

New Geometric Data Structures for Collision
Detection and Haptics

Springer Series on Touch and Haptic Systems

Series Editors

Manuel Ferre
Marc O. Ernst
Alan Wing

Series Editorial Board

Carlo A. Avizzano
José M. Azorín
Soledad Ballesteros
Massimo Bergamasco
Antonio Bicchi
Martin Buss
Jan van Erp
Matthias Harders
William S. Harwin
Vincent Hayward
Juan M. Ibarra
Astrid Kappers
Abderrahmane Kheddar
Miguel A. Otaduy
Angelika Peer
Jerome Perret
Jean-Louis Thonnard

For further volumes:
www.springer.com/series/8786

http://www.springer.com/series/8786

René Weller

New Geometric
Data Structures
for Collision
Detection and
Haptics

René Weller
Department of Computer Science
University of Bremen
Bremen, Germany

ISSN 2192-2977 ISSN 2192-2985 (electronic)
Springer Series on Touch and Haptic Systems
ISBN 978-3-319-01019-9 ISBN 978-3-319-01020-5 (eBook)
DOI 10.1007/978-3-319-01020-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013944756

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Dedicated to my parents

Series Editors’ Foreword

This is the eighth volume of the “Springer Series on Touch and Haptic Systems”,
which is published in collaboration between Springer and the EuroHaptics Soci-
ety.

New Geometric Data Structures for Collision Detection and Haptics is focused
on solving the collision detection problem effectively. This volume represents a
strong contribution to improving algorithms and methods that evaluate simulated
collisions in object interaction. This topic has a long tradition going back to the be-
ginning of computer graphical simulations. Currently, there are new hardware and
software tools that can solve computations much faster. From the haptics point of
view, collision detection frequency update is a critical aspect to consider since real-
ism and stability are strongly related to the capability of checking collisions in real
time.

Dr. René Weller has received the EuroHaptics 2012 Ph.D. award. In recognition
of this award, he was invited to publish his work in the Springer Series on Touch
and Haptic Systems. Weller’s thesis was selected from among many other excellent
theses defended around the world in 2012. We believe that, with the publication of
this volume, the “Springer Series on Touch and Haptic Systems” is continuing to set
out cutting edge topics that demonstrate the vibrancy of the field of haptics.

Manuel Ferre
Marc Ernst
Alan Wing

April 2013

vii

Preface

Collision detection is a fundamental problem in many fields of computer science,
including physically-based simulation, path-planning and haptic rendering. Many
algorithms have been proposed in the last decades to accelerate collision queries.
However, there are still some open challenges: For instance, the extremely high fre-
quencies that are required for haptic rendering. In this book we present a novel
geometric data structure for collision detection at haptic rates between arbitrary
rigid objects. The main idea is to bound objects from the inside with a set of non-
overlapping spheres. Based on such sphere packings, an “inner bounding volume
hierarchy” can be constructed. Our data structure that we call Inner Sphere Trees
supports different kinds of queries; namely proximity queries as well as time of im-
pact computations and a new method to measure the amount of interpenetration,
the penetration volume. The penetration volume is related to the water displacement
of the overlapping region and thus, corresponds to a physically motivated force.
Moreover, these penalty forces and torques are continuous both in direction and
magnitude.

In order to compute such dense sphere packings, we have developed a new algo-
rithm that extends the idea of space filling Apollonian sphere packings to arbitrary
objects. Our method relies on prototype-based approaches known from machine
learning and leads to a parallel algorithm. As a by-product our algorithm yields an
approximation of the object’s medial axis that has applications ranging from path-
planning to surface reconstruction.

Collision detection for deformable objects is another open challenge, because
pre-computed data structures become invalid under deformations. In this book, we
present novel algorithms for efficiently updating bounding volume hierarchies of
objects undergoing arbitrary deformations. The event-based approach of the kinetic
data structures framework enables us to prove that our algorithms are optimal in the
number of updates. Additionally, we extend the idea of kinetic data structures even
to the collision detection process itself. Our new acceleration approach, the kinetic
Separation-List, supports fast continuous collision detection of deformable objects
for both, pairwise and self-collision detection.

ix

x Preface

In order to guarantee a fair comparison of different collision detection algorithms
we propose several new methods both in theory and in the real world. This includes
a model for the theoretic running time of hierarchical collision detection algorithms
and an open source benchmarking suite that evaluates both the performance as well
as the quality of the collision response.

Finally, our new data structures enabled us to realize some new applications. For
instance, we adopted our sphere packings to define a new volume preserving de-
formation scheme, the sphere-spring system, that extends the classical mass-spring
systems. Furthermore, we present an application of our Inner Sphere Trees to real-
time obstacle avoidance in dynamic environments for autonomous robots, and last
but not least we show the results of a comprehensive user study that evaluates the
influence of the degrees of freedom on the users performance in complex bi-manual
haptic interaction tasks.

René WellerBremen, Germany
March 2013

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Gabriel Zachmann. He
always helped with precious advices, comments and insightful discussions.

I also would like to express my gratitude to Prof. Dr. Andreas Weber for accept-
ing the co-advisorship.

Obviously, thanks go to all scientific and industrial collaborators for the fruitful
joint work, namely, Dr. Jan Klein from Fraunhofer MEVIS, Mikel Sagardia, Thomas
Hulin and Carsten Preusche from DLR, and Marinus Danzer and Uwe Zimmermann
from KUKA Robotics Corp. Special thanks to Dr. Jérôme Perret of Haption for
lending us the 6 DOF devices for our user study and the demonstration at the JVRC
2010.

I would also like to thank all my students for their efforts (roughly in chrono-
logical order): Sven Trenkel, Jörn Hoppe, Stephan Mock, Stefan Thiele, Weiyu Yi,
Yingbing Hua and Jörn Teuber.

Almost all members of the Department of Computer Science of the Clausthal
University contributed to this work, whether they realized it or not. I always enjoyed
the very friendly atmosphere and interesting discussions. In particular, I would like
to thank the members of the computer graphics group David Mainzer and Daniel
Mohr but also my colleagues from the other groups, especially (in no particular
order) Jens Drieseberg, René Fritzsche, Sascha Lützel, Dr. Nils Bulling, Michael
Köster, Prof. Dr. Barbara Hammer, Dr. Alexander Hasenfuss, Dr. Tim Winkler, Sven
Birkenfeld and Steffen Harneit.

Last but not least, I would like to thank my sister Dr. Simone Pagels for designing
the cute haptic goddess and Iris Beier and Jens Reifenröther for proofreading parts
of my manuscript (Obviously, only those parts that are now error-free).

xi

Contents

Part I That Was Then, This Is Now

1 Introduction . 3
1.1 Contributions . 4
References . 7

2 A Brief Overview of Collision Detection 9
2.1 Broad Phase Collision Detection 12
2.2 Narrow Phase Basics . 13
2.3 Narrow Phase Advanced: Distances, Penetration Depths

and Penetration Volumes . 18
2.3.1 Distances . 18
2.3.2 Continuous Collision Detection 19
2.3.3 Penetration Depth . 21
2.3.4 Penetration Volume . 22

2.4 Time Critical Collision Detection 22
2.4.1 Collision Detection in Haptic Environments 24

2.5 Collision Detection for Deformable Objects 26
2.5.1 Excursus: GPU-Based Methods 29

2.6 Related Fields . 30
2.6.1 Excursus: Ray Tracing . 30

References . 31

Part II Algorithms and Data Structures

3 Kinetic Data Structures for Collision Detection 49
3.1 Recap: Kinetic Data Structures 51
3.2 Kinetic Bounding Volume Hierarchies 52

3.2.1 Kinetic AABB-Tree . 53
3.2.2 Kinetic BoxTree . 59
3.2.3 Dead Ends . 63

xiii

xiv Contents

3.3 Kinetic Separation-List . 66
3.3.1 Kinetization of the Separation-List 66
3.3.2 Analysis of the Kinetic Separation-List 70
3.3.3 Self-collision Detection 73
3.3.4 Implementation Details 73

3.4 Event Calculation . 75
3.5 Results . 77
3.6 Conclusion and Future Work . 83

3.6.1 Future Work . 85
References . 88

4 Sphere Packings for Arbitrary Objects 91
4.1 Related Work . 92

4.1.1 Polydisperse Sphere Packings 93
4.1.2 Apollonian Sphere Packings 94
4.1.3 Sphere Packings for Arbitrary Objects 94
4.1.4 Voronoi Diagrams of Spheres 95

4.2 Voxel-Based Sphere Packings . 96
4.3 Protosphere: Prototype-Based Sphere Packings 98

4.3.1 Apollonian Sphere Packings for Arbitrary Objects 99
4.3.2 Parallelization . 103
4.3.3 Results . 105

4.4 Conclusions and Future Work . 105
4.4.1 Future Work . 107

References . 109

5 Inner Sphere Trees . 113
5.1 Sphere Packings . 114
5.2 Hierarchy Creation . 115

5.2.1 Batch Neural Gas Hierarchy Clustering 115
5.3 Traversal Algorithms . 120

5.3.1 Distances . 121
5.3.2 Penetration Volume . 122
5.3.3 Unified Algorithm for Distance and Volume Queries 125
5.3.4 Time-Critical Distance and Volume Queries 126
5.3.5 Continuous Collision Detection 128

5.4 Continuous Volumetric Collision Response 130
5.4.1 Contact Forces . 133
5.4.2 Torques . 134

5.5 Excursus: Volumetric Collision Detection with Tetrahedral
Packings . 135

5.6 Results . 136
5.7 Conclusions and Future Work . 138

5.7.1 Future Work . 141
References . 143

Contents xv

Part III Evaluation and Application

6 Evaluation and Analysis of Collision Detection Algorithms 147
6.1 Related Work . 148

6.1.1 Theoretical Analysis . 148
6.1.2 Performance Benchmarks 149
6.1.3 Quality Benchmarks . 150

6.2 Theoretical Analysis . 150
6.2.1 Analyzing Simultaneous Hierarchy Traversals 152
6.2.2 Probability of Box Overlap 154
6.2.3 Experimental Support . 156
6.2.4 Application to Time-Critical Collision Detection 159

6.3 Performance Benchmark . 160
6.3.1 Benchmarking Scenarios 162
6.3.2 Benchmarking Procedure 166
6.3.3 Implementation . 166
6.3.4 Results . 169

6.4 Quality Benchmark . 176
6.4.1 Force and Torque Quality Benchmark 178
6.4.2 Benchmarking Scenarios 178
6.4.3 Evaluation Method . 180
6.4.4 Equivalent Resolutions for Comparing Different

Algorithms . 181
6.4.5 Results . 182

6.5 Conclusion and Future Work . 186
6.5.1 Future Work . 189

References . 190

7 Applications . 193
7.1 Related Work . 194

7.1.1 General Deformation Models of Deformable Objects 194
7.1.2 Hand Animation . 195
7.1.3 Obstacle Avoidance in Robotics 196
7.1.4 Evaluation of Haptic Interactions 197

7.2 Sphere–Spring Systems and Their Application to Hand
Animation . 199
7.2.1 Sphere–Spring System . 199
7.2.2 Parallelization of the Sphere–Spring System 203
7.2.3 Application to a Virtual Human Hand Model 204
7.2.4 Results . 205

7.3 Real-Time Obstacle Avoidance in Dynamic Environments 207
7.3.1 The Scenario . 208
7.3.2 Accelerating Distance Queries for Point Clouds 208
7.3.3 Results . 211

xvi Contents

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic
Interactions . 213
7.4.1 Haptesha—A Multi-user Haptic Workspace 215
7.4.2 The Design of the Study: A Haptic Game 216
7.4.3 The User Study . 219

7.5 Conclusions and Future Work . 226
7.5.1 Future Work . 227

References . 228

Part IV Every End Is Just a New Beginning

8 Epilogue . 235
8.1 Summary . 235
8.2 Future Directions . 237

8.2.1 Parallelization . 238
8.2.2 Point Clouds . 238
8.2.3 Natural Interaction . 238
8.2.4 Haptics . 239
8.2.5 Global Illumination . 239
8.2.6 Sound Rendering . 240

Part I
That Was Then, This Is Now

Chapter 1
Introduction

The degree of realism of interactive computer simulated environments has increased
significantly during the past decades. Stunning improvements in visual and audible
presentations have emerged. Real-time tracking systems that were hidden in a hand-
ful of VR laboratories just a few years ago can be found in every child’s room
today. These novel input technologies, like Nintendo’s Wii, Sony’s Move or Mi-
crosoft’s Kinect have opened a completely new, more natural way of interaction in
3D environments to a wide audience.

However, an immersive experience in interactive virtual environments requires
not only realistic sounds, graphics and interaction metaphors, but also plausible be-
havior of the objects that we interact with. For instance, if objects in the real world
interact, i.e. if they collide, they may bounce off each other or break into pieces
when they are rigid. In case of non-rigidity, they deform. Obviously, we expect a
similar behavior in computer simulated environments.

In fact, psychophysical experiments on perception have shown that we quickly
feel distracted by unusual physical behavior [16], predominantly by visual cues [17].
For instance, O’Sullivan and Dingliana [15] showed that a time delay between a col-
lision and its response reduces the perception of causality significantly. Fortunately,
further experiments suggest that we do not compute Newtons’ laws of motion ex-
actly when interacting with the world, but judgments about collision are usually
made by heuristics based on the objects’ kinematic data [8]. Consequently, it is suf-
ficient to provide physically plausible instead of physically correct behavior [1].

However, in a computer generated world, objects are usually represented by an
abstract geometric model. For instance, we approximate their surfaces with poly-
gons or describe them by mathematical functions, like NURBS. Such abstract rep-
resentations have no physical properties per se. In fact, they would simply float
through each other. Therefore, we have to add an appropriate algorithmic handling
of contacts.

In detail, we first have to find contacts between moving objects. This process is
called collision detection. In a second step, we have to resolve these collisions in a
physically plausible manner. We call this the collision response.

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_1,
© Springer International Publishing Switzerland 2013

3

http://dx.doi.org/10.1007/978-3-319-01020-5_1

4 1 Introduction

Fig. 1.1 The intersection of
two Chazelle polyhedra is a
worst case for collision
detection algorithms

This fundamental technique is not restricted to interactive physics-based real-
time simulations that are widely used in computer graphics [3], computer games [2],
virtual reality [6] or virtual assembly tasks [10]. Actually, it is needed for all those
tasks involving the simulated motion of objects that are not allowed to penetrate
one another. This includes real-time animations [5] as well as animations in CGI
movies [12], but also applications in robotics where collision detection helps to
avoid obstacles [4] and self-collisions between parts of a robot [11]. Moreover, it is
required for path planning [13], molecular docking tasks [18] and multi-axis NC-
machining [9] to name but a few.

This wide spectrum of different applications to collision detection is evidence
that there has already been done some research on this topic. Actually, hundreds,
if not thousands, of different research papers have been written about solutions to
collision detection problems in the last decades. For instance, a Google-Scholar
query for the phrase “collision detection” lists more than 44 000 results.

Obviously, this raises several questions:

• What makes the detection of collisions so difficult that there has had to be done
so much work on it?

• Is there still room for improvements? Or has everything already been told about
this topic?

In the next section, we will answer these questions and outline our contributions
to the field of collision detection as presented in this book.

1.1 Contributions

Actually, it turns out that finding collisions between geometric objects is a very
complicated problem. In most of the applications mentioned above, collision detec-
tion is, due to its inherent complexity, the computational bottleneck. Just think of
two objects in a polygonal surface representation, each of them being modeled by
n polygons. A brute-force approach for a collision detection algorithm could be to
simply test each polygon of one object against each polygon of the other object.

1.1 Contributions 5

This results in a complexity of O(n2). Actually, if the objects are of bad shape it is
possible to construct configurations with O(n2) colliding polygons (see Fig. 1.1).1

These cases seem to be artificial and may not occur very often in practically rele-
vant situations. In fact, in Chap. 6 we present a new theoretic model to estimate the
average running-time of collision detection algorithms by tracking only a few sim-
ple parameters. For many real-world scenarios we could prove the complexity to be
O(n logn). However, collision detection algorithms have to handle also worst cases
correctly. Thus, the theoretical complexity of most collision detection algorithms is
in the worst case O(n2).

Most collision detection algorithms are based on some clever data structures that
provide an output sensitive acceleration of collision detection queries. In Chap. 2,
we give an overview of classical and recent developments in this field.

Usually, these data structures are built in a time consuming pre-processing step.
Unfortunately, if the objects are not rigid, i.e. the objects deform over time, these
pre-computed data structures become invalid and must be re-computed or updated.
Almost all previous collision detection approaches did this on a per-frame basis,
and this means that they update their underlying data structures before each colli-
sion query. Obviously, this is very time consuming, and this is one reason for the
restriction of deformable objects to a relatively low object resolution.

In Chap. 3 we present several new methods that are able to update such accel-
eration data structure independently of the query frequency. Moreover, we prove a
lower bound of O(n logn) on the number of necessary updates, and we show that
our new data structures do not exceed this lower bound. Consequently, our data
structures are optimal in the number of updates.

However, finding collisions is only one side of the coin. As mentioned above,
collisions must also be resolved during the collision handling process. In order to
compute physically plausible collision responses, some kind of contact data is re-
quired that must be delivered by the collision detection algorithm. Basically, there
exist four different kinds of contact information that can be used by different col-
lision response solvers: we can either track the minimum distances between pairs
of objects, we can determine the exact time of impact, we can define a minimum
translational vector to separate the objects, the so-called penetration depth, or we
can compute the penetration volume (see Fig. 1.2). We will discuss the advantages
and disadvantages of the different penetration measures in more detail in Chap. 2.

According to Fisher and Lin [7, Sect. 5.1], the penetration volume is “the most
complicated yet accurate method” to define the extent of an intersection. However,
to our knowledge, there are no algorithms to compute it in real time for a reasonable
number of polygons, i.e. more than a dozen of polygons, as yet.

In Chap. 5 we contribute the first data structure, the so-called Inner Sphere Trees,
which yields an approximation of the penetration volume for objects consisting of
hundreds of thousands of polygons. Moreover, we could not only achieve visual

1By the way, Chazelle’s polyhedron also has other interesting properties: for instance, it requires
O(n2) additional Steiner points for its tetrahedrization.

6 1 Introduction

Fig. 1.2 Different penetration measures

real-time, but our data structure is also applicable to haptic rendering. Actually, in-
tegrating force feedback into interactive real-time virtual environments causes addi-
tional challenges: for a smooth visual sensation, update rates of 30 Hz are sufficient.
But the temporal resolution of the human tactile sense is much higher. In fact, haptic
rendering requires an update frequency of 1000 Hz for hard surfaces to be felt as
realistic [14].

Our Inner Sphere Trees gain their efficiency from filling the objects’ interior with
sets of non-overlapping spheres. Surprisingly, there does not exist any algorithm that
could compute such sphere packings yet. Consequently, we have developed a new
method that we present in Chap. 4. Basically, it extends the idea of space-filling
Apollonian sphere packings to arbitrary objects. Therefore, we used a prototype-
based approach that can easily be parallelized. It turns out that our new algorithm
has some amazing side-effects: for instance, it yields an approximation of an object’s
medial axis in nearly real time.

In Chap. 7 we present some applications of our new data structures that were
hardly realizable without them. More precisely, we propose a new method to sim-
ulate volume preserving deformable objects, the Sphere–Spring systems, based on
our sphere packings. Moreover, we applied our Inner Sphere Trees to real-time col-
lision avoidance for autonomous moving robots. Finally, we have implemented a
haptic workspace that allows simultaneous bi-manual haptic interaction for multi-
ple users in complex scenarios. We used this workspace to investigate the influence
of the degrees of freedom of haptic devices in demanding bi-manual haptic tasks.

References 7

However, our data structures are still not an all-in-one solution that is suitable
for every purpose. They also have their drawbacks; e.g. our Inner Sphere Trees
are, until now, restricted to watertight objects. Hence, also other collision detec-
tion approaches have a right to exist. However, a programmer who wants to inte-
grate collision detection into his application still has to choose from hundreds of
different approaches. Obviously, this is almost impossible without studying the lit-
erature for years. But even for experts it is hard to judge the performance of collision
detection algorithms correctly by reading research papers, because almost every re-
searcher presents his results with only certain, well chosen, scenarios. As a remedy,
we have developed a standardized benchmarking suite for collision detection algo-
rithms, which we present in Chap. 6. It allows a fair and realistic comparison of
different algorithms for a broad spectrum of interesting contact scenarios and many
different objects. Moreover, we included a benchmark to compare also the quality
of the forces and torques of collision response schemes.

References

1. Barzel, R., Hughes, J. F., & Wood, D. N. (1996). Plausible motion simulation for computer
graphics animation. In Proceedings of the eurographics workshop on computer animation
and simulation ’96 (pp. 183–197). New York: Springer. ISBN3-211-82885-0. URL http://
dl.acm.org/citation.cfm?id=274976.274989.

2. Bishop, L., Eberly, D., Whitted, T., Finch, M., & Shantz, M. (1998). Designing a pc game
engine. IEEE Computer Graphics and Applications, 18(1), 46–53.

3. Bouma, W. J., & Vanecek, G. Jr. (1991). Collision detection and analysis in a physically based
simulation. In Eurographics workshop on animation and simulation (pp. 191–203).

4. Chakravarthy, A., & Ghose, D. (1998). Obstacle avoidance in a dynamic environment: a col-
lision cone approach. IEEE Transactions on Systems, Man and Cybernetics, Part A, 28(5),
562–574.

5. Cordier, F., & Magnenat Thalmann, N. (2002). Real-time animation of dressed virtual humans.
Computer Graphics Forum, 21(3), 327–335.

6. Eckstein, J., & Schömer, E. (1999). Dynamic collision detection in virtual reality ap-
plications. In V. Skala (Ed.), WSCG’99 conference proceedings. URL citeseer.ist.psu.edu/
eckstein99dynamic.html.

7. Fisher, S., & Lin, M. (2001). Fast penetration depth estimation for elastic bodies using de-
formed distance fields. In Proc. international conf. on intelligent robots and systems (IROS)
(pp. 330–336).

8. Gilden, D. L., & Proffitt, D. R. (1989). Understanding collision dynamics. Journal of Experi-
mental Psychology. Human Perception and Performance, 15, 372–383.

9. Ilushin, O., Elber, G., Halperin, D., Wein, R., & Kim, M.-S. (2005). Precise global collision
detection in multi-axis nc-machining. Computer Aided Design, 37(9), 909–920. doi:10.1016/
j.cad.2004.09.018.

10. Kim, H. S., Ko, H., Lee, K., & Lee, C.-W. (1995). A collision detection method for real
time assembly simulation. In IEEE international symposium on assembly and task planning
(Vol. 0:0387). doi:10.1109/ISATP.1995.518799.

11. Kuffner, J., Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., & Inoue, H. (2002). Self-
collision detection and prevention for humanoid robots. In Proceedings of the IEEE interna-
tional conference on robotics and automation (pp. 2265–2270).

12. Lafleur, B., Magnenat Thalmann, N., & Thalmann, D. (1991). Cloth animation with self-
collision detection. In Proc. of the conf. on modeling in comp. graphics (pp. 179–187). Berlin:
Springer.

http://dl.acm.org/citation.cfm?id=274976.274989
http://dl.acm.org/citation.cfm?id=274976.274989
http://citeseer.ist.psu.edu/eckstein99dynamic.html
http://citeseer.ist.psu.edu/eckstein99dynamic.html
http://dx.doi.org/10.1016/j.cad.2004.09.018
http://dx.doi.org/10.1016/j.cad.2004.09.018
http://dx.doi.org/10.1109/ISATP.1995.518799

8 1 Introduction

13. LaValle, S. M. (2004). Planning algorithms.
14. Mark, W. R., Randolph, S. C., Finch, M., Van Verth, J. M., & Taylor, R. M. II (1996).

Adding force feedback to graphics systems: issues and solutions. In Proceedings of the
23rd annual conference on computer graphics and interactive techniques, SIGGRAPH ’96
(pp. 447–452). New York: ACM. ISBN 0-89791-746-4. doi:10.1145/237170.237284. URL
http://doi.acm.org/10.1145/237170.237284.

15. O’Sullivan, C., & Dingliana, J. (2001). Collisions and perception. ACM Transactions on
Graphics, 20(3), 151–168. doi:10.1145/501786.501788. URL http://doi.acm.org/10.1145/
501786.501788.

16. O’Sullivan, C., Dingliana, J., Giang, T., & Kaiser, M. K. (2003). Evaluating the visual fidelity
of physically based animations. ACM Transactions on Graphics, 22(3), 527–536. doi:10.1145/
882262.882303. URL http://doi.acm.org/10.1145/882262.882303.

17. Reitsma, P. S. A., & O’Sullivan, C. (2008). Effect of scenario on perceptual sensitivity to
errors in animation. In Proceedings of the 5th symposium on applied perception in graphics
and visualization, APGV ’08 (pp. 115–121). New York: ACM. ISBN 978-1-59593-981-4.
doi:10.1145/1394281.1394302. URL http://doi.acm.org/10.1145/1394281.1394302.

18. Turk, G. (1989). Interactive collision detection for molecular graphics (Technical re-
port). University of North Carolina at Chapel Hill. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.93.4927.

http://dx.doi.org/10.1145/237170.237284
http://doi.acm.org/10.1145/237170.237284
http://dx.doi.org/10.1145/501786.501788
http://doi.acm.org/10.1145/501786.501788
http://doi.acm.org/10.1145/501786.501788
http://dx.doi.org/10.1145/882262.882303
http://dx.doi.org/10.1145/882262.882303
http://doi.acm.org/10.1145/882262.882303
http://dx.doi.org/10.1145/1394281.1394302
http://doi.acm.org/10.1145/1394281.1394302
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.4927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.4927

Chapter 2
A Brief Overview of Collision Detection

In this chapter we will provide a short overview on classical and recent research in
collision detection. In the introduction, we already mentioned the general complex-
ity of the collision detection problem due to its theoretical quadratic running time
for polygonal models like Chazelle’s polyhedron (see Fig. 1.1).

However, this is an artificial example, and in most real world cases there are only
very few colliding polygons. Hence, the goal of collision detection algorithms is to
provide an output sensitive running time. This means that they try to eliminate as
many of the O(n2) primitive tests as possible, for example by an early exclusion of
large parts of the objects that cannot collide. Consequently, the collision detection
problem can be regarded as a filtering process.

Recent physics simulation libraries like PhysX [163], Bullet [36] or ODE [203]
implement several levels of filtering in a so-called collision detection pipeline.

Usually, a scene does not consist only of a single pair of objects, but of a larger
set of 3D models that are typically organized in a scenegraph. In a first filtering step,
the broad phase or N-body culling, a fast test enumerates all pairs of potentially col-
liding objects (the so-called potentially collision set (PCS)) to be checked for exact
intersection in a second step, which is called the narrow phase. The narrow phase is
typically divided into two parts: first a filter to achieve pairs of potentially colliding
geometric primitives is applied and finally these pairs of primitives are checked for
collision. Depending on the scene, more filtering levels between these two major
steps can be used to further speed-up the collision detection process [247]. Fig-
ure 2.1 shows the design of CollDet [250], a typical collision detection pipeline.
All data structures that are developed for this work have been integrated into the
CollDet framework.

However, the chronological order of the collision detection pipeline is only one
way to classify collision detection algorithms, and there exist many more distinctive
factors. Other classifications are e.g. rigid bodies vs. deformable objects. Usually,
the filtering steps rely on geometric acceleration data structures that are set up in a
pre-processing step. If the objects are deformable, these pre-calculated data struc-
tures can become invalid. Consequently, deformable objects require other data struc-
tures or, at least, additional steps to update or re-compute the pre-processed struc-

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_2,
© Springer International Publishing Switzerland 2013

9

http://dx.doi.org/10.1007/978-3-319-01020-5_2

10 2 A Brief Overview of Collision Detection

Fig. 2.1 The typical design of a collision detection pipeline

tures. Additionally, deformable objects require a check for self-collisions. Some of
these methods are described in Sect. 2.5.

Another distinctive feature is the representation of the geometric objects. Es-
pecially in computer graphics, the boundary of objects is usually approximated by
polygons. Hence, most collision detection algorithms are designed for polygonal ob-
jects. However, in CAD/CAM applications also curved surface representations like
non-uniform rational B-splines (NURBS) play an important role. For instance, Page
and Guibault [175] described a method based on oriented bounding boxes (OBBs)
especially for NURBS surfaces. Lau et al. [131] developed an approach based on
axis aligned bounding boxes (AABBs) for inter-objects as well as self-collision de-
tection between deformable NURBS. Greß et al. [76] also used an AABB hierarchy
for trimmed NURBS but transferred the computation to the GPU. Kim et al. [108]
proposed an algorithm based on bounding coons patches with offset volumes for
NURBS surfaces. Another object modeling technique often used in CAD/CAM is
the constructive solid geometry (CSG). Objects are recursively defined by union,
intersection or difference operations of basic shapes like spheres or cylinders. In
order to detect collisions between CSG objects, Zeiller [251] used an octree-like
data structure for the CSG tree. Su et al. [208] described an adaptive selection strat-
egy of optimal bounding volumes for sub-trees of objects in order to realize a fast
localization of possible collision regions.

Point clouds become more and more popular due to cheap depth-cameras that can
be used for 3D scanning like Microsoft’s Kinect [94]. One of the first approaches to
detect collision between point clouds was developed by Klein and Zachmann [116].
They use a bounding volume hierarchy in combination with a sphere covering of
parts of the surface. Klein and Zachmann [117] proposed an interpolation search
approach of the two implicit functions in a proximity graph in combination with

2 A Brief Overview of Collision Detection 11

randomized sampling. El-Far et al. [47] support only collisions between a single
point probe and a point cloud. For this, they fill the gaps surrounding the points
with AABBs and use an octree for further acceleration. Figueiredo et al. [53] used
R-trees, a hierarchical data structure that stores geometric objects with intervals in
several dimensions [80], in combination with a grid for the broad phase. Pan et al.
[177] described a stochastic traversal of a bounding volume hierarchy. By using ma-
chine learning techniques, their approach is also able to handle noisy point clouds.
In addition to simple collision tests, they support the computation of minimum dis-
tances [178].

This directly leads to the next classification feature: The kind of information
that is provided by the collision detection algorithm. Actually, almost all simulation
methods work discretely; this means that they check only at discrete points in time
whether the simulated objects collide. As a consequence, inter-penetration between
simulated objects is often unavoidable. However, in order to simulate a physically
plausible world, objects should not pass through each other and objects should move
as expected when pushed or pulled. As a result, there exist a number of collision
response algorithms to resolve inter-penetrations. For example, the penalty-based
method computes non-penetration constraint forces based on the amount of inter-
penetration [207]. Other approaches like the impulse-based method or constraint-
based algorithms need information about the exact time of contact to apply impul-
sive forces [110].

Basic collision detection algorithms simply report whether or not two objects in-
tersect. Additionally, some of these approaches provide access to a single pair of in-
tersecting polygons or they yield the set of all intersecting polygons. Unfortunately,
this is not sufficient to provide the information required for most collision response
schemes. Hence, there also exist methods that are able to compute some kind of
penetration depth, e.g. a minimum translational vector to separate the objects. More
advanced algorithms provide the penetration volume. Especially in path-planning
tasks, but also in constraint-based simulations, it is helpful to track the minimum
separation distance between the objects in order to avoid collisions. Finally, the
continuous collision detection computes the exact point in time when a collision oc-
curs between two object configurations. Section 2.3 provides an overview over al-
gorithms that compute these different penetration measurements. Usually, the more
information the collision detection algorithm provide, the longer is its query time.

More classifications of collision detection algorithms are possible. For instance,
real-time vs. offline, hierarchical vs. non-hierarchical, convex vs. non-convex, GPU-
based methods vs. CPU, etc. This already shows the great variety of different ap-
proaches.

Actually, collision detection has been researched for almost three decades.
A complete overview over all existing approaches would fill libraries and thus is
far beyond the scope of this chapter. So, in the following, we will present classic
methods that are still of interest, as well as recent directions that are directly related
to our work. As a starting point for further information on the wide field of collision
detection we refer the interested reader to the books by Ericson [49], Coutinho [37],
Zachmann and Langetepe [249], Eberly [43], Den Bergen [228], Bicchi et al. [18]

12 2 A Brief Overview of Collision Detection

Fig. 2.2 Different bounding volumes

or Lin et al. [141] and the surveys by Jimenez et al. [97], Kobbelt and Botsch [120],
Ganjugunte [60], Lin and Gottschalk [140], Avril et al. [8], Kockara et al. [121],
Gottschalk [71], Fares and Hamam [51], Teschner et al. [218] and Kamat [103].

2.1 Broad Phase Collision Detection

The first part of the pipeline, called the broad-phase, should provide an efficient
removal of those pairs of objects that are not in collision. Therefore, objects are
usually enclosed into basic shapes that can be tested very quickly for overlap. Typi-
cal basic shapes are axis aligned bounding boxes (AABB), spheres, discrete oriented
polytopes (k-DOP) or oriented bounding boxes (OBB) (see Fig. 2.2).

The most simple method for the neighbor finding phase is a brute-force approach
that compares each object’s bounding volume with all others’ bounding volumes.
The complexity of this approach is O(n2), where n denotes the number of objects
in the scene. Woulfe et al. [241] implemented this brute-force method on a Field-
Programmable Gate Array (FPGA) using AABBs. However, even this hardware-
based approach cannot override the quadratic complexity.

Moreover, Edelsbrunner and Maurer [45] have shown that the optimal algorithm
to find intersections of n AABBs in 3D has a complexity of O(n log2 n + k), where
k denotes the number of objects that actually intersect. Two main approaches have
been proposed to take this into account: spatial partitioning and topological meth-
ods.

Spatial partitioning algorithms divide the space into cells. Objects whose bound-
ing volumes share the same cell are selected for the narrow phase. Examples for
such spatial partitioning data structures are regular grids [247], hierarchical spatial
hash tables [156], octrees [12], kd-trees [17] and binary space partitions (BSP-trees)
[162]. The main disadvantage of spatial subdivision schemes for collision detection
is their static nature: they have to be rebuilt or updated every time the objects change
their configuration. For uniform grids such an update can be performed in constant
time and grids are perfectly suited for parallelization. Mazhar [149] presented a
GPU implementation for this kind of uniform subdivision. However, the effective-
ness of uniform grids disappears if the objects are of widely varying sizes. Luque
et al. [147] proposed a semi-adjusting BSP-tree that does not require a complete

2.2 Narrow Phase Basics 13

re-structuring, but adjusts itself while maintaining desirable balancing and height
properties.

In contrast to space partitioning approaches, the topological methods are based
on the position of an object in relation to the other objects. The most famous method
is called Sweep-and-Prune [32]. The main idea is to project the objects’ bounding
volume on one or more axes (e.g. the three coordinate axis (x, y, z)). Only those
pairs of objects whose projected bounding volumes overlap on all axes have to be
considered for the narrow phase. Usually, this method does not construct any inter-
nal structure but starts from scratch at each collision check.

Several attempts have been proposed to parallelize the classical Sweep-And-
Prune approach. For instance, Avril et al. [10] developed an adaptive method that
runs on multi-core and multi-threaded architectures [9] and uses all three coordinate
axes. Moreover, they presented an automatic workload distribution based on off-line
simulations to determine fields of optimal performance [11]. Liu et al. [143] ported
the Sweep-and-Prune approach to the GPU using the CUDA framework. They use
a principal component analysis to determine a good sweep direction and combine it
with an additional spatial subdivision.

Tavares and Comba [217] proposed a topological algorithm that is based on De-
launay triangulations instead of Sweep-and-Prune. The vertices of the triangulation
represent the center of mass of the objects and the edges are the object pairs to be
checked in the narrow phase.

However, even if all these algorithms are close to the optimal solution proved by
Edelsbrunner and Maurer [45], in accordance to Zachmann [247], they are profitable
over the brute-force method only in scenarios with more than 100 dynamically sim-
ulated objects. This is due to the high constant factor that is hidden in the asymptotic
notation. Maybe this is also why much more research is done on the acceleration of
the narrow phase.

2.2 Narrow Phase Basics

While the broad phase lists pairs of possible colliding objects, the objective of the
narrow phase is to determine exact collision checks between these pairs.

A brute force solution for the narrow phase could simply check all geometric
primitives of one object against all primitives of the other object. Surely this would
again result in quadratic complexity. Due to the fast evolution of modern graphics
hardware, objects can consist of millions of polygons today, and a quadratic running
time is not an option. Consequently, more intelligent algorithms are required.

Actually, the narrow phase can be divided into two phases by itself. In a first
phase, non-overlapping parts of the objects are culled; in a second step, an accurate
collision detection is performed between pairs of geometric primitives that are not
culled in the first phase.

Instead of data structures that partition the world-space in the broad phase, in
the narrow phase, most often object partitioning techniques are used for the culling

14 2 A Brief Overview of Collision Detection

Fig. 2.3 The BVH principle: Geometric objects are divided recursively into subsets of their geo-
metric primitives (left) and each node on the tree realizes a bounding volume for all primitives in
its sub-tree (right)

stage. The common data structures for this task are bounding volume hierarchies
(BVHs). The technique of bounding volumes, known from the previous section
(Fig. 2.2), is recursively applied to a whole object. This results in a tree-like struc-
ture. Each node in such a tree is associated to a bounding volume that encloses all
primitives in its sub-tree (see Fig. 2.3).

Usually, a BVH is constructed in a pre-processing step that can be compu-
tationally more or less expensive. During running time a simultaneous recursive
traversal of the BVHs of two objects allows a conservative non-intersection prun-
ing: if an intersection is detected in the root of the BVH, the traversal proceeds
by checking the bounding volumes of the root node’s children and so on until the
leaf nodes are reached and an exact collision test between the geometric primitives
can be performed. Non-overlapping BVs are discarded from further consideration.
The whole traversal algorithm results in a bounding volume test tree (BVTT) (see
Fig. 2.4).

Usually, BVs for the BVHs are spheres [92, 185], AABBs [182, 225] and
their memory optimized derivative called BoxTree [248], which is closely related
to kd-Trees, k-DOPs [118, 245], a generalization of AABBs, OBBs [2, 15, 70]
or convex hull trees [46]. Additionally, a wide variety of special BVs for spe-

2.2 Narrow Phase Basics 15

Fig. 2.4 The simultaneous recursive traversal of two BVHs during the collision check results in a
bounding volume test tree

cial applications has been developed. For instance, we have spherical shells [125],
swept spheres [126], spheres that are cut by two parallel planes called slab cut
balls [130], quantized orientation slabs with primary orientations (QuOSPO) trees
[85] that combine OBBs with k-DOPs, or combinations of spherical shells with
OBBs as proposed by Krishnan et al. [124] for objects that are modeled by Bezier
patches.

The optimal bounding volume should

• tightly fit the underlying geometry
• provide fast intersection tests
• be invariant undergoing rigid motion
• not use too much memory
• be able to be build automatically and fast

Unfortunately, these factors are contradictory. For example, spheres offer very
fast overlap and distance tests and can be stored very memory efficiently, but they
poorly fit flat geometries. AABBs also offer fast intersection tests, but they need to
be realigned after rotations. Or, if no realignment is used, a more expensive OBB
overlap test is required. But in this case, the tighter fitting OBBs could be used di-
rectly. However, they also require more memory. Convex hulls offer the tightest fit
among convex BVs, but the overlap test is very complex and their memory con-
sumption depends on the underlying geometry.

Consequently, choosing the right BVHs is always a compromise and depends
on the scenario. Basically, the quality of BVH-based algorithms can be measured
by the following cost function, which was introduced by Weghorst et al. [235] to
analyze hierarchical methods for ray tracing and later was adapted to hierarchical

16 2 A Brief Overview of Collision Detection

collision detection methods by Gottschalk et al. [70]:

T = NvCv + NpCp with

T = Total cost of testing a pair of models for intersection

Nv = Number of BV Tests

Cv = Cost of a BV Test

Np = Number of Primitive Tests

Cp = Cost of a Primitive Test

(2.1)

In addition to the shape of the BV, there are more factors that affect the efficiency
of a BVH, including the height of the hierarchy, which may but should not be influ-
enced by its arity or the traversal order during collision queries. The first two factors
have to be considered already during the construction of the BVH.

Basically, there exist two major strategies to build BVHs: bottom-up and top-
down. The bottom-up approach starts with elementary BVs of leaf nodes and merges
them recursively together until the root BV is reached. A very simple merging
heuristic is to visit all nearest neighbors and minimize the size of the combined
parent nodes in the same level [191]. Less greedy strategies combine BVs by using
tilings [137].

However, the most popular method is the top-down approach. The general idea
is to start with the complete set of elementary BVs, then split that into some parts
and create a BVH for each part recursively. The main problem is to choose a good
splitting criterion. A classical splitting criterion is to simply pick the longest axis
and split it in the middle of this axis. Another simple heuristic is to split along the
median of the elementary bounding boxes along the longest axis. However, it is
easy to construct worst case scenarios for these simple heuristics. The surface area
heuristic (SAH) tries to avoid these worst cases by optimizing the surface area and
the number of geometric primitives over all possible split plane candidates [68].
Originally developed for ray tracing, it is today also used for collision detection.
The computational costs can be reduced to O(n logn) [232, 233] and there exist
parallel algorithms for the fast construction on the GPU [132]. Many other splitting
criteria were compared by Zachmann [246].

In addition to the splitting criterion, also the choice of the BV affects the per-
formance of the hierarchy creation process. Even if this is a pre-processing step,
extremely high running times are undesirable in many applications. Computing an
AABB for a set of polygons or a set of other AABBs is straightforward. Also k-
DOPs can be computed relatively easy. But the only optimal solution for OBB com-
putation is O(n3) and very hard to implement [166]. Chang et al. [24] presented a
close to optimal solution based on a hybrid method combining genetic and Nelder-
Mead algorithms. Other heuristics, like principal component analysis [100], are not
able to guarantee the desired quality in all cases. On the other hand, very compli-
cated BVs, like the convex hull, can be computed efficiently in O(n logn) [102].

2.2 Narrow Phase Basics 17

With OBBs, also the computation of a minimum enclosing sphere turns out to be
very complicated. Welzl [236] formulated it as a linear programming problem.

However, the choice of spheres as BVs also points to another challenge: the set
of elementary BVs. For AABBs, OBBs or k-DOPs, usually a single primitive or a
set of adjacent primitives are enclosed in an elementary BV. For spheres this is not
an optimal solution, because proximate primitives, often represented by polygons,
usually form some kind of flat geometry that poorly fits into a sphere. Therefore,
Bradshaw and O’Sullivan [20] presented a method based on the medial axis to group
also distant spheres in the same elementary BV.

The influence of the trees’ branching factor is widely neglected in the literature.
Usually, most authors simply use binary trees for collision detection. But according
to Zachmann and Langetepe [249] the optimum can be larger. Mezger et al. [155]
stated that, especially for deformable objects, 4-ary or 8-ary trees could improve the
performance. This is mainly due to the smaller number of BV updates. However,
we will return to this topic in Sect. 2.5.

During running time, the performance of the BVH depends on the traversal or-
der. Usually, a simultaneous recursive traversal of both BVHs is applied. The easiest
way to do this is via the depth-first-search (DFS). Gottschalk [72] additionally pro-
posed a breath-first-search (BFS) traversal using a queue. For complex objects with
many polygons and hence deep trees, the DFS can lead to a stack overflow. How-
ever, on modern CPUs with large stack sizes, the DFS is much faster. O’Sullivan
and Dingliana [168] proposed a best-first-search method for sphere trees. It simply
descends into sub-trees with largest BV-overlap first. However, in our experience,
the time to keep a priority queue often exceeds its advantages.

The final step in the collision detection pipeline is the primitive test. Most often
the surfaces of the objects are represented by polygons or, more specific, triangles.
A general polygon–polygon intersection test is described by Chin and Wang [29].
For the special case of triangles, there exist a wide variety of fast intersection tests,
e.g. by Möller [159] or Tropp et al. [222]. Even today new optimized approaches
are proposed for special cases: for instance Chang and Kim [25] described a trian-
gle test that takes into account that many intermediate computation results from an
OBB test can be re-used for the triangle intersection. Many fast intersection tests
are implemented by Held [87] and Schneider and Eberly [197].

Another important class of geometric primitives are convex polytopes. Not only
because they are widely used in physics-based simulations, but also from an histori-
cal point of view: some of the first collision detection algorithms are based on them.
Moreover, they can be used as both geometric primitives and bounding volumes.
Actually, there exist two main approaches for convex polytopes: feature-based al-
gorithms and simplex-based algorithms.

The first feature-based method was proposed by Lin and Canny [139]. Features
of a convex polyhedron are vertices, edges and faces. The Lin–Canny algorithm per-
forms a local search on these features using a pre-computed Voronoi diagram [231].
The convexity guarantees that local minima are avoided. Furthermore, the algo-
rithm uses spatial and temporal coherence between two distinctive queries: usually,
objects do not move too much between two frames of a physics-based simulation.

18 2 A Brief Overview of Collision Detection

Hence, the closest feature in the current frame is close to the closest feature from
the next frame. A major drawback of the algorithm is that it cannot handle inter-
sections. In this case it runs in an endless loop. V-Clip [157], an extension of the
classical Linn–Canny method, eliminates this serious defect.

The best known simplex-based algorithm was developed by Gilbert et al. [65].
Instead of using Voronoi diagrams, the GJK-algorithm is based on Minkowski dif-
ferences. In addition to the boolean collision detection that simply reports whether
two objects collide or not, the GJK-algorithm also returns a measure of the inter-
penetration [22]. Moreover, it achieves the same almost constant time complexity as
Lin–Canny. A stable and fast implementation of the enhanced GJK algorithms was
presented by Bergen [226].

Both kinds of algorithms are designed for convex polyhedra. However, by us-
ing a convex decomposition of well-behaved concave polyhedrons, they can also
be extended to other objects [26]. But finding good convex decompositions is not
straightforward and is still an active field of research [81, 138].

2.3 Narrow Phase Advanced: Distances, Penetration Depths
and Penetration Volumes

For physics-based simulations a simple boolean answer at discrete points in time to
whether a pair of objects intersect or not is often not sufficient. Usually, some kind
of contact information is required to compute repelling forces or non-intersection
constraints.

As long as a pair of objects rests in a collision-free configuration, a simple way
to characterize the extent of repelling forces is to use the minimum distance be-
tween them. However, collisions are often unavoidable due to the discrete structure
of the simulation process. Therefore, a penetration measure is required for configu-
rations where the objects overlap. Some authors proposed a minimum translational
vector to separate the objects. This is often called the penetration depth. The most
complicated, but also the only physically plausible inter-penetration measure is the
penetration volume [164], which corresponds directly to the amount of water being
displaced by the overlapping parts of the objects. Last but not least, it is possible to
compute the exact point in time between two discrete collision checks; this is called
continuous collision detection. In fact, it is not a measure of the amount of inter-
penetration, but the techniques that are used for its computation are very similar to
other penetration depth computations.

2.3.1 Distances

The Lin–Canny algorithm, described in the previous section, is already an example
of one using minimum distance computations. Tracking of the closest features di-
rectly delivers the required distances. Actually, computing minimum distances can

2.3 Narrow Phase Advanced 19

be performed in a very similar way to conventional boolean collision detection using
BVHs.

The traditional recursive BVH traversal algorithm, described above, tests
whether two BVs—one from each BVH—overlap. If this is the case, the recursion
continues to their children. If they do not, the recursion terminates. If two leaves are
reached, a primitive intersection test is performed.

The simple recursive scheme can be modified easily for minimum distance com-
putations: just the intersection test of the primitives has to be replaced by a distance
computation between the primitives and the intersection test between the BVs by a
distance test between the BVs. During the traversal, an upper bound for the distance
between two primitives is maintained by a variable δ. This variable can be initial-
ized with ∞ or the distance between any pair of primitives. δ has to be updated if a
pair of primitives with a smaller distance is found.

Obviously, BVs with larger distances than δ can be culled, because if the BVs
have a larger distance, this must also be true for all enclosed primitives. This is ex-
actly the way most authors using BVHs implemented their algorithms; e.g. Larsen
et al. [126] used the swept-sphere method as BVs together with several speed-up
techniques, Quinlan [185] proposed sphere trees, Bergen [226] used AABBs in
combination with the GJK-based Minkowski difference; Lauterbach et al. [133] im-
plemented OBB trees running on the GPU. Johnson and Cohen [98] generalized
the basic BVH-based distance computation in the framework of minimum distance
computations.

Actually, all these approaches can be interrupted at any time and they deliver an
upper bound for the minimum distance. Other approaches are able to additionally
provide a lower bound, like the spherical sector representation presented by Bonner
and Kelley [19], or the inner–outer ellipsoids by Ju et al. [101] and Liu et al. [144].

Another alternative for distance computations are distance fields [56], which can
also be combined with BVHs [58].

However, all these approaches use the Euclidean distance between the objects.
Other authors also proposed different metrics like the Hausdorff-distance, which de-
fines the maximum deviation of one object from the other object [213, 243]. Zhang
et al. [256] used a so-called DISP distance, which is defined as the maximum length
of the displacement vector over every point on the model at two different configura-
tions. This metric can be used for motion planning tasks [134].

A local minimum distance for a stable force feedback computation was proposed
by Johnson et al. [99]. They used spatialized normal cone pruning for the collision
detection. The normal cone approach differs from prior works using BVHs, because
it searched for extrema of a minimum distance formulation in the space of normals
rather than in Euclidean space.

2.3.2 Continuous Collision Detection

Computing repelling forces on the separating distance can lead to visual artifacts in
physics-based simulations, e.g. when the objects bounce away before they really are

20 2 A Brief Overview of Collision Detection

in visual contact. Moreover, if the objects move too fast, or the time step between
two collision queries is too large, the objects could pass through each other. To avoid
errors like this tunneling effect, it would be better to really compute the exact time
of impact between a pair of objects [35]. Several techniques have been proposed to
solve this continuous collision detection problem, which is sometimes also called
dynamic collision detection.

The easiest way is to simply reuse the well researched and stable algorithms
known from static collision detection. Visual interactive applications usually require
updating rates of 30 frames per second, i.e. there passes about 30 milliseconds of
time between two static collision checks. Recent boolean collision detection algo-
rithms require only a few milliseconds, depending on the objects’ configuration.
Hence, there is plenty of time to perform more than one query between two frames.
A simple method, the so called method of pseudo-continuous collision, realizes ex-
actly this strategy: it performs static collision detection with smaller time steps [88].
Even with a higher sampling frequency, it is, however, still possible to miss contacts
between thin objects.

Conservative advancement is another simple technique that avoids these prob-
lems. The objects are repeatedly advanced by a certain time-step, which guaran-
tees a non-penetration constraint [158]. Usually, the minimum distance is used to
compute iteratively new upper bounds for the advancement [259]. Conservative ad-
vancement is also perceived as a discrete ancestor of the kinetic data structures that
we will review in the next chapter.

Another method is to simply enclose the bounding volumes at the beginning and
at the end of a motion step by a swept volume. This can be done very efficiently for
AABBs [44]. Coming and Staadt [34] described a velocity-aligned DOP as swept
volume for underlying spheres as BVs, and Redon et al. [189] proposed an algorithm
for OBBs. Taeubig and Frese [210] used sphere swept convex hulls. Also ellipsoids
are an option [30].

The swept volumes guarantee conservative bounds for their underlying primi-
tives, and consequently the swept BVHs can be traversed similarly to the discrete
BVHs. However, an additional continuous collision test for the primitives is required
to achieve the exact time of impact. Actually, these tests (and in fact, also the tests
between the BVs) depend on the trajectories of the primitives, which are usually not
known between two simulation steps. Often, a simple linear interpolation is used
to approximate the in-between motion [239]. For a pair of triangles this yields six
face–vertex and nine edge–edge tests. Each of these elementary tests requires one
to solve a cubic equation. This is computationally relatively costly. Therefore, some
authors additionally proposed feature-based pre-tests, like the subspace filters by
Tang et al. [211] or additional BVs like k-DOPs for the edges [93].

However, more accurate but also more complicated interpolation schemes have
been described as well. Canny [23] proposed quaternions instead of Euler angles but
still got a 6D complexity. Screw motions are often used [105] because they can also
be computed by solving cubic polynomials. Redon et al. [187] combined them with
interval arithmetic. Zhang et al. [260] defined Taylor models for articulated models
with non-convex links. Von Herzen et al. [230] used Lipschitz bounds and binary
subdivision for parametric surfaces.

2.3 Narrow Phase Advanced 21

There exist a few other acceleration techniques; e.g. Kim et al. [106] implement
a dynamic task assignment for multi-threaded platforms, or Fahn and Wang [50]
avoid BVHs by using a regular grid in combination with an azimuth elevation map.
However, continuous collision detection is still computationally too expensive for
real-time applications, especially, when many complex dynamic objects are simu-
lated simultaneously.

2.3.3 Penetration Depth

The minimum distance is not a good measure to define repelling forces, and com-
puting the exact time of impact using continuous collision detection is too time
consuming for real-time applications. Consequently, in research one has developed
another penetration measure: the penetration depth. In fact, it is not entirely cor-
rect to speak about the penetration depth, because there exist many different, partly
contradictory, definitions. A widely used definition describes it as the distance that
corresponds to the shortest translation required to separate two intersecting objects
[41].

The same authors also delivered a method for their computation based on the
Dobkin and Kirkpatrick hierarchy and Minkowski differences. They derived a com-
plexity of O(n2) for convex and O(n4) for non-convex polyhedral objects consist-
ing of n polygons. Cameron [22] presented a similar approach for convex objects,
which can additionally track the minimum distance in non-intersection cases. Es-
pecially the computation of the Minkowski difference is very time consuming and
difficult. Therefore, several approximation schemes have been developed: for in-
stance Bergen [227] described an expanding polytope algorithm that yields a poly-
hedral approximation of the Minkowski difference. Agarwal et al. [1] proposed an
approximation algorithm based on ray-shooting for convex polyhedra. Kim et al.
[109] implicitly constructed the Minkowski difference by local dual mapping on the
Gaussian map. Additionally, the authors enhanced their algorithm by using heuris-
tics to reduce the number of features [111, 113]. Other approximations rely on dis-
cretized objects and distance fields [54].

Some authors computed local approximations of the penetration depth if the ob-
jects intersect in multiple disjoint zones. Therefore, penetrating zones were parti-
tioned into coherent regions and a local penetration depth was computed for each of
these regions separately. Redon and Lin [188] computed a local penetration direc-
tion for these regions and then used this information to estimate a local penetration
depth on the GPU. Je et al. [96] presented a method based on their continuous col-
lision detection algorithm using conservative advancement [212]: they constructed
a linear convex cone around the collision free configuration found via CCD and
then formulated a projection of the colliding configuration onto this cone as a linear
complementarity problem iteratively.

Also other metrics have been proposed for the characterization of penetrating
objects: for instance, Zhang et al. [255] presented an extended definition of the pen-

22 2 A Brief Overview of Collision Detection

etration depth that also takes the rotational component into account, called the gen-
eralized penetration depth. It differs from the translational penetration depth only
in non-convex cases, and the computation of an upper bound can be reduced to the
convex containment problem if at least one object is convex [257]. Gilbert and Ong
[66] defined a growth distance that unifies the penetration measure for intersecting
but also disjoint convex objects: basically, it measures how much the objects must be
grown so that they were just in contact. Also an algorithm for the computation of the
growth distance was presented [165]. Zhu et al. [261] used a gauge function [90] in-
stead of the Euclidean norm to define pseudo-distances for overlapping objects and
they presented a constrained optimization-based algorithm for its calculation.

The publication years presented in this subsection already show that penetra-
tion depth computation has recently become a very active field of research. This is
mainly because computing the penetration depth is still computationally very expen-
sive and becomes practically relevant only on very fast machines. However, using
the classical penetration depth still has another serious drawback: the translational
vector is not continuous at points lying on the medial axis. This results in flipping
directions of the contact normals when used directly as penalty force vector. More-
over, it is not straightforward to model multiple simultaneous contacts. Tang et al.
[214] tried to avoid these problems by accumulating penalty forces along the pen-
etration time intervals between the overlapping feature pairs using a linear CCD
approach.

2.3.4 Penetration Volume

Compared to other penetration measures, the literature on penetration volume com-
putation is sparse. More precisely, there exist only two other algorithms apart from
our approach: one method, proposed by Hasegawa and Sato [84], constructs the in-
tersection volume of convex polyhedra explicitly. For this reason, it is applicable
only to very simple geometries, like cubes, at interactive rates.

The other algorithm was developed by Faure et al. [52] simultaneously with our
Inner Sphere Trees. They compute an approximation of the intersection volume from
layered depth images on the GPU. This approach is applicable to deformable ge-
ometries but restricted to image space precision. And apart from that, it is relatively
slow and it cannot provide continuous forces and torques for collision response.

2.4 Time Critical Collision Detection

Despite the computational power available, the performance of collision detection
algorithms is still critical in many applications, especially if a required time bud-
get must never be exceeded. This problem arises in almost all interactive real-time
applications where frame rates of at least 30 fps are needed for a smooth visual

2.4 Time Critical Collision Detection 23

feedback. Consequently, only 30 msec remain for rendering and physics-based sim-
ulation. For the rendering step, there exists the technique of levels-of-details (LOD)
to reduce the workload of the graphics pipeline [146]. The main idea is to store
geometric data in several decreasing resolutions and choose the right LOD for ren-
dering according to the distance from the viewpoint. Similar techniques can also be
applied to the physics-based simulation; more precisely, to the collision detection
step. Hence, this so-called time-critical collision detection reduces the computation
time at the cost of accuracy.

Typically, time-critical collision detection methods rely on simplifications of the
complex objects like the visual LOD representations. This can be done either ex-
plicitly or implicitly. Moreover, they often use frame-to-frame coherence because in
physics-based simulations there should usually be no discontinuities, and hence the
contact information between two collision checks does not differ too much.

For instance, the BVTT derived from a simultaneous BVH traversal (see Fig. 2.4
in the previous section) holds in each node the result of the query between two BVs.
Those BV pairs where the traversal stops build a list in the BVTT, the separation
list [27]. In case of high coherence, the traversal does not have to be restarted at the
roots of the BVHs for each query, but this list can be directly re-used. Ehmann and
Lin [46] called this the generalized front tracking. Lin and Li [142] enhanced this
method by defining an incremental algorithm that prioritizes the visiting order: dan-
gerous regions where collisions may occur with a high probability are prioritized.

These are, however, just examples for coherence. In fact, the classical simultane-
ous BVH traversal lends itself well to time-critical collision detection: the traversal
can simply be interrupted when the time budget is exhausted. This was first pro-
posed by Hubbard [92], who additionally used a round-robin order for the collision
checks. This approach was later extended by O’Sullivan and Dingliana [168, 169]
and Dingliana and O’Sullivan [39]: like Hubbard [92] they also used an interrupt-
ible sphere tree traversal but added a more appropriate collision response solution
to Hubbard’s elementary response model. A similar method can also be adopted
for deformable objects [154]. Another extension using sphere trees with a closest
feature map to avoid over-estimations of the contact information was presented by
Giang and O’Sullivan [62, 63].

Klein and Zachmann [115] described an average case approach for time-critical
traversals (ADB-trees): for each pair of BVs they computed the probability that
an intersection of the underlying primitives will occur. Coming and Staadt [33]
presented an event-based time-critical collision detection scheme relying on stride-
scheduling in combination with kinetic Sweep-and-Prune and an interruptible GJK
version.

Other authors created the LOD explicitly. For example, Otaduy and Lin [171]
presented a dual hierarchy for both the multi-resolution representation of the geom-
etry and its BVH using convex hulls. A similar approach, called clustered hierarchy
of progressive meshes, was developed by Yoon et al. [243] for very large scenes
that require out-of-core techniques. James and Pai [95] used the reduced models not
only for fast collision detection, but also presented a deformation method based on
their bounded deformation trees.

24 2 A Brief Overview of Collision Detection

2.4.1 Collision Detection in Haptic Environments

Almost all collision detection approaches described above are primarily designed
to work in at least visual real-time. As mentioned in the introduction, for a
smooth visual sensation update-rates of 30 Hz are sufficient, whereas haptic ren-
dering requires an update frequency of 1000 Hz for a realistic haptic sensation.
Moreover, detailed contact information has to be provided for a realistic percep-
tion.

None of the previously described methods, especially those computing penetra-
tion depths or times of impact, can be accelerated by a factor of 30 out of the box
for reasonable scene complexities in haptic environments. Consequently, collision
detection for haptics often leads to further simplifications in order to guarantee the
high frequency, but also to compute plausible forces.

2.4.1.1 3 DOF

In the early times of haptic human–computer history, the beginning 1990s [195],
a major simplification affected both the design of haptic hardware interfaces and
the collision detection: instead of simulating the complex interaction of rigid bod-
ies, only a single point probe was used for the interaction. This required only the
computation of three force components at the probe’s tip. As a result, many 3 DOF
haptic devices, like the SensAble Phantom Omni Massie and Salisbury [148], en-
tered the market and also a lot of research was done on 3 DOF haptic rendering
algorithms.

One of the first algorithms for this problem was presented by Zilles and Salisbury
[262]. They proposed the usage of a two different points: one represents the real
position of the probe’s tip, whereas the second, they call it god object, is constrained
to the surface of the polygonal object. A spring–damper model between these points
defines the force. Ruspini et al. [194] extended this approach by sweeping a sphere
instead of using a single point in order to avoid the god object slipping into a virtual
object through small gaps. Ho et al. [89] also took the movement of the god object
into account by using a line between its previous and its recent position. BVHs
can be used for accelerating the collision detection. For example, Gregory et al.
[75] developed a hybrid hierarchical representation consisting of uniform grids and
OBBs.

Also algorithms for other than polygonal object representations have been pro-
posed: Thompson et al. [220] developed an algorithm that is applicable for 3 DOF
rendering of NURBS surfaces without the use of any intermediate representation.
Gibson [64] and Avila and Sobierajski [7] described approaches for volumetric rep-
resentations. More recent works also included the GPU for faster collision detection
using local occupancy maps [107].

2.4 Time Critical Collision Detection 25

Fig. 2.5 The Voxmap-Pointshell approach for 6 DOF haptic rendering uses two different data
structures: A voxelization (left) and a point-sampling of the objects’ surface (right)

2.4.1.2 6 DOF

Many applications, like training or virtual prototyping, require interaction with com-
plex virtual tools instead of just a single point probe to ensure a sufficient degree of
realism. As soon as the haptic probe includes 3D objects, the additional render-
ing of torques becomes important. Also, simultaneous multiple contacts with the
environment may occur. This significantly increases the complexity of the collision
detection but also of the collision response. Generally, a complete 6 DOF rigid-body
simulation, including forces and torques, has to be performed in only 1 millisecond.

For very simple objects, consisting of only a few hundred polygons, the tradi-
tional collision approaches described above can be used. Ortega et al. [167] ex-
tended the god-object method to 6 DOF haptic rendering using continuous collision
detection to derive the position and orientation of the god object. However, they
cannot guarantee to meet the time budget; therefore they use asynchronous update
processes. Kolesnikov and Zefran [123] presented an analytical approximation of
the penetration depth with additional considerations of the rotational motion.

Despite simplifications of temporal constraints, most often geometric simplifica-
tions were used. Many 6 DOF haptic rendering approaches are based on the Voxmap
Pointshell (VPS) method [151]. The main idea is to divide the virtual environment
into a dynamic object that is allowed to move freely through the virtual space and
static objects that are fixed in the world. The static environment is discretized into a
set of voxels, whereas the dynamic object is described by a set of points that repre-
sents its surface (see Fig. 2.5). During query time, for each of these points it is deter-
mined with a simple boolean test, whether it is located in a filled volume element or
not. Today, voxelization can be efficiently computed using the GPU [42, 179, 198].

Many extensions for the classical VPS algorithms have been proposed: for in-
stance, the use of distance fields instead of simple boolean voxmaps [152] or an
additional voxel hierarchy for the use of temporal coherence [153], since also re-
cent computer hardware can perform only a few thousands intersection tests in 1
millisecond. Prior and Haines [183] described a proximity agent method to reduce

26 2 A Brief Overview of Collision Detection

Fig. 2.6 Deformable objects like cloth require special algorithms, because pre-computed data
structures become invalid after the deformation. Moreover, collision between parts of the object
itself may occur

the number of collision tests for multiple object pairs in collaborative virtual en-
vironments. Renz et al. [190] presented extensions to the classic VPS, including
optimizations to force calculation in order to increase its stability. Barbič and James
[13] developed a distance-field-based approach that can handle contacts between
rigid objects and reduced deformable models at haptic rates. Later they extended
their approach to cover also deformable versus deformable contacts [14]. Ruffaldi
et al. [193] described an implicit sphere tree based on an octree that represents the
volumetric data. However, even these optimizations cannot completely avoid the
limits of VPS, namely aliasing effects and huge memory consumption.

Other authors use level-of-detail techniques to simplify the complexity of large
polygonal models [145]. Otaduy and Lin [172] presented a sensation preserving
simplification algorithm and a collision detection framework that adaptively selects
a LOD. Later, they added a linearized contact model using contact clustering [170].
Another idea is to combine low-resolution geometric objects along with texture im-
ages that encode the surface details [173]. Kim et al. [112] also clustered contacts
based on their spatial proximity to speed up a local penetration depth estimation us-
ing an incremental algorithm. Johnson et al. [99] approximated the penetration depth
by extending their normal cone approach. Glondu et al. [67] developed a method for
very large environments using a neighborhood graph: for objects that are closer to
the haptic probe they used the LOD.

2.5 Collision Detection for Deformable Objects

Usually, collision detection algorithms rely on pre-computed data structures like
BVHs. This works fine, as long as the geometry of the objects does not change,
i.e. if the objects are rigid. However, our world consists not only of rigid objects
but includes a lot of deformable objects, like cloth (see Fig. 2.6). Consequently, a
realistic simulation should also be able to handle deformable models. Beside cloth
simulation, popular deformable applications include character animation, surgery
simulation, and fractures.

An additional challenge for collision detection of deformable objects is the pos-
sibility that parts of one object intersect other parts of the same object, the so-called

2.5 Collision Detection for Deformable Objects 27

Fig. 2.7 Different updating strategies for BVHs

self-collisions. Actually, BVHs can easily be employed to find self-collisions by
simply checking the BVH of an object against itself and rejecting collisions be-
tween adjacent primitives [229]. Additionally, techniques like hierarchies of normal
cones [184] or power diagrams [77] can be used for further acceleration.

Since BVHs have proven to be very efficient for rigid objects, and, moreover,
they can easily be extended to self-collision detection, researchers also want to use
them for deformable objects. As the BVHs become invalid after deformations, sev-
eral approaches have been published to handle this problem: the easiest method is
to rebuild the BVH from scratch after each deformation. Unfortunately, it turns out
that a complete rebuild is computationally too expensive. Even modern GPU accel-
eration cannot guarantee real-time performance for BVH construction in reasonably
complex scenes [132]. Some authors reduced the rebuild to interesting regions. For
example, Smith et al. [202] used a lazy reconstruction of an octree for all primitives
in the overlap region, or they keep a more complex data structure like a full octree
and simply reinsert all primitives in the leaves in each frame [61]. Other approaches
completely avoid hierarchies but used regular spatial subdivision data structures like
uniform grids [224, 252]. Spatial hashing helps to reduce the high memory require-
ments of uniform grids [219]. However, choosing the right grid size remains an
unsolved problem due to the inherent “teapot in a stadium” problem [82].

Another method is to avoid the complete rebuild by simply updating the BVs
of a pre-computed BVH after deformations. Bergen [225] stated that updating is
about ten times faster compared to a complete rebuild of an AABB hierarchy, and
as long as the topology of the object is conserved, there is no significant performance
loss in the collision check compared to rebuilding. Basically, there exist two main
techniques for updating a BVH: bottom-up and top-down. Bottom-up updates start
by refitting the BVs of the primitives and merge them upwards with the root of
the tree. This can be done efficiently for AABB trees [229] and sphere trees [21].
However, during a collision query usually not all of these BVs are visited. Hence
a lot of work may be done on updates that are not required. A simple strategy to
reduce the number of updated BVs is to update them on-line, when they are in fact
visited during a traversal. This requires the traversal of all primitives placed under a
BV. This is the typical top-down approach [127]. Of course, this raises the question:
Which of the two methods is better?

28 2 A Brief Overview of Collision Detection

Basically, the performance of deformable collision detection algorithms can be
derived by a simple extension of the cost function for rigid objects (see Eq. (2.1)):

T = NvCv + NpCp + NuCu with

T = Total cost of testing a pair of models for intersection

Nv = Number of BV Tests

Cv = Cost of a BV Test

Np = Number of Primitive Tests

Cp = Cost of a Primitive Test

Nu = Number of BV Updates

Cu = Cost of a BV Update

(2.2)

Usually, Nu is higher for the bottom-up update than for the top-down approach.
On the other hand, Cu is higher for the top-down method. Consequently, there is no
definite answer to the question. Actually, according to Larsson and Akenine-Möller
[127], if many deep nodes in a tree are reached, it gives a better overall performance
to update the AABBs in a tree bottom-up. In simple cases, however, with only a
few deep nodes visited in a collision test, the top-down update performs better. As a
compromise, the authors proposed a hybrid updating strategy: for a tree with depth
n, initially the first n

2 should be updated bottom-up. The lower nodes should be up-
dated top-down on the fly during collision traversal (see Fig. 2.7). Mezger et al.
[155] accelerated the update by omitting the update process for several time steps.
Therefore, the BVs are inflated by a certain distance, and as long as the enclosed
polygon does not move farther than this distance, the BV does not need to be up-
dated.

If specific information about the underlying deformation scheme or the geomet-
ric objects is available, additional updating techniques can be used for further ac-
celeration. For instance, Larsson and Akenine-Möller [128] proposed a method for
morphing objects, where the objects are constructed by interpolation between some
morphing targets: one BVH is constructed for each of the morph targets so that the
corresponding nodes contain exactly the same vertices. During running time, the
current BVH can be constructed by interpolating the BVs. Spillmann et al. [206]
presented a fast sphere tree update for meshless objects undergoing geometric de-
formations that also supports level-of-detail collision detection. Lau et al. [131]
described a collision detection framework for deformable NURBS surfaces using
AABB hierarchies. They reduce the number of updates by searching for special de-
formation regions. Guibas et al. [77] used cascade verification in a sphere tree for
deformable necklaces. Sobottka et al. [205] extended this approach to hair simula-
tion using AABBs and k-DOPs [204].

Refitting BVHs works as long as the objects do not deform too much, that is,
when the accumulated overlap of the refitted BVs is not too large. This problem
arises for example in simulations of fracturing objects. In this case, a complete or

2.6 Related Fields 29

partial rebuild of the BVH may increase the running time significantly. Larsson
and Akenine-Möller [129] proposed an algorithm that can handle highly dynamic
breakable objects efficiently: they start a refitting bottom-up update at the BVs in
the separation list and use a simple volume heuristic to detect degenerated sub-trees
that must be completely rebuilt. Otaduy et al. [174] used a dynamic re-structuring
of a balanced AVL-AABB tree. Tang et al. [215] described a two-level BVH for
breakable objects based on mesh connectivity and bounds on the primitives’ nor-
mals.

2.5.1 Excursus: GPU-Based Methods

Popular methods for real-time simulation of deformable objects like mass–spring
systems [136, 160], but also multi-body simulations [48, 216], can be easily par-
allelized. Consequently, they are perfectly suited for modern GPU architectures.
Hence, it is obvious to develop also collision detection schemes that work directly
on the graphics hardware instead of copying data back and forth between main mem-
ory and GPU memory.

Actually, GPU-based algorithms have been proposed for all parts of the collision
detection pipeline: the broad-phase Le Grand [135], Liu et al. [143], the narrow-
phase Chen et al. [28], Greß et al. [76] and even for the primitive tests [73, 240].

The first approaches relied on the fixed-function graphics pipeline of at least
OpenGL 1.6 and used image space techniques. For instance, Knott and Pai [119]
implemented a ray-casting algorithm based on frame buffer operations to detect
static interferences between polyhedral objects. Heidelberger et al. [86] described an
algorithm for computation of layered depth images using depth and stencil buffers.

Later, the fixed function pipelines had been replaced by programmable vertex and
fragment processors. This also changed the GPU collision detection algorithms: for
example, Zhang and Kim [258] performed massively parallel pairwise intersection
tests of AABBs in a fragment shader. Kolb et al. [122] used shaders for the simula-
tion of large particle systems, including collisions between the particles.

Today, GPU processors are freely programmable via APIs such as OpenCL or
CUDA. This further improves the flexibility of GPU-based collision detection al-
gorithms, like the approach by Pan and Manocha [176] that uses clustering and
collision-packet traversal or the method based on linear complementary program-
ming for convex objects by Kipfer [114].

Moreover, several special hardware designs to accelerate collision detection were
developed [6, 186]. With the Ageia PhysX card [38], one saw a special hardware
card even managing to enter the market. But due to increasing performance and
flexibility of GPUs it seems that special physics processing hardware has become
obsolete.

30 2 A Brief Overview of Collision Detection

Fig. 2.8 Ray tracing
supports a wide variety of
optical effects like reflections,
refractions, and shadows

2.6 Related Fields

Of course, data structures for the acceleration of geometric queries are not restricted
to collision detection. They are also widely used in ray tracing (see Sect. 2.6.1),
object recognition [199], 3D audio rendering [223, 234] or occlusion [242, 254],
view frustum [31] and backface culling [253]. Moreover, they accelerate visibility
queries including hierarchical z-Buffers [74] and back-to-front [55] or front-to-back
[69] rendering via BSP-Trees. Geometric hierarchies help to index [79, 201] and
search [180] geometric databases efficiently, and they improve hardware tessellation
[161].

This small selection of very different applications and the large number of data
structures already presented just for the field of collision detection in the previous
sections suggests that there is available an almost uncountable number of different
approaches. A perfect geometric data structure would be one that can process every
imaginable geometric search query optimally. Unfortunately, such a data structure
does not—and maybe cannot—exist. Quite to the contrary, much research is con-
cerned with finding optimal data structures for each small sub-problem. However,
maintaining dozens of different optimized data structures in a simple virtual en-
vironment with ray tracing, sound rendering and collision detection could also be
very inefficient due to memory waste and the computational cost of hierarchy up-
dates. Consequently, there is also a counter movement that proposes the use of more
general data structures [78].

2.6.1 Excursus: Ray Tracing

Basically, ray tracing is a rendering technique that realizes global illumination for
perfect reflections (see Fig. 2.8). Instead of scan converting all polygons in the
scene, as traditional renderers like OpenGL and DirectX do, a ray of light is traced
backward from the eye through the scene. If the ray hits an object, an additional
ray is shot to the light sources and moreover, reflected and refracted rays are further
traced recursively [238]. Consequently, the main challenge on tracing rays is to find
intersections between these rays and the scene. This problem is closely related to

References 31

collision detection where two objects are checked for intersection. Therefore, also
the geometric acceleration data structures are very similar.

A complete overview of all existing data structures for ray tracing is far beyond
the scope of this excursus. As a starting point we would like to refer the interested
reader to the books and surveys of Hanrahan [83], Arvo and Kirk [5], Shirley and
Morley [200], and Suffern [209]. In the following, we will briefly point out simi-
larities and differences between ray tracing and collision detection and dwell on the
open challenges.

Almost all data structures that were proposed for collision detection had been
earlier applied to ray tracing. This includes non-hierarchical data structures like
uniform grids [3, 57], as well as bounding volume hierarchies [104, 192]. However,
a ray has to be tested for intersection with the whole scene, whereas during the
collision detection process objects are checked for collision with other objects in the
same scene. Therefore, the data structures for ray tracing are usually used at a scene
level, while collision detection uses them on an object level. Consequently, other
spatial subdivision data structures that are rarely used in collision detection, like
octrees [196, 237] and kd-trees [59], which were originally developed for associative
searches [16], became more popular for ray tracing [233].

However, these data structures are primarily designed for static scenes. If objects
in the scene move or deform, the data structures have to be updated or rebuilt. As
in collision detection for deformable objects, it is still a challenge to find the right
updating strategy and a lot of recent work has been done on this problem recently
[4, 244]. Moreover, even when using fast acceleration data structures, ray tracing
is computational very expensive and is not applicable for real-time rendering on
consumer hardware. However, the first GPU implementations that support parallel
tracing of rays seem to be very promising [40, 91, 150, 181, 221].

References

1. Agarwal, P. K., Guibas, L. J., Har-Peled, S., Rabinovitch, A., & Sharir, M. (2000). Penetra-
tion depth of two convex polytopes in 3d. Nordic Journal of Computing, 7(3), 227–240. URL
http://dl.acm.org/citation.cfm?id=642992.642999.

2. Albocher, D., Sarel, U., Choi, Y.-K., Elber, G., & Wang, W. (2006). Efficient continuous
collision detection for bounding boxes under rational motion. In ICRA (pp. 3017–3022).
New York: IEEE. URL http://dblp.uni-trier.de/db/conf/icra/icra2006.html.

3. Amanatides, J., & Woo, A. (1987). A fast voxel traversal algorithm for ray tracing. In Euro-
graphics 1987 (pp. 3–10).

4. Andrysco, N., & Tricoche, X. (2011). Implicit and dynamic trees for high perfor-
mance rendering. In Proceedings of graphics interface 2011, GI ’11, School of Com-
puter Science, University of Waterloo, Waterloo, Ontario (pp. 143–150). Waterloo:
Canadian Human-Computer Communications Society. ISBN 978-1-4503-0693-5. URL
http://dl.acm.org/citation.cfm?id=1992917.1992941.

5. Arvo, J., & Kirk, D. (1989). A survey of ray tracing acceleration techniques. In A. S. Glassner
(Ed.), An introduction to ray tracing (pp. 201–262). London: Academic Press Ltd. ISBN 0-
12-286160-4. URL http://dl.acm.org/citation.cfm?id=94788.94794.

http://dl.acm.org/citation.cfm?id=642992.642999
http://dblp.uni-trier.de/db/conf/icra/icra2006.html
http://dl.acm.org/citation.cfm?id=1992917.1992941
http://dl.acm.org/citation.cfm?id=94788.94794

32 2 A Brief Overview of Collision Detection

6. Atay, N., Lockwood, J. W., & Bayazit, B. (2005). A collision detection chip on reconfig-
urable hardware (Technical report). In Proceedings of pacific conference on computer graph-
ics and applications (pacific graphics).

7. Avila, R. S., & Sobierajski, L. M. (1996). A haptic interaction method for vol-
ume visualization. In Proceedings of the 7th conference on visualization ’96, VIS ’96
(pp. 197-ff). Los Alamitos: IEEE Computer Society Press. ISBN 0-89791-864-9. URL
http://dl.acm.org/citation.cfm?id=244979.245054.

8. Avril, Q., Gouranton, V., & Arnaldi, B. (2009). New trends in collision detection perfor-
mance. In S. Richir & A. Shirai (Eds.), Laval virtual VRIC’09 proceedings, BP 0119, 53001
Laval Cedex, France, April 2009 (pp. 53–62).

9. Avril, Q., Gouranton, V., & Arnaldi, B. (2010). A broad phase collision detection algorithm
adapted to multi-cores architectures. In S. Richir & A. Shirai (Eds.), VRIC’10 proceedings,
April 2010.

10. Avril, Q., Gouranton, V., & Arnaldi, B. (2010). Synchronization-free parallel collision detec-
tion pipeline. In ICAT 2010, December 2010.

11. Avril, Q., Gouranton, V., & Arnaldi, B. (2011). Dynamic adaptation of broad phase collision
detection algorithms. In IEEE international symposium on virtual reality innovations, March
2011.

12. Bandi, S., & Thalmann, D. (1995). An adaptive spatial subdivision of the object space for
fast collision detection of animated rigid bodies. Computer Graphics Forum, 14(3), 259–270.
URL http://dblp.uni-trier.de/db/journals/cgf/cgf14.html#BandiT95.

13. Barbič, J., & James, D. L. (2007). Time-critical distributed contact for 6-dof haptic rendering
of adaptively sampled reduced deformable models. In 2007 ACM SIGGRAPH / eurographics
symposium on computer animation, August 2007.

14. Barbič, J., & James, D. L. (2008). Six-dof haptic rendering of contact between geometrically
complex reduced deformable models. IEEE Transactions on Haptics, 1(1), 39–52.

15. Barequet, G., Chazelle, B., Guibas, L. J., Mitchell, J. S. B., & Tal, A. (1996). Boxtree: a
hierarchical representation for surfaces in 3d. Computer Graphics Forum, 15(3), 387–396.
URL http://dblp.uni-trier.de/db/journals/cgf/cgf15.html#BarequetCGMT96.

16. Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509–517. doi:10.1145/361002.361007. URL http://doi.
acm.org/10.1145/361002.361007.

17. Bentley, J. L., & Friedman, J. H. (1979). Data structures for range searching. ACM
Computing Surveys, 11(4), 397–409. doi:10.1145/356789.356797. URL http://doi.acm.org/
10.1145/356789.356797.

18. Bicchi, A., Buss, M., Ernst, M. O., & Peer, A. (Eds.) (2008). Springer tracts in advanced
robotics (STAR): Vol. 45. The sense of touch and its rendering: progresses in haptics research.
Berlin: Springer.

19. Bonner, S., & Kelley, R. B. (1988). A representation scheme for rapid 3-d collision detection.
In IEEE international symposium on intelligent control (pp. 320–325).

20. Bradshaw, G., & O’Sullivan, C. (2004). Adaptive medial-axis approximation for sphere-
tree construction. ACM Transactions on Graphics, 23(1), 1–26. doi:10.1145/966131.966132.
URL http://doi.acm.org/10.1145/966131.966132.

21. Brown, J., Sorkin, S., Bruyns, C., Latombe, J.-C., Montgomery, K., & Stephanides, M.
(2001). Real-time simulation of deformable objects: tools and application. In COMP. AN-
IMATION.

22. Cameron, S. (1997). Enhancing gjk: computing minimum and penetration distances between
convex polyhedra. In Proceedings of international conference on robotics and automation
(pp. 3112–3117).

23. Canny, J. (1984). Collision detection for moving polyhedra (Technical report). Massachusetts
Institute of Technology, Cambridge, MA, USA.

24. Chang, C.-T., Gorissen, B., & Melchior, S. (2011). Fast oriented bounding box optimization
on the rotation group so(3,ℝ). ACM Transactions on Graphics, 30(5), 122:1–122:16.
doi:10.1145/2019627.2019641. URL http://doi.acm.org/10.1145/2019627.2019641.

http://dl.acm.org/citation.cfm?id=244979.245054
http://dblp.uni-trier.de/db/journals/cgf/cgf14.html#BandiT95
http://dblp.uni-trier.de/db/journals/cgf/cgf15.html#BarequetCGMT96
http://dx.doi.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://dx.doi.org/10.1145/356789.356797
http://doi.acm.org/10.1145/356789.356797
http://doi.acm.org/10.1145/356789.356797
http://dx.doi.org/10.1145/966131.966132
http://doi.acm.org/10.1145/966131.966132
http://dx.doi.org/10.1145/2019627.2019641
http://doi.acm.org/10.1145/2019627.2019641

References 33

25. Chang, J.-W., & Kim, M.-S. (2009). Technical section: efficient triangle-triangle in-
tersection test for obb-based collision detection. Computer Graphics, 33(3), 235–240.
doi:10.1016/j.cag.2009.03.009.

26. Chazelle, B. (1984). Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm. SIAM Journal on Computing, 13(3), 488–507. doi:10.1137/0213031.

27. Chen, J.-S., & Li, T.-Y. (1999). Incremental 3D collision detection with hier-
archical data structures. November 22. URL http://citeseer.ist.psu.edu/356263.html;
http://bittern.cs.nccu.edu.tw/li/Publication/pdf/vrst98.pdf.

28. Chen, W., Wan, H., Zhang, H., Bao, H., & Peng, Q. (2004). Interactive collision detec-
tion for complex and deformable models using programmable graphics hardware. In Pro-
ceedings of the ACM symposium on virtual reality software and technology, VRST ’04
(pp. 10–15). New York: ACM. ISBN 1-58113-907-1. doi:10.1145/1077534.1077539. URL
http://doi.acm.org/10.1145/1077534.1077539.

29. Chin, F., & Wang, C. A. (1983). Optimal algorithms for the intersection and the mini-
mum distance problems between planar polygons. IEEE Transactions on Computers, 32(12),
1203–1207. doi:10.1109/TC.1983.1676186.

30. Choi, Y.-K., Chang, J.-W., Wang, W., Kim, M.-S., & Elber, G. (2009). Continuous collision
detection for ellipsoids. IEEE Transactions on Visualization and Computer Graphics, 15(2),
311–324. URL http://www.ncbi.nlm.nih.gov/pubmed/19147893.

31. Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms.
Communications of the ACM, 19(10), 547–554. doi:10.1145/360349.360354. URL
http://doi.acm.org/10.1145/360349.360354.

32. Cohen, J. D., Lin, M. C., Manocha, D., & Ponamgi, M. (1995). I-collide: an interac-
tive and exact collision detection system for large-scale environments. In Proceedings
of the 1995 symposium on interactive 3D graphics, I3D ’95 (pp. 189-ff). New York:
ACM. ISBN 0-89791-736-7. doi:10.1145/199404.199437. URL http://doi.acm.org/10.1145/
199404.199437.

33. Coming, D. S., & Staadt, O. G. (2007). Stride scheduling for time-critical collision
detection. In Proceedings of the 2007 ACM symposium on virtual reality software
and technology, VRST ’07 (pp. 241–242). New York: ACM. ISBN 978-1-59593-863-3.
doi:10.1145/1315184.1315240. URL http://doi.acm.org/10.1145/1315184.1315240.

34. Coming, D. S., & Staadt, O. G. (2008). Velocity-aligned discrete oriented polytopes for
dynamic collision detection. IEEE Transactions on Visualization and Computer Graphics,
14(1), 1–12. doi:10.1109/TVCG.2007.70405.

35. Coumans, E. (2005). Continuous collision detection and physics (Technical report). Sony
Computer Entertainment. August.

36. Coumans, E. (2012). Bullet physics library. http://bulletphysics.com.
37. Coutinho, M. G. (2001). Dynamic simulations of multibody systems. London: Springer. ISBN

0-387-95192-X.
38. Davis, C., Hegde, M., Schmid, O. A., Maher, M., & Bordes, J. P. (2003). System incorporat-

ing physics processing unit 1.
39. Dingliana, J., & O’Sullivan, C. (2000). Graceful degradation of collision handling in physi-

cally based animation. Computer Graphics Forum, 19(3), 239–247 (Proc. of EUROGRAPH-
ICS 2000).

40. Djeu, P., Hunt, W., Wang, R., Elhassan, I., Stoll, G., & Razor, W. R. M. (2011).
An architecture for dynamic multiresolution ray tracing. ACM Transactions on Graph-
ics, 30(5), 115:1–115:26. doi:10.1145/2019627.2019634. URL http://doi.acm.org/10.1145/
2019627.2019634.

41. Dobkin, D. P., Hershberger, J., Kirkpatrick, D. G., & Suri, S. (1993). Computing the
intersection-depth of polyhedra. Algorithmica, 9(6), 518–533.

42. Dong, Z., Chen, W., Bao, H., Zhang, H., & Peng, Q. (2004). Real-time voxelization for
complex polygonal models. In Proceedings of the computer graphics and applications, 12th
pacific conference, PG ’04 (pp. 43–50). Washington: IEEE Computer Society. ISBN 0-7695-
2234-3. URL http://dl.acm.org/citation.cfm?id=1025128.1026026.

http://dx.doi.org/10.1016/j.cag.2009.03.009
http://dx.doi.org/10.1137/0213031
http://citeseer.ist.psu.edu/356263.html
http://bittern.cs.nccu.edu.tw/li/Publication/pdf/vrst98.pdf
http://dx.doi.org/10.1145/1077534.1077539
http://doi.acm.org/10.1145/1077534.1077539
http://dx.doi.org/10.1109/TC.1983.1676186
http://www.ncbi.nlm.nih.gov/pubmed/19147893
http://dx.doi.org/10.1145/360349.360354
http://doi.acm.org/10.1145/360349.360354
http://dx.doi.org/10.1145/199404.199437
http://doi.acm.org/10.1145/199404.199437
http://doi.acm.org/10.1145/199404.199437
http://dx.doi.org/10.1145/1315184.1315240
http://doi.acm.org/10.1145/1315184.1315240
http://dx.doi.org/10.1109/TVCG.2007.70405
http://bulletphysics.com
http://dx.doi.org/10.1145/2019627.2019634
http://doi.acm.org/10.1145/2019627.2019634
http://doi.acm.org/10.1145/2019627.2019634
http://dl.acm.org/citation.cfm?id=1025128.1026026

34 2 A Brief Overview of Collision Detection

43. Eberly, D. H. (2003). Game physics. New York: Elsevier Science Inc. ISBN 1558607404.
44. Eckstein, J., & Schömer, E. (1999). Dynamic collision detection in virtual reality appli-

cations. In V. Skala (Ed.), WSCG’99 conference proceedings. URL citeseer.ist.psu.edu/
eckstein99dynamic.html.

45. Edelsbrunner, H., & Maurer, H. A. (1981). On the intersection of orthogonal objects. In-
formation Processing Letters, 13(4/5), 177–181. URL http://dblp.uni-trier.de/db/journals/
ipl/ipl13.html#EdelsbrunnerM81.

46. Ehmann, S. A., & Lin, M. C. (2001). Accurate and fast proximity queries between polyhedra
using convex surface decomposition. Computer Graphics Forum, 20(3), 500–510 (Proc. of
EUROGRAPHICS 2001).

47. El-Far, N. R., Georganas, N. D., & El Saddik, A. (2007). Collision detection and force re-
sponse in highly-detailed point-based hapto-visual virtual environments. In Proceedings of
the 11th IEEE international symposium on distributed simulation and real-time applica-
tions, DS-RT ’07 (pp. 15–22). Washington: IEEE Computer Society. ISBN 0-7695-3011-7.
doi:10.1109/DS-RT.2007.17.

48. Elsen, E., Houston, M., Vishal, V., Darve, E., Hanrahan, P., & Pande, V. (2006). N-body
simulation on gpus. In Proceedings of the 2006 ACM/IEEE conference on supercomput-
ing, SC ’06, New York: ACM. ISBN 0-7695-2700-0. doi:10.1145/1188455.1188649. URL
http://doi.acm.org/10.1145/1188455.1188649.

49. Ericson, C. (2004). The Morgan Kaufmann series in interactive 3-D technology: Real-time
collision detection. San Francisco: Morgan Kaufmann Publishers Inc. ISBN 1558607323.

50. Fahn, C.-S., & Wang, J.-L. (1999). Efficient time-interupted and time-continuous collision
detection among polyhedral. Journal of Information Science and Engineering, 15(6), 769–
799.

51. Fares, C., & Hamam, A. (2005). Collision detection for rigid bodies: a state of the art review.
In GraphiCon.

52. Faure, F., Barbier, S., Allard, J., & Falipou, F. (2008). Image-based collision detection and
response between arbitrary volumetric objects. In ACM siggraph/eurographics symposium
on computer animation, SCA, Dublin, Irlande. July 2008.

53. Figueiredo, M., Oliveira, J., Araujo, B., & Madeiras, J. (2010). An efficient collision detec-
tion algorithm for point cloud models. In Proceedings of graphicon.

54. Fisher, S., & Lin, M. C. (2001). Deformed distance fields for simulation of non-
penetrating flexible bodies. In Proceedings of the eurographic workshop on computer an-
imation and simulation (pp. 99–111). New York: Springer. ISBN 3-211-83711-6. URL
http://dl.acm.org/citation.cfm?id=776350.776360.

55. Fuchs, H., Kedem, Z. M., & Naylor, B. F. (1980). On visible surface genera-
tion by a priori tree structures. SIGGRAPH Computer Graphics, 14(3), 124–133.
doi:10.1145/965105.807481. URL http://doi.acm.org/10.1145/965105.807481.

56. Fuhrmann, A., Sobotka, G., & Groß, C. (2003). Distance fields for rapid collision detec-
tion in physically based modeling. In Proceedings of GraphiCon 2003 (pp. 58–65). URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4043&rep=rep1&type=pdf.

57. Fujimoto, A., Tanaka, T., & Iwata, K. (1986). Arts: Accelerated ray-tracing system. IEEE
Computer Graphics and Applications, 6(4), 16–26.

58. Funfzig, C., Ullrich, T., & Fellner, D. W. (2006). Hierarchical spherical distance
fields for collision detection. IEEE Computer Graphics and Applications, 26(1), 64–74.
doi:10.1109/MCG.2006.17.

59. Fussell, D. S., & Subramanian, K. R. (1988). Fast ray tracing using k-d trees (Technical
report). University of Texas at Austin, Austin, TX, USA.

60. Ganjugunte, S. K. (2007). A survey on techniques for computing penetration depth.
61. Ganovelli, F., & Dingliana, J. (2000). Buckettree: improving collision detection between

deformable objects. In Proceedings of SCCG2000: spring conference on computer graphics,
Budmerice (pp. 4–6).

62. Giang, T., & O’Sullivan, C. (2005). Closest feature maps for time-critical collision handling.
In International workshop on virtual reality and physical simulation (VRIPHYS’05), Novem-

http://citeseer.ist.psu.edu/eckstein99dynamic.html
http://citeseer.ist.psu.edu/eckstein99dynamic.html
http://dblp.uni-trier.de/db/journals/ipl/ipl13.html#EdelsbrunnerM81
http://dblp.uni-trier.de/db/journals/ipl/ipl13.html#EdelsbrunnerM81
http://dx.doi.org/10.1109/DS-RT.2007.17
http://dx.doi.org/10.1145/1188455.1188649
http://doi.acm.org/10.1145/1188455.1188649
http://dl.acm.org/citation.cfm?id=776350.776360
http://dx.doi.org/10.1145/965105.807481
http://doi.acm.org/10.1145/965105.807481
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4043&rep=rep1&type=pdf
http://dx.doi.org/10.1109/MCG.2006.17

References 35

ber (pp. 65–72). URL http://isg.cs.tcd.ie/cosulliv/Pubs/GiangVriphys.pdf.
63. Giang, T., & O’Sullivan, C. (2006). Virtual reality interaction and physical simulation: ap-

proximate collision response using closest feature maps. Computer Graphics, 30(3), 423–
431. doi:10.1016/j.cag.2006.02.019.

64. Gibson, S. F. F. (1995). Beyond volume rendering: visualization, haptic exploration, and
physical modeling of voxel-based objects. In Proc. eurographics workshop on visualization
in scientific computing (pp. 10–24). Berlin: Springer.

65. Gilbert, E. G., Johnson, D. W., & Keerthi, S. S. (1988). A fast procedure for computing the
distance between complex objects in three-dimensional space. IEEE Journal of Robotics and
Automation, 4(2), 193–203.

66. Gilbert, E. G., & Ong, C. J. (1994). New distances for the separation and penetration of
objects. In ICRA (pp. 579–586).

67. Glondu, L., Marchal, M., & Dumont, G. (2010). A new coupling scheme for haptic ren-
dering of rigid bodies interactions based on a haptic sub-world using a contact graph. In
Proceedings of the 2010 international conference on haptics: generating and perceiving tan-
gible sensations, part I, EuroHaptics’10 (pp. 51–56). Berlin: Springer. ISBN 3-642-14063-7,
978-3-642-14063-1. URL http://dl.acm.org/citation.cfm?id=1884164.1884173.

68. Goldsmith, J., & Salmon, J. (1987). Automatic creation of object hierarchies for ray tracing.
IEEE Computer Graphics and Applications, 7(5), 14–20. doi:10.1109/MCG.1987.276983.

69. Gordon, D., & Chen, S. (1991). Front-to-back display of bsp trees. IEEE Computer Graphics
and Applications, 11(5), 79–85. doi:10.1109/38.90569.

70. Gottschalk, S., Lin, M. C., & Manocha, D. (1996). Obbtree: a hierarchical structure for rapid
interference detection. In Proceedings of the 23rd annual conference on computer graphics
and interactive techniques, SIGGRAPH ’96 (pp. 171–180). New York: ACM. ISBN 0-89791-
746-4. doi:10.1145/237170.237244. URL http://doi.acm.org/10.1145/237170.237244.

71. Gottschalk, S. (1997). Collision detection techniques for 3d models.
72. Gottschalk, S. A. (2000). Collision queries using oriented bounding boxes. PhD thesis, The

University of North Carolina at Chapel Hill. AAI9993311.
73. Govindaraju, N. K., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M.

C., & Manocha, D. (2005). Interactive collision detection between deformable models
using chromatic decomposition. ACM Transactions on Graphics, 24(3), 991–999. URL
http://dblp.uni-trier.de/db/journals/tog/tog24.html#GovindarajuKJKTGLM05.

74. Greene, N., Kass, M., & Miller, G. (1993). Hierarchical z-buffer visibility. In Proceedings
of the 20th annual conference on computer graphics and interactive techniques, SIGGRAPH
’93 (pp. 231–238). New York: ACM. ISBN 0-89791-601-8. doi:10.1145/166117.166147.
URL http://doi.acm.org/10.1145/166117.166147.

75. Gregory, A., Lin, M. C., Gottschalk, S., & Taylor, R. (1999). A framework for fast and
accurate collision detection for haptic interaction. In Proceedings of the IEEE virtual re-
ality, VR ’99 (p. 38). Washington: IEEE Computer Society. ISBN 0-7695-0093-5. URL
http://dl.acm.org/citation.cfm?id=554230.835691.

76. Greß, A., Guthe, M., & Klein, R. (2006). Gpu-based collision detection for deformable pa-
rameterized surfaces. Computer Graphics Forum, 25(3), 497–506.

77. Guibas, L., Nguyen, A., Russel, D., & Zhang, L. (2002). Collision detection for deforming
necklaces. In Proceedings of the eighteenth annual symposium on computational geometry,
SCG ’02 (pp. 33–42). New York: ACM. ISBN 1-58113-504-1. doi:10.1145/513400.513405.
URL http://doi.acm.org/10.1145/513400.513405.

78. Günther, J., Mannuß, F., & Hinkenjann, A. (2009). Centralized spatial data structures for
interactive environments. In Proceedings of workshop on software engineering and archi-
tectures for realtime interactive systems, in conjunction with IEEE virtual reality. URL
http://cg.inf.fh-bonn-rhein-sieg.de/basilic/Publications/2009/GMH09.

79. Günther, O. (1989). The design of the cell tree: an object-oriented index structure for geo-
metric databases. In ICDE (pp. 598–605).

80. Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. SIG-
MOD Record, 14(2), 47–57. doi:10.1145/971697.602266. URL http://doi.acm.org/10.1145/

http://isg.cs.tcd.ie/cosulliv/Pubs/GiangVriphys.pdf
http://dx.doi.org/10.1016/j.cag.2006.02.019
http://dl.acm.org/citation.cfm?id=1884164.1884173
http://dx.doi.org/10.1109/MCG.1987.276983
http://dx.doi.org/10.1109/38.90569
http://dx.doi.org/10.1145/237170.237244
http://doi.acm.org/10.1145/237170.237244
http://dblp.uni-trier.de/db/journals/tog/tog24.html#GovindarajuKJKTGLM05
http://dx.doi.org/10.1145/166117.166147
http://doi.acm.org/10.1145/166117.166147
http://dl.acm.org/citation.cfm?id=554230.835691
http://dx.doi.org/10.1145/513400.513405
http://doi.acm.org/10.1145/513400.513405
http://cg.inf.fh-bonn-rhein-sieg.de/basilic/Publications/2009/GMH09
http://dx.doi.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266

36 2 A Brief Overview of Collision Detection

971697.602266.
81. Hachenberger, P. (2007). Exact Minkowksi sums of polyhedra and exact and efficient de-

composition of polyhedra in convex pieces. In Proceedings of the 15th annual European
conference on algorithms, ESA’07 (pp. 669–680). Berlin: Springer. ISBN 3-540-75519-5.
URL http://dl.acm.org/citation.cfm?id=1778580.1778642.

82. Haines, E. (1988). Spline surface rendering, and what’s wrong with octrees. Ray Tracing
News, 1.

83. Hanrahan, P. (1989). A survey of ray-surface intersection algorithms. In A. S. Glassner (Ed.),
An introduction to ray tracing (pp. 79–119). London: Academic Press Ltd. ISBN 0-12-
286160-4. URL http://dl.acm.org/citation.cfm?id=94788.94791.

84. Hasegawa, S., & Sato, M. (2004). Real-time rigid body simulation for haptic interactions
based on contact volume of polygonal objects. Computer Graphics Forum, 23(3), 529–538.

85. He, T. (1999). Fast collision detection using quospo trees. In Proceedings of the 1999 sym-
posium on interactive 3D graphics, I3D ’99 (pp. 55–62). New York: ACM. ISBN 1-58113-
082-1. doi:10.1145/300523.300529. URL http://doi.acm.org/10.1145/300523.300529.

86. Heidelberger, B., Teschner, M., & Gross, M. (2004). Detection of collisions and self-
collisions using image-space techniques. In Proceedings of the 12th international con-
ference in central Europe on computer graphics, visualization and computer vision’2004
(WSCG’2004), University of West Bohemia, Czech Republic, February (pp. 145–152).

87. Held, M. (1998). Erit: a collection of efficient and reliable intersection tests. Journal of
Graphics Tools, 2(4), 25–44. URL http://dl.acm.org/citation.cfm?id=763345.763348.

88. Held, M., Klosowski, J. T., & Mitchell, J. S. B. (1996). Collision detection for fly-
throughs in virtual environments. In Proceedings of the twelfth annual symposium on com-
putational geometry, SCG ’96 (pp. 513–514). New York: ACM. ISBN 0-89791-804-5.
doi:10.1145/237218.237428. URL http://doi.acm.org/10.1145/237218.237428.

89. Ho, C.-H., Basdogan, C., & Srinivasan, M. A. (1999). Efficient point-based rendering tech-
niques for haptic display of virtual objects. Presence: Teleoperators & Virtual Environments,
8(5), 477–491. doi:10.1162/105474699566413.

90. Hoang, T. (1998). Convex analysis and global optimization. Nonconvex optimization and
its applications. Dordrecht: Kluwer Academic Publishers. ISBN 9780792348184. URL
http://books.google.co.uk/books?id=hVkJc2IRDdcC.

91. Horn, D. R., Sugerman, J., Houston, M., & Hanrahan, P. (2007). Interactive k-d tree
gpu raytracing. In Proceedings of the 2007 symposium on interactive 3D graphics and
games, I3D ’07 (pp. 167–174). New York: ACM. ISBN 978-1-59593-628-8. doi:10.1145/
1230100.1230129. URL http://doi.acm.org/10.1145/1230100.1230129.

92. Hubbard, P. M. (1996). Approximating polyhedra with spheres for time-critical collision
detection. ACM Transactions on Graphics, 15(3), 179–210.

93. Hutter, M. (2007). Optimized continuous collision detection for deformable triangle meshes.
Computer, 15(1–3), 25–32. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.85.1140&rep=rep1&type=pdf.

94. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges,
S., Freeman, D., Davison, A., & Fitzgibbon, A. (2011). Kinectfusion: real-time 3d recon-
struction and interaction using a moving depth camera. In Proceedings of the 24th an-
nual ACM symposium on user interface software and technology, UIST ’11 (pp. 559–568).
New York: ACM. ISBN 978-1-4503-0716-1. doi:10.1145/2047196.2047270. URL http://
doi.acm.org/10.1145/2047196.2047270.

95. James, D. L., & Pai, D. K. (2004). Bd-tree: output-sensitive collision detection for re-
duced deformable models. In ACM SIGGRAPH 2004 papers, SIGGRAPH ’04 (pp. 393–
398). New York: ACM. doi:10.1145/1186562.1015735. URL http://doi.acm.org/10.1145/
1186562.1015735.

96. Je, C., Tang, M., Lee, Y., Lee, M., & Kim, Y. J. (2012). Polydepth: real-time
penetration depth computation using iterative contact-space projection. ACM Transac-
tions on Graphics, 31(1), 5:1–5:14. doi:10.1145/2077341.2077346. URL http://doi.acm.
org/10.1145/2077341.2077346.

http://doi.acm.org/10.1145/971697.602266
http://dl.acm.org/citation.cfm?id=1778580.1778642
http://dl.acm.org/citation.cfm?id=94788.94791
http://dx.doi.org/10.1145/300523.300529
http://doi.acm.org/10.1145/300523.300529
http://dl.acm.org/citation.cfm?id=763345.763348
http://dx.doi.org/10.1145/237218.237428
http://doi.acm.org/10.1145/237218.237428
http://dx.doi.org/10.1162/105474699566413
http://books.google.co.uk/books?id=hVkJc2IRDdcC
http://dx.doi.org/10.1145/1230100.1230129
http://dx.doi.org/10.1145/1230100.1230129
http://doi.acm.org/10.1145/1230100.1230129
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.1140&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.1140&rep=rep1&type=pdf
http://dx.doi.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://dx.doi.org/10.1145/1186562.1015735
http://doi.acm.org/10.1145/1186562.1015735
http://doi.acm.org/10.1145/1186562.1015735
http://dx.doi.org/10.1145/2077341.2077346
http://doi.acm.org/10.1145/2077341.2077346
http://doi.acm.org/10.1145/2077341.2077346

References 37

97. Jimenez, P., Thomas, F., & Torras, C. (2000). 3d collision detection: a survey. Computers &
Graphics, 25, 269–285.

98. Johnson, D. E., & Cohen, E. (1998). A framework for efficient minimum distance computa-
tions. In Proc. IEEE intl. conf. robotics and automation (pp. 3678–3684).

99. Johnson, D. E., Willemsen, P., & Cohen, E. (2005). 6-dof haptic rendering using spatialized
normal cone search. In Transactions on visualization and computer graphics (p. 2005).

100. Jolliffe, I. T. (2002). Principal component analysis. Berlin: Springer. ISBN 0387954422.
101. Ju, M.-Y., Liu, J.-S., Shiang, S.-P., Chien, Y.-R., Hwang, K.-S., & Lee, W.-C. (2001). Fast

and accurate collision detection based on enclosed ellipsoid. Robotica, 19(4), 381–394.
doi:10.1017/S0263574700003295.

102. Kallay, M. (1984). The complexity of incremental convex hull algorithms in rd . Information
Processing Letters, 19(4), 197.

103. Kamat, V. V. (1993). A survey of techniques for simulation of dynamic collision detection
and response. Computers & Graphics, 17(4), 379–385.

104. Kay, T. L., & Kajiya, J. T. (1986). Ray tracing complex scenes. SIGGRAPH Computer
Graphics, 20(4), 269–278. doi:10.1145/15886.15916. URL http://doi.acm.org/10.1145/
15886.15916.

105. Kim, B., & Rossignac, J. (2003). Collision prediction for polyhedra under screw motions. In
ACM symposium in solid modeling and applications (pp. 4–10). New York: ACM Press.

106. Kim, D., Heo, J.-P., & Yoon, S.-e. (2009). Pccd: parallel continuous collision detec-
tion. In SIGGRAPH ’09: posters, SIGGRAPH ’09 (pp. 50:1–50:1). New York: ACM.
doi:10.1145/1599301.1599351. URL http://doi.acm.org/10.1145/1599301.1599351.

107. Kim, J.-P., Lee, B.-C., Kim, H., Kim, J., & Ryu, J. (2009). Accurate and efficient cpu/gpu-
based 3-dof haptic rendering of complex static virtual environments. Presence: Teleoperators
& Virtual Environments, 18(5), 340–360. doi:10.1162/pres.18.5.340.

108. Kim, Y.-J., Oh, Y.-T., Yoon, S.-H., Kim, M.-S., & Elber, G. (2011). Coons bvh for freeform
geometric models. In Proceedings of the 2011 SIGGRAPH Asia conference, SA ’11 (pp.
169:1–169:8). New York: ACM. ISBN 978-1-4503-0807-6. doi:10.1145/2024156.2024203.
URL http://doi.acm.org/10.1145/2024156.2024203.

109. Kim, Y. J., Lin, M. C., & Manocha, D. (2002). DEEP: dual-space expansion for estimat-
ing penetration depth between convex polytopes. In ICRA (pp. 921–926). New York: IEEE.
ISBN 0-7803-7273-5.

110. Kim, Y. J., Otaduy, M. A., Lin, M. C., & Manocha, D. (2002). Fast penetration depth com-
putation using rasterization hardware and hierarchical refinement (Technical report). De-
partment of Computer Science, University of North Carolina. URL ftp://ftp.cs.unc.edu/pub/
publications/techreports/02-014.pdf.

111. Kim, Y. J., Otaduy, M. A., Lin, M. C., & Manocha, D. (2002). Fast penetration depth
computation for physically-based animation. In Proceedings of the 2002 ACM SIG-
GRAPH/eurographics symposium on computer animation, SCA ’02 (pp. 23–31). New
York: ACM. ISBN 1-58113-573-4. doi:10.1145/545261.545266. URL http://doi.acm.org/
10.1145/545261.545266.

112. Kim, Y. J., Otaduy, M. A., Lin, M. C., & Manocha, D. (2003). Six-degree-of-freedom haptic
rendering using incremental and localized computations. Presence: Teleoperators & Virtual
Environments, 12(3), 277–295. doi:10.1162/105474603765879530.

113. Kim, Y. J., Lin, M. C., & Manocha, D. (2004). Incremental penetration depth estimation
between convex polytopes using dual-space expansion. IEEE Transactions on Visualization
and Computer Graphics, 10(2), 152–163. doi:10.1109/TVCG.2004.1260767.

114. Kipfer, P. (2007). LCP algorithms for collision detection using CUDA. In H. Nguyen (Ed.),
GPUGems 3 (pp. 723–739). Reading: Addison-Wesley.

115. Klein, J., & Zachmann, G. (2003). Adb-trees: controlling the error of time-critical collision
detection. In T. Ertl, B. Girod, G. Greiner, H. Niemann, H.-P. Seidel, E. Steinbach, & R.
Westermann (Eds.), Vision, modeling and visualisation 2003 (pp. 37–46). Berlin: Akademis-
che Verlagsgesellschaft Aka GmbH. ISBN 3-89838-048-3.

http://dx.doi.org/10.1017/S0263574700003295
http://dx.doi.org/10.1145/15886.15916
http://doi.acm.org/10.1145/15886.15916
http://doi.acm.org/10.1145/15886.15916
http://dx.doi.org/10.1145/1599301.1599351
http://doi.acm.org/10.1145/1599301.1599351
http://dx.doi.org/10.1162/pres.18.5.340
http://dx.doi.org/10.1145/2024156.2024203
http://doi.acm.org/10.1145/2024156.2024203
ftp://ftp.cs.unc.edu/pub/publications/techreports/02-014.pdf
ftp://ftp.cs.unc.edu/pub/publications/techreports/02-014.pdf
http://dx.doi.org/10.1145/545261.545266
http://doi.acm.org/10.1145/545261.545266
http://doi.acm.org/10.1145/545261.545266
http://dx.doi.org/10.1162/105474603765879530
http://dx.doi.org/10.1109/TVCG.2004.1260767

38 2 A Brief Overview of Collision Detection

116. Klein, J., & Zachmann, G. (2004). Point cloud collision detection. In M.-P. Cani & M. Slater
(Eds.), Computer graphics forum (Proc. EUROGRAPHICS), Grenoble, France, Aug. 30–
Sep. 3 (Vol. 23, pp. 567–576). URL http://www.gabrielzachmann.org/.

117. Klein, J., & Zachmann, G. (2005). Interpolation search for point cloud intersection. In Proc.
of WSCG 2005, University of West Bohemia, Plzen, Czech Republic, January 31–February
7 (pp. 163–170). ISBN 80-903100-7-9. URL http://www.gabrielzachmann.org/.

118. Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., & Zikan, K. (1998). Efficient
collision detection using bounding volume hierarchies of k-dops. IEEE Transactions on Vi-
sualization and Computer Graphics, 4(1), 21–36. doi:10.1109/2945.675649.

119. Knott, D., & Pai, D. (2003). Cinder: collision and interference detection in real–time using
graphics hardware. URL citeseer.ist.psu.edu/knott03cinder.html.

120. Kobbelt, L., & Botsch, M. (2004). A survey of point-based techniques in computer graphics.
Computers & Graphics, 28(6), 801–814.

121. Kockara, S., Halic, T., Iqbal, K., Bayrak, C., & Rowe, R. (2007). Collision detection: a sur-
vey. In SMC (pp. 4046–4051). New York: IEEE.

122. Kolb, A., Latta, L., & Rezk-Salama, C. (2004). Hardware-based simulation and collision de-
tection for large particle systems. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on graphics hardware, HWWS ’04 (pp. 123–131). New York: ACM. ISBN 3-
905673-15-0. doi:10.1145/1058129.1058147. URL http://doi.acm.org/10.1145/1058129.
1058147.

123. Kolesnikov, M., & Zefran, M. (2007). Energy-based 6-dof penetration depth computation for
penalty-based haptic rendering algorithms. In IROS (pp. 2120–2125).

124. Krishnan, S., Gopi, M., Lin, M., Manocha, D., & Pattekar, A. (1998). Rapid and accurate
contact determination between spline models using shelltrees.

125. Krishnan, S., Pattekar, A., Lin, M. C., & Manocha, D. (1998). Spherical shell: a higher order
bounding volume for fast proximity queries. In Proceedings of the third workshop on the
algorithmic foundations of robotics on robotics: the algorithmic perspective, WAFR ’98 (pp.
177–190). Natick: A. K. Peters, Ltd. ISBN 1-56881-081-4. URL http://dl.acm.org/citation.
cfm?id=298960.299006.

126. Larsen, E., Gottschalk, S., Lin, M. C., & Manocha, D. (1999). Fast proximity queries
with swept sphere volumes, November 14. URL http://citeseer.ist.psu.edu/408975.html;
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/ssv.ps.

127. Larsson, T., & Akenine-Möller, T. (2001). Collision detection for continuously deforming
bodies. In Eurographics 2001, short presentations (pp. 325–333). Geneve: Eurographics As-
sociation. URL http://www.mrtc.mdh.se/index.php?choice=publications&id=0354.

128. Larsson, T., & Akenine-Möller, T. (2003). Efficient collision detection for models de-
formed by morphing. The Visual Computer, 19(2–3), 164–174. URL http://www.mrtc.
mdh.se/index.phtml?choice=publications&id=0551.

129. Larsson, T., & Akenine-Möller, T. (2006). A dynamic bounding volume hierarchy for gen-
eralized collision detection. Computer Graphics, 30(3), 450–459. doi:10.1016/j.cag.2006.
02.011.

130. Larsson, T., & Akenine-Möller, T. (2009). Bounding volume hierarchies of slab cut balls.
Computer Graphics Forum, 28(8), 2379–2395. URL http://dblp.uni-trier.de/db/journals/
cgf/cgf28.html#LarssonA09.

131. Lau, R. W. H., Chan, O., Luk, M., & Li, F. W. B. (2002). Large a collision detection frame-
work for deformable objects. In Proceedings of the ACM symposium on virtual reality soft-
ware and technology, VRST ’02 (pp. 113–120). New York: ACM. ISBN 1-58113-530-0.
doi:10.1145/585740.585760. URL http://doi.acm.org/10.1145/585740.585760.

132. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D. P., & Manocha, D. (2009). Fast bvh
construction on gpus. Computer Graphics Forum, 28(2), 375–384. URL http://dblp.uni-trier.
de/db/journals/cgf/cgf28.html#LauterbachGSLM09.

133. Lauterbach, C., Mo, Q., & Manocha, D. (2010). gproximity: hierarchical gpu-based opera-
tions for collision and distance queries. Computer Graphics Forum, 29(2), 419–428. URL
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#LauterbachMM10.

http://www.gabrielzachmann.org/
http://www.gabrielzachmann.org/
http://dx.doi.org/10.1109/2945.675649
http://citeseer.ist.psu.edu/knott03cinder.html
http://dx.doi.org/10.1145/1058129.1058147
http://doi.acm.org/10.1145/1058129.1058147
http://doi.acm.org/10.1145/1058129.1058147
http://dl.acm.org/citation.cfm?id=298960.299006
http://dl.acm.org/citation.cfm?id=298960.299006
http://citeseer.ist.psu.edu/408975.html
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/ssv.ps
http://www.mrtc.mdh.se/index.php?choice=publications&id=0354
http://www.mrtc.mdh.se/index.phtml?choice=publications&id=0551
http://www.mrtc.mdh.se/index.phtml?choice=publications&id=0551
http://dx.doi.org/10.1016/j.cag.2006.02.011
http://dx.doi.org/10.1016/j.cag.2006.02.011
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LarssonA09
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LarssonA09
http://dx.doi.org/10.1145/585740.585760
http://doi.acm.org/10.1145/585740.585760
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LauterbachGSLM09
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LauterbachGSLM09
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#LauterbachMM10

References 39

134. LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press. Avail-
able at http://planning.cs.uiuc.edu/.

135. Le Grand, S. (2008). Broad-phase collision detection with CUDA. In GPU gems 3 (pp. 697–
721). URL http://http.developer.nvidia.com/GPUGems3/gpugems3_ch32.html.

136. Leon, C. A. D., Eliuk, S., & Gomez, H. T. (2010). Simulating soft tissues using a gpu ap-
proach of the mass-spring model. In B. Lok, G. Klinker, & R. Nakatsu (Eds.), VR (pp. 261–
262). New York: IEEE. ISBN 978-1-4244-6258-2.

137. Leutenegger, S. T., Edgington, J. M., & Lopez, M. A. (1997). Str: a simple and efficient al-
gorithm for r-tree packing (Technical report). Institute for Computer Applications in Science
and Engineering (ICASE).

138. Lien, J.-M., & Amato, N. M. (2008). Approximate convex decomposition of poly-
hedra and its applications. Computer Aided Geometric Design, 25(7), 503–522.
doi:10.1016/j.cagd.2008.05.003.

139. Lin, M. C., & Canny, J. F. (1991). A fast algorithm for incremental distance calculation. In
IEEE international conference on robotics and automation (pp. 1008–1014).

140. Lin, M. C., & Gottschalk, S. (1998). Collision detection between geometric models: a survey.
In Proc. of IMA conference on mathematics of surfaces (pp. 37–56).

141. Lin, M. C., Otaduy, M., Lin, M. C., & Otaduy, M. (2008). Haptic rendering: foundations,
algorithms and applications. Natick: A. K. Peters, Ltd. ISBN 1568813325.

142. Lin, Y.-T., & Li, T.-Y. (2006). A time-budgeted collision detection method. In ICRA (pp.
3029–3034). New York: IEEE.

143. Liu, F., Harada, T., Lee, Y., & Kim, Y. J. (2010). Real-time collision culling of a million
bodies on graphics processing units. ACM Transactions on Graphics, 29(6), 154:1–154:8.
doi:10.1145/1882261.1866180. URL http://doi.acm.org/10.1145/1882261.1866180.

144. Liu, J.-S., Kao, J.-I., & Chang, Y.-Z. (2006). Collision detection of deformable polyhe-
dral objects via inner-outer ellipsoids. In IROS (pp. 5600–5605). New York: IEEE. URL
http://dblp.uni-trier.de/db/conf/iros/iros2006.html#LiuKC06.

145. Liu, M., Wang, D., & Zhang, Y. (2010). A novel haptic rendering algorithm for stable and
precise 6-dof virtual assembly. In Proceedings of the ASME 2010 world conference on inno-
vative virtual reality, WINVR2010 (pp. 1–7).

146. Luebke, D. (2003). The Morgan Kaufmann series in computer graphics and geomet-
ric modeling. Level of detail for 3D graphics. San Francisco: Morgan Kaufmann. ISBN
9781558608382. URL http://books.google.de/books?id=CB1N1aaoMloC.

147. Luque, R. G., Comba, J. L. D., & Freitas, C. M. D. S. (2005). Broad-phase collision detec-
tion using semi-adjusting bsp-trees. In Proceedings of the 2005 symposium on interactive
3D graphics and games, I3D ’05 (pp. 179–186). New York: ACM. ISBN 1-59593-013-2.
doi:10.1145/1053427.1053457. URL http://doi.acm.org/10.1145/1053427.1053457.

148. Massie, T. H., & Salisbury, K. J. (1994). Phantom haptic interface: a device for probing
virtual objects. American Society of Mechanical Engineers, Dynamic Systems and Control
Division (Publication) DSC, 55(1), 295–299.

149. Mazhar, H. (2009). Gpu collision detection using spatial subdivision with applications in
contact dynamics. In ASME IDETC conference.

150. McGuire, M., & Luebke, D. (2009). Hardware-accelerated global illumination by image
space photon mapping. In Proceedings of the conference on high performance graphics
2009, HPG ’09 (pp. 77–89). New York: ACM. ISBN 978-1-60558-603-8. doi:10.1145/
1572769.1572783. URL http://doi.acm.org/10.1145/1572769.1572783.

151. McNeely, W. A., Puterbaugh, K. D., & Troy, J. J. (1999). Six degrees-of-freedom haptic ren-
dering using voxel sampling. ACM Transactions on Graphics, 18(3), 401–408 (SIGGRAPH
1999).

152. McNeely, W. A., Puterbaugh, K. D., & Troy, J. J. (2005). Advances in voxel-based 6-dof
haptic rendering. In ACM SIGGRAPH 2005 courses, SIGGRAPH ’05. New York: ACM.
doi:10.1145/1198555.1198606. URL http://doi.acm.org/10.1145/1198555.1198606.

153. McNeely, W. A., Puterbaugh, K. D., & Troy, J. J. (2006). Voxel-based 6-dof haptic rendering
improvements. Hapticse: The Electronic Journal of Haptics Research, 3(7).

http://planning.cs.uiuc.edu/
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch32.html
http://dx.doi.org/10.1016/j.cagd.2008.05.003
http://dx.doi.org/10.1145/1882261.1866180
http://doi.acm.org/10.1145/1882261.1866180
http://dblp.uni-trier.de/db/conf/iros/iros2006.html#LiuKC06
http://books.google.de/books?id=CB1N1aaoMloC
http://dx.doi.org/10.1145/1053427.1053457
http://doi.acm.org/10.1145/1053427.1053457
http://dx.doi.org/10.1145/1572769.1572783
http://dx.doi.org/10.1145/1572769.1572783
http://doi.acm.org/10.1145/1572769.1572783
http://dx.doi.org/10.1145/1198555.1198606
http://doi.acm.org/10.1145/1198555.1198606

40 2 A Brief Overview of Collision Detection

154. Mendoza, C., & O’Sullivan, C. (2006). Interruptible collision detection for deformable ob-
jects. Computer Graphics, 30(3), 432–438. doi:10.1016/j.cag.2006.02.018.

155. Mezger, J., Kimmerle, S., & Etzmuß, O. (2003). Hierarchical techniques in collision detec-
tion for cloth animation. Journal of WSCG, 11(2), 322–329.

156. Mirtich, B. (1998). Efficient algorithms for two-phase collision detection. In K. Gupta &
A. P. del Pobil (Eds.), Practical motion planning in robotics: current approaches and future
directions (pp. 203–223). New York: Wiley.

157. Mirtich, B. (1998). V-clip: fast and robust polyhedral collision detection. ACM Transac-
tions on Graphics, 17(3), 177–208. doi:10.1145/285857.285860. URL http://doi.acm.org/
10.1145/285857.285860.

158. Mirtich, B. (2000). Timewarp rigid body simulation. In Proceedings of the 27th an-
nual conference on computer graphics and interactive techniques, SIGGRAPH ’00 (pp.
193–200). New York: ACM Press/Addison-Wesley Publishing Co. ISBN 1-58113-208-5.
doi:10.1145/344779.344866.

159. Möller, T. (1997). A fast triangle-triangle intersection test. Journal of Graphics Tools, 2(2),
25–30. URL http://dl.acm.org/citation.cfm?id=272317.272320.

160. Mosegaard, J., Herborg, P., & Sørensen, T. S. (2005). A GPU accelerated spring mass system
for surgical simulation. Studies in Health Technology and Informatics, 111, 342–348. URL
http://view.ncbi.nlm.nih.gov/pubmed/15718756.

161. Munkberg, J., Hasselgren, J., Toth, R., & Akenine-Möller, T. (2010). Efficient bound-
ing of displaced Bezier patches. In Proceedings of the conference on high perfor-
mance graphics, HPG ’10 (pp. 153–162). Aire-la-Ville: Eurographics Association. URL
http://dl.acm.org/citation.cfm?id=1921479.1921503.

162. Naylor, B. F. (1992). Interactive solid geometry via partitioning trees. In Proceedings of
the conference on graphics interface ’92 (pp. 11–18). San Francisco: Morgan Kaufmann
Publishers. ISBN 0-9695338-1-0. URL http://dl.acm.org/citation.cfm?id=155294.155296.

163. NVIDIA (2012). Nvidia physx. http://www.nvidia.com/object/nvidia_physx.html.
164. O’Brien, J. F., & Hodgins, J. K. (1999). Graphical modeling and animation of brittle fracture.

In Proceedings of the 26th annual conference on computer graphics and interactive tech-
niques, SIGGRAPH ’99 (pp. 137–146). New York: ACM Press/Addison-Wesley Publishing
Co. ISBN 0-201-48560-5. doi:10.1145/311535.311550.

165. Ong, C. J., Huang, E., & Hong, S.-M. (2000). A fast growth distance algorithm for incre-
mental motions. IEEE Transactions on Robotics, 16(6), 880–890.

166. O’Rourke, J. (1984). Finding minimal enclosing boxes (Technical Report). Johns Hopkins
Univ., Baltimore, MD.

167. Ortega, M., Redon, S., & Coquillart, S. (2007). A six degree-of-freedom god-object method
for haptic display of rigid bodies with surface properties. IEEE Transactions on Visualization
and Computer Graphics, 13(3), 458–469. doi:10.1109/TVCG.2007.1028.

168. O’Sullivan, C., & Dingliana, J. (1999). Real-time collision detection and response using
sphere-trees.

169. O’Sullivan, C., & Dingliana, J. (2001). Collisions and perception. ACM Transac-
tions on Graphics, 20(3), 151–168. doi:10.1145/501786.501788. URL http://doi.acm.org/
10.1145/501786.501788.

170. Otaduy, M. A., & Lin, M. C. (2006). A modular haptic rendering algorithm for stable
and transparent 6-dof manipulation. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1668258.

171. Otaduy, M. A., & Lin, M. C. (2003). CLODs: Dual hierarchies for multiresolution collision
detection. In Symposium on geometry processing (pp. 94–101).

172. Otaduy, M. A., & Lin, M. C. (2005). Sensation preserving simplification for hap-
tic rendering. In ACM SIGGRAPH 2005 courses, SIGGRAPH ’05. New York: ACM.
doi:10.1145/1198555.1198607. URL http://doi.acm.org/10.1145/1198555.1198607.

173. Otaduy, M. A., Jain, N., Sud, A., & Lin, M. C. (2004). Haptic rendering of in-
teraction between textured models (Technical report). University of North Carolina

http://dx.doi.org/10.1016/j.cag.2006.02.018
http://dx.doi.org/10.1145/285857.285860
http://doi.acm.org/10.1145/285857.285860
http://doi.acm.org/10.1145/285857.285860
http://dx.doi.org/10.1145/344779.344866
http://dl.acm.org/citation.cfm?id=272317.272320
http://view.ncbi.nlm.nih.gov/pubmed/15718756
http://dl.acm.org/citation.cfm?id=1921479.1921503
http://dl.acm.org/citation.cfm?id=155294.155296
http://www.nvidia.com/object/nvidia_physx.html
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1109/TVCG.2007.1028
http://dx.doi.org/10.1145/501786.501788
http://doi.acm.org/10.1145/501786.501788
http://doi.acm.org/10.1145/501786.501788
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1668258
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1668258
http://dx.doi.org/10.1145/1198555.1198607
http://doi.acm.org/10.1145/1198555.1198607

References 41

Chapel Hill, April 13. URL http://citeseer.ist.psu.edu/638785.html; ftp://ftp.cs.unc.edu/
pub/publications/techreports/04-007.pdf.

174. Otaduy, M. A., Chassot, O., Steinemann, D., & Gross, M. (2007). Balanced hierarchies for
collision detection between fracturing objects. In Virtual reality conference, IEEE (pp. 83–
90). New York: IEEE. URL http://doi.ieeecomputersociety.org/10.1109/VR.2007.352467.

175. Page, F., & Guibault, F. (2003). Collision detection algorithm for nurbs surfaces in interactive
applications. In Canadian conference on electrical and computer engineering, 2003. IEEE
CCECE 2003, May 2003 (Vol. 2, pp. 1417–1420). doi:10.1109/CCECE.2003.1226166.

176. Pan, J., & Manocha, D. (2012). Gpu-based parallel collision detection for fast motion
planning. The International Journal of Robotics Research, 31(2), 187–200. doi:10.1177/
0278364911429335.

177. Pan, J., Chitta, S., & Manocha, D. (2011). Probabilistic collision detection between
noisy point clouds using robust classification. In International symposium on robotics re-
search, Flagstaff, Arizona, 08/2011. URL http://www.isrr-2011.org/ISRR-2011//Program_
files/Papers/Pan-ISRR-2011.pdf.

178. Pan, J., Chitta, S., & Manocha, D. (2012). Proximity computations between noisy point
clouds using robust classification. In RGB-D: advanced reasoning with depth cam-
eras, Los Angeles, California, 06/2012. URL http://www.cs.washington.edu/ai/Mobile_
Robotics/rgbd-workshop-2011/.

179. Pantaleoni, J. (2011). Voxelpipe: a programmable pipeline for 3d voxelization. In Proceed-
ings of the ACM SIGGRAPH symposium on high performance graphics, HPG ’11 (pp.
99–106). New York: ACM. ISBN 978-1-4503-0896-0. doi:10.1145/2018323.2018339. URL
http://doi.acm.org/10.1145/2018323.2018339.

180. Park, S.-H., & Ryu, K. (2004). Fast similarity search for protein 3d structure databases using
spatial topological patterns. In F. Galindo, M. Takizawa, & R. Traunmüller (Eds.), Lecture
notes in computer science: Vol. 3180. Database and expert systems applications (pp. 771–
780). Berlin: Springer. doi:10.1007/978-3-540-30075-5_74.

181. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAl-
lister, D., McGuire, M., Morley, K., Robison, A., & Stich, M. (2010). Optix: a gen-
eral purpose ray tracing engine. ACM Transactions on Graphics, 29(4), 66:1–66:13.
doi:10.1145/1778765.1778803. URL http://doi.acm.org/10.1145/1778765.1778803.

182. Ponamgi, M., Manocha, D., & Lin, M. C. (1995). Incremental algorithms for collision de-
tection between solid models. In Proceedings of the third ACM symposium on solid mod-
eling and applications, SMA ’95 (pp. 293–304). New York: ACM. ISBN 0-89791-672-7.
doi:10.1145/218013.218076. URL http://doi.acm.org/10.1145/218013.218076.

183. Prior, A., & Haines, K. (2005). The use of a proximity agent in a collaborative virtual envi-
ronment with 6 degrees-of-freedom voxel-based haptic rendering. In Proceedings of the first
joint eurohaptics conference and symposium on haptic interfaces for virtual environment
and teleoperator systems, WHC ’05 (pp. 631–632). Washington: IEEE Computer Society.
ISBN 0-7695-2310-2. doi:10.1109/WHC.2005.137.

184. Provot, X. (1997). Collision and self-collision handling in cloth model dedicated to design
garments. In Proc. graphics interface ’97 (pp. 177–189).

185. Quinlan, S. (1994). Efficient distance computation between non-convex objects. In Proceed-
ings of international conference on robotics and automation (pp. 3324–3329).

186. Raabe, A., Bartyzel, B., Anlauf, J. K., & Zachmann, G. (2005). Hardware accelerated colli-
sion detection—an architecture and simulation results. In Proceedings of the conference on
design, automation and test in Europe, DATE ’05 (Vol. 3, pp. 130–135). Washington: IEEE
Computer Society. ISBN 0-7695-2288-2. doi:10.1109/DATE.2005.167.

187. Redon, S., Kheddar, A., & Coquillart, S. (2000). An algebraic solution to the
problem of collision detection for rigid polyhedral objects. In Proceedings 2000
ICRA millennium conference IEEE international conference on robotics and automa-
tion symposia proceedings cat No00CH37065, April (Vol. 4, pp. 3733–3738). URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=845313.

http://citeseer.ist.psu.edu/638785.html
ftp://ftp.cs.unc.edu/pub/publications/techreports/04-007.pdf
ftp://ftp.cs.unc.edu/pub/publications/techreports/04-007.pdf
http://doi.ieeecomputersociety.org/10.1109/VR.2007.352467
http://dx.doi.org/10.1109/CCECE.2003.1226166
http://dx.doi.org/10.1177/0278364911429335
http://dx.doi.org/10.1177/0278364911429335
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Pan-ISRR-2011.pdf
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Pan-ISRR-2011.pdf
http://www.cs.washington.edu/ai/Mobile_Robotics/rgbd-workshop-2011/
http://www.cs.washington.edu/ai/Mobile_Robotics/rgbd-workshop-2011/
http://dx.doi.org/10.1145/2018323.2018339
http://doi.acm.org/10.1145/2018323.2018339
http://dx.doi.org/10.1007/978-3-540-30075-5_74
http://dx.doi.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1778765.1778803
http://dx.doi.org/10.1145/218013.218076
http://doi.acm.org/10.1145/218013.218076
http://dx.doi.org/10.1109/WHC.2005.137
http://dx.doi.org/10.1109/DATE.2005.167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=845313

42 2 A Brief Overview of Collision Detection

188. Redon, S., & Lin, C. M. (2006). A fast method for local penetration depth computation.
Journal of Graphics Tools. URL http://hal.inria.fr/inria-00390349.

189. Redon, S., Kheddar, A., & Coquillart, S. (2002). Fast continuous collision detection
between rigid bodies. Computer Graphics Forum, 21(3), 279–287. URL http://dblp.
uni-trier.de/db/journals/cgf/cgf21.html#RedonKC02.

190. Renz, M., Preusche, C., Potke, M., Kriegel, H.-P., & Hirzinger, G. (2001). Stable haptic
interaction with virtual environments using an adapted voxmap-pointshell algorithm. In Proc.
eurohaptics (pp. 149–154).

191. Roussopoulos, N., & Leifker, D. (1985). Direct spatial search on pictorial databases us-
ing packed r-trees. In Proceedings of the 1985 ACM SIGMOD international conference on
management of data, SIGMOD ’85 (pp. 17–31). New York: ACM. ISBN 0-89791-160-1.
doi:10.1145/318898.318900. URL http://doi.acm.org/10.1145/318898.318900.

192. Rubin, S. M., & Whitted, T. (1980). A 3-dimensional representation for fast rendering of
complex scenes. In Proceedings of the 7th annual conference on computer graphics and
interactive techniques, SIGGRAPH ’80 (pp. 110–116). New York: ACM. ISBN 0-89791-
021-4. doi:10.1145/800250.807479. URL http://doi.acm.org/10.1145/800250.807479.

193. Ruffaldi, E., Morris, D., Barbagli, F., Salisbury, K., & Bergamasco, M. (2008). Voxel-
based haptic rendering using implicit sphere trees. In Proceedings of the 2008 sym-
posium on haptic interfaces for virtual environment and teleoperator systems, HAP-
TICS ’08 (pp. 319–325). Washington: IEEE Computer Society. ISBN 978-1-4244-2005-6.
doi:10.1109/HAPTICS.2008.4479964.

194. Ruspini, D. C., Kolarov, K., & Khatib, O. (1997). The haptic display of complex graphical
environments. In Proceedings of the 24th annual conference on computer graphics and inter-
active techniques, SIGGRAPH ’97 (pp. 345–352). New York: ACM Press/Addison-Wesley
Publishing Co. ISBN 0-89791-896-7. doi:10.1145/258734.258878.

195. Salisbury, K., Conti, F., & Barbagli, F. (2004). Haptic rendering: introductory concepts.
IEEE Computer Graphics and Applications, 24, 24–32. URL http://doi.ieeecomputersociety.
org/10.1109/MCG.2004.10030.

196. Samet, H. (1989). Implementing ray tracing with octrees and neighbor finding. Computers
& Graphics, 13, 445–460.

197. Schneider, P. J., & Eberly, D. (2002). Geometric tools for computer graphics. New York:
Elsevier Science Inc. ISBN 1558605940.

198. Schwarz, M., & Seidel, H.-P. (2010). Fast parallel surface and solid voxelization
on gpus. In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA ’10 (pp. 179:1–
179:10). New York: ACM. ISBN 978-1-4503-0439-9. doi:10.1145/1866158.1866201. URL
http://doi.acm.org/10.1145/1866158.1866201.

199. Selinger, A., & Nelson, R. C. (1999). A perceptual grouping hierarchy for appearance-
based 3d object recognition. Computer Vision and Image Understanding, 76(1), 83–92.
doi:10.1006/cviu.1999.0788.

200. Shirley, P., & Morley, R. K. (2003). Realistic ray tracing (2nd ed.). Natick: A. K. Peters, Ltd.
ISBN 1568811985.

201. Six, H.-W., & Widmayer, P. (1992). Spatial access structures for geometric databases. In B.
Monien & Th. Ottmann (Eds.), Lecture notes in computer science: Vol. 594. Data struc-
tures and efficient algorithms (pp. 214–232). Berlin: Springer. ISBN 978-3-540-55488-2.
doi:10.1007/3-540-55488-2_29.

202. Smith, A., Kitamura, Y., Takemura, H., & Kishino, F. (1995). A simple and efficient
method for accurate collision detection among deformable polyhedral objects in ar-
bitrary motion. In Proceedings of the virtual reality annual international symposium
VRAIS’95 (p. 136). Washington: IEEE Computer Society. ISBN 0-8186-7084-3. URL
http://dl.acm.org/citation.cfm?id=527216.836015.

203. Smith, R. (2012). Open dynamics engine. http://www.ode.org.
204. Sobottka, G., & Weber, A. (2005). Efficient bounding volume hierarchies for hair simulation.

In The 2nd workshop in virtual reality interactions and physical simulations (VRIPHYS ’05),
November.

http://hal.inria.fr/inria-00390349
http://dblp.uni-trier.de/db/journals/cgf/cgf21.html#RedonKC02
http://dblp.uni-trier.de/db/journals/cgf/cgf21.html#RedonKC02
http://dx.doi.org/10.1145/318898.318900
http://doi.acm.org/10.1145/318898.318900
http://dx.doi.org/10.1145/800250.807479
http://doi.acm.org/10.1145/800250.807479
http://dx.doi.org/10.1109/HAPTICS.2008.4479964
http://dx.doi.org/10.1145/258734.258878
http://doi.ieeecomputersociety.org/10.1109/MCG.2004.10030
http://doi.ieeecomputersociety.org/10.1109/MCG.2004.10030
http://dx.doi.org/10.1145/1866158.1866201
http://doi.acm.org/10.1145/1866158.1866201
http://dx.doi.org/10.1006/cviu.1999.0788
http://dx.doi.org/10.1007/3-540-55488-2_29
http://dl.acm.org/citation.cfm?id=527216.836015
http://www.ode.org

References 43

205. Sobottka, G., Varnik, E., & Weber, A. (2005). Collision detection in densely packed fiber
assemblies with application to hair modeling. In H. R. Arabnia (Ed.), The 2005 international
conference on imaging science, systems, and technology: computer graphics (CISST’05) (pp.
244–250). Athens: CSREA Press. ISBN 1-932415-64-5.

206. Spillmann, J., Becker, M., & Teschner, M. (2007). Efficient updates of bounding sphere hier-
archies for geometrically deformable models. Journal of Visual Communication and Image
Representation, 18(2), 101–108. doi:10.1016/j.jvcir.2007.01.001.

207. Stewart, D., & Trinkle, J. C. (1996). An implicit time-stepping scheme for rigid body dy-
namics with coulomb friction. International Journal for Numerical Methods in Biomedical
Engineering, 39, 2673–2691.

208. Su, C.-J., Lin, F., & Ye, L. (1999). A new collision detection method for csg-represented
objects in virtual manufacturing. Computers in Industry, 40(1), 1–13. doi:10.1016/
S0166-3615(99)00010-X.

209. Suffern, K. (2007). Ray tracing from the ground up. Natick: A. K. Peters, Ltd. ISBN
1568812728.

210. Taeubig, H., & Frese, U. (2012). A new library for real-time continuous collision detection.
In Proceedings of the 7th German conference on robotics (ROBOTIK-2012), May 21–22.
Munich, Germany. Frankfurt am Main: VDE.

211. Tang, C., Li, S., & Wang, G. (2011). Fast continuous collision detection using parallel
filter in subspace. In Symposium on interactive 3D graphics and games, I3D ’11 (pp.
71–80). New York: ACM. ISBN 978-1-4503-0565-5. doi:10.1145/1944745.1944757. URL
http://doi.acm.org/10.1145/1944745.1944757.

212. Tang, M., Kim, Y. J., & Manocha, D. (2009). C2a: controlled conservative advancement for
continuous collision detection of polygonal models. In Proceedings of international confer-
ence on robotics and automation.

213. Tang, M., Lee, M., & Kim, Y. J. (2009). Interactive Hausdorff distance computation for
general polygonal models. In ACM SIGGRAPH 2009 papers, SIGGRAPH ’09 (pp. 74:1–
74:9). New York: ACM. ISBN 978-1-60558-726-4. doi:10.1145/1576246.1531380. URL
http://doi.acm.org/10.1145/1576246.1531380.

214. Tang, M., Manocha, D., Otaduy, M. A., & Tong, R. (2012). Continuous penalty forces.
ACM Transactions on Graphics, 31(4) (Proc. of ACM SIGGRAPH). URL http://www.gmrv.
es/Publications/2012/TMOT12.

215. Tang, M., Tang, M., Curtis, S., Yoon, S.-E., Yoon, S.-E., & Manocha, D. (2008). Iccd: inter-
active continuous collision detection between deformable models using connectivity-based
culling. URL http://www.ncbi.nlm.nih.gov/pubmed/19423880.

216. Tasora, A., Negrut, D., & Anitescu, M. (2009). Gpu-based parallel computing for the simu-
lation of complex multibody systems with unilateral and bilateral constraints: an overview.

217. Tavares, D. L. M., & Comba, J. L. D. (2007). Broad-phase collision detection using Delaunay
triangulation (Technical report). Universidade Federal do Rio Grande do Sul (UFRGS).

218. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann,
A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W., & Volino, P. (2005).
Collision detection for deformable objects. Computer Graphics Forum, 24(1), 61–81.
doi:10.1111/j.1467-8659.2005.00829.x.

219. Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., & Gross, M. H. (2003). Opti-
mized spatial hashing for collision detection of deformable objects. In Proc. 8th international
fall workshop vision, modeling, and visualization (VMV 2003) (pp. 47–54).

220. Thompson, T. V. II., Johnson, D. E., & Cohen, E. (1997). Direct haptic rendering of sculp-
tured models. In Proceedings of the 1997 symposium on interactive 3D graphics, I3D ’97
(pp. 167–176). New York: ACM. ISBN 0-89791-884-3. doi:10.1145/253284.253336. URL
http://doi.acm.org/10.1145/253284.253336.

221. Torres, R., Martín, P. J., & Gavilanes, A. (2009). Ray casting using a roped bvh with
cuda. In Proceedings of the 2009 spring conference on computer graphics, SCCG ’09 (pp.
95–102). New York: ACM. ISBN 978-1-4503-0769-7. doi:10.1145/1980462.1980483. URL
http://doi.acm.org/10.1145/1980462.1980483.

http://dx.doi.org/10.1016/j.jvcir.2007.01.001
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1145/1944745.1944757
http://doi.acm.org/10.1145/1944745.1944757
http://dx.doi.org/10.1145/1576246.1531380
http://doi.acm.org/10.1145/1576246.1531380
http://www.gmrv.es/Publications/2012/TMOT12
http://www.gmrv.es/Publications/2012/TMOT12
http://www.ncbi.nlm.nih.gov/pubmed/19423880
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://dx.doi.org/10.1145/253284.253336
http://doi.acm.org/10.1145/253284.253336
http://dx.doi.org/10.1145/1980462.1980483
http://doi.acm.org/10.1145/1980462.1980483

44 2 A Brief Overview of Collision Detection

222. Tropp, O., Tal, A., & Shimshoni, I. (2006). A fast triangle to triangle intersection test
for collision detection. Computer Animation and Virtual Worlds, 17(5), 527–535. URL
http://doi.wiley.com/10.1002/cav.115.

223. Tsingos, N., Dachsbacher, C., Lefebvre, S., & Dellepiane, M. (2007). Instant sound scatter-
ing. In Rendering techniques (Proceedings of the eurographics symposium on rendering).
URL http://www-sop.inria.fr/reves/Basilic/2007/TDLD07.

224. Turk, G. (1989). Interactive collision detection for molecular graphics (Technical re-
port). University of North Carolina at Chapel Hill. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.93.4927.

225. van den Bergen, G. (1998). Efficient collision detection of complex deformable models
using aabb trees. Journal of Graphics Tools, 2(4), 1–13. URL http://dl.acm.org/citation.
cfm?id=763345.763346.

226. Van den Bergen, G. (1999). A fast and robust gjk implementation for collision detection
of convex objects. Journal of Graphics Tools, 4(2), 7–25. URL http://dl.acm.org/citation.
cfm?id=334709.334711.

227. van den Bergen, G. (2001). Proximity queries and penetration depth computation on 3D
game objects. In Proceedings of game developers conference 2001, San Jose, CA, March.

228. Van Den Bergen, G. (2004). The Morgan Kaufmann series in interactive 3D technology. Col-
lision detection in interactive 3D environments. San Francisco: Morgan Kaufman Publishers.
ISBN 9781558608016. URL http://books.google.com/books?id=E-9AsqZCTSEC.

229. Volino, P., & Magnenat Thalmann, N. M. (1995). Collision and self-collision detection: effi-
cient and robust solutions for highly deformable surfaces. In Computer animation and simu-
lation ’95 (pp. 55–65). Berlin: Springer.

230. Von Herzen, B., Barr, A. H., & Zatz, H. R. (1990). Geometric collisions for time-dependent
parametric surfaces. In Proceedings of the 17th annual conference on computer graphics and
interactive techniques, SIGGRAPH ’90 (pp. 39–48). New York: ACM. ISBN 0-89791-344-2.
doi:10.1145/97879.97883. URL http://doi.acm.org/10.1145/97879.97883.

231. Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs.
Journal für die Reine und Angewandte Mathematik (Crelles Journal), 134, 198–287.
doi:10.1515/crll.1908.134.198.

232. Wald, I. (2007). On fast construction of sah-based bounding volume hierarchies. In Proceed-
ings of the 2007 IEEE symposium on interactive ray tracing, RT ’07 (pp. 33–40). Washing-
ton: IEEE Computer Society. ISBN 978-1-4244-1629-5. doi:10.1109/RT.2007.4342588.

233. Wald, I., & Havran, V. (2006). On building fast kd-trees for ray tracing, and on doing
that in o(n log n). In Symposium on interactive ray tracing (pp. 61–69). URL http://doi.
ieeecomputersociety.org/10.1109/RT.2006.280216.

234. Wand, M. (2004). Point-based multi-resolution rendering. PhD thesis, Department of com-
puter science and cognitive science, University of Tübingen.

235. Weghorst, H., Hooper, G., & Greenberg, D. P. (1984). Improved computational methods for
ray tracing. ACM Transactions on Graphics, 3(1), 52–69.

236. Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In Results and new trends
in computer science (pp. 359–370). Berlin: Springer.

237. Whang, K.-Y., Song, J.-W., Chang, J.-W., Kim, J.-Y., Cho, W.-S., Park, C.-M., & Song,
I.-Y. (1995). Octree-r: an adaptive octree for efficient ray tracing. IEEE Transactions on
Visualization and Computer Graphics, 1, 343–349. URL http://doi.ieeecomputersociety.
org/10.1109/2945.485621.

238. Whitted, T. (1980). An improved illumination model for shaded display. Communica-
tions of the ACM, 23(6), 343–349. doi:10.1145/358876.358882. URL http://doi.acm.org/
10.1145/358876.358882.

239. Wong, S.-K. (2011). Adaptive continuous collision detection for cloth models using a skip-
ping frame session. Journal of Information Science and Engineering, 27(5), 1545–1559.

240. Wong, W. S.-K., & Baciu, G. (2005). Gpu-based intrinsic collision detection for deformable
surfaces. Computer Animation and Virtual Worlds, 16(3–4), 153–161. doi:10.1002/cav.104.

http://doi.wiley.com/10.1002/cav.115
http://www-sop.inria.fr/reves/Basilic/2007/TDLD07
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.4927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.4927
http://dl.acm.org/citation.cfm?id=763345.763346
http://dl.acm.org/citation.cfm?id=763345.763346
http://dl.acm.org/citation.cfm?id=334709.334711
http://dl.acm.org/citation.cfm?id=334709.334711
http://books.google.com/books?id=E-9AsqZCTSEC
http://dx.doi.org/10.1145/97879.97883
http://doi.acm.org/10.1145/97879.97883
http://dx.doi.org/10.1515/crll.1908.134.198
http://dx.doi.org/10.1109/RT.2007.4342588
http://doi.ieeecomputersociety.org/10.1109/RT.2006.280216
http://doi.ieeecomputersociety.org/10.1109/RT.2006.280216
http://doi.ieeecomputersociety.org/10.1109/2945.485621
http://doi.ieeecomputersociety.org/10.1109/2945.485621
http://dx.doi.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://dx.doi.org/10.1002/cav.104

References 45

241. Woulfe, M., Dingliana, J., & Manzke, M. (2007). Hardware accelerated broad phase
collision detection for realtime simulations. In J. Dingliana & F. Ganovelli (Eds.),
Proceedings of the 4th workshop on virtual reality interaction and physical sim-
ulation (VRIPHYS 2007) (pp. 79–88). Aire-la-Ville: Eurographics Association. URL
https://www.cs.tcd.ie/~woulfem/publications/paper2007/.

242. Yilmaz, T., & Gudukbay, U. (2007). Conservative occlusion culling for urban visualiza-
tion using a slice-wise data structure. Graphical Models, 69(3–4), 191–210. doi:10.1016/
j.gmod.2007.01.002.

243. Yoon, S.-E., Salomon, B., Lin, M., & Manocha, D. (2004). Fast collision detection be-
tween massive models using dynamic simplification. In Proceedings of the 2004 euro-
graphics/ACM SIGGRAPH symposium on geometry processing, SGP ’04 (pp. 136–146).
New York: ACM. ISBN 3-905673-13-4. doi:10.1145/1057432.1057450. URL http://doi.
acm.org/10.1145/1057432.1057450.

244. Yoon, S.-E., Curtis, S., & Manocha, D. (2007). Ray tracing dynamic scenes using selec-
tive restructuring. In ACM SIGGRAPH 2007 sketches, SIGGRAPH ’07. New York: ACM.
doi:10.1145/1278780.1278847. URL http://doi.acm.org/10.1145/1278780.1278847.

245. Zachmann, G. (1998). Rapid collision detection by dynamically aligned dop-trees.
In Proceedings of the virtual reality annual international symposium, VRAIS ’98 (p.
90). Washington: IEEE Computer Society. ISBN 0-8186-8362-7. URL http://dl.acm.org/
citation.cfm?id=522258.836122.

246. Zachmann, G. (2000). Virtual reality in assembly simulation—collision detection, simulation
algorithms, and interaction techniques. Dissertation, Darmstadt University of Technology,
Germany, May.

247. Zachmann, G. (2001). Optimizing the collision detection pipeline. In Proc. of the first inter-
national game technology conference (GTEC), January.

248. Zachmann, G. (2002). Minimal hierarchical collision detection. In Proceedings of the
ACM symposium on virtual reality software and technology, VRST ’02 (pp. 121–128).
New York: ACM. ISBN 1-58113-530-0. doi:10.1145/585740.585761. URL http://doi.
acm.org/10.1145/585740.585761.

249. Zachmann, G., & Langetepe, E. (2003). Geometric data structures for computer graphics.
In Proc. of ACM SIGGRAPH. ACM transactions of graphics, 27–31 July. URL http://www.
gabrielzachmann.org/.

250. Zachmann, G., Teschner, M., Kimmerle, S., Heidelberger, B., Raghupathi, L., & Fuhrmann,
A. (2005). Real-time collision detection for dynamic virtual environments. In Tutorial #4,
IEEE VR, Bonn, Germany, 12–16 March. Washington: IEEE Computer Society.

251. Zeiller, M. (1993). Collision detection for objects modelled by csg. In T. K. S. Murthy, J. J.
Conner, S. Hernandez, & H. Power (Eds.), Visualization and intelligent design in engineering
and architecture, April. Amsterdam: Elsevier Science Publishers. ISBN 1853122270. URL
http://www.cg.tuwien.ac.at/research/publications/1993/zeiller-1993-coll/.

252. Zhang, D., & Yuen, M. M. F. (2000). Collision detection for clothed human animation.
In Pacific conference on computer graphics and applications (p. 328). URL http://doi.
ieeecomputersociety.org/10.1109/PCCGA.2000.883956.

253. Zhang, H., & Hoff, K. E. III. (1997). Fast backface culling using normal masks. In
Proceedings of the 1997 symposium on interactive 3D graphics, I3D ’97 (pp. 103-
ff). New York: ACM. ISBN 0-89791-884-3. doi:10.1145/253284.253314. URL http://doi.
acm.org/10.1145/253284.253314.

254. Zhang, H., Manocha, D., Hudson, T., & Hoff, K. E. III. (1997). Visibility culling using hierar-
chical occlusion maps. In Proceedings of the 24th annual conference on computer graphics
and interactive techniques, SIGGRAPH ’97 (pp. 77–88). New York: ACM Press/Addison-
Wesley Publishing Co. ISBN 0-89791-896-7. doi:10.1145/258734.258781.

255. Zhang, L., Kim, Y. J., & Manocha, D. (2007). A fast and practical algorithm for generalized
penetration depth computation. In Robotics: science and systems conference (RSS07).

256. Zhang, L., Kim, Y. J., & Manocha, D. (2007). C-dist: efficient distance computa-
tion for rigid and articulated models in configuration space. In Proceedings of the

https://www.cs.tcd.ie/~woulfem/publications/paper2007/
http://dx.doi.org/10.1016/j.gmod.2007.01.002
http://dx.doi.org/10.1016/j.gmod.2007.01.002
http://dx.doi.org/10.1145/1057432.1057450
http://doi.acm.org/10.1145/1057432.1057450
http://doi.acm.org/10.1145/1057432.1057450
http://dx.doi.org/10.1145/1278780.1278847
http://doi.acm.org/10.1145/1278780.1278847
http://dl.acm.org/citation.cfm?id=522258.836122
http://dl.acm.org/citation.cfm?id=522258.836122
http://dx.doi.org/10.1145/585740.585761
http://doi.acm.org/10.1145/585740.585761
http://doi.acm.org/10.1145/585740.585761
http://www.gabrielzachmann.org/
http://www.gabrielzachmann.org/
http://www.cg.tuwien.ac.at/research/publications/1993/zeiller-1993-coll/
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883956
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883956
http://dx.doi.org/10.1145/253284.253314
http://doi.acm.org/10.1145/253284.253314
http://doi.acm.org/10.1145/253284.253314
http://dx.doi.org/10.1145/258734.258781

46 2 A Brief Overview of Collision Detection

2007 ACM symposium on solid and physical modeling, SPM ’07 (pp. 159–169). New
York: ACM. ISBN 978-1-59593-666-0. doi:10.1145/1236246.1236270. URL http://doi.
acm.org/10.1145/1236246.1236270.

257. Zhang, L., Kim, Y. J., Varadhan, G., & Manocha, D. (2007). Generalized penetration depth
computation. Computer Aided Design, 39(8), 625–638. doi:10.1016/j.cad.2007.05.012.

258. Zhang, X., & Kim, Y. J. (2007). Interactive collision detection for deformable models using
streaming aabbs. IEEE Transactions on Visualization and Computer Graphics, 13(2), 318–
329. doi:10.1109/TVCG.2007.42.

259. Zhang, X., Lee, M., & Kim, Y. J. (2006). Interactive continuous collision detection for non-
convex polyhedra. The Visual Computer, 22(9), 749–760. doi:10.1007/s00371-006-0060-0.

260. Zhang, X., Redon, S., Lee, M., & Kim, Y. J. (2007). Continuous collision detection
for articulated models using Taylor models and temporal culling. In ACM SIGGRAPH
2007 papers, SIGGRAPH ’07. New York: ACM. doi:10.1145/1275808.1276396. URL
http://doi.acm.org/10.1145/1275808.1276396.

261. Zhu, X., Ding, H., & Tso, S. K. (2004). A pseudodistance function and its applications. IEEE
Transactions on Robotics, 20(2), 344–352.

262. Zilles, C. B., & Salisbury, J. K. (1995). A constraint-based god-object method for haptic
display. In Proceedings of the international conference on intelligent robots and systems,
IROS ’95 (Vol. 3, p. 3146). Washington: IEEE Computer Society. ISBN 0-8186-7108-4. URL
http://dl.acm.org/citation.cfm?id=846238.849727.

http://dx.doi.org/10.1145/1236246.1236270
http://doi.acm.org/10.1145/1236246.1236270
http://doi.acm.org/10.1145/1236246.1236270
http://dx.doi.org/10.1016/j.cad.2007.05.012
http://dx.doi.org/10.1109/TVCG.2007.42
http://dx.doi.org/10.1007/s00371-006-0060-0
http://dx.doi.org/10.1145/1275808.1276396
http://doi.acm.org/10.1145/1275808.1276396
http://dl.acm.org/citation.cfm?id=846238.849727

Part II
Algorithms and Data Structures

Chapter 3
Kinetic Data Structures for Collision Detection

As already seen in the previous chapter, bounding volume hierarchies for geometric
objects are widely employed in many areas of computer science to accelerate ge-
ometric queries. These acceleration data structures are used in computer graphics
for ray-tracing, occlusion culling, geographical databases and collision detection,
to name but a few. Usually, a bounding volume hierarchy is constructed in a pre-
processing step, which is suitable as long as the objects are rigid.

However, deformable objects play an important role, e.g. for creating virtual en-
vironments in medical applications, entertainment, and virtual prototyping. If the
object deforms, the pre-processed hierarchy becomes invalid. In order to still use
this well-known method for deforming objects as well, it is necessary to update the
hierarchies after the deformation happens.

Most current techniques do not make use of the temporal and spatial coherence
of simulations and just update the hierarchy by brute-force at every time step or
they simply restrict the kind of deformation in some way in order to avoid the time
consuming per-frame update of all bounding volumes.

On the one hand, we all know that motion in the physical world is normally
continuous. So, if animation is discretized by very fine time intervals, a brute-force
approach to the problem of updating BVHs would need to do this at each of these
points in time. On the other hand, changes in the combinatorial structure of a BVH
only occur at discrete points in time. Therefore, we propose to utilize an event-based
approach to remedy this unnecessary frequency of BVH updates.

In accordance to this observation, we present two new algorithms to update hi-
erarchies in a more sensitive way: we only make an update if it is necessary. In
order to determine exactly when it is necessary, we use the framework of kinetic
data structures (KDS). To use this kind of data structures, it is required that a flight-
plan is given for every vertex. This flightplan may change during the motion, maybe
by user interaction or physical events (like collisions). Many deformations caused
by simulations satisfy these constraints, including keyframe animations and many
other animation schemes.

Parts of this work has been previously published in [21] and [23].

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_3,
© Springer International Publishing Switzerland 2013

49

http://dx.doi.org/10.1007/978-3-319-01020-5_3

50 3 Kinetic Data Structures for Collision Detection

In the following, we first present a kinetization of a tree of axis aligned bounding
boxes and show that the associated update algorithm is optimal in the number of
BV updates (this means that each AABB hierarchy which performs fewer updates
must be invalid at some point of time). Moreover, we prove an asymptotic lower
bound on the total number of update operations in the worst case which holds for
every BVH updating strategy. This number is independent from the length of the
animation sequence under certain conditions. In order to reduce the number of up-
date operations, we propose a kinetization of the BoxTree. A BoxTree is a special
case of an AABB where we store only two splitting axes per node. On account of
this we can reduce the overall number of events.

Additionally, we present the results of a comparison to the running times of hi-
erarchical collision detection based on our novel kinetic BVHs and conventional
bottom-up updating, respectively. This general technique of kinetic BVHs is avail-
able for all applications which use bounding volume hierarchies, but our main aim
is their application to collision detection of deformable objects.

Virtually all simulations of deforming objects, like surgery simulation or com-
puter games, require collision detection to be performed in order to avoid the sim-
ulated objects to penetrate themselves or each other. For example, in cloth sim-
ulations, we have to avoid penetrations between the cloth and the body, but also
between the wrinkles of the cloth itself.

Most current techniques use bounding volume hierarchies in order to quickly
cull parts of the objects that cannot intersect. In addition to the required BVH up-
dates, another problem arises when using BVHs for self-collision detection: two ad-
jacent sub-areas are always colliding by contact along their borders. In consequence,
checking BVHs against themselves for self-collision results in a large number of
false positive tests. Moreover, using swept-volumes and lazy updating methods for
continuous collision detection results in very large BVs and hence more false posi-
tive tests.

In order to avoid all the problems mentioned above, we propose a new event-
based approach for continuous collision detection of deformable objects. Analo-
gously to the changes in the combinatorial structure of the BVH, also collisions
only occur at discrete points in time. Exploiting this observation, we have developed
the novel kinetic Separation-List, which enables continuous inter- and intra-object
collision detection for arbitrary deformations such that checks between bounding
volumes and polygons are done only when necessary, i.e. when changes in the mov-
ing front really occur.

This way, the continuous problem of continuous collision detection is reduced
to the discrete problem of determining exactly those points in time when the com-
binatorial structure of our kinetic Separation-List changes. The kinetic Separation-
List is based on the kinetic AABB-Tree and extends the same principle to collision
detection between pairs of objects. We maintain the combinatorial structure of a
Separation-List of a conventional recursion tree.

As a natural consequence of this event-based approach collisions are detected au-
tomatically in the right chronological order, so there is no further ordering required
like in many other approaches. Therefore, our kinetic Separation-List is well suited
for collision response.

3.1 Recap: Kinetic Data Structures 51

In the following, we will restrict our discussion to polygonal meshes, but it
should become obvious that our data structures can, in principle, handle all objects
for which we can build a bounding volume hierarchy, including polygon soups, point
clouds, and NURBS models. Our algorithms are even flexible enough for handling
insertions or deletions of vertices or edges in the mesh during running-time.

3.1 Recap: Kinetic Data Structures

In this section we start with a quick recap of the kinetic data structure framework
and its terminology.

The kinetic data structure framework is a framework for designing and analyzing
algorithms for objects (e.g. points, lines, polygons) in motion, which was invented
by Basch et al. [5]. The KDS framework leads to event-based algorithms that sample
the state of different parts of the system only as often as necessary for a special task.
This task can be for example maintaining the convex hull [6], a heap [10], a sorted
list [1] or the closest pair [4] of a set of moving points.

There also exist first approaches of collision detection using kinetic data struc-
tures. For instance Erickson et al. [13] described a KDS for collision detection be-
tween two convex polygons by using a so-called boomerang hierarchy. Agarwal
et al. [3] and Speckmann [19] developed a KDS using pseudo triangles for a decom-
position of the common exterior of a set of simple polygons for collision. Basch
et al. [7] tracked a separating polygonal line between a pair of simple polygons
and Guibas et al. [15] used a KDS for the separating plane between rigid objects.
However, all these approaches are limited to two dimensions or very simple objects.
Simultaneously to our approach, Coming and Staadt [9] presented a kinetic ver-
sion of the Sweep-and-Prune algorithm. But this method is limited to broad-phase
collision detection.

However, these are just a few examples of tasks that can be efficiently solved us-
ing the framework of kinetic data structures. Guibas [14] presents further examples.
In the terminology of KDS these tasks are called the attribute of the KDS.

Usually, a KDS consists of a set of elementary conditions, called certificates,
which prove altogether the correctness of its attribute. Those certificates can fail as
a result of the motion of the objects. These certificate failures, the so-called events,
are placed in an event-queue, ordered according to their earliest failure time. If the
attribute changes at the time of an event, the event is called external, otherwise the
event is called internal. Thus sampling of time is not fixed but determined by the
failure of certain conditions.

As an example, we can assume the bounding box of a set of moving points in the
plane. The bounding box is the attribute we are interested in. It is generated by four
points P t

{max,min},{x,y} which have the maximum and minimum x- and y-values at a
certain time point t . For every inner point P t

i we have P t
i [x] < P t

max,x[x], P t
i [y] <

P t
max,x[y], P t

i [x] > P t
min,x[x] and P t

i [y] > P t
min,y[y]. These four simple inequations

are the certificates in our example. If an inner point moves out of the bounding box,

52 3 Kinetic Data Structures for Collision Detection

Fig. 3.1 Assume a set of
moving points in the plane.
P{max,min},{x,y} is for the
current bounding volume of
this points. At some time, P5
will become smaller than
Pmin,y , and this causes an
event

due to its motion, e.g. P
t2
i [x] > P

t2
max,x[x], this causes an external event at the point

of time t + Δt when P t+Δt
i [x] = P t+Δt

max,x[x] (see Fig. 3.1). If P t
i [x] > P t

j [x] and

P
t3
i [x] < P

t3
j [x] for points that are not in P t

{max,min},{x,y}, this causes an internal
event.

We measure the quality of a KDS by four criteria: compactness, responsiveness,
locality, and efficiency. In detail:

• A KDS is compact if it requires only little space.
• A KDS is responsive if we can update it quickly in case of a certificate failure.
• A KDS is called local if one object is involved in not too many events. This

guarantees that we can adjust changes in the flightplan of the objects quickly.
• And finally, a KDS is efficient if the overhead of internal events with respect to

external events is reasonable.

A proof that the example KDS described above fulfills all four quality criteria
can be found in Agarwal et al. [2]. We will continue to describe our new kinetic data
structures for hierarchies of objects.

3.2 Kinetic Bounding Volume Hierarchies

In our case, the objects are a set of m polygons with n vertices. Every vertex pi has
a flightplan fpi

(t). This might be a chain of line segments in case of a keyframe
animation or algebraic motions in case of physics-based simulations. The flightplan
is assumed to use O(1) space and the intersection between two flightplans can be
computed in O(1) time. The flightplan of a vertex may change during simulation by
user interaction or physical phenomena, including collisions. In this case we have
to update all events the vertex is involved with.

The attribute is a valid BVH for a set of moving polygons. An event will occur,
when a vertex moves out of its BV.

The kinetic data structures we will present have some properties in common,
which will be described as follows.

They all use an event-queue for which we use an AVL-Tree, because with this
data structure we can insert and delete events as well as extract the minimum in time
O(log k) where k is the total number of events.

Both kinetic hierarchies, the kinetic AABB as well as the kinetic BoxTree, run
within the same framework for kinetic updates, which is explained in Algorithm 3.1.

3.2 Kinetic Bounding Volume Hierarchies 53

Algorithm 3.1 Simulation Loop

while simulation runs do
calc time t of next rendering
e ← min events in event-queue
while e.timestamp < t do

processEvent(e)
e ← min events in event-queue

check for collisions
render scene

3.2.1 Kinetic AABB-Tree

In this section, we present a kinetization of the well known AABB tree. We build
the tree by any algorithm which can be used for building static BVHs and store for
every node of the tree the indices of these points that determine the bounding box.
For our analysis of the algorithms it is only required that the height of the BVH is
logarithmic in the number of polygons.

After building the hierarchy, we traverse the tree again to find the initial events.

3.2.1.1 Kinetization of the AABB-Tree

Actually, there are three kinds of different events:

• Leaf event: Assume that P1 realizes the BVs maximum along the x-axis. A leaf
event happens, when the x-coord of one of the other points P2 or P3 becomes
larger than P1,x (see Fig. 3.2).

• Tree event: Let K be an inner BV with its children Kl and Kr ; and P2 ∈ Kr is the
current maximum of K on the x-axis. A tree event happens when the maximum of
Kl becomes larger than P2 (see Fig. 3.3). Analogously, tree events are generated
for the other axis and the minima.

• Flightplan-update event: Every time a flightplan of a point changes we get a
flightplan-update event.

So after the initialization we have stored six events with each BV. In addition, we
put the events in the event queue sorted by their time stamps.

During run time, we perform an update according to Algorithm 3.1 before each
collision check. In order to keep the BV hierarchy valid, we have to handle the
events as follows:

• Leaf event: Assume in a leaf BV B , realized by the vertices P1, P2, and P3, that
the maximum extent along the x-axis has been realized by P2. With the current
event, P1 takes over, and becomes larger than P2[x]. In order to maintain the
validity of the BV hierarchy, in particular, we have to associate P1 to the max x

extent of B . In addition, we have to compute a new event. This means that we

54 3 Kinetic Data Structures for Collision Detection

Fig. 3.2 When P1 becomes
larger than the current
maximum vertex P2, a leaf
event will happen

Fig. 3.3 When P1, the
maximum of the left
child-box, becomes larger
than the overall maximum
vertex P2, a tree event will
happen

have to compute all the intersections of the flightplans of all other vertices in B

with P1 in the xt-plane. An event for the pair with the earliest intersection time is
inserted into the event queue (see Fig. 3.4). But that is not necessarily sufficient
for keeping the BVH valid. In addition, we have to propagate this change in the
BVH to the upper nodes. Assume B to be the right son of its father V , so we
have to check whether P2 had been the maximum of V too. In this case, we have
to replace P2 by the new maximum P1. Moreover, the corresponding event of
V is not valid anymore because it was computed with P2. So we have to delete
this event from the event-queue and compute a new event between P1 and the
maximum of the left son of V . Similarly we have to proceed up the BVH until we
find the first predecessor V with maxx{V } �= P2, or until we reach the root. In the
first case we only have to compute another event between maxx{V } and P1 and
stop the recursion (see Fig. 3.5).

• Tree event: Let K be an inner node of the BVH and P2 be the maximum along
the x-axis. Assume further that P2 is also the maximum of the left son. When a

Fig. 3.4 To keep the hierarchy valid when a leaf event happens, we have to replace the old max-
imum P2 by the new maximum P1, and compute the time, when one of the other vertices of the
polygon, P2 or P3, will become larger than P1. In this example this will be P3

3.2 Kinetic Bounding Volume Hierarchies 55

Fig. 3.5 In case of a tree-
and a leaf event, we have to
propagate the change to upper
BVs in the hierarchy. After
replacing the old maximum
P2 by the new maximum P1
in the lower left box, we have
to compute the event between
P1 and P3, which is the
maximum of the father

tree event happens, P2 will be replaced by P1, which is the maximum of the right
son of K (see Fig. 3.5). In addition, we have to compute a new event between P1
and P2 and propagate the change to the upper nodes in the BVH in the same way
as described above for the leaf event.

• Flightplan-update event: When the flightplan of a vertex changes, we have to
update all the time stamps of those events it is involved with.

3.2.1.2 Analysis of the Kinetic AABB-Tree

For measuring the theoretical performance of our algorithm we use the four criteria
of quality defined for every KDS.

Moreover, we have to prove that our data structure is a valid BVH even if the
object deforms. Therefore, we need the following definition.

Definition 3.1 We call a kinetic AABB-Tree valid if every node in the tree is a
bounding volume for all polygons in its sub-tree.

Then we get the following theorem:

Theorem 3.2 The kinetic AABB-Tree is compact, local, responsive, and efficient.
Furthermore, if we update the BVHs in the manner described above, then the tree is
valid at every point of time.

We start with the proof of the first part of the theorem.

• Compactness: For a BVH we need O(m) BVs. With every BV we store at most
six tree or leaf events. Therefore, we need a space of O(m) overall. Thus, our
KDS is compact.

• Responsiveness: We have to show that we can handle certificate failures quickly.
Therefore, we view the different events separately.

– Leaf events: In the case of a leaf event we have to compute new events for
all points in the polygon. Thus, the responsiveness depends on the number of
vertices per polygon. If this number is bounded we have costs of O(1). When

56 3 Kinetic Data Structures for Collision Detection

we propagate the change to upper nodes in the hierarchy, we have to delete an
old event and compute a new one, which causes costs of O(logm) per inner
node for the deletion and insertion in the event-queue, since the queue contains
O(m) events. In the worst case we have to propagate the changes until we reach
the root. Thus the overall cost is O(log2 m) for a leaf event.

– Tree events: Analogously, for tree events we get costs of O(log2 m).

Thus the KDS is also responsive.
• Efficiency: The efficiency measures the ratio of the inner to the outer events.

Since we are interested in the validity of the whole hierarchy, each event is an
inner event because each event provokes a real change of our attribute. So the
efficiency is automatically given.

• Locality: The locality measures the number of events one vertex is participating
in. For sake of simplicity, we assume that the degree of every vertex is bounded.
Thus, every vertex can participate in O(logm) events. Therefore, a flightplan
update can cause costs of O(log2 m). Consequently, the KDS is local.

We show the second part of the theorem by induction over time.
After the creation of the hierarchy, the BVH is apparently valid. The validity will

be violated for the first time, when the combinatorial structure of the BVH changes;
this means that a vertex flies out of its BV.

In the case of a leaf, every vertex in the enclosed polygon could be considered
to such an event. The initial computation of the leaf events guarantees that there
exists an event for the earliest time point this can happen. For the inner nodes, it
is sufficient to consider only the extremal vertices of their children: Assume a BV
B with P1 maximum of the left son Bleft along the x-axis and P2 maximum of the
right son Bright along the x-axis. This means that all vertices in Bleft have smaller
x-coords than P1 and all vertices in Bright have smaller x-coords than P2. Thus, the
maximum of B along the x-axis must be max{P1,P2}. Assume w.l.o.g. P1 is the
maximum. The vertex Pnext, which could become larger than P1, could be either
P2, or a vertex of a BV in a lower level in the hierarchy becomes invalid before
an event at B could occur. Assume Pnext is in the right sub-tree, then Pnext must
become larger than P2 and therefore Bright has become invalid sometime before. If
Pnext is in the left sub-tree, it must become larger than P1 and thus Bleft has become
invalid before.

Summarizing, we get a valid BVH after the initialization, and the vertex which
will violate the validity of the BVH for the first time triggers an event.

We still have to show that the hierarchy stays valid after an event happens and
that the next vertex which violates the validity also triggers an event.

• Leaf event: Assume B the affected leaf and P2 becomes larger than P1, which
is the current maximum of B . As described above, we replace P1 by P2. There-
fore, B stays valid. Furthermore, we check for all other vertices in the polygon,
which is the next to become larger than P2 and store an event for that vertex, for
which this happens first. This guarantees that we will find the next violation of
the validity of this BV correctly.

3.2 Kinetic Bounding Volume Hierarchies 57

In addition, all predecessors of B on the path up to the root which have P1

as maximum become invalid too. Due to the algorithm described above, we re-
place all occurrences of P1 on this path by P2. Thus, BVH stays valid. The re-
computation of the events on the path to the root ensures that the vertex which
will violate the validity provokes a suitable event.

• Tree event: Assume B the affected inner node. When an event happens, e.g. P2

becomes larger than P1, which is the current maximum of B , we once again
replace P1 by P2 and therefore B stays valid. For the computation of the new
event it is sufficient to consider only the two child BVs of B as described above.
The propagation to the upper nodes happens analogously to the tree event.

• Flightplan-update event: Actually, a flightplan-update event does not change the
combinatorial structure of the BVH. Therefore, the BVH stays valid after such
an event happens. However, it is possible that the error times of some certificate
failures change. To ensure that we find the next violation of the BVH, we have to
recompute all affected events.

Recapitulating, we have shown that we have a valid BVH after the initialization
and the first vertex that violates the validity provokes an event. If we update the
hierarchy as described above, it stays valid after an event happens and we compute
the next times when an event can happen correctly.

Note that by this theorem the BVH is valid at every time point, not only at the
moments when we check for a collision as is the case with most other update algo-
rithms like bottom-up or top-down approaches.

3.2.1.3 Optimality of the Kinetic AABB-Tree

In the previous section, we have proven that our kinetic AABB-Tree can be updated
efficiently. Since there are no internal events, we would also like to determine the
overall number of events for a whole animation sequence in order to estimate the
running-time of the algorithm more precisely. Therefore, we prove the following
theorem:

Theorem 3.3 Given n vertices Pi , we assume that each pair of flightplans, fPi
(t)

and fPj
(t), intersect at most s times. Then, the total number of events is in nearly

O(n logn).

We consider all flightplans along each coordinate axis separately (see Fig. 3.6).
We reduce the estimation of the number of events on the computation of the upper
envelope of a number of curves in the plane. This computation can be done by an
algorithm using a combination of divide-and-conquer and sweep-line for the merge
step. The sweep-line events are the sections of the sub-envelopes (we call them the
edge events) and intersections between the two sub-envelopes (which we call the
intersection events). Obviously, each sweep-line event corresponds to an update in
our kinetic BVH.

58 3 Kinetic Data Structures for Collision Detection

Fig. 3.6 The flightplans are
functions f1 (dashed) and f2
(dotted) in the xt -plane and
similarly in the yt - and
zt -planes. The function
max(f1, f2) (continuous)
determines the upper
envelope of f1 and f2

The total number of sweep-line events depends on s. We define λs(n) as the
maximum number of edges for the upper envelope of n functions, whereas two of
these functions intersect at most s times.

For the number of edge events we get

2λs

([
n

2

])
≤ λs(n) (3.1)

since the two sub-envelopes are envelopes of [n
2] flightplans.

Furthermore, we get a new edge in the envelope for every intersection event.
Obviously, this can be at most λs(n). Therefore, we can estimate the total number
of events by the following recursive equation:

T (2) = C

T (n) ≤ 2T

(
n

2

)
+ Cλs(n)

(3.2)

for some constant C. Overall we get

T (n) ≤
logn∑
i=0

2iCλs

(
n

2i

)
(3.3)

In order to resolve the inequality we have to know more about λs(n). Actually, λs(n)

can be characterized in a purely combinatorial manner without knowledge about
the geometrical structure of the functions that form the upper envelope. Therefore,
we use the definition of Davenport–Schinzel sequences [11]. Originally developed
for the analysis of linear differential equations, today such Davenport–Schinzel se-
quences are widely used in computational geometry. For some alphabet Γ with n

letters a word in Γ is called Davenport–Schinzel sequence if the number of times
any two letters may appear in alternation is at least s and the word has maxi-
mum length. Obviously, the length of such a Davenport–Schinzel sequence matches
λs(n).

A total analysis of λs(n) would exceed the scope of this chapter. Therefore, we
will concentrate on employing a few specific features of λs(n) but we will omit the

3.2 Kinetic Bounding Volume Hierarchies 59

proofs. We refer the interested reader to Sharir and Agarwal [18] to look up the
proofs and many other interesting things about Davenport–Schinzel sequences.

One special characteristic of λs(n) is

Theorem 3.4 For all s, n ≥ 1 we have 2λs(n) ≤ λs(2n).

With this theorem we can solve the recursive equation and get

Theorem 3.5 For the computation of the upper envelope of n functions we need at
most O(λs(n) logn) events.

Furthermore, it is true that λs(n) behaves almost linearly; more precisely λs(n) ∈
O(n log∗ n) where log∗ n is the smallest number m for which the mth iteration of
the logarithm is smaller than 1. For example, log∗ n ≤ 5 for all n ≤ 1020000.

Moreover, it can be shown that the problem of computing the upper envelope is
in Θ(n logn) by reducing it to a sorting problem (see [18] for details). Altogether
this proves that our algorithm is optimal in the worst case.

This demonstrates one of the strengths of the kinetic AABB-Tree: with classical
update strategies like bottom-up, we need O(kn) updates, where k is the number of
queries. However, with our kinetic BVH, we can reduce this to nearly O(n logn)

updates in the worst case. Furthermore, it is completely independent of the number
of frames the animation sequence consists of (or, the frame rate), provided the num-
ber of intersections of the flightplans depends only on the length of the sequence in
“wall clock time” and not on the number of frames.

Moreover, our kinetic AABB-Tree is updated only if the vertices that realize the
BVs change; if all BVs in the BVH are still realized by the same vertices after a
deformation step, nothing is done. As an extreme example, consider a translation or
a scaling of all vertices. A brute-force update would need to update all BVs—in our
kinetic algorithm nothing needs to be done, since no events occur. Conversely, the
kinetic algorithm never performs more updates than the brute-force update, even if
only a small number of vertices has moved.

3.2.2 Kinetic BoxTree

The kinetic AABB-Tree needs up to six events for each BV. In order to reduce the
total number of events we kinetized another kind of BVH, the BoxTree [22], which
uses less memory than the kinetic AABB-Tree. The main idea of a BoxTree is to
store only two splitting planes per node instead of six values for the extents of the
box. Hence, the BoxTree can be considered as a lazy version of a kd-Tree. To turn
this into a KDS we proceed as follows:

60 3 Kinetic Data Structures for Collision Detection

Fig. 3.7 If a vertex in the left
sub-tree becomes larger than
the point P2 that realizes its
current maximum maxleft, a
tree event will happen.
Similarly, we get an event for
the right sub-tree, if a point in
it becomes smaller than its
current minimum minright

3.2.2.1 Kinetization of the BoxTree

In the pre-processing step we build a BoxTree as proposed by [22], but similarly
to the kinetization of the AABB tree, we do not store real values for the splitting
planes. Instead, we store that vertex for each plane that realizes it (see Fig. 3.7). We
continue with the initialization of the events.

There are only two kinds of events:

• Tree event: Assume B is an inner node of the hierarchy with splitting plane e ∈
{x, y, z} and assume further minB is the minimum of the right sub-tree (or maxB

the maximum of the left sub-tree). A tree event happens, when a vertex of the
right sub-tree becomes smaller than minB with regard to the splitting axis e, or a
vertex of the left sub-tree becomes larger than maxB (see Fig. 3.7).

• Flightplan-update event: Every time if the flightplan of a vertex changes, a
flightplan-update event happens.

During running-time, we perform an update according to Algorithm 3.1 before
each collision check. For keeping the BVH valid we have to handle the events as
described in the following:

• Tree event Let K be the node, where the tree event happens and let Pnew be the
vertex in the left sub-tree of K that becomes larger than the current maximum
Kmax.

In this case we have to replace Kmax by Pnew and compute a new event for this
node. The computation of a new event is more complicated than in the case of
a kinetic AABB-Tree. This is because of the number of possibilities of different
splitting planes and because of the fact that the extents of the BVs are given
implicitly.

For simplicity, we first assume that all BVs have the same splitting axis. In this
case we have to look for event candidates, i.e. vertices, which can become larger
than the maximum, in a depth-first search manner (see Fig. 3.8). Note that we
do not have to look in the left sub-tree of the left sub-tree because those vertices
would generate an earlier event stored with one of the nodes in the sub-tree.

If more than one splitting axis is allowed, we first have to search for the nodes
with the same splitting axis (see Fig. 3.9).

In both cases, we have to propagate the change to the upper nodes: First we
have to search a node above K in the hierarchy with the same splitting axis. If its

3.2 Kinetic Bounding Volume Hierarchies 61

Fig. 3.8 In order to compute a new event for maxleft, we have to look which vertex can be-
come larger than maxleft, which is recently realized with P6. In the first level, this could be ei-
ther the maximum of the left sub-tree, the vertex P5, or any vertex in the right sub-tree of node
(P1,P2,P3,P4,P5,P6). On the next level it could be the maximum of the left sub-tree of node
(P3,P4,P6), and thus the vertex P4, and all vertices in the right sub-tree, which only contains P6

maximum is also Kmax, we have to replace it and compute a new event for this
node. We have to continue recursively until we reach a node O with the same
splitting axis but Omax �= Kmax or until we reach the root.

• Flightplan-update event: If the flightplan of a point changes, we have to update
all events it is involved with. Therefore, we once again start at the leaves and
propagate it to the upper nodes.

3.2.2.2 Analysis of the Kinetic BoxTree

In order to show the performance of the algorithm, we have to show the four quality
criteria for KDS again.

Theorem 3.6 The kinetic BoxTree is compact, local, and efficient. The responsive-
ness holds only in the one-dimensional case. Furthermore, if we use the strategies
described above to update the BVH, we get a valid BVH at every point of time.

62 3 Kinetic Data Structures for Collision Detection

Fig. 3.9 If more than one splitting axis is allowed, we have to search for the next level with the
same splitting axis, when we want to look for the next candidates for an event. We have to visit the
red marked nodes when we compute a new event for the root box

Fig. 3.10 In the worst case,
all levels have the same split
axis, except of the root. If we
want to compute a new event
for the root, we have to
traverse the whole tree

We start with the proof of the first part of the theorem.

• Compactness: We need space of O(m) for storing the kinetic BoxTree. In addi-
tion, we get at most two events per node, so we have O(m) events in total. So the
kinetic BoxTree is compact.

• Efficiency: Since we are interested in the validity of the whole hierarchy and every
event leads to a real change of the combinatorial structure of the hierarchy, our
KDS is also efficient.

• Locality: Assuming the tree is not degenerated, one polygon can be involved in at
most O(logm) events. Consequently, the KDS is local.

• Responsiveness: Not so straightforward is the responsiveness of our KDS, which
is due to the costly computation of new events, where we have to descend the tree
in dfs-manner. If all nodes have the same splitting axis, the computation of a new
event costs at most O(logm) because of the length of a path from the root to a leaf
in the worst case. Deletion and insertion of an event in the event-queue generate
costs of O(logm) and in the worst case we have to propagate the change up to the
root BV. Therefore, the overall cost for computing an event is O(m log2 m) and
thus the KDS is responsive in the one-dimensional case. But if the other nodes are
allowed to use other split-axes too, it could be much more expensive. Assume that
the root BV has the x-axis as split-axis and all other nodes have y as split-axis
(see Fig. 3.10). If an event appears at the root, we have to traverse the whole tree
to compute the next event. So we have total costs of O(m logm) and, thus, the
KDS is not responsive. However, we can simply avoid this problem by defining a
maximum number of tree-levels for the appearance of the same splitting axis.

The total number of events is nearly in O(n logn), which follows analogously to
the kinetic AABB-Tree.

3.2 Kinetic Bounding Volume Hierarchies 63

Fig. 3.11 Kinetic Interval
DOP: We inflate each point
by a certain amount

We show the second part of the theorem by induction over time. W.l.o.g. we
restrict ourselves to prove it only for the maxima, the arguments for the minima
following analogously. After building the BVH we have a valid hierarchy. It can
become invalid if a vertex P gets larger along some axis than the maximum of some
inner node K , i.e. if a tree event happens. Since we calculate the tree events for every
inner node correctly, we will recognize the first time when the hierarchy becomes
invalid.

We still have to show that the hierarchy stays valid after an event happens and
that we find the next event as well.

If a tree events happens, this means some vertex P becomes larger than the max-
imum Kmax of a node K , we have to replace all occurrences of Kmax on the way
from K to the root box by P and recalculate the events. This guarantees that the
hierarchy is still valid and we will find the next violation of the validity of the BVH
correctly.

In the case of a flightplan-update event, the validity of the BVH does not change,
but the error times of the events may change. Thus we have to recompute the times
for all events the vertex is involved with.

Summarizing, the hierarchy is valid after initialization and the first violation of
the validity is stored as event in the BVH. After an event happens, the hierarchy is
valid again and it is guaranteed that we find the next violation of the validity. Thus,
the BVH is valid at every point of time.

Recapitulating, we have a second KDS for fast updating a BVH which uses fewer
events than the kinetic AABB-Tree, but the computation of one single event is more
complicated.

3.2.3 Dead Ends

During the development of our kinetic data structures we also ran into some dead
ends that looked promising at first sight, either in theory or in practice. In their im-
plementation it turned out that their drawbacks predominate their advantages. How-
ever, in this section we will give a short overview on these dead end data structures
and provide descriptions on their specific disadvantages.

64 3 Kinetic Data Structures for Collision Detection

3.2.3.1 Kinetic DOP-Tree

It is straightforward to extend the kinetic AABB-Tree to additional axis by using
discrete oriented polytopes. Obviously, these k-DOPs—k denotes the number of
discrete orientations—fit the objects more tightly than ordinary AABBs. Moreover,
all theoretical observations that hold for the kinetic AABB-Tree (see Sect. 3.2.1)
are also valid for such kinetic DOP-Trees. Consequently, such a kinetic DOP-Tree
would fulfill all quality criteria for a good KDS. Unfortunately, in practice the devil
is hidden in the asymptotic notation.

It is clear that the number of events increases with an increasing number of dis-
crete orientations. Moreover, the computation of the events becomes more compli-
cated because we need an additional projection on the DOPs’ orientations. However,
this projection is not only required for the event determination but also during the
queries. Actually, the bounding boxes of the kinetic AABB are stored implicitly.
During a bounding box test we re-construct the AABBs explicitly by looking up
their actual values. Hence, the re-construction of a DOP during queries requires the
computation of an additional dot product for each orientation.

We have implemented a prototypical version of the kinetic DOP-Tree. But the re-
sults show that the disadvantages predominate the tighter fitting bounding volumes.
In all cases, the kinetic DOP-Tree performed significantly slower than the kinetic
AABB-Tree.

3.2.3.2 Kinetic Interval DOP-Tree

The Kinetic DOP-Tree was an attempt to increase the tightness of the bounding vol-
ume. Unfortunately, the advantages of the tighter BVs where overcompensated by
the increasing number of events. Consequently, we also developed another strategy
that reduces the number of the events at the cost of worse fitting BVs.

The basic idea relies on a method that was firstly proposed by Mezger et al.
[17] (see also Sect. 2.5): He inflated the BVs by a certain distance. As long as
the enclosed polygon does not move farther that this distance, the BV need not to
be updated. In this section we will present an event-based kinetic version of this
approach, which we call kinetic Interval-DOP-Tree.

Basically, we enclose each vertex by a small BV. Actually, we used an AABB
or a DOP of higher degree (see Fig. 3.11). Based on these inflated BVs we build
a BVH. Besides the flightplan-update event which is defined similarly to the other
kinetic BVHs, there exists only one other type of event—the Point Event. A point
event happens each time when a vertex escapes its surrounding BV (see Fig. 3.12).
In this case we simply move the inflated BV into the direction where the event has
happened (see Fig. 3.13). Moreover, we have to propagate the changes to the upper
levels of the hierarchy.

Obviously, we get O(n) events for an object that consists of n vertices. Each
vertex is associated to exactly one event. In case of an event, we have to move
the BV and propagate the change. If the BVH is balanced, this can be done in time

3.2 Kinetic Bounding Volume Hierarchies 65

Fig. 3.12 A point event
happens if a point leaves its
enclosing inflated BV

O(logn) in the worst case. Summarizing, our Kinetic Interval DOP-Tree is compact,
local and responsive.

Surprisingly, if we define the attribute like for the kinetic AABB-Tree and the
kinetic BoxTree as the validity of the BVH, we cannot prove the efficiency. This is
simply because a point event does not necessarily change the BV of its correspond-
ing triangle (see Fig. 3.14). What is even worse: there may be an unlimited amount
of such events. We can simply avoid this problem if we define the validity of the
BVH on a per point instead of a per triangle level. In this case, each event changes
the attribute and we get the efficiency. Obviously, this extended BVH is also a valid
BVH for the whole object.

However, in our prototypical implementation we recognized many more events
for the kinetic Interval DOP-Tree than for the kinetic AABB-Tree in all our test sce-
narios. Moreover, the traversal during query time is more time consuming because
of the worse fitting bounding volumes. Consequently, we measured a running-time
that is more than two times slower than that of our kinetic AABB-Tree or our kinetic
BoxTree.

Fig. 3.13 When a point event occurs (a), we move into the appropriate direction (b) and recompute
the BV (c). Moreover, we have to propagate the change in the hierarchy

66 3 Kinetic Data Structures for Collision Detection

Fig. 3.14 An oscillation of
point P1 between its current
position and P̃1 will throw
events without any change in
the hierarchy

3.3 Kinetic Separation-List

So far, the kinetic AABB-Tree utilizes the temporal and thus combinatorial coher-
ence only for the updates of individual hierarchies. In this section we will describe
a novel KDS specifically for detecting collisions between pairs of objects.

3.3.1 Kinetization of the Separation-List

Our so-called kinetic Separation-List builds on the kinetic AABB-Tree and utilizes
an idea described by [8] for rigid bodies. Given two kinetic AABB-Trees of two
objects O1 and O2, we traverse them once for the initialization of the kinetic incre-
mental collision detection. Thereby, we get a list, the so-called Separation-List, of
overlapping BVs in the BV test tree (BVTT) (see Fig. 3.15). We call the pairs of BVs
in the Separation-List nodes. This list contains three different kinds of nodes: those
which contain BVs that do not overlap (we will call them the inner nodes), leaves
in the BVTT, where the BV pairs do not overlap (the non-overlapping leaves), and

Fig. 3.15 The simultaneous traversal of two BVHs results in a BVTT (see Fig. 2.4). Those BV
pairs, where the traversal stops, build a list in this tree. We call it the Separation-List. This list
consists of inner nodes, whose BVs do not overlap (B, 3) and leaf nodes, where the BVs are leaves
in the BVH that do either overlap or not

3.3 Kinetic Separation-List 67

Fig. 3.16 BV-overlap event:
If the BVs B1 and B2 move
so that they begin to overlap,
we get a BV-overlap event

Fig. 3.17 Fathers-do-not-
overlap event: Currently, the
BV pairs (bl, cl), (bl , cr),
(br , cl) and (br , cr) are in the
Separation-List. If their father
BVs B and C do not overlap
anymore, e.g. because the
point P1 that realizes the
maximum of B becomes
smaller than the minimum of
C, we get a fathers-do-not-
overlap event

finally, leaf nodes in the BVTT that contain pairs of overlapping BVs, the so-called
overlapping leaves.

During run time, this list configuration changes at discrete points in time, when
one of the following events occurs.

• BV-overlap event: This event happens when the pair of BVs of a node in the
Separation-List which did not overlap so far now do. Thus, this event can happen
only at inner nodes and non-overlapping leaves (see Fig. 3.16).

• Fathers-do-not-overlap event: This event happens, if the BVs of a father of an
inner node or a non-overlapping leaf in the BVTT do not overlap anymore (see
Fig. 3.17). These could be inner nodes or non-overlapping leaves.

• Leaves-do-not-overlap event: The fathers-do-not-overlap event cannot occur to
overlapping leaves, because if their fathers do not overlap, then the leaves cannot
overlap in the first place. Therefore, we introduce the leaves-do-not-overlap event.

• Polygons-collide event: A collision between two triangles can only happen in
overlapping leaves. If a non-overlapping leaf turns into an overlapping leaf, we
have to compute the collision time and insert an adequate event into the event
queue.

68 3 Kinetic Data Structures for Collision Detection

Fig. 3.18 If the flightplan of
P C

2 changes, this has no
effect on the Separation-List,
and thus no BV-change event
will happen due to this
change

• BV-change event: Finally, we need an event that notes changes of the BV hier-
archies. This event is somewhat comparable to flightplan updates of the kinetic
AABB-Tree, but it is not exactly the same.

This is so, because an object in the Separation-List is composed of two BVs
of different objects O1 and O2 and the flightplans are attributes of the vertices of
only one single object. Therefore, not every flightplan update of an object affects
the Separation-List (see Fig. 3.18).

In addition, a BV-change event happens if the combinatorial structure of a BV
in the Separation-List changes. Since we use kinetic AABB-Trees as BVH for
the objects, this can happen only if a tree event or a leaf event in the BVH of an
object happens. Surely, not all events cause changes at the Separation-List.

Assuming that the BVs of the object do not overlap at the beginning of the simula-
tion, the Separation-List only consists of one node, which contains the root BVs of
the two hierarchies.

During running-time we have to update the Separation-List every time one of the
above events happens according to the following cases:

• BV-overlap event: Let K be the inner node with BVs V1 of object O1 and V2 of
object O2. Here, we need to distinguish two cases:

– Node K is inner node: In order to keep the Separation-List valid after the event
happened we have to delete K from it and insert the child nodes from the
BVTT instead. This means that if V1 has the children V1L and V1R , and V2 has
the children V2L and V2R we have to put four new nodes, namely (V1L, V2L),
(V1L, V2R), (V1R , V2L) and (V1R , V2R) into the list. Then we have to compute
the next time point t , when (V1, V2) do not overlap. Furthermore, we have to
compute the times ti for the new nodes when they will overlap. If ti < t we put
a BV-overlap event in the queue, otherwise a father-do-not-overlap event.

– Node K is a not overlapping leaf: In this case we just have to turn the node
into an overlapping leaf and compute the next leaves-do-not-overlap event (see
Fig. 3.19).

• Fathers-do-not-overlap event: In this case we have to delete the corresponding
node from the Separation-List and insert its father from the BVTT instead. Fur-
thermore, we have to compute the new fathers-do-not-overlap event and BV-
overlap event for the new node and insert the one which will happen first into
the event queue (see Fig. 3.20).

3.3 Kinetic Separation-List 69

Fig. 3.19 The BV-overlap event is somewhat the opposite of the fathers-do-not-overlap event (see
Fig. 3.20): If the BVs B and C begin to overlap, we have to remove the corresponding node from
the Separation-List and insert their child BVs (bl, cl), (bl , cr), (br , cl), and (br , cr) instead

Fig. 3.20 If a fathers-do-not-overlap event happens, that means that B and C do not overlap
anymore, and we have to remove their child BVs (bl , cl), (bl, cr), (br , cl), and (br , cr) from the
Separation-List and insert the new node (B,C) instead

70 3 Kinetic Data Structures for Collision Detection

• Leaves-do-not-overlap event: If such an event happens we have to turn the over-
lapping leaf into a non-overlapping leaf, and compute either a new fathers-do-
not-overlap event or a BV-overlap event and put it into the event queue.

• Polygons-collide event: A polygons-collide event does not change the structure of
the Separation-List. Such an event must be handled by the collision response. But
after the collision response we have to compute the next polygons-collide event.

Note that the polygons-collide events are reported in the correct order to the
collision response module, and this means that the pair of polygons which collides
first is also reported first. There is no other sorting required as it is by normal
bottom-up strategies if we want to handle the first collision between two frames
foremost.

• BV-change event: If something in a BV in the Separation-List changes, e.g. the
fligthplan of a vertex or the maximum or minimum vertex of a BV, then we have
to recompute all events the BV is involved with.

3.3.2 Analysis of the Kinetic Separation-List

Analogously to the theorems on the kinetic AABB-Tree and the kinetic BoxTree,
we get a similar theorem for the kinetic incremental collision detection. First we
have to define the “validity” of a Separation-List.

Definition 3.7 We call a Separation-List “valid”, if it contains exactly the non-
overlapping nodes that are direct children of overlapping nodes in the BVTT plus
the overlapping leaves.

With this definition we can formulate the appropriate theorem.

Theorem 3.8 Our kinetic Separation-List is compact, local, responsive, and effi-
cient. Furthermore, we maintain a valid Separation-List at every point in time if we
update it as described above.

In order to prove the first part of the theorem, we assume, w.l.o.g., that both
objects O1 and O2 have the same number of vertices n and the same number of
polygons m.

In the worst case it is possible that each polygon of object O1 collides with every
polygon of O2. However, this will not happen in a real-world application. Thus, it is
a reasonable assumption that one polygon can collide with only O(1) polygons of
the other object. We will show the proof for both, the worst and the practical case.

• Compactness: In order to evaluate the compactness, we have to define the attribute
we are interested in. In the case of kinetic incremental collision detection, this is
the Separation-List. Thus, the size of a proof of correctness of the attribute may
have size O(n2) in the worst case and O(n) in the practical case.

3.3 Kinetic Separation-List 71

For every node in the Separation-List, we store one event in the event queue,
which will be at most O(n2) in the worst, respectively O(n) in the practical case
in total.

Furthermore, for every BV we have to store the nodes in the Separation-List
in which it is participating; that could be at most O(n2) in the worst case or
rather O(n) in the practical case, too. Summarizing, the storage does not exceed
the asymptotic size of the proof of correctness and, thus, the data structure is
compact.

• Responsiveness: We will show the responsiveness for the four kinds of events
separately.

– Leaves-do-not-overlap event: The structure of the Separation-List does not
change if such an event happens. We just have to declare the node as not over-
lapping leaf and compute a new event which costs time O(1). The insertion
into the event queue of the new event could be done in O(logn).

– BV-overlap event: The insertion of a new node into the Separation-List and
deletion of the old node needs time O(logn). In addition we have to delete the
links from the old BV to the old node in the Separation-List and insert the new
ones. If we organize this list of links as an AVL-tree, we get a cost of O(logn).

– Fathers-do-not-overlap event: The deletion of nodes and events takes a time of
O(logn) again.

– BV-change event: When this kind of event happens, the structure of our
Separation-List does not change. We just have to recompute the event of the
affected node. The insertion and deletion of an event costs O(logn).

Overall, our data structure is responsive in all cases.
• Efficiency: To determine the efficiency is a bit more complicated because it is not

immediately obvious which events we should treat as inner and which as outer
events. Clearly, leaves-do-not-overlap events, BV-overlap events and fathers-do-
not-overlap events cause a real change of the attribute—the Separation-List—so
these events are outer events. But classifying the BV-change events is more dif-
ficult. Those which occur due to flightplan updates clearly do not count, because
they happen due to user interactions and could not be counted in advance. But
there are also BV-change events which happen due to changes of the BV hierar-
chies and they could be regarded as inner events.

Since we use the kinetic AABB-Tree there are at most O(n logn) events in
one single BVH. One BV could be involved with n nodes in the Separation-List.
So there are O(n2 logn) inner events in the worst case.

On the other hand, there may be Ω(n2) outer events and thus the KDS is still
responsive, even if we treat the BV-change events as inner events.

In a reasonable case we have at most O(n logn) inner events from the ki-
netic AABB-Tree and O(n) outer events in the Separation-List. Consequently,
our KDS is also responsive in this case.

• Locality: We also have to be careful when showing the locality of our data struc-
ture. The objects of our kinetic data structure are the nodes in the Separation-List,
not the single BVs in the kinetic AABB hierarchies. Each node is involved with
only O(1) events and, thus, our kinetic Separation-List is trivially local.

72 3 Kinetic Data Structures for Collision Detection

Otherwise, if the flightplan of one single BV changes this could cause O(n)

BV-change events in the kinetic Separation-List, because one BV could partic-
ipate O(n) nodes in the worst case. However, this is to be compared to O(n2)

total nodes in our kinetic Separation-List small and, moreover, in the reasonable
case there are at most O(1) nodes affected by a flightplan update. Summarized,
our kinetic Separation-List can be updated efficiently in all cases if a flightplan
update happens.

In order to show the second part of the theorem, we use induction over time once
more.

Obviously, after the first collision check we get a valid Separation-List. The hier-
archy becomes invalid if either the BVs of an inner node or of a not overlapping leaf
do not overlap anymore or if the fathers of one of this kind of nodes do not overlap
anymore.

Furthermore, it could happen that the BVs of an overlapping leaf do not overlap
anymore. During initialization we compute these points of time as events and store
them sorted by time in the event queue. Thus, we will notice the first point in time
when the hierarchy becomes invalid.

We have to show that the Separation-List is updated correctly if an event happens
and that the next point in time when it becomes invalid provokes an event.

• BV-overlap event: If a BV-overlap event happens, the Separation-List becomes
invalid because the BVs of an inner node overlap. To repair the defect we have
to remove the node from the list and replace it by its four children. In order to
determine the next time when one of this new nodes becomes invalid we have to
calculate the events and insert them into the event queue.

• Fathers-do-not-overlap event: In case of a fathers-do-not-overlap event the list
becomes invalid because the BVs of a node K overlapped before and do not
overlap anymore. Thus, K is not the deepest node in the hierarchy whose BVs do
not overlap. So, K must be replaced by its parent node V K .

The hierarchy can become invalid at node V K the next time if the BVs of V K

overlap or the predecessor of V K do not overlap anymore. So we have to compute
what happens first and generate an event and insert it into the event queue. This
guarantees that we will find the next time that V K becomes invalid.

• Leaves-do-not-overlap event: A leaves-do-not-overlap event does not affect the
validity of the Separation-List. It is sufficient to turn the node into a not overlap-
ping leaf.

In order to recognize the next point of time that this node may violate the
validity we have to look if either a BV-overlap event or a fathers-do-not-overlap
event will happen first for this node and insert the corresponding event into the
event queue.

• BV-change event: A BV-change event does not affect the validity of the
Separation-List. But it is necessary to recompute the event times for the cor-
responding BVs in the list.

Overall, the validity of the hierarchy is guaranteed at all points of time.

3.3 Kinetic Separation-List 73

If we want to check for a collision at any time, we only have to test the primitives
in the overlapping leaves for collision.

Though our data structure fulfills all quality criteria of a kinetic data structure,
the bounds of the used storage O(n2) or update costs of O(n) for flightplan updates
of one single vertex do not seem to be very promising. On the other hand these are
worst-case scenarios and only hold if all polygons of one object overlap with all
polygons of another object. This case does not happen in real-world applications. In
most applications the number of overlapping polygons could be shown to be nearly
linear (see also Sect. 6.2). Our experiments in the results section of this chapter
show that the kinetic Separation-List performs very well in practical cases and that
the running-time is up to 50 times faster compared to other approaches.

3.3.3 Self-collision Detection

BVHs are also used for self-collision detection. In general, collisions and self-
collisions are detected in the same way. If two different objects are tested for colli-
sions, their BVHs are checked against each other. Analogously, self-collisions of an
object are performed by testing one BVH against itself. The main problem which
arises when using this method in combination with discrete time sampling algo-
rithms is the problem of adjacency: the BVs of adjacent polygons always overlap.

Therefore, approaches which are not using temporal and spatial coherence have
to descent from the root of the BVTT down to all neighbors of a polygon at every
query time. These are O(n logn) BV overlap tests, even if there is not a single pair
of colliding polygons.

Our kinetic Separation-List avoids the problem of adjacency. For self-collision
tests we also test the BVH against itself, but we do this only one time for the initial-
ization. During run time, pairs of adjacent BVs stay all the time in the Separation-
List and their parents will never be checked for collision as with most other ap-
proaches.

3.3.4 Implementation Details

In this section we describe some implementation details of our kinetic Separation-
List which differ in several points from the basic algorithms described above. Algo-
rithm 3.2 shows the basic simulation loop.

First of all, it is not necessary to store the Separation-List explicitly. Instead, it is
sufficient to link only the two colliding BVs in the kinetic AABB-Tree. Therefore,
we use a simple list for every BV in the kinetic AABB hierarchy and store pointers
to the colliding BVs in the other hierarchy. It is sufficient, to use a list, even if we
have to delete or insert some pointers when an event appears, because in real-world
scenarios the degree of vertices is bounded and, thus, a single BV does not collide
with too many other BVs in the BVTT.

74 3 Kinetic Data Structures for Collision Detection

Algorithm 3.2 Simulation Loop

while simulation runs do
determine time t of next rendering
e ← min event in event queue
while e.timestamp < t do

processEvent(e)
if e = Polygons-Collide event then

collision response
e ← min event in event queue

render scene

Moreover, if a fathers-do-not-overlap event happens we do not simply add the
father of the affected BVs into our Separation-List, because in most cases the fathers
of the fathers do not overlap either. Instead, we ascend in the hierarchy to the highest
pair of BVs which does not overlap and then delete all its children that are in the
Separation-List. Note that the data structure is not responsive anymore if we proceed
like this, because in the worst case, we have a cost of O(n2) for one single event.
However, if we simply proceed as described in the section before, we would have to
process O(n2) events. Thus, the overall complexity is still the same. Equivalently,
we do not insert just the children if a BV-overlap event happens. Instead, we descent
directly to the deepest non-overlapping nodes in the BVHs.

For the event queue we use a Fibonacci heap. With this data structure we can
efficiently insert, delete, and update events.

3.3.4.1 Continuous Primitive Intersection Test

The polygons-collide event requires two continuously moving polygons to be
checked for intersection. In our implementation we used a continuous triangle in-
tersection test according to the tests described in Eckstein and Schömer [12]. In this
section we will give a short sketch of the basic ideas.

We break the triangle test into several sub-tests that can be computed more effi-
ciently than testing a pair of triangles as a whole. In detail, we test vertices and faces
and the edges separately for intersection. Overall, this results in three vertex/face-
and nine edge/edge-tests for each pair of triangles.

A necessary condition for a vertex/face intersection is that the point is located in
the triangles’ plane (see Fig. 3.21). This means that

(
q(t) − p1(t)

) · n(t) = 0 (3.4)

With n(t) = (p2(t) − p1(t)) × (p3(t) − p1(t)) this results in a cubic equation
that has to be solved for t . Moreover, we have to test if q(t) is really located inside
the triangle, e.g. by computing the barycentric coordinates.

3.4 Event Calculation 75

Fig. 3.21 Continuous
vertex/face-test: As a
pre-condition of an
intersection, q(t) has to be
located in the triangles plane,
i.e. (q(t) − p1(t)) · n(t) = 0

Fig. 3.22 Continuous
edge/edge-test: As a
pre-condition of an
intersection, both lines
(p1(t),p2(t)) and
(q1(t), q2(t)) have to be
located in the same plane

Similarly, we get a necessary condition for an edge/edge-intersection: both lines
must be located in the same plane (see Fig. 3.22). We get the equation

(
q1(t) − p1(t)

) · n(t) = 0 (3.5)

with n(t) = (p2(t) − p1(t)) × (q2(t) − q1(t)). Again, we get a cubic equation and
we additionally have to apply a validity test that checks if the edges really intersect.

Summarizing, for both kinds of intersection tests—vertex/face and edge/edge—
we first have to find a point in time where four points are co-planar by solving a
cubic equation. Next, we have to check for validity at the time of co-planarity.

3.4 Event Calculation

The calculation of the events depends on the motion of the objects. At first we
assume a linear motion of the vertices.

In the kinetic AABB-Tree we get an event if a vertex P becomes larger than an-
other vertex Q along some axis. Therefore, the computation of an event corresponds
to line intersection tests in 2D.

More precisely, assume that we have two vertices P and Q with velocity vectors
p and q , respectively. At point in time t we have Px(t) < Qx(t). In order to get

76 3 Kinetic Data Structures for Collision Detection

Algorithm 3.3 Event Calculation
Compute f with l · f ≤ t ≤ l · (f + 1)

t = l · (f + 1)

while t > l · f do
p = Pl·(f +1) − Pl·f
q = Ql·(f +1) − Ql·f
pf = p

l

qf = q
l

Compute t when P gets larger than Q

f = f + 1

the next point of time t when P becomes larger than Q along the x-axis, we get
t = Qx(t)−Px(t)

px−qx
.

If t < 0, there will be no event.
In the kinetic Separation-List we get events if two BVs begin to overlap or do not

overlap anymore.
Assume two BVs A and B with extreme points P A

i max and P B
i max, respectively,

and minimum points P A
i min and P B

i max, respectively, with i ∈ {x, y, z} at time t .
There are two different cases for events:

• Assume A and B overlap at time t and we want to get the point of time t when
they do not overlap anymore. Surely, A and B do not overlap ⇔ there exists an
axis i ∈ {x, y, z} with P A

i max(t) < P B
i min(t) or P B

i max(t) < P A
i min(t).

Thus, we have to compute the points of time ti for every axis i ∈ {x, y, z}
when P A

i max becomes smaller than P B
i min and P B

i max becomes smaller than P A
i min.

We generate an event for the minimum of these ti .
• If A and B do not overlap at time t , we have to look for the time t when they

overlap. A and B overlap ⇔ P A
i max(t) ≥ P B

i min(t) and P B
i max(t) ≥ P A

i min(t) for all
axes i ∈ {x, y, z}.

Thus we have to compute the points of time ti for all i ∈ {x, y, z}, when P A
i min

becomes smaller than P B
i max and P B

i min gets smaller than P A
i max too. We generate

an event for the maximum of the ti .

We tested our algorithms with keyframe animations. Between two keyframes
we interpolated linearly. Therefore, we get paths of line segments as motion of the
vertices.

Assume that we have k keyframes K0, . . . ,Kk . Let l be the number of interpo-
lated frames between two keyframes. We want to compute for the vertices P and
Q with positions P(t) and Q(t), respectively, when the next event between these
points will happen, i.e. when P will become larger along the x-axis than Q.

Therefore, we first have to determine the actual keyframe Kf with l · f ≤ t ≤
l · (f + 1). We get the recent velocity pf and qf for the two vertices by pf =
P(l · (f + 1)) − P(l · f) and qf = Q(l · (f + 1)) − Q(l · f).

3.5 Results 77

Algorithm 3.4 Check{BV a of object A, BV b object B}

if overlap (a, b) then
if a and b are leaves then

test_primitives(a, b)
else

forall children a[i] of a do
forall children b[j] of b do

Check(a[i], b[j])
else

return

Now we can compute time t when P gets larger than Q as described in the
previous section. If t ≤ m ·(f +1) we get the event for P and Q. But if t > l ·(f +1)

we have to look at the next keyframe whether the paths of P and Q intersects and
so on (see Algorithm 3.3). Thus, we have to compute k line intersections for one
single event in the worst case.

3.5 Results

We implemented our algorithms in C++ and tested the performance on a PC running
Linux with a 3.0 GHz Pentium IV with 1 GB of main memory. We used two different
types of test scenarios, keyframe animations and simple velocity fields with linear
motion.

In order to test the updating performance of the kinetic hierarchies, we used three
different keyframe animations. The first one shows a tablecloth falling on a table. We
tested this scene with several resolutions of the cloth, ranging from 2k to 16k faces.
This scene shows the behavior of our algorithms under heavy deformation. The two
other keyframe scenarios show typical cloth animations. The first one shows a male
avatar with a shirt in resolutions of from 32k to 326k deforming triangles, the other
one a female avatar with a dress having from 65k to 580k deforming triangles (see
Fig. 3.23).

In order to measure the speed of updates when the flightplan changes, we used a
benchmark with two expanding spheres. We assign a velocity vector which points
away from the midpoint to each point of a sphere, so that the spheres expand regu-
larly. When they collide, the velocity vectors of the colliding triangles are reversed.
We tested this scene with resolutions from 2k to 40k triangles.

Additionally, we implemented a typically recursive static collision detection al-
gorithm (see Algorithm 3.4) in order to compare the overall performance of the Ki-
netic AABB-Tree and the Kinetic BoxTree. Because we are primarily interested in
the speed of the updates we did not include self-collision detection. Moreover, we
compared the performance of our algorithms with a bottom-up updating strategy.
The plots in Figs. 3.24–3.39 show some results of our measurements.

78 3 Kinetic Data Structures for Collision Detection

Fig. 3.23 Scenes with which we tested our algorithms

First, we consider the number of events. In the high-resolution tablecloth scene
we have about 400 events per frame and have to update only 1000 values for the
kinetic AABB-Tree and even fewer for the kinetic BoxTree (see Fig. 3.24). In con-
trast, the bottom-up approach has to update 60 000 values. For the Catwalk scene,
we found similar values (see Fig. 3.28). Since the computation costs for an event are
relatively high, this results in an overall speed-up of a factor of about 5 for updat-
ing the kinetic AABB-Tree (see Fig. 3.25). The number of events increases almost
linearly with the number of polygons, which supports our lower bound for the total
number of events of nearly O(n logn) (see Fig. 3.26).

The diagram also shows that we need fewer events for the kinetic BoxTrees, but
the proper collision check takes more time since the kinetic BoxTree is susceptible
to deformations.

A high amount of flightplan updates does not affect the performance of our ki-
netic hierarchies; they are still up to 5 times faster than the bottom-up updates (see
Fig. 3.27).

3.5 Results 79

Fig. 3.24 Tablecloth scene:
Average number of events
and updates per frame. The
kinetic BoxTree has, as
expected, the smallest total
number of events and the
smallest number of total
updates per event

Fig. 3.25 Tablecloth scene:
The total number of updates
is significantly smaller than
the updates required by the
bottom-up strategy

In the cloth animation scenes the gain of the kinetic data structures is highest,
because the objects undergo less deformation than the tablecloth. Consequently, we
have to perform fewer events. In this scenarios we see a performance gain of a factor
about 10 (see Figs. 3.29, 3.31 and 3.32). From Theorem 3.3, it is clear that this factor
increases with the number of interpolated frames between two keyframes. This is so,
because the performance of the event based kinetic data structures only depends on
the number of keyframes and not on the total length of the scene (see Fig. 3.30).

Overall, the kinetic AABB-Tree performs best and the running time of the updat-
ing operations is independent from the sampling frequency. This means, for exam-
ple, that if we want to render a scene in slow motion—maybe 10 times slower—the
costs for updating are still the same while they increase for the bottom-up update by
a factor of 10.

In order to evaluate the performance of our kinetic Separation-List we re-used
the tablecloth scene (see Fig. 3.23(b)) and the male cloth animation scene (see
Fig. 3.23(c)). Moreover, we added a new scene with single swirling cloth in res-
olutions of 4K to 33K deforming polygons (see Fig. 3.33). We used this scene in

80 3 Kinetic Data Structures for Collision Detection

Fig. 3.26 Tablecloth scene:
Total time for updates and
collision detection.
Unfortunately, due to the
relatively high deformation of
the tablecloth and the high
costs for the
event-computation, the gain is
less than expected, but there
is still a significant gain for
the kinetic AABB-Tree and
the BoxTree

Fig. 3.27 Expanding spheres
scene: Average total time for
the updates and the collision
checks. This scene seems to
be more appropriate for the
KDSs than the tablecloth
scene, despite the high
amount of flightplan updates.
The gain of the kinetic data
structures compared to the
bottom-up approach is more
than a factor of 5

order to stress our algorithm: it contains very heavy deformation of the cloth and
many self-collisions.

We compared the performance of our kinetic Separation-List with a classical
swept-volume algorithm for continuous collision detection: we updated the hier-
archy with a bottom-up updating strategy. For the proper collision check we con-
structed an AABB which encloses the BVs at the beginning and the end of the
frame.

First, we considered the number of events in our kinetic Separation-List com-
pared to the number of checks the swept-volume algorithm has to perform. In the
high-resolution tablecloth scene we have about 500 events per frame with our ki-
netic data structure compared to several tens of thousands collision checks with the
swept-volume. Since the computational costs for an event are relatively high, this
results in an overall speed-up of about factor 50 for updating the kinetic Separation-
List (see Fig. 3.36). The number of events rises nearly linearly with the number of
polygons (see Fig. 3.37).

3.5 Results 81

Fig. 3.28 Catwalk scene:
Average number of events
and updates. The ratio seems
to be nearly the same as in the
tablecloth scene

Fig. 3.29 Catwalk scene:
Updating times. In this scene
we have an overall gain of a
factor about 10 for the kinetic
AABB-Tree compared to the
bottom-up-update

In the cloth animation scenes with the male avatar and the tablecloth the gain of
our kinetic data structures is highest, because the objects undergo less deformation
than the swirling cloth (see Figs. 3.38 and 3.39) and thus we have to compute and
handle fewer events. In these scenarios we see a performance gain of a factor up
to 50 compared to the swept-volume algorithm (see Fig. 3.34). This factor would
increase even further if the number of interpolated frames between two keyframes
were increased (see Fig. 3.35). This is because the performance of the event-based
kinetic data structures only depends on the number of keyframes and not on the total
length of the scene or the number of collision checks.

Overall the kinetic Separation-List performs best and the running time of the up-
dating operations is independent from the sampling frequency. Moreover, the col-
lisions are reported in the right order with our kinetic Separation-List. This is im-
portant for a correct collision response scheme. The collisions in the swept-volume
algorithms are reported in random order. If we would sort them the gain by our
algorithms would even increase.

82 3 Kinetic Data Structures for Collision Detection

Fig. 3.30 Male cloth
animation scene: Average
update time depending on the
number of interpolated
frames between two
keyframes. Since the number
of events only depends on the
number of keyframes and not
on the number of interpolated
frames, so, the average update
time decreases if we increase
the total number of frames

Fig. 3.31 Male cloth
animation scene: Average
updating time. In this scene
we have an overall gain of a
factor about 10 for the kinetic
AABB-Tree compared to the
bottom-up update

Fig. 3.32 Male cloth
animation scene: Total time,
this means the time for
updates and the proper check
time

3.6 Conclusion and Future Work 83

Fig. 3.33 The swirling cloth animation scene

Fig. 3.34 Male cloth
animation scene: Average
total time for updating the
hierarchies and performing
the inter- and intra-collision
detection. We have an overall
gain of about a factor of 20
with our kinetic
Separation-List

Fig. 3.35 Male cloth
animation scene: Total time,
including updating and
collision check, in the
resolution of 49K triangles,
depending on the number of
interpolated frames
in-between two keyframes.
Since the number of events
only depends on the number
of keyframes and not on the
number of interpolated
frames, the average update
time decreases if we increase
the total number of frames

3.6 Conclusion and Future Work

We introduced two novel bounding volume hierarchies for updating a BVH over
deformable objects fast and efficiently. We presented a theoretical and experimental
analysis showing that our new algorithms are fast and efficient both in theory and in

84 3 Kinetic Data Structures for Collision Detection

Fig. 3.36 Tablecloth scene:
Total time; this means
updating the hierarchies and
the time for the collision
check including
self-collision. The gain of our
kinetic data structures is
about a factor of 50

Fig. 3.37 Tablecloth scene:
Number of events in our
kinetic data structure
compared to the number of
collision checks we have to
perform with the
swept-volume algorithm. The
number of events is
significantly smaller. Note the
different scales

practice. We used the kinetic data structure framework to analyze our algorithms and
we showed an upper bound of nearly O(n logn) for the updates that are required at
most to keep a BVH valid. We also showed that the kinetic AABB-Tree and kinetic
BoxTree are optimal in the sense that they only need to make O(n logn) updates.

Our kinetic bounding volume hierarchies can update the bounding volumes more
than 10 times faster than a bottom-up approach in practically relevant cloth ani-
mation scenes. Even in scenarios with heavy deformations of the objects or many
flightplan updates we have a significant gain by our algorithms.

Moreover, we used our kinetic AABB-Tree to define another kinetic data
structure—the kinetic Separation-List—for continuous inter- and intra-collision de-
tection between deformable objects, i.e. pairwise and self-collision detection. The
algorithm gains its efficiency from the event-based approach.

It contains a discrete event-based part which updates only the combinatorial
changes in the BVH and a continuous part which needs to compute only the time
of future events after such a combinatorial change. Our algorithm is particularly

3.6 Conclusion and Future Work 85

Fig. 3.38 Swirling cloth
scene: Time for updating and
self-collision check. Even in
this worst-case scenario for
our algorithm, we have a gain
of a factor about 2 for our
kinetic data structure. This
depends on the higher number
of events in this scenario

Fig. 3.39 Swirling cloth
scene: Number of events for
the kinetic Separation-List
and the number of collision
checks for the swept AABB
approach. Again, note the
different scales

well-suited for animations where the deformation cannot be restricted in some way
(such as bounded deformations). Our kinetic Separation-List is perfectly qualified
for a stable collision response, because it naturally delivers the collisions ordered by
time to the collision response module. In practically relevant cloth animation scenes
our kinetic data structure can find collisions and self-collisions more than 50 times
faster than a swept-volumes approach. Even in scenarios with heavy deformations
of the objects we observed a significant gain by our algorithm.

3.6.1 Future Work

We believe that the kinetic data structures are a fruitful starting point for future work
on collision detection for deformable objects.

Small changes could help to improve the performance of our kinetic data struc-
tures. For instance, the use of trees of higher order than binary trees could on the

86 3 Kinetic Data Structures for Collision Detection

Fig. 3.40 Sending a single
ray for each pixel in a ray
tracer may result in aliasing
artifacts, like the
checkerboard in the
background

one hand reduce the number of events, and on the other hand accelerate the propaga-
tion of events. Also the rebuild of parts of the BVHs in case of heavy deformations
could help to improve the running-time. In addition, it should be straightforward to
extend our novel algorithms to other primitives such as NURBS or point clouds and
to other applications like ray-tracing or occlusion culling.

3.6.1.1 Kinetic Ray-Tracing

Obviously, our kinetic AABB-Tree and also our kinetic BoxTree can be applied
directly to accelerating of ray-tracing of deformable scenes. However, in this para-
graph we will propose another event-based kinetic method that we will pursuit in
the future.

A typical ray tracer sends a single ray for each pixel through the scene. This
may result in aliasing artifacts (see Fig. 3.40). Therefore, advanced ray tracers send
not only a single ray but several rays for each pixel and in the end they interpolate
the results. Actually, a single pixel does not represent only a single ray—or several
rays—but the whole viewing frustum that is spanned by the pixel.

We will exploit this idea in our kinetic ray tracer. Basically, we will maintain a
sorted list of all primitives for each viewing frustum that is spanned by a single ray
(we call it the pixel frustum). Such an ordering can be easily realized with a kinetic
sorted list. Events will happen if two primitives change place. It is easy to prove the
four KDS quality criteria for this data structure.

Moreover, we propose an event-based 3D version of the Sutherland–Hodgman
polygon clipping algorithm [20] for each primitive. The basic principle is very easy:
A subject polygon is clipped consecutively against the spanning lines or, in 3D,
the spanning planes of the clip polygon (see Fig. 3.41). Events will happen if a
vertex passes through a spanning plane. Please note that this will also throw an
event in one or more pixel frusta in the neighborhood. A combined handling of
these simultaneous events will reduce the overall workload significantly.

3.6 Conclusion and Future Work 87

Fig. 3.41 The red polygon is clipped consecutively against the spanning lines of the clip polygon

During a query there is no explicit ray-shooting required any more. We simply
have to collect the closest triangle or a set of closest triangles and combine their
colors with respect to their sizes and their distances. This also allows an easy way
to realize anti-aliasing.

Kinetic version of light buffers [16] or kinetic BSP-trees can be used for further
speed-up or the recursive tracing of rays.

3.6.1.2 Parallel Kinetic Data Structures

The kinetic data structures for the pixel frusta of the kinetic ray tracer described
above are widely independent from their neighbors. This allows a trivial paralleliza-
tion.

However, we can also advance the concept of parallelization to deeper level for
general kinetic data structures. Basically, a KDS relies on the consecutive handling
of events that are stored in a global event-queue. An event stores the expiration time
of a certificate. These certificates are elementary geometric conditions that prove
altogether the correctness of an attribute. The locality of a KDS guarantees that
these certificates are widely independent. This means that a single event does not
affect too many changes in other certificates.

Consequently, we could parallelize a KDS on a certificate level. We just have to
replace the global event-queue by a local event-queue for each certificate. Due to
the locality of a KDS, the synchronization overhead should be relatively small.

3.6.1.3 Flightplans for Unknown Paths

A major drawback of kinetic data structures is the requirement of a flightplan. Ac-
tually, the more information is available about the flightplan, the more efficient is
the KDS in practice. It is straightforward to derive such flightplans from keyframe
animations. Our results show that the performance of our kinetic data structures
increase with increasing number of interpolated frames between the keyframes.

However, in highly interactive scenes such as computer games or virtual reality
applications, the interaction is determined by using physics-based simulation instead

88 3 Kinetic Data Structures for Collision Detection

of pre-computed keyframe animations because of their higher level of flexibility.
Physics-based simulations are usually computed for each frame separately. Hence,
a kinetic data structure cannot gain from knowledge about the flightplans.

Therefore, at first sight, physics-based simulations do not seem to be well suited
for the use in kinetic data structures. However, in the future we plan to integrate them
anyway. Basically, we do not have to now the exact point in time when an event will
happen, but it is sufficient to maintain a lower bound for the event. This means that
we search a time interval where it is guaranteed that no event will happen.

Therefore, we can use e.g. larger time steps for the integration. However, larger
time steps also result in a higher uncertainty. Consequently, we plan to analyze
different integration schemes like explicit and implicit Euler and Runge–Kutta
schemes, and so on, with respect to their error bounds. These error bounds will
define a region that a particle cannot exceed during a certain time interval and, thus,
defines a lower bound for the events.

References

1. Abam, M. A., & de Berg, M. (2007). Kinetic sorting and kinetic convex hulls. Computational
Geometry, 37(1), 16–26. doi:10.1016/j.comgeo.2006.02.004.

2. Agarwal, P. K., Guibas, L. J., Hershberger, J., & Veach, E. (1997). Maintaining the ex-
tent of a moving point set. In Proceedings of the 5th international workshop on algorithms
and data structures, WADS ’97 (pp. 31–44). London: Springer. ISBN 3-540-63307-3. URL
http://dl.acm.org/citation.cfm?id=645931.673046.

3. Agarwal, P. K., Basch, J., Guibas, L. J., Hershberger, J., & Zhang, L. (2002). Deformable free-
space tilings for kinetic collision detection. I. The International Journal of Robotics Research,
21(3), 179–198.

4. Agarwal, P. K., Kaplan, H., & Sharir, M. (2008). Kinetic and dynamic data structures for
closest pair and all nearest neighbors. ACM Transactions on Algorithms, 5(1), 4:1–4:37.
doi:10.1145/1435375.1435379. URL http://doi.acm.org/10.1145/1435375.1435379.

5. Basch, J., Guibas, L., & Hershberger, J. (1997). Data structures for mobile data. In SODA:
ACM-SIAM symposium on discrete algorithms (A conference on theoretical and experimental
analysis of discrete algorithms). URL citeseer.ist.psu.edu/145907.html.

6. Basch, J., Guibas, L. J., & Hershberger, J. (1999). Data structures for mobile data. Journal of
Algorithms, 31(1), 28.

7. Basch, J., Erickson, J., Guibas, L. J., Hershberger, J., & Zhang, L. (2004). Kinetic col-
lision detection between two simple polygons. Computational Geometry, 27(3), 211–235.
doi:10.1016/j.comgeo.2003.11.001.

8. Chen, J.-S., & Li, T.-Y. (1999). Incremental 3D collision detection with hierarchical data
structures. November 22. URL http://citeseer.ist.psu.edu/356263.html; http://bittern.cs.nccu.
edu.tw/li/Publication/pdf/vrst98.pdf.

9. Coming, D., & Staadt, O. G. (2006). Kinetic sweep and prune for multi-body continuous
motion. Computers & Graphics, 30(3).

10. da Fonseca, G. D., & de Figueiredo, C. M. H. (2003). Kinetic heap-ordered trees:
tight analysis and improved algorithms. Information Processing Letters, 85(3), 165–169.
doi:10.1016/S0020-0190(02)00366-6.

11. Davenport, H., & Schinzel, A. (1965). A combinatorial problem connected with differential
equations. American Journal of Mathematics, 87, 684–694.

12. Eckstein, J., & Schömer, E. (1999). Dynamic collision detection in virtual reality ap-
plications. In V. Skala (Ed.), WSCG’99 conference proceedings. URL citeseer.ist.psu.edu/
eckstein99dynamic.html.

http://dx.doi.org/10.1016/j.comgeo.2006.02.004
http://dl.acm.org/citation.cfm?id=645931.673046
http://dx.doi.org/10.1145/1435375.1435379
http://doi.acm.org/10.1145/1435375.1435379
http://citeseer.ist.psu.edu/145907.html
http://dx.doi.org/10.1016/j.comgeo.2003.11.001
http://citeseer.ist.psu.edu/356263.html
http://bittern.cs.nccu.edu.tw/li/Publication/pdf/vrst98.pdf
http://bittern.cs.nccu.edu.tw/li/Publication/pdf/vrst98.pdf
http://dx.doi.org/10.1016/S0020-0190(02)00366-6
http://citeseer.ist.psu.edu/eckstein99dynamic.html
http://citeseer.ist.psu.edu/eckstein99dynamic.html

References 89

13. Erickson, J., Guibas, L. J., Stolfi, J., & Zhang, L. (1999). Separation-sensitive collision detec-
tion for convex objects. In SODA ’99: proceedings of the tenth annual ACM-SIAM symposium
on discrete algorithms (pp. 327–336). Philadelphia: Society for Industrial and Applied Math-
ematics. ISBN 0-89871-434-6.

14. Guibas, L. J. (1998). Kinetic data structures—a state of the art report. April 01. URL http://
citeseer.ist.psu.edu/480263.html; http://graphics.stanford.edu/~guibas/g-kds.ps.

15. Guibas, L. J., Xie, F., & Zhang, L. (2001). Kinetic collision detection: algorithms and experi-
ments. In ICRA (pp. 2903–2910).

16. Haines, E., & Greenberg, D. (1986). The light buffer: a shadow-testing accelerator. IEEE
Computer Graphics and Applications, 6, 6–16. URL http://doi.ieeecomputersociety.org/
10.1109/MCG.1986.276832.

17. Mezger, J., Kimmerle, S., & Etzmuß, O. (2003). Hierarchical techniques in collision detection
for cloth animation. Journal of WSCG, 11(2), 322–329.

18. Sharir, M., & Agarwal, P. K. (1995). Davenport–Schinzel sequences and their geometric appli-
cations. Cambridge: Cambridge University Press. ISBN 9780521470254. URL http://books.
google.de/books?id=HSZhIHxHXJAC.

19. Speckmann, B. (2001). Kinetic data structures for collision detection. PhD thesis, University
of British Columbia. URL citeseer.ist.psu.edu/speckmann01kinetic.html.

20. Sutherland, I. E., & Hodgman, G. W. (1974). Reentrant polygon clipping. Communi-
cations of the ACM, 17(1), 32–42. doi:10.1145/360767.360802. URL http://doi.acm.org/
10.1145/360767.360802.

21. Weller, R., & Zachmann, G. (2006). Kinetic Separation-Lists for continuous collision de-
tection of deformable objects. In Third workshop in virtual reality interactions and physical
simulation (Vriphys), Madrid, Spain, 6–7 November.

22. Zachmann, G. (2002). Minimal hierarchical collision detection. In Proceedings of the
ACM symposium on virtual reality software and technology, VRST ’02 (pp. 121–128).
New York: ACM. ISBN 1-58113-530-0. doi:10.1145/585740.585761. URL http://doi.acm.
org/10.1145/585740.585761.

23. Zachmann, G., & Weller, R. (2006). Kinetic bounding volume hierarchies for deformable
objects. In ACM international conference on virtual reality continuum and its applications
(VRCIA), Hong Kong, China, 14–17 June.

http://citeseer.ist.psu.edu/480263.html
http://citeseer.ist.psu.edu/480263.html
http://graphics.stanford.edu/~guibas/g-kds.ps
http://doi.ieeecomputersociety.org/10.1109/MCG.1986.276832
http://doi.ieeecomputersociety.org/10.1109/MCG.1986.276832
http://books.google.de/books?id=HSZhIHxHXJAC
http://books.google.de/books?id=HSZhIHxHXJAC
http://citeseer.ist.psu.edu/speckmann01kinetic.html
http://dx.doi.org/10.1145/360767.360802
http://doi.acm.org/10.1145/360767.360802
http://doi.acm.org/10.1145/360767.360802
http://dx.doi.org/10.1145/585740.585761
http://doi.acm.org/10.1145/585740.585761
http://doi.acm.org/10.1145/585740.585761

Chapter 4
Sphere Packings for Arbitrary Objects

Sphere packings have diverse applications in a wide spectrum of scientific and en-
gineering disciplines: for example in automated radiosurgical treatment planning,
investigation of processes such as sedimentation, compaction, and sintering, in pow-
der metallurgy for three-dimensional laser cutting, in cutting different natural crys-
tals, etc.; and the discrete element method is based on them.

In contrast, in the field of computer graphics sphere packings are hardly used.1

This has two main reasons: first, computer graphics usually concentrates on the
visual parts of the scene, i.e. the surface of the objects and not on what is behind.
Secondly, computing sphere packings for arbitrary 3D objects is a highly non-trivial
task [9]. Almost all algorithms that are designed to compute sphere packings are
computationally very expensive and, therefore, they are restricted to very simple
geometric objects like cubes or cylinders.

However, volumetric object representations also have their advantages. For in-
stance, in physics-based simulations, the penetration volume is known to be the best
measure for contact information that collision detection algorithms can provide [36].
Or take physics-based simulations of deformable objects, which sometimes require
a prevention of the objects’ volume. Within simple mass–spring systems it is hard to
fulfil volume constraints, just because the volume is not really modeled. Algorithms
that take the volume into account, e.g. the Finite-Element-Method (FEM) that re-
lies on a volumetric tetrahedral representation of the objects, are computationally
very expensive and hardly applicable to real-time scenarios. A representation of the
objects’ volumes by sphere packings could make the best out of both worlds: they
could avoid the computational expense of FEM methods but preserve the volume
during simulation by simply maintaining the non-overlap constraints (see Sect. 7.2).

1Actually, we know only two applications of sphere or circle packings in computer graphics: Shi-
mada and Gossard [42] and Miller et al. [34] used uniform sphere packings to compute triangulated
surfaces from other object representations like CSG or free form surfaces. Schiftner et al. [39] de-
fined a new kind of triangle meshes that can be described by 2D circle packings. These triangle
meshes can be used to construct very stable hexagonal surfaces.

Parts of this work have been previously published in [48] and [49].

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_4,
© Springer International Publishing Switzerland 2013

91

http://dx.doi.org/10.1007/978-3-319-01020-5_4

92 4 Sphere Packings for Arbitrary Objects

The pre-condition for these applications, however, is an efficient and stable
method to compute sphere packings for arbitrary objects. In this chapter we will
present two almost new methods that are able to compute polydisperse sphere pack-
ings. To our knowledge, such a method did not exist before.

The first method is based on a voxelization of the object. We greedily choose
the centers of the voxels as potential centers of the spheres. The main drawback
of this approach is exactly these fixed positions of the centers. If the object, or the
voxelization, are not perfectly symmetric and aligned, it produces a lot of regular,
small spheres close to the surface. During the collision detection (see Chap. 5) this
can result in a noisy signal. Moreover, it is complicated to define the number of
resulting spheres and the density of the packing in advance.

Therefore, we present a more flexible extension of this greedy voxel-based
method, which is able to produce space-filling sphere packings. The basic idea is
very simple and related to prototype-based approaches known from machine learn-
ing. Furthermore, this prototype-based approach directly leads to a version of our
algorithm parallel to that we have implemented using CUDA. The theoretic analysis
shows that our algorithm generates an approximation of the Apollonian diagram for
arbitrary objects.

However, we will start with a short review of existing sphere-packing algorithms
before we will explain our two new methods in more detail. Finally, we will briefly
sketch how sphere packings can help to create entirely new solutions to fundamental
problems in computer graphics: for instance, the segmentation and classification of
3D objects, real-time path planning in dynamic environments, 3D reconstruction
from point clouds, and global illumination computation using photon mapping.

4.1 Related Work

For centuries, people have been fascinated by packing spheres into objects. Hav-
ing started as a pure intellectual challenge in the time of Kepler [45], today there
exist a wide variety of applications of sphere packings, reaching from the optimal
composition of granular materials to automated neurosurgical treatment planning
[21].

However, the one and only sphere-packing problem does not exist. In fact, as
diverse as the fields of application is the number of different sphere-packing prob-
lems. Most sphere-packing problems turn out to be surprisingly complicated, but
their solution has inspired researchers to mathematical,2 but also lyrical3 highlights
over time. There are still a lot of open questions with respect to sphere packings,

2For instance, the proof of Kepler’s conjecture was solved just a few years ago. This proof was,
beside the 4-color theorem, one of the first proofs that was solved with the help of a computer [18].
3Soddy’s “Kiss Precise” [43].

4.1 Related Work 93

e.g. most parts of the sausage conjecture.4 Moreover, there are interesting links
between sphere-packing problems and other mathematical fields, like hyperbolic
geometries, Lie algebras or monster groups [14].

Sphere-packing problems can be classified by several parameters, including
the dispersity, the dimension, the orientation of the contacts between the spheres,
etc. [51]. The focus of this chapter is the computation of space-filling polydisperse
sphere packings for arbitrary objects and arbitrary object representations in any di-
mension. Because of the wide spectrum of different sphere-packing problems, we
cannot provide a complete overview of all of them. We confine ourselves to recent
and basic methods that are related to our problem definition or our approaches.

As an introduction to the general sphere-packing literature, including homoge-
neous sphere packings, we refer the interested reader to [4, 14, 28] or [21].

4.1.1 Polydisperse Sphere Packings

Polydisperse sphere packings are widely used and researched in material science
and in simulations via the Discrete-Element method (DEM). Basically, there ex-
ist two different methods to construct polydisperse sphere packings: the dynamic
method places a pre-defined distribution of spheres inside a given container and
then changes the positions and the radii of the spheres until a required density is
reached. To the contrary, the geometric method places the spheres one after another,
following geometric rules. Usually, the geometric method performs better, but the
quality of the sphere packing depends on the placement of the initial spheres.

However, both methods are restricted to very simple geometric containers like
cubes or spheres. Especially existing dynamic algorithms can hardly be extended to
arbitrary objects, because the dynamic simulation requires a time-consuming colli-
sion detection of the spheres with the surface of the object.

For instance, Schaertl and Sillescu [38] used a dynamic algorithm to simulate
Brownian movements of spherical atoms. They start with a regular distribution of
the spheres but allow an intersection. Then they start a simulation until an equi-
librium state without overlaps is reached. Kansal et al. [24] presented a dynamic
algorithm which they applied to the simulation of granular materials. It is an ex-
tension of the sphere-packing method by Lubachevsky and Stillinger [30]. Initially,
they place the spheres in a non-overlapping state and let the radii of the spheres
grow. Collisions were resolved using an event-based approach.

Azeddine Benabbou et al. [6] combined dynamic and geometric methods by us-
ing an advancing-front approach. In order to avoid large voids, they applied a dy-
namic point-relocation scheme that is based on weighted Delaunay triangulations.

4The sausage conjecture deals with the minimum volume of the convex hull for a packing of
homogeneous spheres. For fewer than 56 spheres in 3D, this volume will be minimal if the spheres
are ordered as a sausage [16]. Surprisingly, in 42 dimensions this is true independently of the
number of spheres [28]. For other dimensions and other numbers of spheres this question is still
open.

94 4 Sphere Packings for Arbitrary Objects

Another combined method was proposed by Herrmann et al. [20]. They used a gen-
eralization of the parking lot model: after an initial greedy filling, a dynamic com-
paction moves the spheres in order to make room for more insertions.

Jerier et al. [22] presented a purely geometric approach that is based on tetrahe-
dral meshes and can be used to fill also arbitrary polygonal objects. The tetrahedra
are used to compute isotropic hard-sphere clusters. Successive tetrahedrization of
the voids allows to insert additional spheres. However, even with extensions that
allow small intersections between the spheres as presented by Jerier et al. [23], this
method is very time consuming.

There are also first approaches that support the parallel computation of polydis-
perse sphere packings. Kubach [27] presented an algorithm to solve the 3D knapsack
problem for spheres in a cube. They compute several greedy solutions simultane-
ously with a master–slave approach. A non-parallel solution to this problem was
proposed by Sutou and Dai [44]. They used a non-convex problem with quadratic
constraints formulation.

4.1.2 Apollonian Sphere Packings

All the approaches described above try to solve some kind of optimization problem.
This means that either the number or the size of the spheres is defined a priori. Real
space-filling sphere packings potentially require an infinite number of spheres. They
usually rely on fractal structures—the Apollonian sphere packings [4].

Such Apollonian sphere packings can be computed via an inversion algorithm
[11]. Mahmoodi-Baram and Herrmann [31] presented an extension that uses other
start parameters and can produce also other self-similar sphere packings. Packings
like this are used in materials science to create very compact materials and to avoid
micro fractures in the materials [19].

An important quality criterium is the density, which is closely related to the frac-
tal dimension. An exact determination of the fractal dimension is still an open prob-
lem. Borkovec et al. [11] presented a numerical approximation of the fractal di-
mension. Mahmoodi-Baram and Herrmann [31] determined different densities for
several start parameters of their inversion algorithm.

Closely related to Apollonian sphere packings are space-filling bearings. They
are used to simulate the continental drift for instance [7]. Baram et al. [8] modified
the inversion algorithm for the computation of complex bi-chromatic bearings for
platonic solids. Classical Apollonian sphere packings require five colors.

However, all these algorithms are very time consuming and, moreover, they can-
not be extended to arbitrary objects.

4.1.3 Sphere Packings for Arbitrary Objects

Sphere packings for arbitrary geometries are predominantly investigated in the field
of radiosurgical treatment planning. Usually, the tumor region is represented by a

4.1 Related Work 95

polygonal model. A Gamma-Knife can shoot spherical beams inside this region. In
order to avoid hot-spots, which are regions that are irradiated by several beams—
they hold the risk of overdosage—but also in order to avoid regions that are not hit
by a beam, it is essential to compute a good spherical covering of the tumor region.

This problem was firstly formulated as a min-max sphere packing by Wu [50]. In
this problem formulation a set of spheres with different radii and a 3D region are pre-
defined. The objective is to compute the minimum number of spheres that maximize
the covered volume. According to Wang [47] there exists an optimal solution where
the centers of the spheres are located on the medial axis of the 3D region. However,
the greedy method is not optimal in each case [50]. Actually, Wang [46] proved the
NP completeness of this problem, even if it is restricted to integer radii. Li and Ng
[29] used a Monte-Carlo algorithm, but they can compute an optimal solution only
for a few hundred spheres that are located inside a simple tetrahedron.

Wang [46] presented a simplification that allows arbitrary integer radii. They used
a voxelization to approximate the objects’ medial axis and an algorithm that explores
the whole search-tree, even if they called it “dynamic programming”. Consequently,
their approach can be used only for very simple polygonal objects and a handful of
spheres.

Anishchik and Medvedev [3] computed an explicit approximation of the objects’
medial axis by using so called Voronoi-S-Networks. This yields a higher accuracy
and delivers an estimation of density of the sphere packing.

4.1.4 Voronoi Diagrams of Spheres

Basically, the computation of sphere packings can be reduced to the successive com-
putation of Voronoi diagrams for a set of spheres. Also our Protosphere algorithm is
based on this idea. However, there is not much research on the computation of such
generalized Voronoi diagrams, even if they are useful for the estimation of voids in
complex proteins.

To our knowledge, there exist only two implementations that both use a very
similar structure: a method presented by Anikeenko et al. [2], which was later ex-
tended by Medvedev et al. [33] and an algorithm that was described by Kim et al.
[25]. Both approaches trace Voronoi edges between already computed Voronoi sites
via edge tracing through a set of spheres. The main problem is to a lesser extent
the construction of the Voronoi edges, which can be represented as quadratic Bezier
patches [26], but rather the localization of the Voronoi sites.

A brute-force approach has a quadratic complexity [26]. Cho et al. [13] used ge-
ometric filters, called feasible regions, to accelerate the Voronoi site search. Manak
and Kolingerova [32] extended this idea by using a 3D Delaunay triangulation of
the spheres’ centers. This allows a faster spherical region search.

In addition to their computational complexity, all these methods are restricted to
sets of points and spheres. They cannot handle complex polyhedral objects or free
form surfaces. A dense sampling of the object’s surface as proposed by Agarwal
et al. [1] results in inaccuracies [41] and higher running times [10].

96 4 Sphere Packings for Arbitrary Objects

Fig. 4.1 The different stages of our sphere packing algorithm: First, we voxelize the object (a) and
compute distances from the voxels to the closest triangle ((b); transparency = distance). Then we
pick the voxel with the largest distance and put a sphere at its center (c). We proceed incrementally
and, eventually, we obtain a dense sphere packing of the object (d)

4.2 Voxel-Based Sphere Packings

Almost all algorithms described in the previous section are designed to solve some
kind of optimization problems. The reason for our interest in sphere packings was
initially not the problem itself, but we needed sphere packings for arbitrary objects
in order to implement our new data structure for volumetric collision detection, the
Inner Sphere Trees (see Chap. 5). The only pre-condition for a sphere packing to
be used in this data structure is that the sphere packing has to be feasible. Precisely
stated, we call a sphere packing feasible, if all spheres are located inside an object,
and if the spheres do not overlap each other.

Certainly, the object should be approximated well by the spheres, while their
number should be small. But there are no constraints that restrict the number of
spheres, the radii of the spheres or the volume that must be covered. Consequently,

4.2 Voxel-Based Sphere Packings 97

Fig. 4.2 This figure shows the first steps of the creation of the inner spheres. First, the object is
voxelized (a). Additionally, we compute the shortest distance to the surface (marked as lines) for
interior voxel centers (filled), i.e. a discretization of the interior distance field. Next, we place a
maximal sphere at the voxel center with the largest radius. Then those voxels whose centers are
located inside the new sphere are deleted, and the shortest distances of some voxels are updated,
because they are now closer to the new inner sphere (b). This procedure continues greedily (c)

we can use any feasible sphere packing for the construction of our Inner Sphere
Trees.

The first method that we have developed to compute such feasible sphere pack-
ings is a simple heuristic that offers a good trade-off between accuracy and speed
in practice. This heuristic is currently based on voxelization. Actually, voxel repre-
sentations of objects are also a representation of the object’s volume. However, they
are very memory consuming because of the fixed size of the voxels. Hence it seems
a good idea to merge the voxels to spheres in order to save some memory. This is
exactly the basic idea of our voxel-based sphere packing heuristic.

We start with a flood filling voxelization, but instead of simply storing whether
or not a voxel is filled, we additionally store the distance d from the center of each
voxel to its closest point on the surface, together with the triangle that realizes this
distance (see Fig. 4.1). In our implementation we use a slightly modified version of
Dan Morris’ Voxelizer [35] to compute this initial distance field.

After this initialization we use a greedy algorithm to generate the inner spheres.
All voxels are stored in a priority queue, sorted by their distance to the surface. Until
the priority queue is empty, we extract the maximum element, i.e. the voxel V ∗ with
the largest distance d∗. We create an inner sphere with radius d∗ that is placed on the

98 4 Sphere Packings for Arbitrary Objects

Fig. 4.3 An object filled with
the voxel-based sphere
packing method. On the body,
you can see the regular
spheres that were produced
due to the fixed center
positions

center of the voxel V ∗. Then, all voxels whose centers are contained in this sphere
are deleted from the priority queue. Additionally, we have to update all voxels Vi

with di < d∗ and distance d(Vi,V
∗) < 2d∗. This is because they are now closer to

the sphere around V ∗ than to a triangle on the hull (see Fig. 4.2). Their di must now
be set to the new free radius. This process stops when there is no voxel left.

After this procedure the object is filled densely with a set of non-overlapping
spheres. The restriction to those voxel centers that are located inside the object and
the consecutive update of the minimum distances guarantee that the spheres do not
overlap and that they are all located inside the object.

Figure 4.1 summarizes the steps of our voxel-based sphere packing: we start
with a voxelization, compute a distance field, add spheres greedily, and finally get
an object that is filled with spheres.

Basically, the density and thus the accuracy can be somewhat controlled by the
number of initial voxels. However, it is hardly possible to determine the expected
density or the resulting number of spheres in advance. Moreover, due to the fixing
of the sphere centers to the centers of the voxels, this heuristic can produce small
and very regular spheres close to the surface of the object (see Fig. 4.3). This results
in artifacts, in particular temporal aliasing, in the collision response. Therefore, we
have developed another sphere-packing algorithm that provides a better control on
the spheres’ density but also avoids these artifacts.

4.3 Protosphere: Prototype-Based Sphere Packings

In this section, we will present a new algorithm, called Protosphere, that is able
to efficiently compute a space-filling sphere packing for arbitrary objects. It is in-
dependent of the object’s representation (polygonal, NURBS, CSG, etc.); the only
pre-condition is that it must be possible to compute the distance from any point to
the surface of the object. Moreover, our algorithm is not restricted to 3D but can be
easily extended to higher dimensions.

4.3 Protosphere: Prototype-Based Sphere Packings 99

Fig. 4.4 The largest sphere
that fits into an object touches
at least three points in 2D,
and four points in 3D,
respectively

The basic idea is very simple and related to prototype-based approaches known
from machine learning. This approach directly leads to the parallel algorithm that
we have implemented using CUDA. As a byproduct, our algorithm yields an approx-
imation of the object’s medial axis that has applications ranging from path planning
to surface reconstruction.

4.3.1 Apollonian Sphere Packings for Arbitrary Objects

A simple algorithm to fill an object with a set of non-overlapping spheres is the
following greedy method. For a given object we start with the largest sphere that fits
into the object. Iteratively, we insert new spheres, under the constraints that

(a) they must not intersect the already existing spheres and
(b) that they have to be completely contained inside the object.

The resulting sphere packing is called an “Apollonian sphere packing”. One im-
portant property of Apollonian packings is that they are known to be space filling.
There exist efficient algorithms to compute Apollonian diagrams for very simple ge-
ometrical shapes like cubes or spheres, but they are hardly expandable to arbitrary
objects, let alone their computation time (see Sect. 4.1.2). Hence, in order to transfer
the idea of Apollonian sphere packings to arbitrary objects, we have to make further
considerations.

Let P denote the surface of a closed, simple object in 3D. Consider the largest
sphere s inside P . Obviously, s touches at least four points of P , and there are no
other points of P inside s (see Fig. 4.4). This implies that the center of s is a Voronoi
node (VN) of P . Consequently, it is possible to formulate the greedy space filling
as an iterative computation of a generalized Voronoi diagram (VD) of P plus the set
of all spheres existing so far (see Fig. 4.5).

This basic idea has a major drawback: many algorithms have been devised for
the calculation of the classic VD and for its many generalizations. However, there

100 4 Sphere Packings for Arbitrary Objects

Fig. 4.5 The basic idea of our Protosphere algorithm: compute a Voronoi diagram for the object
(a), place the largest sphere (b), re-compute the Voronoi diagram for the object and the new sphere
(c), place the largest sphere in the new Voronoi diagram, etc. (d)

are relatively few works dedicated to the construction of VDs for spheres in 3D (see
Sect. 4.1.4) and, to our knowledge, there is no algorithm available that supports the
computation of VDs for a mixed set of triangles and spheres, let alone a fast and
stable implementation.

Fortunately, a closer look at the simple algorithm we proposed above shows that
we do not need the whole Voronoi diagram, but only the Voronoi nodes. Hence the
core of our novel algorithm is the approximation of the VNs. Again, the basic idea
is very simple: we let a single point, the prototype, iteratively move towards one of
the VNs (see Algorithm 4.1).

The last line guarantees that, after each single step, p is still inside the object,
because the entire sphere around p with radius ‖p − qc‖ is inside the object.

Moreover, moving p away from the border into the direction (p − qc) leads
potentially to bigger spheres in the next iteration (see Fig. 4.6 for a visualization of
our algorithm). Usually, ε(t) is not a constant, nor chosen randomly, but a cooling

4.3 Protosphere: Prototype-Based Sphere Packings 101

Fig. 4.6 The prototype convergence algorithm: Place prototype P randomly inside the object (a).
Compute minimum distance d from the prototype P to the surface (b). Move prototype P into the
opposite direction, away from the surface (c). Continue until the prototype converges (d)

Algorithm 4.1 convergePrototype(prototype p, object O)
place p randomly inside O

while p has not converged do
qc = arg min{‖p − q‖ : q ∈ surface of O}
choose ε(t) ∈ [0,1]
p = p + ε(t) · (p − qc)

function that allows large movements in early iterations and only small changes in
the later steps.

The accuracy of the approximated VN depends on the choice of this cooling
function and on the number of iterations. Actually, in the first iterations, a large
movement of the prototypes should be allowed in order to move very quickly to-
ward the maximum. In the later iterations, when we have almost arrived at the max-
imum, only fine tuning is required. We choose the following variation of a Gaussian

102 4 Sphere Packings for Arbitrary Objects

Fig. 4.7 Plots of our cooling functions: ε(t) with tmax = 50 and c = 4 (left). ε(d) with c = 3
(right)

function to meet these requirements:

ε(t) = 1 − e
−0.5·

(|t−tmax |
0.5tmax

)c

(4.1)

with tmax denoting the maximum number of iterations. The cooling factor c controls
the steepness of the cooling function (see Fig. 4.7).

Furthermore, we can directly use the information of the prototypes’ movement
to improve the temporal cooling with an additional geometric cooling. Actually, for
the new minimum distance dt in some iteration t we get 0 ≤ dt ≤ 2dt−1, simply
because we allowed a movement of at most dt−1 during the last iteration t − 1.
If dt is much smaller than dt−1, we have moved the prototype p far away from a
probably better position that allows a larger sphere. Therefore, we should leave the
new position, which is closer to the surface, as fast as possible. Hence, we should
allow a large step size in this case.

On the other hand, if dt is much larger than dt−1, it seems that dt−1 was too close
to the surface, and probably also dt is. Therefore, we should quickly escape from
this position with a large step size.

Finally, if dt is almost the same as dt−1, we are probably very close to the opti-
mum. Hence we should reduce the speed of movement and apply only fine tuning.

Summarizing, we need a function ε(d) that takes these considerations into ac-
count, with respect to dt

dt−1
, which is known to be in the interval [0,2]. We can use

almost the same Gaussian function as for the temporal cooling function in Eq. (4.1).
With x := dt

dt−1 we get

ε(d) = 1 − e
−0.5·

(|x−1|
0.5

)c

(4.2)

Again, c controls the steepness of ε(d) (see Fig. 4.7).
For the complete cooling function εtot(d, t), we simply combine the two ideas to

εtot(d, t) := ε(t) · ε(d).
The overall sphere-packing algorithm can be described as shown in Algo-

rithm 4.2.

4.3 Protosphere: Prototype-Based Sphere Packings 103

Algorithm 4.2 spherePacking(object O)

while Number of required spheres is not met do
Place prototype p randomly inside O

convergePrototype(p, O)
s = new sphere at position p

O = O ∪ s

Fig. 4.8 Depending on the prototype’s start position, it can run into a local maximum instead of
finding the global maximum (left). Different prototypes converge to the same end position (right)

4.3.2 Parallelization

Using a single prototype does not guarantee to find the global optimum (which
is the sought-after VN), because the algorithm presented in the previous section
depends on the starting position of the prototype and can end up in a local maximum
(see Fig. 4.8). Hence we use a set of independently moving prototypes instead of
only a single one. This can be easily parallelized if the prototypes are allowed to
move independently. However, a naive implementation has its drawbacks: many
prototypes converge to the same end position (see Fig. 4.8). Consequently, we get a
lot of similar and thus redundant computations. Obviously, this is not very efficient,
even in parallel computing.

Therefore, we use a slightly different approach for our implementation, which is
based on a uniform distribution of the prototypes. Actually, we compute a uniform
grid and start with a prototype in each cell that is located inside the object. During
the movement step of Algorithm 4.1 the prototypes are confined to their cells. This
results in a uniform density of the prototypes, and, moreover, the grid can be used
to speed up the distance computations. For the latter we additionally compute the
discrete distance from each cell to the surface. For further acceleration, we remove
those prototypes from the computation, which show the same closest point in two

104 4 Sphere Packings for Arbitrary Objects

Fig. 4.9 The parallel Protosphere algorithm: We use a discrete distance field. The discrete distance
to the surface is color coded (a). We place a prototype in each cell of the distance field (b). We use
the discrete distance only to define a region in which we have to look for closest objects for each
prototype (c). During the convergence step we clamp the prototypes to their cells (d)

Algorithm 4.3 parallelSpherePacking(object O)
In parallel: Initialize discrete distance field
while Number of required spheres is not met do

In parallel: Place pi randomly inside grid cell ci

In parallel: convergePrototype(pi , O ∪ inserted spheres)
In parallel: Find VN pm ∈ {pi} with max distance dm

Insert sphere at position pm with radius dm

In parallel: Update discrete distance field

consecutive iterations and which are therefore clamped twice to the same position.
Obviously, those prototypes cannot be Voronoi nodes.

Algorithm 4.3 shows the pseudo-code of the complete parallelized version.
Figure 4.9 shows a visualization of the main steps.

4.4 Conclusions and Future Work 105

Fig. 4.10 After the convergence of the initial prototypes, our parallel algorithm yields an ap-
proximation of the object’s Voronoi nodes (left). If we connect overlapping spheres, we get an
approximation of the medial axis (right)

Please note that after the convergence of the initial set of prototypes, we get
an approximation of the medial axis (see Fig. 4.10). Its accuracy depends on the
number of initial prototypes and thus on the size of the grid.

In addition, our algorithm extends Apollonian sphere packings to arbitrary ob-
jects. This is the reason for the space-filling property of our algorithm.

4.3.3 Results

We have implemented our algorithm using CUDA. We filled different objects
densely with spheres (see Fig. 4.11). The triangle count reaches from 10,000 for
the pig until up to 300,000 for the dragon. We are able to fill all objects with
100,000 spheres within a few seconds using a NVIDIA GTX480 graphics card (see
Fig. 4.12). The number of iterations of Algorithm 4.1 was set to 50.

In order to track the accuracy, we compared the positions of the prototypes that
were computed with our Protosphere algorithm to the exact positions of the Voronoi
nodes. Therefore, we used simple objects, like a cube and a sphere, where the VNs
positions can be calculated analytically. Actually, the accuracy of the computed
Voronoi nodes is >99.99 % compared to the exact Voronoi nodes position.

Surprisingly, the filling rate depends only on the number of spheres but is in-
dependent of the objects’ shapes, at least with all objects that we have tested (see
Fig. 4.13).

4.4 Conclusions and Future Work

Summarizing, we have presented two novel methods for filling arbitrary objects
very quickly and stably with sets of non-overlapping spheres. Our prototype-based

106 4 Sphere Packings for Arbitrary Objects

Fig. 4.11 The models used for the timings: A cow (a), a pig (b), a bust (c), and a dragon (d)

Fig. 4.12 Timings for
different objects on a Geforce
GTX480 (right; please note
that the code is not optimized
yet)

Protosphere algorithm is even optimal in the sense that it produces space filling
sphere packings due to the Apollonian property.

Naturally, sphere packing is an interesting problem per se. But originally, we de-
signed our algorithms as a means to an end; we simply required a method to fill
arbitrary objects with spheres in order to realize our Inner Sphere Trees data struc-
ture (see Chap. 5). It turns out that the efficient computation of sphere packings for
arbitrary objects, but also the algorithms for their computation, have very interest-
ing properties, which open new ways to solve fundamental problems of computer

4.4 Conclusions and Future Work 107

Fig. 4.13 The space-filling
rate of our sphere-packing
algorithm

graphics and beyond. For instance, we applied our sphere packings to the real-time
simulation of volume preserving deformable objects (see Sect. 7.2). In the follow-
ing, we will outline a few other ideas for the future use of such sphere packings.

4.4.1 Future Work

First, we want to improve our Protosphere algorithm in the future. Even if it already
works very fast in its parallel version, there is still room for improvements. Espe-
cially the computation of the initial spheres takes some time. We plan to accelerate
this step by using hierarchical grids instead of uniform grids. Probably, this would
allow the real-time approximation of the object’s medial axis.

Moreover, we want to extend our algorithm to other object representations than
polygonal meshes, e.g. NURBS, CSG or point clouds. This is basically straightfor-
ward: we simply have to adapt the closest point computation.

At the moment, we use a simple greedy choice for the spheres. Replacing this
by a more intelligent optimized choice would probably improve the covered volume
and could further help to solve other optimization problems, e.g. the placement of
beams in radiosurgical treatment planning. Furthermore, we can replace the pro-
totypes by other geometric primitives, like line segments. An appropriate distance
function would allow to compute ellipsoid packings instead of sphere packings.
Also the extension to higher dimensions is straightforward.

The packing of spheres into arbitrary objects also has some interesting theoret-
ical implications. Until now, the density of Apollonian sphere packings has been
investigated only for very simple geometric objects like cubes. There, an exponen-
tial distribution of the sphere sizes has been derived. It is unknown if this also holds
for arbitrary objects, even if we already assume this with respect to our results (see
Fig. 4.13). Probably, it is possible to classify objects with respect to their fractal
dimension. Another open problem is the analysis of the voids between the spheres.

108 4 Sphere Packings for Arbitrary Objects

If it is possible to estimate the voids a priori, we could derive error bounds for our
collision detection algorithm.

4.4.1.1 Generalized Voronoi Diagrams

A major advantage of our Protosphere algorithm is that it initially computes an
approximation of the object’s Voronoi nodes, and thus on the medial axis. Hence,
our algorithm can be used as a blueprint for several generalized Voronoi diagram
problems.

For instance, the extensions mentioned above would allow to approximate gen-
eralized Voronoi nodes for almost any mixture of different geometric primitives in
arbitrary dimensions. Varying the distance function allows further generalizations.
Moreover, the optimizations of the performance would probably allow a real-time
computation of such generalized VNs. To our knowledge, such a flexible algorithm
does not exist yet. Usually, generalized VD algorithms are restricted to either of
these extensions, not to mention their performance and their robustness.

Generalized Voronoi diagrams have numerous applications in many scientific
disciplines beyond computer graphics and computer science, including chemistry,
biology, and material science. However, in order to connect the Voronoi nodes to a
complete Voronoi diagram, we will have to add an edge-tracing algorithm.

4.4.1.2 Applications to Computer Graphics

Beyond the computation of generalized VDs, which are widely used in computer
graphics, our sphere packings can be applied to other fundamental problems.

For instance, the sphere packing can be used to construct level-of-detail represen-
tations of objects by simply sorting the spheres by their size. Furthermore, we can
use the sphere sizes and their relative position as a similarity measure to compare
different objects or for the search in geometric databases. Obviously, this similarity
measure is scale-invariant if we use only the relative sizes of the spheres. Moreover,
it can be applied hierarchically.

However, the Protosphere algorithm also has another interesting feature. Actu-
ally, it does not only compute a sphere packing, but it also derives automatically the
neighborhood between the spheres. Connecting adjacent spheres results in a neigh-
borhood graph that we call the Sphere Graph (see Fig. 4.14).

This sphere graph can be applied to segmentation problems. Usually, a segmenta-
tion of objects into its functional parts is often used for modeling, skeletal extraction
or texturing [5, 12, 40]. We assume that our volumetric Sphere-Graph representation
has some advantages over the typical surface-based methods. Several heuristics can
be used in our Sphere Graph, e.g. a formulation as a min-cut problem, but we can
also take into account the sizes of the spheres or their distribution.

Another fundamental problem in computer graphics is the reconstruction of
polygonal objects from point clouds that were derived from a 3D scanner. The exten-
sion to point clouds mentioned above allows our algorithms to work directly on this

References 109

Fig. 4.14 Our Protosphere
algorithm does not only
compute a sphere packing,
but also maintains
automatically the adjacency
between the spheres, the so
called Sphere Graph

kind of object representation. We can use the direction of the edges in our Sphere
Graph with respect to the points in order to determine the interior and exterior of
the object. The same technique can be applied to close holes in polygonal meshes.
However, we can also formulate this again as a min-cut problem. We assume that
such Sphere Graph-based algorithms are very robust to noisy data.

Last but not least, it is also possible to apply our sphere packings to global illumi-
nation. Until now, we restricted the sphere packings to fill the interior of single ob-
jects. However, we can also use a spherical representation of the free space between
the objects. This new spherical free-space representation allows us to re-formulate
the photon mapping algorithm. Basically, photon mapping is closely related to ray
tracing. Instead of tracing rays from the eye through the scene, photon mapping
traces rays from the lights through the scene in order to simulate the distribution of
the photons (see [15, 17, 37] for more details). The accuracy of this approach, but
also the performance, depends on the number of rays. If we use our Sphere Graph
as free-space representation, we can re-formulate this discrete tracing of rays as a
continuous network-flow problem. We simply have to define the lights as photon
source and the objects as a photon sink, with respect to their material parameters.

Obviously, these are just a few examples of how sphere packings of arbitrary
objects and their accompanying space representation, the Sphere Graph, can be ap-
plied to very different problems in computer graphics. We are sure that there exist
many more interesting applications of our data structures in the future.

References

1. Agarwal, P. K., de Berg, M., Matoušek, J., & Schwarzkopf, O. (1994). Constructing levels
in arrangements and higher order Voronoi diagrams. In Proceedings of the tenth annual sym-
posium on computational geometry, SCG ’94 (pp. 67–75). New York: ACM. ISBN 0-89791-
648-4. doi:10.1145/177424.177521. URL http://doi.acm.org/10.1145/177424.177521.

2. Anikeenko, A. V., Alinchenko, M. G., Voloshin, V. P., Medvedev, N. N., Gavrilova, M.
L., & Jedlovszky, P. (2004). Implementation of the Voronoi-Delaunay method for analysis
of intermolecular voids. In A. Laganai, M. L. Gavrilova, V. Kumar, Y. Mun, C. Jeng, K.
Tan, & O. Gervasi (Eds.), Lecture notes in computer science: Vol. 3045. ICCSA (3) (pp.
217–226). Berlin: Springer. ISBN 3-540-22057-7. URL http://dblp.uni-trier.de/db/conf/iccsa/
iccsa2004-3.html.

3. Anishchik, S. V., & Medvedev, N. N. (1995). Three-dimensional Apollonian packing as a
model for dense granular systems. Physical Review Letters, 75(23), 4314–4317.

4. Aste, T., & Weaire, D. (2000). The pursuit of perfect packing. Bristol: Institute of Physics
Publishing. ISBN 0-7503-0648-3.

http://dx.doi.org/10.1145/177424.177521
http://doi.acm.org/10.1145/177424.177521
http://dblp.uni-trier.de/db/conf/iccsa/iccsa2004-3.html
http://dblp.uni-trier.de/db/conf/iccsa/iccsa2004-3.html

110 4 Sphere Packings for Arbitrary Objects

5. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., & Tal, A. (2006).
Mesh segmentation—a comparative study. In Proceedings of the IEEE international con-
ference on shape modeling and applications 2006 (p. 7). Washington: IEEE Com-
puter Society. ISBN 0-7695-2591-1. doi:10.1109/SMI.2006.24. URL http://dl.acm.org/
citation.cfm?id=1136647.1136960.

6. Azeddine Benabbou, P. L., Borouchaki, H., & Lu, J. (2008). Sphere packing and ap-
plications to granular structure modeling. In R. V. Garimella (Ed.), Proceedings of the
17th international meshing roundtable. Berlin: Springer. ISBN 9783540879206. URL
http://books.google.com/books?id=l1uPPjxBIRsC.

7. Baram, R. M., & Herrmann, H. (2007). Random bearings and their stability. In L.
Pietronero, V. Loreto, & S. Zapperi (Eds.), Abstract book of the XXIII IUPAP inter-
national conference on statistical physics, Genova, Italy, 9–13 July. URL http://st23.
statphys23.org/webservices/abstract/preview_pop.php?ID_PAPER=313.

8. Baram, R. M., Herrmann, H. J., & Rivier, N. (2004). Space-filling bearings in three dimen-
sions. Physical Review Letters, 92(4), 044301.

9. Birgin, E. G., & Sobral, F. N. C. (2008). Minimizing the object dimensions in cir-
cle and sphere packing problems. Computers & Operations Research, 35(7), 2357–2375.
doi:10.1016/j.cor.2006.11.002.

10. Boada, I., Coll, N., Madern, N., & Sellarès, J. A. (2005). Approximations of 3d generalized
Voronoi diagrams. In EuroCG (pp. 163–166).

11. Borkovec, M., De Paris, W., & Peikert, R. (1994). The fractal dimension of the Apollonian
sphere packing. Fractals. An Interdisciplinary Journal on the Complex Geometry of Nature,
2(4), 521–526. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.4067&
rep=rep1&type=pdf.

12. Chen, X., Golovinskiy, A., & Funkhouser, T. (2009). A benchmark for 3D mesh segmentation.
ACM Transactions on Graphics, 28(3) (Proc. SIGGRAPH).

13. Cho, Y., Kim, D., Lee, H.-C., Park, J. Y., & Kim, D.-S. (2006). Reduction of the search space
in the edge-tracing algorithm for the Voronoi diagram of 3d balls. In ICCSA (1) (pp. 111–120).

14. Conway, J. H., & Sloane, N. J. A. (1992). Grundlehren der mathematischen Wissenschaften:
Vol. 290. Sphere packings, lattices and groups (2nd ed.). Berlin: Springer.

15. Dutré, P., Bala, K., & Bekaert, P. (2006). Advanced global illumination (2nd ed.). Wellesley:
A K Peters (http://www.akpeters.com/). URL https://lirias.kuleuven.be/handle/123456789/
134118.

16. Fejes Toth, G., Gritzmann, P., & Wills, J. (1989). Finite sphere packing and sphere covering.
Discrete & Computational Geometry, 4, 19–40. doi:10.1007/BF02187713.

17. Francis, T. (2009). Realistic image synthesis using photon mapping (2nd ed.). Lon-
don: Taylor & Francis. ISBN 9781568811970. URL http://books.google.com/books?id=
41c3kgAACAAJ.

18. Hales, T. C. (2005). A proof of the Kepler conjecture. Annals of Mathematics, 162(3), 1065–
1185.

19. Herrmann, H. J., Mahmoodi-Baram, R., & Wackenhut, M. (2003). Polydisperse packings.
Brazilian Journal of Physics, 33, 591–594. URL http://www.icp.uni-stuttgart.de/publications/
2003/HMW03.

20. Herrmann, H. J., Mahmoodi-Baram, R., & Wackenhut, M. (2006). Dense packings. Brazil-
ian Journal of Physics, 36, 610–613. URL http://www.icp.uni-stuttgart.de/publications/
2006/HMW06. Proceedings of conference in Ouro Preto.

21. Hifi, M., & M’Hallah, R. (2009). A literature review on circle and sphere packing prob-
lems: models and methodologies. Advances in Operations Research 2009. URL http://dblp.
uni-trier.de/db/journals/advor/advor2009.html.

22. Jerier, J.-F., Imbault, D., Donze, F.-V., & Doremus, P. (2008). A geometric algorithm based
on tetrahedral meshes to generate a dense polydisperse sphere packing. Granular Matter.
doi:10.1007/s10035-008-0116-0.

23. Jerier, J.-F., Richefeu, V., Imbault, D., & Donze, F.-V. (2010). Packing spherical discrete el-
ements for large scale simulations. Computer Methods in Applied Mechanics and Engineer-

http://dx.doi.org/10.1109/SMI.2006.24
http://dl.acm.org/citation.cfm?id=1136647.1136960
http://dl.acm.org/citation.cfm?id=1136647.1136960
http://books.google.com/books?id=l1uPPjxBIRsC
http://st23.statphys23.org/webservices/abstract/preview_pop.php?ID_PAPER=313
http://st23.statphys23.org/webservices/abstract/preview_pop.php?ID_PAPER=313
http://dx.doi.org/10.1016/j.cor.2006.11.002
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.4067&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.4067&rep=rep1&type=pdf
http://www.akpeters.com/
https://lirias.kuleuven.be/handle/123456789/134118
https://lirias.kuleuven.be/handle/123456789/134118
http://dx.doi.org/10.1007/BF02187713
http://books.google.com/books?id=41c3kgAACAAJ
http://books.google.com/books?id=41c3kgAACAAJ
http://www.icp.uni-stuttgart.de/publications/2003/HMW03
http://www.icp.uni-stuttgart.de/publications/2003/HMW03
http://www.icp.uni-stuttgart.de/publications/2006/HMW06
http://www.icp.uni-stuttgart.de/publications/2006/HMW06
http://dblp.uni-trier.de/db/journals/advor/advor2009.html
http://dblp.uni-trier.de/db/journals/advor/advor2009.html
http://dx.doi.org/10.1007/s10035-008-0116-0

References 111

ing, 199(25–28), 1668–1676. doi:10.1016/j.cma.2010.01.016. URL http://www.sciencedirect.
com/science/article/pii/S0045782510000253.

24. Kansal, A. R., Torquato, S., & Stillinger, F. H. (2002). Computer generation of dense poly-
disperse sphere packings. Journal of Chemical Physics, 117(18), 8212–8218. doi:10.1063/
1.1511510.

25. Kim, D.-S., Cho, Y., & Kim, D. (2004). Edge-tracing algorithm for Euclidean Voronoi diagram
of 3d spheres. In CCCG (pp. 176–179).

26. Kim, Y. J., Lin, M. C., & Manocha, D. (2004). Incremental penetration depth estimation be-
tween convex polytopes using dual-space expansion. IEEE Transactions on Visualization and
Computer Graphics, 10(2), 152–163. URL http://visinfo.zib.de/EVlib/Show?EVL-2004-24.

27. Kubach, T. (2009). Parallel greedy algorithms for packing unequal spheres into a
cuboidal strip or a cuboid (Technical report). Fernuniversität Hagen. URL http://books.
google.com/books?id=kZ9scgAACAAJ.

28. Leppmeier, M. (1997). Kugelpackungen von Kepler bis heute: eine Einführung für Schüler,
Studenten und Lehrer. Wiesbaden: Vieweg. ISBN 9783528067922. URL http://books.
google.com/books?id=oXJNGda4MfoC.

29. Li, S. P., & Ng, K.-L. (2003). Monte Carlo study of the sphere packing problem. Phys-
ica. A, Statistical Mechanics and Its Applications, 321(1–2), 359–363. URL http://www.
sciencedirect.com/science/article/B6TVG-47C3PXH-C/1/0cad62b60853861ec908067b2193
69a0.

30. Lubachevsky, B. D., & Stillinger, F. H. (1990). Geometric properties of random disk packings.
Journal of Statistical Physics, 60(5), 561–583. doi:10.1007/BF01025983.

31. Mahmoodi-Baram, R., & Herrmann, H. J. (2004). Self-similar space-filling packings in three
dimensions. Fractals, 12, 293–301. URL http://www.icp.uni-stuttgart.de/publications/2004/
MH04a. cond-mat/0312345.

32. Manak, M., & Kolingerova, I. (2010). Fast discovery of Voronoi vertices in the construction of
Voronoi diagram of 3d balls. In 2010 international symposium on Voronoi diagrams in science
and engineering (ISVD), June (pp. 95–104). doi:10.1109/ISVD.2010.22.

33. Medvedev, N. N., Voloshin, V. P., Luchnikov, V. A., & Gavrilova, M. L. (2006). An algorithm
for three-dimensional Voronoi s-network. Journal of Computational Chemistry, 27(14), 1676–
1692.

34. Miller, G. L., Talmor, D., Teng, S.-H., Walkington, N., & Wang, H. (1996). Control volume
meshes using sphere packing: generation, refinement and coarsening. In Fifth international
meshing roundtable (pp. 47–61).

35. Morris, D. (2006). Algorithms and data structures for haptic rendering: curve constraints,
distance maps, and data logging (Technical Report 2006-06).

36. O’Brien, J. F., & Hodgins, J. K. (1999). Graphical modeling and animation of brittle fracture.
In Proceedings of the 26th annual conference on computer graphics and interactive tech-
niques, SIGGRAPH ’99 (pp. 137–146). New York: ACM Press/Addison-Wesley Publishing
Co. ISBN 0-201-48560-5. doi:10.1145/311535.311550.

37. Pharr, M., & Humphreys, G. (2004). Physically based rendering: from theory to implementa-
tion. San Francisco: Morgan Kaufmann Publishers Inc. ISBN 012553180X.

38. Schaertl, W., & Sillescu, H. (1994). Brownian dynamics of polydisperse colloidal hard
spheres: equilibrium structures and random close packings. Journal of Statistical Physics, 77,
1007–1025. doi:10.1007/BF02183148.

39. Schiftner, A., Höbinger, M., Wallner, J., & Pottmann, H. (2009). Packing circles and
spheres on surfaces. ACM Transactions on Graphics, 28(5). URL http://www.evolute.at/
images/stories/download/packing_preprint.pdf. Proc. SIGGRAPH Asia.

40. Shamir, A. (2008). A survey on mesh segmentation techniques. Computer Graphics Forum,
27(6), 1539–1556.

41. Sheehy, D. J., Armstrong, C. G., & Robinson, D. J. (1995). Computing the medial surface of
a solid from a domain Delaunay triangulation. In Proceedings of the third ACM symposium on
solid modeling and applications, SMA ’95 (pp. 201–212). New York: ACM. ISBN 0-89791-
672-7. doi:10.1145/218013.218062. URL http://doi.acm.org/10.1145/218013.218062.

http://dx.doi.org/10.1016/j.cma.2010.01.016
http://www.sciencedirect.com/science/article/pii/S0045782510000253
http://www.sciencedirect.com/science/article/pii/S0045782510000253
http://dx.doi.org/10.1063/1.1511510
http://dx.doi.org/10.1063/1.1511510
http://visinfo.zib.de/EVlib/Show?EVL-2004-24
http://books.google.com/books?id=kZ9scgAACAAJ
http://books.google.com/books?id=kZ9scgAACAAJ
http://books.google.com/books?id=oXJNGda4MfoC
http://books.google.com/books?id=oXJNGda4MfoC
http://www.sciencedirect.com/science/article/B6TVG-47C3PXH-C/1/0cad62b60853861ec908067b219369a0
http://www.sciencedirect.com/science/article/B6TVG-47C3PXH-C/1/0cad62b60853861ec908067b219369a0
http://www.sciencedirect.com/science/article/B6TVG-47C3PXH-C/1/0cad62b60853861ec908067b219369a0
http://dx.doi.org/10.1007/BF01025983
http://www.icp.uni-stuttgart.de/publications/2004/MH04a
http://www.icp.uni-stuttgart.de/publications/2004/MH04a
http://arxiv.org/abs/cond-mat/0312345
http://dx.doi.org/10.1109/ISVD.2010.22
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1007/BF02183148
http://www.evolute.at/images/stories/download/packing_preprint.pdf
http://www.evolute.at/images/stories/download/packing_preprint.pdf
http://dx.doi.org/10.1145/218013.218062
http://doi.acm.org/10.1145/218013.218062

112 4 Sphere Packings for Arbitrary Objects

42. Shimada, K., & Gossard, D. C. (1995). Bubble mesh: automated triangular meshing of non-
manifold geometry by sphere packing. In ACM symposium on solid modeling and applications
(pp. 409–419). New York: ACM.

43. Soddy, F. (1936). The kiss precise. Nature, 1021. poem.
44. Sutou, A., & Dai, Y. (2002). Global optimization approach to unequal sphere packing prob-

lems in 3d. In Problems in 3D, Journal of Optimization and Applications. Communicated by
P. M. Pardalos.

45. Szpiro, G. (2003). Kepler’s conjecture: how some of the greatest minds in history helped
solve one of the oldest math problems in the world. New York: Wiley. ISBN 0-471-08601-0.
URL http://www.loc.gov/catdir/bios/wiley046/2002014422.html; http://www.loc.gov/catdir/
description/wiley039/2002014422.html; http://www.loc.gov/catdir/toc/wiley031/2002014422.
html.

46. Wang, J. (1999). Packing of unequal spheres and automated radiosurgical treatment planning.
Journal of Combinatorial Optimization, 3, 453–463. doi:10.1023/A:1009831621621.

47. Wang, J. (2000). Medial axis and optimal locations for min-max sphere packing. Journal of
Combinatorial Optimization, 4, 487–503. doi:10.1023/A:1009889628489.

48. Weller, R., & Zachmann, G. (2009). Inner sphere trees for proximity and penetration queries.
In 2009 robotics: science and systems conference (RSS), Seattle, WA, USA, June. URL
http://cg.in.tu-clausthal.de/research/ist.

49. Weller, R., & Zachmann, G. (2010). Protosphere: a gpu-assisted prototype-guided sphere
packing algorithm for arbitrary objects. In ACM SIGGRAPH ASIA 2010 sketches, December
(pp. 8:1–8:2). New York: ACM. ISBN 978-1-4503-0523-5. doi:10.1145/1899950.1899958.
URL http://cg.in.tu-clausthal.de/research/protosphere.

50. Wu, Q. R. (1996). Treatment planning optimization for gamma unit radiosurgery. In Bio-
physical science–biomedical imaging—Mayo graduate school. URL http://books.google.com/
books?id=mNt8NwAACAAJ.

51. Zong, C., & Talbot, J. (1999). Universitext: Vol. 1979. Sphere packings. Berlin: Springer. ISBN
9780387987941.

http://www.loc.gov/catdir/bios/wiley046/2002014422.html
http://www.loc.gov/catdir/description/wiley039/2002014422.html
http://www.loc.gov/catdir/description/wiley039/2002014422.html
http://www.loc.gov/catdir/toc/wiley031/2002014422.html
http://www.loc.gov/catdir/toc/wiley031/2002014422.html
http://dx.doi.org/10.1023/A:1009831621621
http://dx.doi.org/10.1023/A:1009889628489
http://cg.in.tu-clausthal.de/research/ist
http://dx.doi.org/10.1145/1899950.1899958
http://cg.in.tu-clausthal.de/research/protosphere
http://books.google.com/books?id=mNt8NwAACAAJ
http://books.google.com/books?id=mNt8NwAACAAJ

Chapter 5
Inner Sphere Trees

In the previous chapter, we have presented new methods to compute sphere packings
for arbitrary objects. In this chapter, we will use these sphere packings to define a
new data structure for collision detection between rigid objects.

In Chap. 2 we already have seen that BVHs guarantee very fast responses at query
time as long as no other information than the set of colliding polygons is required
for the collision response. This is because the modern traversal algorithms converge
quickly toward a pair of colliding primitives and the algorithm stops immediately
when the first intersecting pair is found.

However, most applications require much more information in order to resolve or
avoid the collisions. Unfortunately, typical contact information like distances, trans-
lational penetration depth or the time of impact suffer from their complex computa-
tions and their discontinuous definitions of the resulting force and torque directions.
This even aggravates when haptic frequencies of 250–1000 Hz are required or the
scene consists of massive models.

This chapter contributes the following novel ideas to the area of collision detec-
tion:

• a novel geometric data structure, the Inner Sphere Trees (IST), which provides
hierarchical bounding volumes from the inside of an object;

• we propose to utilize a clustering algorithm to construct a sphere hierarchy;
• a unified algorithm that can compute for a pair of objects, based on their ISTs,

both an approximate minimal distance and the approximate penetration volume;
the application does not need to know in advance which situation currently exists
between the pair of objects;

• a time-critical variant of the penetration volume traversal, which runs only for a
pre-defined time budget, including a new heuristic to derive good error bounds,
the expected overlap volume;

• a novel collision response scheme to compute stable and continuous forces and
torques, both in direction and value, based on the penetration volume.

Parts of this work have been previously published in [9, 17–20].

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_5,
© Springer International Publishing Switzerland 2013

113

http://dx.doi.org/10.1007/978-3-319-01020-5_5

114 5 Inner Sphere Trees

Our ISTs and consequently, the collision detection algorithm are independent of the
geometry complexity; they only depend on the approximation error.

The main idea is that we do not build an (outer) hierarchy based on the polygons
on the boundary of an object. Instead, we fill the interior of the model with a set of
non-overlapping simple volumes that approximate the object’s volume closely. In
our implementation, we used spheres for the sake of simplicity, but the idea of using
inner BVs for lower bounds instead of outer BVs for upper bounds can be extended
analogously to all kinds of volumes. On top of these inner BVs, we build a hierar-
chy that allows for fast computation of the approximate proximity and penetration
volume.

The penetration volume corresponds to the water displacement of the overlap-
ping parts of the objects and, thus, leads to a physically motivated and continuous
repulsion force and torques. As already mentioned in the introduction, according
to Fisher and Lin [4, Sect. 5.1], it is “the most complicated yet accurate method”
to define the extent of intersection, which was also reported earlier by O’Brien and
Hodgins [11, Sect. 3.3]. However, to our knowledge, there are no algorithms to
compute it efficiently as yet.

However, our inner sphere tree not only allows to compute both separation dis-
tance and penetration volume, but it also lends itself very well to time-critical vari-
ants, which run only for a pre-defined time budget. Moreover, our ISTs can also
easily extended to support the time of impact computations that are needed for
continuous collision detection. In this, they avoid the time-consuming continuous
triangle intersection tests.

Our data structure can support all kinds of object representations, e.g. polygon
meshes or NURBS surfaces. The only precondition is that they be watertight. In
order to build the hierarchy on the inner spheres, we utilize a recently proposed
clustering algorithm that allows us to work in an adaptive manner. Moreover, we
present a parallel version of that clustering algorithm that runs completely on mod-
ern GPUs.

In order to evaluate the accuracy of our approximative ISTs, we additionally have
developed an algorithm that is able to compute an accurate value of the penetration
volume. This algorithm is based on tetrahedral decomposition of polygonal objects.
Unfortunately, even in combination with acceleration data structures this algorithm
cannot operate in real-time. However, this approach can be useful for users that
require exact information.

In contrast, the results show that our ISTs can answer both kinds of queries,
distance, and penetration volume queries at haptic rates with a negligible loss of
accuracy.

5.1 Sphere Packings

Our ISTs rely on dense sphere packings of objects. These sphere packings can be
computed by each algorithms that we have presented in Chap. 4. Some optimization

5.2 Hierarchy Creation 115

Fig. 5.1 In a wrapped
hierarchy, the parent sphere
covers all its leaf nodes, but
not its direct children

that we will describe in the following section require to store additionally one or
more triangles that are closest to a sphere. However, this information can be derived
easily during the computation of the sphere packing by both algorithms. Basically,
our ISTs are independent of the object’s complexity, e.g. the triangle count. Their
running-time depends only on the number of spheres in the sphere packing.

In the following, we will describe how to build an IST from a sphere packing.

5.2 Hierarchy Creation

Based on the sphere packing, we create an inner bounding volume hierarchy. To do
so, we use a top-down wrapped hierarchy approach according to the notion of Agar-
wal et al. [1], where inner nodes are tight BVs for all their leaves, but they do not
necessarily bound their direct children (see Fig. 5.1). Compared to layered hierar-
chies, the big advantage is that the inner BVs are tighter. We use a top-down ap-
proach to create our hierarchy, i.e., we start at the root node that covers all inner
spheres and divide these into several subsets.

The partitioning of the inner spheres has significant influence on the performance
during runtime. Previous methods that have been developed for ordinary BVHs, like
the surface area heuristic (see Sect. 2.2) produce optimal hierarchies for surface rep-
resentations of the objects, but they do not take the objects’ volume into account.
Algorithms for building the classical outer sphere trees, like the medial-axis ap-
proach [2, 7] work well if the spheres constitute a covering of the object and have
similar size, but in our scenario we use disjoint inner spheres that exhibit a large
variation in size. Other approaches based on the k-center problem work only for
sets of points and do not support spheres.

5.2.1 Batch Neural Gas Hierarchy Clustering

So we decided to use the batch neural gas clustering algorithm (BNG) known from
machine learning [3]. BNG is a very robust clustering algorithm which can be for-
mulated as stochastic gradient descent with a cost function closely connected to

116 5 Inner Sphere Trees

quantization error. Like k-means, the cost function minimizes the mean squared Eu-
clidean distance of each data point to its nearest center. But unlike k-means, BNG
exhibits very robust behavior with respect to the initial cluster center positions (the
prototypes): they can be chosen arbitrarily without affecting the convergence. More-
over, BNG can be extended to allow the specification of the importance of each data
point; below, we will describe how this can be used to increase the quality of the
ISTs.

In the following we will give a quick recap of the basic batch neural gas and then
describe our extensions and application to building the inner sphere tree.

Given points xj ∈R
d , j = 0, . . . ,m and prototypes wi ∈ R

d, i = 0, . . . , n initial-
ized randomly, we set the rank for every prototype wi with respect to every data
point xj as

kij := ∣∣{wk : d(xj ,wk) < d(xj ,wi)
}∣∣ ∈ {0, . . . , n} (5.1)

In other words, we sort the prototypes with respect to every data point. After the
computation of the ranks, we compute the new positions for the prototypes:

wi :=
∑m

j=0 hλ(kij)xj∑m
j=0 hλ(kij)

(5.2)

These two steps are repeated until a stop criterion is met. In the original publication
by Cottrell et al. [3], a fixed number of iterations is proposed. Indeed, after a certain
number of iteration steps, which depends on the number of data points, there is no
further improvement. We propose to use an adaptive version and stop the iteration if
the movement of the prototypes is smaller than some ε. In our examples, we chose
ε ≈ 10−5 × BoundingBoxSize, without any differences in the hierarchy compared
to the non-adaptive, exhaustive approach. This improvement speeds up the creation
of the hierarchy significantly.

The convergence rate is controlled by a monotonically decreasing function
hλ(k) > 0 that decreases with the number of iterations t . We use the function pro-

posed in the original publication [3]: hλ(k) = e− k
λ with initial value λ0 = n

2 , and

reduction λ(t) = λ0
(0.01

λ0

) t
tmax , where tmax is the maximum number of iterations.

These values have been taken according to Martinetz et al. [10].
Obviously, the number of prototypes defines the arity of the tree. If it is too

big, the resulting trees are very inefficient. On the other hand, if it is too small, the
trees become very deep and there exist a lot of levels with big spheres that do not
approximate the object very well. Experiments with our data structure have shown
that a branching factor of 4 produces the best results. Additionally, this has the
benefit that we can use the full capacity of SIMD units in modern CPUs during the
traversal.

5.2.1.1 Magnification Control

So far, the BNG only utilizes the location of the centers of the spheres. In our expe-
rience this already produces much better results than other, simpler heuristics, such

5.2 Hierarchy Creation 117

as greedily choosing the biggest spheres or the spheres with the largest number of
neighbors. However, it does not yet take the extent of the spheres into account. This
is, because neural gas uses only the number of data points and not their importance.
As a consequence, the prototypes tend to avoid regions that are covered with a very
large sphere, i.e., centers of big spheres are treated as outliers and they are thus
placed on very deep levels in the hierarchy. However, it is better to place big spheres
at higher levels of the hierarchy in order to get early lower bounds during distance
traversal (see Sect. 5.3.1 for details).

Therefore, we use an extended version of the classical batch neural gas, which
also takes the size of the spheres into account. Our extension is based on an idea
of Hammer et al. [6], where magnification control is introduced. The idea is to add
weighting factors in order to “artificially” increase the density of the space in some
areas.

With weighting factors v(xj), Eq. (5.2) becomes

wi :=
∑m

j=0 hλ(kij)v(xj)xj∑m
j=0 hλ(kij)v(xj)

(5.3)

where v(xj) identifies a control parameter to take care of the importance. In Ham-
mer et al. [6], a function of density is used to control the magnification. In our
scenario we already know the density, because our spheres are disjoint. Thus, we
can directly use the volumes of our spheres to let v(xj) = 4

3πr3.
Summing up the hierarchy creation algorithm: we first compute a bounding

sphere for all inner spheres (at the leaves), which becomes the root node of the
hierarchy. Therefore, we use the fast and stable smallest enclosing sphere algorithm
proposed in Gärtner [5]. Then, we divide the set of inner spheres into subsets in or-
der to create the children. To do that, we apply the extended version of batch neural
gas with magnification control mentioned above. We repeat this scheme recursively
(see Fig. 5.2 for some clustering results).

In the following, we will call the spheres in the hierarchy that are not leaves
hierarchy spheres. Spheres at the leaves, which were computed by any of the sphere-
packing algorithms from the previous chapter, will be called inner spheres. Note that
hierarchy spheres are not necessarily contained completely within the object.

5.2.1.2 Parallel Hierarchical Batch Neural Gas

The BNG algorithm produces a very good partitioning of the inner spheres, but
as a drawback, it is very time-consuming. Actually, we have to execute O(n) BNG
calls—one for each hierarchy sphere—where n denotes the number of inner spheres.
In case of a balanced tree with height O(logn) we have an overall running-time of
O(n logn), but with a relatively high hidden constant factor that results from the
number of iteration steps.

However, BNG in its pure form, but also the hierarchical BNG calls of our BVH
creation, are perfectly suited for parallelization. Assuming that we have O(n) pro-
cessors we are able to reduce the asymptotic running-time to O(log2 n). In the fol-

118 5 Inner Sphere Trees

Fig. 5.2 This figure shows the results of our hierarchy building algorithm based on batch neural
gas clustering with magnification control. All of those inner spheres that share the same color are
assigned to the same bounding sphere. The left image shows the clustering result of the root sphere,
the right images the partitioning of its four children

Fig. 5.3 The top array stores the indices of the prototype to which the sphere in the array below
has been assigned after the initial BNG clustering. In a first step, we sort the spheres with respect
to their prototype index (the two lower arrays). Note that each sphere is assigned to exactly one
prototype

lowing we will sketch the details of this parallel hierarchical BNG implementation
using the GPU.

Obviously, on the first level of our hierarchy, the ordering kij and consequently
also hλ(kij)v(xj)xj can be computed independently for each sphere xj . Summing
up all those values can be implemented in parallel too, by using a parallel scan algo-
rithm [14]. Also the parallel assignment of spheres to prototypes is straightforward:
we simply have to compute the distances of each sphere to the prototypes. Please
note that each sphere is assigned to exactly one prototype.

In the next level of the BVH creation, we have to add four new prototypes for
each prototype from the previous level (in case of a branching factor of 4). However,
triggering an own parallel process for each sub-set of spheres would shoot down the
advantages of parallel computing, especially in the deeper hierarchy levels. There-
fore, we decided to choose in another way. In the following we will describe its
technical details.

First, we sort the spheres with respect to the prototype that the spheres were
assigned to (see Fig. 5.3). This can be done in parallel by using a parallel sorting
algorithm [12]. This technical detail will allow us later to use fast parallel prefix-sum

5.2 Hierarchy Creation 119

Fig. 5.4 An example for the second level of the hierarchical BNG. According to Fig. 5.3, each
sphere has been assigned to a prototype. We insert 16 new prototypes, w1,1, . . . ,w4,4, four for each
prototype w1, . . . ,w4 from the previous level and compute the values that are required by BNG,
e.g. hλ(kij)v(xj). Please note that we do not have to allocate new memory or copy any values from
CPU to GPU. We can simply re-use the memory from the previous level because each sphere was
assigned to exactly one prototype. Consequently, we get a constant memory consumption for each
level

Fig. 5.5 In order to compute the new position of the prototypes for the next iteration, we have to
determine

∑
hλ(kij)v(xj)xj . Therefore, we compute the prefix sum (brown array) for each of the

four prototype arrays from Fig. 5.4. The differences between the values at the boarders directly
deliver us the individual sum for each prototype

computations. However, after the sorting we virtually insert four new prototypes for
each prototype from the previous hierarchy level. The fact that each sphere has been
assigned to exactly one prototype in the previous level allows us to compute the
values that are required for BNG (e.g. kij) in parallel for each sphere. We simply
have to ensure that these values are computed for the right new prototypes (see
Fig. 5.4).

Finally, we have to sum up the individual values to get the new prototype posi-
tions; this means we have to compute

∑m
j=0 hλ(kij)v(xj)xj and

∑m
j=0 hλ(kij)v(xj).

Surprisingly, we can directly re-use the parallel prefix sum from above [14], even
if we now need the sums for each new prototype individually: we simply have to
subtract the values at the borders of our sorted prototype array (see Fig. 5.5).

Algorithm 5.1 summarized our complete parallel hierarchical BNG implementa-
tion.

120 5 Inner Sphere Trees

Algorithm 5.1 Parallel hierarchical BNG

while Not on inner sphere level do
iteration = 0
while iteration<maxNumberIterations do

iteration++
In parallel Sort prototype array
In parallelforall Spheres do

compute hλ(kij)v(xj)xj

and hλ(kij)v(xj)
In parallel Compute prefix sum
In parallelforall Prototypes in level do

Compute new position
read back prototype positions

The prefix sum and the sorting of the prototypes for n inner spheres can be com-
puted in parallel using O(n) processors in O(logn). Basically, both algorithms are
based on an implicit balanced binary tree structure (see [12] and [14] for more de-
tails). The “per sphere” steps of Algorithm 5.1 have a complexity of O(1), obvi-
ously. If the tree is balanced, the outer while-loop is called O(logn) times. Overall,
we get a parallel time complexity of O(log2 n). The memory consumption is O(n).

In practice it is essential that there is not too much traffic between the memories
of the CPU and the GPU. In our implementation there is almost no traffic required.
We only have to save the positions of the prototypes from the last iteration in the
outer loop of Algorithm 5.1.1 We only have to allocate memory for the prototypes
once. This memory can be re-used for all iterations. In our prototypical naive imple-
mentation using CUDA without further optimizations, we get an overall speed-up
by a factor of 10 compared to the sequential hierarchy computation.

5.3 Traversal Algorithms

Our new data structure supports almost all different kinds of collision queries.
Namely proximity queries, which report the separation distance between a pair of
objects, penetration volume queries, which report the common volume covered by
both objects and moreover, it also supports continuous collision detection queries,
which report the time of impact if two objects collide. Obviously, the traversal
can easily be modified in order to provide also boolean answers that simply report
whether the objects collide or not.

As a by-product, the proximity query can return a witness realizing the distance,
the penetration volume algorithm can return a partial list of intersecting polygons

1However, also this is not really necessary. In the future, we plan to move also the smallest enclos-
ing sphere computation to the GPU. Then we only have to read back the whole hierarchy once.

5.3 Traversal Algorithms 121

Algorithm 5.2 checkDistance(A, B, minDist)
input : A, B = spheres in the inner sphere tree
in/out: minDist = overall minimum distance seen so far
if A and B are leaves then

// end of recursion

minDist = min{distance(A,B),minDist}
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if distance(a[i],b[j]) < minDist then
checkDistance(a[i], b[j], minDist)

and the continuous collision detection query can return the first pair of colliding
spheres.

We start with a separate discussion of the distance and penetration volume
queries in order to point out their specific requirements. In Sect. 5.3.3 we describe
how to combine these traversal schemes to a unified algorithm that is able to pro-
vide distance and penetration volume information, without the user has to know in
advance, whether the objects overlap or not. Furthermore, we will describe a time-
critical extension of both algorithms that allows an approximation of the appropriate
contact information, distance, and penetration volume, respectively, if a pre-defined
time budget should not be exceeded.

Finally, we will describe an algorithm that uses our new data structure to compute
the time of impact. Actually, the main focus during the design of our ISTs was the
computation of a continuous penetration measure, the penetration volume, at haptic
rates. But it turns out that the ISTs also has some nice implications on continuous
collision detection.

5.3.1 Distances

Our proximity query algorithm works like most other classical BVH traversal algo-
rithms: we check whether two bounding volumes overlap or not. If this is the case,
we recursively step to their children. In order to compute lower bounds for the dis-
tance, we simply have to add an appropriate distance test at the right place. This has
to be done, when we reach a pair of inner spheres (i.e. the leaves of the ISTs) during
traversal (see Algorithm 5.2). According to Chap. 4, these inner spheres are located
completely inside the object and, thus, provide a lower bound on the sought-after
distance. During traversal there is no need to visit branches of the bounding vol-
ume test tree that are farther apart than the current minimum distance because of the
bounding property. This guarantees a high culling efficiency.

122 5 Inner Sphere Trees

5.3.1.1 Improvements

In most collision detection scenarios there is a high spatial and temporal coherence,
especially when rendering at haptic rates. Thus, in most cases those spheres realizing
the minimum distance in a frame are also the closest spheres in the next frames,
or they are at least in the neighborhood. Therefore, using the distance from the
last frame yields a good initial bound for pruning during traversal. Thus, in our
implementation we store pointers to the closest spheres as of the last frame and use
their current distance to initialize minDist in Algorithm 5.2.

If the application is only interested in the distance between a pair of objects, then,
of course, a further speed-up can be gained by abandoning the traversal once the first
pair of intersecting inner spheres is found (in this case the objects must overlap and
the distance is zero).

Moreover, our traversal algorithm is very well suited for parallelization. During
recursion we compute the distances between four pairs of spheres in one single
SIMD implementation, which is greatly facilitated by our hierarchy being a 4-ary
tree.

Obviously, Algorithm 5.2 returns only an approximate minimum distance, be-
cause it utilizes only the distances of the inner spheres for the proximity query.
Thus, the accuracy depends on their density.

Fortunately, it is very easy to alleviate these inaccuracies by simply assigning
the closest triangle (or a set of triangles) to each inner sphere. After determining
the closest spheres with Algorithm 5.2, we add a subsequent test that calculates the
exact distance between the triangles assigned to those spheres. This simple heuristic
reduces the error significantly even with relatively sparsely filled objects, and it
hardly affects the running time.

5.3.2 Penetration Volume

In addition to proximity queries, our data structure also supports a new kind of pen-
etration query, namely the penetration volume. This is the volume of the intersection
of the two objects, which can be interpreted directly as the amount of the repulsion
force if it is considered as the amount of water being displaced.

The algorithm that computes the penetration volume (see Algorithm 5.3) does
not differ very much from the proximity query test: we simply have to replace the
distance test by an overlap test and maintain an accumulated overlap volume during
the traversal. The overlap volume of a pair of spheres can be easily derived by adding
the volumes of the spherical caps.

Due to the non-overlapping constraint of the inner spheres, the accumulated over-
lap volumes provide a lower bound on the real overlap volume of the objects.

5.3 Traversal Algorithms 123

Algorithm 5.3 computeVolume(A, B, totalOverlap)
input : A, B = spheres in the inner sphere tree
in/out: totalOverlap = overall volume of intersection
if A and B are leaves then

// end of recursion

totalOverlap + = overlapVolume(A, B)
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if overlap(a[i],b[j]) > 0 then
computeVolume(a[i], b[j], totalOverlap)

Fig. 5.6 Penetration volume
of two spheres with radius r1
and r2, respectively

5.3.2.1 Intersection Volume of Spheres

The main challenge during the traversal is the computation of the penetration vol-
ume between a pair of spheres. According to Weisstein [15], this can be expressed
in a closed formula. Basically, the intersection volume of two intersecting spheres
is a lens built of two spherical caps. Without loss of generality we assume that one
sphere is centered at the origin and the second sphere is displaced by a distance
d on the x-axis (see Fig. 5.6 for the setting). The equations of the spheres can be
expressed as

x2 + y2 + z2 = r2
1 (5.4)

and (x − d)2 + y2 + z2 = r2
2 , respectively (5.5)

Consequently, the intersection is

(x − d)2 − x2 = r2
2 − r2

1 (5.6)

In order to compute the intersection volume, we can simply add the volumes of
the two spherical caps with distances d1 = x for the first sphere and d2 = x − d for

124 5 Inner Sphere Trees

the second sphere. The heights of the spherical caps are

h1 = r1 − d1 = (r2 − r1 + d)(r2 + r1 − d)

2d
(5.7)

and h2 = r2 − d2 = (r1 − r2 + d)(r1 + r2 − d)

2d
(5.8)

In common, the volume of a spherical cap of height h for a sphere with radius r can
be expressed by (see e.g. Weisstein [16] for more details):

V (R,h) = 1

3
πh2(3r − h) (5.9)

Consequently, we get for the total intersection volume V for two spheres:

V = V (r1, h1) + V (r2, h2)

= π(r1 + r2 − d)2(d2 + 2dr2 − 3r2
2 + 2dr1 + 6r1r2 − 3r2

1)

12d
(5.10)

Summarizing, Eq. (5.10) allows us to compute the overlap between a pair of
spheres efficiently during the traversal.

5.3.2.2 Improvements

Similar to the proximity query implementation, we can utilize SIMD parallelization
to speed up both the simple overlap check and the volume accumulation.

Furthermore, we can exploit the observation that a recursion can be terminated
if a hierarchy sphere (i.e. an inner node of the sphere hierarchy) is completely con-
tained inside an inner sphere (a leaf) of the other IST. In this case, we can simply
add the total volume of all of its leaves to the accumulated penetration volume. In
order to do this quickly, we store the total volume

Voll(S) =
∑

Sj ∈Leaves(S)

Vol(Sj), (5.11)

where Sj are all inner spheres below S in the BVH.
This can be done in a preprocessing step during hierarchy creation.

5.3.2.3 Filling the Gaps

The voxel-based sphere packing algorithm described in Sect. 4.2 results in densely
filled objects. However, there still remain small voids between the spheres that can-
not be completely compensated by increasing the number of voxels. This results in
bad lower bounds.

5.3 Traversal Algorithms 125

Fig. 5.7 After constructing the sphere packing with the voxel-based method (see Sect. 4.2), each
voxel can be intersected by several non-overlapping spheres (left). These do not necessarily account
for the whole voxel space. In order to account for these voids, too, we simply increase the radius
of the sphere that covers the center of the voxel (right)

As a remedy, we propose a simple heuristic to compensate this problem: we
additionally assign a secondary radius to every inner sphere, such that the volume of
the secondary sphere is equal to the volume of all voxels whose centers are contained
within the radius of the primary sphere (see Fig. 5.7). This guarantees that the total
volume of all secondary spheres equals the volume of the object, within the accuracy
of the voxelization, because each voxel volume is accounted for exactly once.

Certainly, these secondary spheres may slightly overlap, but this simple heuristic
leads to acceptable estimations of the penetration volume. (Note, however, that the
secondary spheres are not necessarily larger than the primary spheres.)

For our second sphere packing method, the Protosphere algorithm (see Sect. 4.3),
there is, until now, no method known to determine the size of the voids between the
spheres.

5.3.3 Unified Algorithm for Distance and Volume Queries

In the previous sections, we introduced the proximity and the penetration volume
computation separately. However, it is quite easy to combine both algorithms. This
yields a unified algorithm that can compute both the distance and the penetration
volume, without the user having to know in advance whether the objects overlap or
not.

We start with the distance traversal. If we find the first pair of intersecting inner
spheres, then we simply switch to the penetration volume computation.

The correctness is based on the fact that all pairs of inner spheres we visited so
far during distance traversal do not overlap and thus do not extend the penetration
volume. Thus, we do not have to visit them again and can continue with the traversal
of the rest of the hierarchies using the penetration volume algorithm. If we do not
meet an intersecting pair of inner spheres, the unified algorithm still reports the
minimal separating distance.

126 5 Inner Sphere Trees

5.3.4 Time-Critical Distance and Volume Queries

To yield a time-critical version of the distance query is very easy. We can simply
interrupt the traversal at any time and return the minimum distance computed so far.
For the initialization we can compute the distance between any pair of inner spheres
or simply use the closest pair from the last traversal (see Sect. 5.3.1.1). However, the
distance traversal only computes a lower bound of the distance. Using an additional
classical outer BVH would achieve also an upper bound.

Yielding an interruptible version for the penetration volume traversal is more
complicated but also more needful. In most cases, a penetration volume query has to
visit many more nodes than the average proximity query. Consequently, the running
time on average is slower, especially in cases with heavy overlaps.

In the following we will describe a variation of our algorithm for penetration
volume queries that guarantees to meet a pre-defined time budget. This is essential
for time-critical applications such as haptic rendering.

A suitable strategy to realize time-critical traversals is to guide the traversal by a
priority queue Q. Then, given a pair of hierarchy spheres S and R, a simple heuris-
tic is to use Vol(S ∩ R) for the priority in Q. In our experience, this would yield
acceptable upper bounds.

Unfortunately, this simple heuristic also may result in very bad lower bounds in
cases where only a relatively small number of inner spheres can be visited (unless
the time budget permits an almost complete traversal of all overlapping pairs).

A simple heuristic to derive an estimate of the lower bound could be to compute

∑
(R,S)∈Q

∑
Ri∈ch(R),
Sj ∈ch(S)

Vol(Ri ∩ Sj), (5.12)

where ch(S) is the set of all direct children of node S.
Equation (5.12) amounts to the sum of the intersection of all direct child pairs

of all pairs in the priority queue Q. Unfortunately, the direct children of a node are
usually not disjoint and, thus, this estimate of the lower bound could actually be
larger than the upper bound.

In order to avoid this problem we introduce the notion of expected overlap vol-
ume. This allows us to estimate the overlap volume more accurately.

The only assumption we make is that, for any point inside S, the distribution of
the probability that it is also inside one of its leaves is uniform.

Let (R,S) be a pair of spheres in the priority queue. We define the density of a
sphere as

p(S) = Voll (S)

Vol(S)
(5.13)

with voll (S) defined similarly to Eq. (5.11) as the accumulated volume of all inner
spheres below S.

5.3 Traversal Algorithms 127

Fig. 5.8 We estimate the real
penetration volume during
our time-critical traversal by
the “density” in the hierarchy
spheres and the total volume
of the leaf spheres

This is the probability that a point inside S is also inside one of its leaves (which
are disjoint). Next, we define the expected overlap volume, Vol(R,S) as the prob-
ability that a point is inside R ∩ S and also inside the intersection of one of the
possible pairs of leaves, i.e.

Vol(R,S) = p(S) · p(R) · Vol(R ∩ S)

= Voll(R) · Voll (S) · Vol(R ∩ S)

Vol(R) · Vol(S)
(5.14)

(see Fig. 5.8).
In summary, for the whole queue we get the expected overlap volume

∑
(R,S)∈Q

Vol(R,S) (5.15)

Clearly, this volume can be maintained during traversal quite easily.
More importantly, this method provides a much better heuristic for sorting the

priority queue: if the difference between the expected overlap Vol(R,S) and the
overlap Vol(R ∩ S) is large, then it is most likely that the traversal of this pair will
give the most benefit toward improving the bound; consequently, we insert this pair
closer to the front of the queue.

Algorithm 5.4 shows the pseudo code of this approach. (Note that p(S) = 1 if S

is a leaf and therefore Vol(R,S) returns the exact intersection volume at the leaves.)
We initialize the priority queue with the root spheres of the objects. The overlap

of the root spheres is trivially an upper bound for the total overlap. Then we pop
the element with biggest overlap, subtract the overlap volume from the upper bound
computed so far and insert the child pairs instead. A lower bound is simply derived
by exclusively summing up the overlap volumes of inner spheres.

Obviously, it is possible to stop the traversal if an user specified accuracy between
lower and upper bound is reached, or if the time for this query is exceeded. This
maximum running time can be derived in advance, because the computation for a
single pair of spheres takes a fixed amount of time.

Overall, we have derived a time-critical algorithm that can traverse a given IST
such that the lower bound and the upper bound of the penetration volume approach
each other fairly quickly.

128 5 Inner Sphere Trees

Algorithm 5.4 compVolumeTimeCritical(A,B)
input : A,B = root spheres of the two ISTs
estOverlap = Vol(A,B)

Q = empty priority queue
Q.push(A,B)
while Q not empty & time not exceeded do

(R,S) = Q.pop()
if R and S are not leaves then

estOverlap − = Vol(R,S)

forall Ri ∈ children of R, Sj ∈ children of S do
estOverlap + = Vol(Ri, Sj)

Q.push(Ri,Sj)

5.3.5 Continuous Collision Detection

The main focus for the design of the ISTs was the approximation of the penetra-
tion volume. However, they can be easily extended for continuous collision detec-
tion. There, the ISTs even offer some interesting advantages compared to traditional
polygon-based continuous collision detection algorithms.

When BVHs are applied for the acceleration of continuous collision detection
queries, often swept volumes are used. Swept volumes are bounding volumes that
bound the original object’s bounding volumes at the beginning and the end of each
query time. The bounding volume property guarantees that there is no intersection
of the objects in this time if the BVs do not overlap. We applied this swept-volume
method to our ISTs.

We assume a linear motion between the start and the end configuration. Sweeping
spheres over time linearly creates a capped cylinder as swept volume (see Fig. 5.9).
An intersection test for two capped cylinders is relatively simple. Basically, we have
to check if the distance between the line segments (Pt ,Pt+1) and (Qt ,Qt+1) is
smaller than the sum of the radii rp and rq (notation according to Fig. 5.9). There-
fore, we first compute the minimum distance between the lines that where spanned
by the line segments [13]. The line equations are defined as

Lp(r) = Pt + r(Pt+1 − Pt) = Pt + rmp

Lq(s) = Qt + s(Qt+1 − Qt) = Qt + smq

(5.16)

The squared distance between any two points on the lines is

D(r, s) = ∣∣Lp(r) − Lq(s)
∣∣2 (5.17)

For the sake of clarity we use the following shortcuts:

a := mpmp b := mpmq c := mqmq

5.3 Traversal Algorithms 129

Fig. 5.9 The centers of the spheres move from position Pt to Pt+1, and Qt to Qt+1, respectively,
in a time step of the simulation. Spheres in deeper hierarchy levels can only collide if the capped
cylinders that are spanned by the moving spheres overlap. The intersection between the capped
cylinders can be easily determined by computing the minimum distance d between the line seg-
ments (Pt ,Pt+1) and (Qt ,Qt+1) that is realized by the points Pr and Qs

d := mp(Pt − Qt) d := −mq(Pt − Qt) f := (Pt − Qt)(Pt − Qt)

and we get

D(r, s) = f + ar2 + 2brs + cs2 + 2dr + 2es (5.18)

Lp(r) and Lq(s) are continuously differentiable. Consequently, also D(r, s) is
continuously differentiable, and we get the minimum by computing the partial
derivations and solving for zero. Finally, we get the minimum distance by

rmin = bd − ae

ac − b2
and smin = be − cd

ac − b2
(5.19)

Additionally, in order to get the minimum distance between the line segments,
we have to clamp rmin and smin to the end of the line segments—this means to the
interval rmin, smin ∈ [0,1]—and we have to catch the special case of parallel lines,
i.e. ac − b2 = 0.

Actually, we are not really interested in an intersection test of two capped cylin-
ders but in the movement of two spheres along the line segments. This allows a
further simplification, because we have the additional constraint that r = s. Apply-
ing this to Eq. (5.18) gives

D(r) = f + ar2 + 2br2 + cr2 + 2dr + 2er (5.20)

and we get

rmin = −e − d

a + 2c + c
(5.21)

for the points that realize the minimum distance.

130 5 Inner Sphere Trees

Fig. 5.10 Determining the
point of impact for a pair of
spheres

For the inner spheres we also have to compute the exact time of impact. There-
fore, we have to extend Eq. (5.17). Two spheres collide at a point in time rtoi if the
distance between the spheres equals the sum of their radii (see Fig. 5.10):

(rp + rr)
2 = ∣∣Lp(r) − Lq(s)

∣∣2 = (
(Pt − Qt) + rtoi(mp − mq)

)2

r2 = (ΔP + rΔm)2
(5.22)

Solving for rtoi yields

rtoi = ±
√

r2 − ΔP 2

Δm2
+

(
ΔP · Δm

Δm2

)2

− ΔP · Δm

Δm2
(5.23)

In other words, determining the time of impact for a pair of spheres requires
only a quadratic equation to be solved. If you remember the continuous triangle
intersection test in Sect. 3.3.4.1: we had to solve 12 costly cubic equations, three
vertex/face and nine edge/edge tests. This is the reason for the special suitability of
our ISTs for continuous collision detection.

In Algorithm 5.5 we sketch the complete continuous collision traversal for our
ISTs. The algorithm is almost the same as for the volume and distance queries,
we simply have to replace the distance and volume tests by the continuous sphere
tests described above. Obviously, also this algorithm can be optimized using SIMD
acceleration.

5.4 Continuous Volumetric Collision Response

In this section, we describe how to use the penetration volume to compute con-
tinuous forces and torques in order to enable a sTable 6 DOF haptic rendering or
physics-based rigid body simulation. Mainly, there exist three different approaches
to resolve collisions: the penalty-based method, the constraint-based method and the
impulse-based method. The constraint-based approach computes constraint forces
that are designed to cancel any external acceleration that would result in interpene-
trations. Unfortunately, this method has at least quadratic complexity in the number

5.4 Continuous Volumetric Collision Response 131

Algorithm 5.5 computeTimeOfImpact(A, B, timeOfImpact)
input : A, B = spheres in the inner sphere tree
in/out: timeOfImpact = minimum time of impact seen so far
if A and B are leaves then

// end of recursion

timeOfImpact = min{timeOfImpact(A,B), timeOfImpact}
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if distance(a[i](t), a[i](t + 1),b[j](t),b[j](t + 1)) < a[i](r) + b[j](r)
then

computeTimeOfImpact(a[i], b[j], timeOfImpact)

Fig. 5.11 The direction of
the penalty force can be
derived from the weighted
average of all vectors
between the centers of
colliding pairs of spheres,
weighted by their overlap

of contact points. The impulse-based method resolves contacts between objects by a
series of impulses in order to prevent interpenetrations. It is applicable to real-time
simulations but the forces may not be valid for bodies in resting contact.

So we decided to use the penalty-based method, which computes penalty forces
based on the interpenetration of a pair of objects. The main advantages are its com-
putational simplicity, which makes it applicable for haptic rendering and its ability
to simulate a variety of surface characteristics. Moreover, the use of the penetra-
tion volume eliminates inconsistent states that may occur when only the penetration
depth (i.e. the minimum translational vector) is used.

Obviously, the amount of overlap can be directly used to define the amount of
repelling forces. However, in order to apply such penalty forces in haptic environ-
ments or physics-based simulations, also the direction of the force is required in
addition to its amount.

A simple heuristic would be to consider all overlapping pairs of spheres (Ri, Sj)

separately. Let ci , cj be their sphere centers and nij = ci −cj . Then we compute the
overall direction of the penalty force as the weighted sum n = ∑

i,j Vol(Ri ∩Sj) ·nij

132 5 Inner Sphere Trees

Fig. 5.12 Left: we compute a normal cone for each inner sphere. The cone bounds a list of triangles
that is associated with the sphere. Note that the spread angle of the normal cone can be 0 if the
sphere is closest to a single triangle. Right: the axis of the normal cones cR and cS are used for the
force direction. The center PR,S of the spherical cap defines the contact point

Fig. 5.13 Left: force magnitude and direction of the force vector during the cow/pig animation.
Right: the test scenes. A cow scraping alongside a pig (upper), two instances of a monster with
complex extremities tangled up (lower)

(see Fig. 5.11). Obviously, this direction is continuous, provided the path of the
objects is continuous. However, this simple heuristic also has its drawbacks: in the
case of deep penetrations it is possible that some internal intersections point into the
false direction. As a result, the objects will be sucked up into each other. Therefore,
it can be necessary to flip some of the directions nij .

In the following, we will present an extension based on normal cones for all
spheres throughout the hierarchy that can help to identify these pairs. Moreover, we
will show how our ISTs can provide also continuous torques.

5.4 Continuous Volumetric Collision Response 133

Fig. 5.14 Force magnitude
and direction in the monster
scene (see Fig. 5.13)

5.4.1 Contact Forces

Algorithm 5.3 and its time-critical derivative return a set of overlapping spheres or
potentially overlapping spheres, respectively. We compute a force for each of these
pairs of spheres (Ri, Sj) by

f(Ri) = kcVol(Ri ∩ Sj)n(Ri) (5.24)

where kc is the contact stiffness, Vol(Ri ∩Sj) is the overlap volume, and n(Ri) is the
contact normal.

Summing up all pairwise forces gives the total penalty force:

f(R) =
∑

Ri∩Sj �=∅
f(Ri) (5.25)

In order to compute normals for each pair of spheres, we augment the construc-
tion process of the ISTs: in addition to storing the distance to the object’s surface,
we store a pointer to the triangle that realizes this minimum distance. While creating
the inner spheres by merging several voxels (see Sect. 4.2), we accumulate a list of
triangles for every inner sphere. We use the normals of these triangles to compute
normal cones which are defined by an axis and an angle. They tightly bound the
normals of the triangles that are stored in the list of each inner sphere.

During force computation, the axes of the normal cones cR and cS are used as the
directions of the force since they will bring the penetrating spheres outside the other
object in the direction of the surface normals (see Fig. 5.12). Note that f(Ri) �= f(Sj).

If the cone angle is too large (i.e. α ≈ π), we simply use the vector between the
two centers of the spheres as in the naive approach.

Obviously, this force is continuous in both cases, because the movement of the
axes of the normal cones and also the movement of the centers of the spheres are
continuous, provided the path of the objects is continuous. See Figs. 5.13 and 5.14
for results from our benchmark. Figure 5.15 shows the individual contact normals
for each pair of intersecting spheres.

134 5 Inner Sphere Trees

Fig. 5.15 This image shows
the normals for each pair of
spheres overlapping each
other, computed by our
collision response scheme

Fig. 5.16 Torque magnitude
and direction in the monster
scene (see Fig. 5.13)

5.4.2 Torques

In rigid body simulation, the torque τ is usually computed as τ = (Pc − Cm) × f,
where Pc is the point of collision, Cm is the center of mass of the object and f is the
force acting at Pc . Like in the section before, we compute the torque separately for
each pair (Ri, Sj) of intersecting inner spheres:

τ(Ri) = (P(Ri ,Sj) − Cm) × f(Ri) (5.26)

Again, we accumulate all pairwise torques to get the total torque:

τ(R) =
∑

Ri∩Sj �=∅
τ(Ri) (5.27)

We define the point of collision P(Ri,Sj) simply as the center of the intersection
volume of the two spheres (see Fig. 5.12). Obviously, this point moves continuously

5.5 Excursus: Volumetric Collision Detection with Tetrahedral Packings 135

Fig. 5.17 Our tetrahedron intersection method: in the first step, we clip the triangles of one tetra-
hedron against the planes that span the other one

if the objects move continuously. In combination with the continuous forces f(Ri)

this results in a continuous torque (see Fig. 5.16).

5.5 Excursus: Volumetric Collision Detection with Tetrahedral
Packings

To our knowledge, there are no implementations available to compute the exact
penetration volume between two polygonal objects. In order to still evaluate the
quality of our penetration volume approximation, we had to develop a new algorithm
for this task. The algorithm is based on tetrahedralization of polygonal objects. The
main principle is very similar to the ISTs.

Initially, instead of computing a sphere packing for the object, we compute a
tetrahedralization. Obviously, the non-overlapping tetrahedra fill the objects without
any gaps. In order to accelerate the collision queries, we constructed an AABB tree
above the tetrahedra. We used AABB instead of spheres, because they fit tetrahedra
much tighter.

For the queries we use the same traversal algorithm as for the ISTs (see Al-
gorithm 5.3). We simply replace the computation of the sphere intersection by a
method for tetrahedra intersection. Unfortunately, there is no closed formula for the
intersection volume of two tetrahedra.

Therefore, we have developed a new method that is based on polygon clipping:
we clip the triangles of one tetrahedron with all spanning planes of the other tetra-
hedron (see Fig. 5.17). In a second step, we tetrahedralize the resulting polyhedron
(see Fig. 5.18). The intersection volume can be easily derived from the sum of the
volumes of the new tetrahedra.

This simple method allows us to calculate the intersection volume exactly. How-
ever, the runtime of this approach is not applicable to real-time collision detection
due to bad BV fitting and the costly tetrahedron–tetrahedron overlap volume calcu-
lation. In all our example scenes it took more than 2 sec/frame on average.

136 5 Inner Sphere Trees

Fig. 5.18 Our tetrahedron intersection method: the second step we tetrahedralize the resulting
polyhedron

5.6 Results

We have implemented our new data structure in C++. The testing environment con-
sists of a PC running Windows XP with an Intel Pentium IV 3 GHz dual core CPU
and 2 GB of memory.

The benchmark includes hand recorded object paths with distances ranging from
about 0–20 % of the objects’ BV size for the proximity queries. We concentrated on
very close configurations, because they are more interesting in real world scenarios
and more challenging regarding the running time. The paths for the penetration
volume queries concentrate on light to medium penetrations of about 0–10 % of
the objects’ total volumes. This scenario resembles the usage in haptic applications
best, because the motive for using collision detection algorithms is to avoid heavy
penetrations. However, we also included some heavy penetrations of 50 % of the
objects’ volumes to stress our algorithm. We included those tests in addition to the
results of our performance benchmarking suite (see Sect. 6.3) because we used the
coherence techniques described above. Our benchmarking suite does not support
coherence until now.

We used highly detailed objects with a polygon count ranging up to 370k to
test the performance and the quality of our algorithm.2 The quality of the resulting
distances and penetration volumes is closely related to the quality of the underlying
sphere packing. Consequently, we filled each object in different resolutions in order
to evaluate the trade-off between the number of spheres and the accuracy.

We computed the ground truth data for the proximity queries with the PQP li-
brary. We also included the running time of PQP in our plots, even if the compar-
ison seems to be somewhat unfair, because PQP computes exact distances. How-
ever, it shows the impressive speed-up that is achievable when using approximative
approaches. Moreover, it is possible to extend ISTs to support exact distance cal-
culations, too. In order to compute the ground truth for the penetration volume, we
used our tetrahedral approach described in Sect. 5.5. The Figs. 5.19–5.29 show the
scenes as well as plots of the results of our measurements.

2Please visit http://cgvr.informatik.uni-bremen.de/research/ist to watch some videos of our bench-
marks.

http://cgvr.informatik.uni-bremen.de/research/ist

5.6 Results 137

Fig. 5.19 Test scenes: Oil pump (330k triangles) and Armadillo (700k triangles)

Fig. 5.20 Oil pump scene: average and maximum time/frame (Left), relative error compared to
accurate distance (Right)

Fig. 5.21 Armadillo scene: average and maximum time/frame (Left), relative error compared to
accurate distance (Right)

The results of our benchmarking show that our ISTs with the highest sphere
resolution have an average speed-up of 50 compared to PQP, while the average
error is only 1 %. Even in the worst case, they are suitable for haptic rendering
with response rates of less than 2 mesc in the highest resolution (see Fig. 5.20). The
accuracy can be further improved by the simple extension described in Sect. 5.3.1.1.
With the highest sphere count, the error is below floating point accuracy with only
a negligibly longer running time (see Fig. 5.21).

Our penetration volume algorithm is able to answer queries at haptic rates be-
tween 0.1 msec and 2.5 msec on average, depending on the sphere resolution, even

138 5 Inner Sphere Trees

Fig. 5.22 Distance per frame
in the oil pump scene

for very large objects with hundreds of thousands of polygons (see Figs. 5.24, 5.26
and 5.27). The average accuracy using the highest sphere resolution is around 0.5 %.
However, in the case of deeper penetrations, it is possible that the traversal algorithm
may exceed its time budget for haptic rendering. In this case, our time-critical traver-
sal guarantees acceptable estimations of the penetration volume even in worst-case
scenarios and multiple contacts (see Fig. 5.28 and 5.29).

The per-frame quality displayed in Figs. 5.22 and 5.25 re-emphasizes the accu-
racy of our approach and additionally, shows the continuity of the distance and the
volume.

5.7 Conclusions and Future Work

We have presented a novel hierarchical data structure, the Inner Sphere Trees.
The ISTs support different kinds of collision detection queries, including proxim-
ity queries and penetration volume computations with one unified algorithm, but
also continuous collision detection queries. Distance and volume queries can be
answered at rates of about 1 kHz (which makes the algorithm suitable for haptic
rendering) even for very complex objects with several hundreds of thousands of
polygons.

Fig. 5.23 Test scenes: bolt (171k triangles), pig (10k triangles) and screwdriver (488k triangles)

5.7 Conclusions and Future Work 139

Fig. 5.24 Bolt scene: average and maximum time/frame (Left), relative error compared to accurate
penetration volume (Right)

Fig. 5.25 Penetration
volume per frame in the bolt
scene

For proximity situations, typical average running times are in the order of
0.05 msec with 500 000 spheres per object and an error of about 0.5 %. In pene-
tration situations, the running times depend, obviously, much more on the intersec-
tion volume; here, we are in the order of around 2.5 msec on average with 237 000
spheres and an error of about 0.5 %. The balance between accuracy and speed can be
defined by the user. Moreover, the speed is independent of the objects’ complexity,

Fig. 5.26 Pig scene: average and maximum time/frame (Left), relative error compared to accurate
penetration volume (Right)

140 5 Inner Sphere Trees

Fig. 5.27 Screwdriver scene: average and maximum time/frame (Left), relative error compared to
accurate penetration volume (Right)

Fig. 5.28 Time-critical penetration volume computations in the torso scene (470k triangles). Left:
average and maximum query time; the y axes are labeled differently

Fig. 5.29 Error relative to
the exact penetration volume
depending on the number of
intersection tests during
time-critical penetration
volume computations in the
torso scene

because the number of leaves of our hierarchy is mostly independent of the number
of polygons.

For time-critical applications, we describe a variant of our algorithm that stays
within the time budget while returning an answer “as good as possible”.

Our algorithm for distance and volume queries can be integrated into existing
simulation software very easily, because there is only a single entry point, i.e. the
application does not need to know in advance whether or not a given pair of objects
will be penetrating each other.

5.7 Conclusions and Future Work 141

The memory consumption of our inner sphere trees is similar to other bounding
volume hierarchies, depending on the pre-defined accuracy (in our experiments, it
was always in the order of a few MB). This is very modest compared to voxel-based
approaches.

Another big advantage of our penetration volume algorithm, when utilized for
penalty-based simulations, is that it yields continuous directions and magnitudes of
the force and the torque, even in cases of deep penetrations. Moreover, our inner
sphere trees are perfectly suited for SIMD acceleration techniques and allow algo-
rithms to make heavy use of temporal and spatial coherence.

Last but not least, we have presented a new method for partitioning geometric
primitives into a hierarchical data structure based on the Batch Neural Gas cluster-
ing. Our approach considers the object’s volume instead of restricting the partition-
ing to the surface, like most other algorithms do. Moreover, we have implemented a
fast and stable parallel version of our hierarchical clustering.

5.7.1 Future Work

However, our novel approach also opens up several avenues for future work, starting
with the partitioning of the geometric primitives: it would be interesting to apply
our clustering approach also to classical outer BVHs. But also for the ISTs there
might be some room for improving the hierarchy. For example, it could be better,
especially at the borders of an object, to minimize the volume of those parts of
hierarchy spheres that are outside of the object, instead of minimizing their volume.

Another option could be the investigation of inner volumes other than spheres.
This could improve the quality of the volume covering because spheres do not fit
well into some objects, especially if they have many sharp corners or thin ridges.

Moreover, we would like to explore other uses of inner bounding volume hier-
archies, such as ray tracing or occlusion culling. Note that the type of bounding
volume chosen for the “inner hierarchy” probably depends on its use.

An interesting question is the analytical determination of exact error bounds. This
could lead to an optimal number of inner spheres with well-defined errors. Therefore
we require an analytical or numerical model for the voids between the spheres. In
order to minimize the error for distance queries, we could also use a combined inner
and outer hierarchy.

On the whole, ISTs are fast enough for haptic refresh rates. However, there exist
configurations, especially in cases of heavy penetrations, where the 1 kHz constraint
may not always be met. Therefore, we presented a time-critical version of the vol-
ume traversal. Unfortunately, the volumes, and thus the forces and torques, are not
guaranteed to be continuous. It would be nice to define a traversal algorithm that
is able to compute continuous forces for fixed response times. Another issue with
respect to the forces is a missing theoretical model that computes frictional forces
for a volumetric penetration measure.

142 5 Inner Sphere Trees

Fig. 5.30 ISTs for
non-closed objects: we fill the
space surrounding an object
and break this sphere packing
into several connected
components

5.7.1.1 Quasi-volumetric Penetration Measure for Thin Sheets

A major drawback of our data structure is their restriction to watertight objects. This
is mainly because we have to compute a sphere packing of the objects’ interior. In
real-world applications, e.g. in virtual prototyping tasks in the automotive industry,
thin sheets are widely modeled as a single polygon layer.

In the future we plan to extend our ISTs also to such open geometries by defining
a quasi-volumetric penetration measure for thin or non-closed objects. The basic
idea is very simple. Instead of filling the object’s interior with spheres, we fill the
free space, or at least a certain region surrounding an object. At the edges we break
these sphere packings into several connected components (see Fig. 5.30). During
the traversal we just have to select the correct connected component to be checked.

This quasi-volumetric penetration measure not only allows to compute volumet-
ric forces and torques for this sheets, but it also avoids the tunneling effect of other
static collision detection approaches.

5.7.1.2 Theoretic Analysis

Another very interesting challenge would be a theoretic analysis of our new data
structure. For polygonal object representations, we get an upper bound of O(n2) for
the number of colliding polygons and, thus, also for the worst-case running time of
collision detection algorithms.

Until now we could not construct a similar worst-case scenario for sphere pack-
ings. Therefore, we assume that the worst-case complexity for the overlap of two
sphere packings is in O(n). However, a proof for that conjecture is still pending.

This proof could have an important impact on the future development of our
ISTs: for instance, it would probably enable us to design new parallel algorithms
with constant running-time even in the worst case, using only O(n) processors.

5.7.1.3 Simulation of Fractures

A long time objective is the extension of our ISTs to deformable objects. Basically,
we could use some kind of parallel Sweep-and-Prune method [8] on the inner sphere

References 143

level, but other methods are also possible. However, as a short time objective we plan
to apply our ISTs to the simulation of fractures and the material removal in milling
simulations.

Here, the volumetric object representation by the sphere packing has several ad-
vantages. For instance, during a milling process we can directly remove the spheres
and use the resulting sphere packing for a re-triangulation, if spheres are removed
completely. In case of a partly removal of large spheres we can use an implicit hi-
erarchy of the large sphere to reconstruct the residual object. The implicit hierarchy
has to be computed only once for a single sphere. With an adequate scaling we
can re-use this for all other spheres. Consequently, we can avoid a time-consuming
re-build of the complete hierarchy.

However, these are just a few ideas for further extensions of our new data struc-
ture. We feel certain that there are much more interesting projects in the future.

References

1. Agarwal, P., Guibas, L., Nguyen, A., Russel, D., & Zhang, L. (2004). Collision detection for
deforming necklaces. Computational Geometry, 28, 137–163.

2. Bradshaw, G., & O’Sullivan, C. (2004). Adaptive medial-axis approximation for sphere-tree
construction. ACM Transactions on Graphics, 23(1), 1–26. doi:10.1145/966131.966132. URL
http://doi.acm.org/10.1145/966131.966132.

3. Cottrell, M., Hammer, B., Hasenfuss, A., & Villmann, T. (2006). Batch and median neural
gas. Neural Networks, 19, 762–771.

4. Fisher, S., & Lin, M. (2001). Fast penetration depth estimation for elastic bodies using de-
formed distance fields. In Proc. international conf. on intelligent robots and systems (IROS)
(pp. 330–336).

5. Gärtner, B. (1999). Fast and robust smallest enclosing balls. In J. Nesetril (Ed.), Lecture notes
in computer science: Vol. 1643. ESA (pp. 325–338). Berlin: Springer. ISBN 3-540-66251-0.
URL http://link.springer.de/link/service/series/0558/bibs/1643/16430325.htm.

6. Hammer, B., Hasenfuss, A., & Villmann, T. (2006). Magnification control for batch neu-
ral gas. In ESANN (pp. 7–12). URL http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/
es2006-83.pdf.

7. Hubbard, P. M. (1995). Collision detection for interactive graphics applications. IEEE Trans-
actions on Visualization and Computer Graphics, 1(3), 218–230.

8. Liu, F., Harada, T., Lee, Y., & Kim, Y. J. (2010). Real-time collision culling of a million
bodies on graphics processing units. ACM Transactions on Graphics, 29(6), 154:1–154:8.
doi:10.1145/1882261.1866180. URL http://doi.acm.org/10.1145/1882261.1866180.

9. Mainzer, D., Weller, R., & Zachmann, G. (2011). Kollisionserkennung und natürliche in-
teraktion in virtuellen umgebungen. In W. Schreiber & P. Zimmermann (Eds.), Virtuelle
Techniken im industriellen Umfeld (pp. 33–38, 114–116). Berlin: Springer. Chaps. 3.2, 3.4.
ISBN 978-3-642-20635-1. URL http://www.springer.com/engineering/signals/book/978-3-
642-20635-1.

10. Martinetz, T. M., Berkovich, S. G., & Schulten, K. J. (1993). ‘Neural-gas’ network for vec-
tor quantization and its application to time-series prediction. IEEE Transactions on Neural
Networks, 4(4), 558–569.

11. O’Brien, J. F., & Hodgins, J. K. (1999). Graphical modeling and animation of brittle fracture.
In Proceedings of the 26th annual conference on computer graphics and interactive tech-
niques, SIGGRAPH ’99 (pp. 137–146). New York: ACM Press/Addison-Wesley Publishing
Co. ISBN 0-201-48560-5. doi:10.1145/311535.311550.

http://dx.doi.org/10.1145/966131.966132
http://doi.acm.org/10.1145/966131.966132
http://link.springer.de/link/service/series/0558/bibs/1643/16430325.htm
http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2006-83.pdf
http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2006-83.pdf
http://dx.doi.org/10.1145/1882261.1866180
http://doi.acm.org/10.1145/1882261.1866180
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
http://dx.doi.org/10.1145/311535.311550

144 5 Inner Sphere Trees

12. Satish, N., Harris, M., & Garland, M. (2009). Designing efficient sorting algorithms for many-
core GPUs. In Proceedings of the 23rd IEEE international parallel and distributed processing
symposium, May.

13. Schneider, P. J., & Eberly, D. (2002). Geometric tools for computer graphics. New York:
Elsevier Science Inc. ISBN 1558605940.

14. Sengupta, S., Harris, M., & Garland, M. (2008). Efficient parallel scan algorithms for GPUs
(Technical Report NVR-2008-003). NVIDIA Corporation. December. URL http://mgarland.
org/papers.html#segscan-tr.

15. Weisstein, E. W. (2012). Sphere-sphere intersection. URL http://mathworld.wolfram.com/
Sphere-SphereIntersection.html.

16. Weisstein, E. W. (2012). Spherical cap. URL http://mathworld.wolfram.com/SphericalCap.
html.

17. Weller, R., & Zachmann, G. (2008). Inner sphere trees (Technical Report IfI-08-09). Depart-
ment of Informatics, Clausthal University of Technology, October.

18. Weller, R., & Zachmann, G. (2009). Inner sphere trees for proximity and penetration queries.
In 2009 robotics: science and systems conference (RSS), Seattle, WA, USA, June. URL
http://cg.in.tu-clausthal.de/research/ist.

19. Weller, R., & Zachmann, G. (2009). A unified approach for physically-based simulations and
haptic rendering. In Sandbox 2009: ACM SIGGRAPH video game proceedings, New Orleans,
LA, USA, August. New York: ACM Press. URL http://cg.in.tu-clausthal.de/research/ist.

20. Weller, R., & Zachmann, G. (2011). Inner sphere trees and their application to collision detec-
tion. In S. Coquillart, G. Brunnett, & G. Welch (Eds.), Virtual realities (pp. 181–202). Berlin:
Springer (Dagstuhl). Chap. 10. ISBN 978-3-211-99177-0. doi:10.1007/978-3-211-99178-7.

http://mgarland.org/papers.html#segscan-tr
http://mgarland.org/papers.html#segscan-tr
http://mathworld.wolfram.com/Sphere-SphereIntersection.html
http://mathworld.wolfram.com/Sphere-SphereIntersection.html
http://mathworld.wolfram.com/SphericalCap.html
http://mathworld.wolfram.com/SphericalCap.html
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/ist
http://dx.doi.org/10.1007/978-3-211-99178-7

Part III
Evaluation and Application

Chapter 6
Evaluation and Analysis of Collision Detection
Algorithms

The theoretical complexity of almost all hierarchical collision detection approaches
is in the worst case quadratic in the number of polygons. This is simply true because
it is possible to construct artificial objects like the Chazelle polyhedron (see Fig. 1.1)
where each polygon of one object collides with all polygons of another object (see
Chap. 1). However, in practice, a quadratic running time of the collision detection
for complex objects consisting of millions of polygons is not an option and no one
would use quadratic algorithms in real-time scenarios. Actually, situations like this
do not occur very often in practical relevant scenarios because most objects behave
much better than the artificial ones. This raises the question: What makes an object
to behave good? And how can we track this goodness mathematically?

These are exactly the questions we will answer in the first part of this chapter. In
detail, we present a new model to estimate the expected running time of hierarchical
collision detection. We show that the average running time for the simultaneous
traversal of two binary BVHs depends on two characteristic parameters: the overlap
of the root BVs and the BV diminishing factor within the hierarchies. With this
model we are able to show that the average running time is O(n) or even O(logn)

for realistic cases.
However, theoretically “good behavior” is only one side of the coin. Today a user

can choose between a wide variety of different collision detection libraries that are
all based on different BVHs (see Chap. 2) and our theoretical observations hold until
now only for AABB trees. Moreover, the asymptotic notation hides a constant factor
that could make the difference between a smooth 30 frames per second real-time
collision detection and unplayable 3 frames per second when choosing the wrong
data structure. Actually, it is extremely difficult to evaluate and compare collision
detection algorithms in practice because in general they are very sensitive to specific
scenarios, i.e. to the relative size of the two objects, their relative position to each
other, the distance, etc.

The design of a standardized benchmarking suite for collision detection would
make fair comparisons between algorithms much easier. Such a benchmark must be

Parts of this work have been previously published in [23, 28, 29].

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_6,
© Springer International Publishing Switzerland 2013

147

http://dx.doi.org/10.1007/978-3-319-01020-5_6

148 6 Evaluation and Analysis of Collision Detection Algorithms

designed with care so that it includes a broad spectrum of different and interesting
contact scenarios. However, there was no standard benchmark available to compare
different algorithms. As a result, it is non-trivial to compare two algorithms and their
implementations.

Therefore, we have developed the first benchmarking suite that allows a sys-
tematic comparison of pairwise static collision detection algorithms for the rigid
objects that we present in the second section of this chapter. Our benchmark gener-
ates a number of positions and orientations for a pre-defined distance or penetration
depth. We implemented the benchmarking procedure and compared a wide number
of freely available collision detection algorithms.

Usually, collision detection is directly coupled with a collision response scheme
that resolves collisions between pairs of objects. Hence, the performance of the col-
lision detection is not the only factor that a user has to consider when choosing
the right algorithm. Different algorithms provide different kinds of contact infor-
mation like distances, penetration depth or penetration volume (see Chap. 2) and
the quality of the simulation directly relies on the quality of the contact informa-
tion. This quality of the contact information includes the continuity of the force and
torque vectors, but also the amount of noise in the signal. In the third section of this
chapter, we present a novel methodology that comprises a number of models for
certain collision response scenarios. Our device-independent approach allows ob-
jective predictions for physics-based simulations as well as 6 DOF haptic rendering
scenarios.

6.1 Related Work

In Chap. 2 we have already seen that there exist a wide variety of different colli-
sion detection algorithms that makes it hard for a user to choose the right one for
his application. Surprisingly, the literature about methods that allow a fair compar-
ison between collision detection algorithms is very sparse. In most publications a
certain scenario that is probably currently available or that makes the freshly pub-
lished algorithm look good is chosen. However, this may result in a bias and does
not guarantee an objective evaluation. In this section we will give a short recap of
other methods that were published for the objective comparison and the theoretical
analysis of collision detection algorithms.

6.1.1 Theoretical Analysis

In the last few years, some very interesting theoretical results on the collision detec-
tion problem have been proposed. One of the first results was presented by Dobkin
and Kirkpatrick [4]. They have shown that the distance of two convex polytopes can
be determined in time O(log2 n), where n = max{|A|, |B|} and |A| and |B| are the
number of faces of object A and B , respectively.

For two general polytopes whose motion is restricted to fixed algebraic trajec-

tories, Schömer and Thiel [18] have shown that there is an O(n
5
3 +ε) algorithm for

6.1 Related Work 149

rotational movements and an o(n2) algorithm for a more flexible motion that still
has to be along fixed known trajectories [19].

Suri et al. [21] proved that for n convex, well-shaped polytopes (with respect
to aspect ratio and scale factor), all intersections can be computed in time O((n +
k) log2 n), where k is the number of intersecting object pairs. They have generalized
their approach to the first average-shape results in computational geometry [32].

Under mild coherence assumptions, Vemuri et al. [27] showed a linear expected
time complexity for the CD between n convex objects. They used well-known data
structures, namely octrees and heaps, along with the concept of spatial coherence.

The Lin–Canny algorithm [12] is based on a closest-feature criterion and makes
use of Voronoi regions. Let n be the total number of features, the expected run time
is between O(

√
n) and O(n) depending on the shape, if no special initialization is

done.
In [10], an average-case approach for CD was proposed. However, no analysis of

the running time was given.

6.1.2 Performance Benchmarks

There does not exist much work about special benchmarking suites for collision de-
tection algorithms. Most authors simply choose some objects and test them in a way
not further described or they restrict their explorations just to some special scenar-
ios. For instance, Otaduy and Lin [14] chose a set of physics-based simulations to
test their collision detection algorithms. These scenarios are a torus falling down a
spiral peg, a spoon in a cup, and a soup of numbers in a bowl.

Van den Bergen [25] positioned two models by placing the origin of each model
randomly inside a cube. The probability of an intersection is tuned by changing the
size of the cube. The problem here is that it is stochastic and that a lot of large and
irrelevant distances are tested.

A first approach for a comprehensive and objective benchmarking suite was de-
fined by Zachmann [31]. The code for the benchmark is freely available. However,
it does not guarantee to produce results with practical relevance because the objects
interpenetrate heavily during the benchmark, but collision detection is mostly used
to avoid interpenetrations. In many simulations objects are allowed to collide only
a little bit and then the collision handling resolves the collision by backtracking or
a spring-damping approach.

Caselli et al. [3] presented a comparison with the special focus on motion planing.
They used different scenes in their probabilistic motion planner for the benchmark.
However, this benchmarking suite is restricted to a special scenario and it is not of
general utility. Govindaraju et al. [7] created a benchmark for deformable objects.
Other researchers have focused on benchmarking of physics engines, of which col-
lision detection is one part. The Physics Abstract Layer (PAL) [1] provides a unified
and solid interface to physics engines. Using PAL, a set of benchmarks has been
constructed. The collision detection benchmark simulates 64 spheres falling into an

150 6 Evaluation and Analysis of Collision Detection Algorithms

inverted square pyramid. The downside of this benchmark is that it is a very special
scenario.

6.1.3 Quality Benchmarks

Actually, the literature about the quality of forces and torques in simulated environ-
ments is even sparser than that of collision detection benchmarks. Usually, a video
or some pictures are presented that should prove the visual quality of the presented
algorithms. Most related work is provided by the haptics community. Cao [2] pre-
sented a framework for benchmarking haptic systems. This framework emulates a
haptic device to which benchmarks can be attached. This benchmark simulates a
point-based haptic device with only 3 DOF. Another problem is that it is unsuitable
for benchmarking of non-haptic algorithm behavior. Ruffaldi et al. [15] proposed
a series of “ground truth” data sets for haptic rendering. These data can be used
to assess the accuracy of a particular haptic rendering system, but this benchmark
only approximates a single point of contact. Unger et al. [24] presented a user study:
they compared the forces during a 3D peg-in-hole task in the real and virtual cases.
However, to our knowledge there is no benchmark available that uses an analytical
model to compute the ground truth data for a fair comparison of different penetration
measures.

6.2 Theoretical Analysis

Bounding volume hierarchies have proven to be a very efficient data structure for
collision detection.

The idea of BVHs is to partition the set of object primitives (e.g. polygons or
points) recursively until some leaf criterion is met. In most cases each leaf contains
a single primitive, but the partitioning can also be stopped when a node contains
fewer than a fixed number of primitives. Each node in the hierarchy is associated
with a subset of the primitives and a BV that encloses this subset.

Given two BVHs, one for each object, virtually all collision detection approaches
traverse the hierarchies simultaneously by an algorithm similar to Algorithm 6.1. It
conceptually traverses a bounding volume test tree (see Fig. 2.4 in Chap. 2) until all
overlapping pairs of BVs have been visited. It allows to quickly “zoom in” to areas
of close proximity and stops if an intersection is found or if the traversal has visited
all relevant sub-trees. Most differences between hierarchical CD algorithms lie in
the type of BV, the overlap test, and the algorithm for constructing the BVH.

There are two conflicting constraints for choosing an appropriate BV. On the one
hand, a BV–BV overlap test during the traversal should be done as fast as possible.
On the other hand, BVs should enclose their subset of primitives as tight as possible
so as to minimize the number of false positives with the BV–BV overlap tests. As a
consequence, a wealth of BV types has been explored in the past (see Chap. 2).

6.2 Theoretical Analysis 151

Algorithm 6.1 traverse(A,B)

if A and B do not overlap then
return

if A and B are leaves then
return intersection of primitives enclosed by A and B

else
forall children Ai and Bj do

traverse(Ai,Bj)

In order to capture the characteristics of different approaches and to estimate the
time required for a collision query, we have to remember the cost function equation
(2.1), which we have introduced in Chap. 2:

T = NvCv + NpCp + NuCu with

T = Total cost of testing a pair of models for intersection

Nv = Number of BV Tests

Cv = Cost of a BV Test

Np = Number of Primitive Tests

Cp = Cost of a Primitive Test

Nu = Number of BV Updates

Cu = Cost of a BV Update

(6.1)

An example of a BV update is the transformation of the BV into a different
coordinate system. During a simultaneous traversal of two BVHs, the same BVs
might be visited multiple times. However, if the BV updates are not saved, then
Nv = Nu.

In practice, Nv , the number of overlap tests usually dominates the running time,
i.e. T (n) ∼ Nv(n), because Np = 1

2Nv in a binary tree and Nu ≤ Nv . While it is
obvious that Nv = n2 in the worst case, it has long been noticed that in most practical
cases this number seems to be linear or even sub-linear.

Until now, there is no rigorous average-case analysis for the running-time of
simultaneous BVH traversals. Therefore, we present a model with which one can
estimate the average number Nv , i.e. the number of overlap tests in the average
case. In this work, we restrict ourselves to AABB trees (axis-aligned bounding box
trees) which allows us to estimate the probability of an overlap of a pair of bounding
boxes by simple geometric reasoning.

152 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.1 General
configuration of the boxes,
assumed throughout our
probability derivations. For
the sake of clarity, boxes are
not placed flush with each
other

6.2.1 Analyzing Simultaneous Hierarchy Traversals

In this section, we will derive a model that allows to estimate the number Nv , the
number of BV overlap tests. This is equivalent to the number of nodes in the BVTT
(remember Fig. 2.4 in Chap. 2) that are visited during the traversal. The order and,
thus, the exact traversal algorithm are irrelevant.

For the most part of this section, we will deal with 2-dimensional BVHs for the
sake of illustration. At the end, we extend these considerations to 3D, which is fairly
trivial.

The general approach of our analysis is as follows. For a given level l of the
BVTT we estimate the probability of an overlap by recursively resolving it to similar
probabilities on higher levels. This yields a product of conditional probabilities.
Then we estimate the conditional probabilities by geometric reasoning.

Let Ñ
(l)
v be the expected number of nodes in the BVTT that are visited on level l.

Clearly,

Ñ (l)
v = 4l · P [

A(l) ∩ B(l) �= ∅]
(6.2)

where P [A(l) ∩ B(l) �= ∅] denotes the probability that any pair of boxes on level l

overlaps. In order to render the text more readable, we will omit the “ �= ∅” part and
just write P [A(l) ∩ B(l)] henceforth.

Let Xl denote the number of nodes we visit on level l in the BVTT.
Overall, the expected total number of nodes we visit in the BVTT is

Ñv(n) =
d∑

l=1

Ñ (l)
v =

d∑
l=1

4lP
[
A(l) ∩ B(l)

]
(6.3)

where d = log4(n
2) = lg(n) is the depth of the BVTT (equaling the depth of the

BVHs).
In order to derive a closed-form solution for P [A(l) ∩ B(l)] we recall the general

equations for conditional probabilities:

P [X ∧ Y] = P [Y] · P [X |Y] (6.4)

6.2 Theoretical Analysis 153

Fig. 6.2 The ratio of the length of segments L and L′ equals the probability of A1 overlapping B1
(left), and A2 overlapping B1 (right), respectively

and, in particular, if X ⊆ Y

P [X] = P [Y] · P [X |Y] (6.5)

where X and Y are arbitrary events (i.e. subsets) in the probability space.
Let o

(l)
x denote the overlap of a given pair of bounding boxes when projected on

the x-axis, which we call the x-overlap. Then,

P
[
A(l) ∩ B(l)

] = P
[
A(l) ∩ B(l) |A(l−1) ∩ B(l−1) ∧ o(l)

x > 0
]

· P [
A(l−1) ∩ B(l−1) ∧ o(l)

x > 0
]

by Eq. (6.5), and then, by Eq. (6.4),

P
[
A(l) ∩ B(l)

] = P
[
A(l) ∩ B(l) |A(l−1) ∩ B(l−1) ∧ o(l)

x > 0
]

· P [
A(l−1) ∩ B(l−1)

]
· P [

o(l)
x > 0 |A(l−1) ∩ B(l−1)

]

Now we can recursively resolve P [A(l−1) ∩ B(l−1)], which yields

P
[
A(l) ∩ B(l)

] =
l∏

i=1

P
[
A(i) ∩ B(i) |A(i−1) ∩ B(i−1) ∧ o(i)

x > 0
]

·
l∏

i=1

P
[
o(i)
x > 0 |A(i−1) ∩ B(i−1)

]
(6.6)

154 6 Evaluation and Analysis of Collision Detection Algorithms

6.2.1.1 Preliminaries

Before proceeding with the derivation of our estimation, we will set forth some
denotations and assumptions.

Let A := A(l) and B := B(l). In the following, we will, at least temporarily, need
to distinguish several cases when computing the probabilities from Eq. (6.6), so we
will denote the two child boxes of A and B by A1,A2 and B1,B2, respectively.

For the sake of simplification, we assume that the child boxes of each BV sit in
opposite corners within their respective parent boxes. According to our experience,
this is a very mild assumption.

Furthermore, without loss of generality, we assume an arrangement of A, B , and
their children according to Fig. 6.1, so that A1 and B1 overlap before A2 and B1 do
(if at all).

Finally, we assume that there is a constant BV diminishing factor throughout the
hierarchy, i.e.,

a′
x = αxax, a′

y = αyay, etc.

Only for the sake of clarity, we assume that the scale of the boxes is about the
same, i.e.,

bx = ax, b′
x = a′

x, etc.

This assumption allows us some nice simplifications in Eqs. (6.7) and (6.11), but it
is not necessary at all.

6.2.2 Probability of Box Overlap

In this section we will derive the probability that a given pair of child boxes overlaps
under the condition that their parent boxes overlap.

Since we need to distinguish, for the moment, between four different cases, we
define a shorthand for the four associated probabilities:

pij := P [Ai ∩ Bj |A ∩ B ∧ ox > 0]

One of the parameters of our probability function is the distance o
(0)
x := δ, by

which the root box B(0) penetrates A(0) along the x axis from the right. Our analysis
considers all arrangements as depicted in Fig. 6.1, where δ is fixed, but B is free to
move vertically under the condition that A and B overlap.

First, let us consider p11 (see Fig. 6.2). By the precondition, A overlaps B , so
the point P (defined as the upper left (common) corner of B and B1) must be on a
certain vertical segment L that has the same x coordinate as the point P . Its length
is ay + by .

Actually, P can be chosen arbitrarily under the condition that it stays fixed on B

as B assumes all possible positions. L would be shifted accordingly, but its length
would be the same.

6.2 Theoretical Analysis 155

Table 6.1 Effect of the BV
diminishing factor αy on the
running time of a
simultaneous hierarchy
traversal

αx · αy T (n)

< 1/4 O(1)

1/4 O(lgn)√
1/8 ≈ 0.35 O(

√
n)

3/4 O(n1.58)

1 O(n2)

Note that for the sake of illustration, segment L has been shifted slightly to the
right from its true position in Fig. 6.2 (left). If in addition A1 and B1 overlap, then
P must be on segment L′.

Thus,

p11 = Length(L′)
Length(L)

= a′
y + b′

y

ay + by

= αy. (6.7)

Next, let us consider p21 (see Fig. 6.2 (right); for the sake of clarity, we re-use
some symbols, such as a′

x). For the moment, let us assume o21,x > 0; in Sect. 6.2.2.1
we estimate the likelihood of that condition.

Analogously as above, P must be anywhere on segment L′, so

p21 = αy = p11

and, by symmetry, p12 = p21. Very similarly, we get p22 = αy (see Figs. 6.3
and 6.4).

At this point we have shown that pij ≡ αy in our model.

6.2.2.1 Probability of X-Overlap

We can trivially bound

P
[
o(i)
x > 0 |A(i−1) ∩ B(i−1)

] ≤ 1

Plugging this into Eq. (6.3), and substituting that in Eq. (6.6) yields

Ñv(n) ≤
d∑

l=1

4l · αl
y = (4αy)

d+1 − 1

4αy − 1
(4αy �= 1)

∈ O
(
(4αy)

d
) = O

(
nlg(4αy)

)
(6.8)

The corresponding running time for different αy can be found in Table 6.1. For
αy > 1/4, the running time is O(nc), 0 < c ≤ 2.

In order to derive a better estimate for P [o(l)
x > 0 |A(l−1) ∩ B(l−1)], we observe

that the geometric reasoning is exactly the same as in the previous section, except

156 6 Evaluation and Analysis of Collision Detection Algorithms

that we now consider all possible loci of point P when A and B are moved only
along the x-axis. Therefore, we estimate

P
[
o(l)
x > 0 |A(l−1) ∩ B(l−1)

] ≈ αx. (6.9)

Plugging this into Eqs. (6.3) and (6.6) yields an overall estimate

Ñv(n) ≤
d∑

l=1

4l · αl
x · αl

y ∈ O
(
nlg(4αxαy)

)
. (6.10)

This results in a table very similar to Table 6.1.

6.2.2.2 The 3D Case

As mentioned above, our considerations can be extended easily to 3D. In 3D, L and
L′ in Eq. (6.7) are not line segments any longer, but 2D rectangles in 3D lying in
the y/z plane. The area of L′ can be determined by (a′

y + b′
y)(a

′
z + b′

z) and the area
of L by (ay + by)(az + bz). Thus,

p11 = area(L′)
area(L)

= (a′
y + b′

y)(a
′
z + b′

z)

(ay + by)(az + bz)
= 4a′

ya
′
z

4ayaz

= αyαz. (6.11)

The other probabilities pij can be determined analogously as above so that p11 =
p12 = p21 = p22 = αyαz.

Overall, we can estimate the number of BV overlap tests by

Ñv(n) ≤
d∑

l=1

4l · αl
x · αl

y · αl
z ∈ O

(
nlg(4αxαyαz)

)
, (6.12)

where d = log4(n
2) = lg(n).

Note that Table 6.1 is still valid in the 3D case.

6.2.3 Experimental Support

Intuitively, not only α should be a parameter of the model of the probabilities (see
Eqs. (6.7) and (6.9)), but also the amount of penetration of the root boxes. This
is not captured by our model, so in this section we present some experiments that
provide a better feeling of how these two parameters affect the expected number of
BV overlap tests.

We have implemented a version of Algorithm 6.1 using AABBs as BVs (in 3D,
of course). As we are only interested in the number of visited nodes in the BVTT,
we switched off the intersection tests at the leaf nodes.

6.2 Theoretical Analysis 157

Fig. 6.3 Notations for computing d
(l)
11 for a child pair. If a′

x > o(l−1), the new distance d
(l)
11 is

d
(l−1)
i,j − 2ω(l) with ω(l) = a

(0)
x α0

x(1 −αx) = a
(0)
x (1 −αx). In the other case, d

(l)
11 equals the overlap

o(l−1)

Fig. 6.4 The case “12” is symmetric to “21”, and the case “22” is trivial. Here, ω(l) =
a

(0)
x α0

x(1 − αx) = a
(0)
x (1 − αx)

Fig. 6.5 Some models of our test suite: Infinity Triant (www.3dbarrel.com), lock (courtesy of
BMW) and pipes

For the first experiment we used a set of CAD objects, each of them with varying
numbers of polygons (see Fig. 6.5).

http://www.3dbarrel.com

158 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.6 The number of
visited BVTT nodes for
models shown in Fig. 6.5 at
distance δ = 0.4

Fig. 6.7 For larger values of
α, our theoretical model
seems to match the
experimental findings fairly
well. In this plot α = 0.8

Figure 6.6 shows the number of BV overlap tests for our models depending on
their complexities for a fixed distance δ = 0.4. Clearly, the average number of BV
overlap tests behaves logarithmically for all our models.

For our second experiment we used artificial BVHs where we can adjust the
BV diminishing factors αx,y,z. As above, the child BVs of each BV are placed in
opposite corners. In addition, we varied the root BV penetration depth δ.

We plotted the results for different choices of α and n, averaged over the range
0.0–0.9 for δ (see Figs. 6.7 and 6.8). For larger α’s, this seems to match our the-
oretical results. For smaller α our model seems to underestimate the number of
overlapping BVs. However, it seems that the asymptotic running time does not de-
pend very much on the amount of overlap of the root BVs, δ (see Figs. 6.9, 6.10 and
6.11).

6.2 Theoretical Analysis 159

Fig. 6.8 Same as Plot 6.7 but
with α = 0.9

Fig. 6.9 The asymptotic
number of overlapping BVs
depends mainly on α, the BV
diminishing factor, and only
to a minor extent on δ, the
penetration depth of the root
BVs. In this plot α = 0.6

6.2.4 Application to Time-Critical Collision Detection

As observed in [10], almost all CD approaches use some variant of Algorithm 6.1,
but often there is no special order defined for the traversal of the hierarchy, which
can be exploited to implement time-critical computing.

Our probability model suggests one way how to prioritize the traversal; for a
given BVH, we can measure the average BV diminishing factor for each sub-tree
and store this with the nodes. Then, during running time, a good heuristic could
be to traverse the sub-trees with lower α-values first, because in these sub-trees the
expected number of BV pairs we have to check is asymptotically smaller than in the
other sub-trees.

In addition, we could tabulate the plots in Figs. 6.12 and 6.13 (or fit a function)
and thus compute a better expected number of BV overlaps during running time of
time-critical collision detection.

160 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.10 Same as Plot 6.9
with α = 0.7

Fig. 6.11 Same as Plot 6.9
with α = 0.8

Fig. 6.12 For each number
of leaves in the BVH, the
distribution of overlapping
BVs seems to be nearly the
same. Each BVH has
n = 65536 leaves

6.3 Performance Benchmark

The theoretic analysis in the previous chapter provides an estimation for the number
of possible bounding volume checks during a simultaneous BVH traversal. How-
ever, the analysis is, until now, restricted to AABB hierarchies. Moreover, it delivers
an estimation only for the number of bounding volumes to be tested, and this means:

6.3 Performance Benchmark 161

Fig. 6.13 Same as Plot 6.12
but with n = 524288 leaves

for Nv in the collision detection cost function (see Eq. (6.1)). A complete theoreti-
cal analysis of different collision detection approaches should also include the other
factors, like the cost for a BV check (Cv), the cost for a BV update (Cu) and, of
course, the number and the cost of the primitive tests (Np and Cp). Especially the
latter depends mainly on the distinctive object. For instance, spheres as bounding
volumes can be checked very fast for overlap, but they fit flat objects very poorly.
In practice this results in a large number of BV tests (a large Nv), but each test is
very cheap, i.e. Cv is small. Moreover, due to the bad object fitting, Np is very large
compared to probably better fitting AABBs. Hence, in this example there is a direct
connection between the number of BV tests, the number of primitive tests and the
shape of the object. A closed formula to solve the cost function (6.1) is not even
known for AABBs, not to mention a solution for all available BVHs and all objects.

Consequently, the theoretical analysis is good to guarantee lower bounds on the
asymptotic running time of collision detection algorithms and it may help to im-
prove the quality of time-critical traversal algorithms or to create better BVHs, but
it is not very helpful when comparing real implementations of different collision de-
tection schemes. However, in most applications that require collision detection, this
collision detection is the computational bottleneck. And in order to gain a maximum
speed of applications, it is essential to select the best suited algorithm.

Unfortunately, it is, not only in theory but also in practice, extremely difficult to
compare collision detection algorithms because in general they are very sensitive
to specific scenarios, like the shape or the size of the object, the relative position
or orientation to each other, etc. Moreover, different collision detection methods
provide different kinds of contact information, e.g. the minimum distance or the
penetration depth.

Only a standardized benchmarking suite can guarantee a fair comparison be-
tween different algorithms. Such a benchmarking suite should include a broad spec-
trum of different and interesting contact scenarios for different kinds of contact in-
formation and a representative set of different objects that do not prefer a special
collision detection method in advance.

In this section, we present such a benchmarking suite for static pairwise col-
lision detection between rigid objects. It has been kept very simple so that other
researchers can easily reproduce the results and compare their algorithms.

The user only has to specify a small number of parameters. Namely, the objects
he wants to test, the number of sample points, and finally, a set of distances or pen-

162 6 Evaluation and Analysis of Collision Detection Algorithms

etration depths. Our algorithm then generates the required number of test positions
and orientations by placing the object in the given contact scenario.

Our benchmarking suite is flexible, robust, and it is easy to integrate other col-
lision detection libraries. Moreover, the benchmarking suite is freely available and
could be downloaded together with a set of objects in different resolutions that cover
a wide range of possible scenarios for collision detection algorithms, and a set of
pre-computed test points for these objects.1 Our benchmarking suite has been al-
ready adopted successfully by other researchers (see e.g. Ernst et al. [5] and Ruffaldi
et al. [16]).

6.3.1 Benchmarking Scenarios

A main distinction factor of collision detection methods is the kind of contact infor-
mation that they provide. As already seen in Chap. 2, this information may be the
minimum distance between a pair of objects, a penetration depth or a simple boolean
answer whether the objects do collide or not. Actually, most freely available colli-
sion detection libraries report only the latter information. Usually, these boolean
algorithms stop the traversal when they find the first pair of intersecting polygons.
However, this is exactly the point of time when the work of algorithms that addi-
tionally compute a penetration depth actually starts. Therefore, we introduce two
different scenarios in order to guarantee a fair comparison.

• Scenario I: Most boolean collision detection methods are based on bounding vol-
ume hierarchies. If the bounding volumes of two objects do not intersect, there is
no collision and they can be rejected very quickly. If two objects overlap, the re-
cursive traversal during the collision check should quickly converge towards the
colliding polygon pairs. The worst case for these algorithms is a configuration
where a lot of BVs overlap, possibly down to the leaves, but the polygons do not
intersect.

Consequently, in this scenario we want to construct configurations where the
objects are in close proximity, but do not overlap.

• Scenario II: was designed to compare also collision detection schemes that addi-
tionally compute a measure for the penetration depth. Their running time usually
increases with increasing amount of intersection between the objects. In order to
compare also this class of algorithms, we compute intersecting object configura-
tions with respect to the amount of overlap.

A configuration denotes the relative position and orientation between two ob-
jects. For rigid objects, such a configuration can be described by six parameters (see
Fig. 6.14): the transformation of object B in the coordinate system of object A, de-
fined by the distance d and the polar coordinates ϕA and θA and the orientation of
object B, defined by the angles ϕB , θB , ψB .

1http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/.

http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/

6.3 Performance Benchmark 163

Fig. 6.14 The relative
position and orientation
between two rigid objects can
be defined by six parameters

Since we cannot foresee the application of a given collision detection algorithm,
the relative positions and orientations are more or less random from a statistical
point of view. Therefore, it seems reasonable to factor these parameters out. We
achieve this for Scenario I by testing as many configurations as possible for a set
of pre-defined distances. For Scenario II, we fix the amount of intersection of the
objects. We choose to use the intersection volume as a measure for the penetration
depth.

Hence, the main challenge of our benchmark is to compute a large set of con-
figurations for a pair of objects and a pre-defined distance or penetration volume,
respectively. In the next section, we will describe two methods to achieve these sets
of configurations. The basic ideas of those methods can be used for both scenarios.

Without loss of generality, it is sufficient to rotate only one of the objects in
order to get all possible configurations, because we can simply transform one of the
objects into the coordinate system of the other. This does not change the relative
position of the objects. Therefore, our search space has basically six dimensions.

However, it is impossible to test a continuous 6D search space of configurations;
therefore, we have to reduce it by sampling. In order to find a large number of
sampling points, we propose two different methods in our benchmarking suite. We
call them the sphere method and the grid method. The sphere method is faster, but
it could miss some interesting configurations; conversely, the grid method is more
accurate but much slower. Both methods start with a fixed rotation. After a cycle
of method-specific translations, the moving object is rotated and the next cycle can
start until a user specified number of rotations is reached.

6.3.1.1 The Grid Method

The first method uses a simple axis-aligned grid to find the translations. The center
of the moving object is moved to the center of all cells. For each of these, the object
is moved towards the fixed object until the required distance or penetration depth is
reached. Then, the configuration is stored. Unfortunately, it is not possible to know
the number of configurations found by this method in advance.

164 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.15 Our
sphere-method uses a fixed
rotation for every cycle. The
moving object is rotated
around the fixed object. After
a cycle is finished, the
rotation is changed

6.3.1.2 The Sphere Method

The main idea of this method is to reduce the time for finding possible configura-
tions. To this end, the 3D search space is reduced to two dimensions by using polar
coordinates. Nevertheless, it might happen that some interesting configurations are
lacking. Within this method, we place the moving object on a sphere around the
fixed object. The sphere should be bigger than the required distance. In the next
step, we move the object towards the fixed object on a straight line through the cen-
ter of the sphere until we reach the required distance or penetration depth, respec-
tively (see Fig. 6.15). Because there could be several points that match the required
distance or penetration depth on the straight line, it is possible to miss some config-
urations (see Fig. 6.16). In addition to the higher speed of this method, it is possible
to define the number of located configurations in advance, because every straight
line leads to exactly one configuration in the case of the distance.

At the end of this procedure, we have got a large number of configurations for a
user specified number of object–object distances or penetration depth. This has to
be done only once as preprocessing step, even if we add another collision detection
library to the set later, or if we move to other platforms.

However, there is still the question of how to compute the required distances and
penetration depth during the search space sampling. In the next two sections, we
describe two different methods for each scenario:

6.3 Performance Benchmark 165

Fig. 6.16 The sphere method will find only configuration (a) for the red and the green objects, but
it will miss configuration (b)

6.3.1.3 Distance Computation

One method to determine the distance between two objects is to use the (boolean)
collision detection algorithms themselves. We can build an offset object from the
fixed object where the offset equals the specified distance. Then, we can conduct
a binary search until we find a point where the moving object is just touching the
offset object. However, offset objects can get very complicated for complex objects.

That is why we propose another method: the PQP-library [6, 11] offers the pos-
sibility to compute the distance between two objects by using swept spheres. With a
given distance, we can also do a binary search until we find a point which matches
the specified distance.

However, distance computing is more complicated than collision detection. Thus,
this method is more time consuming. On the other hand, it is more accurate and less
memory intensive than the offset object method. Therefore, we prefer this method
for our benchmark. Another advantage of this method is that we know the exact
distance between the objects during the binary search. We can use this information
to delete cells in the grid method with a higher distance than the specified one. This
accelerates the search for configurations.

Indeed, our benchmarking suite supports both methods for distance computing,
because PQP is not Open Source software and, therefore, it is not possible to deliver
it directly with our benchmarking suite.

6.3.1.4 Penetration Volume Computation

Computing the penetration volume can be basically performed by using the same
methods as for the distance computations. However, constructing an internal offset
object is more complicated than the computation of an external offset object. There-
fore, we prefer the binary search method using an algorithm that computes the pen-
etration volume instead of the distance. The tetrahedron-based approach described
in Sect. 5.5 can achieve an exact measure for the penetration volume. However, it
is relatively slow. Hence, we additionally included the option to approximate the
penetration volume by using our Inner Sphere Trees (see Sect. 5).

166 6 Evaluation and Analysis of Collision Detection Algorithms

6.3.2 Benchmarking Procedure

The time-consuming part has been done in the previous step. To perform the bench-
mark, we just load the set of configurations for one object. For each object–object
distance and intersection volume, respectively, we start the timing, set the transfor-
mation matrix of the moving object to all the configurations associated with that
distance, and perform a collision test for each of them. After that, we get a maxi-
mum and an average collision detection time for the given distance or intersection
volume, respectively.

6.3.3 Implementation

Besides the distance or the penetration depth between the objects and their con-
figuration, the performance of collision detection libraries mainly depends on the
complexity and the shape of the objects. We used 86 different objects in several res-
olutions in order to cover a wide range of use cases. All of the objects are in the
public domain and can be accessed on our website. In particular, we used models of
the Apollo 13 capsule and the Eagle space transporter, because they are almost con-
vex but have a lot of small details on the surface. To test the performance of collision
detection libraries on concave objects we chose models of a helicopter, a lustre, a
chair, an ATST-walker, and a set of pipes. Moreover, we used a laurel wreath to test
intricate geometries. A buddha model, a model of the Deep Space 9 space station, a
dragon, and the Stanford Bunny were tested as examples of very large geometries.
A model of a castle consists of very small, but also very large triangles. We used it to
test the performance at unequal geometries. Accurate models of a Ferrari, a Cobra,
and a door lock represent typical complex objects for industrial simulations. Addi-
tionally, synthetic models of a sphere, a grid, a sponge, and a torus are included.
Figures 6.17, 6.18 and 6.19 show only some of these objects.

We also provide a set of pre-computed configurations. Therefore, we sampled the
configuration space for each object and each object’s resolution separately. For the
sake of simplicity, we tested a model against a copy of itself.

• Scenario I: We chose a step size of 15◦ for the spherical coordinates and a step
size of 15◦ per axis for the rotations of object B. With these values, we generated
a set of 1 991 808 sample configurations for each distance.

We computed sample configurations for distances from 0 up to 30 % of the ob-
ject size in 1 % steps, because in all example cases, there was no significant time
spent on collision detection for larger distances. To compute the configuration of
two objects with the exact distance we used PQP.

• Scenario II: We used the approximative IST bounding volumes to compute the
configurations, because the exact tetrahedral algorithm is some orders of magni-
tude slower. Although ISTs compute intersection volumes very quickly, we still
had to reduce the sampling of the configuration space. Therefore, we changed the

6.3 Performance Benchmark 167

Fig. 6.17 Some of the objects we used to test the collision detection libraries: a model of a castle,
a helicopter, and a laurel wreath

step size per axis to 30◦. We computed sample configurations for intersection vol-
umes from 0 up to 10 % of the total fixed object volume in 1 % steps. With these
values we generated a set of 268 128 sample configurations for each intersection
volume. Because most applications of collision detection will try to avoid large
intersections, a penetration volume of 10 % should be sufficient as you can see in
Fig. 6.20.

One problem that arises with the configuration computation concerns numeri-
cal stability. Because we are forced to floating point accuracy, it is not possible to
find configurations with an exact distance while doing binary search. On account of
this, we use an accuracy of 0.001 % relative to the size of the fixed object in our
benchmark. Of course, this accuracy can be changed by the user.

However, computing this large amount of configurations requires a lot of com-
putational power or time. In order to accelerate the configuration computation, we
used a PC cluster with 25 cluster nodes, each with 4 Intel Xeon CPUs and 16 GB of
RAM. The time needed to calculate configurations for a complete set of distances
or intersection volumes varies from object to object between 10 h and 200 h.

Overall, there were required 5 600 CPU days to compute all configurations for
each of the 86 objects. All these configurations, as well as the objects and our bench-
marking suite can be downloaded from our web site.2

Moreover, it is easy to include also other objects: the user simply has to specify
the pair of objects he wants to test, the size of the grid, if he wants to use the grid-
method or a step size for the spherical coordinates of the sphere method. Moreover, a
step size for the rotation of the moving object must be defined and, finally, a distance
or a penetration depth. Then, our benchmark automatically generates a set of sample
points for these specified parameters.

In a second run, our benchmark contains a script that tests all available algo-
rithms. It measures the times with an accuracy of 1 msec. Moreover, our bench-
marking suite also offers scripts for the automatic generation of diagrams to plot the
results of the benchmark.

Most collision detection libraries use proprietary internal data structures for data
representation. Therefore, it is not possible to pass all kinds of objects directly to the

2http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/.

http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/

168 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.18 Some more of the test objects: a model of the Apollo 13 capsule, a set of pipes and a
lustre

algorithms. We chose OpenSG, a freely available scenegraph system for object man-
agement, because it offers support for many file formats, it is portable to many oper-
ating systems, and its data structures are well documented and easy to use. We wrote
a wrapper for different collision detection libraries in order to convert the OpenSG
data to the specific required data structures of the collision detection libraries. Dur-
ing initialization, our benchmark simply checks if the dynamically linked libraries
are available and, if so, loads them.

We tested a wide variety of freely available collision detection libraries.

6.3.3.1 Collision Detection Libraries for Scenario I

Most freely available collision detection libraries support only boolean collision
queries. Our benchmark provides wrappers for the following libraries.

• V-Collide: V-Collide, proposed by Hudson et al. [8], is a wrapper with a simple
interface for I-Collide and the RAPID library. In a first step, a sweep-and-prune
algorithm is used to detect potentially overlapping pairs of objects. In a second
step, the RAPID library is used for the exact pairwise test between a pair of ob-
jects. It uses an oriented bounding box test to find possibly colliding pairs of
triangles.

• PQP: PQP [6, 11] is also based on the RAPID library. As with RAPID, PQP uses
oriented bounding boxes. Furthermore, PQP is also able to compute the distance
between the closest pair of points. For distance and tolerance queries, a different
BV type, the so-called swept spheres, is used.

• FreeSolid: FreeSolid, developed by Van den Bergen [26], uses axis-aligned
bounding boxes for collision detection. For a fast collision test between the
AABB hierarchies, the acceleration scheme described by Van den Bergen [25]
is used. FreeSolid can also handle deformations of the geometry.

• Opcode: Opcode, introduced by Terdiman [22], is a collision detection library for
pairwise collision tests. It uses AABB hierarchies with a special focus on memory
optimization. Therefore, it uses the so-called no-leaf case, i.e. BVHs of which the
leaf nodes have been removed. For additional acceleration it uses primitive-BV
overlap tests during recursive traversal, whereas all other libraries described in

6.3 Performance Benchmark 169

this section only use primitive–primitive-tests and BV–BV tests. Like Freesolid,
Opcode also supports deformable meshes.

• BoxTree: The BoxTree, described by Zachmann [30], is a memory optimized ver-
sion of the AABB trees. Instead of storing six values for the extents of the boxes,
only two splitting planes are stored. For the acceleration of n-body simulations,
the libraries offer support for a grid.

• Dop-Tree: The Dop-Tree [31] uses discrete oriented polytopes (where k is the
number of orientations) as BVs. k-DOPs are a generalization of axis aligned
bounding boxes. The library supports different numbers of orientations. The au-
thor mentioned that k = 24 guarantees the highest performance. Therefore, we
also choose this number for our measurements. The set of orientations is fixed.
This library also supports n-body simulation via grids.

6.3.3.2 Collision Detection Libraries for Scenario II

The number of freely available libraries that also support the computation of the
penetration depth is sparse. Moreover, we cannot include penetration depth algo-
rithms that are based on conservative advancement (see Sect. 2.3.3), because these
algorithms require not only the recent configuration, but also the previous config-
uration of the objects. Finally, we included only two algorithms that behave very
differently for our second scenario:

• Voxmap–Pointshell Algorithm: We use an implementation of the Voxmap–
Pointshell algorithm (VPS) that was provided by the Deutsches Zentrum für
Luft- und Raumfahrt (DLR) [17]. VPS uses different data structures for mov-
ing and stationary objects. Fixed objects are represented by a uniform voxel grid
where each voxel stores a discrete distance value. Moving objects are represented
as pointshells. Pointshells are sets of points uniformly distributed on the surface
of the object. Section 2.4.1.2 shows an example of a voxmap and a pointshell. In
our quality benchmark (see Sect. 6.4.5.1) we will additionally explain how these
data structures can be used to compute an appropriate collision response.

• Inner Sphere Trees: The second algorithm is the Inner Sphere Trees that we intro-
duced extensively in Chap. 5. As mentioned before, it computes an approximation
of the penetration volume.

6.3.4 Results

We used the pre-computed configurations described in Sect. 6.3.3 to benchmark the
aforementioned algorithms. We tested Scenario I and Scenario II separately because
a comparison of algorithms providing different kinds contact information cannot be
fair.

170 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.19 Even more objects we used in the performance benchmark: a Chinese dragon, a circular
box and a gargoyle

Fig. 6.20 The “happy
buddha” scene with a total
amount of 10 % intersection
volume. The objects are in
heavy interpenetration;
a configuration that usually
should not occur in
practically relevant scenarios

6.3.4.1 Results for Scenario I

We tested the boolean collision detection libraries on a Pentium D CPU with 3 GHz
and 1 GB of DDR2-RAM running Linux. All source code was compiled with gcc
4.0.2 with optimization -O3 except Opcode. This is, because Opcode was originally
designed for Windows and uses some non-C++-standard code that produces run-
time errors when compiled with optimization -O2 or above. Moreover, the Linux-
version of Opcode produces some false-positive messages when the objects are very
close together. Therefore, the results of Opcode are not directly comparable to the
results of the other libraries. Moreover, we used the boolean version of PQP, which
does not compute distances during the test.

The first reasonable finding of our measurements is that those algorithms which
use the same kind of BVH behave very similar. Our second finding is that all al-
gorithms have their special strengths and weaknesses in different scenarios. For in-
stance, the AABB-based algorithms like FreeSOLID, Opcode, and the BoxTree are
very well suited for regular meshes like the grid or the lustre but also for meshes with
very varying triangle sizes, like the castle (see Figs. 6.21 and 6.22). In these cases,
they were up to four times faster than the OBB-based libraries or the Dop-Tree.

6.3 Performance Benchmark 171

Fig. 6.21 The results of the benchmark for the castle scenario in resolutions with 127 131 vertices.
The x-axis denotes the relative distance between the objects, where 1.0 is the size of the object.
Distance 0.0 means that the objects are almost touching but do not collide. The abbreviations for the
libraries are as follows: bx = BoxTree, do = Dop-Tree, pqp = PQP, vc = V-Collide, op = Opcode,
so = FreeSOLID. The AABB-based algorithms perform best in this kind of scenarios

Fig. 6.22 The results of the
benchmark for the grid scene
with 414 720 vertices. The
notation is the same as in
Fig. 6.21

This is because in these test cases, AABBs fit the objects very well and, therefore,
the algorithms can benefit from their faster collision check algorithm.

When we used concave and sparse objects, like the lustre or the ATST, or objects
with lots of small details, like the Apollo capsule, the situation changed completely
and the OBB-based algorithms, namely PQP and V-Collide, performed much better
than the AABB-based libraries (see Figs. 6.23 and 6.24). This is because with these
kinds of objects, a tight fitting BVH seems to gain more than a fast BV test.

A special role played the DOP-Tree which combines the fast BV tests of the
AABB-based algorithms with the tight BVs of the OBB-based libraries. As ex-

172 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.23 The results of the
benchmark for the Apollo
capsule with 163 198. In these
test cases, the OBB-based
algorithms are much faster
than the AABB-based
libraries

Fig. 6.24 The results of the
benchmark for the ATST
walker with 20132 vertices.
Like in the Apollo case
(Fig. 6.23), the OBB-based
algorithms are much faster
than the AABB-based
libraries

pected, this BVH is placed between the other two kinds of algorithms in most of the
test scenarios.

Another interesting aspect we wanted to benchmark is the dependency on the
complexity of the objects. Therefore, we tested all our models in different resolu-
tions. The surprising result was that there was no general dependency on the com-
plexity for the algorithms we tested. For instance, in the lustre scene, the times in-
creased nearly linearly with the number of polygons for the AABB-based libraries,
whereas it is nearly constant for the OBB-based algorithms. In the grid scenario,
the increase was about O(n logn) for all algorithms (see Fig. 6.26). In the castle
scene, the collision detection time seems to be independent from the complexity
(see Fig. 6.27) and in the chair scene, the collision detection time decreased for all
algorithms with an increasing object complexity (see Fig. 6.28).

Summarizing, there is no all-in-one device suitable for every purpose. Every
algorithm has its own strength in special scenarios. Therefore, the users should
check their scenario carefully when choosing a special collision detection algorithm.

6.3 Performance Benchmark 173

Fig. 6.25 The results of the
benchmark for the lustre
scene for a distance of 1 %
relative to the object size. The
x-axis denotes the number of
vertices divided by 1000. The
time for collision detection in
this scene increases nearly
linearly for the AABB-based
algorithms

Fig. 6.26 The results of the
benchmark for the grid scene
for a distance of 1 % relative
to the object size. The x-axis
denotes the number of
vertices divided by 1000. In
contrast to the lustre scene
(Fig. 6.25) the running time
seems to increase in
O(n logn) for all algorithms

A good compromise seems to be the Dop-Tree, because it combines tight BVs with
fast BV tests. Moreover, in some cases, it could be helpful to increase the complex-
ity of the model in order to decrease the time for collision detection, but this does
not work in all cases. However, in nearly all test cases, all libraries are fast enough
to perform real time collision checks even for very complex objects.

6.3.4.2 Results for Scenario II

In our second scenario, we tested the libraries on an Intel Core2 CPU 6700 @
2.66 GHz and 2 GB of RAM running Linux. All source code was compiled with gcc
4.3 and optimization setting -O3. Both algorithms that we included in our bench-
mark, IST as well as VPS (see Sect. 6.3.3.2), work independent of the object’s com-
plexity. Therefore, we chose the objects in their highest resolution to compute the
required data structures, the sphere packing and the voxmap and pointshell, respec-
tively. The running time of VPS scales linearly with the size of the pointshell. How-
ever, the limiting factor of the VPS is actually the high memory consumption of the

174 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.27 The dependency of
the collision detection time
on the complexity of the
models in the castle scene.
The distance is fixed to 1 %
of the object size. The
collision detection time
seems to be independent of
the complexity

Fig. 6.28 The dependency of
the collision detection time
from the complexity of the
models in the chair scene.
Again, the distance is fixed to
1 % of the object size. In
contrast to the castle scene
(see Fig. 6.27), the collision
detection time decreases with
an increasing complexity

voxmap. For our measurements, we included the highest resolution for the voxmap
that just fits into the main memory. The running time of the IST algorithms depends
mainly on the number of inner spheres. Therefore, we included different sphere
packing resolutions in our measurements.

In case of penetrating objects, we got very similar results for almost all objects
in both cases, maximum and average time. Figures 6.29 and 6.30 show the aver-
age and maximum running time int the gargoyle scene, Figs. 6.31 and 6.32 show
the same plots for the buddha scene. The running time of the ISTs is sub-linear in
all cases. Lower and mid-size sphere packings up to 100k spheres outperform the
VPS algorithm significantly and they require less than 1 millisecond of computation
time in scenarios of small overlaps. Therefore, they are very well suited for haptic
rendering. Surprisingly, the running time of the VPS algorithm is not constant as
expected. In the worst case, the maximum running time exceeds the average run-
ning time by a factor of 2. This is probably due to caching effects. Moreover, the
running time seems to increase linearly with a linear increasing penetration volume.

6.3 Performance Benchmark 175

Fig. 6.29 Scenario II,
average running time in the
happy buddha scene: on the
x-axis you find the amount of
overlap in percent of the
object’s total volume. The
number in parentheses after
IST denotes the number of
spheres in thousands. The two
numbers after VPS denote the
number of voxels and points
in thousands, respectively

Fig. 6.30 Scenario II,
maximum running time in the
happy buddha scene

We suppose that this behavior is due to an increasing amount of intersecting points
and consequently, an increasing amount of collision response computations.

In order to evaluate this, we also included timings of both algorithms in Sce-
nario I, and this means: with objects in close proximity but without overlap (see
Figs. 6.33 and 6.34 for the average and maximum running time, respectively). As
expected, the running time of the VPS algorithm is almost linear. However, the ISTs
are much faster, even with very detailed sphere packings with up to 800k inner
spheres.

Summarizing, the results of our performance benchmark show that it is possible
to compare quite different collision detection libraries with respect to their running
time. Moreover, our tests can be used to determine objects and a placement of pairs
of objects that are not ideal for the special algorithm.

However, the computation time is not enough to fully assess a collision detection
algorithm. Often, the quality of the collision responses is another important factor.
We will discuss this in more detail in the next section.

176 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.31 Scenario II,
average running time in the
gargoyle scene

Fig. 6.32 Scenario II,
maximum running time in the
gargoyle scene

6.4 Quality Benchmark

In order to make games or virtual environments realistic, one of the fundamental
technologies is collision handling. Beside the detection of collisions among vir-
tual objects, it computes a collisions response (such as penetration depth, contact
points, and contact normals) and finally feeds these into a physics-based simulation
or force-feedback algorithm.

Especially with forces, human perception is very sensitive to unexpected discon-
tinuities both in magnitude and direction [9]. This effect is aggravated particularly
when both virtual and haptic feedback are provided to the user: it is known that vi-
sual and tactical senses are treated together in a single attentional mechanism and
wrong attention sensing can affect the suspension of disbelief [20]. Consequently, it
is essential that collision detection algorithms provide stable and continuous forces
and torques even in extreme situations, like high impact velocities or large contact
areas. Therefore, a benchmarking suite for collision detection should not only assess
its performance but also the quality of its collision response.

6.4 Quality Benchmark 177

Fig. 6.33 Scenario I with
ISTs and VPS, average
running time in the fish scene

Fig. 6.34 Scenario I with
ISTs and VPS, maximum
running time in the fish scene

In order to determine the quality of the collision response of an algorithm, we
cannot simply re-use the configurations of the performance benchmark and measure
the force and torque vectors because computing realistic forces and torques from
detailed objects in complex contact scenarios is highly non-trivial.

Because of that, we propose to use fairly simple scenarios and geometries to test
the quality of the collision response. We believe that this approach is even more
warranted because different collision handling systems use different measures for
the force and torque computations. For instance, penalty-based methods usually use
a translational penetration depth or the penetration volume; impulse-based collision
response schemes often need the first time of impact.

Another advantage of simple scenarios is that we can model them. This allows
us to calculate the theoretically expected forces and torques analytically for differ-
ent collision response schemes. The comparison of this analytically derived ground
truth data with the data gathered from the benchmarked algorithms allows us to de-
fine several measures, such as deviations and discontinuities of forces and torques,
or the measurement of noise.

178 6 Evaluation and Analysis of Collision Detection Algorithms

Our benchmarking suite contains several artificial scenes that support different
challenges for collision handling schemes, including scenarios with thin sheets and
large contact areas.

Summarizing, our quality benchmarking suite proposed in this section con-
tributes:

• an evaluation method for force and torque quality that analyzes both magnitude
and direction values with respect to contact models;

• a validation of our proposed benchmark;
• and a thorough evaluation of two rather different collision detection algorithms.

This empirically proves that our methodology can become a standard evalua-
tion framework. The quality benchmarks allows the identification of the specific
strengths and weaknesses and thus, a realistic rating of each benchmarked algo-
rithm. Moreover, our benchmark helps to identify specific scenarios where an algo-
rithm’s collision response diverges from the correct results.

6.4.1 Force and Torque Quality Benchmark

Our quality benchmark evaluates the deviation of the magnitude and direction of the
virtual forces and torques from the ideal prediction by a model. The ideal force and
torque will be denoted by F i and T i, respectively, while the ones computed by one
of the collision detection algorithm will be denoted by F m and T m, which we will
also call “measured forces”.

Consequently, the scenarios in this benchmark should meet two requirements:

• they should be simple enough so that we can provide an analytical model;
• they should be a suitable abstraction of the most common contact configurations

in force feedback or physics-based simulations.

In the following, we will introduce the implemented scenarios (see Sect. 6.4.2)
and the methodology that we used to evaluate force and torque quality (see
Sects. 6.4.3 and 6.4.4).

6.4.2 Benchmarking Scenarios

Figure 6.35 shows all scenarios and their specific parameters. We will explain the
details in the following.

• Scenario I (a, b): Translation with Constant Penetration
A cone is translated while colliding with a block, maintaining a constant pen-
etration. We chose a constant penetration of δ = 1

3H = 2
3 r and a length of the

trajectory of L + 2a. Two situations have been differentiated in this scenario:

6.4 Quality Benchmark 179

Fig. 6.35 Scenarios in the
force and torque quality
benchmark as explained in
Sect. 6.4.2. The upper row
shows 3D snapshots, whereas
the lower displays
parametrized schematics.
Trajectories are represented
with dashed curves. Expected
relevant forces and/or torques
are shown with vectors.
Coordinate systems are
placed in points where forces
and torques are
measured—for the cone and
the sphere this point is in their
AABB center, whereas the
position in the z axis for the
“Pins” object is in the middle
of the pin

(a) h > δ and
(b) h → 0, i.e. the block is a thin rectangle.

Ideally, only forces should appear and they should have only a component in the
positive y direction. Moreover, these forces should be constant while the cone
slides on the block. This scenario evaluates the behavior of algorithms with ob-
jects that have flat surfaces or sharp corners. In addition, scenario Ib evaluates
how algorithms handle the so-called tunneling effect which occurs when thin or
non-watertight objects yield too small forces and torques, which allows interpen-
etration.

• Scenario II: Revolution with Constant Penetration
A sphere is revolved around a cylinder maintaining a constant penetration. The
radius of the orbit is ρ = 5

3R = 5
3 r . Ideally, only forces should appear (no torque)

and they should have uniquely sinusoid components in x and y directions. In ad-
dition to that, the measured force magnitude should be constant while the sphere
revolves around the cylinder. This is a suitable benchmark for environments with
objects that have smooth, rounded surfaces.

• Scenario III: Rotation of a Square Pin in a Matching Square Hole
A so-called pins object with a rectangular and a circular pin and a matching holes
object compose this scenario. The rectangular pin is introduced in the rectangular

180 6 Evaluation and Analysis of Collision Detection Algorithms

hole and is turned around its axis. The size of the objects is b = 2a, the side of the
rectangular pin is c = 2r and it has a length of a in the z direction. The maximum
rotation angle is φmax = 30◦. Ideally, only torques should appear and they should
have only a component in the positive z direction. Moreover, the measured torque
magnitude should increase as φ increases. This scenario evaluates the behavior
of algorithms with large contact areas.

• Scenario IV: Revolution of a Pin Object around the Central Axis of a Hole
This scenario uses the same objects as in Scenario III. The start configuration is
shown in Fig. 6.35. Then, the pins object is revolved around the central axis of the
second one. The orbit radius is ρ = 1

10c = 1
20 r . The expected forces and torques

are those that bring the pins object towards the central axis, i.e. sinusoidal forces
on the xy plane and torques with only a z component. This scenario evaluates the
behavior of algorithms with large and superfluous contact areas that should not
generate collision reactions, such as the contact between objects in the xy plane.
Besides that, this scenario contains small displacements around a configuration
in which two objects are in surface contact. These small displacements should
generate the corresponding small forces that push the pins object back to the
only-surface-contact configuration.

6.4.3 Evaluation Method

For each scenario, we measured the following values and recorded them with respect
to their time stamp k:

(a) forces F m
k ,

(b) torques T m
k ,

(c) penalty values qm
k , and

(d) computation time tk .

In order to assess these measured values, we have developed ideal analytical models
of the expected forces and torques (i). The directions of these force and torque
vector models are shown in Fig. 6.35, whereas the magnitudes are considered to be
proportional to analytically derivable collision properties, such as

1. ‖F i‖ or ‖T i‖ ∼ p, translational penetration depth,
2. ‖F i‖ or ‖T i‖ ∼ V , intersection volume.

In each scenario we have determined p and V , respectively, as follows:

• Scenario Ia: p ∼ δ and V ∼ δ3

• Scenario Ib: p ∼ δ

• Scenario II: p = ρ = const and V = const
• Scenario III: p ∼ sin(

φ
2) − 1 and V ∼ (1

tan(φ)
+ 1

tan(π
2 −φ)

)(
√

2 cos(π
4 − φ) − 1)2

• Scenario IV: p = ρ = const and V = c2 − (c − ρ| cosφ|)(c − ρ| sinφ|) + πr2 −
4
∫ r

ρ
2
(r2 − τ 2) dτ

6.4 Quality Benchmark 181

In order to evaluate the quality of the magnitude, the standard deviation of mea-
sured (m) and ideal (i) curves is computed:

σF = 1

N

√√√√ N∑
k=1

(∥∥F̂ i
k

∥∥ − ∥∥F̂ m
k

∥∥)2
, (6.13)

where F̂ = F
‖F‖ max

, and N is the total amount of time stamps. Analogously, the
indicator for direction deviation is the angle between ideal and measured values; the
average value of this angle is

γF = 1

N

N∑
k=1

arccos
F i

kF
m
k

‖F i
k‖‖F m

k ‖ . (6.14)

Deviation values for the torques (σT ,γT) are computed using T m
k and T i

k , instead of
force values.

Additionally, we track the amount of noise in the measured signals. A color coded
time–frequency diagram using short time Fourier transform can be used to visualize
the noise in time domain. In order to define a more manageable value for evalua-
tions, we compute the ratio

ν =
∫

Sm∫
Si

(6.15)

where Sm is the energy spectral density of the measured variable (e.g. ‖F m‖) and
Si is the spectrum of the corresponding ideal signal. ν can be evaluated for forces
and torques directions and magnitudes separately.

6.4.4 Equivalent Resolutions for Comparing Different Algorithms

The algorithms that we included in our quality benchmark, VPS and IST, are both
approximative. This means that they both allow a trade-off between quality and
performance. Usually, increasing the resolution of the data structures improves the
quality of the contact information, whereas computation time also increases.

However, when comparing such approximative collision detection algorithms, it
would be nice to compare their quality for a pre-defined average performance, or
to compare their performance for a given desired quality. In this context, “equiva-
lent” means a resolution such that both algorithms exhibit the same quality of forces
and torques. In order to guarantee such a fair comparison, we define the equivalent
resolution.

Considering two objects in a scenario (A is moving, B is fixed), we define the
resolution pair (eA

opt, e
B
opt) to be the optimum equivalent resolution pair:

(
eA

opt, e
B
opt

) = min
{
η
(
eA, eB

) | t̄(eA, eB
) = τ

}
, (6.16)

182 6 Evaluation and Analysis of Collision Detection Algorithms

where τ is the maximum admissible average computation time, t̄ and η = ωσ σ +
ωγ γ̄ , the equally weighted sum of the standard deviations.

In practice, since time and quality functions of Eq. (6.16) are unknown, we have
to derive the equivalence numerically. Therefore, we performed several tests. Ac-
tually, we defined three different resolutions within a reasonable3 domain for each
object A and B and for each scenario. Overall, we defined sets of 3 × 3 = 9 pairs
(eA, eB) for the objects. Then, the sets of nine corresponding tests were performed,
recording all necessary average computation times (t̄) and the global deviations (η)
in each of them. Next, we applied a linear regression to values of t̄ , obtaining the
plane which predicts the average computation time for a resolution pair in each sce-
nario. Each of these planes was intersected with τ = 0.9 ms,4 obtaining the lines
formed by all (eA, eB) expected to have t̄ = 0.9 ms for each scenario.

Afterwards, we performed a linear interpolation of η values to selected points
on these lines. And finally, these interpolated values were used to get a cubic ap-
proximation curve for η in each scenario. The minimum of each of these curves is
situated in (eA

opt, e
B
opt) for the corresponding scenario.

Being aware of the fact that further refinements would yet be possible, it is con-
sidered that the compromise reached is accurate enough to make a fair compari-
son. The average absolute difference between predicted and measured η values with
equivalent resolutions was 1.2 % for the VPS algorithm and 2.1 % for the IST al-
gorithm.

6.4.5 Results

In order to test our benchmark, we compared our ISTs (see Chap. 5) with the widely
used Voxmap–Pointshell (VPS) approach (see Sect. 2.4.1.2). Both algorithms facil-
itate and assume a penalty-based haptic rendering method, which allows colliding
objects to penetrate each other to some degree. The two algorithms use different def-
initions of penetration: the one by VPS is closely related to the (local) translational
penetration depth, while the one by IST is the intersection volume.

We will start with a short recap of the VPS algorithm and explain how the algo-
rithm computes the force and torque values. Then, we will discuss the output of our
quality benchmark.

6.4.5.1 Force and Torque Computation by VPS

The Voxmap–Pointshell algorithm was initially presented by McNeely et al. [13].
The algorithm computes collision forces and torques of potentially big and complex
geometries with 1 kHz update rates. To achieve this goal, two types of data structures

3Between coarse but acceptable and too fine resolutions.
4Collision detection and force computation must lie under 1 ms; hence we chose a reasonable value
under this barrier.

6.4 Quality Benchmark 183

Fig. 6.36 On the left, a layered voxmap (bottom) is colliding with red pointshell points (top),
yielding red bold collision forces. On the right, the computation of a single collision force related
to a colliding point is graphically shown. Single collision forces are computed scaling the normal
vector (ni) of the colliding point (Pi) with the sum of the local (niεi) and global (vs) penetration
of the point in the object

are generated offline for each colliding object-pair: a voxmap and a pointshell (see
Fig. 6.36). In this work, we used the fast and accurate voxmap generator presented
by Sagardia et al. [17].

Voxmaps are uniform 3D grids in which each voxel stores a discrete distance
value v ∈ Z to the surface; e.g. for surface voxels v = 0 and for first inner layer
voxels v = 1. Pointshells are sets of points uniformly distributed on the surface of
the object; each point has additionally an inwards pointing normal vector.

During collision detection, the normal vectors ni of colliding points Pi—those
which are in voxels with v ≥ 0—are accumulated, weighted by their penetration
in the voxmap to compute the force F. Summarizing, this results in the following
equation for the local forces:

Fi = max{niεi︸︷︷︸
(I)

+ vs︸︷︷︸
(II)

,0}ni (6.17)

where

(I) denotes a local continuous component, the distance to colliding voxel center in
normal vector direction, and

(II) denotes a global discrete component; it is related to the voxmap layer.

The global force acting on the whole object can easily be computed by summing
up all local forces:

Ftot =
∑

∀i|v(Pi)≥0

Fi . (6.18)

Similarly, we can define local torques Ti : Ti are the cross products between local
forces Fi and point coordinates Pi , assuming that all magnitudes are expressed in
the pointshell frame. We assume that the center of mass is located at the origin:

Ti = Pi × Fi . (6.19)

184 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.37 Forces in Scenario I

At the end, all local torques Ti are summed to compute the total torque Ttot.

Ttot =
∑

∀i|v(Pi)≥0

Ti . (6.20)

The forces and torques of the ISTs were computed according to our new volu-
metric collision response scheme described in Sect. 5.4.

6.4.5.2 Results

In this section we present the results of our quality benchmark applied to the VPS
and the IST data structures. For each scenario, described in Sect. 6.4.2, we store
the collision forces F ∈ R

3 and collision torques T ∈ R
3 that were returned by the

algorithms. The magnitudes ‖F‖, ‖T‖, the orientations d of these vectors and the
direction deviations between the model and the measured values γ are analyzed. As
in the case of the performance benchmark, all objects and paths used in the force
and torque quality benchmark (see Fig. 6.35) are available on our website.5 We
tested them on an Intel Core2Quad CPU Q9450 @ 2.66 GHz and 3.4 GB of RAM
running Linux SLED 11. The libraries were compiled with gcc 4.3.

We have chosen the voxel size u in the voxelized objects such that H = 60u, h =
30u (Scenario I), R = 30u (a penetration of 20u is maintained) (Scenario II), c =
20u (Scenario III), and ρ = 20u (Scenario IV). The number of voxels was chosen
to be 728 × 24 × 303 voxels for the block in Scenario I while the cone has 15 669
pointshell points. In Scenario II, for the cylinder, 491 × 816 × 491 voxels we used
and 12 640 pointshell points for the sphere. In Scenario III the number of voxels was
chosen to be 1 204×604×603 for the block and 12 474 pointshell points for the pin
objects. For the last scenario the number of voxel was chosen to be 243×123×123
voxels for the block and 13 295 pointshell points for the pin.

Figures 6.37, 6.38, 6.39, and 6.40 show example plots of the force and torque
magnitude analysis in different scenarios. In detail, Fig. 6.37 contains the expected
model curves for ideal force magnitudes in Scenario I. Measured curves are super-
posed to expected curves to give an idea of how reliable they are derived with re-
spect to these proposed collision response models. The standard deviation between

5http://cgvr.informatik.uni-bremen.de/.

http://cgvr.informatik.uni-bremen.de/

6.4 Quality Benchmark 185

Fig. 6.38 Forces in Scenario II

Fig. 6.39 Average angle between analytical model and measured values in Scenario II

measured and ideal curves yields the magnitude deviation σF = 0.043 for VPS and
σF = 0.176 for ISTs. In Scenario III, the standard deviation between measured and
ideal curves yields the magnitude deviation σT = 0.169 and σT = 0.112 for the
torques, respectively. Figure 6.38 shows the curve of ‖T ‖

‖F‖ , which should be 0 for
Scenario II, since ideally no torques should appear. This quotient gives information
about the magnitude of forces or torques that actually should not occur.

In Fig. 6.41 and 6.42, the force and torque components are displayed, giving a
visual idea of force and torque direction deviations. Figure 6.39 shows this direction
deviation for Scenario II; the associated γ values are γF = 2.40 for VPS and γF =
7.64 for ISTs.

Finally, Fig. 6.43 (VPS) and 6.44 (IST) visualize the results of our noise measure-
ment of the force in the x-direction in Scenario III. The color coded time–frequency
diagrams visualize the amount, the time, and the frequency of the signal’s noise.
The corresponding ν values are νF = 0.620 for VPS and νF = 1.12 for ISTs, where
values closer to 1 denote a minor amount of noise.

All these results show that VPS and IST are very close to their underlying mod-
els and that different haptic rendering algorithms can be evaluated. All these results
show that our models for penetration are suitable. Furthermore, they prove empir-
ically that our benchmark is valid. Hence, these empirical results show that our
benchmark can be helpful in practice. In particular, the benchmark also reveals sig-
nificant differences between the algorithms: whereas ISTs seem to have a higher
standard deviation from the ideal model, VPS tends to deliver a noisier signal qual-
ity. The decision between accuracy and noise could be essential for some applica-
tions.

186 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.40 Torques in Scenario III

Fig. 6.41 Torques in Scenario III

6.5 Conclusion and Future Work

In summary, we have presented three different methods that allow a theoretical anal-
ysis as well as a practical relevant comparison of different collision detection and
response methods.

In Sect. 6.2 we have presented an average-case analysis for simultaneous AABB
tree traversals, under some assumptions about the AABB tree, which provides a
better understanding of the performance of hierarchical collision detections than
that which was observed in the past. Our analysis is independent of the order of
the traversal. In addition, we have performed several experiments to support the
correctness of our model. Moreover, we have shown that the running time behaves
logarithmically for real-world models, even for a large overlap between the root
BVs.

6.5 Conclusion and Future Work 187

Fig. 6.42 Forces in Scenario IV

Fig. 6.43 Noise in the force signal of the VPS algorithm. The colored picture shows the time–fre-
quency domain: the colors decode the intensity of the frequency, where dark marks a zero intensity

In Sect. 6.3, we have presented an easy to use benchmarking method and a rep-
resentative suite for benchmarking objects for static collision detection algorithms
for rigid objects. Our benchmark is robust, fast, flexible, and it is easy to integrate

188 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.44 Noise in the force signal of the IST algorithm. Again, the colored picture shows the
time–frequency domain: the colors decode the intensity of the frequency, where dark marks a zero
intensity

other collision detection libraries. We used our benchmarking suite to test several
freely available collision detection libraries with a wide variety of objects. This
comparison of several algorithms yields a simple rule for choosing the optimal al-
gorithm.

Finally, in Sect. 6.4, we have introduced a model that allows a fair comparison
of the quality of different collision response methods. The results maintain the va-
lidity of our analytically derived force and torque models. In addition, the specific
differences between the two benchmarked algorithms, VPS and IST, also emphasize
the importance of a standardized benchmark for entirely different collision response
approaches. Moreover, they show that the quality of penalty forces and torques of
quite different collision detection algorithms can easily be benchmarked with our
proposed methods.

Our performance benchmark, as well as our quality benchmark, have been
published as open source; so it will be a great asset to users who want to fig-
ure out the best suited collision handling scheme. Moreover, it will help re-
searchers who want to compare their algorithms to other approaches with a
standardized benchmark that delivers verifiable results. Additionally, it helps to
identify geometric worst cases for the collision detection method or problem-
atic cases in which the collision response scheme diverges from the correct re-
sults.

6.5 Conclusion and Future Work 189

6.5.1 Future Work

Our work can be used as the basis of different future directions: on the one hand,
it would be interesting to provide extensions of our theoretical analysis and practi-
cal benchmarks, on the other hand, our results can be directly used to realize new
collision detection schemes.

For instance, several existing methods for hierarchical collision detection may
benefit directly from our theoretical analysis and model in Sect. 6.2. Especially in
time-critical environments or real-time applications it could be very helpful to pre-
dict the running time of the collision detection process only with the help of two
parameters that can be determined on-the-fly. We will try to speed up probabilistic
collision detection by the heuristics mentioned above.

We have already tried to derive a theoretical model of the probabilities that de-
pends on the BV diminishing factor as well as the penetration distance of the two
root BVs. This would, hopefully, lead to a probability density function describing
the x-overlaps, thus yielding a better estimation of Ñ

(l)
v in Sect. 6.2.2. However, this

challenge seems to be difficult.
Furthermore, a particular challenge will be a similar average-case analysis for

BVHs utilizing other types of BVs, such as DOPs or OBBs. The geometric reason-
ing would probably have to be quite different from the one presented here. More-
over, it would be very interesting to apply our technique to other areas, such as
ray tracing, and we believe one could exploit these ideas to obtain better bounding
volume hierarchies.

Also our benchmarking suite offers possibilities for further extensions: for ex-
ample, the design of a benchmarking suite for more than just two objects and for
continuous collision detection algorithms. Another promising future project would
be a standardized benchmarking suite for deformable objects; this is still missing but
could be very helpful for users. Moreover, a comparison of the numerical stability
of different implementations could be useful. For instance, during our research we
recognized that some algorithms find significantly less intersecting triangles during
collision queries than other algorithms (see Fig. 6.45). And the fastest algorithm
does not help if it misses interesting contacts.

An application of our results could be the implementation of a performance op-
timized collision detection library. It could internally implement several different
algorithms and choose either of them on a case-to-case basis according to the shape
of the objects and their configuration. Moreover, it would be nice to generate a rank-
ing of the different measurements in our quality benchmark, like continuity of forces
and torques in magnitude and direction or the noise of the signals, with respect to
psychophysical cognition. To achieve that, elaborate user studies need to be done,
including testbeds with different haptic devices and investigations of the perception
of the different parameters. Moreover, it would be nice to include more complex
physics-based collision response phenomena like friction.

190 6 Evaluation and Analysis of Collision Detection Algorithms

Fig. 6.45 The intersecting triangles that were found by PQP (left) and CollDet (right) in a typical
CAD simulation. You can see that CollDet finds many more intersecting triangles

References

1. Boeing, A., & Bräunl, T. (2007). Evaluation of real-time physics simulation systems. In Pro-
ceedings of the 5th international conference on computer graphics and interactive techniques
in Australia and Southeast Asia (p. 288). New York: ACM.

2. Cao, X. R. (2006). A framework for benchmarking haptic systems. Ph.D. thesis, Simon Fraser
University.

3. Caselli, S., Reggiani, M., & Mazzoli, M. (2002). Exploiting advanced collision detection li-
braries in a probabilistic motion planner. In WSCG (pp. 103–110).

4. Dobkin, D. P., & Kirkpatrick, D. G. (1985). A linear algorithm for determining the separation
of convex polyhedra. Journal of Algorithms, 6(3), 381–392.

5. Ernst, M., Schneider, M., & Greiner, G. (2008). Collision detection with early split clipping.
In Proceedings computer graphics international (CGI 2008).

6. Gottschalk, S., Lin, M. C., & Manocha, D. (1996). Obbtree: a hierarchical structure for rapid
interference detection. In Proceedings of the 23rd annual conference on computer graphics
and interactive techniques, SIGGRAPH ’96 (pp. 171–180). New York: ACM. ISBN 0-89791-
746-4. doi:10.1145/237170.237244. URL http://doi.acm.org/10.1145/237170.237244.

7. Govindaraju, N. K., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M. C., &
Manocha, D. (2005). Interactive collision detection between deformable models using chro-
matic decomposition. ACM Transactions on Graphics, 24(3), 991–999.

8. Hudson, T. C., Lin, M. C., Cohen, J., Gottschalk, S., & Manocha, D. (1997). V-COLLIDE:
accelerated collision detection for VRML. In R. Carey & P. Strauss (Eds.), VRML 97: second
symposium on the virtual reality modeling language. New York: ACM Press.

9. Kim, L., Kyrikou, A., Desbrun, M., & Sukhatme, G. S. (2002). An implicit-based haptic
rendering technique. In IEEE/RSJ international conference on intelligent robots and sys-
tems, EPFL, Switzerland, Oct. (pp. 2943–2948). URL http://cres.usc.edu/cgi-bin/print_pub_
details.pl?pubid=54.

10. Klein, J., & Zachmann, G. (2003). Time-critical collision detection using an average-
case approach. In Proceedings of the ACM symposium on virtual reality software and
technology, VRST ’03 (pp. 22–31). New York: ACM. ISBN 1-58113-569-6. doi:10.1145/
1008653.1008660. URL http://doi.acm.org/10.1145/1008653.1008660.

11. Larsen, E., Gottschalk, S., Lin, M. C., & Manocha, D. (1999). Fast proximity queries
with swept sphere volumes, November 14. URL html.http://citeseer.ist.psu.edu/408975.html;
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/ssv.ps.

12. Lin, M. C., & Canny, J. F. (1991). A fast algorithm for incremental distance calculation. In
IEEE international conference on robotics and automation (pp. 1008–1014).

http://dx.doi.org/10.1145/237170.237244
http://doi.acm.org/10.1145/237170.237244
http://cres.usc.edu/cgi-bin/print_pub_details.pl?pubid=54
http://cres.usc.edu/cgi-bin/print_pub_details.pl?pubid=54
http://dx.doi.org/10.1145/1008653.1008660
http://dx.doi.org/10.1145/1008653.1008660
http://doi.acm.org/10.1145/1008653.1008660
http://citeseer.ist.psu.edu/408975.html
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/ssv.ps

References 191

13. McNeely, W. A., Puterbaugh, K. D., & Troy, J. J. (1999). Six degrees-of-freedom haptic ren-
dering using voxel sampling. ACM Transactions on Graphics, 18(3), 401–408 (SIGGRAPH
1999).

14. Otaduy, M. A., & Lin, M. C. (2003). CLODs: Dual hierarchies for multiresolution collision
detection. In Symposium on geometry processing (pp. 94–101).

15. Ruffaldi, E., Morris, D., Edmunds, T., Barbagli, F., & Pai, D. K. (2006). Standardized evalua-
tion of haptic rendering systems. In Haptic interfaces for virtual environment and teleoperator
systems, IEEE VR.

16. Ruffaldi, E., Morris, D., Barbagli, F., Salisbury, K., & Bergamasco, M. (2008). Voxel-
based haptic rendering using implicit sphere trees. In Proceedings of the 2008 sym-
posium on haptic interfaces for virtual environment and teleoperator systems, HAP-
TICS ’08 (pp. 319–325). Washington: IEEE Computer Society. ISBN 978-1-4244-2005-6.
doi:10.1109/HAPTICS.2008.4479964.

17. Sagardia, M., Hulin, T., Preusche, C., & Hirzinger, G. (2008). Improvements of the voxmap-
PointShell algorithm-fast generation of haptic data-structures. In 53rd IWK-Internationales
Wissenschaftliches Kolloquium, Ilmenau, Germany.

18. Schömer, E., & Thiel, C. (1995). Efficient collision detection for moving polyhedra. In 11th
annual symposium on computational geometry, June (pp. 51–60).

19. Schömer, E., & Thiel, C. (1996). Subquadratic algorithms for the general collision detection
problem. In 12th European workshop on computational geometry, March (pp. 95–101).

20. Spence, C., Pavani, F., & Driver, J. (2000). Crossmodal links in spatial attention between
vision and touch: allocentric coding revealed by crossing the hands. Journal of Experimental
Psychology. Human Perception and Performance, 1298–1319.

21. Suri, S., Hubbard, P. M., & Hughes, J. F. (1998). Collision detection in aspect and scale
bounded polyhedra. In SODA (pp. 127–136).

22. Terdiman, P. (2001). Memory-optimized bounding-volume hierarchies (Technical report).
codercorner.com. URL http://www.codercorner.com/Opcode.htm.

23. Trenkel, S., Weller, R., & Zachmann, G. (2007). A benchmarking suite for static collision de-
tection algorithms. In V. Skala (Ed.), International conference in Central Europe on computer
graphics, visualization and computer vision (WSCG), 29 January–1 February 2007. Plzen:
Union Agency. URL http://cg.in.tu-clausthal.de/research/colldet_benchmark.

24. Unger, B. J., Nicolaidis, A., Berkelman, P. J., Thompson, A., Klatzky, R. L., & Hollis,
R. L. (2001). Comparison of 3-D haptic peg-in-hole tasks in real and virtual environments.
IEEE/RSJ, IROS, 1751–1756.

25. van den Bergen, G. (1998). Efficient collision detection of complex deformable models us-
ing aabb trees. Journal of Graphics Tools, 2(4), 1–13. URL http://dl.acm.org/citation.cfm?
id=763345.763346.

26. Van den Bergen, G. (1999). A fast and robust gjk implementation for collision detection
of convex objects. Journal of Graphics Tools, 4(2), 7–25. URL http://dl.acm.org/citation.
cfm?id=334709.334711.

27. Vemuri, B. C., Cao, Y., & Chen, L. (1998). Fast collision detection algorithms with applica-
tions to particle flow. Computer Graphics Forum, 17(2), 121–134.

28. Weller, R., Klein, J., & Zachmann, G. (2006). A model for the expected running time of col-
lision detection using AABB trees. In R. Hubbold & M. Lin (Eds.), Eurographics symposium
on virtual environments (EGVE), Lisbon, Portugal, 8–10 May.

29. Weller, R., Mainzer, D., Sagardia, M., Hulin, T., Zachmann, G., & Preusche, C. (2010).
A benchmarking suite for 6-dof real time collision response algorithms. In Proceedings
of the 17th ACM symposium on virtual reality software and technology (VRST) (pp.
63–70). New York: ACM. ISBN 978-1-4503-0441-2. doi:10.1145/1889863.1889874. URL
http://cg.in.tu-clausthal.de/publications.shtml#vrst2010.

30. Zachmann, G. (1995). The boxtree: exact and fast collision detection of arbitrary polyhedra.
In SIVE workshop, July (pp. 104–112).

http://dx.doi.org/10.1109/HAPTICS.2008.4479964
http://codercorner.com
http://www.codercorner.com/Opcode.htm
http://cg.in.tu-clausthal.de/research/colldet_benchmark
http://dl.acm.org/citation.cfm?id=763345.763346
http://dl.acm.org/citation.cfm?id=763345.763346
http://dl.acm.org/citation.cfm?id=334709.334711
http://dl.acm.org/citation.cfm?id=334709.334711
http://dx.doi.org/10.1145/1889863.1889874
http://cg.in.tu-clausthal.de/publications.shtml#vrst2010

192 6 Evaluation and Analysis of Collision Detection Algorithms

31. Zachmann, G. (1998). Rapid collision detection by dynamically aligned dop-trees. In
Proceedings of the virtual reality annual international symposium, VRAIS ’98 (p. 90).
Washington: IEEE Computer Society. ISBN 0-8186-8362-7. URL http://dl.acm.org/citation.
cfm?id=522258.836122.

32. Zhou, Y., & Suri, S. (1999). Analysis of a bounding box heuristic for object intersection.
Journal of the ACM, 46(6), 833–857.

http://dl.acm.org/citation.cfm?id=522258.836122
http://dl.acm.org/citation.cfm?id=522258.836122

Chapter 7
Applications

In the previous sections, we have presented new data structures and algorithms for
collision detection and sphere packings. However, we did not develop these methods
just because of their scientific beauty, but because they are really useful in practical
relevant scenarios.

Obviously, our data structures for collision detection can be used in almost all
situations where collision detection is required. In Chap. 2 we have already men-
tioned a wide spectrum of possible applications. However, we also used our data
structures and algorithms to realize projects that would hardly be possible without
them. In this chapter we will present exemplarily three different applications that
are based on our research and that are interesting from a scientific or engineering
point of view.

We will start with an extension of our sphere-packing algorithm. Based on the
dense packing of spheres for arbitrary objects, we will present a new method for the
simulation of deformable objects, the sphere–spring systems. Sphere–spring sys-
tems are an extension of the classical mass–spring systems: we just replace the di-
mensionless particles by spheres that represents the object’s volume. This allows
us to define new control parameters; namely, the transfer of volume between the
spheres and a novel volume force model. Moreover, maintaining the non-penetration
constraint of the spheres during the simulation guarantees volume preservation. Ad-
ditionally, we present a parallel implementation of this sphere–spring system using
the capabilities of modern GPUs. We applied our system to the animation of a com-
plex virtual human hand model.

Our second example presents an application of our ISTs (see Chap. 5) in robotics.
In collaboration with KUKA Robotics Corp., we applied our ISTs to interactive ob-
stacle avoidance in highly dynamic environments. The obstacles were maintained
via a Kinect camera in real time. Hence, they are represented as a point cloud. Con-
sequently, our applications extends the IST distance computation to fast distance
queries for point cloud data.

Parts of this work have been previously published in [61–63].

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_7,
© Springer International Publishing Switzerland 2013

193

http://dx.doi.org/10.1007/978-3-319-01020-5_7

194 7 Applications

Finally, we present a haptic workspace that allows high fidelity, two-handed
multi-user interactions in scenarios containing a large number of dynamically simu-
lated rigid objects and a polygon count that is only limited by the capabilities of the
graphics card. Based on this workspace, we present a novel multi-player game that
supports qualitative as well as quantitative evaluation of different force-feedback de-
vices in demanding haptic manipulation tasks. The game closely resembles typical
tasks arising in tele-operation scenarios or virtual assembly simulations. Using our
haptic game, we conducted a comprehensive user study that evaluates the influence
of the degrees of freedom on the users’ performance in complex bi-manual haptic
interaction tasks. The results of our user study show that 6 DOF force-feedback de-
vices outperform 3 DOF devices significantly, both in user perception and in user
performance.

7.1 Related Work

In this section, we will present a very short overview on existing methods that are
closely related to the applications in this chapter. A complete overview over all
previous methods for all three applications would go far beyond the scope of this
book. Therefore, we restrict ourselves to a few basic and recent works. The section
is subdivided into four parts.

We start with a section about general methods for the simulation of deformable
objects. Then, we present the special challenges that arise when simulating a human
hand.

The third section outlines recent methods for real-time obstacle avoidance in
robotics, with a special focus on approaches that rely on data that is retrieved via
depth cameras.

Finally, we discuss user studies that are related to evaluation on the influence of
the degrees of freedom in human–computer interactions.

7.1.1 General Deformation Models of Deformable Objects

Actually, there already exist a wide spectrum of methods for the simulation of de-
formable objects. The survey by Nealen et al. [43] provides a good overview. Basi-
cally, we can distinguish two main approaches: geometric and physics-based algo-
rithms. Geometric methods, like meshless deformations [5, 38, 40] or mass–spring
systems [8, 11], can be usually computed very fast and most of them are perfectly
suited for parallelization. However, physical properties like volume preservation can
be modeled only with further, often costly, extensions [17, 55].

Physics-based methods, e.g. the Finite-Element-Method (FEM) [19] directly sup-
port the computation of such physical properties. Unfortunately, they are computa-
tionally very expensive and can hardly be used in real-time simulations. Simplifica-
tions like the explicit FEM [39] are suited for real-time use, but in the case of large
deformations or large time steps they can end up in artifacts.

7.1 Related Work 195

Another physics-based methods is the Discrete-Element-Method (DEM). It relies
on sphere packings and can be used for the analysis of fractures, but also for the
simulation of fluids and granular materials [23]. The DEM is more flexible than
the FEM, but it is also computationally even more expensive. Therefore, Munjiza
[41] developed a combination of both methods, but it is only applicable to offline
simulations.

7.1.2 Hand Animation

Realistic simulation of a virtual hand adds further challenges to the underlying de-
formable model. Usually, virtual models of the human hand are skeleton-based. The
individual limbs of the model are associated with the joints of a virtual skeleton
and take over its movements. One of the most simple forms of skeleton-based an-
imations is the so-called skeleton subspace deformation (SSD) [34]. It is the most
widely used technique for real-time character animation. The movements of the
limbs of the model are calculated by a simple linear transformation blending tech-
nique. However, the SSD also has some drawbacks. For instance, it produces poor
results on complicated joints like the thumb.

Some authors presented solutions to overcome these drawbacks by combining
the SSD with other techniques. In Magnenant-Thalmann et al. [34], the position of
the vertices of the model are corrected by using an exponential function depending
on their distance from the joints of the skeleton. Thereby, the deformations look
more realistic. Another possibility is the pose-space deformation [32]. They make
a correction of the model based on data that is specified for different key poses.
The degrees of freedom of motion are interpreted as the spatial dimensions of the
pose space. This technique combines the shape interpolation [7] with the skeleton-
based animation. The shape interpolation calculates the current target pose of the
animation from the given key pose by linear combination. The calculation is very
simple, but requires preset poses that have been (possibly expensive) obtained from
a reference model. The shape interpolation is often used for facial animation. The
Eigenskin animation by Kry et al. [29] provides an improvement of the technique
that is used by the pose-space deformation. It uses a singular value decomposition
to store the data of the preset poses in a compressed form. By this means, the calcu-
lation of the correction of the model can also be made by the graphics hardware.

However, all these SSD-based approaches can handle only the visible deforma-
tions on the outer skin. There are other algorithms that additionally deal with the
simulation of the internal structures and their physical properties. Albrecht et al.
[1] developed a model of a human hand that consists of bones, muscles and skin.
The movements of this model are triggered by the contractions of the muscles. To
represent all aspects of muscle movements, two types of muscles are used: pseudo
muscles whose contractions cause the rotations of the limbs and geometric muscles,
which emulate the volume of real muscles. The operation of the geometric mus-
cles is described by Kaehler et al. [25]. Each muscle fiber is composed of segments

196 7 Applications

whose volume is simulated by ellipsoids. If the muscles are contracted, these seg-
ments are shorter and thicker. The outer skin is connected to the muscles by a mass–
spring system and it can take over their deformations. Sueda et al. [52] described a
technique that can be used to simulate the deformation of the tendons of the hand.
This technique is suitable to expand existing animation systems. The tendons are
simulated by cubic B-spline curves. In Chen and Zeltzer [10], the deformation of
the muscle is calculated using the FEM. A complex volume is divided into many
subspaces (typically tetrahedron). The movements of the nodes of the tetrahedron
are represented as a system of equations that is solved by numerical methods. The
FEM provides a high degree of physical accuracy, but at the expense of the runtime
behavior. Such simulations are typically not suitable for real-time applications. The
computational complexity of the FEM is highly dependent on the number of tetra-
hedra. In order to reduce the computational cost of linear 4-node tetrahedra, also
quadratic 10-node tetrahedra can be used to simulate an organically shaped vol-
ume [37]. Jaillet et al. [22] presented a technique that uses a system of spheres to
simulate deformable volumetric objects like human organs. The movements of the
spheres are either calculated using the Lennard–Jones potential or a mass–spring
system. However, they did not include volume transfer, therefore, their mass–spring
systems are very stiff.

7.1.3 Obstacle Avoidance in Robotics

The movement of autonomous robots in unknown environments offers numerous
challenges to both, hard- and software: the robots have to retrieve data to create
a map of their environment, they have to localize themselves in this environment
and they have to plan paths for their movements while simultaneously avoiding
obstacles.

The first challenge is already the retrieval of the data: several different sensor
types have been proposed, including monocular cameras [12], stereoscopic cameras
[28], laser scanners Weingarten et al. [60] and time-of-flight cameras [44, 47].

In a second step, this sensor data can be combined to create a map of the environ-
ment. For instance, May et al. [36] proposed an iterative closest point algorithm for
the registration of several depth images. Henry et al. [16] combined depth images
and classical color images to construct loop-closed maps of large indoor environ-
ments. Obviously, the resulting maps can be used for collision avoidance and path
planning using any appropriate collision detection method. However, all these ap-
proaches require several seconds for the environment to be reconstructed. Therefore,
they can hardly be applied to real-time collision avoidance, and they cannot handle
online changes that happen in dynamic environments.

Several methods has been proposed for such online collision avoidance ap-
proaches. Some authors include a high number of additional sensors like infrared
or ultrasound to the robots or the environment. These sensors have a limited range
of view or produce only coarse data but their combined output can be used to avoid

7.1 Related Work 197

collisions with abruptly popping up objects [18]. Other works use neural networks
[6], behavioral Bayesian networks [64] or optical flow algorithms for sequences of
images [33] that can be further improved by also including depth images [48]. Kuhn
and Henrich [30] introduced the idea to compute distances directly from single im-
ages of the environment using computer-vision classification techniques. However,
they did not include depth values.

Especially the release of Microsofts inexpensive depth camera Kinect inspired
many researchers to new online collision avoidance algorithms that work directly
on the depth image, often represented as a point cloud. For example, Biswas and
Veloso [9] proposed an error minimization method providing real-time robot pose
estimation. However, their approach is restricted to ground robots moving in a 2D
space. Also Bascetta et al. [3] represented the robot only by a single point in or-
der to simplify the distance computation. Schiavi et al. [50] compared the obstacle
and the robot depth maps by an image plane projection in 3D. The approach that is
closest related to our method, was developed simultaneously to ours by Flacco et al.
[13]. They also use a KUKA Light-Weight-Robot and a Kinect for the data retrieval.
Their primary focus is on the computation of the collision responses based on dis-
tances and velocities and less on the acceleration of the distance queries. Actually,
the distance computation is derived from a simple spherical approximation of the
robot’s surface. However, they do not describe any acceleration data structures for
the distance queries.

7.1.4 Evaluation of Haptic Interactions

Haptic user interfaces have been actively applied to the domain of human–computer
interaction in virtual environments for almost two decades. Many user studies have
shown that providing haptic feedback during virtual interaction tasks has positive
effects on the perceived realism.

For instance, Basdogan et al. [4] developed a multimodal shared virtual envi-
ronment. The experiments showed that force feedback during collaboration with a
remote partner contributes to the feeling of “sense of togetherness”, which is a kind
of presence. Moreover, force feedback also helps to improve the user performance.
Other authors obtained very similar results with respect to multi-user haptic interac-
tions. Experiments cover a wide spectrum of tasks reaching from training of motor
skills in surgery [20], rehabilitation tasks Jung et al. [24], tele-operation [51] to com-
puter games [53]. Moreover, haptic systems can also help to enhance the emotional
immersion in real-time messaging. Tsetserukou [54] developed a virtual hug system
that supports 3D virtual worlds like Second Life.

Furthermore, some bi-manual haptic workspaces have been developed already:
Murayama et al. [42] used two SPIDAR-G devices that provide 6 DOF motion and
6 DOF force feedback. A simple 3D pointing task was used to evaluate the system.
The results indicate that bi-manual haptic interactions are more intuitive and effi-
cient with respect to task completion time than single-handed manipulations. Two-

198 7 Applications

handed haptic interaction has also shown to be a promising way for shape model-
ing applications: Attar et al. [2] was able to ensure an enhanced precision during
interaction; Keefe et al. [26] applied a two-handed tracking system and Phantom
devices to help users control their gestures during sketching 3D shapes directly in
3D space.

In addition, there exists a large body of work on two-handed interaction in gen-
eral, without a special focus on haptics. For instance, Leganchuk et al. [31] has
shown that two-handed interaction combines two types of advantages: first, twice as
many degrees of freedom simultaneously available to the user can result in increased
motion efficiency; second, single-handed interaction usually requires a higher level
of abstraction because of an unnatural, mental composition task. Consequently, bi-
manual interaction can reduce the cognitive load. Veit et al. [56] was partly able to
validate these assumptions. They conducted a user study to test two-handed freeform
deformations using datagloves. The results show an improvement of the user’s per-
ception, but only if the degree of symmetry was high.

However, the effect of the degrees of freedom on the user’s perception is still
an active field of research. Jacob et al. [21] proposed a theoretical principle to cap-
ture the control structure of an input device: a device that is able to move directly
across all dimensions is called an integral device, while a device that constrains
the user’s movement along a single dimension is called a separable device. This
is an extension to the theoretical framework proposed by Garner [14], called the
perceptual structure, of objects and tasks by structuring its attributes into integral
and separable attributes. They supported this theory by showing that user perfor-
mance increases if the perceptual structure of the object being manipulated matches
the control structure of the device. However, the matter does not seem to be settled
yet, since Veit et al. [57] obtained completely opposite results when conducting a
simple manipulation experiment using a dataglove for an integral device versus a
touchscreen for a separable device: the results suggest that the simultaneous ma-
nipulation of all DOFs does not necessarily lead to better performance. Martinet
et al. [35] validated these results when investigating 3D manipulation using a 2D
multitouch screen.

However, all of the experiments mentioned in the above two paragraphs were
conducted without any force feedback. Consequently, it is impossible to extend the
findings directly to haptic environments. For example, Veit et al. [57] explains his
results by real-world constraints that reduce the interaction dimensionality in the
real world, such as gravity. But with haptic devices it is easy to model these physical
constraints as well.

To our knowledge, there is very little work on the comparison of haptic devices
with different degrees of freedom. Wang and Srinivasan [59] presented a study about
the effect of torque feedback on purely haptic perception of the location of objects
in virtual environments. Usually, research concentrated mostly on analyzing devices
with an asymmetric number of sensors and actuators. For instance, Verner and Oka-
mura [58] found that for tasks like drawing or tracing, devices with 3 DOFs of force
and an additional 3 DOFs of positioning can approximate the performance of full
force and torque feedback.

7.2 Sphere–Spring Systems and Their Application to Hand Animation 199

7.2 Sphere–Spring Systems and Their Application to Hand
Animation

A main goal of virtual reality is a realistic simulation of physical presence in
computer-simulated environments. While the level of realism of visual and aural
sensations has been improved significantly during the past decades, the simulation
of realistic and intuitive interactions is still a challenge. The most important tool for
interactions in the real world are our hands. In applications like surgery simulation,
virtual prototyping or virtual assembly, a plausible simulation of the human hand is
essential to gain the desired grade of realism. On the hardware side, input devices
like datagloves already help to transform the motion of the human hand into virtual
worlds. But a realistic real-time simulation of a virtual hand model is still an active
field of research.

Actually, the human hand is one of the most difficult objects to animate. The rea-
son is its complex structure consisting of bones, muscles, tendons, veins and skin.
These parts are made of different materials with different physical properties. More-
over, their interaction provides a variety of complex movement sequences. The hand
is divided into separate moveable limbs, their location and mobility is determined
by their bones. These bones are rigid bodies, which cannot be deformed. In con-
trast, the soft tissue parts can be stretched during the movement in some parts and
in other parts they are compressed. Thereby, folds and humps become visible on the
outer skin. To make a computer model of a human hand look realistic, either the
internal structure of the hand with all its parts, or at least the effects that are visible
on the skin have to be simulated. Usually, the more detailed the model is, the more
complex is the simulation.

In this chapter, we present a virtual hand model that simulates all the essential
components of the human hand and their interaction. Therefore, we introduce a
new model for the simulation of deformable objects, the sphere–spring system. The
sphere–spring system is an extension of the well-known mass–spring system. The
basic idea is very simple: instead of representing the mass as dimensionless points,
we additionally assign a certain volume to each mass point. In detail, the volume
of the soft tissue beneath the skin is represented by a system of non-overlapping
spheres. The spheres are connected via springs. During simulation, we keep up this
non-penetration constraint which directly leads to a volume preserving simulation of
the tissue. Like mass–spring systems, our sphere–spring system is perfectly suited
for parallelization. Finally, we present a parallel implementation on the GPU using
CUDA.

7.2.1 Sphere–Spring System

Our new sphere–spring system is an extension of the classical mass–spring system,
which is, due to its simplicity, widely used for real-time simulation of deformable
objects. In the real world, objects are built of a large number of molecules that are

200 7 Applications

connected via electromagnetic forces. Basically, a mass–spring system is a simpli-
fication of this physical model: objects are sampled to a set of discrete particles.
In order to simulate the interaction between these particles, they are connected via
virtual springs. Usually, the simulation is split into two phases: first, forces between
the particles are calculated, and in a second step, the movement of the particles is
computed.

In addition to external forces acting on the object, the internal spring forces acting
on the particles can be computed following Hooke’s spring law:

fi→j = −
[
ks

(|l| − lr
) + kd

v l
|l|

]
l
|l|

fj→i = −fi→j

(7.1)

These equations denote the total spring forces acting on two particles pi and pj that
are connected by a spring, with:

• ks : the spring constant.
• kd : the damping constant.
• lr : the rest length of the spring.
• l: the vector between the positions of the particles: l = pi − pj

• |l|: the length of l.
• v: the velocity vector of the spring that can be derived from the velocities vi and

vj of the particles: v = vj − vi .

The new positions of the particles can be computed using Newton’s second law
of motion:

F = ma = mv̇ = mẍ (7.2)

Consequently, computing the movement of particles can be reduced to solving
ordinary differential equations.

In our sphere–spring system, we do not concentrate the mass in dimensionless
points, but we additionally assign a volume to each particle. Therefore, we compute
a sphere packing to represent the volume of the soft tissue using our Protosphere
algorithm (see Sect. 4.3). The masses are assigned proportionally to the size of the
spheres. Please note that initially the spheres do not overlap. This new representation
of the soft tissue offers additional possibilities during the simulation process. The
goal is to keep the non-penetration constraint during the simulation and moreover,
we want to keep the overall volume of all spheres to be constant. Together, these
two constraints result in a volume preserving simulation, which cannot be realized
using simple mass–spring systems.

In order to maintain these two constraints during the simulation, we propose two
strategies: if two spheres overlap, we add an additional force to resolve the collision.
Moreover, we allow the transfer of volume between the spheres. The latter allows us
for example to model bulges that appear if the fingers are bent. In the next sections,
we will explain both strategies in detail.

7.2 Sphere–Spring Systems and Their Application to Hand Animation 201

Everything else is similar to simple mass–spring systems: we simulate the motion
of the spheres following Newton’s law and the centers of the spheres are connected
via springs. Consequently, our sphere–spring system also inherits all advantages of
mass–spring systems: it is easy to implement, and due to the locality of the opera-
tions, it is perfectly suited for parallelization.

7.2.1.1 Volume Forces

The first strategy to keep the spheres separated, is to simply add an additional
penalty force if two spheres overlap during the simulation. In order to realize this,
we present a simple modification of Eq. (7.1).

Obviously, the penalty force should be proportional to the amount of overlap.
The penetration volume V

ij
p between two spheres can be easily calculated by (see

Sect. 5.3.2)

V
ij
p =

⎧⎪⎪⎨
⎪⎪⎩

0 if |l| > ri + rj ,

4
3π(min (ri , rj))

3 if |l| + min (ri , rj) ≤ max(ri , rj),

π(ri+rj −|l|)(l|2+2|l|ri+2|l|rj −3r2
1 −3r2

2 +6r1r2)

12·|l| else
(7.3)

where ri denotes the radius of the sphere i.
We use this amount of overlap to add an additional penalty force to Eq. (7.1):

fi→j = −
[
ks

(|l| − lr
) + kd

v l
|l| + kvV

ij
p

]
l
|l|

fj→i = −fi→j

(7.4)

With this new volume constant kv , we can directly control the amount of overlap:
the larger we choose kv , the less overlap is allowed. However, if we choose kv too
large, we recognized some unwanted side-effects. For instance, we need much more
iterations to get a stable state of the system. In order to avoid these drawbacks, we
additionally propose a method to transfer volume between the spheres.

7.2.1.2 Volume Transfer

Applying volume forces alone is not enough to maintain all our constraints, namely
the non-penetration constraint. Therefore, we additionally allow the spheres to trans-
fer parts of their volume to adjacent spheres. In order to guarantee a constant overall
volume, the same amount of volume that a sphere emits must be obviously absorbed
by another sphere.

Actually, we do not simply transfer the whole penetration volume Vpenetration that
we have computed using Eq. (7.3), but we introduce an additional transfer factor

202 7 Applications

ktrans to control the amount of transferred volume. Obviously, ktrans can be cho-
sen dynamically with respect to the penetration volume to gain another degree of
freedom. However, in our prototypical implementation we used a constant factor.
Overall, we get for the transfer volume

Vtrans = ktrans · Vp (7.5)

One question is still open: How do we know where we should transfer the vol-
ume? We will answer this question in the next section.

Direction of Volume Transfer

If an external force acts on a soft object, e.g. if we press a finger into a soft part
of our body, we get a dent at the position where the force impacts. This means that
the tissue that formerly has filled this dent has been displaced. Actually, the tissue
avoids the force. In the volume transfer of our sphere–spring system we emulate
this avoiding with a simple heuristic. The tissue seeks regions where no force is
acting on it. Therefore, it moves into the opposite direction of the impacting force.
Consequently, we also transfer the volume away from the forces.

In detail, the accumulation of all spring forces from Eq. (7.4) and the external
forces acting on a sphere si deliver the direction and the magnitude of the resulting
force fsi . Because we want to transfer the volume into the direction of fsi , we simply
have to search all adjacent spheres and choose the one sphere sj that is “mostly” in
the transfer direction:

sj | sj ∈ Adjsi ∧
li→j · fsi > 0∧

∀sk ∈ Adjsi , sk �= sj | li→k · fsi ≤ li→j · fsi (7.6)

where si is the ith sphere in the system, fsi is the resultant force of the sphere

si , Adjsi denotes the set of all adjacent spheres of si and li→j = psj
−psi

|psj
−psi

| is the

normalized directional vector from sphere si to sphere sj (see Fig. 7.1).
Obviously the existence of such a sphere is not guaranteed. If all the adjacent

spheres k of the current sphere si are located in the opposite half space of our force
fsi , we simply do not transfer any volume.

Rest Volume

Unfortunately, the volume transfer alone is not sufficient to guarantee a stable sim-
ulation. Just think of a constant external force, like wind, acting on a sphere. The
sphere will continuously reduce its volume until it is zero. Consequently, it will
never retrieve any volume back from its adjacent spheres, even if the force stops.

7.2 Sphere–Spring Systems and Their Application to Hand Animation 203

Fig. 7.1 Sphere B has two
adjacent spheres A and C.
The penetration volume will
be transferred to A, because
A is closest to the direction of
the force vector Fb

Simply defining a minimum sphere size could avoid this problem. However, a wide
variety between the minimum and maximum sphere size leads to numerical prob-
lems during simulation. Moreover, the system could never again reach its initial
state. Therefore, we propose a different idea to deal with this problem, which is
closely related to the rest length of the springs.

Usually, in a mass–spring system, a rest length of the springs is defined. If the
length of all springs matches their rest length, the system is in an equilibrium state,
the so-called rest pose. Similarly to the rest length of the springs, we introduce a
rest volume of the spheres. This rest volume is simply defined as the initial volume
of the spheres in the rest pose. During simulation, all spheres try to restore their rest
volume, as all springs try to restore their rest length. On the one hand, this additional
parameter allows the system to go back to a well defined and stable initial state. On
the other hand, it prevents the spheres from transferring all their volume to their
neighbors without the chance of ever getting it back.

7.2.2 Parallelization of the Sphere–Spring System

Like classical mass–spring systems, our sphere–spring system is perfectly suited for
parallelization, because all basic steps rely on local information only.

In detail we mention the following.

• Force Volume: The force volume of Eq. (7.4) can be computed separately for all
springs. We simply have to compute the penetration volume and the force for each
connected pair of spheres.

• Volume Transfer: Actually, parallelizing the volume transfer is not as straightfor-
ward as the other steps, because two spheres are involved. Decreasing the volume
of one sphere and increasing the volume of another sphere may result in a typical
Write-After-Write error if different spheres try to increase the volume of the same
adjacent sphere.

However, we can avoid this problem with a simple trick: we divide the de-
crease and increase of the volume into two separate phases.

In the first phase, we compute the direction of the volume transfer. Therefore,
we have to check all adjacent spheres of each sphere. Obviously, this can be done
in parallel. Moreover, we decrease the volume if necessary, and we store the index
of that sphere that should receive the volume.

204 7 Applications

Algorithm 7.1 Iteration-Step

In parallel forall Springs do
Compute Volume Force

In parallel forall Spheres do
Decrease Volume of Sphere

In parallel forall Spheres do
Increase Volume of Sphere

In parallel forall Spheres do
Move Sphere

In a second step, we collect the volumes of all adjacent spheres that should be
transferred.

• Sphere Movement: Just like the particles in mass–spring systems, the movement
of the spheres can be computed independently for all spheres. We have to solve
the respective ordinary differential equation.

Overall, a single iteration step of our parallel implementation of the sphere–
spring system can be summarized as described in Algorithm 7.1.

7.2.3 Application to a Virtual Human Hand Model

In this section, we will briefly describe our virtual hand model to which we applied
our sphere–spring system. Usually, simulating a human hand is more complicated
than the simulation of a fully elastic body like a pillow. This is mainly because of the
additional skeleton inside the hand. Actually, the movement of the skeleton directly
affects the deformation of the hand from the inside. Moreover, only parts of the skin
may be affected by skeletal transformation, e.g. if we bend only a single finger.

Basically, our hand model is divided into three different layers: the skeleton in-
side the hand, a layer of spheres that represents the soft tissue, and, finally, the skin
on the surface of the hand (see Fig. 7.2). Therefore, we have also different kinds
of springs between these layers: some spheres are connected to the skeleton via
skeleton-sphere–springs, spheres that touch the surface are connected to the skin via
skin-sphere–springs, and finally, there exist springs between the spheres to realize
the sphere–spring system. Additionally, we included springs between the polygons
that realize the skin (see Fig. 7.3).

The skeleton of the hand is divided into separate bones. The bones are organized
in a typical scenegraph hierarchy. Therefore, transforming the hand, or at least parts
of the hand, can be realized by simple matrix multiplications. During the simulation,
the bones are treated as rigid bodies.

The connections between the bones and the spheres and the springs between the
skin and the spheres, respectively, define which parts of the hand must be moved if
a bone transformation is applied.

7.2 Sphere–Spring Systems and Their Application to Hand Animation 205

Fig. 7.2 The different layers of our virtual human hand: the skeleton (a), the sphere packing (b),
and the skin (c)

Fig. 7.3 Our model of the virtual hand consists of three different layers: the bones, the spheres,
and the skin. Basically, there exist three different types of springs: between the bones and the
springs, between adjacent spheres, and between the spheres and the skin

7.2.4 Results

We have implemented our sphere–spring system and the virtual hand model using
NVIDIAs CUDA. CUDA offers the possibility to use the same memory for compu-
tation and for rendering via OpenGL. Therefore, we are able to use the same data
buffers for the simulation and for the rendering. Consequently, we do not have to
read or write any data from main memory after the initialization of our sphere–
spring system. All our benchmarks were made with a NVIDIA GTX 480 GPU.

We measured the dependency of the running-time from various parameters. In
our first scenario, we started with a flat outstretched hand that was then clenched to
a fist. This is a worst-case scenario because almost all joints of the hand are involved
(see Fig. 7.4). We tested this scenario for different numbers of spheres and different
numbers of iterations. Usually, a higher number of iterations results in a higher level
of the system’s stability. The results are plotted in Fig. 7.5. As expected, a higher
number of spheres in the sphere–spring systems requires more computation time.
Moreover, the average time per iteration does not remain constant; it decreases with

206 7 Applications

Fig. 7.4 Two different poses of the hand model calculated by a simple skeleton-based algorithm
((a), (d)) and by our sphere–spring algorithm ((b), (e)) with the underlying spheres ((c), (f))

an increasing number of iterations. This is mainly because the running-time of our
algorithm decreases when it is closer to its equilibrium. In this case, the amount
of volume to be transferred, but also the number of spheres that is involved in the
volume transfer, decrease.

In a second scenario we tested the behavior of our sphere–spring system in less
complex movements. Therefore, we moved only two fingers instead of including the
whole hand as in the first scenario. Again, we tested several numbers of spheres. As
expected, we see an increasing running-time with an increasing number of spheres
(see Fig. 7.6). Moreover, we also get a higher running-time if more fingers are in-
volved in the movement. However, the additional computational effort is relatively
small.

Fig. 7.5 Average
running-time of various
sphere–spring systems with
respect to the number of
spheres and to the number of
iterations

7.3 Real-Time Obstacle Avoidance in Dynamic Environments 207

Fig. 7.6 Average
running-time for two different
movements of the virtual
hand. In the first case four
fingers of the hand were
moved simultaneously, while
in the second case only two
fingers were moved

Fig. 7.7 A prototype of the
KUKA Omnirob (©KUKA
Robotics Corp., 2010)

7.3 Real-Time Obstacle Avoidance in Dynamic Environments

During the last years we observed that humans and robots move more and more to
close ranks. Just think about autonomous robotic vacuum cleaners that have already
entered our living rooms. In the future the importance of such tasks that unify human
and robotic workspaces will increase significantly, not only for small service robots,
but also in industrial applications. However, if our foot is hit by a small vacuum
cleaner that lost its way, this does not hurt too much. But a heavy and powerful in-
dustrial robot that got astray could injure people seriously. Therefore, the protection
of humans in robotic workspaces has an absolute priority [15].

This means that unexpected collisions between humans and robots have to be
avoided under all circumstances. This challenge can be solved by the design of the
robotic manipulators and on appropriate development of robust collision avoidance
methods. Actually, collision avoidance includes three major parts: the perception

208 7 Applications

of the environment, the algorithmic detection of collisions based on environment
information and finally the corresponding movement of the robot [13]. All those
parts must be solved in real time because people tend to behave unpredictably.

In this project, which we realized in cooperation with KUKA Robotics Corp.,
we explored the applicability of depth sensors like Microsoft’s Kinect and our Inner
Sphere Trees (see Chap. 5) to real-time collision avoidance. In the following we
start with a description of the scenario. Then we will outline our new algorithmic
approaches and finally we will conclude with the presentation of some preliminary
results.

7.3.1 The Scenario

KUKA has developed the autonomous robotic platform Omnirob (see Fig. 7.7). The
Omnirob consists of a 7 DOF KUKA Light-Weight-Robot (LWR) mounted on an
autonomously driving car that adds even more degrees of freedom to the platform.
The car can localize its position via a laser scanner, if the environment is already
known, while the LWR recognizes its position from the rotations of its segments.

In our scenario we added a Kinect depth camera to the end-effector of the LWR
in order to scan the environment. In our implementation, the Kinect is controlled via
the OpenNI [45] drivers. An open source library for point clouds, the Point Cloud
Library (PCL) [49], generates 3D point clouds from the depth images delivered by
OpenNI.

The main goal of this project was the real-time distance computation between
these point clouds and the robot. In contrast to Flacco et al. [13], we neglected the
reaction of the robot, but concentrated on fast and accurate distance computations.
Therefore, we represented the LWR by a detailed polygonal model. We split the
geometric model into eight parts and computed Inner Sphere Trees for each of the
parts (see Fig. 7.8) in order to accelerate the distance queries.

7.3.2 Accelerating Distance Queries for Point Clouds

Actually, our IST data structure support distance queries between ISTs and point
clouds from scratch. We can simply model each point in the point cloud as a single
sphere with radius zero and apply the recursive distance traversal from Sect. 5.3.1.
However, a single depth image from the Kinect contains approximately 300K points.
Performing 300K × 8 distance queries by brute force exceeds the desired frame rate
even if one IST consists of only a single point, and we use coherence conditions in
addition. Our benchmarks showed running-times of about 2 sec/query.

Consequently, we have to reduce the number of point/IST tests significantly
in order to guarantee real-time performance. Therefore, we propose two different
data structures that allow to filter special regions of interests from the point cloud.

7.3 Real-Time Obstacle Avoidance in Dynamic Environments 209

Fig. 7.8 The LWR is
represented by eight parts.
We create an individual IST
for each of these parts

Fig. 7.9 Different octree levels for a point cloud model of a bunny

Namely we used an octree and an uniform grid. Both data structures can compute
regions that are in a predefined neighborhood to an input point. In the following we
will explain the implementation details and we will discuss the particular strengths
and weaknesses of both data structures.

7.3.2.1 Octree

Actually, an octree is a tree data structure for spatial subdivision. Basically, it parti-
tions the 3D space recursively into eight octants. The recursion stops if either there
are no points included in the subregion, or if a certain depth and thus a certain size
of the leaf cells is met.

A main feature of octrees is that they allow fast location of nearest neighbors.
Principally, the nearest neighbor search (NNS) problem takes as input a point q and
returns the point pclosest in the point cloud P which is closest to q . When using
octrees for this task, we first have to locate the cell that contains q and then we
explore recursively the cells in the neighborhood until pclosest is found. Obviously,
the same technique can be used to define range queries. Range queries deliver all
those points pi ∈ P that are located inside a sphere of radius r around some query
point q .

210 7 Applications

Algorithm 7.2 computeDistance{Point Cloud P , IST T }
Compute octree O for P

dist = NNS(O , T .radius)
LeafList = RangeQuery(O , dist + T .radius)
forall Leaves li in LeafList do

forall pi in li do
if distance(T ,pi) < dist then

dist = distance(T , pi)

We use these octree operations to compute our regions of interest. In detail, we
start with the construction of an octree for the whole point cloud. For a complete
distance query between the robot and the point cloud, we first locate the nearest
neighbors for the centers of the bounding spheres—these are the root spheres—
of each of our ISTs individually. This distance to the nearest neighbor provides an
upper bound for the range query: assume that the distance of the nearest neighbor for
sphere si with radius ri is di . We know that each inner sphere has at most distance
ri to the surface of the root bounding sphere. Consequently, we will find the closest
point of the point cloud to any inner sphere in the IST at a distance of at most di + ri .
Consequently, a range query on the octree with range di + ri delivers all candidates
in our region of interest.

Algorithm 7.2 summarizes the distance query algorithm for a single IST and a
point cloud.

Please note that if we have already computed a minimum distance for an IST, we
can obviously use this value to optimize the minimum distance computations for the
other ISTs.

In our implementation we used the octree provided by PCL. In addition to a fast
octree construction, this library also supports fast NNS and range queries. Figure 7.9
shows some levels of an octree that was generated with PCL.

7.3.2.2 Uniform Grid

The advantage of octrees is their memory efficiency: we do not waste memory on
storing void regions. On the other side, locating points in the tree requires a recur-
sive traversal starting at the root. Moreover, the recursive construction of an octree
is relatively expensive. Especially the latter disadvantage is essential because we
have to construct a new octree for each frame. Therefore, we evaluated another data
structure with a less expensive construction phase: the uniform grid.

Inserting points in a uniform grid is trivial. However, uniform grids usually lack
of their high memory consumption. In order to overcome this disadvantage we use
spatial hashing that stores only those cells in the grid that are really occupied by
points.

The overall algorithm to determine the closest distance from an IST to the point
cloud is almost the same as for octrees: we locate the centers of the ISTs in the

7.3 Real-Time Obstacle Avoidance in Dynamic Environments 211

Fig. 7.10 A typical point cloud recorded by the Kinect and the polygonal model of the LWR. The
red line denotes the minimum distance between the LWR and the point cloud (left). The complete
setup of our application is the KUKA Omnirob with a head mounted Kinect in front of a workspace
(right)

grid, find the nearest neighbor that defines an upper bound and finally we perform
a range query (see Algorithm 7.2). The only difference is in the implementation of
the NNS and the range query. Actually, both operations can be implemented by a
simple uniform region growing.

7.3.3 Results

We implemented both approaches in a proof-of-concept application. Please note
that the code, especially that for the queries, is not optimized yet. All tests were
performed on an Intel Core i3-2100 CPU with 3.10 GHz and 4 GB main memory.

Figure 7.10 shows the typical setup: we mounted a Kinect to the end-effector
of a KUKA Omnirob. The Omnirob is located in front of a workspace. During the
tests we moved the objects on the workspace. The Kinect captures depth images
that were used for the minimum distance computations. A single depth image has
a resolution of approximately 270K points. Usually, the Kinect captures 30 frames
per second.

In our first scenario, we tested the influence of the octree’s and the grid’s cell size
to the performance. Figure 7.11 shows the average time that is required to construct
the data structure and Fig. 7.12 shows the average time for a single distance query.
On the one hand, the time that is required for the construction decreased with in-
creasing cell size. On the other hand, the query time increased with increasing cell
size. We found an optimum for both data structures for a cell size of about 8 cm.
Obviously, the grid construction is faster than that of the octree but it requires more
time for the queries. For both data structures, the construction time dominates the
query time significantly (see Figs. 7.11 and 7.12). However, we were able to provide
a close to real-time performance of about 40 msec per frame for both data structures
even with our non-optimized implementation (see Fig. 7.13).

In a second scenario, we captured different depth images and merged them to a
larger point cloud. This allows a more detailed map of the environment that can be

212 7 Applications

Fig. 7.11 Average
construction time for a single
point cloud with 270K points.
The x-axis denotes different
cell sizes of the quadtree and
the grid

Fig. 7.12 Average query
time, this means NNS, range
query, and exact IST distance
computation, for a single
point cloud with 270K points.
The x-axis denotes different
cell sizes of the quadtree and
the grid

Fig. 7.13 Combined
construction and query time
from Figs. 7.11 and 7.12

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic Interactions 213

Fig. 7.14 Average
construction time for point
clouds with respect to the size
of the point cloud. The cell
size was set to 8 cm

Fig. 7.15 Average query
time for point clouds with
respect to the size of the point
cloud. The cell size was set to
8 cm

applied to path-planning tasks. Please note that we did not require any registration
algorithm because the KUKA LWR knows its position and orientation from sensor
data. As expected the construction time (see Fig. 7.14) increased linearly with the
number of points. However, the query time remained almost constant (see Fig. 7.15).

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic
Interactions

Haptics is an emerging technology; it adds the sense of touch to applications in fields
like tele-operations, medical simulations, or virtual assembly tasks that are known
from the automotive and aircraft industry. In these areas, force feedback already
has helped to improve human–computer, as well as human–human interactions in
multi-user scenarios for almost two decades.

For a long time, haptic devices were bulky, expensive, and could be installed
and handled only by experts. This has changed but in the last few years, when the

214 7 Applications

first low-cost haptic devices entered the market, which were designed especially for
desktop use. Besides typical consumer electronic applications like games or online
shops, where the sense of touch could be a decision criterion for selecting products,
these low-cost devices could also be used to improve the quality of training skills or
enhance the desktop of each constructing or design engineer.

However, if a whole engineering office should be equipped with haptic devices
cost could be still a limiting factor, even if they are low-cost machines. The cost
of haptic devices mainly depends on the number of actuators. Consequently, the
low-cost devices for the mass market usually support only 3 DOFs. Obviously, real-
world object manipulations comprise not only forces with 3 DOFs but also torques
with 3 DOFs. Therefore, rendering these kinds of interactions faithfully requires
much more expensive 6 DOF haptic devices.

This raises the question whether or not the enhanced experience is worth the ad-
ditional cost for the 6 DOF devices, which is precisely the question that this section
endeavors to answer.

Intuitively, it seems obvious that users operating with full 6 DOFs should perform
much better than users that are provided only 3 DOFs. In fact, the influence of the
DOFs in human–computer interaction is still an active field of research, with partly
contradictory results, even if they do not include haptics and are restricted to single-
hand interactions. However, this section not only presents a qualitative analysis,
but also quantitative methodologies to assess the influence of full 6 DOF force and
torque rendering objectively.

In order to conduct our user studies, we have implemented a haptic workspace
that provides high-fidelity 6 DOF force feedback in object manipulation scenarios
containing a large number of dynamically simulated rigid objects. In addition, it
supports different kinds of haptic (and non-haptic) devices for bi-manual multi-user
interactions. It relies on our new collision detection technique, the Inner Sphere
Trees (see Chap. 5) that firstly meets the special requirements, especially the very
high simulation frequency and the support to simultaneous simulation of lots of
massive objects, of such a haptic workspace.

It is a challenge to define a task that does not favor one of the input methods
in advance. In our case, this means we need a task that can be solved with 3 DOF
devices as well as with 6 DOF devices with the same level of success. Moreover, we
need a task that requires coordinated bi-manual interactions from the users. There-
fore, we have developed a simple haptic multi-player game that requires complex,
two-handed manipulations of two players within the same environment at the same
time.

In order to evaluate the users’ performance, we recorded all paths of all objects,
including those of the users’ hands, for later quantitative and qualitative analysis.
Moreover, we utilized a questionnaire to evaluate some of the “softer” factors of
such a haptic workspace.

The results support our initial hypothesis that 6 DOF haptic devices outperform 3
DOF haptic devices with respect to user perception and also user performance. This
might encourage device manufacturers to make more efforts in the development of
cheaper 6 DOF haptic devices for desktop use.

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic Interactions 215

Fig. 7.16 The simulation thread in our haptic workspace computes the collision forces based on
the separation list, which captures the current collision information. This list is generated in the
collision detection thread. Conversely, the haptic thread passes the new positions of the objects to
the collision and the (visual) rendering thread

7.4.1 Haptesha—A Multi-user Haptic Workspace

The main challenge when doing haptic rendering is the extremely high frequency
that is required: while the temporal resolution of the human eye is limited to ap-
proximately 30 Hz, the bandwidth of the human tactile system is about 1000 Hz. In
most haptic scenarios, the computational bottleneck remains the collision detection,
whereas the force computation can be done relatively fast.

In order to achieve such a high simulation rate, the heart of our haptic workspace
is our new geometric data structure, the Inner Sphere Trees (see Chap. 5), which not
only allows us to detect collisions between pairs of massive objects at haptic rates,
but also enables us to define a novel type of contact information that guarantees sta-
ble and continuous forces and torques, which are based on the penetration volume.
This enables us to treat physics-based simulation and haptic rendering in a common
way. The only difference between dynamic objects and user-controlled objects is
that the forces for the latter are rendered to the haptic device instead of using them
for the simulation.

For visual output we use the open source scenegraph OpenSG [46] that supports
shading and multi-monitor output.

However, even if the ISTs are very fast, it is not possible to guarantee constant
time intervals for the collision detection. Therefore, we extended the algorithm’s
time-critical approach and included multi-threading support. In the cases of inter-
penetrating objects, the computation of the penetration volume can run slower than
the required 1000 Hz, because it might have to visit many nodes during traversal,
especially in the cases with heavy overlaps. Consequently, an answer of this query
type cannot be guaranteed within a predefined time budget as it is needed for haptic
applications. Moreover, the force computation requires time, too.

On the other hand, almost all currently available CPUs include multiple cores or,
at least, support functions to accelerate multi-threading.

One appropriate strategy to realize time-critical traversals is a decoupling of the
force computation and the collision detection by running them asynchronously in
different threads. Therefore, we re-use the idea of separation lists once more.

216 7 Applications

Actually, we divide the work into the following independent threads (see
Fig. 7.16):

1. a haptic simulation thread, which is responsible to handle the user input and
computes the forces;

2. a collision detection thread, in which separation lists are generated for each pair
of possibly colliding objects;

3. depending on the application it is, of course, possible to add other threads, e.g. a
rendering thread.

During runtime, the collision detection thread only maintains a separation list and
passes it to the haptic thread. In return, the haptic thread passes the current positions
of the simulated objects to the collision detection thread for the next query. The
haptic thread then uses the current separation list to compute the force, until the
next collision detection query is finished.

Usually, especially in haptic simulations running at 1 kHz, the spatial coherence
is high and, thus, the separation lists between two synchronizations do not differ
very much.

7.4.2 The Design of the Study: A Haptic Game

Usually, when designing haptic user studies, some kind of object docking or path
following task is used. Unfortunately, these kinds of tasks are not very well suited
when one wants to compare the influence of the degrees of freedom, because, de-
pending on the dock or the path, one of the devices is favored in advance. For ex-
ample, if a docking task requires a rotation of the object, it is impossible to solve it
with a 3 DOF device that does not support changes of the orientation. On the other
hand, if the task does not require changes of the object’s orientation, there would
be no need for a 6 DOF device. Moreover, these tasks usually can be solved with a
single-handed device. Consequently, there is no need for coordination between both
hands, which is essential in bi-manual interaction tasks.

Consequently, we had to design a new kind of experiment that supports a fair
comparison of devices with different degrees of freedom and additionally requires
complex bi-manual interactions not only as an option, but as a necessity. Therefore,
we use a kind of indirect and imprecise docking task. This means that the objects to
place are not directly glued to the haptic tool but must be controlled indirectly fol-
lowing a physics-based simulation. Moreover, the objects do not have to be placed
precisely into a predefined docking station, but into a wider goal.

This indirect interaction metaphor that we propose resembles closely typical
tasks arising in bi-manual tele-operation scenarios or virtual assembly simulations.
Thus, the analysis of the users’ performance in this experiment allows for conclu-
sions of practical relevance.

In detail: we have implemented a simple two-player haptic game that is based on
our haptic workspace. The players sit face-to-face at a table with two monitors in be-
tween (see Fig. 7.17). Each player operates the two identical force-feedback devices

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic Interactions 217

Fig. 7.17 The two-player setup with four haptic devices for our user study

Fig. 7.18 The playing field of our haptic game

on his side, one for each hand. In order to evaluate the differences between 3 and 6
DOF interactions, one of the players uses two 3 DOF devices, namely, two Novint
Falcons (see Fig. 7.19, left), whereas his opponent operates two 6 DOF devices that
where realized by two Haption Virtuose 6D Desktop devices (see Fig. 7.19, right).

We used these kinds of force-feedback devices, because they have comparable
specifications (see Fig. 7.1), they are both designed for desktop use, and there is no
other pair of devices that differs in DOFs yet has similar specs.

The playing field is a room with a set of complex objects with different shapes
lying on the ground. Each player has a “well” in front of him and controls two rigid
virtual hands with his two force-feedback devices. The goal of the game is to pick
up the objects and place them in the player’s own well in front of him. Figure 7.17

218 7 Applications

gives an overview of the setup with the four haptic devices; Fig. 7.18 shows a typical
view of the playing field.

Even if the task is the same for both players, different strategies can lead to
the goal depending on the degrees of freedom of the devices. In tests prior to the
final study’s design, the 6 DOF operators usually picked up a single object and
directly placed it in the well. On the other hand, the 3 DOF users shoveled some of
the objects to the front of the well and tried to push them up the well’s walls (we
dubbed this the “shovel technique”). Consequently, the success of both techniques
can be tweaked by the height of the well and the number of objects in the scene. In
order to guarantee a fair comparison we adjusted the parameters such that with both
techniques the chance to win and the chance to pocket an objects is almost the same
for both input devices. Additionally, we chose the objects such that their size and
form factor force the users to really use coordinated bi-manual interactions.

For two reasons it is essential that we do not take the winning rate or the num-
ber of pocketed objects as distinctive measure: the same probability to win with
both kinds of devices proves the fairness and comparability of our results and more-
over, the winning rate could also influence the answers of the questionnaire subcon-
sciously.

In order to maintain fairness we also implemented the facility to turn the virtual
hands with the 3 DOF devices by mapping rotations to the buttons on the haptic
handle (see picture in Fig. 7.19), because it could be complicated for the 3 DOF
users to pick up or shovel the objects with the hands remaining in their initial orien-
tation due to the rigidity of the controlled virtual hands. The device has four buttons;
we used three of them to change the pitch, yaw, and roll of the virtual hand, while
the fourth button changes the direction of the rotation. In addition to the general
learning period when operating unknown devices, this relatively complex control
paradigm for the three rotational degrees of freedom required some training. Thus
each round of the game started with a training phase that ends when both players
managed to pocket an object. However, the results of our user study show that al-
most all participants used the possibility to change the hand’s orientation only in the
training phase in order to bring the hands into a comfortable orientation. During the
game they only made very few attempts to adjust the orientation.

For the evaluation, we recorded the forces and torques acting on the user-
controlled hands and additionally, we tracked the covered distances and rotations.
This data allows to derive conclusions about the efficiency of the haptic interaction.
Furthermore, we recorded the time for the training phase. Moreover, we conducted a
user interview after the game using a questionnaire, where we asked the users about
the quality of the feedback and their preferences with respect to 3 DOFs vs. 6 DOFs.

The setting of a game was chosen to ensure that, due to the competitiveness, the
users are highly concentrated on the challenge and not on the potentially unknown
and fascinating devices. After finishing a round, the players swap seats. Thus, each
player plays with both kinds of devices. Due to this, we were able to test a large
amount of subjects in a relatively small time interval, and moreover, we could keep
the learning phase relatively short.

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic Interactions 219

Fig. 7.19 The haptic devices that we used in our evaluation: the 3 DOF Novint Falcon (left, cour-
tesy of Novint Technologies Inc., USA) and the 6 DOF Haption Virtuose 6D Desktop (right, cour-
tesy of Haption S.A., France)

Table 7.1 The specifications of both force-feedback devices show a comparable workspace and
a comparable amount of maximum translational force. The 6 DOF device can additionally render
torques

3 DOF 6 DOF

Manufacturer Novint Haption

Model Falcon Virtuose 6D Desktop

Translational Workspace 102 mm × 102 mm × 102 mm Sphere with 120 mm in diameter

Rotational Workspace – 35◦ in the 3 directions

Maximum force in translation 10 N 15 N

Maximum torque in rotation – 0.5 Nm

Price 200$ 30,000$

7.4.3 The User Study

In the following, we will give an overview of the user study that we conducted using
our haptic game described above.

7.4.3.1 Participants and Protocol

We tested a total number of 47 participants, aged 17 to 34 years. Half of them were
high school students visiting our department of computer science, the others were
scientific employees with the department. Of the participants, 33 were male and
14 female, three were left-handed and 44 right handed. 27 of them play computer
games regularly, and almost all have some experience in gaming, except four who
stated they never had played a computer game before. Only five participants use
VR devices regularly. Eight subjects did not play our haptic game for the first time,

220 7 Applications

because they already helped in the pre-test phase to improve the game design, but
only two of them played it more often than twice. Only these eight persons had
made experiences with haptic devices before, six of them during the pre-test-phase.

The participants entered the room with the experimental setup in groups of four
persons. They were given a short verbal introduction to the game, the experiment
and the special properties and features of the devices, such as the dead-man protec-
tion of the 6 DOF device or the mapping of rotations to the buttons of the 3 DOF
device.

After this short introduction and a few seconds for the subjects to assume the
right and comfortable grasping of the haptic handles, the training phase started im-
mediately. The time for the training phase was restricted to maximally 3 minutes
but could end earlier if both players managed to pocket an object. Like the training
phase, the game also lasted 3 minutes. During the game, the players received feed-
back about the score and the time limit by a heads-up display on the screen. After
completing the game, the subjects were asked to answer a questionnaire and rate the
intuitiveness of control, the quality of the force feedback and so on, on a five-point
Likert scale. The Likert scale has suitable symmetry and equidistance for the use of
parametric analysis.

7.4.3.2 Results

The groupwise introduction and the attendance of other persons in the room during
the test could distract the players. However, the results of our survey show that
the concentration during the game was rated very high (3 DOFs: M = 4.32, SD =
0.837, 6 DOFs: M = 4.23, SD = 1.026, with the Likert scale ranging from “Heavy
distractions” = 1 to “No distractions” = 5). Also the training time (3 DOFs: M =
2.51, SD = 0.655, 6 DOFs: M = 2.81, SD = 0.680, with the Likert scale ranging
from “Too short” = 1 over “Perfect” = 3 to “Too long” = 5) and the playing time
(3 DOFs: M = 2.64, SD = 0.705, 6 DOFs: M = 2.57, SD = 0.683, with the same
Likert scale) was rated as sufficient overall.

As mentioned in the introduction, we hypothesized that 6 DOF haptic devices
are better suited for complex bi-manual haptic interactions than 3 DOF devices with
respect to intuitiveness and the naturalness of the control paradigms, the quality of
the force feedback, and other parameters. A paired-samples t-test was conducted to
compare the measured values and the results of the survey in 3 DOF and 6 DOF
conditions.

Overall, the results support our hypothesis that object manipulation using force
feedback with 6 DOFs is more natural and more intuitive: from our survey, we get
a highly significant difference in the scores for naturalness of control in the 3 DOF
(M = 2.83, SD = 0.816) and 6 DOF (M = 3.55, SD = 0.717) case; t(46) = −6.425,
p < 0.001 with the Likert scale reaching from “Not natural” = 1 to “Perfect
natural” = 5. We get a similar highly significant result for the intuitiveness of
control (3 DOF (M = 3.28, SD = 0.877) and 6 DOF (M = 4.04, SD = 0.779);

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic Interactions 221

Fig. 7.20 The users’
perception as voted in the
survey. The 6 DOF device
was rated significantly better
with respect of naturalness
and intuitiveness of control

t(46) = −4.741, p < 0.001 (Likert scale from “Not intuitive” = 1 to “Perfectly intu-
itive” = 5)). Also, the quality of the force feedback shows highly significant differ-
ences between 3 DOF (M = 2.98, SD = 1.011) and 6 DOF (M = 3.66, SD = 0.867)
conditions; t(46) = −4.761, p < 0.001 (Likert scale from “Unsatisfiable” = 1 to
“Perfect” = 5) (see Fig. 7.20). However, the mediocre absolute values show that
there is still room for improvements regarding the naturalness and the quality of the
forces and torques.

Even though most subjects rated the time given for the training phase as suffi-
cient for both kinds of devices, the paired-samples t-test shows a significant differ-
ence between 3 DOF (M = 2.51, SD = 0.655) and 6 DOF (M = 2.81, SD = 0.680)
conditions; t(46) = −2.625, p = 0.012. This further supports the results about the
intuitiveness of control and the higher naturalness.

In the training phase, the time measured until a player manages to pocket the first
object also supports the users’ experience we observed through the questionnaire:
they needed significantly more time to learn the handling of the 3 DOF devices
(M = 94.66, SD = 69.370) than the 6 DOF devices (M = 60.74, SD = 51.809);
t(46) = 2.954, p = 0.005 (see Fig. 7.21).

In order to guarantee a fair comparison, we adjusted the task so that the 3 DOF
operators and the 6 DOF operators can win with the same chance. The measured
results support the validity of our calibration: overall, there were 20 rounds of
all games won using a 3 DOF device, and 18 rounds won using a 6 DOF device
(9 rounds were a tie).

The number of objects that were pocketed by users using the 6 DOF devices
was slightly larger (M = 5.94, SD = 4.532) than the number of objects pocketed by
users using the 3 DOF devices (M = 5.64, SD = 4.321). However, there is no statis-
tically significant difference between the number of pocketed objects with respect
to the DOFs (see Fig. 7.22).

Additionally, a one-way between-subjects ANOVA was conducted to compare
the effect of experience on the number of pocketed objects: there was a significant

222 7 Applications

Fig. 7.21 The time that the
users needed to pocket the
first object during training
with respect to 3 DOF and
6 DOF devices. Clearly, the 3
DOF users needed
significantly more time

Fig. 7.22 There is no
statistically significant
difference between the
number of pocketed objects
with respect to the DOFs.
Hence, our adjustment of the
game guarantees a fair
comparison between the
different devices

difference between the group that has haptic experience, which is exactly the group
that played the game more than once, and the participants that played the game
only for the first time (Unexperienced 3 DOF: N = 39, M = 4.95, SD = 3.692,
Experienced 3 DOF N = 8, M = 9.00, SD = 5.757, F(1.46) = 6.538, p = 0.014,
Unexperienced 6 DOF: N = 39, M = 5.08, SD = 3.608, Experienced 6 DOF N = 8,
M = 10.13, SD = 6.334, F(1.46) = 9.814, p = 0.003). In both cases, 3 DOF and
6 DOF, the experienced users were able to pocket significantly more objects than
the unexperienced users. However, they were still not able to pocket significantly
more objects with 6 DOF than with 3 DOF or vice versa. Also these results show
that the calibration of our experiment works correctly: the task can be solved with
both kinds of devices with the same succession rate. This implies the fairness of the
game.

Even if the chance to win the game is independent of the degrees of freedom, we
expected differences in the users’ performance due to the different techniques: as
already mentioned in the section before, the 3 DOF users usually shoveled the ob-
jects on the ground into the direction of the well, whereas the 6 DOF users precisely
picked up the objects. These different strategies directly affects the efficiency of the
haptic interactions. The “shovel”-technique can be successful, but it is inefficient
with respect to the covered distances, because the users need a higher frequency of
forward and backward moving of their hands.

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic Interactions 223

Fig. 7.23 Typical data recorded from the users’ interaction during the game. This plot shows the
position of the haptic handle in z direction, which is controlled by the users’ dominant hand with
the 3 DOF and 6 DOF device. Clearly, one can see the typical high frequencies caused by the
“shoveling technique,” which is often applied by 3 DOF users, whereas the 6 DOF users interact
more precisely. Moreover, one can see how the 3 DOF user tries to distract the 6 DOF user at
sample time 10k

Fig. 7.24 The distances
covered by the users’
dominant and non-dominant
virtual hands. Clearly, the
paths of the 3 DOF users are
significantly longer than the
paths of the 6 DOF users.
Moreover, they prefer to use
their dominant hand.
Surprisingly, the 6 DOF users
cover a slightly longer path
with their non-dominant hand

This hypothesis is supported by our measured data: the distances covered by the
6 DOF device that was used with the dominant hand (M = 295.8, SD = 134.0) is
significantly (t(46) = −12.034, p < 0.001) shorter compared to the paths of the
3 DOF device used with the dominant hand (M = 724.1, SD = 235.0). For the
non-dominant hand, we obtain almost the same picture (3 DOF (M = 374.0, SD =
291.5) and 6 DOF (M = 605.0, SD = 251.4); t(46) = −5.991, p < 0.001).

Figure 7.23 shows the z-position of the virtual hand in the scene, which is con-
trolled by the user. One can clearly see the typical, high-frequency “shoveling” of

224 7 Applications

Fig. 7.25 This plot shows
the roll-angle of the 3 DOF
(red) and the 6 DOF users.
The 6 DOF users typically
rotate their virtual hands
continuously, while the 3
DOF users let their hands in
almost the same orientation at
all times

the 3 DOF user and the relatively smooth motion of the 6 DOF user. Moreover, the
plots reveal another typical strategy of the 3 DOF users: they tried to distract the 6
DOF users when they had managed to grab an object. You can see this, for instance,
at the 5000th sample position: here, the 3 DOF user tried to knock the object out of
the 6 DOF user’s hand.

The above mentioned distance measures for the dominant and the non-dominant
hand have some other impacts, too: the distance covered by the dominant hand of
the 3 DOF users is significantly longer than that of their non-dominant hand (dom-
inant hand: M = 724.1, SD = 235.0; non-dominant hand: M = 605.0, SD = 251.4;
t(46) = 3.368, p = 0.002). Surprisingly, we get the opposite result when look-
ing at the 6 DOF paths (dominant hand: M = 295.8, SD = 134.0; non-dominant
hand: M = 374.0, SD = 291.5), even if the result is not statistically significant (see
Fig. 7.24).

Further experiments will have to show if this is an impact of the strain due to the
reduced degrees of freedom, or a result of the special “shovel” strategy facilitated
by this game.

With the 6 DOF device the rotation of the user’s real hands is mapped directly to
the device, whereas with the 3 DOF device the rotation virtual hand is mapped to
the buttons as described above. In other words, with the 6 DOF device, an integral
set of object parameters (position and orientation) is mapped to an integral task
(moving the end-effector of the device), while with the 3 DOF device the set of
object parameters is treated as a separable set [14, 21].

This has, of course, consequences for the strategies that users employ. Usu-
ally, the 3 DOF users first brought their virtual hands in a suitable orientation and
changed it only very seldom during the game, whereas the 6 DOF users rotated
their real and virtual hands continuously. Figure 7.25 shows a typical situation. Ad-
ditionally, we computed the Euler angles and accumulated all rotational changes.
This shows significant differences, using the paired-samples t-test, for both the
dominant and non-dominant hands (6 DOF dominant: M = 90.0, SD = 64.0; and
3 DOF dominant: M = 15.1, SD = 16.0; t(46) = 7.495, p < 0.001; 6 DOF non-

7.4 3 DOF vs. 6 DOF—Playful Evaluation of Complex Haptic Interactions 225

Fig. 7.26 The total amount
of rotations applied by the
users during the game, which
was obtained by
accumulating the changes of
the Euler angles. Obviously,
the 3 DOF users avoid to
rotate their virtual hands,
probably because the
orientation of the virtual
hands is mapped to the
buttons of the end-effector of
the force-feedback device.
Usually, they brought it in a
comfortable position during
the training phase and did not
change it during the game

Fig. 7.27 Screenshots of the objects we used in the game. Surprisingly, the rhino (e) was pocketed
significantly more often than the other objects

dominant: M = 85.9, SD = 27.6; and 3 DOF non-dominant: M = 13.6, SD = 11.5;
t(46) = 14.883, p < 0.001) (see Fig. 7.26). This suggests that mapping of rotations
to buttons cognitively overwhelmed users in time-critical tasks requiring precision
motor control.

We used six different objects in our game, all of them are cartoon animals (see
Fig. 7.27). We chose these objects, because their extremities, like the wide-spread
arms, oversized feet and ears, or the tails, should simplify the grasping of the objects
by clamping them between the fingers of the virtual hands (this facilitated object ma-
nipulation considerably). Surprisingly, the only object without strongly protruding

226 7 Applications

extremities, the rhino model, was pocketed most often. We tested the significance
with a chi2-test and obtained a significance level of p < 0.01 with the 3 DOF de-
vices, and even p < 0.001 with the 6 DOF devices. We believe that this is a hint
that the abstraction between the simple handle of the force-feedback device and the
detailed virtual hand cognitively overloads the users, but this has to be investigated
in more depth in future studies.

All other factors we investigated, like the age, the sex, and the handedness do not
have any significant effects on the user’s performance. Even the experience in gam-
ing or with other virtual reality devices does not have any effect. We checked this by
using one-way between-subjects ANOVA tests. Eight participants that started with
the 6 DOF devices in the first round and then switched to the 3 DOF devices in
the second round stated after the swap of seats that it was really hard and unnatural
to cope with the reduced feasibilities of the 3 DOF devices. Conversely, there was
not a single user starting with the 3 DOF device who complained about the extended
degrees of freedom after swap of seats. However, the analysis of the users’ question-
naires does not show any significant differences between users starting with 3 DOFs
and ending with 6 DOFs, or vice versa, with respect to the rating of the different de-
vices.

7.5 Conclusions and Future Work

In the following, we will briefly summarize our applications and outline some di-
rections of future investigation.

Our sphere–spring system allows a much more realistic animation of a human
hand as it would be possible with a pure skeletal-based system or a pure mass–
spring system. The deformations caused by the stretching and compression of the
soft tissue of a real hand can be well reproduced by our model as shown in Fig. 7.4.
Through the parallel computation on the GPU, the animation can be greatly accel-
erated. The computation time scales perfectly with the number of cores of the GPU,
therefore we expect an enhanced performance with future hardware.

In the second section of this chapter, we presented an application of our Inner
Sphere Trees to real-time collision avoidance for robots in highly dynamic environ-
ments. Therefore, we extended our ISTs to distance computations with point cloud
data that was captured via a Kinect. The results show a close to real-time perfor-
mance even with our not yet optimized implementation.

Finally, we presented a new multi-user haptic workspace with support for a large
number of haptic devices and a likewise number of dynamic objects with a high
polygon count. Its multithreaded architecture guarantees a constant simulation rate
of 1 KHz, which is required for stable haptic interactions. Based on our workspace
we have implemented a haptic multi-player game with complex bi-manual haptic
interactions that we use for a quantitative and qualitative analysis of haptic devices
with respect to their number of sensors and actuators.

We conducted a user evaluation with 47 participants. The results show that 6
DOF devices outperform 3 DOF devices significantly, both in user perception and

7.5 Conclusions and Future Work 227

Fig. 7.28 In the future, we
plan to apply our hand
animation scheme to natural
interaction tasks like virtual
prototyping

in objective data analysis. For example, the learning phase is much shorter and the
users judged the 6 DOF device to be much better with regard to the quality of forces
and the intuitiveness of control. However, there is still room left for improvements of
the haptic devices: the overall rating of force quality and also naturalness of control
is rated only mediocre.

7.5.1 Future Work

Our sphere–spring system can already produce a realistic animation of the human
hand, but there is still some room for improvements. In our prototypical implemen-
tation of the sphere–spring system, we require approximatively 50 iterations per
frame to get a stable state of the system. As for now, we use a simple Euler step
during integration. However, the bottleneck of our sphere–spring system is not the
integration step, but the calculation of the volume transfer. Therefore, enhanced inte-
gration methods like Runge–Kutta, which support larger time steps, could probably
increase the speed of our algorithms. Tweaking other parameters, like taking a dy-
namic version of the volume transfer factor or a dynamic adjustment of the springs
after the transfer of volume, is also an option. Another challenge is to provide a
theoretical proof of the system’s stability.

The long time objective for our real-time hand animation is their application to
natural interaction tasks (see Fig. 7.28). Therefore, we have to include collision
detection as well as a stable collision response model and the support to frictional
forces. Basically, we plan to use a deformable version of the Inner Sphere Tree data
structure.

The resolution of current depth cameras, like the Kinect, is very limited [27]. Fu-
ture technologies for real-time depth image acquisition will hopefully provide better
resolutions. However, larger point clouds also increase the demands on our collision
detection system. All parts of the grid algorithms can be trivially parallelized. We

228 7 Applications

hope that a GPU version will gain a further performance boost. At the moment,
we use our collision detection algorithms only for collision avoidance between the
robot and the environment. A better performance would also allow path planning
directly on the point cloud data. This leads to several challenges for future works:
for instance, we need an additional representation of the objects’ volumes, instead
of only their surface. Probably, a real-time version of the sphere-packing algorithms
could produce relief.

Finally, also our pioneering user study leaves some challenges for the future:
further studies are necessary to find the best trade-off between cost and performance
regarding bi-manual complex haptic interactions. This could include asymmetric
setups of the haptic devices, e.g. 6 DOF for the dominant hand and cheaper 3 DOF
for the other hand. Obviously, it would be nice to compare other haptic but also
non-haptic devices and to investigate other kinds of tasks like object recognition.

References

1. Albrecht, I., Haber, J., & Seidel, H. P. (2003). Construction and animation of anatomically
based human hand models. In Proc. of the 2003 ACM SIGGRAPH/Eurographics symposium
on computer animation (pp. 98–109).

2. Attar, F. T., Patel, R. V., & Moallem, M. (2005). Hived: a passive system for haptic inter-
action and visualization of elastic deformations. In World haptics conference (pp. 529–530).
doi:10.1109/WHC.2005.75.

3. Bascetta, L., Magnani, G., Rocco, P., Migliorini, R., & Pelagatti, M. (2010). Anti-collision
systems for robotic applications based on laser time-of-flight sensors. In 2010 IEEE/ASME
international conference on advanced intelligent mechatronics (AIM), July (pp. 278–284).
doi:10.1109/AIM.2010.5695851.

4. Basdogan, C., Ho, C.-H., Srinivasan, M. A., & Slater, M. (2000). An experimental study on
the role of touch in shared virtual environments. ACM Transactions on Computer-Human
Interaction, 7, 443–460. doi:10.1145/365058.365082. URL http://doi.acm.org/10.1145/
365058.365082.

5. Becker, M., Ihmsen, M., & Teschner, M. (2009). Corotated sph for deformable solids. In
E. Galin & J. Schneider (Eds.), NPH (pp. 27–34). Aire-la-Ville: Eurographics Association.
URL http://dblp.uni-trier.de/db/conf/nph/nph2009.html.

6. Benavidez, P., & Jamshidi, M. (2011). Mobile robot navigation and target tracking system.
In IEEE international conference on system of systems engineering. doi:10.1109/SYSOSE.
2011.5966614.

7. Bergeron, P., & Lachapelle, P. (1985). Controlling facial expression and body movements in
the computer generated short “ ‘tony de peltrie’ ”. In SIGGRAPH 85 tutorial notes.

8. Bielser, D., Maiwald, V. A., & Gross, M. H. (1999). Interactive cuts through 3-dimensional
soft tissue. Computer Graphics Forum, 18(3), 31–38.

9. Biswas, J., & Veloso, M. M. (2012). Depth camera based indoor mobile robot localization and
navigation. In ICRA (pp. 1697–1702).

10. Chen, D. T., & Zeltzer, D. (1992). Pump it up: computer animation based model of muscle us-
ing the finite element method. In Computer graphics (SIGGRAPH 92 conference proceedings)
(Vol. 26, pp. 89–98). Reading: Addison Wesley.

11. Chen, Y., Zhu, Q. h., Kaufman, A. E., & Muraki, S. (1998). Physically-based animation of
volumetric objects. In CA (pp. 154–160).

12. Clemente, L. A., Davison, A. J., Reid, I. D., Neira, J., & Tardos, J. D. (2007). Mapping
large loops with a single hand-held camera. In W. Burgard, O. Brock, & C. Stachniss (Eds.),
Robotics: science and systems. Cambridge: MIT Press. ISBN 978-0-262-52484-1.

http://dx.doi.org/10.1109/WHC.2005.75
http://dx.doi.org/10.1109/AIM.2010.5695851
http://dx.doi.org/10.1145/365058.365082
http://doi.acm.org/10.1145/365058.365082
http://doi.acm.org/10.1145/365058.365082
http://dblp.uni-trier.de/db/conf/nph/nph2009.html
http://dx.doi.org/10.1109/SYSOSE.2011.5966614
http://dx.doi.org/10.1109/SYSOSE.2011.5966614

References 229

13. Flacco, F., Kroger, T., De Luca, A., & Khatib, O. (2012). Depth space approach
to human-robot collision avoidance. In ICRA (pp. 338–345). New York: IEEE. ISBN
978-1-4673-1403-9. URL http://dblp.uni-trier.de/db/conf/icra/icra2012.html.

14. Garner, W. R. (1974). The processing of information and structure. Potomac: Lawrence Erl-
baum Associates.

15. Haddadin, S., Albu-Schäffer, A., De Luca, A., & Hirzinger, G. (2008). Collision detection and
reaction: a contribution to safe physical human-robot interaction. In IROS (pp. 3356–3363).
New York: IEEE.

16. Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). RGB-D mapping: using kinect-
style depth cameras for dense 3D modeling of indoor environments. International Journal of
Robotics Research, 31(5), 647–663.

17. Hong, M., Jung, S., Choi, M.-H., & Welch, S. W. J. (2006). Fast volume preserva-
tion for a mass–spring system. IEEE Computer Graphics and Applications, 26, 83–91.
doi:10.1109/MCG.2006.104. URL http://dl.acm.org/citation.cfm?id=1158812.1158873.

18. Hu, H., & Gan, J. Q. (2005). Sensors and data fusion algorithms in mobile robotics.
19. Hunter, P. (2005). Fem/bem notes (Technical report). University of Oaklans, New Zealand.
20. Hutchins, M., Stevenson, D., Adcock, M., & Youngblood, P. (2005). Using collaborative hap-

tics in remote surgical training. In Proc. first joint eurohaptics conference and symposium on
haptic interfaces for virtual environment and teleoperator systems (WHC 05) (pp. 481–482).
Washington: IEEE Computer Society.

21. Jacob, R. J. K., Sibert, L. E., McFarlane, D. C., & Preston Mullen, M. Jr. (1994). Integrality
and separability of input devices. ACM Transactions on Computer-Human Interaction, 1, 3–
26. doi:10.1145/174630.174631. URL http://doi.acm.org/10.1145/174630.174631.

22. Jaillet, F., Shariat, B., & Vandrope, D. (1998). Volume object modeling and animation with
particle based system. In Proc. 8th ICECGDG (Vol. 1, pp. 215–219).

23. Jing, L., & Stephansson, O. (2007). Fundamentals of discrete element methods for rock en-
gineering: theory and applications. Developments in geotechnical engineering. Amsterdam:
Elsevier. ISBN 9780444829375. URL http://books.google.com/books?id=WS9bjQ0ORSEC.

24. Jung, Y., Yeh, S.-C., & Stewart, J. (2006). Tailoring virtual reality technology for stroke
rehabilitation: a human factors design. In CHI ’06 extended abstracts on human factors
in computing systems, CHI ’06 (pp. 929–934). New York: ACM. ISBN 1-59593-298-4.
doi:10.1145/1125451.1125631. URL http://doi.acm.org/10.1145/1125451.1125631.

25. Kaehler, K., Haber, J., & Seidel, H. P. (2001). Geometry-based muscle modeling for facial
animation. In Proc. of graphics interface 2001 (pp. 37–46).

26. Keefe, D. F., Zeleznik, R. C., & Laidlaw, D. H. (2007). Drawing on air: input techniques for
controlled 3D line illustration. IEEE Transactions on Visualization and Computer Graphics,
13(5), 1067–1081.

27. Khoshelham, K., & Elberink, S. O. (2012). Accuracy and resolution of kinect depth data
for indoor mapping applications. Sensors, 12(2), 1437–1454. doi:10.3390/s120201437. URL
http://www.mdpi.com/1424-8220/12/2/1437.

28. Konolige, K., & Agrawal, M. (2008). Frameslam: from bundle adjustment to real-time visual
mapping. IEEE Transactions on Robotics, 24(5), 1066–1077.

29. Kry, P. G., James, D. L., & Pai, D. K. (2002). Eigenskin: real time large deformation character
skinning in hardware. In Proc. ACM SIGGRAPH symposium on computer animation (pp.
153–159).

30. Kuhn, S., & Henrich, D. (2007). Fast vision-based minimum distance determination between
known and unknown objects. In IEEE international conference on intelligent robots and sys-
tems, San Diego/USA.

31. Leganchuk, A., Zhai, S., & Buxton, W. (1998). Manual and cognitive benefits of two-handed
input: an experimental study. ACM Transactions on Computer-Human Interaction, 5, 326–
359. doi:10.1145/300520.300522. URL http://doi.acm.org/10.1145/300520.300522.

32. Lewis, J. P., Cordner, M., & Fong, N. (2000). Pose space deformations: a unified approach to
shape interpolation and skeleton-driven deformation. In SIGGRAPH 00 conference proceed-
ings. Reading: Addison Wesley.

http://dblp.uni-trier.de/db/conf/icra/icra2012.html
http://dx.doi.org/10.1109/MCG.2006.104
http://dl.acm.org/citation.cfm?id=1158812.1158873
http://dx.doi.org/10.1145/174630.174631
http://doi.acm.org/10.1145/174630.174631
http://books.google.com/books?id=WS9bjQ0ORSEC
http://dx.doi.org/10.1145/1125451.1125631
http://doi.acm.org/10.1145/1125451.1125631
http://dx.doi.org/10.3390/s120201437
http://www.mdpi.com/1424-8220/12/2/1437
http://dx.doi.org/10.1145/300520.300522
http://doi.acm.org/10.1145/300520.300522

230 7 Applications

33. Low, T., & Wyeth, G. (2005). Obstacle detection using optical flow. In Proceedings of the
2005 Australasian conf. on robotics & automation.

34. Magnenant-Thalmann, N., Laperriere, R., & Thalmann, D. (1988). Jointdependent local de-
formations for hand animation and object grasping. In Proc. of graphics interface 88 (pp.
26–33).

35. Martinet, A., Casiez, G., & Grisoni, L. (2010). The effect of dof separation in 3d ma-
nipulation tasks with multi-touch displays. In Proceedings of the 17th ACM sympo-
sium on virtual reality software and technology, VRST ’10 (pp. 111–118). New York:
ACM. ISBN 978-1-4503-0441-2. doi:10.1145/1889863.1889888. URL http://doi.acm.org/
10.1145/1889863.1889888.

36. May, S., Fuchs, S., Droeschel, D., Holz, D., & Nüchter, A. (2009). Robust 3d-mapping with
time-of-flight cameras. In Proceedings of the 2009 IEEE/RSJ international conference on in-
telligent robots and systems, IROS’09 (pp. 1673–1678). Piscataway: IEEE Press. ISBN 978-
1-4244-3803-7. URL http://dl.acm.org/citation.cfm?id=1733343.1733640.

37. Mezger, J., & Strasser, W. (2006). Interactive soft object simulation with quadratic finite ele-
ments. In Proc. AMDO conference.

38. Müller, M., & Chentanez, N. (2011). Solid simulation with oriented particles. In ACM SIG-
GRAPH 2011 papers, SIGGRAPH ’11 (pp. 92:1–92:10). New York: ACM. ISBN 978-1-4503-
0943-1. doi:10.1145/1964921.1964987. URL http://doi.acm.org/10.1145/1964921.1964987.

39. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., & Cutler, B. (2002). Stable real-time de-
formations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on com-
puter animation, SCA ’02 (pp. 49–54). New York: ACM. ISBN 1-58113-573-4. doi:10.1145/
545261.545269. URL http://doi.acm.org/10.1145/545261.545269.

40. Müller, M., Heidelberger, B., Teschner, M., & Gross, M. (2005). Meshless deforma-
tions based on shape matching. In ACM SIGGRAPH 2005 papers, SIGGRAPH ’05
(pp. 471–478). New York: ACM. doi:10.1145/1186822.1073216. URL http://doi.acm.org/
10.1145/1186822.1073216.

41. Munjiza, A. (2004). The combined finite-discrete element method. New York: Wiley. ISBN
9780470841990. URL http://books.google.co.in/books?id=lbznrSzqcRkC.

42. Murayama, J., Bougrila, L., Akahane, Y. K., Hasegawa, S., Hirsbrunner, B., & Sato, M. (2004).
Spidar g&g: a two-handed haptic interface for bimanual vr interaction. In Proceedings of Eu-
roHaptics 2004 (pp. 138–146).

43. Nealen, A., Mueller, M., Keiser, R., Boxerman, E., & Carlson, M. (2006). Physically
based deformable models in computer graphics. Computer Graphics Forum, 25(4), 809–836.
doi:10.1111/j.1467-8659.2006.01000.x.

44. Ohno, K., Nomura, T., & Tadokoro, S. (2006). Real-time robot trajectory estimation and 3d
map construction using 3d camera. In IROS (pp. 5279–5285). New York: IEEE.

45. OpenNI (2010). OpenNI user guide. OpenNI organization, November. URL
http://www.openni.org/documentation.

46. OpenSG (2012). Opensg—a portable scenegraph system to create realtime graphics pro-
grams. URL http://www.opensg.org/.

47. Prusak, A., Melnychuk, O., Roth, H., Schiller, I., & Koch, R. (2008). Pose estimation and
map building with a time- of- flight- camera for robot navigation. Inter-
national Journal of Intelligent Systems Technologies and Applications, 5(3/4), 355–364.
doi:10.1504/IJISTA.2008.021298.

48. Ravari, A. R. N., Taghirad, H. D., & Tamjidi, A. H. (2009). Vision-based fuzzy naviga-
tion of mobile robots in grassland environments. In IEEE/ASME international conference
on advanced intelligent mechatronics, 2009. AIM 2009, July (pp. 1441–1446). doi:10.1109/
AIM.2009.5229858.

49. Rusu, R. B., & Cousins, S. (2011). 3d is here: point cloud library (pcl). In International con-
ference on robotics and automation, Shanghai, China.

50. Schiavi, R., Bicchi, A., & Flacco, F. (2009). Integration of active and passive compliance con-
trol for safe human-robot coexistence. In Proceedings of the 2009 IEEE international confer-

http://dx.doi.org/10.1145/1889863.1889888
http://doi.acm.org/10.1145/1889863.1889888
http://doi.acm.org/10.1145/1889863.1889888
http://dl.acm.org/citation.cfm?id=1733343.1733640
http://dx.doi.org/10.1145/1964921.1964987
http://doi.acm.org/10.1145/1964921.1964987
http://dx.doi.org/10.1145/545261.545269
http://dx.doi.org/10.1145/545261.545269
http://doi.acm.org/10.1145/545261.545269
http://dx.doi.org/10.1145/1186822.1073216
http://doi.acm.org/10.1145/1186822.1073216
http://doi.acm.org/10.1145/1186822.1073216
http://books.google.co.in/books?id=lbznrSzqcRkC
http://dx.doi.org/10.1111/j.1467-8659.2006.01000.x
http://www.openni.org/documentation
http://www.opensg.org/
http://dx.doi.org/10.1504/IJISTA.2008.021298
http://dx.doi.org/10.1109/AIM.2009.5229858
http://dx.doi.org/10.1109/AIM.2009.5229858

References 231

ence on robotics and automation, ICRA’09 (pp. 2471–2475). Piscataway: IEEE Press. ISBN
978-1-4244-2788-8. URL http://dl.acm.org/citation.cfm?id=1703775.1703850.

51. Stylopoulos, N., & Rattner, D. (2003). Robotics and ergonomics. Surgical Clinics of North
America, 83(6), 1321–1337. URL http://view.ncbi.nlm.nih.gov/pubmed/14712869.

52. Sueda, S., Kaufman, A., & Pai, D. K. (2008). Musculotendon simulation for hand animation.
ACM Transactions on Graphics, 27(3). URL http://doi.acm.org/10.1145/1360612.1360682.

53. Swapp, D., Pawar, V., & Loscos, C. (2006). Interaction with co-located haptic feedback in
virtual reality. Virtual Reality, 10, 24–30. doi:10.1007/s10055-006-0027-5.

54. Tsetserukou, D. (2010). Haptihug: a novel haptic display for communication of hug over a
distance. In EuroHaptics (1) (pp. 340–347).

55. Vassilev, T., & Spanlang, B. (2002). A mass–spring model for real time deformable solids. In
East-west vision.

56. Veit, M., Capobianco, A., & Bechmann, D. (2008). Consequence of two-handed manipulation
on speed, precision and perception on spatial input task in 3d modelling applications. Jour-
nal of Universal Computer Science, 14(19), 3174–3187. Special issue on human–computer
interaction.

57. Veit, M., Capobianco, A., & Bechmann, D. (2009). Influence of degrees of freedom’s ma-
nipulation on performances during orientation tasks in virtual reality environments. In VRST
2009: the 16th ACM symposium on virtual reality and software technology, Kyoto (Japan),
November.

58. Verner, L. N., & Okamura, A. M. (2009). Force & torque feedback vs force only feed-
back. In WHC ’09: proceedings of the world haptics 2009—third joint EuroHaptics con-
ference and symposium on haptic interfaces for virtual environment and teleoperator
systems (pp. 406–410). Washington: IEEE Computer Society. ISBN 978-1-4244-3858-7.
doi:10.1109/WHC.2009.4810880.

59. Wang, S., & Srinivasan, M. A. (2003). The role of torque in haptic perception of object loca-
tion in virtual environments. In HAPTICS ’03: proceedings of the 11th symposium on haptic
interfaces for virtual environment and teleoperator systems (HAPTICS’03) (p. 302). Washing-
ton: IEEE Computer Society. ISBN 0-7695-1890-7.

60. Weingarten, J. W., Gruener, G., & Siegwari, R. (2004). A state-of-the-art 3d sensor for robot
navigation. In IEEE/RSJ int. conf. on intelligent robots and systems (pp. 2155–2160).

61. Weller, R., & Zachmann, G. (2009). Stable 6-DOF haptic rendering with inner sphere
trees. In International design engineering technical conferences & computers and informa-
tion in engineering conference (IDETC/CIE), August. San Diego: ASME. URL http://cg.in.
tu-clausthal.de/research/ist. CIE/VES Best Paper Award.

62. Weller, R., & Zachmann, G. (2011). 3-dof vs. 6-dof—playful evaluation of complex hap-
tic interactions. In IEEE international conference on consumer electronics (ICCE), 2011 di-
gest of technical papers, January. Washington: IEEE Computer Society. URL http://cg.in.
tu-clausthal.de/research/haptesha.

63. Weller, R., & Zachmann, G. (2012). User performance in complex bi-manual haptic manip-
ulation with 3 dofs vs. 6 dofs. In Haptics symposium, Vancouver, Canada, March 4–7. URL
http://cg.in.tu-clausthal.de/research/haptesha/index.shtml.

64. Yinka-Banjo, C., Osunmakinde, I., & Bagula, A. (2011). Collision avoidance in unstructured
environments for autonomous robots: a behavioural modelling approach. In Proceedings of
the IEEE 2011 international conference on control, robotics and cybernetics (ICCRC 2011),
New Delhi, India, 20 March.

http://dl.acm.org/citation.cfm?id=1703775.1703850
http://view.ncbi.nlm.nih.gov/pubmed/14712869
http://doi.acm.org/10.1145/1360612.1360682
http://dx.doi.org/10.1007/s10055-006-0027-5
http://dx.doi.org/10.1109/WHC.2009.4810880
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/ist
http://cg.in.tu-clausthal.de/research/haptesha
http://cg.in.tu-clausthal.de/research/haptesha
http://cg.in.tu-clausthal.de/research/haptesha/index.shtml

Part IV
Every End Is Just a New Beginning

Chapter 8
Epilogue

In this chapter we will summarize the main contributions presented in this book and
we will venture to describe avenues for future work in the field of collision detection
and related areas. We will restrict the summary in this chapter to very basic concepts
and results. In the individual sections of the respective chapters you will find much
more detailed presentations (see Sects. 3.6, 4.4, 5.7, 6.5, and 7.5). The same ap-
plies for the future work section. You will find the more technical improvements
and extension of our new data structures, evaluations methods, and applications in
the individual chapters. In this chapter, we try to draw a wider picture of future
challenges related to collision detection in particular and to geometric acceleration
structures in general.

8.1 Summary

Collision detection is one of the “technologies” for enabling all kinds of applications
that deal with objects in motion. Often collision detection is the computational bot-
tleneck. An increasing graphical scene complexity, enabled by the explosive devel-
opment on GPUs, also makes increasing demands on the collision detection process.
Simply relying on the further increase of the computational power just postpones
rather than eliminates this problem.

A major challenge is still the collision detection for complex deformable ob-
jects. Pre-computed bounding volume hierarchies become invalid and must be re-
computed or updated. This is often done on a per-frame basis. In Chap. 3 we pre-
sented two new data structures, the kinetic AABB-Tree and the kinetic BoxTree, that
need significantly less update operations than previous methods. We even showed
that they are optimal in the number of bounding volume updates by proving a lower
bound on the number of update operations. Also in practice they outperform existing
algorithms by an order of magnitude. Our new data structures gain their efficiency
from an event-based approach that is formalized in the kinetic data structure frame-
work. Moreover, we also extended this method to the collision detection process

R. Weller, New Geometric Data Structures for Collision Detection and Haptics,
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_8,
© Springer International Publishing Switzerland 2013

235

http://dx.doi.org/10.1007/978-3-319-01020-5_8

236 8 Epilogue

itself. The resulting kinetic Separation-List enables real-time continuous detection
of collisions in complex scenes. Compared to classical swept volume algorithms we
measured a performance gain of a factor of 50.

Another challenge in the collision handling process is to determine “good” con-
tact information for a plausible collision response. Actually, the penetration volume
is known to be the best penetration measure because it corresponds to the water dis-
placement of the overlapping parts of the objects and thus leads to physically moti-
vated and continuous repulsion forces and torques. However, no one could compute
this penetration measure efficiently as yet. In Chap. 5 we presented the first data
structure, called Inner Sphere Trees, that yields an approximation of the penetration
volume even for very complex objects consisting of several hundreds of thousands
of polygons. Moreover, these volume queries can be answered at rates of about
1 kHz (which makes the algorithm suitable for haptic rendering) and an error of
about 1 % compared to the exact penetration volume. The basic idea of our Inner
Sphere Trees is very simple: In contrast to previous methods that create bound-
ing volume hierarchies from the surfaces of the objects, we fill the objects’ interior
with sets of non-overlapping volumetric primitives—in our implementation we used
spheres—and create an inner bounding volume hierarchy. In order to partition our
inner primitives into a hierarchical data structure, we could not simply adopt the
classical surface-optimized methods; so we have developed a volume-based heuris-
tic that relies on an optimization scheme known from machine learning.

However, the main challenge was less the hierarchy creation, but the computation
of an appropriate sphere packing. Actually, there were no algorithms available that
could compute sphere packings for arbitrary objects efficiently as yet. Therefore, we
have developed a new method that we presented in Chap. 4. Basically, it extends the
idea of space-filling Apollonian sphere packings to arbitrary objects by successive
approximating Voronoi nodes. Originally designed as a means to an end, we are
pretty confident that we just hit the tip of an iceberg with this new spherical volume
representation. Section 4.4.1 outlines some ideas on how sphere packings can be
applied to many other fundamental problems in computer graphics, including global
illumination and the segmentation of 3D objects.

Another example is the definition of a new deformation model for the volume
preserving simulation of deformable objects based on our sphere packings that we
presented in Sect. 7.2. Basically, these so-called Sphere–Spring Systems are an ex-
tension of classical mass–spring systems with an additional volume assigned to the
masses. We applied our model to the real-time animation of a virtual hand model.
Also our Inner Sphere Trees enabled us to realize interesting applications that are
summarized in Chap. 7 too: In Sect. 7.3 we explored new methods for real-time ob-
stacle avoidance in robotics using the minimum distance between point clouds that
was derived by a Kinect and our Inner Sphere Trees. In Sect. 7.4 we first described
a new multi-user haptic workspace that we then used to evaluate the influence of
the degrees of freedom in demanding bi-manual haptic interaction tasks. The results
of our extensive user study shows that 6 DOF devices outperform 3 DOF devices
significantly, both in user perception and performance. This is partly contradictory
to previous user studies that did not include haptic feedback.

8.2 Future Directions 237

Fig. 8.1 The Holodeck as a
symbol for the long term
objective in VR

However, there already exist a wide variety of different collision detection ap-
proaches and, obviously, not all of them will have been replaced by our new data
structures on short term. Actually, also our new data structures have their drawbacks,
like the restriction to watertight models of our Inner Sphere Trees, or the require-
ment of flightplans for our kinetic data structures. Furthermore, different applica-
tions need different types of contact information; e.g. for path-planning in robotics
it is sufficient to detect whether two objects collide or not. It does not need any fur-
ther contact information. Additionally, most collision detection algorithms are very
sensitive to specific scenarios, i.e. to the relative size of the objects, the relative posi-
tion to each other, the distance, etc. This makes it very difficult to select the collision
detection best suited for a special task. In order to simplify this selection process,
but also in order to give other researchers the possibility to compare their new al-
gorithms to previous approaches, we have developed two representative and easy to
use benchmarks that delivers verifiable results—namely, a performance benchmark
for static collision detection libraries for rigid objects (see Sect. 6.3) and a quality
benchmark that evaluates the quality of forces and torques computed by different
collision response schemes (see Sect. 6.3). The results of our benchmarks show that
they are able to crave out the strengths and weaknesses of very different collision
handling systems.

However, simply stressing collision detection algorithms with worst case ob-
jects like Chazelle’s polyhedron is easy but not very conducive. The results of
our benchmarks shows that such worst cases do not occur very often in practical
cases. Usually, we observed an almost logarithmic performance for most objects. In
Sect. 6.2 we presented a theoretical average-case analysis for simultaneous AABB-
Tree traversals to confirm this observation.

8.2 Future Directions

Figure 8.1 shows the Holodeck known from Star Trek™ to symbolize the long term
objective: A fully immersive and interactive virtual environment that cannot be dis-

238 8 Epilogue

tinguished from reality. Obviously, we are still far away from its implementation.
However, improvements in hardware as well as software development offer today
possibilities that were unimaginable just a few years ago. In this section, we will
present some medium-term objectives on the long way to the Holodeck, with spe-
cial focus on collision detection and geometric data structures that will probably
concern the research community during the years to come.

8.2.1 Parallelization

While we can identify a stagnancy in the frequency of CPUs in the last few years,
the further performance gain today is primarily achieved by packing more cores
into a single die. We get the same picture for GPUs; for instance, a recent NVIDIA
GTX 680 features 1536 cores. Moreover, GPUs have become fully programmable
in the last years. While parts of the collision detection pipeline lend themselves
well for parallelization, this is more complicated for other parts. For example, it is
straightforward to assign pairs of objects in the narrow phase to different cores for
a simultaneous check on the CPU.

GPU cores actually are not suitable to recursive hierarchy traversal, because
of their lack of an instruction stack. Hence, collision detection for GPUs requires
completely different algorithms and data structures. First approaches have been pub-
lished on non-hierarchical collision detection on the GPU, but we think that there
is still room for improvements. For instance, we are pretty sure that our kinetic data
structures as well as our Inner Sphere Trees would greatly benefit from paralleliza-
tion.

8.2.2 Point Clouds

Most work has been done on collision detection for polygonal objects. However,
hardware that generates 3D content in the form of point clouds has become ex-
tremely popular. For instance, due to the success of Microsoft’s Kinect an advanced
real-time tracking system is located in each child’s room today. The output of Kinect
is basically a depth image and thus some kind of point cloud. Real-time interactions
relying directly on such depth images will benefit from fast collision detection that
does not require a conversion to polygonal objects as intermediate step.

Moreover, 3D photography becomes more and more popular. Advanced effects
in 3D photo editing would benefit from fast point cloud-based collision detection
methods too.

8.2.3 Natural Interaction

Until now, the Kinect’s accuracy is restricted to track only coarse movements of the
body. We are quite sure that future developments will allow a precise tracking of

8.2 Future Directions 239

the human hands and fingers. This would enable us to use our primary interaction
tools—our hands—to naturally manipulate objects in virtual environments. Obvi-
ously, there already exist hardware devices for finger tracking, like data gloves, but
they always cause a tethering of the user.

However, there are also challenges on the software side. Until now, there is no
physically plausible simulation model available that allows complex grasps and pre-
cise operations like turning a screw with the index finger and the thumb. In today’s
virtual prototyping tasks objects are most often simply glued to the virtual hand.
However, such precise operations require a detailed physics-based deformable hand
model and an appropriate simulation of the fingers’ frictional forces.

8.2.4 Haptics

While the improvements in visual and aural sensations are impressive, one sense
is widely neglected in the simulation of virtual environments: the sense of touch.
However, force feedback defines a natural and expected cue on how to resolve colli-
sions with the environment and hence it adds a significant degree of immersion and
usability. For instance, in natural interaction scenarios as described above, it would
prevent a deviation of our real hands from the virtual ones.

Until now, haptic devices are bulky, expensive and require technical expertise
for installation and handling. The first cheap devices that were designed for the
consumer market are very limited in their degrees of freedom and in their amount
of force.

Also on the software side there are unsolved challenges with respect to haptics.
Our Inner Sphere Trees are able to meet the high frequency demands of 1000 Hz
for haptic simulations, but it is hardly possible to provide appropriate forces for thin
sheets that often appear in virtual assembly tasks. Moreover, the determination of
surface details that are visually represented by textures but have no corresponding
representation in the object’s geometry is still a challenge.

8.2.5 Global Illumination

Even if the quality of real-time graphics has improved significantly in the last years,
almost everybody is able to detect large differences between real-time renderings
via OpenGL or DirectX on the one hand and CGI animated films that are produced
in a time consuming offline rendering on the other hand. This gain of quality mainly
relies on global illumination techniques, like ray tracing, that allow a realistic sim-
ulation of advanced lightning effects, like refractions or subsurface scattering. Such
global illumination models are still not applicable to real-time rendering, especially
if deformable or at least moving objects are included.

240 8 Epilogue

The problems that arise with global illumination are very similar to collision
detection. Actually, most of these techniques require recursive intersection compu-
tations between the scene and a ray as a basic operation (see Sect. 2.6.1). Geometric
data structures like BVHs are used to accelerate these intersection tests. Similarly
to collision detection, these data structures become invalid if the scene changes.

8.2.6 Sound Rendering

Sound rendering draws two major challenges: first, if a sound occurs at some place
in a virtual environment, it has to be distributed through the scene. This means that
we have to compute echoes and reflections in order to make it sound realistic. This
problem is very similar to global illumination problems and can be approximated
by tracing rays through the scene. However, we also think that our Sphere Graph
would be suited well to compute sound propagations.

The second challenge is the production of the sounds itself. Today, usually pre-
recorded samples are used. If an event happens, e.g. if we knock over a virtual vase
that falls down and breaks into pieces, we hear the respective pre-recorded sound of
braking vases. However, it is hardly possible to provide a sound database that covers
every possible sound in highly interactive scenes. For instance, a vase falling on a
wooden floor sounds different from a hit on a stone floor. Consequently, synthesis
of sounds from material properties and contact information will improve the sound
quality as well as save the cost and time for the pre-recording of samples.

	New Geometric Data Structures for Collision Detection and Haptics
	Series Editors' Foreword
	Preface
	Acknowledgements
	Contents

	Part I: That Was Then, This Is Now
	Chapter 1: Introduction
	1.1 Contributions
	References

	Chapter 2: A Brief Overview of Collision Detection
	2.1 Broad Phase Collision Detection
	2.2 Narrow Phase Basics
	2.3 Narrow Phase Advanced: Distances, Penetration Depths and Penetration Volumes
	2.3.1 Distances
	2.3.2 Continuous Collision Detection
	2.3.3 Penetration Depth
	2.3.4 Penetration Volume

	2.4 Time Critical Collision Detection
	2.4.1 Collision Detection in Haptic Environments
	2.4.1.1 3 DOF
	2.4.1.2 6 DOF

	2.5 Collision Detection for Deformable Objects
	2.5.1 Excursus: GPU-Based Methods

	2.6 Related Fields
	2.6.1 Excursus: Ray Tracing

	References

	Part II: Algorithms and Data Structures
	Chapter 3: Kinetic Data Structures for Collision Detection
	3.1 Recap: Kinetic Data Structures
	3.2 Kinetic Bounding Volume Hierarchies
	3.2.1 Kinetic AABB-Tree
	3.2.1.1 Kinetization of the AABB-Tree
	3.2.1.2 Analysis of the Kinetic AABB-Tree
	3.2.1.3 Optimality of the Kinetic AABB-Tree

	3.2.2 Kinetic BoxTree
	3.2.2.1 Kinetization of the BoxTree
	3.2.2.2 Analysis of the Kinetic BoxTree

	3.2.3 Dead Ends
	3.2.3.1 Kinetic DOP-Tree
	3.2.3.2 Kinetic Interval DOP-Tree

	3.3 Kinetic Separation-List
	3.3.1 Kinetization of the Separation-List
	3.3.2 Analysis of the Kinetic Separation-List
	3.3.3 Self-collision Detection
	3.3.4 Implementation Details
	3.3.4.1 Continuous Primitive Intersection Test

	3.4 Event Calculation
	3.5 Results
	3.6 Conclusion and Future Work
	3.6.1 Future Work
	3.6.1.1 Kinetic Ray-Tracing
	3.6.1.2 Parallel Kinetic Data Structures
	3.6.1.3 Flightplans for Unknown Paths

	References

	Chapter 4: Sphere Packings for Arbitrary Objects
	4.1 Related Work
	4.1.1 Polydisperse Sphere Packings
	4.1.2 Apollonian Sphere Packings
	4.1.3 Sphere Packings for Arbitrary Objects
	4.1.4 Voronoi Diagrams of Spheres

	4.2 Voxel-Based Sphere Packings
	4.3 Protosphere: Prototype-Based Sphere Packings
	4.3.1 Apollonian Sphere Packings for Arbitrary Objects
	4.3.2 Parallelization
	4.3.3 Results

	4.4 Conclusions and Future Work
	4.4.1 Future Work
	4.4.1.1 Generalized Voronoi Diagrams
	4.4.1.2 Applications to Computer Graphics

	References

	Chapter 5: Inner Sphere Trees
	5.1 Sphere Packings
	5.2 Hierarchy Creation
	5.2.1 Batch Neural Gas Hierarchy Clustering
	5.2.1.1 Magniﬁcation Control
	5.2.1.2 Parallel Hierarchical Batch Neural Gas

	5.3 Traversal Algorithms
	5.3.1 Distances
	5.3.1.1 Improvements

	5.3.2 Penetration Volume
	5.3.2.1 Intersection Volume of Spheres
	5.3.2.2 Improvements
	5.3.2.3 Filling the Gaps

	5.3.3 Uniﬁed Algorithm for Distance and Volume Queries
	5.3.4 Time-Critical Distance and Volume Queries
	5.3.5 Continuous Collision Detection

	5.4 Continuous Volumetric Collision Response
	5.4.1 Contact Forces
	5.4.2 Torques

	5.5 Excursus: Volumetric Collision Detection with Tetrahedral Packings
	5.6 Results
	5.7 Conclusions and Future Work
	5.7.1 Future Work
	5.7.1.1 Quasi-volumetric Penetration Measure for Thin Sheets
	5.7.1.2 Theoretic Analysis
	5.7.1.3 Simulation of Fractures

	References

	Part III: Evaluation and Application
	Chapter 6: Evaluation and Analysis of Collision Detection Algorithms
	6.1 Related Work
	6.1.1 Theoretical Analysis
	6.1.2 Performance Benchmarks
	6.1.3 Quality Benchmarks

	6.2 Theoretical Analysis
	6.2.1 Analyzing Simultaneous Hierarchy Traversals
	6.2.1.1 Preliminaries

	6.2.2 Probability of Box Overlap
	6.2.2.1 Probability of X-Overlap
	6.2.2.2 The 3D Case

	6.2.3 Experimental Support
	6.2.4 Application to Time-Critical Collision Detection

	6.3 Performance Benchmark
	6.3.1 Benchmarking Scenarios
	6.3.1.1 The Grid Method
	6.3.1.2 The Sphere Method
	6.3.1.3 Distance Computation
	6.3.1.4 Penetration Volume Computation

	6.3.2 Benchmarking Procedure
	6.3.3 Implementation
	6.3.3.1 Collision Detection Libraries for Scenario I
	6.3.3.2 Collision Detection Libraries for Scenario II

	6.3.4 Results
	6.3.4.1 Results for Scenario I
	6.3.4.2 Results for Scenario II

	6.4 Quality Benchmark
	6.4.1 Force and Torque Quality Benchmark
	6.4.2 Benchmarking Scenarios
	6.4.3 Evaluation Method
	6.4.4 Equivalent Resolutions for Comparing Different Algorithms
	6.4.5 Results
	6.4.5.1 Force and Torque Computation by VPS
	6.4.5.2 Results

	6.5 Conclusion and Future Work
	6.5.1 Future Work

	References

	Chapter 7: Applications
	7.1 Related Work
	7.1.1 General Deformation Models of Deformable Objects
	7.1.2 Hand Animation
	7.1.3 Obstacle Avoidance in Robotics
	7.1.4 Evaluation of Haptic Interactions

	7.2 Sphere-Spring Systems and Their Application to Hand Animation
	7.2.1 Sphere-Spring System
	7.2.1.1 Volume Forces
	7.2.1.2 Volume Transfer

	7.2.2 Parallelization of the Sphere-Spring System
	7.2.3 Application to a Virtual Human Hand Model
	7.2.4 Results

	7.3 Real-Time Obstacle Avoidance in Dynamic Environments
	7.3.1 The Scenario
	7.3.2 Accelerating Distance Queries for Point Clouds
	7.3.2.1 Octree
	7.3.2.2 Uniform Grid

	7.3.3 Results

	7.4 3 DOF vs. 6 DOF-Playful Evaluation of Complex Haptic Interactions
	7.4.1 Haptesha-A Multi-user Haptic Workspace
	7.4.2 The Design of the Study: A Haptic Game
	7.4.3 The User Study
	7.4.3.1 Participants and Protocol
	7.4.3.2 Results

	7.5 Conclusions and Future Work
	7.5.1 Future Work

	References

	Part IV: Every End Is Just a New Beginning
	Chapter 8: Epilogue
	8.1 Summary
	8.2 Future Directions
	8.2.1 Parallelization
	8.2.2 Point Clouds
	8.2.3 Natural Interaction
	8.2.4 Haptics
	8.2.5 Global Illumination
	8.2.6 Sound Rendering

