

Embedded Systems

Firmware Demystified

Ed Sutter

CMP Books Lawrence, Kansas 66046
CMP Books CMP Media LLC 1601 West 23rd Street, Suite 200 Lawrence, Kansas 66046

USA www.cmpbooks.com

Designations used by companies to distinguish their products are often claimed as trademarks.

In all instances where CMP Books is aware of a trademark claim, the product name appears

in initial capital letters, in all capital letters, or in accordance with the vendor’s
capitalization preference. Readers should contact the appropriate companies for more

complete information on trademarks and trademark registrations. All trademarks and

registered trademarks in this book are the property of their respective holders.

Copyright © 2002 by Lucent Technologies, except where noted otherwise. Published by CMP

Books, CMP Media LLC. All rights reserved. Printed in the United States of America. No part

of this publication may be reproduced or distributed in any form or by any means, or stored

in a database or retrieval system, without the prior written permission of the publisher.

The programs in this book are presented for instructional value. The programs have been

carefully tested, but are not guaranteed for any particular purpose. The publisher does

not offer any warranties and does not guarantee the accuracy, adequacy, or completeness

of any information herein and is not responsible for any errors or omissions. The publisher

assumes no liability for damages resulting from the use of the information in this book

or for any infringement of the intellectual property rights of third parties that would

result from the use of this information.

Acquisition Editor: Robert Ward

Editors: Joe Casad and Catherine Janzen

Layout production: James Hoyt, Justin Fulmer, and Madeleine Reardon Dimond

Managing Editor: Michelle O’Neal
Cover art: Rupert Adley (www.solidimages.com)

Cover design: Damien Castaneda

Distributed in the U.S. and Canada by:
Publishers Group West 1700 Fourth Street Berkeley, CA 94710

1-800-788-3123 www.pgw.com

ISBN: 1-57820-099-7

Table of Contents

Preface

.

vii

Who Is the

Reader?

.

.

. ix

 What’s Covered in this

Book?

ix

Conventions

.

.

.

. xii

 Source

Code

.

.

.

xii

Acknowledgments

.

.

.

xii

Chapter 1 A Hard

Start

.

1

System

Requirements

.

.

. 2

 Central Processing

Unit

.

.

. 3

 System

Memory

.

.

.

10

 CPU

Supervision

12

 Serial Port

Drivers

 15

 Ethernet

Interface

17

 Flash Device

Options

 18

 The CPU/Memory

Interface

 19

Summary

.

.

.

. 27

Chapter 2 Getting

Started

.

29

How Is It Done on a

PC?

.

.

30

 Building

Libraries

.

.

.

45

 Up

Front

 47

 Run

Time

.

.

.

. 55

 Hardware Sanity Tests for

the Firmware

Developer

55

Summary

.

.

.

. 60

Chapter 3 Introducing

MicroMonitor.

. 61

An Embedded System Boot

Platform

.

. 61

Chapter 4 Assembly

Required

. 69

Just After

Reset

 70

 I/O

Initialization

 76

 Establish Exception

Handlers

.

.

. 76

Summary

.

.

.

. 86

Chapter 5 Command Line

Interface.

.87

CLI

Features

.

.

.

88

 CLI Data Structure and the

Command

Table

89

 CLI

Processing

.

.

.

90

 The Functions Beneath the

Command

Name

.

91

 Shell Variable and Symbol

Processing

 96

 Command-Line

Redirection

 99

 Command Line Editing and

History

 105

 User

Levels

.

.

.

111

 Password

Protection

.

.

. 115

Summary

 116

Chapter 6 Interfacing to Flash

Memory

. . . .117

The Interface

Functions

 118

 Flash Driver Front

End

 132

Summary

 136

Chapter 7 A Flash File

System.

137

The Role of TFS in the

Platform

.

. 138

 The TFS Design

Criteria

.

.

. 138

 File

Attributes

139

 High-Level

Details

 141

 Flash Space Overhead

Required by

TFS

 143

Defragmentation

.

.

.

144

 TFS

Implementation

.

.

.

146

 Adding and Deleting

Files

.

.

155

 To Load or Not to

Load

 165

 File

Decompression

.

.

.

170

 Execute In

Place

 171

Summary

 172

Chapter 8 Executing

Scripts

.173

The Script

Runner

.

.

. 173

 Conditional

Branching

 181

A Few

Examples

 187

Summary

 191

Chapter 9Network

Connectivity

.193

Ethernet

.

.

.

194

ARP

 194

IP

 195

ICMP

 196

 UDP and

TCP

 197

DHCP/BOOTP

198

 Applied to Embedded

Systems

199

Summary

.

.

.

. 209

Chapter 10 File/Data

Transfer

. 211

Xmodem .

 . 211

TFTP .

 . 219

 Field Upgrade

Capability .

230

Summary .

. 231

Chapter 11 Adding the Application 233

Different Memory

Map .

233

 Less Intense

Startup .

 234

 Establishing an Application

Stack .

235

 Connecting to the Monitor’s
API .

235

The Application start()

Function .

240

The Application main()

Function .

241

 Application-Originated

Drivers .

242

 Application-Based CLI Uses Monitor

CLI . 242

 Scripts Run Through the Application’s
CLI . 244

Summary .

. 245

Chapter 12 Monitor-Based Debugging 247

Different Type of Debug

Philosophy .

248

Breakpoints .

. 249

 Adding Symbolic

Capabilities .

254

 Displaying

Memory .

255

 Overlaying a C Structure onto

Memory . 261

 Stack

Trace .

 277

 Testing for Stack

Overflow .

283

 System

Profiling .

 289

Summary .

. 299

Chapter 13 Porting MicroMonitor to the

ColdFire™ MCF5272 .

301

Source Code Directory

Tree .

302

 The

Makefile .

. 304

 The Configuration Header

File .

313

 Stepping Through the

Port .

319

Summary .

 . 332

Conclusion .

335

Appendix A Building a Host-Based Toolbox337

Interfacing to Files on the

Host .

338

 Interfacing to the PC Serial

Port .

342

 PC-Based UDP Transactions:
moncmd. 344

Summary .

 . 348

Appendix B RTOS Overview. .349

The

Scheduler .

 350

 Tasks, Threads, and

Processes .

351

 Preemption, Time Slicing, and

Interrupts . 352

 Semaphores, Events, Messages, and

Timers . 353

Reentrancy .

. 356

 Good Concurrency vs. Bad

Concurrency . 357

Summary .

 . 358

Index .

.359

What’s on the CD-ROM? .372

Preface

An embedded system is just a computer buried inside some other product. Surpris-

ingly, you can know a great deal about programming and computing and still get

lost in the arcane world of embedded systems. In the world of embedded systems

programming, countless details — both hardware- and software-related — make

the development process seem like a path that few have traveled and even fewer

have survived. How do software, hardware, and firmware differ? How in the world
does a 100,000-line program end up inside a device smaller than my fingernail?
What is flash memory and why do I need a cache? What is the difference between
a task and a process? Do I need to worry about reentrancy? As we progress through

Embedded Systems Firmware Demystified, you will come to see that these questions
are not as complex as they first appear.

Embedded systems programming spans a wide range of activities from building

programmable logic at the most concrete end to writing a UNIX™ process at the

most abstract end. Bracketed by these poles, the industry has exploded in the

last 20 years. In the late seventies, assemblers were considered luxuries. A

typical embedded system used less than 64Kb of system memory (bits, not bytes!).

There was no hardware hand-off to the firmware developer. The same person that
drew the schematics and soldered the prototype also wrote the firmware that
pulled the whole thing together. By the time Intel introduced the 8085 chip,

it was clear that those pesky microprocessors were here to stay. In the eighties,

the Motorola versus Intel CPU wars started, and C became a popular choice for

the elite few who dared to mess with a high-level language and an EPROM

programmer. Today, microprocessors are everywhere and range from the 4- and

8-bit workhorses still dominating the industry to 1GHz 64-bit processors that

almost need a freezer (microprocessor-controlled, no doubt) to keep them cool.

Over the years, the complexity of these systems has snowballed. The industry

has transitioned from programming a DEC PDP machine with binary codes on the front

panel to applying object-oriented design to a microcontroller in a toaster. If you

let the trend get to you, the changes can seem frazzling. There are microprocessors

and microcontrollers; RAM, DRAM, and SDRAM; pipelining and superscalar; EPROM and

flash memory; RISC and CISC; and RAS and CAS and cache — and that’s just the
beginning.

Now, everything from toothbrushes (no kidding) to fighter jets are likely to have
a version controlled by a microprocessor of some kind. With this trend come tools

and technologies. One can easily be overwhelmed by the available choices in hardware

(integrated circuits that the firmware must make work) and software (tools that are
used to build the firmware application).

The goal of this book is to prepare you for a real embedded systems project by

walking you through an entire embedded systems design. Not coincidentally, the

project source code included is a piece of firmware — an embedded boot platform

— that can simplify all your future projects. I assume a small hardware design

with CPU, memory, and some peripherals. I present a basic schematic and walk you

through the method in which instructions are fetched from memory. I discuss devices,

as well as concepts. I examine flash memory versus EPROM, SRAM versus DRAM,
microcontroller versus microprocessor, and data bus versus address bus. I also

explain how you convert your C and assembly language source code to a binary image

that ends up in the memory device from which the CPU boots (the boot flash memory).
Several chapters cover the basic steps of starting up an embedded system and

getting a working application (including the basic boot in assembler), exception

handling, flash memory drivers, a flash file system, and serial and Ethernet
connections. The result is an understanding of how an embedded systems project gets

started and how to build a platform on which an embedded systems application can

reside.

Sound exciting? Great! Sound scary? It’s not! The intent of this book is not to
discuss the latest superscalar architecture or the antenna effects of copper routes

on a printed circuit board, nor does it present a high-level abstract design process.

(Advanced architectures and transmission-line effects are certainly important, but

they are not the topic of this book.) This book is for those who want to get their

hands dirty without being overwhelmed by industry jargon or design-specific techni-
cal details. By the end of this book, you will know how to read a basic schematic,

know what goes into the boot flash device, and understand the major components of
a complete embedded systems development platform.

Who Is the Reader?

At the minimum, I assume the reader has some experience with C and basic assembly

language concepts. I do not assume any electronics or hardware background. Thus,

readers with a wide range of programming backgrounds will find this book useful.

Computer science or electrical engineering students without a significant
background in firmware development, but at least an interest, can obviously
benefit from this book.

Low-level firmware developers will find the working example helpful, as it
includes documentation and code explanations for an extensible firmware
development platform. I explain the details associated with booting new

hardware and the way in which the CPU interacts with peripherals. Topics range

from the lowest-level boot to a Trivial File Transfer Protocol (TFTP)

implementation over Ethernet. You can port the code in this book to your own

target system or integrate snippets of this code with your existing firmware
platform.

Hardware developers will find the completed platform useful for helping analyze
and debug hardware beyond the CPU complex. For those inquisitive enough to step

away from hardware to learn more about the firmware process, this book provides
a way to get started without getting too far from the hardware. (Hardware

designers regularly make the transition to programming in the firmware/software
world.)

Project leaders will also find this book useful, as the firmware package presented
is a mature platform. The platform is applicable to a wide range of real-time

operating systems (RTOS) and target architectures, and it is extremely easy

to port to new systems. The fact that the platform is fairly target- and

RTOS-independent makes the transition to a different target or RTOS much less

painful.

What’s Covered in this Book?
Chapter 1: A Hard Start describes a basic CPU structure, with support

peripherals, on which the firmware discussed in this book can execute. The design
includes, among other things, a core microprocessor, RAM, flash memory, serial
I/O, and CPU supervision. Each element of the design is discussed (for example,

CPU supervision and types of volatile and non-volatile memory devices). This

chapter also examines the basics of how microprocessors fetch instructions from

the memory device and how cache makes these fetches more efficient. The chapter
covers the typical peripherals found in many microprocessors today, without

being specific to a particular device.
Chapter 2: Getting Started introduces the writing and building of programs for
embedded devices. This chapter explains the differences between a

native-compila-tion and a cross-compilation environment. I discuss file formats and
break down the task of burning the boot flash memory into simple steps. I also explain

the importance of the link editor file and show how it is used to allocate sections
of the application code to portions of the target memory. The chapter also discusses

some preliminary tests and preparations you must undertake before you start program-

ming the firmware.

Chapter 3:Introducing MicroMonitor introduces the boot platform, or boot monitor,
used in embedded systems. This monitor, called MicroMonitor, has a full list of

features and serves as a learning tool to teach you about the firmware development
process.

Chapter 4: Assembly Required describes MicroMonitor’s reset vector, or startup code.
I then build some serial drivers and discuss an implementation for establishing

exception handlers.

Chapter 5:Command Line Interface describes how to build a shell around the core
functionality introduced in Chapter 4. I start with the command line interface

(CLI).Next, I explain the processing that parses the input command line and that

eventually (through the table of structures) calls a function corresponding to the

command line. The command line interface includes shell variables and symbols,

command line editing and history, user levels, and password protection.

Chapter 6:Interfacing to Flash Memory is the first of three chapters dealing prima-
rily with flash memory. I describe a sample platform with (potentially several) banks
of flash memory. This chapter discusses the lowest-level details involved in
programming flash memory and presents a useful approach for target hardware with
different flash memory configurations.

Chapter 7:A Flash File System discusses the creation of a tiny file system (TFS)
which resides in flash memory. This simple file system is offered as an alternative
to some of the more complicated approaches taken by many flash file system designers.
I also describe some of the advantages and disadvantages of the trade-offs made

in the design of TFS.

Chapter 8: Executing Scripts describes a feature that, with a CLI for command exe-
cution and a TFS for file storage, lets a file execute as a script or small program.
This chapter examines the surprisingly simple details that combine the CLI and TFS

to create a simple interpreter. The CLI commands are chosen to provide the CLI/TFS

user with a simple but useful programming environment. Conditional branching and

subroutines are just a few of the capabilities of this system.

Chapter 9: Network Connectivity examines the elements needed to connect as a node
on a network. Just as flash memory is becoming a standard boot memory device, so
too is Ethernet becoming a standard interface on many embedded systems. This chapter

discusses several protocols used with embedded systems, including Ethernet, ARP,

ICMP, IP, UDP, and BOOTP/DHCP. Finally, the chapter examines encapsulation of

network layers — one on top of another — by small blocks of code that know only

about their own piece of the packet payload.

Chapter 10: File/Data Transfer discusses two common file-transfer protocols: Xmo-
dem for serial interfaces and TFTP for networks. Here I explain each of these proto-

cols as implemented in the boot monitor package. The Xmodem and TFTP implementations

presented in this book can transfer files and raw memory both to and from the target.

Chapter 11: Adding the Application shows you how the platform provides the base
on which applications reside. The example in this chapter is a simple application

with no RTOS, but it is clear that this platform supports just about any environment.

You, as the developer, decide how much of the platform remains accessible by the

application after the application takes over the system. This chapter discusses

how the application is built to reside within the TFS and how the platform’s loader
automatically transfers the file from flash memory space to RAM space for execution.

Chapter 12:Monitor-Based Debugging discusses some of the monitor’s on-board
debugging capabilities and shows the implementation of these capabilities because,

whether you want to admit it or not, you’re going to have to debug your code. Here
you’ll learn how to create a basic symbolic debugger that can display memory as
a structure (instead of as raw data), set breakpoints, single-step through a program,

profile a program’s execution, and dump a stack trace. The debugging techniques
described in this chapter do not require in-chip support or an external debugger.

Chapter 13:Porting MicroMonitor to the ColdFire™ MCF5272 explains the process of
porting the MicroMonitor firmware package to a Motorola MCF5272 (ColdFire)

evaluation board. The text introduces the directory structure of the source code

on the CD and walks through the monitor-specific details of the porting process.
This chapter completes the process begun in earlier chapters.

Appendix A:Building a Host-Based Toolbox provides snippets of code that might prove
useful for interfacing to files, serial ports, and sockets. Despite the fact that
this book is about firmware, you are likely to have to do some native programming
eventually. Even if you’ve already done a lot of native programming, the code
presented here should speed your work.

Appendix B: RTOS Overview introduces some of the basic concepts of a real-time
operating system (RTOS), which lets you expand your environment from supporting

single-threaded programs to multi-threaded ones. Several books are available

on this subject, so this appendix is not intended as an exhaustive study. I,

however, present a fundamental explanation of what multi-tasking can do for

you and why preemption is a beautiful yet dangerous feature.

Conventions

Throughout the book, I use different typefaces to differentiate between a) the

book’s regular text and b) special software tools, code, and so forth. General
text is in roman font. Terms used for the first time are in italic. A monospaced
font indicates code, software tools, hexadecimal numbers, filenames, data types,
variables, and other identifiers, as well as other special items.

Source Code

This book covers a lot of source code. When the text describes various portions

of the code in detail, snippets or entire functions are included. All code in

this text has been transferred from the original working C source code and is

included on the CD. Some implementation details that were not applicable to

the discussion were removed from the text listings to make the presentation

clearer. I have made every effort to maintain accuracy between the original

code and the code presented in the text; however, the code on the CD is the

complete working version. If you have questions, please refer to the code on

the CD.

Acknowledgments

I want to thank my good friends and managers at Lucent — Roger Levy and Paul

Wilford — for their support and encouragement. Also, much thanks to my good

friends Patricia Dunkin and Agesino Primatic, Jr. for reviewing the text and

providing a lot of good comments and suggestions.

My appreciation goes to the team at CMP Books. Thanks to Joe Casad, Catherine

Janzen, and Robert Ward for editorial and technical contributions (special

thanks to Robert for dealing with my many questions and paranoias throughout

this whole process). Thanks to Michelle O’Neal, Justin Fulmer, James Hoyt, and
Madeleine Reardon Dimond for typesetting, illustrating, and indexing the book.

Finally, I want to thank my wife, Lucy, for her endless encouragement through

this project. I also want to thank my son, Tommy, for helping me keep my

priorities in line. Most of all, I want to thank my Lord and Savior, Jesus Christ,

for the sacrifice that He made to provide me with eternal salvation. It just
doesn’t get any better than that!

1

Chapter 1

A Hard Start

Although the primary focus of this book is firmware development, a good firmware
developer must have a reasonable understanding of the hardware on which the

firmware resides. You could compare a firmware programmer to someone who changes
oil at a gas station: if all that person knows is how to perform an oil change,

he won’t have the skills to notice warning signs that a fully trained mechanic
would pick up right away. A narrowly trained technician may change the oil

competently but not notice other problems like a leaky head gasket. Sooner or

later something else will go wrong, remain unnoticed, and cause additional

trouble due to the techni-cian’s limited knowledge.
 This chapter explains what a firmware engineer needs to know about the hard-

ware in a typical system. The goal is not to turn you into a hardware designer

but simply to explain enough so that you can do more than “change the oil.”
To achieve this goal, this chapter discusses some of the common CPU support

peripherals and examines how the hardware processor does its job. I will start

by focusing in on the type of system that this book addresses.You will learn

about some of the most common features of today’s microprocessor-based systems,
some of which reside within the CPU silicon itself and others which are usually

external to the CPU. I will also discuss the sequence of steps that the CPU

takes to retrieve an instruction and the advantages and snags that are

introduced by the use of cache.

At the end of this chapter (although you will still not be a qualified hardware
designer) you will hopefully have a better understanding of the hardware

platform onto which you will be installing your firmware.

System Requirements

The hardware required for an embedded system varies greatly depending on its

intended use. Some tiny systems have barely 1K data space and 16K of instruction

space, while high-performance systems might run a 1GHz 64-bit processing engine

with 32MB CompactFlash and 128MB DRAM. In this book, I focus mostly on systems

with capabilities that fall somewhere in the middle. The firmware I’ll discuss
does require some memory space (ranging from 32K to 256K of flash memory and
8K to 128K of RAM) depending on what capabilities are built in, so it is not

appropriate for small microcontroller (8051, 68HC05/11/12, etc.) projects. On

the other hand, this code doesn’t need (or want!) a large machine to work
successfully.

Figure 1.1 represents a complete system. Using this system model, you

canprogram your own devices, talk to the PC, and even serve HTML pages to a

network browser. If you need to skimp, you can eliminate the reset/watchdog

and battery-backed-RAM/time-of-day (BBRAM/TOD) clock controller and still have

the capabilities I listed! I include these capabilities in our model because

they are extremely useful. They’re also quickly becoming standard equipment
on most microprocessor designs.

Figure 1.1 Block Diagram of a Typical Embedded System.

These are the components most common in embedded systems. All embedded systems use some

kind of nonvolatile storage (flash memory, EPROM, ROM) and some form of RAM. Most have some
channel they can use to communicate with a development host (a serial port, Ethernet port,

or JTAG port.).

Central Processing Unit

Embedded systems are designed around either a microcontroller or a

microprocessor. For our purposes, this distinction isn’t really significant,
partly because the line drawn between the two is getting a bit blurred with

current development. A few years ago, microprocessors were defined as execution
units and everything else was an external peripheral device. A microcontroller,

on the other hand, was distinguished by the fact that it had everything it needed

on one chip. This distinction isn’t as clear today. Chips we once called
microprocessors are becoming more and more integrated with added peripherals.

These chips include things like serial ports, programmable chip selects,

interrupt controllers, DRAM controllers, internal timers, and programmable I/O

pins. Some chips go even further with a built-in Ethernet device and PCI

controller in the same chip. Some chip vendors refer to these chips as

microcontrollers, and others refer to them as microprocessors. (Some say

potaeto and some say potahto… Either way, it still makes french fries!) Don’t
let the names confuse you. In this text, I stick to the following usage:

. • Microcontroller — those devices that can be configured to run 100
percent on their own. With a microcontroller, there is no need for any other

peripheral devices (except maybe a power supply and crystal). Microcontrollers

contain some small amount of nonvolatile memory for program storage and volatile

memory for program use and typically come with an 8- or 16- bit internal CPU. Devices

that fall into this category include the 8051 and 68HCXX families.

. • Desktop Microprocessor — those devices that contain almost nothing

except the processing engine. They immediately require complex support chips as

their peripherals. The low end of these devices are 32-bit chips, but 64- and 128-

bit processors are getting more and more common. This category includes devices

like the K6, Pentium, and G4 processors.

. • Embedded Microprocessor — those devices that contain a processing

unit and some set of peripherals typically seen in an embedded system. These devices

generally fall in the 16- and 32- bit category and include processors like the 68332,

PPC860, and SH2.

. • CPU (Central Processing Unit) — this term can refer to any of the

above, or it can refer to just the processing section of a microcontroller or

embedded microprocessor.

Keep in mind that these definitions are not the rule in the industry. You
should also note that there is some overlap between the different terms. Both

microcontrollers and desktop microprocessors are used in embedded systems. In

fact, back in the 1980s, microcontrollers were even used in some of the first
desktop machines.

Microcontrollers, as defined above, dominate the embedded systems market by
several orders of magnitude. However, silicon (both processor and memory) prices

are dropping, and the larger 16- and 32-bit processors are gaining ground in embed-

ded applications. This book generally focuses on systems based on embedded micro-

processors.

Embedded microprocessors come in a variety of shapes and sizes. They are even

becoming available as logic cores designed for integration into very large program-

mable devices called field programmable gate arrays (FPGA). Companies that were
producing programmable logic at one time are now producing programmable logic with

a built-in processor.

Following is a brief description of some of the typical peripherals that are

included with today’s embedded microprocessors. I discuss each item using the anal-
ogy of a similar process in an office environment.

Programmable Chip Selects

Like a committee chairperson, programmable chip selects reduce confusion by coor-

dinating communication. Imagine you are in a meeting and you are trying to speak

to one person in the group. In this situation, you need some way to let that person

know that you want to talk to them. Ideally, this mechanism should also let all

the other people know that you are not addressing them. Chip selects perform this

task for the microprocessor. Devices that are peripheral to the processor occupy

some amount of space within the processor’s address range. When a peripheral
device’s chip enable input line is not active, its data bus is in a high-impedance
state, or disconnected, condition. This idea is very important because

electrically there can only be one device actually writing data onto the data bus

at any one time. (The term bus contention refers to the illegal condition that
occurs if more than one device is attempting to write on the data bus at a given

time.)

The firmware must know the address range for each peripheral device, which is
typically decided at the hardware design stage. Each peripheral has some set of

characteristics with which the processor must deal so that the two can interact

with each other. Some peripherals use a very small amount of address space while

others can use several kilobytes. Some peripherals are fast enough to keep up with

the processor, and others force the processor to wait. In some cases, the peripheral

tells the processor asynchronously when the peripheral has done its task, and,

in other cases, a defined number of clock cycles must elapse between accesses to
the peripheral device. All of these pesky little details can add up to a significant
amount of extra glue logic between the processor silicon and the peripheral silicon.

To reduce the need for glue logic, most processors intended for the embedded market

offer pins called programmable chip selects. The chip select is a pin that the
CPU uses to access a unique address range on the processor bus. There are typically

three to six of these lines on an embedded processor, and the hardware attached

to these lines can provide a simple one-device-per-chip select. Alternatively,

there may be additional logic between the CPU and peripheral that performs

additional address decoding to allow multiple devices to connect to a single chip

select.

Glue logic refers to the extra circuitry (logic) that would be necessary to connect
(or glue) two devices together.

Interrupt Controller

An interrupt controller helps prioritize incoming messages, which is a task that

any office worker can appreciate. Consider the following small office scenario.
Person_A is in an office behind a desk, talking on the phone. Person_B walks down
the hall directly into Person_A’s office and asks a question. Person_A can do one
of several things:

. • Totally ignore Person_B and continue the phone conversation.

. • Quickly acknowledge Person_B’s request but respond with something
like “OK, I’ll get to that in a little while,” placing the request into a pile with
a bunch of others.

. • Tell the person on the phone that the conversation will have to

continue later and then respond to Person_B. This outcome is likely if Person_A

considers Person_B to be more important than whomever is on the phone.

. • End the conversation. This outcome occurs automatically, regardless

of whom is on the phone, if Person_B is the boss.

You can say that Person_A processes the interrupt from Person_B. Several factors

determine whether or not Person_B is acknowledged, including the importance of

the person on the phone, the fact that Person_A’s door might have been closed, and
so on. Somehow Person_A must prioritize the interrupt based on what is currently

going on.

Now, consider Person_A having the phone conversation to be the CPU currently

executing instructions and Person_B to be a peripheral device that needs the CPU’s
attention. An integrated interrupt controller provides the CPU with this ability

to enable, disable, and prioritize incoming interrupts from both internal and

external peripherals. Usually all incoming interrupts are maskable (can be

disabled) except the NMI (non-maskable interrupt) and reset lines (the bosses).

Timer-Counter Unit

Consider a scenario with several typists working in an office. For a little fun,
they decide to see who can type the most words in one minute. They gather around

a computer terminal, and each one gets a shot at the one-minute trial. However,

they find that they need some way to keep track of the 60-second interval of time
from the beginning to the end of the test. Alternatively, they might just count

the number of seconds taken to type a specific block of text. In this case, they
are not measuring a fixed amount of time but the elapsed time it takes each individual
to complete the challenge.

The timer-counter unit within an embedded system can help with this process.

The unit provides the CPU with capability related to elapsed time. The

timer-counter unit provides the firmware with the ability to generate periodic
events, including events based on incoming pulse counts.

It is important to note that the microprocessor’s timer-counter unit usually does not
deal with time of day on its own, so don’t assume that “timer” means “wall clock.” In
most cases, “timer” means “stop watch.” A stop watch can be converted to a wall clock
if at some starting point the stop watch is synchronized with a wall clock. This process

is what is done with the microprocessor’s timer if time-of-day is needed.

DMA Controller

Consider an office that contains a file cabinet. In that file cabinet is paperwork

that several office workers need to access. Some only need to access it once in
a while, while others require the paperwork much more often. The manager of the

office sets up a policy so that some of the individuals have a personal key to get
into the file cabinet, while others must get a shared key from the manager. In other
words, some office workers have direct access to the file cabinet, and others have
indirect access.

In many embedded system designs, the CPU is the only device that is connected

to the memory. This means that all transactions that deal with memory must use

the CPU to get the data portion of that transaction stored in memory, just as some

office workers had to obtain the manager’s key. Direct memory access (DMA) is a
feature that allows peripherals to access memory directly without CPU intervention.

These peripherals correspond to the office workers with their own keys.
For example, without DMA, an incoming character on a serial port would gener-

ate an interrupt to the CPU, and the firmware would branch to the interrupt han-
dler, retrieve the character from the peripheral device, and then place the

character in a memory location. With DMA, the serial port places the incoming

character in memory directly. When a certain programmed threshold is reached, the

DMA controller (not the serial port) interrupts the CPU and forces it to act on

the data in memory. DMA is a much more efficient process. Many integrated
microprocessors have multiple DMA channels that they can use to perform

I/O-to-memory, mem-ory-to-I/O, or memory-to-memory transfers.

Serial Port

Consider the front door of an office building. The front door is where people can
come in and out and easily interact with the facilities provided by the business.

This fact doesn’t mean that there aren’t other ways to contact the business, but
the front door is a very convenient and standard way of doing it.

This task of providing access is the serial port’s job. The serial port provides
basic communication to a console or some other device that understands the same

protocol. The serial port or universal asynchronous receiver transmitter (UART)

provides the CPU with an RS-232 bit stream, which is the same technology used for

the PC’s COM port. Different processors have different variations on this standard,
but, in almost all cases, the minimum is a basic asynchronous serial bit stream

(using RS-232 levels) consisting of one start bit, some number of data bits (usually

between five and nine), and one or two stop bits.

DRAM Control Unit

Imagine that you are a manager with some employees who have many useful talents

but also need the time to take care of their children. You could just tell them

you can’t deal with the kids in the office (and lose their talents), or you could
be a bit more flexible and offer to have some other employees in the office take

care of their kids.

This is the dynamic RAM (DRAM) story. RAM is very useful in all

microproces-sor-based projects. DRAM is a much cheaper alternative to SRAM, but,

unlike SRAM and flash memory, DRAM requires baby-sitting or extra logic in the hard-
ware to keep the bits in the DRAM stable. The type and size of the DRAM determine

how complex the baby-sitting needs to be. The DRAM control unit does the the

babysitting so that the CPU can interact directly with the dynamic RAM.

Memory Management Unit

A memory mangement unit’s (MMU) main responsibility is to define and enforce the
boundaries that separate different tasks or processes. To understand the effect

of separating tasks, consider two different office environments. In the first one
(the formal environment), there is an individual office for each employee. Each
employee has a key to the door of his or her office and is considered the owner
of that space. The second environment (the informal environment) uses a bullpen
setup. There are no walls between employees, and everyone is on the same floor in
the same air space. Each one of these configurations has its particular advantages
and disadvantages. In the formal environment, you don’t have to worry about one
employee bothering another employee because there are walls between them. No matter

how noisy one employee gets, the neighboring worker does not hear the disturbance.

This is not the case for an informal setup. If an employee is talking loudly on

the phone in the open environment, this inconsiderate individual distracts the

other workers. If, on the other hand, the employees are considerate, two employees

can quickly communicate with each other without needing to leave their seats.

Similarly, if one employee needs to borrow another employee’s stapler, it’s just
a toss away. In the formal environment, each time communication needs to take place,

the communicating employee needs to go through some series of steps, like making

a phone call or walking to the other office.
Each employee can be compared to a block of code (or task) that is designed to

perform some specified job in an embedded systems program. The air space equates
to the memory space of the target system, and the noise generated by a misbehaving

employee can be equated to a bug that corrupts the memory space used by some other

task. The MMU in hardware, if configured properly, can be compared to the walls
of the formal office environment. Each task is bounded by the limitations placed
on it by the MMU, which means that a task that somehow has a bad pointer cannot

corrupt the memory space of any other task. However, it also means that when one

process wants to talk to another process, more overhead is required.

Later, in this book, you will see that code bounded by the MMU protection is

called a process and code not bounded by an MMU is called a task. A few years ago,

the full use of an MMU in an embedded system was rare. Even today, most embedded

systems don’t fully use the capabilities of the MMU; however, as embedded systems
become more and more complex and CPU speeds continue to rise, the use of an MMU

to provide walls between processes is becoming more common.

Cache

Let’s say you work at a desk and you regularly access folders from a file cabinet
near your desk. Some folders you access regularly, others you access less

frequently. You could return each folder to the file cabinet after each access.
On the other hand, you might decide to use some smaller shelf right on your desk

for those folders that you access frequently so that you don’t have to get up to
get them as often. On any given day, the set of folders that are in the shelf on

your desk may change based on how much you plan to access them on that day. When

properly organized, the local shelf can save you several trips to your file cabinet.
The microprocessor and memory story is similar. Microprocessors have been

speeding up at a much faster pace than have the large memory subsystems with which

they interact. To compensate for this difference, smaller blocks of really fast

(and more expensive) memory are put between the microprocessor and system memory

so that fetches to memory that happen frequently can be done through this faster

cache memory instead of through the slower standard memory.

Programmable I/O Pins

As the manager of an office, you know that the ideal hiring scenario is to hire
individuals that have multiple skill sets. Though each employee can only do one

thing at any one time, hiring multi-talented individuals gives you the option of

using the same group of people in several different ways.

The pin set of most modern processors also gives you this option. All of the

previously mentioned peripherals require the use of a certain set of pins on the

processor. In many cases, the majority of those pins can be used for their specific
function (serial port receiver, timer output, DMA control signal, etc.), or they

can be programmed to just act as a simple input or output pin (PIO). This flexibility
allows the silicon to be configured based on the needs of the design. For example,
if you don’t need two serial ports (and the processor comes with two), then the
pins that are allocated to the second port (RX2, TX2, and maybe DTR2, CTS2, etc…)

can be programmed to function as simple PIO pins and used to drive an LED or read

a switch.

Programmable pins are sometimes referred to as dual function. Note that this dual

functionality should not be assumed. How each pin is configured and the ability to
configure it to run in different modes is dependent on the processor implementation.
Often a pin name is chosen to reflect the pin’s dual personality. For example if RX2

can be configured as a serial port 2 receiver or as a PIO pin, then it will probably
be labeled as RX2/PION (or something similar), where N is some number between one and
M, and M is the number of PIO pins on the processor. You should be aware that some
microprocessors may be advertised as having a set of features but actually provide these

features on dual-function pins. Hence, the full set of advertised features (two serial

ports and 32 PIO lines) may not be simultaneously available (because the pins used for

the second serial port are dual-functioned as PIO lines). Make sure you read the

datasheet carefully!

Putting It All Together

The essential point of all these office analogies is that different offices can
be configured in quite a variety of different ways depending on the needs of
the business that the office supports. The same thing applies to embedded
microprocessors.

The discussion so far has assumed that these components exist on the chip

with the CPU, but they can also appear as physically separate components. The

next sections discuss components that are usually found outside the

microprocessor.

System Memory

Aside from the CPU itself, memory is the most fundamental building block in

any microprocessor-based system. The CPU fetches instructions from the memory,

and these instructions tell the CPU what to do. If the memory is programmed

incorrectly or connected to the CPU incorrectly, then even the most

sophisticated processor will be confused!

There are several different types of memory available. This range of

selection exists for the same reason that there are several varieties of almost

anything in the electronics industry: price/performance/density trade-offs.

Different designs have different requirements that make different memory

architectures attractive. For example, some systems need a lot of memory, but

not really fast memory; others require small amounts of really fast memory;

some need memory that does not lose its data when the power is removed; and

so on. Following is a discussion of the most common types of memory used today,

along with some of their characteristics.

ROM, PROM, EPROM and EEPROM

The term ROM is an acronym for Read-Only-Memory. This type of device is pro-

grammed as part of the manufacturing process and cannot be changed by the CPU

or by any in-house device programmer. A programmable read only memory (PROM)

can be programmed by an in-house device programmer, but cannot be erased. A

PROM gives the user of the device one shot at programming the device. If there

is an error in the program or if the program needs to be updated, the old PROM

must be discarded and replaced with a new, properly programmed device. An

erasable programmable read only memory (EPROM) can be programmed and erased

in-house, with the limitation that the programming is done with an external

device programmer and erasure must be done with some ultra-violet light source.

Finally, an electrically erasable PROM (EEPROM) is in-system byte-writable and

byte-erasable. At first glance, the EEPROM would appear to be the ideal storage
device; however, EEPROMs are relatively slow and fairly expensive, even at lower

package densities.

Generally, ROM, PROM and even EPROM are slowly fading into the sunset as new

emerging technologies (i.e., flash) gain in popularity and drop in price.

RAM

This name is also an acronym: random access memory (RAM). Unlike the EPROM acronym,

the term RAM doesn’t give a very good indication of its characteristics, at least
not from our point of view. The name reflects the fact that any byte can be accessed
at any time, which was a step ahead of its predecessor, sequential access memory,

when it first appeared on the electronics scene. For the sake of our discussion,
we assume that all memory is random access, but not all memory is writable by the

CPU. Therefore for us, the differentiating characteristic (compared to EPROM) is

the fact that the processor can write to RAM. RAM is read/writable but is also

volatile, which means that when power is removed, the data is not retained.
There are two fundamental types of RAM: static (SRAM) and dynamic (DRAM). SRAM

is the easier of the two to interface with because it is “static,” meaning that
it does not require any baby-sitting from the processor to do its job. Simply wire

it up to the processor and use it. DRAM, on the other hand, requires external

hardware to refresh it periodically so that the internal capacitors hold their

charge. DRAM technology is much cheaper, but it is also slower and requires

additional hardware to keep it running (the DRAM controller mentioned earlier).

Because of these issues, DRAM is typically used in systems that require large

amounts (> 1MB) of memory so that the added expense of the controller is justified.
SRAM is simple but has a higher cost per byte of storage. It is typically used

in systems that require small amounts of memory or in systems that need a small

amount of fast writable memory (like a cache). For example, on your typical PC,

some DRAM is available for general use, and a much smaller amount of SRAM is

available for the CPU cache.

Flash Memory

Like EPROM, flash memory is also nonvolatile memory. The big advantage of flash memory
over EPROM is that it is in-system programmable, which means that no separate device

is needed to modify its contents. Early devices required a higher voltage (usually

12V), but today’s parts require the same voltage as the rest of the board. Since

the flash memory is in-system writable, no UV eraser is needed.
The architecture of flash memory comes in a few varieties, and although modern

flash memory is in-system programmable, it is still not as convenient as using RAM.
Typically, an erase procedure deals with a single “sector” of the memory. Sector
sizes are usually relatively large, and an erasure sets all the bits within that

sector to one (all bytes = 0xff). Writing to the individual bytes changes only some

of the bits within each byte to a zero state. Each operation (erase, write, and

so on) except read is performed with a special programming algorithm. This

algorithm is unique enough that it does not interfere with the typical interaction

between the CPU and the memory.

Flash memory is quickly becoming the standard nonvolatile memory choice for

new designs. Aside from the algorithm needed to write/erase the memory, the

only other drawback of flash memory is that it has an upper limit to the number
of times a sector can be erased. Usually the limit is high (100,000 or 1,000,000

cycles), but, nevertheless, it must be considered in the design.

Still Others

There are several other types of memory, most of which are some derivative of

one or more of the above types. These other standards are not as popular, but

they typically satisfy some niche in the market. For example, PSRAM

(pseudo-static RAM) is a DRAM with some kind of refresh controller built into

it. It satisfies a system that needs more SRAM than a single SRAM device supports
but doesn’t need the densities offered by DRAM. Nonvolatile SRAM (NVRAM) is
static RAM with a battery backup. Some devices actually have the battery built

into the plastic; others are nonvolatile simply because the hardware design

has battery backup protecting the device; still others provide some type of

automatic backup of RAM to on-chip flash when power is removed. Serial EEPROM
is a type of EEPROM that communicates with the CPU usually using two to four

I/O pins. Access is slow, but physical size is extremely small because there

is no address or data bus.

CPU Supervision

This section discusses functions that help the CPU maintain itself through some

otherwise catastrophic situations. The functions covered here are (in order

of importance) a power monitor for reset pulse generation, a watchdog timer,

a power monitor for SRAM nonvolatility, and a time-of-day clock. The latter

two are not actually considered part of CPU supervision, but it is very common

to see various combinations of these functions in the class of integrated

circuits which are referred to as “CPU supervisors.”

Reset

Before the CPU can do anything at all, it needs to be powered up, which simply

requires a connection to the power and ground pins on the device. Once powered

up, it’s essential that the internals of the device are allowed to synchronize
and start up in a sane state. A RESET signal forces key CPU components to a

known initial state.

Typical requirements on a reset input line of a processor are that it be held

in a constant active (usually low) state for some duration (say 100ms). In some

designs, a simple resistor/capacitor (RC) combination is used to keep the RESET

line in a low state for the 100ms time period when power is applied to the system

(this is referred to as power-on reset).

Without getting into a lot of detail, assume that the resistor/capacitor

(RC) circuit of Figure 1.2 provides a time-delay power-up. While the other pins

have the supply voltage applied immediately (Signal A), the RC connection to

the RESET pin holds it low for some delay longer (Signal B), thereby providing

the minimum 100ms of low state to RESET after power-up. Unfortunately, the RC

pair is not very good at detecting when it should apply the low level to the

RESET pin. That means that it doesn’t work well for systems that are in remote
locations and must be automatically reset after power outages and dips. In these

situations, the power could dip and cause the power supply level to fall, which

would in turn cause the CPU to go insane, but would not cause the RC circuit

to pull the RESET line low enough to bring the CPU out of its insane state.

In some respects, the RC combination is an analog solution for a digital problem.

The real solution for a safe power-up reset is to monitor the supply line and

pulse the RESET line for the designated amount of time whenever it transitions

from “out of ” to “within” CPU tolerance. Fortunately, there are components out
there that do just that! There are several different components available that

monitor the supply voltage and automatically generate a clean reset pulse into

the CPU when the supply drops below a certain level.

When power is applied to the system (Signal A), the charge time of the RC circuit

attached to the reset input (Signal B) delays the reset activation. While this

reset mechanism works when the power is cycled cleanly, it can cause problems

when power is momentarily interrupted.

Watchdog Timer

The watchdog timer (WDT) acts as a safety net for the system. If the software

stops responding or attending to the task at hand, the watchdog timer detects

that something is amiss and resets the software automatically. The system might

stop responding as a result of any number of difficult-to-detect hardware or
firmware defects. For example, if an unusual condition causes a buffer overrun
that corrupts the stack frame, some function’s return address could be
overwritten. When that function completes, it then returns to the wrong spot

leaving the system utterly confused. Runaway pointers (firmware) or a glitch
on the data bus (hardware) can cause similar crashes. Different external factors

can cause “glitches.” For example, even a small electrostatic discharge near
the device might cause enough interference to momentarily change the state of

one bit on the address or data bus. Unfortunately, these kinds of defects can

be very intermittent, making them easy to miss during the project’s system test
stage.

The watchdog timer is a great protector. Its sole purpose is to monitor the

CPU with a “you scratch my back and I’ll scratch yours” kind of relationship.
The typical watchdog (see Figure 1.3) has an input pin that must be toggled

periodically (forexample, once every second). If the watchdog is not toggled

within that period, it pulses one of its output pins. Typically, this output

pin is tied either to the CPU’s reset line or to some nonmaskable interrupt
(NMI), and the input pin is tied to an I/O line of the CPU. Consequently, if

the firmware does not keep the watchdog input line toggling at the specified rate,
the watchdog assumes that the firmware has stopped working, complains, and
causes the CPU to be restarted.

The watchdog timer is a simple re-triggerable timer. When the application is

operating normally, it periodically resets the WDT by toggling its input. If

something causes the application to hang or crash, the WDT times out and forces

the CPU to restart.

Battery-Backed SRAM

Not all systems need to maintain the integrity of their SRAM when power is turned

off, but this requirement is becoming more and more common because the compo-

nents that provide that capability are getting cheaper and easier to use. Not

too long ago, embedded systems used an arrangement of discrete components to

determine what voltage was higher (power supply or battery) and properly steer

the higher supply to the power pin of the SRAM (or the whole system). Now a

handful of companies provide nonvolatile SRAM modules that have the battery

and the power supply monitoring circuitry built right into the part. These parts

are guaranteed to retain data for up to 10 years (with certain restrictions

regarding the actual amount of time the internal battery is powering the SRAM,

of course). Modules with built-in batteries are often available in versions

that are pin-compatible with standard SRAM chips. These pin-compatible packages

can be a life-saver if you need to add nonvolatile read/write storage to an

existing design.

Time-of-Day Clock

For most embedded systems, the CPU provides all that is needed for maintaining

time. Typically, there is no need to keep track of the time of day; nevertheless,

when you need the time of day, you can’t get it without some type of
battery-backed time-of-day clock function. Even though the CPU has its own

crystal and can keep relatively good time, the CPU’s notion of time only persists
as long as the CPU is powered up and running. When the board is reset, the CPU’s
clock is reset as well, making it impossible for the CPU to maintain the time

on its own. If you need time of day in your system, then you need a battery

and a time-of-day chip. An exception to this case is if the embedded system

knows that it has an external device from which it can get the current time

after being reset.

Serial Port Drivers

Many embedded systems use serial ports as an interface to the outside world.

Despite the serial port’s age (it has been around longer than dirt), serial
ports are still found on most modern single-board computers. The serial device

on an embedded system has two portions: the protocol and the physical interface.

The protocol portion takes care of start and stop bits, bits per character,

the width of each bit based on a configured baud rate, and the conversion of
the serial bit stream into a parallel byte stream easily digested by the CPU.

The physical interface takes care of converting voltage levels on the CPU to

the voltage levels needed by the interface. In many cases, the physical

interface also provides some electrical isolation between the physical

connector and the CPU. Embedded systems use two fundamentally different

transmission mechanisms for their serial ports: single wire and differential

drive transmission.

Single Wire Data Transfer

Single wire systems dedicate one wire to each direction of data transfer and use

a common ground reference. While simpler than differential drive transmission,

single wire transfer has limitations with regard to transmission speed and the

length of the wire from sender to receiver. The most common single wire standard

is RS-232. RS-232 is the serial interface used by the COM port on a PC and the

TTY ports on UNIX systems. RS-232 is by far the most common serial communications

standard in the industry.

Differential Drive Interface

Differential drive is not as widely used. It requires a few more wires, increases

the drive length substantially, and also supports transmission speeds in excess

of 1MB.

Differential drive interface can drive faster signals through greater distances

because of its inherent noise immunity. The idea behind differential drive is

that opposite polarity signals (a signal and its inverse) are applied to two

wires that travel the same path as a twisted pair. These wires are wrapped around

each other, which minimizes interference. The receiver determines the state

of the signal based on the voltage difference between the two wires. If noise

hits the cable, it is likely to inject the same corrupting signal on each wire,

so it doesn’t contribute to the detected difference (see Figure 1.4).
The most common embedded interfaces that use this technique are RS-422 and

RS-485. RS-422 is a differential drive replacement for RS-232. With no other

changes in firmware, an RS-232 interface could be replaced with RS-422, and its
maximum line drive and line speed would be increased. RS-485 adds the ability

to have more than a single transmitter and receiver on the connection. RS-485

can support single-master/multiple-slave or multi-master modes of

communication between serveral devices. RS-485 is commonly used on factory floor
networks because of the noise immunity and ability to connect multiple devices.

Figure 1.4 Differential Drive and Noise Immunity.

The line receiver uses analog techniques to compute A-B, giving

(+S+N)-(-S+N)=2S. Thus all induced transmission line noise is cancelled at

the receiver.

Ethernet Interface

While there are a few processor chips that include a portion of the Ethernet

interface on the chip, it’s still more common to find the Ethernet interface
on a separate device. Like the serial port, the Ethernet interface is

partitioned into two layers (protocol and physical). The protocol layer is

implemented as a single block called the Media Access Layer (MAC). The physical

layer consists of two blocks: a PHY and a transformer. It is becoming more common

to see the PHY and Ethernet controller integrated into one device, but the

transformer is still separate; hence, the Ethernet interface can consist of

two or three distinct devices.

The Ethernet controller is the portion of the interface that does the

packet-level work. For incoming packets, it verifies that the incoming frame

has a valid cyclic redundancy check (CRC), ignores packets that do not match

a specified MAC address, organizes the incoming frames as packets that can be
retrieved by the CPU (usually through either a FIFO or DMA transfer), and

generates interrupts based on various configuration parameters established by
the driver. For outgoing packets, the Ethernet controller calculates the CRC,

transfers data from memory to the PHY, adds padding to small packets, and

interrupts the CPU to indicate that the packet has been sent.

The PHY takes care of the lowest level of the interface protocol. It is

responsible for various parameters (like bit rate) specific to the environment.
The transformer provides isolation and electrical conversion of the signals

passed over the cable.

Flash Device Options

All flash devices are structured as a number of sectors. On some devices, the
sectors are all the same size; on others the sector sizes vary. Some have

features that allow the firmware to lock a sector so that it cannot be erased
unless a physical connection is inserted onto the hardware. Some devices have

reset input lines, and others do not. Densities vary from 64KB to 8MB in a single

flash device.

Flash Locking Facilities

Erasing or writing flash memory involves a special, nontrivial algorithm. Thus,
it is relatively safe to assume that this algorithm will not be executed

accidentally. However, it is still nice to have the option to protect certain

sectors from misbehaving code. Many of the available flash devices have the
ability to protect one or more sectors from write operations. Some of these

devices allow you to protect a specified sector or group of sectors by placing
the device in an external programming device and applying a high voltage to

one of the pins. Others have a more flexible configuration that uses an external
write protect pin and a lock sequence. In this latter type of device, a sector

is write-protected or locked by executing a specific command sequence. Once
locked, a sector can only be modified after first being unlocked. This process
makes it even more difficult to corrupt a sector accidentally. Locking can be
used to assure that some very basic boot code is always available for the CPU

regardless of what happens to the programming of the other sectors.

If this safeguard is still not enough, an alternate technique can prevent

a sector from being modified until a power cycle occurs. This method is typically
accomplished by enabling the write-protect pin and then initiating the lock

sequence to a particular device sector. Because there is no unlock sequence

that works when the write-protect pin is enabled and the write protect pin can

not change state until the next hard reset, the sector is protected from all

erroneous writes except those that happen immediately upon boot. If you need

more protection than this method provides, use EPROM!

Bottom-Boot and Top-Boot Flash Devices

Some devices are organized as a few small sectors at the bottom address space,

followed by large sectors that fill the remaining space. Some devices have a
few small sectors at the top of the device’s address space and use large sectors
in the lower address space. Since boot code is typically placed in small sectors,

flash memory is some times described as bottom-boot or top-boot, depending on
where the smaller sectors are located.

Ultimately, one sector contains the memory space that the CPU accesses as

a result of a power cycle or reset (boot). This sector is usually referred to

as the boot sector. Because some CPUs have a reset vector that is at the top
of memory space and others have a reset vector at the bottom of memory space,

the flash devices come in bottom-boot and top-boot flavors. A processor that boots
to the top of memory space would probably use a top-boot device, and a processor

that boots to the bottom of its memory space would be more suited to a bottom-boot

device.

When the boot sector of the flash device exists in the boot-time address space
of the CPU, it can be protected by making the boot sectors unmodifiable. Since
only a small amount of code is typically needed to provide a basic boot, there

is little wasted space if you dedicate a small sector to an unmodifiable boot
routine. This supports the ability to make as much of the flash space in-system
reprogrammable without losing the security of knowing that if all of the

reprogrammable flash was accidentally corrupted, the system would still be able
to boot through the small amount of code in the unmodifiable boot sector.

The CPU/Memory Interface

The most critical interface in any computing system is the connection between

memory and the CPU. If this interface doesn’t function properly, the CPU cannot
function because it cannot retrieve instructions. If the processor can’t
reliably retrieve instructions, it really doesn’t matter if anything else on
the board works — you won’t be using it anyway.

Understanding the CPU/memory interface is important to more than just the

data and instruction stream. In most systems, peripherals share the data and

address buses with memory. Thus, understanding the protocol for these buses

is important to understanding much of the hardware.

This section explains, in general terms, how the CPU uses the address and

data buses to communicate with other parts of the system. To make the discussion

more concrete, I describe the operation in terms of the hypothetical machine

detailed in the simplified schematics in Figure 1.5 and Figure 1.6. Don’t worry,

you won’t need an electrical engineering degree to interpret these drawings.
I’ve omitted everything except the relevant connections. The result is only
slightly more detailed than the typical functional block diagram, but it is

also representative of the portion of a real schematic that you would need to

understand to work with most embedded processors. If you can identify the

control, data, and address lines in your system, you probably know all you need

to know about how to read a schematic.

In this schematic, the signals have been grouped to show how they relate to the

various system buses. Notice that nearly all of the CPU pins are dedicated to

creating these buses.

The CPU

In the CPU diagram (Figure 1.5), there is only one “big” part: the CPU. There are
also two other blocks of components on this page: the clock and the reset circuit.

The clock provides the CPU with the ability to step through processing states,

which can vary from one cycle per instruction (RISC) to sometimes over a dozen

cycles per instruction (CISC). The clock can be a crystal, or it can be a complete

clock circuit, depending on the needs of the CPU. The reset/WDT circuit provides

the processor with a logic level on the reset pin that forces the CPU back to its

starting point. This particular circuit uses separate logic to assure that the

processor’s reset pin is held low for the required amount of time after a power-up
or when the Switch_1 switch is pressed. Notice that a PIO line out of the CPU feeds

into this circuit to provide the WDT with a periodic sanity pulse.

The memory devices connect directly to the system buses. Because each device is

only 32K, each uses only 15 address lines. Notice how each device is activated

by a separate chip select.

The CPU in this design uses 16-bit addresses but transfers data eight bits at

a time. Thus, it has a 16-bit address bus and an 8-bit data bus. Using these 16

bits, the processor can address a 64K memory space. In this design, half of that

space is occupied by 32K of flash memory and the other half by 32K of SRAM (Figure
1.6).

Each CPU pin belongs to one of four groups: address, data, control, or I/O.

In this simple design, the majority of the CPU pins are committed to creating

address and data buses. Since each memory component houses only 32K of address space

the memory chips have only 15 address lines. In this design, the low-order 15 address

bits are directly connected to these 15 lines on the memory components. Two

additional CPU control signals — ChipSelect_0 and ChipSelect_1 — are used to

activate the appropriate memory device. The most significant bit Addr_15 is unused.
(If the CPU did not provide conveniently decoded chip select lines, we could have

used the high-order bit of the address bus and some additional logic (called address
decode logic) to activate the appropriate memory device.

Whenever the CPU wants to read or write a particular byte of memory, it places

the address of that byte on the address lines. If the address is 0x0000, the CPU

would drive all address lines to a low voltage, logic 0 state. If the address were

0xFFFE, the CPU would drive all except the least significant address line to a high
voltage, logic 1 state.

When a device is not selected, it is in a high-impedance state (electrically

disconnected) mode. Two more control lines (read and write) on the CPU control how

a selected device connects to the data bus. If the read line is active, then the

selected memory chip’s output circuits are enabled, allowing it to drive a data
value onto the data bus. If the write line is active, the CPU’s output circuits
are enabled, and the selected memory chip connects only its input circuits to the

data bus.

Collectively the read, write, and chip select pins are called the control/status

lines.

Thus, 0xBE represents the eight bits 1011 1110. Note that the number of hexadecimal

digits implies the size of the bus. 0xBE contains only two hexadecimal digits,

implying that the data bus is only eight bits wide. The four hexadecimal digits

in 0x26A4, on the other hand, suggest that the address bus is 16 bits wide. Because

of this implicit relationship between the hex representation and the bus size,

it is accepted convention to pad addresses and data values with zeros so that all

bits in the bus are specified. For example, when referencing address 1 in a machine
with 32-bit addresses, one would write 0x00000001, not 0x1.

Figure 1.7 summarizes the connections between the CPU and the flash device. Ifyou
compare this diagram to the schematic, you can see that the only additional con-

nections on the flash device are for power and ground.
Figure 1.7 Connection Between CPU and Boot Flash Device.

The CPU uses the read and write signals to control the output drivers on the various

memory and peripheral devices, and thus, controls the direction of the data bus.

The CPU-to-flash device interaction can be summarized with the following steps:

1. 1. CPU places the desired address on the address pins.

2. 2. CPU brings the read line active.

3. 3. CPU brings the appropriate chip select line active.

4. 4. The flash device places the data located at the specified address onto the
data bus.

5. 5. CPU reads in the data that has been placed on the bus by the flash device.
6. 6. CPU releases the chip select line and processes the data. This sequence

of steps allows the CPU to retrieve the bytes from memory that ultimately become

instructions. It’s commonly referred to as instruction fetching. If you understand
this interface, it’s easy to connect to other devices, because they are all
fundamentally the same. The SRAM interface is identical except that a different

chip select line is activated. The different chip select lines are configured so
that each line is active for a 32K address space. (ChipSelect_0 is used for the 0–32K
range, and ChipSelect_1 is used for the 32K–64K range.) A write access is essentially
the same thing except that now the Write line is used and the data flow is from CPU
to memory, not memory to CPU. So that’s essentially it for the address, data, and
control. You have a certain number of address bits (dependent on the actual size

of the device), 8 data bits (16 or 32 if you were using a different device), and

a few control lines (read, write, and chip select). All that remains in the schematic

is the serial port. Since most modern processors have a UART built in, there’s only
a driver to attach, and that does not

involve any CPU interaction. In other words, you now understand the fundamentals

of a simple microprocessor-based hardware design!

The Power (and Pitfalls) of Cache

For standard programming environments, cache is a blessing. It provides a real

speed increase for code that is written to use it properly (refer to Figure

1.8). Caching takesadvantage of a phenomenon known as locality of reference.
1

Locality of reference states that at any given point in a program’s execution,
the CPU is accessing some small block of memory repeatedly. The ability to pull

that small block of memory into a faster memory area is a very effective way

to speed up what would otherwise be a relatively slow rate of memory access.

Figure 1.8 Cache Between CPU and External Devices.

There are different levels of cache, the fastest (usually called level 1) cache

used by the CPU is located on the CPU chip.

Cache is a fast chunk of memory placed between the memory access portion of the

CPU and the real memory system in order to provide an enhancement to the access

time between the CPU and external memory. There are several different types of cache

implementations. Discussion of these various implementations is beyond the scope

of this text. Instead, this section focuses on the two major types of caches used

in today’s embedded systems: instruction cache (I-cache) and data cache (D-cache).
As the names imply, the two different caches are used for the two different types

of CPU memory access: accesses to instruction space and accesses to data space,

respectively. Caches are divided into these two major types because of the

difference in the way the CPU accesses these two areas of memory. The CPU reads

and writes

1. M. Morris Mano, Computer System Architecture, Second Ed. (Englewood Cliffs, NJ: Prentice Hall,
1982), pg 501.

to data space but tends to read from instruction space much more often than

it writes to it.

The only limitation that cache puts on typical high-level system programmers

is that it can be dangerous to modify instruction space, sometimes called

self-modifying code. This is because any modification to memory space is done
through a data access.

The D-cache is involved in the transaction; hence, the instruction destined

for physical memory can reside in the D-cache for some undetermined amount of

time after the code that actually made the access has completed. This behavior

presents a double chance of error: the data written to the instruction space

might not be in physical memory (because it is still in the D-cache), or the

contents of the instruc-tion’s address might already be in the I-cache, which
means the fetch for the instruction does not actually access the physical memory

that contains the new instruction.

Cache increases performance by allowing the CPU to fetch frequently used values

from fast, internal cache instead of from slower external memory. However, because

the cache control mechanism makes different assumptions about how data and

instruction spaces are manipulated, self-modifying code can create problems. Cache

can also create problems if it masks changes in peripheral registers.

Figure 1.9 shows how the cache gets between the data write and the instructionread.

Step A shows the CPU writing to memory through the D-cache. Step B shows the transfer

of the contents of that D-cache location to physical memory. Step C represents the

transfer of the physical memory to the I-cache, and step D shows the CPU’s memory
access unit retrieving the instruction from the I-cache. If the sequence of events

was guaranteed to be A-B-C-D, then everything would work fine. However, this sequence
cannot be guaranteed, because that would eliminate the efficiency gained by using
the cache. The whole point behind cache is to attempt to eliminate the B and C steps

whenever possible. The ultimate result is that the instruction fetch may be

corrupted as a result of skipping step B , step C, or both.

For embedded systems, the problem just gets worse. Understanding the above

problem makes the secondary problems fairly clear. Notice in Figure 1.8that there

is a flash device, DRAM, and a UART. Two additional complexities become apparent:

1. 1. The UART is on the same address/data bus as the memory, which means that

accesses to a UART or any other physical device outside the CPU must deal with the

fact that cache can “get in the way.” Hardware must be designed with this
consideration in mind (or the firmware must configure the hardware) so that certain
devices external to the CPU can easily be accessed without the data cache being

involved.

2. 2. The UART may be configured to use DMA to place incoming characters into
memory space. In many systems, DMA and cache are independent of each other. The

data cache is likely to be unaware of memory changes due to DMA transfers, which

means that if the data cache sits between the CPU and this memory space, more

inconsistencies must be dealt with.

The complexity of the hardware and the “need for speed” make these issues tricky
but not insurmountable. Most of the prior problems are solved through good hard-

ware and firmware design. The initial issue of I-cache and D-cache inconsistency
can be resolved by invoking a flush of the data cache and an invalidation of the
instruction cache. A flush forces the content of the data cache out to the real memory.
An invalidation empties the instruction cache so that future CPU requests retrieve

a fresh copy of corresponding memory.

Also, there are some characteristics of cache that can help resolve these

problems. For example, a write through data cache ensures that data written to memory
is placed in cache but also written out to physical memory. This guarantees that

data writes will be loaded to cache and will pass through the cache to real memory;

hence it really only provides a speed improvement for data reads. Also, a facility

in some CPUs called bus snooping helps with the memory inconsistency issues related
to DMA and cache. Bus snooping hardware detects when DMA is used to access memory

space that is cached and automatically invalidates the corresponding cache loca-

tions. Bus snooping hardware isn’t available on all systems however. Additionally,
to avoid the problem with cache being between the CPU and the UART, devices can

usually be mapped to a memory location that doesn’t involve the cache at all. It
is very common for a CPU to restrict caching to certain specific cachable regions
of memory, rather than designating its entire memory space cacheable. The bottom

line is that the firmware developer must be aware of these hardware and firmware capa-
bilities and limitations in order to deal with these complexities efficiently.

Summary

While embedded systems come in a fascinating array of variations, at the lowest

hardware levels they usually have many general similarities. Memory systems

interface with CPU via address and data buses. Systems interface with

development hosts via serial ports. Watchdog timers supply robust operation

even in the presence of intermittent software and hardware bugs. Knowing the

general structure of these common facilities gives you a useful framework for

learning the specifics of new systems.
The hardware coverage in this chapter won’t make you a hardware guru, but

it should prepare you to better understand the documentation for your particular

hardware. More importantly (for the purposes of the book), it should prepare

you to understand the hardware issues discussed in later chapters.

Where this chapter described primarily hardware features, the next chapter

focuses on software issues — specifically on how to compile and load programs
for an embedded target. More than anything else, these two issues, the need

for greater knowledge about the hardware and the need for tools that work in

a cross-develop-ment environment, separate embedded systems from application

development.

