET continually execute the
same code over and over again by using a loop. You use the For loop if you know
the number of times you want the code to execute. The Do While loop is used to
continue to execute code as long as a condition is true. The Do Until loop continu-
ally executes code until a condition becomes true.

Now that you know how to have the ASP.NET engine make decisions and exe-
cute code repeatedly, it is time to learn how to store a series of data efficiently in
your ASP.NET application by using an array.

Think of an array as a group of valid user IDs that are stored in a long list that
can be assessed by using the name of the list. You'll see how this is done in the next
chapter.

Quiz
1. What loop executes statements if a condition is false?

a. Do While loop

b. Do Until loop

c. Until loop

d. None of the above

2. What loop executes statements if a condition is true?

a. Do While loop

b. Do Until loop

ASPONET 2.0 Demystified

c. Until loop

d. None of the above

3. The counter range in the For loop is used to

a. Increase the expression by 1.

b. Determine the range of values used to control the iterations of the loop
by the ASPNET engine.

c. Limit the number of statements that can be contained in the code block.

d. Limit the output of statements within the code block.

4. A Case statement cannot have a default Case.

a. True

b. False

5. A For loop can skip values in the counter range.

a. True

b. False

6. What would you use if you want a block of statements to be executed only
if a condition isn't true?

a. If ... then

b. If ... Then ... Else

c. For loop

d. For in loop

7. The default clause is used in an If statement to set default values.

a. True

b. False

8. What is the purpose of Elseif in an If ... Then ... Elseif statement?

a. Contains statements that are executed only if the conditional expression
is true.

b. Defines another conditional expression the ASP.NET engine evaluates
if the first conditional expression is false.

c. Contains statements that are executed only if the conditional expression
is false.

d. Is used to nest an If statement.

Conditional Statements

9. Statements within a For loop can reference the For loop variable.

a. True

b. False

10. A Case statement is ideal to use to evaluate a menu option selected by
a visitor to your web site.

a. True

b. False

Answers
l. b. Do Until loop

2. a. Do While loop

3. b. Determine the range of values used to control the iterations of the loop
by the ASP.NET engine.

4. b. False. The default case is defined by the Case Else construct.

5. a. True. The Step clause can cause values to be skipped.

6. b. If ... Then ... Else

7. b. False. It's used to execute code if none of the conditions specified
are true.

8. b. Defines another conditional expression the ASP.NET engine evaluates
if the first conditional expression is false.

9. a. True

10. a. True

This page intentionally left blank

What

CHAPTER

Arrays

Suppose you had to store the name of 100 products of a sales catalog in memory.
As you learned in Chapter 4, you could declare 100 variables, one for each product
name; however, you’d have to come up with 100 unique variable names-and
remember those names each time your ASP.NET engine needs to display products
on a web page.

ASP.NET developers don’t use variables in such cases, as you probably surmise.
Instead they use an array. An array has one name and can hold any number of prod-
uct names. You’ll learn about arrays and how to use them in your ASP.NET
application to store and manipulate large amounts of information.

Is an Array?
The ASP.NET sometimes needs to temporarily store information in memory just
long enough to process a visitor’s request. First you need to reserve space in mem-
ory by declaring a variable such as

Dim selection AS Integer

ASP.NET 2.0 Demystified

This statement tells the ASP.NET engine to reserve a place in memory and call that
place selection. You use the word selection each time you want to use the value
stored at that memory location. You learned this in Chapter 4.

An array is very similar to a variable in that an array is a place in memory that
is used to store information. Unlike a variable, however, an array can have multiple
variables called array elements. Each array element refers to a location in memory
where information is temporarily stored.

An array is identified by a unique name similar to the name of a variable. Each
array element is identified by using the array name followed by the number of the
array element. This number is called an index.

Think of an array as a column of a spreadsheet (see the following table). A letter
identifies the column, and a number identifies each row. In an array, the letter that
identifies the column is the array name. A row is an element of the array, and the
row number is the index.

We refer to the first cell of the column by combining the column name with the
row number, such as A1 to refer to the first cell of the column. An array works basi-
cally the same way in that you combine the name of the array with the index to
reference an array element. You'll see how this is done later in this chapter.

Declaring an Array

Row

1

2

An array is created by writing a declaration statement, which is very similar to the
way a variable is declared. There are four parts to this declaration statement:

Column A

The first part is the Dim keyword.

The second part is the array name, which you create.

The third part is the number of elements of the array.

The fourth part is the data type of the array (see Chapter 4).

Here we declare an array called products that has three array elements, all of
which have a String data type.

Dim products(3) AS String

Arrays

The next table shows you how this looks if it were a column of a spreadsheet.
Look carefully and you'll notice that the rows are numbered beginning with 0-not
1 as in a spreadsheet. This is because the first array element is always 0, not 1.

I Row 1 Products I

TIP: When declaring an array, always specify the number of elements that you
need. I f you want one element, then spec& l and not zero.

Initializing an Array
As you'll recall from Chapter 4, initialization is when you assign an initial value to
a variable when the variable is declared. A similar process is used to initialize an
array when you declare an array. That is, you assign an initial value to each element
of the array when the array is declared.

You'll probably remember that the assignment operator is used to assign a value
(initialize) to a variable when declaring the variable. This is shown here:

D i m product AS S t r ing = "SodaI1

The assignment operator is also used to initialize an array. Since an array usually
has more than one element, you'll need to initialize an array with multiple values-
one for each array element. This is done by placing these values within French
braces and separating each one with a comma. The first value is assigned to the first
array element. The second value is assigned to the second array element and so on
(see the table that follows), as is illustrated here.

D i m products () AS Str ing = { " ~ o d a ~ ~ , I1WaterH, I1PizzaH, ll~eer")

Notice that

Each value is placed within the French braces ({ 1).
Values must be the same date type as the data type of the array.

A comma must separate each value.

The number of values used to initialize the array determines the number
of elements of the array. If there are four initial values, then there are four
array elements.

ASP.NET 2.0 Demystified

Row

0

1

Array Elements

Products

Soda

Water

2

3

Previously in this chapter you learned that an array is like a group of variables all
having the same name. Each variable in the group is referred to as an element and
is identified with a number called an index. The first index is a 0. The second is 1,
and so on.

Starting with 0 and not 1 is confusing, since we start counting with 1 and not 0.
However, the first digit in our numbering system (decimal number system) is 0,
not 1. That is, our numbering system has ten digits, 0 through 9. Don't be overly
concerned about the decimal numbering system. All you have to remember is that
the first element of an array is 0 and not 1.

Each element of an array is accessed by using the name of the array followed by
parentheses containing the element's index. Suppose we want to refer to the first
element of the products array that we declared in the previous section of this chap-
ter. Here's how we do this:

Pizza

Beer

Products (0)

Think of this array element as a variable, because you use an array element just as
you use a variable in your ASP.NET web page. Anything that you can do with a
variable, you can also do with an array element.

Let's create a web page that displays a product in a text box when the visitor
clicks a button. Create the web page that you see in Figure 6- 1 using techniques that
you learned in Chapter 3. Here's what you'll need to create:

A label whose text is Product

A text box whose ID is ProductsTxbx

A button whose ID is DispProd and whose value is Display Product

Next, let's create an array called products and initialize it with the list of products
shown in the preceding table. Also create a variable called CurrentProduct. Assign the
first product in the array to the variable and display the value of the variable in the

CHAPTER 6 Arrays

Figure 6-1 Create this ASPNET web page to display a product contained in an array.

ProductsTxbx when the visitor clicks the Display Product button on the ASPNET
web page. Here's how this is done:

1. Double-click the Display Product button to display the empty event
subroutine.

2. Enter the following code:

Dim CurrentProduct As String
Dim products() As String = {ll~odan, "Wateru, nPizzanl "~eer"}
CurrentProduct = products (0)
ProductsTxbx.Value = CurrentProduct

Your event subroutine should look like Figure 6-2.
Select CTRL-FS to run your ASP.NET web page and then click the Display Product

button to see the Soda displayed in the text box (Figure 6-3).

ASP.NET 2.0 Demystified

Figure 6-2 Here is the event subroutine that executes when the Display Product button
is clicked.

You can also assign a value to an array element using the same technique you
use to assign a value to a variable, as is illustrated in this example, where Wine is
assigned as the new value to the first element of the array:

products = "Wineu

Change the value of the first array element in your code and then rerun your
ASP.NET web page to see how your change affects the outcome of your program.
Here's what your code should look like:

Dim CurrentProduct As String
Dim products () As String = {llSodall, I1Waterl1, llPizzall, ll~eer")
products(0) = llWinell
CurrentProduct = products (0)
ProductsTxbx.Value = CurrentProduct

CHAPTER 6 Arrays

Figure 6-3 Clicking the Display Product button displays Soda in the text box.

Looping the Array
If an array element is basically the same as a variable, then what is the advantage
of using an array over a variable except that you can use the same name for each
array element? The magic of an array comes when you need to process each ele-
ment of an array.

Suppose you needed to total the price of each product. If prices were assigned to
variables, you'd need to create a formula using such variable names as

Dim TotalPrice AS Single
Dim SodaPrice, WaterPrice, PizzaPrice, BeerPrice AS
SodaPrice = 2.50
WaterPrice = 1.50
PizzaPrice = 10
BeerPrice = 5.50

Single

TotalPrice = SodaPrice + WaterPrice + PizzaPrice + BeerPrice
P P P P P P P P P P

TIP: Remember from Chapter 4 that the Single data type is used to store mixed
numbers.

ASP.NET 2.0 Demystified

However, using an array along with a For loop (see Chapter 5) is more efficient
than using a series of variables because you can step through each element of the
array by using the index. You'll see how this is done in the following example.

First, we declare and initialize a variable called TotalPrice that will be assigned
the sum of the prices. Next, we declare an array called ProductsPrices and initialize
it with prices for each product (see the table that follows). Finally, the For loop is
used to step through each array element, adding each to the value of the TotalPrice
and then assigning the sum to the TotalPrice variable.

Dim TotalPrice AS Single = 0

Dim i as Integer
Dim ProductsPrices() AS Single = (2 . 5 0 , 1 . 5 0 , 1 0 , 5 . 5 0)
for i = 0 to 3

TotalPrice = TotalPrice + ProductsPrices(i)
next i

This example might look confusing, but it really isn't. Here's what is happening.
When the ASPNET engine enters the For loop for the first time, the value of i is

0 and the value of TotalPrice is also 0.
We use the i instead of a number as the index value for the element of the Prod-

uctsPrices array so that we can easily step through the array because the value of i
is incremented by the For loop.

The ASP.NET engine is told to add the value of the ProductsPrices(i) element of
the array to the TotalPrice variable and assign the sum to the TotalPrice variable.
Remember that ProductsPrices[i] is really ProductsPrices[O], because the value of i
is 0. And the value of ProductsPrices[O] is 2.50.

Therefore, the ASP.NET engine is told to do this:

Row

0

1

TotalPrice = 0 + 2 . 5 0

ProductsPrices

2.50

1 SO

Now the value of TotalPrice is 2.50. The ASP.NET engine returns to the top of
the For loop, where it increments i, making the value of i equal to 1. As long as the
value of i isn't greater than 3, the ASPNET engine enters the For loop another time.
This time, the ASPNET engine references ProductsPrices[l], since the value of i
is 1, and performs the calculation again.

TotalPrice = 2 . 5 0 + 1.50

This process continues until all four array elements are tallied.

CHAPTER 6 Arrays

Adding an Array Element
There will be occasions when you will need to increase the size of the array while
your ASP.NET web page is running. You can do this by resetting the dimensions of
the array using the ReDim keyword.

The ReDim keyword is used just as you use the Dim keyword to set the original
dimensions of the array. Here's how to do this:

Dim ~roductsPrices() AS Single = (2.50, 1.50, 10, 5.50)
ReDim ProductsPrices (5)

The first statement declares the ProductsPrices array as having four elements and
assigns each of them an initial value, which you saw in the preceding table. The
second statement resets the dimensions of this array to five array elements. In doing
so, however, all the values of the original ProductsPrices array are lost. The redi-
mensioned ProductsPrices looks like the following table.

You can retain values of the original array by using the Preserve keyword when
you reset the dimensions of the array. This is shown in the next example. The next
table shows the revised ProductsPrices array. Notice there isn't a value for the last
array element.

Row

0

Dim ~roducts~rices() AS Single = (2.50, 1.50, 10, 5.50)
ReDim Preserve ProductsPrices(5)

ProductsPrices

Row

0

ProductsPrices

2.50

ASP.NET 2.0 Demystified

G: The ReDim keyword is also used to reduce the dimensions of an array, thereby
freeing memory for other processing. However; doing so will lose the value of any
element that is downsized even ifyou use the Preserve keyword in the statement.

Multidimensional Arrays
The arrays that we've used so far in the chapter are called one-dimensional arrays,
because the array has one set of elements. One-dimensional arrays are perfect for
storing information that isn't associated with other information such as a product
name or the name of a company.

However, one-dimensional arrays are not well suited for information that is re-
lated to other information, as is the case with a person's name, which consists of a
first name and a last name. You need to create a multidimensional array to relate
this information.

Think of a multidimensional array as an array where each element has its own array.
Previously in this chapter you learned to declare a one-dimensional array like this:

Dim MyArray (5) As String

This statement creates a one-dimensional array that has five array elements. The
next table shows what this looks like. Numbers represent the index for each array
element.

I First Dimension I

A two-dimensional array creates a second dimension to the array where each
array element of the first dimension has array elements. Here's how to create a two-
dimensional array:

Dim MyArray(5,2) As String

Each array element of the first dimension has an array that has two array ele-
ments. The next table shows you how this looks.

CHAPTER 6 Arrays

Let's return to the problem of relating first and last names of customers. You prob-
ably have a good idea how to do this by looking at the preceding table. As you can
see, the second dimension has two array elements. We could store a last name in the
first array element of the second dimension and the first name is the second array
element of the second dimension. The results will look like the table that follows.

First Dimension

0

TIP: YOU can have up to 32 dimensions, but rarely will you need to go beyond
two dimensions.

Second Dimension

0

First Dimension

0

Second Dimension

0 I Smith

1

1

2

2

0

1

3

3

Jones

John

0

1

4

4

Adams

Tom

0

1

Rogers

Sue

0

1

Martin

Mary

ASPmNET 2.0 Demystified

Declaring a Multidimensional Array
A multidimensional array is declared by specifying the number of elements for
each dimension within the parentheses of the array name. Each dimension must be
separated from the next with a comma. Here's how to declare a two-dimensional
array, which we'll use to store customer names:

Dim CustomerNames(5,2) AS String

The number of elements for each dimension is specified within parentheses. The
first dimension creates five elements. The second dimension creates two elements,
one for each element in the first dimension. The first element in the second dimen-
sion will be used to store the customer's last name, and the second element in the
second dimension will store the customer's first name. The preceding table illus-
trates how this two-dimensional array looks.

Referencing a Multidimensional Array
You access elements of a multidimensional array by referencing the index of an
array element, similar to how you access elements of a single-dimensional array,
which you learned how to do previously in this chapter.

For example, we can store a customer's last name in the first array element by
referencing the first element of the first dimension and the first element of the sec-
ond dimension, such as:

CustomersName (0,O) = "Srnith1l

Likewise, we can assign the first name to the first array element by referencing
the first element of the first dimension and the second element of the second dimen-
sion, like this:

Practically the same technique is used to access the value of an element of a
multidimensional array. You use the index of the first and second dimensions of the
array. Here's how to access the last name Smith:

CustomersName (0,O)

Arrays and the Array Class
You'll recall from Chapter 2 that we see the world as objects such as a computer
keyboard rather than a bunch of keys, springs, diodes, and other keyboard parts. All
objects have data and actions associated with it. Data is the size and color of the

CHAPTER 6 Arrays

keys on the keyboard. An action is a key moving down when pressure is placed on
it and up when pressure is removed.

An object is described in an application by using a class definition written using
an object-oriented programming language such as Visual Basic .NET. Think of a
class definition as a stencil of the letter W The stencil describes a W, but it isn't a W
until you place the stencil on paper and roll paint over it. You have a W when the
stencil is removed from the paper.

A class definition is similar in concept to a stencil of the letter W in that a class
describes the real object, but the class definition isn't the real object. The real object
is called an instance of the class, just as the letter W on the paper is an instance of
the stencil W

A class definition describes both the data and the actions that are associated with
the real object. Data is referred to as property of the class, and actions are called
methods of the class. For example, a keyboard is an object. The class definition of
the keyboard consists of the size and color of the keys as properties of the keyboard.
The actions of moving the key down and then up are methods of the keyboard.

At this point, you might be wondering what all this talk about classes has to
do with an array. An array is an object that is defined by the Array class. Each
time you use an array in your application, you are actually using an instance of
the Array class.

So what's the big deal? Well, the Array class contains properties and methods that
make life easier when you work with an array. Suppose you want to known the num-
ber of elements in the array. Simply use the Length property that contains the length
of the array. Suppose you want to sort values assigned to elements of the array.
Simply call the Sort() method and the ASPNET engine does all the work for you.

How Many Elements Are There in the Array?
There are a number of ways to determine the number of array elements, but the
easiest and most efficient way is to use the length property of the array object. The
length property of the array object contains the number of elements in the array.

Here's how to access the length property of the CustomerNames array that we
declared in the previous section of this chapter:

Dim len AS Integer = CustomerNames.length

You specify the name of the array object and the name of the property (length)
separated by a dot to access the length property. In this example, the length of the
array is assigned to the variable len.

ASPONET 2.0 Demystified

You don't have to assign the length property to a variable. Simply use the length
property where you need to use the length of the array in an expression.

Remember that the length of an array is the actual number of array elements and
not the index of the last array element. Take a look at the following array. The length
of this array is four elements. Rookies tend to assume that the value of the length
property is 3 because the last element in the array has an index of 3. This is a mistake;
the length property is 4, since there are four elements in the array.

CustomerNames[O] = llMaryll
Cus t omerNames [l] = John"
CustomerNames [2] = l1Mikel1
CustomerNames [3] = llTomll

There Are Methods to Our Madness
The array class contains a number of methods that you'll find very useful when
building your ASP.NET application. We'll explore many of these in this section of
the chapter.

Sorting Array Elements
Sorting elements of an array is probably one of the more common tasks that you'll
be required to perform. Fortunately, you don't have to reorder elements yourself,
because there is a method to do this for you called the Sort() method.

The Sort() method rearranges values assigned to elements of an array in sort
order, which is alphabetical order for characters and numerical order for numbers.
Suppose you have the array called products shown in the next table, which is an
unsorted array, and you need to have it placed in sort order.

I 1 I Water I

Row

0

1-2 p l pizza

Products

Soda

1 3 I Beer I

Here's how to sort the products array. The third line calls the Sort() method to
place the array in alphabetical order. Try replacing the code in the button event

PTE A rra ys

(see the earlier section "Array Elements") with this code, and you'll see that the list
of products is displayed in alphabetical order.

Dim i As Integer
Dim products () As String = {llSodall, I1Waterl1, llPizzall, I1Beerl1}
Array. Sort (products)
For i = 0 To 3

Response. Write (products (i))
Next

Reversing the Order of Array Elements
Array elements can be reversed by calling the Reverse() method, which reverses
the order in which values appear in the array. Let's say that you want to reverse the
order of the previously sorted array. You do this by calling the Reverse() method, as
shown in the following code. Try this in your button event:

Dim i As Integer
Dim products () As String = {llSodall, I1Waterl1, llPizzalll I1Beerl1)
Array. Sort (products)
Array. Reverse (products)
For i = 0 To 3

Response .Write (products (i))
Next

Searching Array Elements
Searching an array for a specific value is another common task that your application
will need to perform. You could use a loop to step through each element of the array
until you found one that matches the search criteria, but this is the hard way to
search. There are two easier and faster ways to do this by using methods of the Ar-
ray class.

One of these methods is Indexof(). The Indexof() method requires two pieces of
information in order to perform the search. These are the name of the array that is
being searched and the search criterion. If the search criterion matches the value of
an element of the array, then the Indexof() method returns the index of the match-
ing element. A negative number is returned if none of the values of the elements
match the criterion.

ASP.NET 2.0 Demystified

For example suppose you wanted to locate Pizza in the array shown in the pre-
ceding table. Here's the code that you'll need to write to do this:

Dim result AS Integer
Dim products () AS String = { "soda" , llWaterll, llPizza", ll~eerll)
result = Array.IndexOf(products, "Pizza")
If result >= 0 Then

Response.Write("Pizza is located in array element: + result)
Else

Response.Write ("Pizza is not in the products array.")
End If

The Indexof() method searches the products array for Pizza and assigns the re-
sults of the search to the result variable. If the value of the result variable is equal
to or greater than 0, then we know that the search criterion was found, and we then
proceed to display the results on the screen. If the value is less then &a negative
number-then we know the array does not contain the search criterion, and we dis-
play the appropriate method on the screen.

An alternative to the Indexof() method is the LastIndexOf() method. This method
is called the same as the Indexof() method, except that the index returned is that
of the last array element that contains the search criterion. The Indexof() method
and the BinarySearch() method both return the index of the first array element that
meets the search criterion.

Copy an Array
Values from one array can be copied to another array by calling the Copy() method.
The Copy() method enables you to copy a segment of the array or the entire array
by specifying the number of elements to copy.

The Copy() method requires five pieces of information in order to copy values
from one array to another:

SourceArray This is the name of the array whose values are being copied
to the destination array.

SourceIndex This is the index of the first element that will be copied.

DestinationArray This is the name of the array that is receiving the
values from the Sourcekay.

DestinationIndex This is the index of the first element in the destination
index that is to receive the first value.

Length This is the number of elements that are to be copied.

Arra ys

Take a look at the next table. There are two arrays. Let's copy the values of the
productsA array to the productsB array. We'll do this by calling the Copy() method.

The SourceArray is productsA and the SourceIndex is 0 because we are copying
the first array element. The DestinationArray is productsB and the DestinationArray
is 2 because we are copying the first array element of the ProductsA array to the third
element (index 2) of the productsB array. The length is the number of elements that
we're copying, which is 2. Here's the code segment that calls the Copy() method. The
next table shows both arrays after values are copied to the productsB array.

Row

0

1

2

3

Dim result AS Integer
Dim productsA() AS String = {"~odall, I1WaterH, "Pizza11, ll~eer")
Dim productsB (4) AS String
Array. Copy (productsA, 0, productsB, 0, 2)

productsA

Soda

Water

Pizza

Beer

Reset Values of an Array

Row

0

1

2

3

You can reset array elements by calling the Clear() method. This is a fast way of
getting rid of values that are assigned to an array without having to write code to
overwrite these values. The Clear() method requires three pieces of information:

Row

0

l

2

3

Array This is the name of the array that is being reset.

Index This is the index of the first element of the array that will be reset.

Length This is the number of elements to be reset.

productsB

productsA

Soda

Water

Pizza

Beer

Row

0

1

2

3

productsB

Soda

Water

Pizza

Beer

ASP.NET 2.0 Demystified

Let's reset the last two elements of the productsA array shown in the preceding
table by using the following code segment. The table that follows shows the result
of resetting the productsA array.

Dim result AS Integer
Dim productsA() AS String = {llSodall, I1Waterl1, I1Pizzau, I1Beerl1)
Array.Clear(productsA, 2, 2)

Array Using Different Data Types

Row

0

1

2

3

So far in this chapter you have learned that all elements of an array must be of the
same data type. That is, you cannot mix a string with an integer in the same array.
However, there is a way to assign values of dissimilar data types to elements of the
same array by declaring an array of objects. An object is a data type used to store
data of different data types.

This sounds a little confusing, so let's walk through this step-by-step beginning
with declaring the array. You must specify a data type when you declare an array.
Since the array is going to store values that are of different data types, you declare
the array as being of the Object data type as shown here:

Dim MyData (4) AS Object

productsA

Soda

Water

An array of an Object data type can store values of any data type in its elements.
So we could store a product name in one element and a product price in another
element. The product name is a String data type, and the product price is a Single
data type. This is shown in the following code segment. You can use these elements
as you would any array element:

The ASP.NET engine has to perform more work when using an array of an Ob-
ject data type than with the other data types because it must convert the value to the
proper data type before the value is used within your application.

Row

0

1

2

3

productsB

For example, the ASP.NET engine converts MyData(1) to a Single data type it
can use as its value. Likewise, MyData(0) is converted to a String data type. The
extra work might have a performance impact, depending on the nature of your ap-
plication.

Looking Ahead
In this chapter you learned how to group together values by using an array. An array
has a name and one or more elements. Elements are used much as variables are
used. Each element is identified by an index. The first element is index 0. The sec-
ond element is index 1, and so on.

There are two ways in which a value can be assigned to an element: by placing
values between the French braces following the array's data type when the array is
declared or by using the assignment operator in a statement.

You can determine the number of elements in an array by using the length prop-
erty of the array object. The length property is accessed by specifying the name of
the array followed by a dot and the word length.

You can access the value of an element by specifying the name of the array fol-
lowed by the index of the element within parentheses. If you need to access all
elements of the array, then use a For loop; the initializer of the For loop (see Chap-
ter 5) is used as the index for the array elements.

The array object has several methods that you can use to manipulate elements of
the array. For example, the Sort() method places elements in sorted order. Reverse()
is used to reverse the order of the values assigned to elements of the array.
IndexOf()locates a value in an array, Copy()copies values from one array to another
array, and Clearoresets the values of an array.

You now have a good working knowledge of how to store and use information
within an ASP.NET application. In the next chapter, you'll learn how to divide your
application into building blocks called subroutines and functions.

Quiz
1. This is the first element of the products array: products[l].

a. True

b. False

ASP.NET 2.0 Demystified

2. How many elements are there in Dim productsA() AS String = {"Soda",
"Water", "Pizza")?

a. 2

b. 3

c. 4

d. None

3. What method would you use to reset values of an array?

a. Reset()

b. Copy0
c. Clear()

d. Reboot()

4. What method is used to search for a value in an array?

d. All of the above

5. What method is used to copy a segment of an array to another array?

a. Copy0
b. SigCopy()

c. Partcopy()

d. ShortCopy()

6. What method is used to compare two arrays?

a. Comp()

c. Compare()

d. None of the above

7. The sort() method only places text in sorted order.

a. True

b. False

CHAPTER 6 Arrays

8. The length of an array is equal to the index of the last element of the array.

a. True

b. False

9. An array element can be used the same way a variable is used.

a. True

b. False

10. An array cannot have elements of different data types.

a. True

b. False

Answers
1. b. False

2. b. 3

3. c. Clear()

4. d. All of the above

5. a. Copy()

6. d. None of the above

7. b. False

8. b. False

9. a. True

10. b. False

This page intentionally left blank

CHAPTER

Subroutines
and Functions

In a real-life ASP.NET application snippets of code like those shown in this book
are assembled to create a complex set of instructions that can respond to any re-
quest a person makes when visiting a web site. However, complex instructions are
inherently difficult to write, difficult to read, and difficult to change.

In Chapter 5 you learned how to reduce the number of instructions in your
ASP.NET application by having the ASP.NET engine execute instructions more
than once by placing those instructions in a loop.

Another way to reduce the number of instructions in your ASP.NET application
is to place instructions that perform the same functionality into a group. You can
then tell the ASP.NET engine to execute the group whenever you want ASP.NET to
perform the operation, such as validating a user ID and password. This group is
called a subroutine or a function. And in this chapter you’ll learn how to use sub-
routines and functions to simplify your ASP.NET application.

ASPONET 2.0 Demystified

Dividing Your Application into
Subroutines and Functions

Take a close look at your ASPNET application, and you'll realize that you probably
repeat the same lines of code in a few places within your application. This occurs
naturally because you typically want the ASPNET to perform the same task, only
at different times while your application runs.

Suppose you want to give a visitor to your web site the opportunity to review his
shopping cart from any web page on your site. This means you must insert the code
that displays the shopping cart on each web page. However, this isn't advantageous for
a number of reasons, the most obvious being that if the steps for displaying the shopping
cart change, then you'll need to change every web page in your application.

ASP.NET developers avoid repeating code by carefully reviewing their applica-
tion to identify places where the same task is performed multiple times. Code for
those tasks is then grouped together into either a subroutine or a function that can be
called from anywhere in the application. Whenever the task needs to be performed,
the developer simply tells the ASPNET engine to run the instructions contained in
the group.

Thus, steps to display the shopping cart would be placed in a subroutine or func-
tion. You then tell the ASPNET engine to run the subroutine or function each time
you want the shopping cart displayed. Anytime those steps change, you only need
to make those changes in one place-the subroutine or function.

Subroutine Versus Function
You've seen me use the terms subroutine and function whenever speaking about
grouping instructions together to perform a task, and by now you're probably won-
dering how they differ. In order to appreciate the difference, you need to learn a
little more about how subroutines and functions work.

Let's say that your application has a task that tells the visitor he has made an
incorrect selection. This task simply displays an appropriate message on the screen.
The message changes to reflect the incorrect selection.

Thus, the message might say, "Your shopping cart is empty" if the visitor tries to
view the shopping cart without selecting an item. Another message might say, "You
need to supply a valid credit card number" if the visitor tries checking out without
giving his credit card information.

Subroutines and Functions

You'd write one group of steps that can display any message rather than a sepa-
rate group of steps for each message. The message that is displayed is then given to
the group when the task is performed. This is like saying to the ASP.NET engine,
"Display a message on the web page-and here's the message that needs to be
displayed."

The message is called a parameter, and giving the message to the group is called
passing the parameter to a subroutine or function. You'll see how to do this later in
this chapter. Both a subroutine and a function can use a parameter.

Up to this point a subroutine and a function are the same. Both are groups of
instructions that can be called from elsewhere in an application and can receive a
parameter (actually multiple parameters, as you'll see in the next few sections).

Now they'll go their separate ways.
Sometimes a task returns a result. For example, suppose the task calculates

a 10 percent price increase. The price is passed as a parameter. The task performs the
calculation and returns the result-the new price-to the statement in the application
that called the task. This is called returning a value.

Only a function returns a value. A subroutine cannot return a value. And that's
the difference between a subroutine and a function.

Creating a Subroutine
A subroutine is a group of instructions that perform a task and can be called from
another part of your application whenever you want the ASP.NET to perform the
task. However, you must create a subroutine before calling it in your application.

You create a subroutine by using the following structure:

Sub Name ()

'Place code here
End Sub

Sub This is a keyword that defines the beginning of the subroutine.

Name This is the unique name that you give to the subroutine. Good
programming practice requires that the name of a subroutine reflect the
nature of the task it performs. Thus, DisplayMessage might be a good name
for a subroutine that warns a visitor that he made an incorrect selection.

() Parentheses identify parameters that are passed to the subroutine.
Empty parentheses indicate no parameters are being passed. Later in this
chapter, you'll learn how to insert parameters between the parentheses.

End Sub This is a keyword that defines the end of the subroutine.

ASP.NET 2.0 Demystified

Any statements that you want executed when the subroutine is called are placed
between the Sub Name() and End Sub. Statements are executed sequentially until
End Sub is reached. You can exit the subroutine before reaching End Sub by plac-
ing Exit Sub in the subroutine. Exit Sub causes the subroutine to terminate just as
if the End Sub were encountered.

You place the definition of a subroutine in the code portion of your application.
Here's how this is done:

1. Select the Source tab.

2. Press the right mouse button.

3. Select View Code from the pop-up menu.

Let's create a simple subroutine that displays "Hello world!" on a web page.
There is no need to use parameters, since the message won't change. Enter the fol-
lowing code in the code portion of your application (Figure 7-1). More code will be
added later:

Sub DisplayMessage ()
Re~ponse.Write(~cb>Hello world!c/b>")

End Sub

Calling a Subroutine
Once you define the subroutine, you can call the subroutine from anywhere in your
application. You call a subroutine by simply using the subroutine name in a statement.

Here's what you need to do to call the DisplayMessage() subroutine:

DisplayMessage ()

The ASPNET engine executes all the instructions contained in the DisplayMes-
sage() subroutine whenever the DisplayMessage() subroutine name is encountered
in your application. This has the same effect as if you replaced the name of the
subroutine with the code found in the definition of the subroutine.

Let's call the DisplayMessage() subroutine from a button event. Here's how to
do this:

1. Select the Design tab and insert a button onto your web page (see Chapter 5).

2. Double-click the button to display the button event.

3. Enter the code in the button event as shown in Figure 7- 1.

When you run your application and click the button, the DisplayMessage() sub-
routine displays the message on the screen as shown in Figure 7-2.

7 Subroutines and Functions

Figure 7-1 The button event calls the DisplayMessage() subroutine to display the
message on the screen.

Figure 7-2 The DisplayMessage() subroutine is called when the visitor clicks the
Display button.

ASPONET 2.0 Demystified

Subroutines and Parameters
Aparameter is an item of information that the subroutine requires in order to per-
form the task, such as displaying the message on the web page. A parameter is
declared within the parentheses of the subroutine definition much as how you de-
clare a variable (see Chapter 4).

Here's how you declare a parameter:

Sub Name(ByVa1 ParameterName As DataType)
'Place code here

End Sub

ByVal When the subroutine is called, a copy is made of the parameter
that is passed to the subroutine. This is referred to as passing the parameter
by value. Another way to pass a value is by reference, noted as ByRef.
A value passed by reference isn't copied. Instead, statements within the
subroutine use the same value as the statement that called the subroutine.

ParameterName This is the name of the parameter passed to the
subroutine and is used to reference the argument within the subroutine.

As This is the keyword that links the name of the parameter to the data
type of the parameter.

DateType This is the keyword that defines the data type of the parameter.
(See the section "Data Types: What kind of Data Is the Box?" in Chapter 4
for a list of data types.)

The name of the parameter used within the subroutine is called an argument and
is used in place of the actual data that is passed to the subroutine. Think of the name
of the parameter as a name of a variable. You use the parameter name just as you
use the variable name.

Let's rewrite the DisplayMessage() subroutine so that the subroutine can display
the message passed to it as an argument rather than displaying Hello world! Here is
the revised definition:

Sub DisplayMessage(ByVa1 Mesg As String)
Response. Write (llcb>ll + Mesg + "c/b>I1)

End Sub

The parameter is called Mesg and is declared as a String data type. We won't know
the content of the actual message until another part of the application calls the Dis-
playMessage() subroutine and passes it the message, as you'll see how to do in the
next section.

CHAPTER 7 Subroutines and Functions

However, the parameter name Mesg represents the message within the subroutine.
The ASP.NET engine replaces Mesg with the actual message when theapplica-
tion runs.

Passing Parameters
An argument is passed from the statement that calls the subroutine to the subroutine
by placing the value between the parentheses of the subroutine's name. For exam-
ple, suppose we want the message "Shopping cart is empty." displayed on the web
page. Here's how to do it (Figure 7-3):

Di~playMessage(~Shopping c a r t is empty.")

When the DisplayMessage() subroutine is called, the message "Shopping cart is
empty." is assigned to the Mesg parameter in the definition of the DisplayMes-
sage() subroutine. The Write() function then displays this message on the screen.

The "Shopping cart is empty." message is displayed when the DisplayMessage()
subroutine is called after the visitor clicks the button.

Figure 7-3 The message displayed by the DisplayMessage() subroutine is passed to this
subroutine when the subroutine is called.

ASP.NET 2.0 Demystified

Multiple Parameters
Sometimes a subroutine requires more than one piece of information to perform a
task. Therefore, you'll need to declare multiple parameters in the definition of the
subroutine. Multiple parameters are declared the same way you declare a single
parameter, except each is separated with a comma.

Here's how you declare multiple parameters:

Sub Name(ByVa1 ParameterNamel AS DataType, ByVal ParameterName2 AS DataType)
'Place code here

End Sub

Each parameter name must be unique within the subroutine; otherwise, you'll
confuse the ASP.NET engine. You can have parameters of different data types, de-
pending upon the type of information needed by the subroutine to perform the task.
For example, the first parameter might be a String, and the second parameter an
Integer.

Let's rewrite the DisplayMessage() subroutine so that the subroutine displays
two messages on the web page. Here's the revised subroutine:

Sub DisplayMessage(ByVa1 Mesgl AS String, ByVal Mesg2 As String)
Response. Write (Mesgl)
Response. Write (ll
ll)

Response.Write(Mesg2)
End Sub

Passing Multiple Arguments
Multiple arguments are passed to a subroutine by placing the value of each argument
within the parentheses of the statement that calls the subroutine. Each argument must
be separated from the next by a comma and must correspond to the data type of the
parameter declared in the subroutine definition.

Suppose Mysub() has two parameters. The first parameter is a String, and the
second parameter is an Integer. Therefore, when Mysub() is called, the first value
passed must be a String, and the second value passed must be an Integer.

Let's call the revised DisplayMessage() subroutine and pass it these two mes-
sages (Figure 7-4): "Shopping cart is empty." and "Returning you to our catalog."
Figure 7-5 shows the results of calling this subroutine.

DisplayMessage("Shopping cart is empty.", "Returning you to our catalog.")

C 7 Subroutines and Functions

Figure 7-4 Two messages are passed to the DisplayMessage().

Figure 7-5 Two messages are passed to the DisplayMessage() subroutine when the
visitor clicks the Display button.

ASP.NET 2.0 Demystified

Functions
Afunction is very similar to a subroutine in that a function is a group of instructions
that perform a task and can be called from another part of your application when-
ever you want ASPNET to perform the task. And, as when writing a subroutine,
you must create a function before calling the function in your application.

Unlike a subroutine, a function can return a value.
A function is created in much the same way as you create a subroutine, except

you use the keywords Function and End Function instead of Sub and End Sub.
And, you specify the data type of the value that the function returns.

Here's how you create a function:

Function FunctionNameO As ReturnDataType
'Place code here

End Function

Function This is a keyword that defines the beginning of the function.

FunctionName This is the unique name that you give to the function. It
is always a good practice to give the function a name that relates to the task
that the function performs.

() Parentheses identify parameters that are passed to the function. Empty
parentheses indicate no parameters are being passed.

As This is a keyword that defines the data type of the value returned by
the function.

ReturnDataType This is the data type of the return value.

End Function This is a keyword that defines the end of the function.

All statements that are necessary to perform the task are placed within the body
of the function.

You declare parameters that are passed to the function the same way as you do in
a subroutine. There is no difference between the two when it comes to parameters.

Return Value
Unlike a subroutine, a function returns a value to the part of your application that
called the function. You return a value from a function by using the Return keyword
followed by the value that you want to return. You can also assign the value you
want to return a name that is different from the function name.

Subroutines and Functions

Let's create a function that validates a user ID and password and use the Return
keyword to return a value that indicates if the login information is valid or not. The
user ID and password are passed as parameters to the program as shown here:

Function ValidateLogin
(ByVal UserID AS String, ByVal Password As String)
AS Boolean
If UserID = I1Bobl1 And Password = I1BSmithl1 Then

Return True
Else

Return False
End If

End Function

The ValidateLoginO function receives the user ID and password from the portion
of the application that requests the function to validate the login information. The
ValidateLoginO function returns a Boolean value. You'll recall from Chapter 4 that
a Boolean value is either True or False.

We purposely kept the validation process simple so as not to complicate the
function by using an If ... Then statement to compare the login information to one
user ID and password. A real application would compare the user ID and password
to valid login information that is stored in a database.

The function returns either a True if the login information matches or False if
there isn't a match. It is the responsibility of the statement that called the function
to do something with the return value.

Calling a Function
A function is called much the way a subroutine is called, by using the function
name and passing parameters, if any parameters are required. However, a function
is usually called as part of an expression, enabling the application to use the value
returned by the function.

Here's how a function is called:

Dim Result AS Boolean
Result = ValidateLogin (I1Bob1l , I1BSmithl1)

This example calls the ValidateLoginO function that is defined in the preceding sec-
tion and passes the function the user ID Bob and password BSmith. Notice that this
function is called within an expression. As you'll recall from Chapter 4, an expres-
sion consists of an operator and one or more operands. The assignment operator (=)
is the operator in this expression, and Result and the value returned by the Vali-
datelogin() function are the operands.

ASPONET 2.0 Demystified

However, you don't have to worry about operators and operands. All you really
need to know is that the value returned by the ValidateLoginO function is assigned
to the variable Result. Result is a Boolean variable, meaning that it can be assigned
either a True or a False value. The ValidateLoginO function returns either a True or
False value.

You don't have to assign the return value to a variable. Instead you can use the
function call in place of the variable in an expression. For example, you could write
the following code to process the value returned by the function. Notice that the
return value is assigned to the variable Result, and then Result is used as the condi-
tional expression in the If.. .Then statement.

TIP: It might look strange to have just the Result variable as the conditional
expression in the If statement. Remember that a condition expression resolves to
either True or False. The value of the Result variable is either True or False, and
therefore the Result variable can be used by itself as the conditional expression.

If ValidateLogin (llBobH, I1BSmithl1) Then
Response. Write ("Approved. If)

Else
Response. Write ("Disapproved. 11)

End If

Another approach is to use the function call in place of the variable, as shown in
the next example. This, too, might be confusing to read. Here's what is happening:
The ASP.NET engine first calls the ValidateLoginO function, which returns either
True or False, depending on whether the user ID and password are valid. Next,
ASP.NET evaluates the return value and determines which portion of the If.. .Then
statement is executed.

If ValidateLogin (I1BobH, "BSmithM) Then
Response. Write (I1Approved. 11)

Else
Response. Write ("Disapproved. If)

End If

Imbedding a function call within an expression is particularly advantageous
if the return value is going to be used only once in your application, because you
don't have to declare a variable to hold the return value. However, it is wise to
assign the return value to a variable if the return value is going to be used in more
than one expression, because you only need to call the function once.

You can call a function without retrieving its return value, in which case you
don't use it as part of an expression.

ValidateLogin ("BobI1, IfBSmithu)

CHAPTER 7 Subroutines and Functions

Passing an Array
As you learned in Chapter 6, an array is very similar to a variable in that an array is
a place in memory that is used to store information. Unlike a variable, however, an
array can have multiple variables called array elements. Each array element refers
to a location in memory where information is temporarily stored.

You can pass an array to a subroutine or a function by including the array as
a parameter, as shown in the following example. The DisplayStudents() subroutine
declares a string array called StudentNames() in the parameter list. A For loop is then
used to display each element of the array. The LBound() and UBound() functions are
used to determine the lower and upper boundaries of the array:

Sub Displaystudents (ByVal StudentNames () As String)
Dim i As Integer
For i = LBound(StudentNames) To UBound(StudentNames)

Response.Write(StudentNames(i))
Response. Write ("
")

Next I
End Sub

You pass an array to a subroutine or function the same way you pass other
values. This is illustrated in the following example. The first line declares an array
and initializes it with names of students. Remember that the ASPNET engine as-
sumes that this array has three elements because three students are used to initialize
the array. Also, the ASP.NET engine assumes this is an array of strings because the
initialized values are strings.

The subroutine is then called and is passed the array.

Dim Students0 As String = stu ay", "BobM, "~oan"j
DisplayStudents(Students)

Returning an Array from a Function
An array can be returned by a function by specifying the array in the Return state-
ment of the function. The following example shows how this is done. First we'll
create a function called Getstudentso, which returns a list of students as elements
of an array. In a real application, such a function would retrieve names of students
from a database; however, we simplified this by initializing the array with the names
of three students. The array is then returned to the portion of the program that called
the StudentNamesO function (see Figure 7-6). Notice there aren't any parameters

ASPONET 2.0 Demystified

Figure 7-6 When the visitor clicks the button, the button event calls the Getstudentso
function to retrieve the list of students.

in this function, because the function contains all the information that it needs to
perform this task.

Function Getstudents () As String ()

Dim StudentNames () As String = {"~ayll I "BobI1, "~oan")
Return StudentNames

End Function

The Getstudentso function is then called as shown next. The return value, which
is the array, is assigned to another array, which is then used in a For loop to display
the names of students on the web page (Figure 7-7).

Dim i As Integer
Dim Students(3) As String
Students = Getstudentso
For i = LBound (Students) To UBound (Students)

Response. Write (Students (i))
Response. Write ("
")

Next I

Sometimes you don't know the size of the array that is being passed to the func-
tion. In this case, you can define the array without a dimension as shown here:

Dim Students0 As String

Subroutines and Functions

Figure 7-7 Here is what is displayed when the button is clicked.

Looking Ahead
ASP.NET applications can become complex. Developers simplify them by dividing
the application into tasks and then create subroutines and functions to perform those
tasks. Think of a subroutine or a function as a group that contains statements that
perform a specific task within an ASPNET application when the subroutine or
function is called by another part of the application.

A subroutine must be created before it is called by using Sub ... End Sub to define
the subroutine and placed in the code portion of your application. Each subroutine
must have a unique name followed by parentheses.

Information can be passed to a subroutine when the subroutine is called by de-
claring parameters. A parameter is similar to a variable that is declared within the
parentheses of a subroutine and is used as a variable is used within the subroutine.
Multiple parameters can be declared; however, a comma must separate each param-
eter from the next.

Statements that are executed when the subroutine is called are placed between
the Sub and End Sub keywords in the definition of the subroutine. Any statement
that can be used in an ASP.NET application can also be used in a subroutine.

ASP.NET 2.0 Demystified

A subroutine is called by using the name of the subroutine in a statement fol-
lowed by parentheses. Values that correspond to the subroutine's parameters must
be included within the parentheses when the subroutine is called. Each value must
match the position and data type of the corresponding parameter in the subroutine's
definition. Values are only necessary if parameters are defined for the subroutine;
otherwise, no values need to be inserted in the parentheses and the parentheses
aren't needed.

A function is similar to a subroutine in all respects except a function can return a
value to the statement that calls the function, by using the Return statement within
the body of the function. The data type of the return value must be specified when
the function is defined. A subroutine cannot return a value.

Functions are commonly called within an expression, enabling the return value
to be used by the expression without your having to declare and use a variable to
store the return value.

An array can be passed to a subroutine or function by declaring the array as a
PararnArray. Likewise, a function can return an array as a return value to the state-
ment that called the function.

Now that you know how to use subroutines and functions to simplify your
ASP.NET application, we'll turn our attention in the next chapter to gathering
input using drop-down lists, radio buttons, check boxes, and other graphical user
interface (GUI) objects.

Quiz
1. You must declare parameters for all functions.

a. True

b. False

2. You can return a value from a function by using

a. Submit

b. Apply
c. Return

d. Ret

3. What information should you include when declaring a parameter?

a. The Ad keyword

b. Parameter name

CHAPTER 7 Subroutines and Functions

c. Parameter data type

d. All of the above

4. A subroutine is usually defined in the

a. Page-Login event

b. Code section of an application

c. Page-Upload event

d. Page-Download event

5. A subroutine's return value

a. Is always assigned to a variable

b. Is always used in an expression

c. May or may not be used in an expression

d. None of the above

6. All returned values must be

a. A String data type

b. A Boolean data type

c. An Integer data type

d. None of the above

7. A function must be called from an expression.

a. True

b. False

8. The return value from a subroutine must be assigned to a variable.

a. True

b. False

9. A subroutine is an older version of a function.

a. True

b. False

10. The data type of the return value should be specified when declaring
a function that returns a value.

a. True

b. False

ASPONET 2.0 Demystified

Answers
1. b. False

2. c. Return

3. d. All of the above

4. b. Code section of an application

5. d. None of the above. A subroutine does not return a value.

6. d. None of the above. It can be any data type.

7. b. False. A function can also be called just as you would a subroutine
if you're not interested in its return value.

8. b. False

9. b. False

10. a. True

CHAPTER

Drop-Down Lists,
Radio Buttons,

Check Boxes

Customers are resigned to the fact that they must fill out forms in order to do business
online. However, customers don’t expect to type a lot of data. Instead, they would
rather pick and choose selections using a mouse.

You can meet this expectation by providing visitors to your web site with an
assortment of drop-down list boxes, radio buttons, and check boxes and minimize
the use of text boxes to gather information.

No doubt you’re familiar with these GUI objects, since they are widely used on
e-commerce web sites. In this chapter, we’ll show you how to create these GUI
objects on your ASP web page. You’ll also learn how to retrieve values selected by
visitors to your web site.

ASP.NET 2.0 Demystified

Drop-Down Lists
A drop-down list box resembles a text box that you learned how to create in Chapter 4,
except the visitor is limited to entering text from a list of possible choices that you
provide. Those choices are hidden from view until the visitor selects the down arrow
that is adjacent to the drop-down list box.

A choice is made by selecting an item from the list, typically by using the mouse to
point to the item and then clicking the mouse button to select the item. Alternatively,
some visitors might use the UP ARROW and DOWN ARROW keys to highlight the item and
then press ENTER to select the item. Regardless of the method used by the visitor, the
selected item appears in the drop-down list box and then the list is automatically
hidden again. Drop-down list boxes are ideal for choosing an item such as the abbre-
viation of a state from a set of items.

Creating a Drop-Down List Box
A drop-down list box is created by dragging and dropping the drop-down list box
icon from the Toolbox onto the web page in the Design tab. Once it is in position,
set the ID property or simply use the default ID. You'll be using the ID property
to access the selected item from within your ASP.NET code. Your next job is to
enter items onto the list. This is done by selecting the Items property found on the
Properties pane.

The Items property contains the word Collection. Select the Items property and
then select the three dots (. . .) that follow the word Collection (Figure 8-1) to display
the ListItem Collection Editor dialog box. The ListItem Collection Editor is where
you insert items onto the list and remove items from the list.

In this example, we'll insert three items called One, Two, and Three. The first
item will be the default selection where the Selected property is set to true. Use the
default values for the other properties.

Let's insert a new item onto the list (Figure 8-2).

Click Add. A new entry is added to the left text box in the ListItem
Collection Editor.

Set the Selected value for the new entry. True means the new item becomes
the default item for the list. The default item is automatically chosen if the
visitor doesn't select an item from the list. False means the new item isn't
the default item.

Set the Text property for the new entry. The Text property is the text of the
item that is displayed on the list. This is what the visitor sees when the list
opens on the screen.

Figure 8-1 Select the three dots to open the ListItem dialog box.

4. Set the Value property. The Value property is the information that your code
receives when the visitor selects the item. Some developers don't assign
a value to the Value property because the value of the Text property is used
as the Value property default value. This means that your code receives the
text of the item if the visitor selects the item.

5. Insert additional items onto the list.

6. Reorder items on the list, if necessary, by selecting a list item and then
selecting the up ARROW and DOWN ARROW keys to reposition the item on the list.

7. Select OK.

Figure 8-2 Select the Add button to insert a new item on the list.

ASPONET 2.0 Demystified

The final step is to create a Submit button on the web page that will be used by
the visitor to submit the form. You do this by dragging and dropping the button
from the Toolbox onto the web page in the Design tab. Be sure to set the Text property
of the button to Submit (see Chapter 4). Change the ID to SubmitButton.

TIP: The last item selected by the user becomes the current item in the drop-down
list box.

Accessing the Selected Item
from a Drop-Down List Box
The next step is for you to write code that reads the item selected from the drop-down
list box by the visitor to your web site. This code is placed within the event handler
for the Submit button. In order to access the selected item, you'll need to use the ID
that you gave to the drop-down list box and the Value property of the selected item.

You'll recall that the Value property contains the text of the item unless you
specifically set a value for the Value property when you created the drop-down
list box.

Here's what you need to do to access the item selected by the visitor to your
web site:

1. Double-click the Submit button in the Design tab to open the button's event
handler.

2. Let's assume that you inserted three items on the list. These are called "One",
"Two", and "Three". Here's the code that you need to write to response to
each of these items. We'll use the default ID, which is DropDownListl.

Select Case DropDownListl.SelectedItem.Value
Case llOnell

Response. Write ("You select : One. If)
Case llTwoll

Response. Write ("You select : Two. If)
Case "Three"

Response. Write (I1You select : Three. If)
End Select

Press CTRL-FS to run the application. Note that items that you inserted into the
ListItem dialog box appear when you select the drop-down list box. Select Two
from the list and then click Submit; your selection is displayed on the web page
(Figure 8-3).

Figure 8-3 Your choice of item is displayed when you click Submit.

Radio Buttons
A radio button is a circle that appears alongside text and must exist within a set of
radio buttons. Only one radio button in the set can be selected. The text, such as
Male or Female, can be selected by a visitor to your web site. The circle darkens
when the visitor selects the radio button; otherwise, the circle isn't darkened.

Related radio buttons are always organized into a group. Only one radio button
within the group can be selected. When a visitor selects a radio button, the circle
associated with that radio button is darkened and circles for the rest of the radio
buttons within the group are left lightened, indicating they are unselected.

For example, we can insert two radio buttons on the form-Male and Female-and
then place them in a group called Gender. If the visitor selects Male (darken circle),
then Female is automatically left unselected (light color circle). If the visitor then
decides to select Female, the Male radio button is automatically unselected.

ASP.NET 2.0 Demystified

Creating a Radio Button
There are two ways to create a radio button. You could use a single radio button or
a radio button list. Both are found on the Toolbox. Many ASP developers prefer to
use the radio button list because radio buttons are automatically grouped together
and are easy to maintain.

Let's create a radio button using the RadioButtonList control:

1. Drag and drop the RadioButtonList from the Toolbox to the Design tab.

2. Select the Items property and you'll notice three dots (. . .) appear alongside
the word Collection. This is similar to what happens when you select the
Items property for a drop-down list box.

3. Select the three dots to display the ListItem Collection Editor dialog box.
This is where you enter information about the radio buttons, just as you did
for the drop-down list box (Figure 8-4).

4. Click Add and then enter the text for the first radio button. Repeat these
steps for each radio button. A new radio button is entered into the group
each time you click Add. You can remove a radio button by selecting the
button from the list and then clicking Remove. We'll create two radio
buttons. The first is Male and the second is Female (Figure 8-4).

5. You can set a default value by changing the Select value from False to
True. You should always make one radio button the default selection;
otherwise, the application won't have a value should the visitor fail to select
a radio button.

6. Click OK.

Drag and drop a Button from the Toolbox onto the Design as you did with the
drop-down list box example. Be sure to set the Text property of the button to Submit.
Change the ID to SubmitButton.

Accessing the Selected Radio Button
You insert code to respond to a radio button within the Submit button's event handler
similar to the code that you used in the drop-down list box example.

Figure 8-4 Click Add to enter information about each radio button.

Here's what you need to do:

1. Double-click the Submit button to display the event handler.

2. Enter the following code. Notice that the value of the Case statement is the
text of each radio button. You'll recall from the section on the drop-down
list box that the text is automatically assigned to the Value if you leave the
Value blank.

Select Case RadioButtonListl.SelectedItem.Value
Case I1Malelf

Response. Write ("You select : Male. l!)
Case "FemaleH

Response.Write("You select: Female.")
End Select

ASPONET 2.0 Demystified

Figure 8-5 A message confirms that the Female radio button was selected.

Press CTRL-FS to run the application. Figure 8-5 shows what you'll see when you
select the Female radio button and then click Submit.

Check Boxes
A check box is similar to a radio button in that the visitor makes a choice by selecting
a check box. However, a check box doesn't have to be within a set of check boxes.
You can have one check box. And unlike with a radio button, selecting one check
box has no effect on other check boxes. A check mark appears in the check box if it
is selected; otherwise, the check box appears empty.

However, check boxes aren't grouped the same way as radio buttons are grouped.
The status of one check box doesn't affect the statuses of the other check boxes. That
is, the visitor can select two check boxes and both remain selected, as compared to
a radio button, where the selection of one radio button causes other radio buttons in
the group to be unselected.

Creating a Check Box
Dragging and dropping the check box icon from the Toolbox onto the Design tab
creates a check box on your web page. The Text property of the check box is used
to set the text that appears alongside the check box on the page.

You should position related text boxes together because this makes it easy for the
visitor to make selections without looking for check boxes all around your page.
Avoid using too many check boxes, since this tends to clutter your web page and
confuse your visitor.

You can check the check box by setting the Checked property to True. This
causes a check mark to appear in the check box when the check box is displayed.
The visitor must then uncheck the box; otherwise, the application treats this check
box as if the visitor checked the box.

Let's create a check box (Figure 8-6).

1. Drag and drop two check boxes from the Toolbox onto the Design tab.

2. Select the first check box.

Figure 8-6 Create two check boxes and a Submit button.

ASPONET 2.0 Demystified

3. Set the ID property to Newcustomer and the Text property to "New
Customer."

4. Select the second check box.

5. Set the ID property to YesNewsletter and the Text property to "Send me
your newsletter." Also, change the Checked property from False to True.

6. Drag and drop a button from the Toolbox to the Design tab and set the ID
and label for the button.

Accessing a Check Box
Your application determines whether or not a check box is selected from within the
Submit button event handler. You must examine the value of the Checked property
for each check box that appears on the web page by using an If ... Then statement. If
the Checked property is true, then the check box was selected; otherwise, the visitor
didn't select the check box.

Here's how to code the event handler to determine the state of a check box:

1. Double-click the Submit button to display the event handler.

2. Enter the following code.

3. Press ~5 to run the application. Figure 8-7 shows what you'll see if you
select the New Customer check box and then click Submit. Remember
that "Send me your newsletter." is already checked by default.

If NewCustomer.Checked Then
Response.Write(~Welcome! We value you as a new c~stomer.~)
Response. Write ()

End If
If YesNewsletter-Checked Then

Response.Write("Welcome to our mailing list.")
End If

Selecting Check Boxes from Within Your Application
You can select or unselect a check box from within your application by changing
the value of the Checked property.

Here's what you do to check the check box:

1D.Checked = True

Drop-Down Lists, Radio Buttons, Check Boxes

Figure 8-7 The application detects which check boxes are checked.

Here's how to uncheck the check box:

1D.Checked = False

Remember to replace the ID in the previous examples with the ID for the
check box.

Looking Ahead
Designing your web page using drop-down lists, radio buttons, and check boxes is
one of the most efficient ways to gather information from the visitor to your web
site. Visitors can make their choices quickly with a few clicks of the mouse and not
worry about typing information using the keyboard.

ASP.NET 2.0 Demystified

A drop-down list box contains two or more items that are hidden from sight
(unless one has been selected) until the visitor selects the down arrow that is
adjacent to the drop-down list box. The visitor then selects an item from the list
once the list is displayed. Your application retrieves the selected item by examin-
ing the Value property of the drop-down list box and comparing it to the Text of
each item on the list.

A radio button is grouped together with other related radio buttons in a
RadioButtonList. Each radio button presents the visitor with a choice. Only one can
be selected. Other radio buttons in the group are automatically unselected when one
radio button within the group is chosen. Your application detects which radio button
was selected by examining the Value property of the RadioButtonList. This is the
same technique used to detect an item selected from a drop-down list box.

A check box is also used to present an option to the visitor. However, the status of
a check box doesn't affect the statuses of other check boxes, if any, on the web page.
Your application determines if the visitor checked a check box by examining the check
box's Checked property. If the property is True, then the visitor selected the check
box; otherwise, the check box wasn't selected. You can check or uncheck a check box
from within your application by setting the Checked property in your code.

Quiz
1. You can set a default selection for a drop-down list box.

a. True

b. False

2. The best control to use when there is one of many options from which to
select is

a. A drop-down list box

b. A radio button

c. A check box

d. None of the above

3. What is assigned to the Value property of an item in a drop-down list box
if you don't assign anything to the Value property?

a. Nothing is assigned to the Value property.

b. The value of the ID property.

c. The value of the Text property.

d. You must assign a value to the Value property.

8 Drop-Down Lists, Radio Buttons, Check Boxes

4. Unless you use the UP m o w and oom ARROW keys to change the order, in
what order do items appear in a drop-down list box?

a. The order in which they are entered

b. Alphabetical order

c. Numerical order

d. Random order

5. An If ... ElseIf statement might be used to evaluate a check box because

a. All check boxes within a group must be examined.

b. All check boxes must be examined, including those outside the group.

c. If one check box is true, you don't need to examine other radio buttons
within the group.

d. None of the above

6. What happens when the Boolean value of an item is set to true in a drop-
down list box?

a. The item is selected by default if the visitor doesn't select an item from
the list.

b. The item isn't displayed.

c. The name of the item is set to true.

d. The name of the item is set to false.

7. The selection of a check box affects the statuses of other check boxes.

a. True

b. False

8. Selecting a radio button affects the selection of every check box.

a. True

b. False

9. You must set the Value property of an item on the drop-down list box.

a. True

b. False

10. The Value property of a check box is used to identify the check box within
your code.

a. True

b. False

ASP.NET 2.0 Demystified

Answers
1. a. True

2. a. A drop-down list box

3. c. The value of the Text property

4. a. The order in which they are entered

5. d. None of the above

6. a. The item is selected by default if the visitor doesn't select an item from
the list.

7. b. False

8. b. False

9. b. False. If you don't set the Value property, it is automatically assigned the
value of the item's Text property.

10. b. False. The ID property is used to identify the check box.

CHAPTER

Databases

You probably access your bank account records by logging into the bank’s web site.
The bank’s web application compares your ID and password against those stored in
their database. If they match, then your account information is retrieved from
a database and displayed on the screen.

This is referred to as a data-driven web application because the application cen-
ters on providing you with data that is stored in a database accessible by the
ASPNET engine. Think of a database as a sophisticated electronic filing cabinet
and the ASPNET engine as the file clerk.

There are three components to a data-driven web application: the client, the server,
and the database. Throughout this book you have learned how to build the client and
the server components of a web application. In this chapter you begin to learn how to
build that database component. We’ll start by exploring the concept of a database and
how to design a database.

ASP.NET 2.0 Demystified

An Overview
Before wading knee-deep into learning about databases, it is important to clarify
a common misconception about databases. You've probably read about popular data-
base software packages such as MySQL, Microsoft Access, Oracle, DB2, and Microsoft
SQL Server. Sometimes these are referred to as databases-but they're not.

As you'll learn in this chapter, a database is a collection of data organized so that
it can be quickly retrieved much like a filing cabinet. A developer then writes code
that inserts and removes information from the database. This is a lot of work, but
fortunately much of this code is already written in the form of a database manage-
ment system, which is commonly referred to as a DBMS.

The DBMS handles all the dirty details of how to store and retrieve information
in a database. All a developer needs to do is to send the DBMS a query written in
the Structured Query Language (SQL). Think of this as asking a file clerk to get you
an invoice from the filing cabinet. You give the file clerk enough information to find
the invoice, and the file clerk handles the details of locating and retrieving the
invoice. Just like a file clerk, the DMBS is responsible for maintaining the informa-
tion that is stored in the database and responding to your queries.

MySQL, Microsoft Access, Oracle, DB2, Microsoft SQL Server, and other pop-
ular "databases" are DBMSs-not databases.

Starting with this chapter you'll learn how to link your ASP.NET application to
a DBMS and write SQL queries to communicate with the DBMS. Now that you
have an overview, let's begin with a look at data.

Data, Database, and Tables
An item of data is the smallest piece of information, such as a person's first name,
a person's last name, a street address, a city, a state, and a ZIP code. Notice that we
didn't say a person's name or a person's address is data, because they are not the
smallest piece of information. A person's name can be broken down to first name and
last name-sometimes middle name. These are data. Likewise, a person's address
can be subdivided into street, city, state, and ZIP code. These too are data. This
subtle difference is important to keep in mind because many times you'll be respon-
sible for identifying the data that will be used in a database.

A database is a collection of data that is identified by a unique name to distin-
guish the database from other databases. A collection of people's first names, last

Databases

names, street addresses, cities, states, and ZIP codes form a table in a database.
A DBMS is the software you use to

Save data

Retrieve data

Update data

Manipulate data

Delete data

The way in which a DBMS structures data in a database is called a database
model. There are a number of different database models, ways data can be structured
in a database. One of the most popular of them is the relational database model.

The term relational database model is a little imposing at first, but this means
relating tables within a database. For example, depending on an application, data
related to a person's address (street, city, state, ZIP) are similar data and are there-
fore placed in one group. The parts of a person's name (first name, middle name,
last name) are also similar data and are placed in another group.

A group is called a table. A table is like a table of a spreadsheet in that both have
columns and rows. A table is also given a unique name to distinguish it from other
tables in the database. Each column represents a piece of data and is identified by
a unique name, called a column name. For example, the table that contains a per-
son's name will have the following columns (see Figure 9-1). Each row (or record)
represents one set of data, such as a person.

Each column is defined by attributes that describe the characteristics of the data
that is stored in the column. Later in this chapter we'll take a look at these attri-
butes; however, here are three commonly defined attributes:

Column name Name of the column

Data type The kind of data that can be stored in the column

Size The number of characters that can be stored in the column

Customer Table

Figure 9-1 A table within a database

Customer First Name
Bob
M ~ Y

Customer Middle Name
Allen
Alice

Customer Last Name
Smith
Jones

ASP.NET 2.0 Demystified

TIP: The database name, table name, column name, and its attributes are referred
to as metadata. Metadata is data that describes other data.

Relating Tables
You might be wondering how you access information that appears in two or more
tables. For example, if one table has customer information (i.e., customer name)
and another table has order information, how to you link the customer information
to the customer's order information?

This is done by using a column that is common to both tables. In this case,
a column called customer number is the common column. Figure 9-2 shows two
tables. First is the customer table, and the other is the order table.

The customer table is similar to Figure 9- 1 except we inserted the customer num-
ber column. The customer number is a unique number assigned to each customer.
Customer numbers are preferred over customer names to identify customers, be-
cause two customers might have the same name.

The order table consists of information that is typically associated with an order.
We limited this to the order number, customer number, product number, and quan-
tity ordered to show how tables are linked together. We'll insert additional columns
in this table later in this chapter.

Customer Table

1 :::;

Figure 9-2

Order Table

Number Product Number Quantity 1 AlS67 1 1
BR8765

Customer Number

l

The customer table is linked to the order table using the customer number.

Customer Middle Name
Allen
Alice

Customer First Name
Bob
Mary

Customer Last Name
Smith
Jones

CHAPTER 9 Databases

Only the customer table is needed if we want to look up a customer name. How-
ever, both the customer table and the order table are needed to look up an order
because the order table doesn't contain the customer name. We do this by first find-
ing the order number of the order we want in the order table. So if we wanted order
7654, we look in the order number column to find it. Next we read the customer
number of that row, which is 1002. We then find customer number 1002 in the cus-
tomer number column of the customer table. The row containing 1002 also contains
the name of the customer who placed the order.

This process is called relating two tables and is why a database management
system is called a relational database management system-it is capable of relating
tables together.

Designing Your Database
One of your jobs when developing a data-driven ASPNET application is to design its
database. That is, decide on the data that will be stored in the database, the attributes
of the data, and how the data is grouped. The database design is similar to the blue-
print for a building. Once the design is completed, you can then build the database.

The blueprint for a database is called a database schema, which is a document
that defines all the components of database. It shows data and its attributes. It groups
data into tables and shows how tables relate to other tables.

Let's say that you are developing an e-commerce web site. In the database, you'll
need to store customer information, product information, order information, vendor
information, shipping information, and carrier information.

Customer information consists of the names and addresses of your customers.
Product information is data about the products that you're selling, such as the prod-
uct number, product name, and size. The order information is data about orders
placed by customers, such as the customer number, product number, quantity
purchased, and shipping instructions. Vendor information is data about the compa-
nies who sold you the products that you are reselling to your customers. Carrier
information is data about the companies who deliver your products to your
customers.

Your objective is to develop a database schema for this database. We'll walk you
through this process, but for now take a look at Figure 9-3. This is the database
schema for this example.

ASP.NET 2.0 Demystified

*Customer Number int 10
Customer First Name char 25
Customer Last Name char 50
Customer Streetl char 50
Customer Street2 char 50
Customer City char 50
Customer State char 2
Customer Zip Code char 15

0-
*Order Number int 10
**Customer Number int 10
Order Date char 8
**Product Number int 10
Order Quantity int 10
Order Total Cost currency 10
**Shipping Number int 10

Carrier
*Carrier Number int 10
Carrier Name char 25
Carrier Street1 char 50
Carrier Street2 char 50
Carrier City char 50
Carrier State char 2
Carrier Zip Code char 15
Carrier Next Day Rate Currency 10 1

l Carrier 2 Day Rate Currency 10 1
Carrier 2 Week Rate Currency 10

Product
*Product Number int 10
Product Name char 50
Product Unit Cost currency 10
Product Inventory int 10
**Vendor Number int 10

Shippinq
*Shipping Number int 10
**Carrier Number int 10
Shipping Cost currency 10
Date Shipped date 8
Date Arrived date 8

* Primary Key
** Foreign Key

*Vendor Number int 10
Vendor Name char 25
Vendor Streetl char 50
Vendor Street2 char 50
Vendor City char 50
Vendor State char 2

Figure 9-3 Here is the database schema for a typical e-commerce web site.

The Process
There are six steps developers perform when designing a database for their
ASP.NET application:

Identify information that you need to store in your database. You can get
this from reviewing an application that is similar to your application or
simply brainstorming.

Change the information into data. Developers call this decomposing. This
is where you take a customer's name and divide it into customer first name,
customer middle name, and customer last name.

Define data. Here's where you determine the size, data type, and other
attributes of the data.

Organize data into groups. Developers call this normalizing the data.

Identify columns that will be used to relate rows of data. Developers call
this identifying primary and foreign keys.

CHAPTER 9 Databases

Identifying Information
Begin by identifying all the information that you'll need for your ASP.NET applica-
tion. This can be a daunting task because there is so much information that some
developers have a difficult time finding the starting point.

The best way to approach this task is to think of people and things that are
associated with your application. Developers call these entities. For example,
a customer is a person associated with an e-commerce web application. Therefore,
a customer is an entity. Likewise, a product, an order, and a vendor are also entities
and are associated with an e-commerce web application.

It is easier to think of entities than data because you can easily identify an entity,
since there are typically fewer entities than pieces of information. Entities seem to
jump out at you as soon as you realize what an entity is. In addition, you can review
applications that are similar to your application, and you'll probably see entities
that you can use for your application.

Each entity has one or more attributes. An attribute is information that defines
the entity. Your job is to identify attributes of each entity for your ASP.NET applica-
tion. Identifying attributes is intuitive most times because you can ask yourself what
information describes a customer? Likewise, what information describes an order?

Brainstorm and do a little research by reviewing similar applications and come
up with a list of information for each entity. Don't expect to develop a complete list
in one sitting, because it might take a professional developer weeks to flush out
a thorough list of information. They write a list first and then continue to review and
modify it until they feel it is complete.

Figure 9-4 shows a partial list of information that is associated with entities in
our e-commerce ASP.NET application.

Don't confuse an attribute with data. An attribute is information about the entity
such as a customer name. Typically an attribute can be subdivided into data such as
customer first name, customer middle name, and customer last name. Other times
an attribute is also data, such as a product number. Product numbers usually cannot
be subdivided, and therefore it is data, too.

Change Information into Data
Now that you've identified attributes for your entities, you need to transform the
attributes to data. Developers call this process decomposing attributes.

This process is also intuitive because you can easily recognize whether or not an
attribute can be subdivided. Look at each attribute. Ask yourself, can this attribute be
subdivided into data? If so, then write the data. If not, then use the attribute as the data.

For example, customer address is an attribute of the customer entity. Can cus-
tomer address be subdivided into data? Sure it can, because an address is composed

ASP.NET 2.0 Demystified

Customer
Customer Name
Customer Address

Shippinq Form
Customer Name
Customer Address
Carrier Name
Carrier Address
Product Name
Cost
Date Shipped
Date Arrived

Order Form
Customer Name
Customer Address
Date
Product
Quantity
Total Cost

Carrier
Carrier Name
Carrier Address
Next Day Rate
2 Day Rate
2 Week Rate

Product
Product Name
Unit Cost
Inventory
Vendor Name
Vendor Address

Vendor
Vendor Name
Vendor Address
Product Name

Figure 9-4 Here is a list of entities and their attributes for an e-commerce web site.

of street, city, state, and ZIP code. Therefore, you'll need to make a list of the data
associated with the attribute.

A product number is an attribute of the product entity. Can a product number be
subdivided into data? It depends on the nature of the product number. However,
many product numbers cannot be subdivided into meaningful data. Therefore, prod-
uct number is also data.

Define Data
Once you identify data for each entity, you must define the data. The definition of
data, which you'll later use when you build the database, describes the data. The
most common ways to define data are by name, data type, size, range, default value,
acceptable values, where a value is, format, and source of the data.

Name The name of the data, commonly called a column name, uniquely
identifies the attribute from other data of the same entity. Duplicate data
names within the same entity are prohibited.

Data type A data type specifies the kind of values that are associated with
the data.

Maximum data size The data size describes the maximum number of
characters associated with the data. Suppose 10 characters are used to
represent every product number. The maximum size is 10 characters.

APTE Databases

Minimum data size The data size describes the minimum number of
characters associated with the data. Let's say that the product number
cannot be less than 10 characters, so then the minimum size of the product
number is 10 characters.

Data range The data range is the range of values that are associated with
the data. These are specified as a minimum value and maximum value.
For example, a product number might be from 10000 to 99999. Therefore,
the minimum value of the data is 10000 and the maximum value is 99999.
Values outside of this range are invalid.

Data default value The data default value is the value that is automatically
assigned to the data if no value is explicitly assigned to the data. Let's say
that an order entity has order date as one of its data elements. The default
value for the order date is today's date. If an order is placed without an order
date, then the value of the order date defaults to today's date.

Acceptable values An acceptable value for a data element is one of
a set of values. For example, the order entity has a product number as
a data element of the order. The product number must be one of a valid
set of product numbers. This is different than a range of product numbers
because some product numbers in the range may not have been assigned
to products as yet. Therefore, they wouldn't be in the set of value product
numbers.

Required value A data value may be required. For example, you cannot
have an order without a product number. Therefore, product number is
required. However, you might have a customer who doesn't have a middle
name. Therefore, customer middle name is not required.

Data format Some data must appear in a particular format, such as
mm-dd-yyyy for a date. You'll need to specify the format if the data
requires one; otherwise, you don't need to describe the format.

Date source The data source is the origin of the data. Some data is
provided during data entry, while other data is provided by a database or
from another system. Practically all the data for your application will come
from data entry.

Figure 9-5 shows the type of data that you can derive from the customer, order,
product, shipping, vendor, and carrier entities for an e-commerce web site. It is all
right if you come up with a different set of data and a different data definition
because the actual data and data definitions used in a database schema are depen-
dent on the particular ASP.NET application that you're building.

ASP.NET 2.0 Demystified

Shipping Form
Customer Number
Customer First Name
Customer Middle Name
Customer Last Name
Customer Street
Customer City
Customer State
Customer Zip
Order Number
Carrier Numher
Carrier Name
Carrier Street
Carrier City
Carrier State
Carrier Zip
Product Name
Product Number
cost
Date Shipped
Date Arrived

num
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
curren
date
date

10 required
35 required
3 5
75 required
75 required
75 required

2 required
10 required
10 required
l0 required
75 required
75 required
75 required

2 required
10 required
25 required
10 required

.cy 10 required Not Zero
8 required mm-dd-yyyy
8 optional mm-dd-yyyy

Order Form
Customer Number
Customer First Name
Customer Middle Name
Customer Last Name
Customer Street
Customer City
customer State
Customer Zip
Order Number
Order Date
Product Number
Product Name
Quantity
Total Cost

num 10 required
char 35 required
char 35
char 75 required
char 75 required
char 75 required
char 2 required
char 10 required
char 10 required
date 8 required mm-dd-yyyy Default Today
char 10 required
char 25 required
number 10 required Minimum 1
currency 10 required

Product
Product Number char 10 required
Product Name char 50 required
Unit Cost currency 10 required Not Zero
Vendor Number char 10 required
Vendor Name char 25 required
Vendor Street char 75 required
Vendor City char 75 required
Vendor State char 2 required
Vendor Zip char 10 required

Vendor
Vendor Number char
Vendor Name char
Vendor Street char
Vendor City char
Vendor State char
Vendor Zip char
Product Name char
Product Number char

l0 required
50 required
75 required
75 required
2 required
10 required
25 required
10 reauired

Carrier
Carrier Number
Carrier Name
Carrier Street
Carrier City
Carrier State
Carrier Zip
Next Day Rate
2 Day Rate
2 Week Rate

char
char
char
char
char
char
number
number
number

10 required
75 required
75 required
75 required

2 required
1 0 required
l0 optional
10 optional
10 optional

Customer
Customer Number
Customer First Name
Customer Middle Name
Customer Last Name
Customer Street
Customer City
Customer State
Customer Zip

num l0 required
char 35 required
char 35
char 75 required
char 75 required
char 75 required
char 2 required
char 10 required

Figure 9-5 Here's a sample of the data and data definitions that are used in entities of an
e-commerce web site.

Organize Data into Groups
Grouping data into tables is referred to as normalizing the data. The purpose of
normalizing data is to remove duplicate data from the database. Take a look at
Figure 9-5 and you'll notice that customer name and customer address appear in the
customer entity, the order entity, and shipping entity. This is fine because the cus-
tomer name and address need to appear in all three entities. However, the duplication
causes problems when the data is stored in the database.

The first problem occurs if you need to change the customer name or address
after they are stored in the database. You'll need to locate each occurrence in all the
entities and then make the change. There is always the possibility that you'll miss
changing one or more of them-the data becomes unreliable.

Another problem is wasted storage space, although today the cost of storage
(hard disk and CD) isn't too high. Collectively, the customer name and address
requires 307 characters. However, 921 characters are stored for each customer,
since the customer name and address appears three times in the database.

Databases

Suppose that you have 5,000 customers and each customer places five orders
a month. This results in 5,000 occurrences of the customer name and address in the
customer entity; 25,000 occurrence each month (300,000 per year) in the order
entity; and 25,000 occurrences each month (300,000 per year) in the shipping
entity. The total number of characters that need to be stored per year is 905,000
characters.

The normalizing process can reduce this number of characters from 905,000
characters to 5,000 characters.

How to Group Data
The normalization process follows strict rules called normal form, but you don't
need to be concerned about them. When you need to focus on is placing related data
into groups, removing duplicate data, and then designating data that can be used to
link together tables.

Let's begin by grouping the data. The data is pretty much grouped by now if
you used entities to identify the data, because customer data is associated with the
customer entity; order data is associated with the order entity; and so on, as is
illustrated in Figure 9-5.

Next, we need to remove duplicate data. This might seem like a tricky process.
It makes sense that a customer name and address remain in the customer entity
because all customer information needs to be in the same group. The same can be
said about vendor name and address being in the vendor entity and the carrier's
name and address being in the carrier entity. Likewise, the product name needs to
be in the product entity. Take a close look at Figure 9-5, and you'll notice that these
data elements also appear outside their logical entities.

For example, customer name and address appear in the shipping entity and in the
order entity, too. These entities need to reference the customer name and address.
That is, the order needs to contain the customer name and address and the shipper
also needs the customer name and address. However, we can point to the customer
name and address in the customer entity rather than duplicating the customer name
and address in the order entity and the shipping entity.

Notice that each customer has a customer number. We can remove the customer
name and address from the order entity and shipping entity and use the customer
number, which remains in these entities, to point to the customer name and address
in the customer entity. We can also use the product number, the order number, and
the carrier number to reference a product, an order, and a carrier.

Figure 9-6 shows the normalized database schema. Each group will become
a table in the database.

ASP.NET 2.0 Demystified

Shipping Form
Customer Number num l0 required
Order Number char 10 required
Carrier Number char 10 required
Date Shipped date 8 required mm-dd-yyyy
Date Arrived date 8 optional mm-dd-yyyy

Order Form
Customer Number num 10 required

8 required mm-dd-yyyy Default Today
Product Number char 10 required
Quantity number 10 required Minimum l
Total Cost currency 10 required

Product
Product Number char 10 required
Product Name char 50 required
Unit Cost currency 10 required Not Zero
Vendor Number char 10 required

Vendor
Vendor Number
Vendor Name
Vendor Street
Vendor City
Vendor State
Vendor Zip
Product Name

char
char
char
char
char
char
char

10 required
50 required
75 required
75 required
2 required
10 required
25 required

Carrier
Carrier Number
Carrier Name
Carrier Street
Carrier City
Carrier State
Carrier Zip
Next Day Rate
2 Day Rate
2 Week Rate

char
char
char
char
char
char
number
number
number

10 required
75 required
75 required
75 required
2 required
10 required
10 optional
10 optional
10 optional

Customer
Customer Number
Customer First Name
Customer Middle Name
Customer Last Name
Customer Street
Customer City
Customer State
Customer Zip

num
char
char
char
char
char
char
char

10 required
35 required
3 5
75 required
75 required
75 required
2 required
l0 required

Figure 9-6 The normalized version of the database schema

Identify Columns Used to Identify a Row of Data
The database is organized so that we can easily assemble data to fill requests from
the ASP.NET application. Let's say that the request is for the name and address for
the customer whose customer number is 0123456789. We look for customer num-
ber 0123456789 in the customer number column of the customer table. Once it is
found, we then read the customer's name and address from the row of the table that
contains that customer number.

Suppose we want to know the name and address of the customer who placed the
order 98765432 10. First, we'd look for the 98765432 10 in the order number column
of the order table. However, there's a problem. The customer name and address
aren't in the order table (see Figure 9-6). The order table does contain the customer
number of the customer who placed the order. We read the customer number that is
associated with order 9876543210 and look up the customer number in the cus-
tomer table to find the customer name and address.

The process of using a value in one table to find a corresponding row in another
table is called joining tables. In order to relate tables, you must designate a column
in both tables that can be used to join the tables. These columns are referred to as
a primary key and a foreign key.

Aprimary key is a column of a table used to uniquely identify a row of the table.
Customer number is the primary key of the customer table because no two customers

HAPTER 9 Databases

have the same customer number. Likewise, order number is the primary key of the
order table because no two orders can have the same order number.

A foreign key is a column of a table that is the primary key of another table.
Notice in Figure 9-6 that the order table contains a customer number column. The
customer number column is a foreign key to the order table and a primary key to the
customer table.

The foreign key is used to join two tables. That is, the customer number column
in the order table (foreign key) is used to find a corresponding customer number in
the customer table (primary key).

Figure 9-7 shows the primary keys and foreign keys used to join together tables
in our database.

Customer
Customer Number
Customer First Name
Customer Middle Name
Customer Last Name
Customer Street
Customer City
Customer State
Customer Zip

Vendor
Vendor Number
Vendor Name
Vendor Street
Vendor City
Vendor State
Vendor Zip
Product Name

Product Number
Product Name
Unit Cost
Vendor Number

Carrier
Carrier Number
Carrier Name
Carrier Street
Carrier City
Carrier State
Carrier Zip
Next Day Rate
2 Day Rate
2 Week Rate

Order Form
Customer Number
Order Number
Order Date
Product Number
Quantity
Total Cost

I U-1
Customer Number
Order Number
Carrier Number
Date Shipped
Date Arrived

Figure 9-7 The primary key of each table can be used as the foreign key of another table.
Together they are used to join together tables.

ASPONET 2.0 Demystified

Indexes
You have two choices to find information in a book. You could scan every page or
look in the index. The index has keywords and the number of the page where the
keyword appears in the book.

The same concept is used in a table. You could look up each row of a table to find
the keyword you need, or you can look up the keyword in an index. The index con-
tains the keyword and the row number where the keyword is found in the table.

You need to specify indexes that you'll use as part of you database schema.
Decide which data will be likely used to search for a row in a table. This is some-
what intuitive because of the way you use the application. For example, you should
be able to look up customer information by a combination of last name and first
name if the customer name is known, but not the customer number.

Don't create too many indexes, because each index must be updated whenever
a row is inserted or deleted from a table and sometimes when the column that is
indexed is modified. This maintenance requires processing time, which could in
some cases decrease the performance of the database management system.

An index can be built using a single column such as ZIP code or using multiple
columns, in which case it is called a clustered index. An index that uses the cus-
tomer last name and customer first name is a clustered index.

You'll learn how to create an index in the next chapter.

Looking Ahead
Many of the products that are called databases are really database management
systems (DBMSs), software packages that handle the details of storing and retriev-
ing information in a database. A DBMS responds to requests from your application
called queries that are written in the Structured Query Language (SQL).

Data is the smallest piece of information, such as a customer's first name. A database
is a collection of data. The way in which data is organized within a database is called
a database model. One of the most popular of these is the relational database model,
which relates one group of data within the database with another group of data.

A group of data within the database is called a table. A table is similar to a spread-
sheet in that both have rows and columns. Each column is a data element. A column
is characterized by attributes that include a name, a data type, and a size.

The blueprint for the design of a database is called a database schema. You create
a database schema by identifying information that needs to be stored in the data-
base; define the data; organize the data into groups; and identify columns that will

CHAPTER 9 Databases

be used as indexes for the table. An index is similar to an index of a book; it con-
tains keywords and the row number of the table that contains the keyword.

Now that you have a good idea of how to design a database for your ASP.NET
application, we'll turn our attention in the next chapter to how to connect to
a DBMS from your ASP.NET web application. We'll continue to explore databases
in Chapter 1 1, where you'll learn how to create queries using SQL.

Quiz
1. Microsoft Access is a database.

a. True

b. False

2. A database is subdivided into groups called

a. Tables

b. Data

c. Subdatabases

d. None of the above

3. An index is used to

a. Quickly find information in another index.

b. Quickly find information in a database.

c. Quickly find information in a table.

d. Quickly find information in one column.

4. Another name for relating tables together is

a. Joining

b. Merging

c. Combining

d. Gluing

5. The design of a database is called the

a. Database layout

b. Database blueprint

c. Database schema

d. None of the above

ASP.NET 2.0 Demystified

6. The first step in designing a database is to

a. Change the information into data.

b. Organize data into groups.

c. Define data.

d. Identify information that you need to store in your database.

7. Normalizing a database removes most redundant data.

a. True

b. False

8. A foreign key is a primary key of a different table.

a. True

b. False

9. A primary key uniquely identifies rows of a table.

a. True

b. False

10. A clustered index contains only one column.

a. True

b. False

Answers
1. b. False. Microsoft Access is a database management system.

2. a. Tables

3. c. Quickly find information in a table.

4. a. Joining

5. c. Database schema

6. d. Identify information that you need to store in your database.

7. a. True

8. a. True

9. a. True

10. b. False

CHAPTER

In t eracti n g
with Databases

Whenever you log into your favorite e-commerce web site, you set off a series of
routines behind the scenes that, among other things, links the web site with a database
that contains product information and probably information about you.

You too can link your AS€'.NET web pages with your own database by using the
ADONET connection. Think of ADONET as your pipeline into popular commercial
database management software (DBMS) such as Microsoft SQL Server, the Oracle
database server, and Microsoft Access.

In this chapter you'll learn how to make this connection and how to write SQL
statements in a query that direct the DBMS to perform tasks that are commonly
used in many commercial web sites.

ASP.NET 2.0 Demystified

The ADO.NET Connection
Customer data and other information that is typically used by an ASP.NET web
page are stored in a database that is managed by database management software
(DBMS). As you remember from the preceding chapter, a DBMS such as Microsoft
SQL Server, the Oracle database server, or Microsoft Access is a filing cabinet and
file clerk all rolled up into one and maintains and accesses data as requested.

Your application interacts with a DBMS by sending it queries using the Structured
Query Language (SQL). For example, if you wanted to retrieve a customer's account
information, you'd write an SQL query and send it to the DBMS. The DBMS locates
and returns the account information to your application.

However, before you can send the query, you need to connect your application to
the DBMS. You do this by using classes provided by ADO.NET. ADO.NET is part
of the .NET framework. Although this sounds imposing, it really isn't.

As you'll recall from Chapter 2, an object is a real thing that is described by
a class definition. In the case of ADO.NET, these objects are database-related
"things" such as rows, columns, tables, and databases. ADO.NET contains class
definitions that are used to access a database. Remember that a class contains func-
tions and attributes. A function is a block of code that is executed by calling the
name of the function. An attribute is data associated with the class.

Therefore, ADO.NET contains code that you call within your application to
connect your application to a DBMS and enables your application to send queries
to and receive data from a DBMS.

Namespaces and Classes
ADO.NET contains sets of classes designed to interact with a specific DBMS. Each
set is identified by a namespace. A namespace organizes classes in a hierarchy of
classes to prevent naming conflicts. This sounds a little strange, but you won't give
the term namespace a second thought once you begin to use it in your application.

The most important point to understand is that you must import into your
application the namespace that corresponds to the DBMS that is accessed by your
application. Here are commonly used namespaces:

System.Data.SqlClient Used for Microsoft SQL Server version 7.0
or higher

System.Data.OleDb Used for OLE DB DMBSs such as Microsoft Access

System.Data.Odbc Used for ODBC driver-based DBMSs. ODBC is used
in Windows to connect to many popular DBMSs.

System.Data.OracleC1ient Used for the Oracle database server

APTER 10 Interacting with Databases

Throughout this chapter, we'll be showing examples that use System.Data
.SqlClient to interact with the Microsoft SQL Server and System.Data.OleDb
used to interact with Microsoft Access. Techniques used in these examples are
similar to the way you use the other namespaces to interact with other DBMSs.

Although each namespace refers to different classes, there are similarities among
them. For example, SqlConnection is used to open a DBMS connection using the
System.Data.SqlClient namespace. OleDbConnection performs the same task when
using the System.Data.OleDb namespace.

Likewise, SqlCommand is used to send a query to the DBMS in the System
.Data.SqlClient namespace. OleDbCornrnand does the same using the System.Data
.OleDb namespace.

Opening a Connection to a DBMS
Your application must open a connection to the DBMS before sending or requesting
data from the DBMS. Think of a DBMS connection as the same as a telephone
connection. Before you can talk to your friend, you must dial your friend's telephone
number and wait for her to answer. You talk as long as you want once the connection
is made, and you close the connection after you are through, enabling someone else to
connect to your friend.

To create a connection to the DBMS, follow these steps:

1. Import the namespace This identifies the set of classes that you'll be
using within your application to interact with the database. Developers
import the namespace so that they don't have to write the fully qualified
class name, which is much longer than if the namespace is imported.

2. Create an instance of the connection class Remember from Chapter 2
that a class definition describes a class much as a stencil describes a letter
of the alphabet. You create a real object described by the class by creating
an instance of the class. This is similar to using the stencil to create a real
letter of the alphabet.

3. Open the connection You do this by calling an appropriate instance
function of the instance of the class.

Let's see how this is done by creating a connection to Microsoft SQL Server. The
initial step is to import that namespace. The namespace for Microsoft SQL Server
is System.Data.SqlClient. We import that namespace by using the following page
directive at the beginning of the ASP.NET web page.

<%@ Import Name~pace=~System.Data.SqlClient~~ %>

ASPONET 2.0 Demystified

The next step is to create an instance of the connection class. First, declare
a variable that references the instance, and second, create the instance and assign
it to the variable as shown here:

Dim conMyDb As SqlConnection
conMyDb = New ~ql~onnection(~Server=localhost;uid=myID;pwd=m~assword;
database=mydatabaseM)

We need to create an instance of the SqlConnection class and pass the constructor
of the SqlComection class information it needs to link to the DBMS. The constructor
creates the instance of a class. There are three pieces of information that you must
provide.

The first is the location of the server that contains the DBMS. This is the URL of
the server or localhost if the DBMS resides on your computer. For this example,
we're assuming that you have the database on your local computer.

The next two pieces of information are needed to log onto the DBMS. These are
user ID (uid) and the password (pwd). These are assigned by directly interacting
with the DBMS. In a business environment, the database administrator is the person
who assigns logon information to everyone.

The last piece of information is the name of the database. You'll remember
from Chapter 2 that the DBMS maintains many databases, each having its own
unique name. You must identify the database that you want to link to by assigning
the database name to the database parameter when you create an instance of the
SqlConnection class.

The SqlConnection constructor returns a reference to the instance to the variable.
You then use the variable to access functions and attributes of the class. One of the
first of these is called the Open() function, which opens the database connection
as shown here:

conMyDb . Open ()

Now let's put these statements together to create an ASPNET web page that
accesses the customer database. We'll show two examples. The first is for Microsoft
SQL Server, and the second is for Microsoft Access. Notice that the connection to the
database is made in the Page-Load subroutine. Each time the page is loaded, the
ASPNET engine establishes a connection with the database.

c%@ Import Namespace="System.Data.SqlClient~ %>

<Script Runat="Servern>
Sub Page-Load

D.im custDb As SqlConnection
custDb = New SqlConnection(~Server=localhost;uid=myID;pwd=m~assword;

database=customeru)
custDb . Open ()

End Sub
</Script>

CHAPTER 10 Interacting with Databases

Here is the example for linking to Microsoft Access. You'll notice a few differences
between this example and the preceding example. The first is that we're importing the
SysternData.OleDb namespace, which enables us to use the OleDb classes that are
needed to interact with Microsoft Access.

Another difference is in the OleDbConnection constructor. Notice that there are
two parameters. The first is Provider, which is the name of the DBMS. OleDB is the
provider of Microsoft.Jet.OLEDB.4.0, which Microsoft Access is associated with.
The second parameter is Datasource, which is the location and name of the database.
In this example the database is located on the C: drive and is called cust.mdb.

The other parts of the example are identical to the preceding example.

<%@ Import Name~pace=~Systern.Data.OleDb~ %>

<Script Runat="ServerM>
Sub Page-Load (S As Object, e As EventArgs)

Dim custDb as OleDbConnection
custDb = New

OleDbConnection(~Provider=Microsoft.Jet.Jet.OLEDB.4.O;DataSource=c:cust.m&')
custDb . Open (

End Sub
</Script>

Creating a Database and Tables
Before continuing, it is important to create a database and at least one table in order
to work through examples in this chapter. You should install a DBMS (see Chapter 9).
It is beyond the scope of this book to explain how to install a DBMS.

Most DBMSs have a user interface that you can use to create a database and
tables. In the next chapter we'll show you how to create these using a query from
within your application. For now, you'll need to create a database. You can call it
MyBusiness. And then create the following table and call it custContact. Here are
the column definitions:

Insert these rows so that you'll be able to retrieve them when you send a query
to the DBMS in examples throughout this chapter.

custNumber

1234

5678

custFirstName

Bob

M W

custLastName

Smith

Jones

ASPONET 2.0 Demystified

Sending a Query to the DBMS
In order to retrieve information stored in the database, you need to create a query
using SQL and then send the query to the DBMS over an open database connection.
A query can be as simple as asking for the number of orders placed by a particular
customer-or as complex as asking for the number of times a customer ordered
each product and the dates of the orders.

We'll use simple queries in this chapter so that you can focus on how to interact
with the database using your application. You'll learn how to create more complex
queries in the next chapter, which focuses on SQL.

Let's get started by requesting the names of all our customers and displaying
them on the web page. Here are the steps you need to perform:

1. Create a database connection and open the connection.

2. Create a query.

3. Send the query to the DBMS.

4. Read the rows returned by the DBMS and display them on the screen.

You already learned how to perform the first step in the preceding section of
this chapter. The second step requires you to create a query. There are two tasks
involved here. The first is writing the query using SQL, and the next is to assign
the query to an instance of the command class.

You must provide the DBMS with two pieces of information. The first is the
name of the columns that you want returned from the database. The second is the
name of the table that contains these columns.

We want two columns returned. These are custFirstName and custLastName,
which are part of the custcontact table. We tell the DBMS the columns that we
want returned by using the Select statement. The Select statement is another way of
saying, "This is the information I want returned." The From clause is used to iden-
tify the table that contains these columns.

Here is the query written in SQL:

Select custFirstName, custLastName
From custcontact

Now we need to create an instance of the command class and initialize it with the
query and reference to the opened database connection. Here's how this is done using
Microsoft SQL Server. First we declare a variable that will be assigned a reference to
the instance of the SqlCommand class, and then we create an instance of SqlCommand.
Notice that we pass it the query as the first parameter. The second parameter is the
variable that references the database connection. This is like saying to the instance of
the SqlCommand, there is my query. Send it over the custDb connection.

CHAPTER 10 Interacting with Databases

Dim cmdSelectCustomers As SqlCommand
cmdSelectCustomers = New SqlC~mmand(~Select custFirstName, custLastName From
custcontact l ' , custDb)

We need to create an instance of SqlDataReader class in order to read the infor-
mation returned to us by the DBMS. The SqlDataReader class contains functions
that you call to access information returned by the DBMS.

There are two steps needed to create a reader. First, you need to declare a vari-
able that will be assigned a reference to the instance of the reader. Next, you need
to create an instance of the SqlDataReader class. Here's how this is done:

Dim dtrcustomers As SqlDataReader
dtrcustomers = cmdSelectCustomers.ExecuteReader()

The instance of the reader is returned by calling the ExecuteReaderO function
from the SqlCommand class. This function returns the instance of the reader, which
is assigned to the variable. You then refer to the variable (dtrcustomers) each time
you need to access the reader.

In response to a query, the DBMS can return no information, a single piece of
information, or multiple pieces of information, depending on your query and the
number of rows that match your query. This information is returned as a list that
you step through from within your application.

You do this by using a While loop as shown here. Notice that we call the Read()
function of the SqlDataReader class. The Read() function can return a true or a false.
A true value means there is at least a current row of information. A false value means
there isn't a row. That is, no data exists that corresponds to your query.

You retrieve information returned by the DBMS by using the column name of the
information. The following example illustrates how to access the custFirstName and
custLastName, which are then displayed on the web page. The second statement
within the While loop causes the cursor to be moved to the next line. The application
exits the While loop when there are no more rows to read. The Reader is then closed
by calling its Close() method.

While dtrcustomers . Read ()
Response.~xite(CStr(dtrCustomers.Item("custFirstName' & " " & -

CStr(dtrCustomers.Item("custlastName"))

Response .Write ("
")
End While

Here is the full example of how to query the DBMS and read the information
returned by the DBMS. Remember that this example is used to access data that is
managed by Microsoft SQL Server:

c% Import Name~pace=~System.Data.SqlClient~ %>

< %

Dim custDb As SqlConnection
Dim cmdSelectCustomers As SqlCommand

ASP.NET 2.0 Demystified

Dim dtrcustomers As SqlDataReader
custDb = New SqlConnection("Server=localhost;uid=myID;pwd=m~assword;

database=customer")
custDb . Open ()
cmdSelectCustomers = New SqlCommand(I1Select custFirstName, custLastName From

custContactM, custDb)
dtrcustomers = cmdSelectCustomers.ExecuteReader~)
While dtrCustomers.Read0

Response.Write(CStr(dtrCustomers.Item(~custFir~tName~~)) & & -
CStr(dtrCustomers.Item("custLastName")))

Response. Write ("
I1)
End While
dtrcustomers. Close ()

custDb. Close ()

% >

Here's how to do this with Microsoft Access:

< % Import Namespace="System.Data.OleDbM %>

c %

Dim custDb As OleDbConnection
Dim cmdSelectCustomers As OleDbCommand
Dim dtrcustomers As OleDbDataReader
custDb = New OleDbConnection(~PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source=c:

cust .mdbr1)
custDb . Open ()
cmdSelectCustomers = New OleDbCommand("Select custFirstName, custLastName From

custContact~, custDb)
dtrcustomers = cmdSelectCustomers.ExecuteReader~)
While dtrcustomers .Read ()

Response. Write (CStr (dtrcustomers. Item (lrcustFirstNamell)) & & -
CStr(dtrCustomers.Item("custLastName~)))

Response .Write (I1<BRs")
End While
dtrCustomers.Close()
custDb . Close ()

% >

Were Any Rows Returned?
The question that your application needs to answer after sending a query to a DBMS
is whether or not the DBMS found any information that matches your query. The
easiest way to answer this question is to examine the HasRows property of the
DataReader class.

The value of the HasRows property determines if any records were returned by
the DBMS. It is true if records are returned; otherwise, the value of the HasRows
property is false. It is important to remember that the HasRows property does not
tell you the number of records that are returned. Instead, it simply states if any are
returned.

Interacting with Databases

Let's modify the previous examples to include the HasRows property. We'll
begin with the Microsoft SQL Server example.

<% Import Name~pace=~~System.Data.SqlClient~ %>
< %

Dim custDb As SqlConnection
Dim cmdSelectCustomers As SqlCommand
Dim dtrcustomers As SqlDataReader
custDb = New SqlConnection(~Server=localhost;uid=myID;pwd=m~assword;

database=customer")
custDb .Open ()
cmdSelectCustomers = New SqlCommand("Select custFirstName, custLastName From

custContactW, custDb)
dtrcustorners = cmdSelectCustomers.ExecuteReader()
If dtrCustomers.HasRows Then

While dtrCustomers.Read()
Response.Write(CStr(dtrCustomers.1tem(~cstirstNae1 & & -

CStr(dtrCustomers.Item("custLa~tName~~)))
Response .Write ("
")

End While
Else

Response.Write("There are no customers.")
End If
dtrCustomers.Close~)
custDb. Close (1

% >

Here's how to do this with Microsoft Access:

<% Import Namespace="System.Data.OleDb" %s
< %

Dim custDb As OleDbConnection
Dim cmdSelectCustomers As OleDbCommand
Dim dtrcustorners As OleDbDataReader
custDb = New OleDbConnection(~PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source=c:

ust .mdbv)
cus tDb . Open ()
cmdSelectCustomers = New OleDbCommand("Select custFirstName, custLastName From

custcontact U , custDb)
dtrcustomers = cmdSe1ectCustomers.ExecuteReader~)
If dtrCustomers.HasRows Then

While dtrCustomers.Read0
Response.Write (CStr (dtrcustomers. Item(llcustFirstNamell)) & l1 & -

CStr (dtrcustomers. Item (IIc~stLastNarne~~)))

Response .Write
End While

Else
Response.Write("There are no customers.")

End If
dtrCustomers.Close~)
custDb .Close ()

% >

ASPONET 2.0 Demystified

Retrieving a Specific Row
It is very common that you'll need to look for particular information stored in
a database such as a customer number. To do this, you'll need to include a Where
clause in your query. The Where clause requires two pieces of information: a search
value and the column that contains the search value.

Let's say that you want to retrieve the customer number and customer name for
customer number 1234. Here's the query that you'll need to write:

Select custNumber, custFirstName, custLastName
From custcontact
Where custNumber = '1234'

The Select statement is nearly identical to the query you wrote earlier in this
chapter, except we've included the custNumber column. Remember that columns
that appear in the Select statement are returned by the DBMS.

The From clause is the same as in other queries in that it tells the DBMS to use
the custcontact table.

The Where clause is new to the query. It tells the DBMS to search for 1234 in the
custNumber column. Only rows that have 1234 in the custNumber column are
returned by the DBMS. There is only one row in our example that has 1234 as
a customer number, so only that row is returned.

Replace the query in the previous examples with this query and run the application
to retrieve customer Bob Smith from the DBMS.

Query Parameters
In the preceding example, the value of the search criterion was inserted into the
WHERE clause of the query. In the real world, however, the visitor to your web site
usually enters the search value into a web form. Therefore, you need to have a
placeholder for the search criterion in the query that is replaced by the actual value
that the visitor enters when your application runs.

The placeholder is referred to as a parameter, which is similar to parameters
used for functions (see Chapter 7). You then use the parameter in the query as if the
parameter were the actual value. The value replaces the parameter once the value is
received from the visitor to your web site.

Parameters are represented by a parameter class. You define a parameter by
calling the Addwithvalue() method of the Parameters class as illustrated here:

Interacting with Databases

The cmdselect is used to call the Addwithvalue() method of the Parameters
class, passing it two parameters. The first parameter is the name of the parameter
that you are adding to the parameter collection. The second parameter is the value
that is associated with the parameter. In the preceding example, the value called
txtCustFirstName.Text is the text of the txtCustFirstName textbox that appears on
your web page. You use QCustFirstName in your query just as if @CustFirstName
were an explicit value.

You can specify the data type and maximum number of characters that can be
accepted by the system by modifying the call to Addwithvalue(). Here's how this
is done:

You'll notice that the Addwithvalue() method takes on a slightly different form
than the preceding example. The first argument is the name of the parameter.

The second argument is the data type of the parameter. The data type is auto-
matically chosen for you if you exclude the data type as was done in the preceding
example. The data type must reflect the namespace that is associated with the
DBMS. SqlDbType is used for the SqlDb namespace, which is for Microsoft SQL
Server. The OleDbType is used for Microsoft Access. Namespaces for other DBMSs
have similar data type names.

The third argument is the maximum number of characters that can be assigned to
the parameter. In this example the customer first name can have up to 25 characters.
If you exclude the size parameter, then the maximum size is automatically determined
by the value of the parameter.

Here's the full code for Microsoft SQL Server:

<%@ Import Namespa~e=~~Systern.Data~l %>

<%@ Import Name~pace=~~System.Data.SqlClient" %>

<Script Runat="Serverm>
Sub Button-Click(s As Object, e As EventArgs)

Dim custDb As SqlConnection

Dim cmdSelectCustomers As SqlCommand
Dim dtrcustomers As SqlDataReader
custDb = New SqlConnection(11Server=localhost;uid=myID;pwd=mypassword;

database=customern)

cmdSelectCustomers = New SqlCommand(ItSelect custFirstName, custLastName From
custcontact Where cu~tNumber=@CustNumber~~, custDb)

cmdSelectCustomers.Parameters.AddWithValue ("@CustNumberI1, txtCustNumber.Text)

custDb .Open ()

dtrcustomers = cmdSelectCustomers.ExecuteReader()
While dtrCustomers.Read()

txtCustFirstNarne-text = dtrCustomers("custFirstNameM)
txtCustLastName.text = dtrCustomers(llcustLastNamen)

End While
dtrCustomers.Close()

custDb. Close ()

End Sub
</Script >

ASP.NET 2.0 Demystified

cf orm Runat=I1ServerN >

cbzcustorner Number:

<asp:TextBox ID=lltxtCustNumberM Runat=I1Serverl1 / >

<P>
<asp:Button Text=I1Locatel1 OnClick="Button-Clickn Runat="Servern / >

<P>
cbzcustomer First Name:

<asp:TextBox ID=utxtCustFirstName" Runat=I1ServerH />

<P>
Customer Last Name:

<asp : TextBox ID=lltxtCustLastNameu Runat=I1Serverl1 / s

<P>
</form>

</body>
/html>

This code prompts the web site visitor to enter a customer number into a textbox
and select the Locate button to search the database for the name that is associated
with the customer number. Once the customer number is located, the DBMS
returns the customer first name and customer last name, which are then displayed
in textboxes on the form.

The code begins by defining a button click event handler for the Locate button.
You'll notice that the event handler contains nearly the same code that we discussed
previously in this chapter.

However, there is one difference, in that we define and use the @CustNumber
parameter. The @CustNumber parameter has the text value that the visitor entered
into the txtCustNumber textbox and is compared with the value of custNumber
column of the table in the Where clause of the query. After the query executes, the
code copies the value of the custFirstName and custLastName columns to the
corresponding textboxes that appear on the form.

The web page itself displays three textboxes, for the customer number and
customer first and last names, as well as the Locate button.

Here is the Microsoft Access version of this application:

c%@ Import Namespace="System.Datau %>

<%@ Import Namespace="System.Data.OleDb " %>

<Script Runat="ServerM>
Sub Button-Click(s As Object, e As EventArgs)

Dim custDb As OleDbConnection
Dim cmdSelectCustomers As OleDbCommand
Dim dtrcustomers As OleDbDataReader
custDb = New OleDbConnection(11PROVIDER=Microsoft.Jet.0LEDB.4.0;Data Source=c:

cust . mdbI1)
cmdSelectCustomers = New OleDbC~mmand(~~Select custFirstName, custLastName From

custcontact Where custN~mber=@CustNumber~~, custDb)
crndSelectCustomers.Parameters.AddWithValue (ll@CustNumberll, txtCustNumber.Text)

CHAPTER 10 Interacting with Databases

custDb .Open ()
dtrcustomers = cmdSe1ectCustomers.ExecuteReader~)

While dtrCustomers.Read()
txtCustFirstName.text = dtrCustomers(llcustFirstNameH)

txtCustLastName.text = dtrCustomers("custLastNamen)
End While

dtrCustomers.Close()
custDb .Close ()

End Sub
</Script>
<html>

<head><titlesCustomer Locator</title></head>
<body>

cform Runat="ServerMz
Customer Number:
<brs
<asp:TextBox ID=lltxtCustNumber" Runat="Servertt / >
<P>
<asp:Button Text=I1Locaten OnCli~k=~Button-Click~~ Runat="ServerM / >

<P>
Customer First Name:
<brs
casp:TextBox ID=lltxtCustFirstNameu Runat="ServerU />

<P>
<bsCustomer Last Name:

Inserting a Row
You can insert new information into a database by using the insert statement in
a query. The insert statement inserts a new row and places data into one or more
columns of the row, depending on the nature of your application.

The insert statement requires the table name, the column names, and a value for
each column. Here's the insert statement:

Insert Into custcontact (custNumber, custFirstName, custLastName) Values ('0987', 'Mike',

' Jones)

This statement inserts a new row that contains three columns of the custcontact
table. The names of the columns are specified within the first set of parentheses, each
separated from the next by a comma. The second set of parentheses contains the values
that are to be placed in each column. Notice that the values are in the same order as the
column names. That is, the customer number is placed in the custNumber column, the
customer first name is placed in the custFirstName column, and so on.

ASPONET 2.0 Demystified

It is important to remember that the logon used to access the database must have
proper permission to insert data into the table. Likewise, you must be sure that the data
being inserted into a column is of a compatible data type with the column. For
example, a numeric value must be placed into a column that has a numeric data type.

The following is the complete code that you need to insert a new row into
a Microsoft SQL Server database:

<%@ Import Namespa~e=~System.Data.SqlClient~ %>

< %

Dim custDb As SqlConnection
Dim cmdInsertCustomers As SqlCommand
custDb = New SqlConnection(~Server=localhost;uid=myID;pwd=massword; database=customeru)
cmdInsertCustomers = New SqlCommand("1nsert Into custcontact (custNumber, custFirstName,
custLastName) Values ('0987', 'Mike1, lJonesl)n, custDb)
custDb . Open ()

cmd1nsertCustomers.ExecuteNonQuery~)
custDb. Close ()

% >

Here is the same code for Microsoft Access:

<%@ Import Name~pace=~System.Data.OleDb~~ %>

< %

Dim custDb As OleDbConnection
Dim cmdInsertCustomers As OleDbCommand
custDb = New OleDbConnection(~PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source=c: cust.mdbl')
cmdInsertCustomers = New OleDbCommand("1nsert Into custContact (custNumber,
custFirstName, custLastName) Values (l0987', 'Mike1, 'Jonesl)", custDb)
custDb. Open ()
cmd1nsertCustomers.ExecuteNonQuery~)
custDb. Close (1
% >

Let's incorporate the code into a form so that you can enter information directly
from your web page. This form is very similar to the preceding form example. Here
is the Microsoft SQL Server version:

<%@ Import Namespace="System.Datan % >
<%@ Import Namespa~e=~System.Data.SqlClient~~ %>

<Script R~nat=l~Server~~>
Sub Button-Click(S As Object, e As EventArgs)

Dim custDb As SqlConnection
Dim cmdInsertCustomers As SqlCommand
custDb = New SqlConnection(1~Server=localhost;uid=myID;pwd=mypassword;

database=customer")
cmdInsertCustomers = New SqlCommand("1nsert Into custcontact (CustNumber,

CustFirstName, CustLastName) Values (txtCustNumber.Text, txtCustFirstName.text,
txtCustLastName .text) M , custDb)

cmdInsertCustomers.Parameters.AddWithValue(I1@CustNumber", txtCustNumber.Text
cmdInsertCustomers.Parameters.AddWithValue("@CustFirstNarne", txtCustFirstName.Text

custDb . Open ()
cmd1nsertCustomers.ExecuteNonQuery~)

custDb. Close ()

Interacting with Databases

End Sub
</Script>
chtml>

<head>ctitlesNew Customer</title></head>
<body>

<form Runat="ServerU>
Customer ~umber:

<asp:TextBox ID=ntxtCustNumberu Runat=I1Serveru /s
Customer First Name:
<brs
<asp:TextBox ID=lltxtCustFirstNamell Runat=I1Server" / >

<P>
<br /s
Customer Last Name:

<asp:TextBox ID=MtxtCustLastNamell Runat="ServerN / s

<P'
<P>
<asp:Button Text="Add Customer" OnCli~k=~Button-Click" Runat=IrServerl1 / >

<P'
</form>

</body>
</html>

Here is the Microsoft Access version:

<%@ Import Namespace=~System.Datan %>
<%@ Import Namespace=~System.Data.OleDb " %s
<Script Runat="Servern>

Sub Button-Click(S As Object, e As EventArgs)

Dim custDb As OleDbConnection
Dim cmdInsertCustomers As OleDbCommand
custDb = New OleDbConnection(~PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source=c:

cust . mdbt t)
cmdInsertCustomers = New OleDbCommand("1nsert Into custcontact (CustNumber,

CustFirstName, CustLastName) Values (txtCustNumber.Text, txtCustFirstName.text,
txtCustLastName.text)", custDb)

cmdInsertCustomers.Parameters.AddWithValue("@CustNumberW, txtCustNumber.Text)

cmdInsertCustomers.Parameters.AddWithValue("@CustFirstNamen, txtCustFirstName.Text
1

cmdInsertCustomers.Parameters.AddWithValue(l1@CustLastNameM, txtCustLastName.Text)

custDb. Open ()
cmd1nsertCustomers.ExecuteNonQuery~)

custDb . Close ()
End Sub
</Scripts
<html>

<head>ctitlesNew Customer</titlez</head>
<body >

<form Runat="Servern>
cb>Customer Number:c/bs
cbrz
<asp:TextBox ID=ntxtCustNumberu Runat=I1Serverl1 / >

<br / >

cb>Customer First Name:

ASPONET 2.0 Demystified

Customer Last Name:

casp:TextBox ID="txtCustLastName" Runat="Servern / >

<P>
<P>

<asp:Button Text=I1Add Customeru OnClick="Button-Click" Runat="Servern / >

<P>
</form>

</body>
</htrnl>

Updating a Row
You can change data already in a database from within your application by creating
an update query. An update query replaces the existing value in a column with the
value that you specify in the query.

The update query must contain four pieces of information. These are:

Table name Name of the table that contains the rows that are being updated

Column name(@ Name(s) of the columns that are being updated

Value(s) The value(s) that is replacing the current value of the column(s)

Selection criteria Identify the row(s) that you want updated

Here is the update query. We are telling the DBMS to find the row in the cust-
Contact table where the custNumber is 1234. Once it is found, replace the content
of the custFirstName with Bobby.

Update custcontact SET custFirstName = 'Bobby'
Where custNumber = "1234"

Here is how to update a row in Microsoft SQL Server by using a customer num-
ber and customer first name. This example is very similar to the preceding form
example in this chapter except that the query is different.

<%@ Import Namespace="System.Data" % >

<%Q Import Namespace="System.Data.SqlClientg %>

<Script Runat="ServerM>
Sub Button-Click(S As Object, e As EventArgs)

Dim custDb As SqlConnection
Dim cmdUpdateCustomers As SqlCommand
custDb = New SqlConnection(~Server=localhost;uid=myID;pwd=m~assword;

database=customer")
cmdUpdateCustomers = New SqlCommand(I1Update custcontact SET custFirstName =

txtCustFirstName.Text Where custNumber = @CustNumber", custDb)
cmdUpdateCustomers.Parameters.AddWithValue("@CustNumberU, txtCustNumber.Text)

cmdUpdateCustomers.Parameters.AddWithValue("@CustFirstName", txtCustFirstName.Text

1

CHAPTER 10 Interacting with Databases

cmdUpdateCustomers.Parameters.AddWithValue(I1@CustLastNamel1, txtCustLastName.Text)

custDb .Open ()
cmdUpdateCustomers.ExecuteNonQuery~)

custDb .Close ()
End Sub
</Script >

<html>
<head><title>New Customer</title>c/head>
<body>

<form R~nat=~Server">
Customer Number:</bs

casp:TextBox ID="txtCustNumberI1 Runat=I1Serverv />
<BR /s
Customer First Name:

<asp:TextBox ID=lltxtCustFirstNamev R~nat=~~Server" / >

<P>
<asp:Button Text=I1Update Customer" OnCli~k=~Button-ClickM Runat="ServerU /s

<P>
</form>

</body>
c/html>

Here is the Microsoft Access version:

<%@ Import Name~pace=~~System.Data~~ %>

<%@ Import Namespace=I1System.Data.OleDb %>
<Script Runat="ServerI1>

Sub Button-Click(S As Object, e As EventArgs)

Dim custDb As OleDbConnection
Dim cmdUpdateCustomers As OleDbCommand
custDb = New OleDbConnection(nPROVIDER=Microsoft.Jet.0LEDB.4.0;Data Source=c:

cust .mdbI1)
cmdUpdateCustomers = New OleDbComrnand("Update custcontact SET custFirstName =

txtCustFirstName.Text Where custNumber = @C~stNumber~~, custDb)
cmdUpdateCustomers.Parameters.AddWithValue(I1@CustNumberl1, txtCustNumber-Text)
cmdUpdateCustomers.Parameters.AddWithValue(ll@CustFirstNamell, txtCustFirstName.Text

)
cmdUpdateCustomers.Parameters.AddWithValue(I1@CustLastNamel1, txtCustLastName.Text)

custDb . Open ()
cmd~pdate~ustomers.~xecute~onQuery~)

custDb . Close ()
End Sub
</Script >

chtmls
<heads<title>New Customer</title></head>
<body >

cform R~nat=~~Server">
Customer Number:

casp:TextBox ID=utxtCustNumberll Runat="ServerU />

Customer First Name:

<asp:TextBox ID=ntxtCustFirstName" R~nat=~IServer" />

ASP.NET 2.0 Demystified

<P>
Customer Last Name:

Deleting a Row
One or more rows can be removed from a table by using the Delete statement in
a query. The Delete statement requires the name of the table and a Where clause
that identifies the row or rows that are to be deleted.

Let's say that we want to delete the record for customer 1234. Here's the Delete
statement that we'll send to the DBMS:

Delete custcontact Where custNurnber = I11234l'

This statement tells the DBMS to find the row in the custcontact table that has
1234 in its custNumber column and then delete the row. Nothing happens if the
row isn't found. Keep in mind that the login used to contact to the DBMS must be
authorized to delete the row; otherwise, the row will not be deleted.

Here's how to use a form to delete a row in Microsoft SQL Server:

c%@ Import Namespa~e=~System.Data~ %>

c%@ Import Namespa~e=~System.Data.SqlClient" %>

<Script Runat="ServerN>
Sub Button-Click(S As Object, e As EventArgs)

Dim custDb As SqlConnection
Dim cmdDeleteCustomers As SqlCommand
custDb = New SqlConnection(~Server=localhost;uid=myID;pwd=m~assword;

database=customerM)
cmdDeleteCustomers = New SqlCommand("De1ete custcontact Where custNumber =

@CustNumber1I, custDb)
cmdDeleteCustomers.Parameters.AddWithValue "@CustNumber", txtCustNumber.Text)

custDb .Open ()
cmdDe1eteCustomers.ExecuteNonQuery~)

cus tDb . Close ()
End Sub
</Script>
<html>

<head><title>New Customer</title></head>
<body>

<form Runat="ServerM>
Customer Number:

<asp:TextBox ID="txtCustNumbern Runat="ServerU / >

Interacting with Databases

<P>
<asp:Button Text="Delete Customer" OnCli~k=~Button-Clickn Runat="ServerM / >

<P>

Here is the Microsoft Access version:

<%@ Import Namespace="System.DataM %>
<%@ Import Namespa~e=~System.Data.OleDb %>

<Script R~nat=~Server">
Sub Button-Click(S As Object, e As EventArgs)

Dim custDb As OleDbConnection
Dim cmdDeleteCustomers As OleDbCommand
custDb = New OleDbConnection(11PROVIDER=Microsoft.Jet.0LEDB.4.0;Data Source=c:

cust .mdbu)
cmdDeleteCustomers = New OleDbCommand("1nsert custcontact SET custFirstName =

txtCustFirstName.Text Where custNumber = @CustNumberu, custDb)
cmdDeleteCustomers.Parameters.AddWithVa~ue(wOCustNumber", txtCustNumber.Text 1
custDb .Open (

cmdDeleteCustomers.ExecuteNonQuery~)
custDb. Close ()

End Sub
</Script>
<html>

<head>ctitle>New Customer</title></head>
<body>

<form Runat="Servern>
Customer Number:

<asp:TextBox ID=utxtCustNumber" Runat="Servern / >

<P>
<asp:Button Text="Delete Customer" On~lick=~~utton-Click" Runat="Server" / >

<P>
</form>

</body>
</html>

Stored Procedures
Throughout this chapter you learned how to create simple queries to perform
operations that are common to commercial web sites. These queries are created in
the event handler in your web page and are sent to the DBMS for processing.

Commercial web sites typically use complex queries that perform multiple
operations such as updating two or more tables whenever a new customer is added
to the database.

ASPONET 2.0 Demystified

Complex queries can become rather long, and sending them from the web page
to the DBMS is time-consuming. Although the time it takes to send the query from
the web page to the DBMS might seem fast to us, it can actually slow down
processing if you consider that a commercial web site might need to process many
requests each second.

A common way to increase speed is by using a stored procedure. A stored
procedure is a query that resides in the DBMS and can be called from your web
page. Think of a stored procedure as a function or procedure (see Chapter 7) that is
stored in the DBMS.

Creating a Stored Procedure
A stored procedure is defined in a query using the Create Procedure statement.
You can enter the query directly into an interactive software tool provided by the
DBMS such as the Microsoft SQL Server Enterprise Manager or Query Analyzer.
Alternatively, you can execute the query from your application by using the
ExecuteNonQuery() function, which is illustrated in examples throughout this
chapter. It is important to understand that not all DBMSs support stored proce-
dures, and therefore, you'll need to check with the DBMS manufacturer before
incorporating stored procedures in your application.

The Create Procedure statement requires a unique name, SQL statements that are
to execute when the stored procedure is called, and a return value if required by
your application. You'll find that some stored procedures, such as those used to
insert a new row into the database, don't require a return value, while others, such
as procedures for counting the number of customers, do require one.

Let's take a look at a simple stored procedure that will count the number of
customers there are in the custcontact table. We'll call this HowManyCustomers:

Create Procedure HowManyCustomers
As
Dim intNumCustomers As Integer
intNumCustomers = Select Count (*) From custcontact
Return (i IntNumCustomers)

Statements below the As keyword form the query that you would otherwise run
from your application. In this example, we declared a variable called intNumCus-
tomers, which then receives the results from the query.

The Select statement in the query uses the SQL Count() function, which you'll
learn more about in the next chapter. An asterisk is placed within the parentheses.
This is a wildcard character that tells the DMBS to use any column to count the
number of rows in the table. As you'll see in the next chapter, you can replace the

CHAPTER 10 Interacting with Databases

asterisk with a column name. As you'll remember from other examples, the From
clause specifies the name of the table. Return is used to specify the value that is
returned to the SQL statement in the web page that called the stored procedure.

Calling a Stored Procedure
You call a stored procedure from your web page by using the name of the stored pro-
cedure. This is illustrated in the next example, which calls the HowManyCustomers
stored procedure that is defined in the preceding section of this chapter.

This example is similar to others you wrote in this chapter. However, there are
two new twists that you'll need to learn. The first is calling the stored procedure, and
the other is using the value that the stored procedure returns to your web page.

Here's how to call the stored procedure. Notice that the query is simply the name
of the stored procedure:

Dim cmdTotalCustomers As SqlCommand
cmdTotalCustomers = New SqlCommand(~HowManyCustomers~, custDb)

Accessing the return value requires a few steps as shown here. First you need to
declare a variable as parameter. We call this pannTotalCustomers. Next you must add
a parameter using the Add function, which you learned previously in this chapter. We
call the parameter Returnvalue and declare it as an Int data type.

Dim parmTotalCustomers As SqlParameter
parmTotalCustomers = cmdTotalCustomers.Parameters.Add("ReturnVa1ue1, SqlDbType.Int)

Next we need to retrieve the return value. The initial step is to declare a variable
that will hold the return value. We called this intTotalCustomers. Next, we associate
the return value with the parameter that we previously created. The value returned
from the stored procedures is assigned to the parameter. We then need to assign the
value of the parameter to the variable. The variable is then used within the web page.

Dim intTotalCustomers As Integer
parmTota1Customers.Direction = ParameterDirection.ReturnVa1ue
intTotalCustomers = cmdTotalCustomers.Parameters("ReturnValueU) .Value
Response.Write(I1Tota1 Number of Customers: c%=intTotalCustomers%>")

Here is the complete code:

<%@ Import Namespace="System.Datan %>

<%@ Import Name~pace=~System.Data.SqlClient" % >

< %

Dim custDb As SqlConnection
Dim cmdTotalCustomers As SqlCommand
Dim parmTotalCustomers As SqlParameter
Dim intTotalCustomers As Integer
custDb = New SqlConnection(~Server=localhost;uid=myID;pwd=massword; database=customern)
cmdTotalCustomers = New SqlCommand(llHowManyCustomers", custDb)

ASPONET 2.0 Demystified

cmdTotalCustomers.CommandType = CommandType.StoredProcedure
parmTotalCustomers = cmdTotalCustomers.Parameters.Add("ReturnValuen, SqlDbType.Int)

parmTota1Customers.Direction = ParameterDirection.ReturnVa1ue
cus tDb . Open ()
cmdTotalCustomers.ExecuteNonQuery~)
intTotalCustomers = cmdTotalCustomers.Parameters("ReturnValueM) .Value
custDb. Close ()
% >

Response.Write(ItTota1 Number of Customers: < % = i n t T o t a l C u s t ~ m e r s % > ~ ~)

Passing Parameters to a Stored Procedure
Many times you'll need to provide a stored procedure information so that the DBMS
can process the stored procedure; for instance, you must provide customer information
to a stored procedure that inserts a new customer into the customer contact table.

Information is passed to a stored procedure by way of a parameter. Each parameter
must have a unique name and a data type. A parameter is then used within the stored
procedure.

Let's create a stored procedure called AddCustomer and declare three parameters
to hold a customer number and a customer name. Parameters are declared within
the French braces between the name of the stored procedure and the As keyword,
as shown in the following example. You'll notice that the Insert statement in this
example is nearly identical to the Insert example that you previously created in this
chapter, except that the parameter names are used as values. That is, values that are
passed to the stored procedure are assigned to the parameters, and the parameters
are used as the values that are inserted into the table.

Create Procedure AddCustomer

L

BCustNumber varchar(5), BCustFirstName varchar(30), @CustLastName varchar(30)

1
As
Insert custcontact (custNumber, custFirstName, custLastName) Values (BCustNumber,
BCustFirstName, BCustLastName)

The next example shows how to pass parameters to the AddCustomer stored
procedure. Notice that the stored procedure is called the same way you call a
stored procedure that doesn't have parameters. However, we use the Add() function
to create the three parameters required by the stored procedure. Here is where we
insert the actual values that will be inserted into the table.

< %@

< %@

< %

Dim
Dim
Dim

Import Namespa~e=~~System.Data~ %>
Import Name~pace='~System.Data.SqlClient~ %>

custDb As SqlConnection
strInsert As String
cmdInsertCustomers As SqlCommand

Interacting with Databases

custDb = New SqlConnection("Server=localhost;uid=myID;pwd=mypassword; database=customerM)
cmdInsertCustomers = New SqlCommand(flAddCustomeru, custDb)
cmdInsertCustomers.CommandType = CommandType.StoredProcedure
cmdInsertCustomers.Parameters.AddWithValue("@CustNumber", " 4 5 6 7 8 ")

cmdInsertCustomers.Parameters.AddWithValue("@CustFirstName", "MaryI1)
cmdInsertCustomers.Parameters.AddWithValue("@CustLastName ", "Roberts")
custDb . Open ()

cmd1nsertCustomers.ExecuteNonQuery~)
custDb. Close ()
% >

Looking Ahead
You can link your web page to a DBMS by using ADO.NET. ADO.NET is a com-
ponent of .NET. ActiveX Data Objects have functions and properties that you can
use in your application to interact with a DBMS.

There are many popular DBMSs on the market, each requiring a unique ActiveX
Data Object. You let the ASP.NET engine know which ActiveX Data Object you
want to use by importing the namespace that corresponds to the DBMS. Anamespace
organizes classes in a hierarchy of classes to prevent naming conflicts.

In order to interact with a DBMS, you import the namespace, create an instance of
the connection class, and then open the connection to the DBMS. Once the connection
is open, you can prepare and then send a query.

A query is a set of instructions written using SQL that direct the DBMS to do
something. You use a query to request information from the database, insert new
information into the database, modify existing information, and delete information.
You can perform any of these tasks as long as the login used by your application has
authorization to perform them.

You use a reader function to access information returned by the DBMS. The
reader enables you to access the columns that you requested from the DBMS.

Each time you execute a query from your web page, the SQL statements that
compose the query are sent to the DBMS for processing. This is inefficient, espe-
cially if many queries are being sent each second to the DBMS, as in the case of
a popular e-commerce web site.

A more efficient method of executing queries is to store the query in the DBMS
as a stored procedure, and then send the DBMS the name of that procedure each
time you want the procedure executed.

In this chapter you learned how to interact with a DBMS using simple queries.
However, real-world applications require more complex queries than those you
learned about in this chapter. Therefore, we'll focus on how to create more complex
queries in the next chapter.

ASPONET 2.0 Demystified

Quiz
1. A namespace organizes classes in a hierarchy of classes to prevent naming

conflicts.

a. True

b. False

2. You open a connection to a database by using

a. ConnectDB

b. DBConnection

c. DBConnect

d. None of the above

3. The best place to open a connection to a database is

a. The On-Click event handle

b. The Page-Load subroutine

c. In the SQL query

d. In the query

4. Which SQL statement specifies the information you want returned to your
application?

a. Return

b. Where

c. From

d. Select

5. Which SQL statement sets the search criteria for rows that contain information
you want returned to your application?

a. Return

b. Where

c. From

d. Select

6. What statement identifies the database that contains information you want
returned to your application?

a. Where

b. From

Interacting with Databases

c. Select

d. None of the above

7. A stored procedure is sent from your web page to the DBMS each time you
execute a query.

a. True

b. False

8. You cannot pass information to a stored procedure.

a. True

b. False

9. Your application cannot determine the number of rows that were returned
by the DBMS.

a. True

b. False

10. A query parameter is assigned values that visitors enter into a form on your
web site.

a. True

b. False

Answers
1. a. True

2. d. None of the above. You use the Connection object available for
your database type. For SQL Server, it is SqlConnect; for Access,
OleDbConect; etc.

3. b. The Page-Load subroutine

4. d. Select

5. b. Where

6. d. None of the above

7. b. False

8. b. False

9. b. False

10. a. True

This page intentionally left blank

CHAPTER

SQL

Today’s ASP.NET web applications interact with information stored in a database.
In the last chapter you learned how to connect your application to database manage-
ment software. You also learned how to request and store data in a database by writing
simple queries written in SQL.

Real-world ASPNET web applications require more sophisticated queries than
those you learned about in Chapter 10. These queries retrieve information from
multiple tables, perform complex calculations, and efficiently organize information
so that it can be displayed on your web page.

This chapter focuses on writing those sophisticated queries. You’ll learn how to
create queries that perform commonly used tasks in a typical application. In order
to run these queries, insert them into the code you wrote in the previous chapter.

ASPONET 2.0 Demystified

Tables
Database management system (DBMS) software enables you to create a table
through an interactive tool that comes with the DBMS or by a query. The query uses
the Create Table statement to name the table and define its columns. Each column
is defined by a name and data type.

Let's say that you want to create a table called CustomerAddress that has the
following six columns:

CustomerNumber The customer number is a string of a maximum
of 30 characters.

Customerstreet The customer street is a string of a maximum of
30 characters.

CustomerCity The customer city is a string of a maximum of
30 characters.

Customerstate The customer state is a string of a maximum of
2 characters.

CustomerZip The customer ZIP code is a string of a maximum of
10 characters.

CustomerCtry The customer country code is a string of a maximum
of 5 characters.

Here's the query that creates this table:

CREATE TABLE CustomerAddress (

Cus t omerNumber CHAR (3 0) ,
CustomerStreet CHAR(30),
CustomerCity CHAR (30) ,
Customerstate CHAR(2),
CustomerZip CHAR(10),
CustomerCtry CHAR(5))

You'll probably want to make sure that each new row has a customer number;
otherwise, you won't be able to identify the customer. The easiest way to ensure that
each row has a customer number is to make the customer number column required.
You do this by specifying that the CustomerNumber column is NOT NULL when
you create the table. The DBMS prevents a new row from being inserted into the
table unless there is a customer number.

HAPTER 11 SQL

Here's how this is done:

CREATE TABLE CustomerAddress (

CustomerNumber CHAR (3 0) NOT NULL,
CustomerStreet CHAR (30) ,
CustomerCity CHAR(30),
Customerstate CHAR(2),
CustomerZip CHAR (10) ,
CustomerCtry CHAR(5))

There will be times when you want to set a default value for a column. A default
value is a value that the DMBS enters into a column if the new row doesn't have a
value for the column. A good example is the customer country code. Suppose that
nearly all your customers are based in the United States. It therefore makes sense to
make the USA country code the default value for the customer country code column.

Here's how you do this:

CREATE TABLE CustomerAddress (

CustomerNumber CHAR (3 0) NOT NULL,
CustomerStreet CHAR (30) ,
CustomerCity CHAR (30) ,
Customerstate CHAR(2),
CustomerZip CHAR (10) ,
CustomerCtry CHAR(5) DEFAULT \USA1)

As you'll recall from the preceding chapter, a primary key is used to uniquely iden-
tify each row of a table. You can designate a primary key for your table by using the
Constraint clause as shown in the following example. The Constraint clause requires
that you give it a name and designate a column as the primary key. In this example,
the CustomerNumber column is the primary key and we call it CustAddflK.

CREATE TABLE CustomerAddress (

CustomerNumber CHAR(30) NOT NULL,
CustomerStreet CHAR (30) ,
CustomerCity cHAR(~o),
Customerstate CHAR (2) ,
CustomerZip CHAR (10) ,
CustomerCtry CHAR(5) DEFAULT 'USA',
CONSTRAINT CustAddr-PK PRIMARY KEY (CustomerNumber))

During development of your application, you'll probably find yourself experi-
menting by creating tables that eventually do not end up in the database of your
finished application. You can get rid of those unwanted tables by sending a query
telling the DBMS to drop the tables.

ASPONET 2.0 Demystified

The decision to drop a table shouldn't be made lightly, because once a table is
dropped, you cannot recover the table. Instead, the table must be re-created and the
data must be reinserted into the table. In addition to losing data elements stored in
the table, dropping a table may also affect the integrity of the database and tables
that relate to values in the dropped table.

You remove a table from a database by using the Drop Table statement with the
name of the table that you want dropped from the database, as shown here:

DROP TABLE CustomerAddress

Indexing
An index is used to speed searches through a table
a book to find the page that contains a keyword.

much as you use an index of
However, instead of finding

a page, an index for a table presents an ordered view of the table, enabling you to
find the row that contains the keyword.

You can create a secondary index, or a clustered index. A secondary index uses
a column other than the primary key for the index. A clustered index uses two or
more columns as the key of the index.

You create both types of index by using a Create Index statement in a query, as
shown here. You must give the index a name and then designate the column(s) that
will be indexed. This example creates a secondary index called CustZip that in-
dexes the CustomerZip column of the CustomerAddress table.

CREATE INDEX CustZip
ON CustomerAddress (CustomerZip)

A clustered index is created practically the same way as a secondary index, ex-
cept you designate two or more columns for the index. Let's say that you want to
create a clustered index using CustomerLastName and CustomerFirstName from a
CustomerContact table. Here's how you write the query:

CREATE INDEX CustName
ON custcontact (custLastName, custFirstName)

Too many indexes can actually slow down the performance of the DBMS,
because each index is updated every time a new row is inserted into the table.
Therefore, any unnecessary indexes should be dropped.

CHAPTER 11 SQL

You drop an index by using the Drop Index statement, as shown here:

DROP INDEX CustName ON CustomersContact

Inserting a Row
You'll remember from the previous chapter that the Insert Into statement is used to
insert a new row into a table. You need to provide the column name and the values
that will be inserted into those columns.

Let's say that we want to insert a new row into the CustomerAddress table. Here's
how this is done: Notice that we didn't insert a value into the CustomerCtry col-
umn, which is the customer country, because previously in this chapter we designed
a default value for this column. So if we don't insert a value, the DBMS will auto-
matically insert USA into the CustomerCtry column.

INSERT INTO CustomerAddress
(CustomerNumber, CustomerStreet, CustomerCity, Customerstate,
CustomerZip)

VALUES (112345r,1121 West Street',tAllendalerItNJ1,1076601)

Selecting Data from a Table
We touched upon how to select information from a table in the last chapter. We'll
go into more detail in this section and illustrate how to retrieve more complex in-
formation. Before beginning, let's expand the CustomerAddress table to include the
customer name. The new table should be called Customers, and here are the col-
umns you'll need:

CustomerNumber CHAR(30) NOT NULL

CustomerFirstName CHAR(5O)

CustomerLastName CHAR(5O)

CustomerStreet, CHAR(30)

CustomerCity CHAR(30)

*Customerstate CHAR(2)

CustomerZip CHAR(10)

CustomerCtry CHAR(5) DEFAULT 'USA'

ASPONET 2.0 Demystified

Once you create the table, then insert the following rows into it:

Customer-
Number

87634 1 Tom

Customer-
FirstName

54321

Customer-
LastName

Mark

Jones

Smith

Jones

Russell

Allen

Russell

Customer-
Street Customercity

5 First New York City

8 Third Dallas
street

5 First New York City
Street

18 Fifth Chicago
Street

3 Sixth 1 Los Angeles
street

Customer-
State Customerzip CustomerCtry

07555 I USA

US* 82272

US* 45003

82272 1 USA

You can select all the data contained in the table by using the following query.
The asterisk is a wildcard character telling the DBMS to return all the columns. All
rows are returned because we didn't include a WHERE clause:

SELECT *
FROM Customers

Specific columns are selected by using the name of the column in the Select
statement. Here's how we retrieve customer names:

SELECT CustomerFirstName, CustomerLastName
FROM Customers

We can retrieve selected rows by specifying a condition in the WHERE clause of
the query. Suppose we want to retrieve all the information about the customer whose
last name is Jones. Here's the query we'd need to write:

SELECT CustomerNumber, CustomerFirstName, CustornerLastName, Customerstreet, CustomerCity,
Customerstate, CustomerZip, CustomerCtry
FROM Customers
WHERE CustomerLastName = IJones1

In the real world, rows are selected according to multiple conditions such as a
combination of a customer's first and last names. Multiple conditions are defined in
the WHERE clause and are combined by using AND, OR, or NOT.

Let's say that we want to retrieve information about Bob Jones. We'll need two
conditions in the WHERE clause. The first specifies the first name, and the next

CHAPTER 11 SQL

specifies the last name. These conditions are then joined together using AND to
form one compound expression. Both conditions must be true; otherwise, the row
isn't returned to your application.

Here's the query:
SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE CustomerFirstName = 'Bobr AND CustomerLastName = 'Jonesl

The OR clause is used if we want a row returned if either the first condition is
true or the second condition is true. A row isn't returned only if neither condition is
true. Let's say that we want information about either Bob or Mary. Here's the query
we'd need to write:

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE CustomerFirstName = 'Bob1 OR CustomerFirstName = 'Maryl

We can exclude information by using the NOT clause in the condition. For example,
suppose that we want information about all the customers except for Bob Jones.
Here's what we need to do. First, we create the compound expression where we
specify Bob as the CustomerFirstNarne and Jones as the CustomerLastName.

Next, we place a NOT in front of the compound expression. The NOT tells the
DBMS to reverse the logic of the expression. That is, if the value of the Customer-
FirstName column is Bob and the value of the CustomerLastName column is Jones,
then don't return the row.

Here's the query:
SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE NOT (CustomerFirstName = 'Bob' AND CustomerLastName = 'Jonesl)

Relational Operators
Relational operators can be used to create a condition that evaluates a range of val-
ues. Relational operators are less than (c), greater than (>), less than or equal to
(C=), and greater than or equal to (>=).

Before using these operators, let's revise the Customer table by including a Sales
column, which is a NUMERIC data type. Inset the following sales data into the apro-
priate row of the table. We'll use these values to select rows to return to our appli-
cation as shown in this table.

ASP.NET 2.0 Demystified

Customer-
Number

12345

67890

09876

54321

53465

87634

Bob I Jones

Customer-
I FirstName

sam I Jones

Customer-
LastName

Russell 7
I Allen

7 Russell

Customer- I Customer- (Customer- I Customer- (Customer-
Street City State Zip Ctry

5 First New York NY 07555 USA
Street City

Dallas 75553
Street

5 First 07555
Street

3 Sixth 82272 USA
Street Angeles

18 Fifth Chicago IL 45003 USA
Street

3 Sixth Los CA 82272 USA
Street Angeles

Sales

50000

20000

50000

30000

40000

30000

Let's begin by selecting customers who have sales of $50,000. Two customers
are returned. These are Bob Jones and Sam Jones, both of whom live at the same
address. Other customers are excluded because they don't have sales of $50,000.

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE Sales = 50000

Now let's take a look at the less-than operator. We'll use it in the next example to
retrieve customers whose sales are less than $50,000. Four rows are returned-all
but the two Joneses.

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE Sales c 50000

The greater-than operator is used in a similar way in the next example, except
only customers whose sales are greater than $40,000 are returned. If you run this,
only the two rows containing the Joneses are returned, because the other customers
have sales less than or equal to $40,000.

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE Sales > 40000

In the previous examples, customers whose sales were greater than $40,000 were
excluded. However, you can include those customers by inserting an equal sign.
The expression is then less than or equal to or greater than or equal to, as illustrated
in the next two examples.

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry

CHAPTER 11 SQL

FROM Customers
WHERE Sales <= 50000

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE Sales >= 40000

Another way to select rows using a range of values is to use the Between opera-
tor. The Between operator requires you to provide a range of values. Rows whose
values fall within the range are returned to your application.

The range must be a sequential series of values such as from 100 to 200. All
values within the range including the first and last values are considered when the
DBMS evaluates the value of a column. That is, a row with the value of 100 or the
value of 200 is returned.

Here's how you use the Between operator:
SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE Sales BETWEEN 20000 AND 39999

Sometimes you won't know the exact value stored in a column, but you'll know
a portion of the value. For example, you may know that a customer's last name
begins with the characters Smi. However, the name could be Smith or Smite.
You can have the DBMS search for a partial match and return those customers
whose last name is like Smi. You do this by using the Like operator.

The Like operator requires you to use a wildcard character in place of unknown
characters. Here are the wildcards that are used with the Like operator:

Underscore (-) A single-character wildcard. For example, if you are
unsure if the customer's last name is Anderson or Andersen, you can use the
underscore in place of the character that is in question, such as Anders-n.

Percent (%) A multicharacter wildcard used to match any number of
characters. For example, Smi% is used to match a value of a column where
the first three characters are Smi, followed by any other characters.

Here's the query you'd write to find customers whose last name begins with Smi:
SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE CustomerLastName LIKE 'Smi%'

A common real-world problem that you will encounter is to identify rows that
are missing data in a column. You can then update the table with the missing data.

For example, which customers don't have a ZIP code on file? A column that
doesn't have a value is referred to as NULL. NULL means that the column is de-
void of any value. Don't confuse NULL with zero. Zero is a value.

ASPONET 2.0 Demystified

If you want rows returned that have a column whose value is NULL, then you
use the IS NULL operator in a query. The next example returns customers whose
CustomerZip column is NULL-that is, devoid of any value:

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE CustomerZip IS NULL

Another real-world problem that you'll encounter is having too many rows re-
turned to your application. Let's say that you want to send a flyer to your customers.
The Customers table has names and addresses of all your customers. You could
simply retrieve all rows from the table; however, suppose more than one customer
lives at the same address. This means that you'll be sending multiple copies of the
flyer to the same address.

A better approach is to send one flyer to each distinct address. You can ask the
DBMS to filter duplicate addresses by using the Distinct modifier. Here's what you
need to write:

SELECT DISTINCT CustomerStreet, CustomerCity, CustomerState, CustomerZip, CustomerCtry

FROM Customers

Still another common problem occurs when you need to select rows according
to a set of values that are not in a sequence. Let's say that a sales representative
is going to be on the road and wants to visit customers within specific ZIP codes.
The ZIP codes are in no particular order.

The solution is to use the In modifier. The In modifier is used to define a set of
values. The set is then compared to the value of a column that you specify in the
query. The row is returned if the value is within the set.

Here's this query. If the value of the sales column is $20,000 or $30,000 or
$40,000, then the row is returned:

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE Sales IN (20000, 30000, 40000)

You can also reverse this process by using the Not In modifier. The Not In
modifier tells the DBMS to return the row if the value of the column is not one of
the values in the set. Here's a rewrite of the previous example. Rows whose sales
column isn't $20,000 or $30,000 or $40,000 are returned:

SELECT CustomerNumber, CustomerFirstName, CustomerLastName, CustomerStreet, CustomerCity,
CustomerState, CustomerZip, CustomerCtry
FROM Customers
WHERE Sales NOT IN (20000, 30000, 40000)

Updating Tables
You can change information already in a table by using the Update statement, which
was introduced in the last chapter. Before exploring how to update a table, let's re-
vise the Customers table so that you'll be able to follow along with examples shown
within this section. Insert the following data into the table:

CustomerNumber CHAR(30)

CustomerFirstName CHAR(30)

CustomerLastName CHAR(30)

Customerstreet CHAR(30)

CustomerCity CHAR(30)

Customerstate CHAR(2)

CustomerZipCode CHAR(10)

Discount LONG

Price LONG

Discountprice LONG

Customer-
Number

Smith 8 Third
Street

Sam I Jones l 5 First
Street

Russell
Street

Kelly Russell 32 Fourth
Street

City State

07555
City

Dallas I Tx 1 75553 1 20

07555

82272
Angeles

45003 15

Los CA 82272 15
Angeles

Price

As you'll recall from the preceding chapter, the Update statement is used to
change values in one or more columns in one or more rows of the table. The Update
statement requires that you provide the name of the table and a Set clause that iden-
tifies column names and new values that will be placed in the column. The new
values overwrite the column's existing values. An Update statement updates all
rows unless you include a WHERE clause, which specifies a condition that must
exist in a row before the row is updated.

Discount-
Price

ASP.NET 2.0 Demystified

Let's say that you want to change Bob Jones' address to 5 Main Street. Here's
what you need to write in the query:

UPDATE Customers
SET Customerstreet = l5 Main Street1
WHERE CustomerFirstName = 'Bob1 and CustomerLastName = 'Jones'

Only one row is updated by the previous query because only one customer is named
Bob Jones. If another customer has the same name, then his street address would also
be changed. In the real world, a customer number rather than a customer name is
used to identify a customer so that only the proper customer information is updated.

Sometimes, you'll want to update multiple rows by replacing a sales representa-
tive with a new one. You could find rows that contain the current sales representative
and then replace it with the new sales representative.

There are four common WHERE clause expressions that are used to update mul-
tiple rows of a table. These are

The IN test Updates only if a value matches a value in the IN clause.

The IS NULL test Rows that don't have a value in the specified column are
updated when the IS NULL operator is used in the WHERE clause expression.

The comparison test You've seen this used in the preceding example.

All rows A query can direct the DBMS to update the specified column in
all rows of a table by excluding the WHERE clause in the query.

Be cautious whenever you execute a query that updates multiple rows, because an
error in a query is multiplied by the number of rows in a table.

The IN clause provides two or more values that are compared to the value of the
designated column in the IN clause. Rows whose columns contain one of these
values are updated by the UPDATE statement. This is shown in the next example,
where the value of the Discount column is changed to 25 if the current value of the
Discount column is either 12 or 15:

UPDATE Customers
SET Discount = 25
WHERE Discount IN (12,15)

The IS NULL test determines if the column is NULL, that is, if the column is
devoid of any value. If so, then the column is updated. The next example uses the
IS NULL test to update the Discount column if there isn't a last name in the Custo-
merLastName column:

UPDATE Customers
SET Discount = 0
WHERE CustomerLastName IS NULL

HAPTER 11 SQL

Another common use of the Update statement is to change the value of a column
according to a calculation. For example, we can calculate the discounted price
of an item by using the value of the Price column and the value of the Discount
column. The result of the calculation can then be inserted into the DiscountPrice
column.

Here's how this is done:

UPDATE Customers
SET DiscountPrice = Price * ((100 - Discount) / 100)

Deleting Data from a Table
One or more rows can be removed from a table by using the Delete From statement.
Before doing so, however, make sure that the information you are deleting is no lon-
ger needed and won't impact other tables in your database (see "Joining Tables").

There are two ways in which to delete rows. First, you can remove all rows of
a table by using the Delete From statement without a WHERE clause. The other
way is to specify rows you want to delete by using a WHERE clause. This is illus-
trated in the next example, where we delete the row that contains information about
Sam Jones:

DELETE FROM Customers
WHERE CustomerLastName = IJones1 and CustomerFirstName = 'Tom'

Joining Tables
As you learned in Chapter 9, rows of two tables can be linked together by joining
the tables using a value that is common to each of them. For example, a table con-
taining customer information can be joined to a table that contains customer orders
by using a customer number, which appears in a column in both tables.

Tables are joined in a query using a two-step process. First, both tables must be
identified in the FROM clause. Next, an expression is created in the WHERE clause
that identifies the columns that are used to create the join.

Before learning how this is done, let's create another table called Orders and
insert the data shown here:

OrderNumber Character(30) Primary Key

ProductNumber Character(30)

ASP.NET 2.0 Demystified

CustomerNumber Character(l0)

Quantity NUMBER

SubTotal NUMBER

SubTotal I OrderNumber

122

Let's retrieve the customer name and the subtotal for all orders. Here's the query
that you'll need to write. The Select statement contains the names of the columns
that we want the DBMS to return to our application.

The From clause must contain the names of both tables that are being used by the
query. Each name is separated from the next by a comma. The WHERE clause is
where the join occurs. It is here that you need to specify the column name of each

ProductNumber

5237

table that is used to join the tables. Both columns must have the same value and the
same data type; otherwise, rows won't be joined together.

CustomerNumber

87676

Whenever the same column name appears in both tables, you'll need to preface

Quantity

1

the column name with the table name. This is the case with CustomerNumber.
Both the Customers table and the Orders table have a column called Customer-
Number. Therefore, we need to explicitly identify which column we're referring to.
Notice that the table name and the column name are separated by a period.

SELECT CustomerFirstName, CustomerLastName, Subtotal
FROM Customers, Orders
WHERE Customers.CustomerNumber = 0rders.CustomerNumber

The preceding example returned all rows. However, you can specify the rows
that you want returned by setting criteria in the WHERE clause. To do this, you
create an expression, as you learned earlier in this chapter.

Suppose we want to return only the customer name and subtotal for customer
number 87676. Here's what you need to do:
SELECT CustomerFirstName, CustomerLastName, Subtotal

FROM Customers, Orders
WHERE Customers.CustomerNumber = 0rders.CustomerNumber AND Customers.CustomerNumber =

' 87676 '

1 SQL

A query can become unreadable to you-not to the DBMS-if you need to ex-
plicitly use table names to preface column names in the query. The names are simply
too long. You can shorten the name of a table just for the query by using a table
alias. A table alias is an abbreviation that can be used in place of the name of the
table in the query.

Here's how this is done: The abbreviation is placed alongside the table name in
the From clause. You create your own abbreviation. Where possible, use the first
letter of the table. The abbreviation is then used in place of the table name in the
query, as shown here:

SELECT CustomerFirstName, CustomerLastName, Subtotal
FROM Customers C, Orders 0
WHERE C.CustomerNumber = 0.CustomerNumber AND C.CustomerNumber = '87676'

Calculating Columns
The DBMS can calculate values in a table using one of five built-in calculation
functions. You place the name of the column that you want calculated within the
parentheses of the calculation function. These are the functions:

SUM() tallies values in a column that is passed to the built-in function.

SELECT SUM(Quantity)
FROM Orders

AVG() averages values in a column that is passed to the built-in function.

SELECT AVG(Quantity)
FROM Orders

MIN() determines the minimum value in a column that is passed to the
built-in function.

SELECT MIN(Quantity)
FROM Orders

MAX() determines the maximum value in a column that is passed to the
built-in function.
SELECT MAX (Quantity)
FROM Orders

COUNT() determines the number of rows in a column that is passed to the
built-in function. Rows without values in the column are excluded from the
count.

SELECT COUNT(Quantity)
FROM Orders

ASPONET 2.0 Demystified

The Count() function is also used to count the number of rows in a table. You do
this by using the wildcard character (asterisk) within the parentheses of the function
as shown here:

SELECT COUNT (*)
FROM Orders

You can perform multiple counts by extending the Select statement to reflect
each count. For example, here's how we determine the total number of rows in the
table and the total value of the Quantity column:

SELECT COUNT (*) , COUNT (Quantity)
FROM Orders

You can restrict the scope of a built-in calculation function by using a WHERE
clause expression to specify the criteria for a row to be included in a calculation.
Any valid WHERE clause expression can be used to filter rows to be excluded from
the calculation.

Let's say that you want to calculate the total number of orders, the average, and
the total of the values in the Quantity column. Here's how you do it:

SELECT COUNT (OrderNumber) , AVG (Quantity) , SUM (Quantity)
FROM Orders o, customers c
WHERE o.CustomerNumber = c.CustNumber

There are two common problems that occur when using built-in functions. Some
rows won't contain any values, and others will contain duplicate values. Both of
these conditions can affect the calculation.

You can solve these problems by using the IS NULL operator and the Distinct mod-
ifier in your query. Both of these were explained in detail previously in the chapter.

Grouping and Ordering Data
Rows can be grouped or sorted by using the GROUP BY clause or the ORDER BY
clause. Grouping organizes rows according to similar values within the same col-
umn. Let's say that you want to see a quantity for each product. The selected columns
can be grouped by product number.

Sorting organizes rows in natural order. A DBMS is capable of simple and com-
plex sorting. A simple sort is when the values in a single column are used for the
sort. A complex sort is when multiple columns are used for the sort; for instance,
rows may be sorted by customer last name and, within customer last name, by cus-
tomer first name.

11 SQL

Here's how to group rows: The Select statement contains columns that will be
returned to your application. The Group By clause groups these by product number.
This means that rows that have the same product number appear one underneath
the other.

SELECT ProductNumber, SUM(Quantity)
FROM Sales
GROUP BY ProductNumber

You can also create a subgroup within a group. This is illustrated in the next ex-
ample, where the product number group is further grouped by customer number.
The results are shown in Table 1 1 - 1.

SELECT ProductNumber, CustomerNumber, SUM(Quantity)
FROM Sales
GROUP BY ProductNumber, CustomerNumber

The number of rows that are included in a group can be limited by including a
conditional expression in the query. A conditional expression is similar to the
WHERE clause expression discussed previously in this chapter, except instead of
the WHERE clause a Having clause is used.

In the next example, we use the Having clause to return rows whose Quantity
column has a value that is greater than 1. Table 11-2 shows the results.

SELECT ProductNumber, CustomerNumber, SUM(Quantity)
FROM Sales
GROUP BY ProductNumber, CustomerNumber
HAVING Quantity > 1

Table 1-1 Rows Are Grouped by ProductNumber and Then by CustomerNumber.

ProductNumber

1052

3255

3255

5237

5237

7466

7466

CustomerNumber

54321

54321

5432 1

12345

87676

12345

67890

Quantity

2

1

4

1

1

1

3

ASPONET 2.0 Demystified

I ProductNumber I CustomerNumber I Quantity I

-- -

Table 1-2 Rows Are Grouped by ProductNumber and Then CustomerNumber if They
Have a Quantity Greater than 1.

Columns that are empty can create unexpected results when you execute a query.
This is because sometimes the empty column is included or excluded from the op-
eration, depending on the nature of the query.

The DBMS may include or exclude a row in a group, depending on the condi-
tional expression. Here's how this works:

A row is included in a group if the empty column isn't used to group rows
or used in the conditional expression in the HAVING clause.

A row is included in the group if the empty column is used to group rows.
Rows containing the empty column are placed in their own group.

You can sort values returned to your application by using the Order By clause as
shown here, where the rows are sorted by ProductNumber:

SELECT ProductNumber, CustomerNumber, Quantity
FROM Sales
ORDER BY ProductNumber

Rows are sorted in ascending order unless you specify descending order by using
the DESC modifier as illustrated here:

SELECT ProductNumber, CustomerNumber, Quantity
FROM Sales
ORDER BY BY ProductNumber DESC

You can also sort using a second column within the original sort by specifying
another column in the Order By clause. Here we're sorting by ProductNumber, and
within ProductNumber, we're sorting by CustomerNumber:

SELECT ProductNumber, CustomerNumber, Quantity
FROM Sales
ORDER BY ProductNumber, CustomerNumber.

APTER 11 SQL

Looking Ahead
Queries have the DBMS perform various database tasks, such as creating and delet-
ing a table. When creating a table, you can specify whether a column must have a
value and set a default value for a column, which is used if a new row doesn't have
a value for the column.

You can increase the efficiency of locating rows by creating an index, which is
similar to an index of a book. In addition to primary keys, there are two kinds of
indexes: secondary indexes and a clustered indexes. However, having too many
indexes might slow inserting and updating rows because each time this happens all
the relative indexes must be updated.

There are various ways to write a query to select data from one or multiple tables.
You can select all the columns from all the rows or use the WHERE clause to
specify criteria for selecting rows. The selection criteria consist of a simple or com-
pound expression that can use relational operators to specify one value or a range
of values.

The selection criteria don't have to exactly match values in a column, because
you can use the Like modifier combined with wildcard characters to partially match
values in a column. This enables you to locate the name Smith if you know only that
the name begins with Smi.

Rows of two tables can be linked together by create a join using a column in each
table that contains the same value. You join tables by specifying the table names in
the From clause and creating an equivalent expression in the WHERE clause. Once
tables are joined, you can select any column from those tables.

SQL has built-in functions that are used to perform calculations on columns of a
table such as tallying values in a column or simply counting the number of rows in
a table. You can fine-tune any calculation by using the WHERE clause to specify
the columns that you want included in the calculation.

Information returned by the DBMS can be organized into groups and sorted.
Grouping rows is used for aggregations and causes the DBMS to place together all
rows that have the same value for a column. Sorting causes the returned rows to be
sorted in ascending or descending order, according to the value in the column that
you specify in the Sort By clause.

In the next chapter we'll finish our look at how to work with a database by show-
ing how you can bind data to a web control to minimize the code that you'll need
to write.

ASP.NET 2.0 Demystified

Quiz
1. The selection criteria can be a set of values that are not in any sequence.

a. True

b. False

2. What operator would you use to specify a range of values in a WHERE
clause?

a. From To

b. To From

c. Between

d. None of the above

3. SET is used to

a. Create a table alias.

b. Specify the column and the value to update within a table.

c. Specify the value for inserting a new row.

d. Specify the selection criteria.

4. The underscore

a. Is a single-character wildcard.

b. Is a multiple-character wildcard.

c. Represents any number of tables.

d. Represents any number of indexes.

5. How would you reverse the logic of an expression in the WHERE clause?

a. !

b. ELSE

c. NOT

d. None of the above

6. How do you designate a primary key for a table?

a. The first column is always the primary key.

b. Use CONSTRAINT KeyName PRIMARY KEY (ColumnName).

c. The last column is always the primary key.

d. Place PRIMARY KEY at the end of the column name.

CHAPTER 11 SQL

7. DROP JOIN removes a join.

a. True

b. False

8. You cannot set a default value for a column.

a. True

b. False

9. A clustered index consists of two or more columns.

a. True

b. False

10. Updating a column overwrites the current value in the column.

a. True

b. False

Answers
1. a. True

2. c. Between

3. b. Specify the column and the value for updating a table.

4. a. Is a single-character wildcard.

5. c. NOT

6. b. Use CONSTRAINT KeyName PRIMARY KEY (ColumnName)

7. b. False. There's no need to "remove" a join-you just discard the result set.

8. b. False. You set the default value for a column with the DEFAULT clause.

9. a. True

10. a. True

This page intentionally left blank

CHAPTER

Binding Data
to Controls

Developers are always looking for efficient ways to streamline an application and
reduce lines of code to write. One of those ways is to link data directly to a web
control so that it appears automatically every time the web page is displayed.

Linking data to a web control is called data binding and is the topic of this chap-
ter. Data can come from a variety of sources, but the most common source is from
a database. In this chapter, you’ll learn how to bind data to a web control and then
use that data and web control within your application.

Data Binding Basics
In previous chapters you learned how to retrieve information from a database and
display the information on your web page. Many times this information is displayed
in a control such as a drop-down list box or a text box on a web form.

ASP.NET 2.0 Demystified

You can dynamically assign information from a database to a control by using
a process called data binding. Data binding links the value property of a control
to a data source while your application is running. The data source can be data from
a database. The data source can also be an expression, methods, or properties of
another control.

Each control has a DataSource property that specifies the source of the data for
the control. Each control also has a DataBindO method. You call the DataBindO
method whenever you want to bring the data source into the control.

Throughout this chapter we'll show how to bind data from a database to a Repeater
control, a drop-down list control, a radio button control, and a list box control.

The Repeater Control
The Repeater control is used to display records from a database and is declared by
using the following ASPNET tags. The <asp:Repeater> tag requires two attributes.
These are ID and Runat, both of these you've learned about throughout this book.
The ID attribute uniquely identifies the Repeater, and the Runat attribute specifies
that this control runs on the server.

Within the Repeater tag is the ItemTemplate. The ItemTemplate specifies what is
to be displayed. Here you reference data returned from the database. (You'll see
how to retrieve data later in this section.)

The ItemTemplate tag in turn contains a data binding expression, which is used
to reference this data. This expression begins with <%# and ends with %>. The
expression itself calls the DataItemO method of the Container object and passes it
the column name that identifies the column from the bound data source that the
control displays. A Container object is an object that contains other objects.

Data is retrieved from the database using techniques that you learned in Chapter 10.
You'll recall that you need to open a connection to the database and then pass the
database management system (DBMS) a query. A reader is then used to access the
result returned by the DBMS.

Data that is retrieved from the DBMS must be bound to the Repeater control.
This is accomplished by assigning a reference to the reader to the DataSource prop-
erty of the Repeater control, and then by calling the Repeater control's DataBindO

Binding Data to Controls

method. Every control has a DataBind() function that binds (links) the data source
to the control. The control then displays the data once the data source is bound to
the control.

Connecting to the database, running the query, and binding the control to the data
source typically occurs once in your application. It makes sense to do this when the
page is loaded. Therefore, place the code that links to the data in the Page-Load
subroutine as shown here. This example connects to the Microsoft SQL Server
database, but you can connect to another database, as illustrated in Chapter 10.

This example begins by declaring SqlConnection, SqlCommand, and SqlData-
Reader variables. Next, a connection is opened to the DBMS by creating a Sql-
Connection object and passing it login information.

An instance of the SqlCommand object is then created, passing it the query that
will be sent to the DBMS to retrieve our data. The connection is then opened by
calling the Connection object's Open() method, and data is returned to the reader by
calling the SqlCommand object's ExecuteReaderO method.

A reference to the reader is assigned to the Datasource property of the Repeater
control, and then the DataBindO method is called to bind the data to the Repeater
control. The reader and the connection are then closed.

Sub Page-Load
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection(l lServer=server;UID=userID;

PWD=password;
Database=databasett)

cmdSelectRows = New SqlCommand("querytt, conCust)
conCust .Open ()

dtrCust = cmdSelectRows.ExecuteReader()
RepeaterContro1ID.DataSource = dtrCust
Repeatercontrol ID. DataBind ()

dtrCust .Close ()
conCust . Close ()

End Sub

Let's assemble these pieces and retrieve data from the Customers table that you
created in Chapter 11. The following code shows how this is done. We begin by defin-
ing the Page-Load subroutine. The database is called CustomerContactData. Replace
MyID and MyPassword with your user ID and password. We'll use a very simple
query that retrieves all the rows and all the columns from the Customers table.

ASP.NET 2.0 Demystified

Next, we create a form on our web page that contains the Repeater control.
The Repeater control has a data binding expression that calls the DataItemO of the
Container object to access the CustomerLastName column of the data returned to
the application by the DBMS in response to our query.

<%@ Import Namespace="System.Data.SqlClient" %>

<Script Runat="ServerM>
Sub Page-Load
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection(
HServer=localhost; UID=MyID;PWD=MyPassword; Database=CustomerContactData")

cmdSelectRows = New SqlCommand("Select * From custContactU, conCust)
conCust . Open ()
dtrCust = cmdSelectRows.ExecuteReader()
rptCust.DataSource = dtrCust
rptCust . DataBind (1
dtrCust . Close ()
conCust . Close ()

End Sub
</Script>
<html>

chead><title>Repeater Control Data Binding</title></head>
<body >

<form Runat="ServerH>
<asp:Repeater ID="rptCustU Runat="Servertl>

cItemTemplate>
c%# Container. DataItem (ll~ustLastNamell) %>

c/ItemTemplate>
c/asp:Repeater>

c / f orm>
</body>

</html>

A Closer Look at Templates
The ItemTemplate for the Repeater control is just one type of template. Templates
can contain data retrieved from the DBMS, HTML tags, and inline ASPNET state-
ments. There are five templates that can be used with the Repeater control:

HeaderTemplate Used to format the header section of the Repeater control

ItemTemplate Used to display and format data displayed in the Repeater
control

PTER 12 Binding Data to Controls

AlternatingItemTemplate Used to display and format alternate data items

SeparatorTemplate Used to separate data displayed by the Repeater control

FooterTemplate Used to format the footer section of the Repeater control

The following example is a modification of our previous example and illustrates
how to use these different templates in an application. All rows and columns are
retrieved from the Customers table. We'll display the CustomerFirstName and Cus-
tomerLastName columns in a table.

The HeaderTemplate is the first template used in this example. The HeaderTem-
plate contains HTML tags that create a table with two columns: Customer First
Name and Customer Last Name.

The ItemTemplate appears next. This is nearly identical to the ItemTemplate in
the previous example; however, besides having it access data from the DBMS,
we've also included HTML tags that define a row and columns of the table. The
data is displayed in a blue font.

The AlternatingItemTemplate defines the format for alternating items that appear
in the Repeater control, that is, the second, fourth, and so on items. The format is
the same as for the ItemTemplate; however, the data appears in red instead of blue.

The FooterTemplate is the last template in this example and contains the HTML
closing tag for the table.

<%@ Import Namespace=~System.Data.SqlClient" % >
<Script R~nat=~ServerIl>
Sub Page-Load
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection(~Server=localhost;UID=

MyID;PWD=MyPassword;Database=CustomerConta~tData~~)
cmdSelectRows = New SqlCommand(I1Select * From Customersu, conCust)
conCust . Open ()
dtrCust = cmdSelectRows.ExecuteReader()
rptCust.DataSource = dtrCust
rptCust . DataBind ()
dtrCust .Close ()
()
conCust .Close ()

End Sub
</Script>
chtml>
chead>ctitle> Repeater Control Data Binding c/title>c/head>
<body>

cf orm R ~ n a t = ~ ~ S e r v e r ~ ~ >
<asp:Repeater ID="rptCustU Runat="ServerH>

cHeaderTemplate>
<table border=l cellpadding=5>

ASPONET 2.0 Demystified

First N a m e < / t h >
L a s t N a r n e < / t h >

Drop-Down List
Data can also be bounded to the DropDownList control by assigning the column
name to the DataTextField property of the DropDownList control in the PagcLoad
method. This is illustrated in the next example, where we load the last name of
customers into a drop-down list when the page is loaded.

Notice that we connect to the database and execute the query in the Page-Load
subroutine much as we did in the previous example, with one difference. The data-
base connection is made within an If statement that evaluates the status of the
IsPostBack property.

A postback occurs when the page calls itself. A visitor loads a page for the first
time by entering the page's URL into the browser address box or by clicking a hy-
perlink contained on a different page. This is not a postback. However, once the
page is displayed, the page can request itself. This is a postback.

Binding Data to Controls

Figure 12-1 The last names shown

If the page is a postback, then

in the DropDownList control are from the database.

the IsPostBack property is true; otherwise, the
IsPostBack property is false. Data connection and data binding occur only when the
page isn't a postback. Therefore, we need to test the value of the IsPostBack property
before connecting to the DBMS and binding the data. We do this by reversing the
logic of the IsPostBack property. That is, if the IsPostBack property is false (the page
is loaded the first time), then we make the condition expression true so that statements
within the If statement (connect to the DBMS and bind the data) are executed.

The web page itself is different than the previous example because we created
a form that contains the DropDownList. The DropDownList control is populated
with the last name of customers from the Customers table (Figure 12-1).

There would be other controls in a real-world application such as a button that when
selected causes the selected customer last name to be processed (see Chapter 8).

c%@ Import Namespa~e=~System.Data.SqlClient~~ %>

<Script Runat="ServerH>
Sub Page-Load
If Not IsPostBack Then
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection(~Server=localhost;UID=

MyID;PWD=MyPassword;Database=CustomerConta~tData~~)
conCust . Open ()
cmdSelectRows = New SqlCommand(I1Select cistLastName From

c~stContact~~, conCust)
dtrCust = cmdSelectRows.ExecuteReader0
de1eteCust.DataSource = dtrCust

ASP.NET 2.0 Demystified

de1eteCust.DataText-d = ~custLastName~
deleteCust.DataBind()
dtrCust . Close ()

conCust . Close ()
End If

End Sub
</Script>
<html>
<head><title>Drop-Down List Control Data ~inding</title></head>
<body>

<form Runat="Servern>
<asp:DropDownList ID=I1deleteCust" Runat=I1Servern / >

</form>
</body>
</html>

Radio Button
As you learned in Chapter 8, radio buttons are a convenient way to display a group
of options from which the visitor selects only one option within the group.

You can store in a table names of radio buttons that are within the same group.
This enables you to dynamically define members of the group according to values
in the database. For example, a customer might qualify for a unique set of delivery
options, as shown by the customer's profile. The set can be stored in a table.

Data contained in a table is linked to a radio button using the same techniques as
are used to link the DropDownList control. For instance, you can assign the column
name to the DataTextField property of the radio button control as shown in the next
example. For the following example, you'll need to modify the custContact table to
include the DeliveryOption column before running this program.

<%@ Import Namespace="System.Data.SqlClient" %>
<Script Runat="ServerU>
Sub Page-Load
If Not IsPostBack Then
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection(~Server=localhost;UID=

MyID;PWD=MyPassword;Database=CustomerConta~tData~~~
cmdSelectRows = New SqlCommand("Select DeliveryOption

From custcontact Where Critera=I45'", conCust)
conCust .Open0
dtrCust = cmdSelectRows.ExecuteReader~)

Binding Data to Controls

radioButtonSe1ection.DataSource = dtrCust
radioButtonSelection.DataTextField = "DeliveryOptionW
radioButtonSelection.DataBind0
dtrCust .Close ()

conCust . Close ()
End If

End Sub
</Script>
<html>
<head><title>Radio Button Control Data Binding </title>c/head>
<body>

<form Runat="Servern>
<asp:RadioButtonList ID=NradioButtonSelection" Runat="ServerU / >

<P>
</form>

</body>
</html>

Check Box
Check box controls are stored and retrieved identically to how radio buttons are
stored and retrieved. The only difference is that you are using a check box instead
of a radio box. The next example shows how to create a check box that uses the
customer's last name as its label. Refer to Chapter 8 for more information about
how to incorporate a check box control into your application.

c%@ Import Namespace=~System.Data.SqlClientn %>
<Script Runat=I1Serveru>
Sub Page-Load

If Not IsPostBack Then
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection(~Server=localhost;UID=

MyID;PWD=MyPassword;Database=CustomerConta~tData~~)
cmdSelectRows = New SqlCommand(I1Select custLastName From

custContactu, conCust)
conCust. Open ()

dtrCust = cmdSelectRows.ExecuteReader()
checkBoxSe1ection.DataSource = dtrCust
checkBoxSelection.DataTextField = I1Customer Last NameH
checkBoxSelection.DataBind()

ASPONET 2.0 Demystified

dtrCust . Close ()

conCust . Close ()
End If

End Sub
</Script >
<html>
<head><title>Check Box Control Data Binding</title></head>
<body>

<form Runat="ServerI1 >
<asp:CheckBoxList ID=~checkBoxSelection~ R~nat=I~Server~~ / >

</form>
</body>
</html>

List Box
The List Box control is bound to data much as you bind data to the drop-down list
box, which you learned how to do earlier in this chapter. The actions of connecting
to the database, sending the query, and binding data occur within the Page-Load
subroutine. Statements required to execute these tasks should be enclosed within an
If statement that executes if the IsPostBack property is false, which means that the
page is being loaded for the first time (see the earlier section "Drop-Down List").

The following example illustrates how to bind data to a list box control. In this
example we're populating the list box with the CustomerLastName column from the
Customers table. Notice that once again the column name is used in the Page-Load
subroutine to bind the custLastName to the DataTextField property of the list box.

The web page consists of a form that contains the list box control. Only the list
box control is used in this example (Figure 12-2). You can insert other controls
(see Chapter 8) after you are comfortable binding data to the list box.

Figure 12-2 The list box contains last names from the database.

Binding Data to Controls

<%@ Import Namespa~e=~System.Data.SqlClient~~ %>
<Script Runat=I1ServerH>
Sub Page-Load
If Not IsPostBack Then
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection(~Server=localhost;UID=

MyID;PWD=MyPassword;Database=CustomerContactData1~)
conCust . Open ()
cmdSelectRows = New SqlC~mmand(~Select custLastName From

custcontact 1 1 , conCust)
dtrCust = cmdSelectRows.ExecuteReader()
1stCustomerLastName.DataSource = dtrCust
1stCustomerLastName.DataTextField = ncustLastName~
lstCustomerLastName.DataBind()
dtrCust .Close ()

conCust . Close ()
End If

End Sub
</Script >
<html>

<head><title>List Box Control Data ~inding</title></head>
<body>

<form R~nat=~~Server~~>
<asp:ListBox ID=lllstCustomerLastName~ R~nat=~ServerIl / >

</form>
</body>

</htrnl>

Hyperlin ks
A very common practice is to dynamically create hyperlinks on a web page. As
you'll remember from when you learned HTML, a hyperlink consists of at least
two attributes. The first is the text or image that appears on the web page, and the
second is the URL that is called when the visitor selects the hyperlink.

In the next example, both attributes are stored in a column of a table and are then
bound to a Repeater control in the Page-Load subroutine when the web page is
loaded.

ASPONET 2.0 Demystified

Let's modify the Customers table (see Chapter 11) by inserting the following
two columns so that we can use those columns in the next example:

CustomerCompany CHAR(30)

CustomerURL CHAR(30)

Statements in the Page-Load subroutine are nearly the same as those you saw
earlier in the case of the Repeater control (see the earlier section "The Repeater
Control"), except the query returns the CustomerCompany and the CustomerURL
from the Customers table.

Statements in the web page are also similar to statements you saw in the web page
of the Repeater control, except for the HyperLink control within the ItemTemplate.
We assign column names to the Text attribute and to the NavigateURL attribute.

The CustomerCompany column is assigned to the Text attribute, and the Custo-
merURL column is assigned to NavigateURL. This is called when the visitor selects
the hyperlink.

<%@ Import Namespace="System.Data.SqlClient" %>
<Script Runat="ServerM>
Sub Page-Load
If Not IsPostBack Then
Dim conCust As SqlConnection
Dim cmdSelectRows As SqlCommand
Dim dtrCust As SqlDataReader
conCust = New SqlConnection("Server=localhost;UID=

MyID;PWD=MyPassword;Database=CustomerConta~tData~~)
cmdSelectRows = New SqlCommand(

"Select CustomerCompany, CustomerURL From Customers",
conCust)

conCust .Open ()
dtrCust = cmdSelectRows.ExecuteReader()
hyperLinks.DataSource = dtrCust
hyperLinks.DataBind0
dtrCust . Close ()
conCust . Close ()

End If
End Sub
</Script>
<html>

<head><title>Hyperlink Data Binding</title></head>
<body>
<form Runat="ServerU>

<asp:Repeater ID="hyperLinksU R~nat=~Server">
<ItemTemplate>
<ASP:HyperLink Text='<%# Container.DataItem(~~CustomerCompany") % > l

NavigateURL='<%# Container.DataItem("CustomerURL") % > l Runat="Serverl' / >
</ItemTemplate>

</asp:Repeater>
</form>
</body>

</html>

ER 12 Binding Data to Controls

Quiz
1. The line <td><%# Container.DataItem("CustomerFirstName") %>dtd>

inserts data from the CustomerFirstName column into a column of a table
on the web form.

a. True

b. False

2. If IsPostBack is true, then

a. The web page is loaded for the first time.

b. The web page called itself.

c. The web page sent data to the database.

d. None of the above.

3. The AlternatingItemTemplate

a. Defines the format for all items that appear in the Repeater control.

b. Defines the format for first item that appears in the Repeater control.

c. Defines the format for alternating items that appear in the Repeater control.

d. Defines the format for alternating items that appear in the list box control.

4. DataBind()

a. Removes a data binding from a control.

b. Binds data to a DBMS.

c. Binds data to a database.

d. Binds data to a control.

5. Data binding most commonly occurs in the

a. Onclick() method

b. Mouseover() event

c. Page-Load event

d. None of the above

6. Data for data binding can come from

a. A database

b. An expression

c. A property of another control

d. All of the above

ASP.NET 2.0 Demystified

7. Calculated results from a database cannot be bound to a list box control.

a. True

b. False

8. The Repeater control is visible on the web page.

a. True

b. False

9. Separator-Template: Used to separate data displayed by the Repeater control.

a. True

b. False

10. Data binding is restricted to data that the user ID is authorized to retrieve.

a. True

b. False

Answers
1. a. True

2. b. The web page called itself.

3. c. Defines the format for alternating items that appear in the Repeater control.

4. d. Binds data to a control.

5. c. Page-Load event

6. d. All of the above

7. b. False

8. b. False. The control itself is not visible. On the other hand, the data output
by the control is visible.

9. a. True

10. a. True. The success or failure of any attempt to retrieve data depends on
having the necessary permissions.

APPENDIX

1. An index is used to

Final Exam

a. Quickly find informat,m in another index.
b. Quickly find information in a database.
c. Quickly find information in a table.
d. Quickly find information in one column.

2. Normalizing a database does not remove most redundant data.
a. True
b. False

3. A database management system is subdivided into groups called
a. Tables
b. Data
c. Subdatabases
d. None of the above

ASPONET 2.0 Demystified

4. Identifying information that you need to store in your database is the first
step in designing a database.

a. True

b. False

5. Microsoft Access is a database management system.

a. True

b. False

6. A clustered index is based on only one column.

a. True

b. False

7. A foreign key is a secondary key of a different table.

a. True

b. False

8. Another name for joining tables together is

a. Relating

b. Merging

c. Combining

d. Gluing

9. A primary key uniquely identifies tables of a database.

a. True

b. False

10. The database schema is the

a. Design of data

b. Design of a table

c. Design of the database

d. None of the above

11. What information don't you need when declaring a parameter in a function
or subroutine?

a. The AS keyword

b. Parameter name

c. Parameter data type

d. Parameter size

APPENDIX A Final Exam

12. A function cannot be called from an expression.

a. True

b. False

13. A subroutine's return value

a. Is always assigned to a variable.

b. Is always used in an expression.

c. May or may not be used in an expression.

d. A subroutine doesn't return a value.

14. You must declare parameters for all functions.

a. True

b. False

15. The data type of the return value doesn't have to be specified when
declaring a function that returns a value.

a. True

b. False

16. ParamAnay is used

a. To declare an array that is used as a return value of a subroutine

b. To declare an array that is used as a return value of a function

c. Because you need a variable number of arguments to pass

d. To declare an array that is used as a return value of a function that is
called from an expression

17. A subroutine is another name for a function.

a. True

b. False

18. You return a value from a function by using

a. Submit

b. Apply
c. Ret

d. None of the above

19. The return value from a subroutine must be used in an expression.

a. True

b. False

ASP.NET 2.0 Demystified

20. A subroutine is usually defined in the

a. Page-Login event

b. Code section of an application

c. Page-Upload event

d. Page-Download event

2 1. Page-Load

a. Is the way a client requests a page from the web server.

b. Starts the web server.

c. Starts the ASP.NET engine.

d. Is the name of the event handler for the Page-Load event.

22. The expression runat="server" means

a. Start the web server.

b. Start the ASPNET engine.

c. Execute the code on the client side.

d. None of the above.

23. An ASP.NET web page is divided into an HTML portion and a source
code portion.

a. True

b. False

24. The tag c%@ Page Language="VBW %> is a directive.

a. True

b. False

25. What controls the ASP.NET instructions that use an HTML class in .NET
Framework?

a. HTML markup code

b. An HTML server control

c. A web control class

d. A web browser

26. Event handlers must be defined within the web page.

a. True

b. False

APPENDIX A Final Exam

27. An object is an instance of a class.

a. True

b. False

28. A property of a class is

a. An action associated with a class

b. Data associated with a class

c. An instance of a class

d. None of the above

29. What executes in reaction to a specified event?

a. Reaction method

b. Event handler

c. Response handler

d. Reaction handler

30. What method sends characters to the client?

a. The Response.Send() method

b. The Response.Read() method

c. The Response.Write() method

d. None of the above

3 1. Literal values must be enclosed within quotations.

a. True

b. False

32. You must convert from one data type to another using casting.

a. True

b. False

33. A property is

a. A temporary storage place in memory

b. A value associated with a control

c. A value that can be changed

d. All of the above

ASP.NET 2.0 Demystified

34. A customer name is a(n)

a. Integer

b. Short

c. Long

d. None of the above

35. The AndAlso logical operator tells the ASPNET engine

a. Not to evaluate the second logical expression if the first logical
expression is true

b. To evaluate the second logical expression if the first logical expression
is true

c. Not to evaluate the second logical expression if the first logical expression
is false

d. None of the above

36. An arithmetic operator is used to define the condition for ASP.NET to make
a decision.

a. True

b. False

37. The Jump operator tells the ASPNET to

a. Skip evaluating the expression.

b. Skip evaluating the expression only if the expression is false.

c. Reverse the logic of the expression after evaluating the expression.

d. None of the above.

38. The operator is used to determine if the value on the left side of the
operator is

a. Equal to the value on the right side of the operator.

b. Not equal to the value on the right side of the operator.

c. Less than the value on the right side of the operator.

d. Greater than the value on the right side of the operator.

39. An expression using the Or operator is true if both the logical expressions
joined together by the Or operator are true.

a. True

b. False

APPENDIX A Final Exam

40. Initialization means assigning

a. The first value to a variable

b. A value to a variable

c. A string to a variable

d. An integer to a variable

41. The best place to open a connection to a database is

a. The On-Click event handler

b. The Page-Load subroutine

c. In the SQL query

d. In the query

42. Which SQL clause or statement defines the subset of rows that contain
information that you want to return to your application?

a. Return

b. Where

c. From

d. Select

43. A query parameter can be assigned values the visitors enter into a form on
your web site.

a. True

b. False

44. A namespace defines objects.

a. True

b. False

45. A stored procedure is not sent from your web page to the DBMS each time
you execute a query.

a. True

b. False

46. Your application can determine the number of rows that were returned by
the DBMS.

a. True

b. False

ASP.NET 2.0 Demystified

47. What clause or statement identifies the table that contains information you
want returned to your application?

a. Where

b. From

c. Select

d. None of the above

48. You open a connection a database by using

a. ConnectDB

b. DBConnection

c. SQL Server for SqlConnect or OleDbConect for Access

d. None of the above

49. Which SQL clause or statement specifies the columns you want returned to
your application?

a. Return

b. Where

c. From

d. None of the above

50. You can pass information to a stored procedure.

a. True

b. False

5 1. What would you use if you want a block of statements to be executed only
if a condition isn't true?

a. If ... Then

b. If ... Then ... Else

c. A For loop

d. A For in loop

52. Statements within a For loop cannot reference the For loop variable.

a. True

b. False

53. What loop executes statements if a condition is partially true?

a. A Do While loop

b. A Do Until loop

APPENDIX A Final Exam

c. An Until loop

d. None of the above

54. A Case statement must have a default Case.

a. True

b. False

55. The DEFAULT clause is used in a While loop to set default values.

a. True

b. False

56. What loop executes statements if a condition is false?

a. A Do While loop

b. A Do Until loop

c. An Until loop

d. None of the above

57. A Case statement isn't ideal to use to evaluate an option from a large menu
selected by a visitor to your web site.

a. True

b. False

58. A For loop cannot skip values in the counter range.

a. True

b. False

59. What is the purpose of If in an If ... Then ... Else statement?

a. It contains statements that are executed only if the conditional expression
is true.

b. It defines another conditional expression the ASP.NET engine evaluates
if the first conditional expression is false.

c. It contains statements that are executed only if the conditional expression
is false.

d. It is used to nest an If statement.

60. The initializer in the For loop is used to

a. Increase the expression by 1.

b. Determine the range of values used to control the iterations of the loop
by the ASP.NET engine.

ASP.NET 2.0 Demystified

c. Limit the number of statements that can be contained in the code block.

d. None of the above.

61. ASPNET can be used to create

a. E-commerce web sites

b. Intranet web sites

c. Corporate web sites

d. All of the above

62. Classes are contained in

a. The customer database

b. The .NET Framework

c. The Account database

d. All of the above

63. ASP.NET cannot generate web pages that contain images or audio.

a. True

b. False

64. You can use a word processor to write an ASPNET web page.

a. True

b. False

65. The .NET Framework is required for the

a. .NET OS

b. ASP.NET engine

c. .NET source code

d. None of the above

66. ASP.NET web pages are static web pages.

a. True

b. False

67. The ASP.NET engine runs

a. On the router

b. Client-side

c. Both server-side and client-side

d. None of the above

I X A Final Exam

68. ASPNET cannot generate HTML markup code.

a. True

b. False

69. ASPNET Web Pages are not written using

a. VB.NET

b. C#

c. VBScript

d. None of the above

70. The server side runs

a. ASP.NET web pages

b. The web browser

c. Both the web browser and ASPNET web pages

d. None of the above

71. What is assigned to the Value property of an item in a DropDownList Box
if you don't assign anything to the Value property?

a. Nothing is assigned to the Value property.

b. The value of the ID property.

c. The value of the Text property.

d. You must assign a value to the Value property.

72. The selection of a check box does not affect the status of other check boxes.

a. True

b. False

73. The ID property of a check box is used to identify the check box within
your code.

a. True

b. False

74. What happens when the Boolean value of an item is set to true in a drop-
down list box?

a. The item appears as the selected item when the box is first displayed.

b. The item isn't displayed.

c. The name of the item is set to true.

d. The name of the item is set to false.

ASPONET 2.0 Demystified

75. Unless you use the UP m o w and DOWN m o w keys to change the order, in
what order do items appear in the DropDownList Box?

a. The order in which they are entered

b. Alphabetical order

c. Numerical order

d. Random order

76. The best control to use when there is one of a small set of mutually
exclusive options from which to select is a

a. DropDownList Box

b. Radio Button

c. Check box

d. None of the above

77. The selection of a radio button affects the selection of every radio button
within its group.

a. True

b. False

78. You cannot set a default selection for a drop-down list box.

a. True

b. False

79. You don't have to set the Value property of an item on the drop-down
list box.

a. True

b. False

80. An ElseIf statement might be used to evaluate a check button because

a. You must evaluate all check boxes that appear within the same group.

b. You must evaluate all check boxes including those that appear outside
the group.

c. If one check box is true, you need to examine other radio buttons outside
the group.

d. None of the above

8 1. The testing phase is where you write code for your application.

a. True

b. False

PPENDIX A Final Exam

82. What operator is used to combine values?

a. The equal sign

b. The assignment operator

c. The equivalence operator

d. The plus sign

83. CreateAccount.Visible = True means

a. Making an element visible

b. Making an element invisible

c. Making an element accessible

d. None of the above

84. You create an event handler for a button control by single-clicking a button
on the Design tab.

a. True

b. False

85. You store information into a text box from within your code by using

a. The equal sign

b. The copy property

c. The equivalent operator

d. The plus sign

86. What property is used to uniquely identify an element?

a. The Text property

b. The Value property

c. The ID property

d. None of the above

87. The planning phase is where bugs are discovered and fixed.

a. True

b. False

88. Variable values must be enclosed with quotations in your code.

a. True

b. False

ASPONET 2.0 Demystified

89. The best way to prevent a visitor from changing the value of a text box
element is by

a. Setting the Visible property

b. Setting the Invisible property

c. Setting the ReadOnly property

d. None of the above

90. You can change the value of an element by

a. Using the Check pane

b. Using the Visible property of the element

c. Using the ReadOnly property of the element

d. None of the above

91. What method would you use to reset values of an array?

a. Reset()

b. Copy0
c. Clear()

d. Reboot()

92. An array can have elements of different data types.

a. True

b. False

93. The length of an array is equal to the index of the last element of the array.

a. True

b. False

94. What method is used to copy a segment of an array to another array?

a. CPYO
b. SigCopy()

c. Partcopy()

d. None of the above

95. How many elements are there in this array?

Dim productsA() AS String = { " ", "Water", "Pizza",)

a. 2

b. 3

PPENDIX A Final Exam

c. 4

d. None

96. The Sort() method only sorts numbers in numerical order.

a. True

b. False

97. An array element cannot be used the same way a variable is used.

a. True

b. False

98. This is the first element of the products array: products(0).

a. True

b. False

99. What method is used to search for a value in an array?

a. Index()

b. LastIndex()

c. Search()

d. None of the above

100. What method is used to compare two arrays?

a. Comp()

b. CompareArray()

c. Compare()

d. None of the above

This page intentionally left blank

APPENDIX

Answers to -. I - Final txam

1. c. Quickly find information in a table.
2. b. False
3. d. None of the above. The database management system is the software

4. a. True
5. a. True
6. b. False
7. b. False. A foreign key is a primary key of a different table.
8. a. Relating
9. b. False. A primary key uniquely identifies rows of a particular table.

that manages the data, not the data itself.

Tables are uniquely identified by their table names.

ASP.NET 2.0 Demystified

10. c. Design of the database

1 1. d. Parameter size

12. b. False

13. d. A subroutine doesn't return a value.

14. b. False. Not all functions have parameters.

15. a. True. However, as a matter of sound programming style, the return value
types of functions should always be declared.

16. c. Because you need a variable number of arguments to pass

17. b. False

18. d. None of the above. You return a value from a function by using the Return
statement, or by assigning the return value to a variable whose name is the
same as the function itself.

19. b. False. There is no return value from a subroutine.

20. b. Code section of an application

21. d. Is the name of the event handler for the PageLoad event.

22. d. None of the above. It means to execute the code on the server.

23. a. True

24. a. True

25. b. An HTML server control

26. b. False. The definition of event handlers is optional.

27. a. True

28. b. Data associated with a class

29. b. Event handler

30. c. Response.Write() sends characters to the client.

31. a. True

32. b. False

33. d. All of the above

34. d. None of the above. It is a String.

35. c. Not to evaluate the second logical expression if the first logical expression
is false.

36. b. False. The If statement is used to define a condition for branching.

37. d. None of the above. There is no Jump operator.

APPENDIX B Answers to Final Exam

38. c. Less than the value on the right side of the operator.

39. b. False.

40. a. The first value to a variable

4 1. b. The Page-Load subroutine

42. b. Where

43. a. True

44. b. False. A namespace provides a way of organizing objects hierarchically
to prevent naming collisions.

45. a. True. A stored procedure resides in the database itself (that's why
it's stored).

46. a. True

47. b. From

48. c. SQL Server for SqlConnect or OleDbConect for Access

49. d. None of the above

50. a. True

51. b. If ... Then ... Else. The Else block is executed if the condition specified
by If is not true.

52. b. False. In fact, one of the most common uses of a For loop is to iterate
an array, which requires that the loop counter be used.

53. d. None of the above

54. b. False. Although it can have a default case (and it's often a good idea
to provide one), it is by no means required.

55. b. False. While does not have a default clause.

56. b. A Do Until loop

57. b. False

58. b. False. The Step clause allows the For loop to skip values in the counter
range.

59. a. It contains statements that are executed only if the conditional expression
is true.

60. d. None of the above. It's used to set the starting value of the loop counter.

6 1. d. All of the above

62. b. .NET Framework

63. b. False

ASP.NET 2.0 Demystified

64. a. True

65. b. ASPNET engine

66. b. False

67. d. None of the above. It runs on the server.

68. b. False

69. c. VBScript

70. a. ASPNET web pages

7 1. c. The value of the Text property

72. a. True

73. a. True

74. a. The item appears as the selected item when the list box is first displayed.

75. a. The order in which they are entered

76. b. Radio Button

77. a. True

78. b. False

79. a. True

80. d. None of the above

81. b. False

82. d. The plus sign

83. a. Making an element visible

84. b. False. One of the ways you can create an event handler is by double-
clicking a button on the Design tab.

85. a. The equal sign

86. c. The ID property

87. b. False

88. b. False. Only the literal values of String variables must be enclosed in
quotation marks.

89. c. Setting the ReadOnly property to True

90. d. None of the above

91. c. Clear()

92. a. True

END1 Answers to Final Exam

93. b. False. The length of an array is usually one greater than the index of its
last element.

94. d. None of the above. You use the array's Copy method to copy an array.

95. b. 3

96. b. False. The Sort method is also capable of sorting strings.

97. b. False

98. a. True

99. d. None of the above. The methods used to search an array are IndexOf,
LastfndexOf, and BinarySearch.

100. d. None of the above

This page intentionally left blank

References to Jigures are in italics.

% (percent), 207
& (concatenation operator), 69
* (asterisk), 54, 192-193
@ CustNumber parameter, l84
- (underscore), 207
+ (concatenation operator), 69
+ (plus sign), 44
+= assignment operator, 65-66
< (less-than operator), 67
<= (equal-to or less-than operator), 67-68
-= assignment operator, 66
= (equal sign), 43,59
= (equivalence operator), 67
> (greater-than operator), 67
>= (greater-than or equal-to operator), 67-68
" (quotations), 53

A
Access, 191

defining query parameters, 1 84- 1 85
HasRows property, 18 1
inserting rows, 186, 187-1 88
linking to, 177
sending queries to the DBMS, 180
updating rows, 189-190

Addwithvalue() method, 182-1 83
ADO.NET, 173, 174-175

aliases, 21 3
AlternatingItemTemplate, 225
And operator, 62-63
AndAlso operator, 64-65
answers to final exam, 25 1-255
application life cycle, 34

design phase, 34-36
development phase, 36-37
implementation, 37-38
maintenance, 38
testing, 37

applications. See ASP.NET web applications
arguments, 26-27,7 1, 130

passing multiple arguments, 1 32
arithmetical operators, 6 1
Array class, 114-1 15
array elements. See elements
arrays, 1 03- 1 04

copying values from one array to another,
118-119

declaring, 104-1 05
initializing, 105-1 06
looping, 109- 1 10
multidimensional, 1 12-1 14
passing to a subroutine or function, 137
resetting values of, 1 19-1 20

ASP.NET 2.0 Demystified

arrays, (Cont.) r
returning from a function, 137-138
using different data types, 120- 12 1
See also elements

ASP.NET, 7-8
ASP.NET web applications, 33

application life cycle, 34-38
designing, 38-39
developing, 40-43
implementing, 47
running, 45
testing, 45-46

ASP.NET Web Matrix, 8-9
ASP.NET web pages

building, 8- 1 0
creating, 20-2 1
publishing, 10
testing, 22
See also web pages

assignment operator, 60-6 1,65-66
asterisk (*), 54, 192-193
attributes, 27, 163, 174

decomposing, 163-1 64
AVG(), 213

L

C#, 5, 8,24
calculating columns, 2 13-2 14
calling methods, 25
calling stored procedures, 193-1 94
case statements, 76, 86-87

Case Else clause, 88-89
casting, 70-7 1
CGI, 4
check boxes, 150

accessing, 152
check box control, 229-230
creating, 151-152
selecting from within your application,

152-153
class definitions, 115, 174, 175
classes, 24, 174-175
Clear() method, 1 19- 120
client side, designing, 35,39
clients, 3
clustered indexes, 170, 202
common gateway interface. See CGI
comparison operators, 66-68
concatenation operator, 69

B conditional expressions, 77
Between operator, 207
binding data, 22 1-222

check box control, 229-230
DropDownList control, 226-228
hyperlinks, 23 1-232
List Box control, 230-23 1
radio button control, 228-229
Repeater control, 222-224,23 1-232
templates, 224-226

Boolean data type, 56
Boolean values, 53
building ASP.NET web pages, 8-10
buttons

radio buttons, 147-1 50
Submit button, 146

conditional statements, 76
constants, 69-70
controls section, 7, 8
conversion functions, 70-7 1
Copy() method, l 18-1 19
COUNT(), 213-214
creating ASP.NET web pages, 20-21
customer satisfaction, 7

D
data binding, 22 1-222

check box control, 229-230
DropDownList control, 226-228
hyperlinks, 23 1-232
List Box control, 230-231
radio button control, 228-229

HNDE

Repeater control, 222-224,23 1-232
templates, 224-226

data, defining, 164-1 66
data types, 54,57

arrays using different data types, 120-121
Boolean, 56
converting, 70-7 1
Date, 56
Decimal, 55
Double, 55
Integer, 54-55
Long, 55
Object, 56
Short, 55
Single, 55
String, 56

database management system. See DBMS
databases, 158-1 59

attributes, 163
calculating columns, 2 1 3-2 14
changing information into data, 163-1 64
creating, 177
creating and dropping tables, 200-202
data, 158
database models, 159
decomposing attributes, 162
defining data, 164- 166
deleting data from tables, 2 1 1
deleting rows, 190-1 9 1
designing, 16 1- l62
entities, l63
foreign key, 169
grouping and ordering data, 2 14-2 16
identifying columns used to identify rows

of data, 168-169
identifying information, 163
indexes, 170
inserting rows, 185-1 88,203
joining tables, 168-1 69,211-212
metadata, 160

normalizing data, 162, 166-1 68
organizing data into groups, 166-1 68
overview, 15 8
primary key, 168-169
relating tables, 160- 16 1
relational database model, 159
retrieving specific rows, l82
schemas, 161-162
selecting data from a table, 203-208
stored procedures, 19 1-1 95
tables, 159
updating rows, 188-190
updating tables, 209-2 1 1

DataBind() method, 222
data-driven web applications, 157
DataReader class, 1 80
Date data type, 56
date values, 53
DBMS, 158,159,174

calculating columns, 2 13-2 l 4
creating and dropping tables, 200-202
deleting data from tables, 21 1
deleting rows, 190-191
grouping and ordering data, 2 14-2 1 6
inserting rows, l85-188,203
joining tables, 168-169,211-212
opening a connection to, 175-1 77
retrieving specific rows, l82
selecting data from a table, 203-208
sending queries to, 178-180
stored procedures, 19 1-195
updating rows, 188-1 90
updating tables, 209-2 1 1

debugging, 22
Decimal data type, 55
decimals, 52
declaring arrays, 104- 105
declaring multidimensional arrays, 1 14
declaring variables, 56-5 8
decom~osing: attributes. l62

ASPONET 2.0 Demystified

defining data, 164- 166
Dim keyword, 56, 104

See also ReDim keyword
directives, 27
DisplayMessage() subroutine, 13 1
Distinct modifier, 208
Do Loop Until loops, 97-98
Do Loop While loops, 95-96
Do Until loops, 96-97
Do While loops, 94-95
domains, 9
Double data type, 55
dragging and dropping labels, 20-2 1
drop-down list boxes

accessing selected items from, 146-1 47
creating, 144-146
defined, 144

DropDownList control, 226-228
dynamic pricing, 4
dynamic web pages, 4-5

pros and cons of, 6-7
See also static web pages; web pages

E
elements, 104, 106-109

adding array elements, 1 1 1-1 12
determining the number of array elements,

115-1 l 6
reversing the order of, 1 17
searching, 1 17- 1 18
sorting, 1 16-1 17

End Sub, 26,127-128
engines, 5
entities, 163
equal sign (=), 43,58
equal-to or less-than operator, 67-68
equivalence operator, 67
event handlers, 25
event-driven programming languages, 25
events, 25-26

exam, 235-249
answers, 25 1-255

Exit Sub, 128
expressions, 59-60

logical, 62
parts of, 60
See also conditional expressions

F
Female radio buttons, 147
final exam, 235-249

answers, 251-255
floating points, 55
floating-point values, 52
FooterTemplate, 225
For loops, 89-93

looping arrays, 109-1 10
foreign key, 169
Framework classes, 8
FTP, publishing ASPNET web pages using, 10
functions, 125, 134, 174

calling, 135-136
conversion, 70-7 1
dividing applications into, 126
vs. subroutines, 126-127

G
greater than operator (>), 67,205,206
greater than or equal to operator (>=), 67-68,

205,206-207
GROUP BY clause, 214-216
grouping data, 166-1 68

H
HasRows property, 1 80-1 8 1
HeaderTemplate, 224,225
hosting. See web hosting
HTML, 16

writing code yourself, 22-23
See also XHTML

HTML markup code section, 7-8
HTML server controls, l8-19,28

vs. web controls, 29
hyperlinks, 23 1-232

I
ID property, 40,41
identifying information, l63
If ... Then statements, 76-80

nested, 85-86
If. ..Then.. .Else statements, 80-82
If.. .Then.. .Elseif statements, 82-83
If.. .Then.. .Elseif.. .Else statements, 83-84
11s. See Internet Information Server
implementation, 37-3 8

of ASPNET web applications, 47
IN clause, 21 0
In modifier, 208
indexes, 104, 170,202-203
Indexof() method, 117-1 18
initializing arrays, 105-1 06
initializing variables, 5 8
instances, 24

creating an instance of the connection
class, 175, 176

Integer data type, 54-55
integers, 52
integration testing, 37
Internet Information Server, 10
IS NULL operator, 208,210
ItemTemplate, 222,224,225

J
JavaScript, 2-3
joining tables, 168-169,211-212

L
LastIndexOf() method, 1 18
length property, 1 15-1 16
less than operator (<), 67,205,206

less than or equal to operator (c=), 205,
206-207

Like operator, 207
List Box control, 230-23 1
ListItem Collection Editor, 144-145
literals, 52
logical operators, 62

And, 62-63
AndAlso, 64-65
Not, 64
Or, 63
OrElse, 65
XOr, 64

Long data type, 55
loop statements, 76, 89

Do Loop Until loops, 97-98
Do Loop While loops, 95-96
Do Until loops, 96-97
Do While loops, 94-95
For loops, 89-93

looping arrays, 109-1 10

maintenance, 3 8
Male radio buttons, 147
MAX(), 213
metadata, 160.
methods, 24-25, 1 15

calling, 25
Microsoft Access

defining query parameters, 1 84- 1 85
deleting rows, 19 1
HasRows property, 18 1
inserting rows, 186, 187-188
linking to, 177
sending queries to the DBMS, 180
updating rows, 189-190

Microsoft SQL Server
creating a connection to, 175-176
defining query parameters, 1 83-1 84

ASP.NET 2.0 Demystified

Microsoft SQL Server (Cont.)
deleting rows, 190-1 9 1
HasRows property, 18 1
inserting rows, 186-1 87
sending queries to the DBMS, 178-180
updating rows, 188-1 89

MIN(), 213
modulus operator (Mod), 61
multidimensional arrays, 1 12-1 13

declaring, 1 14
referencing, 1 14

multiple arguments, passing, 132
multiple operations, 60-6 1
multiple parameters, 1 32

N
namespaces, 174-1 75

importing, l75
nested If.. .Then statements, 85-86

See also If.. .Then statements
.NET Framework, 8-9
.NET programming languages, 5 ,8

See also Visual Basic .NET
normal form, 167
normalizing data, 162, 166-1 68
Not In modifier, 208
Not operator, 64
Notepad, 8
NULL, 207-208
null strings, 58
numbers, 52

0
Object data type, 56, 120
object-oriented programming, 24-25
objects, 24, 115, 174
OleDbCornrnand, 175
OleDbConnection, 177
one-dimensional arrays, 1 12

See also array S ; multidimensional array S

OOP. See object-oriented programming
operands, 60

operations
multiple, 60-6 1
order of, 68-69

operators, 60
And, 62-63
+= assignment operator, 65-67
-= assignment operator, 66
AndAlso, 64-65
arithmetical, 61
assignment, 60-6 1,65-66
comparison, 66-68
concatenation, 69
equal-to or less-than, 67-68
equivalence, 67
greater than (>), 67,205,206
greater than or equal to (>=), 67-68,

205,206-207
IS NULL operator, 208,2 10
less than (c), 67,205,206
less than or equal to (c=), 205,206-207
Like operator, 207
logical, 62
modulus (Mod), 6 1
Not, 64
Between operator, 207
Or, 63
OrElse, 65
relational, 205-208
XOr, 64

Or operator, 63
ORDER BY clause, 214,216
order of operations, 68-69
OrElse operator, 65

P
Page directives, 27-28
Page-Load event, 25-26,27,226
parameters, 127, 130-13 1

multiple, 132
passing, 131
passing to stored procedures, 194-1 95

query parameters, 182-1 85
See also subroutines

parentheses, 69
passing arrays, 137
passing multiple arguments, 1 32
passing parameters, 127

to stored procedures, 1 9 6 1 95
percent (%), 207
plus sign (+), 44
postback, 226-227
Preserve keyword, 1 1 1-1 12
primary key, 168-169,201
procedural programming languages, 25
programming languages, 5 1

event-driven, 25
.NET, 5 ,8
procedural, 25
pseudocode, 36

properties, 24, 1 15
pseudocode, 36
publishing ASPNET web pages, 10

Q
quality assurance, 37
query parameters, 1 82-1 85
quotations ("), 53

R
radio buttons, 147

accessing selected radio button, 148-150
creating, 148
radio button control, 228-229

ReDim keyword, 1 1 1-1 12
See also Dim keyword

referencing multidimensional arrays, 1 14
relating tables, 160-1 6 1
relational database model, 159
relational operators, 205-208
Repeater control, 222-224,23 1-232
Response.Write() method, 25
Result variable, 136

Return keyword, 134-135
return values, 7 1, 127, 134-135

access return value of a stored procedure,
193-194

Reverse() method, 1 17
runat="server" property, 29

S
schemas, 161-162
scope, 59
scripts, 28
secondary indexes, 202
security, 7
SeparatorTemplate, 225
server side

designing, 35-36,39
development, 43-45

Short data type, 55
Single data type, 55, 12 1
Sort() method, 1 16-1 17
source code, 23

arguments, 26-27
defining, 27-28
events, 25-26
object-oriented programming, 24-25
See also pseudocode

SQL, 158,174
AVG(), 21 3
IN clause. 210
constraint clause, 201
COUNT(), 213-214
Create Index statement, 202
Create Table statement, 200-20 1
Delete From statement, 2 1 1
Distinct modifier, 208
Drop Index statement, 203
Drop Table statement, 20 1-202
GROUP BY clause, 2 14-21 6
Insert Into statement, 203
MAX(), 213
MIN(), 213

ASP.NET 2.0 Demystified

SQL, (Cont.)
In modifier, 208
NOT clause, 205
Not In modifier, 208
OR clause, 205
ORDER BY clause, 214,216
relational operators, 205-208
sending queries to the DBMS, 178-1 80
SUM(), 213
Update statement, 209-21 1
WHERE clause, 204-205,2 10

SQL Server
creating a connection to, 175-176
defining query parameters, 183-1 84
deleting rows, 190-191
HasRows property, 18 1
inserting rows, 186-1 87
sending queries to the DBMS, 178-1 80
updating rows, 188-1 89

SqlCornmand, l75
SqlConnection, 175, 176
statements, 56

See also conditional statements
static web pages, 2-3

pros and cons of, 4
See also dynamic web pages; web pages

Step keyword, 93
stored procedures, 19 1-192

calling, 193-1 94
creating, 192-1 93
passing parameters to, 194-195

String data type, 56, 12 1
string values, 53
Structured Query Language. See SQL
Sub, 26,127
Submit button, creating, 146
subroutines, 125

calling, 128
creating, 127-1 28

dividing applications into, 126
vs. functions, 126-127
See also parameters

SUM(), 213
System.Data.Odbc, 174
System.Data.OleDb, 174, 175
S ystem.Data.OracleClient, 174
System.Data.SqlClient, 174, 175

T
tables, 159

aliases, 21 3
calculating columns, 2 1 3-2 14
creating, 177,200-201
deleting data from, 2 1 1
dropping, 20 1-202
indexing, 202-203
inserting rows, 203
joining, 168-169,211-212
relating, 160-1 6 1
selecting data from, 203-208
updating, 209-2 1 1

tags
HTML, 16
XHTML, 17

templates, 224-226
testing, 37

ASP.NET web applications, 4 5 4 6
ASP.NET web pages, 22

two-dimensional arrays, 1 12
See also arrays; multidimensional arrays

U
underscore (-), 207
unit testing, 37
URLs, 3
user acceptance, 37
user interface, designing, 35

v
values, 52

assigning to array elements, 108
assigning to variables, 59
Boolean, 53
date, 53
number, 52
string, 53

variables, 53-54
assigning values to, 59
declaring, 56-58
initializing, 58
scope, 59
variable names, 57

VB.NET. See Visual Basic .NET
Visible property, 40,43
Visual Basic .NET, 5, 8,24
Visual Studio 2005, 17
Visual Web Developer, 17- 19

debugger, 22
Design tab, 17-1 8,20-21

Source tab, 18,20,23
Toolbox, 18, 19

W
web controls, 29
web hosting, 9
web pages, 1

dynamic, 4-7
static, 2 4
See also ASP.NET web pages; HTML

server controls
web servers, 3 4
wildcard characters, l92-193,207
Write() method, 25
www.brinkster.com, 9, 10
www.hostindex.com, 9
www.tophosts.com, 9

X
XHTML, 17

See also HTML
XOr operator, 64

	Cover.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	73.pdf
	74.pdf
	75.pdf
	76.pdf
	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf

