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Foreword

Elisabeth Noelle-Neumann, Professor of Communication Sciences at the University
of Mainz and Founder of the Institut für Demoskopie Allensbach, once declared:

“For me, statistics is the information source of the responsible. (...) The
sentence: ‘with statistics it is possible to prove anything’ serves only the com-
fortable, those who have no inclination to examine things more closely.”1

Examining things closely, engaging in exact analysis of circumstances as the ba-
sis for determining a course of action are what Ursula Gather is known for, and what
she passes on to future generations of scholars. Be it as Professor of Mathematical
Statistics and Applications in Industry at the Technical University of Dortmund, in
her role, since 2008, as Rector of the TU Dortmund, or as a member of numer-
ous leading scientific committees and institutions, she has dedicated herself to the
service of academia in Germany and abroad.

In her career, Ursula Gather has combined scientific excellence with active par-
ticipation in university self-administration. In doing so, she has never settled for the
easy path, but has constantly searched for new insights and challenges. Her exper-
tise, which ranges from complex statistical theory to applied research in the area of
process planning in forming technology as well as online monitoring in intensive
care in the medical sciences, is widely respected. Her reputation reaches far beyond
Germany’s borders and her research has been awarded prizes around the world.

It has been both a great pleasure and professionally enriching for me to have
been fortunate enough to cooperate with her across the boundaries of our respective
scientific disciplines, and I know that in this I am not alone. The success of the inter-
nationally renowned DFG Collaborative Research Centre 475 “Reduction of Com-
plexity for Multivariate Data Structures” was due in large part to Ursula Gather’s
leadership over its entire running time of 12 years (1997–2009). She has also given

1“Statistik ist für mich das Informationsmittel der Mündigen. (...) Der Satz: ’Mit Statistik kann man
alles beweisen’ gilt nur für die Bequemen, die keine Lust haben, genau hinzusehen.” Quoted in:
Küchenhoff, Helmut (2006), ’Statistik für Kommunikationswissenschaftler’, 2nd revised edition,
Konstanz: UVK-Verlags-Gesellschaft, p.14.
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vi Foreword

her time and support to the DFG over many years: From 2004 until 2011, she was a
member of the Review Board Mathematics, taking on the role of chairperson from
2008 to 2011. During her years on the Review Board, she took part in more than
30 meetings, contributing to decision-making process that led to recommendations
on more than 1200 individual project proposals in the field of mathematics, totalling
applications for a combined sum of almost 200 million. Alongside individual project
proposals and applications to programmes supporting early-career researchers, as a
member of the Review Board she also played an exemplary role in the selection of
projects for the DFG’s coordinated research programmes.

Academic quality and excellence always underpin the work of Ursula Gather.
Above and beyond this, however, she possesses a clear sense of people as well as a
keen understanding of the fundamental questions at hand. The list of her achieve-
ments and organizational affiliations is long; too long to reproduce in its entirety
here. Nonetheless, her work as an academic manager should not go undocumented.
Since her appointment as Professor of Mathematical Statistics and Applications in
Industry in 1986, she has played a central role in the development of the Technical
University of Dortmund, not least as Dean of the Faculty of Statistics and later Pro-
Rector for Research. And, of course, as Rector of the University since 2008 she has
also had a very significant impact on its development. It is not least as a result of
her vision and leadership that the Technical University has come to shape the iden-
tity of Dortmund as a centre of academia and scientific research. The importance
of the Technical University for the city of Dortmund, for the region and for science
in Germany was also apparent during the General Assembly of the DFG in 2012,
during which we enjoyed the hospitality of the TU Dortmund. Ursula Gather can be
proud of what she has achieved. It will, however, be clear to everyone who knows
her and has had the pleasure of working with her that she is far from the end of her
achievements. I for one am happy to know that we can all look forward to many
further years of working with her.

Personalities like Ursula Gather drive science forward with enthusiasm, engage-
ment, inspiration and great personal dedication. Ursula, I would like, therefore, to
express my heartfelt thanks for your work, for your close cooperation in diverse
academic contexts and for your support personally over so many years. My thanks
go to you as a much respected colleague and trusted counsellor, but also as a friend.
Many congratulations and my best wishes on the occasion of your sixtieth birthday!

Matthias Kleiner
President of the German

Research Foundation

Bonn, Germany
November 2012



Preface

Our journey towards this Festschrift started when realizing that our teacher, mentor,
and friend Ursula Gather was going to celebrate her 60th birthday soon. As a re-
searcher, lecturer, scientific advisor, board member, reviewer, editor, Ursula has had
a wide impact on Statistics in Germany and within the international community.
So we came up with the idea of following the good academic tradition of dedicat-
ing a Festschrift to her. We aimed at contributions from highly recognized fellow
researchers, former students and project partners from various periods of Ursula’s
academic career, covering a wide variety of topics from her main research interests.
We received very positive responses, and all contributors were very much delighted
to express their gratitude and sympathy to Ursula in this way. And here we are to-
day, presenting this interesting collection, divided into three main topics which are
representatives of her research areas.

Starting from questions on outliers and extreme value theory, Ursula’s research
interests spread out to cover robust methods—from Ph.D. through habilitation up
to leading her own scholars to this field, including us, robust and nonparametric
methods for high-dimensional data and time series—particularly within the collab-
orative research center SFB 475 “Reduction of Complexity in Multivariate Data
Structures”, up to investigating complex data structures—manifesting in projects
in the research centers SFB 475 and SFB 823 “Statistical Modelling of Nonlinear
Dynamic Processes”.

The three parts of this book are arranged according to these general topics. All
contributions aim at providing an insight into the research field by easy-to-read in-
troductions to the various themes. In the first part, contributions range from robust
estimation of location and scatter, over breakdown points, outlier definition and
identification, up to robustness for non-standard multivariate data structures. The
second part covers regression scenarios as well as various aspects of time series
analysis like change point detection and signal extraction, robust estimation, and
outlier detection. Finally, the analysis of complex data structures is treated. Support
vector machines, machine learning, and data mining show the link to ideas from
information science. The (lack of) relation between correlation analysis and tail
dependence or diversification effects in financial crisis is clarified. Measures of sta-
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viii Preface

tistical evidence are introduced, complex data structures are uncovered by graphical
models, a data mining approach on pharmacoepidemiological databases is analyzed
and meta analysis in clinical trials has to deal with complex combination of separate
studies.

We are grateful to the authors for their positive response and easy cooperation at
the various steps of developing the book. Without all of you, this would not have
been possible. We apologize to all colleagues we did not contact as our selection
is of course strongly biased by our own experiences and memories. We hope that
you enjoy reading this Festschrift nonetheless. Our special thanks go to Matthias
Borowski at TU Dortmund University for supporting the genesis of this work with
patient help in all questions of the editing process and his invaluable support in
preparing the final document, and to Alice Blanck at Springer for encouraging us to
go on this wonderful adventure and for helping us finishing it. Our biggest thanks
of course go to Ursula, who introduced us to these fascinating research fields and
the wonderful people who have contributed to this Festschrift. Without you, Ursula,
none of this would have been possible!

Claudia Becker
Roland Fried
Sonja Kuhnt

Halle and Dortmund, Germany
April 2013
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Chapter 1
Multivariate Median

Hannu Oja

1.1 Introduction

Multivariate medians are robust competitors of the mean vector in estimating the
symmetry center of a multivariate distribution. Various definitions of multivariate
medians have been proposed in the literature, and their properties (efficiency, equiv-
ariance, robustness, computational convenience, estimation of their accuracy, etc.)
have been extensively investigated. The univariate median as well as the univariate
concepts of sign and rank are based on the ordering of the univariate observations.
Unfortunately, there is no natural ordering of multivariate data points. An approach
utilizing L1 objective functions is therefore often used to extend these concepts to
the multivariate case. In this paper, we consider three multivariate extensions of
the median, the vector of marginal medians, the spatial median, and the Oja me-
dian, based on three different multivariate L1 objective functions, and review their
statistical properties as found in the literature. For other reviews of the multivari-
ate median, see Small (1990), Chaudhuri and Sengupta (1993), Niinimaa and Oja
(1999), Dhar and Chauduri (2011).

A brief outline of the contents of this chapter is as follows. We trace the ideas in
the univariate case. Therefore, in Sect. 1.2 we review the univariate concepts of sign
and rank with corresponding tests and the univariate median with possible criterion
functions for its definition. The first extension based on the so called Manhattan dis-
tance is the vector of marginal medians, and its properties are discussed in Sect. 1.3.
The use of the Euclidean distance in Sect. 1.4 determines the spatial median and,
finally in Sect. 1.5, the sum of the volumes of the simplices based on data points
are used to build the objective function for the multivariate Oja median. The statis-
tical properties of these three extensions of the median are carefully reviewed and
comparisons are made between them. The chapter ends with a short conclusion in
Sect. 1.7.

H. Oja (B)
Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
e-mail: hannu.oja@utu.fi

C. Becker et al. (eds.), Robustness and Complex Data Structures,
DOI 10.1007/978-3-642-35494-6_1, © Springer-Verlag Berlin Heidelberg 2013
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4 H. Oja

1.2 Univariate Median

Let x= (x1, . . . , xn)
′ be a random sample from a univariate distribution with cumu-

lative distribution function F . The median functional T (F ) and the corresponding
sample statistic T (x)= T (Fn) can be defined in several ways. Some possible defi-
nitions for the univariate median follow.

1. The median functional is defined as

T (F )= inf

{
x : F(x)≥ 1

2

}
.

2. The median T (F ) maximizes the function

t→min
{
P(x1 ≤ t),P (x1 ≥ t)

}=min
{
F(t),1− F(t−)}.

3. The median T (F ) maximizes the function

t→ P
(
min{x1, x2} ≤ t ≤max{x1, x2}

)= 2F(t)
(
1− F(t−)).

4. The median T (F ) minimizes

E
(|x1 − t |) or D(t)=E

{|x1 − t | − |x1|
}
.

Note that, as ||x1 − t | − |x1|| ≤ |t |, the expectation in the definition of D(t)

always exists.
5. The median T (F ) solves the estimation equation

E
[
S(x1 − t)

]= 0,

where S(t) is the univariate sign function

S(t)=
⎧⎨
⎩
+1, if t > 0,
0, if t = 0,
−1, if t < 0.

Different definitions of the population median T (F ) listed above all yield the
same unique value μ for a distribution F with a bounded and continuous density
f (μ) at μ. For the objective function D(t), it is then true that

D(t)=D(μ)+ δ

2
(t −μ)2 + o

(
(t −μ)2

)
with δ = 2f (μ).

The sample median μ̂ is associated with the univariate sign test based on the sign
function S(t). Starting from the univariate sign function, the univariate (centered)
rank function is defined as

R̂(t)= 1

n

n∑
i=1

S(t − xi).

Note that R̂(t) ∈ [−1,1] and that the estimating equation for the sample median
is R̂(μ̂) = 0. The sign test statistic for testing the null hypothesis H0 : μ = 0 is
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R̂(0). The test statistic is strictly and asymptotically distribution-free, as for the true
median μ,

n
R̂(μ)+ 1

2
∼ Bin

(
n,

1

2

)
, and

√
nR̂(μ)→d N(0,1).

One can also show that

μ̂= μ+ δ−1R̂(μ)+ oP
(
n−1/2),

where δ = 2f (μ), and, consequently,√
n(μ̂−μ)→d Np

(
0, δ−2).

Computation When applied to the sample cdfFn, different definitions above
yield different and not necessarily unique solutions. The sample median μ̂, which is
an estimate of the population median T (F )= μ, is then usually defined as follows.
First, let x(1), . . . , x(n) be the ordered observations. (Note that in the multivariate
case there is no natural ordering of the data points.) The sample median is then

μ̂= x[(n+1)/2] + x[(n+2)/2]
2

,

where [t] denotes the integer part of t .

Robustness It is well known that the median is a highly robust estimate with the
asymptotic breakdown point 1/2 and the bounded influence function IF(x;T ,F )=
δ−1S(x − T (F )).

Asymptotic Efficiency If the distribution F has a finite second moment σ 2, then
the sample mean x̄ = 1

n

∑n
i=1 xi , that estimates the population mean μ=E(xi), has

a limiting normal distribution, and√
n(x̄ −μ)→N

(
0, σ 2).

For symmetric F , the asymptotic relative efficiency (ARE) between the sample me-
dian and sample mean is then defined as the ratio of the limiting variances

ARE= 4f 2(μ)σ 2.

If F is the normal distribution N(μ,σ 2), this ARE = 0.64 is small. However, for
heavy-tailed distributions, the asymptotic efficiency of the median is better; AREs
for a t-distribution with 3 degrees of freedom and for a Laplace distribution are, for
example, 1.62 and 2.

Estimation of the Variance of the Estimate Estimation of δ = 2f (μ) from the
data is difficult. For a discussion, see Example 1.5.5 in Hettmansperger and McKean
(1998) and Oja (1999). It is, however, remarkable that by inverting the sign test, it is
possible to obtain strictly distribution-free confidence intervals for μ. This follows
as, for a continuous distribution F ,

P(x(i) < μ< x(n+1−i))= P

(
i ≤ nR(μ)+ 1

2
≤ n− i

)
=

n−i∑
j=i

(
n

j

)
2−n.
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Equivariance For a location functional, one hopes that the functional is equivari-
ant under linear transformations, that is,

T (Fax+b)= aT (Fx)+ b, for all a and b.

This is true for the median functional in the family of distributions with bounded and
continuous derivative at the median. Note also that the median is in fact equivariant
under much larger sets of transformations. If g(x) is any strictly monotone function,
then T (Fg(x))= g(T (Fx)).

Location M-estimates The sample median is a member of the family of
M-estimates. Assume for a moment that x = (x1, . . . , xn)

′ is a random sample
from a continuous distribution with density function f (x − μ), where f (x) is
symmetric around zero. Assume also that the derivative function f ′(x) exists,
and write l(x) = f ′(x)/f (x) for a location score function. The so called location
M-functionals T (F ) are often defined as μ that minimizes

D(t)=E
(
ρ(x − t)

)
with some function ρ(t), or solves the estimating equation

R(μ)=E
(
ψ(x −μ)

)= 0,

for an odd smooth function ψ(t) = ρ′(t). The so called M-test statistic for testing
H0 : μ= 0 satisfies

1√
n

n∑
i=1

ψ(xi)→d N(0,ω) with ω=E
(
ψ2(x −μ)

)
.

The M-estimate μ̂= T (Fn) solves the estimating equation

1

n

n∑
i=1

ψ(xi − μ̂)= 0

and, under general assumptions,√
n(μ̂−μ)→d Np

(
0,ω/δ2),

where the constant δ is, depending on the properties of function ρ(t) and ψ(t) and
density f (z) of z= xi −μ, given by

δ =D′′(μ), or δ =R′(μ),
or

δ =E
(
ψ ′(z)
)
, or δ =E

(
ψ(z)l(z)

)
,

or

δ =
∫

ρ(z)f ′′(z), or δ =
∫

ψ(z)f ′(z).

Note that the choice ψ(x)= l(x) yields the maximum likelihood estimate with the
smallest possible limiting variance. The mean and median are the ML-estimates for
the normal distribution (ψ(t)= t) and for the double-exponential (Laplace) distri-
bution (ψ(t)= S(t)), respectively.
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Other Families of Location Estimates Note also that the median is also a limit-
ing case in the set of trimmed means

Tα(F )=E
(
x | qF,α ≤ x ≤ qF,1−α

)
,

where qF,α is the α-quantile of F satisfying F(qF,α) = α. The so called Lα func-
tionals minimize

E
(|xi − t |α), 1≤ α ≤ 2,

with the mean (α = 2) and the median (α = 1) as special cases.

1.3 Vector of Marginal Medians

Our first extension of the median to the multivariate case is straightforward: It is
simply the vector of marginal medians. Let now X = (x1, . . . ,xn)′ be a random
sample from a p-variate distribution with cumulative distribution function F , and
assume that the p marginal distribution have bounded densities f1(μ1), . . . , fp(μp)

at the uniquely defined marginal medians μ1, . . . ,μp . Write μ= (μ1, . . . ,μp)
′ for

the vector of marginal medians.
The vector of marginal sample medians T(X) minimizes the criterion function

which is the sum of componentwise distances (Manhattan distance)

Dn(t)= 1

n

n∑
i=1

{(|xi1 − t1| + · · · + |xip − tp|
)− (|xi1| + · · · + |xip|)}.

The corresponding population functional T (F ) for the vector of population medians
then minimizes

D(t)=E
{(|x1 − t1| + · · · + |xp − tp|

)− (|x1| + · · · + |xp|
)}
.

Now we obtain

D(t)=D(μ)+ 1

2
(t−μ)′�(t−μ)+ o

(‖t−μ‖2),
where � is a diagonal matrix with diagonal elements 2f1(μ1), . . . ,2fp(μp).

Multivariate sign and rank functions are now given as

S(t)=
⎛
⎝ S(t1). . .

S(tp)

⎞
⎠ and R̂(t)= 1

n

n∑
i=1

S(t− xi ),

where S(t) is the univariate sign function. Note that R̂(t) ∈ [−1,1]p . The multi-
variate sign test for testing the null hypothesis H0 : μ = 0 is based on R̂(0). The
marginal distributions of R̂(μ) are distribution-free but, unfortunately, the joint dis-
tribution of the components of R̂(μ) depends on the dependence structure of the
components of xi , and, consequently,

√
nR̂(μ)→d Np(0,Ω),
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where Ω = Cov(S(x−μ)). As again,

μ̂= μ+�−1R̂(μ)+ oP
(
n−1/2),

we get
√
n(μ̂−μ)→d Np

(
0,�−1Ω�−1).

For the estimate, and its properties See, for example, Puri and Sen (1971), Babu and
Rao (1988). Some important properties of the spatial median are listed below.

Computation of the Estimate As in the univariate case.

Robustness of the Estimate As in the univariate case, this multivariate extension
of the median is highly robust with the asymptotic breakdown point 1/2 and the
influence function is bounded, IF(x;T,F ) = �−1S(x − T(F )) where S(t) is the
vector of marginal sign functions.

Asymptotic Efficiency of the Estimate If the distribution F has a covariance ma-
trix Σ (with finite second moments), then the sample mean vector x̄= 1

n

∑n
i=1 xi ,

a natural estimate of the population mean vector μ= E(xi), has a limiting normal
distribution, and

√
n(x̄−μ)→Np(0,Σ).

The asymptotic relative efficiency (ARE) between the vector of sample medians and
the sample mean vector, if they estimate the same population value μ, is defined as

ARE=
( |Σ |
|�−1Ω�−1|

)1/p

.

The ARE thus compares the geometrical means of the eigenvalues of the limiting
covariance matrices. The comparison is, however, fair only for affine equivariant
estimates and the vector of sample medians is not affine equivariant, see below. In
the case of the spherical normal distribution Np(μ,σ

2Ip), the ARE between the
vector of sample medians and the sample mean vector is as in the univariate case
and therefore does not depend on the dimension p. For dependent observations, the
efficiency of the median vector may be much smaller.

Estimation of the Covariance Matrix of the Estimate One easily finds

Ω̂ = 1

n

n∑
i=1

(
S(xi − μ̂)S(xi − μ̂)T

)

but the estimation of �, i.e. the estimation of the diagonal elements 2f1(μ1), . . . ,

2fp(μp), is as difficult as in the univariate case.
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Affine Equivariance of the Estimate The vector of marginal medians is not affine
equivariant: For a multivariate location functional T(F ), it is often expected that
T(F ) is affine equivariant, that is,

T(FAx+b)=AT(Fx)+ b, for all full-rank p× p matrices A and p-vectors b.

The vector of marginal medians is not affine equivariant as the condition is true only
if A is a diagonal matrix with non-zero diagonal elements.

Transformation–Retransformation (TR) Estimate An affine equivariant ver-
sion of the vector of marginal medians is found using the so called transformation–
retransformation (TR) technique. A p× p-matrix valued functional G(F ) is called
an invariant coordinate system (ICS) functional if

G(FAx+b)=G(Fx)A−1, for all full-rank p× p matrices A and p-vectors b.

Then the transformation–retransformation (TR) median functional is defined as

TTR(Fx)=G(Fx)
−1T(FG(Fx)x).

For the concept of the TR median, see Chakraborty and Chaudhuri (1998). For dif-
ferent ICS transformations, we refer to Tyler et al. (2009), Ilmonen et al. (2012).

1.4 Spatial Median

The so-called spatial median T(X) minimizes the criterion function
∑

i ‖xi − t‖, or

Dn(t)= 1

n

n∑
i=1

{‖xi − t‖ − ‖xi‖
}
,

where ‖t‖ = (t21 +· · ·+ t2p)
1/2 denotes the Euclidean norm. The corresponding func-

tional, the spatial median T (F ), minimizes

D(t)=EF

{‖x− t‖ − ‖x‖}.
For the asymptotic results we need the assumptions

1. The spatial median μ minimizing D(t) is unique.
2. The distribution Fx has a bounded and continuous density at μ.

Again,

D(t)=D(μ)+ 1

2
(t−μ)′�(t−μ)+ o

(‖t−μ‖2),
where now

�=E

(
1

‖x−μ‖
[

Ip − (x−μ)(x−μ)′

‖x−μ‖2

])
.

The assumptions above guarantee that this expectation exists.
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Multivariate spatial sign and centered rank functions are now given as

S(t)=
{

t
‖t‖ , if t 
= 0,

0, if t= 0

and

R̂(t)= 1

n

n∑
i=1

S(t− xi ).

Note that the spatial sign S(t) is just a unit vector in the direction of t, t 
= 0. The

centered rank R̂(t) is lying in the unit p-ball Bp .
The spatial sign test statistic for testing H0 : μ= 0 is R(0) and its limiting null

distribution is given by √
nR̂(μ)→d Np(0,Ω),

where

Ω =E

(
(x−μ)(x−μ)′

‖x−μ‖2

)
.

Again,

μ̂= μ+�−1R̂(μ)+ oP
(
n−1/2),

and we obtain √
n(μ̂−μ)→d Np

(
0,�−1Ω�−1).

For the properties of the estimate we refer to Oja (2010), Möttönen et al. (2010).

Computation of the Estimate The spatial median is unique if the data fall in on at
least two-dimensional space. The so called Weisfeld algorithm for the computation
of the spatial median has an iteration step

μ← μ+
[

1

n

n∑
i=1

‖xi −μ‖−1

]−1

R(μ).

The algorithm may fail sometimes but a modified algorithm by Vardi and Zhang
(2000) converges fast and monotonically. The estimate with estimated covariance
matrix can be obtained using the R package MNM, see Nordhausen and Oja (2011).

Robustness of the Estimate The spatial median is highly robust with the asymp-
totic breakdown point 1/2. The influence function is bounded, IF(x;T,F ) =
�−1S(x−T(F )) where S(t) is the spatial sign function.

Asymptotic Efficiency of the Estimate If the covariance matrix Σ exists, then
the asymptotic relative efficiency (ARE) between the spatial median and the mean
vector, if they estimate the same population value μ, is

ARE=
( |Σ |
|�−1Ω�−1|

)1/p

.
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In the case of a p-variate spherical distribution of x, p > 1, this ARE reduces to

AREp =
(
p− 1

p

)2

E
(‖x‖2)E2(‖x‖−1).

In the p-variate spherical normal case, one then gets, for example,

ARE2 = 0.785, ARE3 = 0.849, ARE6 = 0.920, and ARE10 = 0.951,

and the efficiency goes to 1 as p→∞. For heavy-tailed distributions, the spatial
median outperforms the sample mean vector.

Estimation of the Covariance Matrix of the Estimate In this case, one easily
finds an estimate for the approximate covariance matrix

1

n
�−1Ω�−1

using

�̂= 1

n

n∑
i=1

(
1

‖xi − μ̂‖
[

Ip − (xi − μ̂)(xi − μ̂)′

‖xi − μ̂‖2

])

and

Ω̂ = 1

n

n∑
i=1

(xi − μ̂)(xi − μ̂)′

‖xi − μ̂‖2
.

Estimation of the covariance matrix of the spatial median is implemented in the
R package MNM.

Affine Equivariance of the Estimate The spatial median is not affine equivariant
as

T(FAx+b)=AT(Fx)+ b

is true only for orthogonal matrices A.

Transformation–Retransformation (TR) Estimate An affine equivariant trans-
formation retransformation (TR) spatial median is found as follows. Let S(F ) be
a scatter functional, and find a p × p-matrix valued functional G(F ) = S−1/2(F )

such that

G(F )S(F )G(F )′ = Ip.

Note that G(F ) is not necessarily an invariant coordinate functional. Then the
transformation–retransformation (TR) median is

TTR(Fx)=G(Fx)
−1T(FG(Fx)x),

see Chakraborty et al. (1998), Ilmonen et al. (2012). The TR median that combines
the spatial median and Tyler’s scatter matrix was proposed in Hettmansperger and
Randles (2002) and is called the Hettmansperger–Randles median. It can be com-
puted using the R package MNM.
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1.5 Oja Median

Let again X= (x1, . . . ,xn)′ be a random sample from a p-variate distribution with
cumulative distribution function F . The volume of the p-variate simplex determined
by p+ 1 vertices t1, . . . , tp+1 is

V (t1, . . . , tp+1)= 1

p!
∣∣∣∣det

(
1 . . . 1
t1 . . . tp+1

)∣∣∣∣ .
Note that, in the univariate case V (t1, t2) is the length of the interval with endpoints
in t1 and t2, in the bivariate case V (t1, t2, t3) is the area of the triangle with corners
at t1, t2, and t3, and so on.

The so called Oja median (estimate) T(X) minimizes the objective function

Dn(t)=
(
n

p

)−1 ∑
i1<···<ip

V (xi1, . . . ,xip , t).

The corresponding functional T(F ) minimizes

D(t)=EF

{
V (xi1, . . . ,xip , t)

}
.

Note that the definition of this functional requires the existence of first moments.
The vector of marginal medians and the spatial median do not need that assump-
tions. For the asymptotic results, we also need the assumptions that (i) the Oja me-
dian μ minimizing D(t) is unique, and that (ii) the second moments exist. One can
again write

D(t)=D(μ)+ 1

2
(t−μ)′�(t−μ)+ o

(‖t−μ‖2) with �= ∂2

∂t∂t′
D(t)

∣∣∣∣
t=μ

.

Consider next the corresponding multivariate sign and rank concept. To simplify
the notations, write

Q= {q = (i1, . . . , ip−1) : 1≤ i1 < · · ·< ip−1 ≤ n
}

and

P = {p = (i1, . . . , ip) : 1≤ i1 < · · ·< ip ≤ n
}
.

In the following, q ∈Q and p ∈ P are used as indices for (p− 1) and p-subsets of
observations x1, . . . ,xn. Next define eq , d0p and dp through the equations

det(xi1, . . . ,xip−1,x)= e′qx and det

(
1 . . . 1 1

xi1 . . . xip x

)
= d0p + d′px.

The sign and rank functions are then defined as

Ŝ(t)=
(
n

q

)−1∑
q∈Q

sign
(
e′q t
)
eq and R̂(t)=

(
n

p

)−1∑
p∈P

sign
(
d0p + d′pt

)
dp.

The population (theoretical) sign and rank functions are then

S(t)=E
(
sign
(
e′q t
)
eq
)

and R(t)=E
(
sign
(
d0p + d′pt

)
dp
)
,

respectively.
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The sample Oja median then solves the estimation equation R̂(μ̂)= 0. The sign
test statistic for testing the null hypothesis H0 : μ= 0 is

Tn = 1

n

n∑
i=1

Ŝ(xi ), which is proportional to R̂(0).

Under the null hypothesis and under some weak assumptions,
√
nTn→d Np(0,Ω) with Ω =E

(
S(x)S(x)′

)
.

Again, for μ= 0,

μ̂=�−1Tn + oP
(
n−1/2),

and we obtain, for true value of μ,
√
n(μ̂−μ)→d Np

(
0,�−1Ω�−1).

For the Oja median and its basic properties, see Oja (1983, 1999). For the asymp-
totics, we refer to Arcones et al. (1994), Shen (2008).

Computation of the Estimate The computation of the Oja median is a demand-
ing task. The Oja median may be computed using the R-package OjaNP. See also
Ronkainen et al. (2002).

Robustness of the Estimate The breakdown point of the Oja median is zero.
However, if the first moments exist, then the influence function is bounded.

Asymptotic Efficiency of the Estimate In the spherical case the asymptotic ef-
ficiencies of the Oja median and the spatial median are the same (if the second
moments exist); the Oja median outperforms the spatial median in the elliptic case
(if the second moments exist).

Estimation of the Covariance Matrix of the Estimate See Nadar et al. (2003).

Affine Equivariance of the Estimate Unlike the vector of marginal medians and
the spatial median, the Oja median is affine equivariant.

1.6 Other Medians

If in the univariate case, x1 and x2 are two independent observations from F , the
univariate median of F could also be defined as a point μ with highest probability
P(min{x1, x2} ≤ μ ≤ max{x1, x2}). The sample median is the point lying in the
largest number of data based intervals (univariate simplices). The multivariate Liu
median (or simplicial depth median) of p-variate data points x1, . . . ,xn is then the
point lying in the largest number of data based p-variate simplices. See Liu (1990)
for the definition and some basic properties. For the asymptotics of the Liu median,
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see Arcones et al. (1994). In the bivariate normal case, the Liu median and the Oja
median has the same asymptotic efficiency (if the second moments exist): The Liu
median is affine equivariant with a limiting breakdown point below 1/(p+ 2).

The multivariate half-space depth function is a natural multivariate extension of
the univariate median criterion function min{P(x1 ≤ μ),P (x1 ≥ μ)}. The so called
half-space median or the Tukey median maximizes the half space depth function,
see Donoho and Gasko (1992). The half-space median is more robust than the Oja
median or Liu median in the sense that its breakdown point is 1/3. For the asymp-
totics, see Masse (2002).

1.7 Conclusions

In this chapter, we compared different extensions of multivariate medians. The
choice of the median for a practical data analysis strongly depends on the appli-
cation. The vector of marginal medians and the spatial median are highly robust but
they are not affine equivariant. The efficiency of the vector of marginal medians is
poor as compared to the spatial median and the Oja median. The spatial median
and its affine equivariant version, the Hettmansperger–Randles median, are the only
medians for which an estimate of the covariance matrix can be computed in practice
with the R package MNM. This allows statistical inference with confidence ellip-
soids, for example. The author’s favorite median is therefore the Hettmansperger–
Randles median, see Möttönen et al. (2010). For other estimators of multivariate
location, see the contribution by Rousseeuw and Hubert, Chap. 4.

References

Arcones, M. A., Chen, Z., & Gine, E. (1994). Estimators related to U -processes with applications
to multivariate medians: asymptotic normality. The Annals of Statistics, 22, 1460–1477.

Babu, G. J., & Rao, C. R. (1988). Joint asymptotic distribution of marginal quantile functions in
samples from multivariate population. Journal of Multivariate Analysis, 27, 15–23.

Chakraborty, B., & Chaudhuri, P. (1998). On an adaptive transformation retransformation estimate
of multivariate location. Journal of the Royal Statistical Society. Series B. Statistical Methodol-
ogy, 60, 145–157.

Chakraborty, B., Chaudhuri, P., & Oja, H. (1998). Operating transformation retarnsformation on
spatial median and angle test. Statistica Sinica, 8, 767–784.

Chaudhuri, P., & Sengupta, D. (1993). Sign tests in multidimension: Inference based on the geom-
etry of data cloud. Journal of the American Statistical Association, 88, 1363–1370.

Dhar, S. S., & Chauduri, P. (2011). On the statistical efficiency of robust estimators of multivariate
location. Statistical Methodology, 8, 113–128.

Donoho, D. L., & Gasko, M. (1992). Breakdown properties of location estimates based on halfs-
pace depth and projected outlyingness. The Annals of Statistics, 20, 1803–1827.

Hettmansperger, T. P., & McKean, J. W. (1998). Robust nonparametric statistical methods. Lon-
don: Arnold.

Hettmansperger, T. P., & Randles, R. (2002). A practical affine equivariant multivariate median.
Biometrika, 89, 851–860.



1 Multivariate Median 15

Ilmonen, P., Oja, H., & Serfling, R. (2012). On invariant coordinate system (ICS) functionals.
International Statistical Review, 80, 93–110.

Liu, R. Y. (1990). On the notion of data depth based upon random simplices. The Annals of Statis-
tics, 18, 405–414.

Masse, J. C. (2002). Asymptotics for the Tukey median. Journal of Multivariate Analysis, 81,
286–300.

Möttönen, J., Nordhausen, K., & Oja, H. (2010). Asymptotic theory of the spatial median. In IMS
collections: Vol. 7. Festschrift in honor of professor Jana Jureckova (pp. 182–193).

Nadar, M., Hettmansperger, T. P., & Oja, H. (2003). The asymptotic variance of the Oja median.
Statistics & Probability Letters, 64, 431–442.

Niinimaa, A., & Oja, H. (1999). Multivariate median. In S. Kotz, N. L. Johnson, & C. P. Read
(Eds.), Encyclopedia of statistical sciences (Vol. 3). New York: Wiley.

Nordhausen, K., & Oja, H. (2011). Multivariate L1 methods: the package MNM. Journal of Sta-
tistical Software, 43, 1–28.

Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics & Probability Letters,
1, 327–332.

Oja, H. (1999). Affine invariant multivariate sign and rank tests and corresponding estimates: a re-
view. Scandinavian Journal of Statistics, 26, 319–343.

Oja, H. (2010). Multivariate nonparametric methods with R. An approach based on spatial signs
and ranks. New York: Springer.

Puri, M. L., & Sen, P. K. (1971). Nonparametric methods in multivariate analysis. New York:
Wiley.

Ronkainen, T., Oja, H., & Orponen, P. (2002). Computation of the multivariate Oja median. In
R. Dutter, P. Filzmoser, U. Gather, & P. J. Rousseeuw (Eds.), Developments in robust statistics
(pp. 344–359). Heidelberg: Springer.

Shen, G. (2008). Asymptotics of the Oja median estimate. Statistics & Probability Letters, 78,
2137–2141.

Small, G. (1990). A survey of multidimensional medians. International Statistical Review, 58,
263–277.

Tyler, D., Critchley, F., Dumbgen, L., & Oja, H. (2009). Invariant coordinate selection. Journal of
the Royal Statistical Society. Series B. Statistical Methodology, 71, 549–592.

Vardi, Y., & Zhang, C.-H. (2000). The multivariate L1 median and associated data depth. Proceed-
ings of the National Academy of Sciences of the United States of America, 97, 1423–1426.



Chapter 2
Depth Statistics

Karl Mosler

2.1 Introduction

In 1975, John Tukey proposed a multivariate median which is the ‘deepest’ point in
a given data cloud in R

d (Tukey 1975). In measuring the depth of an arbitrary point z
with respect to the data, Donoho and Gasko (1992) considered hyperplanes through
z and determined its ‘depth’ by the smallest portion of data that are separated by
such a hyperplane. Since then, this idea has proved extremely fruitful. A rich sta-
tistical methodology has developed that is based on data depth and, more general,
nonparametric depth statistics. General notions of data depth have been introduced
as well as many special ones. These notions vary regarding their computability and
robustness and their sensitivity to reflect asymmetric shapes of the data. According
to their different properties they fit to particular applications. The upper level sets
of a depth statistic provide a family of set-valued statistics, named depth-trimmed
or central regions. They describe the distribution regarding its location, scale and
shape. The most central region serves as a median; see also the contribution by Oja,
Chap. 1. The notion of depth has been extended from data clouds, that is empirical
distributions, to general probability distributions on R

d , thus allowing for laws of
large numbers and consistency results. It has also been extended from d-variate data
to data in functional spaces. The present chapter surveys the theory and methodol-
ogy of depth statistics.

Recent reviews on data depth are given in Cascos (2009) and Serfling (2006).
Liu et al. (2006) collects theoretical as well as applied work. More on the theory
of depth functions and many details are found in Zuo and Serfling (2000) and the
monograph by Mosler (2002).

The depth of a data point is reversely related to its outlyingness, and the depth-
trimmed regions can be seen as multivariate set-valued quantiles. To illustrate the
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Table 2.1 General government gross debt (% of GDP) and unemployment rate of the EU-27
countries in 2011 (Source: EUROSTAT)

Country Debt % Unempl. % Country Debt % Unempl. %

Belgium 98.0 7.2 Luxembourg 18.2 4.9

Bulgaria 16.3 11.3 Hungary 80.6 10.9

Czech Republic 41.2 6.7 Malta 72.0 6.5

Denmark 46.5 7.6 Netherlands 65.2 4.4

Germany 81.2 5.9 Austria 72.2 4.2

Estonia 6.0 12.5 Poland 56.3 9.7

Ireland 108.2 14.4 Portugal 107.8 12.9

Greece 165.3 17.7 Romania 33.3 7.4

Spain 68.5 21.7 Slovenia 47.6 8.2

France 85.8 9.6 Slovakia 43.3 13.6

Italy 120.1 8.4 Finland 48.6 7.8

Cyprus 71.6 7.9 Sweden 38.4 7.5

Latvia 42.6 16.2 United Kingdom 85.7 8.0

Lithuania 38.5 15.4

notions, we consider bivariate data from the EU-27 countries regarding unemploy-
ment rate and general government debt in percent of the GDP (Table 2.1). In what
follows, we are interested which countries belong to a central, rather homogeneous
group and which have to be regarded as, in some sense, outlying.

Section 2.2 introduces general depth statistics and the notions related to it. In
Sect. 2.3, various depths for d-variate data are surveyed: multivariate depths based
on distances, weighted means, halfspaces or simplices. Section 2.4 provides an ap-
proach to depth for functional data, while Sect. 2.5 treats computational issues. Sec-
tion 2.6 concludes with remarks on applications.

2.2 Basic Concepts

In this section, the basic concepts of depth statistics are introduced, together with
several related notions. First, we provide a general notion of depth functions, which
relies on a set of desirable properties; then a few variants of the properties are dis-
cussed (Sect. 2.2.1). A depth function induces an outlyingness function and a family
of central regions (Sect. 2.2.2). Further, a stochastic ordering and a probability met-
ric are generated (Sect. 2.2.3).

2.2.1 Postulates on a Depth Statistic

Let E be a Banach space, B its Borel sets in E, and P a set of probability distri-
butions on B. To start with and in the spirit of Tukey’s approach to data analysis,
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we may regard P as the class of empirical distributions giving equal probabilities 1
n

to n, not necessarily different, data points in E =R
d .

A depth function is a function D : E × P→ [0,1], (z,P ) →D(z | P), that sat-
isfies the restrictions (or ‘postulates’) D1 to D5 given below. For easier notation,
we write D(z | X) in place of D(z | P), where X is an arbitrary random variable
distributed as P . For z ∈E, P ∈ P , and any random variable X having distribution
P it holds:

• D1 Translation invariant: D(z+ b |X+ b)=D(z |X) for all b ∈E.
• D2 Linear invariant: D(Az | AX)=D(z |X) for every bijective linear transfor-

mation A :E→E.
• D3 Null at infinity: lim‖z‖→∞D(z |X)= 0.
• D4 Monotone on rays: If a point z∗ has maximal depth, that is D(z∗ | X) =

maxz∈E D(z | X), then for any r in the unit sphere of E the function α →
D(z∗ + αr |X) decreases, in the weak sense, with α > 0.

• D5 Upper semicontinuous: The upper level sets Dα(X)= {z ∈E :D(z |X)≥ α}
are closed for all α.

D1 and D2 state that a depth function is affine invariant. D3 and D4 mean that the
level sets Dα , α > 0, are bounded and starshaped about z∗. If there is a point of max-
imum depth, this depth will w.l.o.g. be set to 1. D5 is a useful technical restriction.
An immediate consequence of restriction D4 is the following proposition.

Proposition 2.1 If X is centrally symmetric distributed about some z∗ ∈ E, then
any depth function D(· |X) is maximal at z∗.

Recall that X is centrally symmetric distributed about z∗ if the distributions of
X− z∗ and z∗ −X coincide.

Our definition of a depth function differs slightly from that given in Liu (1990)
and Zuo and Serfling (2000). The main difference between these postulates and
ours is that they additionally postulate Proposition 2.1 to be true and that they do
not require upper semicontinuity D5.

D4 states that the upper level set Dα(x
1, . . . , xn) are starshaped with respect

to z∗. If a depth function, in place of D4, meets the restriction

• D4con: D(· | X) is a quasiconcave function, that is, its upper level sets Dα(X)

are convex for all α > 0,

the depth is mentioned as a convex depth. Obviously, as a convex set is starshaped
with respect to each of its points, D4con implies D4. In certain settings the restric-
tion D2 is weakened to

• D2iso: D(Az | AX) = D(z | X) for every isometric linear transformation A :
E→E.

Then, in case E = R
d , D is called an orthogonal invariant depth in contrast to an

affine invariant depth when D2 holds. Alternatively, sometimes D2 is attenuated to
scale invariance,

• D2sca: D(λz | λX)=D(z |X) for all λ > 0.
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2.2.2 Central Regions and Outliers

For given P and 0 ≤ α ≤ 1, the level sets Dα(P ) form a nested family of depth-
trimmed or central regions. The innermost region arises at some αmax ≤ 1, which
in general depends on P . Dαmax(P ) is the set of deepest points. D1 and D2 say
that the family of central regions is affine equivariant. Central regions describe a
distribution X with respect to location, dispersion, and shape. This has many ap-
plications in multivariate data analysis. On the other hand, given a nested family
{Cα(P )}α∈[0,1] of set-valued statistics, defined on P , that are convex, bounded and
closed, the function D,

D
(
z | P )= sup

{
α : z ∈ Cα(P )

}
, z ∈E, P ∈P, (2.1)

satisfies D1 to D5 and D4con, hence is a convex depth function.
A depth function D orders data by their degree of centrality. Given a sample, it

provides a center-outward order statistic. The depth induces an outlyingness func-
tion R

d →[0,∞[ by

Out
(
z |X)= 1

D(z |X) − 1,

which is zero at the center and infinite at infinity. In turn, D(z | X)= (1+ Out(z |
X))−1. Points outside a central region Dα have outlyingness greater than 1/α − 1;
they can be regarded as outliers of a specified level α.

2.2.3 Depth Lifts, Stochastic Orderings, and Metrics

Assume αmax = 1 for P ∈ P . By adding a real dimension to the central regions
Dα(P ),α ∈ [0,1], we construct a set, which will be mentioned as the depth lift,

D̂(P )= {(α, y) ∈ [0,1] ×E : y = αx,x ∈Dα(P ),α ∈ [0,1]}. (2.2)

The depth lift gives rise to an ordering of probability distributions in P : P ≺D Q

if

D̂(P )⊂ D̂(Q). (2.3)

The restriction D̂(P ) ⊂ D̂(Q) is equivalent to Dα(P ) ⊂ Dα(Q) for all α. Thus,
P ≺D Q means that each central set of Q is larger than the respective central set
of P . In this sense, Q is more dispersed than P . The depth ordering is antisymmet-
ric, hence an order, if and only if the family of central regions completely character-
izes the underlying probability. Otherwise it is a preorder only. Finally, the depth D
introduces a probability semi-metric on P by the Hausdorff distance of depth lifts,

δD(P,Q)= δH
(
D̂(P ), D̂(Q)

)
. (2.4)

Recall that the Hausdorff distance δH (C1,C2) of two compact sets C1 and C2 is
the smallest ε such that C1 plus the ε-ball includes C2 and vice versa. Again, the
semi-metric is a metric iff the central regions characterize the probability.
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2.3 Multivariate Depth Functions

Originally and in most existing applications depth statistics are used with data in
Euclidean space. Multivariate depth statistics are particularly suited to analyze non-
Gaussian or, more general, non-elliptical distributions in R

d . Without loss of gen-
erality, we consider distributions of full dimension d , that is, whose convex hull of
support, co(P ), has affine dimension d .

A random vector X in R
d has a spherical distribution if AX is distributed as

X for every orthogonal matrix A. It has an elliptical distribution if X = a + BY

for some a ∈ R
d , B ∈ R

d×d , and spherically distributed Y ; then we write X ∼
Ell(a,BB ′, ϕ), where ϕ is the radial distribution of Y . Actually, on an elliptical
distribution P = Ell(a,BB ′, ϕ), any depth function D(·,P ) satisfying D1 and D2
has parallel elliptical level sets Dα(P ), that is, level sets of a quadratic form with
scatter matrix BB ′. Consequently, all affine invariant depth functions are essentially
equivalent if the distribution is elliptical. Moreover, if P is elliptical and has a uni-
modal Lebesgue-density fP , the density level sets have the same elliptical shape,
and the density is a transformation of the depth, i.e., a function ϕ exists such that
fP (z)= ϕ(D(z | P)) for all z ∈R

d . Similarly, on a spherical distribution, any depth
satisfying postulates D1 and D2iso has analogous properties.

In the following, we consider three principal approaches to define a multivari-
ate depth statistic. The first approach is based on distances from properly defined
central points or on volumes (Sect. 2.3.1), the second on certain L-statistics (viz. de-
creasingly weighted means of order statistics; Sect. 2.3.2), the third on simplices and
halfspaces in R

d (Sect. 2.3.3). The three approaches have different consequences on
the depths’ ability to reflect asymmetries of the distribution, on their robustness to
possible outliers, and on their computability with higher-dimensional data.

Figures 2.1, 2.2, 2.3 and 2.4 below exhibit bivariate central regions for several
depths and equidistant α. The data consist of the unemployment rate (in %) and the
GDP share of public debt for the countries of the European Union in 2011.

Most of the multivariate depths considered are convex and affine invariant, some
exhibit spherical invariance only. Some are continuous in the point z or in the dis-
tribution P (regarding weak convergence), others are not. They differ in the shape
of the depth lift and whether it uniquely determines the underlying distribution.
A basic dispersion ordering of multivariate probability distributions serving as a
benchmark is the dilation order, which says that Y spreads out more than X if
E[ϕ(X)] ≤ E[ϕ(Y )] holds for every convex ϕ : Rd → R; see, e.g., Mosler (2002).
It is interesting whether or not a particular depth ordering is concordant with the
dilation order.

2.3.1 Depths Based on Distances

The outlyingness of a point, and hence its depth, can be measured by a distance
from a properly chosen center of the distribution. In the following notions, this is
done with different distances and centers.
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L2-Depth The L2-depth, DL2 , is based on the mean outlyingness of a point, as
measured by the L2 distance,

DL2
(
z |X)= (1+ E‖z−X‖)−1

. (2.5)

It holds αmax = 1. The depth lift is D̂L2(X) = {(α, z) : E‖z − αX‖ ≤ 1 − α} and
convex. For an empirical distribution on points xi, i = 1, . . . , n, we obtain

DL2
(
z | x1, . . . , xn

)=
(

1+ 1

n

n∑
i=1

‖z− xi‖
)−1

. (2.6)

Obviously, the L2-depth vanishes at infinity (D3), and is maximum at the spatial
median of X, i.e., at the point z ∈ R

d that minimizes E‖z−X‖. If the distribution
is centrally symmetric, the center is the spatial median, hence the maximum is at-
tained at the center. Monotonicity with respect to the deepest point (D4) as well as
convexity and compactness of the central regions (D4con, D5) derive immediately
from the triangle inequality. Further, the L2-depth depends continuously on z. The
L2-depth converges also in the probability distribution: For a uniformly integrable
and weakly convergent sequence Pn→ P it holds limn D(z | Pn)=D(z | P).

However, the ordering induced by the L2-depth is no sensible ordering of disper-
sion, since the L2-depth contradicts the dilation order. As ‖z− x‖ is convex in x,
the expectation E‖z−X‖ increases with a dilation of P . Hence, (2.5) decreases (!)
with a dilation.

The L2-depth is invariant against rigid Euclidean motions (D1, D2iso), but not
affine invariant. An affine invariant version is constructed as follows: Given a posi-
tive definite d × d matrix M , consider the M-norm,

‖z‖M =
√
z′M−1z, z ∈R

d . (2.7)

Let SX be a positive definite d × d matrix that depends continuously (in weak con-
vergence) on the distribution and measures the dispersion of X in an affine equiv-
ariant way. The latter means that

SXA+b =ASXA
′ holds for any matrix A of full rank and any b. (2.8)

Then an affine invariant L2-depth is given by

(
1+ E‖z−X‖SX

)−1
. (2.9)

Besides invariance, it has the same properties as the L2-depth. A simple choice
for SX is the covariance matrix ΣX of X (Zuo and Serfling 2000). Note that the
covariance matrix is positive definite, as the convex hull of the support, co(P ), is
assumed to have full dimension. More robust choices for SX are the minimum vol-
ume ellipsoid (MVE) or the minimum covariance determinant (MCD) estimators;
see Rousseeuw and Leroy (1987), Lopuhaä and Rousseeuw (1991), and the contri-
bution by Rousseeuw and Hubert, Chap. 4.
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Fig. 2.1 Governmental debt (x-axis) and unemployment rate (y-axis); Mahalanobis regions (mo-
ment, left; MCD, right) with α = 0.1(0.1), . . . ,0.9

Mahalanobis Depths Let cX be a vector that measures the location of X in a
continuous and affine equivariant way and, as before, SX be a matrix that satisfies
(2.8) and depends continuously on the distribution. Based on the estimates cX and
SX a simple depth statistic is constructed, the generalized Mahalanobis depth, given
by

DMah(z |X)= (1+ ‖z− cX‖2
SX

)−1
. (2.10)

Obviously, (2.10) satisfies D1 to D5 and D4con, taking its unique maximum at cX .
The depth lift is the convex set D̂Mah(X)= {(α, z) : ‖z−αcX‖2

SX
≤ α2(α−1)}, and

the central regions are ellipsoids around cX . The generalized Mahalanobis depth is
continuous on z and P . In particular, with cX = E[X] and SX =ΣX the (moment)
Mahalanobis depth is obtained,

DmMah(z |X)= (1+ (z− E[X])′Σ−1
X

(
z− E[X]))−1

. (2.11)

Its sample version is

DmMah(z | x1, . . . , xn
)= (1+ (z− x̄)′Σ̂−1

x (z− x̄)
)−1

, (2.12)

where x̄ is the mean vector and Σ̂X is the empirical covariance matrix. It is eas-
ily seen that the α-central set of a sample from P converges almost surely to the
α-central set of P , for any α. Figure 2.1 shows Mahalanobis regions for the debt-
unemployment data, employing two choices of the matrix SX , namely the usual
moment estimate ΣX and the robust MCD estimate. As it is seen from the Figure,
these regions depend heavily on the choice of SX . Hungary, e.g., is rather central
(having depth greater than 0.8) with the moment Mahalanobis depth, while it is
much more outlying (having depth below 0.5) with the MCD version.

Concerning uniqueness, the Mahalanobis depth fails in identifying the underly-
ing distribution. As only the first two moments are used, any two distributions which
have the same first two moments cannot be distinguished by their Mahalanobis depth



24 K. Mosler

functions. Similarly, the generalized Mahalanobis depth does not determine the dis-
tribution. However, within the family of nondegenerate d-variate normal distribu-
tions or, more general, within any affine family of nondegenerate d-variate distribu-
tions having finite second moments, a single contour set of the Mahalanobis depth
suffices to identify the distribution.

Projection Depth The projection depth has been proposed in Zuo and Serfling
(2000):

Dproj(z |X)=
(

1+ sup
p∈Sd−1

|〈p, z〉 −med(〈p,X〉)|
Dmed(〈p,X〉)

)−1

, (2.13)

where Sd−1 denotes the unit sphere in R
d , 〈p, z〉 is the inner product (that is the

projection of z on the line {λp : λ ∈R}), med(U) is the usual median of a univariate
random variable U , and Dmed(U) = med(|U − med(U)|) is the median absolute
deviation from the median. The projection depth satisfies D1 to D5 and D4con.
It has good properties, which are discussed in detail by Zuo and Serfling (2000).
For breakdown properties of the employed location and scatter statistics, see Zuo
(2000).

Oja Depth The Oja depth is not based on distances, but on average volumes of
simplices that have vertices from the data (Zuo and Serfling 2000):

DOja(z |X)=
(

1+ E(vold(co{z,X1, . . . ,Xd}))√
detΣX

)−1

,

where X1, . . . ,Xd are random vectors independently distributed as P , co denotes
the convex hull, Vd the d-dimensional volume, and SX is defined as above. In par-
ticular, we can choose DX =ΣX . The Oja depth satisfies D1 to D5. It is continuous
on z and maximum at the Oja median (Oja 1983), which is not unique; see also the
contribution by Oja, Chap. 1. The Oja depth determines the distribution uniquely
among those measures which have compact support of full dimension.

Figure 2.2 contrasts the projection depth regions with the Oja regions for our
debt-unemployment data. The regions have different shapes, but agree in making
Spain and Greece the most outlying countries.

2.3.2 Weighted Mean Depths

A large and flexible class of depth statistics corresponds to so called weighted-mean
central regions, shortly WM regions (Dyckerhoff and Mosler 2011, 2012). These
are convex compacts in R

d , whose support function is a weighted mean of order
statistics, that is, an L-statistic. Recall that a convex compact K ⊂ R

d is uniquely
determined by its support function hK ,

hK(p)=max
{
p′x : x ∈K}, p ∈ Sd−1.
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Fig. 2.2 Governmental debt and unemployment rate; projection depth regions (left), Oja regions
(right); both with α = 0.1(0.1), . . . ,0.9

To define the WM α-region of an empirical distribution on x1, x2, . . . , xn, we con-
struct its support function as follows: For p ∈ Sd−1, consider the line {λp ∈ R

d :
λ ∈R}. By projecting the data on this line a linear ordering is obtained,

p′xπp(1) ≤ p′xπp(2) ≤ · · · ≤ p′xπp(n), (2.14)

and, by this, a permutation πp of the indices 1,2, . . . , n. Consider weights wj,α for
j ∈ {1,2, . . . , n} and α ∈ [0,1] that satisfy the following restrictions (i) to (iii):

(i)
∑n

j=1 wj,α = 1, wj,α ≥ 0 for all j and α.
(ii) wj,α increases in j for all α.

(iii) α < β implies
∑k

j=1 wj,α ≤∑k
j=1 wj,β, k = 1, . . . , n.

Then, as it has been shown in Dyckerhoff and Mosler (2011), the function
hDα(x1,...,xn),

hDα(x1,...,xn)(p)=
n∑

j=1

wj,αp
′xπp(j), p ∈ Sd−1, (2.15)

is the support function of a convex body Dα =Dα(x
1, . . . , xn), and Dα ⊂Dβ holds

whenever α > β . Now we are ready to see the general definition of a family of WM
regions.

Definition 2.1 Given a weight vector wα =w1,α, . . . ,wn,α that satisfies the restric-
tions (i) to (iii), the convex compact Dα =Dα(x

1, . . . , xn) having support function
(2.15) is named the WM region of x1, . . . , xn at level α, α ∈ [0,1]. The correspond-
ing depth (2.1) is the WM depth with weights wα , α ∈ [0,1].
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It follows that the WM depth satisfies the restrictions D1 to D5 and D4con. More-
over, it holds

Dα

(
x1, . . . , xn

)= conv

{
n∑

j=1

wj,αx
π(j) : π permutation of {1, . . . , n}

}
. (2.16)

This explains the name by stating that a WM region is the convex hull of weighted
means of the data. Consequently, outside the convex hull of the data the WM depth
vanishes. WM depths are useful statistical tools as their central regions have attrac-
tive analytical and computational properties. Sample WM regions are consistent es-
timators for the WM region of the underlying probability. Besides being continuous
in the distribution and in α, WM regions are subadditive, that is,

Dα

(
x1 + y1, . . . , xn + yn

)⊂Dα

(
x1, . . . , xn

)⊕Dα

(
y1, . . . , yn

)
,

and monotone: If xi ≤ yi holds for all i (in the componentwise ordering of R
d ),

then

Dα

(
y1, . . . , yn

)⊂Dα

(
x1, . . . , xn

)⊕R
d+ and

Dα

(
x1, . . . , xn

)⊂Dα

(
y1, . . . , yn

)⊕R
d−,

where ⊕ signifies the Minkowski sum of sets.
Depending on the choice of the weights wj,α different notions of data depths are

obtained. For a detailed discussion of these and other special WM depths and central
regions, the reader is referred to Dyckerhoff and Mosler (2011, 2012).

Zonoid Depth For an empirical distribution P on x1, . . . , xn and 0 < α ≤ 1 define
the zonoid region (Koshevoy and Mosler 1997)

Dzon
α (P )=

{
n∑

i=1

λix
i : 0≤ λi ≤ 1

nα
,

n∑
i=1

λi = 1

}
.

See Fig. 2.3. The corresponding support function (2.15) employs the weights

wj,α =
⎧⎨
⎩

0 if j < n− �nα�,
nα−�nα�

nα
if j = n− �nα�,

1
nα

if j > n− �nα�.
(2.17)

Many properties of zonoid regions and the zonoid depth Dzon(z |X) are discussed
in Mosler (2002). The zonoid depth lift equals the so called lift zonoid, which fully
characterizes the distribution. Therefore the zonoid depth generates an antisymmet-
ric depth order (2.3) and a probability metric (2.4). Zonoid regions are not only
invariant to affine, but to general linear transformations; specifically any marginal
projection of a zonoid region is the zonoid region of the marginal distribution. The
zonoid depth is continuous on z as well as P .
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Fig. 2.3 Governmental debt and unemployment rate; zonoid regions (left), ECH∗ regions (right);
both with α = 0.1(0.1), . . . ,0.9

Expected Convex Hull Depth Another important notion of WMT depth is that
of expected convex hull (ECH*) depth (Cascos 2007). Its central region Dα (see
Fig. 2.3) has a support function with weights

wj,α = j1/α − (j − 1)1/α

n1/α
. (2.18)

Figure 2.3 depicts zonoid and ECH∗ regions for our data. We see that the zonoid
regions are somewhat angular while the ECH∗ regions appear to be smoother; this
corresponds, when calculating such regions in higher dimensions, to a considerably
higher computation load of ECH∗.

Geometrical Depth The weights

wj,α =
{

1−α
1−αn α

n−j if 0 < α < 1,

0 if α = 1,

yield another class of WM regions. The respective depth is the geometrically
weighted mean depth (Dyckerhoff and Mosler 2011).

2.3.3 Depths Based on Halfspaces and Simplices

The third approach concerns no distances or volumes, but the combinatorics of half-
spaces and simplices only. In this it is independent of the metric structure of Rd .
While depths that are based on distances or weighted means may be addressed as
metric depths, the following ones will be mentioned as combinatorial depths. They
remain constant, as long as the compartment structure of the data does not change.
By this, they are very robust against location outliers. Outside the convex support
co(X) of the distribution every combinatorial depth attains its minimal value, which
is zero.



28 K. Mosler

Fig. 2.4 Governmental debt and unemployment rate; Tukey regions (left) with α = 2
27 (

1
27 ),

. . . , 1
1 27, simplicial regions (right) with α = 0.25,0.3(0.1), . . . ,0.9

Location Depth Consider the population version of the location depth,

Dloc(z |X)= inf
{
P(H) :H is a closed halfspace, z ∈H}. (2.19)

The depth is also known as halfspace or Tukey depth, its central regions as Tukey re-
gions. The location depth is affine invariant (D1, D2). Its central regions are convex
(D4con) and closed (D5); see Fig. 2.4. The maximum value of the location depth
is smaller or equal to 1 depending on the distribution. The set of all such points is
mentioned as the halfspace median set and each of its elements as a Tukey median
(Tukey 1975).

If X has an angular symmetric distribution, the location depth attains its max-
imum at the center and the center is a Tukey median; this strengthens Proposi-
tion 2.1. (A distribution is called angular (= halfspace) symmetric about z∗ if
P(X ∈H)≥ 1/2 for every closed halfspace H having z∗ on the boundary; equiva-
lently, if (X− z∗)/‖X− z∗‖ is centrally symmetric with the convention 0/0= 0.)

If X has a Lebesgue-density, the location depth depends continuously on z; oth-
erwise the dependence on z is noncontinuous and there can be more than one point
where the maximum is attained. As a function of P the location depth is obviously
noncontinuous. It determines the distribution in a unique way if the distribution is
either discrete (Struyf and Rousseeuw 1999; Koshevoy 2002) or continuous with
compact support. The location depth of a sample from P converges almost surely to
the location depth of P (Donoho and Gasko 1992). The next depth notion involves
simplices in R

d .

Simplicial Depth Liu (1990) defines the simplicial depth as follows:

Dsim(z |X)= P
(
z ∈ co
({X1, . . . ,Xd+1}

))
, (2.20)

where X1, . . . ,Xd+1 are i.i.d. by P . The sample version reads as

Dsim(z | x1, . . . , xn
)= 1(

n
d+1

) #
{{i1, . . . , id+1} : z ∈ co

({
xi1, . . . , xid+1

})}
. (2.21)
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The simplicial depth is affine invariant (D1, D2). Its maximum is less or equal to 1,
depending on the distribution. In general, the point of maximum simplicial depth
is not unique; the simplicial median is defined as the gravity center of these points.
The sample simplicial depth converges almost surely uniformly in z to its population
version (Liu 1990; Dümbgen 1992). The simplicial depth has positive breakdown
(Chen 1995).

If the distribution is Lebesgue-continuous, the simplicial depth behaves well: It
varies continuously on z (Liu 1990, Theorem 2), is maximum at a center of angular
symmetry, and decreases monotonously from a deepest point (D4). The simplicial
central regions of a Lebesgue-continuous distribution are connected and compact
(Liu 1990).

However, if the distribution is discrete, each of these properties can fail; for coun-
terexamples see, e.g., Zuo and Serfling (2000). The simplicial depth characterizes
an empirical measure if the supporting points are in general position, that is, if no
more than d of the points lie on the same hyperplane.

As Fig. 2.4 demonstrates, Tukey regions are convex while simplicial regions are
only starshaped. The figure illustrates also that these notions are rather insensitive
to outlying data: both do not reflect how far Greece and Spain are from the center.
Whether, in an application, this kind of robustness is an advantage or not, depends
on the problem and data at hand.

Other well known combinatorial data depths are the majority depth (Liu and
Singh 1993) and the convex-hull peeling depth (Barnett 1976; Donoho and Gasko
1992). However, the latter possesses no population version.

2.4 Functional Data Depth

The analysis of functional data has become a practically important branch of statis-
tics; see Ramsay and Silverman (2005). Consider a space E of functions [0,1]→R

with the supremum norm. Like a multivariate data depth, a functional data depth is
a real-valued functional that indicates how ‘deep’ a function z ∈ E is located in a
given finite cloud of functions ∈E. Let E′ denote the set of continuous linear func-
tionals E→R, and E′d the d-fold Cartesian product of E′. Here, following Mosler
and Polyakova (2012), functional depths of a general form (2.22) are presented.
Some alternative approaches will be addressed below.

Φ-Depth For z ∈ E and an empirical distribution X on x1, . . . , xn ∈ E, define a
functional data depth by

D
(
z |X)= inf

ϕ∈ΦD
d
(
ϕ(z) | ϕ(X)), (2.22)

where Dd is a d-variate data depth satisfying D1 to D5, Φ ⊂ E′d , and ϕ(X) is the
empirical distribution on ϕ(x1), . . . , ϕ(xn). D is called a Φ-depth. A population
version is similarly defined.
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Each ϕ in this definition may be regarded as a particular ‘aspect’ we are interested
in and which is represented in d-dimensional space. The depth of z is given as the
smallest multivariate depth of z under all these aspects. It implies that all aspects
are equally relevant so that the depth of z cannot be larger than its depth under any
aspect.

As the d-variate depth Dd has maximum not greater than 1, the functional data
depth D is bounded above by 1. At every point z∗ of maximal D-depth it holds
D(z∗ | X) ≤ 1. The bound is attained with equality, D(z∗ | X) = 1, iff Dd(ϕ(z∗) |
ϕ(X))= 1 holds for all ϕ ∈Φ , that is, iff

z∗ ∈
⋂
ϕ∈Φ

ϕ−1(Dd
1

(
ϕ(X)
))
. (2.23)

A Φ-depth (2.22) always satisfies D1, D2sca, D4, and D5.
It satisfies D3 if for every sequence (zi) with ‖zi‖→∞ exists a ϕ in Φ such that

ϕ(zi)→∞. (For some special notions of functional data depth this postulate has to
be properly adapted.)

D4con is met if D4con holds for the underlying d-variate depth.
We now proceed with specifying the set Φ of functionals and the multivariate

depth Dk in (2.22). While many features of the functional data depth (2.22) resemble
those of a multivariate depth, an important difference must be pointed out: In a
general Banach space the unit ball B is not compact, and properties D3 and D5 do
not imply that the level sets of a functional data depth are compact. So, to obtain
a meaningful notion of functional data depth of type (2.22) one has to carefully
choose a set of functions Φ which is not too large. On the other hand, Φ should not
be too small, in order to extract sufficient information from the data.

Graph Depths For x ∈E denote x(t)= (x1(t), . . . , xd(t)) and consider

Φ = {ϕt :E→R
d : ϕt (x)= (x1(t), . . . , xd(t)

)
, t ∈ T } (2.24)

for some T ⊂ [0,1], which may be a subinterval or a finite set. For Dd use any
multivariate depth that satisfies D1 to D5. This results in the graph depth

GD
(
z | x1, . . . , xn

)= inf
t∈T D

d
(
z(t) | x1(t), . . . , xn(t)

)
. (2.25)

In particular, with the univariate halfspace depth, d = 1 and T = J we obtain the
halfgraph depth (López-Pintado and Romo 2005). Also, with the univariate simpli-
cial depth the band depth (López-Pintado and Romo 2009) is obtained, but this, in
general, violates monotonicity D4.

Grid Depths We choose a finite number of points in J , t1, . . . , tk , and evaluate a
function z ∈E at these points. Notate t = (t1, . . . , tk) and z(t)= (z1(t), . . . , zd(t))

T.
That is, in place of the function z the k × d matrix z(k) is considered. A grid depth
RD is defined by (2.22) with the following Φ ,

Φ = {ϕr : ϕr(z)= (〈r, z1(t)
〉
, . . . ,
〈
r, zd(t)

〉)
, r ∈ Sk−1}, (2.26)
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which yields

RD
(
z | x1, . . . , xn

)= inf
r∈Sk−1

Dd
(〈
r, z(t)
〉 | 〈r, x1(t)

〉
, . . . ,
〈
r, xn(t)

〉)
. (2.27)

A slight extension of the Φ-depth is the principal components depth (Mosler and
Polyakova 2012). However, certain approaches from the literature are no Φ-depths.
These are mainly of two types. The first type employs random projections of the
data: Cuesta-Albertos and Nieto-Reyes (2008b) define the depth of a function as
the univariate depth of the function values taken at a randomly chosen argument t .
Cuevas et al. (2007) also employ a random projection method. The other type uses
average univariate depths. Fraiman and Muniz (2001) calculate the univariate depths
of the values of a function and integrate them over the whole interval; this results
in kind of ‘average’ depth. Claeskens et al. (2012) introduce a multivariate (d ≥ 1)
functional data depth, where they similarly compute a weighted average depth. The
weight at a point reflects the variability of the function values at this point (more
precisely: is proportional to the volume of a central region at the point).

2.5 Computation of Depths and Central Regions

The moment Mahalanobis depth and its elliptical central regions are obtained in any
dimension by calculating the mean and the sample covariance matrix, while robust
Mahalanobis depths and regions are determined with the R-procedures “cov.mcd”
and “cov.mve”. In dimension d = 2, the central regions of many depth notions can
be exactly calculated by following a circular sequence (Edelsbrunner 1987). The
R-package “depth” computes the exact location (d = 2,3) and simplicial (d = 2)
depths, as well as the Oja depth and an approximative location depth for any di-
mension. An exact algorithm for the location depth in any dimension is developed
in Liu and Zuo (2012). Cuesta-Albertos and Nieto-Reyes (2008a) propose to cal-
culate instead the random Tukey depth, which is the minimum univariate location
depth of univariate projections in a number of randomly chosen directions. With
the algorithm of Paindaveine and Šiman (2012), Tukey regions are obtained, d ≥ 2.
The bivariate projection depth is computed by the R-package “ExPD2D”; for the
respective regions, see Liu et al. (2011). The zonoid depth can be efficiently deter-
mined in any dimension (Dyckerhoff et al. 1996). An R-package (“WMTregions”)
exists for the exact calculation of zonoid and general WM regions; see Mosler et al.
(2009), Bazovkin and Mosler (2012). The R-package “rainbow” calculates several
functional data depths.

2.6 Conclusions

Depth statistics have been used in numerous and diverse tasks of which we can
mention a few only. Liu et al. (1999) provide an introduction to some of them. In
descriptive multivariate analysis, depth functions and central regions visualize the
data regarding location, scale and shape. By bagplots and sunburst plots, outliers



32 K. Mosler

can be identified and treated in an interactive way. In k-class supervised classifi-
cation, each—possibly high-dimensional—data point is represented in [0,1]k by
its values of depth in the k given classes, and classification is done in [0,1]k .
Functions of depth statistics include depth-weighted statistical functionals, such
as
∫
Rd xw(D(x | P))dP/∫

Rd w(D(x | P))dP for location. In inference, tests for
goodness of fit and homogeneity regarding location, scale and symmetry are based
on depth statistics; see, e.g., Dyckerhoff (2002), Ley and Paindaveine (2011). Ap-
plications include such diverse fields as statistical control (Liu and Singh 1993),
measurement of risk (Cascos and Molchanov 2007), and robust linear programming
(Bazovkin and Mosler 2011). Functional data depth is applied to similar tasks in
description, classification and testing; see, e.g., López-Pintado and Romo (2009),
Cuevas et al. (2007).

This survey has covered the fundamentals of depth statistics for d-variate and
functional data. Several special depth functions in R

d have been presented, metric
and combinatorial ones, with a focus on the recent class of WM depths. For func-
tional data, depths of infimum type have been discussed. Of course, such a survey
is necessarily incomplete and biased by the preferences of the author. Of the many
applications of depth in the literature only a few have been touched, and important
theoretical extensions like regression depth (Rousseeuw and Hubert 1999), depth
calculus (Mizera 2002), location-scale depth (Mizera and Müller 2004), and likeli-
hood depth (Müller 2005) have been completely omitted.

Most important for the selection of a depth statistic in applications are the ques-
tions of computability and—depending on the data situation—robustness. Maha-
lanobis depth is solely based on estimates of the mean vector and the covariance
matrix. In its classical form with moment estimates Mahalanobis depth is efficiently
calculated but highly non-robust, while with estimates like the minimum volume el-
lipsoid it becomes more robust. However, since it is constant on ellipsoids around the
center, Mahalanobis depth cannot reflect possible asymmetries of the data. Zonoid
depth can be efficiently calculated, also in larger dimensions, but has the drawback
that the deepest point is always the mean, which makes the depth non-robust. So, if
robustness is an issue, the zonoid depth has to be combined with a proper prepro-
cessing of the data to identify possible outliers. The location depth is, by construc-
tion, very robust but expensive when exactly computed in dimensions more than
two. As an efficient approach the random Tukey depth yields an upper bound on the
location depth, where the number of directions has to be somehow chosen.

A depth statistics measures the centrality of a point in the data. Besides ordering
the data it provides numerical values that, with some depth notions, have an obvi-
ous meaning; so with the location depth and all WM depths. With other depths, in
particular those based on distances, the outlyingness function has a direct interpre-
tation.
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Chapter 3
Multivariate Extremes: A Conditional Quantile
Approach

Marie-Françoise Barme-Delcroix

3.1 Introduction

Ordering multivariate data can be done in various ways and many definitions have
been proposed by, e.g., Barnett (1976), Oja (1983), Maller (1990), Heffernan and
Tawn (2004), Falk and Reiss (2005); see also the contribution by Oja, Chap. 1.
Some papers of Einmahl and Mason (1992), Abdous and Theodorescu (1992), De
Haan and Huang (1995), Berlinet et al. (2001), Serfling (2002), and more recently
Hallin et al. (2010) develop the notion of multivariate quantiles. In the classical
scheme (cartesian coordinates), the multivariate variables are ordered coordinate by
coordinate—see for example Galambos (1987) and the references therein. And in
this way the maximum value thus obtained is not a sample point. A new notion
for the order statistics of a multivariate sample has been explored in Delcroix and
Jacob (1991) by using the isobar-surfaces, that is, the level surfaces of the con-
ditional distribution function of the radius given the angle. The sample is ordered
relatively to an increasing family of isobars and the maximum value of the sample
is the point of the sample belonging to the upper level isobar. This approach is more
geometric and the maximum value is a sample point. The definition depends only on
the conditional radial distribution. The first motivation was to describe the overall
shape of a multidimensional sample, Barme-Delcroix (1993), and has given a new
interest to the notion of stability, Geffroy (1958, 1961). By a unidimensional ap-
proach, some results have been stated in this multidimensional context such almost
sure stability and strong behaviour, Barme-Delcroix and Brito (2001), or limit laws,
Barme-Delcroix and Gather (2007). In Ivanková (2010), isobars are estimated by
non-parametric regression methods and used to evaluate the efficiency of selected
markets based on returns of their stock market indices.

This contribution is concerned with the theory of isobars. First, in the next section
we recall some definitions and notations which will be useful throughout this paper.
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In Sect. 3.3, as an introduction to the isobar-surfaces ordering, we give some results
about the weak stability of this kind of multivariate extremes. This notion appears,
as in the unidimensional case, strongly related to the notion of outlier-proneness or
outlier resistance, Barme-Delcroix and Gather (2002). In Sect. 3.4, we propose a
definition for the record times and record values of a multidimensional sequence of
random variables, based on this isobar-surfaces ordering. At last in Sect. 3.5, we
provide definitions of the stability for record values of multidimensional sequences
and study the resulting probabilistic properties. The idea behind the definition is to
describe the tendency of the record values to be near a given surface. We provide
then characterizations, in term of the distribution function, for stability properties of
the record values, as available in the univariate case, Resnick (1973a,b).

3.2 Preliminaries

Let X be an Rd -valued random variable defined on a probability space (Ω,A,P ).
Denote by ‖ · ‖ the Euclidean norm of Rd and by Sd−1 the unit sphere of Rd which
is endowed with the induced topology of Rd .

Suppose that the distribution of X has a continuous density function. If ‖X‖ 
= 0,
define the pair (R,Θ) in R∗+ × Sd−1 by R = ‖X‖ and Θ = X

‖X‖ . For all θ , assume
the distribution of R given Θ = θ is defined by the continuous conditional distribu-
tion function,

Fθ(r)= P
{
R ≤ r |Θ = θ

}
. (3.1)

Denote by F−1
θ its generalized inverse.

Definition 3.1 For a given u, 0 < u< 1, the u-level isobar from the distribution of
(R,Θ) is defined by:

Sd−1 →R∗+,
θ→ F−1

θ (u)= ρu(θ).

The corresponding surface is also called isobar. See Fig. 3.1.
We suppose that for u fixed, the mapping F−1

θ is continuous and strictly positive.
So, isobars are closed surfaces included in each other for increasing levels. For bi-
variate distributions, isobars are classical curves in polar coordinates. Very different
shapes of isobars can be considered according to the choice of the distribution.

Let En = (X1, . . . ,Xn) be a sample of independent random variables with the
same distribution as X. For each 1 ≤ i ≤ n there is almost surely a unique isobar
from the distribution of R given Θ = θ which contains (Ri,Θi). We define the
maximum value in En as the point X∗n = (R∗n,Θ∗n) which corresponds to the upper
level isobar. So, FΘ∗n (R

∗
n)=max1≤i≤n Ui , with Ui = FΘi

(Ri).
We call X∗n the isobar-maximum of X1, . . . ,Xn; see Fig. 3.2.
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Fig. 3.1 u-level isobar

Fig. 3.2 Isobar-maximum

Definition 3.2 The maximum value in X1, . . . ,Xn is defined as the point X∗n which
belongs to the upper level surface, i.e., the surface which has a level equal to
max

1≤i≤n
Ui .

The multivariate sample X1, . . . ,Xn is then ordered according to the increas-
ing levels, U1,n ≤ · · · ≤ Un,n, of the corresponding isobar surfaces, following the
classical notation for the order statistics of unidimensional samples, and the corre-
sponding order statistics are denoted by

X∗1,n =
(
R∗1,n,Θ∗1,n

)
, . . . , X∗n,n =

(
R∗n,Θ∗n

)=X∗n. (3.2)

Obviously, we are not able to find this maximum value of a sample from an
unknown distribution, whereas it can be done with the farthest point from the origin
or with the fictitious point having the largest coordinates of the sample. However,
this kind of extreme value and, more generally, the extreme values obtained by orde-
ring the sample according to the levels, hold more information on the conditional
distributions tails and allow a statistic survey of the isobars.1

We are well aware that the above definition depends on the underlying distribu-
tion and in contexts with just a given data set, it cannot be applied when the data

1A paper concerning the estimation of isobars is in progress, Barme-Delcroix and Brito (2011).
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generating distribution is not known. This is usually a deficiency but in this con-
tribution, where we want to check if a given distribution is suitable for modeling a
data structure, we are able to use this natural notion of ordering since we suppose
that the distribution is known.

Remark 1 Note that the maximum value is a sample point and is defined intrin-
sically, only with the underlying distribution, taking into account the shape of the
distribution.

Remark 2 Since for all θ and for all 0 ≤ r ≤ 1, P(FΘ(R) ≤ r | Θ = θ) =
Fθ(F

−1
θ (r)) = r , the variables Ui = FΘi

(Ri) are independent and uniformly dis-
tributed over [0,1].

Remark 3 We could imagine a more general way to order the sample. For example,
by considering an increasing sequence of Borelians, according to a criterion to de-
fine, and not necessarily related to the Euclidean norm. But it is not the purpose of
this contribution.

Remark 4 The definition depends of the choice of the origin and the equations of
isobars change and then the ordering completely changes if we change the origin.
For a given data set one can estimate the origin by using the barycenter of the sample
points. But for many practical situations the origin is given in a natural way (for
instance, consider a rescue center and the accidents all around).

3.3 Weak Stability of Multivariate Extremes
and Outlier-Resistance

In Barme-Delcroix and Gather (2002), we have given a framework and definitions of
the terms outlier-proneness and outlier-resistance of multivariate distributions based
on our definition of multivariate extreme values. As for the univariate case, Green
(1976), Gather and Rauhut (1990), we have classified the multivariate distributions
w.r.t. their outlier-resistance and proneness. Characterizations have been provided
in terms of the distribution functions. Let us recall the main results. We start with
defining the weak stability of the extremes. It has been shown in Delcroix and Jacob
(1991) that the conditional distribution of R∗n given Θ∗n is Fn

θ , hence the distributions
of (R∗n,Θ∗n) and (R,Θ) have the same set of isobars which led to the following
definition of the weak stability (or stability in probability) of the sequence (X∗n)n.

Definition 3.3 The sequence (X∗n)n = ((R∗n,Θ∗n))n of the isobar-maxima is called
stable in probability if and only if there is a sequence (gn)n of isobars satisfying

R∗n − gn
(
Θ∗n
) P→ 0. (3.3)
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Fig. 3.3 Isobar containing an arbitrarily point x1 = (1, θ1)

Following Geffroy (1958), we will see in this section that it is possible to choose

gn(θ)= F−1
θ (1− 1

n
). Examples are given after Theorem 3.2.

We suppose now that Fθ is one-to-one. It is convenient to fix arbitrarily a point
x1 = (1, θ1), θ1 in Sd−1. For every point x = (r, θ1) , there is a unique surface
g(θ, r), θ in Sd−1, containing x, which has a level denoted by u(r) and which is
given by

g(θ, r)= ρu(r)(θ)= Fθ
−1(Fθ1(r)

)
. (3.4)

Note that g(θ1, r)= r ; see Fig. 3.3. Moreover, the mapping r→ u(r) from R∗+
into R∗+ is increasing and one-to-one.

The following conditions (H) and (K) will be needed.
(H) There exist 0 < α ≤ β <∞ such that for all θ in Sd−1 and for all r > 0:

α ≤ ∂g

∂r
(θ, r)≤ β.

(K) For all ε > 0, there exists η > 0 such that for all r > 0:

sup
θ

{
g(θ, r + η)− g(θ, r − η)

}
< ε.

Clearly, (H) implies (K).

Remark 5 Condition (H) entails a regularity property of the isobars following from
the mean value theorem:

For all β0 > 0, there exists η= β0
α
β
> 0 and for all r > 0, there exist two isobars

hβ0(θ, r)= g(θ, r + β0
β
) and h̃β0(θ, r)= g(θ, r − β0

β
) such that for all θ ,

g(θ, r)− β0 < h̃β0(θ, r) < g(θ, r)− η < g(θ, r)+ η < hβ0(θ, r) < g(θ, r)+ β0.

Note that η does not depend on r .

For all i ≥ 1, let Wi be the intersection of the half axis
−→
0θ1 containing the

point x1 = (1, θ1) and the isobar-surface containing Xi ; Wi = F−1
θ1

(FΘi
(Ri)). See
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Fig. 3.4 The order statistics
of the real sample
W1, . . . ,Wn

Fig. 3.4. In fact, (Wn)n is a sequence of i.i.d. variables from the distribution Fθ1 . As
usual W1,n ≤ · · · ≤Wn−1,n ≤Wn,n denotes the corresponding order statistics for the
sample (W1, . . . ,Wn). Let gn,n denote the isobar containing X∗n = Xn,n and Wn,n,
and gn−1,n the isobar containing Xn−1,n and Wn−1,n.

The next theorem ensures that the concept of ordering multivariate data according
to the isobar surfaces yields analogous results to the univariate case, Barme-Delcroix
and Gather (2002).

Theorem 3.1

1. Under condition (K) the sequence (X∗n)n is stable in probability if (Wn,n)n is
stable in probability.

2. Under condition (H) the sequence (Wn,n)n is stable in probability if and only if
(X∗n)n is stable in probability.

3. Consider for some fixed integer 1≤ α ≤ n the sequence (Xn−α+1,n)n, this being
defined by ordering the sample according to increasing levels by

X1,n, . . . ,Xn−α+1,n, . . . ,Xn,n =X∗n.

Let (H) be satisfied. Then (X∗n)n is stable in probability if and only if (Xn−α+1,n)n
is stable in probability.

As an application of the weak stability of extreme values of multivariate samples
we can now define the notion of Absolute Outlier-Resistance. Recall that Green
(1976) called a univariate distribution F absolutely outlier-resistant if for all ε > 0:

lim
n→+∞P(Wn,n −Wn−1,n > ε)= 0,

where W1,n ≤ · · · ≤ Wn−1,n ≤ Wn,n are the usual univariate order statistics of
W1, . . . ,Wn, distributed identically according to F .

Following Green (1976), we can now propose the definition of multivariate Ab-
solute Outlier-Resistant distributions.
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Definition 3.4 The distribution of the multivariate r.v. (R,Θ) is absolutely outlier-
resistant (AOR), if and only if for all θ :

gn,n(θ)− gn−1,n(θ)
P→ 0. (3.5)

For a real sample W1, . . . ,Wn it has been shown in Geffroy (1958) and Gnedenko

(1943), that (Wn,n)n is stable in probability if and only if Wn,n −Wn−1,n
P→ 0. The

following theorem, Barme-Delcroix and Gather (2002), gives an analogous result
and a characterization of weak stability by the tail behaviour of the underlying dis-
tribution. Let F̄θ = 1− Fθ .

Theorem 3.2 Let condition (H) be satisfied. All the following statements are equiv-
alent:

1. The distribution of (R,Θ) is AOR.
2. (X∗n)n is stable in probability.
3. For every fixed integer 1≤ α ≤ n, (Xn−α+1,n)n is stable in probability.
4. There exists θ1 such that limx→+∞ F̄θ1(x)/F̄θ1(x − h)= 0, for all h > 0.
5. For all θ , limx→+∞ F̄θ1(x)/F̄θ1(x − h)= 0, for all h > 0.

6. Wn,n −Wn−1,n
P→ 0.

7. (Wn,n)n is stable in probability.
8. For all θ , the distribution Fθ is AOR.
9. There exists θ1 such that the distribution Fθ1 is AOR.

Other characterizations can be found in Barme-Delcroix and Gather (2002).

Example 1 In the first example, Fθ(r)= (1− e−α(θ)rm)1{r>0}, where m> 0, and α

is a continuous strictly positive function over [0,2π] such that α(0) = α(2π). For
a fixed θ1 and for every r > 0, the u(r)-level isobar g(θ, r) is defined, according
to (3.4), by

g(θ, r)=
(
α(θ1)

α(θ)

)1/m

r,

so that (H) is fulfilled. Theorem 3.2(5) shows that (X∗n)n is stable in probability if
and only if m> 1.

Example 2 For a bivariate Gaussian centered distribution with covariance matrix(
σ 2 0
0 τ 2

)
, we have g(θ, r) = rφ(θ) with φ(θ) = 1√

2σ
( cos

2θ

2σ 2 + sin2θ

2τ 2 )
−1
2 and the iso-

bars are the density contours. Note that condition (H) is satisfied. For σ = τ = 1
the distribution is spherically symmetric and the isobars are circles. Hence, in this
particular case, the ordering of the sample is the ordering of the norms of the sample
points. In this example, Fθ(r)= 1− exp(−r2φ(θ)). Following Theorem 3.2(5) we
conclude that the distribution is AOR.

Similarly, we can define outlier-prone multivariate distributions, that is distribu-
tions such that there exist observations far apart from the main group of the data.
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Definition 3.5 The distribution of (R,Θ) is called absolutely outlier-prone, (AOP),
if and only if for all θ there exist ε > 0, δ > 0 and an integer nθ , such that for all θ
and for all n≥ nθ :

P
(
gn,n(θ)− gn,n−1(θ) > ε

)
> δ. (3.6)

That is, for all θ , the distribution Fθ is AOP.

Theorem 3.3 Let condition (H) be satisfied. All the following statements are equiv-
alent:

1. The distribution of (R,Θ) is AOP.
2. For all θ , there exist α > 0, β > 0 such that for all x

F̄θ (x + β)

F̄θ (x)
≥ α.

3. There exist θ0, α0 > 0 and β0 > 0 such that for all x

F̄θ0(x + β0)

F̄θ0(x)
≥ α0.

4. There exists θ0 such that Fθ0 is AOP.

See Barme-Delcroix and Gather (2002) for more details.

3.4 Records for a Multidimensional Sequence

Let {Xn = (Rn,Θn),n ≥ 1} be a sequence of independent, identically distributed
random variables as X = (R,Θ) in the previous sections, with common condi-
tional distribution function Fθ(·). According to the definitions of Sect. 3.2, we
associate the sequence of the levels, that is the sequence of the independent, uni-
formly distributed over [0,1] variables {Un = FΘn(Rn),n ≥ 1}. As usual, Resnick
(1973a), Galambos (1987), we can define the notion of record values for the se-
quence {Un,n≥ 1}. Uj is a record value for this sequence if and only if:

Uj > max(U1, . . . ,Uj−1),

with the convention that U1 is a record value.
The indices at which record values occur are given by the random variables

{Ln,n≥ 0} defined by

L0 = 1,

and

Ln =min(j : j > Ln−1,Uj > ULn−1).

The distribution function for a uniform variable being continuous, the variables
Ln are well defined with probability one.
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Note that ULn =max(U1, . . . ,ULn).
Now we can define the record values for the multidimensional sequence {Xn =

(Rn,Θn),n ≥ 1}, since the sequence has been ordered according to the increasing
levels.

Definition 3.6 The record values for the sequence {Xn = (Rn,Θn),n ≥ 1} are de-
fined by:

{
XLn = (RLn,ΘLn), n≥ 0

}
. (3.7)

So the definition of the record values for the sequence of the levels {Un,n ≥ 1}
induces the definition of the record values for the sequence {Xn = (Rn,Θn),n≥ 1}.
The definition seems relevant because it is based on the probability to be at a certain
distance from the origin, given the angle. Thus, we consider the intrinsic properties
of the multivariate distribution.

Lemma 1 For all n≥ 0, The variables ΘLn and Θ are identically distributed.

Proof The record value of the sequence {Xn,n≥ 1}, associated with the record time
Ln is almost surely defined as the point XLn with polar representation

(RLn,ΘLn)=
+∞∑
i=1

(Ri,Θi)1Ei , (3.8)

where

Ei =
{
FΘi

(Ri)=ULn =max(U1, . . . ,ULn)=
Ln

max
j=1

FΘj
(Rj )
}
. (3.9)

As noticed in Remark 2, P(FΘ(R) ≤ r | Θ = θ) = r , and for each j ≥ 1 the
variables Θj and Uj = FΘj

(Rj ) are independent. It follows that {Θj ; j ≥ 1} and
{FΘj

(Rj ); j ≥ 1} are independent. Therefore for each j ≥ 1, Θj and 1Ej are in-
dependent, since the variables Lj are σ(Uj )—measurable. Consequently, for any
Borel set C of Sk−1:

P(ΘLn ∈ C)= P

(+∞∑
i=1

Θi 1Ei ∈ C
)
=
+∞∑
i=1

P(Θi ∈ C;Ei )

=
+∞∑
i=1

P(Θi ∈ C)P (Ei )= P(Θ ∈ C). (3.10)

�

Lemma 2 Any isobar from the distribution of R given Θ is also an isobar from the
distribution of RLn given ΘLn .
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Proof Let g(θ) = F−1
θ (u) be an u-level isobar from the distribution of R given

Θ = θ and let B be the event

B = {RLn ≤ F−1
ΘLn

(u)
}
.

Since B = ⋂Ln

i=1{FΘi
(Ri) ≤ u} = {max(U1, . . . ,ULn) ≤ u}, B is independent of

{Θj , j ≥ 1}. Thus for any Borel set C of Sd−1, (3.10) implies:

P(ΘLn ∈ C;B)=
+∞∑
i=1

P(Θi ∈ C;Ei;B)=
+∞∑
i=1

P(Θi ∈ C)P (Ei;B)

= P(ΘLn ∈ C)P (B).
Thus ΘLn and 1B are independent; therefore,

P
(
RLn ≤ F−1

ΘLn
(u) |ΘLn = θ

)= P(B)=
+∞∑
k=1

P

(
Ln⋂
i=1

FΘi
(Ri)≤ u;Ln = k

)

=
+∞∑
k=1

ukP (Ln = k). �

3.5 Weak Stability of Multivariate Records

The results of the previous section state that both the distributions of R given Θ

and the distributions of RLn given ΘLn have the same set of isobars. Hence, we deal
only with the formers. In the sequel, any u-level isobar from the distribution of R
given Θ is labelled as u-level isobar. So we may give the following definitions.

Definition 3.7 The sequence (XLn)n = ((RLn,ΘLn))n of the multidimensional
records is stable in probability if and only if there is a sequence (gn)n of isobars
satisfying

RLn − gn(ΘLn)
P→ 0. (3.11)

We can also define the relative stability for the multidimensional records.

Definition 3.8 The sequence (XLn)n = ((RLn,ΘLn))n of the multidimensional
records is relatively stable in probability if and only if there is a sequence (gn)n
of isobars satisfying

RLn

gn(ΘLn)

P→ 1. (3.12)

As in Sect. 3.3, we suppose that Fθ is one-to-one. In the next theorem, it is shown
that the weak stability of the sequence of the multidimensional records (XLn)n =
((RLn,ΘLn))n can be investigated through the stability of the real sequence (WLn)n.
See Fig. 3.5. The conditions (H) and (K) will be useful again.
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Fig. 3.5 The sequence of
records

Theorem 3.4

1. Under condition (K) the sequence (XLn)n is stable in probability if the sequence
(WLn)n is stable in probability.

2. Under condition (H) the sequence (XLn)n is stable in probability if and only if
the sequence (WLn)n is stable in probability.

Proof (1) If (WLn)n is stable in probability, then there exists a sequence (wn) such

that WLn − wn
P→ 0. According to (K), for ε > 0 there exists η > 0 such that

supθ {g(θ, r + η)− g(θ, r − η)} < ε, for all w > 0. Let hηn(θ) = g(θ,wn + η) and
h
−η
n (θ)= g(θ,wn − η) and put g(θ,wn) = hn(θ). We have therefore

{|WLn −wn| ≤ η
}= {h−ηn (θ1)≤WLn ≤ hηn(θ1)

}
⊂ {h−ηn (ΘLn)≤RLn ≤ hηn(ΘLn)

}
⊂ {∣∣RLn − hn(ΘLn)

∣∣≤ ε
}

implying that RLn − hn(ΘLn)
P→ 0.

(2) Conversely, if there exists a sequence of surfaces gn such that RLn −
gn(ΘLn)

P→ 0 , denote by wn the intersection of the half axis 0θ1 with gn. According
to (H), there exist α and β such that

g(θ,wn)+ λα ≤ g(θ,wn + λ)≤ g(θ,wn)+ λβ

and

g(θ,wn)− λβ ≤ g(θ,wn − λ)≤ g(θ,wn)− λα

for all λ > 0 and all θ . Given ε > 0, it is possible to choose λ= ε/β and
η= εα/β and to take

hn(θ)= g(θ,wn + λ),

h̃n(θ)= g(θ,wn − λ).
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It follows that{∣∣RLn − gn(ΘLn)
∣∣≤ η
}⊂ {h̃n(ΘLn)≤RLn ≤ hn(ΘLn)

}⊂ {|WLn −wn| ≤ ε
}
,

which completes the proof. �

Now we can use unidimensional criteria to obtain characterizations for the
weak stability or relative stability of multidimensional records. Following Resnick
(1973a,b), let us define for all θ and for all r > 0, the integrated hazard function

Rθ (r)=− log
(
1− Fθ(r)

)
.

Theorem 3.5 Under condition (H), the sequence (XLn)n is stable in probability if
and only if

RLn −R−1
ΘLn

(n)
P→ 0. (3.13)

Or, equivalently, if and only if there exists θ1 such that for all ε > 0,

lim
r→+∞

Rθ1(r + ε)−Rθ1(r)

R1/2
θ1

(r + ε)
=+∞. (3.14)

Or, equivalently, if and only if for all θ and for all ε > 0,

lim
r→+∞

Rθ (r + ε)−Rθ (r)

R1/2
θ (r + ε)

=+∞. (3.15)

Theorem 3.6 Under condition (H), the sequence (XLn)n is relatively stable in prob-
ability if and only if

RLn

R−1
ΘLn

(n)

P→ 1. (3.16)

Or, equivalently, if and only if there exists θ1 such that for all k > 1,

lim
r→+∞

Rθ1(kr)−Rθ1(r)

R1/2
θ1

(kr)
=+∞. (3.17)

Or, equivalently, if and only if for all θ and for all k > 1,

lim
r→+∞

Rθ (kr)−Rθ (r)

R1/2
θ (kr)

=+∞. (3.18)

Remark 6 These theorems imply that a convenient sequence of isobars satisfying
the conditions (3.11) and (3.12) of Definitions 3.7 and 3.8 is given by gn(θ) =
R−1

θ (n)= F−1
θ (1− exp (−n)).

Example 3 Recall that in the first example, Fθ(r) = (1 − e−α(θ)rm)1{r>0}, where
m> 0, and α is a continuous strictly positive function over [0,2π] such that α(0)=
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α(2π). For a fixed θ1 and for every r > 0, the u(r)-level isobar g(θ, r) is defined,
according to (3.4), by

g(θ, r)=
(
α(θ1)

α(θ)

)1/m

r,

and (H) is fulfilled. In this case Rθ (r) = α(θ)rm; so condition (3.14) or (3.15) of
Theorem 3.5 is satisfied for m> 2 and the sequence (XLn)n is stable in probability
for m > 2. Moreover, for all m > 0, condition (3.17) or (3.18) is satisfied and the
sequence (XLn)n is relatively stable in probability for all m> 0.

Example 4 For a bivariate Gaussian centered distribution with covariance matrix(
σ 2 0
0 τ 2

)
, we have g(θ, r) = rφ(θ) with φ(θ) = 1√

2σ
( cos2 θ

2σ 2 + sin2 θ

2τ 2 )
−1
2 . We know

already that condition (H) is satisfied. In this example, Fθ(r)= 1− exp(−r2φ(θ))

and Rθ (r) = r2φ(θ) and we can easily check the conditions of Theorem 3.5 and
conclude that the sequence (XLn)n is stable in probability.

3.6 Conclusions

We have shown that, by using the isobar surfaces approach, the multivariate weak
stability properties for the extreme values and record values may be investigated in
a univariate way. We could now focus, in a future work, on finding characterizations
of the multivariate a.s. stability of the record values as it has been done for the
intermediate order statistics in Barme-Delcroix and Brito (2001).
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Chapter 4
High-Breakdown Estimators of Multivariate
Location and Scatter

Peter Rousseeuw and Mia Hubert

4.1 Introduction

In the multivariate setting, we assume that we have p-dimensional column ob-
servations xi = (xi1, . . . , xip)

′, drawn from a p-variate random variable X =
(X1, . . . ,Xp)

′ with distribution F on R
p .

In this chapter, we will assume that the distribution F of the uncontaminated data
is elliptical. We say that F is elliptical if there exists a vector μ, a positive definite
matrix Σ , and a nonnegative strictly decreasing real function h such that the density
of F can be written in the form

f (x)= 1√|Σ |h
(
d2(x,μ,Σ)

)
(4.1)

in which the statistical distance d(x,μ,Σ) is given by

d(x,μ,Σ)=
√
(x−μ)′Σ−1(x−μ). (4.2)

The matrix Σ is often called the scatter matrix. The multivariate normal distribu-
tion N(μ,Σ) is a specific example of (4.1) with h(t) = (2π)−p/2e−t/2. Another
example is the elliptical p-variate Student distribution with ν degrees of freedom
(0 < ν <∞) for which h(t)= ct/(t + ν)(p+ν)/2 with ct a constant. The case ν = 1
is called the multivariate Cauchy distribution.

Elliptical distributions have the following properties:

1. The contours of constant density are ellipsoids.
2. If the mean and variances of X exist, then EF [X] = μ and CovF [X] = cΣ with

c a constant. (For normal distributions c= 1.)
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Fig. 4.1 Scatterplot of the
logarithm of body and brain
weight of 28 animals

3. For any nonsingular matrix A and vector b the distribution of AX + b is also
elliptical, with mean Aμ+ b and scatter matrix AΣA′.

4. The random variable X can be written as

X =AZ+μ (4.3)

with A such that Σ =AA′, and Z a random variable with a spherical distribution,
i.e., f (z)= h(‖z‖2).

Example Let us consider the animals data set (Rousseeuw and Leroy 1987), avail-
able in R within the MASS package, which contains the body and brain weight of 28
animals. A scatterplot of the logarithm of the observed values (Fig. 4.1) shows that
the majority of the data follows an elliptical distribution with a positive correlation,
whereas three animals, with large body weight, have a much smaller brain weight
than expected under this model. They correspond to the dinosaurs in the data set.
We will return to these data in later sections.

Section 4.2 reviews the classical estimators of location and scatter as well as the
notion of breakdown value. In Sect. 4.3, we describe multivariate M-estimators and
discuss their robustness properties. Section 4.4 is devoted to the highly robust MCD
estimator, followed by Sect. 4.5 which describes several other high-breakdown and
affine equivariant robust estimators. Some robust but non affine equivariant estima-
tors are summarized in Sect. 4.6, and Sect. 4.7 concludes.

4.2 Classical Estimators

One of the goals of multivariate analysis is to estimate the parameters μ and Σ

from a sample Xn = (x1, . . . ,xn)′. (The sample is thus a matrix with n rows and p



4 High-Breakdown Estimators of Multivariate Location and Scatter 51

columns.) Under the assumption of multivariate normality, the MLE estimates of μ
and Σ are the sample mean and the (biased) sample covariance matrix:

x̄= 1

n

n∑
i=1

xi and C(Xn)= 1

n

n∑
i=1

(xi − x̄)(xi − x̄)′.

Note that C(Xn) is biased, but S(Xn)= n
n−1C(Xn) is unbiased.

The estimators X̄ and C(Xn) have an important property known as affine equiv-
ariance. In general, a pair of multivariate location and covariance estimators (μ̂, Σ̂)

is called affine equivariant if for any nonsingular matrix A and any constant vector
b it holds that

μ̂(AX+ b)=Aμ̂(X)+ b and Σ̂(AX+ b)=AΣ̂(X)A′. (4.4)

Affine equivariance implies that the estimator transforms well under any non-
singular reparametrization of the space of the xi . The data might for instance be
rotated, translated, or rescaled (for example through a change of the measurement
units). Note that a transformation AX of the variables (X1, . . . ,Xp)

′ corresponds to
the matrix product XnA

′.
At the normal model the sample mean and the sample covariance matrix are con-

sistent and asymptotically normal with maximal efficiency, but they lack robustness:

• Their influence function (Hampel et al. 1986) is unbounded. Let T (F ) be the sta-
tistical functional mapping a distribution F to its mean μF = EF [X] and let V (F)
be the statistical functional mapping F to its covariance matrix ΣF = CovF [X].
Then at any z ∈R

p

IF(z;T ,F )= z−μF ,

IF(z;V,F )= (z−μF )(z−μF )
′ −ΣF .

Clearly, both influence functions are unbounded in z.
• The asymptotic breakdown value of the mean is zero. More precisely, let Fε,H =
(1− ε)F + εH for any distribution H , then the asymptotic breakdown value is
defined as

ε∗(T ,F )= inf
{
ε > 0 : sup

H

∥∥T (Fε,H )∥∥=∞
}
. (4.5)

• The asymptotic breakdown value of the classical covariance matrix is zero too.
Let us denote the eigenvalues of a p.s.d. matrix by λ1 � · · · � λp � 0. Then we
define the implosion breakdown value of a scatter functional V at F as

ε∗imp(V ,F )= inf
{
ε > 0 : inf

H

{
λp
(
V (Fε,H )

)}= 0
}

and the explosion breakdown value as

ε∗exp(V ,F )= inf
{
ε > 0 : sup

H

{
λ1
(
V (Fε,H )

)}=+∞}.
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The breakdown value then equals the smallest of these:

ε∗(V ,F )=min
(
ε∗exp(V ,F ), ε

∗
imp(V ,F )

)
.

For the classical covariance, the explosion breakdown value is zero.

The finite-sample breakdown value of estimators of location and scatter can be
defined accordingly. It can be proved (Lopuhaä and Rousseeuw 1991) that any affine
equivariant location estimator μ̂ satisfies

ε∗n(μ̂,Xn)�
1

n

⌊
n+ 1

2

⌋
. (4.6)

Any affine equivariant scatter estimator Σ̂ satisfies the sharp bound (Davies 1987)

ε∗n(Σ̂,Xn)�
1

n

⌊
n− p+ 1

2

⌋
(4.7)

if the original sample (before contamination) is in general position, which means
that no hyperplane contains more than p points. At samples that are not in general
position, the upper bound in (4.7) is lower and depends on the maximal number
of observations on a hyperplane. For affine equivariant location and scatter estima-
tors the asymptotic breakdown value is always at most 0.5. For recent discussions
about the breakdown value and equivariance, see Davies and Gather (2005) and the
contribution by Müller, Chap. 5.

Example For the animals data set mentioned before, the classical estimates are x̄=
(3.77, 4.43)′ and

S =
(

14.22 7.05
7.05 5.76

)
,

which yields an estimated correlation of r = 7.05/
√

14.22× 5.76= 0.78. To visu-
alize these estimates, we can plot the resulting 97.5 % tolerance ellipse in Fig. 4.2.
Its boundary consists of points with constant Mahalanobis distance to the mean. In
general dimension p, the tolerance ellipsoid is defined as

{
x;MD(x)�

√
χ2
p,0.975

}
(4.8)

with MD(x)= di(x, x̄, S) following (4.2). We expect (for large n) that about 97.5 %
of the observations belong to this ellipsoid. One could flag an observation as an
outlier if it does not belong to the classical tolerance ellipsoid, but in Fig. 4.2 we see
that the three dinosaurs do not stand out relative to the ellipse. This is because the
outliers have attracted x̄ and, more importantly, have affected the matrix S in such a
way that the ellipse has been inflated in their direction.
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Fig. 4.2 Classical tolerance
ellipse of the animals data set

4.3 Multivariate M-Estimators

M-estimators of multivariate location and scatter (μ̂, Σ̂) were defined in Maronna
(1976) as the solution of

n∑
i=1

W1
(
d2
i

)
(xi − μ̂)= 0, (4.9)

1

n

n∑
i=1

W2
(
d2
i

)
(xi − μ̂)(xi − μ̂)′ = Σ̂ (4.10)

with di = d(xi , μ̂, Σ̂) as in (4.2). Note that μ̂ should be a real vector and Σ̂ a
symmetric positive definite matrix. The functions W1(t) and W2(t) are real-valued
and defined for all t � 0.

If we define θ = (μ,Σ), Ψ = (Ψ1,Ψ2) and

Ψ1(x, θ)=W1
(
d2)(x−μ),

Ψ2(x, θ)=W2
(
d2)(x−μ)(x−μ)′ −Σ,

(4.9) and (4.10) combine into the single M-equation

1

n

n∑
i=1

Ψ (xi , θ̂ )= 0.

Examples:

• If W1(d
2)=W2(d

2)= 1, we find the sample mean and sample covariance matrix.
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• For an elliptical density (4.1), one finds that the MLE estimators μ̂ and Σ̂ mini-
mize

n log |Σ̂ | − 2
n∑

i=1

logh
(
d2
i

)
.

Differentiating with respect to μ and Σ−1 yields the system of equations in (4.9)
and (4.10) with W1(d

2) = W2(d
2) = −2h′(d2)/h(d2). Any MLE is thus an

M-estimator.
• In Maronna (1976) several conditions on W1 and W2 are given to ensure the exis-

tence, uniqueness and consistency of the estimators. Sufficient conditions are that√
tW1(t) and tW2(t) are bounded, and that tW2(t) is nondecreasing. A multivari-

ate M-estimator which satisfies the latter condition is called monotone. Otherwise
it is called redescending.

Some properties:

• Multivariate M-estimators are affine equivariant.
• For a monotone M-estimator (4.9) and (4.10) have a unique solution. This solu-

tion can be found by a reweighting algorithm:

1. Start with initial values μ0 and Σ0 such as the coordinatewise median and the
diagonal matrix with the squared coordinatewise MAD at the diagonal.

2. At iteration k compute dki = d(xi , μ̂k, Σ̂k) and

μ̂k+1 =
∑n

i=1 W1(d
2
ki)xi∑n

i=1 W1(d
2
ki)

,

Σ̂k+1 = 1

n

n∑
i=1

W2
(
d2
ki

)
(xi − μ̂k+1)(xi − μ̂k+1)

′.

For a monotone M-estimator this algorithm always converges to the unique so-
lution, no matter the choice of the initial values. For a redescending M-estimator
the algorithm can convergence to a bad solution, so the initial values are more
important in that case.

• Under some regularity conditions on W1 and W2, multivariate M-estimators are
asymptotically normal.

• The influence function is bounded if tW2(t) and
√
tW1(t) are bounded.

• The asymptotic breakdown value of a monotone M-estimator satisfies

ε∗ � 1

p+ 1
.

Although monotone M-estimators attain the optimal value of 0.5 in the univariate
case, this is no longer true in higher dimensions.

This reveals the main weakness of M-estimators in high dimensions: monotone
M-estimators, while computationally attractive, have a rather low breakdown value.
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Redescending M-estimators can have a larger breakdown value, but are impractical
to compute.

4.4 Minimum Covariance Determinant Estimator

4.4.1 Definition and Properties

The Minimum Covariance Determinant (MCD) estimator (Rousseeuw 1984) was
one of the first affine equivariant and highly robust estimators of multivariate loca-
tion and scatter. Given the parameter h with [(n+p+ 1)/2]� h� n, the raw MCD
is defined as (μ̂, Σ̂) where:

1. μ̂ is the mean of the h observations for which the determinant of the sample
covariance matrix is minimal.

2. Σ̂ is the corresponding covariance matrix multiplied by a consistency factor.

Note that the MCD estimator can only be computed when h > p, otherwise the
covariance matrix of any h-subset will be singular. Since h� [(n+ 2)/2], this con-
dition is certainly satisfied when n � 2p. To avoid excessive noise, it is however
recommended that n > 5p. To obtain consistency at the normal distribution, we
can use the consistency factor α/Fχ2

p+2
(χ2

p,α) with α = h/n (see Croux and Haes-

broeck (1999)). For small n, we can multiply by an additional finite-sample correc-
tion factor given in Pison et al. (2002).

The parameter h controls the breakdown value. At samples in general position
ε∗ =min(n− h+ 1, h− p)/n. The maximal breakdown value (4.7) is achieved by
setting h= [(n+ p + 1)/2]. The MCD estimator with h= [(n+ p + 1)/2] is thus
very robust, but unfortunately suffers from a low efficiency at the normal model. For
example, the asymptotic relative efficiency of the diagonal elements of the MCD
scatter matrix with respect to the sample covariance matrix is only 6 % when p = 2,
and 20.5 % when p = 10. This efficiency can be increased by considering a larger h
such as h≈ 0.75n. This yields relative efficiencies of 26.2 % for p = 2 and 45.9 %
for p = 10. On the other hand, this choice of h decreases the robustness towards
possible outliers.

In order to increase the efficiency while retaining high robustness, one can add a
weighting step (Rousseeuw and Leroy 1987; Lopuhaä and Rousseeuw 1991), lead-
ing to the reweighted MCD estimator (RMCD):

3. Compute di = d(xi , μ̂, Σ̂). Next let

μ̂RMCD =
∑n

i=1 W(d2
i )xi∑n

i=1 W(d2
i )

,

Σ̂RMCD =
(

n∑
i=1

W
(
d2
i

)
(xi − μ̂RMCD)(xi − μ̂RMCD)

′
)/( n∑

i=1

W
(
d2
i

)− 1

)
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for some weight function W(t). This weight function should be nonincreasing,
bounded, and equal to zero from a certain value t on.

Note the similarity with (4.9) and (4.10). The RMCD estimator can be seen as a
one-step M-estimator with the raw MCD estimates as initial starting values. RMCD
combines the breakdown value of the original MCD with the better efficiency of
M-estimators. A simple yet effective choice for W is to assume that the h selected
observations are approximately normally distributed hence the distribution of their
d2
i is close to χ2

p , which leads to W(d2) = I (d2 � χ2
p,β). This is also the default

choice in the CovMcd function in the R package rrcov (with β = 0.975). If we
take h≈ 0.5n this reweighting step increases the efficiency to 45.5 % for p = 2 and
to 82 % for p = 10.

The MCD estimator is affine equivariant. This property follows from the fact that
for each subset of size h, denoted as XH , the determinant of the covariance matrix
of the transformed data equals

∣∣C(XHA
′)∣∣= ∣∣AC(XH)A

′∣∣= |A|2∣∣C(XH)
∣∣. (4.11)

Hence, the optimal h-subset (which minimizes |C(XHA
′)|) remains the same as for

the original data (which minimizes |C(XH)|), and its covariance matrix is trans-
formed appropriately. Afterward, the affine equivariance of the raw MCD location
estimator follows from the equivariance of the sample mean. Finally, we note that
the robust distances di = d(xi , μ̂, Σ̂) are affine invariant, which implies that the
reweighted estimator is equivariant.

The influence functions of the MCD location vector and scatter matrix are
bounded (Croux and Haesbroeck 1999; Cator and Lopuhaä 2012). At the stan-
dard Gaussian distribution, the influence function of the MCD location estimator
becomes zero for all x with ‖x‖2 > χ2

p,α , hence large outliers do not influence the
estimates. The same happens with the off-diagonal elements of the MCD scatter es-
timator. On the other hand, the influence function of the diagonal elements remains
constant (different from zero) when ‖x‖2 is sufficiently large. Therefore, the out-
liers still have a bounded influence of the estimator. All these influence functions
are smooth, except at those x with ‖x‖2 = χ2

p,α . The reweighted MCD estimator

has an additional jump in ‖x‖2 = χ2
p,0.975 due to the discontinuity of the weight

function.
Highly robust estimators such as MCD are often used to identify outliers, see,

e.g., Rousseeuw and van Zomeren (1990) and Becker and Gather (1999, 2001).

Example For the animals data, the RMCD estimates (for α = 0.5) are μ̂RMCD =
(3.03,4.28)′ and

Σ̂RMCD =
(

18.86 14.16
14.16 11.03

)

yielding a robust correlation estimate of 0.98 which is higher and corresponds to the
correlation of the ‘good’ (non-outlying) data. The corresponding robust tolerance
ellipse, now defined as in (4.8) but with the Mahalanobis distances replaced by the
robust distances di = d(xi , μ̂RMCD, Σ̂RMCD), correctly flags the outliers in Fig. 4.3.
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Fig. 4.3 Classical and robust
tolerance ellipse of the
animals data set

Fig. 4.4 Distance–distance
plot of the animals data set

In dimensions p > 3, we cannot draw a scatterplot or a tolerance ellipsoid. To
explore the differences between the classical and the robust analysis, we can then
still draw a distance-distance plot which plots the robust distances versus the Ma-
halanobis distances as in Fig. 4.4. This plot reveals the differences between both
methods at a glance, as the three dinosaurs lie far from the dotted line. Note that
observation 14, which is little bit outlying, is the human species.

4.4.2 Computation

The exact MCD estimator is very hard to compute, as it requires the evaluation of
all
(
n
h

)
subsets of size h. Therefore, one switches to an approximate algorithm such
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as the FAST-MCD algorithm of Rousseeuw and Van Driessen (1999) which is quite
efficient. The key component of the algorithm is the so-called C-step:

Theorem 4.1 Take Xn = (x1, . . . ,xn)′ and let H1 ⊂ {1, . . . , n} be subset of size h.
Put μ̂1 and Σ̂1 the empirical mean and covariance matrix of the data in H1. If
|Σ̂1| 
= 0 define the relative distances d1

i := d(xi , μ̂1, Σ̂1) for all i = 1, . . . , n.
Now take H2 such that {d1

i ; i ∈ H2} := {(d1)1:n, . . . , (d1)h:n} where (d1)1:n �
(d1)2:n � · · · � (d1)n:n are the ordered distances, and compute μ̂2 and Σ̂2 based
on H2. Then

|Σ̂2|� |Σ̂1|
with equality if and only if μ̂2 = μ̂1 and Σ̂2 = Σ̂1.

If |Σ̂1| > 0, the C-step thus easily yields a new h-subset with lower covariance
determinant. Note that the C stands for ‘concentration’ since Σ̂2 is more concen-
trated (has a lower determinant) than Σ̂1. The condition |Σ̂1| 
= 0 in the C-step
theorem is no real restriction because if |Σ̂1| = 0 the minimal objective value is
already attained.

C-steps can be iterated until |Σ̂new| = 0 or |Σ̂new| = |Σ̂old|. The sequence of
determinants obtained in this way must converge in a finite number of steps because
there are only finitely many h-subsets. However, there is no guarantee that the final
value |Σ̂new| of the iteration process is the global minimum of the MCD objective
function. Therefore, an approximate MCD solution can be obtained by taking many
initial choices of H1, applying C-steps to each and keeping the solution with lowest
determinant.

To construct an initial subset H1, a random (p + 1)-subset J is drawn and
μ̂0 := ave(J ) and Σ̂0 := C(J ) are computed. (If |Σ̂0| = 0, then J can be ex-
tended by adding observations until |Σ̂0|> 0.) Then, for i = 1, . . . , n the distances
d0
i := d(xi , μ̂0, Σ̂0) are computed and sorted. The initial H1 subset then consists

of the h observations with smallest distance d0. This method yields better initial
subsets than by drawing random h-subsets directly, because the probability of draw-
ing an outlier-free subset is much higher when drawing (p + 1)-subsets than with
h-subsets.

The FAST-MCD algorithm contains several computational improvements. Since
each C-step involves the calculation of a covariance matrix, its determinant and the
corresponding distances, using fewer C-steps considerably improves the speed of
the algorithm. It turns out that after two C-steps, many runs that will lead to the
global minimum already have a considerably smaller determinant. Therefore, the
number of C-steps is reduced by applying only two C-steps to each initial subset
and selecting the 10 different subsets with lowest determinants. Only for these 10
subsets further C-steps are taken until convergence.

This procedure is very fast for small sample sizes n, but when n grows the com-
putation time increases due to the n distances that need to be calculated in each
C-step. For large n FAST-MCD uses a partitioning of the data set, which avoids
doing all the calculations on the entire data.
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Note that the FAST-MCD algorithm is itself affine equivariant. Implementations
of the FAST-MCD algorithm are available in R (as part of the packages rrcov, ro-
bust and robustbase), in S-PLUS (as the built-in function cov.mcd) and in SAS/IML
Version 7 and SAS Version 9 (in PROC ROBUSTREG). There is also a Matlab ver-
sion in LIBRA, a Matlab LIBrary for Robust Analysis (Verboven and Hubert 2005)
which can be downloaded from wis.kuleuven.be/stat/robust. Moreover, it is avail-
able in the PLS toolbox of Eigenvector Research (www.eigenvector.com). Note that
some functions use α = 0.5 as default value, yielding a breakdown value of 50 %,
whereas other implementations use α = 0.75.

4.5 Other High-Breakdown Affine Equivariant Estimators

4.5.1 The Stahel–Donoho Estimator

The first affine equivariant estimator of location and scatter with 50 % breakdown
value was the Stahel–Donoho estimator (Stahel 1981; Donoho 1982). It is con-
structed as follows. The Stahel–Donoho outlyingness of a univariate point xi is
given by

SDOi = SDO(1)(xi,Xn)= |xi −med(Xn)|
mad(Xn)

,

whereas the outlyingness of a multivariate xi is defined as

SDOi = SDO(xi ,Xn)= sup
a∈Rp

SDO(1)(a′xi ,Xna
)
. (4.12)

The Stahel–Donoho estimator is then defined as a weighted mean and covariance
matrix, where the weight function W(t) is a strictly positive and nonincreasing func-
tion of SDOi . If tW(t) and t2W(t) are bounded, then the breakdown value is 50 %.
Note that mad(Xn) in the denominator of SDOi can be modified slightly to obtain
the best possible finite-sample breakdown value (Gather and Hilker 1997). For more
details on the Stahel–Donoho estimator see (Maronna and Yohai 1995).

To compute the Stahel–Donoho estimator, the number of directions a needs to be
restricted to a finite set. These can be obtained by subsampling: take the directions
orthogonal to hyperplanes spanned by random subsamples of size p.

In data sets with high contamination rate, it may happen that fewer than p + 1
observations obtain a weight W(SDOi ) > 0 up to numerical precision, hence the
Stahel–Donoho scatter matrix becomes singular. This can be remedied as in Hubert
et al. (2005) and Debruyne and Hubert (2009) by replacing the smooth function W

by weights that are set to 1 for the h points with lowest outlyingness, and to 0 for the
others. This way enough data points are included to ensure nonsingularity, assuming
the uncontaminated data were in general position.

http://wis.kuleuven.be/stat/robust
http://www.eigenvector.com
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4.5.2 The MVE Estimator

The Minimum Volume Ellipsoid (MVE) estimator (Rousseeuw 1985) of location is
defined as the center of the ellipsoid with minimal volume which contains h obser-
vations with [(n+ p+ 1)/2]� h� n. The corresponding scatter estimator is given
by the matrix in the formula of this ellipsoid, multiplied by a consistency factor.
This estimator has maximal breakdown value when h = [(n+ p + 1)/2], but it is
not asymptotically normal and more difficult to compute than the MCD estimator.
A FAST-MVE algorithm is described in Maronna et al. (2006, p. 199).

4.5.3 S-Estimators

S-estimators of multivariate location and scatter (Rousseeuw and Leroy 1987; Lop-
uhaä 1989) are defined as the solution (μ̂, Σ̂) to the problem of

minimizing |Σ̂ | subject to
1

n

n∑
i=1

ρ(di)= δ

with di = d(xi , μ̂, Σ̂) as before and 0 < δ <+∞.
The MVE estimator with 50 % breakdown value can be seen as a special case, ob-

tained by taking ρ(t)= I (|t |>
√
χ2
p,0.5) and δ = 0.5. However, this discontinuous

ρ-function does not yield a good asymptotic behavior. Using a smooth ρ-function
gives much better results. More precisely, the ρ function should satisfy:

• (R1) ρ is symmetric and twice continuously differentiable, with ρ(0)= 0;
• (R2) ρ is strictly increasing on an interval [0, k] and constant on [k,+∞[.
A standard choice is Tukey’s bisquare function defined as

ρc(x)=
{

x2

2 − x4

2c2 + x6

6c4 if |x|� c,

c2

6 if |x|> c.

To obtain consistency at elliptical distributions, the constant δ is taken to be
E[ρ(‖Z‖)] with Z as in (4.3).

S-estimators are asymptotically normal (Davies 1987). Their efficiency at the
normal model is somewhat better than the efficiency of the RMCD, especially in
higher dimensions. For example, the diagonal element of the bisquare S scatter ma-
trix with 50 % breakdown value has an asymptotic relative efficiency of 50.2 % for
p = 2 and 92 % for p = 10. (Recall that the reweighted MCD achieves 45.5 % for
p = 2 and 82 % for p = 10.) At the multivariate Student distribution the RMCD
performs better in low dimensions (Croux and Haesbroeck 1999).

If Xn is in general position, the ratio r = δ/ρ(k) determines the breakdown value:
if r � (n−p)/2n, then ε∗(μ̂,Xn)= ε∗(Σ̂,Xn)= �nr�/n. The maximal breakdown
value (4.7) is attained when r = (n− p)/2n.
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To obtain a bounded influence function, it is required that ρ′′(x) and ρ′(x)/x are
bounded and continuous (Lopuhaä 1989). The influence function of S-estimators
can then be seen as a smoothed version of the MCD’s influence function (Croux and
Haesbroeck 1999).

S-estimators satisfy (4.9) and (4.10) of a non-monotone M-estimator, but they
cannot be computed in this way because non-monotone M-estimators do not have
a unique solution and there is no algorithm for them. To compute S-estimators, we
can run the FAST-S algorithm which uses techniques similar to FAST-MCD and the
FAST-S algorithm for regression (Salibian-Barrera and Yohai 2006). It is available
in the R package rrcov as the function CovSest. A Matlab implementation is
available from www.econ.kuleuven.be/public/NDBAE06/programs/.

4.5.4 MM-Estimators

Multivariate MM-estimators (Tatsuoka and Tyler 2000) are extensions of S-estima-
tors. They are based on two loss functions ρ0 and ρ1 that satisfy (R1) and (R2).
They are defined in two steps:

1. Let (μ̃, Σ̃) be an S-estimator with loss function ρ0. Denote σ̂ = |Σ̃ |1/2p .
2. The MM-estimator for location and shape (μ̂, Γ̂ ) minimizes

1

n

n∑
i=1

ρ1
([
(xi −μ)′Γ −1(xi −μ)

]1/2
/σ̂
)

among all μ and all symmetric positive definite Γ with |Γ | = 1. The MM-
estimator for the covariance matrix is then Σ̂ = σ̂ 2Γ̂ .

The idea is to estimate the scale by means of a very robust S-estimator, and then
to estimate the location and shape using a different ρ function that yields a better
efficiency. MM-estimators have the following properties:

• The location and shape estimates inherit the breakdown value of the initial scale:
if ρ1(s)� ρ0(s) for all s > 0 and ρ1(∞)= ρ0(∞), then

ε∗n(μ̂, Γ̂ , Σ̂;Xn)� ε∗n(μ̃, Σ̃;Xn).

Consequently, the values δ and k0 in the initial S-estimator can be chosen to attain
a certain breakdown value.

• The influence functions (and thus the asymptotic variance) of MM-estimators for
location μ̂ and shape Γ̂ equal those of S-estimators with the function ρ1. (Note
that the influence function of the scatter estimator Σ̂ = σ̂ 2Γ̂ is a mixture of the
influence functions of the S-estimators with ρ0 and ρ1.) Hence, the constant k1 in
(R2) can be chosen to attain a certain efficiency for Γ̂ . In this way MM-estimators
can have a higher efficiency than S-estimators, especially in dimensions p < 15
(Salibian-Barrera et al. 2006).

http://www.econ.kuleuven.be/public/NDBAE06/programs/
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To compute MM-estimators, one first computes an S-estimator and then applies
the iterative reweighting scheme described in Sect. 4.3. In R location-scatter MM-
estimators are available as the function CovMMest in the package rrcov. This im-
plementation uses a bisquare MM-estimator with 50 % breakdown value and 95 %
efficiency at the normal model.

4.6 Robust Non Affine Equivariant Estimators

If one is willing to give up the affine equivariance requirement, certain robust loca-
tion vectors and covariance matrices can be computed much faster.

4.6.1 Coordinatewise Median

The coordinatewise median is defined as

(med
i

xi1,med
i

xi2, . . . ,med
i

xip)
′.

This estimator has a 50 % breakdown value and can be computed easily. But it is not
affine equivariant, and it does not have to lie in the convex hull of the sample when
p � 3. Consider for example the three unit vectors (1,0,0)′, (0,1,0)′ and (0,0,1)′
whose convex hull does not contain the coordinatewise median (0,0,0)′.

4.6.2 Spatial Median and Spatial Sign Covariance Matrix

The L1 location estimator, also known as the spatial median, is defined as

μ̂= argmin
μ

n∑
i=1

‖xi −μ‖,

or equivalently as the μ which satisfies

n∑
i=1

xi −μ

‖xi −μ‖ = 0. (4.13)

It has a nice geometrical interpretation: take a point μ in R
p and project all obser-

vations onto a sphere around μ. If the mean of these projections equals μ, then μ is
the spatial median.

The breakdown value of the L1-median is 50 % and its influence function is
bounded but it is not affine equivariant (Lopuhaä and Rousseeuw 1991). However,



4 High-Breakdown Estimators of Multivariate Location and Scatter 63

theL1-median is orthogonal equivariant, i.e., it satisfies (4.4) with A any orthogonal
matrix (A′ =A−1). This implies that the L1-median transforms appropriately under
all transformations that preserve Euclidean distances (such as translations, rotations,
and reflections).

To compute the spatial median, note that (4.13) corresponds to (4.9) with
W1(t) = 1/

√
t . We can thus use the iterative algorithm with Σ = I . More refined

algorithms are discussed in Fritz et al. (2012). For more on multivariate medians,
see the contribution by Oja, Chap. 1.

The spatial sign covariance matrix (Visuri et al. 2000) is defined as the covari-
ance matrix of the data points projected on the unit sphere around the spatial median:

Σ̂ = 1

n

n∑
i=1

(xi − μ̂)

‖xi − μ̂‖
(xi − μ̂)′

‖xi − μ̂‖ . (4.14)

4.6.3 The OGK Estimator

Maronna and Zamar (2002) presented a method to obtain positive definite and ap-
proximately affine equivariant robust scatter matrices starting from any pairwise
robust scatter matrix. This method was applied to the robust covariance estimate
of Gnanadesikan and Kettenring (1972). The resulting multivariate location and
scatter estimates are called orthogonalized Gnanadesikan–Kettenring (OGK) esti-
mates and are calculated as follows:

1. Let m(·) and s(·) be robust univariate estimators of location and scale.
2. Construct zi =D−1xi for i = 1, . . . , n with D = diag(s(X1), . . . , s(Xp)).
3. Compute the ‘correlation matrix’ U of the variables of Z = (Z1, . . . ,Zp), given

by ujk = 1/4(s(Zj +Zk)
2 − s(Zj −Zk)

2).
4. Compute the matrix E of eigenvectors of U and

(a) project the data on these eigenvectors, i.e. V = ZE;
(b) compute ‘robust variances’ of V = (V1, . . . , Vp), i.e. L = diag(s2(V1), . . . ,

s2(Vp));
(c) Set the p×1 vector μ̂(Z)=Em where m= (m(V1), . . . ,m(Vp))

′, and com-
pute the positive definite matrix Ŝ(Z)=ELE′.

5. Transform back to X, i.e., μ̂RAWOGK =Dμ̂(Z) and Σ̂RAWOGK =DŜ(Z)D′.

In the OGK algorithm m(·) is a weighted mean and s(·) is the τ -scale of Yohai and
Zamar (1988). Step 2 makes the estimate scale equivariant, whereas the following
steps are a kind of principal components that replace the eigenvalues of U (which
may be negative) by robust variances. As in the FAST-MCD algorithm the estimate
is improved by a weighting step, where the cutoff value in the weight function is now
taken as c= χ2

p,0.9 med(d1, . . . , dn)/χ
2
p,0.5 with di = d(xi , μ̂RAWOGK, Σ̂RAWOGK).
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4.6.4 Deterministic MCD Algorithm

As the FAST-MCD algorithm starts by drawing random subsets of size p+1, it does
not necessarily give the same result at multiple runs of the algorithm. Moreover, it
needs to draw many initial subsets in order to obtain at least one that is outlier-free.
Recently a deterministic algorithm for robust location and scatter has been devel-
oped, called DetMCD (Hubert et al. 2012), which uses the same iteration steps as
FAST-MCD but does not draw random subsets. Unlike the FAST-MCD it is permu-
tation invariant, i.e. the result does not depend on the order of the observations in
the data set. Furthermore, DetMCD runs even faster than FAST-MCD and is less
sensitive to point contamination. Moreover, it is very close to affine equivariant.

DetMCD computes a small number of deterministic initial estimates, followed
by concentration steps. First, each variable Xj is standardized by subtracting its
median and dividing by the Qn scale estimator of Rousseeuw and Croux (1993).
This standardization makes the algorithm location and scale equivariant, i.e., (4.4)
hold for any non-singular diagonal matrix A. The standardized data set is denoted
by the n× p matrix Zn with rows z′i (i = 1, . . . , n) and columns Zj (j = 1, . . . , p).

Next, six preliminary estimates Sk are constructed (k = 1, . . . ,6) for the covari-
ance or correlation of Z.

1. S1 = corr(Y ) with Yj = tanh(Zj ) for j = 1, . . . , p.
2. Let Rj be the ranks of the column Zj , and put S2 = corr(R). This is the Spear-

man correlation matrix of Z.
3. S3 = corr(T ) with Tj =Φ−1((Rj − 1/3)/(n+ 1/3)).
4. The fourth scatter estimate is related to the spatial sign covariance matrix (4.14):

define ki = zi/‖zi‖ for all i and let S4 = (1/n)
∑n

i=1 kik′i .
5. S5 is the covariance matrix of the �n/2� standardized observations zi with small-

est norm, which corresponds to the first step of the BACON algorithm (Billor
et al. 2000).

6. The sixth scatter estimate is the raw OGK estimator, where for m(·) and s(·) the
median and Qn are used.

As these Sk may have very inaccurate eigenvalues, the following steps are applied
to each Sk . Note that the first two steps are similar to steps 4(a) and 4(b) of the OGK
algorithm:

1. Compute the matrix E of eigenvectors of Sk and put V = ZE.
2. Estimate the scatter of Z by Σ̂k(Z) = ELE′ where L = diag(Q2

n(V1), . . . ,

Q2
n(Vp)).

3. Estimate the center of Z by μ̂k(Z)= Σ̂
1/2
k (med(ZΣ̂−1/2

k )).

For all six estimates (μ̂k(Z), Σ̂k(Z)) the statistical distances dik = d(zi , μ̂k(Z),

Σ̂k(Z)) are computed as in (4.2). For each initial estimate k, the h0 = �n/2� obser-
vations with smallest dik are retained and the statistical distances (denoted as d∗ik)
based on these h0 observations are computed. Then for all six estimates the h obser-
vations xi with smallest d∗ik are selected and C-steps are applied until convergence.
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The solution with smallest determinant is called the raw DetMCD. Then a weighting
step can be applied as in the FAST-MCD algorithm, yielding the final DetMCD.

Note that even though the OGK and DetMCD methods are not affine equivariant,
it turns out that their deviation from affine equivariance is very small.

4.7 Conclusions

The assumption underlying this chapter is that the majority of the data can be mod-
eled by an elliptical distribution, whereas there is no such restriction on any outliers
that may occur. Unlike the classical mean and covariance matrix, robust estimators
can withstand the effect of such outliers. Moreover, we saw in the example how the
robust methods allow us to detect the outliers by means of their robust distances,
which can for instance be visualized in a distance-distance plot like Fig. 4.4.

We advocate the use of robust estimators with a suitably high breakdown value,
as these are the least affected by outliers. Our recommendation is to use a high-
breakdown affine equivariant method such as MCD, S, or MM when the number
of dimensions p is rather small, say up to 10. For higher dimensions, these meth-
ods become too computationally intensive, and then we recommend either OGK or
DetMCD. The latter methods are close to affine equivariant, and can be computed
faster and in higher dimensions.
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Chapter 5
Upper and Lower Bounds for Breakdown Points

Christine H. Müller

5.1 Introduction

The breakdown point of an estimator introduced by Hampel (1971) is a simple and
successful measure of the robustness of an estimator against changes of the ob-
servations. In particular, it is easy to understand the finite sample version of the
breakdown point. Estimators with a high breakdown point are insensitive to a high
amount of outlying observations. Moreover, they can be used to detect observations
which do not follow the majority of the data. Some estimators have a breakdown of
50 % while in other situations the highest possible breakdown point is much smaller
than 50 %. Therefore it is always important to know what is the highest possible
breakdown point. Then it can be checked whether specific estimators can reach this
upper bound. This can be done by deriving lower bounds for these estimators. Here
general upper and lower bounds for the breakdown point are discussed.

Two finite sample breakdown point concepts are given in Sect. 5.2. In Sect. 5.3,
a general upper bound is derived via the approach based on algebraic groups of
transformations introduced by Davies and Gather (2005). While Davies and Gather
(2005) develop this approach for the population version of the breakdown point, here
this approach is used at once for the finite sample version of the breakdown point.
This leads to a very simple characterization of the upper bound. Davies and Gather
(2005) apply the approach to multivariate location and scatter estimation, univariate
linear regression, logistic regression, the Michaelis–Menten model, and time series
using different groups of transformations for each case. Regarding multivariate re-
gression in Sect. 5.4, linear regression as well as multivariate location and scatter
estimation can be treated here with the same approach. In particular the same group
of transformations is used for the three cases. In Sect. 5.5, a general lower bound
for the breakdown of some estimators based on the approach of d-fullness devel-
oped by Vandev (1993) is presented. With this approach, Müller and Neykov (2003)
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derive lower bounds for generalized linear models like logistic regression and log-
linear models and Müller and Schäfer (2010) obtain lower bounds for some non-
linear models. This approach is used here in Sect. 5.6 to provide lower bounds for
multivariate regression and simultaneous estimation of the scale and regression pa-
rameter in univariate regression. It is shown in particular that least trimmed squares
estimators are attaining the upper bounds derived in Sect. 5.4.

5.2 Definitions of Finite Sample Breakdown Points

Let Θ be a finite dimensional parameter space, z1, . . . , zN ∈ Z a univariate or

multivariate sample in Z , and θ̂ : ZN → Θ an estimator for θ ∈ Θ . A general
definition of the finite sample breakdown point of an estimator θ̂ at a sample
Z= (z1, . . . , zN)� is given by the minimum relative number of observations which
must be corrupted so that the estimator breaks down. Breaking down means that the
estimator can attain arbitrary values and in particular values arbitrarily close to the
border of the parameter space.

To be more precise, let

ZM(Z) := {Z̄ ∈ZN ; card{n; zn 
= z̄n} ≤M
}

be the set of contaminated samples corrupted by at most M observations. If the
estimates at samples of this set attain values arbitrarily close to the border of Θ , then
we have a breakdown. If the parameter space Θ is for example [0,∞) as for scale
estimation, then clearly the border of this set is given by 0 and∞. If all estimates at
samples of ZM(Z) are included in a compact interval [a, b] ⊂ (0,∞), in particular
0 < a, then these estimates do not become arbitrarily close to the border. Hence,
there is no breakdown. Since (0,∞) is the interior of [0,∞), the property of “no
breakdown” can be defined generally by the property that there exists a compact
subset Θ0 of the interior int(Θ) of Θ so that all estimates at samples of ZM(Z) are
included in Θ0. If such a compact set Θ0 does not exist, then estimates at samples
of ZM(Z) reach the border so that we have breakdown. The smallest number M
for which this happens provides then the breakdown point. One could define this
M as breakdown point but it is better to use relative numbers, i.e., M divided by
the sample size N . Hence, a general definition of the finite sample breakdown is as
follows, see, e.g., Hampel et al. (1986, p. 97).

Definition 5.1 The breakdown point of an estimator θ̂ : ZN → Θ at Z =
(z1, . . . , zN)� ∈ZN is defined as

ε∗(θ̂ ,Z) := 1

N
min
{
M; there exists no compact set Θ0 ⊂ int(Θ) with

{
θ̂ (Z̄); Z̄ ∈ZM(Z)

}⊂Θ0
}
.
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As soon as there exists a pseudometric d on Θ , then breakdown can be also de-
fined by explosion, i.e., by the property that the distance d(θ̂(Z̄), θ̂ (Z)) between the
estimates at the corrupted sample Z̄ and the original sample Z becomes arbitrarily
large. This leads to the following definition, see, e.g., Donoho and Huber (1983),
Davies and Gather (2005).

Definition 5.2

ε∗(θ̂ ,Z, d) := 1

N
min
{
M; sup

Z̄∈ZM(Z)
d
(
θ̂ (Z̄), θ̂ (Z)

)=∞}.

If Θ = R
p , then the pseudometric can be chosen as the Euclidean metric ‖ · ‖p .

If Θ = [0,∞) ⊂ R, for example for scale parameters, then an appropriate choice
for the pseudometric is d(θ1, θ2) = | log(θ1 · θ−1

2 )|, see Davies and Gather (2005).
This is again a metric but its extension to scatter matrices is only a pseudometric,
as is discussed in Sect. 5.4.2. This pseudometric avoids the distinction between im-
plosion breakdown point and explosion breakdown point as Rousseeuw and Hubert
do, see Chap. 4.

Davies and Gather (2005) use the population version of the breakdown point and
not the finite sample version of Definition 5.2. But they point out that the finite
sample version is obtained by using the empirical distribution. They provide a gen-
eral upper bound for the population version of Definition 5.2 using transformation
groups on the sample space Z . Here this approach is given at once in the sample
version.

5.3 A General Upper Bound

A general upper bound for the finite sample breakdown point of Definition 5.2 can
be given by the concept of equivariance. Equivariance is an important property of
an estimator θ̂ if transformations of the data space are related to transformations
of the parameter space. Then also the estimator should be transformed in the same
way as the parameter is transformed. For example, a translation of multivariate ob-
servations z1, . . . , zN to z1 + γ, . . . , zN + γ is related to the translation of a loca-
tion parameter by γ . Hence a location estimator should be also translated by γ .
However, a scatter parameter is not influenced by a translation of the data and this
should hold for a scatter estimator as well. Usually this property is distinguished as
translation invariance. But here this property is included in the concept of equiv-
ariance since the parameter and the estimator varies in the same way. Generally,
equivariance can be defined with respect to measurable transformations given by a
group

G := {g;g :Z→Z}.
Recall that G is a group in algebraic sense with actions ◦ and unit element ι if and
only if
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• g1 ◦ g2 ∈ G for all g1, g2 ∈ G,
• ι ◦ g = g = g ◦ ι for all g ∈ G,
• for each g ∈ G there exists g−1 with g ◦ g−1 = ι= g−1 ◦ g.

Definition 5.3 An estimator θ̂ : ZN → Θ is called equivariant with respect to a
group G if there exists a group HG = {hg;g ∈ G} of transformations hg : Θ→ Θ

such that for each g ∈ G there exists hg ∈HG with

θ̂
((
g(z1), . . . , g(zN)

)�)= hg
(
θ̂
(
(z1, . . . , zN)�

))
for all samples Z= (z1, . . . , zN)� ∈ZN .

To derive the upper bound for the breakdown point, the following subset of G is
needed

G1 :=
{
g ∈ G; lim

k→∞ inf
θ∈Θ d
(
θ,hgk (θ)

)=∞}.
If G1 = ∅, then the group G is too small to produce transformed parameters arbi-
trarily far away from the original parameter. This transferres to the estimates by
equivariance, since then the parameters and the estimator varies in the same way.
Hence in this case, a breakdown in the sense of Definition 5.2 cannot be produced
by transformations of the group G. Therefore, G1 
= ∅ is an important property for
deriving an upper bound for the finite sample breakdown point.

Theorem 5.1 If the estimator θ̂ : ZN → Θ is equivariant with respect to G and
G1 
= ∅, then

ε∗(θ̂ ,Z, d)≤ 1

N

⌊
N −�(Z)+ 1

2

⌋

for all Z ∈ZN , where

�
(
(z1, . . . , zN)�

) :=max
{
card
{
n;g(zn)= zn

};g ∈ G1
}

and �x� is the largest integer m with m≤ x.

Note the more simple form of the quantity �(Z) compared with its form in the
population version given by Davies and Gather (2005).

Proof Regard an arbitrary observation vector Z. Let be M = �N−�(Z)+1
2 � and

L=�(Z). Then there exists g ∈ G1 so that without loss of generality g(zn)= zn for
n= 1, . . . ,L. Then we also have gk(zn)= gk−1(zn)= · · · = g2(zn)= g ◦ g(zn)=
g(g(zn))= g(zn)= zn for all n= 1, . . . ,L and all integer k. Define Z̃k and Z̄k for
any integer k by

z̃kn = zn for n= 1, . . . ,L and L+M + 1, . . . ,N,

z̃kn = gk(zn) for n= L+ 1, . . . ,L+M,

and
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z̄kn = zn for n= 1, . . . ,L+M,

z̄kn = g−k(zn) for n= L+M + 1, . . . ,N.

Obviously, Z̃k ∈ ZM(Z). Since N − (L +M) = N − L − �N−L+1
2 � ≤ N − L −

N−L
2 = N−L

2 ≤ �N−L+1
2 �, we also have Z̄k ∈ZM(Z). Moreover, it holds

gk
(
z̄kn
)= gk(zn)= zn = z̃kn for n= 1, . . . ,L,

gk
(
z̄kn
)= gk(zn)= z̃kn for n= L+ 1, . . . ,L+M,

gk
(
z̄kn
)= gk

(
g−k(zn)

)= gk ◦ g−k(zn)= zn = z̃kn for n= L+M + 1, . . . ,N.

Since g ∈ G1 and θ̂ ((gk(z̄k1), . . . , g
k(z̄kN ))

�)= hgk (θ̂((z̄
k
1, . . . , z̄kN)

�)), we obtain

lim
k→∞d

(
θ̂
(
Z̃k
)
, θ̂
(
Z̄k
))= lim

k→∞d
(
θ̂
((
gk
(
z̄k1
)
, . . . , gk

(
z̄kN
))�)

, θ̂
(
Z̄k
))

= lim
k→∞d

(
hgk
(
θ̂
(
Z̄k
))
, θ̂
(
Z̄k
))=∞.

Because of d(θ̂(Z̃k), θ̂ (Z̄k)) ≤ d(θ̂(Z̃k), θ̂ (Z)) + d(θ̂(Z), θ̂ (Z̄k)), at least one of
d(θ̂(Z̃k), θ̂ (Z)) and d(θ̂(Z), θ̂ (Z̄k)) must converge to ∞ for k→∞ as well. �

If �(Z) = N then the upper bound for the finite breakdown point is 0.
�(Z) = N means that there exists a g ∈ G1 with g(zn) = zn for all n = 1, . . . ,N .
Then there are two possibilities for the estimate θ̂ (Z). One possibility is that
d(θ̂(Z), hgk (θ̂ (Z))) <∞ for some k and limk→∞ d(θ̂(Z), hgk (θ̂ (Z))) =∞ which

means that θ̂ (Z) is not unique since hgk (θ̂(Z)) = θ̂ ((gk(z1), . . . , g
k(zN))) = θ̂ (Z)

is another estimate at Z. For example, this is the case for regression parameters as
shown below. The other possibility is that at once d(θ̂(Z), hgk (θ̂ (Z))) =∞ which

means that θ̂ (Z) lies already at the border of the parameter space. For example, this
is the case for scale and scatter parameters, see below.

5.4 Example: Multivariate Regression

The multivariate regression model is given by

y�n = x�n B+ e�n , n= 1, . . . ,N, (5.1)

where yn ∈ R
p is the observation vector, xn ∈ R

r the known regression vec-
tor, B ∈ R

r×p the unknown parameter matrix and en ∈ R
p the error vector. Set

z= (x�,y�)� ∈Z =R
r+p and assume that e1, . . . , eN are realizations of i.i.d. ran-

dom variables E1, . . . ,EN with location parameter 0p and scatter matrix Σ , where
0p denotes the p-dimensional vector of zeros.

The interesting aspect of B shall be the linear aspect Λ = LB with L ∈ R
s×r .

Note that the whole matrix B is of interest if L is the r× r-identity matrix. But to be
more general, we consider also the case Λ= LB where L is not the identity matrix.
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An example is the case where repeated measurements of patients getting
two different drugs D1 and D2 are obtained at p days. Then we have x�n =
(1D1(in),1D1(in)), where in provides the drug of the n’th patient. The matrix
B= (bij )i=1,2,j=1,...,p ∈ R

2×p contains the drug effects at the p days. An interest-
ing aspect is then the row vector of differences (b11 − b21, . . . , b1p − b2p) between
the effects of drug D1 and D2 at the p days, i.e., Λ= LB with L= (1,−1).

Another application is forecasting as considered by Kharin, Chap. 14. If x1 =
v(t1), . . . ,xN = v(tN ) with t1 ≤ t2 ≤ · · · ≤ tN ∈ R and v : R→ R

r is a known re-
gression function, then Λ = v(τ )�B is a forecast for the expected value of an ob-
servation at τ > tN .

We consider here the problem of estimating Λ in Sect. 5.4.1 and of estimating Σ
in Sect. 5.4.2. In both cases, we can use the following group of transformations

G = {gA,B :Z→Z;A ∈R
p×p is regular,B ∈R

r×p}
with gA,B((x�,y�)�)= (x�,y�A+ x�B)�. The unit element of this group is ι=
gIp,0r×p , where 0r×p is the r×p-dimensional zero matrix and Ip the p-dimensional
identity matrix. The inverse of gA,B is given by gA−1,−BA−1 .

5.4.1 Estimation of a Linear Aspect of the Regression Parameters

Transforming y�n = x�n B0 + e�n to ỹn = y�n A+ x�n B leads to

ỹn = x�n B0A+ e�n A+ x�n B= x�n (B0A+B)+ e�n A (5.2)

so that Λ = LB0 becomes Λ̃ = L(B0A + B) = ΛA + LB. Hence, an estimator
θ̂ = Λ̂ :ZN →R

s×p for θ =Λ= LB ∈R
s×p should satisfy

�̂
((
gA,B(z1), . . . , gA,B(zn)

)�)= hgA,B

(
Λ̂(Z)
)

with hgA,B(Λ)=ΛA+LB for all gA,B ∈ G, i.e., it should be scatter equivariant and
translation equivariant. With G, also

HG =
{
hgA,B :Rs×p→R

s×p;A ∈R
p×p is regular,B ∈R

r×p}
is a group of transformations.

If LB= 0s×p , then Λ= 0s×p satisfies

d
(
Λ,hgnA,B

(Λ)
)= d
(
0s×p,0s×pAn

)= d(0s×p,0s×p)= 0

for any pseudometric d on R
s×p . Hence LB 
= 0s×p is necessary for gA,B ∈ G1.

Moreover, we have Λ = hgA,B(Λ) =ΛA+ LB if and only if LB =Λ(Ip − A) so
that

G1 =
{
gA,B ∈ G;LB 
= 0s×p and LB 
=Λ(Ip −A) for all Λ ∈R

s×p}.
Set X= (x1, . . . ,xN)�. Now we are going to show that �(Z) is the maximum num-
ber of regressors xn so that the univariate linear aspect Lβ with β ∈R

r is not iden-
tifiable at these regressors, i.e. �(Z) is the nonidentifiability parameter Nλ(X) de-
fined in Müller (1995) for univariate regression, see also Müller (1997).
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Definition 5.4 Lβ is identifiable at D = {xn1, . . . ,xnI } if for all β ∈R
r

x�ni β = 0 for i = 1, . . . , I implies Lβ = 0.

If XD = (xn1 , . . . ,xnI )
�, then it is well known that Lβ is identifiable at D =

{xn1, . . . ,xnI } if and only if L=KXD for some K ∈R
s×I , see, e.g., Müller (1997,

p. 6).

Definition 5.5 The nonidentifiability parameter Nλ(X) for estimating λ = Lβ in
univariate regression, i.e., β ∈R

r , is defined as

Nλ(X) :=max
{
card
{
n;x�n β = 0

};β ∈R
r with λ= Lβ 
= 0

}
= max{cardD;λ= Lβ is not identifiable at D}.

Theorem 5.2 For estimating the linear aspect LB of the regression parameter B in
the regression model (5.1), we have

�(Z)=Nλ(X).

Proof Let be gA,B ∈G1 and assume that there exists zn1, . . . , znI with gA,B(zni )= zni
for i = 1, . . . , I .

If A = Ip , then it holds gA,B(z) = z = (x�,y�)� if and only if x�B = 01×p
so that �(Z) ≥max{card{n;x�n β = 0};β ∈ R

p with Lβ 
= 0} since LB 
= 0s×p for
gA,B ∈ G1. In this case, LB 
=Λ(Ip×p −A) is always satisfied for all Λ ∈ R

s×p so
that it is no restriction.

Now consider A 
= Ip . Assume that Lβ is identifiable at D = {xn1, . . . ,xnI }
with I = �(Z). Then there exists K ∈ R

s×I such that L = KXD . Set YD =
(yn1 , . . . ,ynI )

�. Since gA,B(zni ) = zni if and only if x�niB = y�ni (Ip − A), we ob-
tain the contradiction

LB=KXDB=K

⎛
⎜⎝

x�n1
B
...

x�nI B

⎞
⎟⎠=K

⎛
⎜⎝

y�n1
(Ip −A)
...

y�nI (Ip −A)

⎞
⎟⎠=KYD(Ip −A)

since gA,B ∈ G1 implies LB 
=Λ(Ip−A) for all Λ ∈R
s×p . This means that Lβ can-

not be identifiable at D={xn1, . . . ,xnI } so that �(Z)= I ≤max{card{n;x�n β=0};
β ∈R

p with Lβ 
= 0}. �

From the proof of Theorem 5.2, it is clear that the assertion of Theorem 5.2 holds
also without using the scatter equivariance of the estimator Λ̂. See also Sects. 5.4.1.1
and 5.4.1.2.

5.4.1.1 Location Model

A special case of multivariate regression is multivariate location with xn = 1 for all
n = 1, . . . ,N , where B ∈ R

1×p is the parameter of interest. In this case, identifia-
bility holds always so that �(Z) = 0. Hence, the upper bound of the finite sample
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breakdown point is 1
N
�N+1

2 � which is the highest possible upper bound. This result
was obtained by Davies and Gather (2005) using only the translation group

GL = {gIp,B :Z→Z;B ∈R
1×p}

so that

GL
1 =
{
gIp,B ∈ GL;B 
= 01×p

}
.

They wrote in their rejoinder that GL
1 would be empty if scatter transformations are

considered as well. But GL
1 becomes larger if a larger group of transformation is

regarded.
For the special case of univariate data, i.e., p = 1, with location parameter μ ∈R,

the condition

0s×p 
= LB 
=Λ(Ip −A) for all Λ ∈R
1×p (5.3)

becomes

0 
= b 
= μ(1− a) for all μ ∈R, (5.4)

where a, b ∈R replace A and B. Since condition (5.4) is only satisfied for a = 1 we
have

GL
1 = G1

so that indeed it does not matter if the scatter (here scale) equivariance is additionally
demanded.

For univariate data, the upper bound 1
N
�N+1

2 � is attained by the median. Multi-
variate extensions of the median, which are scatter and translation equivariant, are
Tukey’s half space median and the Oja median. But the Oja median has only a finite
sample breakdown point of 1

N
, see the contribution by Oja (Chap. 1), and the finite

sample breakdown point of Tukey’s half space median lies between 1
p+1 and 1

3 , see
Donoho and Gasko (1992). Another scatter and translation equivariant estimator is
the location estimator given by the minimum covariance determinant (MCD) esti-
mator. It has a finite sample breakdown point of 1

N
�N−p+1

2 �, see the contribution by
Rousseeuw and Hubert, Chap. 4. As far as the author knows, there is no scatter and
translation equivariant location estimator which attains the upper bound 1

N
�N+1

2 �
for p > 1.

5.4.1.2 Univariate Regression

Another special case of multivariate regression is univariate regression with p = 1,
where the unknown parameter B is β ∈R

r . The result

�(Z)=Nλ(X)

is obtained by Müller (1995) using only the transformations gb((x�, y)�) =
(x�, y + x�b)� in a proof similar to that of Theorem 5.1, see also Müller (1997).
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The special case Lβ = β is considered by Davies (1993) who derives the upper
bound for the population version of the breakdown point. Davies and Gather (2005)
provide this result as an example of the approach via groups.

Using the translation group

GR = {gb :Z→Z;b ∈R
r
}

with gb((x�, y)�)= (x�, y + x�b)�, as Davies and Gather (2005) propose, leads
to

GR
1 =
{
gb ∈ GR;b 
= 0r

}
.

But since condition (5.3) becomes here

0r 
= b 
= β(1− a) for all β ∈R
r ,

with b ∈R
r and a ∈R, it is again only satisfied for a = 1 so that

GR
1 = G1.

Hence as for location estimation, the restriction to translations is no real restriction
here.

5.4.2 Scatter Estimation

The transformation (5.2) of the regression model (5.1) leads to an error term of
the form e�n A. If en is a realization of a random variable En with scatter ma-
trix �, then A�en is a realization of a random variable A�En with scatter matrix
A��A. Hence, an estimator θ̂ = �̂ : ZN → S of the scatter matrix Σ ∈ S = {A ∈
R
p×p;A is symmetric and positive definite}, should satisfy

�̂
((
gA,B(z1), . . . , gA,B(zn)

)�)= hgA,B

(
Σ̂(Z)
)

with hgA,B(Σ) = A��A for all gA,B ∈ G, i.e., it should be scatter equivariant and
translation invariant. With G, also

HG =
{
hgA,B = hA : S→ S;A ∈R

p×p is regular
}

is a group of transformations. An appropriate pseudometric on S is given by

d(Σ1,Σ2) :=
∣∣ log
(
det
(
Σ1Σ

−1
2

))∣∣.
It holds d(Σ1,Σ2) = 0 if and only if det(Σ1Σ

−1
2 ) = 1. This is not only satisfied

by Σ1 =Σ2, since e.g. diagonal matrices like diag(1,1) and diag( 1
2 ,2) are satisfy-

ing this as well. Hence d is not a metric. But it is a pseudometric because it is al-
ways greater than 0 and it satisfies the triangle inequality. Since det(A�Σ1AΣ−1

2 )=
det(Σ1Σ

−1
2 ) as soon as det(A)= 1, G1 is given by

G1 =
{
gA,B ∈ G;det(A) 
= 1

}
.

Since gA,B(z)= z if and only if x�B= y�(Ip −A), we have at once the follow-
ing theorem.
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Theorem 5.3 For estimating the scatter matrix Σ in the regression model (5.1), we
have

�(Z)=max
{
card
{
n;x�n B= y�n (Ip −A)

}; B ∈R
r×p,

A ∈R
p×p is regular with det(A) 
= 1

}
.

5.4.2.1 Location Model

In the special case of multivariate location with xn = 1 for all n = 1, . . . ,N and
B ∈ R

1×p , it holds gA,B(z) = z if and only if B = y�(Ip − A). Hence {y ∈ R
p;

B = y�(Ip − A)} is a hyperplane in R
p . Conversely, if {y ∈ R

p; c� = y�C} is an
arbitrary hyperplane in R

p , then it can be assumed that det(Ip − C) 
= 1 so that
gIp−C,c� ∈ G1. This implies that �(Z) is the maximum number of observations ly-
ing in a hyperplane. According to Theorem 5.1, the upper bound of the breakdown
point of an equivariant scatter estimator is given by the maximum number of ob-
servations in a hyperplane. If all observations are lying in a hyperplane, then the
estimated scatter matrix is not of full rank, i.e. at the border of the parameter space,
so that the finite sample breakdown point is 0. If only a subset of observations are
lying in a hyperplane, then the majority of the remaining observations determines
the estimation of the scatter matrix by any reasonable estimator. Hence, corruption
of this majority can lead to a breakdown so that the upper bound for the finite sample
breakdown point is 1

N
�N−�(Z)+1

2 �.
This upper bound attains its highest value for observations in general position.

Per definition, observations y1, . . . ,yN ∈R
p are in general position if any subset of

p + 1 observations are not lying in a hyperplane. But since p points are lying in
the hyperplane of Rp spanned by these points, an upper bound for the breakdown
point is always 1

N
�N−p+1

2 �, see also the contribution by Rousseeuw and Hubert,
Chap. 4. The population version of this result was originally given by Davies (1993)
and derived by group equivariance in Davies and Gather (2005). The upper bound
1
N
�N−p+1

2 � is for example attained by the minimum covariance determinant (MCD)
estimator, see the contribution by Rousseeuw and Hubert.

For the one-dimensional case (p = 1), the upper bound of the breakdown point
of a scale equivariant and translation invariant scale estimator is determined by the
maximum number of repeated observations. Note that we have here A= a ∈R with
a 
= 1, B= b ∈ R so that gA,B(zn)= ga,b(zn)= zn if and only if b= yn(1− a) or
equivalently yn = b

1−a . Hence, �(Z)=max{card{n;yn = c}; c ∈R}. Here the high-
est value of the upper bound is given by pairwise different observations. This high-
est upper bound is for example attained by the median absolute deviation (MAD).
However, it can happen that the upper bound is not attained by the median absolute
deviation if observations are repeated. Davies and Gather (2007) give the following
example

1.0, 1.8, 1.3, 1.3, 1.9, 1.1, 1.3, 1.6, 1.7, 1.3, 1.3.

The median absolute deviation of this sample is 0.2. But as soon as one observation
unequal to 1.3 is replaced by 1.3, the median absolute deviation is 0. Hence the
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breakdown point of this sample is 1
11 . However, since 1.3 is repeated five times, the

upper bound for the breakdown point is

1

11

⌊
11− 5+ 1

2

⌋
= 3

11
.

5.4.2.2 Univariate Regression

In the special case of univariate regression with p = 1, i.e., Σ = σ 2 ∈R
+, the con-

dition

x�B= y�(Ip −A)

becomes

x�β = y(1− a) ⇐⇒ y = x�β̃

with β ∈R
r , 1 
= a ∈R and β̃ = 1

1−a β . This means that �(Z) is the maximum num-
ber E(X) of observations satisfying an exact fit. Thereby observations y1, . . . , yN are
satisfying an exact fit if there exists β ∈R

r so that yn = x�n β for all n= 1, . . . ,N .

Definition 5.6 The exact fit parameter is defined as

E(X) :=max
{
card
{
n;yn = x�n β

};β ∈R
p
}
.

Hence, we have here

�(Z)= E(X).

Clearly, if all observations are satisfying an exact fit, i.e., E(X)=N , then the vari-
ance σ 2 should be estimated by 0 which provides a finite sample breakdown point
of 0. Again, if only a subset of the observations satisfy an exact fit, then the majority
of the remaining data determines completely the behaviour of an equivariant scale
estimator and can cause breakdown.

5.5 A General Lower Bound for Some Estimators

Since there are always estimators with a breakdown point of 1
N

or even 0, a lower
bound can be only valid for some special estimators. He we consider estimators of
the form

θ̂ (Z) := arg min
θ∈Θ s(Z, θ)

with s : ZN × Θ → R, where s(Z, θ) can be bounded from below and above by
some quality functions q : Z × Θ → R. These quality functions can be residuals
but also some negative loglikelihood functions as considered in Müller and Neykov
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(2003). Set qn(Z, θ)= q(zn, θ) for n= 1, . . . ,N and q(1)(Z, θ)≤ · · · ≤ q(N)(Z, θ).
Then there shall exists α,β ∈R with α 
= 0 and h ∈ {1, . . . ,N} such that

αq(h)(Z, θ)≤ s(Z, θ)≤ βq(h)(Z, θ) (5.5)

for all Z ∈ZN and θ ∈Θ . In particular, h-trimmed estimators given by

θ̂h(Z) := arg min
θ∈Θ

h∑
n=1

q(n)(Z, θ)

are satisfying condition (5.5). In particular least trimmed squares (LTS) estimators,
where qn(Z, θ) is the squared residuum, are of this form. But also S-estimators are
satisfying condition (5.5), see, e.g., Rousseeuw and Leroy (2003, pp. 135–139).

For deriving a lower bound for the breakdown point, Definition 5.1 for the break-
down point is used. This definition is checking whether the estimators are remaining
in a compact subset of the parameter space. Via compact sets, Vandev (1993) de-
velops the concept of d-fullness which is used by Vandev and Neykov (1998) to
estimate this breakdown point for trimmed estimators. A modification of this con-
cept, used in Müller and Neykov (2003), bases on the following definitions.

Definition 5.7 A function γ : Θ → R is called sub-compact if the set {θ ∈ Θ;
γ (θ)≤ c} is contained in a compact set Θc ⊂ int(Θ) for all c ∈R.

Definition 5.8 A finite set Γ = {γn :Θ→ R;n= 1, . . . ,N} of functions is called
d-full if for each {n1, . . . , nd} ⊂ {1, . . . ,N} the function γ given by γ (θ) :=
max{γnk (θ); k = 1, . . . , d} is sub-compact.

For example, consider a quadratic regression model with xn = v(tn) =
(1, tn, t2n)

� ∈ R
3, tn ∈ [−1,1], and β = (β0, β1, β2)

� ∈ R
3 and let q(zn,β) =

(yn − x�n β)2 be the quality function. If N = 8, t1 = t2 = t3 = −1, t4 = t5 =
t6 = 0, t7 = t8 = 1, then {q(zn, ·);n = 1, . . . ,8} is not 6-full, since γ (β) =
max{q(zn,β);n = 1, . . . ,6} is not sub-compact. To see that γ (β) is not sub-
compact, consider c0 with

√
c0 =max{|yn|;n= 1, . . . ,8}. Then −√c0 ≤ yn ≤√c0

for all yn imply{
β ∈R

3;γ (β)≤ c
}

= {β ∈R
3; (yn − x�n β

)2 ≤ c0 for n= 1, . . . ,6
}

= {β ∈R
3;−√c0 ≤ yn − x�n β ≤

√
c0 for n= 1, . . . ,6

}
= {β ∈R

3;yn −√c0 ≤−x�n β ≤ yn +√c0 for n= 1, . . . ,6
}

⊃ {β ∈R
3;0≤−x�n β ≤ 0 for n= 1, . . . ,6

}
= {β ∈R

3;β0 − β1 + β2 = 0 and β0 = 0
}= {β ∈R

3;β1 = β2
}
,

which is a hyperplane in R
3 and thus not a compact subset in int(R3)= R

3. How-
ever, {q(zn, ·);n = 1, . . . ,8} is 7-full, since any subset of seven observations con-
tains the experimental conditions tn =−1, tn = 0, and tn = 1, see also Lemma 5.1
below.
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Theorem 5.4 (Müller and Neykov 2003) If the estimator θ̂ satisfies condition (5.5)
and {qn(Z, ·);n= 1, . . . ,N} is d-full, then

ε∗(θ̂ ,Z)≥ 1

N
min{N − h+ 1, h− d + 1}.

The lower bound of Theorem 5.4 is maximized if the trimming factor h satisfies
�N+d2 � ≤ h ≤ �N+d+1

2 �. A simple consequence of this fact is the following result
concerning trimmed estimators.

Theorem 5.5 Assume that {qn(Z, ·);n = 1, . . . ,N} is d-full and �N+d2 � ≤ h ≤
�N+d+1

2 �. Then the breakdown point of any trimmed estimator θ̂h satisfies

ε∗(θ̂h,Z)≥ 1

N

⌊
N − d + 2

2

⌋
.

5.6 Example: Regression

5.6.1 Multivariate Regression

Consider again multivariate regression with x ∈ R
r , y ∈ R

p and unknown matrix
B ∈ R

r×p of regression parameters. An appropriate quality function for estimating
B is given by

q(z, θ)= q(x,y,B)= ∥∥y−B�x
∥∥2
p
= (y� − x�B

)(
y−B�x

)
. (5.6)

The h-trimmed estimator B̂ for B can be determined by calculating the least squares
estimator

B̂I (Y)=
(
X�I XI

)−1X�I YI

for each subsample I = {n1, . . . , nh} ⊂ {1, . . . ,N} for which the inverse of X�I XI

exists, where XI = (xn1 , . . . ,xnh)
� and YI = (yn1 , . . . ,ynh)

�. Then B̂(Y) is that
B̂I∗(YI∗) with

I∗ = arg min

{
h∑

j=1

∥∥ynj − B̂I (YI )
�xnj
∥∥2
p
; I = {n1, . . . , nh} ⊂ {1, . . . ,N}

}
.

However, exact computation is only possible for small sample sizes N . For larger
sample sizes, a genetic algorithm with concentration step like that proposed by
Neykov and Müller (2003) can be used, see also Rousseeuw and Driessen (2006).

Note that the inverse of X�I XI always exists as soon as h is larger than the non-

identifiability parameter Nβ(X) with λ= β . The subset estimator B̂I is scatter and
translation equivariant so that B̂I∗ is translation equivariant. However B̂I∗ is only
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scatter (scale) equivariant if p = 1. Otherwise it is only scatter equivariant with
respect to orthogonal matrices A since then

q
(
x,A�y+B�x, B̂I (YA+XB)

)
= ∥∥A�y+B�x− B̂I (YA+XB)�x

∥∥
p

= ∥∥A�y+B�x− (A�Y�I +B�X�I
)
XI

(
X�I XI

)−1x
∥∥
p

= ∥∥A�y−A�Y�I XI

(
X�I XI

)−1x
∥∥
p
= ∥∥A�y−A�B̂I (Y)�x

∥∥
p

= (y� − x�B̂I (Y)
)
AA�
(
y− B̂I (Y)�x

)= q
(
x,y, B̂I (Y)

)
for all I = {n1, . . . , nh} ⊂ {1, . . . ,N}.

The d-fullness is given here by the nonidentifiability parameter Nβ(X). This is an
extension of the result in Müller and Neykov (2003) where it is proved for univariate
generalized linear models.

Lemma 5.1 If the quality function q is given by (5.6), then {qn(Z, ·);n= 1, . . . ,N}
is d-full with d =Nβ(X)+ 1.

Proof Consider any I ⊂ {1, . . . ,N} with cardinality Nβ(X)+ 1. Then the triangle
inequality provides for any c ∈R

{
B ∈R

r×p;max
i∈I qi(zi ,B)≤ c

}

=
{

B ∈R
r×p;max

i∈I
∥∥yi −B�xi

∥∥
p
≤√c
}

⊂
{

B ∈R
r×p;max

i∈I
∥∥B�xi

∥∥
p
− ‖yi‖p ≤

√
c
}

⊂
{

B ∈R
r×p;max

i∈I
∥∥B�xi

∥∥
p
≤√c+max

i∈I ‖yi‖p
}

=
{

B ∈R
r×p;max

i∈I
∥∥B�xi

∥∥
p
≤√c̃
}

=
{
(b1, . . . ,bp) ∈R

r×p;max
i∈I

p∑
j=1

(
b�j xi
)2 ≤ c̃

}

⊂
{
(b1, . . . ,bp) ∈R

r×p; 1

Nβ(X)+ 1

∑
i∈I

p∑
j=1

b�j xix�i bj ≤ c̃

}

=
{
(b1, . . . ,bp) ∈R

r×p; 1

Nβ(X)+ 1

p∑
j=1

b�j
∑
i∈I

xix�i bj ≤ c̃

}
.

The definition of Nβ(X) implies that the matrix
∑

i∈I xix�i is of full rank. Hence
the set {(b1, . . . ,bp) ∈R

r×p; 1
Nβ(X)+1

∑p

j=1 b�j
∑

i∈I xix�i bj ≤ c̃} is bounded and

therefore included in a compact subset of Rr×p . �
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Since the upper bound for the breakdown point given by Theorems 5.1 and 5.2
holds also for estimators which are not scatter equivariant, the combination of these
theorems, Theorem 5.5 and Lemma 5.1 provides the following result. This result is
derived for univariate regression already in Müller (1995).

Theorem 5.6 If �N+Nβ(X)+1
2 � ≤ h ≤ �N+Nβ (X)+2

2 �, then the breakdown point of

the trimmed estimator B̂h for B with quality function given by (5.6) satisfies

ε∗(B̂h,Z)= 1

N

⌊
N −Nβ(X)+ 1

2

⌋
.

Müller (1995) shows Theorem 5.6 not only for estimating β but also for general
linear aspects λ= Lβ of univariate regression models. Thereby Nβ(X) must be only
replaced by Nλ(X) in Theorem 5.6. However in this case the lower bound cannot
be derived via d-fullness. In Müller (1995), the lower bound is proved directly for
trimmed estimators, see also Müller (1997). This proof holds also for multivariate
regression so that Theorem 5.6 holds also for linear aspects Λ= LB of multivariate
regression.

5.6.2 Univariate Regression with Simultaneous Scale Estimation

If simultaneously the regression parameter β ∈R
r and the scale parameter σ ∈R

+
in a univariate regression model shall be estimated, then the following quality func-
tion can be used

q(z, β, σ )= q(x, y,β,σ )= 1

2

(
y − x�β

σ

)2

+ log(σ ). (5.7)

In Müller and Neykov (2003), a slightly more general quality function is consid-
ered. But for simplicity, the quality function (5.7) shall be used here. The h-trimmed
estimator (β̂, σ̂ ) for (β,σ ) can be determined by calculating the maximum likeli-
hood estimators

β̂I (y)=
(
X�I XI

)−1X�I yI

and

σ̂I (y)=

√√√√√1

h

h∑
j=1

(
ynj − x�nj β̂I (y)

)2

for each subsample I = {n1, . . . , nh} ⊂ {1, . . . ,N}, where yI = (yn1 , . . . , ynh)
� and

again XI = (xn1 , . . . ,xnh)
�. Then (β̂(y), σ̂ (y)) is that (β̂I∗(y), σ̂I∗(y)) with

I∗ = arg min

{
h∑

j=1

q
(
xnj , ynj , β̂I (y), σ̂I (y)

); I = {n1, . . . , nh} ⊂ {1, . . . ,N}
}
.
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β̂I is translation equivariant and scale equivariant and σ̂I is translation invariant and
scale equivariant. Therefore, we have

q
(
x, ya + x�β, β̂I (ya +Xβ), σ̂I (ya +Xβ)

)

= 1

2

(
ya + x�β − x�(β̂I (y)a + β)

σ̂I (y)a

)2

+ log
(
σ̂I (y)a

)

= q
(
x, y, β̂I (y), σ̂I (y)

)+ log(a)

for all I = {n1, . . . , nh} ⊂ {1, . . . ,N} so that β̂I∗ is translation equivariant and scale
equivariant and σ̂I∗ is translation invariant and scale equivariant.

Since the simultaneous estimator (β̂, σ̂ ) for (β,σ ) breaks down when one of
its components breaks down, an upper bound of the breakdown point of (β̂, σ̂ ) is
1
N
�N−max{Nβ(X),E(X)}+1

2 � according to Sects. 5.4.1 and 5.4.2.
Deriving a lower bound for the breakdown point, Müller and Neykov (2003)

implicitly assume that the exact fit parameter E(X) is zero. Here we extend this
result for the case that it does not necessarily need to be zero.

Theorem 5.7 If the quality function q is given by (5.7), then {qn(Z, ·);
n= 1, . . . ,N} is d-full with d =max{Nβ(X),E(X)} + 1.

Proof We have to show that γ given by

γ (β,σ ) :=max
i∈I

1

2

(
yi − x�i β

σ

)2

+ log(σ )

is sub-compact for all I ⊂ {1, . . . ,N} with cardinality max{Nβ(X),E(X)} + 1.
Take any c ∈ R and set β̃(σ ) := arg min{γ (β,σ );β ∈ R

r} and σ̃ (β) :=
arg min{γ (β,σ );σ ∈ R

+}. Then β̃(σ ) is independent of σ such that β̃(σ ) =: β̃ .
Setting

γ1(σ ) := γ
(
β̃(σ ), σ

)=max
i∈I

1

2

(
yi − x�i β̃

σ

)2

+ log(σ )

we see that γ1 is a sub-compact function since I has cardinality greater than E(X).
Hence, there exists a compact set Θ1 ⊂ int(R+) such that {σ ;γ1(σ ) ≤ c} ⊂ Θ1.
Moreover, we have that with η(β) :=maxi∈I |yi − x�i β|

σ̃ (β)= η(β)

so that

γ2(β) := γ
(
β, σ̃ (β)

)= 1

2
+ log
(
η(β)
)
.

The proof of Lemma 5.1 provides that η is sub-compact. Since the logarithm is
monotone also γ2 is sub-compact so that {β;γ2(β)≤ c} ⊂Θ2 for some compact set
Θ2 ⊂ int(Rr ). Then we have
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{
(β,σ ) ∈R

r ×R
+;γ (β,σ )≤ c

}
⊂ {(β,σ ) ∈R

r ×R
+;γ1(σ )≤ c and γ2(β)≤ c

}⊂Θ2 ×Θ1

so that γ is sub-compact. �

Theorem 5.8 If �N+max{Nβ(X),E(X)}+1
2 � ≤ h ≤ �N+max{Nβ(X),E(X)}+2

2 �, then the

breakdown point of the trimmed estimator (β̂, σ̂ )h for (β,σ ) with quality function
given by (5.7) satisfies

ε∗
(
(β̂, σ̂ )h,Z

)= 1

N

⌊
N −max{Nβ(X),E(X)} + 1

2

⌋
.

5.7 Conclusions

The concept of equivariance provides a general upper bound for the finite sample
breakdown point. This leads in particular to upper bounds for estimators for the
location parameter, the regression parameter and the scatter matrix in multivariate
location and regression models. These upper bounds can be reached by specific
estimators for univariate models, for estimating the scatter matrix in multivariate
location models and for estimating the regression parameters in multivariate regres-
sion models. In particular, the finite sample breakdown point of trimmed estimators
are reaching this upper bound. This can be seen by a general lower bound for the
finite sample breakdown given by the concept of d-fullness. This approach can be
also applied to generalized linear models or nonlinear models where equivariance
properties cannot be used. However, up to now scatter estimation cannot be treated
with this. Another problem is correlation where the parameter space is [−1,1]. Here
up to now, the concept of equivariance was not successfully applied to get upper
bounds for the finite sample breakdown point. The same holds for related problems
like principal component analysis, discriminant analysis and applications on com-
positional data as considered by Filzmoser and Hron, see Chap. 8.
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Chapter 6
The Concept of α-Outliers in Structured Data
Situations

Sonja Kuhnt and André Rehage

6.1 Introduction

In every statistical data analysis, somehow surprising observations can occur which
deviate strongly from the remaining observations or the assumed model. On the
one hand, these observations may contain important pieces of information about the
data-generating process. On the other hand, they might simply be measurement or
reporting errors. Regardless of which origin the observation has, it is commonly
named “outlier”. There are numerous ways to detect outliers, with no strategy out-
performing others in every situation. Besides non-parametric procedures, e.g., based
on depth measures, also model-based strategies exist.

In order to be able to detect outliers, it first needs to be specified what is meant
by an outlier. In this contribution, we discuss the notion of α-outliers as introduced
by Davies and Gather (1993). The basic idea is that there exists a pattern which
is supported by the majority of the data. Observations which are strongly deviat-
ing from this pattern are understood as outliers. Within the α-outlier concept, the
pattern is the statistical model one has in mind for the data generating mechanism.
Observations which lie in a region with low probability and are thereby surprising
are understood as outliers. The general idea of α-outliers can be applied to basically
any statistical model. The so-called outlier region usually is uniquely defined for
a given statistical distribution. However, within the analysis of observed data sets
this is often only specified up to some unknown parameters of the assumed class of
distributions, resulting in the necessity of outlier identification procedures.

This chapter is structured as follows: Sect. 6.2 reviews the general definition
of α-outlier regions. One-step approaches towards the detection of α-outliers in a
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data set are discussed in Sect. 6.3. In the remainder of this chapter, we focus on
three specific situations of structured data situations: regression models in Sect. 6.4,
contingency tables in Sect. 6.5 and graphical models in Sect. 6.6.

6.2 The Concept of α-Outliers

Besides numerous informal ways to narrow the term “outlier”, there are also mathe-
matical approaches to the concept of outliers and their detection (Barnett and Lewis
1994). We focus on so-called α-outliers, a concept which can be applied to basically
any data situation where we have a statistical model in mind.

The notion of α-outlier regions as the largest α× 100 % most improbable region
of the target distribution goes back to Davies and Gather (1993). Starting from the
univariate normal situation the treatment of α-outliers soon extends to the multivari-
ate normal case (Becker and Gather 1999, 2001), to exponential samples (Schultze
and Pawlitschko 2002) as well as more structured data situations (Wellmann and
Gather 2003; Gather et al. 2002; Boscher 1992; Kuhnt 2004; Kuhnt and Pawlitschko
2005). Gather et al. (2003) generalize the original definition to arbitrary families of
distributions.

Definition 6.1 (Gather et al. 2003) Let P be a family of distributions on a measur-
able space (X ,A) which is dominated by a σ -finite measure ν such that P ∈P has
ν-density f . For P ∈ P let supp(P ) denote the support of P and set supp(P) =⋃

P∈P supp(P ). For a given α ∈ (0,1) the α-outlier region of P ∈P is defined as

out(α,P )= {x ∈ supp(P) : f (x) < K(α)
}

(6.1)

with

K(α)= sup
{
K > 0 : P ({y : f (y) < K

})≤ α
}
. (6.2)

The key element of this definition is the bound K(α). It is the smallest upper bound
that yields a probability equal to or just below α if we integrate over the subset of
x-values where f (x) < K(α). Figure 6.1 gives examples of outlier regions for some
classical distributions. In the case of a continuous distribution like the multivariate
normal distribution, the inequality sign in (6.2) can be replaced by the equality sign.
However, for discrete situations the outlier region often has a probability of occur-
rence below the chosen value of α. For example, the 0.1 outlier region of the Poisson
distribution with mean value 6 is given by {0,1}∪ {11,12, . . .}, see Fig. 6.1, and has
a joint probability of 0.066 as adding any further value from the support to the out-
lier region would increase this probability above 0.1.

Note that in Definition 6.1 the outlier region is defined as a subset of the
union of supports within the considered family of distributions. This is not im-
portant for distribution families with support R throughout, but it is highly rele-
vant for families of distributions where the support depends on unknown param-
eter(s). Take for example the shifted exponential distribution family with density
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Fig. 6.1 0.1-outlier regions
for Poi(6) (top left),
Bin(6,0.6) (top right) and
N (0, I) (bottom)

f (x) = 1
λ

exp(− x−θ
λ
)1[θ,∞), θ ∈ R, λ > 0, and support [θ,∞). In this case, the

α-outlier region is given by the union of the two sets {x : x > θ − λ logα} and
(−∞, θ). Adding the second set to the α-outlier region has no effect if λ and θ are
known, as (−∞, θ) has zero probability. However, within outlier detection θ might
not be specified correctly or estimated and then it is completely sensible to include
values in the outlier set which are possible for other θ values.

The complement of the α-outlier region w.r.t. the support of the distribution is
called α-inlier region inl(α,P ). From Definition 6.1, it follows that

P
(
X ∈ inl(α,P )

)≥ 1− α.

When dealing with a sample of size N , often α is chosen by taking the sample size
into account, i.e., αN = 1− (1− α)1/N . Thereby, it is ensured that for X1, . . . ,XN

i.i.d. according to the model distribution the probability of all observations lying
inside the inlier region is at least 1− α,

P
(
Xi ∈ inl(αN,P ), i = 1, . . . ,N

)≥ 1− α.

Applying Definition 6.1 often yields the tails of a distribution. Gather et al.
(2003) discuss various α-outlier regions in the case of uni- or multivariate distri-
butions when (X ,P) = (Rp,B),p ∈ N, where P = {Pθ , θ ∈ Θ ⊂ R

k} is a family
of distributions and each Pθ ∈ P has density f (·, θ). Furthermore, B is the Borel-σ -
algebra. W.r.t. a univariate continuous distribution Pθ it is feasible to check whether
its α-outlier region coincides with its α- or α

2 -tail region(s) using typical properties
of Pθ :
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Fig. 6.2 0.1-outlier region
(shaded) for a bimodal
distribution

(i) symmetry:

∃μ ∈R : f (μ− x, θ)= f (μ+ x, θ) ∀x,
(ii) strictly increasing-decreasing density: for some μ1,μ2 ∈R with μ1 ≤ μ2,

f (·, θ) is strictly increasing on supp(Pθ )∩
(−∞,μ1], constant on [μ1,μ2]

and strictly decreasing on supp(Pθ )∩ [μ2,∞
)
,

(iii) strictly decreasing density:

f (·, θ) is strictly decreasing on supp(Pθ ),

(iv) strictly increasing density:

f (·, θ) is strictly increasing on supp(Pθ ).

Thereby we get the following lemma.

Lemma 6.1 (Cf. Gather et al. 2003)

(a) If Pθ has properties (i) and (ii), then the corresponding α-outlier region coin-
cides with its lower and upper α

2 -tail regions.
(b) If Pθ has property (iii), then the corresponding α-outlier region coincides with

its upper α-tail region.
(c) If Pθ has property (iv), then the corresponding α-outlier region coincides with

its lower α-tail region.

We would like to remark that Lemma 6.1 is very similar to Lemma 2 in Gather
et al. (2003), but we added property (ii) because bimodal, symmetric distributions
might have an α-outlier region in the center of the distribution, see Fig. 6.2. Further-
more, we extended Lemma 6.1 to distributions with strictly increasing density, like
the Beta(3,1) distribution.

The α-outlier regions for other distributions (continuous ones like χ2 or Weibull
as well as discrete ones like Binomial and Poisson) can be derived by numerical
integration (or summation) of the densities. This procedure can also be applied to
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the multivariate counterparts of those distributions. Let us now consider the general
outlier region from (6.1) in case of the normal distribution. Then

out
(
α,N
(
μ,σ 2))= {x : |x −μ|> σz1−α/2

}
,

where z1−α/2 denotes the (1 − α/2)-quantile of the standard normal distribution.
The notion can easily be extended to any p-dimensional normal distribution with
the help of the relation between the α-outlier regions and certain density contours,
explicitly:

out
(
α,N (μ,�)

)= {x ∈R
p : (x−μ)′�−1(x−μ) > χ2

p,1−α
}
, (6.3)

where χ2
p,1−α denotes the (1 − α)-quantile of the χ2

p distribution. In real data
examples the parameters μ,� of the given distribution are usually unknown and
need to be estimated. Clearly the threshold value χ2

p,1−α has to be adjusted. Since

(x− μ̂)′�̂−1
(x− μ̂) is a Mahanalobis-type distance, for appropriate estimators μ̂, �̂

one can use asymptotics to derive χ2
p,1−αN as the new threshold value. Consider

Example 6.1, p. 91 as an illustration. The contribution by Becker, Liebscher and
Kirschstein (in Chap. 7) deepens the discussion of outliers in multivariate cases.
Furthermore, there exist more complex data situations than simple uni- or multi-
variate raw data tables, some of which we discuss in more detail below.

6.3 Detection of α-Outliers

Generally we can distinguish between identification rules that identify α-outliers
in one-step and stepwise rules that successively judge the outlyingness of obser-
vations. In a stepwise outward procedure, one first defines a subset of observations
taken to be free of outliers. Then the “least conspicuous” or in some sense “least out-
lying” observations are successively tested for being outliers. If not judged as too
outlying, they are added to the current subset. Note that here we may judge “least
outlyingness” with respect to α-outlier regions derived from the current subset. In-
ward procedures work similar starting from the full data set from which observations
identified as outliers are successively removed.

Although stepwise procedures have been considered within the framework of
identifying α-outliers (e.g., Davies and Gather 1993; Schultze and Pawlitschko
2000), the main interest lies within one-step rules. Roughly spoken, based on some
empirical outlier regions all observations lying within this region are identified as
outliers in a single step. Such rules have various advantages over step-wise rules,
besides the most important one of frequently showing a better performance with
respect to the task of outlier detection (see, e.g., Davies and Gather 1993; Kuhnt
2004).They are relatively easy to apply and interpret. Parameter estimates only need
to be calculated once from the full set and not successively from subsets for which
they might not exist or not be unique anymore.
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Let us consider the following outlier identification problem. Here (X1, . . . ,XN)

denotes a sample with corresponding observations (x1, . . . ,xN). The data genera-
tion mechanism is assumed to follow a distribution Pθ from a class P = {Pθ , θ ∈Θ}
for the regular observations. Now we want to identify observations within the sam-
ple which lie in the α-outlier region of Pθ .

As θ is unknown, we naturally start by estimating θ on the sample. With the esti-
mate θ̂ we can build an empirical outlier region out(c(α,N),P

θ̂
)= out(c(α,N), P̂ ),

where c denotes a constant usually chosen depending on α and the sample size N .
We now may identify observations in this thereby estimated outlier region as out-
liers, leading us towards a one-step outlier identification rule, next defined in more
general terms.

Definition 6.2 Let an empirical outlier region out(c(α,N), P̂ ) be given. A mapping
OIF (from the support supp(P) of the considered class of distributions to the set
{0,1}), OIF : supp(P)→{0,1}, given by

OIF
(
x | (X1, . . . ,XN),α

)= 1out(c(α,N),P̂ )
(x), x ∈ supp(P),

with the interpretation

OIF
(
x | (X1, . . . ,XN),α

)=
{

1, x is identified as outlier,

0, x is not identified as outlier,

is called a one-step outlier identification rule.

As Gather et al. (2003) state: “(. . . ) Outliers in the data may seriously affect
standard estimators of unknown distribution parameters”, it is recommended to use
robust estimators within the one-step outlier identification. Depending on the data
situation, typical robust estimators chosen within outlier detection are the median,
L1, M-estimators like Huber or Hampel or any other estimator with a higher break-
down point (see the contribution of Rousseeuw and Hubert in Chap. 4, or Schultze
and Pawlitschko 2002). One-step outlier identification rules in the sense of Defini-
tion 6.2 have for example been considered for the univariate and multivariate nor-
mal distribution (see, e.g., Becker and Gather 1999) and the exponential distribution
(see, e.g., Schultze and Pawlitschko 2002). In the case of more structured data situ-
ations like one-way random effect models (Wellmann and Gather 2003), regression
models (Boscher 1992), logistic regression (Christmann 1992), time series models
(Gather et al. 2002) as well as contingency tables (Kuhnt 2004) adjustments to this
basic one-step procedure are sometimes necessary, some of which are discussed
later.

The constant c is often fixed by applying some general normalizing condition
such as

P(“no outliers identified in the sample”)= 1− α
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Fig. 6.3 Contour plot and
0.01-outlier region for a
bivariate normal distribution,
estimated by FAST MCD

or

P(“the empirical outlier region lies within the true outlier region”)= 1− α.

In rare cases, the normalizing constant c can be calculated exactly. However,
more often it needs to be simulated and may even depend on the unknown parameter
as well as the sample size and the specific identification rule. Therefore sometimes
just c= αN or even c= α is used.

The performance of outlier identification rules is typically measured by criteria
like the largest non-identifiable outlier, as well as masking and swamping break-
down points (Kuhnt 2010). Roughly spoken, breakdown points are then given by
the minimal fraction of nonregular observations needed to cause the effect. Tietjen
and Moore (1972) state that the “masking effect is the inability (. . . ) to identify
even a single outlier in the presence of several suspected values.” The identifica-
tion procedure is manipulated by the outliers, which mask themselves. On the other
hand outliers can cause that true inliers are identified as outliers, this effect is called
swamping.

Example 6.1 (Multivariate Normal Distribution) Consider the size and weight of 30
female students, displayed in Fig. 6.3, for which we assume that the regular obser-
vations follow a multivariate normal distribution. After computing the FAST MCD
estimator (see Rousseeuw 1984; Rousseeuw and van Driessen 1999, and the contri-
bution by Rousseeuw and Hubert in Chap. 4) of mean μ̂MCD = (170.178,64.525)′
and covariance

�̂MCD =
(

6.955 6.621
12.849

)
,

we compute the 0.01-outlier region and check for outliers.
The outlier bound of the FAST MCD estimator is given in Fig. 6.3. The FAST

MCD estimator identifies one value as outlying (orange triangle), a student with
high weight (72.9 kg) compared to her height (167.9 cm). Calculation of the re-

spective ML-estimates give μ̂ML = (170.117,65.481)′, �̂ML =
( 4.909 −1.363

7.126

)
and

no observation lies in the 0.01-outlier region of the normal distribution with these
parameters. We observe that we get higher variance/covariance values which pre-
vent the identification of outliers, such that we might have a masking effect. Plus,
the ML-estimates yield a questionable negative correlation between these variables.
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Fig. 6.4 Different types of
outliers in the regression
context

6.4 Outliers in Regression

In the simple regression context there are three different ways to think of α-outliers:
regressor-, response- and regression-outliers (Fig. 6.4). For example, response out-
liers are presented in Boscher (1992) and regression outliers are treated generally in
Rousseeuw and Leroy (1987).

First of all, we consider the very intuitive response-outlier (see also Boscher
1992). Each response value deviating from the regression line by more than some
specific constant will turn out to be a response-α-outlier. As highlighted in the pre-
vious sections, we need assumptions w.r.t. the distribution of the response for the
calculation of α-outlier regions. Considering a simple linear regression model

Y = β0 +X′β1 +U,

it is commonly assumed that the conditional distribution of the response given the
regressor vector is normal:

PY |X =N
(
β0 +X′β1, σ

2)

for a scale parameter σ 2 > 0. The residuals Ui, i = 1, . . . , n, are assumed to be
normally distributed given the regressor vector X with E(U)= 0 and Var(U)= σ 2.
Hence, the corresponding response-α-outlier region can be defined as

out(α,PY |X)=
{
y ∈R : u= ∣∣y − (β0 +X′β1

)∣∣> σz1−α/2
}
. (6.4)

This method is a neat way for regression setups where the regressors themselves are
non-random, especially if a statistical design of experiment was used. If the regres-
sors are also stochastic, a common assumption is a p-variate normal distribution

PX =N (μ,�) (6.5)
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with mean μ ∈ R
p and (p × p)-covariance matrix �. It is of course also possible

to calculate α-outlier regions for the regressors. The outlier region depends on the
distance between the observation and the mean and on the covariance matrix:

out(α,PX)=
{
x ∈R

p : (x−μ)′�−1(x−μ) > χ2
p,1−α
}
, (6.6)

which resembles equation (6.3) because of (6.5). The notion of observations with
a high impact on the regression (Rousseeuw and van Zoomeren 1990), so-called
leverage points, can be formalized by (6.6).

The third way to define an α-outlier in the regression context is by taking the
joint distribution of Y and X into account, resulting in an elliptically shaped contour
which resembles the intersection of the two previously mentioned α-inlier regions.
This yields the regression-α-outlier region, defined as

out(α,P(Y,X)) =
{(
y,x′
)′ ∈R

p+1 : (y − (β0 + x′β1
))2

/σ 2

+ (x−μ)′�−1(x−μ) > χ2
p+1,1−α

}
. (6.7)

We use a similar set-up as in Gather et al. (2003) to exemplify the different types of
outliers in Fig. 6.4, with μ= 10, β0 = 15, β1 = 1/2, σ =√6,Σ =√6 and N = 100
observations. Now the observed point denoted by “•” lies inside the regressor-inlier
region as well as in the response-inlier region but outside the regression-inlier region
and therefore is only a regression outlier whereas “◦” is an outlier with respect to all
regions. The third point outside the regression-inlier region & is a regressor-outlier
but no response-outlier as it lies very close to the regression line.

Now, a one-step outlier identification method for the regression case can easily be
derived based on robust estimators of β,μ, σ and �, respectively, and the resulting
outlier regions of the thereby estimated distributions.

Example 6.2 (Thermal Spraying) Consider a thermal spraying process in the coat-
ing industry, wherein particles are sprayed onto some material. We study the effect
of the temperature and velocity of these particles on the coating property porosity.
The results of 30 runs (Table 6.1) are analyzed using a main effect quantile regres-
sion with τ = 0.5: β̂ = (52.997,−0.014,−0.035)′.

Robust estimation of the parameters of PX with the MCD (see the contribution
by Rousseeuw and Hubert in Chap. 4) yields μ̂MCD = (1517.650,715.169)′ and

�̂MCD =
(

8292.525 −1949.700
1737.459

)
.

We are interested in possible response- or regression-outliers. Application of (6.4)
using the above estimates and c(α,N)= 0.05 yields no response-outliers. We next
use (6.7) with three degrees of freedom and α = 0.05 to estimate a regression-outlier
region. Note that we abstain from applying any standardization of the identifier w.r.t.
the null model as well as an adjustment of α to the sample size. In practice, this sim-
ple approach has turned out to be sufficient for most purposes. The one-step proce-
dure yields four α-outliers, namely run 8, 9, 13 and 30. Run 8 is represented by the
highest temperature and one of the highest velocities. From the two negative regres-
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Table 6.1 Data set: thermal spraying example

Runs 1–10 Runs 11–20 Runs 21–30

Porosity Temperature Velocity Porosity Temperature Velocity Porosity Temperature Velocity

5.86 1525.50 685.20 4.82 1563.00 715.80 10.54 1448.70 710.20

3.31 1621.50 749.60 4.91 1626.50 763.60 9.60 1485.40 727.90

6.64 1562.40 658.90 3.29 1598.60 791.50 6.54 1493.70 701.30

8.29 1605.20 645.70 6.18 1619.40 743.00 7.48 1416.50 754.90

4.18 1606.70 695.00 7.97 1498.10 673.50 8.29 1480.20 742.10

4.74 1562.20 726.40 9.46 1532.50 644.10 10.06 1455.50 753.90

5.99 1618.00 712.00 8.80 1565.20 678.30 7.40 1449.40 728.80

5.53 1669.70 765.60 3.96 1517.40 736.40 4.01 1511.70 792.10

3.07 1629.20 786.30 10.69 1550.20 715.70 7.13 1492.10 720.60

8.06 1548.90 721.00 7.24 1538.30 684.10 11.01 1404.20 647.60

sion coefficients given above one would expect to have one of the smallest values
for porosity, but it turns out to be quite average. The other three outliers are char-
acterized by very small or high values of porosity, especially if the velocity values
are taken into account. Taking this information into account helps us to understand
the thermal spraying process better—a possible conclusion is that the quantile re-
gression does not perform very well with extreme regressor values. In fact, Rehage
et al. (2012) show that gamma generalized linear models outperform regression in
this kind of process.

6.5 Outliers in Contingency Tables

Not all data used and analyzed by scientists are continuous. Especially in the field
of social sciences one has to deal with categorical data. Often these kind of data
are presented as contingency tables. Let X� = (X1, . . . ,Xp)

′ be a p-dimensional
random vector with components Xδ, δ ∈ � = {1, . . . , p}. Each Xδ is a categor-
ical random variable with Iδ possible outcomes. A sample of N observations
(x1

1 , . . . , x
1
p)
′, . . . , (xN1 , . . . , xNp )

′ is the (data) basis for a contingency table. The sup-
port of the random vector X� is given by the set I =×p

δ=1{1, . . . , Iδ}, |I| = I . The
cells of a contingency table are determined by I and contain the number of times
ni each combination occurs in the data set, i = 1, . . . , I , which are understood as
realizations of random variables Ni . To apply the concept of α-outliers to contin-
gency tables, we need a model for the cell counts of the table. There are two widely
used assumptions depending on whether the sample size N is fixed a priori or not.
In the first case, we can assume a multinomial distribution for the vector (Ni)i∈I ,
in the second case the Ni are assumed to follow independent Poisson distributions
with parameters mi , i ∈ I . In both cases, loglinear models are used to model the
independence structure between the original variables X1, . . . ,Xp (Bishop et al.
1975).
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An important issue with respect to outlier detection is whether the whole contin-
gency table is to be checked as outlying or only each cell of the contingency table.
As the presence of more than one contingency table is rather seldom, outlier detec-
tion in contingency tables mostly concentrates on single outlying cells (Simonoff
1988; Fuchs and Kenett 1980; Upton and Guillen 1995; Kuhnt 2004).

6.5.1 Outliers in Multinomial Models

In the case of a multinomial model, the concept of α-outliers would apply to the
complete table as the vector of all cell counts follows a multinomial distribution.
This might be of interest if there is a couple of contingency tables, especially if they
are collected by different authorities. The researcher can check whether one or more
of these contingency tables can be called “outlying”. This might for example be the
case if the same questionnaire has been used to interview the same number of people
in different cities, resulting in a contingency table for each city.

If we want to have an outlier definition based on the α-outlier idea for individual
cell counts, we can refer to the marginal binomial distribution.

Using the one-step outlier identifier approach a cell count ni is identified as out-
lier if it lies in out(c(α,N),Bin(p̂i ,N)), where p̂i denotes an estimate of the cell
probability. Here again the use of a robust estimator is recommendable, e.g., the so-
called Pearson least trimmed chi-squared residual estimator (LTCS, see Shane and
Simonoff (2001)). Note, however, that the product of the marginal distributions is
not consistent with the assumed distribution for the complete vector of cell counts.

6.5.2 Outliers in Poisson Models

In loglinear Poisson models the vector of parameters of the individually Pois-
son distributed random variables Ni is given by a parameter space M ⊆ R

I , i.e.,
mi,mI = (mi)i∈I ∈M (Bishop et al. 1975). The unknown parameter vector is
usually estimated by the maximum-likelihood method, robust alternatives like the
L1-estimator are so far rarely considered. One-step outlier identification procedures
in the sense of Definition 6.2 are then given as

OIF
(
ni;nI , c(α,N)

)= 1out(c(α,N),m̂i (nI ))(ni), i ∈ I, nI ∈N
I . (6.8)

Kuhnt (2004) compares one-step procedures and outward procedures using maxi-
mum-likelihood estimates as well as L1-estimates by a simulation study. The one-
step procedure based on L1-estimates outperforms the other three procedures in
nearly all of the treated outlier situations.

Example 6.3 (Students’ Subjects) We are interested in data from 88 students col-
lected in their first statistics lesson at TU Dortmund University. They were asked
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Table 6.2 Contingency table and inlier regions of the students’ subjects example

St DA ME CS Ma Ph Ps Σ

within 20 km

ni 12 6 2 1 5 4 4 34

m̂i 16.96 6.00 2.72 2.72 4.27 4.65 4.65

inl(0.1,Poi(m̂i )) {10, . . . ,23} {2, . . . ,10} {0, . . . ,5} {0, . . . ,5} {1, . . . ,7} {1, . . . ,8} {1, . . . ,8}
farther away

ni 29 7 2 2 2 6 6 54

m̂i 19.79 7.00 3.17 3.17 4.98 5.43 5.43

inl(0.1,Poi(m̂i )) {13, . . . ,27} {3, . . . ,11} {1, . . . ,6} {1, . . . ,6} {2, . . . ,9} {2, . . . ,9} {2, . . . ,9}

whether their hometown is within a radius of 20 km of the university or not (X1: Dis-
tance) and which subject they study (X2: Subject). Apparently, we can expect many
students of statistics (coded St) in this lesson. But also students of other subjects
attend the lesson, like data analysis (DA), mathematical economics (ME), computer
sciences (CS), mathematics (Ma), physics (Ph) and psychology (Ps), see Table 6.2.

We consider the loglinear Poisson model based on the independence assumption
of the two original variables X1 and X2. Computing the α-outlier regions based
on L1-estimates yields one outlier: the students whose hometown is far away and
who study statistics now. Here, for simplicity we choose c(α,N) = α = 0.1. The
estimated α-inlier region is given by {13, . . . ,27}. This underlines the point that a
subject which can be studied only at a small number of universities (like statistics
in Germany) attracts potential students from a bigger radius than other subjects.

6.6 Outliers in Graphical Models

Graphical models (Lauritzen 1996) are an interesting way to visualize the depen-
dency structure of a data set with a large number of variables, especially when
both continuous and discrete variables are considered. Even moderate outliers may
contaminate the estimated dependency structure such that a reasonable interpreta-
tion becomes impossible, see Kuhnt and Becker (2003). As pointed out in Vogel
and Fried (2010), robust estimation of multivariate scatter is a very useful tool,
especially if one aims at detecting outliers. For the application to the concept of
α-outliers, we need a distributional assumption of graphical models, where we con-
centrate on observations from random vectors with continuous as well as categorical
components.

First of all, we fix some notations: Let X= (X′�,X′Γ )′ be a (p+ q)-dimensional
random vector with p discrete variables Xδ, δ ∈ � and q continuous variables
Xγ , γ ∈ Γ . The discrete random vector will take values from I =⊗δ∈� Iδ with Iδ
as the range of values Xδ can take. Lauritzen and Wermuth (1989) define a distribu-
tion, where the continuous variables given the discrete variables follow a Gaussian
distribution, the so-called conditional Gaussian distribution (CG-distribution).
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Definition 6.3 (Lauritzen and Wermuth 1989) A random vector X = (X′�,X′Γ )′
follows a conditional Gaussian distribution, if and only if its density can be writ-
ten as

fX�,XΓ
(i,y)= fX�

(i)fXΓ |X�

(
y | i),

yielding

fX�,XΓ
(i,y)= p(i)(2π)−q/2 det

(
�(i)−1/2) exp

{−(y−μ(i)
)′
�(i)−1(y−μ(i)

)
/2
}
,

where p(i) is the probability of the occurrence of i and μ(i), �(i) are the conditional
mean and covariance of XΓ given X� = i.

Given Definition 6.3 we can apply (6.1) to CG-distributions:

Definition 6.4 (Kuhnt 2006) The α-outlier region with respect to a given condi-
tional Gaussian distribution with density f (X� = i,XΓ = y) = p(i)f (y | i) is de-
fined by

out(α,P )= {(i,y) ∈ I ×R
|Γ | : p(i)f (y | i)<K(α)

}
, (6.9)

where

K(α)= sup
{
K > 0 : P ({(i∗,y∗

) : p(i∗)f (y∗ | i∗)<K
})≤ α

}
.

To exemplify this definition, we derive the α-outlier region of a CG-distribution
with only one continuous random variable, i.e., q = 1 from (6.9) in detail:

p(i)
1√

2πσ(i)
exp

(
− (y −μ(i))2

2σ(i)2

)
<K(α)

⇔ y >

√
−2σ(i)2 ln

(
K(α)

√
2πσ(i)

p(i)

)
+μ(i)

∨ y <−
√
−2σ(i)2 ln

(
K(α)

√
2πσ(i)

p(i)

)
+μ(i).

The conditional probability of this event given i is:

PXΓ |X�=i

(
XΓ >

√
−2σ(i)2 ln

(
K(α)

√
2πσ(i)

p(i)

)
+μ(i)∨XΓ

<−
√
−2σ(i)2 ln

(
K(α)

√
2πσ(i)

p(i)

)
+μ(i)

)

= 2Φ

(
−
√
−2 ln

(
K(α)

√
2πσ(i)

p(i)

))
,
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where Φ is the standard normal distribution function. The overall probability for the
α-outlier region of the CG-distribution is therefore

∑
i∈I

p(i)2Φ
(
−
√
−2 ln

(
K(α)

√
2πσ(i)

p(i)

))
≤ α. (6.10)

Using this result, it is now possible to determine K(α) numerically given α and the
needed parameter values.

Example 6.4 (Graphical Model)

A simple case to illustrate α-outlier regions w.r.t. CG-distributions is the ap-
pearance of two discrete variables X1,X2 with two possible outcomes each
(I = {(1,1), (1,2), (2,1), (2,2)}) and one continuous variable X3. Let the prob-
ability vector of (X1,X2)

′ be given by

(
p(11),p(12),p(21),p(22)

)′ = (0.2,0.01,0.3,0.49)′

and the parameters of the conditional densities of X3 | (X1,X2)
′ = i by

(
μ(11),μ(12),μ(21),μ(22)

)′ = (0,0,1,1)′

and (
σ(11), σ (12), σ (21), σ (22)

)′ = (1,1,4,4)′.

Equation (6.10) yields K(0.1) = 0.0103099 for this CG-distribution P , therefore
the outlier regions can be derived with (6.9). The calculation of the α-outlier region
of X3 | ((X1,X2)

′ = (1,2)′) is not needed because the probability of this event
(p(12)= 0.01) is smaller than K(0.1). Therefore the whole support of X3 coincides
in this case with the α-outlier region. The 0.1-outlier region is given by

out(0.1,P ) = {{(1,1, y) : y <−2.023∨ y > 2.023
}

∪{(1,2, y) : y ∈R
}

∪{(2,1, y) : y <−4.839∨ y > 6.839
}

∪{(2,2, y) : y <−5.056∨ y > 8.056
}}
,

see Fig. 6.5.
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Fig. 6.5 0.1-outlier regions (shaded) of Example 6.1. Top left: p(11) = 0.2,μ(11) = 0,
σ 2(11) = 1; top right: p(12) = 0.01,μ(12) = 0, σ 2(12) = 1; bottom left: p(21) = 0.3,
μ(21)= 1, σ 2(21)= 16; bottom right: p(22)= 0.49,μ(22)= 1, σ 2(22)= 16

6.7 Conclusions

The concept of α-outliers is an impartial way to identify observations which deviate
from the bulk of the data. The smaller the chosen α, the more conservative the outlier
detection becomes. This concept is applicable in any model-based context. Usually
the parameter vector of the assumed distribution is unknown and therefore has to be
estimated in advance. Here it is important to use robust estimators as otherwise the
estimates might be contaminated by potential outliers and might cause the effects of
masking and swamping.

We presented a number of structured data situations where α-outliers can be
applied. Of course, further situations exist where the computation of α-outliers is
feasible. The identification of outliers in online monitoring data is treated in Gather
et al. (2002). Wellmann and Gather (2003) discuss an application of α-outliers in a
one-way random effects model. The identification of α-outliers in logistic regression
is explored extensively by Christmann (1992).

Acknowledgements The financial support of the Deutsche Forschungsgemeinschaft (SFB 475,
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Chapter 7
Multivariate Outlier Identification Based
on Robust Estimators of Location and Scatter

Claudia Becker, Steffen Liebscher, and Thomas Kirschstein

7.1 Introduction

When dealing with real-life data, analysts and researchers are well aware that often
there are anomalies, like single observations not fitting the “main body” of the data,
clusters of deviating observations forming some different pattern than all other data,
etc. It can be assumed that on average 1 %–10 % of the observations in a data set
may be extremely deviating (Hampel et al. 1986, p. 28). Analyzing such data sets
just with standard statistical methods can yield biased results. Hence, either their
identification followed by elimination or the use of robust methods is recommended,
see, e.g., the contributions in this book by Borowski, Fried and Imhoff (Chap. 12),
Filzmoser and Hron (Chap. 8), Galeano and Peña (Chap. 15), Huskova (Chap. 11),
Kharin (Chap. 14), Oja (Chap. 1), Rousseeuw and Hubert (Chap. 4) and Spangl and
Dutter (Chap. 13).

Moreover, the unusual observations themselves may be of a certain interest.
Sometimes they contain information on special events during the period of data
collection, or hints on valuable specialties of a certain topic. A simple but important
example is the case of the Chernobyl catastrophe, where extremely high measure-
ments of radioactivity (unusual observations within the usual plant radioactivity data
of a nuclear power plant in Sweden) were indicating that something had happened
(Mara 2011, p. 50). Hence, detecting such unusual observations can be seen as one
step within the data analysis procedure but also as an important task in itself. To
be able to fulfill this task, it is necessary to define “unusual” in a first step. There
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exist formal definitions with respect to some target distribution, where it is assumed
that the majority of the data stems from this target distribution (see the contribu-
tion by Kuhnt and Rehage, Chap. 6, for the approach of α outliers). Regions far
away from the main part of the distribution (in the sense of having low density and,
hence, low probability of being reached by observations generated from the target)
are associated as outlier regions.

Once “outliers” are well defined, there is the need to develop methods for iden-
tifying them. This is not an easy task, since outliers themselves tend to disturb sta-
tistical methods. Well-known effects in this context are masking (outliers can not be
found because they are hidden for the detection method by other outliers or by them-
selves, see, e.g., Pearson and Chandra Sekar 1936; Murphy 1951; Barnett and Lewis
1994; Becker and Gather 1999; Dang and Serfling 2010) and swamping (because
of outliers in the data observations that are no outliers at all are falsely identified
as deviating, see, e.g., Fieller 1976; Davies and Gather 1993). Often, using robust
statistical procedures within outlier identification rules can reduce these problems,
although usually assertions on bounded masking and/or swamping effects are based
on asymptotic behavior of the procedures (Davies and Gather 1993; Becker and
Gather 1999, amongst others, also see the contributions by Oja, Chap. 1, and by
Rousseeuw and Hubert, Chap. 4, for robust measures of location and scatter to use
within such procedures). In finite samples, even for “good” methods with respect
to these effects still the size of the largest non-identifiable outlier can be quite large
(Becker and Gather 2001).

However, not in all situations even exists a consensus of what constitutes an out-
lier. In particular, if the knowledge about the target distribution is rather vague, it
might not be immediately clear how to define “outlying”. In the literature, rather
vague descriptions can be found such as “An outlier can be defined to be an ab-
normal item among a group of otherwise similar items” (Choudhury and Das 1992,
p. 92), to mention just one example. In such cases instead of using some distribution
as the reference for outlyingness, some data adaptive approach is more promising.
Again, the assumption is that the majority of the observations are generated by some
target distribution, but the distribution itself is no longer specified in detail. To be
able to identify outlying observations in such a context, an appropriate concept of
distance is needed. Observations lying “far away” from the main body of the data are
called outlying, where the “main body” as well as the notion of “far away” should
be chosen from the data set itself.

The rest of this chapter is structured as follows. In Sect. 7.2, the task of identi-
fying outliers when the target distribution is only vaguely determined is described
in more detail. Sections 7.3, 7.4, and 7.5 describe three different approaches for
tackling this problem. The chapter finishes with some concluding remarks.

7.2 The Identification of Outliers

The identification of outliers in a data set is an important task in data analysis.
Often, graphical representations of the data can help in finding the unusual ones.
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For multivariate (especially high-dimensional) data, such graphical representations
are not easy to create. Hence, in this case analytical methods are needed.

7.2.1 Distance Based Outlier Identification

Among the various different approaches to multivariate outlier identification some
popular methods are simultaneous one-step rules (Hawkins 1980; Davies and Gather
1993; Gather and Becker 1997) since they yield better results with respect to avoid-
ing masking and swamping effects than e.g., sequential rules (so-called outlier
testing, see Rosner 1975 for the fundamentals; also see Hawkins 1973; Hawkins
1980, p. 63ff.). Typically, these simultaneous outlier identification procedures use
distance-based approaches.

Since often the target distribution is assumed to be the multivariate normal or at
least some elliptically contoured or convex distribution, the distance concept used is
that of Mahalanobis distance (or Euclidean distance based on a standardized version
of the data), implying that location and scatter have to be estimated. And as this
estimation has to be as less influenced by the outliers as possible, it should be done
robustly.

A general concept for simultaneous outlier identification can be given as fol-
lows: consider a data set X ⊂ R

p , assuming that the majority of the N observa-
tions x1, . . . ,xN are generated by some elliptically contoured target distribution
with location vector μ and scatter matrix �. Estimate μ and � robustly by μ̂ and

�̂ and calculate the robust Mahalanobis distances dn = (xn − μ̂)T �̂
−1
(xn − μ̂),

n = 1, . . . ,N . Choose some appropriate critical value c and identify all observa-
tions xn with dn > c as outliers. This rather general approach can be found in many
sources (Becker and Gather 1999; Becker and Paris Scholz 2006; Hubert et al. 2008,
and the literature cited therein, amongst many others), where it may be used in the
raw version described above or with some refinements.

Although these methods work well in case of convex structures, the use of Maha-
lanobis type distances might be totally misleading if the shape of the data majority
is of some different type. In other words, if we relax the assumptions on the tar-
get distribution, allowing for applications that are not normal and not even nearly
normal at all, the established simultaneous outlier identification procedures may
fail. For a simple example, consider the data set displayed in Fig. 7.1, mimicking
the city arms of Halle (Saale) in Germany (see www.halle.de/de/Kultur-Tourismus/
Stadtgeschichte/Wappen-der-Stadt-Halle/). The main part of the data follows the
crescent-shaped form in the center, while the two point clouds lying above and be-
low can be interpreted as outlying with respect to this not at all elliptical or convex
shape. If we now apply one of the most commonly used simultaneous rules, which
is based on the minimum covariance determinant (MCD) estimators (Rousseeuw
1985) in the reweighted version (Lopuhaä and Rousseeuw 1991; Hubert et al. 2008),
the result is shown in Fig. 7.1. Here, points marked by a circle (◦) stand for obser-
vations identified as outlying. Obviously, the procedure calls for the main body of

http://www.halle.de/de/Kultur-Tourismus/Stadtgeschichte/Wappen-der-Stadt-Halle/
http://www.halle.de/de/Kultur-Tourismus/Stadtgeschichte/Wappen-der-Stadt-Halle/
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Fig. 7.1 Halle data:
observations identified as
outlying by the reweighted
MCD approach, marked
with ◦

the data being elliptically contoured and cannot cope with the real shape. Hence, for
situations like exemplified here, we call for new procedures not restricted to convex
data structures.

7.2.2 The Main Body of the Data: Robust Subset Selection

Most of the common robust location and scatter estimation approaches assume that
at least half of the data come from the target distribution, where at least the distribu-
tion class of this target is specified. From this assumption, some general approach
to robust estimation has developed: in a first step, identify some small subset of the
data which, at least with large confidence, consists only of observations stemming
from the target distribution. Based on this outlier-free subset, an initial estimation is
performed. This initial estimation is used to calculate each observation’s distance as
described above. The distances can then be used to decide whether the initial subset
may be enlarged by further observations close enough to the main body of the data.
If the initial choice of observations is enhanced, recalculate the estimators based on
this enhanced subset. The reweighted MCD estimators mentioned above (Lopuhaä
and Rousseeuw 1991; Hubert et al. 2008) are the probably most prominent example
operating according to this approach.

The idea is appealing, hence, we propose to transfer it to the relaxed model as-
sumptions: assume only that slightly more than 50 % of a data set forms some main
structure of interest while the rest may be arbitrary observations. The general pro-
cess is as follows:

• Determine a subset of the observations consisting only of points reflecting the
main structure. If the only assumption is that this main structure is given by the
majority of the observations, choose a subset of size 50 %.
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• Based on this subset construct some appropriate distance measure to assess the
observations’ distances.

• If indicated by these distances enhance the initial subset to form the final subset.
• All observations not included in this final subset are declared to be outliers with

respect to the main data structure.

Of course, the final subset can also be used to robustly estimate characteristics of
the main data generating distribution. In the special case of elliptical or convex
distributions, the approaches lead to robust estimates of location and covariance.

In the following Sections, different methods according to this general process are
presented.

7.3 Flood Algorithm

The Flood Algorithm (Liebscher et al. 2012) is a proposal for robust estimation of
multivariate location and scatter. It utilizes a two-stage approach where in a first
step the initial data is projected into a two-dimensional space using self-organizing
maps (Kohonen 1982) which are a specific kind of artificial neural networks. The
self-organizing maps’ algorithm preserves the topology of the underlying data while
projecting it into the lower dimensional space (Kohonen 2001). Hence, one obtains a
representation which still bears the majority of the information inherent in the initial
data but at the same time is much easier to process. In particular, this dimensional-
ity reduction allows for the visualization of the (projected) data in the form of the
so-called U-landscape (Liebscher et al. 2012; Ultsch 1993). This landscape-like de-
piction gives some indication on the distance structure within the projected data and,
therefore, within the initial data, too. In this plot small distances between the obser-
vations translate into valleys and basins while large distances translate into moun-
tain ridges and plateaus. Thus, outliers—by definition featured by a large distance to
the bulk of the data—can either be found on top of mountains (single outliers) or in
small lakes/basins which are separated from the main basin by large mountain ridges
(outlier clusters). In order to identify the aforementioned main basin corresponding
to the outlier-free bulk of the data, the landscape is “flooded” in the second step of
the Flood Algorithm. The flood level is raised until a basin is found which contains
h= �(N +p+ 1)/2� observations. These observations are subsequently used to es-
timate location and scatter by calculating the classical mean and covariance matrix
of the h observations.

While the empirical results suggest that this approach gives robust estimates of
location and scatter, outlier identification using robust Mahalanobis-type distances
based on these estimates would suffer from the same deficiencies in the non-convex
setting as outlined in Sect. 7.2.1. However, outlier identification may instead be
done by using the distance information inherent in the aforementioned U-landscape
as those give an indication on the inter-point distances and are therefore suitable to
detect outliers in arbitrarily shaped data situations. To support this claim, we look at
the Halle example again.
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Fig. 7.2 U-landscape of the
Halle example

Fig. 7.3 Results of the Flood Algorithm

Figure 7.2 shows the U-landscape for the Halle example. Clearly visible are two
high mountain ridges which separate the landscape into three regions (i.e., three
basins) where each one corresponds to one of the three clusters in the Halle data
set. As the projection obtained by using self-organizing maps is non-linear, the
U-shape of the main cluster (i.e., the middlemost basin) is no longer visible in the
U-landscape. If the landscape in Fig. 7.2 is flooded and for each flood level the
corresponding flooded area, measured by the number of observations in the largest
basin, is noted, the curve shown in Fig. 7.3(a) results. We call this plot flood-area-
flood-height-curve (Liebscher et al. 2012).

In the flood-area-flood-height-curve long line segments are of interest. They give
an indication of single observations as well as clusters which are well separated
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from the surrounding observations. Long line segments in horizontal direction usu-
ally occur for single outliers, while vertical steps indicate the presence of clusters
of outliers. With this knowledge in mind, we look for the smallest flood height as-
sociated with any long line segment. In our Halle example, this gives a flood height
of 0.416 (dashed line in Fig. 7.3(a)). Applying this flood height to the Halle exam-
ple results in the observations marked by + in Fig. 7.3(b) being identified as the
robust bulk of the data. The remaining observations, marked by ◦ in Fig. 7.3(b), are
consequently flagged as outliers. While the overall separation between outliers and
non-outliers is quite good, there are still some observations at the lower end of the
U-shaped cluster which are not classified in a way one would expect them to be.

To summarize, the Flood Algorithm can be used to identify outlying observa-
tions, both single and clustered, in normal and non-normal data situations. While in
the presented example the separation between outliers and non-outliers is not per-
fect because of the close proximity between the clusters, the overall performance
is promising. Moreover, the flood-area-flood-height-curve provides an easy to in-
terpret exploratory tool to decide on a suitable classification solution. On the other
hand, the decision on the “appropriate” flood height is rather arbitrary and gives
room for future research.

Computation of both the self-organizing map as well as the flooding procedure
can be efficiently done, even for large numbers of observations and dimensions.
The corresponding functions are available within the R environment (as part of the
restlos package).

7.4 Pruned Minimum Spanning Tree

A simple method to measure distances is to use Euclidean distances and consider
the data set X as a network. In such a network, a node reflects a particular observa-
tion and the length of an edge represents the distance (i.e., similarity) between two
nodes. A complete network of all observations and all pairwise edges consists of
N nodes and N · (N − 1)/2 edges. The set of edges is denoted by E and a partic-
ular edge e ∈ E is constituted by a pair of nodes, i.e., e = {x,y}. The weight w(e)
of an edge is given by the Euclidean distance between its constituting nodes, i.e.,
w(e) = ‖x − y‖2. Outliers are typically characterized by large distances to a ma-
jor fraction of observations. In other words, such observations are separated from
non-outlying observations. Hence, to decide on the separateness of an observations
in a network, information about its incident edges have to be analyzed. However,
considering a complete network complicates such an analysis since it contains all
distance information including irrelevant ones. A sparser network, however, has to
assure that all nodes (i.e., all observations) are contained and still all nodes are in-
terconnected. A connection exists if a path, i.e., a set of pairwise adjacent edges,
exists between any pair of nodes. Such a network is called a spanning tree if it
contains exactly N − 1 edges. If all edges have unique weight, there exists exactly
one spanning tree whose length (the sum of all of its edges’ weights) is minimal.
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Fig. 7.4 Results of pMST procedure for Halle data set

Such a spanning tree is called the Minimum Spanning Tree (MST) and is denoted by
TX = (X,E∗) with |E∗| = N − 1. For more details on MSTs and their properties,
see, e.g., Jungnickel (2008). A particular property is that for each node its nearest
neighbour is directly connected by an edge. This property assures that local distance
information from the complete network is preserved.

To decide which nodes are potential outliers, the MST is iteratively constructed.
Define the following working sets: P = ∅, Q = ∅ and S = E∗. Next, the shortest
edge emin = arg mine∈S w(e) is omitted from S and stored in P, the corresponding
points are stored in Q. If two or more edges have minimum length, one of these
edges is chosen randomly. This step is repeated iteratively until S is empty and,
hence, P= S. In P iteratively fragments of the MST are formed, where a fragment is
defined as a connected subset of edges. Of particular interest is the size of the largest
fragment of the MST found in P. By taking a modified stopping criterion, this proce-
dure can be used as a robust estimator (Kirschstein et al. 2013). An iterative pruning
of the MST TX by deleting the longest edge and retaining the larger subtree leads to
the same result. This approach was first described by Bennett and Willemain (2001).
The algorithm is called pMST procedure (pruned MST). Kirschstein et al. (2013)
show that the robust estimator based on the pMST procedure achieves the maximum
possible breakdown point (see the contribution by Müller, Chap. 5, for boundaries
of breakdown points). Furthermore, simulation studies suggest robustness against
various contamination schemes. The “constructing” approach presented here has
the advantage that it basically equals the algorithm proposed by Kruskal (1956) to
construct the MST based on a connected graph. In fact, the vector of MST fragment
(or sub-tree) sizes can be seen as a by-product of Kruskal’s algorithm. Hence, the
computational effort of the pMST procedure is O(N2 logN) (Jungnickel 2008).

As a graphical tool to decide which observations are outlying, the vector of MST
fragment sizes is plotted against the corresponding vector of minimal edges’ lengths.
This plot is called the length-connection (LC) plot, see Fig. 7.4(a) and Kirschstein
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et al. (2013). Single outliers are attached to an existing sub-tree by comparatively
large edges, which manifest in the LC plot by long horizontal line segments. Clus-
tered outliers are typically attached as a whole by a large edge, resulting in a long
vertical line segment in the LC plot.

Since the pMST procedure uses local distance information to identify outliers,
this method is particularly applicable for non-convex data. To illustrate, this feature
the pMST procedure is applied to the Halle data set introduced above. Figure 7.4
shows the results of the pMST procedure. In Fig. 7.4(a), the LC plot for the Halle
data set is depicted. Four remarkable breaks can be identified at edge lengths 0.104,
0.175, 0.284 and 0.294. At the leftmost break the general structure of the LC plot
changes. Left of this marker the curve shows a rather steep ascent, whereas right
of this marker the found sub-tree saturates by subsequent attachment of single ob-
servations. Up to the ♦-marker rather close observations are attached whereas the
+-marker indicates the end of the saturation process by adding observations with
clearly greater distance to the attached sub-tree. The already found sub-tree is de-
picted by the •-points and black edges in Fig. 7.4(b), while by saturation the ♦-
and +-marked points are added to this sub-tree. At the +-marker, this saturation
ends and is followed by two vertical line segments indicating the attachment of
the ∗-marked cluster of outliers depicted in Fig. 7.4(b). The final step indicates the
attachment of the remaining lower cluster of outliers (marked by � symbols) in
Fig. 7.4(b).

To decide which observations should be regarded as outlying, a general advice is
to look for structural breaks in the LC plot. In cases when a majority of data follows
the same pattern, there is typically a steeply ascending beginning of the LC plot in
the left part. When the slope flattens saturation is indicated which implies adding
of scattered observations on the boundary of a cluster. A long vertical line segment
marks a well-separated cluster being attached as a whole. A conservative choice
is to handle all observations after a structural break (see the leftmost marker in
Fig. 7.4(b)) as outliers. A more sensible approach is to look for comparatively long
segments occurring after a structural break. In Fig. 7.4(a), this is indicated by the
♦-marker and results in a cluster of non-outlying observations with size 996. This
implies that four non-outlying observations are mistakenly handled as outliers and
no outlier is mistakenly identified as non-outlying. Even the conservative choice,
indicated by the leftmost marker in Fig. 7.4(a) and the corresponding 962 •-points
in 7.4(b) does not declare outliers as non-outlying albeit failing to identify all non-
outliers.

For all calculations, the pMST function from the restlos package is used with
R 2.15.1.

7.5 RDELA Algorithm

The RDELA Algorithm (Liebscher et al. 2013) is another proposal for a robust es-
timator of multivariate location and scatter. It utilizes the Delaunay triangulation
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Fig. 7.5 Delaunay
triangulation of the Halle
example (with circum-circles
in grey)

(Delaunay 1934) to identify the outlier-free bulk of data. Given a set of points X
in R

p and the corresponding convex hull CH(X), a triangulation is a decompo-
sition of the polytope given by CH(X) into simplices, i.e., into simple polytopes
each consisting of exactly p + 1 points of X, see Fig. 7.5. The resulting simplices
must not intersect each other and the original polytope’s space must be entirely
covered. In case of the Delaunay triangulation, it is additionally required that the
decomposition is constructed in a way that the (hyper)spheres circumscribing each
simplex do not contain any point of X (though the points of X are allowed to lie
on the (hyper)spheres). If X is in general position, i.e. collinear and cocircular data
configurations are not allowed, then the Delaunay triangulation is unique.

Following the calculation of the Delaunay triangulation the RDELA Algorithm
selects some of the constructed simplices, where those selected are required to be
neighboring and to have a small circum-sphere-radius. Selection is done iteratively.
During the selection process the allowed radius is successively increased, resulting
into an ever increasing number of simplices being taken into account. The vertices of
the selected simplices constitute the identified subsample. Selection of the simplices
continues until the size of the identified subsample equals �(N+p+1)/2�. Location
and scatter are finally estimated by calculating the mean and the covariance matrix
of the observations in the subset. It is shown that this approach yields highly robust
estimates (Liebscher et al. 2013).

As the radii give an indication of the (local) distances within the data set, in
particular the radii of the simplices which have not yet been selected may be further
analyzed in order to identify outliers.

Figure 7.5 shows the Delaunay triangulation of the Halle data set. While the
triangles constructed within the clusters are rather small (with the corresponding
circum-circle being small, too), the triangles constructed between the clusters are
much bigger with larger radii. Applying the RDELA Algorithm on this triangulation
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Fig. 7.6 Results of the RDELA Algorithm

and noting the radius and the corresponding size of the identified subsample in each
step of the algorithm gives the curve shown in Fig. 7.6(a).

The diagnostic plot is interpreted in the same way as outlined for the Flood Algo-
rithm or the pMST procedure. Therefore, we choose a circum-circle-radius of 0.201
(dashed line in Fig. 7.6(a)) and expand the initially found subset by attaching further
simplices whose radius is smaller than 0.201. This approach yields the observations
marked by+ in Fig. 7.6(b). The remaining observations (marked by ◦ in Fig. 7.6(b))
are classified as outliers.

In this example, the RDELA Algorithm is able to perfectly separate between the
outliers and non-outliers. General results (though not shown here) also suggest supe-
rior behaviour compared to the Flood Algorithm or the pMST procedure. However,
calculation of the Delaunay triangulation is computationally much more expensive
than calculation of the self-organizing map or the minimum spanning tree. While
the number of observations does not pose a problem, the number of dimensions
may become a limiting factor. This may also be a point for future research.

The RDELA function is available within the restlos package.

7.6 Conclusions

The tasks of robust estimation and outlier identification are closely related. Many of
the commonly used robust estimators of location and scatter are based upon the se-
lection of an outlier-free subset as a starting point for the estimation process. While
these procedures are designed for the case of the non-outlying part of the data com-
ing from some specified target distribution, the idea can also be transferred to a
more general setting, where only rather mild assumptions are made on the data
generating process. The three methods presented in this chapter follow this gener-
alized approach. The results for the example data show that these methods can deal
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with situations where the main bulk of observations is in particular of non-elliptical
shape, a setting which the most popular robust estimators like the MCD cannot cope
with.
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Nauk, 7, 793–800.

Fieller, N. R. J. (1976). Some problems related to the rejection of outlying observations. Ph.D.
Thesis, University of Hull, Hull.

Gather, U., & Becker, C. (1997). Outlier identification and robust methods. In G. S. Maddala
& C. R. Rao (Eds.), Handbook of statistics 15: robust inference (pp. 123–143). Amsterdam:
Elsevier.

Hampel, F. R., Rousseeuw, P. J., Ronchetti, E., & Stahel, W. (1986). Robust statistics. The approach
based on influence functions. New York: Wiley.

Hawkins, D. M. (1973). Repeated testing for outliers. Statistica Neerlandica, 27, 1–10.
Hawkins, D. M. (1980). Identification of outliers. London: Chapman & Hall.
Hubert, M., Rousseeuw, P. J., & van Aelst, S. (2008). High-breakdown robust multivariate meth-

ods. Statistical Science, 23, 92–119.
Jungnickel, D. (2008). Graphs, networks and algorithms (3rd ed.). Heidelberg: Springer.
Kirschstein, T., Liebscher, S., & Becker, C. (2013). Robust estimation of location and scatter by

pruning the minimum spanning tree. Submitted for publication.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological

Cybernetics, 43, 59–69.
Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.
Kruskal, J. (1956). On the shortest spanning subtree and the traveling salesman problem. Proceed-

ings of the American Mathematical Society, 7, 48–50.
Liebscher, S., Kirschstein, T., & Becker, C. (2012). The flood algorithm—a multivariate, self-

organizing-map-based, robust location and covariance estimator. Statistics and Computing, 22,
325–336. doi:10.1007/s11222-011-9250-3.

Liebscher, S., Kirschstein, T., & Becker, C. (2013). Rdela—a Delaunay-triangulation-based,
location and covariance estimator with high breakdown point. Statistics and Computing
doi:10.1007/s11222-012-9337-5.

http://dx.doi.org/10.1007/s11222-011-9250-3
http://dx.doi.org/10.1007/s11222-012-9337-5


7 Multivariate Outlier Identification 115

Lopuhaä, H. P., & Rousseeuw, P. J. (1991). Breakdown points of affine equivariant estimators of
multivariate location and covariance matrices. The Annals of Statistics, 19, 229–248.

Mara, W. (2011). The Chernobyl disaster: legacy and impact on the future of nuclear energy. New
York: Marshall Cavendish.

Murphy, R. B. (1951). On tests for outlying observations. Ph.D. Thesis, Princeton University, Ann
Arbor.

Pearson, E. S., & Chandra Sekar, C. (1936). The efficiency of statistical tools and a criterion for
the rejection of outlying observations. Biometrika, 28, 308–320.

Rosner, B. (1975). On the detection of many outliers. Technometrics, 17, 221–227.
Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In W. Grossman,

G. Pflug, I. Vincze, & W. Wertz (Eds.), Mathematical statistics and applications (pp. 283–297).
Dordrecht: Reidel.

Ultsch, A. (1993). Self-organizing neural networks for visualization and classification. In O. Opitz,
B. Lausen, & R. Klar (Eds.), Information and classification: concepts (pp. 307–313). Berlin:
Springer.



Chapter 8
Robustness for Compositional Data

Peter Filzmoser and Karel Hron

8.1 Introduction

Many real-world multivariate data sets are of compositional nature, which means
that not the absolute reported information in variables but their ratios are informa-
tive. This situation frequently occurs in geochemistry, but also in biosciences or
economics and many other applications (Pawlowsky-Glahn and Buccianti 2011).
When analyzing a chemical composition of a rock, not the absolute values of the
mass of the compounds (which depends on the size of the sample), but ratios provide
a relevant picture of the multivariate data structure. Such observations, called in the
following compositional data (or compositions for short), are popularly represented
in proportions or percentages, i.e., as data with a constant sum constraint. This fact
lead in the past to a mismatch of the concept of compositional data with that of
constrained observations. In the latter case, natural requirements valid for composi-
tional data are not met, like scale invariance (the information in a composition does
not depend on the particular units in which the composition is expressed) and sub-
compositional coherence (information conveyed by a full composition should not
be in contradiction with that coming from a sub-composition), see, e.g., Egozcue
(2009) for details. The presented more general (and also a more natural) definition
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was established in Aitchison (1986), where the logratio approach to the statisti-
cal analysis of compositional data was introduced. Since the specific properties of
compositions naturally induce their own geometry (the Aitchison geometry) on the
simplex, the sample space of compositions, the main effort is devoted to express
the compositions in orthonormal coordinates, where the usual Euclidean rules al-
ready hold (Egozcue and Pawlowsky-Glahn 2006), and accommodate the standard
statistical methods for their analysis.

Also in the case of compositional data, outlying observations can completely
destroy results of a statistical analysis, comparing to those obtained from the ho-
mogeneous majority of observations in a data set. However, the specific geometric
behavior of compositional data induces a different view of outliers compared to the
usual case. For example, now obviously an observation with high absolute values on
the compounds (parts) must not necessarily be an outlier, if the corresponding ratios
between its parts follow the dominant data behavior. For this reason, not only the
classical statistical methods, but even the robust ones cannot be applied directly to
raw compositional data. This would lead (among other problems mentioned below)
to a mismatch of regular and outlying observations.

In the following, a concise way how to perform multivariate statistical analysis of
compositional data using the logratio approach will be presented. The next section
introduces the Aitchison geometry on the simplex, together with the main inherent
concepts of compositional data analysis and a way how to express (and interpret)
the compositions in orthonormal coordinates. Section 8.3 shows how the classical
and robust versions of standard multivariate methods like outlier detection, principal
component analysis, correlation analysis and discriminant analysis can be applied
to a compositional data set, together with interpreting the corresponding results.
A real-world example on geochemical (compositional) data in presented in Sect. 8.4,
and Sect. 8.5 concludes.

8.2 Geometrical Properties of Compositional Data

In addition to scale invariance and subcompositional coherence, another crucial
property that characterizes compositional data is represented by their relative scale.
The concept of relative scale naturally occurs already for most positive univariate
data sets (Mateu-Figueras and Pawlowsky-Glahn 2008): although Euclidean dis-
tances within two pairs of samples taken at two rain gauges, {5;10} and {100;105}
in mm are the same, quite probably, in the first case most observers would say there
was double the total rain in the second gauge compared to the first, while in the
second case they will say it rained a lot but approximately the same. Similarly,
Euclidean distance between two multivariate observations does not reflect the rela-
tive growth in the compositional parts (concentrations of chemical elements, house-
hold expenditures on various commodities, etc.). Unfortunately, standard statistical
methods completely ignore the relative scale concept since they rely on the usual
Euclidean geometry in the real space (Eaton 1983). For this reason, the geometrical
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behavior of D-part compositional data x = C(x1, . . . , xD)
′ is characterized by the

Aitchison geometry, defined for compositions x,y and a real constant a by the oper-
ations perturbation, x⊕y= C(x1y1, . . . , xDyD)

′, powering, a*x= C(xa1 , . . . , xaD)′
and the Aitchison inner product,

〈x,y〉a = 1

D

D∑
i=1

D∑
j=1

ln
xi

xj
ln

yi

yj

(note that the sums run over all log-ratios of the parts in the compositions x and y),
resulting in the Aitchison norm

‖x‖a =
√〈x,x〉a

and the Aitchison distance,

da(x,y)= ‖x− y‖a.
The symbol C stands for the closure operation that rescales the resulting composi-
tions to an arbitrarily chosen, but fixed constant sum constraint κ , like 100 in case of
percentages, corresponding to the actual representation of the compositions in the
D-part simplex,

SD =
{
(x1, . . . , xD)

′, xi > 0,
D∑
i=1

xi = κ

}
.

Because all the relevant information in compositional data is contained in ratios
between the parts, it is natural that zero compositional parts are not allowed for the
analysis. According to the character of the occurrence of zeros, either as a result
of an imprecise measurement of a trace element in the composition (i.e., rounding
zeros) or the result of structural processes (structural zeros), special care has to be
taken prior to a further processing of the observations (Aitchison and Kay 1999;
Martín-Fernández et al. 2012).

The Aitchison geometry forms a Euclidean vector space of dimension D − 1,
so it is possible to express the compositions in coordinates with respect to an or-
thonormal basis on the simplex, i.e., to obtain orthonormal coordinates of com-
positional data. The corresponding mapping h : SD → RD−1, that results in the
real vector h(x) = z = (z1, . . . , zD−1)

′, moves the Aitchison geometry to the stan-
dard Euclidean geometry in the real space (with vector addition, multiplication by a
scalar and the Euclidean inner product), h(x⊕y)= h(x)+h(y), h(a*x)= a ·h(x)
and 〈x,y〉a = 〈h(x), h(y)〉e . These properties are the reason why the mapping h

is usually referred to as the isometric logratio (ilr) transformation (Egozcue et al.
2003).

Obviously, there are infinitely many possibilities how to choose the orthonor-
mal basis on the simplex and construct the orthonormal coordinates. Unfortunately,
there is no canonical basis on the simplex (D original compositional parts are repre-
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sented by only D−1 new coordinates), so that interpretable alternatives are needed.
One possible choice represents the concept of balances (Egozcue and Pawlowsky-
Glahn 2005), that enables an interpretation of the orthonormal coordinates in the
sense of balances between groups of compositional parts. However, their construc-
tion usually assumes a prior knowledge of the studied problem. For this reason, we
present below an “automated” version of balances, as described in Filzmoser et al.
(2012a), that frequently occurs in different contexts of compositional data analysis
(Hron et al. 2010, 2012). Explicitely, we obtain (D − 1)-dimensional real vectors
z(l) = (z

(l)
1 , . . . , z

(l)
D−1)

′, l = 1, . . . ,D,

z
(l)
i =
√

D− i

D − i + 1
ln

x
(l)
i

D−i
√∏D

j=i+1 x
(l)
j

, i = 1, . . . ,D − 1, (8.1)

where (x(l)1 , x
(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ) stands for such a permutation of the parts

of x that always the l-th compositional part fills the first position, (xl, x1, . . . , xl−1,

xl+1, . . . , xD). In such a configuration, the first ilr variable z
(l)
1 explains all the

relative information (log-ratios) about the original compositional part xl . The co-
ordinates z

(l)
2 , . . . , z

(l)
D−1 then explain the remaining log-ratios in the composition

(Fišerová and Hron 2011). Note that the only important position is that of x
(l)
1

(because it can be fully explained by z
(l)
1 ). The other parts can be chosen arbi-

trarily, because different ilr transformations are orthogonal rotations of each other
(Egozcue et al. 2003). Of course, we cannot identify z

(l)
1 with the original compo-

sitional part xl , but it explains all the information concerning xl . Without loss of
generality, we identify z

(1)
i = zi and use this simplified notation throughout the pa-

per. Finally, the inverse ilr transformation, defined as x= C(x1, . . . , xD)
′ = h−1(z),

where

x1 = exp

(√
D− 1√
D

z1

)
,

xi = exp

(
−

i−1∑
j=1

1√
(D − j + 1)(D − j)

zj +
√
D − i√

D − i + 1
zi

)
,

i = 2, . . . ,D − 1,

xD = exp

(
−

D−1∑
j=1

1√
(D − j + 1)(D − j)

zj

)
,

(8.2)

is used to express the orthonormal coordinates back on the simplex.
For most statistical methods, an interpretation of the compositional data analysis

in orthonormal coordinates is fully satisfactory. An exception is the biplot of princi-
pal component analysis which is related to the centered logratio (clr) transformation,
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resulting for a composition x= C(x1, . . . , xD)
′ in a real vector

y= (y1, . . . , yD)
′ =
(

ln
x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

)′
.

Elements of y represent coefficients with respect to a generating system of composi-
tions, i.e., the covariance matrix of a random composition y is positive semidefinite
and thus the clr transformed data are not appropriate for a robust statistical analysis.
Fortunately, there exists a linear relation between the clr coefficients and orthonor-
mal coordinates (like those from (8.1)), y= Vz. The columns of the D × (D − 1)-
matrix V= (v1, . . . ,vD−1) are formed by the clr transformation of the orthonormal
basis vectors, resulting in coordinates z, concretely

vD−i =
√

i

i + 1

(
0, . . . ,0,1,−1

i
, . . . ,−1

i

)′
, i = 1, . . . ,D− 1.

Note that there is an important relation between the clr variables and the ilr trans-

formation used in (8.1), namely yl =
√

D
D−1z

(l)
1 , l = 1, . . . ,D. This means that each

clr variable captures all the relative information about the compositional part xl , and
yl is proportional to z

(l)
1 .

Although measures of location and variability of a random composition can even
be expressed directly on the simplex using the mean value of the Aitchison distance
as the center and the total variance,

cen(x)= argminηE
[
d2
a (x,η)

]
, totvar(x)= E

[
d2
a

(
x, cen(x)

)]
,

respectively (Pawlowsky-Glahn and Egozcue 2002), it is usually preferred to cap-
ture location and variability of compositions directly in coordinates using the expec-
tation μ and the covariance matrix �. The variances and covariances of coordinates
can be expressed using variances of log-ratios of parts of the original composi-
tion, var(ln xi

xj
), i, j = 1 . . . ,D, that are advantageous for interpretation purposes

(Fišerová and Hron 2011). If a sample z1, . . . , zn is given for the coordinate z, one

usually arrives at the arithmetic mean z = 1
n

∑n
i=1 zi and the sample covariance

matrix S = 1
n−1

∑n
i=1(zi − z)(zi − z)′. Clearly, these characteristics have a break-

down point of zero, and thus they are highly sensitive to outlying observations, see
the contribution by Müller, Chap. 5. Consequently, proper robust alternatives are
needed, see the contribution by Rousseeuw and Hubert, Chap. 4. Because of dif-
ferent representations of compositions in coordinates, the affine equivariance of the
corresponding estimators is crucial. In the following, we use the Minimum Covari-
ance Determinant (MCD) estimator (Maronna et al. 2006), which is advantageous
in particular for computational reasons (Rousseeuw and Van Driessen 1999). Using
the relations

cen(x)= h−1(E[h(x)]), totvar(x)= trace(�),
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the MCD algorithm can be directly used to estimate the center and the total variance
of compositional data.

8.3 Multivariate Statistical Methods for Compositional Data

The scope of the statistical analysis of compositions does not differ from the case
of standard multivariate data. Starting with an unsupervised case, the analyst is in-
terested in identifying groups and main patterns of the data as well as in detecting
outliers that depart from the main data cloud. Here, principal component analysis
and outlier detection provide a first insight into the multivariate data structure. In the
second step, natural groups of observations and their variables are analyzed in a su-
pervised manner using discriminant analysis and correlation analysis, respectively,
although the latter one can also be advantageously applied to support the unsuper-
vised case. The main aspects and interpretation of the above mentioned methods are
described in the following sections. Since all the methods strongly rely on a proper
(robust) estimation of location and covariance, special care will be devoted to the
compositional data specificity also in this context.

8.3.1 Outlier Detection

Outlier detection belongs to starting points of each exploratory data analysis, as out-
liers give valuable information on data quality, and they are indicative of atypical
phenomena. Outlier detection methods usually assume a certain type of (theoret-
ical) distribution of the main data cloud; in case of an elliptical distribution, the
corresponding criterion can be based on the Mahalanobis distance, defined for a
sample of compositions in coordinates as

MD(zi )=
[
(zi − t)′C−1(zi − t)

]1/2
, i = 1, . . . , n. (8.3)

Here, t = t(z1, . . . , zn) and C = C(z1, . . . , zn) are location and covariance estima-
tors, respectively. The choice of the estimators is crucial for the quality of multivari-
ate outlier detection. Taking the classical estimators arithmetic mean and sample co-
variance matrix often leads to useless results, because these estimators themselves
are influenced by deviating data points. For this reason, robust counterparts, like
the above mentioned MCD estimator, need to be taken that downweight the influ-
ence of outliers on the resulting location and covariance estimation statistics, see the
contributions by Mosler (Chap. 2) and Rousseuw and Hubert (Chap. 4). Under the
assumption of multivariate normal distribution on the simplex, i.e., normal distribu-
tion of the orthonormal coordinates (Mateu-Figueras and Pawlowsky-Glahn 2008),
the (classical) squared Mahalanobis distances follow a chi-square distribution with
D − 1 degrees of freedom, see, e.g., Maronna et al. (2006). This distribution might
also be considered for the robust case, and a quantile, e.g., 0.975, can be used as a
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cut-off value separating regular observations from outliers. In case of compositional
data, the values of the Mahalanobis distances do not depend on the chosen coordi-
nates, i.e., also MD(zi ) =MD(z(l)i ), l = 2, . . . ,D, if affine equivariant estimators
of location and covariance are used (Filzmoser and Hron 2008).

A more advanced approach for the cut-off value was used in Filzmoser et al.
(2012a). This accounts for the actual numbers of observations and variables in the
data set, and it tries to distinguish among extremes of the data distribution and out-
liers coming from a different distribution. The paper also provides an overview of
graphical methods for an interpretation of the multivariate outliers, available in the
R package mvoutlier. In particular, the coordinates z(l)1 can be advantageously
used for univariate presentations in order to reveal outliers, connected with one or
more concrete compositional parts (see Sect. 8.4 for an example).

8.3.2 Principal Component Analysis and the Compositional Biplot

Also for the well-known method principal component analysis (PCA), the proper es-
timation of location (t) and covariance (C) plays an important role. Let C=GzLG′z
denote a spectral decomposition of the estimated covariance matrix C, with the di-
agonal matrix L of eigenvalues and the matrix Gz of eigenvectors of C. Then PCA
results in a linear transformation

z∗i =G′z(zi − t), (8.4)

of the coordinates into new variables (principal components) such that the first prin-
cipal component has the largest possible variance (accounts for as much of the
variability in the data as possible), and each succeeding component in turn has
the highest variance possible under the constraint that it is orthogonal to the pre-
ceding components. Although both scores z∗i and loadings (columns of the matrix
Gz) of the principal components could also be interpreted directly in orthonormal
coordinates, it is rather common to transform the loadings back to the clr space,
Gy = VGz, where the affine equivariance property of the MCD estimator was uti-
lized (Filzmoser et al. 2009). The scores in the clr space are identical to the scores
of the ilr space, except that the additional last column of the clr score matrix
has entries of zero. Finally, the transformed loadings and scores are used to con-
struct the biplot of clr transformed compositional data (Aitchison and Greenacre
(2002), also called “compositional biplot”). Although the purpose of the compo-
sitional biplot is the same as for the standard one (Gabriel 1971), i.e., to provide
a planar graph that represents a rank-two approximation of both the observations
(PCA scores, plotted as points) and variables (loadings, rays) of multivariate data,
its interpretation is different: The main interest is in the links (distances between
vertices of the rays); concretely, for the rays i and j (i, j = 1, . . . ,D) the link ap-
proximates the log-ratio variance var(ln xi

xj
). Hence, when the vertices coincide, or

nearly so, then the ratio between xi and xj is constant, or nearly so. Consequently,
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this characteristic replaces the thinking in terms of correlation coefficients between
two coordinates (standard variables). In addition, directions of the rays signalize
where observations with dominance of the corresponding compositional part are
located.

8.3.3 Correlation Analysis

Correlation analysis is not applicable to the original compositional parts. An excep-
tion is the case where compositional data (or constrained data) are modeled with
a Dirichlet distribution. There, correlation analysis it is still a popular choice for
expressing the strength of a linear relation between the parts of a positive vec-
tor with constant sum constraint. However, the interpretation of the resulting cor-
relation coefficients is misleading due to negative bias of the covariance struc-
ture of constrained observations (Aitchison 1986). In fact, a correlation analysis of
compositions is meaningful only if it is applied to orthonormal coordinates. Here
the concept of balances provides a possibility of interpretable results, when the
groups of compositional parts are clearly stated, like based on the results of the
compositional biplot. However, practical experiences show that also in such cases
a deeper insight to the studied problem is usually required (Filzmoser and Hron
2009).

An “unsupervised version” of correlation analysis is given by the multiple cor-
relation coefficient applied to the special choice of balances according to (8.1). The
multiple correlation coefficient  l between a balance z(l)1 and the remaining balances

zl = (z
(l)
2 , . . . , z

(l)
D−1)

′ can be expressed as

 2
l = 1− |�|

var(z(l)1 ) · |�l |
, l = 1, . . . ,D, (8.5)

where �l denotes the covariance matrix of zl (Johnson and Wichern 2007). The
estimation of the theoretical characteristics can again be performed using the MCD
estimator. Note that any rotation of zl (another choice of the corresponding bal-
ances) would lead to the same value of the coefficient  l (Filzmoser and Hron
2009). The interpretation of the multiple correlation coefficient for the above cho-
sen coordinates can be directly derived from the standard case and the properties
of balances. As the balance z

(l)
1 explains all the relative information (log-ratios)

about the compositional part xl and the vector zl expresses orthonormal coordinates
for the subcomposition C(x(l)2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )′, the coefficient  l ∈ [0,1]

can be interpreted as a measure of strength of the linear relation between rela-
tive information on xl and the rest of the composition. Consequently, small val-
ues of  l signalize an exceptional behavior of the part xl with respect to the other
compositional parts. In addition, a big difference between the classical and ro-
bust version of the coefficient indicates that the possible relation is driven by out-
liers.



8 Robustness for Compositional Data 125

8.3.4 Discriminant Analysis

Discriminant analysis is a tool for supervised classification. It can be directly applied
after any orthonormal coordinates are chosen to express the compositions in the
real space (Filzmoser et al. 2012b). This holds for both well established rules, the
Bayesian and the Fisher discriminant rule (Johnson and Wichern 2007). For the
purpose of exploratory analysis, the Fisher rule seems more convenient. Having g

groups of observations with pj as their prior probabilities (
∑g

j=1 pj = 1), their
expectations μj and the covariance matrices Σj , j = 1, . . . , g, the Fisher rule is
based on the matrix B describing the variation between the groups, and the matrix W
that stands for the within groups covariance matrix. If the notation μ=∑g

j=1 pjμj

for the overall weighted mean of all populations is used, the two matrices are defined
as

B=
g∑

j=1

pj (μj −μ)(μj −μ)′, W=
g∑

j=1

�j .

Under the assumption of equal group covariance matrices, it can be shown that the
best separation of the group means can be achieved by maximizing

a′Ba
a′Wa

for a ∈RD−1, a 
= 0, (8.6)

in the sample version preferably by using robust estimates of μj and �j . The so-
lution of this maximization problem is given by the eigenvectors v1, . . . ,vl of the
matrix W−1B, scaled so that v′iWvi = 1 for i = 1, . . . , l. The number l of strictly
positive eigenvalues of W−1B turns out to be l ≤min(g − 1,D − 1). The main ad-
vantage of the Fisher discriminant rule is its ability for dimension reduction. Con-
cretely, by projecting the data in the space of the first two eigenvectors v1 and v2,
one obtains a data presentation in the plane that best captures the differences among
the groups. Note that the resulting scores of these projections are invariant to the
choice of the orthonormal coordinates, see Filzmoser et al. (2012b) for details.

8.4 Example

The methods described above are illustrated with a data set from geochemistry, the
so-called Oslo transect data, see Reimann et al. (2007), and references therein.
The data set is available in the R package rrcov as data OsloTransect
(R Development Core Team 2012). Samples of different plant species (birch, moun-
tain ash, fern and spruce) were collected along a 120 km transect running through
Oslo (Norway), and the concentration of 25 chemical elements for the sample ma-
terials are reported. Since different parts were taken from the four sample materials
(like leaves and bark), in total nine groups are available, where each group consists
of 40 samples.
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Fig. 8.1 Biplot of the first
two robust principal
components for all
observations and variables.
The numbers correspond to
the data groups: birch
bark (1), birch leaves (2),
birch wood (3), fern (4),
moss (5), European mountain
ash leaves (6), spruce
needles (7), spruce tree
wood (8), spruce tree
twigs (9)

The goal of this section is not a complete analysis of the Oslo transect data, but
rather an illustration of the robust multivariate methods applied to subsets of this
compositional data set. Concentrations of chemical elements are indeed composi-
tions, because an increase of one part will automatically result in a decrease of the
other parts, and thus ratios rather than absolute concentrations are of interest.

Figure 8.1 shows a compositional biplot of a robust PCA carried out with the
complete data set. The first two principal components explain about 60 % of the total
variability. Several variable groups can be identified, pointing at different processes
in the plants. In addition, the data groups are well visible as score groups in the plot
(each group is represented as an own number). Consequently, some groups show
a higher dominance of certain variables, like a dominance of boron (B) in group 6
(European Mount Ash leaves).

Multivariate outlier detection is illustrated with the variable set Ba, Ca, Cu, Mn,
Pb, Sr, Zn and the data group birch bark (the samples are now numbered from 1
to 40). In addition, 5 samples from the group birch wood (numbered as 41–45)
are taken. Outlier detection should be helpful to identify the 5 samples from the
different sample material. Indeed, applying the function mvoutlier.CoDa from
the R package mvoutlier reveals the observations 5, 9, 25, 29, 40, 41, 42, 43,
44 and 45 as multivariate outliers. Several diagnostic plots are provided for finding
an interpretation of the outliers. Figure 8.2 shows a parallel coordinate plot with the
outliers shown by black lines. The presented axes are the ilr variables constructed
with (8.1), and so they represent all the relative information of the corresponding
chemical elements. It can be seen that the outliers have a very different behavior
than the regular observations. For example, they are much less dominated by Cu
and Mn.
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Fig. 8.2 Parallel coordinate plot for the ilr variables: multivariate outliers are shown by black
lines; the numbers are the sample numbers: 1–40 for birch bark samples, and 41–45 for birch
wood samples

Fig. 8.3 Biplot (left) and plot of the spatial coordinates (right) of the data subset; the darker the
symbols for the samples, the higher is their “degree of outlyingness”; the birch bark samples are
numbered from 1–40, the birch wood samples from 41–45

Further plots for interpreting the multivariate outliers are shown in Figure 8.3.
The biplot (left) reveals the group 41–45 as dominated by Ba and Ca, and with a
shortage of Mn, compared to the other observations. The grey scale of the symbols
corresponds to the “level of outlyingness”, and it is also used in the further plots. On
the right-hand side we see the samples plotted at their spatial coordinates. The birch
wood samples originate from the North–West part of the region, and they are taken
from the same locations as samples 1–5 (the symbols are over-plotted). Obviously,
the sample material has more effect on the chemical composition than the origin of
the samples.

The biplot in Figure 8.3(left) suggests that the variables are not highly related to
each other. For example, the element Pb seems to be quite different from the other
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Fig. 8.4 Univariate scatter plots for the single ilr variables, including all the relative information
of the corresponding chemical element; the outlier group 41–45 has a quite different chemical
composition

elements. Computing usual correlations would not be appropriate here, but it is pos-
sible to compute the squared multiple correlation between Pb and the remaining
elements using (8.5). The resulting robust (MCD-based) squared multiple correla-
tion coefficient between the balance representing Pb and the remaining balances is
0.82, so not particularly high. In comparison, using classical estimators leads to a
coefficient of 0.65, which reflects the influence of the outliers.

In a final outlier diagnostic in form of univariate scatter plots in Figure 8.4, we
show again the ilr coordinates including all the relative information of an element,
similar to Figure 8.2. This presentation can be used to see in detail the composition
of the samples. The group 41–45 of birch wood samples is more dominant in Ba,
Ca, and Sr, and much less dominant in Cu and Mn. Also some of the remaining
outliers 5, 9, 25, 29, 40 can be found on extreme positions in this plot, justifying the
reason for their outlyingness.

Robust discriminant analysis is applied using all observations of the Oslo tran-
sect data set, but only the variables Ba, Ca, Cu, Mn, Pb, Sr, Zn (they have no prob-
lem with rounding artefacts). Figure 8.5(left) shows the projection of the data onto
the space of the first two Fisher discriminant directions. The different data groups
(shown by different symbols) are quite well separated. However, single outliers are
visible, and thus a robust analysis is useful. Figure 8.5(right) is an attempt to learn
about the discrimination ability of the established discriminant rules. Here we use
5-fold cross-validation: The data set is randomly split into five parts of about equal
size, and in each step 4 parts are used as training set and the remaining part as
validation set. The discriminant rule is established from the training data and it is
evaluated for the validation data. This is done until each of the five parts once had the
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Fig. 8.5 Robust discriminant analysis using all samples (nine groups) and selected variables; the
groups are well visible in the projection on the first two Fisher directions (left); the discriminant
rules are evaluated with 5-fold cross-validation (right), by using all data in the validation sets (left
boxplot) and removing the outliers from the validation sets (right boxplot)

role of the validation set. In each trial, we calculate the proportion of misclassified
observations. In order to have a more general picture, the whole process is repeated
100 times, each time with new random assignments for 5-fold cross-validation. The
left boxplot in the figure shows the resulting proportions of misclassification (error
rate). Robust discriminant analysis is very effective here: the median error rate is
zero, and at most 3 % error rate were reached. For generating the right boxplot we
remove the outlying observations from the validation sets (they are still included in
the training sets) by applying outlier identification in advance to each group sepa-
rately. This gives a clearer picture of a robust discrimination rule, because outliers
are not aimed to be classified correctly, in contrast to regular observations. The box-
plot reveals that nearly all regular observations are correctly classified, and that the
outliers in the training sets have no effect on the quality of the discrimination rules.

8.5 Conclusions

Compositional data, resulting from many real-world phenomena, require special
transformations before the standard statistical tools can be used. Their character-
istic is the fact that ratios between the variables carry the relevant information, and
not the variable values directly. The suggested ilr transformation of (8.1) not only
allows to analyze this relative information, but it is also helpful for the interpre-
tation. Moreover, the resulting coordinates avoid the singularity problem of the clr
transformation, and thus multivariate estimators like MCD can be applied. Since the
MCD estimator is affine equivariant, the results from a robust multivariate analysis
are not depending on the choice of the specific ilr transformation.
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Tools for classical and robust compositional data analysis are available for exam-
ple in the R packages compositions, robCompositions, and mvoutlier.
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Part II
Regression and Time Series Analysis



Chapter 9
Least Squares Estimation in High Dimensional
Sparse Heteroscedastic Models

Holger Dette and Jens Wagener

9.1 Introduction

Consider a linear regression model of the form

Yi = xTi β0 + εi, i = 1, . . . , n, (9.1)

where Yi ∈R, xi is a p-dimensional covariate, β0 = (β0,1, . . . , β0,p)
T the unknown

vector of parameters and the εi are i.i.d. random variables. We assume that p is
fixed and most of the components of the parameter vector β0 vanish. This scenario
is called sparse linear regression model in the literature. The problem of identify-
ing significant components of the vector x and estimating the corresponding com-
ponents of the parameter β0 has found considerable interest in the last 20 years.
A very well-known tool are penalized least squares methods because they provide
an attractive methodology to select variables and estimate parameters in sparse lin-
ear models. We mention bridge regression (Frank and Friedman 1993), Lasso (Tib-
shirani 1996), the nonnegative Garotte (Breiman 1995), SCAD (Fan and Li 2001),
least angle regression (Efron et al. 2004), the elastic net (Zou and Hastie 2005),
the adaptive Lasso (Zou 2006), the Dantzig selector (Candes and Tao 2007) and
Bayesian Lasso (see the contribution by Konrath, Fahrmeir and Kneib, Chap. 10)
among others. Some of these meanwhile “classical” concepts are briefly explained
in Sect. 9.2.

Much of the aforementioned literature concentrates on the case of linear models
with independent identical distributed errors. To our best knowledge, there has been
no attempt to investigate bridge estimators and the adaptive Lasso in high dimen-
sional linear models with heteroscedastic errors.
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The purpose of this chapter is to present some of the commonly used methods
for variable selection in high dimensional sparse linear regression methods with
a special focus on heteroscedastic models. We give a careful explanation on how
the choice of the regularizing parameter affects the quality of the statistical infer-
ence (such as conservative or consistent model selection). In Sect. 9.3, it is demon-
strated that (under suitable assumption on the regularizing parameter) the model
selection properties of the commonly used estimators in sparse linear regression
models still persist under heteroscedasticity. However, the bridge estimators and the
adaptive Lasso estimators of the important parameters are asymptotically normally
distributed with the optimal rate, but with a suboptimal variance. In this section we
also present an approach introduced in Wagener and Dette (2012) which is espe-
cially designed to address heteroscedasticity. For the case where the dimension p

is fixed and the sample size n is increasing, we present some results regarding con-
sistency and asymptotic normality. In particular, the new methods possess an oracle
property in the sense of Fan and Li (2001), which means that they perform consistent
model selection (see Sect. 9.3 for a precise definition) and estimate the nonvanish-
ing parameters with the optimal rate and variance. The final Sect. 9.4 is devoted to
a small numerical study, which investigates some of the theoretical properties for
realistic sample sizes.

9.2 Penalized Least Squares Estimators

9.2.1 Bridge Regression

Frank and Friedman (1993) introduced the so called ‘bridge regression’, which is
defined as the minimizer of an objective function penalized by the Lq -norm (q > 0),
that is

L(β)=
n∑

i=1

(
Yi − xTi β

)2 + λn

p∑
j=1

|βj |q, (9.2)

where λn is a regularization parameter which converges to infinity with increasing
sample size. The procedure shrinks the estimates of the parameters in the model
(9.1) towards 0. Throughout this paper, we will always assume that 0 < q ≤ 1. In
this case, it was shown by Knight and Fu (2000) that this procedure identifies the
non vanishing components of the parameter β with positive probability and that the
corresponding estimators are asympotically normal distributed (after an appropriate
standardization). However, the corresponding optimization problem is not convex
if 0 < q < 1 due to the non-convex penalty. Therefore, the problem of determin-
ing the estimator minimizing (9.2) is a challenging one. Standard tools of convex
optimization theory are not applicable and multiple local minima might exist.
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9.2.2 Lasso and Adaptive Lasso

The celebrated Lasso (Tibshirani 1996) corresponds to a bridge estimator with
q = 1. The asymptotic behavior of these estimators was investigated by Knight and
Fu (2000), who established asymptotic normality of the estimators of the non-zero
components of the parameter vector and showed that the estimator sets some pa-
rameters exactly to 0. Thereby the Lasso performs model selection and parameter
estimation in a single step with computational cost growing polynomially with the
sample size. Fan and Li (2001) argued that any reasonable estimator should be un-
biased, continuous in the data, should estimate zero parameters as exactly zero with
probability converging to one (consistency for model selection) and should have the
same asymptotic variance as the ideal estimator in the correct model. They called
this the ‘oracle property’ of an estimator, because such an estimator is asymptoti-
cally (point-wise) as efficient as an estimator which is assisted by a model selection
oracle, that is the estimator which uses the precise knowledge of the non-vanishing
components of β0. Knight and Fu (2000) showed that for 0 < q < 1 the bridge es-
timator has the oracle property using a particular tuning parameter λn, while Zou
(2006) demonstrated that the Lasso can not have it. This author also showed the
oracle property for the adaptive Lasso, which determines the estimator minimizing
the objective function

L(β)=
n∑

i=1

(
Yi − xTi β

)2 + λn

p∑
j=1

|βj |
|β̃j |γ

. (9.3)

Here β = (β1, . . . , βp)
T and β̃ = (β̃1, . . . , β̃p)

T denotes a preliminary estimate of
β0 which satisfies certain regularity assumptions. Fan and Peng (2004), Kim et al.
(2008), Huang et al. (2008a) and Huang et al. (2008b) derived generalizations of
the aforementioned results in the case where the number of parameters is increasing
with the sample size, in particular for the case where p > n, which will not be
considered in this paper.

9.3 Penalizing Estimation Under Heteroscedasticity

In order to investigate the behaviour of the commonly used penalized estimators un-
der heteroscedasticity, we consider the following (heteroscedastic) linear regression
model

Y =Xβ0 +Σ(β0)ε, (9.4)

where Y = (Y1, . . . , Yn)
T is an n-dimensional vector of observed random variables,

X is a n×p-matrix of covariates, β0 is a p-dimensional vector of unknown param-
eters,

Σ(β0)= diag
(
σ(x1, β0), . . . , σ (xn,β0)

)
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is a positive definite matrix and ε = (ε1, . . . , εn) is a vector of independent random
variables with E(εi)= 0 and Var(εi)= 1 for i = 1, . . . , n. Note that σ 2(xi, β0) is the
variance of the observation Yi (i = 1, . . . , n). We assume that the model is sparse
in the sense that the parameter β0 can be decomposed as β0 = (β0(1)T ,β0(2)T )T ,
where β0(1) ∈R

k and β0(2)= 0 ∈R
p−k , but it is not known which components of

the vector β0 vanish (this knowledge is called the oracle). Without loss of generality,
it is assumed that the k nonzero components are given by the vector β0(1)T . In the
following discussion, xT1 , . . . , x

T
n denote the rows of the matrix X. Moreover, the

matrix of covariates is partitioned according to β0, that is

X = (X(1),X(2)),
where X(1) ∈R

n×k and X(2) ∈R
n×(p−k). The rows of the matrix X(j) are denoted

by x1(j)
T , . . . , xn(j)

T for j = 1,2. We assume that the matrix X is not random
but note that for random covariates all results presented in this contribution hold
conditionally on the predictor X.

We will also investigate estimators, which take information regarding the scale
function into account. For the sake of brevity, we restrict ourselves to estimators of
the form

β̂lse = argmin
β

[
n∑

i=1

(
Yi − xTi β

)2 + λnP (β, β̃)

]
,

β̂wlse = argmin
β

[
n∑

i=1

(
Yi − xTi β

σ (xi, β̄)

)2

+ λnP (β, β̃)

]
(9.5)

in the linear heteroscedastic model (9.4). Here β̄ and β̃ denote preliminary es-
timates of the parameter β0 and P(β, β̃) is a penalty function. The estimators

β̂lse = (β̂Tlse(1), β̂
T
lse(2))

T and β̂wlse = (β̂Twlse(1), β̂
T
wlse(2))

T are decomposed in the
same way as the parameter β0, where the first part corresponds to the k non vanish-
ing coefficients of β0. We are particularly interested in the cases

P(β, β̃)= P(β)= ‖β‖qq (0 < q ≤ 1),

P (β, β̃)=
p∑

j=1

|βj ||β̃j |−γ (γ > 0),

corresponding to bridge regression (with the special case of Lasso for q = 1) and
the adaptive Lasso, respectively, where ‖β‖q = (

∑p

j=1 |βj |q)1/q . The subscripts
‘lse’ and ‘wlse’ correspond to ‘ordinary’ and ‘weighted’ least squares regression,
respectively. We mention again that for bridge regression with q < 1 the objective
functions are not convex in β and there may exist multiple minimizing values. In
that case, the argmin is understood as an arbitrary minimizing value, and all results
stated here are valid for any such value.
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9.3.1 Ordinary Penalized Least Squares Estimators

For regularizing parameters satisfying λn/
√
n→ λ0 > 0, it was shown in Wagener

and Dette (2012) that under heteroscedasticity the classical Lasso performs conser-
vative model selection in the same way as in the homoscedastic case, that is

lim
n→∞P

({1, . . . , k} ⊂ {j | β̂j 
= 0})= 1 (9.6)

and

lim
n→∞P(β̂j = 0)= cj for all j > k (9.7)

for some constants c1, . . . , cp−k ∈ (0,1), where β̂j denotes the j th component of
the Lasso estimator β̂lse (see, e.g., Leeb and Pötscher 2005). This means that the
estimator β̂lse = (β̂1, . . . , β̂p)

T estimates a vanishing component of β0 as 0 with
positive probability. On the other hand, conditional on the event that βlse is of the
form (δT ,0T ) for some vector δ ∈R

k , the asymptotic covariance matrix of the Lasso
estimator

√
n
(
β̂lse(1)− β0(1)

)
of the nonzero parameters is given by C−1

11 B11C
−1
11 , where the matrices B11 and C11

are the upper k× k blocks of the limits

1

n
XTX→ C =

(
C11 CT

21
C21 C22

)
> 0, (9.8)

and

1

n
XTΣ(β0)

2X→ B =
(
B11 BT

21
B21 B22

)
> 0,

respectively. Note that results of this type require the existence of the limits and sev-
eral other technical assumptions. We refer to Wagener and Dette (2012) for a precise
formulation of the necessary assumptions such that these statements are true. The
asymptotic covariance matrix of the standardized statistic

√
n(β̂lse(1) − β0(1)) is

the same as for the ordinary least squares (OLS) estimator in heteroscedastic linear
models. This covariance is not the best one achievable, as under heteroscedasticity
the OLS estimator is dominated by a generalized LS estimator. Additionally, the
estimator is biased if λ0 
= 0.

Similarly, if λn/n
q/2 → λ0 > 0, the bridge estimator also performs conser-

vative model selection. Again the asymptotic covariance matrix of the statistic√
n(β̂lse(1)− β0(1)) is given by C−1

11 B11C
−1
11 and is suboptimal. However, the esti-

mator is unbiased in contrast to the Lasso estimator.
Finally, if p < n, the canonical choice of the preliminary estimate β̃ for the

adaptive Lasso is the ordinary least squares estimator. In this case, if λnn(γ−1)/2 →
λ0 > 0, the adaptive Lasso performs conservative model selection, is asymptotically
unbiased, but again the asymptotic covariance matrix is not the optimal one.
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If the constant cj in (9.7) is exactly 1, that is

lim
n→∞P(β̂j = 0)= 1 for all j > k (9.9)

and

lim
n→∞P(β̂j 
= 0)= 1 for all j ≤ k. (9.10)

the estimator β̂ of the parameter β0 in model (9.4) is called consistent for model
selection. This means that the estimator β̂ = (β̂1, . . . , β̂p)

T estimates a vanishing
component of β0 as 0 with probability 1. Whether an estimator performs consistent
or conservative model selection, respectively, depends on the choice of the tuning
parameter λn. A ‘larger’ value of λn usually yields consistent model selection while
a ‘smaller’ value yields conservative model selection. It turns out that for the Lasso
the goal of consistent model selection contradicts to the property of estimating the
non-zero coefficients of the parameter β at the optimal rate 1/

√
n. For example, if

λn/n→ 0 and λn/
√
n→∞, it can be shown that the estimator β̂lse satisfies

n

λn
(β̂lse − β0)

P→ argmin(V ),

where the function V is given by

V (u)= uT Cu+
k∑

j=1

uj sgn(β0,j )+
p∑

j=k+1

|uj |,

where β0(1) = (β0,1, . . . , β0,k)
T and the matrix C is defined in (9.8). Moreover,

the Lasso performs consistent model selection (even under heteroscedasticity) if the
strong irrepresentable condition

∣∣C21C
−1
11 sgn

(
β0(1)
)∣∣< 1p−k (9.11)

(compare, e.g., Zhao and Yu 2006) is satisfied. Here the inequality and the absolute
value are understood component-wise and 1p−k denotes a p− k dimensional vector
with all entries given by 1. However, the estimator of the non vanishing parameters
does not converge with the optimal rate 1/

√
n.

On the other hand, the bridge and adaptive estimator perform consistent model
selection and are simultaneously able to estimate the non-vanishing components of
the vector β with the optimal rate, if the regularizing parameters satisfy λn/

√
n→ 0

and λn/n
q/2 →∞ (for the bridge estimator) and λn/

√
n→ 0, λn/n(1−γ )/2 →∞

(for the adaptive Lasso with a preliminary estimator satisfying
√
n(β̃ − β0) =

Op(1)). Both estimators are unbiased but have a non-optimal variance, that is

√
n
(
β̂lse(1)− β0(1)

)→N
(
0,C−1

11 B11C
−1
11

)
.

Due to the lack of convexity of the optimization criterion it is extremely difficult
to calculate the bridge estimator in the case 0 < q < 1. However, the optimization
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problem corresponding to the adaptive Lasso is convex (but requires a preliminary
estimator).

9.3.2 Weighted Penalized Least Squares Estimators

In order to construct an oracle estimator, Wagener and Dette (2012) proposed to
use a preliminary estimator, say β̄ , to estimate σ(xTi , β0) and apply a weighted
penalized least squares regression to identify the non-zero components of β0. This
estimator has to satisfy a mild consistency property. The corresponding objective
function is defined in (9.5) and the asymptotic properties of the resulting estima-
tor of the nonzero components are described in the following paragraph. For the
sake of brevity and transparency, we only mention the mathematical assumptions
which are necessary to understand the differences between the different procedures.
For detailed discussion of the asymptotic theory, we refer to the work of Wagener
and Dette (2012). Roughly speaking the properties of the estimators can be summa-
rized as follows. The weighted bridge and the weighted adaptive Lasso estimator
can be tuned to perform consistent model selection and estimation of the non zero
parameters with the optimal rate simultaneously. Moreover, the corresponding stan-
dardized estimator of the non-vanishing components is asymptotically unbiased and
normal distributed with optimal covariance matrix. Different assumptions regarding
the tuning parameters and the initial estimators are necessary for statements of this
type and some details are given in the following discussion.

Weighted Lasso If

λn/
√
n→ λ0 ≥ 0

and the preliminary estimator β̄ (required for estimating the variance structure) sat-
isfies

bn(β̄ − β0)=Op(1) (9.12)

for some sequence 0 < bn→∞ such that bn/n1/4 →∞, the weighted Lasso es-
timator β̂wlse performs conservative model selection whenever λ0 
= 0. The stan-
dardized estimator

√
n(β̂wlse(1) − β0(1)) of the non-zero components is asymp-

totically normal distributed with expectation D−1
11 λ0 sgn(β0(1))/2 and covariance

matrix D−1
11 , where the matrix D11 ∈R

k×k is the upper block in the limit matrix

1

n
XTΣ(β0)

−2X→D =
(
D11 DT

21
D21 D22

)
> 0.

This means that the estimator β̂wlse(1) has the optimal asymptotic variance but its
standardized version is asymptotically biased.

For

λn/n→ 0, λn/
√
n→∞,
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the weighted Lasso estimator performs consistent model selection if the condition
∣∣D21D

−1
11 sgn

(
β0(1)
)∣∣< 1p−k

is satisfied. Note that this condition is an analogue of the strong irrepresentable
condition (9.11). In this case, the estimator of the nonvanishing components does
not converge at the optimal rate.

Weighted Adaptive Lasso Note that the weighted adaptive Lasso requires two
preliminary estimators which can but must not necessarily coincide. One estimator
β̃ is used in the penalty and a further estimator β̄ is required for the parameters in
the variance function σ 2(x,β).

If the preliminary estimators β̄ and β̃ of β0 satisfy (9.12) and

an(β̃ − β0)
D→ Z (9.13)

for some positive sequence an→∞, such that P(Z = 0)= 0 and

λna
γ
n /
√
n→ λ0 ≥ 0,

the weighted adaptive Lasso estimator β̂wlse performs conservative model selection
and the standardized estimator

√
n(β̂wlse(1)− β0(1)) of the nonzero components is

asymptotically normal distributed with mean 0 and covariance matrix D−1
11 .

If

λn/
√
n→ 0, λn/

√
na

γ
n →∞

for some sequence an→∞ and the preliminary estimators β̄ and β̃ of β0 satisfy
(9.12) and an(β̃−β0)=Op(1), respectively, the weighted adaptive Lasso estimator
β̂wlse performs consistent model selection, is asymptotically unbiased and converges
weakly with the optimal rate and covariance matrix, that is

√
n
(
β̂wlse(1)− β0(1)

)→N
(
0,D−1

11

)
.

Weighted Bridge Estimation We assume that q ∈ (0,1). If

λn/n
q/2 → λ0 ≥ 0

and the preliminary estimator β̄ of β0 satisfies (9.12), the weighted bridge esti-
mator β̂wlse performs conservative model selection and the standardized estimator√
n(β̂wlse(1) − β0(1)) of the nonzero components is asymptotically normal dis-

tributed with mean 0 and covariance matrix D−1
11 .

If

λn/
√
n→ 0, λn/n

q/2 →∞,

the weighted bridge estimator performs consistent model selection and estimates the
nonzero parameters with the optimal rate and optimal covariance matrix D−1

11 .
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9.4 Finite Sample Properties

In this section, we present a small simulation study and illustrate the differences
between the various estimators in a data example. We mention again that despite
of their appealing theoretical properties bridge estimators are extremely difficult to
calculate and therefore we concentrate on a comparison of the Lasso and adaptive
Lasso. These estimators can be calculated by convex optimization, and we used the
package “penalized” available for R on http://www.R-project.org (R Development
Core Team 2008) to perform all computations. The numerical results presented here
are taken from Wagener and Dette (2012). Further finite sample results can be found
in this reference.

In all examples, the data were generated using a linear model (9.4). The errors
ε were i.i.d. standard normal and the matrix Σ was a diagonal matrix with entries
σ(xi, β0) on the diagonal, where σ was given by one of the following functions:

(a) σ (xi, β0)= 1

2

√
xTi β0,

(b) σ (xi, β0)= 1

4
|xTi β0|,

(c) σ (xi, β0)= 1

20
exp |xTi β0|,

(d) σ (xi, β0)= 1

50
exp
(
xTi β0
)2
.

The different factors were chosen in order to generate data with comparable vari-
ance in each of the four models. The tuning parameter λn was chosen by fivefold
generalized cross validation performed on a training data set. For the preliminary
estimator β̃ we used the OLS estimator and for β̄ the unweighted Lasso estimator.
All reported results are based on 100 simulation runs. The design matrix was gener-
ated having independent normally distributed rows and the covariance between the
i-th and j -th entry in each row was 0.5|i−j |. The sample size was chosen by n= 60.
We consider the model (9.4) with parameter β = (3,1.5,2,0,0,0,0,0) (see Zou
2006). The model selection performance of the estimators is presented in Table 9.1,
where we show the mean of the correctly zero and correctly non-zero estimated
parameters. In the ideal case these should be 5 and 3, respectively. It can be seen
from Table 9.1 that the adaptive Lasso always performs better with respect to model
selection than the Lasso. This confirms the asymptotic properties described in the
previous section. The model selection performance of the weighted and unweighted
adaptive Lasso are comparable. In Table 9.2, we present the mean squared error
of the estimates for the non-vanishing components β1, β2, β3. In terms of this cri-
terion, the weighted versions of the estimators nearly always do a (in some cases
substantially) better job than their unweighted counterparts.

We conclude this chapter by illustrating the differences between the two esti-
mators β̂lse and β̂wlse with reanalyzing the diabetes data considered in Efron et al.
(2004). The data consist of a response variable Y which is a quantitative measure of

http://www.R-project.org
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Table 9.1 Mean number of
correctly zero and correctly
nonzero estimated parameters
in model (9.4) with
β = (3,1.5,2,0,0,0,0,0)

σ

(a) (b) (c) (d)

Lasso = 0 1.67 3.33 1.58 2.64


= 0 3 3 2.99 3

Adaptive Lasso = 0 4.51 4.32 2.95 4.48


= 0 3 3 2.95 3

Weighted Lasso = 0 0.97 1.53 0.67 0.43


= 0 3 3 3 3

Weighted
adaptive Lasso

= 0 3.97 4.09 3.29 3.91


= 0 3 3 3 3

Table 9.2 Mean squared
error of the estimators of the
nonzero coefficients in model
(9.4) with β = (3,1.5,
2,0,0,0,0,0)

σ

(a) (b) (c) (d)

Lasso β1 0.0308 0.0682 0.3480 0.0692

β2 0.0306 0.0374 0.2461 0.0784

β3 0.0322 0.0484 0.3483 0.1141

Adaptive Lasso β1 0.0293 0.0593 0.3514 0.0668

β2 0.0330 0.0393 0.3241 0.1027

β3 0.0285 0.0416 0.3871 0.1126

Weighted Lasso β1 0.0215 0.0424 0.1431 0.2004

β2 0.0171 0.0133 0.0458 0.0174

β3 0.0191 0.0202 0.1086 0.0780

Weighted
adaptive Lasso

β1 0.0193 0.0152 0.0944 0.1953

β2 0.0168 0.0069 0.0293 0.0134

β3 0.0165 0.0080 0.0864 0.0763

diabetes progression one year after baseline and of ten covariates (age, sex, body
mass index, average blood pressure and six blood serum variables). It includes
n= 442 observations.

First, we calculated the unweighted Lasso estimate β̂lse using a cross-validated
(conservative) tuning parameter λn. This solution excluded three covariates from the
model (age and two of the six blood serum variables). In a next step we calculated
the resulting residuals

ε = Y −Xβ̂lse,

which are plotted in the upper left panel of Fig. 9.1.
This picture suggests a heteroscedastic nature of the residuals. In fact the hypoth-

esis of homoscedastic residuals was rejected by the test of Dette and Munk (1998)
which had a p-value of 0.006. Next, we computed a local linear fit of the squared
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Fig. 9.1 Upper left: Lasso residuals, upper right: Squared residuals together with local polynomial
estimate, lower left: rescaled residuals

residuals in order to estimate the conditional variance σ(xTi β) of the residuals. The
upper right panel of Fig. 9.1 presents the squared residuals plotted against its abso-
lute values |xTi β̂lse| together with the local linear smoother, say σ̂ 2. In the lower left
panel of Fig. 9.1 we present the rescaled residuals ε̃i = (Yi − xTi β̂lse)/σ̂ (|xTi β̂lse|).
These look “more homoscedastic” than the unscaled residuals and the test of Dette
and Munk (1998) has a p-value of 0.514, thus not rejecting the hypothesis of ho-
moscedasticity. The weighted Lasso estimator β̂wlse was calculated by (9.5) on the
basis of the “nonparametric” weights σ̂ (xTi β̂lse) and the results are depicted in Ta-
ble 9.3. In contrast to β̂lse, the weighted Lasso only excludes one variable from the
model, namely the blood serum HDL if λn is chosen by cross-validation.

9.5 Conclusions

In this paper, we presented several penalized least squares methods for estimation
in sparse high-dimensional linear regression models. We explain the terminology
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Table 9.3 The Lasso estimators β̂lse and β̂wlse for the tuning parameter λn selected by cross-
validation

Intercept Age Sex BMI BP TC LDL HDL TCH LTG GLU

β̂lse 152.1 0.0 −186.5 520.9 291.3 −90.3 0.0 −220.2 0.0 506.6 49.2

β̂wlse 183.8 −110.3 −271.3 673.3 408.3 84.1 −547.6 0.0 449.4 213.7 138.5

of conservative and consistent model selection. It is demonstrated that under het-
eroscedasticity these estimators can be modified, such that they are as efficient as
oracle estimators. On the other hand, classical methods like Lasso or adaptive Lasso
yield consistent estimators but with sub-optimal rates.
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Chapter 10
Bayesian Smoothing, Shrinkage and Variable
Selection in Hazard Regression

Susanne Konrath, Ludwig Fahrmeir, and Thomas Kneib

10.1 Introduction

In modern regression analysis, penalized likelihood approaches and related Bayesian
concepts have emerged as general tools both for semiparametric smoothing of non-
linear covariate effects and for the regularization of high-dimensional vectors of
linear covariate effects. Approaches for combining regularization and smoothing, as
increasingly required in applications are quite sparse and have not yet been devel-
oped for hazard regression.

In this contribution, we extend the Bayesian regularization approaches described
in Kneib et al. (2010) and Fahrmeir et al. (2010) for Gaussian and exponential family
regression to Cox-type hazard regression models with predictors including high-
dimensional linear covariate effects, time-varying and nonlinear effects of covariates
and—for a full likelihood approach—the baseline hazard rate.

Regularization of linear predictors relies on hierarchical prior formulations,
where the conditional prior for the regression coefficients is Gaussian with a suitable
(mixture) hyperprior on the variance. In particular, all marginal priors for regres-
sion coefficients can be expressed as scale mixtures of normals. With the exception
of the SCAD penalty (Fan and Li 2002), these priors comprise all Bayesian ver-
sions of penalties suggested for high-dimensional Cox models: The ridge penalty
(van Houwelingen et al. 2006), the lasso (Tibshirani 1997), the adaptive lasso (Zou
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2006) and the elastic net, initially proposed for Gaussian models by Park and Hastie
(2007) and implemented for high-dimensional Cox models by Benner et al. (2010).
Their article also provides a good comparative review of these penalized likelihood
approaches. Bridge and (adaptive) lasso penalties are also reviewed and extended
to high-dimensional heteroscedastic linear models in the contribution by Dette and
Wagener, Chap. 9. In addition, a spike and slab hyperprior for variances of Gaussian
regularization priors, suggested by Ishwaran and Rao (2003, 2005) for Gaussian lin-
ear models, is also covered by our general formulation. Smoothness priors for semi-
parametric components such as B-splines for the (log-) baseline hazard rate, non-
linear and time varying effects of covariates are formulated through conditionally
Gaussian densities for basis coefficients, given variance or smoothing parameters,
as in Hennerfeind et al. (2006) for hazard regression and Brezger and Lang (2006)
for exponential family regression.

Thus, conditionally Gaussian regularization and smoothness priors for high-di-
mensional regression coefficients and basis function coefficients are the key to a uni-
fied joint modelling framework. Marginal priors for these coefficients differ through
further priors for variances in the hierarchical formulation, inducing the desired
smoothness or sparseness properties.

Based on the scale mixture representation, we develop unified MCMC algo-
rithms for inference in hazard regression. In particular, samples from non-Gaussian
full conditionals for high-dimensional regression coefficients and for basis func-
tion coefficients can be drawn in a unified computationally efficient way based on
Metropolis Hastings (MH) steps with iteratively weighted least squares (IWLS) pro-
posals requiring no further tuning. As an advantage of MCMC based inference,
standard errors for coefficients with shrinkage priors are easily available and esti-
mation of shrinkage parameters is integrated within the sampling scheme. More-
over, extensions to adaptive priors are possible without great effort. Variable selec-
tion can also be included into the inferential process: For the ridge and lasso prior,
we suggest an empirical thresholding procedure, while MCMC with spike and slab
prior for shrinkage variances allows directly estimating inclusion probabilities, see
Sect. 10.3.4.

The presented methods based on the full likelihood are implemented in the free
software BayesX (http://www.bayesx.org), for partial likelihood inference the used
R-functions are available on request from the first author.

The majority of previous Bayesian approaches to regularize high-dimensional
linear predictors have focused on Gaussian or, to a smaller extent, on exponential
family regression models. The Bayesian lasso prior (Park and Casella 2008), the
elastic net prior (Li and Lin 2010), the spike and slab priors of George and Mc-
Culloch (1993), Smith and Kohn (1996), and Ishwaran and Rao (2005), as well as
others discussed in Griffin and Brown (2005) have all been proposed and developed
for high-dimensional regression models with Gaussian responses. In fact, efficient
posterior inference for some of them crucially depends on the Gaussian assumption
and is not easily extendable to non-Gaussian regression models.

Joint regularization of high-dimensional linear effects and smoothness prior ap-
proaches are still rare. Panagiotelis and Smith (2008) focus on function selection

http://www.bayesx.org
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in Gaussian additive models, but high-dimensional linear effects could easily be
incorporated. Bayesian shrinkage priors in combination with smoothing are inves-
tigated for Gaussian models in Kneib et al. (2010). A recent spike and slab prior
for function selection in structured additive regression models has been proposed in
Scheipl (2011) and Scheipl et al. (2012). An extension to hazard regression would
be desirable.

The rest of this chapter is organized as follows: Sects. 10.2 and 10.3 introduce
different types of hazard regression models and Bayesian regularization priors. In
particular, scale mixture representations of the ridge, the lasso, and the spike and
slab prior will be introduced along with regularization priors for penalized spline
smoothing. Section 10.4 discusses posterior inference based on MCMC simulations.
Sections 10.5 and 10.6 are devoted to simulations and applications to demonstrate
the flexibility and applicability of the proposed methodology. Finally, Sect. 10.7
contains a conclusion with directions of future research. Additional results are pro-
vided in the electronic supplement available from http://www.uni-goettingen.de/de/
304963.html.

10.2 Survival Models and Likelihoods

Survival models are regression models for analysing the influence of covariates on
survival times or, more generally, on times until a certain event of interest occurs.
Most popular are continuous-time hazard rate regression models: The influence of
covariates x on survival time T ≥ 0 is specified through a regression model for the
hazard rate

λ
(
t | x)= lim

h→0

1

h
P
(
t ≤ T < t + h | T ≥ t,x

)
.

The hazard rate can be interpreted as the instantaneous rate of an event in the interval
[t, t +h) given survival up to t . A typical feature of survival times Ti for individuals
i = 1, . . . , n is that a percentage of them is not completely observed but censored
or truncated. The most common type of incomplete survival data are right censored
observations as in our application in Sect. 10.6. This censoring schemes can be for-
malised by censoring times Ci . Instead of observing true survival times Ti , only
ti =min(Ti,Ci) is observed together with the censoring indicator di = I (Ti ≤ Ci),
i.e. di = 1 if Ti ≤ Ci and di = 0 else. A common assumption is that survival times
and censoring times are independent, and that censoring is noninformative, i.e., the
distribution of Ci does not depend on parameters of interest contained in the dis-
tribution of Ti . For the shrinkage and smoothness concepts considered in the next
sections, we additionally assume that continuous covariates are standardized in ad-
vance, thus avoiding adjustment of shrinkage priors for different covariate scales.

In Cox’s proportional hazard model (Cox 1972), the hazard rate for individual i
is given as

λi(t)= λ0(t) exp
(
x′iβ
)= exp

(
logλ0(t)+ x′iβ

)

http://www.uni-goettingen.de/de/304963.html
http://www.uni-goettingen.de/de/304963.html
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for t > 0 with predictor ηi(t)= logλ0(t)+x′iβ , where x′i = (xi1, . . . , xip) is a vector
of time independent covariates. The baseline hazard λ0(t) is left unspecified. This
model separates time-dependence and cocariate effects, making the model easy to
interpret but also too resrtictive in some applications. Restrictions can be relaxed
by more general predictors as mentioned below, including time-varying effects or
covariates. Under independent and noninformative right-censoring the parameters
β = (β1, . . . , βp)

′, p < n, are usually estimated via maximization of the partial like-
lihood (Cox 1972)

pL(β)=
n∏

i=1

(
exp(x′iβ)∑

k∈R(ti ) exp(x′kβ)

)di
, (10.1)

where R(ti) denotes the risk set at time ti as the set of all individuals who are
still under study at a time just prior to ti . The cumulative baseline hazard Λ0(t)=∫ t

0 λ0(u) du is then estimated in a second step by the Breslow estimator, see, for
example, Lin (2007). More details on the Cox model and other regression models
for survival data can be found, for example, in Klein and Moeschberger (2003).

To use the full likelihood

L(β, λ)=
n∏

i=1

λ0(ti) exp
(
x′iβ
)di exp

(
−
∫ ti

0
λ0(s) exp

(
x′iβ
)
ds

)
, (10.2)

requires, in contrast to the partial likelihood, the specification of the baseline hazard
function λ0(t) because the log-baseline hazard is explicitly included in the likeli-
hood. Based on the full likelihood joint inference for covariate effects and the base-
line hazard becomes feasible and obtaining a full probabilistic framework is useful if
modeling of individual hazards and predictions are of interest. Besides simple para-
metric models also more flexible specifications for the shape of the baseline hazard
are feasible. For example, we model the logarithm g0(t)= logλ0(t) of the baseline
hazard through a polynomial spline with smoothness prior for the basis coefficients
(details in Sect. 10.3.5).

In addition the predictor ηi(t) can further be extended to include different kinds
of nonlinear covariate effects, e.g.,

λi(t)= exp
(
ηi(t)
)= exp

(
g0(t)+ x′iβ +

q∑
j=1

fj (zij )

)
, (10.3)

where fj (zj ) are nonlinear effects of continuous covariates zj . Further components,
such as covariates with linear effects that should not be regularized by a special
prior, time-varying effects, nonlinear interactions between two continuous covari-
ates, spatial effects and group- or individual specific effects (frailties) may also be
included. Cox-type models with such general forms of structured additive predic-
tors have been suggested in Hennerfeind et al. (2006), however without considering
special kinds of regularization of β , e.g., to deal simultaneously with variable selec-
tion. Apart from simple parametric forms of the baseline hazard rate, for example
a Weibull model or a piecewise constant function, inserting λi(ti) from expression
(10.3) into the likelihood (10.2) requires that the integral of the hazard function in
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(10.2) has to be evaluated numerically, using, e.g., the trapezoidal rule as in Hen-
nerfeind et al. (2006).

For Bayesian inference, it seems questionable if the partial likelihood (10.1) can
be used instead of the genuine full likelihood (10.2) for posterior analysis. Sinha
et al. (2003) provide a rigorous justification for the use of the partial likelihood in
the Bayesian context, when the (cumulative) baseline hazard is specified through
a gamma process prior. We will instead specify λ0(t) through a log-normal pro-
cess prior. Because gamma and log-normal process priors are closely related from
a practical point of view, we argue heuristically that Bayesian inference with ex-
tended predictor can again be based on the partial likelihood. Section 10.5 provides
empirical evidence for this conjecture.

10.3 Shrinkage and Smoothness Priors

To deal with the problem of variable selection and regularization, including models
with more parameters than observations, we consider and compare several shrinkage
priors. The priors considered in the following sections can all be represented as scale
mixtures of normals, which allow on the one hand treating them in our unifying
framework based on conditionally Gaussian structures and is on the other hand very
useful for sampling in MCMC inference.

10.3.1 Ridge Prior

The Bayesian version of the ridge penalty λ
∑p

j=1 β
2
j is given by the assumption

of i.i.d. Gaussian priors for the regression coefficients βj | λ ∼i.i.d. N(0,1/2λ),
j = 1, . . . , p, λ > 0 with the scale mixture representation

βj | τ 2
j ∼N

(
0; τ 2

j

)
, τ 2

j | λ∼ δ1/2λ
(
τ 2
j

)
.

The symbol δa(t) denotes the Kronecker function which is 1 if t = a and 0 if t 
= a.
For given λ > 0, posterior mode estimation corresponds to penalized likelihood
estimation. Due to conjugacy to the Gaussian family, an additional gamma prior
is used for the shrinkage parameter λ ∼ Ga(aλ, bλ), aλ, bλ > 0, which supports a
Gibbs update for this parameter. This enables to determine the shrinkage parameter
λ also in cases with very complex predictor in the typical Bayesian fashion as pos-
terior median or mean of the corresponding sample and also entails a more flexible
prior for the regression coefficients. The marginalization over λ results in an inverse
gamma distribution for the variance parameters τ 2

j | aλ, bλ ∼ IG(aλ, bλ/2) and fur-
ther marginalization in a scaled t distribution for the distribution of the regression
coefficients

βj | aλ, bλ ∼ t
(
βj | df= 2aλ, scale=√bλ/2aλ

)
given the hyperparameters aλ, bλ. Figure 10.1 shows this marginal log-prior in the
upper right panel. In the upper left panel the log of the Gaussian marginal prior is
displayed which results if there is no prior assumption for λ.
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10.3.2 Lasso Prior

Just as well known as ridge regression in the context of collinearity is the lasso re-
gression (Tibshirani 1997) if simultaneous variable selection and estimation should
be achieved. The Bayesian version of the lasso λ

∑p

j=1 |βj | can be formulated with
i.i.d. centered Laplace priors βj | λ ∼i.i.d. Lap(0, λ), j = 1, . . . , p, where λ > 0
represents the inverse scale parameter of the Laplace distribution with density
p(β)∝ exp(−λ|β|), compare e.g., Park and Casella (2008). Figure 10.1 shows the
Laplace log-prior in the univariate case. For full Bayesian inference, it is advanta-
geous to express the Laplace density as a scale mixture of normals introducing a
further stage in the hierarchical model formulation:

βj | τ 2
j ∼N

(
0; τ 2

j

)
, τ 2

j | λ2 ∼i.i.d. Exp

(
λ2

2

)
.

To obtain a data driven penalty, we additionally use again a gamma prior for the
squared shrinkage parameter λ2, i.e., λ2 ∼ Ga(aλ, bλ), aλ, bλ > 0 and get the same
benefits for the estimation of the shrinkage parameter as mentioned in the Bayesian
ridge section. This hierarchy leads to

π
(
τ 2
j | aλ, bλ

)= 0.5aλb
−1
λ

[
0.5τ 2

j b
−1
λ + 1

]−(aλ+1)

as the density of the marginal distributions for the variance parameter. The corre-
sponding marginal density of the regression coefficients (Fig. 10.1, lower left panel)
can be expressed as

π
(
βj | aλ, bλ

)= 1√
π

aλ2aλ√
2bλ

Γ

(
aλ + 1

2

)
exp

(
1

4

β2
j

(2bλ)

)
D−2aλ−1

(√
β2
j

2bλ

)

with D−2aλ−1 as the parabolic cylinder function, see Griffin and Brown (2005, 2010)
for details.

10.3.3 Normal Mixture of Inverse Gamma Prior

As a further mixture prior, we consider the normal mixture of inverse gamma
(NMIG) distribution suggested for regularizing high-dimensional linear Gaussian
regression models by George and McCulloch (1993) and Ishwaran and Rao (2003,
2005). The conditional distribution for the regression coefficients is Gaussian as in
the lasso and ridge case, i.e., βj | Ij ,ψ2

j ∼N(0; τ 2
j = Ijψ

2
j ), but in contrast the vari-

ance parameters τ 2
j of this distribution are specified through a mixture distribution

modeled by the product of the two components, i.e.,

Ij | ν0, ν1,ω∼ (1−ω)δν0(·)+ωδν1(·), ψ2
j | aψ, bψ ∼ IG(aψ, bψ). (10.4)

The first component in (10.4) is an indicator variable with point mass at the val-
ues ν0 > 0 and ν1 > 0 denoted by the corresponding Kronecker symbols. Therein
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the parameter ν0 should have a positive value close to zero and the value of ν1

is set to 1. The parameter ω controls how likely the binary variable Ij equals
ν1 or ν0, and therefore it takes on the role of a complexity parameter that con-
trols the size of the models. The assumptions in (10.4) are leading to a contin-
uous bimodal distribution for the variance parameters τ 2

j := Ijψ
2
j , given ν0, ν1,

ω, aψ , bψ with representation as a mixture of scaled inverse gamma distribu-
tions:

π
(
τ 2
j | ν0, ν1,ω, aψ, bψ

)= (1−ω) · IG(τ 2
j | aψ, ν0bψ

)+ω · IG(τ 2
j | aψ, ν1bψ

)
.

We assume a beta prior Beta(aω, bω) for the parameter ω, which reduces to the uni-
form prior in the special case aω = bω = 1 to express an indifferent prior knowledge
about the model complexity. With an appropriate choice of the hyperparameters
aω, bω > 0, it is possible to favor more or less sparse models. Using a continu-
ous prior for ω has several advantages over using a degenerate point mass at zero
prior as for example in George and McCulloch (1997) for linear models. First, the
update of the variance parameter components can easily be done via Gibbs sam-
pling and no complicated updates are necessary. Furthermore, it is possible to se-
lect important model variables via the posterior mean of the corresponding indi-
cators Ij and to simultaneously estimate their values like for λ in the lasso case
and the choice of a beta prior for ω allows for a greater amount of adaptive-
ness in estimating the model size. Besides dealing with the case p > n or mul-
ticollinearity, a desirable feature of shrinkage priors used for variable selection is
to shrink small effects close to zero, but to shrink significant effects only moder-
ately to prevent them from large bias, see the discussions in Griffin and Brown
(2005, 2010) or Zou (2006) for linear models. The NMIG-estimates for relevant
covariates should be less biased than in the case of unimodal priors for the regres-
sion coefficients because the bimodality supports less penalization of large coeffi-
cients.

The marginal density for the variance parameters, after integrating out ω, is the
mixture

τ 2
j | ν0, ν1, aψ, bψ ∼ 0.5 · IG(τ 2

j | aψ, ν0bψ
)+ 0.5 · IG(τ 2

j | aψ, ν1bψ
)
,

which corresponds to the conditional density π(τ 2
j | ν0, ν1,ω, aψ, bψ) for the choice

ω = 0.5. The prior locations of the two modes are independent of ω and fixed at
ν0bψ/(aψ + 1) and ν1bψ/(aψ + 1). The marginal distribution for the components
of β is a mixture of scaled t-distributions

βj | ν0, ν1, aψ, bψ ∼ 0.5 · t
(
βj | df= 2aψ, scale=

√
ν0bψ

aψ

)

+ 0.5 · t
(
βj | df= 2aψ, scale=

√
ν1bψ

aψ

)
.
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Fig. 10.1 Marginal log-priors (solid lines) in comparison to the marginal lasso log-prior (dashed
line) corresponding to the Ridge penalty (upper left panel), the Bayesian ridge penalty (upper right
panel), the Bayesian lasso penalty (lower left panel) and the Bayesian NMIG penalty (lower right
panel)

The corresponding log-prior is displayed in Fig. 10.1, lower right panel. Addi-
tional topics, like derivation of the marginal priors can be found in the electronic
supplement.

10.3.4 Variable Selection

Since the Bayesian regularization priors do not share the strong variable selection
property of the frequentist lasso, hard shrinkage rules are considered to accomplish
variable selection. A first rule is based on the 95 % credible intervals (CI95), ob-
tained from the corresponding sample quantiles of the MCMC samples for the
regression coefficient. A second interval criterion is constructed using the sample
standard deviation (STD), so that only regression coefficients with zero outside the
one standard deviation interval around the posterior mean are included in the fi-
nal model. On the other hand, as mentioned before in Sect. 10.3.3, the Bayesian
NMIG provides a natural criterion to select covariates if the samples of the indi-
cator variables Ij are utilized. Covariates with considerable influence should be
assigned to the mixing distribution component corresponding to the indicator with
values ν1 = 1. The more the posterior mean of an indicator variable increases (i. e.
the percentage of the values ν1 = 1 in the sample), the larger is the evidence that
the corresponding covariate has non negligible effect. In our simulations and appli-
cation, we use the intuitive cut value of 0.5 as a selection criterion, i.e., covariates
whose corresponding indicator posterior mean exceeds 0.5 are included in the final
model, see Sects. 10.5 and 10.6.
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10.3.5 Smoothness Priors

In our work, smooth modelling and estimation of nonlinear effects including the
(log-) baseline hazard, is based on Bayesian P-splines, compare Lang and Brezger
(2004). We illustrate the generic approach using the baseline hazard function as an
example. If the partial instead of the full likelihood is used, no assumptions for mod-
eling the baseline hazard are needed but the principle for estimating the remaining
smooth components of the predictor stays the same.

The baseline hazard is approximated by a linear combination of M = s +
! − 1 degree ! B-spline basis functions B1(·), . . . ,BM(·) with an appropriate se-
quence of knots ξ1 < · · · < ξs from (tmin, tmax) with additional boundary knots
0 = ξ0 < ξ1 and ξs < ξs+1 =∞. The resulting representation g0(t) = logλ0(t) =
B1(t) γ0,1 + · · · + BM(t) γ0,M enables that the baseline hazard function can be ex-
pressed as the product of an appropriately defined design matrix Z0 with rows
z′i0 = (B1(ti), . . . ,BM(ti)) and a vector γ 0 of parameters, i.e., g0 = Z0γ 0, if
g0 = (g0(t1), . . . , g0(tn))

′ denotes the vector of function evaluations of g0(ti).
To guarantee smoothness for the unknown log baseline hazard g0(t), we assume

first or second order random walk smoothness priors for the parameter vector γ 0

γ0,m = γ0,m−1 + u0,m or γ0,m = 2γ0,m−1 − γ0,m−2 + u0,m,

with i.i.d. Gaussian errors u0,m ∼ N(0, δ2
0) and diffuse priors for the initial values

π(γ0,1) ∝ const or π(γ0,1) ∝ const, π(γ0,2) ∝ const. The first order random walk
prior controls abrupt jumps in the differences γ0,m− γ0,m−1, while the second order
random walk prior penalizes deviations from a linear trend. The variance parameter
δ2

0 controls the amount of the penalization and acts as a smoothness parameter. The
smaller the variance parameter, the stronger is the penalization. The joint prior for
the parameter γ 0 as the product of the conditional densities is

π
(
γ 0 | δ2

0

)∝
(

1

δ2
0

) k0
2

exp

(
− 1

2δ2
0

γ ′0K0γ 0

)
, (10.5)

with penalty matrix K0 of the form K0 = D′D, where D is a first or second order
difference matrix and k0 = rank(K0). A standard prior option for the variance pa-
rameter is a diffuse inverse gamma prior δ2

0 ∼ IG(a0, b0) with small a0 > 0, b0 > 0.
It is also possible to choose an improper gamma-type prior in the case when a0 ≤ 0,
b0 ≤ 0 or especially a0 ≤ 0, b0 = 0, for example a0 =−0.5, b0 = 0, corresponding
to a flat prior π(δ0)∝ const for the standard deviation δ0.

In the more general case of the extended model (10.3), unknown nonparametric
functions fj (zj ) of continuous covariates are modelled through Bayesian P-splines
as well. Then the vector η of predictors ηi = ηi(ti) evaluated at observed lifetimes
ti , i = 1, . . . , n, can always be represented, after reindexing, as a high-dimensional
predictor in generic matrix notation

η=Xβ +Z0γ 0 + · · · +Zqγ q .

The design matrix X has rows x′i and the design matrices Z0, . . . ,Zq are constructed
from basis functions representing the functions g0, f1, . . . , fq and γ 0, . . . ,γ q are
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corresponding vectors of basis coefficients, as described above. The general form of
smoothness priors for γ j is once again of form (10.5) with variance parameter δ2

j ,
precision or penalty matrix Kj and kj = rank(Kj ), j = 0,1, . . . , q . For further de-
tails and extensions to time-varying, spatial and group-specific effects see Henner-
feind et al. (2006).

10.4 Posterior Inference

To illustrate posterior inference, we use the full likelihood together with the predic-
tor η=Xβ +Z0γ 0. The posterior has the general form

π
(
β,γ 0, δ

2
0, τ

2
1 , . . . , τ

2
p,ϕ
)

∝ L(β,γ 0)π
(
γ 0 | δ2

0

)
π
(
δ2

0

) p∏
j=1

π
(
βj | τ 2

j

)
π
(
τ 2

1 , . . . , τ
2
p,ϕ
)
,

where π(τ 2
1 , . . . , τ

2
p,ϕ) is a generic notation for the priors for the variance parame-

ters τ 2
j the and other parameters or random variables ϕ defined through the hierar-

chical formulation of shrinkage priors in Sect. 10.3. Thus, for all shrinkage priors,
the full conditional of the regression parameters β is

π
(
β | ·)∝ exp

{
l(β,γ 0)−

1

2
β ′D−1

τ β

}
,

where Dτ = diag(τ 2
1 , . . . , τ

2
p) denotes the diagonal matrix of the variance param-

eters. This distribution has no closed form to draw a new proposed state for the
Markov chain. We use an MH-algorithm with IWLS-proposal to update the regres-
sion coefficients based on a second order Taylor expansion of the log-likelihood
l(β,γ 0) at the current state β(c) of the parameter vector to construct a multivariate
Gaussian proposal. MH-steps for updating the coefficients γ 0 can conceptually be
carried out in the same way as for β , replacing the (conditional) precision matrix
D−1
τ by the precision matrix of the (conditional) Gaussian prior K/δ2

0 .
The full conditionals for corresponding shrinkage components like the variance

parameters τ 2
j , or ψ2

j j = 1, . . . , p, the shrinkage parameter λ or mixing parameter
ω are all known densities so that the updates for the Markov chain are available via
Gibbs steps. More details are available in Sect. 10.3 of the electronic supplement.

For the extended model (10.3), additional MH steps based on IWLS proposals
are required to update the basis coefficients γ j of the functions fj (zj ). If we rely
on posterior inference based on the partial likelihood, we replace the log-likelihood
l(β,γ 0) through the partial log-likelihood pl(β), compare again the electronic sup-
plement.
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10.5 Simulations

Here we report only a selection of results; additional material, in particular for
inference based on the partial likelihood, is contained in the electronic supple-
ment. The analysis of the parametric and nonparametric models with P-spline and
Weibull baseline was done with the free BayesX software available from http://
www.bayesx.org.

We measure the estimation accuracy based on the mean squared errors (MSE)
over r = 50 runs with sample size n= 200 if only linear effects are modeled and n=
1000 if nonlinear effects are included in the predictor. Let V = (X′X)−1/n be the
empirical covariance matrix of the regressors, then the MSE of β̂ in the r-th simula-

tion replication is given by MSEr (β)= (β̂r − β)
′
V(β̂r−β). For the log-baseline g0

we get MSEr (g0)= (ĝ0,r − g0)
′
(ĝ0,r −g0)/n, where ĝ0,r = (ĝ0,r (t1), . . . , ĝ0,r (tn))

′
denotes the vector of function evaluations of the log-baseline ĝ0 in the r-th sim-
ulation. To compare the results of P-spline-based log-baseline estimation and the
corresponding Breslow estimates from the partial likelihood approaches, we use
the trapezoidal rule to compute the cumulative baseline hazard and the correspond-
ing formula for the MSEr . Concordantly, if f denotes the vector of nonlinear ef-
fects of covariate x with estimate f̂r = (f̂ (x1), . . . , f̂ (xn))

′, the MSE is given as

MSEr (f)= (f̂r − f)
′
(f̂r − f)/n. Additionally, we report the average number of cor-

rect and incorrect zero coefficients in the final models achieved after applying one
of the hard shrinkage rules discussed in Sect. 10.3.4.

The simulation settings are extensions of those used in Hennerfeind et al. (2006).
We consider r = 50 datasets with a sample size of n= 1000 life times. The covari-
ates xi = (xi,1, . . . , xi,9)

′ corresponding to the linear effects are randomly drawn
from a multivariate Gaussian distribution with zero mean and covariance matrix
chosen such that the correlation between xj and xk is corr(xi,j , xi,k)= ρ|j−k| with
ρ = 0.5 and the variances are set to 0,252 to get survival times in the area where the
baseline changes (model B below). The covariate x10 corresponding to the nonlinear
effect was independently drawn from a uniform U [−3,3] distribution. The lifetimes
are generated via the inversion method (Bender et al. 2005) from the model

β = (−0.7,−0.7,0,0,0,−0.7,0,0,0)′,
λ(t)= λ0(t) exp

(
x′β + sin(x10)

)
.

The nonlinear effect is centered due to identification arguments leading to an in-
tercept term in the predictor. To model more flexible baseline hazards, a linear but
non-Weibull baseline hazard of the form A and a bathtub-shaped baseline hazard of
the form B have been chosen:

Model A: λ0(t)= 0.25+ 2t,

Model B: λ0(t)=
{

0.75(cos(t)+ 1.5), t ≤ 2π,

0.75(1+ 1.5), t > 2π.

The latter assumes an initially high baseline risk that decreases after some time and
increases again later on until time t = 2π from where the hazard stays constant.

http://www.bayesx.org
http://www.bayesx.org


160 S. Konrath et al.

Censoring times are generated in two steps. First, a random proportion of 17 % of
the generated observations Ti is assigned to be censored. Then in the second step
the censoring times for this random selection are drawn from the corresponding uni-
form distributions U [0, Ti]. The hyperparameters of the Bayesian lasso are set to the
weakly informative values aλ = bλ = 0.01 and the hyperparameters of the Bayesian
NMIG are ν1 = 1, ν0 = 0.000025, aψ = 5 and bψ = 25. These values are chosen
to assign a marginal prior probability of about 0.8 to fall into the interval [−2,2] to
each regression coefficient. Further we use 30000 iterations with a burnin of 10000
and thin the chain by 20 which results in an MCMC sample of size 1000. Before we
describe our results, we introduce some abbreviations to reduce the writing.

B, BT, BL, BN Bayesian models based on the full likelihood with P-spline base-
line hazard without penalization (B), with the predictor that contains only the
nonzero effects (BT), with lasso (BL) and NMIG (BN) prior.

For the Bayesian approaches, the hard shrinkage methods described in Sect. 10.3.4
are additionally assigned with the following.

HS.CI95, HS.STD if hard shrinkage is done via the 95 % credible region
(HS.CI95) or the one standard error region (HS.STD),

HS.IND if hard shrinkage for NMIG is done via indicator variables.

For example, PL.BN-HS.IND denotes the Bayesian partial likelihood model under
NMIG penalty when the covariate specific indicators are used to select the covariates
for the final model.

We summarize the main results for the models A and B. The results for further 3
simulation models are provided with additional results using a Weibull model for the
baseline in the electronic supplement together with mentioned and not displayed re-
sults for the models A and B. In contrast to the models in the electronic supplement,
we restrict here the analysis to the Bayesian methods based on the full likelihood
with P-spline approximation for the baseline. At present, there are no distributed
packages in R available to perform frequentist lasso regression in combination with
nonlinear effects for Cox models. Ridge regression is possible but the shrinkage
parameter lambda has to be prespecified.

In Fig. 10.2, the MSEs of the estimated regression coefficients of simulation
model A are shown together with the MSEs if the hard shrinkage criteria of
Sect. 10.3.4 are applied. As in model 1, the Bayesian NMIG performs better than the
Bayesian lasso regardless of whether hard shrinkage is applied or not and the MSEs
are very similar to the MSE of BT, where only the true nonzero effects are included
in the predictor. The box plots of two selected estimated coefficients for model B
with bathtub shaped baseline are shown in Fig. 10.3. The box plots corresponding
to the different methods are very similar except those of the Bayesian NMIG for
the zero coefficients which show a higher concentration around zero. Thus, the hard
shrinkage rules for the Bayesian NMIG are leading to comparable results as shown
in Fig. 10.2, since the non-influential covariates are assigned an effect very close to
zero anyway, i.e., it is negligible if they are removed from the final model.

The variable selection feature of the Bayesian NMIG is highlighted in Fig. 10.4
where the box plots of the relative frequencies of the indicator variables ν1 = 1
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Fig. 10.2 Box plots of the mean squared errors for the regression coefficients of simulation model
A in combination with the mean squared errors if hard shrinkage is used

Fig. 10.3 Box plots of two of the estimated coefficients for the simulation under simulation model
B (left panel β̂2 and right panel β̂3). The black horizontal lines mark the values of the true linear
effects

are shown for the more complex model B. The relative frequencies of the nonzero
effects are nearly one with very small standard deviation. For the zero effects, the
relative frequencies are shifted towards zero and clearly fall below the selection cut
off value of 0.5 so that the relative frequencies of the indicator variables seem to
provide a good resource to select the important covariates. Similar results arise in
model 1 and A, compare the electronic supplement.

In Fig. 10.5, we see the estimates of the baseline (Fig. 10.5, left side) and the non-
linear effect (Fig. 10.5, right side) for one selected dataset if the Bayesian NMIG is
applied to model B. The vertical lines at the time of the baseline axis mark the
observed events. In the interval [0,6], where most of the observations occur, the
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Fig. 10.4 Box plots of the relative frequencies of the indicator variables for NMIG penalty in
simulation model B

Fig. 10.5 Baseline hazard estimation (left side, solid black line) and estimation of the nonlinear
effect f (x) = sin(x) (right side, solid black line) under the Bayesian NMIG penalty for one se-
lected dataset under simulation model B together with the 2.5 % and 97.5 % empirical quantiles
(grey lines). The black dashed lines indicate the corresponding true baseline or true nonlinear effect

P-spline baseline approximates the true baseline very well. The deviations get larger,
the less observations are available when time increases, which results in an increas-
ing MSE. The results for baseline estimation are as good as in model A and the
results of the different methods are also comparable to each other. The same holds
for the estimation of the nonlinear effect, compare the electronic supplement.

The frequencies of the selected final models and the number of true estimated
coefficients are listed for the different hard shrinkage rules in Table 10.1. The best
case of 50 is reached if HS.CI95 is applied, which is here not surprising because
the Bayesian NMIG behaves very similar to BT with asymptotic normal estimates.
Additionally, the second and third column in Table 10.1 show the average number
of the true estimated nonzero coefficients and true estimated zero coefficients for



10 Bayesian Smoothing, Shrinkage and Variable Selection in Hazard Regression 163

Table 10.1 Number of “true” estimated coefficients where β̂ 
= 0, β 
= 0 denotes the case that the
estimated effect is nonzero (β̂ 
= 0) when the corresponding true effect is nonzero (β 
= 0) and
β̂ = 0, β = 0 denotes the case that the estimated effect is zero (β̂ = 0) when the corresponding true
effect is zero (β = 0). The columns (MF) display the frequencies of the final models that contain
only the three effects β1 
= 0, β2 
= 0, β6 
= 0 for model A and B

Model A Model B

β̂ 
= 0 β̂ = 0 MF β̂ 
= 0 β̂ = 0 MF

β 
= 0 β = 0 β 
= 0 β = 0

BEST 3 6 50 3 6 50

B.HS-STD 3 4.26 7 3 3.94 4

BL.HS-STD 3 4.46 8 3 4.06 5

BN.HS-STD 3 5.94 47 3 5.90 45

B.HS-CI95 3 5.66 37 3 5.62 35

BL.HS-CI95 3 5.72 38 3 5.70 37

BN.HS-CI95 3 6 50 3 5.96 48

BN.HS-IND 3 5.92 46 3 5.82 43

the 50 datasets. All hard shrinkage methods reach the optimal value of three for the
true nonzero coefficients. The highest values for the true zero coefficients are again
achieved for the Bayesian NMIG.

10.6 Application to AML Data

To illustrate the presented methods and to compare them with frequentist alter-
natives, we analyze data for patients diseased with cytogenetically normal acute
myeloid leukemia (CN-AML). AML is a cancer of the myeloid line of blood cells
which is characterized by the rapid growth of abnormal white blood cells that accu-
mulate in the bone marrow and interfere with the production of normal blood cells.
Gene expression profiling can be used to develop a gene signature that predicts the
overall survival time of patients in combination with prognostic factors like molec-
ular markers and patient characteristics.

We use data provided by U. Mansmann (LMU München), described in detail and
analyzed in Metzeler et al. (2008) and Benner et al. (2010). There are two indepen-
dent cohorts of patients available. The training cohort stems from the multicenter
AMLCG-199 trial of the German AML Cooperative Group between 1999 and 2003
and consists of 163 adult patients with CN-AML, where 35.0 % of the observed sur-
vival times are censored. In the training data, the median survival time is 280 days
with range from 0 to 2399 days. The independent test cohort consists of 80 patients
who were diagnosed with CN-AML in 2004. In the test data we have a median sur-
vival time of 247.5 days with range 1 to 837 days and 57.5 % of censored survival
times. In both cohorts, survival time is defined as time from study entry until death
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from any cause. The original data comprises 44754 microarray probe sets for each
individual. Univariate Cox scores, measuring the correlation between each of the
probe sets and the survival time in the training cohort, are used to rank and to re-
duce the number of probe sets. We present results based on the probe sets with the
50 highest ranks; additional results for the first 200 probe sets are given in the elec-
tronic supplement. As additional prognostic covariates, we include the age (AGE)
of the patient and the two molecular markers FLT3 (tandem duplications of the fms-
like tyrosine kinase 3) and NPM1 (mutations in the nucleophosmin 1).

We compare the Bayesian ridge, lasso and the NMIG prior approach based
on the partial and the full likelihood with some frequentist methods, in particular
a backward-stepwise procedure based on the AIC criterion under Cox’s propor-
tional hazards model (STEP) and the frequentist lasso (Pen.L) and ridge regression
(Pen.R) as provided in the R package {penalized} (Goeman 2010). In the latter case,
the penalization parameters are determined by n-fold generalized cross validation.
To illustrate simultaneous shrinkage and smoothing, we model the log-baseline haz-
ard rate and AGE by P-splines of degree 3, with 20 knots and a random walk penalty
of order 2. For MCMC runs, we use 30000 iterations with a burnin of 15000 and
thin the chain by 15, which results in an MCMC sample of size 1000. The hyperpa-
rameters of the Bayesian lasso, ridge and NMIG are the same as in the simulations
settings of Sect. 10.5. To avoid manual tuning of the regularization priors, the con-
tinuous covariates in the training and test data were standardized to have zero mean
and unit variance.

To measure predictive accuracy, the time-dependent empirical Brier score BS(t)
as proposed by Graf et al. (1999) is used, more specifically the integrated Brier score
(IBS)

IBS= 1

t∗

∫ t∗

0
BS(s) ds,

which can further be used to derive a measure of explained variation R2
IBS :=

1− IBS/IBS0 with IBS0 defined as the integrated Brier score corresponding to the
Kaplan-Meier (KM) estimate of the survival function. Cumulative baseline hazards
are computed via the Breslow estimator.

The IBSs and the corresponding measures of explained variation for a selection
of the estimated models can be found in Table 10.2 for the case of 50 preselected
probe sets (complete results as well as results for 200 probe sets are available in
the electronic supplement). Overall, the smallest IBS is achieved by Bayesian ridge
in combination with partial likelihood estimation (PL.BR, IBS = 0.168 in the test
set), followed closely by the Bayesian lasso based on the partial likelihood (PL.BL,
IBS= 0.1701). In general, the IBSs seem to suggest that the best strategy to achieve
precise predictions is to include all covariates without hard shrinkage but to apply
regularization to the coefficient vector. This claim is further supported by the re-
sult for the NMIG prior structure (that enables selection/deselection of covariates
based on the latent binary indicator) that leads to somewhat deteriorated IBS. The
same result holds for the models where a hard threshold rule is applied after a first
estimation run based on the standard deviation or the 95 % credible interval.
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Fig. 10.6 Paths of the integrated Brier scores for varying complexity parameter with linear effect
of AGE in case of lasso type regularization (left panel) and ridge type regularization (right panel).
The horizontal line marks the IBS 0.1897 of the Cox proportional hazards model with the 3 pheno
covariates

Figure 10.6 illustrates the impact of the regularization parameter on the IBS for
the different lasso versions (left panel) and the ridge type models (right panel). The
first observation that we can make from these figures is that again the Bayesian
ridge based on the partial likelihood leads to the smallest IBS and is also fairly
insensitive with respect to the regularization parameter. In addition, the behavior of
the frequentist ridge is quite close to the Bayesian version. For ridge regression in
combination with the full likelihood, there seems to be some instability in estimation
that yields abrupt changes in the IBS even for small variations of the regularization
parameter. In general, the lasso variants are in closer agreement and also do not show
this irregular behavior. Again, the Bayesian lasso based on the partial likelihood
performs remarkably well, but full likelihood based estimates are close and even
yield improved performance for large regularization parameters.

Figure 10.7 shows the paths of estimated regression coefficients as a function
of the complexity parameter for four covariates associated with Cox score ranks 1,
11, 12, and 21 for four different estimation approaches. It turns out that especially
the probe sets associated with Cox score ranks 11 and 12 yield large estimates and
are therefore deemed important over wide ranges of the values of the complexity
parameter. In particular, in case of the Bayesian ridge, estimated effects are pretty
much insensitive with respect to the values of the complexity parameter.

Figure 10.8 shows similar information for estimation results achieved with the
NMIG prior structure. The left panel shows the estimated inclusion probabilities,
i.e., the relative frequencies of the binary indicator differentiating between selected
and deselected covariates. In this panel, the covariates with Cox score ranks 11 and
12 again stand out with large inclusion probabilities, clearly exceeding the threshold
of 0.5. The right panel shows the inclusion probability as a function of the complex-
ity parameter. In contrast to the probe sets with Cox score ranks 1 and 21 it turns
out, that the inclusion probability for the probe sets with Cox score ranks 11 and
12 does not vary very much and always yields the conclusion that these probe sets
should be contained in the model.
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Fig. 10.7 Paths of four selected estimated coefficients (identified by the rank of the Cox score) as
a function of the complexity parameter with linear effect of the AGE. The vertical black solid line
marks the estimated values of the corresponding complexity parameters

Fig. 10.8 Left panel: Estimated posterior relative frequencies of the of the Bayesian NMIG indi-
cator variable value ν1 with linear effect of the AGE. The probe sets are sorted according to the
rank of the Cox scores that are displayed at the x axis. Right panel: Relative frequencies of four
selected indicator variables as function of the complexity parameter ω. The vertical black solid line
marks the estimated value ω̂
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Fig. 10.9 Left panel: Nonlinear effect of the covariate AGE. The solid bold lines show the posterior
mean estimates and the dotted lines mark the corresponding 95 % pointwise credible bands. The
straight lines display the linear effect of the covariate AGE. The black stripes at the x axis mark
the observed values. Right panel: Estimated log baseline hazard based on the posterior mean (solid
lines) with the corresponding 95 % pointwise credible bands (dashed lines)

Finally, the left panel of Fig. 10.9 shows the estimated nonlinear effect of the
covariate AGE and also includes the corresponding estimate from a linear model for
comparison. While the spline estimate does show some nonlinearity, the associated
credible intervals all cover the linear effect such that there is only weak evidence
for the necessity of a nonlinear AGE effect. The right panel of Fig. 10.9 shows the
estimated log-baseline hazard rate obtained with the full likelihood. After a short
period of constant or moderately increasing baseline hazard, the hazard rate shows
an almost linear decrease.

In summary, our analyses allow to conclude that, depending on the specific pur-
pose of the analysis, different variants of Bayesian regularization seem to be more
or less suitable. If the ultimate goal is good prediction, a full model combined with
either ridge or lasso regularization is recommended with a small preference for the
Bayesian ridge. If an easily understandable model is desired that can also easily
be communicated to physicians or patients, regularization including the selection
of effects, as for example available with the NMIG prior structure, will usually be
preferable. In our analyses, we found strong evidence for the importance of the two
probe sets associated with Cox score ranks 11 and 12. In addition, our model class
allows us to validate the assumption of linearity of pheno covariates that are of-
ten available in addition to genetic information. While we did not find evidence for
such a nonlinear effect in case of age, the ability to check for nonlinearity is still a
significant improvement from an applied perspective.

10.7 Conclusions

We have developed different types of regularization priors for flexible hazard re-
gression models that allow us to combine modelling of complex predictor structures
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Table 10.2 IBS and R2
IBS in the training and test data that uses the 50 probe sets with highest

Cox scores. The pheno covariates FLT3, NPM1 and the AGE are always included in the models.
CoxPH and CoxPH3 denotes the results from frequentist Cox models where the latter denotes the
model which includes only the 3 pheno covariates. Bayesian models based on partial likelihood
are labeled with the prefix PL. In particular PL.B denotes the Bayesian model without penalization
and PL.BL uses the lasso and PL.BN the NMIG penalty. SUMps displays the number of probe sets
and SUMp the number of pheno covariates in the model

SUMps SUMp IBS.train R2.train IBS.test R2.test

KM 0 0 0.2120 0 0.2055 0

CoxPH3 0 3 0.1713 0.1921 0.1897 0.0767

CoxPH 50 3 0.0995 0.5306 0.2081 −0.0126

STEP 16 3 0.1129 0.4674 0.1952 0.0499

Pen.L 11 3 0.1281 0.3957 0.1767 0.1402

Pen.R 50 3 0.1384 0.3470 0.1710 0.1680

PL.B 50 3 0.0989 0.5337 0.2120 −0.0318

PL.BR 50 3 0.1305 0.3847 0.1680 0.1824

PL.BL 50 3 0.1253 0.4090 0.1701 0.1719

PL.BN 50 3 0.1352 0.3624 0.1843 0.1030

PL.BR-HS.STD 6 3 0.1405 0.3373 0.1726 0.1599

PL.BR-HS.CI95 1 3 0.1648 0.2225 0.1836 0.1063

PL.BL-HS.STD 5 3 0.1372 0.3526 0.1783 0.1321

PL.BL-HS.CI95 1 3 0.1609 0.2410 0.1856 0.0966

PL.BN-HS.IND 2 3 0.1423 0.3289 0.1878 0.0861

B 50 3 0.1007 0.5252 0.2145 −0.0439

BR 50 3 0.1004 0.5266 0.1980 0.0363

BL 50 3 0.1027 0.5158 0.1876 0.0867

BN 50 3 0.1187 0.4403 0.1870 0.0897

BR-HS.STD 20 3 0.1078 0.4917 0.2026 0.0141

BR-HS.CI95 5 3 0.1365 0.3562 0.2210 −0.0755

BL-HS.STD 13 3 0.1241 0.4145 0.2104 −0.0238

BL-HS.CI95 3 3 0.1342 0.3669 0.2084 −0.0144

BN-HS.IND 2 3 0.1405 0.3372 0.2017 0.0185

with regularization of effects of possibly high-dimensional (n < p) covariate vec-
tors. The basic advantages of the Bayesian regularization approach are two-fold:
On the one hand, complex models can be built from blocks considered in previous
approaches due to the modularity of MCMC simulations. On the other hand, the
Bayesian formulation allows for the simultaneous estimation of all parameters in-
volved while allowing for significance and uncertainty statements even about com-
plex functions of these parameters. The restriction that posterior mean estimates in
regularized regression models do not directly provide the variable selection property
known for example from the frequentist lasso can be overcome by the latent indi-
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cator approach in the NMIG prior model. In the context of gene expression data,
for example, the advantages of the Bayesian approach will be particularly valuable
since flexible modelling of clinical covariates can be combined with regularization
of microarray features. We will also investigate adaptive versions of the proposed
regularization priors where separate smoothness parameters are added to the scale
mixture representation. This should allow overcoming the necessity to standardize
covariates up-front, since the priors are allowed to adapt to the varying scaling. The
class of regularized regression models for survival times will be broadened by con-
sidering accelerated failure time (AFT) models based on imputation of censored
observations as a part of the MCMC scheme.
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Chapter 11
Robust Change Point Analysis

Marie Hušková

11.1 Introduction

The change point problem is usually treated by statistical procedures for detec-
tion of instabilities in statistical models. The problem is usually formulated in
terms of hypothesis testing and estimation problem. Typically, we have observa-
tions X1, . . . ,Xn obtained at ordered time points and the basic task is to decide
whether the model remains stable during the whole observational period or whether
the model changes at some unknown point(s) or become generally instable. In case
of change(s) in the model being detected, the further task is also to estimate the
time of change and other parameters of the model in the periods where the model is
stable. The former problem is formulated in terms of hypothesis testing whether the
model remained stable during the observational procedures (null hypothesis) against
an alternative that the model changes at least once. The latter problem is to estimate
the location of time points where the model changes they are called unknown change
points and to estimate further parameters.

Such problems are also called disorder problems or testing for presence of struc-
tural breaks (in econometrics) or testing for stability or segmented regression or
switching regression in the regression setup.

If all n observations are available at the beginning of the statistical analysis, we
speak about a retrospective setup. If observations are arriving sequentially and after
each new observation, we have to decide whether the observations obtained so far
indicate an instability or not we have a sequential setup.

Originally such problems were studied within statistical quality control, how-
ever nowadays there are many applications in various areas, e.g., medical research,
econometrics, financial models, risk management, environmetrics, climatology. It
brings a number of interesting theoretical problems.
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There is a number of monographs and survey papers tackling the problem from
various points of view, various generality, etc., e.g., Brodsky and Darkhovsky
(1993), Basseville and Nikiforov (1993), Carlstein et al. (1994), Csörgő and Horváth
(1997), Chen and Gupta (2000). Probably, the most influential papers in economet-
ric literatures are papers by Andrews (1993), Bai and Perron (1998) and Perron
(2006). Partial survey of basic procedures till 2000 can be found, e.g., in Antoch
and Hušková (1999). Antoch et al. (2000) deal with various change point estimators
including robust ones.

Statistical procedures (tests and estimators) for detection of a change were devel-
oped applying various principles. As a motivation can serve, the case of the known
change point which leads to a variant of the two-sample problem in case of one
change, while the k sample problem is related to more changes. Along this line one
can develop maximum likelihood procedures, Bayesian procedures, nonparametric,
robust ones, etc.

At first, the procedures for detection of a change were developed to detect in-
stabilities in mean and variance in simpler models mostly for independent observa-
tions. Nowadays quite general models for instabilities appeared to be quite useful
in applications, e.g., financial time series and econometrics. Quite popular and also
practical are procedures for detection of change(s) in regression parameters in re-
gression models and in time series. Typically, at first it is assumed that observations
or/and the error terms are independent and identically distributed (i.i.d.) random
variables with normal distribution and then it is checked whether slightly modified
procedures can be also used under weaker assumptions.

The rest of the contribution is divided into three parts. Section 11.2 deals with
M-tests for a change in linear models. Various M-test statistics are developed and
their theoretical properties are presented. Section 11.3 concerns estimators of a sin-
gle as well as multiple changes. Section 11.4 gives a short inside into the area of
sequential M procedures and rank based procedures. Some open problems are for-
mulated in Sect. 11.5.

11.2 M-Procedures for Detection of a Change in Regression

11.2.1 Formulation of the Problem and Procedures

The basic regression model with a change after an unknown time point k∗ has the
form:

Yi = xTi β + xTi δI
{
i > k∗

}+ ei, i = 1 . . . , n, (11.1)

where k∗ = k∗n(≤n), β = (β1, . . . , βp)
T and δ = δn = (δ1n, . . . , δpn)

T 
= 0 are un-
known parameters, xi = (xi1, . . . , xip)

T , xi1 = 1, i = 1, . . . , n are known regression
vectors. Finally, e1, . . . , en are random errors fulfilling regularity conditions dis-
cussed below. Function I {A} denotes the indicator of the set A.
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Model (11.1) describes the situation where the first k∗ observations follow the
linear model with the parameter β and the remaining n− k∗ observations follow the
linear regression model with the parameter β + δ. The parameter k∗ is called the
change point.

The main tasks are:

• to test the hypothesis of “no change” (H0) versus an alternative “there is a change”
(H1), or in other words, to test

H0 : k∗ = n against H1 : k∗ < n, (11.2)

• in case of rejection H0 to estimate location of the change point k∗ and other
parameters before and after the change.

Quite often, assuming additionally that the error terms are i.i.d. random vari-
ables the likelihood principle is applied both to obtain the test and estimators of the
parameters and then we search whether eventually modified procedures can be ap-
plied under a weaker setup. Assuming e1, . . . , en being i.i.d. with N(0, σ 2), σ 2 > 0
known, and under mild assumptions on the regression vectors x1, . . . ,xn the max-
imum likelihood principle leads to the test statistic (see, e.g., Csörgő and Horváth
1997)

Tn,0 = max
p≤k<n−p

{
STk C−1

k Cn

(
C0
k

)−1Sk
}
/σ 2, (11.3)

where Sk, k = 1, . . . , n are partial sums of weighted L2-residuals defined as

Sk =
k∑

i=1

xi
(
Yi − xTi β̂n

)
, k = 1, . . . , n, (11.4)

Ck =
n∑

i=1

xixTi , C0
k =Cn −Ck. (11.5)

Here β̂n is the least squares estimator of β based on Y1, . . . , Yn. With a little algebra,
it can be shown that Tn,0 can be expressed also as

Tn,0 = max
p≤k<n−p

{(
β̂k − β̂

0
k

)T (
(Ck)

−1 + (C0
k

)−1)−1(
β̂k − β̂

0
k

)}
/σ 2, (11.6)

where β̂k and β̂
0
k are least squares estimators of β based on Y1, . . . , Yk and

Yk+1, . . . , Yn, respectively, i.e., our test statistic Tn,0 can be expressed as a func-

tional of the differences β̂k − β̂
0
k, k = p, . . . , n− p and it is clearly sensitive w.r.t.

a change in regression parameters.
Large values of Tn,0 indicate that H0 is violated. However under quite mild as-

sumptions Tn,0 →∞ in probability as n→∞ even under H0, therefore other func-
tionals of Sk =∑k

i=1 xi (Yi − xTi β̂n), k = 1, . . . , n bounded in probability and still
sensitive w.r.t. a change in regression parameter are often used. If σ 2 is unknown
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(this is the usual case) we replace it by a suitable estimator. In the considered setup
(model (11.1) with N(0, σ 2) i.i.d. random errors), the maximum likelihood estima-
tor k̂∗ of the change point k∗ is defined as

k̂∗n=min
(
p≤ k≤n− p; (STk C−1

k Cn

(
C0
k

)−1Sk
)

max
p≤j<n−p

(
STj C−1

j Cn

(
C0
j

)−1Sj
))
,

(11.7)

that is a consistent estimator of the change point k∗ under mild conditions. The
above test and estimator including their modifications are expressible as functionals
of L2 (least squares) estimators therefore they are sometimes called L2 procedures.
These procedures can be applied even under milder assumptions on the distribution
of the error terms, e.g., Csörgő and Horváth (1997).

It is well known that L2 estimators and related test procedures are sensitive w.r.t.
outliers and behave also quite poorly in case of errors with heavy tailed distributions,
see Huber (1981) and Jurečková and Sen (1996) among others for usual regression
setup without a change. The same applies to the above tests and estimators for de-
tection of a change in model (11.1), i.e., applying them we can wrongly reject the
null hypothesis (no change) due to the presence of an outlier or heavy tailed dis-
tribution of the error terms and k̂∗n is wrongly classified as an estimator of change
point. Therefore, it is desirable to develop test procedures that are sensitive w.r.t.
a change in regression parameters but insensitive w.r.t. outliers. To develop such
tests, we can modify the test statistic Tn,0 along the line of robust methods, i.e., the
least squares estimators and L2 residuals are replaced by their robust counter parts,
in other words replace them by M-estimators and M-residuals, respectively.

There are procedures focusing on detecting outliers in regression models as well
as in time series, for more information see, e.g., the contribution by Galeano and
Peña (Chap. 15) where such procedures are developed and studied for various uni-
variate as well as multivariate time series. Another possibility of identification of
outliers is the conditional quantile approach, see the contribution by Barme, Chap. 3.

Recall the definition of M-estimators. In model (11.1) with k∗ = n the M-esti-
mator β̂n(ψ) of the regression parameter β generated by a convex loss function ρ

with the related monotone score function ψ = ρ′ a.s. is defined as a minimizer of

n∑
i=1

ρ
(
Yi − xTi b

)

w.r.t. b, which often reduces to finding the solution of the equation

n∑
i=1

xiψ
(
Yi − xTi b

)= 0.

For further information, see, e.g., Huber (1981), Jurečková and Sen (1996). Then
the M-residuals are defined as

êi,n(ψ)=ψ
(
Yi − xTi β̂n(ψ)

)
, i = p, . . . , n− p, (11.8)
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and the related partial sums of weighted M-residuals as

Sk(ψ)=
(
Sk1(ψ), . . . , Skp(ψ)

)T =
k∑

i=1

xi êi,n(ψ), k = p, . . . , n− p. (11.9)

Various functionals of Sk(ψ), k = p, . . . , n− p, can be used as robust test proce-
dures. Particularly, we can introduce two robust analogs of Tn,0:

Tn,0(ψ)= max
p≤k<n−p

{
STk (ψ)C

−1
k Cn

(
C0
k

)−1Sk(ψ)
}
/σ̂ 2

n (ψ) (11.10)

and

Tn,00(ψ)

= maxp≤k<n−p{(β̂k(ψ)− β̂
0
k(ψ))

T ((Ck)
−1 + (C0

k)
−1)−1(β̂k(ψ)− β̂

0
k(ψ))}

σ̂ 2(ψ)
,

(11.11)

where σ̂ 2
n (ψ) is a suitable standardization possibly depending on observations.

Clearly, Tn,0(ψ) and Tn,00(ψ) are identical for ψ(x)= x while they generally differ
otherwise, but they are at least asymptotically equivalent. Since Tn,00(ψ) is compu-
tationally more demanding Tn,0(ψ) and its modifications are preferred.

Since Tn,0(ψ)→∞ in probability as n→∞ even under H0 test statistics that
are bounded in probability under H0 and tend to∞ under alternatives are preferred.
For instance, the following statistics have the desired properties under mild condi-
tions:

Tn,1(ψ)= sup
0<t<1

{ST�(n+1)t�(ψ)C−1
n S�(n+1)t�(ψ)

σ̂ 2
n (ψ)

}
(11.12)

and

Tn,B(ψ)= 1

n

n−p∑
k=p

STk (ψ)C
−1
n Sk(ψ)

σ̂ 2
n (ψ)

, (11.13)

where �a� denotes the integer part of a. Statistic Tn,1(ψ) is called max-type while
Tn,B(ψ) is sum-type or Bayesian type. Sometimes simple statistics depending only
on Sk,1, k = p, . . . , n − p, that are functionals of partial sums of M-residuals are
used. A number of other test statistics have been proposed and studied, e.g., Hušková
(1990), Hušková (1998) Antoch and Hušková (1989), Hušková and Picek (2002),
etc. The problem is the estimator σ̂ 2

n (ψ) that will be discussed in the next subsection.
Large values of the above test statistics indicate that the null hypothesis is vio-

lated. We need at least approximations of the critical values with pre-chosen level α,
i.e., approximations for the null distributions of the test statistics is needed. It can
be obtained either through the limit null distribution or via bootstrap. The limit be-
havior under various sets of assumptions is studied in the following subsection.
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11.2.2 Assumptions and Theoretical Results

The limit behavior of the above test statistics and their modifications have been stud-
ied under various assumptions on the score function ψ , regression vectors x1,x2, . . .

and the distribution of error terms e1, e2, . . . . The considered assumptions on ψ are
rather standard in the framework of robust statistics. We will show that the limit be-
havior of the test statistics sometimes depends on x1,x2, . . . . Concerning assump-
tions on e1, e2, . . . we discuss here two main sets of assumptions. The first one as-
sumes i.i.d. random errors which has been quite extensively studied in the literature.
The other one admits dependence that is of recent interest.

At first, we formulate the assumptions on the score function ψ and the random
error distribution function F :

(A.1) ψ are monotone (nondecreasing) functions, λF (t) = −
∫
ψ(x − t) dF (x),

t ∈R, λF (0)= 0, λ′F (0) > 0, λ′(t) exists in a neighborhood of 0 and is Lips-
chitz in a neighborhood of 0, e.g., for |t | ≤ c0 with some c0 > 0.

(A.2)
∫ |ψ(t)|2+� dF(t) <∞ for some �> 0 and∫ ∣∣ψ(x + t2)−ψ(x + t1)

∣∣2 dF j (x)≤ C1|t2 − t1|κ , |t1|, |t2| ≤ c0

for some 1≤ κ ≤ 2, c0, c1 > 0.

These assumptions are quite standard in robust statistics. For further information on
the choice of ψ , see the classical works on robust methods, e.g., Jurečková and Sen
(1996), Huber (1981).

Let us recall some of the most often considered ψ -functions. The classical choice
ψ(x) = x, x ∈ R, leads to the ordinary least squares (OLS) and L2-residuals.
A choice of ψ(x)= signx, x ∈ R, leads to L1-estimators and L1-residuals, some-
times called LAD (least absolute deviation) procedures. Huber (1981) introduced
ψ(x)= xI {|x| ≤K} +K signxI {|x|>K}, x ∈R for some K > 0, which is one of
the most often used score functions, usually known as the Huber function.

Concerning the distribution of the error terms e1, . . . , en it is assumed:

(B.1) {ei}i is a sequence of i.i.d. random variables with common distribution func-
tion F .

We consider two basic types of assumptions on the regression vectors x1, . . . ,xn.
Particularly, we assume that either xi , . . . ,xn have “no trend” (see (C.1)–(C.3) be-
low) or they have “a trend” (see (11.18) below). The former case is called non-
trending regression while the later one is usually called trending regression.

The non-trending regression assumes:

(C.1) xi1 = 1, i = 1, . . . , n, and
∑n

i=1 xij = 0, j = 2, . . . , p.
(C.2) There exists a positive definite p × p matrix C such that for any sequence

{ln}n with the properties ln ≤ n and limn→∞ ln =∞, as n→∞,

max
1≤k≤n−ln

∥∥∥∥ 1

ln
(Ck+ln −Ck)− C

∥∥∥∥=O
(
(log ln)

−1)

uniformly in 1≤ k ≤ n− ln, where ‖.‖ denotes the Euclidean norm.
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(C.3) It holds, as n→∞,

max
1≤k≤n

{
1

k

k∑
i=1

‖xi‖4 + 1

n− k

n∑
i=k+1

‖xi‖4

}
=O(1).

Next, the main assertions under H0 for non-trending regression are stated.

Theorem 11.1 Let (Y1,x1), . . . , (Yn,xn) follow the model (11.1). Moreover, let as-
sumptions (A.1)–(A.2), (B.1) and (C.1)–(C.3) be satisfied. Let

σ̂ 2
n (ψ)=

1

n

n∑
i=1

ê2
i,n(ψ). (11.14)

Then under H0

lim
n→∞P(Tn,0(ψ)≤ t + 2 log logn+ p log log logn− 2 log

(
2Γ (p/2)

)

= exp
{−2 exp{−t/2}}, t ∈R, (11.15)

lim
n→∞P

(
Tn,1(ψ)≤ x

)= P

(
sup

0<t<1

p∑
j=1

B2
j (t)≤ x

)
, x ∈R, (11.16)

lim
n→∞P

(
Tn,B(ψ)≤ x

)= P

(∫ 1

0

p∑
j=1

B2
j (t) dt ≤ x

)
, x ∈R, (11.17)

where {Bj (t); t ∈ (0,1)}, j = 1, . . . , p, are independent Brownian bridges and

Γ (p)=
∫ ∞

0
tp−1 exp{−t}dt.

Next, we turn to trending regression. To avoid quite complex formulations of the
assumptions, we consider only polynomial regression:

xi =
(
1, i/n, . . . , (i/n)p−1)T , i = 1, . . . , n. (11.18)

Here is the related assertion.
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Theorem 11.2 Let (Y1,x1), . . . , (Yn,xn) follow the model (11.1). Let (A.1)–(A.2)
and (B.1) be satisfied and let σ̂ 2

n (ψ) be defined in (11.14). Then under H0

lim
n→∞P

(
Tn,0(ψ)≤ t + 2 log logn+ p log log logn− 2 log

(
2p/2Γ (p/2)

p

))

= exp
{−2 exp{−t/2}}, t ∈R, (11.19)

lim
n→∞P

(
Tn,1(ψ)≤ x

)= P
(

sup
0<t<1

ST (t)C−1(1)S(t)≤ x
)
, x ∈R, (11.20)

lim
n→∞P

(
Tn,B(ψ)≤ x

)= P

(∫ 1

0
ST (x)C−1(1)S(x) dt ≤ x

)
, x ∈R, (11.21)

where

S(t)=
∫ t

0
h(x) dW(x)−C(t)C(1)−1

∫ 1

0
h(x) dW(x),

C(t)=
∫ t

0
h(x)hT (x), dx, t ∈ (0,1),

h(x)= (1, x, . . . , xp−1)T , x ∈ (0,1)

and {Wj(t); t ∈ (0,1)}, j = 1, . . . , p, are independent Wiener processes.

Remarks

• For ψ(x)= x, we get classical results known for L2 procedures.
• The proof of Theorem 11.1 together with some related results for non-trending

regression can be found, e.g., in Hušková (1996), while the proof of Theorem 11.2
can be found in Hušková and Picek (2002) and Aue et al. (2009). Hušková (2000,
2001) considered and studied a class of invariant robust tests. The assertions hold
true even under weaker assumptions but formulation of the assumptions becomes
quite complex.

• Under the assumptions of either theorems, the limit distributions depend neither
on the choice of ψ and nor on the error distribution which means that the test
statistics are asymptotically distribution free (under H0).

• In case of non-trending regression (Theorem 11.1), the limit behaviors of the
test statistics do not depend on the regression vectors x1, . . . ,xn while in case of
polynomial trend this is not the case for Tn,1(ψ) and Tn,B(ψ) (Theorem 11.2).

• The test statistics Tn,1(ψ) and Tn,B(ψ) have the limit distribution as functionals
of the Wiener processes. Therefore, approximations for the critical values can be
obtained simulating the limit processes.

• The limit distribution of Tn,0(ψ) belongs to the class of extreme values distribu-
tions. These results provide simple approximations for critical values, however
the convergence is extremely slow.

• Bootstrap based on M-residuals gives good results both from theoretical results
and simulations, see Hušková and Picek (2002) and Hušková and Picek (2004).
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• σ̂ 2
n (ψ) defined in (11.14) is an acceptable estimator of var{ψ(e1)}.

• It can be shown that if limn→∞‖δn‖→ 0, limn→∞‖δn‖√n→∞ and k∗ = �ns�
for some s ∈ (0,1) then min(Tn,1(ψ),Tn,B(ψ))→P ∞. The same holds true for
Tn,0(ψ) if limn→∞‖δn‖√n(log logn)−1 =∞.

• Multiple changes. Marušiaková (2009) focused on linear models with trending
regressors and independent errors. She generalized the L2-tests proposed by Bai
(1998) to M-type tests.

Next we give a general remark on the proofs of the limit behavior of our test
statistics for ψ fulfilling (A.1), (A.2). There are three main steps for proving the
assertions (11.16), (11.17), (11.20) and (11.21). To get the assertions on Tn,1(ψ)

and Tn,B(ψ), we need to show:

•

max
p≤k≤n−p

1√
n

∣∣∣∣∣
k∑

i=1

xi êi,n(ψ)−
(

k∑
i=1

xiψ(ei)−CkC−1
n

n∑
j=1

xjψ(ei)

)∣∣∣∣∣= oP (1),

• convergence (in D(0,1)) of the process

{
Vn(t)=C−1/2

n

�n�∑
i=1

xiψ(ei), t ∈ (0,1)

}

to the p-dimensional Wiener process with independent components,
•

σ̂ 2
n (ψ)− σ 2(ψ)= oP (1).

To show (11.15) and (11.19), we need stronger results, particularly, instead of the
convergence of the process {Vn(t), t ∈ (0,1)} a strong approximation with a certain
rate is needed.

Now we turn to the situation when {Yi,xi}i is a sequence of weakly dependent
random vectors. We assume:

(D.1) For any i ∈ Z, xi = g1(ξ i , ξ i−1, . . .), where g1(·) is a p-dimensional measur-
able function, {ξ i} is a sequence of i.i.d. random vectors with dimension q1,
and E‖xi‖2+� <∞ for some �> 0.

(D.2) For any i ∈ Z, ei = g2(ζ i , ζ i−1, . . .), where g2(·) is a measurable function,
{ζ i} is a sequence of i.i.d. random vectors with dimension q2.

(D.3) The sequences {ei} and {xi} are independent.
(D.4) For all i ∈ Z,

∞∑
L=1

∥∥xi − x(L)i

∥∥
2 <∞,

where

x(L)i = h
(
ξ i , ξ i−1, . . . ξ i−L+1, ξ

(L)
i−L, ξ

(L)
i−L−1, . . .

)
,
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with

ξ
(L)
i−L, ξ

(L)
i−L−1, . . .

being i.i.d. with the same distribution as ξ0 and independent of {ξ i}.
(D.5) For ψ(ei), i ∈ Z, the following is satisfied:

∞∑
L=1

sup
|a|≤a0

∥∥ψ(ei − a)−ψ
(
e
(L)
i − a

)∥∥
2 <∞

for some a0 > 0, where

e
(L)
i = g2

(
ζ i , ζ i−1, . . . ζ i−L+1, ζ

(L)
i−L, ζ

(L)
i−L−1, . . .

)
with

ζ
(L)
i−L, ζ

(L)
i−L−1, . . .

being i.i.d. with the same distribution as ζ 0 and independent of {ζ i}.
Assumptions (D.1)–(D.2) correspond to Bernoulli shifts and (D.4)–(D.5) model

dependence called Lp − m approximability. This type of assumptions is coming
from Hörmann and Kokoszka (2010) and Horváth and Kokoszka (2012) where the
concept of Lp −m approximability is introduced and studied. Discussion on rela-
tions to other type of dependence and as well as various particular cases are also
presented there.

Here we consider the test statistic

Tn,2(ψ)= sup
0<t<1

{
1

n
ST�(n+1)t�(ψ)

(
�̂n(ψ)

)−1S�(n+1)t�(ψ)
}
, (11.22)

where Sk(ψ) is defined in (11.9),

�̂n(ψ)−�(ψ)= oP (1) (11.23)

with

�(ψ) = lim
n→∞var

{
1√
n

n∑
i=1

xiψ(ei)

}

= E
(
x1xT1
)
Eψ2(e1)+ 2

∞∑
v=1

E
(
x1xTv
)
E(ψ(e1)ψ(e1+v). (11.24)

Theorem 11.3 Let {Yi,xi}i follow model (11.1). Let assumptions (A.1)–(A.2),
(D.1)–(D.5) and (11.23) be satisfied. Moreover, let �(ψ) be positive definite. Then
under H0

lim
n→∞P

(
Tn2(ψ)≤ x

)= P

(
sup

0<t<1

p∑
j=1

B2
j (t)≤ x

)
, x ∈R.
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The variance matrix �(ψ) can be estimated as follows:

�̂n(ψ)=
∑
|k|<q

(
1− |k|/q)�̂k,

where q = q(n) and ωq is a kernel function specified below, �̂k is the k-th lag
sample covariance corresponding to �k , i.e.,

�̂k =
⎧⎨
⎩

1
n

∑n−k
i=1 xixTi+kψ(êi)ψ(êi+k), k ≥ 0,

�̂
T

−k, k < 0.
(11.25)

Remarks

• The proof of this theorem together with further results is found in Prášková and
Chochola (2013). We survey here the basic results.

• Under mild conditions, the test is consistent.
• The properties of estimation of �̂n(ψ) are studied in Chochola et al. (2013).
• If {ei}i is a sequence of i.i.d. random variables we can use

�̂n(ψ)= 1

n
Cnσ̂

2
n (ψ)

with σ̂ 2
n (ψ) defined in (11.14) and Tn2(ψ) reduces to Tn1(ψ).

• Similarly as in independent observations approximations for the critical values
can be obtained either simulating asymptotic distribution or applying proper boot-
strap (in this case circular block bootstrap works well).

• Another type of dependence was considered by Hušková and Marušiaková
(2012).

11.3 Robust Estimators of a Change

This section concerns M-estimators of the change point in regression models with
a single change as well as multiple changes. Results on consistency and limit distri-
bution for local alternatives are discussed.

We start with regression models with a single change (11.1), nonzero δn and

k∗ = �ns�, for some s ∈ (0,1). (11.26)

Motivated by the L2-estimator k̂∗n defined in (11.7) we introduce the M-estimator
k̂∗n(ψ) as follows:

k̂∗n(ψ) = min
{
k;p < k < n− p,STk (ψ)C

−1
k Cn

(
C0
k

)−1Sk(ψ)

= max
p≤j<n−pSTj (ψ)C

−1
j Cn

(
C0
j

)−1Sj (ψ)
}
. (11.27)
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Other estimators, e.g., the estimator related to Tn1(ψ), can be also introduced, see
Antoch and Hušková (1999, 2000).

Antoch and Hušková (2001) proved the following theorem.

Theorem 11.4 Let {Yi,xi}i follow model (11.1). Let assumptions (A.1)–(A.2),
(B.1)–(B.4) and (11.26) be satisfied and let, moreover,

lim
n→∞
√

logn‖δn‖→ 0, lim
n→∞‖δn‖

√
n/ logn→∞. (11.28)

Then

κ2(ψ,F )δTn Cδn
(
k̂∗n(ψ)− k∗

)→D V,

where

κ2(ψ,F )= (λ′F (0))2∫
ψ2(x) dF (x)

,

V = arg max
{
W∗(t)− |t |/2; t ∈R

}

with {W∗(t); t ∈R} being a two-sided Wiener process. The assertion remains true if
κ2(ψ,F ) is replaced by a consistent estimator.

Remarks

• The explicit form of the distribution of V is known see, e.g., Csörgő and Horváth
(1997).

• The assertion of Theorem 11.4 implies a consistency result:

n‖δn‖2(k̂∗n(ψ)− k∗
)
/n=OP (1).

• The limit distribution of k̂∗n(ψ) depends on the error distribution F and the score
function ψ through κ2(ψ,F ). If F is known, then under some regularity condi-
tions on F the score function ψ can be chosen in such a way that the asymptotic
variance of k̂∗n(ψ) is minima within the considered class of estimators.

• The related M-estimators of β and β+ δn can be determined from Y1, . . . , Yk̂∗n(ψ)
and Y

k̂∗n(ψ)+1, . . . , Yn, respectively. They are
√
n-consistent.

• The alternative (11.28) is a local type. The limit distribution under fixed alter-
natives is more complex, for more information see Antoch and Hušková (1999)
among others.

• The confidence interval can be constructed using the limit distribution and a con-
sistent estimator of κ2(ψ,F ). Another possibility is to use a bootstrap. For more
details see Antoch and Hušková (1999) and Hušková and Kirch (2010).

• Other estimators and their properties for independent observations are studied,
e.g., in Antoch and Hušková (1999, 2000, 2001).
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Concerning related papers, under slightly different assumptions on x1, . . . ,xn
Bai (1995) studied limit properties of LAD-estimators of k∗,β,β + δn defined as
minimizers of

k∑
i=1

∣∣Yi − xTi b1
∣∣+

n∑
i=k+1

∣∣Yi − xTi b2
∣∣

w.r.t. k,b1,b2. He showed that under local alternatives these estimators have the
same type of the limit distribution as described in Theorem 11.4.

Fiteni (2002) considered a more general regression setup with dependent error
terms (strong mixing) and studied limit properties of the estimators of k∗,β,β + δn
defined as minimizers of

k∑
i=1

ρ
((
Yi − xTi b1

)
/s1,k
)+

n∑
i=k+1

ρ
((
Yi − xTi b2

)
/sk+1,n

)

w.r.t. k,b1,b2. Here ρ is a convex loss function satisfying (A.1)–(A.2), s1,k and
sk+1,n are scale estimators based on Y1, . . . , Yk and Yk+1, . . . , Yn, respectively.
These estimators of the change point generally differ from k̂∗n(ψ) but the asymp-
totic behavior for i.i.d. error terms and for local alternatives coincides. The estima-
tors proposed by Fiteni (2002) are scale invariant which is not generally true for
k̂∗n(ψ).

There are also results for multiple changes. Toward this we consider multiple
change regression model:

Yi =
q+1∑
j=1

k∗j−1∑
i=k∗j−1

xTi βj + ei, i = 1 . . . , n, (11.29)

where q is total number of changes, 1 = k∗0 < k∗1 < · · · < k∗q+1 = n + 1,
βj j = 1, . . . , q , are p-dimensional unknown regression parameters such that
βj 
= βj+1, j = 1, . . . , q,xi = (xi,1, . . . , xip)

T , xi,1 = 1, i = 1, . . . , n are known
regression vectors and e1, . . . , en are again random errors satisfying certain regu-
larity conditions. Bai (1998) introduced LAD-type estimators for this situation. He
defined the estimators of k∗1 < · · ·< k∗q,βj j = 1, . . . , q as minimizers of

q+1∑
j=1

kj∑
i=kj−1+1

∣∣Yi − xTi bj
∣∣

w.r.t. k1, . . . , kq,b1, . . . ,bq+1 under side condition k∗j − k∗j−1 ≥ cn3/4 for some
c > 0. It is shown that the proposed estimators are consistent under mild assump-
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tions. Additionally under fixed alternatives the limit distribution of the estimators is
derived and further results are discussed.

In practice an increasing interest is payed to estimation of the number of changes,
i.e., when also q is unknown in (11.29). Bai (1998) proposed LAD type estimator
with penalty term. Particularly, he proposed to estimate q as the minimizer of

min∗
1

n

q+1∑
j=1

kj−1∑
i=kj−1

∣∣Yi − xTi β̂j,q

∣∣+ 1

2
(q + 1)(p+ 1) logn,

where min∗ is the minimum over the set {1 = k0 < k1 < · · · < kq < kq+1 =
n, kj − kj−1 ≥ nγ } with properly chosen 0 < γ ≤ 1 and β̂j,q is LAD estimator of
βj based on Ykj−1 , . . . Ykj−1, j = 1, . . . , q − 1. Such estimators of the total number
of changes are consistent. Ciuperca (2011a) and Ciuperca (2011b) considered and
studied LAD type estimators in nonlinear regression with multiple changes both
with known and unknown number of changes. To get an estimator of the number
of changes for penalization a modified Schwarz criterion is used. Ciuperca (2009)
deals with M-estimators in nonlinear regression with multiple changes. In all men-
tioned papers on multiple changes the error terms are supposed to be i.i.d. with some
additional properties.

11.4 Miscellaneous

11.4.1 Sequential Robust Procedures

We shortly mention a class of sequential robust procedures for detection of linear
regression model

Yi = xTi β i + ei, 1≤ i <∞, (11.30)

with possible changes in the p-dimensional regression parameters βi ,1 ≤ i <∞,
{xi}i are known p-dimensional regression vectors and {e}i is a sequence of the error
terms satisfying certain regularity assumptions. It is assumed that a training sample
of size m with no instabilities is available, i.e., β1 = · · · = βm and the observations
Y1, . . . , Ym represent the training period (historical data). These observations are
used for calibration of the model and used in monitoring afterwards. It is assumed
that the data are arriving sequentially.

Detection of a change in the regression model is formulated as a sequential hy-
pothesis testing problem, where the null hypothesis HS

0 corresponds to the model
without any change, i.e.,

HS
0 : β i = β0, 1≤ i <∞,
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and the alternative hypothesis HA reflects that the model changes at some unknown
time-point, that is

HS
A : there exists k∗ ≥ 1 such that βi = β0,1≤ i < m+ k∗, but

βi = β0 + δm, m+ k∗ ≤ i <∞, δ 
= 0,

where β0, δ = δm and k∗ = k∗m are unknown parameters.
For the detection of changes in the above model, Chu et al. (1996), Berkes et al.

(2004), Horváth et al. (2004), Zeileis et al. (2005), Leisch et al. (2000), Aue et al.
(2006), etc. studied various procedures based on L2-estimators and L2-residuals.

Now, we introduce robust sequential analogs of some test developed in the above
mentioned papers. Our procedures will be based on the M-estimators β̂m(ψ) based
on Y1, . . . , Ym and M-residuals ê1,m(ψ), i ≥ 1 defined in (11.8). Particularly, we use
the quadratic forms of the partial sums of weighted M-residuals

Q(k,m;ψ)=
(

1√
m

m+k∑
i=m+1

xi êi,m(ψ)

)T (
�̂m(ψ)

)−1

(
1√
m

m+k∑
i=m+1

xi êi,m(ψ)

)
,

k ≥ 1,

where �̂m(ψ) is an estimator of the asymptotic variance of

�(ψ)= lim
m→∞var

{
1√
m

m∑
i=1

xiψ(ei)

}
.

The null hypothesis is rejected as soon as for some k

Q(k,m;ψ)/qγ (k/m)≥ c,

for an appropriately chosen c= cγ (α), where qγ (t), t ∈ (0,∞) is a suitable bound-
ary (weight) function. In this case, we stop the procedure and confirm a change,
otherwise we continue monitoring. The associated stopping rule is given by

τm = τm(γ )= inf
{
1≤ k < Tm :Q(k,m,ψ)/qγ (k/m)≥ c

}

for T > 0. An approximation for the tuning constant c can be obtained from the
limit behavior of max1≤k≤mT Q(k,m,ψ)/qγ (k/m) as m→∞. It can be shown
that under (A.1)–(A.2), (D.1)–(D.5) and (11.23) with n replaced by m and under HS

0

lim
m→∞P

(
max

1≤k≤mT
Q(k,m,ψ)/qγ (k/m)≤ x

)

= P

(
sup

0<t<T/(T+1)

(
p∑

j=1

W 2
j (t)/t

2γ

)
≤ x

)
, ∀x,
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for T > 0, where Wj(t), j = 1, . . . , p, t ∈ (0,1) are independent Brownian motions
and

qγ (t)= (1+ t)2
(
t/(t + 1)

)2γ
, t ∈R.

The proof together with further limit properties, simulations and applications are in
Koubková (2006) for i.i.d. errors and in Chochola et al. (2013) for weakly dependent
observations.

11.4.2 Rank Based Procedures

So far we have solely focused on M-procedures for detection of changes in regres-
sion models. Among robust methods belong also rank based procedures as well as
procedures based on U -statistics. Both types were developed and studied mostly
for independent observations. Probably, rank based methods were developed sooner
than M-type ones.

We mentioned here only the very simple situation when X1, . . . ,Xn are inde-
pendent random variables, Xi has a continuous distribution function and we are
interested in testing:

H0 : F1 = · · · = Fn

against the alternative

HA : there is k∗ < n such F1 = · · · = Fk∗ 
= Fk∗+1 = · · · = Fn,

where k∗ is unknown. As test statistics one can use functionals of the simple linear
rank statistics

SRk =
k∑

i=1

(
a(Ri)− ān

)
, k = 1, . . . , n,

where R1, . . . ,Rn are ranks of X1, . . . ,Xn, a(1), . . . , a(n) are scores and ān =
1
n

∑n
i=1 a(i).

Similarly to the M-type procedures the following types of test procedures were
developed and studied:

T R
n,0 = max

1≤k<n

{√
n

k(n− k)

1

σn,a

∣∣SRk ∣∣
}
,

T R
n,1 = max

1≤k<n

{
1√
n

1

σn,a

∣∣SRk ∣∣
}
,

where

σ 2
n,a =

1

n

n∑
i=1

(
a(i)− ān

)2
.
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Large values of the test statistics indicate that the null hypothesis is violated. These
test statistics are distribution free under the null hypothesis and therefore approx-
imations for the desired critical values can be simulated. Concerning their asymp-
totic properties Hušková (1997a) and Hušková (1997b) proved that if X1, . . . ,Xn

are i.i.d. with common continuous distribution function and additionally

lim inf
n→∞ σ 2

n,a > 0, lim sup
n→∞

1

n

n∑
i=1

∣∣a(i)− ān
∣∣2+δ <∞

for some positive δ, then

lim
n→∞P

(√
2 log lognT R

n,0 ≤ t + 2 log logn+ 1

2
log log logn− 1

2
logπ

)

= exp
{−2e−t

}
,

lim
n→∞P

(
T R
n,1 ≤ t

)= P
(

sup
0<s<1

∣∣B(s)∣∣≤ t
)
,

where t ∈ R and {B(s), s ∈ (0,1)} is a Brownian bridge on (0,1). The estimator of

the change point k∗ related to T R
n,0 is defined as k maximizing

√
n

k(n−k)
1

σn,a
|SRk |. It

is introduced and studied in Gombay and Hušková (1998).
The results for simple models were extended to some regression models with in-

dependent errors. P.K. Sen contributed remarkably to the rank based procedures for
detection changes in eighties, see survey papers Sen (1991) and Hušková and Sen
(1989). Antoch et al. (2008) developed and studied data driven rank based proce-
dures.

U -statistics procedures were introduced and studied, e.g., by Horváth and
Gombay (1995), Gombay (2000a, 2000b, 2001, 2004) and Horváth and Hušková
(2005).

11.5 Conclusions

The area of change-point problem is fast developing since there are many situations
in the real world with various changes. Presently, the main focus is on changes in
regression models and time series covering not only changes in regression param-
eters but also in structural dependencies. High interest is in modeling changes in
multivariate and functional data. Most of these procedures are related to L2 proce-
dures. Due to their sensitivity w.r.t. outliers or to heavy tailed error distributions it is
deserved to develop and to study robust modifications. L2 procedures can wrongly
classify outliers as a change in the model.

Big interest is also in detection of multiple changes, particularly, in estimation of
the number of change points and their locations based on robust approach.
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Statistical procedures for detection of changes are computationally complex even
for the L2 type procedures, however robust procedures are computationally still
more complex. There is a need of efficient algorithms.

Acknowledgements We gratefully acknowledge GAČR P201/12/1277 for support.
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Chapter 12
Robust Signal Extraction from Time Series
in Real Time

Matthias Borowski, Roland Fried, and Michael Imhoff

12.1 Introduction

Data streams are measured in many fields. For example, in intensive care the pa-
tient status is continuously assessed by online-monitoring systems which measure
multiple vital parameters such as blood pressure and heart rate with high sampling
frequencies of more than one observation per second. A high sampling frequency
typically leads to noisy and outlier-contaminated time series. Moreover, the result-
ing time series are often not stationary but exhibit changing trends and level shifts as
well as a changing variability of the noise, cf. the grey time series in Fig. 12.1. The
underlying time-varying trend constitutes a signal which carries relevant informa-
tion. An obvious but challenging goal is then to separate this signal from noise and
outliers in real time, see Fig. 12.1. The signal contains level shifts and trends and
is filtered by the so-called Slope Comparing Adaptive Repeated Median (SCARM)
filter, explained in Sect. 12.4.

All signal extraction procedures (also called filters) explained here are based on
the general assumption that the data yt come from of a signal which is overlaid with
additive noise and outliers:

Yt = μt + εt + ηt , t ∈ Z. (12.1)

The signal μt is assumed to be smooth, but it may exhibit changing trends and
occasional level shifts. The noise is represented by the independent error variables
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Fig. 12.1 Blood pressure in mmHg of a patient on an intensive care unit (grey) and signal extracted
by the SCARM filter (red)

εt which have a symmetric distribution with expectation zero and time-dependent
variance σ 2

t . The outlier process ηt generates impulsive, spiky noise but is equal to
zero most of the time.

Since the signal changes over time, we use rather small moving time windows
consisting of the latest n observations to approximate it in real time. A signal esti-
mator which is applied to the window sample then has to meet several demands. It
must be robust against single outliers and patches of outliers. In addition, it should
yield a good efficiency in the sense of a small bias and variability. Signal changes
like changing trends or level shifts should be traced accurately. Moreover, the fil-
ter is only applicable if the required computing time is shorter than the sampling
frequency, which is why the method must be computationally fast.

In Sect. 12.2, several methods for real time signal extraction are explained
which are based on robust estimators of location. In Sect. 12.3, we present robust
regression-based estimators. The Repeated Median (RM, Siegel 1982) has turned
out to deliver a good overall performance compared to other robust regression tech-
niques. The window width n has a large influence on the resulting signal estimation,
but it is difficult to choose an optimal window width for the RM in a real time ap-
plication. We explain existing RM-based filters with automatic and time-dependent
window width selection in Sect. 12.4. Finally, we present existing RM-based filters
for online signal extraction from multivariate time series in Sect. 12.5. A summary
and an outlook are provided in Sect. 12.6.

12.2 Location-Based Signal Extraction

Filtering procedures applying a location estimator to a moving window generally
involve the assumption of a locally constant signal. The running median (see Tukey
1977, p. 210f) estimates the signal μt in a time window {t −w, . . . , t, . . . , t +w} of
width n= 2w+ 1 by the median

ŷmed
t =med{yt−w, . . . , yt , . . . , yt+w}
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of the window observations, where the median is defined as the mean of the (n/2)-
th and ((n/2) + 1)-th order statistic if n is even. The running median is highly
robust against outliers and offers a finite-sample replacement breakdown point (fsbp,
Donoho and Huber 1983) of �n/2�/n (where �c� denotes the smallest integer not
smaller than c). That is, �n/2� of the n observations in a sample of size n need
to be replaced to achieve that the median estimator ‘breaks down’, meaning that it
delivers an arbitrarily extreme value, roughly speaking. The running median traces
level shifts well but deteriorates in trend periods, as trends are reproduced by steps.
For median concepts for uni- and multivariate data, see the contributions by Oja
(Chap. 1) and Rousseeuw and Hubert (Chap. 4). Details regarding the concept of
breakdown points can be found in the contribution by Müller, Chap. 5.

The Modified Trimmed Mean (MTM, Lee and Kassam 1985) combines the ro-
bustness and shift preservation of the running median with the smoothness and
the good efficiency of the non-robust running mean under Gaussian noise. The
MTM first calculates the local median ŷmed

t of all observations in the time win-
dow {t −w, . . . , t, . . . , t +w} and then trims, i.e., discards, the observations which
deviate by more than a specified multiple of a robust estimate of the error scale.
This scale estimator can be taken as the median absolute deviation about the me-
dian (MAD):

σ̂MAD
t = cn · med

i∈{−w,...,w}
∣∣yt+i − ŷmed

t

∣∣,
where the factor cn depends on the sample size n and ensures unbiasedness at a
specific error distribution. The arithmetic mean of the trimmed sample is then the
MTM estimate of the signal at the central window time point t :

μ̂MTM
t = 1

|It |
∑
i∈It

yt+i ,

It =
{
i ∈ {−w, . . . ,w} : ∣∣yt+i − ŷmed

t

∣∣≤ dt
}
.

Lee and Kassam (1985) suggest using dt = 2σ̂MAD
t to achieve reasonable robustness

and efficiency for Gaussian noise. Note that for dt = 0 the MTM equals the running
median, and for dt =∞ it equals the running mean.

Double window modified trimmed means (DWMTM, Lee and Kassam 1985) use
the median and MAD in a shorter inner window {t−v, . . . , t, . . . , t+v} with v < w

as initial estimator. The whole sample of size n = 2w + 1 is then trimmed based
on these estimates, before the arithmetic mean is calculated on the trimmed sample.
Using a short inner window improves shift preservation but reduces noise attenua-
tion.

Linear median hybrid filters (Heinonen and Neuvo 1987, 1988) combine linear
and median filters by applying linear subfilters to subsamples of the data and then
taking the median of the subfilter outcomes as final filter output. Such a filter is
called Linear median hybrid filter with finite impulse response, briefly FMH filter,
if all linear subfilters φ1, . . . , φM give non-zero weight to a finite number of obser-
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vations:

μ̂FMH
t =med

{
φ1(t), . . . , φM(t)

}
.

The subfilters reduce the computation time as compared to the running median with
the same window width. Moreover, the subfilters can be chosen such that polyno-
mial trends of different degrees p are traced well, making the class of FMH filters
very flexible. Several variations of FMH filters have been proposed, see Heinonen
and Neuvo (1987, 1988), Astola et al. (1989), Wichman et al. (1990), for instance.
To keep things short, we will only explain Simple FMH (SFMH) and Predictive
FMH (PFMH) filters. SFMH filters assume the signal to be locally constant (p = 0)
and use M = 3 subfilters, namely two arithmetic means and the central window
observation yt :

φ1(t)= 1

w

w∑
i=1

yt−i , φ2(t)= yt , φ3(t)= 1

w

w∑
i=1

yt+i .

Taking the central observation as the subfilter φ2(t) reduces the bias of the SFMH
at level shifts as compared to the running median (Astola et al. 1989).

PFMH filters use weighted means instead of simple arithmetic means:

μ̂PFMH
t =med

{
φA(t), yt , φB(t)

}
,

φA(t)=
w∑
i=1

hiyt−i , φB(t)=
w∑
i=1

hiyt+i .

The weights hi can be chosen in such a way that the mean squared error (MSE)
is minimized, depending on the degree p of an underlying polynomial trend. For a
linear trend (p = 1) and Gaussian noise, the weights hi = (4w− 6i+ 2)/(w2−w),
i = 1, . . . ,w, lead to signal estimates with minimal MSE (Heinonen and Neuvo
1988). Although the PFMH is based on location estimators, it can be adopted to
linear signals with nonzero trends. However, if the signal is assumed to be locally
linear, it is generally a better approach to achieve signal extraction by fitting regres-
sion lines.

12.3 Regression-Based Signal Extraction

Davies et al. (2004) propose the application of robust regression estimators in a
moving time window {t − w, . . . , t, . . . , t + w} of odd width n = 2w + 1. The es-
timate of the signal μt is then the level of the regression line at the central design
point t . In a real time application, the signal would obviously be estimated with a
delay of w time points. This approach can therefore be called delayed signal extrac-
tion. Since a time delay is often not desirable in an online-application, Gather et al.
(2006) take the level of the regression line at the rightmost window point t +w as
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signal estimate for that time point, so that the signal is estimated without time de-
lay. This approach can thus be called online signal extraction. The online approach
also allows for even window widths, since the signal is estimated (at the rightmost
window point t) in the time window {t − n+ 1, . . . , t} (Schettlinger et al. 2010).

Both the delayed and online approach assume that the signal can be approximated
well by fitting regression lines to the most recent observations. This local linearity
assumption can be expressed as follows:

μt+i ≈ μt + βt · i, i ∈ I, (12.2)

where μt+i is the signal at time t + i and βt the slope in the time window.
For the delayed approach, I = {−w, . . . ,w}, while for the online approach,
I = {−n + 1, . . . ,0}. In both cases, we aim at estimating the signal μt and the
slope βt by means of regression techniques. In the following, we explain several ro-
bust regression estimators. Given a sample yt = (yt+i )i∈I and a regression estimate
(μ̂t , β̂t ), we denote the residuals of the regression fit by

rt,i = yt+i − (μ̂t + iβ̂t ), i ∈ I.

L1 regression (see, e.g., Rousseeuw and Leroy 1987, p. 10) minimizes the sum of
the absolute values of the residuals:

(
μ̂
L1
t , β̂

L1
t

)= argmin

{
(μ̂t , β̂t ) :

∑
i∈I
|rt,i |
}
.

Calculation of L1 regression is fast (e.g., Sposito 1990), but it may deliver multi-
ple solutions. For large samples with design points on a lattice, the fsbp of the L1

estimator is approximately 1− 1/
√

2≈ 0.293 (Davies et al. 2004).
Least Median of Squares regression (LMS, Hampel 1975; Rousseeuw 1984) of-

fers larger robustness than L1 regression. It has a fsbp of �n/2�/n≈ 50 % for sam-
ples of size n, which is the maximal breakdown point for regression equivariant es-
timators (Davies and Gather 2005). The LMS minimizes the median of the squared
residuals: (

μ̂LMS
t , β̂LMS

t

)= argmin
{
(μ̂t , β̂t ) :med

i∈I
{
r

2
t,i

}}
.

The LMS shows good resistance against many large outliers, since even almost 50 %
outliers of any value do not cause a large bias. This is the reason why the LMS is
almost unbiased at level shifts in the delayed setting. However, the LMS is com-
putationally expensive and the LMS filter output is very wiggly because of its high
variability.

The Deepest Regression (DR, Rousseeuw and Hubert 1999) estimator is given
by (

μ̂DR
t , β̂DR

t

)= argmax
{
(μ̂t , β̂t ) : rdepth

(
(μ̂t , β̂t ),yt

)}
,
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where rdepth((μ̂t , β̂t ),yt ) is the regression depth of a fit (μ̂t , β̂t ) to a sample yt :

rdepth
(
(μ̂t , β̂t ),yt

) = min
i∈I
{
min
{
L+(i)+R−(i),R+(i)+L−(i)

}}
,

L+(i) = #{j ∈ Ileft : rt+j ≥ 0},
R−(i) = #{j ∈ Iright : rt+j < 0}

with Ileft = {−w, . . . , i} and Iright = {i + 1, . . . ,w} for the delayed approach and
Ileft = {−n + 1, . . . ,−n + i} and Iright = {−n + i + 1, . . . ,0} for the online ap-
proach. L−(i) and R+(i) are defined in the same way. In case of more than one
fit with maximal regression depth, the deepest regression estimate is the average of
these fits. The DR is computationally less expensive than LMS and Least Trimmed
Squares (LTS, Rousseeuw 1984) regression, but it has a fsbp of only 1/3 in case of
equally spaced design points (Gather et al. 2006). For more details regarding depth
statistics, see the contribution by Mosler, Chap. 2.

The Repeated Median (RM, Siegel 1982) regression estimator (μ̂RM
t , β̂RM

t ) is
given by

β̂RM
t = med

i∈I

{
med
j∈I\{i}

yt+i − yt+j
i − j

}
,

μ̂RM
t = med

i∈I
{
yt+i − iβ̂RM

t

}
.

The RM is highly robust with a fsbp of �n/2�/n. A fast update-algorithm allows
calculation of the RM in linear time (Bernholt and Fried 2003).

Davies et al. (2004) examine delayed L1, RM and LMS regression with respect
to their suitability for real time signal extraction. They compare the robustness, the
computing time, the efficiency for Gaussian noise and the tracking of level shifts
and trend changes, and find the RM to deliver the best overall performance. It of-
fers higher robustness than the L1 and yields smoother signal extractions and faster
computation than the LMS. However, the LMS traces level shifts and trend changes
better than the RM.

Gather et al. (2006) examine DR, RM, LMS, and LTS regression for online sig-
nal extraction. Again, the RM shows the best overall performance w.r.t. robustness,
computing time and efficiency given various data situations.

The RM is obviously a good candidate for real time signal extraction. It is
Lipschitz-continuous in case of equidistant design points, which means that small
changes in the data do not lead to large changes of the signal estimate. Furthermore,
the RM slope estimator is unbiased and Fisher-consistent for a fixed design and
symmetrically distributed errors (Siegel 1982). In addition, the RM is regression
and scale equivariant. For finite Gaussian samples, the estimator μ̂RM

t shows a quite
large efficiency of more than 60 % compared to the least squares estimator (Gather
et al. 2006), and its asymptotic efficiency is 63.7 % (Hössjer et al. 1995).

There are several extensions and modifications of the RM, mainly for improv-
ing its efficiency and its ability to trace level shifts. These are, amongst others, the
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Fig. 12.2 Bias-variance-dilemma for the choice of the window width: a large value of n leads to
smooth signal extractions, and a small n to signal extractions which are close to the data

Predictive Repeated Median Hybrid filter (PRMH, Fried et al. 2006), Weighted Re-
peated Median regression (WRM, Fried et al. 2007) and Trimmed Repeated Median
(TRM) regression (Bernholt et al. 2006). Furthermore, Fried (2004) proposes an ex-
tension of the RM which includes rules for outlier detection and shift preservation.
Like for all localized signal extraction procedures, the RM is affected by the well-
known bias-variance-dilemma for the choice of the window width n. As long as the
data stream shows a stable trend, a large n should be used to obtain smooth signal
extractions. However, when a sudden change occurs in the data (e.g. a level shift),
the window width n should be chosen small to ensure that the signal estimate traces
the change with high accuracy. Figure 12.2 illustrates this dilemma for the choice of
the window width n. Some of the aforementioned RM-based signal filters improve
the tracking of level shifts, but all use a fixed window width specified by the analyst.
This motivates the data-adaptive choice of the window width, meaning that n should
be adjusted to the current data situation at each time point t .

12.4 RM-Based Filters with Data-Adaptive Width Selection

Gather and Fried (2004) propose a window width adaption approach for the de-
layed RM filter. Their idea is adopted by Schettlinger et al. (2010) who develop an
RM-based online filter with data-adaptive width selection, the adaptive online RM
(aoRM) filter.

12.4.1 The aoRM

The aoRM selects the window width according to the current data situation at each
point in time. The window width at time t is denoted by nt in the following. The
aoRM uses a goodness-of-fit test to decide whether the window width should be
adapted. In short, the aoRM algorithm works as follows: Given a time point t and a
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window width nt , an RM regression is performed in the time window {t − nt + 1,
. . . , nt }. Then the aoRM uses a test to decide whether the RM fit is adequate or not.
If the RM fit is not assessed to be adequate, the window width nt is decreased.

The test applied by the aoRM uses the fact that an RM regression results in an
equal number of positive and negative residuals. The basic idea of the test is that an
RM fit is adequate only if the balance of the residual signs is given for any subset of
design points. Given an RM fit in a time window {t −nt + 1, . . . , t}, the aoRM tests
the null hypothesis that the median of the distribution of the m≤ �nt/2� rightmost
RM residual signs is zero, against the alternative that the median is not zero. Let
{rt−n+i}i∈{1,...,n} denote the residuals of the RM fit in a time window of width n (for
simplicity, we omit the time index t here). The aoRM test statistic at time t is then
the absolute sum of the signs of the m≤ �n/2� rightmost RM residuals:

T aoRM
t =

∣∣∣∣
∑
i∈J

sign(rt−n+i )
∣∣∣∣, J = {m+ 1, . . . , n}, (12.3)

where sign(·) denotes the sign function:

sign(ω)=

⎧⎪⎨
⎪⎩
−1, if ω < 0,

0, if ω= 0,

1, if ω > 0.

The null hypothesis is rejected if the test statistic exceeds a critical value which
depends on n, m and the significance level α. The critical values are obtained by
Monte Carlo simulations for small n and m; for large values of n and m, Schettlinger
et al. (2010) use quantiles of a hypergeometric distribution.

The aoRM test is applied at each time t to find an adequate window width nt .
Before we explain the aoRM algorithm we briefly discuss the input arguments that
must be chosen by the user (for more details, see Schettlinger et al. 2010):

nmin minimum window width,
nmax maximum window width,
m size of the sub-window {t −m+ 1, . . . , t} used for testing,
α significance level of the test.

The minimum and maximum window width ensure that nt ∈ {nmin, . . . , nmax} ⊂N.
The minimum width guarantees robustness against a certain number of outliers. For
example, if it is justifiable to assume that up to 10 outliers occur in a patch, nmin
should be greater than 21, due to the fsbp of the RM. The maximum window width
limits the computing time. On basis of a simulation study, Schettlinger et al. (2010)
suggest to choose the size of the sub-window m such that m≤ nmin/2. Furthermore,
they find the aoRM to show good performance using the significance level α = 0.1.

The following algorithm starts as soon as nmin observations are given, i.e. at time
t = nt = nmin:

1. Perform an RM regression in the time window {t − nt + 1, . . . , t} and obtain
μ̂RM
t .

2. If nt = nmin, go to step 4.
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3. Perform test; if H0 is rejected, set nt to nt − 1 and go back to step 1.
4. Store μ̂RM

t as aoRM signal estimate for time t .
5. Update window: set nt+1 to min{nt + 1, nmax};

Update index: set t + 1 to t .

At step 3 the aoRM tests the adequacy of the RM fit. If the null hypothesis is re-
jected, i.e., if the fit is assessed to be inadequate, the algorithm sets the window
width nt to nt − 1, i.e., the oldest/leftmost observation is excluded from the sample.
A new RM regression is then performed on the decreased sample (step 1), and it is
tested again until either the test cannot reject the null hypothesis or nt equals nmin

(step 2). In either case, μ̂RM
t is stored as aoRM signal estimate for time t (step 4). At

step 5, the aoRM updates the time window for the next time point t+1. This is done
by including the incoming new observation yt+1 into the window sample, so that it
grows up to size nt + 1. If nt + 1 > nmax, the oldest/leftmost window observation
is excluded from the window, so that nt+1 = nmax. The update step is finished by
setting the index t + 1 to t .

The aoRM decreases the window width by one when the data in the time window
cannot be assumed to have a linear structure. In other words, the aoRM reacts to
changes of the signal. Borowski and Fried (2011) propose an alternative RM-based
filter with data-adaptive width selection. Their Slope Comparing Adaptive Repeated
Median (SCARM) uses a different test procedure and a different rule for adapting
the window width.

12.4.2 The SCARM

At each time t , the SCARM tests the null hypothesis of a linear underlying signal
in the time window of size nt , against the alternative that a level shift or a trend
change occurs. To test this null hypothesis, the whole window {t − nt + 1, . . . , t} is
divided into two separate windows, a left-hand window {t −nt + 1, . . . , t −nt + !t }
and a right-hand window {t − r + 1, . . . , t}. The right-hand width r is fixed whereas
the left-hand width !t changes as nt changes, where !t = nt − r . The SCARM test
statistic is then

T SCARM
t := Dt√

Var(Dt )
, Dt := β̂ left

t − β̂
right
t ,

where β̂ left
t and β̂

right
t denote the RM slopes estimated from the left-hand and right-

hand window, respectively. Borowski and Fried (2011) propose an approach to esti-
mate Var(Dt ) which prevents masking effects induced by level shifts and improves
the power of the test. (Here masking means that the estimate of Var(Dt ) is too
large for the test to detect an existing signal change.) The null hypothesis is re-
jected if |T SCARM

t | exceeds the 1 − (α/2)-quantile of a t-distribution with f de-
grees of freedom, where f depends on !t and r . A rejection of H0 means that a
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level shift and/or trend change is assumed, so that nt is not adequate but must be
decreased.

The SCARM requires the choice of the following input arguments:

r fixed width of the right-hand window r ,
!min minimum left-hand width,
nmin minimum window width,
nmax maximum window width,
α significance level of the test.

Like for the aoRM, nmin and nmax ensure that nt ∈ {nmin, . . . , nmax} ⊂N. The min-
imum left-hand width !min ensures that the test is only performed if nt = !t + r ≥
!min + r , i.e., if the window contains enough observations for a meaningful testing.
Borowski and Fried (2011) suggest to choose identical values for r and !min, that
are greater than three times the length of the largest outlier patch expected. The
reason is that the RM is considerably biased if the proportion of aberrant obser-
vations is around 1/3. This can be seen in Fig. 12.2, where the RM signal extrac-
tions react to the level shift with a delay of approximately n/3 time points. There-
fore, if the SCARM test detects a signal change at time t , it can be assumed that
the change happened around time t − r/3. Hence, it is recommended to choose
nmin = r/3.

The SCARM starts the signal extraction as soon as nmin observations are given,
i.e. at time t = nt = nmin. The algorithm is then as follows:

1. If nt < !min + r , go to step 3.
2. Perform SCARM test; if H0 is rejected, set nt to nmin.
3. Perform RM regression in time window {t − nt + 1, . . . , t} and store μ̂RM

t as
SCARM signal estimate for time t .

4. Update window: set nt+1 to min{nt + 1, nmax};
Update index: set t + 1 to t .

The SCARM and aoRM use different principles to decrease the window width. The
aoRM aims at the largest window size for which H0 cannot be rejected. In contrast,
the SCARM searches for changes of the signal and sets nt to the minimal value nmin

whenever a change is detected to achieve that the RM depicts the change with high
accuracy.

The aoRM and SCARM finally estimate the signal by means of online RM re-
gression, meaning that their performance is strongly related to the performance
of the test procedure. Hence, Borowski and Fried (2011) compare the two filters
by focusing on the properties of the specific tests, and find that the test of the
SCARM outperforms the aoRM test. The tests show comparable robustness prop-
erties, but the SCARM test offers larger power in particular for small window sam-
ples and also detects changes much faster than the aoRM in case of Gaussian noise.
Thus, the SCARM traces level shifts and trend changes more accurately than the
aoRM.
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Fig. 12.3 (a) Time series and signal extraction by aoRM and SCARM; (b) adapted window widths

12.4.3 Application

We apply the aoRM and SCARM retrospectively to a time series (yt ), t =
1, . . . ,600, of blood pressure measurements using the R functions adore.filter
(adaptive online repeated median filter) and scarm.filter from the R package rob-
filter (Fried et al. 2012). The following input arguments are used: nmin = 10,
nmax = 200, m= 30= r = !min, and α = 0.01. The time series (yt ) and the signal
extraction of the aoRM and SCARM are shown in Fig. 12.3(a); the lower part (b)
of Fig. 12.3 shows the adapted window widths. Apparently, it is difficult if not im-
possible to reproduce the course of the data time series (yt ) by the time series (nt )
of the widths adapted by the aoRM (red, dashed). This fact has already been re-
marked by Schettlinger (2009, Chap. 3.3.3). In contrast, the window widths of the
SCARM (blue, solid) do allow a conclusion about the course of the data time se-
ries (yt ). When the time series (yt ) show a trend change or level shift, the SCARM
sets the window width nt down to its minimum value nmin. Afterwards, the SCARM
increases nt successively until the next signal change is detected. In our view, the
SCARM detects all relevant signal changes here, and no type I error happens. As a
consequence, the SCARM signal estimates (blue, solid) are close to the data when
there are signal changes and is smooth when the course of the time series (yt ) is
stable. In contrast, the aoRM does not fulfill both aims simultaneously: The aoRM
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signal extraction (red, dashed) is smooth, but signal changes are not traced exactly,
cf. the distinct signal change around time t = 100 for instance.

12.5 RM-Based Filters for Multivariate Time Series

Signal extraction from a multivariate data stream could be achieved by applying
a univariate filter to each component of the multivariate stream. However, this ap-
proach does not consider the dependencies between the measured variables. We
therefore present two recently developed multivariate RM-based filters, which in-
clude the information given by the cross-dependence structure.

The general assumption (12.1) of an underlying signal which is interfered by
noise and outliers can be extended to multivariate time series (yt ) with yt =
[yt (1), . . . , yt (K)]′:

Yt = μt + εt + ηt , t ∈ Z, (12.4)

where μt = [μt(1), . . . ,μt (K)]′ is the K-variate signal vector at time t and εt =
[εt (1), . . . , εt (K)]′ the multivariate noise generating process with E[εt (k)] = 0 for
all k = 1, . . . ,K and smoothly varying covariance matrix Cov[εt ] =�t . The covari-
ance matrix can be non-diagonal, i.e., possibly Cov[εt (i), εt (j)] = σt (i, j) 
= 0 for
some i 
= j , to allow for correlations between error components. Like for the uni-
variate case, the outlier generating mechanism ηt ∈ R

K produces impulsive, spiky
noise but is zero most of the time.

Referring to the working model (12.4), Lanius and Gather (2010) transfer the lo-
cal linearity assumption of the delayed signal extraction approach (12.2) to the mul-
tivariate case: They assume that the K-variate signal can be approximated locally by
K regression lines in a time window {t −w, . . . , t, . . . , t +w} of width n= 2w+ 1.
The central level of the k-th regression line is then the k-th component of the signal
estimation vector μ̂t . Lanius and Gather propose the multivariate Trimmed Repeated
Median-Least Squares (TRM-LS) regression which is an enhancement of the uni-
variate TRM-LS by Bernholt et al. (2006), mentioned in Sect. 12.3.

12.5.1 The TRM-LS

Given a window sample (yt−w, . . . , yt , . . . , yt+w) ∈ R
K×n, the algorithm of the

multivariate TRM-LS regression is as follows:

1. Perform an RM regression for each of the K univariate window samples
(yt−w(k), . . . , yt (k), . . . , yt+w(k)), k = 1, . . . ,K .

2. Regard the resulting RM residuals as a (K×n)-sample (rt−w, . . . , rt , . . . , rt+w),
where rt+i = [rt+i (1), . . . , rt+i (K)]′, i =−w, . . . ,w, and estimate the local er-
ror covariance matrix Σt on this residual sample using a robust covariance esti-
mator.
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3. Use the estimate Σ̂t to detect residual vectors which are outliers w.r.t. the local
covariance structure, i.e., residual vectors rt+i with

r
′
t+i Σ̂−1

t rt+i > d,

where d > 0 is a suitable upper bound. Remove those observation vectors yt+i
from the sample, which belong to an outlying residual vector.

4. Perform a multivariate Least Squares regression on the trimmed window sample.

Lanius and Gather (2010) use the robust and fast computable orthogonalized Gna-
nadesikan-Kettenring estimator (Gnanadesikan and Kettenring 1972; Maronna and
Zamar 2002) to estimate the covariance matrix Σt . A typical choice for the upper
trimming bound d in step 4 is d = χ2

K(0.95), the 0.95-quantile of a χ2-distribution
with K degrees of freedom. For more details regarding the estimation of Σt and the
choice of d , see Lanius and Gather (2010).

The TRM-LS filter offers robustness against outliers in one or more components
as well as against outliers w.r.t. the local dependence structure. Such outliers would
possibly not be detected by univariate methods. Furthermore, the TRM-LS offers
high efficiency at Gaussian samples since LS regression is used for the final signal
estimate. However, the TRM-LS is a delayed signal filter and uses a fixed win-
dow width. Hence, Borowski et al. (2009) transfer the delayed TRM-LS to the on-
line case and combine it with the univariate aoRM. Their adaptive online TRM-LS
(aoTRM-LS) is a multivariate online filter with adaptive width selection.

12.5.2 The aoTRM-LS

Like the TRM-LS, the aoTRM-LS is based on the general assumption (12.4). How-
ever, like the aoRM, the aoTRM-LS uses the time window {t−nt+1, . . . , t}, choos-
ing the width nt at each time point with regard to the current data situation and deliv-
ering estimates of the signal vector at the most recent time point t . The aoTRM-LS
requires the prior specification of the same input arguments as the aoRM, namely
nmin, nmax, m and α. Signal extraction is started as soon as nmin observations are
present, i.e. at time t = nt = nmin. The algorithm of the aoTRM-LS is then as fol-
lows:

1. Apply the aoRM window width adaption procedure separately to each of the
K univariate window samples (yt−nt+1(k), . . . , yt (k)) to obtain K individual
adapted widths nt (k), k = 1, . . . ,K .

2. Set the overall window width nt :=mink{nt (k)}.
3. Estimate the signal vector μt from the multivariate sample (yt−nt+1, . . . , yt ) ∈

R
K×nt by the online TRM-LS.

4. Update window: set nt+1 to min{nt + 1, nmax};
Update index: set t + 1 to t .
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The overall window width nt is chosen as the minimum of the individual window
widths nt (k) in order not to violate the assumption of an underlying linear signal
(step 2). This necessity implies that nt is chosen as nmin most of the time if K
gets large. To overcome this problem, Borowski et al. (2009) suggest to apply the
aoTRM-LS block-wise. That is, the user divides the univariate components of the
multivariate time series into disjoint sets (the blocks), and the filter is then applied
separately to each block. Since the blocks are disjoint, a small individual window
width nt (k) in one block does not affect the width in another block.

12.6 Conclusions

Real time signal extraction from noisy and outlier-contaminated data stream time
series can be achieved by applying robust location or regression estimators to mov-
ing time windows containing the n most recent observations. The (double window)
modified trimmed mean combines the robustness of the running median with the ef-
ficiency of the running mean. Linear median hybrid filters take the median of linear
subfilter outcomes. Since the subfilters can be chosen w.r.t. the assumed local poly-
nomial degree of the underlying signal, this class of filters is very flexible. These
location-based filters are generally designed for locally constant underlying signals.
For time series that exhibit trends, signal filters based on local fitting of regression
lines are generally the better choice.

Regression filters can be applied in a delayed or in an online fashion. Since the
online approach estimates the signal without any time delay (except computing
time), it is recommended for real time applications. The simple robust regression
estimators presented here are the L1, Least Median of Squares (LMS) regression,
the Deepest Regression (DR), and the Repeated Median (RM) regression. The RM
has turned out to deliver the best overall performance w.r.t. robustness, computing
time, and efficiency, which is why there exist several extensions and modifications
of the RM.

The RM is a good candidate for real time signal extraction, but as any other local-
ized filtering procedure it cannot escape the bias-variance-dilemma for the choice
of the window width. The adaptive online RM (aoRM) and the Slope Comparing
Adaptive RM (SCARM) tackle this problem by choosing the window width at each
time t with respect to the current data situation. Both filters use a test to decide
whether the window width should be adapted. The test of the aoRM examines the
balance of the residual signs, whereas the SCARM test compares the RM slopes
within separate time windows. The SCARM is recommended in case of Gaussian
noise with outliers.

There exist also RM-based filters for multivariate time series which make use of
the local cross-dependencies. The Trimmed Repeated Median-Least Squares (TRM-
LS) procedure first fits K RM regression lines, one for each component of the
K-variate window sample. The local error covariance matrix is then estimated on the
RM residuals and used to detect outlying observation vectors. The signal is finally
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estimated on the trimmed window sample by means of Least Squares regression.
The adaptive online TRM-LS (aoTRM-LS) combines the advantages of the adaptive
univariate aoRM and the non-adaptive multivariate TRM-LS.

The presented robust regression filters, including the aoRM, SCARM and
aoTRM-LS, are provided in the R package robfilter (Fried et al. 2012). The
R-functions of the aoRM and SCARM are denoted as adore.filter (adaptive online
repeated median filter) and scarm.filter. The R-function of the multivariate aoTRM-
LS is denoted as madore.filter (multivariate adaptive online repeated median filter).
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Chapter 13
Robustness in Time Series: Robust Frequency
Domain Analysis

Bernhard Spangl and Rudolf Dutter

13.1 Introduction

The spectral density function is commonly used to analyze time series. Areas of
application are signal processing (cf. Thomson 1994), geophysics (cf. Chave et al.
1987; Jones and Hollinger 1997) and medicine.

This chapter is motivated by the frequency-domain analysis of short-term heart
rate variability (HRV) recordings. This is a non-invasive method which has been
increasingly used in medicine (cf. Task Force of The European Society of Car-
diology and The North American Society of Pacing and Electrophysiology 1996;
Howorka et al. 1997, 1998; Hartikainen et al. 1998; Pumprla et al. 2002). To access
the variability of heart rate in the frequency domain the spectral density function of
the tachogram is estimated. The tachogram is the series of time intervals between
consecutive heart beats. These time intervals are also called R–R-intervals, i.e., the
periods between an R-peak and the next R-peak in an electrocardiogram. The inter-
vals normally have a duration of about 750 ms corresponding to a heart rate of 80
beats per minute. In the tachogram (an example is displayed in Fig. 13.1), outlying
observations can be caused by ventricular ectopic beats and other artifacts (cf. Har-
tikainen et al. 1998). Ectopic beats are usually premature and produce a very short
R–R-interval followed by a compensatory delay and therefore a prolonged R–R-
interval. Typical tachogram patterns caused by ectopic beats can be seen in Fig. 13.1
around heart beat number 90 and 1090. Correspondingly, missed beats result in er-
roneously prolonged R–R-intervals (sum of two consecutive R–R-intervals). Typical
patterns caused by missed beats are visible in Fig. 13.1 around beat number 730.
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Fig. 13.1 Tachogram of 1321 consecutive heart beats

These outlying tachogram measurements affect the spectral analysis of heart rate
variability if classical spectral density estimators, which are sensitive to outliers, are
used. For details see Kleiner et al. (1979) or Martin and Thomson (1982). There-
fore, we aim to access the heart rate variability by estimating the spectral density
function of the tachogram series using robust methods that are insensitive to out-
lying tachogram values caused by ectopic beats or other artifacts. Furthermore, as
ectopic or missing beats do not affect successive heart beats, the additive outlier
(AO) model (cf. Denby and Martin 1979; Fox 1972) seems to be an appropriate
model when analyzing heart rate variability data. The AO model consists of a sta-
tionary core process, xt , to which occasional outliers have been added. The observed
process yt is said to have additive outliers if it is defined by

yt = xt + vt , (13.1)

where the contaminations vt are independently and identically distributed according
to a contaminated normal distribution with a degenerate central component, i.e.,

CN
(
γ,0, σ 2)= (1− γ )N (0,0)+ γN

(
0, σ 2), (13.2)

where γ is small. Let N (μ,σ 2) denote the normal distribution with mean μ and
variance σ 2. Hence, the core process xt is observed with probability 1− γ whereas
the core process plus a disturbance vt is observed with probability γ . xt and vt are
also assumed to be independent. Here, especially if caused by ectopic beats, additive
outliers can be positive as well as negative. Other types of outliers are described in
detail in the contribution by Galeano and Peña, Chap. 15.

We do not compute the spectral density function of the entire tachogram, but cal-
culate several estimates within overlapping windows (cf. Pumprla et al. 2002). This
is to ensure stationarity in each window and to deal with signals whose frequency
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Fig. 13.2 Robust dynamic
Fourier analysis of the
original short-term HRV data
displayed in Fig. 13.1

content changes over time. The result of the so called dynamic Fourier analysis ap-
plied to the tachogram series plotted in Fig. 13.1 is displayed in Fig. 13.2. Each slice
parallel to the frequency-spectrum plane in Fig. 13.2 represents the spectral density
estimate of the corresponding time window.

A high variability in heart rate indicates good adaptability, implying a healthy
person with well functioning autonomic control mechanisms. Conversely, lower
variability is often an indicator of abnormal and insufficient adaptability of the au-
tonomic nervous system.

In the following, the problem of estimating the spectral density function robustly
is considered. In Sect. 13.2, several methods of classical and robust spectral density
estimation are described. At the end of Sect. 13.2, an outline of our small simulation
study is given and the results are presented. An application of robust spectral density
estimation to the analysis of heart rate variability is given in Sect. 13.3 and some
general remarks follow in Sect. 13.4.

13.2 Methods

13.2.1 Classical Spectral Density Estimation

13.2.1.1 The Spectral Representation Theorem

A stochastic process {z(f ) : f ∈ [−1/2,1/2]}with random variables z(f ) :Ω→C
p

is called a process of orthogonal increments if the following conditions are satisfied:
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1. z(−1/2)= 0 a.e. and z(1/2)= x0 a.e.,
2. limε↓0 z(f + ε)= z(f ) for f ∈ [−1/2,1/2) (right continuity)
3. E[z(f )∗z(f )]<∞ for all f ∈ [−1/2,1/2]
4. E[(z(f4)− z(f3))(z(f2)− z(f1))

∗] = 0 for all f1 < f2 ≤ f3 < f4,

where the notation l.i.mk→∞ xk = x0 means that the limit is understood in the mean
squares sense.

More precisely, a sequence of random variables {xk}k∈N is said to converge to x0

in mean squares sense if

E
[
x∗0x0
]
<∞

and

lim
k→∞E

[
(xk − x0)

∗(xk − x0)
]= 0

holds.
Moreover, we note that {z(f ) : f ∈ [−1/2,1/2]} is a stochastic process with a

continuous index set [−1/2,1/2] and we will interpret these indices f not as time
points but as frequencies.

For every second-order stationary process {xt } there exists a process {z(f ) : f ∈
[−1/2,1/2]} with orthogonal increments such that

xt =
∫ 1/2

−1/2
ei2πf t dz(f )

holds. The process {z(f )} is a.e. uniquely determined by {xt }.
The process {z(f )} defines a function F : [−1/2,1/2] → C

n×n by F(f ) =
E[z(f )z(f )∗] where the following relations hold:

F(−1/2)= 0

F(1/2)≥ 0

F(f2)− F(f1)=E
[(
z(f2)− z(f1)

)(
z(f2)− z(f1)

)∗] for f1 ≤ f2.

Thus F(·) is a non-decreasing right continuous function, where non-decreasing
means that the difference F(f2) − F(f1) is a non-negative definite matrix for all
f1 ≤ f2.

If {z(f )} is the orthogonal increment process corresponding to {xt } the function
F(·) is called the spectral distribution function of {xt }. If there exists a function
S : [−1/2,1/2]→C

n×n such that

F(f )=
∫ f

−1/2
S(ν) dν,

where ν denotes the Lebesgue measure, then S(·) is called the spectral density func-
tion of {xt }. Other commonly used terms for S(·) are spectral density, spectrum or
power spectrum.
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One condition to ensure the existence of the spectral density function is if the
autocovariance function {γ (h)} is absolutely summable, i.e.,

∞∑
h=−∞

∣∣γ (h)∣∣<∞.

Then the spectral distribution function is absolutely continuous with dF(f ) =
S(f )df . Under this condition, the autocovariance function at lags h, γ (h), h ∈ Z,
are the Fourier coefficients of S(·) and thus we can represent S(f ) as

S(f )=
∞∑

h=−∞
γ (h)e−i2πf h.

13.2.1.2 Nonparametric Estimation

The nonparametric estimation of the spectral density function is based on smoothing
the periodogram.

Let {xt , t = 1, . . . , n} denote the observed process which is assumed to be
second-order stationary and to have zero mean. Further, suppose that the time in-
tervals between two consecutive observations are equally spaced with duration �t .
Then the periodogram is defined as follows:

Ŝ(p)(f )= �t

n

∣∣∣∣∣
n∑

t=1

xte
−i2πf t�t

∣∣∣∣∣
2

=�t

(n−1)∑
h=−(n−1)

γ̂x(h)e
−i2πf h�t ,

where {γ̂x(h)} denotes the sample autocovariance function of the time series xt .
Ŝ(p)(f ) is defined over the interval [−f(n), f(n)], where f(n) is called the Nyquist
frequency and is given by

f(n) = 1

2�t
.

Although Ŝ(p)(f ) is an asymptotically unbiased estimator of the true spectral
density function S(f ), it is well known that Ŝ(p)(f ) may be badly biased in some
cases. There are two common techniques for reducing the bias in the periodogram:
tapering and prewhitening. The latter will be described in Sect. 13.2.1.4.

Data tapering leads to the direct spectral estimator, which is defined by

Ŝ(d)(f )=�t

∣∣∣∣∣
n∑

t=1

htxt e
−i2πf t�t

∣∣∣∣∣
2

,

where {ht , t = 1, . . . , n} is called the data taper sequence with
∑n

t=1 h
2
t = 1.

Because Ŝ(d)(f ) is defined for all f ∈ [−f(n), f(n)], we can smooth it using a
continuous convolution over a continuous set of frequencies. Thus, we consider an
estimator of the form
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Ŝ(lw)(f )=
∫ f(n)

−f(n)
Wm(f − ν)Ŝ(d)(ν) dν

=�t

n−1∑
h=−(n−1)

wh,mŝ
(d)
h e−i2πf h�t ,

where wh,m and Wm(·) are a Fourier transform pair and wh,m = 0 for |h| ≥ n. ŝ(d)h

is the estimator of the autocovariance sequence corresponding to Ŝ(d)(f ), i.e., its
inverse Fourier transform.

The function Wm(·) is a symmetric real-valued 2f(n) periodic function for all
choices of m, which is square integrable over [−f(n), f(n)], and m is a smooth-
ing parameter that controls the degree of smoothing. Wm(·) is called a smoothing
window, its inverse Fourier transform wh,m is called a lag window. Hence, we call
Ŝ(lw)(f ) a lag window spectral estimator of S(f ).

Further details about the above described nonparametric spectral density estima-
tors, their statistical properties and the different smoothing windows may be found
in Priestley (1981) or Percival and Walden (1993).

13.2.1.3 Parametric Estimation

The most widely used form of parametric spectral density estimation uses an autore-
gressive model of order p as the underlying functional form for S(f ). A stationary
AR(p) process {xt , t ∈ Z} with zero mean satisfies the equation

xt −
p∑

j=1

φjxt−j = εt ,

where εt is a white noise process with zero mean and variance σ 2
ε . Thus, the spectral

density function satisfies the following equation∣∣∣∣∣1−
p∑

j=1

φje
−i2πfj�t

∣∣∣∣∣
2

S(f )=�tσ 2
ε .

Substituting the maximum likelihood or least squares estimators of the model
parameters, denoted by φ̂1, . . . , φ̂p and σ̂ 2

ε , we obtain a parametric spectral density
estimator

Ŝ(AR)(f )= �tσ̂ 2
ε

|1−∑p

j=1 φ̂j e
−i2πfj�t |2 , |f | ≤ f(n).

13.2.1.4 Semi-Parametric Estimation

If estimating the spectral density function the lag window spectral density estimator
and the parametric spectral density estimator are the limiting versions prewhitening
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the process beforehand. The first approach leads to no prewhitening and the latter
corresponds to total prewhitening if we assume that the process is a finite-order
autoregressive process with known order p.

Let {yt , t = 1, . . . , n} denote the observed values of a second-order stationary
process with zero mean. Then the prewhitened spectral density estimate originally
suggested by Blackman and Tukey (1958) is defined as

Ŝ(f )= Ŝ
(lw)
r (f )

|1−∑p

j=1 φ̂j e
−i2πfj�t |2 , |f | ≤ f(n), (13.3)

where Ŝ(lw)r (f ) is a lag window spectral density estimate of the prediction residuals
rt = yt −∑p

j=1 φ̂j yt−j , t = p+ 1, . . . , n.

13.2.2 Robust Spectral Density Estimation

13.2.2.1 Robust Prewhitening

Let {yt , t = 1, . . . , n} again denote the observed process which is assumed to be
second-order stationary and to have mean zero. The cleaning operator C maps the
original data yt into the cleaned data Cyt . In the context of the AO model (13.1),
we want the Cyt to reconstruct the core process xt , and so we will use the labeling
Cyt = x̂t |t , where x̂t |t denotes an estimate of xt at time t . The second index of x̂t |t
should indicate that the kind of data cleaning procedure we have in mind here is
a robust filtering procedure which uses the past and present data values y1, . . . , yt
to produce a cleaned filter estimate x̂t |t of xt , t = 1, . . . , n. For AO models with a
fraction of contamination γ not too large, it turns out that the data cleaner has the
property that Cyt = yt most of the time, that is about (1− γ )× 100 percent of the
time.

The filter-cleaner procedure involves a robust estimation of an autoregressive
approximation to the core process xt of order p, with estimated coefficients
φ̂1, . . . , φ̂p . Now, the residual process

rt = Cyt −
p∑
i=1

φ̂iCyt−i , t = p+ 1, . . . , n, (13.4)

can easily be formed. Since cleaned data are used to obtain these residuals, and the
φ̂i are robust estimates, the transformation (13.4) is called a robust prewhitening
operation. The benefit in the use of prewhitening in the context of spectral density
estimation is to reduce the bias, i.e., the transfer of power from one frequency region
of the spectral density function to another, known as leakage (cf. Blackman and
Tukey 1958).

The robust spectral density estimate is then based on the robust prewhitening
operation (13.4) and the prewhitened spectral density estimator (13.3) described
above.



214 B. Spangl, R. Dutter

13.2.2.2 The Robust Filter–Cleaner Algorithm

The robust filter–cleaner algorithm as presented in the paper of Martin and Thomson
(1982) is an approximate conditional-mean (ACM) type filter motivated by Masre-
liez’s result (Masreliez 1975). It relies on the p-th order autoregressive approxima-
tion of the underlying process xt , which can be represented in state-space form as
follows. Assuming that xt satisfies

xt = φ1xt−1 + φ2xt−2 + · · · + φpxt−p + εt

the state space model can be written as

xt =�xt−1 + εt ,

yt = xt + vt ,

with

xt = (xt , xt−1, . . . , xt−p+1)
�,

εt = (εt ,0, . . . ,0)�,

and

�=

⎛
⎜⎜⎜⎝
φ1 · · · φp−1 φp
1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

⎞
⎟⎟⎟⎠ .

Additionally, we set

cov(εt )=Q=

⎛
⎜⎜⎜⎝
σ 2
ε 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞
⎟⎟⎟⎠

and

var(vt )=R= σ 2
0 .

The algorithm computes robust estimates x̂t |t of the unobservable xt according
to the following recursion:

x̂t |t =�x̂t−1|t−1 + m.1,t

s2
t

stψ

(
yt − ŷt |t−1

st

)

with m.1,t being the first column of Mt which is computed recursively as

Mt+1 =�PtΦ
� +Q,

Pt =Mt −w

(
yt − ŷt |t−1

st

)m.1,tm�
.1,t

s2
t

,
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where Mt and Pt are the prediction and filtering error-covariance matrices. The
weight function w is defined by

w(r)= ψ(r)

r
,

where ψ stands for some robustifying psi-function. The scale st is set to

s2
t =m11,t , (13.5)

where m11,t is the first element of m.1,t . s2
t is an estimate of the variance of the

observation prediction distribution conditioned on past observations. Further, ŷt |t−1
denotes a robust one-step-ahead prediction of yt based on Yt−1 = {y1, . . . , yt−1},
and is given by

ŷt |t−1 = (�x̂t−1|t−1)1.

Finally, the cleaned process at time t results in

x̂t |t = (x̂t |t )1.

It should be noted that if ψ is the identity function and w ≡ 1, and (13.5) is
replaced by s2

t = m11,t + σ 2
0 with σ 2

0 = var(vt ) in the AO model, the above recur-
sions are those of the Kalman filter. The use of σ 2

0 = 0 in (13.5) corresponds to
the assumptions that vt = 0 a large fraction of time and that a contaminated normal
distribution with degenerate central component (13.2) provides a reasonable model.
The psi-function ψ and the weight function w which are essential to obtain robust-
ness should be bounded and continuous. Additionally, it is highly desirable that both
have zero values outside a bounded, symmetric interval around the origin. Further-
more, ψ(s) is odd and should resemble the identity function for small values of s
(see Martin 1979).

13.2.3 Small Simulation Study

Several methods to robustly estimate the spectral density function were compared
by a simulation study. The compared methods are: robust Fourier transform using
trimmed mean or Rousseeuw’s minimum covariance determinant (MCD) estima-
tor (Spangl 2008), methods based on a highly robust autocovariance function (Ma
and Genton 2000) or on Spearman’s rank correlation coefficient (Ahdesmäki et al.
2005), and robust prewhitening using an ACM type filter (Martin 1979) or the robust
least squares (rLS) filter (Ruckdeschel 2001). The first two methods are robustified
versions of the periodogram estimator, the next two are based on robust autoco-
variance functions, and the last two use robust filter algorithms to clean the process
first and estimate the spectral density function afterwards. For further details about
the different methods the reader is referred to Spangl (2008) and Spangl and Dutter
(2007).



216 B. Spangl, R. Dutter

Table 13.1 Median L2-distance (corresponding median absolute deviation given in parentheses)

Contamination 0 % 5 % 10 % 15 % 20 %

Robust Fourier Transform

MCD 14.5 (0.992) 14.4 (1.021) 14.2 (1.167) 14.1 (1.203) 14.0 (1.246)

trimmed mean 11.1 (2.740) 11.0 (2.658) 10.9 (2.595) 10.9 (2.400) 11.4 (2.327)

Robust Autocovariance Function

Ma & Genton 11.9 (1.756) 11.7 (1.617) 11.6 (1.596) 12.0 (1.288) 12.3 (1.239)

Spearman 11.5 (1.763) 10.8 (1.899) 10.5 (1.916) 10.7 (1.787) 11.2 (1.903)

Robust Filter Algorithms

ACM 9.1 (4.644) 9.1 (4.726) 9.3 (4.827) 9.3 (4.386) 9.5 (4.120)

rLS 10.4 (5.097) 10.5 (5.410) 10.3 (5.011) 10.7 (4.709) 11.5 (3.552)

The outline of our simulation study is as follows: First a core process xt of length
n= 100 is simulated. xt is chosen to be an autoregressive process of order 2 given
by

xt = xt−1 − 0.9xt−2 + εt ,

with εt ∼ N (0,1). Additionally, the additive outliers vt are simulated from a
contaminated normal distribution with degenerate central component (13.2) with
σ 2 = 102. The contamination γ varies from 0 % to 20 % by steps of 5 %. That
means that with probability γ , vt is an additive outlier with vt 
= 0. To obtain the
contaminated process yt , the vt ’s are added to the core process xt . For each level of
contamination this is done 400 times.

For each contaminated series the spectral density function is robustly estimated
using the above selected methods. Then, the deviation of each estimated spectral
density function from the true spectral density function is measured in the sense of
the L2-norm, i.e.,

err
Ŝ(f )

:= ∥∥Ŝ(f )− S(f )
∥∥=
(∫ (

Ŝ(f )− S(f )
)2
df

)1/2

,

where Ŝ(f ) and S(f ) denote the estimated spectral density function and the true
one.

The results are given in Table 13.1. For each method and each level of con-
tamination the median L2-distance together with its consistency-corrected median
absolute deviation (MAD) is calculated which is given in parentheses. According
to Table 13.1 the spectral density estimation based on the ACM type filter per-
forms slightly better and will be further used to estimate the heart rate variabil-
ity.
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13.3 Application

13.3.1 Analysis of Heart Rate Variability

Heart rate variability (HRV) is composed of certain well-defined rhythms which
contain information about the contribution of different regulatory mechanisms of
cardiovascular control. In short-term HRV recordings, three spectral components
can normally be distinguished: high frequency (HF, 0.15–0.4 Hz), low frequency
(LF, 0.04–0.15 Hz), and very low frequency (VLF, 0–0.04 Hz) components. The
HF component represents parasympathetic activity whereas the sympathetic ner-
vous system is the main contributor of the LF component (cf. Hartikainen et al.
1998).

The analysis of heart rate variability as proposed in the review article by Pumprla
et al. (2002) is, in fact, a combination of three short-term HRV recordings. The du-
ration of each recording lasts 5 minutes as recommended by the Task Force of The
European Society of Cardiology and The North American Society of Pacing and
Electrophysiology (1996). Moreover, the proposed modified orthostatic test where
the individual lies supine for 5 minutes, stands for 5 minutes and lies supine again for
another 5 minutes is also recommended when investigating patients with cardiovas-
cular autonomic neuropathy in order to separate sympathetic from parasympathetic
abnormalities.

As the tachogram recording is a discrete event series it is an irregularly time-
sampled signal (cf. also Drews 1983). To obtain a regularly sampled series, we
interpolate the original tachogram recording using cubic splines and resample at
equidistant points in time. The resampling frequency has to be sufficiently high so
that the Nyquist frequency of the spectral density function is not within the fre-
quency range of interest. We therefore choose a resampling period of 0.25 sec-
onds.

The outline of our dynamic Fourier analysis is as follows: a robust prewhitened
spectral density estimate of the interpolated tachogram recording is calculated ev-
ery 5 seconds for a time window with a duration of 256 seconds using the algorithm
described above. For each window, the tachogram series is cleaned in a robust way
by first using an ACM type filter. The hyperparameters of the approximating au-
toregressive process of order 5 are estimated robustly by bounded-influence autore-
gression (cf. Martin and Zeh 1978; Martin 1980). According to the order-selection
rule described in Martin and Thomson (1982) an order of 5 seems to be sufficient.
Then, the spectral density function is calculated using a prewhitened spectral den-
sity estimator. The lag window spectral estimate of the prediction residuals therein is
obtained by using a 0th-order discrete prolate spheroidal sequence (Thomson 1982)
as data taper and a Parzen window (Parzen 1961) for smoothing. Finally, the results
are displayed three dimensionally where we only plot the frequency range of inter-
est, i.e., the LF and HF components. Here, it should be noted that in medicine the
spectral densities are usually displayed on a metric scale and not on a logarithmic
one.
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Fig. 13.3 Intermediate
results of the suggested robust
spectral analysis applied to
the short-term HRV data
displayed in Fig. 13.1

13.3.2 Results

In Fig. 13.3, intermediate results of the proposed robust dynamic Fourier analysis
are presented. To show how the suggested robust multi-step procedure works ap-
plied to the HRV data, we take one single time window of the data displayed in
Fig. 13.1. The chosen example is the first 256-seconds window of the 5-minutes
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standing period indicated by the grey frame. Each of the three 5-minutes periods,
that correspond to the supine position, standing, and the supine position again, is
indicated in Fig. 13.1 by a vertical dashed line at the beginning and a dot-dashed
one at the end.

Plot (a) of Fig. 13.3 shows the original tachogram recording (black line) along
with the cubic spline interpolation (light grey line). As obviously seen the two are
almost identical. In Plot (b), the interpolation result is displayed along with the ro-
bust filter estimate obtained by the approximate conditional-mean type filter. The
filter estimate (dashed black line) is equivalent to the interpolated tachogram se-
ries (light grey line) in cases where no outliers are present. Additionally, it is not
affected by outlying observations around 570 seconds that are caused by missed
heart beats. Plot (c) shows several spectral density estimates of the HRV data. The
prewhitened spectral density estimate of the robustly filtered tachogram series (long-
dashed grey line) is similar in shape and power to the lag window spectral estimate
of the tachogram series that was manually cleaned by the physician and will be
considered as a benchmark in the following (dashed dark grey line). This corre-
spondence is extremely well within the frequency range of interest, i.e., between
0.04 and 0.4 Hz, indicated by the two vertical dot-dashed lines. The difference be-
tween the two, especially visible for high frequencies, is negligible: first, it is not
within the frequency range of interest and second, there is almost no difference in
absolute values. The differences are only visible due to the logarithmic scale. More-
over, the lag window spectral estimate of the original tachogram series (light grey
line) is markedly affected by outlying observations. We further note that, as we have
chosen a resampling period of 0.25 seconds, the Nyquist frequency in this case is
equal to 2 Hz.

The final result of the dynamic Fourier analysis is displayed in Fig. 13.4. Plot (a)
shows the classical non-robust lag window spectral estimates of the original tacho-
gram series. In Plot (b), the result of robust dynamic Fourier analysis is displayed
whereas the result in Plot (c) is obtained by using the same estimator as in Plot (a)
but now applied to the manually filter tachogram series. As before (cf. Fig. 13.3,
Plot (c)), the results in Plot (b) and (c) of Fig. 13.4 are very similar. For the man-
ually cleaned tachogram series (Plot (c)), the peaks in the estimated spectral den-
sity within the low frequency range, i.e., between 0.04 and 0.15 Hz, are slightly
higher than for the robustly filtered series (Plot (b)). This is due to the fact that
only single peaks are manually cleaned in the tachogram series whereas a whole
area is smoothed when using a filter. Hence, the manually cleaned tachogram series
is spikier as the filtered one which results in a higher spectral power for low fre-
quencies. However, the spectral density estimates in Plot (a) are markedly affected
in shape and power by outlying observations. Moreover, we note that Fig. 13.2 is
equal to Plot (b), but for the latter we use the same scaling on the vertical axis as in
Plot (a) to be able to compare them.

For further details and additional examples, the reader is referred to Spangl and
Dutter (2012).
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Fig. 13.4 Classical
non-robust dynamic Fourier
analysis (a), robust dynamic
Fourier analysis (b), and
classical Fourier analysis
based on the manually filtered
tachogram series (c) of the
original short-term HRV data
displayed in Fig. 13.1
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13.4 Conclusions

As an application, we focused on the spectral analysis of short-term HRV data. To
assess heart rate variability in the frequency domain, the spectral density function
of the corresponding tachogram series has to be estimated.

Hence, to obtain a robust estimate of the spectral density function we suggest
to use a multi-step procedure based on robust filtering. This algorithm first uses an
ACM type filter (Martin 1979) based on an autoregressive approximation to elim-
inate outlying measurements, and then, a prewhitened spectral density estimator is
applied. The presented method was compared to several other ones by simulation
studies. These simulation experiments show that cleaning the series in a robust way
first and calculating a prewhitened spectral density estimate afterwards leads to en-
couraging results. Moreover, the suggested procedure can be used to identify and
mark outlying observations and, if slightly adapted, may also be used for online
data processing.

The problem of estimating the hyperparameters was accomplished by bounded-
influence autoregression. An alternative way would be to use a highly robust au-
tocovariance function estimator (cf. Ma and Genton 2000) and calculate estimates
of the hyperparameters via the Yule-Walker equations. Hyperparameters may also
be obtained by computing a robust covariance matrix via the MCD algorithm (cf.
Rousseeuw and Van Driessen 1999) and estimate the parameters again using the
Yule-Walker equations. In Chap. 8 of their book (Maronna et al. 2006), propose to
use τ -estimates instead.

We note that there are many other robust filter and data-cleaning procedures. In
Spangl and Dutter (2005), the ACM type filter approach was compared with an-
other approach proposed by Tatum and Hurvich (1993). This procedure also yields
good results but tends to underestimate the core process slightly. Moreover, it is
computationally intensive. Furthermore, a whole bundle of robust time series filters
have already been implemented in R and are available in the R-package robfil-
ter (Fried et al. 2012). Details may also be found in the contribution by Borowski,
Fried and Imhoff, Chap. 12. However, these filters are specialized to reveal trends,
trend changes or level shifts of an underlying, possibly nonstationary signal in the
presence of outliers and smooth the underlying core process a lot. Hence, these fil-
ters are not applicable if the aim is the estimation of the spectral density function.
A completely different approach is a robustified version of Welch’s Overlapped Seg-
ment Averaging (WOSA) proposed by Chave et al. (1987). Although widely used
in geophysical applications, it will only yield a good spectral density estimate if a
small fraction of the data segments are contaminated by outliers.

Hence, up to date, the described multi-step procedure is the best method for esti-
mating robustly the spectral density function, and it is well suited for accessing the
heart rate variability in the frequency domain.
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Chapter 14
Robustness in Statistical Forecasting

Yuriy Kharin

14.1 Introduction

Many applied problems in engineering, economics, finance, medicine lead to an
important problem of mathematical statistics—statistical forecasting of time series.
According to the Webster encyclopedic dictionary (Maclaren 1946), “forecasting
is an activity aimed at computing or predicting some future events or conditions
based on rational analysis of the relevant data”. The mathematical substance of the
statistical forecasting problem is quite simple: estimate the future value xT+τ ∈R

d

of the d-variate time series τ ∈ N steps ahead from T ∈ N successive observations
{x1, . . . , xT } ⊂R

d .
We can distinguish two stages in the history of attacks on the forecasting prob-

lem. The research on the first stage (before the year 1974) was oriented to the
development of forecasting statistics that minimize the mean square forecast risk
(error) for a set of simple mathematical models, e.g., stationary time series with
some known spectral density, time series with a trend from some known parametric
family, ARIMA time series; reviews of these classical results are given in Box and
Jenkins (1976), Anderson (1971), Bowerman and O’Connel (1993).

In the seventieth of the last century, it was detected by many researchers that
the true risk values of the “optimal” forecasting algorithms for the real statisti-
cal data are much more than the expected theoretical ones. In the lecture at the
World Congress of Mathematicians in 1974, Peter Huber has explained the reason
of this strange situation (Huber 1974): “Statistical inferences (including statistical
forecasts) depend only in part upon the observations. An equally important base is
formed by prior assumptions about the underlying situation”. The system of prior
assumptions is called the hypothetical data model M0. In applied problems the as-
sumptions of the hypothetical model are often distorted, and this fact leads to the
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instability of the “optimal” forecasting statistics that are optimal only under M0. Hu-
ber has proposed to construct robust statistical inferences that are “weak-sensitive
w.r.t. small distortions of the hypothetical model M0”. This event has opened the
second stage in statistical forecasting of time series.

In last years, significant contributions to the theory of robust statistical data anal-
ysis were made by J. Tukey, P. Huber, F. Hampel, U. Gather, C. Becker, C. Croux,
R. Dutter, R. Fried, P. Filzmoser, M. Genton, R. Maronna, R.D. Martin, S. Mor-
genthaler, H. Oja, D. Pena, H. Rieder, E. Ronchetti, P.J. Rousseeuw, V.J. Yohai,
S. Van Aelst. The state of the research in this field is discussed in the nice analytic
reviews prepared by Davies and Gather (2004, 2005), Gather et al. (2011), Maronna
et al. (2006) and by Morgenthaler (2007). Professor Ursula Gather has organized a
research network in robust statistical analysis for complex data structures that accu-
mulate researchers from all over the world to attack the topical robustness problems.
The majority of publications on robustness in statistical data analysis of time series
are concentrated on estimation of parameters and hypotheses testing. Although these
problems are fundamentals, they do not cover completely the problem of robustness
in statistical forecasting of time series (see, e.g., Gelper et al. 2010). This chapter is
devoted to topical problems of robust forecasting of time series. In Sect. 14.2, we
give short mathematical description and classification of typical distortions for hy-
pothetical models based on the reviews that were indicated and also on applications.
Section 14.3 presents characteristics of robustness in forecasting. Sections 14.4 and
14.5 are devoted to robustness in statistical forecasting of time series under distorted
regression and autoregression models respectively.

14.2 Distortions of Hypothetical Models for Time Series

Introduce the notation: xt ∈ R
d is an observed d-variate time series with discrete

time t ∈ Z; X = (x′1, . . . , x′T )′ ⊂ R
T d is the composed vector-column of obser-

vations for T time moments (prime symbol means transposition), xT+τ ∈ R
d is a

non-observable random vector to be predicted at the future time moment T + τ ,
τ ∈N (in economic applications the value T is called “the base of forecasting”, τ is
called “the horizon of forecasting”). The probability model of observed time series
under distortions is determined by a family of probability measures

{
P ε
T,θ0(A),A ∈ BT d : T ∈N, θ0 ∈Θ ⊆R

m, ε ∈ [0, ε+]
}
,

where BT d is the Borel σ -algebra in R
T d , θ0 is an unknown true value of model pa-

rameters, ε is the distortion level, ε+ ≥ 0 is its maximal admissible value. If ε+ = 0,
then the distortions are absent, and we have the hypothetical model M0.

A short scheme of classification for typical distortions of the hypothetical model
M0 is presented in Fig. 14.1 (a more detailed scheme of classification can be found
in Kharin 2008). Let us give mathematical description of these distortions.
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Fig. 14.1 Classification for types of distortions in statistical forecasting

With respect to the form of presentation of the hypothetical model M0, the set
of all types of distortions can be split into two classes: the model is in an ex-
plicit form (D.1), i.e. in the form of some hypothetical probability distribution
P 0(·); the model is in an implicit form (D.2) determined by a stochastic equation:
xt = G(xt−1, . . . , xt−s , ut , ut−1, . . . , ut−L; θ0), t ∈ Z, where ut ∈ R

ν is an inno-
vation process (usually a white noise), s,L ∈ N are some natural numbers indi-
cating the memory depth, θ0 ∈ Θ ⊆ R

m is the vector of model parameters; G(·):
R
ds ×R

ν(L+1) ×Θ→R
d is some Borel function.

The Tukey–Huber distortions (D.1.1) for the observation vector X are described
by a mixture: p(X)= (1− ε)p0(X)+ εh(X), where p0(·) is some “non-distorted”
(hypothetical) p.d.f., h(·) is a contaminating p.d.f., p(·) is the distorted p.d.f.

Distortions of the type D.1.2 are described by ε-neighborhoods: 0 ≤ ρ(p(·),
p0(·)) ≤ ε, where ρ(·) is some probability metric, e.g., the Kolmogorov metric,
χ2-metric (see Kharin and Shlyk 2009).

The class D.2 consists of three subclasses. The subclass D.2.1 describes distor-
tions in the observation channel: instead of the clean data X0 we observe a contam-
inated data set X, X = H(X0,V ), where X0 = (x0

k ) ∈ R
T d is a “non-observable

history” of the process, X ∈ R
T d is the contaminated vector of observation results,

that is the “observable history”, V = (v′1, . . . , v′T )′ ∈R
T l is a non-observable ran-

dom vector of distortions (errors in the observation channel), H(·) is a function that
describes the observation algorithm.

The subclass D.2.1 includes six types of distortions. Additive (D.2.1.1) and mul-
tiplicative (D.2.1.2) distortions in the observation channel are described by the equa-
tions xt = x0

t + εvt and xt = (1+ εvt )x
0
t , t ∈ Z, respectively, where {vt } are i.i.d.

random variables, E{vt } = 0,D{vt } = σ 2 < +∞. This type of distortions is con-
sidered in Fried and Gather (2002). The subclass D.2.1.3 (ε-nonhomogeneities) in-
cludes the cases where the random vectors of distortions {vt } are non-identically
distributed, but their probability distributions differ for not more than ε from the
hypothetical one in some probability metric. The subclass D.2.1.4 describes out-
liers in the data (see Gather et al. 2006 and also a review of Gather and Kale
1992). The replacement outliers (RO) and the additive outliers (AO) in the ob-
servation channel are described by the equations: xt = (1 − ξt )x

0
t + ξtvt and
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xt = x0
t + ξtvt , t ∈ Z, respectively, where {ξt } are i.i.d. Bernoulli random variables,

P{ξt = 1} = 1− P{ξt = 0} = ε, {vt } are random variables describing outliers, ε is
the probability of an outlier appearance, and E{vt }, D{vt } characterize the level of
outliers (see also Kharin and Voloshko (2011) and the contribution by Galeano and
Peña, Chap. 15). The subclass D.2.1.5 considers missing values in X0 ∈ R

T d . Dis-
tortions generated by interval censoring of data X0 are included into the subclass
D.2.1.6 (see Gather et al. 2011).

The subclass D.2.2 describes distortions of the generating stochastic equation
(“misspecification errors”) and includes two types of distortions: parametric distor-
tions (D.2.2.1), when instead of the true parameter value θ0 we get (or estimate
by statistical data) a different value θ̃ , with |θ̃ − θ0| ≤ ε, where ε is a distortion
level; functional distortions (D.2.2.2), when instead of the true function G(·) we get
data generated by a different function G̃(·), and in some metric ‖G̃(·)−G(·)‖ ≤ ε

(Kharin 2011a).
The subclass D.2.3 describes distortions of the innovation process ut ∈R

ν , t ∈ Z,
in the generating stochastic equation: ε-nonhomogeneities (D.2.3.1), probabilistic
dependence (D.2.3.2), “outliers” (D.2.3.3) (see the contribution by Spangl and Dut-
ter, Chap. 13).

14.3 Robustness Characteristics in Forecasting

In statistical estimation and hypotheses testing, the most productive characteristics
of robustness were introduced by Huber (1981) (the minimax approach), and by
Hampel et al. (1986) (the approach based on the influence functions). For statistical
forecasting problems, we use here (see also Kharin 2003, 2011b) the characteristics
of robustness similar to the Γ -minimax risk criterion proposed by Berger (1985)
and the robustness functionals in statistical pattern recognition considered in Kharin
(1996).

Let x̂T+τ = f (X) : RT d → Rd be any forecasting statistic. We evaluate its per-
formance by the mean square risk of forecasting:

rε = rε(f )= Eε

{‖x̂T+τ − xT+τ‖2}≥ 0, ε ∈ [0, ε+], (14.1)

where Eε{·} is the expectation symbol w.r.t. the probability measure P ε
T,θ0(·). If

distortions are absent (ε = 0) and the hypothetical model M0 is valid, the functional
(14.1) is called the hypothetical risk r0 = r0(f ). Define the guaranteed (upper) risk:

r+ = r+(f )= sup
0≤ε≤ε+

rε(f ), (14.2)

where the supremum is taken w.r.t. all admissible distortions of M0.
Further, let x̂0

T+τ = f 0(X; θ0) be an optimal forecasting statistic under the
known hypothetical model M0 that gives the minimal value to the hypothetical risk:

r0 = r0
(
f 0)= inf

f (·) r0(f ). (14.3)
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In practice, the family of the so-called “plug-in” forecasting statistics is often used:
x̂T+τ = f (X) := f 0(X; θ̂ ), where θ̂ ∈ R

m is any consistent statistical estimator of
the unknown parameter θ0 based on the observed time series X.

For nonsingular cases, where r0 > 0, define the risk instability coefficient κ as
the relative increment of the guaranteed risk (14.2) w.r.t. the hypothetical risk (14.3):

κ = κ(f )= (r+(f )− r0
)
/r0 ≥ 0. (14.4)

Another characteristic of robustness is the δ-admissible distortion level

ε∗ = ε∗(δ)= sup
{
ε ∈ [0, ε+] : κ(f )≤ δ

}
, δ > 0. (14.5)

It indicates the maximal level of distortions for which the relative increment of the
risk is not greater than the fixed value δ× 100 %.

The smaller the value κ is and the greater the value ε∗ is, the more robust the
forecasting statistic is. The minimax robust forecasting statistic x̂∗T+τ = f ∗(X) min-
imizes the risk instability coefficient (14.4):

κ
(
f ∗
)= inf

f (·) κ(f ). (14.6)

Also let us adjust the well known characteristic of “qualitative robustness” (see
Hampel et al. 1986)—the Hampel breakdown point ε∗∗—to the forecasting prob-
lems: ε∗∗ is the maximal fraction of “arbitrary large outliers” in time series X such
that the considered forecasting statistic f (X) is still bounded (see also the contribu-
tion by Müller, Chap. 5): ε∗∗ = sup{ε ∈ [0,1] : sup |f (X)| ≤ C <+∞}.

14.4 Robustness in Forecasting Under Distorted Regression
Models

14.4.1 Robustness of the LS Forecasting Under Additive Outliers

Let the observed time series be described by a multiple linear regression model
under additive outliers (type D.2.1.4 of distortions):

xt = θ0′ψ(zt )+ ut + ξtvt , t ∈N, (14.7)

where zt ∈ U ⊆ R
M is a non-random observable vector of independent variables

(regressors) at the time moment t ; U is some “regressor space”; ψ(·) = (ψi(·)) is
a vector-column of m linearly independent functions; {ut } are i.i.d. random vari-
ables with zero mean E{ut } = 0 and an unknown finite variance D{ut } = σ 2; θ0 =
(θ0
i ) ∈ R

m is a vector-column of m unknown regression coefficients; {ξt } are i.i.d.
Bernoulli random variables with

P {ξt = 1} = 1− P {ξt = 0} = ε; (14.8)
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ε ∈ [0, ε+] is an unknown probability of outlier appearance; ε+ ∈ [0, 1
2 ) is some

known upper bound for ε; the outliers {vt } are i.i.d. random variables with zero
mean and an unknown variance

E{vt } = 0, D{vt } =K · σ 2, K > 0; (14.9)

{ut }, {vt }, {ξt } are jointly independent.
It is well known, that the optimal forecasting statistic for the hypothetical model

(ε = 0) under the known parameter value θ0 is x̂0
T+τ = θ0′ψ(zT+τ ), and its hypo-

thetical risk is r0 = σ 2. Under an unknown value θ0 the traditionally used forecast-
ing statistic is the “plug-in” LS forecasting statistic:

x̂T+τ = θ̂ ′ψ(zT+τ ), θ̂ = (Ψ ′T ΨT

)−1
Ψ ′T X,

∣∣Ψ ′T ΨT

∣∣ 
= 0, (14.10)

where ΨT = (ψ(z1)
... · · · ...ψ(zT ))′ is a nonsingular (T × m)-matrix; θ̂ = (θ̂i ) is

the LS estimator of θ0 consistent under the classical Eicker asymptotics (see
Eicker 1963) for the minimal eigenvalue of the matrix Ψ ′T ΨT at T → +∞ :
λmin(Ψ

′
T ΨT )→+∞.

Introduce the notation:

(z)+ =max(z,0), CT =
(
Ψ ′T ΨT

)−1
Ψ ′T ,

g(T , τ )= (gt (T , τ ))= C′T ψ(zT+τ ) ∈R
T .

Robustness characteristics (defined in Sect. 14.3) for the LS forecasting statistic
(14.10) are evaluated in Kharin (2011a).

Theorem 14.1 If the observed time series xt satisfies the regression model under
additive outliers (14.7)–(14.9), T >m, |Ψ ′T ΨT | 
= 0, and the LS forecasting statis-
tic (14.10) is used, then the instability coefficient equals

κLS(T , τ )=
∥∥g(T , τ )∥∥2 + ε+K

(
1+ ∥∥g(T , τ )∥∥2), (14.11)

and the δ-admissible distortion level is

ε∗ = ε∗(δ)=min

(
1

2
,
(δ − ‖g(T , τ )‖2)+
K(1+ ‖g(T , τ )‖2)

)
, δ > 0.

It is seen from (14.11) that the instability coefficient κ(T , τ ) is the sum of two
terms: the first term ‖g(T , τ )‖2 is determined by prior uncertainty on θ0 only, but
the second one is generated by joint influence of outliers and prior uncertainty on θ0.

14.4.2 Robustification by Huber Estimator

To robustify the LS forecasting statistic, let us use some robust estimator θ̃ ∈R
m for

the vector of regression coefficients θ0 in (14.10) instead of the LS estimator θ̂ :
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x̃T+τ = θ̃ ′ψ(zT+τ ). (14.12)

The Huber robust estimator (Huber 1981) θ̃ belongs to the family of M-estimators,
and it is defined by the following expressions:

θ̃ = arg min
θ

T∑
t=1

ρH
((
xt − θ ′ψ(zt )

)
/σ̃
)
, ρH (z)=

{
z2/2, z ∈ (−L,L),
Lz, |z| ≥ L,

where ρH (·) is the Huber loss function, σ̃ > 0 is some robust estimator of the scale
parameter, e.g., the estimator from Huber (1981), L= L(ε) is the root of the equa-
tion: 2(φ(L)/L−Φ(−L))= ε(1− ε), and φ(·), Φ(·) are the standard normal p.d.f.
and cumulative distribution function respectively. This estimator θ̃ minimizes the
maximal value of the asymptotic mean square error for Gaussian probability distri-
bution of {ut } under the D.2.1.4 distortions.

By the asymptotic expansion method an approximation for the instability coef-
ficient of the robust forecasting statistic (14.12) is constructed in Kharin (2008):

κH (T , τ )≈
∥∥g(T , τ )∥∥2 + ε+

(
K − 2L2)∥∥g(T , τ )∥∥2. (14.13)

From comparison of (14.11), (14.13) one can see that the instability coefficient for
the robust forecasting statistic (14.12) is smaller than κLS(T ,S) for the value of the
order O(ε+L2(ε+)‖g(T , τ )‖2).

One disadvantage of the robust forecasting statistic (14.12) is its dependence
on the usually unknown fraction ε of outliers in the observed data. Consider an
approach that is free of this disadvantage.

14.4.3 Local-Median Robust Forecasting Statistic

Introduce the notation: NT = {1,2, . . . , T } ⊂ N is the set of T observation times;
Υ (l) = {t (l)1 , . . . , t

(l)
n } ⊆ NT is an l-th subset consisting of n different elements

from NT , m ≤ n ≤ T , l = 1, . . . ,M ; M is the number of considered different sub-
sets, m ≤ M ≤ M+ = (Tn );Ψ (l)

n = (ψj (zt(l)i
)), i = 1, . . . , n, j = 1, . . . ,m, is the

(n × m)-submatrix of the matrix ΨT assumed to be non-singular, i.e.

det(Ψ (l)′
n Ψ

(l)
n ) 
= 0;X(l)

n = (x′
t
(l)
1

, . . . , x′
t
(l)
n

)′ ∈ R
n is the subsample of size n of the

sample X.
Note that if the portion ε of outliers is small and M = M+, then the portion

of clean subsamples (containing no outliers) is P0 = (
[(1−ε)T ]
n )/(Tn ) can be large

enough ([z]means the integer part of z ∈R). Using this fact, let us construct the l-th
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local LS estimator for θ0 by the l-th subsample X(l)
n : θ̂ (l) = (Ψ

(l)′
n Ψ

(l)
n )−1Ψ

(l)′
n X

(l)
n ,

and then the l-th local “plug-in” forecast x̂(l)T+τ = θ̂ (l)
′
ψ(zT+τ ), l = 1, . . . ,M . The

local-median (LM) forecasting statistic is proposed in Kharin (2008) as the sample
median of M local forecasts {x̂(l)T+τ }:

x̂T+τ =med
{
x̂
(1)
T+τ , . . . , x̂

(M)
T+τ
}
. (14.14)

Note that the subsample size n and the number of subsamples M are parameters
of the LM method. If n = T ,M = 1, then the LM forecast (14.14) is equivalent
to the traditional LS forecast (14.10). If M =M+, then the LM forecast uses all
subsamples of size n from the observed sample X of size T .

The next theorem proved in Kharin (2011a) determines the Hampel breakdown
point for the LM forecasting statistic (14.14).

Theorem 14.2 Under Theorem 14.1 conditions, if n < T , M =M+, then the Ham-
pel breakdown point ε∗∗ for the LM forecasting statistic (14.14) is the unique root ε
in the segment [0,1− n/T ] of the algebraic equation of the order n:

n−1∏
t=0

(
1− ε− tT −1)= (1− α)

n−1∏
t=0

(
1− tT −1), ε ∈ [0,1− n/T ], (14.15)

with α = �(M+ − 1)/2�/M+ = 1/2+O(1/M+).

Equation (14.15) can be solved numerically. There are explicit solutions of
(14.15) for two cases: if n=m= 1, then ε∗∗ = α; if n= 2, then

ε∗∗ = 1− 1

2T
−
√
(1− α)

(
1− 1

T

)
+ 1

4T 2
.

Corollary 14.1 If n≥m is fixed, but T→+∞, then ε∗∗→1− 2−1/n, and the op-
timal size of subsamples that maximizes the asymptotical Hampel breakdown point
equals to the number of unknown regression coefficients: n∗ =m.

In Kharin (2008), an approximation of the risk instability coefficient for
the LM forecasting statistic (14.14) is found under the asymptotics T→ + ∞,
M =M(T )→+∞:

κε(T , τ )≈ εK + π

2M

(
n∑

r=0

(1− ε)rεn−r (nr )√
G(n,1) +KG(n,r+1)

)−2

,

where G(n,r) =∑n
k=r (gk)2, g = (gk)= Ψ

(l)
n (Ψ

(l)′
n Ψ

(l)
n )−1ψ(zT+τ ), G(n,n+1) := 0.

The gains in the risk for the LM forecast w.r.t. the LS forecast (14.10) and the Huber
forecast (14.12) can be evaluated using this approximation together with (14.11),
(14.13).
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Fig. 14.2 Dependence of
risk on subsample size n

Monte-Carlo simulations for the model (14.7) were made for the traditional LS
forecasting statistic (14.10) and for the LM robust forecasting statistic (14.14) under
the following conditions:

M = 1, zt = t, m= 3, ψ(zt )=
(
1, t, t2

)′, θ = (1,0.1,0.01)′,

ut ∼N
(
0, σ 2), vt ∼N

(
0,Kσ 2), σ 2 = 0.09, K = 50, T = 15,

τ ∈ {1,2,3,4,5}.
Figure 14.2 illustrates dependence of the sample forecast risk r̂LM for the LM fore-
casting statistic (14.14) with τ = 4 (by the series of 10 Monte-Carlo simulations)
on the size of local subsamples n ∈ {3,4, . . . ,15} for two distortion levels: ε = 0
(no outliers) and ε = 0.3 (on the average, 30 % of outliers are present in observed
time series). The results for ε = 0 are shown as triangles, and for ε = 0.3 as cir-
cles; dashed lines in Fig. 14.2 correspond to the risk of the LS forecasting algorithm
(14.10) for ε = 0 and ε = 0.3. It is seen that under outliers the lowest LM forecast
risk is attained at n∗ =m= 3.

Let us note that the proposed robust LM forecasting statistic (14.14) can be gener-
alized for the case of d-variate regression time series xt ∈R

d using the multivariate
Oja median (Oja 1983).

Let us mention one more approach to robust forecasting under distorted regres-
sion models of time series proposed by Gelper et al. (2010) based on smoothing of
time series.

14.4.4 Nonparametric Distortions of Regression Functions

Let the observed time series be described by a multiple linear regression model
under nonparametric distortions (the type D.2.2.2 of distortions):

xt = θ0′ψ(zt )+ λ(zt )+ ut , t ∈N, (14.16)
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where λ(·): RM →R
1 is an unknown function that describes functional distortions;

the other variables are defined as in (14.7). The regression function for the model
(14.16) under zt = z is μ(z) = E{xt |z} = μ0(z) + λ(z), where μ0(z) = θ0′ψ(z)
is the hypothetical (assumed) regression function, but λ(z)= μ(z)−μ0(z) is some
functional distortion that could be generated by the prior uncertainty, the complexity
of the real observed process, or by special features of the observation channel.

Define three special types of functional distortions λ(·).
FD-1 Interval distortions: ε−(z) ≤ λ(z) ≤ ε+(z), z ∈ U ⊆ R

M , where ε±(z) are
some boundary functions, in particular,

−ε ≤ λ(z)≤+ε, z ∈U ; (14.17)

here ε ≥ 0 is the distortion level in the C-metric.
FD-2 Relative distortions: |λ(z)|/|θ0′ψ(z)| ≤ ε, z ∈U , ε ≥ 0.

FD-3 Distortions in the lp-metric: (
∑T

t=1 |λ(zt )|p + |λ(zT+τ )|p)
1
p ≤ ε.

Theorem 14.3 If the observed time series xt satisfies the regression model (14.16)
under interval distortions FD-1 defined by (14.17), then the risk instability coeffi-
cient and the δ-admissible distortion level, respectively, are

κ(T , τ )= ∥∥g(T , τ )∥∥2 + (ε/σ )2

(
1+

T∑
t=1

∣∣gt (T , τ )∣∣
)2

,

ε+(δ)= σ
((
δ − ∥∥g(T , τ )∥∥2)+)1/2

/(
1+

T∑
t=1

∣∣gt (T , τ )∣∣
)
.

It follows from Theorem 14.3 that if the level ε of the interval distortions (14.17)
is higher than the critical value ε+(δ), then the forecast risk r can exceed the value
r = (1+ δ) · r0 that is δ× 100 % more than the hypothetical value r0 = σ 2.

Similar results are given in Kharin (2011a) for the distortions FD-2, FD-3.
To construct a robust forecasting statistic under the distortion type FD-1 consider

a family of “plug-in” forecasting statistics based on M-estimators θ̂ (see, e.g., Huber
1981; Hampel et al. 1986):

x̂T+τ = θ̂ ′ψ(zT+τ ), θ̂ = arg min
θ

T∑
t=1

ρ
(
xt − θ ′ψ(zt )

)
, (14.18)

where ρ(z) is a convex, even, twice differentiable (almost everywhere on R) loss
function; a special case in the family (14.18) is the LS forecasting statistic with
the quadratic loss function: ρ(z) = 0.5z2. The concrete form of the loss function
ρ(·) needs to be determined by the type of functional distortions. To compute θ̂

in (14.18), we have the following iterative procedure for the convex minimization
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Fig. 14.3 The loss functions: left—for (14.20), right—for (14.21)

problem:

μ(z)= ρ′(z), ν(z)= ρ′′(z);
θ(n+1) = θ(n) +

(
D(θn)

)−1
M(θ(n)), n= 1,2, . . . ;

D(θ)= Ψ ′T ν(θ)ΨT , M(θ)= Ψ ′T μ(θ),

μ(θ)= (μt(θ)
)= (μ(xt − θ ′ψ(zt )

))
,

ν(θ)= (νtt ′(θ))= diag
(
ν
(
xt − θ ′ψ(zt )

))
, t, t ′ = 1, . . . , T .

(14.19)

Taking into account the distortion type FD-1 defined by (14.17), let us construct
the loss function ρ(·) in the special form (see Fig. 14.3):

ρ(z)= 0.5 · I(|z| − δε
)(
z− δε sign(z)

)2
, z≥ 0, (14.20)

where δε ≥ 0 is some tuning parameter of the algorithm, I(z)= {1, z > 0;0, z≤0}; if
δε = 0, we get the LS forecasting statistic (14.10). Using (14.19), (14.20) we have:
μ(z) = I(|z| − δε)(z − δε sign(z)), ν(z) = I(|z| − δε), z 
= ± δε . The loss function
(14.20) has a nonempty set with zero sensitivity of the objective function in (14.18),
so the convergence properties of the iterative procedure (14.19) depend significantly
on the starting point θ(1). To avoid this defect, introduce a smoothed version of the
loss function (14.20) (see Fig. 14.3):

ρ(z)= f1(z)I[0,δε−d](z)+ g(z)I(δε−d,δε)(z)+ f2(z)I[δε,+∞)(z),

where f1(z) = az2 is some parabola, g(z) is a “connecting function”, f2(z) =
b(z − α)2 + β is some other parabola, d is the length of the “connecting zone”,
a, b > 0. Choosing a/ b we achieve a small but not-zero sensitivity of the objective
function in (14.18). Using a cubic “connecting function” g(z) and the assumption
of twice differentiability of ρ(z) we get the “smoothed” loss function (z≥ 0):

ρ(z)=

⎧⎪⎪⎨
⎪⎪⎩

az2, 0≤ z≤ δε − d,

az2 + b−a
3d (z+ d − δε)

3, δε − d < z < δε,

b
(
z− (b−a)(2δε−d)

2b

)2 + (b−a)(12aδε(δε−d)+d2(b+3a))
12b , z≥ δε.

(14.21)
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Fig. 14.4 Dependence of
risk on coefficient K = δ/ε

Note that if the errors {ut } have a Gaussian distribution, λ(zt ) = ±ε, and
limT→+∞ 1

T

∑T
t=1 ψ(zt ) = ψ̄ , limT→+∞ 1

T

∑T
t=1 ψ(zt )ψ

′(zt ) = H0, then for
T →+∞, the guaranteed risk has the asymptotic expression presented in Kharin
(2011a):

r+(T , τ )→ σ 2 + ε2 + 2εσG(δ̃ε, ε̃)
∣∣ψ ′(z)H−1

0 ψ̄
∣∣

+ σ 2G2(δ̃ε, ε̃)
(
ψ ′(z)H−1

0 ψ̄
)2
, (14.22)

where δ̃ε = δε/σ, ε̃ = ε/σ ,

G(x,y)= (x + y)Φ(−x − y)+ (−x + y)Φ(−x + y)+ φ(x − y)− φ(x + y)

Φ(−x − y)+Φ(−x + y)
.

(14.23)
It follows from (14.22), (14.23), that the maximal gain of the robust forecasting

statistic (14.18) w.r.t. to the LS forecasting statistic (14.10) is attained for the situa-
tions with ε/σ 0 1, i.e., for the situations where the errors determined by functional
distortions are much larger than the random observation errors. In Kharin (2011a),
an approximation for the optimal value δ∗ε ≈ ε minimizing the risk instability coef-
ficient is found.

Monte-Carlo experiments for the model (14.16) were made for the traditional LS
forecasting statistic (14.10) and for the robust forecasting statistic (14.18) with the
loss function (14.20) under following conditions:

zt = t, μ0(zt )= 3− 0.5t + 0.05t2, λ(zt )= ε cos t, m= 3,

ut ∼N
(
0, σ 2), σ 2 = 0.01, T = 20, τ = 1, a = 0.01, b= 1, δε =Kε,

where K = 0;0.05;0.10; . . . ;1.50. Point and 95 % confidence interval estimates
for the risk of the forecasting statistic (14.18) are evaluated by 103 Monte-Carlo
replications and are plotted in Fig. 14.4.

Note that the case K = 0 corresponds to the traditional LS forecasting statistic.
It is seen from Fig. 14.4 that the robust forecasting statistic (14.18) with the op-
timal value δ∗ε ≈ ε significantly decreases the risk under distortions: r∗ = 0.13 in
comparison with the risk of the traditional LS forecasting statistic r = 0.24.
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Let us mention that the robust forecasting statistic (14.18) can also be applied to
multivariate time series by the following modification:

x̂T+τ = θ̂ψ(zT+τ ), θ̂ = arg min
θ

T∑
t=1

ρ
(∥∥xt − θψ(zt )

∥∥),

where θ̂ = (θ̂jk) is the estimator of the (d ×m)-matrix of regression coefficients.

14.5 Robustness in Forecasting Under Distorted Autoregression
Models

14.5.1 Misspecification of Autoregression Coefficients

Consider now one more hypothetical model of observed data used in applied prob-
lems of statistical forecasting—the autoregression model AR(p) of order p ∈N:

xt = θ0
1xt−1 + · · · + θ0

pxt−p + ut , t ∈ Z, (14.24)

where θ0 = (θ0
1 , . . . , θ

0
p)
′ ∈ R

p is an unknown vector-column of p autoregression
coefficients satisfying the stationarity condition (Anderson 1971), ut is the innova-
tion process assumed to be a sequence of i.i.d. Gaussian random variables with zero
mean and finite unknown variance E{x2

t } = σ 2. The optimal τ -step-ahead forecast-
ing statistic is linear (see, e.g., Anderson 1971):

x̂∗T+τ =
p∑

j=1

(
Aτ

0

)
1j xT+1−j , τ ∈N, (14.25)

where the (p × p)-matrix A0 is the companion matrix of the stochastic difference
equation (14.24) in the block form:

A0 =

⎛
⎜⎜⎝

θ0′

. . . . . . . . .

Ip−1
... Op−1

⎞
⎟⎟⎠ , (14.26)

Ip is the identity matrix of order p, Op−1 is the zero vector-column of size p − 1.
The minimal admissible risk for the forecasting statistic (14.25) is

r0(τ )= σ 2

(
1+

τ−1∑
k=1

((
Ak

0

)
11

)2)
.

Due to prior uncertainty, the true autoregression coefficient θ0 ∈ R
p is avail-

able with some specification error �θ ∈ R
p , and thus the forecasting statistic is
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constructed from distorted values (D.2.2.1 type of distortion): θ = θ0 + �θ . The
plug-in forecasting statistic uses the vector θ and is similar to (14.25), (14.26):

x̂T+τ =
p∑

j=1

(
Aτ
)

1j xT+1−j , A=
⎛
⎜⎝

θ ′
. . . . . . . . .

Ip−1
... Op−1

⎞
⎟⎠ . (14.27)

Introduce the notation: λmax(C) is the maximal eigenvalue of the matrix C,

Bτ =
τ−1∑
k=1

(
Ak

0

)
11

(
Aτ−k

0

)′
, Σp =

⎛
⎜⎜⎜⎝

σ0 σ1 . . . σp−1

σ1 σ0 . . . σp−2
...

... . . .
...

σp−1 σp−2 . . . σ0

⎞
⎟⎟⎟⎠ .

In the asymptotics of small specification errors ε = max |�θ | → 0 the instability
coefficient for the forecasting statistic (14.27) satisfies the asymptotic expansion
(presented in Kharin 2008): κ(τ)= ε2λmax(BτΣpBτ

′)/r0(τ )+O(ε3).

14.5.2 Distortions of Innovation Process

Let us discuss the situation, commonly occurring in practice, that the hypothetical
AR(p) model (14.24) is affected by nonhomogeneities in the mean value of the
innovation process (type D.2.3.1 of distortions):

xt = θ0
1xt−1 + · · · + θ0

pxt−p + ũt , ũt = μt + ut , t ∈ Z, (14.28)

where ut is determined in (14.24), ũt is the distorted innovation process, μt ∈ R

is some unknown deterministic function defining the distortion (see Kharin 2008,
2011b).

Theorem 14.4 Under a specification error �θ and nonhomogeneities (14.28) in
mean values of the innovation process satisfying the inequalities

T −1
T∑
t=1

μ2
t ≤ ε2

1, τ−1
T+τ∑
t=T+1

μ2
t ≤ ε2

2,

the risk instability coefficient of the τ -step-ahead autoregression forecasting statistic
(14.28) based on T observations equals

κ(τ) = 1

r0(τ )

(
σ 2

T−1∑
k=0

a2(k, τ )+
(
ε1

√√√√ 1

T

T−1∑
k=0

a2(k, τ )+ ε2

√√√√1

τ

τ−1∑
k=0

((
Ak

0

)
11

)2)2)

≥ 0,

where a(k, τ )= ((Aτ −Aτ
0)A

k
0)11 ∈R.
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Fig. 14.5 Dependence of
risk on distortion level ε

Consider now the situation where the innovation process is influenced by het-
eroscedasticity, i.e., functional distortion μt of the variance is present:

xt = θ0
1xt−1 + · · · + θ0

pxt−p + ũt , ũt = μtut , t ∈ Z. (14.29)

Theorem 14.5 For the AR(p) model under heteroscedasticity (14.29) and a specifi-
cation error �θ in the asymptotics ε =max |�θ | → 0 the risk instability coefficient
of the forecasting statistic (14.27) satisfies the asymptotic expansion:

κ(T , τ )= ε2λmax
(
β(T , τ )

)+O
(
ε3),

where (At
0)·1 is the first column of the matrix At

0, β(T , τ )= (
∑τ−1

i=0 (A
i
0)11A

τ−i−1
0 )×

S(
∑τ−1

i=0 (A
i
0)11A

τ−i−1
0 )′, S = σ 2∑+∞

t=0 (A
t
0)·1((A

t
0)·1)′μ2

T−t .

Monte-Carlo simulations agree with the obtained theoretical results. Figure 14.5
presents results of computer simulations based on the model (14.28) with p = 2,
θ0 = (0.3,0.4)′, θ = (0.4,0.5)′, σ 2 = 1, μt = ε · sin(t), ε(1) = ε(2) = ε, T = 40,
τ = 2; 104 Monte-Carlo simulation rounds were performed. The solid line shows
the theoretical dependence of risk rε(τ ) = r0(τ )(1 + κ(τ)) (computed by Theo-
rem 14.4) on distortion level ε; the dashed line represents experimental values of the
risk, and the dotted line indicates the minimal risk rmin = r0(τ )+σ 2∑T−1

k=0 a2(k, τ )

computed for μt ≡ 0.

14.5.3 Bilinear Distortions of AR(p)

Most of the real-world processes have nonlinear nature. However, they are often
analyzed by using simpler and better-studied linear models. In that case the key
question is the quantitative effect of nonlinearity on the inferences based on a linear
model. Here we study a nonlinear modification of the linear autoregression model—
the bilinear model (see Kharin 2008).
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Let the observed time series xt have distortions of type D.2.2 and satisfy the
bilinear model BL(p,0,1,1) considered in Fan and Yao (2003):

xt = θ0
1xt−1 + · · · + θ0

pxt−p + εxt−1ut−1 + ut , t ∈ Z, (14.30)

where ε is the bilinearity coefficient. If ε = 0, then the model (14.30) coincides
with the hypothetical AR(p) model defined by (14.24). Note that the stationarity
condition is (see Fan and Yao 2003): ρ(A0 ⊗ A0 + σ 2ε2C ⊗ C) < 1, where ρ(A)

is the spectral radius of the matrix A, ⊗ is the Kronecker matrix product, and the
(p× p)-matrix C has zero elements except for (C)1,1 = 1.

Introduce matrices: W = Ip+1 −W1−W2, S̄ = (s̄ij )= S−1, W̄ = (w̄ij )=W−1,

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 θ0
1 θ0

2 . . . θ0
p

0 θ0
2 θ0

3 . . . 0

. . . . . . . . . . . . . . .

0 θ0
p 0 . . . 0

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, W2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0

θ0
1 0 . . . 0 0

. . . . . . . . . . . . . . .

θ0
p−1 θ0

p−2 . . . 0 0

θ0
p θ0

p−1 . . . θ0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

S =

⎛
⎜⎜⎜⎜⎝

1 −θ0
1 . . . −θ0

p−1

0 1 . . . −θ0
p−2

. . . . . . . . . . . .

0 0 . . . 1

⎞
⎟⎟⎟⎟⎠ .

Theorem 14.6 If the bilinear model (14.30) is stationary, |W | 
= 0, |ε| ≤ ε+, and
ε+ → 0, then the risk instability coefficient of the autoregressive forecasting statistic
(14.25) (that uses the hypothetical model (14.24) with ε = 0) satisfies the asymptotic
expansion:

κ(τ) = ε2+σ 2
(

1+ w̄11 +
(
∑τ

j=1 s̄1j )
2 + 4(1−∑p

i=1 θ
0
i )
−1∑τ−1

j=1 s̄1j s̄1,j+1∑τ
j=1 s̄

2
1j

)

+ o
(
ε2+
)
.

For numerical illustration, consider the bilinear model BL(10,0,1,1) deter-
mined by (14.30) for p = 10: xt = −0.5xt−1 + 0.1xt−3 + 0.2xt−4 − 0.2xt−5 −
0.1xt−6− 0.2xt−7+ 0.2xt−8+ 0.1xt−9− 0.1xt−10+ εxt−1ut−1+ut , ut ∼N (0,1).
Figure 14.6 presents results of computer simulations on this model for two values
of the forecasting horizon: τ = 1 (one step ahead), τ = 5 (five steps ahead); 103

Monte-Carlo simulation rounds were performed. Solid lines show the asymptotic
values of the risk r = σ 2∑τ

j=1 s̄
2

1j (1+κ∗(τ )) for τ = 1 (lower curve) and for τ = 5
(upper curve), where κ∗(τ ) is the main term in the asymptotic expansion defined by
Theorem 14.6; the circles near these curves indicate experimental values of the risk,
and the dashed lines are 95 % confidence bounds.
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Fig. 14.6 Dependence of risk on the bilinearity coefficient

Table 14.1 The δ-admissible
values ε∗ = ε∗(δ, τ ) δ τ

1 2 5

0.1 0.141 0.171 0.163

0.5 0.316 0.383 0.364

1.0 0.447 0.542 0.515

Table 14.1 presents δ-admissible values for the bilinearity coefficient ε∗ =
ε∗(δ, τ ).

14.6 Conclusions

The results presented in this paper provide a statistician with: (a) some classification
scheme for typical distortions of the hypothetical models in statistical forecasting;
(b) the guaranteed upper risk, the risk instability coefficient and the δ-admissible
distortion level in “plug-in” statistical forecasting of time series under distorted re-
gression and autoregression models; (c) the robust LM forecasting statistic under
outliers and robust forecasting statistic under interval functional distortions of the
hypothetical regression function. The theoretical results are tested on simulated and
real statistical data; they are applied in the software package ROSTATFOR (RObust
STATistical FORecasting) developed by the Belarusian State University.
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Chapter 15
Finding Outliers in Linear and Nonlinear Time
Series

Pedro Galeano and Daniel Peña

15.1 Introduction

Outliers, or discordant observations, can have a strong effect on the model building
process for a given time series. First, outliers introduce bias in the model parameter
estimates, and then, distort the power of statistical tests based on biased estimates.
Second, outliers may increase the confidence intervals for the model parameters.
Third, as a consequence of the previous points, outliers strongly influence predic-
tions. There are two main alternatives to analyze and treat outliers in time series.
First, robust procedures can be applied to obtain parameter estimates not affected
by the presence of outliers. These robust estimates are then used to identify outliers
by using the residuals of the fit. Second, diagnostic methods are useful to detect the
presence of outliers by analyzing the residuals of the model fit through iterative test-
ing procedures. Once the outliers have been found, their effects are jointly estimated
with the model parameters, obtaining, as a by-product, robust model parameter esti-
mates. In this paper we focus on diagnostic methods and refer to Chap. 8 of Maronna
et al. (2006) for a detailed review of robust procedures for ARMA models and Muler
and Yohai (2008) and Muler et al. (2009) for two recent references.

For linear models, Fox (1972) introduced additive outliers (AO), which affect a
single observation, and innovative outliers (IO), which affect a single innovation,
and proposed the use of likelihood ratio test statistics for testing for outliers in au-
toregressive models. Tsay (1986) proposed an iterative procedure to identify out-
liers, to remove their effects, and to specify a tentative model for the underlying
process. Chang et al. (1988) derived likelihood ratio criteria for testing the existence
of outliers of both types and criteria for distinguishing between them and proposed
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an iterative procedure for estimating the time series parameters in ARIMA models.
Tsay (1988) extended the previous findings to two new types of outliers: the level
shift (LS), which is a change in the level of the series, and the temporary change
(TC), which is a change in the level of the series that decreases exponentially. Chen
and Liu (1993a) proposed an iterative outlier detection to obtain joint estimates of
model parameters and outlier effects that leads to more accurate model parameter
estimates than previous ones. Luceño (1998) developed a multiple outlier detection
method in time series generated by ARMA models based on reweighed maximum
likelihood estimation. Gather et al. (2002) proposed a partially graphical procedure
based on mapping the time series into a multivariate Euclidean space which can be
applied online. Sánchez and Peña (2010) proposed a procedure that keeps the power-
ful features of previous methods but improves the initial parameter estimate, avoids
confusion between innovative outliers and level shifts and includes joint tests for se-
quences of additive outliers in order to solve the masking problem. Finally, papers
dealing with seasonal ARIMA models are Perron and Rodríguez (2003), Haldrup
et al. (2011) and Galeano and Peña (2012), among others.

Recently, the focus has moved to outliers in nonlinear time series models. For
instance, Chen (1997) proposed a method for detecting additive outliers in bilinear
time series. Battaglia and Orfei (2005) proposed a model-based method for detecting
the presence of outliers when the series is generated by a general nonlinear model
that includes as particular cases the bilinear, the self-exciting threshold autoregres-
sive (SETAR) model and the exponential autoregressive model, among others. In
financial time series modeling, Doornik and Ooms (2005) presented a procedure
for detecting multiple AO’s in generalized autoregressive conditional heteroskedas-
ticity (GARCH) models at unknown dates based on likelihood ratio test statistics.
Carnero et al. (2007) studied the effect of outliers in the identification and esti-
mation of GARCH models. Grané and Veiga (2010) proposed a general detection
and correction method based on wavelets that can be applied to a large class of
volatility models. Hotta and Tsay (2012) introduced two types of outlier in GARCH
models: the level outlier (LO) corresponds to the situation in which a gross error
affects a single observation that does not enter into the volatility equation, while the
volatility outlier (VO) corresponds to the previous situation but the outlier enters
into the volatility affecting all the remaining observations in the time series. Finally,
Fokianos and Fried (2010) introduced three different outliers for the particular case
of integer-valued GARCH (INGARCH) models and proposed a multiple outlier de-
tection procedure for such outliers.

The literature on outliers in multivariate time series is brief. Tsay et al. (2000)
generalized the four types of outliers usually considered in ARIMA models to the
case of vector autoregressive moving average (VARMA) models and highlighted the
differences between univariate and multivariate outliers. Importantly, the effect of a
multivariate outlier not only depends on the model and the outlier size, as in the uni-
variate case, but on the interaction between the model and size. These authors also
proposed an iterative procedure for estimating the location, type and size of multi-
variate outliers. Galeano et al. (2006) proposed a method based on projections for
identifying outliers without requiring initial specification of the multivariate model.
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These authors showed that a multivariate outlier produces at least a univariate outlier
in almost every projected series, and by detecting the univariate outliers, it is pos-
sible to identify the multivariate ones. Baragona and Battaglia (2007a) and Barag-
ona and Battaglia (2007b) have proposed methods to discover outliers in dynamic
factor models and in multiple time series by means of an independent component
approach, respectively. Finally, Pankratz (1993) has considered outliers in dynamic
regression models.

Other interesting issues related with outliers have been analyzed in the literature.
For instance, detection of outliers in online monitoring data have been developed in
Davies et al. (2004) and Gelper et al. (2009), among others. The effects of outliers in
exponential smoothing techniques have been considered by Kirkendall (1992) and
Koehler et al. (2012). The relationship between outliers, missing observations and
interpolation techniques have been analyzed in Peña and Maravall (1991), Battaglia
and Baragona (1992), Ljung (1993) and Baragona (1998). Forecasting time series
with outliers have been addressed by Chen and Liu (1993b), for ARMA models,
Franses and Ghijsels (1999), for GARCH models, and Gagné and Duchesne (2008),
for dynamic vector time series models.

The rest of this contribution is organized as follows. In Sect. 15.2, we review out-
liers in univariate ARIMA models and discuss procedures for outlier detection and
robust estimation. In Sect. 15.3, we consider outliers in non-linear time series mod-
els. Section 15.4 is devoted to outliers in multivariate time series models. Finally,
Sect. 15.5 concludes the paper.

15.2 Outliers in ARIMA Models

This section reviews outliers in ARIMA time series models. We first introduce the
four types of outliers usually considered in these models: additive outlier, innovative
outlier, level shift and temporary change. Another type of unexpected events can
be considered in the framework of an intervention event in the time series data,
such as the ramp shift. Then, we describe procedures for outlier identification and
estimation.

15.2.1 Types of Outliers in ARIMA Models

15.2.1.1 The ARIMA Model

We say that xt follows an ARIMA(p,d, q) model if xt can be written as:

φ(B)(1−B)dxt = c+ θ(B)et , (15.1)

where c is a constant, B is the backshift operator such that Bxt = xt−1, φ(B) and
θ(B) are polynomials in B of orders p and q given by φ(B)= 1−φ1B−· · ·−φpBp
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Fig. 15.1 Stationary series with and without an AO

and θ(B)= 1+ θ1B + · · · + θqB
q , respectively, d is the number of unit roots and

et is a white noise sequence of independent and identically distributed (i.i.d.) Gaus-
sian with mean zero and variance σ 2

e . It is further assumed that the roots of φ(B)
and θ(B) are outside the unit circle and have no common roots. The autoregres-
sive representation of the ARIMA model in (15.1) is given by π(B)xt = cπ + et ,
where cπ = θ−1(B)c and π(B)= θ(B)−1φ(B)(1−B)d , while the moving average
representation reduces to xt = cψ + ψ(B)et , where cψ = φ−1(B)(1− B)−dc and
ψ(B)= φ(B)−1(1−B)−dθ(B).

15.2.1.2 Additive Outliers

An additive outlier (AO) corresponds to an exogenous change of a single observa-
tion of the time series and is usually associated with isolated incidents like mea-
surement errors or impulse effects due to external causes. A time series y1, . . . , yT
affected by the presence of an AO at t = k is given by:

yt = xt +wI
(k)
t

for t = 1, . . . , T , where xt follows an ARIMA model in (15.1), w is the outlier size
and I (k)t is an indicator variable such that I (k)t = 1, if t = k, and I (k)t = 0, otherwise.

Figure 15.1 shows a simulated series with sample size T = 100 following an
AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1, and the same
series with an AO of size w = 10 at t = 50. Note how only a single observation
is affected. An AO can have pernicious effects in all the steps of the time series
analysis, i.e., model identification, estimation and prediction. For instance, the auto-
correlation and partial autocorrelation functions, that are frequently used for model
identification, can be severely affected by the presence of an AO.

15.2.1.3 Innovative Outliers

An innovative outlier (IO) corresponds to an endogenous change of a single innova-
tion of the time series and is usually associated with isolated incidents like impulse
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Fig. 15.2 Stationary series with and without an IO

Fig. 15.3 Nonstationary series with and without an IO

effects due to internal causes. The innovations of a time series y1, . . . , yT affected
by the presence of an IO at time point t = k is given by:

at = et +wI
(k)
t , (15.2)

where et are the innovations of the clean series xt . Multiplying ψ(B) in both sides
of (15.2) leads to the equation for the observed series:

yt = xt +ψ(B)wI
(k)
t .

The effects of an IO on a series depend on the series being stationary or not.
To see this point, Fig. 15.2 shows a simulated series with sample size T = 100
following an AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1,
and the same series with an IO of size w = 10 at t = 50. Note how the IO modifies
several observations of the series although its effect tends to disappear after a few
observations. On the other hand, Fig. 15.3 shows a simulated series with sample
size T = 100 following an ARIMA(1, 1, 0) model with parameter φ = 0.8 and
innovation variance σ 2

e = 1, and the same series with an IO of size w = 10 at t = 50.
Note how, in this case, the IO affects all the observations of the series starting from
time point t = 50.
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Fig. 15.4 Stationary series with and without a LS

15.2.1.4 Level Shifts

A level shift (LS) is a change in the mean level of the time series starting at t = k and
continuing until the end of the observed period. Therefore, a time series y1, . . . , yT
affected by the presence of a LS at t = k is given by:

yt = xt +wS
(k)
t ,

where S
(k)
t = (1 − B)−1I

(k)
t is a step function. Note that a LS serially affects the

innovations as follows:

at = et + π(B)wS
(k)
t .

Figure 15.4 shows a simulated series with sample size T = 100 following an
AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1, joint with
the same series with a LS of size w = 10 at t = 50. Note how the LS affects all the
observation of the series after t = 50. A LS has a strong effect in both identification
and estimation of the observed series. Indeed, the effect of an LS is close to the
effect of an IO on a nonstationary series.

15.2.1.5 Temporary Changes

A temporary change (TC) is a change with effect that decreases exponentially.
Therefore, a time series y1, . . . , yT affected by the presence of a TC at t = k is
given by

yt = xt + 1

1− δB
wI

(k)
t ,

where δ is the exponential decay parameter such that 0 < δ < 1. Note that if δ tends
to 0, the TC reduces to an AO, whereas if δ tends to 1, the TC reduces to a LS.
Under the presence of a TC, the innovations are affected as follows:

at = et + π(B)

1− δB
wI

(k)
t .
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Fig. 15.5 Stationary series with and without a TC

Then, if π(B) is close to 1− δB , the effect of a TC on the innovations is very close
to the effect of an IO. Otherwise, the TC can affect several innovations.

Figure 15.5 shows a simulated series with sample size T = 100 following an
AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1, and the same
series with an TC of size w = 10 and decay rate δ = 0.7 at t = 50. Note how the TC
have a decreasing effect in the observations of the series after t = 50.

15.2.1.6 Ramp Shifts

Finally, a ramp shift (RS) is a change in the trend of the time series in an
ARIMA(p,1, q) model starting at t = k and continuing until the end of the ob-
served period. Therefore, a time series y1, . . . , yT affected by the presence of a RS
at t = k is given by

yt = xt +wR
(k)
t ,

where R(k)
t = (1− B)−1S

(k)
t is a ramp function. Note that a RS on the I (1) series

yt is a LS on the differenced series (1− B)yt . Note also that a RS serially affects
the innovations as follows:

at = et + π(B)wR
(k)
t .

Other types of unexpected events have been considered in the literature. For in-
stance, variance changes have been considered in Tsay (1988), while patches of
additive outliers have been studied in Justel et al. (2001) and Penzer (2007). Mod-
eling alternative unexpected events is also possible as the intervention framework is
flexible enough to model many different situations. For example, new effects can be
defined using combinations of the outliers previously considered.
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15.2.2 Outlier Identification and Estimation

In general, all the types of outliers that we have presented can be written in a general
equation:

yt = xt + ν(B)wI
(k)
t , (15.3)

where ν(B) = 1 for an AO, ν(B) = ψ(B) for an IO, ν(B) = (1− B)−1 for a LS,
ν(B)= (1− δB)−1 for a TC and ν(B)= (1− B)−2 for a RS, respectively. There-
fore, outliers in time series can be seen as particular cases of interventions, intro-
duced by Box and Tiao (1975), to model dynamic changes on a time series at known
time points.

Assume that we observe a series, y1, . . . , yT , following an ARIMA(p,d, q)
model as in (15.1) with known parameters and with an outlier of known type at
t = k. Multiplying by π(B) in (15.3) leads to the equation for the innovations:

at = et +wizi,t , (15.4)

for i =AO, IO, LS and TC, where wAO, wIO, wLS and wTC is the size of the outlier
for AO, IO, LS and TC, respectively, and zi,t = π(B)νi(B)I

(k)
t , where νAO(B)= 1,

νIO(B)=ψ(B), νLS(B)= (1−B)−1 and νTC(B)= (1−δB)−1, respectively. From
(15.4), for any particular case, one can easily estimate the size of the outlier by least-
squares leading to:

ŵi =
∑T

t=1 zi,t at∑T
t=1 z

2
i,t

with variance ρ2
i σ

2
e where ρ2

i = (
∑T

t=1 z
2
i,t )

−1. Consequently, knowing the type and
location of the outlier, it is easy to adjust the outlier effect on the observed series
using the corresponding estimates, ŵAO, ŵIO, ŵLS or ŵTC, respectively.

Also, the estimates of the outlier size can now be used to test whether one outlier
of known type has occurred at t = k. Indeed, the likelihood ratio test statistic for the
null hypothesis H0 :wi = 0 against the alternative H1 :wi 
= 0, is given by

τi,k = ŵi,k

ρiσe
.

The statistic τi,k , under the null hypothesis, follows a Gaussian distribution.
However, in practice, the number, location, type and size of the outliers are un-

known. Several papers, including Chang et al. (1988), Tsay (1988), Chen and Liu
(1993a) and Sánchez and Peña (2010), among others, have proposed iterative pro-
cedures in which the idea is to compute the likelihood ratio test statistics for all the
observations of the series under the null hypothesis of no outliers. In particular, the
procedure by Chen and Liu (1993a), which is standard nowadays, works as follows.
In a first step, an ARIMA model is identified for the series and the parameters are es-
timated using maximum likelihood. Then, the likelihood ratio test statistics τi,t , for
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i =AO, IO, LS and TC, are computed. If the maximum of all these statistics is sig-
nificant, an outlier of the type that provides with the maximum statistic is detected.
Then, the series is cleaned of the outlier effects and the parameters of the model
are re-estimated. This step is repeated until no more outliers are found. In a second
step, the outliers effects and the ARIMA model parameters are estimated jointly
using a multiple regression model. If some outlier is not significant, it is removed
from the outliers set. Then, the multiple regression model is re-estimated. This step
is repeated until all the outlier effects are significant. In a final step, the two pre-
vious steps are repeated but initially using the ARIMA model parameters estimates
obtained at the end of the second step. However, this procedure has three main draw-
backs. First, when a level shift is present in the series, the procedure tends to identify
an innovative outlier instead of the level shift. Second, the initial estimation of the
model parameters usually leads to a very biased set of parameters that may produce
the procedure to fail. Third, the masking and swamping effects, although mitigated
with respect to previous procedures, are still present if a sequence of outlier patches
is present in the time series. Sánchez and Peña (2010) proposed a procedure for mul-
tiple outlier detection and robust estimation that tries to avoid these three problems.
In particular, to solve the first problem, it is proposed to compare AO versus IO and
deal with LS alone. To solve the second problem, it is proposed to use influence
measures to identify the observations that have a larger impact on estimation and
estimate the parameters assuming that the most influential observations are missing.
Finally, to solve the third problem, an influence measure for LS or sequences of
patchy outliers is proposed that can be used to carry out the initial cleaning of the
time series.

15.3 Outliers in Nonlinear Time Series Models

This section reviews outliers in some nonlinear time series models. In particular, we
first consider the model-based method proposed by Battaglia and Orfei (2005) for
detecting the presence of outliers when the series is generated by a general nonlinear
model. Second, we summarize the effect of outliers in GARCH models following
Carnero et al. (2007) and present a method proposed by Hotta and Tsay (2012) for
detecting outliers in GARCH models. Finally, we describe the method proposed by
Fokianos and Fried (2010) to detect outliers in INGARCH models.

15.3.1 Outliers in a General Nonlinear Model

Battaglia and Orfei (2005) assumed a time series xt following the model:

xt = f
(
x(t−1), e(t−1))+ et , (15.5)
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where f is a nonlinear function also containing unknown parameters, x(t−1) =
(xt−1, xt−2, . . . , xt−p)′, e(t−1) = (et−1, et−2, . . . , et−p)′ and et is a white noise se-
quence of independent and identically distributed (i.i.d.) Gaussian with mean zero
and variance σ 2

e . Note that the model in (15.5) covers several well known nonlin-
ear models, such as the bilinear model, the self-exciting threshold autoregressive
(SETAR) model and the exponential autoregressive model, among others.

For the model in (15.5), Battaglia and Orfei (2005) consider additive and in-
novative outliers. First, for an AO at t = k, the observed series is y1, . . . , yT ,
given by yt = xt + wI

(k)
t , for t = 1, . . . , T , where xt follows the model in (15.5).

Therefore, the observed series can be written as yt = f (y(t−1),a(t−1))+ at , where
y(t−1) = (yt−1, yt−2, . . . , yt−p)′ and a(t−1) = (at−1, at−2, . . . , at−p)′, respectively,
for t = 1, . . . , T . The innovations of the observed series can be obtained recursively
from at = yt − f (y(t−1),a(t−1)). On the other hand, for an IO at t = k, the ob-
served series is given by yt = f (y(t−1),a(t−1))+ at , where at = et +wI

(k)
t , where

y(t−1) = (yt−1, yt−2, . . . , yt−p)′ and a(t−1) = (at−1, at−2, . . . , at−p)′, respectively,
for t = 1, . . . , T .

Estimation of outlier effects can be done similarly to the ARIMA case through
least squares. Battaglia and Orfei (2005) showed that the LS estimate of w for an
IO is given by ŵIO = ak with variance σ 2

e , and that the LS estimate of w for an AO
is given by

ŵAO =
∑T−k

j=0 cjak+j∑T−k
j=0 c

2
j

with variance (
∑T−k

j=0 c
2
j )σ

2
e , where

cj =−
[

∂

∂yt−j
f
(
y(k+j−1), a(k+j−1))+

j∑
i=1

cj−i
∂

∂at−j
f
(
y(k+j−1), a(k+j−1))

]
,

for j = 1, . . . , T − k. Consequently, the likelihood ratio test statistics to test for the
presence of an AO and a IO at t = k are given by

τIO = ak

σe
,

and

τAO =
∑T−k

j=0 cjak+j√∑T−k
j=0 c

2
j σe

,

respectively. Under the null hypothesis of no outlier, τAO and τIO have a standard
Gaussian distribution.

In order to detect the presence of several outliers in a nonlinear time series,
Battaglia and Orfei (2005) considered a procedure similar to that used in Chen and
Liu (1993a).
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15.3.2 Outliers in GARCH Models

Carnero et al. (2007) have analyzed the effects of outliers on the identification and
estimation of GARCH models. Regarding identification, Carnero et al. (2007) de-
rived the asymptotic biases caused by outliers on the sample autocorrelations of
squared observations generated by stationary processes and obtained the asymptotic
biases of the ordinary least squares (OLS) estimator of the parameters of ARCH(p)
models. Finally, these authors also studied the effects of outliers on the estimated
asymptotic standard deviations of the estimators considered and showed that they
are biased estimates of the sample standard deviations.

Recently, Hotta and Tsay (2012) have distinguished two types of outliers in
GARCH models and have proposed a method for their detection. For simplicity
of presentation, we consider the ARCH(1) model given by

xt =
√
htet ,

ht = α0 + α1x
2
t−1,

where α0 > 0, 0 < α1 < 1, and et are independent and identically distributed stan-
dard Gaussian random variables. Outliers in an ARCH(1) model encounter two dif-
ferent scenarios because an outlier can affect the level of xt or the volatility ht .
Therefore, a volatility outlier, denoted by VO, and defined as follows

yt =
√
htet +wI

(k)
t ,

ht = α0 + α1y
2
t−1

affects the volatility of the series, while a level outlier, denoted by LO, and given by

yt =
√
htet +wI

(k)
t ,

ht = α0 + α1
(
yt−1 −wI

(k)
t−1

)2
only affects the level of the series at the observation where it occurs.

Hotta and Tsay (2012) estimated w by means of the ML estimation method.
These authors showed that the ML estimate of w for a VO is given by

ŵVO = yk,

and that there are two ML estimates of w for a LO: the first one is ŵLO = yk and the
second one is ŵLO = yk − x̂k , where x̂k = is the square root of the positive solution
of the second order equation:

g(x) = α2
1x

2 + (2α0α1 + α2
1

(
α0 + α1y

2
k−1

))
x

+ (α2
0 + α0α1

(
α0 + α1y

2
k−1

)− α1y
2
k+1

(
α0 + α1y

2
k−1

))
,

provided that such a solution exists.
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In order to test for the presence of a VO or a LO, Hotta and Tsay (2012) propose
the use of the Lagrange multiplier (LM) test statistic that, for a VO, is defined as

LMVO
k = y2

k

α0 + α1y
2
k−1

,

while for a LO, it is given by

LMLO
k = LMVO

k

{
1+ α1hk

(
1

hk+1
− y2

k+1

h2
k+1

)}2(
1+ 2α2

1hk
y2
k

h2
k+1

)−1

.

Note that LMLO
k = LMVO

k if α1 = 0. Therefore, the two test statistics should not
differ substantially when α1 is close to 0. To detect multiple outliers, Hotta and
Tsay (2012) thus propose to compute the maximum LM statistics

LMVO
max = max

2≤t≤n
LMVO

k , LMLO
max = max

2≤t≤n
LMLO

k ,

for which it is easy to compute critical values via simulation. If both statistics are
significant, one may choose the outlier that gives the smaller p-value.

15.3.3 Outliers in INGARCH Models

Fokianos and Fried (2010) consider outliers in the integer-valued GARCH (IN-
GARCH) model given by

xt |Fx
t−1 ∼ Poisson(λt ),

λt = α0 +
p∑

j=1

αjλt−j +
q∑
i=1

βixt−i ,
(15.6)

for t ≥ 1, where λt is the Poisson intensity of the process xt , Fx
t−1 stands for the

σ -algebra generated by {xt−1, . . . , x1−q, λt−1, . . . , λ0}, α0 is an intercept, αj > 0,

for j = 1, . . . , p and βi > 0, for i = 1, . . . , q and
∑p

j=1 αj +
∑q

i=1 βi < 1 to get

covariance stationarity. Outliers in the INGARCH model (15.6) can be written as

yt |Fy

t−1 ∼ Poisson(κt ),

κt = α0 +
p∑

j=1

αjκt−j +
q∑
i=1

βiyt−i +w(1− δB)−1I
(k)
t ,

(15.7)

for t ≥ 1, where κt is the Poisson intensity of the process yt , Fy

t−1 stands for the
σ -algebra generated by {yt−1, . . . , y1−q, κt−1, . . . , κ0}, w is the size of the outlier,
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and 0≤ δ ≤ 1 is a parameter that controls the outlier effect. In particular, δ = 0 cor-
responds to an spiky outlier (SO) that influences the process from time k on, but to a
rapidly decaying extent provided that α1 is not close to unity, 0 < δ < 1 corresponds
to a transient shift (TS) that affects several consecutive observations although its ef-
fect becomes gradually smaller as time grows and, finally, δ = 1 corresponds to a
level shift (LS) that affects permanently the mean and the variance of the observed
series.

Fokianos and Fried (2010) propose to estimate the outlier effect w via conditional
maximum likelihood. Therefore, given the observed time series y1, . . . , yT , the log-
likelihood of the parameters of model (15.7), η = (α0, α1, . . . , αp,β1, . . . , βq,w)

′
conditional on Fy

0 is given, up to a constant, by

!(η)=
T∏

t=q+1

(
yt logκt (η)− κt (η)

)
(15.8)

with score function

∂l(η)

∂η
=

T∑
t=q+1

(
yt

κt (η)
− 1

)
∂κt (η)

∂η
.

In addition, the conditional information matrix for η is given by

G(η)=
T∑

t=q+1

Cov

[
∂l(η)

∂η

∣∣∣Fy

t−1

]
=

T∑
t=1

1

κt (η)

(
∂l(η)

∂η

)(
∂l(η)

∂η

)′
.

Consequently, ŵ is obtained from the ML estimate η̂ after maximizing the log-
likelihood function (15.8). In order to test for the presence of an outlier at t = k,
Fokianos and Fried (2010) propose to use the score test given by

Tk =�′G(α̃0, α̃1, . . . , α̃p, β̃1, . . . , β̃q ,0)−1�,

where

�= ∂l(α̃0, α̃1, . . . , α̃p, β̃1, . . . , β̃q ,0)

∂η
,

and (α̃0, α̃1, . . . , α̃p, β̃1, . . . , β̃q ,0)′ is the vector that contains the ML estimates of
the parameters of the model (15.6) and the value w = 0. Under the null hypothesis
of no outlier, Tk has an asymptotic χ2

1 distribution. To detect an outlier of a certain
type at an unknown time point, the idea is to obtain

T = max
q+1≤t≤T

Tt ,

and reject the null hypothesis of no outlier if T is large. The distribution of this
statistic can be calibrated using bootstrap. Finally, to detect the presence of several
outliers in a INGARCH time series, Fokianos and Fried (2010) proposed a proce-
dure similar to that used in Chen and Liu (1993a).
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15.4 Outliers in Multivariate Time Series Models

Outliers in multivariate time series has been much less analyzed than in the univari-
ate case. Multivariate outliers were introduced in Tsay et al. (2000). These authors
have also proposed a detection method based on individual and joint likelihood ra-
tio statistics. Alternatively, Galeano et al. (2006) used projection pursuit methods
to develop a procedure for detecting outliers. In particular, Galeano et al. (2006)
showed that testing for outliers in certain projection directions can be more power-
ful than testing the multivariate series directly. In view of these findings, an iterative
procedure to detect and handle multiple outliers based on a univariate search in
these optimal directions were proposed. The main advantage of this procedure is
that it can identify outliers without prespecifying a vector ARMA model for the
data. An alternative method based on linear combinations of the components of the
vector of time series can be found in Baragona and Battaglia (2007b) that considers
an independent component approach. Finally, Baragona and Battaglia (2007a) have
proposed a method to discover outliers in a dynamic factor model based on linear
transforms of the observed time series. In this section, we briefly review the main
findings in Tsay et al. (2000) and Galeano et al. (2006).

15.4.1 The Tsay, Peña and Pankratz Procedure

A r-dimensional vector time series Xt = (X1t , . . . ,Xrt )
′ follows a vector ARMA

(VARMA) model if

Φ(B)Xt =C+Θ(B)Et , t = 1, . . . , T , (15.9)

where Φ(B) = I − Φ1B − · · · − ΦpB
p and Θ(B) = I − Θ1B − · · · − ΘqB

q are
r × r matrix polynomials of finite degrees p and q , C is a r-dimensional con-
stant vector, and Et = (E1t , . . . ,Ert )

′ is a sequence of independent and identi-
cally distributed Gaussian random vectors with zero mean and positive-definite
covariance matrix Σ . The autoregressive representation of the VARMA model
in (15.9) is given by Π(B)Xt = CΠ + Et , where Φ(1)CΠ = C and Π(B) =
Θ(B)−1Φ(B)= I−∑∞i=1 ΠiB

i , while the moving-average representation of Xt is
given by Xt = CΨ + Ψ (B)Et , where Φ(1)CΨ = C and Φ(B)Ψ (B) =Θ(B) with
Ψ (B)= I+∑∞i=1 ΨiB

i .
Tsay et al. (2000) generalize four types of univariate outliers to the vector

case. Under the presence of a multivariate outlier, we observe a time series Y =
(Y ′1, . . . , Y ′T )′, where Yt = (Y1t , . . . , Yrt )

′, can be written as follows:

Yt =Xt +Λ(B)wI (k)t , (15.10)

where w= (w1, . . . ,wr)
′ is the size of the outlier and Xt follows a VARMA model.

The type of the outlier is defined by the matrix polynomial Λ(B): for a multi-
variate innovational outlier (MIO), Λ(B) = Ψ (B); for a multivariate additive out-
lier (MAO), Λ(B) = I; for a multivariate level shift (MLS), Λ(B) = (1 − B)−1I;
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and, finally, for a multivariate temporary (or transitory) change (MTC), Λ(B) =
(I− δIB)−1. In practice, an outlier may produce a complex effect, given by a linear
combination of the previously discussed pure effects. Furthermore, different com-
ponents of Xt may suffer different outlier effects. An example of this kind of mixed
effects can be found in Galeano et al. (2006).

Given the parameters of the VARMA model for Xt , the series of innovations are
defined by At =Π(B)Yt −CΠ and the relationship with the true innovations, Et ,
is given by

At = Et + Γ (B)wI (k)t ,

where Γ (B) = Π(B)Λ(B) = I −∑∞i=1 ΓiB
i . Now, the least squares estimate of

the size of an outlier of type i at time point k is given by

wi,k =−
(
n−k∑
j=0

Γ ′jΣ−1Γj

)−1(n−k∑
j=0

Γ ′jΣ−1Ak+j

)
,

where Γ0 = −I and i = MIO, MAO, MLS and MTC for subscripts, and has a
covariance matrix given by Σi,k = (

∑n−k
j=0 Γ

′
jΣ

−1Γj )
−1. The likelihood ratio test

statistic for testing for the presence of a multivariate outlier of type i at t = k is
Ji,k = w′i,kΣ

−1
i,k wi,k . Under the null hypothesis of no outlier, Ji,k has a χ2

r dis-

tribution. Tsay et al. (2000) also proposed a second statistic defined by Ci,k =
max{|wj,i,k|/√σj,i,k : 1≤ j ≤ r}, where wj,i,k is the j th element of wi,k and σj,i,k
is the j th element of the main diagonal of Σi,k , with the aim of look for outliers in
individual components of the vector of series.

In practice, the parameter matrices are then substituted by their estimates and the
following overall test statistics are defined:

Jmax(i, ki)= max
1≤t≤n

Ji,t , Cmax
(
i, k∗i
)= max

1≤t≤n
Ci,t ,

where ki and k∗i denote respectively the time points at which the maximum of the
joint test statistics and the maximum component statistics occur.

15.4.2 The Galeano, Peña and Tsay Procedure

Galeano et al. (2006) have proposed a method for detecting multivariate outliers in
time series without requiring initial specification of the multivariate model. This is
very important in these settings because model identification is quite complicated
in the presence of outliers. The method is based on univariate outlier detection ap-
plied to some useful projections of the vector time series. The basic idea is simple:
a multivariate outlier produces at least a univariate outlier in almost every projected
series, and by detecting the univariate outliers we can identify the multivariate ones.
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First, a non-zero linear combination of the components of the VARMA model in
(15.9) follows a univariate ARMA model. Second, when the observed series Yt is
affected by an outlier, as in (15.10), the projected series yt = v′Yt satisfies yt = xt +
v′Λ(B)wI (k)t . Specifically, if Yt has a MAO, the projected series is yt = xt +ωI

(k)
t ,

so that it has an additive outlier of size ω= v′w at point t = k provided that v′w 
= 0.
Similarly, the projected series of a vector process with a MLS of size w will have a
level shift with size ω= v′w at t = k. The same result also applies to MTC. A MIO
can produce several effects. In particular, a MIO can lead to a patch of consecutive
outliers with sizes v′w, v′Ψ1w, . . . ,v′ΨT−hw, starting at t = k. Assuming that k
is not close to T and because Ψj → 0, the size of the outlier in the patch tends
to zero. In the particular case that v′Ψiw = ψiv′w, for i = 1, . . . , T − k, then yt
has an innovational outlier at t = k with size β = v′w. However, if v′Ψiw = 0,
for i = 1, . . . , T − k, then yt has an additive outlier at t = k with size v′w, and if
v′Ψiw= v′w, for i = 0, . . . , T − k, then yt has a level shift at t = k with size β =
v′w. Therefore, the univariate series yt obtained by the projection can be affected
by an additive outlier, a patch of outliers or a level shift.

Galeano et al. (2006) have shown that it is possible to identify multivariate out-
liers better by applying univariate test statistics to optimal projections than by using
multivariate statistics on the original series. More precisely, it is possible to show
that, in the presence of a multivariate outlier, the directions that maximize or min-
imize the kurtosis coefficient of the projected series include the direction of the
outlier, that is, the direction that maximizes the ratio between the outlier size and
the variance of the projected observations. Therefore, Galeano et al. (2006) pro-
posed here a sequential procedure for outlier detection based on the directions that
minimize and maximize the kurtosis coefficient of the projections. The procedure
is divided into four steps: (1) obtain the optimal directions; (2) search for outliers
in the projected univariate time series; (3) remove the effect of all detected outliers
by using an approximated multivariate model; (4) iterate the previous steps applied
to the cleaned series until no more outliers are found. It is important to note that in
Step (2), the detection is carried out in two stages: first, MLS’s are identified; sec-
ond, MIO’s, MAO’s and MTC’s are found. This is done in order to avoid confusions
between multivariate innovational outliers and multivariate level shifts.

15.5 Conclusions

This chapter summarized outliers in both univariate and multivariate time series. Al-
though many work has been done, more research is still needed in order to analyze
outliers and unexpected events in time series. First, new effects in nonlinear time
series models can be considered. For instance, level shifts in bilinear and SETAR
models, transitory changes in GARCH models or additive outliers in INGARCH
models would be of interest. Second, as far as we know, outlier detection in mul-
tivariate nonlinear time series models have been not considered yet. For instance,
the extension of additive and volatility outliers to most of the available multivariate
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GARCH models is almost straightforward. Likewise, outliers in multivariate bilin-
ear and SETAR time series models is of interest. Finally, most of the existing liter-
ature on outlier detection focus on iterative testing procedures. Recently, Galeano
and Peña (2012) have proposed a method to detect additive outliers by means of
the use of a model selection criterion. The main advantage of the procedure is that
all the outliers are detected in a single step. Although the computational cost of the
procedure is high, the detection of outliers by means of model selection criteria is
a promising line of research. Finally, this chapter is closely related with those by
Barme–Delcroix (Chap. 3) who analyzes extreme events and Huskova (Chap. 11)
who analyzes robust change point analysis.
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Chapter 16
Qualitative Robustness of Bootstrap
Approximations for Kernel Based Methods

Andreas Christmann, Matías Salibián-Barrera, and Stefan Van Aelst

16.1 Introduction

Current statistical applications are characterized by a wealth of large and complex
data sets. There usually is a variable of main interest (“response” or “output values”)
and a number of potential explanatory measurements (“input values”) that are to be
used to either predict or describe the response. Our observations consist of n pairs
(x1, y1), . . . , (xn, yn), which will be assumed to be independent realizations of a
random pair (X,Y ). We are interested in obtaining a function f :X → Y such that
f (x) is a good predictor for the response y, if X = x is observed. The prediction
should be made in an automatic way. We refer to this process of determining a
prediction method as “statistical machine learning”, see, e.g., Vapnik (1995, 1998),
Schölkopf and Smola (2002), Cucker and Zhou (2007), Smale and Zhou (2007).
Here, by “good predictor” we mean that f minimizes the expected loss, i.e., the
risk,

RL,P(f )= EP
[
L
(
X,Y,f (X)

)]
,

where P denotes the unknown joint distribution of the random pair (X,Y ) and
L : X × Y ×R→ [0,+∞) is a fixed loss function. As a simple example, the least
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squares loss L(X,Y,f (X)) = (Y − f (X))2 yields the optimal predictor f (x) =
EP(Y | X = x), x ∈ X . Because P is unknown, we can neither compute nor mini-
mize the risk RL,P(f ) directly.

Support Vector Machines provide a highly versatile framework to perform statis-
tical machine learning in a wide variety of setups. Given a kernel k :X ×X →R we
consider predictors f ∈H , where H denotes the corresponding reproducing kernel
Hilbert space of functions from X to R. The space H includes, for example, all
functions of the form f (x) =∑m

j=1 αjk(x, xj ) where xj are arbitrary elements in
X and αj ∈ R, 1≤ j ≤m. To avoid overfitting, a support vector machine fL,P,λ is
defined as the solution of a regularized risk minimization problem. More precisely,

fL,P,λ = arg inf
f∈H EPL

(
X,Y,f (X)

)+ λ‖f ‖2
H , (16.1)

where λ ∈ (0,∞) is the regularization parameter. For a sample, D = ((x1, y1), . . . ,

(xn, yn)) the corresponding estimated function is given by

fL,Dn,λ = arg inf
f∈H

1

n

n∑
i=1

L
(
xi, yi, f (xi)

)+ λ‖f ‖2
H , (16.2)

where Dn denotes the empirical distribution based on D. Efficient algorithms to
compute f̂n := fL,Dn,λ exist for a number of different loss functions. Note that the
optimization problem (16.2) corresponds to (16.1) when using Dn instead of P.

An important component of statistical analyses concerns quantifying and incor-
porating uncertainty (e.g., sampling variability) in the reported estimates. For ex-
ample, one may want to include confidence bounds along the individual predicted
values f̂n(xi) obtained from (16.2). Unfortunately, the sampling distribution of the
estimated function f̂n is typically unknown. Recently, Hable (2012) considered the
asymptotic distribution of SVMs. Asymptotic confidence intervals based on those
general results are always symmetric.

Here, we are interested in approximating the finite sample distribution of SVMs
by Efron’s bootstrap approach (Efron 1979), because confidence intervals based on
the bootstrap approach can be asymmetric. The bootstrap provides an alternative
way to estimate the sampling distribution of a wide variety of estimators. To fix
ideas, consider a functional S :M→W , where M is a set of probability measures
and W denotes a metric space. Many estimators can be included in this frame-
work. Simple examples include the sample mean (with functional S(P) = ∫ ZdP)
and M-estimators (with functional defined implicitly as the solution to the equation
EPΨ (Z,S(P)) = 0). Let B(Z) be the Borel σ -algebra on Z = X × Y and denote
the set of all Borel probability measures on (Z,B(Z)) by M1(Z,B(Z)). Then,
it follows that (16.1) defines an operator S :M1(Z,B(Z))→ H whose value is
given by S(P ) = fL,P,λ, i.e., the support vector machine. Moreover, the estimator
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in (16.2) satisfies

fL,Dn,λ = S(Dn),

where

Dn = 1

n

n∑
i=1

δ(xi ,yi )

is the empirical distribution based on the sample D = ((x1, y1), . . . , (xn, yn)) and
δ(xi ,yi ) denotes the Dirac measure at the point (xi, yi).

More generally, let Zi = (Xi, Yi), i = 1, . . . , n, be independent and identically
distributed (i.i.d.) random variables with distribution P, and let

Sn(Z1, . . . ,Zn)= S(Pn)

be the corresponding estimator, where

Pn = 1

n

n∑
i=1

δZi
.

Denote the distribution of S(Pn) by Ln(S;P)=L (S(Pn)). If P was known to us,
we could estimate this sampling distribution by drawing a large number of random
samples from P and evaluating our estimator on them. The basic idea behind the
bootstrap is to replace the unknown distribution P by an estimate P̂. Here we will
consider the natural non-parametric estimator given by the sample empirical distri-
bution Pn. In other words, we estimate the distribution of our estimator of interest
by its sampling distribution when the data are generated by Pn. In symbols, the
bootstrap proposes to use ̂Ln(S;P)=Ln(S;Pn). Since this distribution is generally
unknown, in practice one uses Monte Carlo simulation to estimate it by repeatedly
evaluating the estimator on samples drawn from Dn. Note that drawing a sample
from Dn means that n observations are drawn with replacement from the original n
observations (x1, y1), . . . , (xn, yn).

It is easy to see that even a small proportion of outliers in the sample might have
an important effect on the bootstrap samples drawn from Dn. In particular, due to the
sampling with replacement the number of outliers in the bootstrap samples might be
much higher than that present in the original sample, and thus seriously affect the
estimated distribution of the estimator.

The main goal of this contribution is to show that bootstrap approximations of
an estimator which is based on a continuous operator S from the set of Borel prob-
ability distributions defined on a compact metric space into a complete separable
metric space is stable in the sense of qualitative robustness. Intuitively, this means
that small deviations from the distribution P that generates the data can only pro-
duce small perturbations in the bootstrap estimate of the sampling distribution of
the estimator. In other words, the bootstrap distribution of these estimators will not
change much if the data contains a relatively small proportion of outliers or not.
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As a special case, we will show that bootstrap approximations for many (gen-
eral) support vector machines are qualitatively robust, both for the real-valued SVM
risk functional and for the H -valued SVM operator itself. Our results only require
conditions on the loss function and on the kernel, but not on the unknown distri-
bution P. Hence, these conditions can be checked completely in advance and are
not data dependent. Our work generalizes previous results in Cuevas and Romo
(1993).

The rest of this chapter has the following structure. Section 16.2 lists some tools
which we need to prove our general results in Sect. 16.3. Section 16.4 contains
the results on bootstrap approximations of SVMs. A short discussion is given in
Sect. 16.5 where we also mention some related work.

16.2 Some Tools

For the proofs of our results in Sect. 16.3, we need Theorems 16.1 and 16.2 listed
below.

To state Theorem 16.1 on uniform Glivenko–Cantelli classes, we need the fol-
lowing notation. For any metric space (S, d) and real-valued function f : S→ R,
we denote the bounded Lipschitz norm of f by

‖f ‖BL := sup
x∈S

∣∣f (x)∣∣+ sup
x,y∈S,x 
=y

|f (x)− f (y)|
d(x, y)

. (16.3)

Let F̃ be a set of measurable functions from (S,B(S))→ (R,B). For any function
G : F̃ →R (such as a signed measure) define

‖G‖
F̃
:= sup

{∣∣G(f )∣∣ : f ∈ F̃}. (16.4)

The next result uses outer probabilities, we refer to van der Vaart and Wellner (1996)
for details.

Theorem 16.1 (Dudley et al. 1991, Proposition 12) For any separable metric space
(S, d) and M ∈ (0,∞),

F̃M :=
{
f : (S,B(S))→ (R,B); ‖f ‖BL ≤M

}
(16.5)

is a universal Glivenko–Cantelli class. It is a uniform Glivenko–Cantelli class, i.e.,
for all ε > 0,

lim
n→∞ sup

ν∈M1(S,B(S))
Pr∗
(

sup
m≥n

‖νm − ν‖F̃M
> ε
)
= 0, (16.6)

if and only if (S, d) is totally bounded. Here, Pr∗ denotes the outer probability.



16 Qualitative Robustness of Bootstrap Approximations 267

Note that the term ‖νm − ν‖F̃M
in (16.6) equals the bounded Lipschitz metric

dBL of the probability measures νm and ν if M = 1, i.e.,

‖νm − ν‖F̃1
= sup

f∈F̃1

∣∣(νm − ν)(f )
∣∣

= sup
f ;‖f ‖BL≤1

∣∣∣∣
∫

f dνm −
∫

f dν

∣∣∣∣=: dBL(νm, ν), (16.7)

see Dudley (2002, p. 394). Hence, Theorem 16.1 can be interpreted as a generaliza-
tion of Cuevas and Romo (1993, Lemma 1, p. 186), which states that if A ⊂ R

is a finite interval, then dBL(Pm,P) converges almost surely to 0 uniformly in
P ∈M1(A,B(A)). For various characterizations of Glivenko–Cantelli classes, we
refer to Talagrand (1987, Theorem 22), Ledoux and Talagrand (1991), and Dudley
(1999).

We next list the other main result we need for the proof of Theorem 16.4. This
result is an analogon of the famous Strassen theorem, but for the bounded Lipschitz
metric dBL instead of for the Prohorov metric.

Theorem 16.2 (Huber 1981, Theorem 4.2, p. 30) Let Z be a Polish space with
topology τZ . Let dBL be the bounded Lipschitz metric defined on the set
M1(Z,B(Z)) of all Borel probability measures on Z . Then the following two state-
ments are equivalent:

(i) There are random variables ξ1 with distribution ν1 and ξ2 with distribution ν2
such that E[dBL(ξ1, ξ2)] ≤ ε.

(ii) dBL(ν1, ν2)≤ ε.

16.3 On Qualitative Robustness of Bootstrap Estimators

Unless otherwise mentioned, we will use the Borel σ -algebra B(Z) on a metric
space (Z, dZ ) and denote the Borel σ -algebra on R by B.

Assumption 16.1 Let (Ω,A,μ) be a probability space, where μ is unknown,
(Z, dZ ) be a compact metric space, and B(Z) be the Borel σ -algebra on Z . De-
note the set of all Borel probability measures on (Z,B(Z)) by M1(Z,B(Z)). On
M1(Z,B(Z)) we use the Borel σ -algebra B(M1(Z,B(Z))) and the bounded Lip-
schitz metric dBL defined by (16.7). Let S be a statistical operator defined on the
set M1(Z,B(Z)) with values in a complete, separable metric space (W, dW ) en-
clipped with its Borel σ -algebra B(W). Let Z,Zn : (Ω,A,μ)→ (Z,B(Z)), n ∈N,
be independent and identically distributed random variables and denote the image
measure by P := Z ◦μ. Let Sn(Z1, . . . ,Zn) be a statistic with values in (W,B(W)).
Denote the empirical measure of (Z1, . . . ,Zn) by Pn := 1

n

∑n
i=1 δZi

. The statistic Sn
is defined via the operator

S : (M1
(
Z,B(Z)

)
,B
(
M1
(
Z,B(Z)

)))→ (W,B(W)
)
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where S(Pn) = Sn(Z1, . . . ,Zn). Denote the distribution of Sn(Z1, . . . ,Zn) when

Zi
i.i.d.∼ P by Ln(S;P) :=L (Sn(Z1, . . . ,Zn)). Accordingly, we denote the distribu-

tion of Sn(Z1, . . . ,Zn) when Zi
i.i.d.∼ Pn by Ln(S;Pn).

We are interested in estimating the sampling distribution Ln(S;P) of the statistic
Sn(Z1, . . . ,Zn). Efron (1979, 1982) proposed to use the bootstrap for this purpose.

The intuitive idea can be expressed as follows. If Zi
i.i.d.∼ P and P was known, we

could calculate (or simulate) the distribution Ln(S;P) of Sn(Z1, . . . ,Zn). Since P
is unknown, the bootstrap proposes to estimate it by the empirical distribution Pn
of our sample. Formally, the bootstrap estimates the unknown distribution Ln(S;P)
with Ln(S;Pn). Since the latter is also generally unknown, in practice computer
simulations are used to estimate Ln(S;Pn). This corresponds to generating many

samples Z∗1 , . . . ,Z∗n , with Z∗i
i.i.d.∼ Pn and computing the corresponding estimates

Sn(Z
∗
1 ,Z

∗
2 , . . . ,Z

∗
n). Note that the bootstrap approximations Ln(S;Pn) are proba-

bility measure-valued random variables with values in M1(W,B(W)).
Following Cuevas and Romo (1993), we call a sequence of bootstrap approx-

imations Ln(S;Pn) qualitatively robust at P ∈M1(Z,B(Z)) if the sequence of
transformations (gn)n∈N defined by

gn(Q)=L
(
Ln(S;Qn)

)
, Q ∈M1

(
Z,B(Z)

)
,

is asymptotically equicontinuous at P ∈M1(Z,B(Z)), i.e. if

∀ε > 0 ∃δ > 0 ∃n0 ∈N :
dBL(Q,P) < δ⇒ sup

n≥n0

dBL
(
L
(
Ln(S;Qn)

)
,L
(
Ln(S;Pn)

))
< ε. (16.8)

The above definition can be interpreted as follows. If the measures P and Q are close,
then the distribution of the bootstrap estimators when samples are drawn from P and
Q also remain close. In other words, small deviations in the distributions generating
the data only produce mild differences in the distribution of the bootstrap estimators.

As in Cuevas and Romo (1993), we call a sequence of statistics (Sn)n∈N uni-
formly qualitatively robust in a neighborhood U(P0) of P0 ∈M1(Z,B(Z)) if

∃n0 ∈N ∀ε > 0 ∀n≥ n0 ∃δ > 0 ∀P ∈ U(P0) :
dBL(Q,P) < δ⇒ dBL

(
Ln(S;Q),Ln(S;P)

)
< ε.

The following two results and Theorem 16.5 in the next section constitute the
core of this paper. They show that bootstrap approximations of an estimator which
is based on a continuous operator S from the set of Borel probability distributions
defined on a compact metric space into a complete separable metric space is stable
in the sense of the qualitative robustness as defined in (16.8).

Theorem 16.3 If Assumption 16.1 is valid and if S is uniformly continuous in a
neighborhood U(P0) of P0 ∈M1(Z,B(Z)), then the sequence (Sn(Z1, . . . ,Zn))n∈N
is uniformly qualitatively robust in U(P0).
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Proof We closely follow the proof by Cuevas and Romo (1993, Theorem 2). How-
ever, we use Theorem 16.1 instead of their Lemma 1 and we use Cuevas (1988,
Lemma 1) instead of Hampel (1971, Lemma 1). Let Pn ⊂M1(Z,B(Z)) be the set
of empirical distributions of order n ∈N, i.e.

Pn :=
{

Pn ∈M1
(
Z,B(Z)

); ∃(z1, . . . , zn) ∈Zn such that Pn = 1

n

n∑
i=1

δzi

}
,

and let En ⊂ Pn. If misunderstandings are unlikely, we identify En with the set
{z1, . . . , zn} of atoms.

It is enough to show that

∀ε > 0 ∃δ > 0 ∀P ∈ U(P0) ∃ sequence (En)n∈N ⊂Pn

such that Pn(En) > 1− ε and for all Qn ∈ En and for all Q̃n ∈Pn we have

dBL(Qn, Q̃n) < δ⇒ dW
(
S(Qn), S(Q̃n)

)
< ε.

From this, we obtain that (Sn)n∈N is uniformly qualitatively robust by Cuevas (1988,
Lemma 1).

Let ε > 0. Since the operator S is uniformly continuous in U(P0) we obtain

∃δ0 > 0 ∀P ∈ U(P0) : dBL(P,Q) < δ0 ⇒ dW
(
S(P), S(Q)

)
< ε/2. (16.9)

Hence by Theorem 16.1 for the special case M = 1 and by (16.7), we get

∃n0 ∈N : sup
P∈U(P0)

Pr∗
(

sup
n≥n0

dBL(Pn,P) < δ0

)
> 1− ε.

For n≥ n0 and P ∈ U(P0), define

En,P :=
{
Qn ∈ Pn : dBL(Qn,P) < δ0/2

}
.

It follows, that Pn(En,P) > 1− ε together with Qn ∈ En,P and dBL(Qn, Q̃n) < δ0/2
implies that

dBL(Qn,P) < δ0/2 and dBL(Q̃n,P) < δ0.

The triangle inequality thus yields due to (16.9)

dW
(
S(Qn), S(Q̃n)

)≤ dW
(
S(Qn), S(P)

)+ dW
(
S(P), S(Q̃n)

)
< ε,

from which the assertion follows. �

Theorem 16.4 If Assumption 16.1 is valid and if the sequence (Sn(Z1, . . . ,Zn))n∈N
is uniformly qualitatively robust in a neighborhood U(P0) of P0 ∈M1(Z,B(Z)),
then the sequence Ln(S;Pn) of bootstrap approximations of Ln(S;P) is qualita-
tively robust for P0.
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Proof The proof mimics the proof of Cuevas and Romo (1993, Theorem 3), but
uses Theorem 16.1 instead of Cuevas and Romo (1993, Lemma 1).

Fix P0 ∈M1(Z,B(Z)) and ε > 0. By the uniform qualitative robustness of
(Sn)n∈N in U(P0), there exists n0 ∈ N such that for all ε > 0 there exists δ > 0
such that

dBL(Q,P) < δ⇒ sup
m≥n0

sup
P∈U(P0)

dBL
(
Lm(S;Q),Lm(S;P)

)
< ε. (16.10)

Define δ1 := δ/2. Due to Theorem 16.1 for the special case M = 1 and by (16.7),
we have, for all ε > 0,

lim
n→∞ sup

P∈M1(Z,B(Z))

Pr∗
(

sup
m≥n

dBL(Pm,P) > ε
)
= 0.

Hence (16.10) and Varadarajan’s theorem on the almost sure convergence of empir-
ical measures to a Borel probability measure defined on a separable metric space,
see, e.g., Dudley (2002, Theorem 11.4.1, p. 399), yields for the empirical distribu-
tions Qn from Q and P0,n from P0 that,

∃n1 > n0 ∀n≥ n1 :
dBL(Q,P0) < δ1 ⇒ dBL(Qn,P0,n) < δ almost surely. (16.11)

It follows from the uniform qualitative robustness of (Sn)n∈N, see (16.10), that

∃n1 ∈N ∀ε > 0 ∀n≥ n1 ∃δ > 0 ∀P ∈ U(P0) :
dBL(Q,P) < δ⇒ dBL

(
Ln(S;Qn),Ln(S;P0,n)

)
< ε almost surely. (16.12)

For notational convenience, we write for the sequences of bootstrap estimators

ξ1,n :=Ln(S;Qn), ξ2,n :=Ln(S;P0,n), n ∈N.

Note that ξ1,n and ξ2,n are (measure-valued) random variables with values in the set
M1(W,B(W)). We denote the distribution of ξj,n by μj,n for j ∈ {1,2} and n ∈N.
Hence, (16.12) yields

dBL(ξ1,n, ξ2,n) < ε almost surely for all n≥ n1

and it follows

E
[
dBL(ξ1,n, ξ2,n)

]≤ ε ∀n≥ n1.

Now an application of an analogon of Strassen’s theorem, see Theorem 16.2, yields

sup
n≥n1

dBL
(
L (ξ1,n),L (ξ2,n)

)≤ ε,

which completes the proof, because

L (ξ1,n)=L
(
Ln(S;Qn)

)
and L (ξ2,n)=L

(
Ln(S;P0,n)

)
. �
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As an immediate consequence of these results we obtain the following corollary.

Corollary 16.1 If Assumption 16.1 is valid and if S is a continuous operator, then
the sequence Ln(S;Pn), n ∈ N, of bootstrap approximations of Ln(S;P) is quali-
tatively robust for all P ∈M1(Z,B(Z)).

Remark 16.1 The Theorems 16.3 and 16.4 can be interpreted as a generalization
of Theorems 2 and 3 in Cuevas and Romo (1993), who considered, for some fixed
finite interval A⊂R, the case of a statistical functional S defined on M1(A,B(A)),
i.e., Z = A ⊂ R a finite interval and W = R. We considered the case, that Z is a
compact metric space and W is a complete separable metric space.

16.4 On Qualitative Robustness of Bootstrap SVMs

In this section, we will apply the previous results to support vector machines (SVMs)
based on some general loss function L and some reproducing kernel Hilbert space
(RKHS) H with kernel k. Such SVMs belong to the modern class of statistical
machine learning methods based on kernels. In other words, we will consider the
special case when W is the RKHS used by a SVM. Note that often rich RKHSs
with an infinite dimension are used in machine learning theory to make it possible
that SVMs based on the minimization over such function spaces are universally
consistent.

Recall that SVMs are defined by a minimization problem as in (16.1). In what
follows, we will consider a fixed loss function L : X × Y × R→ [0,+∞), regu-
larizing constant λ ∈ (0,∞), and kernel function k : X × X → R (with associated
RKSH H ). Such a definition generally implies a moment condition on the distribu-
tion of Y given X = x. To weaken this type of assumption, we use a “shifted loss”
L%(x, y, t) := L(x, y, t)−L(x, y,0), (x, y, t) ∈X ×Y ×R. This idea was already
used by Huber (1967) in the context of M-estimators. Note that SVMs can be con-
sidered as a generalization of M-estimators in the sense that SVMs are H -valued
statistics defined as solutions of a minimization problem with an additional regu-
larization term. The use of shifted loss functions enables us to define SVMs, which
are based on a Lipschitz continuous convex loss function and on a bounded con-
tinuous kernel, on the whole space of probability measures and eliminates classical
moment conditions on the conditional distribution of Y given X = x. This is in gen-
eral not true for the non Lipschitz continuous least squares loss function, if Y ⊂ R

is unbounded. Since L%, k (or H ), and λ are fixed, to simplify our notation, we will
denote the SVM operator by S and the corresponding risk by R instead of SL%,H,λ

and RL%,H,λ in the next definition, respectively.

Definition 16.1 The SVM operator S :M1(Z,B(Z))→H is defined by

S(P) := fL%,P,λ := arg min
f∈H EPL

%
(
X,Y,f (X)

)+ λ‖f ‖2
H . (16.13)
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The SVM risk functional R :M1(Z,B(Z))→R is defined by

R(P) := EPL
%
(
X,Y,S(P)(X)

)= EPL
%
(
X,Y,fL%,P,λ(X)

)
. (16.14)

Our stability result for the bootstrap approximations of SVMs (see Theorem 16.5
below) requires the following assumptions on the loss and kernel functions.

Assumption 16.2 Let Z =X ×Y be a compact metric space with metric dZ , where
Y ⊂R. Let L :X ×Y×R→[0,∞) be a loss function such that L is continuous and
convex with respect to its third argument and that L is uniformly Lipschitz continu-
ous with respect to its third argument with uniform Lipschitz constant |L|1 ∈ (0,∞),
i.e. |L|1 is the smallest constant c such that sup(x,y)∈X×Y |L(x, y, t)−L(x, y, t ′)| ≤
c|t − t ′| for all t, t ′ ∈ R. Let k : X × X → R be a continuous kernel with re-
producing kernel Hilbert space H and assume that k is bounded by ‖k‖∞ :=
(supx∈X k(x, x))1/2 ∈ (0,∞). Let λ ∈ (0,∞).

Under Assumption 16.2 the SVM operator S in (16.13) is well defined because
S(P) ∈ H exists and is unique, the SVM risk functional R in (16.14) is also well
defined because R(P) ∈ R exists and is unique, and it holds that for all probability
measures P on X ×Y that

∥∥S(P)∥∥∞ ≤ 1

λ
|L|1‖k‖2∞ <∞ and

∣∣R(P)∣∣≤ 1

λ
|L|21‖k‖2∞ <∞, (16.15)

see Christmann et al. (2009, Theorem 5, Theorem 6, (17), (18)).
Note that the conditions on L and k in Assumption 16.2 do not depend on the un-

known distribution P or on the data set d. Hence, they are easy to verify, and can be
considered as standard assumptions for statistically robust SVMs, see, e.g., Christ-
mann and Steinwart (2007), Steinwart and Christmann (2008, Chap. 10), Christ-
mann et al. (2009), and Hable and Christmann (2011). However, the assumption
that Z = X × Y is a compact metric space is more restrictive than the assump-
tion that X is a Polish space, which is by now often assumed to prove consistency
or learning rates of SVMs. Our proof relies on the compactness assumption, but it
would be interesting to investigate whether this assumption can be weakend, e.g., to
σ -compactness which would cover the special case of the standard Euclidean space
Z =R

d ×R.
We can now state our main result on the robustness of the bootstrap approach for

support vector machines.

Theorem 16.5 If the general Assumption 16.1 and Assumption 16.2 are valid, then
the SVM operator S and the SVM risk functional R fulfill:

(i) The sequence Ln(S;Pn), n ∈ N, of bootstrap SVM estimators of Ln(S;P) is
qualitatively robust for all P ∈M1(Z,B(Z)).

(ii) The sequence Ln(R;Pn), n ∈N, of bootstrap SVM risk estimators of Ln(R;P)
is qualitatively robust for all P ∈M1(Z,B(Z)).
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Proof See Christmann et al. (2011, Theorem 8). The proof is somewhat technical
and consists in checking that our Theorems 16.3 and 16.4 are applicable. �

The above theorem states that for SVMs satisfying Assumptions 16.1 and 16.2,
the bootstrap estimators (for the risk and for the SVM itself) of their sampling dis-
tributions are resistant to small perturbations in the data-generating process. In other
words, when datasets contain a small proportion of outliers, the bootstrap estima-
tors do not deviate much from those that would have been obtained with a clean data
set. Outliers in the sample thus do not have a large effect on the distribution of the
bootstrap estimators.

We now list some loss functions L and kernels k which have the properties de-
scribed in Assumption 16.2. Therefore, the sequence of bootstrap approximations of
SVMs based on any combination of these loss and kernel functions are qualitatively
robust due to Theorem 16.5.

Example 16.1 The assumptions on the loss function L from Assumption 16.2 are
satisfied for example in the following cases.

(i) for classification with Y := {−1,+1}:
• hinge loss: L(x, y, t) :=max{0,1− yt},
• logistic loss: L(x, y, t) := ln(1+ exp(−yt)),

(ii) for regression with Y ⊂R:

• ε-insensitive loss for some ε ∈ (0,∞): L(x, y, t) :=max{0, |y − t | − ε},
• L1-loss: L(x, y, t) := |y − t |,
• Huber’s loss for some c > 0:

L(x, y, t) :=
{

0.5(y − t)2, if |y − t | ≤ c,

c|y − t | − 0.5c2, if |y − t |> c,

• logistic loss for some γ ∈ (0,∞):

L(x, y, t) := −γ ln
4er

(1+ er)2
, where r := y − t

γ
,

(iii) for τ -quantile regression with Y ⊂R for level τ ∈ (0,1):

• pinball loss:

L(x, y, t) :=
{
(τ − 1)(y − t), if y − t < 0,

τ (y − t), if y − t ≥ 0.

We mention that the classical least squares loss function defined by L(x, y, t) :=
(y − t)2 for (x, y, t) ∈ X × Y × R is of course locally Lipschitz continuous but
not Lipschitz continuous if Y = R. SVMs based on this particular loss function
are sometimes called least squares SVMs, see, e.g., Suykens et al. (2002), and can
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be considered as a special case of regularized least squares regression. It is well-
known that the use of the least squares loss function in regression purposes with
Y = R yields SVMs which are not robust with respect to several common notions
of statistical robustness even if the kernel is bounded.

Example 16.2 The assumptions on the kernel k from Assumption 16.2 are satisfied
for example in the following cases.

(i) Gaussian radial basis function (RBF) kernels (for some γ > 0):

k :Rd ×R
d →R, k

(
x, x′
) := exp

(−γ ∥∥x − x′
∥∥2

2

)
.

This kernel is interesting for machine learning purposes because its RKHS is
dense in Lp(μ) for any finite measure μ on (Rd,B(Rd)) and any p ∈ [1,∞).
Furthermore, if we restrict k to k̃ := k|X×X , where X ⊂ R

d is compact, then
the RKHS H̃ corresponding to the kernel k̃ is dense in C(X ), and thus k̃ is
a universal kernel. For more properties of this kernel and its RKHS we refer,
e.g., to Steinwart and Christmann (2008, Chaps. 4.4 and 4.6).

(ii) Wendland RBF kernels (for some d ∈N and ! ∈N∪ {0}):

kd,! :Rd×R
d →R, kd,!

(
x, x′
) :=
{
pd,!(‖x − x′‖2), if ‖x − x′‖2 ∈ [0,1],
0, else,

where pd,! is a certain univariate polynomial of degree � d2 � + 3! + 1, with
d ≥ 3 if ! = 0. Wendland RBF kernels have a bounded support, which is not
true for Gaussian RBF kernels. Wendland kernels are interesting for machine
learning purposes because the native space of the basis functions is the classical
Sobolev space Hd/2+!+1/2(Rd), see Wendland (2005, Theorems 9.13, 10.35)
for details.

(iii) The Laplacian RBF kernels (for some γ > 0)

k :Rd ×R
d →R, k

(
x, x′
) := exp

(−γ ∥∥x − x′
∥∥

2

)
and the related RBF kernels (for some γ > 0):

k :Rd ×R
d →R, k

(
x, x′
) := exp

(−γ ∥∥x − x′
∥∥

1

)
.

These two classes of kernels are interesting for machine learning purposes be-
cause their RKHSs H are completely separating in the sense of De Vito et al.
(2012), which is not true for the Gaussian RBF kernel, see De Vito et al. (2012,
p. 13). An RKHS H separates a subset C ⊂ X , if, for all x /∈ C, there exists
some f ∈H such that

f (x) 
= 0 and f (y)= 0 ∀y ∈ C.
An RKHS H with kernel k, which satisfies k(·, x) 
= k(·, x′) for all x 
= x′ is
called completely separating, if H separates all the subsets C ⊂ X which are
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closed with respect to the metric dk defined by

dk
(
x, x′
) := ∥∥k(·, x)− k

(·, x′)∥∥
H

=
√
k(x, x)+ k

(
x′, x′
)− 2k

(
x, x′
)
, x, x′ ∈X .

We refer to Scovel et al. (2010) for a large class of bounded RBF kernels and their
corresponding RKHSs.

Example 16.3 To illustrate the practical implications of our results, consider the LI-
DAR data of Ruppert et al. (2003), available in package SemiPar for R (R Core
Team 2012). These data consist of 221 observations from a light detection and rang-
ing (LIDAR) experiment. The response variable is the logarithm of the ratio of the
received light from two laser sources and the explanatory variable is the distance
travelled by the light before it was reflected back. We used a grid search to de-
termine appropriate hyperparameters. We consider an SVM with an ε-insensitive
loss (ε = 0.01) and a Gaussian radial basis function (RBF) kernel with γ = 0.001.
We used the function svm in package e1071 for R, and set the cost parame-
ter to 0.125. We compare the SVM with a penalized cubic spline as implemented
in the package SemiPar. The optimal penalty term obtained with these data was
spar=63.4 and we kept it fixed throughout the rest of our analysis. Panels (a)
and (c) in Fig. 16.1 contain 200 bootstrapped fits for each estimator.

We then added 6 outliers (around 2.5 % of atypical observations) and re-
computed both estimators on 200 bootstrap samples. The tuning parameters were
kept fixed at the same values used with the “clean” data. We display both sets
of bootstrapped estimators (with and without outliers) for each estimator in
Figs. 16.1(b) and 16.1(d). Darker lines correspond to bootstrapped estimators com-
puted with outliers present in the data. Note that the bootstrap estimator of the
distribution of the SVM estimates barely changes when outliers are present in the
data. Penalized regression splines fits, however, are much more sensitive. Of course,
these plots only represent one, but a typical, realization of the bootstrap estimate of
the distribution of these regression methods with and without a small proportion of
outliers. However, they serve to illustrate the different degrees of sensitivity of both
methods to the presence of outliers.

16.5 Conclusions

Hable and Christmann (2011) showed that support vector machines based on the
combination of (i) a continuous loss function, which is Lipschitz continuous and
convex with respect to its third argument, and (ii) a bounded continuous kernel are
qualitatively robust for any regularizing parameter λ > 0.

The main goal of this paper was to show that even the sequence of bootstrap
approximations of SVMs based on such a combination of a loss function and a
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Fig. 16.1 Illustration of the stability of bootstrapped support vector machines when the data con-
tain a small proportion of outliers. Lighter lines correspond to bootstrap replicates on the clean
data set, while darker lines are those obtained on the contaminated data set

kernel are qualitatively robust for λ > 0. Because the finite sample distribution of
SVMs is unknown, approximations of the finite sample distribution are needed to
construct approximate statistical tests or approximate confidence regions based on
SVMs in this purely nonparametric setup. We hope that our results will stimulate
further research on bootstrap approximations of SVMs or of related kernel based
methods from machine learning theory.

Of course, qualitative robustness is just one notion of statistical robustness or
of stability. There exist too many publications on robustness or stability and their
relationship to learnability to mention all of them. Here we can only list a small
selection of relevant papers on these topics.

The boundedness of the sensitivity curve of SVMs for classification was essen-
tially already established by Bousquet and Elisseeff (2002). For results on influence
functions and related quantities we refer to Christmann and Steinwart (2004) and
Christmann and Steinwart (2007). If attention is restricted to SVMs based on a Lip-
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schitz continuous convex loss function for regression and a continuous bounded
kernel, Christmann and Van Messem (2008) showed that many SVMs even have a
bounded Bouligand influence function in the regression context.

There is quite some interest in establishing relationships between stability, learn-
ability, predictivity, and localizability for broad classes of regularized empirical risk
minimization methods. We would like to mention Bousquet and Elisseeff (2002),
Poggio et al. (2004), Mukherjee et al. (2006), and Elisseeff et al. (2005). Although
different notions of stability are used in these papers, their notions of stability have
a meaning similar to robustness in the sense of robust statistics. Several of these
notions of stability only measure the impact of just one data point such that the
connection to Tukey’s sensitivity curve is obvious. Caponnetto and Rakhlin (2006)
consider stability properties of empirical risk minimization over Donsker classes.
For an interesting relationship between consistency and localizability we refer to
Zakai and Ritov (2009).

Acknowledgements We thank PD Dr. Robert Hable and Dr. Thoralf Mildenberger for helpful
discussions.
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Chapter 17
Some Machine Learning Approaches
to the Analysis of Temporal Data

Katharina Morik

17.1 Introduction

The analysis of temporal data is an important issue in current research, because
most real-world data either explicitly or implicitly contain some information about
time. Time-related data include time series (i.e., equidistant measurements of one
process), episodes made of events from one or several processes, and time intervals
which are related (e.g., an interval overlaps, precedes, or covers another interval).

Statistical time series analysis has developed two big classes of representations,
namely those in the time domain and those in the frequency domain. Analysis in
the time domain is based on the correlation between the current and previous obser-
vations, while the frequency domain tries to decompose the time series into cyclic
components at different frequencies. Time series are most often analyzed with re-
spect to a prediction task, but also trend and cycle recognition belong to the statisti-
cal standard (see, for an overview, Schlittgen and Streitberg 2001).

In contrast to statistical time series analysis, data mining analyzes very large
collections of time series. Indexing of time series according to similarity is needed
for handling such collections (Keogh and Pazzani 2000) and has led to numerous
representation methods for time series (e.g., Ding et al. 2008). Clustering of time
series is a related topic (cf., e.g., Oates et al. 2001) as is time series classification
(cf., e.g., Geurts 2001).

Event sequences are investigated in order to predict events or to discover patterns
expressed by correlations of events. Mannila et al. (1997) define episodes:

“An episode is a collection of events that occur relatively close to each other in a given
partial order. We consider the problem of discovering frequently occurring episodes in a
sequence. Once such episodes are known, one can produce rules for describing or predicting
the behavior of the sequence.”
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The approach of Höppner (2002) abstracts time series to time intervals and uses
the time relations of Allen (1984) in order to learn episodes. The underlying algo-
rithm is APRIORI by Agrawal et al. (1993) for learning frequent sets. The resulting
episodes are written as association rules. Also inductive logic programming can be
applied. Episodes are then written as logic programs, which express direct prece-
dence by chaining unified variables and other time relations by additional predi-
cates (Klingspor and Morik 1999). This requires some sort of abstraction or dis-
cretization. The abstraction of time series into sequences of events or time intervals
approximates the time series piecewise by functions (so do, e.g., Keogh and Pazzani
1998, cf. Sect. 17.7).

There is a multitude of learning tasks related to temporal phenomena and, cor-
respondingly, there are many possible representations for temporal data. Learning
and representations are closely related: the No Free Lunch Theorem of Wolpert and
Macready (1997) implies that finding an adequately biased representation can make
a hard learning problem easy (and, vice versa, that finding this representation itself
is hard). Morik (2000) focuses on the problem of selecting appropriate representa-
tions for time phenomena. In general, we have the following options:

• Snapshot: We ignore the time information and reduce the data to the most current
state. This state can be written as one or several events. It may well happen that
such a snapshot already suffices for learning (as in Sect. 17.2.2, for instance).

• Value series: Multi- or univariate series of numerical attributes, possibly stored in
a number of records each showing the measurements for a time window of fixed
length, which is shifted over the series (cf. Sect. 17.2.1). This representation is
the starting point for most further processing.

• Events with time intervals: We aggregate time points to time intervals where
attribute values are similar enough (piece-wise segmentation). For nominal at-
tributes, it is straight forward to construct time intervals from the start and end
time of each attribute value. For numerical attributes, feature extraction has to be
performed first. In addition, we might want to represent relations between the in-
tervals. Learning algorithms which make good use of time information (episode
learning) can then be applied. Variants of this representation are illustrated in
Sects. 17.3 and 17.6.

• Feature extraction: Time aspects are encoded as regular attributes of the examples
such that any learning algorithm can be applied. Simple encodings are seasons
simply stated by flags and attributes like action_before that summarize the events
preceding a target event (cf. Sects. 17.2.1 and 17.5). More sophisticated methods
apply transformations or functions (cf. Sect. 17.4).

In the following, case studies from time-related data analysis are presented. The
chapter starts with using the Support Vector Machines as the learning method work-
ing on different representations. This is introduced in Sect. 17.2.1 and illustrated by
an example using the snapshot representation in Sect. 17.2.2. Section 17.3 shows the
importance of finding the appropriate representation of the temporal data: regardless
which learning method was chosen, a smart transformation of the data allowed to
successfully predict very rare events. The importance of an appropriate represen-
tation is stressed even further in Sect. 17.4, where those features are automatically
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extracted from time series that are well suited for classifying the set of time series
at hand. The following Sections describe work that uses logic-based or relational
learning methods. Section 17.5 handles the classification of phases and the use of
logic-based learning for the analysis of concept shift. The other application area of
a logic-based representation is robotics (Sect. 17.6). The relations of time intervals
are applied to streaming sensor data, abstracting them to high level descriptions.
For streaming data, new algorithms for a certain model have to be developed. In
Sect. 17.7 an algorithm for streaming data is presented that detects patterns of flex-
ible length.

Although being quite complementary, the overview of our work on time phenom-
ena is devoted to Ursula Gather and her work on robust time series analysis, because
collaboration has been always stimulating.

17.2 Support Vector Machines

Support Vector Machines (SVMs) are a well known prediction method (Vapnik
1998). They are handled in this book in the contribution by Christmann, Salibian-
Barrera and van Aelst, Chap. 16. Before we show how this method can be used for
handling time phenomena and illustrate it by a medical case study, we shortly in-
troduce our notation. In its basic form, an SVM finds the hyperplane that separates
the training data according to their label y ∈ {+1,−1} with maximum margin. The
learned model classifying vectors of observations x is written f (x)= sign(w ·x+b).
In order to maximize the distance between the examples that are closest to the sepa-
rating hyperplane, called support vectors, the norm of the normal vector ‖w‖ needs
to be minimized. The soft margin SVM weights the penalty term ξ for misclassified
examples by a parameter C. For dealing with very unbalanced numbers of positive
and negative examples, we introduce cost factors C+ and C− to be able to adjust the
cost of false positives vs. false negatives. Finding this hyperplane can be translated
into the following optimization problem:

Minimize
1

2
‖w‖2 +C+

∑
i:yi=1

ξi +C−
∑

j :yj=−1

ξj

subject to ∀k : yk[w · xk + b] ≥ 1− ξk.

xi is the feature vector of example i. yi is the class label +1 or −1. w is the normal
vector to the hyperplane. Since the optimization problem from above is difficult to
handle numerically, it is transformed into its dual.

Minimize −
n∑

k=1

αk + 1

2

n∑
i,j=1

αiαjyiyjxi · xj

subject to
n∑

i=1

αiyi = 0
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∀i with yi = 1 : 0≤ αi ≤ C+
∀j with yj =−1 : 0≤ αj ≤ C−.

The kernel function here is the linear kernel, i.e., the dot product xi ·xj . Other kernel
functions, such as, e.g., the radial basis function, can be used as well. We solve this
optimization problem using SVMlight of Joachims (1999), extended to handle asym-
metric cost-factors. It can efficiently handle problems with many thousand support
vectors, converges fast, and has minimal memory requirements.

17.2.1 Support Vector Models of Time Series

SVMs have been applied to time series prediction (e.g., Müller et al. 1997) based
on a value series representation, i.e., creating d-dimensional examples by moving a
window of length d over the time series. However, the theory of structural risk min-
imization, on which the SVM is based, is only formulated for independent, iden-
tically distributed data. Clearly, the independence assumption is violated for time
series data. Using the value series representation with a linear model leads to the
class of autoregressive (AR) models (Schlittgen and Streitberg 2001). Obviously,
AR models can be learned by an SVM with linear kernel, so it does not surprise that
the SVM does not perform very different on data generated from an AR model than
other methods for AR model estimation. For time series analysis in the frequency
domain, the Fourier transformation can be used to transform the examples for the
SVM. There also exist kernel functions, which perform this transformation, e.g.,
the Fourier kernels as introduced by Vapnik (1998) or the time-frequency kernel of
Davy et al. (2002).

The main advantage of SVMs is that the generalization error does not depend
on the dimensionality of the data but only on the margin of the separating hyper-
plane, which makes them especially well suited for high-dimensional data. While
this reasoning is not strictly valid—the margin depends on the geometry of the data
and hence also on the dimension—empirical evidence shows that this property of
SVMs does hold in practice. Hence, adding attributes that express temporal phe-
nomena is encouraged. Seasonal attributes are a good example. The case of cyclical
components is more complicated, because they cannot be as easily identified and fil-
tered from the data as are simple trends. Often the most difficult problem in practice
is that lots of statistical procedures for modeling periodic functions cannot be ap-
plied, because what looks like a periodic component actually is not one. Therefore,
in Rüping (1999), 20 additional binary attributes were used to mark the presence
of holidays, special sale promotions, and other significant events in that particular
week.

The moving window representation bases on the assumption that the temporal
dependence structure of the time series can be sufficiently captured in a short finite
window of observations. This allows the examples generated from each window to
be treated as if they were generated independently. This assumption fails, if the pro-
cess that generates the time series changes over time. This scenario is called concept
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drift. Usually, a concept drift is treated by using only a certain number of the newest
examples, where the actual number of examples used is chosen heuristically. For
SVMs, Klinkenberg and Joachims (2000) propose an approach where this number
is chosen based on efficient performance estimators for SVMs.

17.2.2 Intensive Care—A Case Study

In modern intensive care, several hundreds of measurements of a patient are
recorded at the bed-side each minute or even second. This results in masses of noisy,
high dimensional, sparse time series of numerical data (for an overview, see Fried
et al. 2000). A collaboration between Ursula Gather from statistics and Michael
Imhoff from Medicine dealt with data collected at the 16-bed intensive care unit
(ICU) of the “Chirurgische Kliniken der Städtischen Kliniken Dortmund”. The par-
ticular data set that we used contains the data of 147 patients between January 1997
and October 1998. Measurements are taken every minute, amounting to 679,817
observations for which data from a Swan-Ganz catheter is available. Real valued
parameters are either scaled so that all measurements lie in the interval [0,1], or
they are normalized by empirical mean and variance. There are 118 attributes form-
ing 9 groups and here we use just 8 vital signs of the hemodynamic system. In
addition, the dose rates of 6 drugs were also recorded.

The task of monitoring can best be understood as time-critical decision support.
The final goal is to enhance the quality of clinical practice. This means that imitating
the actual interventions, i.e., the doctor’s behavior, is not the goal. It is instead to
supply physicians with the best recommendation under all circumstances (Morris
1998). Finding alarm functions which minimize the number of false positives while
keeping the number of false negatives small has been solved by Sieben and Gather
(2007). Alarm functions need to robustly extract the patient’s state from time series
as is investigated in the contribution by Borowski, Fried and Imhoff in Chap. 12.
Determining the appropriate action for a patient’s state is a further task of decision
support and is described in the following.

Learning State-Action Rules We have split the acquisition of state-action rules
into two learning tasks. The first task was to learn a function on whether a certain
drug should be given to a particular patient, or not. Positive examples are the data of
all those minutes, in which the drug was given. All others are negative examples. The
second task is to learn functions on whether the dose of the drug should be increased,
decreased, or kept constant. This task was transformed into three two-class learning
problems. All experiments towards finding an appropriate representation (feature
selection) and on optimizing the parameters of the SVM were done on the training
set using 10-fold cross validation. Comparing the use of different kernel functions
led to using linear SVMs for all drugs (cf. Morik et al. 1999, 2002).

The learned function for a particular drug is applied to a patient’s current state
in terms of svm_calc(x) =∑p

i=1 βixi which is then turned into a binary decision.
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In the first task, for example, the patient pat45 in minute 25 with arterial pres-
sures 174 (systolic), 86 (diastolic), 121 (mean) and pulmonal pressures 26 (sys-
tolic), 13 (diastolic), 15 (mean), heart rate 79 and central venous pressure 8 with
svm_calc(pat45)= 7.638 would receive the recommendation of not taking the drug,
because sign(svm_calc(x)− β0) is negative for β0 = 4.368.

f (x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.014
0.019
−0.001
−0.015
−0.016
0.026
0.134
−0.177

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

artsys= 174.00
artdia= 86.00

artmn= 121.00
cvp= 8.00
hr= 79.00

papsys= 26.00
papdia= 13.00
papmn= 15.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 4.368

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To get an impression about how good the predictions are, we conducted an experi-
ment with an experienced ICU physician. On a subset of 40 test examples we asked
the expert to do the same task as the SVM for Dobutamin, given the same informa-
tion about the state of the patient. In a blind test he predicted the same direction of
dosage change as actually performed in 32 out of the 40 cases. On the same exam-
ples, the SVM predicted the same direction of dosage change as actually performed
in 34 cases, resulting in an essentially equivalent accuracy. The SVM and the expert
agreed in all the 32 cases. Hence, the learned function follows the observations more
closely than the expert who may have reasons to deviate from them.

The second task is more detailed. Given the state of the patient, should the dosage
of a drug be increased, decreased or kept constant? Knowing such a function is also
a step towards deciding when to substitute one drug with another. To make sure
that we generate examples only when a doctor was closely monitoring the patient,
we considered only those minutes where some drug was changed, resulting in 1319
training and 473 test examples. For each drug, we trained two binary SVMs. One
is trained on the problem “increase dosage” vs. “lower or keep dosage equal”, the
other one is trained on the problem “lower dosage” vs. “increase or keep dosage
equal”.

For a subsample of 95 examples from the test set, we again asked the medical ex-
pert to perform the same task as the SVM. The results for Dobutamin and Adrenalin
are given in Table 17.1. The performance of the SVM on this subsample is followed
by the performance of the human expert (in brackets). Both are well aligned. Again,
the learned functions of the SVM are comparable in terms of accuracy with a human
expert. This also holds for the other drugs.

Summarizing the case study in intensive care, learning recommendations of treat-
ments by a linear SVM was done offline using a snapshot of patient data. The com-
plex learning task was divided into one learning task for each drug and three learning
tasks for the dose of each drug, i.e., 24 learning tasks were performed. The result is a
model that is applied every minute: reading in the current state, applying all learned
decision functions, in parallel, thus delivering the recommendations. Hence, the ap-
plication of the model follows already the real-time processing of data streams.
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Table 17.1 Confusion matrices for predicting time and direction of Dobutamin and Adrenalin
interventions in comparison to human performance (human performance in brackets)

Dobutamin Actual intervention Adrenalin Actual intervention

up equal down up equal down

predicted up 10 (9) 12 (8) 0 (1) predicted up 4 (2) 3 (1) 0 (0)

predicted equal 7 (9) 35 (31) 9 (9) predicted equal 4 (6) 65 (66) 2 (2)

predicted down 2 (1) 7 (15) 13 (12) predicted down 1 (1) 8 (9) 8 (8)

17.3 Temporal Databases—An Insurance Case Study

Time-stamped data are observations with an attached time-stamp. They occur fre-
quently in real-world databases, where dates, hours, minutes are common attributes.
Often, several rows in a database table describe the same object, each row for one
of the object’s states. Usually, two attributes for the beginning and the end point in
time are part of the row (vector) describing an object’s state. Whenever an attribute’s
value has changed, a new row is added.

• The snapshot approach would just extract the most current row for an object.
• The time interval approach would use the “begin” attribute and the “end” attribute

and indicate the other attributes from a row as an event.

For the frequency count of an attribute, we simply count how often its value changes.
This representation is similar to the term frequency as used in information retrieval
for texts. Analogously to the representation there, we exclude the frequencies of
those changes that are common to all objects.

In a study for the Swiss Life insurance company, we investigated the time-
stamped data of customers and their contracts. In the course of enhanced customer
relationship management, the Swiss Life insurance company investigated oppor-
tunities for direct marketing (see Kietz et al. 2000). A more difficult task was to
predict surrender in terms of a customer buying back his life insurance. We worked
on knowledge discovery for the classification into early termination or continuation
of policies. The task was clearly one of local pattern learning: only 7.7 % of the
contracts end before their end date. Hence, the event to be predicted is rare. Internal
studies at the insurance company found that for some attributes the likelihood of sur-
render differed significantly from the overall likelihood. In each contract, there are
several attributes indicating surrender or continuation. We also found that within the
group of terminated contracts, there were those which do not share attributes. This
reminds us of the characteristics of text classification as investigated by Joachims
(2002). There, features from information retrieval express a pair of orthogonal fre-
quencies: term frequency in one document and inverse document frequency for a
term (TFIDF) introduced by Salton and Buckley (1988). This leads to a third possi-
bility for representing temporal information.

• If we transform the raw data into a frequency representation, we possibly con-
dense the data space in an appropriate way.
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For the frequency count of an attribute, we simply count how often its value changes.
In the Swiss Life application, term frequency tf describes how often a particular
attribute ai of the contract or one of its components cj has been changed:

tf(ai, cj )=
∥∥{x ∈ time points | ai of cj changed

}∥∥.
The document frequency here corresponds to the number of contracts in which ai
has been changed. The set of all contracts is written C. The document frequency df
is just the number of contracts with a term frequency greater than 0:

df(ai)=
∥∥{cj ∈ C | ai of cj changed

}∥∥.
Hence, the adaptation of the TFIDF text feature to contract data becomes for each
contract cj :

tfidf(ai)= tf(ai, cj ) log
‖C‖

df(ai)
.

A given anonymous database consists of 12 tables with 15 relations between
them. The tables contain information about 217,586 policies and 163,745 customers.
If all records referring to the same policy and component (but at a different status
at different times) are counted as one, there are 533,175 components described in
the database. We selected 14 attributes from the original database. 13 of them were
transformed as described above. One of them is the reason for a change of a con-
tract. There are 121 different reasons. We transformed these attribute values into
binary attributes. Thus we obtained 13+ 121= 134 features describing changes of
a contract. To calculate the TFIDF values for these binary features we considered
the history of each contract. For the 121 newly created features we counted how
often they occurred within the mutations. With this representation we could predict
whether a contract is bought back by a customer. We compared the learning results
on this generated representation to those on the selected original data for different
learning algorithms. We used 10-fold cross validation on a sample of 10,000 exam-
ples. In order to balance precision and recall, we used the F -measure

Fβ = (β2 + 1)Prec(h)Rec(h)

β2 Prec(h)+Rec(h)
,

where β indicates the relative weight between precision Prec and recall Rec, and
h the learned decision function. We have set β = 1, weighting precision and recall
equally. For all algorithms, the frequency features are better suited than the original
attributes. For the SVM, the performance changed from a low F-measure of 16.06 %
using the original representation to 97.95 % using the TFIDF representation.

Summarizing the case study of time-stamped insurance data, we underline that
likelihood estimation was not enough, but we needed to learn a model, which can
be readily used to act, i.e. send an insurance agent to the customer. The skewed dis-
tribution made this very difficult. Only when we extracted features, similar to term
frequency and inverse document frequency, thus counting the frequency of con-
tract changes, the classification became very precise. Extracting this TFIDF feature
is very often a good opportunity for learning from time-stamped data. Moreover,
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Joachims’ theory of text classification using the SVM computes a tight upper bound
of the error using only one SVM run (Joachims 2002). Hence, the error could be
estimated by the tight bound.

17.4 Classifying Time Series—A Music Mining Case Study

For classification, machine learning encounters a challenge of scalability, when con-
fronted with music data. Music databases store millions of records. Given a sam-
pling rate of 44,100 Hz, a three minute music record has the length of about 8× 106

values. Moreover, current approaches to time series indexing and similarity mea-
sures rely on a more or less fixed time scale (e.g., Keogh and Pazzani 1998). Music
plays, however, differ considerably in length. More general, time series similarity
is often determined with respect to some (flexible and generalized) shape of curves
as stated by Yi et al. (1998). However, the shape of the audio curve does not ex-
press the crucial aspect for classifying genres or preferences. The i-th value of a
favorite song has no correspondence to the i-th value of another favorite, even if
relaxed to the (i ± n)-th value. The decisive features for classification have to be
extracted from the original data. Some approaches extract features from music that
is represented in form of Midi data, i.e., a transcription according to the 12 tone
system (cf. Weihs and Ligges 2005). This allows to include background knowledge
from music theory. The audio data are given, however, in the form of—possibly
compressed—waves records. Hence, feature extraction from audio data has been in-
vestigated, e.g., by Tzanetakis (2002). Several specialized extraction methods have
shown their performance on some task and data set. It is now hard to find the ap-
propriate feature set for a new task and data set. In particular, different classification
tasks ask for different feature sets. It is not very likely that a feature set delivering
excellent performance on the separation of classical and popular music works well
for the separation of techno and hip hop music, too. Classifying music according to
user preferences even aggravates the problem. Hence, for every learning task, we
have to search in the space of possible feature extractions. This search can only be
automated if the search space is well structured.

Audio data are time series where the y-axis is the current amplitude correspond-
ing to a loudspeaker’s membrane and the x-axis corresponds to the time. They are
univariate, finite, and equidistant. We may generalize the type of series which we
want to investigate to value series. Each element xi of the series consists of two com-
ponents. The first is the index component, which indicates a position on a straight
line (e.g., time). The second component is an m-dimensional vector of values which
is an element of the value space. We can now structure the set of elementary opera-
tors which allow to compose all possible feature extractions.

• Basis transformations map the data from the given vector space into another
space, e.g., frequency space, function space, phase space. The most popular trans-
formation is the Fourier analysis.
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• Filters transform elements of a given series to another location within the same
space. The moving average or exponential smoothing are examples of filters.

• Mark-up of intervals corresponds to the mark-up of text fragments in that it an-
notates segments within a value series.

• Generalized windowing is required by many methods for feature extraction. We
separate the windowing from the functions applicable to values within the win-
dows.

• Functions calculate a single value for a value series. Typical examples are aver-
age, variance, and standard deviation.

Since the group of mark-up operators is newly introduced, a definition is given
here.

Definition 17.1 (Mark-up) A mark-up M : S→ C assigns a characteristic C to a
segment S.

Definition 17.2 (Interval) An interval I : S→ C is a mark-up within one dimen-
sion. The segment S = (d, s, e) is given by the dimension d , the starting point s,
and the end point e. The characteristic E = (t,  ) indicates a type t and a density  .

Operators finding intervals in the value dimension of a value series can be com-
bined with the mark-up of intervals in the time (i.e., indexing) dimension. For in-
stance, whenever an interval change in the value dimension has been found, the
current interval in the index dimension is closed and a new one is started.

Many known operators on times series involve windowing. Separating the notion
of windows over the index dimension from the functions applied to the values within
the window segment, allows to construct many operators of the kind.

Definition 17.3 (Windowing) Given the series x with i ∈ {1, . . . , n}, a transforma-
tion is called windowing, if it shifts a window of width w using a step size of s and
calculates in each window the function F : yj = F(xi ) with i ∈ {j · s, . . . , j · s+w}.
All yj together form again a series yj with j ∈ {1, . . . , (n−w)/s + 1}.

Definition 17.4 (General Windowing) A windowing which performs an arbitrary
number of transformations in addition to the function F is called a general window-
ing.

The function F summarizes values within a window and thus prevents general
windowing from enlarging the data set too much. Since the size of audio data is
already rather large, it is necessary to consider carefully the number of data points
which is handled more than once. The overlap of a general windowing with step size
s and width w is defined as g = w/s. Only for windowings with overlap g = 1 the
function can be omitted. Such a windowing only performs transformations for each
window and is called piecewise filtering. Combining general windowing with the
mark-up of intervals allows to consider each interval being a window. This results
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Fig. 17.1 Constructing the
cepstral method from
elementary extraction
operators

in an adaptive window width w and no overlap. Of course, this speeds up processing
considerably.

The elementary operators can be combined so that methods of feature extrac-
tion are expressed. The mel-frequency cepstral coefficients can be constructed as
a general windowing, where the frequency spectrum of the window is calculated,
its logarithm is determined, a psychoacoustic filtering is performed, and the inverse
Fourier transformation is applied to the result. Figure 17.1 shows how the opera-
tors for feature extraction are put together to form the cepstral coefficients. From
these coefficients, additional features can be extracted. It is seen how easily new,
similar methods can be generated, e.g., by replacing the frequency spectrum and its
logarithm by the gradient of a regression line.

This general framework integrates a large variety of standard functions and of-
fers the opportunity to construct new features that are tailored for an application.
Mierswa and Morik (2005) have shown that evolutionary learning automatically
constructs features for diverse tasks of music mining. A separate set of features is
constructed for each particular application, ranging from the preferences of a partic-
ular user, to classes of mood, genre, instrumentation, or for whatever concept. The
method can be applied to learn features for any classification task, where a set of
positive and negative examples can be presented. This learning capability is a ba-
sis of further services to users of large music collections developed by Wurst et al.
(2006).

Using the automatic feature construction, genre classification and the classifi-
cation of user preferences could successfully be learned. For the classification of
genres, three data sets have been built: for classic versus pop, 100 pieces of music
for each class were available, for techno versus pop, 80 songs for each class from
a large variety of artists were available, and for hiphop versus pop, 120 songs for
each class from few records were available. The classification tasks are of increas-
ing difficulty. Using mySVM (Rüping 2000) with a linear kernel, the performance
was determined by a 10-fold cross validation and is shown in Table 17.2. Concern-
ing classic vs. pop, 93 % accuracy, and concerning hiphop vs. pop, 66 % accuracy
have been published by Tzanetakis (2002). 41 features have been constructed for all
genre classification tasks. For the distinction between classic and pop, 21 features
have been selected for mySVM by the evolutionary approach. For the separation of
techno and pop, 18 features were selected for mySVM, the most frequently selected
ones being the filtering of those positions in the index dimension where the curve
crosses the zero line. For the classification into hiphop and pop, 22 features were
selected with the mere volume being the most frequently selected feature.
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Table 17.2 Classification of
genres with a linear SVM
using the task specific feature
sets

Classic/pop Techno/pop Hiphop/pop

Accuracy 100 % 93.12 % 82.50 %

Precision 100 % 94.80 % 85.27 %

Recall 100 % 93.22 % 79.41 %

Error 0 % 6.88 % 17.50 %

Table 17.3 Classification
according to user preferences User1 User2 User3 User4

Accuracy 95.19 % 92.14 % 90.56 % 84.55 %

Precision 92.70 % 98.33 % 90.83 % 85.87 %

Recall 99.00 % 84.67 % 93.00 % 83.74 %

Error 4.81 % 7.86 % 9.44 % 15.45 %

Another task requiring feature extraction is the recommendation of songs to par-
ticular users. The classification of user preferences beyond genres is a challenging
task, where for each user the feature set has to be learned. Four users brought 50 to
80 pieces of their favorite music ranging through diverse genres. They also selected
the same number of negative examples. Using a 10-fold cross validation, mySVM
was applied to the constructed and selected features, one feature set per learning
task (see Table 17.3). The excellent learning result for a set of positive instances
which are all from a certain style of music corresponds to our expectation (user 1).
The expectation that learning performance would decrease if positive and negative
examples are taken from the same genre is not supported (user 2). Surprisingly well
is the learning result for a broad variety of genres among the favorites (user 3). Sam-
pling from only a few records made the learning task more difficult as is shown by
the results for user 4.

Applying the learned decision function to a database of records allowed the users
to assess the recommendations. They were found very reasonable. No particularly
disliked music was recommended, but unknown plays and those, which could have
been selected as the top 50.

In summary, the challenge of music mining lies in the very large collection of
values series, where the similarity between different instances needs to be deter-
mined by new variables that are based on feature extraction. The same function-
ality can as well be used for other value series. Video classification or clustering
are other examples, but it is not restricted to multimedia applications. For exam-
ple, Ritthoff et al. (2002) solved a regression problem for time series with SVMs,
where certain coefficients of chemical components have been predicted from chro-
matography time series. Even without evolutionary optimization, the structured set
of operators eases time series analysis. Within the tool RapidMiner developed by
Mierswa et al. (2006), the series extension provides many series transformation and
extraction operators, which make regression or classification applicable.
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17.5 Logic Rules and Concept Shift—A Business Cycles Case
Study

This case study illustrates the use of logic representations for temporal cycles. Here,
we use the interval relations of Allen (1984). The application is an economic study
of German business cycles. We were given quarterly data for 13 economic indica-
tors concerning the German business cycle from 1955 to 1994, where each quarter
had been classified as being a member of one of four phases, namely up, upper
turning point, down, lower turning point (cf. Heilemann and Munch 2001). The ups
and downs of business activities have been observed for a long time. It is, however,
hard to capture the phenomenon by a clear definition. The National Bureau of Eco-
nomic Research (NBER) defines business cycles as “recurrent sequences of altering
phases of expansion and contraction in the levels of a large number of economic and
financial time series”. The learning task of dating is defined as classifying current
measurements into the phases of a business cycle.

Before rule learning in logic programming can be applied, the originally real-
valued time series of indicator values have to be transformed into discrete-valued
temporal facts about these indicators. Using the information that is given by the ex-
amples’ class (the business phase) improves discretization. In this case, we exploited
the built-in discretization of C4.5 (Quinlan 1993). Inducing decision trees about the
cycle phases, based on only one indicator Y derives split points for Y . The result-
ing trees were cut off at a given level and the decisions in this resulting tree were
used as discretization thresholds. Decision trees of depth 2, i.e., using 4 discrete
values, proved to build a suitable number of facts. We have used the discretization
of the indicator values for the construction of time intervals. This representation ab-
stracts from minor changes. We then learned rules in restricted predicate logic using
the Rule Discovery Tool for inductive logic programming which is described in the
book by Morik et al. (1993). Here, we do not present the learned logical rules; in-
terested readers might see Morik and Rüping (2002). Instead, we want to show how
to use sets of learned rules in order to discover concept shift.

Analyzing Concept Shift by Frequent Sets Concept shift is an important issue
for serial data. For time series which express equidistant numerical measurements,
rank tests are capable of identifying shifts (Fried and Gather 2007). In the business
cycle application here, the concept shift is to detect from discrete facts. Since the
four-phase model did not lead to convincing learning results, we used the two-phase
model, which distinguishes only up and down and not the turning points. We ana-
lyzed the homogeneity of the business cycle data using the sets of learned rules. The
learning results from different leave-one-cycle-out experiments using logic learning
were inspected with respect to their correlation. Since inductive logic programming
delivers all valid rules, we can infer from a rule not being learned that it is not valid.
If the same logical rule is learned in all experiments, this means that the underlying
principle did not change over time. If, however, rules co-occur only in the first cy-
cles and not in the following ones, we hypothesize a concept drift in business cycles.
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We used the correlation analysis of the APRIORI algorithm by Agrawal and Srikant
(1994).

We want to know whether there are rules that are learned in all training sets,
or, at least, whether there are rules that are more frequently learned than others.
Enumerating all learned rules results in a vector for each training set (corresponding
to a transaction in frequent set mining) where a learned rule is marked by 1 and
those that are not learned are set to 0. The frequency of learned rules and their co-
occurrence is identified. There is no rule which was learned in all training sets. Eight
rules were learned from three training sets. No co-occurrence of learned rules was
found. There is one rule, which was learned in four training sets, namely leaving out
cycle 1, cycle 4, cycle 5, or cycle 6: rld(T ,V ), l(T ,V ), low(V )→ down(T ) stating
that the same discrete value V of the real long term interest rate (rld) in phase T and
of the number of wage and salary earners (l) in phase T being low (low) indicates
that T is a downswing.

We now turn around the question and ask: which training sets share rules? For
answering this question, a vector for each learned rule is formed where those train-
ing sets are marked by 1 which delivered the rule. The rule set analysis shows that
cycles 1 to 4 (1958–1974) and cycles 3 to 6 (1967–1994) are more homogeneous
than the overall data set. The first oil crisis happened at the end of cycle 4 (Novem-
ber 1973–March 1974). This explains the first finding well. However, the oil crisis
cannot explain why cycles 3 to 6 share so many rules. We assume that the actual
underlying rules of business cycles may have changed over time. The concept drift
seems to start in cycle 3. The periods of cycles 1 and 2 (1958–1967) are character-
ized by the reconstruction after the world war. Investment in construction (ic) and in
equipment (ie) is not indicative in this period, since it is rather high, anyway. A low
number of earners (l) together with a medium range of the gross national product
deflator (pyd) best characterizes the downswing in cycles 1 to 3—this rule has been
found when leaving out cycles 4 or 5 or 6. Since the unemployment rate was low
after the war, it is particularly expressive for dating a phase in that period. This ex-
plains the second finding of our rule set analysis. For more details of the learned
rules, see Morik and Rüping (2002).

The case of inspecting business cycles shows how logic rules can be used to de-
tect concept shifts. This is possible, because inductive logic programming delivers
all valid rules. We made use of this in this case study. First, numerical values of
economic features are discretized, then logical rules are learned. Here, we inspected
cycles in sequences of time intervals. The logical rules are then analyzed with re-
spect to concept shift using frequent set mining. This novel set-up complements
methods for numerical data.

17.6 Logic-Based Learning and Streams—A Case Study
in Robotics

Usually, if a robot has to navigate in office rooms, the commands for movements
are given in terms of coordinates. However, offices are looking more or less the
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same wherever they are. Users should be allowed to give commands such as: move
through the doorway, turn left, move until the cupboard, and stop. Learning all
the way from the mobile robot’s sensing to human communication and back to
the robot’s acting is composed of several learning tasks, each abstracting a level
to the next higher one until concepts at the human level of abstraction are acquired.
These concepts are operational in that they can be transformed easily into the robot’s
control. Rieger and Klingspor (1999) developed some improvements for real-time
processing. The mobile robot PRIAMOS built by Kaiser and Dillmann (1999) was
equipped with ultra-sonar sensors. How these distributed sensor streams are pro-
cessed is described in Sect. 17.7.

A set of rules in a restricted predicate logic allows to infer the current state of the
robot in rules that lead from the basic perception of the sensors to an operational con-
cept and from the operational concept to actions of the robot. The rules are a logic
program which can be executed. The distinction between features and concepts is
usually established by their different representations. The features of an instance are
represented by values in a vector, where the concept is represented by a set of rules.
In restricted predicate logic, the distinction between features and concepts vanishes.
A concept as well as a feature is represented by a predicate whose meaning is given
by a set of rules: a concept is another’s concept feature. This allows us to apply the
same learning method at different levels of abstraction. Klingspor (1994) developed
the algorithm GRDT based on RDT (Kietz and Wrobel 1992), which learns all valid
rules of a form which is declaratively described by a grammar. For learning, paths
of the robot in offices of the University of Karlsruhe served as observational data.
The learned models were tested by controlling the robot in offices of the Technische
Universität Dortmund. All commands were accomplished successfully.

The key to representing time is unification here. A rule is instantiated by sensor
measurements and the current time stamp. In a rule, only the identity or non-identity
of time points plays a role. When instantiated, unification puts the time points into
order. The chaining temporal arguments in the logic predicates represent an order
of events, T1 to T2, then T2 to T3, then T3 to T4, all summarized by the interval T1
to T4. An example showing the levels from an operational concept to the perception
may illustrate this.1 The rule describes the operational concept of moving through a
doorway in a parallel manner.

Operational concept

standing (Trace, T1, T2, in_front_of_door, PDirect, small_side, PrevP) &
parallel_moving (Trace, T2, T3, MSpeed, PDirect, through_door,

right_and_left) &
standing (Trace, T3, T4, in_front_of_door, back, small_side, through_door)
→ move_through_door(Trace, T1, T4)

1We follow the Prolog convention and write constant terms in small letters, variables start with a
capital letter. For easy reading, the perceptual features are written in italics.
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The first premise states that the robot is standing and sensing with the sensors
at its small side the perceptual feature in_front_ of_door in a time interval from T1
to T2. Next, from time point T2 to T3, the action parallel_moving is performed,
measuring by the sensors at the right and the left side of the robot the perceptual
feature through_door. Then, from T3 to T4, having passed the doorway is recog-
nized by the perceptual feature in_front_of_door being sensed by the back sensors
of the robot.

Some arguments of an operational concept refer to action-oriented perceptual
features. These are defined by a hierarchy of rules. We may trace the feature
through_door from its use as an argument in the concept move_through_door to
its basic perceptual features.2

Action-oriented perceptual feature

sg_jump(Tr, right_side, T1, T2, Move) &
sg_jump(Tr, left_side, T3, T4, Move) &
parallel(Move) & succ(T1, T3) & Start ≤ T1 & T2 ≤ End
→ through_door (Tr, Start, End, Move).

The rule expresses that the door post is sensed by the sensors at the right side
and a little later by the sensors at the left side, expressed by the successor relation
between T1 and T3, the starting time points of the sensor feature sg_jump. The
movement is in parallel, because the variable Move is unified for the right and the
left side of the robot. This pattern is summarized by the predicate through_door.
Similar rules are learned for other features from robot traces.

The perceptual feature sg_jump is defined in terms of basic perceptual features.

Perceptional feature

stable(Tr, Orien, S, T1, T2, Grad1) &
incr_peak(Tr, Orien, S, T2, T3, Grad2) &
stable(Tr, Orien, S, T3, T4, Grad3)
→ sg_jump(Tr, S, T1, T4, parallel)

This rule states that a (group of) sensors S in a particular orientation Orien measures
a sequence of distance values that form in the time interval from T1 to T2 the gra-
dient Grad1, in time interval from T2 to T3 the gradient Grad2, and in time interval
from T3 to T4 the gradient Grad3. The end point of one time interval is the start
point of the next. stable and incr_peak are basic features that need to be computed

2For technical reasons we had to introduce conversion rules that convert the predicate of a rule’s
conclusion into an argument of another predicate.
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as streaming data in real-time (see Sect. 17.7). Unifying the variables with partic-
ular sensor facts derives the unified conclusion which is used as a premise in the
action-oriented perceptual features. If its other premises could be derived as well,
the action-oriented perceptional feature is turned into an argument of an action fea-
ture like standing or parallel_moving, thus, in the end contributing to the derivation
of an operational concept.

Due to its relational representation of time intervals, operational concepts are
flexible. The definition of move_through_door applies to doorways of varying
breadth and depth. No precise distances need to be fixed by the definition. The same
holds for time intervals. No fixed length has to be determined, but only the rela-
tions between time intervals and even these can freely be expressed. In summary,
the case-study shows that handling time in the logical framework is very flexible.
Moreover, the results of learning from very few training paths of a robot control the
robot at other buildings.

17.7 Streaming Data Analysis—A Very Early Algorithm

Online time series analysis is an important method for monitoring tasks. It allows
to analyze the time series without storing it completely. Hence, it is applicable to
streaming data. Robust methods have recently been developed by Borowski et al.
(2009), Nunkesser et al. (2009), and Lanius and Gather (2010) and are shown in the
contribution by Borowski, Fried and Imhoff in Chap. 12. It was in the course of ex-
ploiting logic learning and reasoning in robotics, that we first came across streaming
data that had to be handled online and under resource constraints regarding comput-
ing and memory. The task was to transform the sensor measurements, i.e., numerical
streaming data, into symbolic descriptions. Since the technical term of streaming
data analysis did not yet exist, we strengthened the notion of incremental becoming
the definition of algorithms for streaming data (Morik and Wessel 1999):

“If we want to use the symbolic descriptions for object recognition or planning during the
robot’s performance, then the transformation from sensor data to symbolic descriptions
must be very fast. This not only means that fast algorithms are to be applied. It also means
that the algorithm must be incremental, i.e. the algorithm generates the symbolic description
on the basis of the current symbolic description and the current measurement. An algorithm
is called strongly incremental if it does not store the input data so that it cannot correct its
decisions on the basis of a longer input stream.”

Moreover, we demanded an any-time algorithm: each current symbolic description
must be informative to the robot. It is impossible to wait for a longer sequence of
sensor data in order to get a better symbolic description. The robot needs informa-
tion about its environment at any time.

We developed an algorithm that takes as input a set of symbolic labels, a sequence
of distance measurements of sonar sensors, and a parameter that indicates the de-
gree of tolerance concerning deviations. Its output is a sequence of labeled time
intervals. For example, during a robots movement along a wall, a sensor measures
an object first with increasing and then, shortly, with decreasing distance, because
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something juts out. The logic proposition increasing(t100, 207, s0, 1,8,19) is out-
put at the ninth time point. It states that in the current mission t100 the sensor s0,
being oriented with respect to the global coordinates in an angle of 207 degrees,
has measured increasing distances from the 1st time point until the 8th time point.
The gradient of the increasing distances was about 19 degrees. At the ninth point of
time, a new time interval is started, because the gradient is too different. It is labeled
decr_peak(t100,207, s0,8,9,−64).

For two measurements, we have the position of the robot Rx and Ry at two con-
secutive time points and the distance measurements D at the same time points. We
are only interested in changes of distance measurements. Such a change is expressed
by the gradient α between two measurements:

α = arctan
Dt −Dt−1

(Rxt ,Ryt )− (Rxt−1,Ryt−1)
.

For every two successive measurements the angle is calculated. For the first two
measurements, the angle α is the characteristic gradient of the time interval. For
every further measurement, its gradient is compared with the characteristic one. If
the gradient is decided to be more or less the same, then the characteristic gradient is
updated. The update forms incrementally the average of angles that are summarized
by the time interval.

char_gradnew =
char_gradold · (#grads− 1)+ grad

#grads

calculates the new characteristic gradient char_gradnew from char_gradold, the cur-
rent characteristic gradient, weighted by #grads, the number of gradients that have
been subsumed so far, and the current gradient grad. In preparation of an applica-
tion, the tolerance threshold which decides whether an angle s is similar enough
to the characteristic gradient, is fitted to a training set once. From then on, the al-
gorithm works in a streaming any-time manner. The signal to symbol processing
could be used for real missions of the robot PRIAMOS given the previously learned
tolerance parameter, successfully.

The little exercise for a mobile robot illustrates a very early algorithm of a class
that now has attained much attention, namely, the streaming data algorithms. Sensor-
based monitoring and prediction has become a hot topic in a large variety of applica-
tions, see for instance the contribution by Borowski, Fried and Imhoff in Chap. 12.
Here, the robot sensor measurements were processed in parallel, one process for
each sensor, before a learned model combined the distributed patterns. The learning
of perceptional patterns had to store only the current model and the new measure-
ment. The extracted features were then used by the logic rules. The strongly in-
cremental segmentation and summary of on-line time series already instantiates the
mining of streaming data from heterogeneous sources. The theoretical analysis of
stream mining algorithms has also been put forward (for clustering, see Ackermann
et al. 2010, for instance). Stream mining allows to handle a virtually infinite number
of observations. Hence, it is an important method for analyzing big data.
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17.8 Conclusions

Temporal data offer fascinating research topics. In this promenade along different
ways to analyze them, we came across various representations. The large set of
snapshot data from an intensive care unit allow to learn a set of decision functions at
a central server, which could be applied in a streaming manner (Sect. 17.2.2). Learn-
ing classifiers from large sets of value series requires feature extraction. A unified
framework for feature extraction from series allows to configure particular features
from building blocks of temporal transformations and functions (Sect. 17.4). We
stroll along other feature extractions as well. Counting how often an attribute in a
temporal database changes its value can be a very effective feature (Sect. 17.3).
Events with intervals are represented elegantly in predicate logic. A case study
shows that robots can be controlled by learned logical rules (Sect. 17.6). Another
logic-based approach investigates temporal cycles in economy (Sect. 17.5).

Learning algorithms along the way are Support Vector Machines (Sect. 17.2.1),
(G)RDT from inductive logic programming (Sects. 17.5 and 17.6), and frequent set
mining (Sect. 17.5), each requiring its appropriate representation. Being just a walk
through diverse studies that dealt with temporal data, this chapter is far from being
complete. The hope is—as is with a walk in the park—that some views might be
inspiring for the own gardening and some just look nice.
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Chapter 18
Correlation, Tail Dependence and Diversification

Dietmar Pfeifer

18.1 Introduction

What is frequently abbreviated as Solvency II is perhaps the most challenging leg-
islative adventure in the European Union (besides Basel II/III for the banking sector)
in the last decade. It is a fundamentally new, risk driven approach towards a harmo-
nization of financial regulation for insurance and reinsurance companies writing
business in the European Union. One of the major aims of the Solvency II frame-
work is a customer protection limiting the yearly ruin probability of the company
to at most 0.5 % by requiring sufficient economic capital. The calculation of this so
called Solvency Capital Requirement (SCR) is based on a complicated mathemati-
cal and statistical framework derived from an economic balance sheet approach (for
more details, see, e.g., Buckham et al. 2011; Cruz 2009; Doff 2007 or Sandström
2006). An essential aspect in the SCR calculation here is the notion of diversifica-
tion, which aims at a reduction of the overall capital requirement by “distributing”
risk in an appropriate way. There are several definitions and explanations of this
term, some of which are presented in the sequel.

“Although it is an old idea, the measurement and allocation of diversification in portfolios
of asset and/or liability risks is a difficult problem, which has so far found many answers.
The diversification effect of a portfolio of risks is the difference between the sum of the
risk measures of stand-alone risks in the portfolio and the risk measure of all risks in the
portfolio taken together, which is typically non-negative, at least for positive dependent
risks.”

[Hürlimann (2009a, p. 325)]

“Diversification arises when different activities complement each other, in the field of both
return and risk. [. . . ] The diversification effect is calculated by using correlation factors.
Correlations are statistical measures assessing the extend to which events could occur si-
multaneously. [. . . ] A correlation factor of 1 implies that certain events will always occur
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simultaneously. Hence, there is no diversification effect and two risks identically add up.
Risk managers tend to say that such risks are perfectly correlated (i.e., they have a high cor-
relation factor), meaning that these two risks do not actually diversify at all. A correlation
factor of 0 implies that diversification effects are present and a certain diversification benefit
holds.”
[Doff (2007, p. 167f.)]

“By diversifiable we mean that if a risk category can be subdivided into risk classes and the
risk charge of the total risk is not higher than the sum of the risk charges of each subrisk,
then we have the effect of diversification. [. . . ] This effect can be measured as the difference
between the sum of several capital charges and the total capital charge when dependency
between them is taken into account.”
[Sandström (2006, p. 188)]

“In order to promote good risk management and align regulatory capital requirements with
industry practices, the Solvency Capital Requirement should be determined as the economic
capital to be held by insurance and reinsurance undertakings in order to ensure that ruin oc-
curs no more often than once in every 200 cases. [. . . ] That economic capital should be
calculated on the basis of the true risk profile of those undertakings, taking account of the
impact of possible risk-mitigation techniques, as well as diversification effects. [. . . ] Di-
versification effects means the reduction in the risk exposure of insurance and reinsurance
undertakings and groups related to the diversification of their business, resulting from the
fact that the adverse outcome from one risk can be offset by a more favourable outcome
from another risk, where those risks are not fully correlated. The Basic Solvency Capital
Requirement shall comprise individual risk modules, which are aggregated [. . . ] The cor-
relation coefficients for the aggregation of the risk modules [. . . ], shall result in an overall
Solvency Capital Requirement [. . . ] Where appropriate, diversification effects shall be taken
into account in the design of each risk module.”
[Official Journal of the European Union (2009, (64) p. 7; (37) p. 24; Article 104, p. 52)]

One central idea that is common to all of these explanations is that a small, zero
or even negative correlation between risks implies a diversification effect, while
a large correlation or positive dependence implies the opposite. This is, however,
largely based on a naïve understanding of the relationship between correlation and
dependence which is not at all justified from a rigorous statistical point of view
(see, e.g., Mari and Kotz 2001). This fact has also been emphasized by McNeil
et al. (2005) in Chaps. 5 and 6 of their monograph, and in part also by Artzner et al.
(1999).

A better way to tackle the understanding of a diversification effect is to replace
the notion of correlation by the notion of copulas which describe the dependence
structure between risks completely (see, e.g., Nelsen 2006, for a sophisticated sur-
vey). With respect to the “dangerousness” of joint risks, tail dependence is often
used as a characteristic quantity (see, e.g., McNeil et al. 2005, Sect. 5.2.3). In case
of a positive upper coefficient of tail dependence, it is likely that extreme events
will occur more frequently simultaneously, just in the spirit of Doff’s explanation of
diversification above. This might suggest that risks with positive upper tail depen-
dence are less exposed to diversification than those with zero upper tail dependence.
However, a more sophisticated analysis shows that this is also not true in general.

The aim of this chapter is twofold:
Firstly, to show that the notion of correlation is completely disjoint from the no-

tion of diversification under the risk measure VaR used in the Solvency II directive,
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i.e., we shall show that a state of no diversification between risks can be achieved
with almost arbitrary positive and negative correlation coefficients, especially with
the same marginal risk distributions.

And secondly, that a state of no diversification between risks can also be achieved
with a zero tail dependence coefficient, or even worse, with a partial countermono-
tonic dependence structure, in particular for risks being lognormally distributed
which is a basic assumption in the Pillar One standard model of Solvency II.

18.2 A Short Review of Risk Measures

In this section, we shall only focus on risk measures for non-negative risks since
these are the essential quantities in insurance, and are also the fundamentals of the
SCR calculation under Solvency II. We follow a simplified setup as in Sandström
(2006), Sect. 7.4 which is formally slightly different from the approach in Artzner
et al. (1999) or McNeil et al. (2005, Chap. 6).

Definition 18.1 Let X Let be a suitable set of non-negative random variables X on
a probability space (Ω,A,P ). A risk measure R on X is a mapping X →R

+ with
the following properties:

PX = PY ⇒R(X)=R(Y ) ∀X,Y ∈X , (18.1)

i.e., the risk measure depends only on the distribution of the risk X;

R(cX)= cR(X) ∀X ∈X ∀c ≥ 0,

i.e., the risk measure is scale-invariant;

R(X+ c)=R(X)+ c ∀X ∈X ∀c ≥ 0, (18.2)

i.e., the risk measure is translation-invariant;

R(X)≤R(Y ) ∀X,Y ∈X , X ≤ Y, (18.3)

i.e., the risk measure is monotone.
The risk measure is called coherent, if it additionally has the subadditivity prop-

erty:

R(X+ Y)≤R(X)+R(Y ) ∀X,Y ∈X . (18.4)

This last property is the crucial point: it induces a diversification effect for arbi-
trary non-negative risks X1, . . . ,Xn (dependent or not) since it follows by induction
that coherent risk measures have the property

R

(
n∑

k=1

Xk

)
≤

n∑
k=1

R(Xk) ∀n ∈N.
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In what follows we shall use the term “(risk) concentration effect” as opposite to
“diversification effect”, characterized by the converse inequality

∃(X,Y ) ∈X ×X :R(X+ Y) > R(X)+R(Y ).

Example 18.1 The popular standard deviation principle SDP which is sometimes
used for tariffing in insurance is defined as

SDP(X)=E(X)+ γ
√

Var(X) for a fixed γ > 0 and X ∈X = L2+(Ω,A,P ),

the set of non-negative square-integrable random variables on (Ω,A,P ). Obvi-
ously, SDP fulfils the properties (18.1) to (18.2) and (18.4); the latter because of

SDP(X+ Y) = E(X)+E(Y)

+ γ

√
Var(X)+Var(Y )+ 2ρ(X,Y )

√
Var(X) ·Var(Y )

≤ E(X)+E(Y)+ γ

√
Var(X)+Var(Y )+ 2

√
Var(X) ·Var(Y )

= E(X)+E(Y)+ γ

√(√
Var(X)+√Var(Y )

)2
= SDP(X)+ SDP(Y ) (18.5)

for all X,Y ∈X . Here ρ(X,Y )= Cov(X,Y )/
√

Var(X)Var(Y ) denotes the correla-
tion between X and Y . However, SDP does in general not fulfil property (18.3) and
is hence not a proper risk measure, as can be seen as follows: Let Z be a random
variable binomially distributed over {0,1} with P(Z = 1) = 1 − P(Z = 0) = p,
and 1/(1 + γ 2) < p < 1. Consider X := 2Z and Y := 1 + Z. Then X ≤ Y , but
R(X)= 2p+ 2γ

√
p(1− p) > 1+ p+ γ

√
p(1− p)=R(Y ).

Example 18.2 The risk measure used in Basel II/III and Solvency II is the Value-at-
Risk VaR, being defined as a (typically high) quantile of the risk distribution:

VaRα(X) :=QX(1− α) for X ∈X and 0 < α < 1,

where QX denotes the quantile function

QX(u) := inf
{
x ∈R | P(X ≤ x)≥ u

}
for 0 < u< 1.

Value-at-Risk is a proper risk measure, but not coherent in general. This topic
will be discussed in more detail in the next section (for a more general discussion,
see e.g., McNeil et al. 2005, Sect. 6.1.2).

The “smallest” coherent risk measure above VaR is the expected shortfall (ES),
which is in general defined as

ESα(X) := 1

α

{
E(X · I{X≥VaRα(X)})+VaRα(X)

[
α − P

(
X ≥VaRα(X)

)]}
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for X ∈ X and 0 < α < 1, where IA denotes the indicator random variable of some
event (measurable set) A. In case that P(X ≥VaRα(X))= α, this formula simplifies
to

ESα(X)=E
(
X |X ≥VaRα(X)

)= 1

α

∫ α

0
VaRu(X)du

(see McNeil et al. 2005, Definition 2.15 and Remark 2.17); note that the role of α
and 1− α are interchanged there). A more thorough discussion on the relationship
between VaR and ES (and other coherent risk measures) in connexion with Wang’s
distortion measures can be found in Hürlimann (2004). Expected shortfall is the
risk measure which is used in the Swiss Solvency Test (SST), see, e.g., Sandström
(2006, Sect. 6.8) or Cruz (2009, Chap. 17).

18.3 A Short Review of Copulas

The copula approach allows for a separate treatment of the margins of joint risks
and the dependence structure between them. The name “copula” goes back to Abe
Sklar in 1959 who used it as a function which couples a joint distribution function
with its univariate margins. For an extensive survey, see, e.g., Nelsen (2006).

Definition 18.2 A copula (in n dimensions) is a function C defined on the unit cube
[0,1]n with the following properties:

1. the range of C is the unit interval [0,1];
2. C(u) is zero for all u= (u1, . . . , un) in [0,1]n for which at least one coordinate

is zero;
3. C(u)= uk if all coordinates of u are 1 except the k-th one;
4. C is n-increasing in the sense that for every a≤ b in [0,1]n the volume assigned

by C to the subinterval [a,b] = [a1, b1] × · · · × [an, bn] is nonnegative.

A copula can alternatively be characterized as a multivariate distribution function
with univariate marginal distribution functions that belong to a continuous uniform
distribution over the unit interval [0,1].

It can be shown that every copula is bounded by the so-called Fréchet–Hoeffding
bounds, i.e.,

C∗(u) := max(u1 + · · · + un − n+ 1,0)≤ C(u1, . . . , un)

≤ C∗(u) :=min(u1, . . . , un).

The upper Fréchet–Hoeffding bound C∗ is a copula itself for any dimension; how-
ever, the lower Fréchet–Hoeffding bound C∗ is a copula in two dimensions only. If
X is any real random variable, then the random vector X = (X,X, . . . ,X) with n

components possesses the upper Fréchet–Hoeffding bound C∗ as copula, while the
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random vector X = (X,−X) with two components possesses the lower Fréchet–
Hoeffding bound C∗ as copula. Random variables who have C∗ or C∗, respectively,
as copula are also called comonotone or countermonotone, respectively. An impor-
tant and well-studied copula is the independence copula, given by C(u)=∏n

i=1 ui .
The following theorem due to Sklar justifies the role of copulas as dependence

functions:

Proposition 18.1 Let H denote some n-dimensional distribution function with
marginal distribution functions F1, . . . ,Fn. Then there exists a copula C such that
for all real (x1, . . . , xn),

H(x1, . . . , xn)= C
(
F1(x1), . . . ,Fn(xn)

)
.

If all the marginal distribution functions are continuous, then the copula is unique.
Moreover, the converse of the above statement is also true. If we denote by
F−1

1 , . . . ,F−1
n the generalized inverses of the marginal distribution functions (or

quantile functions), then for every (u1, . . . , un) in the unit cube,

C(u1, . . . , un)=H
(
F−1

1 (u1), . . . ,F
−1
n (un)

)
.

For a proof, see (Nelsen 2006, Theorem 2.10.9) and the references given therein.
The above theorem shows that copulas remain invariant under strictly monotone
transformations of the same kind of the underlying random variables (either in-
creasing or decreasing).

The following result shows the relationship between correlation and copulas.

Proposition 18.2 Let (X,Y ) be a bivariate random vector with a copula C and
marginal distribution functions F and G such that E(|X|) <∞, E(|Y |) <∞ and
E(|XY |) <∞. Then the covariance between X and Y can be expressed in the fol-
lowing way:

Cov(X,Y )=
∫ ∞
−∞

∫ ∞
−∞
[
C
(
F(x),G(y)

)− F(x)G(y)
]
dx dy.

For a proof see, e.g., McNeil et al. (2005, Lemma 5.24).

18.4 Correlation and Diversification

Before going into deeper details, we start with an illustrative example showing es-
sentially that risk concentration under VaR can occur with almost all positive and
negative correlation coefficients, even if the marginal distributions remain fixed. Ac-
cording to the Solvency II standard, we choose α = 0.005 for simplicity here, but
the example can be reformulated accordingly with any other value of 0 < α < 1.
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Table 18.1 Joint distribution of risks

P (X = x,Y = y) x P (Y = y) P (Y ≤ y)

0 50 100

y 0 β 0.440− β 0.000 0.440 0.440

40 0.554− β β 0.001 0.555 0.995

50 0.000 0.001 0.004 0.005 1.000

P (X = x) 0.554 0.441 0.005

P (X ≤ x) 0.554 0.995 1.000

Table 18.2 Moments and correlations

E(X) E(Y ) σ(X) σ(Y ) ρ(β)= ρ(X,Y )

22.550 22.450 25.377 19.912 −0.9494+ 3.9579β

Table 18.3 Distribution of aggregate risk

s 0 40 50 90 100 140 150

P (S = s) β 0.554− β 0.440− β β 0.001 0.001 0.004

P (S ≤ s) β 0.554 0.994− β 0.994 0.995 0.996 1.000

Example 18.3 Let the joint distribution of the non-negative risks X and Y be given
by Table 18.1, with 0≤ β ≤ 0.440, giving VaRα(X)= 50, VaRα(Y )= 40.

For the moments of X and Y , we obtain the values in Table 18.2 (with σ denoting
the standard deviation). This shows that the range of possible risk correlations is the
interval [−0.9494;0.7921], with a zero correlation being attained for β = 0.2399.

Table 18.3 shows the distribution of the aggregated risk S =X+ Y .
We thus obtain a risk concentration due to VaRα(S) = 100 > 90 = VaRα(X)+

VaRα(Y ), independent of the parameter β and hence also independent of the possi-
ble correlations between X and Y .

A closer look to the joint distribution of X and Y shows that the reason for this
perhaps unexpected result is the fact that although one can have a “diversification
effect” in the central body of the distribution, where a fraction of little less than
1− α of the risk pairs are located, the essential “concentration effect”, however, is
caused by a joint occurrence of very high losses, with a fraction of α of all risk pairs.

The following result is related to the consideration of “worst VaR scenarios” as
in McNeil et al. (2005, Sect. 6.2).

Proposition 18.3 Let X and Y be non-negative risks with cumulative distribution
functions FX and FY , respectively, which are continuous and strictly increasing on
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their support. Denote, for a fixed α ∈ (0,1),

Q∗(α, δ) :=min
{
QX(u)+QY (2− α − δ − u) | 1− α − δ ≤ u≤ 1

}
for 0≤ δ < 1− α.

Then there exists a sufficiently small ε ∈ (0,1− α) with the property

Q∗(α, ε) >QX(1− α)+QY (1− α)=VaRα(X)+VaRα(Y ). (18.6)

Assume further that the random vector (U,V ) has a copula C as joint distribution
function with the properties

V < 1− α − ε ⇐⇒ U < 1− α− ε and

V = 2− α − ε −U ⇐⇒ U ≥ 1− α − ε.
(18.7)

If we define

X∗ :=QX(U), Y ∗ :=QY (V ), S∗ :=X∗ + Y ∗,

then the random vector (X∗, Y ∗) has the same marginal distributions as (X,Y ), and
it holds

VaRα

(
X∗ + Y ∗

)≥Q∗(α, ε) > VaRα

(
X∗
)+VaRα

(
Y ∗
)=VaRα(X)+VaRα(Y ),

i.e., there is a risk concentration effect. Moreover, under the assumption (18.7), the
correlation ρ(X∗, Y ∗) is minimal if V = 1− α − ε −U for U < 1− α − ε (lower
extremal copula C) and maximal if V = U for U < 1 − α − ε (upper extremal
copula C).

Proof By assumption, the (non-negative) quantile functions QX and QY are con-
tinuous and strictly increasing over the interval [0,1] (with a possibly infinite value
at the point 1), so that

Q∗(α,0)

=min
{
QX(u)+QY (2− α − u) | 1− α ≤ u≤ 1

}
>QX(1− α)+QY (1− α),

the minimum being actually attained. Since by the continuity assumptions above,
Q∗(α, ε) is continuous in ε and decreasing when ε is increasing, relation (18.6)
follows.

The copula construction above now implies that

P
(
S∗ ≤ s

)≤ 1− α − ε

for s ≤QX(1− α − ε)+QY (1− α − ε)=VaRα+ε(X)+VaRα+ε(Y ),

P
(
S∗ ≤ s

)= 1− α − ε for VaRα+ε(X)+VaRα+ε(Y ) < s <Q∗(α, ε),

P
(
S∗ ≤ s

)≥ 1− α − ε for s ≥Q∗(α, ε).

(18.8)
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Table 18.4 Examples of risk measures and correlations for various values of σ

σ VaRα(X)

=VaRα(Y )

VaRα(X)

+VaRα(Y )

VaRα(X
∗ + Y ∗) ρmin(X

∗, Y ∗) ρmax(X
∗, Y ∗)

0.1 1.2873 2.5746 2.6205 −0.8719 0.9976

0.2 1.6408 3.2816 3.3994 −0.8212 0.9969

0.3 2.0704 4.1408 4.3661 −0.7503 0.9951

0.4 2.5866 5.1732 5.5520 −0.6620 0.9920

0.5 3.1992 6.3984 6.9901 −0.5598 0.9873

0.6 3.9177 7.8354 8.7134 −0.4480 0.9802

0.7 4.7497 9.4994 10.7537 −0.3310 0.9700

0.8 5.7011 11.4022 13.1401 −0.2136 0.9556

0.9 6.7750 13.5500 15.8969 −0.1002 0.9362

1.0 7.9712 15.9424 19.0412 0.0050 0.9108

1.5 15.4675 30.9350 40.4257 0.3127 0.6839

2.0 23.3748 46.7496 66.8923 0.2723 0.3794

2.5 27.5107 55.0214 86.2673 0.1399 0.1637

3.0 25.2162 50.4324 86.7034 0.0565 0.0611

Relation (18.8) in turn implies that VaRα(S
∗)=VaRα(X

∗ + Y ∗)≥Q∗(α, ε) which
proves the first part of Proposition 18.3, due to relation (18.6).

The remainder part follows from Theorem 5.25 in McNeil et al. (2005) when
looking at the conditional distribution of (X∗, Y ∗) given the event {U < 1 −
α − ε}. �

Note that both types of copulas that provide the extreme values for the correla-
tions, C and C, are of the type “shuffles of M”, see Nelsen (2006, Sect. 3.2.3).

In the following example, we shall show some consequences of Proposition 18.3
in the case of lognormally distributed risks, which are of special importance for
Pillar One under Solvency II, see, e.g., Hürlimann (2009a, 2009b).

Example 18.4 To keep things simple and comparable with Solvency II specifi-
cations, we shall assume that X and Y follow the same lognormal distribution
LN (μ,σ ) with μ ∈ R, σ > 0 and E(X) = E(Y) = 1 which corresponds to the
case μ = −σ 2/2. Table 18.4 shows all relevant numerical results for the extreme
copulas C and C in Proposition 18.3, especially the maximal range of correlations
induced by them. According to the Solvency II standard, we choose α = 0.005 (and
ε = 0.001, which will be sufficient here).

Note that the bottom graph in Fig. 18.1 resembles the graph in Fig. 5.8 in McNeil
et al. (2005).

The graph in Fig. 18.2 shows parts of the two cumulative distribution functions
under the extreme copulas C and C for S∗ :=X∗ + Y ∗ in the case σ = 1. Note that
especially for smaller values of σ (which is typical for the calculation of the SCR in
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Fig. 18.1 Top: Graph of
VaRα(X

∗ + Y ∗) (red) and
VaRα(X)+VaRα(Y ) (blue)
as functions of σ ; bottom:
graph of ρmax(X

∗, Y ∗) (red)
and ρmin(X

∗, Y ∗) (blue) as
functions of σ

Fig. 18.2 Graph of
cumulative distribution
functions for extreme copulas
for S∗ =X∗ + Y ∗ with σ = 1

the non-life risk module of Solvency II) the range of possible negative and positive
correlations between the risks is quite large, with the same significant discrepancy
between the Value at Risk of the aggregated risks and the sum of individual Values
at Risk.

Note also that any correlation value ρ of ρ(X∗, Y ∗) between ρmin(X
∗, Y ∗) and

ρmax(X
∗, Y ∗) can be achieved by a proper mixture of the extreme copulas C and C
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Fig. 18.3 Graph of
cumulative distribution
functions for extreme copulas
and conditional independence

namely for the copula

C(p)= λC + (1− λ)C with λ= ρmax(X
∗, Y ∗)− ρ

ρmax(X∗, Y ∗)− ρmin(X∗, Y ∗)
.

This is a direct consequence from Proposition 18.2, for example.
There are, of course, also other possibilities to achieve appropriate intermedi-

ary values for the correlation, for instance if U and V are conditionally indepen-
dent given the event {U < 1 − α − ε}. The graph in Fig. 18.3 adds a part of
the cumulative distribution function of S∗ := X∗ + Y ∗ for this case to the graph
in Fig. 18.2. The correlation between X∗ and Y ∗ is here given by ρ(X∗, Y ∗) =
0.3132.

18.5 Tail Dependence and Diversification

As in the case of a large positive correlation between risks, it might be intuitively
tempting to assume that a positive upper tail dependence would have a positive im-
pact on risk concentration, too. But this is not true here either. In this section, we
shall show that a risk concentration effect can occur with and without tail depen-
dence, while the marginal distributions remain unchanged.

Note first that the copula construction of Proposition 18.3 implies no upper tail
dependence since, by the continuity assumption for the marginal distributions made
there (see, e.g., McNeil et al. 2005, Sect. 5.2.3),

λu = lim
u↑1

P(U > u,V > u)

1− u
= 0
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because for 1 − (α + ε)/2 < u ≤ 1, we have 2 − α − ε − u < u and hence, for
these u,

P(U > u,V > u) = P(U > u,2− α − ε −U > u)

= P(u < U < 2− α − ε − u)= P(∅)= 0.

The following proposition shows that we can incorporate an upper tail dependence
in the construction of Proposition 18.3 without essentially loosing the central result.

Proposition 18.4 Assume that the conditions of Proposition 18.3 hold, with the
following modification of the copula construction in (18.7):

V < 1− α− ε ⇐⇒ U < 1− α − ε and

V =
{

2− α − ε − γ −U : 1− α − ε ≤U < 1− γ

U : 1− γ ≤U ≤ 1

with some non-negative γ < α. Then, for sufficiently small ε and γ , we still have

min
{
QX(u)+QY (2− α − ε − γ − u) | 1− α − ε ≤ u≤ 1− γ

}
>QX(1− α)+QY (1− α)

and hence again a risk concentration effect, i.e., VaRα(X
∗ + Y ∗) > VaRα(X) +

VaRα(Y ). Moreover, under this copula construction, the correlation ρ(X∗, Y ∗) is
again minimal if V = 1−α− ε−U for U < 1−α− ε (lower extremal copula Cγ )

and maximal if V =U for U < 1− α− ε (upper extremal copula Cγ ). Further, the
risks are in all cases upper tail dependent with

λu = lim
u↑1

P(U > u,V > u)

1− u
= 1. (18.9)

Proof The first two parts follow along the lines of the proof of Proposition 18.3.
For the last part, observe that we have U = V ⇐⇒ 1− γ ≤ U ≤ 1 which implies
P(U > u,V > u)= 1− u for 1− γ ≤ u≤ 1 and hence (18.9). �

Example 18.5 If we choose γ = 0.0005, we get the extension of the results in Exam-
ple 18.4, under the same initial conditions (see Table 18.5). The graph in Fig. 18.4
shows an extension of the graph in Fig. 18.3 for the extreme copulas Cγ and Cγ

for S∗ := X∗ + Y ∗ in the case σ = 1. The case γ > 0 corresponds to upper tail
dependence, the case γ = 0 correspond to the former situation with no upper tail
dependence.

18.6 Conclusions

As the preceding analysis has shown, neither the notion of correlation nor the notion
of tail dependence as such has in general a direct impact on diversification under the
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Table 18.5 Examples of risk measures and correlations for various values of σ

σ VaRα(X)

=VaRα(Y )

VaRα(X)

+VaRα(Y )

VaRα(X
∗ + Y ∗) ρmin(X

∗, Y ∗) ρmax(X
∗, Y ∗)

0.1 1.2873 2.5746 2.6134 −0.8710 0.9993

0.2 1.6408 3.2816 3.3811 −0.8193 0.9988

0.3 2.0704 4.1408 4.3308 −0.7471 0.9981

0.4 2.5866 5.1732 5.4923 −0.6568 0.9969

0.5 3.1992 6.3984 6.8962 −0.5515 0.9953

0.6 3.9177 7.8354 8.5730 −0.4349 0.9929

0.7 4.7497 9.4994 10.5516 −0.3107 0.9974

0.8 5.7011 11.4022 12.8581 −0.1830 0.9964

0.9 6.7750 13.5500 15.5133 −0.0553 0.9951

1.0 7.9712 15.9424 18.5310 0.0691 0.9744

1.5 15.4675 30.9350 38.8061 0.5658 0.9366

2.0 23.3748 46.7496 63.3300 0.8154 0.9224

2.5 27.5107 55.0214 80.5429 0.9185 0.9423

3.0 25.2162 50.4324 79.8272 0.9636 0.9909

Fig. 18.4 Graph of
cumulative distribution
functions for extreme copulas
and conditional
independence, with and
without upper tail dependence

risk measure Value at Risk. This means that any attempt to implement such con-
cepts into a simple Pillar One standard model under Solvency II for the purpose
of a reduction of the Solvency Capital Requirement in case of a diversification ef-
fect cannot be justified by mathematical reasoning. We can perhaps summarize the
consequences of this insight in a slight modification of a statement in McNeil et al.
(2005, p. 205):

The concept of diversification is meaningless unless applied in the context of a well-defined
joint model. Any interpretation of diversification in the absence of such a model should be
avoided.
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Chapter 19
Evidence for Alternative Hypotheses

Stephan Morgenthaler and Robert G. Staudte

19.1 Introduction

Statisticians are trained to avoid “lying with statistics,” that is, to avoid deceiving
others and themselves about what the data say about questions or hypotheses. At
the most fundamental level, they are battling against the power of one number to
influence thinking, rather than two numbers. Telling someone that “smoking dou-
bles the risk of lung cancer” is a powerful message, likely to be accepted as a fact.
But reporting the “two”, with a standard error, or reporting a confidence interval for
the relative risk is likely to have far less impact. It is as if there were less reliability
in the message with the greater information, no doubt because the second number
reminds us of the imprecision in the first. Statisticians are not immune from this
human fallibility. We often quote a p-value against a null hypothesis, or a posterior
probability for a hypothesis or a likelihood ratio for comparing two hypotheses, as
if they were important numerical facts, to be taken at face-value, without further
question. Evans (2000) in his comments on Royall (2000), makes the same point:
“Some quantification concerning the uncertainty inherent in what the likelihood ra-
tio is saying seems to be a part of any acceptable theory of statistical inference. In
other words, such a quantification is part of the summary of statistical evidence.”
We agree with Evans and thus require that any measure of statistical evidence be a
statistic reported with a standard deviation or other measure of uncertainty.

Another example of an incomplete message occurs frequently in the meta-
analytic literature. Results are derived for the case of known weights, and then es-
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timates of the weights are substituted in the ensuing formulae, as if no theory were
needed to account for the second estimation. This works for very large sample sizes,
but not for those usually encountered in practice and results in optimistically small
confidence intervals, inflated coverages and many published false claims, Malzahn
et al. (2000), e.g., thus, we require that any measure of evidence found for individual
studies of the same effect should be easy to combine to obtain an overall evidence
for this effect, and the combination of evidence must be based on a sound theory
(see the contribution by Wellmann, Chap. 22, for a discussion of meta analysis). In
the remainder of this section, we motivate and define statistical evidence on our pre-
ferred calibration scale in which one function, called the Key Inferential Function,
contains all the information required for inference.

For the sake of simplicity of presentation, we restrict attention to one-sided al-
ternatives θ > θ0 to the null hypothesis θ = θ0 (or θ ≤ θ0); evidence for two-sided
alternatives is presented in detail in Sect. 17.4, p. 134 of Kulinskaya et al. (2008).
Our third requirement is that the expected evidence in favor of θ > θ0 should be
increasing with θ and have value 0 at θ = θ0.

Fourth, if the parameter of interest θ is estimable by a θ̂n based on n observa-
tions, with standard error SE[θ̂n] of order 1/

√
n, then the evidence for an alternative

hypothesis θ > θ0 should grow at the rate
√
n. This means it will require 9 times as

much work to obtain 3 times as much evidence for an alternative hypothesis.
Fifth, evidence should be replicable in the sense that if an experimenter obtains

a certain amount of evidence for a hypothesis, then an independent repetition of
the experiment should lead to a similar result, up to sampling error. While this is
true for the p-value under the null hypothesis, when the null hypothesis does not
hold the variation under repetition may come as a surprise due to the highly skewed
distribution of the p-value. These five motivating factors lead us to illustrate what is
achievable for the simplest possible model in the next section, a model that forms
the basis for all that follows.

Prototypical Example We will now consider an example that is often discussed
in elementary statistics courses. In this example, each experiment produces an in-
dependent realization of a random variable X ∼ N(μ,σ 2

0 ), where σ 2
0 is known.

This is the prototypical normal translation model, which we would like to use as
a “universal model” for other testing problems. We want to quantify the evidence
based on n experiments against the null hypothesis μ = μ0 and in favor of the
alternative μ > μ0. Letting X̄n denote the sample mean, the usual test statistic
is Sn = X̄n − μ0. The corresponding evidence is the standardized version of Sn,
that is, Tn =√n(X̄n − μ0)/σ0, which is distributed as N(

√
n(μ− μ0)/σ0,1). The

way an evidence is constructed means that the expected evidence is the function
of the parameters that carries all the information. In the normal shift model, this is√
n(μ−μ0)/σ0. Because Tn has variance one, evidence can be reported as Tn ± 1,

indicating that it has error, with the subtext that this standard error means the same
thing to everyone, because all students of statistics recognize a standard normal dis-
tribution. This standard error of 1 also becomes the unit for a calibration scale for
evidence: if one observes Tn = 3, one knows that one has observed a result 3 times
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its own standard error. If one obtains Tn =−2, one has evidence+2 for the opposite
alternative hypothesis μ<μ0, again with standard normal error.

The statistical evidence Tn =√n(X̄n−μ0)/σ0 is monotone increasing in
√
n for

each fixed μ; and, for each fixed sample size n, the expected evidence grows from 0
as μ > μ0 increases. This evidence is also replicable in the sense that given Tn = t

and an independent T ∗n ∼ N(
√
n(μ−μ0)/σ0,1) the optimal predictor E[T ∗n | Tn =

t] is simply t , and this estimator of the expected evidence has standard error 1.
When combining evidence from independent studies, given Tn1 ∼ N(τ1,1) and

Tn2 ∼N(τ2,1), it is easy to think of combinations of Tn1 , Tn2 which remain on the
same calibration scale. An effective combination is given in Sect. 19.1.2.

19.1.1 Desirable Properties of Statistical Evidence

Most statisticians, including us, would prefer an axiomatic approach to statistical
evidence, but we provide an operational one. That is, guided by the above example,
we state what properties we would like a measure of evidence to have, and then in
specific problems show there are indeed statistics which come close to satisfying
them. The fact that it is an approximate theory in no way reduces its usefulness.
Normal approximations via the central limit theorem are ubiquitous in statistics, be-
cause they are useful in computing approximate p-values and confidence intervals.
Similarly they are useful in providing evidence for alternative hypotheses.

Let θ represent an unknown real parameter for which it is desired to test θ = θ0
against θ > θ0, and let Sn be a test statistic based on n observations which rejects
H0 for large values of Sn. We want a measure of one-sided evidence Tn = Tn(Sn) to
satisfy:

E1: The evidence Tn for a one-sided alternative is monotone increasing in Sn;
E2: the distribution of Tn is normal for all values of the unknown parameters;
E3: the variance Var[Tn] = 1 for all values of the unknown parameters; and
E4: the expected evidence τ(θ)= Eθ [Tn] is increasing in θ from τ(θ0)= 0.

In E2, we require that the evidence always be unit normal, not only under the null
hypothesis. As a consequence, the evidence proposed here carries much more infor-
mation than results that are only true under the null hypothesis. For the prototypical
model and Tn(X̄n)=√n(X̄n−θ0)/σ0 all of the above properties hold exactly. Prop-
erty E1 is essential if the evidence is to remain a test statistic. In general, properties
E2 − E4 will hold only approximately, but to a surprising degree, even for small
sample sizes, provided one can find a variance stabilizing transformation (VST), of
the test statistic Sn, Tn = hn(Sn)− hn(Eθ0 [Sn]) such that Varθ [Tn] .= 1 for θ of in-
terest. From now on, the symbol

.= signifies an approximate equality up to an error
of smaller order in n. Since the variance of Sn is usually of order n−1, the VST can
usually be chosen as hn(·)=√nh(·).

(Kulinskaya et al. 2008, denoted KMS in the following) propose a measure of
evidence in favor of alternative hypotheses that is based on a transformation of the
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usual test statistic to a normal translation family with unit variance, and provide
numerous applications of it to standard problems of meta-analysis. Our purpose here
is to explain in more detail why we advocate this particular definition. Connections
with other measures of evidence, such as the p-value and Bayes factor, are given in
Morgenthaler and Staudte (2012).

It turns out that the expected KMS evidence, when dealing with a sample of size
n instead of a single observation, is equal to a product of two terms, the square root
of n and a quantity K whose value indicates the difficulty in distinguishing the null
density fθ0 from an alternative density fθ1 . This second term is the key to under-
standing and implementing inferential procedures (see Sect. 19.1.2 for details).

We restrict attention to a real-valued parametric family fθ (x), where the testing
problem of interest is θ = θ0 against θ > θ0. The elements of a traditional test are the
test statistic Sn and its distribution under the null. To obtain a measure of evidence
one needs a monotone transformation Tn = hn(Sn), which stabilizes the variance
and is such that the distribution of Tn is approximately normal for all parameter
values θ , not only for the null value θ0. When the observation x is a realization
of X ∼ fθ0 , the likelihood ratio statistic on average favors fθ0 , which means that
Eθ0[log(fθ0(X)/fθ (X))]> 0. This is a good measure of the difficulty in distinguish-
ing fθ0 from fθ based on data from fθ0 . It turns out that the symmetrized version
of this quantity, the Kullback–Leibler Divergence, is closely linked to the function
hn(·).

Beginning with Fisher (1915), many statisticians have investigated “normalizing”
a family of distributions through a transformation which often simultaneously stabi-
lizes the variance, see the Wald Memorial Lecture by Efron (1982). As he points out,
the purpose of transforming a test statistic so that its distribution is a normal transla-
tion family is both aesthetic (to gain insight) and practical (to easily obtain a confi-
dence interval for an unknown parameter). To these desirable properties, we would
add that this calibration scale is ideally suited for meta-analysis, because it allows
for cancelation of evidence from conflicting studies, and facilitates combination of
evidence obtained from several studies. Concerning this last point, the established
theory of meta-analysis (see Becker 1997 or Thompson 1998), is a large-sample
theory that is not very reliable for small sample sizes. Its implementation depends
on estimators of weights and these estimators can be highly variable even for mod-
erate sample sizes. By using variance stabilization first, researchers can apply the
meta-analytic theory with much more confidence because, after transformation, no
weights need to be estimated.

There is a constructive method for finding potential VSTs, see, for example,
Bickel and Doksum (1977, p. 32) or Chap. 17 of Kulinskaya et al. (2008). These
transformations are monotone increasing, so satisfy property E1. They are defined
only up to an additive constant, which may be chosen so that T satisfies prop-
erty E4. Variance stabilized statistics are often approximately normally distributed,
and when they are so, the potential evidence T also “satisfies” E2. The degree
of satisfaction can be measured by simulation studies that show the VST leads
to more accurate coverage of confidence intervals and more accurate estimates of
power functions than the usual Central-Limit based approximations of the form
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(Sn − Eθ0[Sn])/
√

Varθ0 [Sn]. Efron (1982) provides a constructive method for find-
ing normalizing transformations.

19.1.2 Key Inferential Function

Suppose that one has in hand a measure of evidence Tn satisfying E1 − E4, at
least asymptotically. In that case the expectation τ(θ) = Eθ [Tn] summarizes the
complete information. If we found Tn by application of a VST, that is, Tn =
hn(Sn)−hn(Eθ0 [Sn]), then we can deduce τ(θ)

.= hn(Eθ [Sn])−hn(Eθ0 [Sn]), which
can usually be written as τ(θ)

.=√n(h(Eθ [Sn])− h(Eθ0 [Sn])).
Definition 19.1 Let Tn be a statistical evidence with τ(θ) = Eθ [Tn] .=√nKθ0(θ).
Then Kθ0 is called the Key Inferential Function or simply the Key for this statistical
model and boundary value θ0.

In the case of the normal shift model as given in the prototypical example, we
found Kμ0(μ) = (μ − μ0)/σ0, which is often called the standardized effect and
denoted by the symbol δ. In the case of a VST hn(·)=√nh(·), we have Kθ0(θ)=
h(Eθ [Sn]) − h(Eθ0 [Sn]). This last expression is simply a centered version of the
VST, where the centering assures the equality Kθ0(θ0)= 0.

The Key contains all the essential information, and knowing it enables one to
solve many routine statistical problems, such as

K1: Choosing sample sizes: For testing θ = θ0 against θ > θ0 using a sample of n
observations the expected evidence is τ(θ)=√nKθ0(θ) for each θ . To attain a
desired expected evidence τ1 against alternative θ1 one can choose n1 to be the
smallest integer greater than or equal to [τ1/Kθ0(θ1)]2.

For the prototypical model, this means n1 ≥ {τ1/δ1}2, where δ1 =
(μ1−μ0)/σ0. Also, for this model the test statistic is Tn =√n(X̄n−μ0)/σ0 ∼
N(τ1,1), where τ1 = √nδ1. Hence the power 1 − β(μ1) of the level α test
for μ1 is exactly 1 − β(μ1) = Pμ1(Tn ≥ z1−α) = Φ(τ1 − z1−α); that is,
τ1 = z1−α + z1−β(μ1). Now substituting this expression for τ1 into the lower
bound for n1 gives the well known expression n1 ≥ {τ1/δ1}2 = σ 2

0 {z1−α +
z1−β(μ1)}2/(μ1 −μ0)

2.
K2: Power calculations: A Neyman–Pearson level α test based on Tn has power

1− β(θ) against alternative θ given by

1− β(θ)
.=Φ
(√

nKθ0(θ)− z1−α
)

or (19.1)
√
nKθ0(θ)= z1−α + z1−β(θ). (19.2)

Formula (19.1) often leads to more accurate power approximations than stan-
dard asymptotics, see Kulinskaya et al. (2008, Chap. 22). It follows that ac-
curate choice of sample size to obtain power at a given level is possible. For-
mula (19.2) shows that the VST expected evidence is more basic than level and
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power: it can be partitioned into the sum of the probits of the false positive and
false negative error rates.

K3: Confidence intervals: A 100(1− α) % confidence interval for θ is given by
[
K−1
θ0

(
Tn − z1−α/2√

n

)
,K−1

θ0

(
Tn + z1−α/2√

n

)]
, (19.3)

where K−1 is the inverse function to K.

For the prototypical model the Key is Kμ0(μ)= (μ−μ0)/σ0 = δ, so K−1
μ0
(κ)=

σ0κ + μ0. Substituting Tn =√n(X̄n −μ0)/σ0 into (19.3) produces the confi-
dence interval [X̄n − z1−α/2σ0/

√
n, X̄n + z1−α/2σ0/

√
n].

K4: Meta-analysis for the fixed effects model: Given independent T1, . . . , TK ,
where Tk = Tnk ∼ N(τk,1) with τk = √nkKθ0(θ), each evidence for θ > θ0,
let

T1:K =
√
n1T1 + · · · +√nKTK√

NK

, (19.4)

where NK =∑k nk . Then T1:K ∼N(τ1:K,1), with τ1:K =√NKKθ0(θ), is the
combined evidence for θ > θ0, and a 100(1− α) % confidence interval for θ
based on all the evidence is found by replacing the Tn of (19.3) by T1:K .

For the prototypical model, where Tk = √nk(X̄k − μ0)/σ0 ∼ N(τk,1) with

τk = √nkKμ0(μ) and Kμ0(μ) = (μ − μ0)/σ0, one has T1:K = √NK(
¯̄X −

μ0)/σ0. Here, ¯̄X is the mean of all NK =∑k nk observations.

Note that if the initial statistical model is reparameterised in terms of η = η(θ),
where η(·) is a strictly increasing function, then the Key Kη0(η) becomes the com-
position of Kθ0(θ) with the inverse reparametrization θ = θ(η), that is, Kη0(η) =
Kθ(η0)(θ(η)). The transformation to the “right parameter” η=Kθ0(θ), for example,
leads to Kη0(η)= η, where η0 = 0=Kθ0(θ0).

For all the above reasons, the Key appears to contain all the information required
for inference in one-parameter families, and this claim is supported by the material
in the next Sect. 19.2. In it, we describe the very strong link between the Key and the
Kullback–Leibler Divergence for exponential families. In Sect. 19.3, we illustrate
many of the above results for the non-central chi-squared family, which is not an
exponential family. In Sect. 19.4, we summarize the results and describe areas for
future research.

19.2 Connection to the Kullback–Leibler Divergence

Kullback (1968) is a well-written and highly informative book whose principal topic
is the following measure of information

I (θ0 : θ1)= E
[

log

(
fθ0(X)

fθ1(X)

)]
, where X ∼ fθ0 .
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This quantity is the average value of the log likelihood ratio when choosing between
the model densities fθ0 and fθ1 with data X that is generated by fθ0 . The logarithm
of the likelihood ratio log(fθ0(x)/fθ1(x)) is taken as the information in an observa-
tion X = x for discrimination in favor of X ∼ fθ0 against X ∼ fθ1 (Kullback 1968,
p. 5). A variety of strong arguments give backing to this choice.

Definition 19.2 The symmetrized information, defined as J (θ0, θ1)= I (θ0 : θ1)+
I (θ1 : θ0) is called the Kullback–Leibler Divergence (KLD) (see Kullback 1968,
p. 6).

Kullback’s terminology has been modified over the years, and now I (θ0 : θ1) is
often called the divergence or directed divergence and J (θ0, θ1) the symmetrized
divergence. When the likelihood ratio test is performed with n independent obser-
vations, both I and J for discriminating will be multiplied by n. Thus in most of the
examples and theory to follow, we can omit the sample size.

19.2.1 Example 1: Normal Model

We begin with a return to the prototypical model in which there are no surprises, but
the generality soon becomes clear. If fμ0 and fμ1 are normal densities with equal
variances σ 2

0 , but unequal means μ0 and μ1, the Kullback–Leibler Information is

I (μ0 : μ1)= E

[
1

2

(
(X−μ1)

2

σ 2
0

− (X−μ0)
2

σ 2
0

)]
, where X ∼ f0.

Therefore, I (μ0 : μ1) = 1
2 (1 + (μ1 − μ0)

2/σ 2
0 − 1) and J (μ0,μ1) =

(μ1−μ0)
2/σ 2

0 = δ2. The Kullback–Leibler Divergence is equal to the square of the
standardized effect δ. The information for discrimination is thus equal to the square
of the Key Inferential Function for the z test of the null hypothesis H0 : μ = μ0
against H1 : μ= μ1, namely Kμ0(μ1)= δ, found in Sect. 19.1.

The above example can be extended to the case of evidence for alternative θ > θ0
to the null θ = θ0, for which the Key is Kθ0(θ), where we now drop the subscript
on the parameter in the alternative θ > θ0. We also write Jθ0(θ) for J (θ0, θ) to
emphasize that θ0 is fixed and θ is any value in the alternative θ > θ0. The Kullback–
Leibler Divergence (KLD) between the models N(0,1) and N(Kθ0(θ),1) is by the
previous example equal to K2

θ0
(θ). This suggests that we can find the Key and the

VST h(·) by computing the KLD, because

Kθ0(θ)≈
√
Jθ0(θ) sgn(θ − θ0). (19.5)

Common examples for which this approximation is excellent for θ in a large
neighborhood of the null value θ0 are the Poisson, exponential, binomial, and the
correlation coefficient of bivariate normal. It is also true for the non-central t ,
see Morgenthaler and Staudte (2012), and the non-central chi-square models, see
Sect. 19.3.
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19.2.2 Result for Exponential Families

Let X have density of the form f (x | η)= g(x) exp{ηx − k(η)} for x in an interval
not depending on η. These densities for X are called an exponential family with nat-
ural parameter η; see Severini (2000) for background material. We further assume
that Varη[X]> 0 for all η. We want to compare the Kullback–Leibler Symmetrized
Divergence with the square of the Key Inferential Function for this class of models.
As a Corollary, we will compare the Key itself with the signed square root of the
divergence.

The derivatives of the function k give the cumulants of X; so that

μ= Eη[X] = κ1(η)= k′(η)

σ 2 =Varη[X] = κ2(η)= k′′(η)

Eη

[
(X−μ)3

]= κ3(η)= k′′′(η).

(19.6)

Now μ= k′(η) has positive derivative, and therefore a monotone increasing inverse
η = (k′)−1(μ), so all the cumulants of X can be written as functions of μ. For
example, σ 2(μ)= k′′ ◦ (k′)−1(μ).

The Kullback–Leibler Information about f (· | η) when f (· | η0) is the density of
X is

I (η0 : η)= Eη0

[
ln
(
f
(
X | η0
)
/f
(
X | η))]= (η0 − η)k′(η0)− k(η0)+ k(η).

Therefore, the Divergence is

Jη0(η) = (η− η0)
{
k′(η)− k′(η0)

}
= {(k′)−1

(μ)− (k′)−1
(μ0)
}
(μ−μ0)= Jμ0(μ).

If a VST h(X) for X exists which has variance Var[h(X)] .= 1, it must satisfy
h′(μ) = 1/σ(μ), and the Key for testing μ = μ0 against μ > μ0 is defined by
Kμ0(μ)= h(μ)− h(μ0).

Proposition 19.1 Suppose the model is a one-parameter exponential family and
let Jμ0(μ) denote the Kullback–Leibler Divergence, whereas Kμ0(μ) is the Key
Inferential Function. It follows that

Jμ0(μ)=K2
μ0
(μ)
{
1+C2(μ−μ0)

2/2! +O
(|μ−μ0|3

)}

and

sign(μ−μ0)
√
Jμ0(μ)=Kμ0(μ)

{
1+ 1

2
C2(μ−μ0)

2/2! +O
(|μ−μ0|3

)}
,

where C2 = κ2
3 (μ0)/{24σ 8(μ0)}.
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A proof is given in Morgenthaler and Staudte (2012).
For contiguous alternatives θn = θ0+O(1/

√
n), the relative error in the approx-

imation is of order O(1/n). Thus, the approximation remains useful for alternatives
that are much further removed from the null value than the contiguous ones.

The procedure based on variance stabilization is applicable beyond the context
of exponential families. The basic idea of approximating a test problem by a nor-
mal translation family is not new and it is well known that many hypothesis test-
ing procedures, which reject for large values of Sn, take this form for large sam-
ple sizes n and contiguous alternatives. This is true in the sense that the power of
the level α test of θ = θ0 against the alternatives θ > θ0 is approximately equal to
Φ(zα + √ne(θ0)(θ − θ0)), where zα denotes the α quantile of the standard nor-
mal distribution and

√
ne(θ0)= μ′(θ0)/σ (θ0) > 0 describes the efficacy of the test

statistic, where μ(θ) and σ 2(θ) are the mean and variance of Sn. For the variance
stabilized test statistic Tn = hn(Sn), the simpler formula Φ(zα +√nKθ0(θ)) is ob-
tained and as we have seen, this gives a good approximation beyond contiguous
alternatives. In order that these two formulae agree in a neighborhood of θ0, it must
be true that d

dθ
Kθ0(θ), evaluated at the null value θ0, is equal to μ′(θ0)/σ (θ0). Be-

cause the VST satisfies d
dμ
h(θ0)= 1/σ(θ0), this is indeed the case.

19.2.3 Example 2: Poisson Model

Let X ∼ Poisson(λ) and find the evidence for λ > λ0 when the null hypothesis is
λ≤ λ0. An elementary calculation gives I (λ0 : λ)= λ− λ0 + λ0 log(λ0/λ), which
implies that Jλ0(λ)= (λ− λ0) log(λ/λ0). The classical VST for the Poisson model
leads to Kλ0(λ) =

√
4λ −√4λ0. The graphs of Kλ0(λ) and

√
Jλ0(λ) sgn(λ − λ0)

are in agreement in a relatively large neighborhood of λ0, regardless of its value. To
check this, consider the parametrization λ = λ0 + (λ − λ0) = λ0 + � for which
we have Jλ0(λ) = � log(1 + �/λ0) = (�2/λ0)(1 − �/(2λ0)), while Kλ0(λ) =
2(
√
λ0 +�−√λ0)=�/

√
λ0 −�2/(4λ3/2

0 ). The leading term of the signed root
of J and of the Key is �/

√
λ0, which is the standardization obtained by dividing

the raw effect λ − λ0 by the standard error at the null hypothesis. We leave it to
the reader to check that the next order term also is in agreement. The classical VST
suggests that when λ0 = 1, the correct parameter to use for testing and evaluating
evidence is η= 2(

√
λ− 1), while the KLD gives

√
(λ− 1) log(λ) sign(λ− 1).

19.3 Non-central Chi-Squared Family

In this section, we illustrate some of the results from Sects. 19.1 and 19.2 in the
context of the chi-squared family with known degrees of freedom and unknown
non-centrality parameter. This model is not an exponential family.
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Fig. 19.1 In all plots the solid line depicts the graph of Kλ0 (λ), for the χ2
ν (λ) model, when test-

ing λ ≤ λ0 against λ > λ0. The dashed line that approximates it is the signed square root of the
Kullback–Leibler symmetrized divergence

√
Jλ0 (λ) sgn(λ− λ0). The latter is computed by Monte

Carlo integration on R. For the two left hand plots ν = 3 and in the upper plot λ0 = 2 while in the
bottom plot λ0 = 6. For the two right hand plots ν = 9 and in the upper plot λ0 = 2 while in the
bottom plot λ0 = 6. The dotted vertical lines mark the null hypothesis

19.3.1 Comparing the KLD with the Key

Let X ∼ χ2
ν (λ) have the non-central chi-squared distribution with ν degrees of free-

dom and non-centrality parameter λ. In most applications, ν is known and λ is un-
known. It is not possible to compute the Kullback–Leibler symmetrized divergence
(KLD) between χ2

ν (λ0) and χ2
ν (λ1) analytically, but because of the well-known

VST, we think that it has to be

J (λ0;λ1)
.= (
√
λ1 + ν/2−√λ0 + ν/2)2. (19.7)

The approximation (19.7) is confirmed by computational results for many choices
of ν, λ0 and λ1, some of which are presented in Fig. 19.1. But first we show the
motivation for the conjecture by finding the Key for the evidence in X when testing
λ ≤ λ0 against λ > λ0. Using the fact that E[X] = ν + λ and Var[X] = 2ν + 4λ,
one can write Var[X] = g(E[X]), where g(t)= 4t − 2ν. Its inverse square root has
indefinite integral

h− ν(x)=
∫ x dt√

4t − 2ν
=√x − ν/2+ c. (19.8)

Thus by the standard method (Bickel and Doksum 1977, p. 32), hν(x) is a potential
VST for X. It is only defined for x > ν/2, but this is not a practical restriction
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because

Pν,λ(X ≤ ν/2)≤ Pν,0(X ≤ ν/2)≈Φ

(
−
√
ν

2
√

2

)
, (19.9)

which is negligible even for moderate ν. The approximation of E[h(X)] by√
E[X] − ν/2+ c leads to (19.7).

19.3.2 Tests for the Non-centrality Parameter

Given X1, . . . ,Xn i.i.d. with Xi ∼ χ2
ν (λ), it is desired to test the null λ= λ0 against

λ > λ0 using as test statistic the sample mean X̄n. Any VST is derived as above to
be hn(X̄n) = √n

√
X̄n − ν/2 + c. To convert this into evidence Tn for λ > λ0 we

need to choose c so that E[Tn] = E[hn(X̄n)] is monotone increasing in λ with value
0 at the boundary λ= λ0. To a first approximation, E[

√
X̄n − ν/2] = √λ+ ν/2 so

we choose c=−√n√λ0 + ν/2. Then

E[Tn] .=√n[
√
λ+ ν/2−√λ0 + ν/2]. (19.10)

It remains to check that Tn is approximately normal with variance near 1 and this is
left to the reader. Other important results are that the evidence grows with the square
root of the sample size and the Key function is monotone increasing in λ from 0 at
the null. The Key function evidently is Kλ0(λ)=

√
λ+ ν/2−√λ0 + ν/2. Now it is

apparent, in view of Proposition 19.1, how the conjecture (19.7) arises, even though
the non-central chi-squared distribution is not an exponential family.

Figure 19.1 shows some examples of the approximation (19.7). Even for ν = 3
(left-hand plots) the approximation is good near the null; and the approximations
appear to improve with ν. This means that we can use the simple expression
Kλ0(λ) =

√
λ+ ν/2 − √λ0 + ν/2 for the Key to carry out inference for λ as de-

scribed in Sect. 19.1. Further, we know that the Key is a good approximation to the
signed square root of the KLD between null and alternative hypothesized distribu-
tions, at least for a large neighborhood of λ0.

While the above ideas are straightforward, we do not always have n independent
observations on a chi-squared family; rather the non-central chi-squared distribution
arises through a consideration of K groups, as described in the next subsection.

19.3.3 Between Group Sum of Squares (for Known Variance)

For each group k = 1, . . . ,K let X′k = [Xk1,Xk2, . . . ,Xk,nk ] denote a sample
of nk observations, each with distribution N(μk,1). Also assume the elements
of X′ = [X1, . . . ,XK ] are independent. Further introduce the total sample size
N = ∑k nk , the sample proportions qk = nk/N , the kth sample mean X̄k , the
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overall sample mean X̄ = ∑k qkX̄k , its expectation μ = ∑k qkμk and the pa-
rameter λ = N

∑
k qk(μk − μ)2. Then the between group sum of squares Y =

N
∑

k qk(X̄k − X̄)2 ∼ χ2
ν (λ), where ν = K − 1, see Kulinskaya et al. (2008,

Sect. 22.1). The ratio θ = λ/N =∑k qk(μk−μ)2 depends only on the relative sam-
ple sizes qk , and measures the variability of the group means μk using a weighted
sum of squared deviations from the weighted mean μ, with weights qk .

Let the test statistic be S = Y/N . The transformation to evidence for θ > θ0
is then T =√N [√S − ν/(2N)−√θ0 + ν/(2N)]. Further, introduce the parameter
r = ν/N = (K−1)/N ; the mean and variance of S in this notation are E[S] = θ+ r

and Var[S] = (4θ + 2r)/N . The expected evidence for θ ≥ θ0 become Eθ [T ] .=√
NKθ0,N (θ), with the Key given by

Kθ0,N (θ)
.=√θ + r/2−√θ0 + r/2− 1

2N
√
θ + r/2

. (19.11)

This shows that the expected evidence is monotone increasing in θ for θ > θ0,
and is approximately 0 at θ = θ0. For fixed θ it grows with

√
N . Also, for fixed θ ,

if r = (K − 1)/N remains fixed with increasing N , the correction term becomes
negligible and the Key is essentially the first two terms of (19.11). If K = o(N) as
N→∞, then r→ 0 and the Key approaches Kθ0,+∞(θ)=

√
θ −√θ0.

Confidence Intervals for the Non-centrality Parameter To obtain the confi-
dence bounds of (19.3), we need to solve for θ =K−1

θ0,N
(u) Setting c=−√θ0 + r/2

we start with

u=Kθ0,N (θ)=
√
θ + r/2+ c− 1

2N
√
θ + r/2

. (19.12)

Solving this quadratic in θ yields

K−1
θ0,N

(u)= 1

2

[
1

N
+ {(u− c)2 − r

}+
{
(u− c)4 + 2(u− c)2

N

}1/2]
. (19.13)

Evaluating this function at u± = (T ±z0.975)/
√
N , for T =√N [√S − ν/(2N)+c]

yields the 95 % confidence interval for θ in terms of the test statistic S = Y/N =∑
k qk(X̄k − X̄)2. For convenience, we note that u± − c=√S − r/2± z0.975/

√
N .

The performance of T and confidence intervals for θ based on it were exam-
ined by generating 100,000 simulations of Y =NS ∼ χ2

ν (λ) for various choices of
ν =K − 1 and N , and then computing the average bias T −√NKθ0,N (θ) (which
is free of θ0), the average standard deviation SD[T ], the one-sided 95 % confidence
bound empirical coverage, and finally the two-sided 95 % confidence interval empir-
ical coverage probabilities. These results are plotted as a function of θ over the range
[0,3] in Fig. 19.2. In the above derivation of confidence intervals, we included a bias
term in the Key to see if the resulting confidence intervals had better coverage than
when we used the simpler the simpler Key Kθ0(θ)=

√
θ + r/2−√θ0 + r/2. How-

ever, one only loses a little in accuracy of coverage probabilities and the derivation of
the confidence interval is much quicker by the standard method K3 of Sect. 19.1.2.
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Fig. 19.2 In the first row of plots above are shown the empirical biases and standard deviation
of T for ν = K − 1 = 4 degrees of freedom in Example 2 of Sect. 19.3. The results correspond
to N = 10 (dotted line), N = 20 (dashed line), and N = 40 (solid line). The second row of plots
gives the empirical coverage probabilities of nominal 95 % upper confidence bounds and 95 %
confidence intervals

19.4 Conclusions

We have shown that it is often possible and practical to define an evidence T in favor
of alternatives. This statistic is based on the idea of variance stabilization and the
mean function of this evidence is closely related to the Kullback–Leibler divergence
(KLD). Investigating the generality of this result merits further research.

In general, it may be said that the KLD gives insights into a variety of infer-
ential questions and deserves renewed attention by statisticians. In the following,
we give two other examples that show the power of the KLD in revealing under-
lying structure. When the densities to be compared are fi(x) = f (x/σi)/σi , one
has KLD(σ1, σ2)= KLD(1, σ2/σ1)—the ratio of the scales is the essential param-
eter. To be more precise, we have to compute the KLD. If the underlying den-
sity is normal, one obtains KLD(σ1, σ2) = 1

2 (σ2/σ1 − σ1/σ2)
2. Reparametrizing

to σ2 = (1 + �)σ1, we have 1
2 (1 + � − 1/(1 + �))2 for the value of the KLD.

This expands into 1
2 (1+�− [1−�+�2 +O(�3)])2 = 1

2 (2�−�2 +O(�3))2.
The square root for � > 0 leads to the Key

√
2� − �2/

√
2 + O(�3), which is

up to this order the same as
√

2 log(1 + �) = √2(log(σ2) − log(σ1)). Thus, the
transformed parameter obtained through the signed root of the KLD is simply the
logarithm and furthermore, the test statistic is based on the difference. This is, of
course, simply related to the fact that if the observed random variable Y = σX0,
then log(Y )= log(X0)+ log(σ ), which transforms the model into location-form.
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Fig. 19.3 The dark curve shows the signed root of the KLD for two standard Cauchy densities
with a translational shift between them. The values were computed by Monte Carlo simulation.
The value of the shift is indicated on the x-axis. The grey line has a slope equal to the ratio of the
normal upper quartile divided by the Cauchy upper quartile, which can serve as an estimator of the
scale change when switching the standard normal to the standard Cauchy density. For small shifts,
there is but a tiny difference between the straight line and the root of the Cauchy KLD. For large
shifts, the Cauchy KLD grows at a slower pace and turns out to be sub-linear

Another example concerns robust, heavy-tailed models. When comparing
fi(x) = f ((x − μi)/σ0)/σ0, it is easy to show that the KLD only depends on
δ = (μ2−μ1)/σ . As we have seen in our prototypical example, the KLD has value
δ2 for the normal shift model. What happens, if one moves to a heavy-tailed density?
Figure 19.3 shows the case of the Cauchy density. It turns out that the amount of
information available for small δ remains linear in δ and a loss of information only
occurs for large values. Thus, with appropriate estimators of δ, no loss of informa-
tion due to heavy-tails occurs. The loss is only due to the difficulty in estimating δ.
As robust theory shows, it is possible to construct compromise estimators that ex-
ploit this underlying information successfully for a wide range of tail behaviors.
A similar loss of information for large values of δ occurs in the central Student-t
model with unknown scale σ and a smallish number of degrees of freedom.

Even though we have only considered cases where the underlying parameter
takes real values, extensions to multidimensional parameters are possible and this
problem is open to further investigation. It would also be of interest to consider
examples where the evidence is multidimensional.
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Chapter 20
Concepts and a Case Study for a Flexible Class
of Graphical Markov Models

Nanny Wermuth and David R. Cox

20.1 Introduction

To observe and understand relations among several features of individuals or ob-
jects is one of the central tasks in many substantive fields of research, including the
medical, social, environmental and technological sciences. Statistical models can
help considerably with such tasks provided they are both flexible enough to apply
to a wide variety of different types of situation and precise enough to guide us in
thinking about possible alternative relationships. This requires in particular joint re-
sponses, which contain continuous random variables, discrete random variables or
both types, in addition to only single responses.

Causal inquiries, the search for causes and their likely consequences, motivate
much empirical research. They rely on appropriate representations of relevant path-
ways of dependence as they develop over time, often called data generating pro-
cesses. Causes which start pathways with adverse consequences may be called risk
factors or risks. Knowing relevant pathways offers in principle the opportunity to in-
tervene, aiming to stop the accumulation of some of the risks, and thereby to prevent
or at least alleviate their negative consequences.

Properties of persons or objects and features, such as attitudes or behavior of in-
dividuals, which can vary for the units or individuals under study, form the variables
that are represented in statistical models. A relationship is called a strong positive
dependence if knowing one feature makes it much more likely that the other feature
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is present as well. If, however, prediction of a feature cannot be improved by know-
ing the other, then the relation of the two is called an independence. Whenever such
relations only hold under certain conditions, then they are qualified to be conditional
dependences or independences.

Graphs, with nodes representing variables and edges indicating dependences,
serve several purposes. These include to incorporate available knowledge at the
planning stage of an empirical study, to summarize aspects important for interpre-
tation after detailed statistical analyses and to predict, when possible, effects of in-
terventions, of alternative analyses of a given set of data or of changes compared to
results from other studies with an identical core set of variables.

Corresponding statistical models are called graphical Markov models. Their
graphs are simple when they have at most one edge for any variable pair even
though there may be different types of edge. The graphs can represent different
aspects of pathways, such as the conditional independence structure, the set of all
independence statements implied by a graph, or they indicate which variables are
needed to generate joint distributions. In the latter case, the graph represents a re-
search hypothesis on variables that make an important contribution. Theoretical and
computational work has progressed strongly during the last few years.

In the following, we give first some preliminary considerations. Then we describe
some of the history of graphical Markov models and the main features of their most
flexible subclass, called traceable regressions. We illustrate some of the insights
to be gained with sequences of joint regressions, that turn out to be traceable in
a prospective study of child development, now known as the Mannheim Study of
Children at Risk.

20.2 Several Preliminary Considerations

Graphical Markov models are of interest in different contexts. In the present paper,
we stress data analysis and interpretation. From this perspective, a number of con-
siderations arise. In a given study, we have objects or individuals, here children, and
their appropriate selection into the study is important. Each individual has properties
or features, represented as variables in statistical models.

A first important consideration is that for any two variables, either one is a pos-
sible outcome to the other, regarded as possibly explanatory, or the two variables
are to be treated as of equal standing. Usually, an outcome or response refers to a
later time period than a possibly explanatory feature. In contrast, an equal standing
of two or more features is appropriate when they refer to the same time period or all
of them are likely to be simultaneously affected by an intervention.

On the basis of this, we typically organize the variables for planned statistical
analyses into a series of blocks, often corresponding to a time ordering. All rela-
tions between variables within a same block are undirected, whereas those between
variables in different blocks are directed in the way described.

An edge between two nodes in the graph, representing a statistical dependence
between two variables, may thus be of at least two types. To represent a statistical
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dependence of an outcome on an explanatory feature, we use a directed edge with an
arrow pointing to the outcome from the explanatory feature. For relations between
features of equal standing, we use undirected edges.

In fact, it turns out to be useful to have two types of undirected edge. A dashed
line is used to represent the dependence between two outcomes or responses given
variables in their past. By contrast, a full line in the block of variables describing the
background or context of the study and early features of the individuals under study,
represents a conditional dependence given all remaining background variables.

From one viewpoint, the role of the graphical representation is to specify statisti-
cal independences that can be used to simplify understanding. From a complemen-
tary perspective, often the more immediately valuable, the purpose is to show those
strong dependences that will be the base for interpreting pathways of dependence.

20.3 Some History of Graphical Markov Models

The development of graphical Markov models started with undirected, full line
graphs; see Wermuth (1976), Darroch et al. (1980). The results built, for discrete
random variables, on the log-linear models studied by Birch (1963), Goodman
(1970), Bishop et al. (1975), and for Gaussian variables, on the covariance selec-
tion models by Dempster (1972). Shortly later, the models were extended to acyclic
directed graph models for Gaussian and for discrete random variables; see Wermuth
(1980), Wermuth and Lauritzen (1983). With the new model classes, results from
the beginning of the 20th century by geneticist Sewall Wright and by probabilist
Andrej Markov were combined and extended.

These generalizations differ from those achieved with structural equations that
were studied intensively in the 1950s within econometrics; see, for instance, Bollen
(1989). Structural equation models extend sequences of linear, multiple regression
equations by permitting explicitly endogenous responses. These have residuals that
are correlated with some or all of the regressors. For such endogenous responses,
equation parameters need not measure conditional dependences, missing edges in
graphs of structural equations need not correspond to any independence statement
and no simple local modelling may be feasible. This contrasts with traceable regres-
sions; see Sect. 20.4.1.

Wright had used directed acyclic graphs, that is graphs with only directed edges
and no variables of equal standing, to represent linear generating processes. He de-
veloped ‘path analysis’ to judge whether such processes were well compatible with
his data. Path analyses were recognized by Tukey (1954) to be fully ordered, also
called ‘recursive’, sequences of linear multiple regressions in standardized variables.

With his approach, Wright was far ahead of his time, since, for example, formal
statistical tests of goodness of fit were developed much later; see Wilks (1938).
Conditions under which directed acyclic graphs represent independence structures
for almost arbitrary types of random variables were studied later still; see Pearl
(1988), Studený (2005).
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One main objective of traceable regressions is to uncover graphical represen-
tations that lead to an understanding of data generating processes. These are not
restricted to linear relations although they may include linear processes as special
cases. A probabilistic data generating process is a recursive sequence of conditional
distributions in which response variables can be vector variables that may contain
discrete or continuous components or both types. Each of the conditional distribu-
tions specifies both the dependences of a joint response, Ya say, on components in an
explanatory variable vector, Yb , and the undirected dependences among individual
response component pairs of Ya .

Graphical Markov models generalize sequences of single responses and single
explanatory variables that have been extensively studied as Markov chains. Markov
had recognized at the beginning of the 20th century that seemingly complex joint
probability distributions may be radically simplified by using the notion of condi-
tional independence.

In a Markov chain of random variables Y1, . . . , Yd , the joint distribution is built
up by starting with the marginal density fd of Yd and generating then the conditional
density fd−1|d . At the next step, conditional independence of Yd−2 from Yd given
Yd−1 is taken into account, with fd−2|d−1,d = fd−2|d−1. One continues such that
with fi|i+1,...d = fi|i+1, response Yi is conditionally independent of Yi+2, . . . , Yd
given Yi+1, written compactly in terms of nodes as i ⊥⊥ {i + 2, . . . , d} | {i + 1}, and
ends, finally, with f1|2,...,d = f1|2, where Y1 has just Y2 as an important, directly
explanatory variable.

The fully directed graph, that captures such a Markov chain, is a single directed
path of arrows. For five nodes, d = 5, and node set N = {1,2,3,4,5}, the graph is

1≺−−− 2≺−−− 3≺−−− 4≺−−− 5.

This graph corresponds to a factorization of the joint density fN given by

fN = f1|2f2|3f3|4f4|5f5.

The three defining local independence statements given directly by the above fac-
torization or by the graph are: 1⊥⊥ {3,4,5} | 2, 2⊥⊥ {4,5} | 3 and 3⊥⊥ 5 | 4. One also
says that in such a generating process, each response Yi ‘remembers of its past just
the nearest neighbour’, the nearest past variable Yi+1.

Directed acyclic graphs are the most direct generalization of Markov chains.
They have a fully ordered sequence of single nodes, representing individual re-
sponse variables for which conditional densities given their past generate fN . No
pairs of variables are on an equal standing. In contrast to a simple Markov chain,
in this more general setting, each response may ‘remember any subset or all of the
variables in its past’.

Directed acyclic graphs are also used for Bayesian networks where the node set
may not only consist of random variables, that correspond to features of observable
units, but can represent decisions or parameters. As a framework for understanding
possible causes and risk factors, directed acyclic are too limited since they exclude
the possibility of an intervention affecting several responses simultaneously.
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One early objective of graphical Markov models was to capture independence
structures by appropriate graphs. As mentioned before, an independence structure
is the set of all independence statements implied by the given graph. Such a structure
is to be satisfied by any family of densities, fN , said to be generated over a given
graph.

In principle, all independence statements that arise from a given set of defining
statements of a graph, may be derived from basic laws of probability by using the
standard properties satisfied by any probability distribution and possibly some addi-
tional ones, as described for regression graphs in Sect. 20.4.1; see also Frydenberg
(1990) for a discussion of properties needed to combine independence statements
captured by directed acyclic graphs.

The above Markov chain implies for instance also

1⊥⊥ 4 | 3, {1,2} ⊥⊥ {4,5} | 3, and 2⊥⊥ 4 | {1,3,5}.
For many variables, methods defined for graphs simplify considerably the task of
deciding for a given independence statement whether it is implied by a graphs. Such
methods have been called separation criteria; see Geiger et al. (1990), Lauritzen
et al. (1990) and Marchetti and Wermuth (2009) for different but equivalent separa-
tion criteria for directed acyclic graphs.

For ordered sequences of vector variables, permitting joint instead of only single
responses, the graphs are directed acyclic in blocks of vector variables. These blocks
are sometimes called the ‘chain elements’ of the corresponding ‘chain graphs’. Four
different types of such graphs for discrete variables have been classified and studied
by Drton (2009). He proves that two types of chain graph have the desirable property
of defining always curved exponential families for discrete distributions; see for
instance Cox (2006) for the latter concept.

This property holds for the ‘LWF-chain graphs’ of Lauritzen and Wermuth
(1989) and Frydenberg (1990), and for the graphs of Cox and Wermuth (1993, 1996)
that have more recently been slightly extended and studied as ‘regression graphs’;
see Wermuth and Sadeghi (2012), Sadeghi and Marchetti (2012). With the added
feature that each edge in the graph corresponds to dependence that is substantial in
a given context, they become ‘traceable regressions’; see Wermuth (2012).

Most books by statisticians on graphical Markov models focus on undirected
graphs and on LWF-chain graphs; see Højsgaard et al. (2012), Edwards (2000),
Lauritzen (1996), Whittaker (1990). In this latter class of graphical Markov models,
each dependence between a response and a variable in its past is considered to be
conditional also on all other components within the same joint response.

Main distinguishing features between different types of chain graph are the con-
ditioning sets for the independences, associated with the missing edges, and for the
edges present in the graph. For regression graphs, conditioning sets are always ex-
cluding other components of a given response vector, and criteria, to read off the
graph all implied independences, do not change when the last chain element con-
tains an undirected, full-line graph. It is in this general form, in which we introduce
this class of models here. The separation criteria for these models are generalized
versions of the criteria that apply to directed acyclic graphs.
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Fig. 20.1 Ordering of the
variables given by time; the
joint responses of primary
interest are Y8,X8, those of
secondary interest are Y4,X4,
the four context variables are
risks known up to age 2

Fig. 20.2 A well-fitting regression graph for data of the child development study; arrows pointing
from regressors in the past to a response in the future; dashed lines for dependent responses given
their past; full lines for dependent early risk factors given the remaining background variables

Figure 20.1 shows two sets of joint responses and a set of background variables,
ordered by time. The two related joint responses concern aspects of cognitive and
motor development at age 8 years (abbreviated by Y8,X8, respectively) and at age
4.5 years (Y4,X4). There are two risks, measured up to 2 years, Yr,Xr , where Yr
is regarded as a main risk for cognitive development and Xr as a main risk for
motor development. Two more potential risks are available already at age 3 months
of the child. Detailed definitions of the variables, a description of the study design
and of further statistical results are given in Laucht et al. (1997) and summarized in
Wermuth and Laucht (2012).

20.4 Sequences of Regressions and Their Regression Graphs

The well-fitting regression graph in Fig. 20.2 is for the variables of Fig. 20.1 and
for data of 347 families participating in the Mannheim study from birth of their first
child until the child reached the age of 8 years. The graph results from the statistical
analyses reported in Sect. 20.4.2. These are further discussed in Sect. 20.4.3.

The goodness-of-fit of the graph to the given data is assessed by local modeling
which include here linear and nonlinear dependences. The following Table 20.1
gives a summary in terms of Wilkinson’s model notation that is in common use
for generalized linear models and two coefficients of determination, R2. There is a
good fit for quantitative responses when the changes from R2

full to R2
sel are small,

that is from the regression of an individual response on all variables in its past to a
regression on only a reduced set of selected regressors.
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Table 20.1 Fitted equations
in Wilkinson’s notation. Note
that any square of a variable
implies that also its main
effect is included

Response Selected model R2
full R2

sel

Y8: Y4 +X2
4 +E +H 0.67 0.67

X8: X2
4 +Xr 0.36 0.36

Y4: Yr +X2
r 0.25 0.25

X4: Yr +X2
r 0.37 0.36

Yr : E2 0.57 0.56

Xr : E +H 0.35 0.35

20.4.1 Explanations and Definitions

In each regression graph, arrows point from the past to the future. An arrow is
present, between a response and a variable in its past, when there is a substantively
important dependence, that is also statistically significant, given all its remaining
regressors. Regressors are recognized in the graph by arrows pointing to a given
response node.

The undirected dependence between two individual components of a response
vector is indicated here by a dashed line; some authors draw instead a bi-directed
edge. Such an edge is present if there is a substantial dependence between two re-
sponse components given the past of the considered joint response. An undirected
edge between two context variables is a full line. Such an edge is present when
there is a substantial dependence given the remaining context variables. An edge is
missing, when for this variable pair no dependence can be detected, of the type just
described.

The important elements of this representation are node pairs i, k, possibly con-
nected by an edge, and a full set ordering g1 < g2 < · · · < gJ for the connected
components gj of a regression graph. The connected components of the graph are
uniquely obtained by deleting all arrows from the graph and keeping all nodes and
all undirected edges. In general, several orderings may be compatible with a given
graph since different generating processes may lead to a same independence struc-
ture.

There is further an ordered partitioning of the node set into two parts, that is a
split of N as N = (u, v), such that response node sets g1, . . . are in u and back-
ground node sets . . . , gJ are in v. In Fig. 20.2, there are two sets in u: g1 = {Y8,X8}
and g2 = {Y4,X4}. The subgraph of the background variables is for v = g3 =
{Yr,Xr,E,H } and there is only one compatible ordering of the three sets gj .

Within v, the undirected graph is commonly called a concentration graph, re-
minding us of the parameterization for a Gaussian distribution, where a concentra-
tion, an element in the inverse covariance matrix, is a multiple of the partial cor-
relation given all remaining variables; see Cox and Wermuth (1996, Sect. 3.4) or
Wermuth (1976).

Within u, the undirected graph induced by the set gj is instead a conditional
covariance graph given the past of gj , the nodes in g>j = {gj+1, . . . , gJ }; see
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Wermuth et al. (2009), Wiedenbeck and Wermuth (2010) for related estimation
tasks. Arrows may point from any node in gj for j > 1 to its future in g<j =
{g1, . . . , gj−1} but never to its past. Thus within each gj , there are only undirected
edges and all arrows point from nodes in gj to nodes in g<j , where g<1 = ∅.

With g>J = ∅, the basic factorization of a family of densities fN , generated over
a regression graph, GN

reg, is

fN = fu|vfv with fu|v =
∏
gj⊆u

fgj |g>j and fv =
∏
gj⊆v

fgj , (20.1)

and the family satisfies all independence constraints implied by the graph.
For i, k a node pair, and c⊂N \ {i, k}, we write i ⊥⊥ k | c for Yi, Yk conditionally

independent given Yc . In terms of a joint conditional density fik|c, this is equivalent
to the following constraints on conditional densities:

i ⊥⊥ k | c ⇐⇒ (fi|kc = fi|c) ⇐⇒ fik|c = (fi|cfk|c).

For every variable pair Yi, Yk making an important contribution to the generating
process of fN , we say it is conditionally dependent given Yc for some c⊂N \ {i, k}
specified in Definition 20.1 below and write i � k | c. A regression graph is said to
be edge-minimal if every missing edge in the graph corresponds to a conditional
independence statement and every edge present is taken to represent a dependence;
see the following definition.

Definition 20.1 Defining pairwise dependences of GN
reg. An edge-minimal regres-

sion graph specifies with g1 < · · ·< gJ a generating process for fN where the fol-
lowing dependences

i -- -- -- k : i � k | g>j for i, k response nodes in gj of u,

i ≺−−− k : i � k | g>j \ {k} for response node i in gj of u and

node k in g>j ,

i −−− k : i � k | v \ {i, k} for i, k context nodes in v,

(20.2)

define the edges present in GN
reg. The meaning of each corresponding edge missing

in GN
regresults with the dependence sign � replaced by the independence sign ⊥⊥ .

By (20.2), a unique independence statement is assigned to the missing edge of
each uncoupled node pair i, k. To combine independence statements implied by a
regression graph, two properties are needed, called composition and intersection;
see Sadeghi and Lauritzen (2013). The properties are stated below in Definition
20.3(1) as a same joint independence implied by the two independence statements
under bullet points 2 and 3 on the right-hand side. In their simplest form, the two
properties can be illustrated with two simple 3-node graphs.

For all trivariate probability distributions, one knows i ⊥⊥ hk =⇒ (i ⊥⊥ h and
i ⊥⊥ k) as well as i ⊥⊥ hk =⇒ (i ⊥⊥ h | k and i ⊥⊥ k | h). The reverse implications are
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the composition and the intersection property, respectively. Thus, whenever node
i is isolated from the coupled nodes h, k in a 3-node regression graph, it is to be
interpreted as i ⊥⊥ hk and this type of subgraph in three nodes i, h, k results, under
composition, by removing the ih-arrow and the ik-arrow in the following graph on
the left and under intersection in the following graph on the right. These small ex-
amples show already that the two properties are used implicitly in the selection of
regressors; the composition property for multivariate regressions and the intersec-
tion property for directed acyclic graph models.

For the tracing of dependences, we need both of these properties but also the
following, called singleton transitivity. It is best explained in terms of the Vs of a
regression graph, the subgraphs in 3 nodes having 2 edges. In a regression graph,
there can be at most 8 different V-configurations. Such a V in three nodes, (i,o, k)
say, has uncoupled endpoints i, k and inner node o.

The V configurations in GN
reg are of two different types. In GN

reg, the collision Vs
are:

i – – – ◦≺−−− k, i −−−4◦≺−−− k, i – – – ◦ – – – k,

and the transmitting Vs are:

i ≺−−−◦≺−−− k, i ≺−−−◦−−− k, i−−−◦−−− k, i ≺−−−◦– – – k, i ≺−−−◦−−−4 k .

These generalize the 3 different possible Vs in a directed-acyclic graph. For such an
edge-minimal graph, the two uncoupled nodes i, k of a transmitting V have either an
important common-source node (as above on the right) or an important intermediate
node (as above on the left), while the two uncoupled nodes i, k of a collision V with
two arrows pointing to its inner node have an important, common response.

Singleton transitivity means that a unique independence statements is assigned
to the endpoints i, k of each V of an edge-minimal graph, either the inner node o
is included or excluded in every independence statement implied by the graph for
i, k. For the strange parametrisation under which singleton transitivity is violated in
a trivariate discrete family of distributions; see Wermuth (2012).

Expressed equivalently, let node pair i, k be uncoupled in an edge-minimal
GN

regand consider a further node o and a set c ⊆N \ {i, j,o}. Under singleton tran-
sitivity, for both the independences i ⊥⊥ k | c and i ⊥⊥ k | oc to hold, one of the con-
straints o⊥⊥ i | c or o⊥⊥ k | c has to be satisfied as well. Without singleton transitivity,
the path of a V in nodes (i, o, k) can never induce a dependence for the endpoints
i, k.
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Definition 20.2 (Dependence-Base Regression Graph) An edge-minimal GN
reg, is

said to form a dependence base when its defining independences and dependences
are combined by using standard properties of all probability distributions and the
three additional properties: intersection, composition and singleton transitivity.

A dependence base regression graph, GN
reg, is edge-inducing by marginalizing

over the inner node of a transmitting V and by conditioning on the inner node of a
collision V. This can be expressed more precisely.

Theorem 20.1 (Implications of Vs in a Dependence-Base Regression Graph (Wer-
muth 2012)) For each V in three nodes, (i,o, k) of a dependence-base GN

reg, there
exists some c ⊆ N \ {i,o, k}, such that the graph implies (i ⊥⊥ k | oc and i � k | c)
when it is a transmitting V, while it implies (i ⊥⊥ k | c and i � k | oc) when it is a
collision V.

The requirement appears to be elementary, but some densities or families of
densities fN , even when generated over a dependence base GN

reg, may have such
peculiar parameterizations that both statements i ⊥⊥ k | oc and i ⊥⊥ k | c can hold
even though both node pairs i, o and o, k are coupled by an edge. Thus, singleton-
transitivity needs to be explicitly carried over to a generated density.

We sum up as follows. For a successful tracing of pathways of dependence in an
edge-minimal regression graph, all three properties are needed: composition, inter-
section and singleton transitivity. Intersection holds in all positive distributions and
the composition property holds whenever nonlinear and interactive effects also have
non-vanishing linear dependences or main effects.

Singleton transitivity is satisfied in binary distributions; see Simpson (1951).
More generally, it holds when families of densities are generated over GN

regthat have
a rich enough parametrization, such as the conditional Gaussian distributions of
Lauritzen and Wermuth (1989) that contain discrete and continuous responses.

Definition 20.3 Characterizing properties of traceable regressions. Traceable re-
gression are densities fN generated over a dependence base GN

reg, that have for dis-
joint subsets a, b, c, d of N

(1) three equivalent decompositions of the same joint independence

• b⊥⊥ ac | d ⇐⇒ (b⊥⊥ a | cd and b⊥⊥ c | d),
• b⊥⊥ ac | d ⇐⇒ (b⊥⊥ a | d and b⊥⊥ c | d),
• b⊥⊥ ac | d ⇐⇒ (b⊥⊥ a | cd and b⊥⊥ c | ad), and

(2) edge-inducing V’s of GN
regare dependence-inducing for fN .

One outstanding feature of traceable regressions is that many of their conse-
quences can be derived by just using the graph, for instance, when one is marginal-
izing over some variables in set M , and conditioning on other variables in set C.
In particular, graphs can be obtained for node sets N ′ =N \ {C,M} which capture
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precisely the independence structure implied by GN
reg, the generating graph in the

larger node set N , for fN ′|C , the family of densities of Y ′N given YC .
Such graphs are named independence-preserving, when they can be used to de-

rive the independence structure that would have resulted from the generating graph
by conditioning on a larger node set {C,c} and marginalizing over the set {M,m}.
Otherwise, such graphs are said to be only independence-predicting. Both types of
graph transformations can be based on operators for binary matrices that represent
graphs; see Wermuth et al. (2006), Wermuth and Cox (2004).

From a given generating graph, three corresponding types of independence-
preserving graph result by using the same sets C,M . These are in a subclass of
the much larger class of MC-graphs of Koster (2002), studied as the ribbon-less
graphs by Sadeghi (2013a), or they are the maximal ancestral graphs of Richardson
and Spirtes (2002) or the summary graphs of Wermuth (2011); see Sadeghi (2013a)
for proofs of their Markov equivalence.

A summary graph shows when a generating conditional dependence, of Yi on
Yk say, in fN remains undistorted in fN ′|C , parametrized in terms of conditional
dependences, and when it be may become severely distorted; see Wermuth and Cox
(2008). Some of such distortions can occur in randomized intervention studies, but
they may often be avoided by changing the set M or the set C.

Therefore, these induced graphs are relevant for the planning stage of follow-up
studies, designed to replicate some of the results of a given large study by using a
subset of the variables, that is after marginalizing over some variables, and/or by
studying a subpopulation, that is after conditioning on another set of variables.

For marginalizing alone, that is in the case of C = ∅, one may apply the following
rules for inserting edges repeatedly, keep only one of several induced edges of the
same type, and gets often again a regression graph induced by N ′ = N \M . In
general, a summary graph results; see Wermuth (2011). The five transmitting Vs
induce edges by marginalizing over the inner node

i ≺−−−
 
◦ ≺−−− k, i ≺−−−
 
◦ −−− k, i −−−
 
◦ −−− k, i ≺−−−
 
◦ – – – k, i ≺−−−
 
◦ −−−4 k

to give, respectively,

i ≺−−− k, i ≺−−− k, i −−− k, i – – – k, i – – – k.

The induced edges ‘remember the type of edge at the endpoints of the V’ when
one takes into account that each edge ◦ – – – ◦ in GN

regcan be generated by a larger
graph, that contains ◦ ≺−−−
 
◦ −−−4 ◦. Thereby, the independence structure implied
by this graph, for the node set excluding the hidden nodes, {
 
◦}, is unchanged.

For any choice of C,M and a given generating graph GN
reg, routines in the pack-

age ‘ggm’, contained within the computing environment R, help to derive the im-
plications for fN ′|C by computing either one of the different types of independence-
preserving graph; see Sadeghi and Marchetti (2012). Other routines in ‘ggm’ decide
whether a given independence-preserving graph is Markov equivalent to another
one or to a graph in one of the subfamilies, such as a concentration or a directed
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acyclic graph; see Sadeghi (2013b) for justifications of these procedures. This helps
to contemplate and judge possible alternative interpretations of a given GN

reg.
For two regression graphs, the Markov equivalence criterion is especially simple:

the two graphs have to have identical sets of node pairs with a collision V; see
Theorem 1 of Wermuth and Sadeghi (2012). The result implies that the two sets
may contain different ones of the 3 possible collision Vs. Also, the two sets of pairs
with a transmitting V are then identical, though a given transmitting V in one graph
may correspond in the other graph to another one of the 5 transmitting Vs that can
occur in GN

reg.

20.4.2 Constructing the Regression Graph via Statistical Analyses

As mentioned before, we use here data from the Mannheim Study of Children at
risk. The study started in 1986 with a random sample of more than 100 newborns
from the general population of children born in the Rhine–Neckar region in Ger-
many. This sample was completed to give equal subsamples, in each of the nine
level combinations of two types of adversity, taken to be at levels ‘no, moderate or
high’. In other words, there was heavy oversampling of children at risk.

The recruiting of families stopped with about 40 children of each risk level com-
bination and 362 children in the study. All measurements were reported in standard-
ized form using the mean and standard deviation of the starting random sample,
called here the norm group. Of the 362 German-speaking families who entered the
study when their first, single child was born without malformations or any other
severe handicap, 347 families participated still when their child reached the age of
8 years.

Two types of risks were considered, one relevant for cognitive the other for motor
development. One main difference to previous analyses is that we averaged three
assessments of each type of risk: taken at birth, at 3 months and at two years.
This is justified in both cases by the six observed pairwise correlations being all
nearly equal. The averaged scores, called ‘Psycho-social risk up to 2 years’, Yr , and
‘Biological-motoric risk up to 2 years’, Xr , have smaller variability than the individ-
ual components. This points to a more reliable risk assessment and leads to clearly
recognizable dependences, to the edges present in Fig. 20.2.

The regression equations may be read off Tables 20.2 to 20.7. For instance for Y8,
there are four regressors and one nonlinear dependence on X4 with

Elin
(
Y8 | past of Y8

)= 0.03+ 0.78Y8 + (0.07+ 0.10X4)X4 + 0.11E + 0.12H.

The test results of Table 20.2 imply that the previous measurement of cognitive
deficits at age 4 years, Y4 is the most important regressor and that the next important
dependence is nonlinear and on motoric deficits at 4 years, X2

4.
For each individual response component of the continuous joint responses, the

results of linear-least squares fittings are summarized in six tables. In each case, the
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Table 20.2 Regression results for Y8

Response: Y8, cognitive deficits at 8 years

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′obs

constant 0.00 – – 0.03 – – –

Y4, cognitive deficits, 4.5 yrs 0.78 0.05 15.36 0.78 0.05 15.70 –

X4, motoric deficits, 4.5 yrs 0.05 0.04 – 0.07 0.04 – –

Yr , psycho-social risk, 2 yrs 0.00 0.07 0.01 – – – −0.13

Xr , biol.-motoric risk, 2 yrs 0.07 0.07 1.07 – – – 1.08

E, Unprotect. environm., 3 mths 0.10 0.06 1.81 0.12 0.04 2.62 –

H , Hospitalisation up to 3 mths 0.09 0.05 1.91 0.12 0.04 3.00 –

X2
4 0.09 0.01 6.53 0.10 0.01 7.15 –

R2
full = 0.67, Selected model Y8 : Y4 +X2

4 +E +H , R2
sel = 0.67

Table 20.3 Regression results for X8

Response: X8, motoric deficits at 8 years

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′obs

constant 0.26 – 0.26 – – – –

Y4, cognitive deficits, 4.5 yrs −0.01 0.06 −0.10 – – – 0.04

X4, motoric deficits, 4.5 yrs 0.33 0.04 7.39 0.33 0.04 – –

Yr , psycho-social risk, 2 yrs 0.01 0.08 0.19 – – – 0.43

Xr , biol.-motoric risk, 2 yrs 0.17 0.08 2.27 0.19 0.06 2.97 –

E, Unprotect. environm., 3 mths 0.01 0.07 0.17 – – – 0.44

H , Hospitalisation up to 3 mths 0.01 0.08 0.26 – – – 0.26

X2
4 0.18 0.23 3.41 0.05 0.02 2.89 –

R2
full = 0.36, Selected model X8 :X2

4 +Xr , R2
sel = 0.36

Table 20.4 Regression results for Y4

Response: Y4, cognitive deficits at 4.5 years

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′obs

constant −0.29 – – −0.29 – – –

Yr , psycho-social risk, 2 yrs 0.36 0.08 4.81 0.36 0.05 6.77 –

Xr , biol.-motoric risk, 2 yrs 0.17 0.09 – 0.18 0.07 – –

E, Unprotect. environm., 3 mths −0.01 0.07 −0.14 – – – 0.39

H , Hospitalisation up to 3 mths 0.14 0.04 3.36 – – – −0.12

X2
r 0.14 0.04 3.36 0.14 0.04 3.36 –

R2
full = 0.25, Selected model Y4 : Yr +X2

r , R2
sel = 0.25
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Table 20.5 Regression results for X4

Response: X4, motoric deficits at 4.5 years

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′obs

constant −0.47 – – −0.47 – – –

Yr , psycho-social risk, 2 yrs 0.33 0.10 3.44 0.28 0.07 4.21 –

Xr , biol.-motoric risk, 2 yrs 0.62 0.11 5.50 0.50 0.09 – –

E, Unprotect. environm., 3 mths −0.06 0.08 −0.66 – – – −0.77

H , Hospitalisation up to 3 mths −0.13 0.07 −1.83 – – – −1.88

(Xr)
2 0.21 0.05 3.97 0.23 0.05 4.43 –

R2
full = 0.37, Selected model X4 : Yr +X2

r , R2
sel = 0.36

Table 20.6 Regression results for Yr

Response: Yr , psycho-social risk up to 2 years

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′obs

constant −0.20 – – −0.21 – – –

Xr , biol.-motoric risk, 2 yrs −0.04 0.04 −0.81 – – – −1.51

E, Unprotect. environm., 3 mths 0.57 0.03 – 0.55 0.03 – –

H , Hospitalisation up to 3 mths −0.03 0.04 −0.80 – – – −1.50

E2 0.16 0.03 6.12 0.16 0.03 6.20 –

R2
full = 0.57, Selected model Yr :E2, R2

sel = 0.56

Table 20.7 Regression results for Xr

Response: Xr , biologic-motoric risk up to 2 years

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′obs

constant 0.25 – – 0.22 – – –

Yr , psycho-social risk, 2 yrs −0.05 0.07 −0.81 – – – −1.22

E, Unprotect. environm., 3 mths 0.17 0.06 3.04 0.12 0.04 – –

H , Hospitalisation up to 3 mths 0.48 0.04 12.30 0.48 0.04 12.40 –

E2 −0.04 0.03 −1.09 – – – −1.42

R2
full = 0.35, Selected model Xr :E +H , R2

sel = 0.35

response is regressed in the starting model on all the variables in its past. Quadratic
or interaction terms are included whenever there is a priori knowledge or a system-
atic screening alerts to them; see Cox and Wermuth (1994).

The tables give the estimated constant term and for each variable in the regres-
sion, its estimated coefficient (coeff), the estimated standard deviation of the co-
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efficient (scoeff), as well as the ratio zobs = coeff/scoeff, often called a studentized
value. Each ratio is compared to the 0.995 quantile of a standard Gaussian ran-
dom variable Z, for which Pr(Z > |2.58|)= 0.01. This relatively strict criterion for
excluding variables assures that each edge in the constructed regression graph cor-
responds to a dependence that is considered to be substantively strong in the given
context, in addition to being statistically significant for the given sample size.

At each backward selection step, the variable with the smallest observed value
|zobs| is deleted from the regression equation, one at a time, until the threshold is
reached so that no more variables can be excluded. The remaining variables are se-
lected as the regressors of the response. An arrow is added for each of the regressors
to the graph containing just the nodes, arranged in g1 < g2 < · · ·< gJ .

The last column in each table shows the studentized value z′obs, that would be ob-
tained when the variable were included next into the selected regression equation.
Wilkinson’s model notation is added in the table to write the selected model in com-
pact form. For continuous responses, the coefficient of determination is recorded
for the starting model, denoted by R2

full and for the reduced model containing the
selected regressors, denoted by R2

sel.
A dashed line is added, for a variable pair of a given joint response, when in the

regression of one on the other, there is a significant dependence given their combined
set of the previously selected regressors.

A full line is added for a variable pair among the background variables, when
in the regression of one on all the remaining background variables, there is a sig-
nificant dependence of this pair. This exploits that an undirected edge present in
a concentration graph, must also be significant in such a regression; see Wermuth
(1992).

This strategy leads to a well-fitting model, unless one of the excluded variables
has a too large contribution when it is added alone to a set of selected regressors.
Such a variable would have to be included as an additional regressor. However, this
did not happen for the given set of data.

The tests for the residual dependence of the two response components gives a
weak dependence at age 8 with zobs = 2.4 but a strong dependence at age 4.5 with
zobs = 7.0.

A global goodness-of-fit test, with proper estimates under the full model, may
depend on additional distributional assumptions and require iterative fitting proce-
dures. For exclusively linear relations of a joint Gaussian distribution, such a global
test for the joint regressions would be equivalent to the fitting of a corresponding
structural equation model, given the unconstrained background variables, and the
global fitting of the concentration graph model to the context variables would corre-
spond to estimation and testing for one of Dempster’s covariance selection models.

20.4.3 Using a Well-Fitting Graph

There are direct and indirect pathways from risks at three months to cognitive
deficits at 8 years. The exclusively positive conditional dependences along different
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Fig. 20.3 A graph equivalent
to the one of Fig. 20.2 with
one hidden, common
explanatory variable

Fig. 20.4 A hidden variable
graph (c) generating two
Markov equivalent graphs (a)
and (b)

paths accumulate to positive marginal dependences, even for responses connected
only indirectly to a risk, for instance for Y8 to Yr or X8 to E.

Among the background variables, an unprotective environment for the 3 months-
old child, E, is strongly related to the psycho-social risk up to 2 years, Yr
and hospitalization up to 3 months, H , to the biological-motoric risk up to 2
years, Xr . The weakest but still statistically significant dependence among these
four risks occurs for an unprotective environment, E, and the biological-motoric
risk, Xr .

Such a dependence taken alone can often best be explained by an underlying
common explanatory variable, here for instance a genetic or a socio-economic risk.
This would lead to replacing the full line for (E,Xr) in Fig. 20.2 by the common-
source V, shown in Fig. 20.3. The inner node of this V is crossed out because it
represents a hidden that is unobserved variable. Hidden nodes represent variables
that are unmeasured in a given study but whose relevance and existence is known or
assumed.

Though Fig. 20.3 appears to contain only a small change compared to Fig. 20.2,
this change requires a Markov equivalence result for a larger class than regression
graphs, as available for the ribbon-less graphs of Sadeghi (2013a), since a path
of the type i −−− o≺−−− k does not occur in a regression graph. Given these re-
sults, it follows that graphs Fig. 20.4(a) and (b) are Markov equivalent and that the
structure of graph Fig. 20.4(b) can be generated by the larger graph Fig. 20.4(c)
that includes a common, but hidden regressor node for the two inner nodes of the
path.

To better understand the distinguishing features of the pathways of dependence in
Fig. 20.2 leading to the joint responses of main interest at age 8, we generate the im-
plied regressions graphs when the assessments at age 8 and at 4.5 years are available
for only one of the two aspects. In that case one has ignored, that is marginalized
over, the assessments of the other aspect at age 8 and 4.5.

The resulting graph, for Y8 and Y4 ignored, happens to coincide with the sub-
graph induced by the remaining, selected six nodes in Fig. 20.1, as shown in
Fig. 20.5. Such an induced graph has the selected nodes and as edges all those
present among them in the starting graph and no more. The graph of Fig. 20.5 im-
plies that possible psycho-social risks of a child up to age 2, Yr , do not contribute
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Fig. 20.5 The regression
graph induced by ignoring Y8
and Y4 in Figure 20.2;
M = {Y8, Y4}, C = ∅

Fig. 20.6 The regression
graph induced by ignoring X8
and X4 in Figure 20.2;
M = {X8,X4}, C = ∅

directly to predicting motoric deficits at school-age, X8, also when the more recent
information on cognitive deficits is not available.

By contrast, the regression graph in Fig. 20.6 that results after ignoring X8

and X4, shows two additional arrows compared to the subgraph induced in Fig. 20.2
by Y8, Y4, Yr ,Xr,E,H .

The induced arrows are for (Y8, Yr) and for (Y8,Xr). The graph suggests that
cognitive deficits at school-age, Y8, are directly dependent on all of the remaining
variables when the more recent information on the motoric risks are unrecorded.
There are direct and indirect pathways from H and from E to Y8. They involve
nonlinear dependences of cognitive deficits on previous motoric deficits or risks.
These are recognized in the fitted equations but not directly in the graph alone.

What the graph also cannot show is that with X8,X4 unrecorded, the early risks,
Yr,H are less important as predictors when Y4,Xr,X

2
r ,E are available as regressors

of Y8. This effect is due to the strong partial dependences of Yr,E2 given E,Xr,H

and of Xr,H given E,E2, Yr . Such implications, due to the special parametric con-
stellations are not reflected in the graph alone.

Many more conclusions may be drawn by using just graphs like in Figs. 20.2
to 20.6. The substantive research questions and the special conditions of a given
study are important; for some different types of study analyzed with graphical
Markov models see, for instance, Klein et al. (1995), Gather et al. (2002), Hardt
et al. (2004), Wermuth et al. (2012).

One major attraction of sequences of regressions in joint responses is that they
may model longitudinal data from observational as well as from intervention stud-
ies. For instance, with fully randomized allocation of persons to a treatment, all ar-
rows that may point to the treatment in an observational study, are removed from the
regression graph. This removal reflects such a successful randomization: indepen-
dence is assured for the treatment variable of all regressors or background variables,
no matter whether they are observed or hidden.
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20.5 Conclusions

The paper combines two main themes. One is the notion of traceable regressions.
These are sequences of joint response regressions together with a set of background
variables for which an associated regression graph not only captures an indepen-
dence structure but permits the tracing of pathways of dependence. Study of such
structures has both a long history and at the same time is the focus for much current
development.

Joint responses are needed when causes or risk factors are expected to affect
several responses simultaneously. Such situations occur frequently and cannot be
adequately modeled with distributions generated over directed acyclic graph or such
a graph with added dashed lines between responses and variables in their past to
permit unmeasured confounders or endogenous responses.

A regression graph shows, in particular, conditional independences by missing
edges and conditional dependences by edges present. The independences simplify
the underlying data-generating process and emphasize the important dependences
via the remaining edges. The dependences form the basis for interpretation, for the
planning of or comparison with further studies and for possible policy action. Prop-
agation of independencies is now reasonably well understood. There is scope for
complementary further study that focuses on pathways of dependence.

The second theme concerns specific applications. Among the important issues
here are an appropriate definition of population under study, especially when rela-
tively rare events and conditions are to be investigated, appropriate sampling strate-
gies, and the importance of building an understanding on step-by-step local anal-
yses. The data of the Mannheim study happen to satisfy all properties needed for
tracing pathways of dependence. This permits discussion of the advantages and lim-
itations for some illustrated path tracings.

In the near future, more results on estimation and goodness of fit tests are to
be expected, for instance by extending the fitting procedures for regression graph
models of Marchetti and Lupparelli (2011) to mixtures of discrete and continuous
variables, more results on the identification of models that include hidden variables
such as those by Stanghellini and Vantaggi (2013) and those by Foygel et al. (2012),
and further evaluations of properties of different types of parameters; see Xie et al.
(2008) for an excellent starting discussion.
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Chapter 21
Data Mining in Pharmacoepidemiological
Databases

Marc Suling, Robert Weber, and Iris Pigeot

21.1 Introduction

After market release of a newly developed drug, it needs to be systematically moni-
tored in the post-marketing setting as not all possible safety risks can be uncovered
during the clinical testing phase. The detection of possibly hazardous health out-
comes of a drug usually relies on the application of signal detection methods (Ed-
wards and Biriell 1994). Traditionally, these methods are applied to spontaneous re-
porting (SR) data, provided by health care professionals, patients or the pharmaceu-
tical industry when an association between an exposure to a drug and the observed
event is suspected (Hauben et al. 2005; Almenoff et al. 2005). However, secondary
health-related data become more and more available for scientific use, such as elec-
tronic health records (EHRs) or claims data from health insurances. This allows to
study a wide range of adverse drug effects. These secondary data usually cover sub-
stantially larger and broader populations than the SR data, reflect daily practice, and
have longer follow-up periods, which makes it possible to successfully detect even
rare events (Berlin et al. 2008; Vray et al. 2005; Vandenbroucke and Psaty 2008).
Electronic health care databases are usually large in size, high-dimensional and of
high complexity as they bear an unknown potential of interdependencies between
the different variables. The size and the complexity of the databases make a manual
analysis of every possible safety hazard impossible, and new sophisticated auto-
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Table 21.1 2× 2 con-
tingency table as basis for
most signal detection
techniques (DECij =
drug-event-combination of
the exposure to drug i and the
occurrence of adverse
reaction j )

DECij Event No event Total

Exposed n11 n10 n1·
Not exposed n01 n00 n0·

Total n·1 n·0 n··

mated or semi-automated analysis techniques are needed to make beneficial use of
these data in drug safety.

For SR data, several signal detection techniques have been developed that range
from simple frequentistic ones like the proportional reporting ratio (PRR) or the re-
porting odds ratio (ROR) (Hauben et al. 2005) to more sophisticated Bayesian tech-
niques like the Bayesian confidence propagation neural network (BCPNN) (Bate
et al. 1998) or the multi-item Gamma-Poisson shrinker MGPS (DuMouchel 1999;
DuMouchel and Pregibon 2001). These techniques can also be modified for the use
on longitudinal data.

This chapter gives a brief introduction into the field of signal detection in drug
safety monitoring and describes the most commonly used analysis techniques, both
on SR data and on longitudinal health care data. We discuss a Bayesian technique
which was applied to a German claims database to investigate its appropriateness for
signal detection purposes. We describe the application of this Bayesian technique in
a study on the adverse effects of phenprocoumon, compare the obtained results with
the corresponding results of a case-control study, and briefly discuss our findings.

21.2 Methods

The most commonly used statistical analysis techniques for the detection of safety
signals are the so-called disproportionality measures. They operate on frequencies
of drug-event-combinations (DECs), collated in 2× 2 contingency tables, as given
in Table 21.1 (for applications in clinical settings, refer to the contribution by Well-
mann, Chap. 22). For each DECij (i.e., drug i, adverse drug reaction (ADR) j ) in
question, such a contingency table is constructed. Please note that for the sake of
readability we omit the index ij for the number of event counts in Table 21.1 and in
subsequent formulae wherever possible. In each of these tables, a disproportionality
measure is calculated to determine if the respective DECij in question is reported
more often than one would expect, assuming independency of drug exposure and
the occurrence of the event.

Although each single table is fairly simple, the sheer mass of possible combi-
nations in large databases can make the analysis more complex. If one considers a
database containing more than 15,000 drugs and more than 10,000 single events,
a total of more than 150 million contingency tables need to be examined. In recent
years, various disproportionality measures have been proposed, some of the most
commonly used will be presented in detail below.
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21.2.1 Frequentistic Risk Measures

The most basic and widely used frequentistic measures for disproportionality in
such contingency tables are the ROR and the PRR (Rothman et al. 2004; Evans
et al. 2001), defined as

RORij = P(ADR j | drug i)/P (no ADR j | drug i)

P (ADR j | no drug i)/P (no ADR j | no drug i)
(21.1)

and

PRRij = P(ADR j | drug i)

P (ADR j | no drug i)
(21.2)

with P(ADR j | drug i) denoting the probability of a report on the target adverse
event j given the exposure to the target drug i. These measures are defined analo-
gously to the odds ratio (OR) and relative risk (RR) that are the most common risk
estimates used in epidemiological studies. The maximum-likelihood (ML) estima-
tors of (21.1) and (21.2) are given as

R̂ORij = n11/n10

n01/n00
, P̂RRij = n11/n1·

n01/n0·

(Van Puijenbroek et al. 2002), that are consistent and asymptotically normally dis-
tributed. Analogously to the approximate 95 % confidence intervals (CIs) for OR
and RR (Morris and Gardner 1988), the approximate CIs for ROR and PRR can be
obtained via the asymptotic normal distribution of their log-transformed estimators
(Van Puijenbroek et al. 2002) as

CIROR
lower/upper = R̂OR · e±1.96·

√
1

n11
+ 1

n10
+ 1

n01
+ 1

n00

and

CIPRR
lower/upper = P̂RR · e±1.96·

√
1

n11
+ 1

n01
−
(

1
n1· +

1
n0·
)
.

The estimates of ROR and PRR tend to become statistically instable when a
small number of events is observed. This may lead to large estimates with wide
confidence intervals (Shibata and Hauben 2011; DuMouchel 1999), creating many
false-positive signals for very rare events. Despite this shortcoming, these two meth-
ods are widely used for the detection of safety signals on SR data as they are easy
to implement and do not need much computing time.

To overcome the instability of the above estimators when applied to small num-
bers of drug-event combinations, more advanced Bayesian shrinkage techniques
have been developed in the recent years. The two methods mainly used today are
the BCPNN, applied at the Uppsala Monitoring Centre (UMC) to analyze the SR
database of the World Health Organization (WHO), and the MGPS, which is based
on the Gamma-Poisson shrinker (GPS) by DuMouchel (1999) and deployed on the
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SR data of the Food and Drug Administration (FDA) in the US. Both methods are
based on the relative reporting ratio (RRR) defined as

RRR= P(drug i,ADR j)

P (drug i) · P(ADR j)

with P(drug i,ADR j) denoting the joint probability of exposure to drug i and oc-
currence of adverse drug reaction j and P(drug i) as well as P(ADR j) the respec-
tive marginal probabilities. In a frequentistic approach, the ML-estimator of RRR
reads as

R̂RR= n11 · n··
n1· · n·1 . (21.3)

21.2.2 Bayesian Shrinkage—The Gamma-Poisson Shrinker

The approach proposed by DuMouchel, the so-called Gamma-Poisson shrinker
(GPS) algorithm (DuMouchel 1999) considers the occurrence of the target DEC
as rare event, for which typically a Poisson distribution is assumed to hold. It is then
of interest to investigate the relative reporting rate λ11 with

λ11 = μ11

E11
,

where μ11 is the mean of the Poisson distribution of the observed DEC count n11

and E11 denotes the expected event count under the assumption that drug exposure
i and ADR j are independent.

Following an empirical Bayes approach now, λ11 itself is treated as random and
not as fixed parameter, i.e., as realization of a random variable Λ11. Thus, the num-
ber N11 of combinations of drug i and ADR j is assumed to be conditionally Poisson
distributed given Λ11, where Λ11 is assumed to be gamma distributed with density
function g(λ11 | α,β),α,β > 0, mean α

β
and variance α

β2 . To enhance the flexibil-
ity, not a single gamma distribution but a mixture of two gamma distributions with
initially unknown mixture parameter p > 0 is assumed as a-priori distribution Γprior

of Λ11 with density function gprior:

gprior
(
λ11 | p,α1, α2, β1, β2

) = p · g(λ11 | α1, β1
)+ (1− p) · g(λ11 | α2, β2

)

= p · β
α1
1

Γ (α1)
· λα1−1

11 · e−λ11β1

+ (1− p) · β
α2
2

Γ (α2)
· λα2−1

11 · e−λ11β2,
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where Γ (·) denotes the gamma function. Using the formula for the k-th moment of
a gamma distributed random variable X,

E
(
Xk
)= β−k

k−1∏
i=0

(α + i),

it can easily be shown that the mean and the variance of Λ11 can be calculated as

E(Λ11) = p · α1

β1
+ (1− p) · α2

β2
,

Var(Λ11) = p(1− p) ·
(
α1

β1
− α2

β2

)2

+ p · α1

β2
1

+ (1− p) · α2

β2
2

.

To determine the posteriori distribution Γpost of (Λ11 | N11 = n11) one needs to
obtain the marginal distribution of N11. Based on the well-known property that the
marginal distribution of a random variable X is a negative binomial distribution if
X | Y is a Poisson distributed random variable and Y is gamma distributed, it can be
directly shown that the marginal distribution of N11 under the above assumptions
of a mixture of two gamma distributions for Λ11 is also a mixture of two negative
binomial distributions with

P(N11 = n11)= f
(
n11,E11 | p,α1, α2, β1, β2

)
= p · nb(n11,E11 | α1, β1

)+ (1− p) · nb(n11,E11 | α2, β2
)

with probability density functions nb(·)

nb
(
n11,E11 | αl, βl

)= Γ (αl + n11)

n11!Γ (αl)
·
(

1+ βl

E11

)−n11

·
(

1+ E11

βl

)−αl
, l = 1,2.

Since the gamma distribution is a conjugate prior, the posterior distribution of Λ11
can be calculated in a closed analytic form as a gamma distribution with modified
parameters

(
Λ11 |N11 = n11

)∼ Γpost
(
q,α∗1 , α∗2 , β∗1 , β∗2

)

with

α∗l = αl + n11, β∗l = βl +E11, l = 1,2,

and

q = p · nb(n11,E11 | α1, β1)

p · nb(n11,E11 | α1, β1)+ (1− p) · nb(n11,E11 | α2, β2)
, (21.4)
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where 0≤ q ≤ 1 is the new mixture parameter. Thus, the posteriori density is given
as

gpost
(
λ11 | q,α1 + n11, α2 + n11, β1 +E11, β2 +E11

)
= q · g(λ11 | α1 + n11, β1 +E11

)+ (1− q) · g(λ11 | α2 + n11, β2 +E11
)

= q ·
(

β∗1
α∗1

Γ (α∗1)
· e−λ11β

∗
1 · λα∗1−1

11

)
+ (1− q) ·

(
β∗2

α∗2

Γ (α∗2)
· e−λ11β

∗
2 · λα∗2−1

11

)
.

Based on the posterior distribution of Λ11, the mean of log(Λ11) can be derived as

E
(
log(Λ11)

) = q ·
[
Ψ (α1 + n11)− log

(
1

β1
+E11

)]

+ (1− q)

[
Ψ (α2 + n11)− log

(
1

β2
+E11

)]
,

where Ψ (·) denotes the Digamma function and q is defined as in (21.4). The re-
sulting risk measure, the so-called empirical Bayesian geometric mean (EBGM), is
defined as

EBGM= eE(log(Λ11)). (21.5)

The EBGM is estimated via a plug-in approach replacing the unknown parameters
α1, α2, β1, β2 and p by their empirical Bayes estimators and the expected event
count E11 by its estimator under the assumption of independence between the oc-
currence of drug i and ADR j :

Ê11 = n1· · n·1
n··

. (21.6)

The 5th percentile of the posterior distribution of Λ11, denoted as “EB05”, is inter-
preted as the lower one-sided 95 % confidence limit for EBGM, and, analogously,
the 95th percentile as upper one-sided 95 % confidence limit.

This Bayesian estimator gives risk estimates quite similar to R̂RR (21.3) when
n11 is large, but leads to risk estimates that are more conservative when event counts
are small, i.e., the risk estimates are considerably smaller and the confidence inter-
vals less wide, hence the denomination “shrinkage estimate”. While this shrinkage
might obfuscate a real signal by reducing it to a non-conspicuous level, it helps
to eliminate false-positive signals, which otherwise would have to be adjudicated
subsequently.

The techniques discussed so far assess the risk of two-way DECs, i.e., one drug
and one ADR. Another serious concern is due to potential interactions between sev-
eral drugs taken simultaneously in relation to the occurrence of an ADR. A famous
example is the interaction of cerivastatin and gemfibrozil, leading to an elevated risk
of rhabdomyolysis and resulting in the withdrawal of cerivastatin from the world-
wide market in 2001 (Furberg and Pitt 2001).
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DuMouchel and Pregibon (2001) extended the GPS to deal with multi-item
sets of a size m > 2 (e.g., m = 3; drug–drug-event interactions between drugs
i, j and event k), and therefore called this method multi-item Gamma-Poisson
shrinker (MGPS). From the respective 3-dimensional contingency table, in a first
step, EBGMijk and Eijk are estimated analogously to (21.5) and (21.6). In a second
step, a log-linear model is fitted, the so-called “all-two-factor” model to estimate
the expected frequency of the joint occurrence of both drugs and the event under the
assumption that higher-level interactions than two-way interactions can be ignored.
Based on this estimator, denoted as eAll2F, the authors define the EXCESS2 value as

EXCESS2= (ÊBGMijk · Êijk

)− eAll2F

with high EXCESS2 values of an examined triplet indicating a safety risk under
joint exposure to both drugs.

21.2.3 Extension to Longitudinal Data

For the analysis of longitudinal observational data (e.g., claims data), one option is
to convert the data structure to match the structure of SR data, so that the above
mentioned techniques can be directly applied. An additional option is to modify the
above estimators and algorithms to better fit the structure of longitudinal data and
take full advantage of the available information.

A key information in longitudinal studies is the number of days a patient was
under risk, i.e., the number of days the patient was exposed to the target drug. Let
t1 denote the total number of days the individuals in the data were under risk, t0 the
total number of days the individuals were observed without being under risk, n11
the number of ADRs j under exposure to drug i and n01 the number of ADRs j
when not exposed to drug i.

Based on the frequentistic approach, we consider here, analogously to the RR
or the PRR (21.2) for signal detection, the incidence rate ratio (more precisely: the
incidence density ratio) which is heuristically defined as

IRR11 =
number of ADRs j under exposure to drug i

total person-time being under risk
number of ADRs j not under exposure to drug i

total person-time not being under risk

to appropriately account for the person-time under observation. The incidence rate
ratio can then directly be estimated as

ÎRR11 = n11

n01
· t0
t1
. (21.7)

The empirical Bayes approach can be extended to longitudinal data by a straight-
forward modification of the GSP algorithm (Schuemie 2011). We simply have to
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replace the estimator Ê11 according to (21.6) by the following estimator

Ê11,long = n01 · t1
t0
, (21.8)

again accounting for the person-times when calculating the plug-in estimator of
(21.5). This gives the “longitudinal” GPS (LGPS) algorithm as suggested by
Schuemie. Please note that the LGPS is based on the assumption that the risk is
time-invariant.

21.3 Application of a Bayesian Shrinkage Algorithm—Study
on Bleeding Risk Under Phenprocoumon

Based on the idea of using automated quantitative signal detection and exploration
for longitudinal health care data, the Health Sciences unit of Oracle Corp.®, Red-
wood Shores, CA, currently develop a modified version of the established MGPS-
based “Empirica® Signal” (Oracle 2011) software. In the following, a prototype of
this signal detection software, implementing classical as well as the new Bayesian
algorithm suitable for mining electronic health records (EHR), is applied to the Ger-
man Pharmacoepidemiological Research Database (GePaRD) (Pigeot and Ahrens
2008). In this software, two different estimation procedures are implemented:
(a) a Bayesian risk measure that takes into account person-time, following the idea
of the MGPS and similar to the approach by Schuemie (2011), briefly referred to as
Bayesian relative risk (BRR), and (b) ÎRR according to (21.7).

To assess the validity of the findings obtained from such an automated data min-
ing procedure, all results are compared to the gold standard of fully adjusted risk
estimates for the same drug-event combinations, derived from a case-control study
by Behr et al. (2010a, 2010b). The risk estimate obtained from the signal detection
tool is considered to be of “reasonable” size if it is covered by the corresponding
95 % confidence interval (CI) of the ORs derived from the respective case-control
study.

We are interested in the risk of intracerebral hemorrhages (ICH) under expo-
sure to phenprocoumon. As it is a well-known medical fact that anticoagulant com-
pounds generally bear an increased hemorrhagic risk (Johnsen et al. 2003; Grønbæk
et al. 2008; Sturgeon et al. 2007; Bamford et al. 1988; Mattle et al. 1989; Olsen
et al. 2010), these risks should also be detected via a data mining tool in the phar-
macoepidemiological database.

21.3.1 Results Obtained from the Data Mining Tool

The dataset used for the application of the signal detection tool contains data from
3,460,501 individuals. 63,215 (1.8 %) individuals are exposed to phenprocoumon
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Table 21.2 Incidence rate ratios and Bayesian relative risk estimates obtained from the signal
detection software in comparison to odds ratio estimates and 95 % confidence intervals derived
from case-control studies on the risk of intracerebral hemorrhage under phenprocoumon exposure

Age group ÎRR 95 % CI BRR 95 % C ÔR 95 % CI

All 11.1 [9.5;13.0] 3.3 [2.9;3.9] – –

<55 20.4 [11.2;37.1] 5.1 [2.7;8.7] 4.2 [2.4;7.2]

55–64 7.1 [4.8;10.4] 4.5 [3.1;6.5] 3.2 [2.4;4.2]

65–74 4.2 [3.2;5.4] 3.5 [2.7;4.5] 3.5 [3.0;4.1]

75–84 2.4 [1.9;3.2] 2.3 [1.7;2.9] 2.5 [2.2;2.9]

85+ 3.4 [1.9;6.1] 2.5 [1.4;4.2] 2.4 [1.8;3.3]

IRR = incidence rate ratio, BRR = Bayesian relative risk, OR = odds ratio, CI = confidence
interval. ÎRR and BRR are not adjusted for confounding besides stratification for age group and
sex (results for stratification by sex not shown here)

during the study period and 2,301 individuals are diagnosed with ICH. 170 (7.4 %)
of all 2,301 individuals with a diagnosis of ICH are exposed to phenprocoumon.
For the overall hemorrhagic risk of phenprocoumon, the software yields an BRR
estimate of 3.3 (95 % CI = [2.9;3.9]). As expected, high IRR estimates are ob-
served in the stratum <55 years, where both events and exposure are rare (event
frequency and person-time not shown), i.e., ÎRR = 20.4 (95 % CI = [11.2;37.1]).
The BRR estimates tend to be smaller, especially in the age group <55. In gen-
eral, IRR and BRR estimates become more similar with increasing age as illus-
trated in Figs. 21.1(a) and (b). In total, we find elevated risks under phenpro-
coumon exposure, as anticipated considering the findings reported in Behr et al.
(2010a,b).

21.3.2 Comparison

When we compare the risk estimates obtained from the automated data mining tool
with OR estimates obtained from the case-control studies by Behr et al. (cf. Ta-
ble 21.2), results of the same size emerge for ICH. The BRR is always covered by
the corresponding 95 % confidence interval of the fully adjusted OR estimate, ex-
cept for patients with ICH aged 55–64, where the BRR of 4.5 (95 % CI= [3.1;6.5])
exceeds the upper bound of the confidence interval of the OR (cf. Fig. 21.1(c)). Our
results, based on a stratified data mining approach to determine the hemorrhagic
risks of anticoagulant compounds, are of the same size as those obtained from the
case-control studies. The estimated BRR is covered by the respective 95 % confi-
dence intervals of the OR based on the case-control studies for most strata. As ex-
pected, ÎRR tends to become statistically unstable in the lowest age group because
of the small number of events and short duration under drug exposure compared to
the huge number of unexposed days in that particular age group.
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Fig. 21.1 Comparison of
estimated risk measures for
intracerebral hemorrhage
under phenprocoumon
exposure obtained from the
signal detection software
(incidence rate ratio (IRR)
and Bayesian-adjusted
relative risk (BRR)) and the
case-control study (odds ratio
(OR)). (a) ÎRR and 95 %
confidence intervals (CIs),
stratified by sex and age
group; (b) BRR and 95 %
CIs, stratified by sex and age
group; (c) BRR vs. ÔR and
95 % CIs with CIs of the OR
highlighted
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21.4 Conclusions

The results from our application clearly endorse the feasibility of the automated
data mining approach on pharmacoepidemiological databases like the GePaRD. We
showed that in our example a signal known from literature can be successfully de-
tected and that the risks found are also of the same size as risks obtained from
case-control studies. However, one of the most crucial issues in observational stud-
ies as compared to clinical studies, the appropriate consideration of confounders in
the statistical analysis, has not been addressed so far. In our study, ÎRR and, even
more, BRR—both unadjusted except for age and sex—fit quite well to the fully ad-
justed ÔR from the case-control study. This suggests that a considerable amount of
confounding was annihilated by stratification for sex and age. Nevertheless, further
research on the effect of strong underlying confounding that cannot be controlled
by simple stratification is surely needed.

One of the biggest problems regarding the adjustment for confounding in au-
tomated analyses is the selection of appropriate confounders. In pharmacoepi-
demiological studies this is typically done manually, which is not feasible in high-
throughput automated analyses. Schneeweiss et al. (2009) proposed a technique for
automated confounder selection based on propensity score (PS) matched cohorts
(Rosenbaum and Rubin 1983; Austin 2011). The PS si of an individual i is defined
as the probability to receive a certain treatment Ti , i.e. Ti = 1, given the observed
vector of covariates Xi , ignoring whether the respective subject actually received
the treatment or not:

si = P
(
Ti = 1 |Xi

)
.

This simple definition allows for balancing the cohort underlying the analysis by
matching treated to untreated subjects with the same PS. Thus, one obtains a cohort
where the distributions of the observed covariates are balanced between both arms
of the cohort. The high-dimensional propensity score (HDPS) algorithm proposed
by Schneeweiss et al. automates the selection of the confounders to be considered
in a multi-step approach. Briefly, the HDPS algorithm

(a) requires the identification of the different data dimensions (e.g., hospitalization
data, outpatient care data, outpatient drug dispensation data) in the database,

(b) identifies a pre-specified number of the top most prevalent codes, e.g., ICD or
ATC codes (ICD = international statistical classification of diseases and related
health problems, ATC = anatomical therapeutic chemical classification system)
in each data dimension as candidate covariates,

(c) ranks candidate covariates based on their recurrence (the frequency that the
codes are recorded for each individual during the baseline period),

(d) ranks covariates across all data dimensions by their potential for control of con-
founding based on the bivariate associations of each covariate with the treatment
and with the outcome,
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(e) selects a pre-specified number of covariates from step 4 (e.g., 500) for PS mod-
eling, and

(f) estimates the PS based on multivariable logistic regression using the selected
covariates plus any pre-specified covariates.

This technique theoretically allows for a fully automated selection of confounders
for each signal detection analysis. Rassen and Schneeweiss (2012) applied the
HDPS to control for confounding in sequential database cohort studies. They con-
cluded that HDPS offers substantial advantages over non-automated alternatives in
active product safety monitoring systems.

We also applied the HDPS to the GePaRD to control for confounding in a study
on the risk of upper gastrointestinal complications under exposure to non-steroidal
anti-inflammatory drugs (Garbe et al. 2012). Since this turned out to be feasible with
the structure of the database and successful with respect to an appropriate control for
potential confounding, we consider the application of this algorithm to the German
claims data in the signal detection context to be a worthwhile approach, although
the computational run-time might still be too high for real-life drug monitoring.
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Chapter 22
Meta-Analysis of Trials with Binary Outcomes

Jürgen Wellmann

22.1 Introduction

Clinical trials or observational epidemiological studies that investigate the health
effects of a certain new treatment, a lifestyle factor, or an environmental condition,
are often conducted in a similar manner by different teams of scientists in various
places. In this way the uncertainties of single studies, and especially of small stud-
ies, can be tackled. When publications of these studies accumulate in the scientific
literature, a systematic review is valuable that gathers, appraises, and summarizes
this evidence. If the studies were conducted under comparable conditions and in
nearly the same manner, and if they report their findings in terms of the same effect
measure, their statistical results may be summarized quantitatively. Such an effort
is called meta-analysis. Note that the contribution by Morgenthaler and Staudte in
Chap. 19 also contains material highly relevant for meta-analyses.

The current chapter is concerned with statistical methods for the meta-analysis
of studies that investigate the effect of a binary explanatory variable on a binary
outcome. To be more concrete, this topic is discussed in terms of the meta-analysis
of clinical trials that compare two treatments, say active treatment and placebo, and
a clinical outcome. Of course the methods discussed here are applicable in other
areas as well. The outcome usually is an unfavorable medical “event”, like failure
of medical care, worsening of symptoms, or even death. We concentrate on the
odds ratio as the measure to compare the effect of active treatment versus placebo.
Throughout the chapter, it will be assumed that no potential confounders need to be
considered, as it is the case in randomized trials.

The results of such trials can be summarized in 2 × 2 tables of frequencies of
“events” and “non-events” in both treatment groups. The numbers of events in
each group are assumed to be binomially distributed. These frequencies can be
analyzed by means of techniques that have been summarized, in the context of
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meta-analyses, as “individual data methods” (Turner et al. 2000) or “bivariate meta-
analysis” (Houwelingen et al. 2002). They range from long established methods for
stratified 2× 2 tables (Woolf 1955; Mantel and Haenszel 1959) to logistic regres-
sion with random effects. (See also the contribution by Suling, Weber and Pigeot,
Chap. 21, for the analysis of stratified 2 × 2 contingency tables in pharmacoepi-
demiology.)

The term bivariate is justified from the point of view that the single studies con-
stitute the “subjects” or units of analysis of the meta-analysis, whereby each studies
supplies two observations, one for each treatment group. Each observation contains
the (fixed) number of participants under study and the (random) number of events
that occurred in the respective treatment group. These observations are uncorrelated
across the trials, but may be correlated within the single trials.

On the other hand, “summary data methods” or “univariate meta-analyses” only
require that one observation per trial is abstracted from the corresponding publica-
tions. These observations contain an estimate (here the odds ratio) and an appropri-
ate measure of its variation (see Sect. 22.2.2 for details). A meta-analysis of such
data usually involves the assumption that the logarithm of the odds ratio approxi-
mately follows a normal distribution. Furthermore, it is often assumed that the ob-
served variances are fixed and known rather than random. This kind of analysis with
its both variants as fixed effects or random effects meta-analysis (see Sect. 22.2.1)
seems to be the classical approach.

There are some papers that investigate the statistical properties of the various
methods sketched above. For example, Hartung and Knapp (2001) suggest a variant
of the classical, univariate approach that accounts for the random variation of the
observed measures of variation and compare this new variant with its classical pre-
decessor by means of simulation. In another simulation Kuß and Gromann (2007),
compare the two classics with the Mantel–Haenszel approach. These authors con-
centrate on tests for the hypotheses that the odds ratio equals one.

These papers concentrate on a few methods each. The purpose of the current
chapter is to take a broader view and thus to give, firstly, an overview of the various
univariate and bivariate methods for meta-analysis of trials with binary outcome and
two treatment groups (Sect. 22.2). Secondly, some logistic regression approaches for
the number of events in both treatment groups (Turner et al. 2000) are considered in
more detail. An attempt is made to improve these methods by utilizing ‘sandwich-
type’ estimators for the covariance matrix of the parameter estimates or a certain
penalized likelihood. Finally, this broad range of methods is compared by means of
simulations (Sect. 22.3), with an emphasis on estimation rather than testing. In the
end, these results should help researchers to choose the most appropriate method for
their meta-analysis (Sect. 22.4).

The emphasis on estimation (and confidence intervals) rather than testing in
the current chapter is in line with the prevailing view in epidemiology and clin-
ical research that knowing the magnitude of a health-related effect is more valu-
able than just knowing whether it is statistical significant (see, for example, Altman
et al. 2000). The arguments in favour of estimation are similar to the motivation
of Kulinskaya et al. (2008) who advocate a new measure of statistical evidence
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that is, amongst others, suitable for accumulating evidence of single studies in the
framework of a meta-analysis. See the contribution by Morgenthaler and Staudte in
Chap. 19 for a brief account of this approach. The current chapter is related to ro-
bust statistics insofar as empirical sandwich estimators for (co-)variance parameters
are also considered, which depend less on distributional assumption than maximum
likelihood estimators.

22.2 Model and Methods

22.2.1 A Logistic Gaussian Mixed Model

Let pij denote the (conditional) probability of the unfavorable medical event in the
ith trial and treatment group j that pertains to nij subjects in the respective study
group. For given pij the number of events Yij is then binomially distributed

Yij ∼ B(nij ,pij ), i = 1, . . . , k; j = 1,2. (22.1)

The probabilities pij need to be specified more closely. It is reasonable to allow
for different levels of the response probability across studies, so that a model with
trial-specific intercepts β0+ bi is warranted. Furthermore, it is common to consider
random treatment effects ui , that are assumed to be realizations of independent ran-
dom variables Ui ∼N(0, τ 2). Finally, the treatment group is specified by the fixed,
observable variable xij . This variable is coded so that the fixed parameter θ is the
overall log. odds ratio for the treatment effect. A logistic model, with link function
logit(p)= ln(p/(1− p)), is now given by

logit(pij )= β0 + bi + xij θ + xijui, i = 1, . . . , k; j = 1,2. (22.2)

The trial-specific intercepts are the sum of some unknown parameter β0 plus bi ,
where the bi can either be fixed parameters (with bk = 0, say) or realizations of
independent random variables Bi ∼N(0, σ 2). One may assume that Ui and Bi are
uncorrelated or that Cov(Ui,Bi)= ρστ , see Turner et al. (2000, Eq. (3)).

One way to code treatment is to assign xij values of one and zero in the active
treatment or in the placebo group, respectively. A more symmetric coding is xi1 =
1/2 for the active treatment and xi2 =−1/2 for the placebo group, see Turner et al.
(2000). In both cases, θ is the unknown log. odds ratio which is to be estimated.

Fixed and Random Effects Meta-Analysis The “between trial variance” τ 2 may
be constrained to equal zero. Then the ui vanish and (22.2.1) is called a “fixed
effects” (FE) model. In the context of meta-analyses, this term denotes a model
that only contains a single, fixed parameter (here θ ) for treatment effect across all
studies. In a “random effects” (RE) model τ 2 ≥ 0 and thus a trial-specific deviation
ui from the overall effect θ is allowed.

In the RE model τ 2 = 0 is explicitly allowed, as always in mixed models. Thus
the FE model is a special case of the RE model. In principal, one has to decide
beforehand what model is appropriate for the trials that are to be analyzed. The
FE model is justified if one can be sure that identical treatment regimes have been
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tested in all trials, and thus the treatment effect should be the same in all studies. In
practice one is more often confronted with treatment regimes that are comparable,
but not identical, and thus give rise to the RE model.

One may be tempted to have a look at the data to assist in the choice of the
model, but the effect of this data snooping on the statistical properties of the sub-
sequent meta-analysis may be hard to state precisely. However, some meta-analysis
procedures for the RE model have a kind of built-in model choice insofar as they
are identical to a corresponding FE method as soon as their estimate for τ 2 becomes
zero. Hartung and Knapp (2001) discuss this issue in the context of the truncated
estimator of DerSimonian and Laird (1986), see (22.9) below, which equals zero
with positive probability.

Subject Specific Versus Population Averaged Approaches Note that in the
mixed effects versions of model (22.2.1), with τ 2 > 0 and/or bi random, pij is a
conditional mean, pij = E(Yij | ui, bi). Mixed models are sometimes called subject
specific models, since they make specific assumption on the single subjects under
study (Zeger et al. 1988). The subjects of a meta-analysis are the single studies.
Here, model (22.2.1) implies for the (conditional) log. odds ratio in trial i

ln(OR)i = logit(pi1)− logit(pi2)= θ + ui, i = 1, . . . , k, (22.3)

for both codings for xij . Some methods for meta-analysis do not involve random ef-
fects and adopt an unconditional, ‘population averaged’ point of view. From this per-
spective, one is interested in the unconditional mean πij = E(E(Yij | ui, bi)) and the
unconditional log. odds ratio logit(πi1)− logit(πi2). Following Zeger et al. (1988,
p. 1054), one can derive an approximate relations between pij , πij and the fixed
parameters of model (22.2.1). For bi fixed and xij =±1/2 one obtains

logit(πij )≈ a
(
τ 2)(β0 + bi ± θ/2) (22.4)

and thus an unconditional log. odds ratio of a(τ 2)θ , where a(τ 2) =
(c2τ 2/4+ 1)−1/2 with c= 16

√
3/(15π)≈ 0.588. Note that a(τ 2) is close to one as

long as τ 2 is not large.

22.2.2 The Univariate Model for Meta-Analysis

Let θ̂i be the estimator for the conditional log. odds ratio (22.3) from the ith trial. It
is assumed that this estimator in this specific trial, given ui , is at least approximately
normally distributed with variance σ 2

i , that is θ̂i | ui ∼ N(θ + ui, σ
2
i ). Since Ui ∼

N(0, τ 2) one obtains the usual assumption for the unconditional distribution of the
estimators

θ̂i ∼N
(
θ, τ 2 + σ 2

i

)
, i = 1, . . . , k. (22.5)

As in the previous section, one may choose between the FE approach, where τ 2 = 0
is assumed, or the RE approach with τ 2 ≥ 0.

In a meta-analysis, θ̂i and an estimate of its variance, σ̂ 2
i , may be obtainable from

the published papers. These statistics are usually not directly available but may be
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easily derived from odds ratios and the corresponding confidence intervals. If the
frequencies Yij and nij are available (which would enable a bivariate analysis as
well), the desired “univariate” estimates can also easily be computed. The usual es-
timate of the odds ratio from a 2× 2-table encounters problems if one of the four
cells of the table contains a frequency of zero. A simple remedy for these sampling
zeros is to add 0.5 to all four cells, and thus to estimate the odds ratio and its loga-
rithm by

ÔRi = Yi1 + 0.5

ni1 − Yi1 + 0.5

ni2 − Yi2 + 0.5

Yi2 + 0.5
and θ̂i = ln(ÔRi ). (22.6)

The variance of θ̂i is estimated by

σ̂ 2
i =

1

Yi1 + 0.5
+ 1

ni1 − Yi1 + 0.5
+ 1

Yi2 + 0.5
+ 1

ni2 − Yi2 + 0.5
, i = 1, . . . , k.

(22.7)

Some authors suggest to always add 0.5 to all counts in 2 × 2 tables under study
while others suggest to apply this remedy only to those 2× 2 tables where sampling
zeros occurred.

22.2.3 Statistical Methods for Meta-Analysis

The methods listed in this section will be compared by simulation.

Univariate Meta-Analysis The log. odds ratios (22.6) can be used to estimate
the common odds ratio θ and appropriate confidence intervals. See, for example,
Hartung and Knapp (2001) for a nice derivation of these classical meta-analysis
methods. They amount to estimating θ by a weighted mean of the published esti-
mates. These weights contain estimates (22.7) of the within-trial variance, and in
the RE approach also the between-trial variance τ 2. Classical approaches for meta-
analysis neglect the random variation of these estimates, while Hartung and Knapp
do account for it.

• For the FE approach, weights v̂i = 1/σ̂ 2
i are needed together with v̂ =∑k

i=1 v̂i .
The estimator for the common log. odds and its (1− α) confidence interval is

θ̂FE = 1

v̂

k∑
i=1

v̂i θ̂i , θ̂FE ± q1−α/2/
√
v̂, (22.8)

where qγ denotes the γ -quantile of the standard normal distribution, see for ex-
ample Hartung and Knapp (2001). This method has already been suggested by
Woolf (1955) for a common odds ratio in k× 2× 2 tables.

• The estimator in the RE model is build analogous to (22.8) with v̂i replaced by
ŵi = (τ̂ 2 + σ̂ 2

i )
−1 and ŵ =∑k

i=1 ŵi , where τ̂ 2 estimates the between-trial vari-
ance τ 2. A frequently used estimator is the truncated version of the moment esti-
mator suggested by DerSimonian and Laird (1986)

τ̂ 2 = max{0,∑k
i=1 v̂i (θ̂i − θ̂FE)

2 − (k − 1)}
v̂−∑k

i=1 v̂
2
i /v̂

. (22.9)
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The classical approach in the RE model is to use

θ̂RE = 1

ŵ

k∑
i=1

ŵi θ̂i , θ̂RE ± q1−α/2/
√
ŵ. (22.10)

• Following Hartung and Knapp (2001) one may construct a third kind of confi-
dence interval:

θ̂RE ± tk−1;1−α/2

√
Q̂ with Q̂= 1

k− 1

k∑
i=1

ŵi

ŵ
(θ̂i − θ̂RE)

2, (22.11)

where tν;γ denotes the γ -quantile of the t-distribution with ν degrees of freedom.

A preliminary simulation suggested that always adding 0.5 to all cells of the k ×
2 × 2 table yields a slightly larger bias for the estimators of θ . Therefore, in the
following 0.5 is only added to those 2× 2 tables where sampling zeros occurred.

Bivariate Meta-Analysis If the quantities Yij and nij of the binomial model
(22.2.1) are available, one may directly estimate the parameters of this model fol-
lowing the usual approaches for logistic regression with or without random effects.
The following variants are considered.

• Logistic regression with fixed, trial-specific intercepts and an overall parameter
for treatment; no random treatment effect (τ 2 = 0, FE model). Since a preliminary
simulation revealed many cases of complete separation, logistic regression with
Firth’s penalized maximum likelihood (Heinze and Schemper 2002; Firth 1993)
was employed too.

• Logistic regression for an FE model with random trial-specific intercepts.
• Mixed effects logistic regression with random trial-specific intercepts, random

treatment effect (τ 2 ≥ 0, RE model), and a fixed overall parameter for treatment.
The two random effects are assumed to be independent.

• As above, but with correlated random effects.

In our simulation always the coding xij = ±1/2 was used. The latter three ap-
proaches involve random effects and are also computed with the sandwich-type
covariance estimator of Mancl and DeRouen (2001).

• An intriguing alternative in the sense of an FE model is the estimator of Mantel
and Haenszel (1959) for a common odds ratio in a k× 2× 2 contingency table

ÔRMH =
{

k∑
i=1

Yi1(ni2 − Yi2)

ni1 + ni2

}{
k∑

i=1

Yi2(ni1 − Yi1)

ni1 + ni2

}−1

. (22.12)

It is classified here into the bivariate methods since one needs the results from
both treatment groups to calculate the estimator. A (1 − α) confidence interval
is constructed as ln(ÔRMH) ± q1−α/2σ̂MH, where σ̂ 2

MH denotes the estimate of

Robins et al. (1986) of the variance of the logarithm of ÔRMH.
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22.2.4 Simulation

Data were simulated according to the binomial model in Sect. 22.2.1, similar to Kuß
and Gromann (2007). A simulated meta-analysis consists of k trials, k = 5,10,20,
where each trial supplies two numbers Yi1 and Yi2 from a binomial distribution
B(nij ,pij ). The number of participants is set to the same value n11 = · · · = nk1 =
n21 = · · · = nk2 = 20,50 across all trials and both treatment groups.

The probabilities pij of (22.2) involve θ = 0, ln(2/3), ln(1/3), and thus give rise
to odds ratios 1,2/3,1/3. Random treatment effects ui were generated from a nor-
mal distribution with mean 0 and variance τ 2 with τ = 0,0.05,0.1,0.5. Treatment is
coded by xij =±1/2. The trial-specific intercepts are fixed with b1 = · · · = bk ≡ 0
and β0 = − ln(9),0. Define p such that logit(p) = β0, that is to say p = 0.1 or
p = 0.5, respectively. These are the probabilities pij in the null model with θ = 0
and τ 2 = 0, respectively. In the other situations, the pij are distributed below and
above these values.

In summary, 3(k)× 2(nij )× 2(β0)× 3(θ)× 4(τ )= 144 different situations are
simulated. Each time, 2,000 simulation runs were performed.

The simulated data contain the frequencies Yij and nij that are needed for the
bivariate methods. The estimates needed as input for the univariate methods are
computed thereof as in (22.6) and (22.7).

For each of the 144 simulated situations the three univariate methods, the
Mantel–Haenszel approach, and the variants of logistic regression mentioned above
are considered. Each method yields an estimate of the common log. odds ratio plus
a 95 % confidence interval and an estimate for τ 2, if appropriate.

For each method the percentage of successful simulation runs, i.e., runs without
numerical problems, was recorded. Especially the regression methods did not al-
ways arrive at a solution due to convergence problems. For all successful runs, the
average of the estimators for θ was computed, as well as the percentage of simula-
tion runs where the confidence interval for θ contains the true θ .

All computations were carried out in SAS® version 9.2 (SAS Institute Inc., Cary,
NC, USA), using the random number generators RANNOR and RANBIN and the
procedures FREQ, LOGISTIC and GLIMMIX. The SUMMARY procedure was
used to compute the ingredients for θ̂RE and the corresponding confidence intervals.

22.3 Results

22.3.1 Computational Issues

For each situation, 2,000 simulation runs were performed and the percentage of
successful runs was recorded. Table 22.1 lists the mean and the minimum of these
percentages over the 144 situations under study. The univariate FE (22.8) and RE
approach (22.10) did not provide any computational problems. Neither does the
alternative confidence interval (22.11).
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Table 22.1 Overview of simulation results. Worst and average results with regard to computa-
tional problems and bias of estimates for treatment effect θ

Procedure Computation Bias

Assumptions for effect of Successful runs [%] Geometric mean

trial treatment abbr.a min mean min mean max

Univariate

FE (22.8) Uni-FE 100.0 100.0 0.98 1.03 1.20

RE (22.10)b Uni-RE 100.0 100.0 0.96 1.02 1.20

Bivariate

Mantel–Haenszel
logistic regression

BiF-MH 99.6 100.0 0.95 1.00 1.03

fixed FE BiF-FE 75.6 97.0 0.92 0.99 1.01

FE+Firth +Firth 100.0 100.0 0.97 1.00 1.01

REc BiF-RE 74.9 96.8 0.90 0.98 1.01

random RE, Cor= 0c BiR-REind 97.3 99.3 0.92 0.99 1.01

RE, Cor= ρc BiR-REcor 84.4 92.3 0.93 0.99 1.01

aAbbreviation for use in figure legends
bThe univariate RE approach with confidence interval (22.11) and
cthe logistic RE models with sandwich estimators yield the same results as their counterparts

Cor = correlation between trial-specific intercepts and random treatment effects

The Mantel–Haenszel approach encountered problems in those few simulated
meta-analyses where no event occurred in all groups with active treatment. In the
worst case, this happened in 8 out of 2,000 runs, which yields the 99.6 % of suc-
cessful runs listed in Table 22.1.

The iterative solution of the logistic regression problems quite often fail to con-
verge in some situations. This is especially true for the models with fixed trial ef-
fects, unless Firth’s penalized likelihood is employed. With this approach, which
was only available for the FE model, the algorithm always converged. The con-
vergence problems of the ordinary maximum likelihood estimation almost ex-
clusively occurred in the meta-analyses with rare events (p = 0.1) and only 20
participants per treatment arm. The frequency of convergence problems increase
from 6.8 % in meta-analyses with k = 5 trials to about a quarter with k = 20
(Table 22.2).

Logistic regression with random trial effects suffers less from computational
problems than the model with fixed trial effects and the standard likelihood. Among
the two logistic regression methods of this type the version that allows for a correla-
tion between the trial and the random treatment effects more often fails to converge.
In some situations, only about 85 % of simulation runs terminate successfully. The



22 Meta-Analysis of Trials with Binary Outcomes 373

Table 22.2 Percentage of successful simulation runs in bivariate logistic regression

Assumption for
type of effects

k nij = 20 nij = 50

p = 0.1 p = 0.5 p = 0.1 p = 0.5

trial treat. min max min max min max min max

fixed FE 5 93.2 96.0 100.0 100.0 100.0 100.0 100.0 100.0

10 87.0 93.3 100.0 100.0 100.0 100.0 100.0 100.0

20 75.6 85.7 100.0 100.0 100.0 100.0 100.0 100.0

fixed RE 5 93.2 96.0 99.9 100.0 100.0 100.0 99.9 100.0

10 86.4 92.7 99.8 100.0 99.9 100.0 99.0 100.0

20 74.9 85.0 99.6 100.0 99.9 100.0 98.8 100.0

random
Cor= 0

RE 5 98.0 99.9 99.8 100.0 98.8 99.9 99.4 100.0

10 98.1 99.9 99.1 99.7 98.8 99.6 98.9 99.9

20 97.3 99.3 98.5 99.2 97.9 99.7 98.3 99.9

random
Cor= ρ

RE 5 88.9 91.8 91.0 96.1 90.8 95.7 90.1 96.5

10 86.5 90.5 90.9 95.2 90.8 95.0 89.1 96.5

20 85.0 90.0 88.7 92.9 89.3 93.5 84.4 95.4

Cor = correlation between trial-specific intercepts and random treatment effects

regression with uncorrelated random effects fails to converge mostly in one or two
percent of all runs (Table 22.2).

The sandwich estimators, which have also been tested in the logistic RE models,
have no effect on convergence problems.

22.3.2 Bias

We simulated the mean of the estimators for the log. odds ratio as the average of the
respective estimates, and the bias as this average minus the true θ . For the overview
in Table 22.1 we take the antilogarithm of the simulated bias and thus present the
geometric mean of the “multiplicative bias” ÔR/ exp(θ).

Logistic regression with fixed trial effects and without random treatment effects
yields values close to one, that is to say there is nearly no bias. This is especially
true for the variant with Firth’s likelihood. The results for the Mantel–Haenszel odds
ratios are also quite close to one.

In some situations, the univariate procedures tend to overestimate the odds ratio.
A closer look at the simulation results reveals that this effect occurs if OR < 1 and
the outcomes are rare (p = 0.1 ⇔ β0 = − ln(9)), see Fig. 22.1. Overall, the RE
estimator is on average slightly closer to θ than its FE counterpart.
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Fig. 22.1 Simulated means of estimates for the log. odds ratio for selected procedures; true
OR= 1/3

The logistic regression procedures with random effects are prone to underesti-
mation. Figure 22.1 demonstrates that this phenomenon especially occurs in meta-
analysis which comprise a smaller number of participants. No approach is clearly
superior to the others.

More details are given in Fig. 22.1. This graphic depicts the simulation results
for the estimates of θ in terms of the mean of the simulated estimates for θ . These
means are plotted against the number of subjects in the simulated meta-analyses,
k × 2 × nij . Different symbols are used to distinguish the methods. The symbols
for each methods are connected by lines, but each line is broken into two parts to
distinguish the results for nij = 20 from those for nij = 50 subjects per treatment
group. Results for τ = 0.05 are in line with the other results and are omitted in
the graphics. A horizontal line indicates the true OR= exp(θ). A gray bar extends
from this line to exp(a(τ 2)θ), cf. (22.4), to indicate the corresponding population
averaged odds ratio.

The simulation results for OR= 2/3 show a pattern very similar to Fig. 22.1 but
with much smaller bias. For OR = 1 the pattern of the results is different, but the
bias is even smaller, see Figs. 22.2 and 22.3.

22.3.3 Coverage

95 % confidence intervals for the log. odds ratio θ were computed for each method.
We simulated the percentage of these intervals that contain the true θ .

The results for these coverage probabilities are mainly influenced by the
between-trial variance τ 2, with one exception. In meta-analysis with rare events
(p = 0.1⇔ β0 =− ln(9)) and only nij participants per treatment group, the cover-
age probability of the univariate RE approach with the confidence interval based on
the t-distribution (22.11) drops with increasing number of trials to about 90 % for
k = 20.
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Fig. 22.2 Simulated means of estimates for the log. odds ratio for selected procedures; true
OR= 2/3

Fig. 22.3 Simulated means of estimates for the log. odds ratio for selected procedures; true
OR= 1

Apart from this finding, we observe that all procedures achieve a coverage of
about 95 % or more for τ 2 = 0. With increasing τ 2 the FE methods yield confidence
intervals that contain θ less often (Fig. 22.4). Results for coverage probabilities are
presented for OR= 2/3. The results for OR= 1 and OR= 1/3 show essentially the
same patterns.

The same is true for three RE methods, namely the univariate RE procedure with
confidence interval (22.10), see Fig. 22.5, and the two logistic regression proce-
dures with random trial effects and standard confidence intervals (Fig. 22.6). Their
coverage probability is especially low for τ = 0.5. The situation becomes worse
with increasing number of participants and is most pronounced in meta-analyses of
frequent events (p = 0.5).

All other RE methods comply with the 95 % confidence level. This implies
that the confidence interval (22.11), see again Fig. 22.5, and the sandwich esti-
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Fig. 22.4 Simulated coverage probabilities for the confidence interval for the log. odds ratio; true
OR= 2/3, FE methods

Fig. 22.5 Simulated coverage probabilities for the confidence interval for the log. odds ratio; true
OR= 2/3, univariate RE methods with ‘normal’ confidence intervals (22.10) and those suggested
by Hartung and Knapp (22.11)

Fig. 22.6 Simulated coverage probabilities for the confidence interval for the log. odds ratio; true
OR= 2/3, bivariate RE methods with standard confidence intervals
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Fig. 22.7 Simulated coverage probabilities for the confidence interval for the log. odds ratio; true
OR= 2/3, bivariate RE methods, confidence intervals based on empirical sandwich estimates

mators (Fig. 22.7), respectively, improve the confidence intervals of the respective
approaches.

22.4 Conclusions

Introductory texts on meta-analysis often start with methods that require one statis-
tic per trial, plus an estimate of its variation, and an assumption that this statistic
is approximately normally distributed. This approach is reasonable and may often
be the only feasibly option as long as no other information is available. However, if
studies are to be analyzed that compare two groups of subjects, data on both groups
may be available and offer the opportunity for a bivariate meta-analysis (Houwelin-
gen et al. 2002). Especially in clinical trials with a binary endpoint the results of a
single trial may be presented as number of “events” and number of subjects in both
groups. Meta-analysis of such data amounts to the analysis of a k × 2 × 2 table.
Appropriate methods, as for example the Mantel–Haenszel odds ratios, have been
known for decades and seem to be a more natural approach than methods that rely
on a normal distribution of the logarithm of the odds ratio. And if random treatment
effects are warranted, as is often the case in meta-analyses, logistic regression offers
the desired options (Turner et al. 2000).

The univariate approaches considered here involve adding a small increment to
the cell frequencies if sampling zeros occur. Without this “continuity correction”
there would have been many instances where the estimators could not have been
computed. However, this measure has some drawbacks, see, for example, the dis-
cussion in Rücker et al. (2009).

The Mantel–Haenszel Odds Ratio and the corresponding confidence interval is
computable even with many sampling zeros, unless certain patterns of empty cells
in each of the 2× 2-tables occur. Thus one may even regard numerical problems of
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the Mantel–Haenszel approach as an indication of remarkable results rather than a
drawback of the method.

Logistic regression with fixed trial-specific intercepts involves a large number of
fixed parameters, which makes it prone to problems of complete separation of the
data, a situation where the maximum likelihood estimator of the logistic regression
does not exist. Use of the penalized likelihood suggested by Firth (1993) avoids this
problem, as was first observed by Heinze and Schemper (2002).

Models with random intercepts contain much less fixed parameters and encounter
less numerical problems than the standard logistic regression with fixed intercepts.
In a concrete meta-analysis, these problems may be overcome by careful choice of
starting values for the estimates or different numerical techniques. These options
have not been tested in the current simulation.

In summary, the Mantel–Haenszel approach and the logistic regression with only
fixed effects and Firth’s likelihood are remarkably stable from a computational point
of view, the numerical stability of the univariate approaches come at the cost of a
questionable continuity correction, and the convergence problems of the logistic re-
gression models with random effects should not deter one from using this methods.
It would have been interesting to test an approach similar to Firth’s likelihood in the
mixed effects models, but this option was not supported by the software used here
and is thus beyond the scope of the current work.

The bias of the estimators for the log. odds ratio are not too severe, given the fact
that the worst results occurred in the rather extreme situation with random treatment
effects with a standard deviation of τ = 0.5, which is quite pronounced. But anyhow
this finding is an argument against the use of the univariate methods in which these
results were observed.

The Mantel–Haenszel Odds Ratios are, on average, very close to the true odds
ratio. The logistic regression with fixed effects and Firth’s likelihood performs even
better. This is in accordance with Firth’s intention who suggested the penalized like-
lihood in order to avoid the (asymptotic) bias of the maximum likelihood estima-
tor.

It is not surprising that the FE methods, that are not suited to deal with random
treatment effects, do not perform well if they are applied to data that were gener-
ated under a model with such random effects. We note that the confidence interval
(22.11) improves the univariate RE approach, as already established by Hartung and
Knapp (2001) (with the one exception described above) and that sandwich estima-
tors improve the confidence intervals for the bivariate logistic regression models
with random effects.

The current simulation suggests to use bivariate methods whenever the necessary
information can be abstracted from the papers under study. The Mantel–Haenszel
Odds Ratio and logistic regression with Firth’s likelihood are good alternatives for
a FE meta-analysis. If random effects are warranted one may use one of the lo-
gistic regression models (Turner et al. 2000), whereby sandwich estimates (Mancl
and DeRouen 2001) improve the confidence intervals. If the trials that are to be
analyzed only provide odds ratios and their standard errors, one should take into
account that the latter are estimates and not the true values (Hartung and Knapp
2001).



22 Meta-Analysis of Trials with Binary Outcomes 379

References

Altman, D. G., Machin, D., Bryant, T. N., & Gardner, M. J. (2000). Statistics with confidence. BMJ
books (2nd ed.).

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials,
7, 177–188.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38.
Hartung, J., & Knapp, G. (2001). A refined method for the meta-analysis of controlled clinical

trials with binary outcome. Statistics in Medicine, 20, 3875–3889.
Heinze, G., & Schemper, M. (2002). A solution to the problem of separation in logistic regression.

Statistics in Medicine, 21, 2409–2419.
Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Tutorial in biostatistics: advanced meth-

ods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine, 21,
589–624.

Kulinskaya, E., Morgenthaler, S., & Staudte, R. G. (2008). Meta analysis: a guide to calibrating
and combining statistical evidence. New York: Wiley.

Kuß, O., & Gromann, C. (2007). An exact test for meta-analysis with binary endpoints. Methods
of Information in Medicine, 46, 662–668.

Mancl, L. A., & DeRouen, T. A. (2001). A covariance estimator for GEE with improved small-
sample properties. Biometrics, 57, 126–134.

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective
studies of disease. Journal of the National Cancer Institute, 22, 719–748.

Robins, J., Breslow, N., & Greenland, S. (1986). Estimators of the Mantel–Haenszel variance
consistent in both sparse data and large-strata limiting models. Biometrics, 42, 311–323.

Rücker, G., Schwarzer, G., Carpenter, J., & Olkin, I. (2009). Why add anything to nothing? The
arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Statistics in
Medicine, 28, 721–738.

Turner, R. M., Omar, R. Z., Yang, M., Goldstein, H., & Thompson, S. G. (2000). A multi-
level model framework for meta-analysis of clinical trials with binary outcomes. Statistics in
Medicine, 19, 3417–3432.

Woolf, B. (1955). On estimating the relationship between blood group and disease. Annals of
Human Genetics, 19, 251–253.

Zeger, S. L., Liang, K.-Y., & Albert, P. S. (1988). Models for longitudinal data: a generalized
estimation equation approach. Biometrics, 44, 1049–1060.


	Robustness and Complex Data Structures
	Foreword
	Preface
	Contents

	Part I: Univariate and Multivariate Robust Methods
	Chapter 1: Multivariate Median
	1.1 Introduction
	1.2 Univariate Median
	Computation
	Robustness
	Asymptotic Efﬁciency
	Estimation of the Variance of the Estimate
	Equivariance
	Location M-estimates
	Other Families of Location Estimates

	1.3 Vector of Marginal Medians
	Computation of the Estimate
	Robustness of the Estimate
	Asymptotic Efﬁciency of the Estimate
	Estimation of the Covariance Matrix of the Estimate
	Afﬁne Equivariance of the Estimate
	Transformation-Retransformation (TR) Estimate

	1.4 Spatial Median
	Computation of the Estimate
	Robustness of the Estimate
	Asymptotic Efﬁciency of the Estimate
	Estimation of the Covariance Matrix of the Estimate
	Afﬁne Equivariance of the Estimate
	Transformation-Retransformation (TR) Estimate

	1.5 Oja Median
	Computation of the Estimate
	Robustness of the Estimate
	Asymptotic Efﬁciency of the Estimate
	Estimation of the Covariance Matrix of the Estimate
	Afﬁne Equivariance of the Estimate

	1.6 Other Medians
	1.7 Conclusions
	References

	Chapter 2: Depth Statistics
	2.1 Introduction
	2.2 Basic Concepts
	2.2.1 Postulates on a Depth Statistic
	2.2.2 Central Regions and Outliers
	2.2.3 Depth Lifts, Stochastic Orderings, and Metrics

	2.3 Multivariate Depth Functions
	2.3.1 Depths Based on Distances
	L2-Depth
	Mahalanobis Depths
	Projection Depth
	Oja Depth

	2.3.2 Weighted Mean Depths
	Zonoid Depth
	Expected Convex Hull Depth
	Geometrical Depth

	2.3.3 Depths Based on Halfspaces and Simplices
	Location Depth
	Simplicial Depth


	2.4 Functional Data Depth
	Phi-Depth
	Graph Depths
	Grid Depths

	2.5 Computation of Depths and Central Regions
	2.6 Conclusions
	References

	Chapter 3: Multivariate Extremes: A Conditional Quantile Approach
	3.1 Introduction
	3.2 Preliminaries
	3.3 Weak Stability of Multivariate Extremes and Outlier-Resistance
	3.4 Records for a Multidimensional Sequence
	3.5 Weak Stability of Multivariate Records
	3.6 Conclusions
	References

	Chapter 4: High-Breakdown Estimators of Multivariate Location and Scatter
	4.1 Introduction
	4.2 Classical Estimators
	4.3 Multivariate M-Estimators
	4.4 Minimum Covariance Determinant Estimator
	4.4.1 Deﬁnition and Properties
	4.4.2 Computation

	4.5 Other High-Breakdown Afﬁne Equivariant Estimators
	4.5.1 The Stahel-Donoho Estimator
	4.5.2 The MVE Estimator
	4.5.3 S-Estimators
	4.5.4 MM-Estimators

	4.6 Robust Non Afﬁne Equivariant Estimators
	4.6.1 Coordinatewise Median
	4.6.2 Spatial Median and Spatial Sign Covariance Matrix
	4.6.3 The OGK Estimator
	4.6.4 Deterministic MCD Algorithm

	4.7 Conclusions
	References

	Chapter 5: Upper and Lower Bounds for Breakdown Points
	5.1 Introduction
	5.2 Deﬁnitions of Finite Sample Breakdown Points
	5.3 A General Upper Bound
	5.4 Example: Multivariate Regression
	5.4.1 Estimation of a Linear Aspect of the Regression Parameters
	5.4.1.1 Location Model
	5.4.1.2 Univariate Regression

	5.4.2 Scatter Estimation
	5.4.2.1 Location Model
	5.4.2.2 Univariate Regression


	5.5 A General Lower Bound for Some Estimators
	5.6 Example: Regression
	5.6.1 Multivariate Regression
	5.6.2 Univariate Regression with Simultaneous Scale Estimation

	5.7 Conclusions
	References

	Chapter 6: The Concept of alpha-Outliers in Structured Data Situations
	6.1 Introduction
	6.2 The Concept of alpha-Outliers
	6.3 Detection of alpha-Outliers
	6.4 Outliers in Regression
	6.5 Outliers in Contingency Tables
	6.5.1 Outliers in Multinomial Models
	6.5.2 Outliers in Poisson Models

	6.6 Outliers in Graphical Models
	6.7 Conclusions
	References

	Chapter 7: Multivariate Outlier Identiﬁcation Based on Robust Estimators of Location and Scatter
	7.1 Introduction
	7.2 The Identiﬁcation of Outliers
	7.2.1 Distance Based Outlier Identiﬁcation
	7.2.2 The Main Body of the Data: Robust Subset Selection

	7.3 Flood Algorithm
	7.4 Pruned Minimum Spanning Tree
	7.5 RDELA Algorithm
	7.6 Conclusions
	References

	Chapter 8: Robustness for Compositional Data
	8.1 Introduction
	8.2 Geometrical Properties of Compositional Data
	8.3 Multivariate Statistical Methods for Compositional Data
	8.3.1 Outlier Detection
	8.3.2 Principal Component Analysis and the Compositional Biplot
	8.3.3 Correlation Analysis
	8.3.4 Discriminant Analysis

	8.4 Example
	8.5 Conclusions
	References


	Part II: Regression and Time Series Analysis
	Chapter 9: Least Squares Estimation in High Dimensional Sparse Heteroscedastic Models
	9.1 Introduction
	9.2 Penalized Least Squares Estimators
	9.2.1 Bridge Regression
	9.2.2 Lasso and Adaptive Lasso

	9.3 Penalizing Estimation Under Heteroscedasticity
	9.3.1 Ordinary Penalized Least Squares Estimators
	9.3.2 Weighted Penalized Least Squares Estimators
	Weighted Lasso
	Weighted Adaptive Lasso
	Weighted Bridge Estimation


	9.4 Finite Sample Properties
	9.5 Conclusions
	References

	Chapter 10: Bayesian Smoothing, Shrinkage and Variable Selection in Hazard Regression
	10.1 Introduction
	10.2 Survival Models and Likelihoods
	10.3 Shrinkage and Smoothness Priors
	10.3.1 Ridge Prior
	10.3.2 Lasso Prior
	10.3.3 Normal Mixture of Inverse Gamma Prior
	10.3.4 Variable Selection
	10.3.5 Smoothness Priors

	10.4 Posterior Inference
	10.5 Simulations
	10.6 Application to AML Data
	10.7 Conclusions
	References

	Chapter 11: Robust Change Point Analysis
	11.1 Introduction
	11.2 M-Procedures for Detection of a Change in Regression
	11.2.1 Formulation of the Problem and Procedures
	11.2.2 Assumptions and Theoretical Results

	11.3 Robust Estimators of a Change
	11.4 Miscellaneous
	11.4.1 Sequential Robust Procedures
	11.4.2 Rank Based Procedures

	11.5 Conclusions
	References

	Chapter 12: Robust Signal Extraction from Time Series in Real Time
	12.1 Introduction
	12.2 Location-Based Signal Extraction
	12.3 Regression-Based Signal Extraction
	12.4 RM-Based Filters with Data-Adaptive Width Selection
	12.4.1 The aoRM
	12.4.2 The SCARM
	12.4.3 Application

	12.5 RM-Based Filters for Multivariate Time Series
	12.5.1 The TRM-LS
	12.5.2 The aoTRM-LS

	12.6 Conclusions
	References

	Chapter 13: Robustness in Time Series: Robust Frequency Domain Analysis
	13.1 Introduction
	13.2 Methods
	13.2.1 Classical Spectral Density Estimation
	13.2.1.1 The Spectral Representation Theorem
	13.2.1.2 Nonparametric Estimation
	13.2.1.3 Parametric Estimation
	13.2.1.4 Semi-Parametric Estimation

	13.2.2 Robust Spectral Density Estimation
	13.2.2.1 Robust Prewhitening
	13.2.2.2 The Robust Filter-Cleaner Algorithm

	13.2.3 Small Simulation Study

	13.3 Application
	13.3.1 Analysis of Heart Rate Variability
	13.3.2 Results

	13.4 Conclusions
	References

	Chapter 14: Robustness in Statistical Forecasting
	14.1 Introduction
	14.2 Distortions of Hypothetical Models for Time Series
	14.3 Robustness Characteristics in Forecasting
	14.4 Robustness in Forecasting Under Distorted Regression Models
	14.4.1 Robustness of the LS Forecasting Under Additive Outliers
	14.4.2 Robustiﬁcation by Huber Estimator
	14.4.3 Local-Median Robust Forecasting Statistic
	14.4.4 Nonparametric Distortions of Regression Functions

	14.5 Robustness in Forecasting Under Distorted Autoregression Models
	14.5.1 Misspeciﬁcation of Autoregression Coefﬁcients
	14.5.2 Distortions of Innovation Process
	14.5.3 Bilinear Distortions of AR(p)

	14.6 Conclusions
	References

	Chapter 15: Finding Outliers in Linear and Nonlinear Time Series
	15.1 Introduction
	15.2 Outliers in ARIMA Models
	15.2.1 Types of Outliers in ARIMA Models
	15.2.1.1 The ARIMA Model
	15.2.1.2 Additive Outliers
	15.2.1.3 Innovative Outliers
	15.2.1.4 Level Shifts
	15.2.1.5 Temporary Changes
	15.2.1.6 Ramp Shifts

	15.2.2 Outlier Identiﬁcation and Estimation

	15.3 Outliers in Nonlinear Time Series Models
	15.3.1 Outliers in a General Nonlinear Model
	15.3.2 Outliers in GARCH Models
	15.3.3 Outliers in INGARCH Models

	15.4 Outliers in Multivariate Time Series Models
	15.4.1 The Tsay, Peña and Pankratz Procedure
	15.4.2 The Galeano, Peña and Tsay Procedure

	15.5 Conclusions
	References


	Part III: Complex Data Structures
	Chapter 16: Qualitative Robustness of Bootstrap Approximations for Kernel Based Methods
	16.1 Introduction
	16.2 Some Tools
	16.3 On Qualitative Robustness of Bootstrap Estimators
	16.4 On Qualitative Robustness of Bootstrap SVMs
	16.5 Conclusions
	References

	Chapter 17: Some Machine Learning Approaches to the Analysis of Temporal Data
	17.1 Introduction
	17.2 Support Vector Machines
	17.2.1 Support Vector Models of Time Series
	17.2.2 Intensive Care-A Case Study
	Learning State-Action Rules


	17.3 Temporal Databases-An Insurance Case Study
	17.4 Classifying Time Series-A Music Mining Case Study
	17.5 Logic Rules and Concept Shift-A Business Cycles Case Study
	Analyzing Concept Shift by Frequent Sets

	17.6 Logic-Based Learning and Streams-A Case Study in Robotics
	17.7 Streaming Data Analysis-A Very Early Algorithm
	17.8 Conclusions
	References

	Chapter 18: Correlation, Tail Dependence and Diversiﬁcation
	18.1 Introduction
	18.2 A Short Review of Risk Measures
	18.3 A Short Review of Copulas
	18.4 Correlation and Diversiﬁcation
	18.5 Tail Dependence and Diversiﬁcation
	18.6 Conclusions
	References

	Chapter 19: Evidence for Alternative Hypotheses
	19.1 Introduction
	Prototypical Example
	19.1.1 Desirable Properties of Statistical Evidence
	19.1.2 Key Inferential Function

	19.2 Connection to the Kullback-Leibler Divergence
	19.2.1 Example 1: Normal Model
	19.2.2 Result for Exponential Families
	19.2.3 Example 2: Poisson Model

	19.3 Non-central Chi-Squared Family
	19.3.1 Comparing the KLD with the Key
	19.3.2 Tests for the Non-centrality Parameter
	19.3.3 Between Group Sum of Squares (for Known Variance)
	Conﬁdence Intervals for the Non-centrality Parameter


	19.4 Conclusions
	References

	Chapter 20: Concepts and a Case Study for a Flexible Class of Graphical Markov Models
	20.1 Introduction
	20.2 Several Preliminary Considerations
	20.3 Some History of Graphical Markov Models
	20.4 Sequences of Regressions and Their Regression Graphs
	20.4.1 Explanations and Deﬁnitions
	20.4.2 Constructing the Regression Graph via Statistical Analyses
	20.4.3 Using a Well-Fitting Graph

	20.5 Conclusions
	References

	Chapter 21: Data Mining in Pharmacoepidemiological Databases
	21.1 Introduction
	21.2 Methods
	21.2.1 Frequentistic Risk Measures
	21.2.2 Bayesian Shrinkage-The Gamma-Poisson Shrinker
	21.2.3 Extension to Longitudinal Data

	21.3 Application of a Bayesian Shrinkage Algorithm-Study on Bleeding Risk Under Phenprocoumon
	21.3.1 Results Obtained from the Data Mining Tool
	21.3.2 Comparison

	21.4 Conclusions
	References

	Chapter 22: Meta-Analysis of Trials with Binary Outcomes
	22.1 Introduction
	22.2 Model and Methods
	22.2.1 A Logistic Gaussian Mixed Model
	Fixed and Random Effects Meta-Analysis
	Subject Speciﬁc Versus Population Averaged Approaches

	22.2.2 The Univariate Model for Meta-Analysis
	22.2.3 Statistical Methods for Meta-Analysis
	Univariate Meta-Analysis
	Bivariate Meta-Analysis

	22.2.4 Simulation

	22.3 Results
	22.3.1 Computational Issues
	22.3.2 Bias
	22.3.3 Coverage

	22.4 Conclusions
	References



