
Team LRN

Data Structures FM 11/5/02 9:28 AM Page i

Data
Structures
for Game

Programmers

Team LRN

This page intentionally left blank

Team LRN

Data Structures FM 11/5/02 9:28 AM Page iii

Data
Structures

Ron Penton

TM

for Game
Programmers

Team LRN

Data Structures FM 11/5/02 9:28 AM Page iv

© 2003 by Premier Press, a division of Course Technology. All rights reserved. No part of this book
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system without written permission
from Premier Press, except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press and may not
be used without written permission.

TM

Publisher: Stacy L. Hiquet
Marketing Manager: Heather Hurley
Acquisitions Editor: Emi Smith
Project Editor: Karen A. Gill
Technical Reviewer: André LaMothe
Copyeditor: Stephanie Koutek
Interior Layout: LJ Graphics, Susan Honeywell
Cover Design: Mike Tanamachi
Indexer: Kelly Talbot
Proofreader: Jenny Davidson

Microsoft, Windows, and Visual C++ are trademarks of Microsoft Corporation.Wolfenstein, Doom, and
Quake are trademarks of Id Software, Inc. Warcraft and Starcraft are trademarks of Blizzard
Entertainment.

The artwork used in this book is copyrighted by its respective owners, and you may not use it in your
own commercial works.

All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-chang-
ing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-94-2

Library of Congress Catalog Card Number: 2002111226

Printed in the United States of America

03 04 05 06 07 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
2645 Erie Avenue, Suite 41

Cincinnati, Ohio 45208

Team LRN

Data Structures FM 11/5/02 9:28 AM Page v

To my family, for always being there for me.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page vi

Acknowledgments

I would first like to thank my family for putting up with me for the past nine
months. Yes, yes, I’ll start cleaning the house now.

I would like to thank all of my friends at school: Jim, James, Dan, Scott, Kevin, and
Kelvin, for helping me get through all of those boring classes without falling asleep.

I would like to thank everyone at work for supporting me through this endeavor.

I especially want to thank Ernest Pazera, André LaMothe, and everyone else at
Premier Press for giving me this tremendous opportunity and believing in me.

I would like to thank Bruno Sousa for opening the door to writing for me.

I want to thank the pioneers of Gamedev.net, Kevin Hawkins and Dave Astle, for
paving the road for me and making a book such as this possible.

I would like to thank all of you in the #gamedev crew, specifically (in no particular
order) Trent Polack, Evan Pipho, April Gould, Joseph Fernald, Andrew Vehlies,
Andrew Nguyen, John Hattan, Ken Kinnison, Seth Robinson, Denis Lukianov, Sean
Kent, Nicholas Cooper, Ian Overgard, Greg Rosenblatt, Yannick Loitière, Henrik
Stuart, Chris Hargrove, Richard Benson, Mat Noguchi, and everyone else!

I would like to thank my artists, Steven Seator and Ari Feldman, who made this
book’s demos look so much better than they would have been.

And finally, I would like to thank the Pepsi Corporation, for making that wonderful
“stay awake” juice known as Mountain Dew.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page vii

About the Author

Ron Penton’s lifelong dream has always been to be a game programmer. From the
age of 11, when his parents bought him his first game programming book on how
to make adventure games, he has always striven to learn the most about how games
work and how to create them.

Ron is currently finishing up his bachelor’s degree in computer science at the State
University of New York at Buffalo. He hopes to have a long career in game develop-
ment.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page viii

Contents at a Glance

Introduction xxxii

Part One

Concepts. 1
Chapter 1 Basic Algorithm Analysis 3

Chapter 2 Templates 13

Part Two

The Basics. 37
Chapter 3 Arrays. 39

Chapter 4 Bitvectors. 83

Chapter 5 Multi-Dimensional Arrays 107

Chapter 6 Linked Lists 147

Chapter 7 Stacks and Queues 189

Chapter 8 Hash Tables 217

Chapter 9 Tying It Together: The Basics. 241

Part Three

Recursion and Trees 315
Chapter 10 Recursion 317

Chapter 11 Trees . 329

Chapter 12 Binary Trees 359

Chapter 13 Binary Search Trees. 389

Chapter 14 Priority Queues and Heaps 407

Team LRN

Data Structures FM 11/5/02 9:28 AM Page ix

ixContents at a Glance

Chapter 15 Game Trees and Minimax Trees 431

Chapter 16 Tying It Together: Trees 463

Part Four
Graphs . 477
Chapter 17 Graphs . 479

Chapter 18 Using Graphs for AI: Finite State
Machines. 529

Chapter 19 Tying It Together: Graphs 563

Part Five
Algorithms . 597
Chapter 20 Sorting Data 599

Chapter 21 Data Compression 645

Chapter 22 Random Numbers 697

Chapter 23 Pathfinding. 715

Chapter 24 Tying It Together: Algorithms 769

Conclusion . 793

Part Six
Appendixes . 799
Appendix A A C++ Primer 801

Appendix B The Memory Layout of a Computer
Program 835

Appendix C Introduction to SDL. 847

Appendix D Introduction to the Standard Template
Library. 879

Index. 901

Team LRN

Data Structures FM 11/5/02 9:28 AM Page x

Contents

Letter from the Series Editor xxx

Introduction. xxxii

Part One

Concepts. 1

Chapter 1
Basic Algorithm Analysis 3
A Quick Lesson on Algorithm Analysis . 4

Big-O Notation . 4

Comparing the Various Complexities. 9

Graphical Demonstration:Algorithm Complexity . 10
Conclusion . 11

Chapter 2
Templates 13
What Are Templates?. 14
Template Functions . 15

Doing It the Old Way . 15

Doing It with Templates . 17

Template Classes . 19
Multiple Parameterized Types . 24
Using Values as Template Parameters . 27

Using Values of a Specific Datatype . 27

Using Values of Other Parameterized Types . 30

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xi

xiContents

Problems with Templates. 32
Visual C++ and Templates . 34
Under the Hood. 34
Conclusion . 35

Part Two

The Basics. 37

Chapter 3
Arrays 39
What Is an Array? . 40
Graphical Demonstration:Arrays . 41

Increasing or Decreasing Array Size . 43

Inserting or Removing an Item . 43

Native C Arrays and Pointers . 43
Static Arrays . 43

Dynamic Arrays . 49

An Array Class and Useful Algorithms . 59
The Data . 59

The Constructor . 59

The Destructor . 60

The Resize Algorithm . 60

The Access Operator . 62

The Conversion Operator. 63

Inserting an Item Between Two Existing Items . 64

Removing an Item from the Array . 65

A Faster Removal Method . 66

Retrieving the Size of an Array . 67

Example 3-3. 67

Storing/Loading Arrays on Disk . 68
Writing an Array to Disk . 69

Reading an Array from Disk. 70

Considerations for Writing and Reading Files . 71

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xii

xii Contents

Application: Using Arrays to Store Game Data . 71
The Monster Class . 72

Declaring a Monster Array. 72

Adding a Monster to the Game. 72

Making a Better Insertion Algorithm . 73

Removing a Monster from the Game . 74

Checking for Monster Removal . 75

Playing the Game. 76

Analysis of Arrays in Games . 77
Cache Issues . 77

Resizing Arrays . 80

Inserting/Removing Cells . 80

Conclusion . 80

Chapter 4
Bitvectors 83

What Is a Bitvector? . 84
Graphical Demonstration: Bitvectors . 85

The Main Screen . 86

Using the Buttons . 86

Creating a Bitvector Class. 86
The Data . 87

The Constructor . 87

The Destructor . 87

The Resize Algorithm . 88

The Access Operator . 89

The Set Function . 91

The ClearAll Function . 93

The SetAll Function . 93

The WriteFile Function . 94

The ReadFile Function . 94

Example 4-1. 95

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xiii

xiiiContents

Application:The Quicksave . 96
Creating a Player Class . 97

Storing the Players in the Game . 98

Initializing the Data Structures. 98

Modifying Player Attributes . 99

Saving the Player Array to Disk . 100

Playing the Game . 102

Bitfields. 102
Declaring a Bitfield . 103

Using a Bitfield. 103

Analysis of Bitvectors and Bitfields in Games . 105
Conclusion . 106

Chapter 5
Multi-Dimensional Arrays 107
What Is a Multi-Dimensional Array? . 108
Graphical Demonstration . 111
Native Multi-Dimensional Arrays. 112

Declaring a Multi-Dimensional Array . 112

Accessing a Multi-Dimensional Array . 115

Inside a Multi-Dimensional Array . 116

Dynamic Multi-Dimensional Arrays . 121
The Array2D Class . 121

The Array3D Class . 127

Application: Using 2D Arrays as Tilemaps . 131
Storing the Tilemap . 133

Generating the Tilemap . 134

Drawing the Tilemap . 135

Playing the Game . 136

Application: Layered Tilemaps. 136
Redefining the Tilemap. 138

Reinitializing the Tilemap . 139

Modifying the Rendering Algorithm . 140

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xiv

xiv Contents

Playing the Game . 141

Comparing Performance . 142

Comparing Size . 144

Analysis of Multi-Dimensional Arrays in Games. 144
Conclusion . 145

Chapter 6
Linked Lists 147
What Is a Linked List? . 148
Singly Linked Lists . 149

Graphical Demonstration: Singly Linked Lists. 149

Structure . 150

Example 6-4. 168

Final Thoughts on Singly Linked Lists . 169

Doubly Linked Lists . 169
Graphical Demonstration: Doubly Linked Lists . 170

Creating a Doubly Linked List . 171

Doubly Linked List Algorithms . 172

Reading and Writing Lists to Disk . 174
Writing a Linked List . 174

Reading a Linked List . 175

Application: Game Inventories . 176
The Player Class . 177

The Item Class . 177

Adding an Item to the Inventory . 178

Removing an Item from the Inventory . 178

Playing the Demo . 179

Application: Layered Tilemaps Revisited . 180
Declaring the Tilemap . 181

Creating the Tilemap . 182

Drawing the Tilemap . 182

Analysis and Comparison of Linked Lists . 184
Algorithm Comparisons. 184

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xv

xvContents

Size Comparisons . 185

Real-World Issues . 187

Conclusion . 188

Chapter 7
Stacks and Queues 189
Stacks . 190

What Is a Stack? . 190

Graphical Demonstration: Stacks . 192

The Stack Functions . 193

Implementing a Stack . 193

Application: Game Menus . 199

Queues . 204
Graphical Demonstration: Queues. 204

The Queue Functions . 206

Implementing a Queue . 206

Application: Command Queues . 212

Conclusion . 216

Chapter 8
Hash Tables 217
What Is Sparse Data? . 218
The Basic Hash Table . 219

Collisions. 221

Hashing Functions . 221

Enhancing the Hash Table Structure . 224
Linear Overflow . 224

Quadratic Overflow . 225

Linked Overflow . 225

Graphical Demonstration: Hash Tables . 226
Implementing a Hash Table . 228

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xvi

xvi Contents

The HashEntry Class . 228

The HashTable Class . 229

Example 8-1: Using the Hash Table. 233

Application: Using Hash Tables to Store Resources 235
The String Class . 236

Using the Table . 237

How the Demo Loads Resources . 237

Playing the Demo . 238

Conclusion . 239

Chapter 9
Tying It Together: The Basics . . . 241
Why Classes Are Good . 242
Storing Data in a Class . 243

Hiding Data . 245

Inheritance. 248

Using the Classes in a Game . 260

Making a Game . 265
Adventure:Version One . 266

Game 2—The Map Editor . 310

Conclusion . 314

Part Three

Recursion and Trees 315

Chapter 10
Recursion 317
What Is Recursion? . 318

A Simple Example: Powers . 319

The Towers of Hanoi . 320
The Rules . 321

Solving the Puzzle . 321

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xvii

xviiContents

Solving the Puzzle with a Computer . 323

Terminating Conditions . 325

Example 10-1: Coding the Algorithm for Real . 325

Graphical Demonstration:Towers of Hanoi. 327
Conclusion . 328

Chapter 11
Trees 329
What Is a Tree? . 330

The Recursive Nature of Trees . 332

Common Structure of Trees . 332

Graphical Demonstration:Trees . 333
Tutorial . 336

Building the Tree Class. 338
The Structure . 339

The Constructor . 340

The Destructor . 340

The Destroy Function . 341

The Count Function . 342

The Tree Iterator . 342
The Structure . 343

The Basic Iterator Functions . 343

The Vertical Iterator Functions . 345

The Horizontal Iterator Functions .346

The Other Functions . 346

Building a Tree . 347
Top Down . 347

Bottom Up . 347

Traversing a Tree . 347
The Preorder Traversal . 348

The Postorder Traversal. 350

Graphical Demonstration:Tree Traversals . 351

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xviii

xviii Contents

Game Demo 11-1: Plotlines . 352
Using Trees to Store Plotlines . 354

Playing the Game . 356

Conclusion . 358

Chapter 12
Binary Trees 359
What Is a Binary Tree?. 360

Fullness . 361

Denseness . 361

Balance . 362

Structure of Binary Trees. 362
Linked Binary Trees . 362

Arrayed Binary Trees . 363

Graphical Demonstration: Binary Trees . 366
Coding a Binary Tree . 368

The Structure . 368

The Constructor . 369

The Destructor and the Destroy Function . 369

The Count Function . 370

Using the BinaryTree Class . 370

Traversing the Binary Tree. 371
The Preorder Traversal . 372

The Postorder Traversal. 372

The Inorder Traversal. 372

Graphical Demonstration: Binary Tree Traversals . 373

Application: Parsing . 374
Arithmetic Expressions . 376

Parsing an Arithmetic Expression . 376

Recursive Descent Parsing. 377

Playing the Demo . 386

Conclusion . 388

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xix

xixContents

Chapter 13
Binary Search Trees 389
What Is a BST? . 390

Inserting Data into a BST . 391

Finding Data in a BST . 394

Removing Data from a BST . 394

The BST Rules . 394

Sub-Optimal Trees . 395

Graphical Demonstration: BSTs . 395
Coding a BST . 397

The Structure . 397

Comparison Functions. 397

The Constructor . 398

The Destructor . 398

The Insert Function . 399

The Find Function . 400

Example 13-1: Using the BST Class . 401

Application: Storing Resources, Revisited . 402
The Resource Class. 402

The Comparison Function . 403

Inserting Resources . 403

Finding Resources . 403

Playing the Demo . 404

Conclusion . 405

Chapter 14
Priority Queues and Heaps. 407
What Is a Priority Queue? . 408
What Is a Heap?. 410

Why Can a Heap Be a Priority Queue? . 411

Graphical Demonstration: Heaps . 417
Coding a Heap Class . 418

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xx

xx Contents

The Structure . 419

The Constructor . 419

The Enqueue Function . 420

The WalkUp Function . 420

The Dequeue Function . 422

The WalkDown Function . 422

Application: Building Queues. 424
The Units . 426

Creating a Factory . 426

The Heap . 427

Enqueuing a Unit . 427

Starting Construction . 428

Completing Construction . 428

Playing the Demo . 429

Conclusion . 430

Chapter 15
Game Trees and Minimax Trees. . . 431
What Is a Game Tree? . 432
What Is a Minimax Tree? . 434
Graphical Demonstration: Minimax Trees . 437
Game States. 439
More Complex Games. 442
Application: Rock Piles. 442

The Game State . 443

The Global Variables . 445

Generating the Game Tree . 446

Simulating Play . 452

Playing the Game . 454

More Complex Games. 456
Never-Ending Games . 456

Huge Games . 459

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxi

xxiContents

Limited Depth Games . 460

Conclusion . 460

Chapter 16
Tying It Together: Trees 463
Expanding the Game . 464

Altering the Map Format . 465

Game Demo 16-1: Altering the Game . 466

The Map Editor . 473

Further Enhancements . 475
Conclusion . 475

Part Four

Graphs . 477

Chapter 17
Graphs 479
What Is a Graph? . 480

Linked Lists and Trees . 480

Graphs. 482

Parts of a Graph . 482

Types of Graphs . 482
Bi-Directional Graphs . 483

Uni-Directional Graphs . 483

Weighted Graphs. 484

Tilemaps . 485

Implementing a Graph. 486
Adjacency Tables . 486

Direction Tables . 488

General-Purpose Linked Graphs . 489

Graphical Demonstration: Graphs. 492
Graph Traversals. 493

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxii

xxii Contents

The Depth-First Search . 493

The Breadth-First Search . 495

A Final Word on Graph Traversals . 499

Graphical Demonstration: Graph Traversals . 500

The Graph Class . 501
The GraphArc Class . 501

The GraphNode Classes . 502

The Graph Class . 504

Application: Making a Direction-Table Dungeon . 512
The Map . 512

Creating the Map. 513

Drawing the Map . 514

Moving Around the Map . 516

Playing the Demo . 517

Application: Portal Engines . 518
Sectors . 519

Determining Sector Visibility . 521

Coding the Demo . 522

Playing the Demo . 527

Conclusion . 528

Chapter 18
Using Graphs for AI: Finite State

Machines 529
What Is a Finite State Machine? . 530
Complex Finite State Machines. 533
Implementing a Finite State Machine . 535
Graphical Demonstration: Finite State Machines . 537
Even More Complex Finite State Machines . 538

Multiplying States . 538

Conditional Events. 541

Representing Conditional Event Machines . 542

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxiii

xxiiiContents

Graphical Demonstration: Conditional Events . 546
Game Demo 18-1: Intruder . 547

The Code . 550

Playing the Demo . 559

Conclusion . 560

Chapter 19
Tying It Together: Graphs 563
The New Map Format . 564

The New Room Entry Structure . 565

The File Format . 566

Game Demonstration 19-1:Adding the New Map Format 567
The DirectionMap . 568

Changes to the Game Logic . 580

Playing the Game . 582

Converting Old Maps . 583
The Directionmap Map Editor. 584

The Initial Map. 585

Setting and Clearing Tiles. 586

Loading a Map . 588

Saving a Map . 590

Using the Editor . 593

Upgrading the Tilemap Editor . 594
The Save Function . 594

The Load Function . 595

Conclusion . 596

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxiv

xxiv Contents

Part Five

Algorithms . 597

Chapter 20
Sorting Data. 599
The Simplest Sort: Bubble Sort. 600

Worst-Case Bubble Sort . 601

Graphical Demonstration: Bubble Sort . 602

Coding the Bubble Sort . 604

The Hacked Sort: Heap Sort . 609
Graphical Demonstration: Heap Sort. 611

Coding the Heap Sort . 613

The Fastest Sort: Quicksort . 616
Picking the Pivot . 616

Performing the Quicksort . 618

Graphical Demonstration: Quicksort . 621

Coding the Quicksort . 623

Graphical Demonstration: Race. 627
The Clever Sort: Radix Sort . 630

Graphical Demonstration: Radix Sorts. 631

Coding the Radix Sort . 633

Other Sorts . 637
Application: Depth-Based Games . 638

The Player Class . 639

The Globals . 640

The Player Comparison Function. 640

Initializing the Players. 640

Sorting the Players. 641

Drawing the Players. 641

Playing the Game . 642

Conclusion . 643

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxv

xxvContents

Chapter 21
Data Compression. 645
Why Compress Data? . 646

Data Busses . 647

The Internet . 649

Run Length Encoding . 649
What Kinds of Data Can Be Used for RLE?. 650

Graphical Demonstration: RLEs . 651

Coding an RLE Compressor and Decompressor . 656

Huffman Trees . 665
Huffman Decoding. 665

Creating a Huffman Tree . 667

Coding a Huffman Tree Class. 676

Example 21-3. 691

Test Files . 692

Example 21-4. 693

Data Encryption . 693
Further Topics in Compression . 694
Conclusion . 694

Chapter 22
Random Numbers 697
Generating Random Integers . 698

Generating Random Numbers in a Program . 699

Using rand and srand. 700

Using a Non-Constant Seed Value . 702

Generating a Random Number Within a Range . 702

Generating Random Percents . 705
Generating Random Floats . 706
Generating Non-Linear Random Numbers. 707

Probability Distribution Graphs . 707

Adding Two Random Numbers . 709

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxvi

xxvi Contents

Adding Three Random Numbers . 711

Graphical Demonstration: Random Distribution Graphs 712

Conclusion . 714

Chapter 23
Pathfinding. 715
Basic Pathfinding . 716

Random Bouncing . 718

Object Tracing . 719

Robust Pathfinding . 721
The Breadth-First Search . 721

Making a Smarter Pathfinder . 739

Making a Better Heuristic . 746

The A* Pathfinder . 750

Graphical Demonstration: Path Comparisons . 753

Weighted Maps . 754
Application: Stealth . 756

Thinking Beyond Tile-Based Pathfinding . 762
Line-Based Pathfinding . 762

Quadtrees . 764

Waypoints . 765

Conclusion . 767

Chapter 24
Tying It Together: Algorithms . . . 769
Making the Enemies Smarter with Pathfinding . 770

Adding Pathfinding to the TileMap Class . 771

Adding Pathfinding to the DirectionMap Class. 780

Visualizing the GetClosestCell Algorithm. 785

Is That All? . 786

Efficiency . 790

Playing the Game . 791

Conclusion . 791

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxvii

xxviiContents

Conclusion 793
Extra Topics . 794
Further Reading and References . 795

Data Structure Books . 795

C++ Books . 796

Game Programming Books . 797

Web Sites . 798

Conclusion . 798

Part Six

Appendixes . 799

Appendix A

A C++ Primer 801
Basic Bit Math . 802

Binary Numbers . 802

Computer Storage. 805

Bitwise Math . 807

Bitwise Math in C++ . 807

Bitshifting. 809

Standard C/C++ Functions Used in This Book . 811
Basic Input/Output . 811

File I/O . 814

Math Functions . 817

The Time Function. 818

The Random Functions . 819

Exceptions and Error Handling . 820
Assertions . 820

Return Codes . 820

Exceptions . 821

Why C++? . 823

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxviii

xxviii Contents

Class Topics. 824
Constructors . 824

Destructors . 826

Operator Overloads . 827

Conversion Operators . 829

The This Pointer . 830

Inline Functions . 830

Function Pointers . 832

Conclusion . 833

Appendix B

The Memory Layout of a

Computer Program 835
The Memory Sections . 836
The Code Memory. 837
The Global Memory. 838

Global Variables . 838

Static Variables . 839

The Stack . 840
Local Variables . 840

Parameters . 842

Return Values. 843

The Free Store. 844
Conclusion . 845

Appendix C

Introduction to SDL 847
The Licensing . 848
Setting Up SDL . 849

The Files . 849

Setting Up the Files . 850

Setting Up Visual C++ . 851
Setting Up Your Project . 853

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxix

xxixContents

Setting Up SDL_TTF . 856
Distributing Your Programs . 858
Using SDL . 858

SDL_Video . 858

SDL Event Handling . 861

SDL_Timer . 863

SDL_TTF . 863

The SDLHelpers Library . 865
The SDLFrame . 867
The SDLGUI Library . 869

The SDLGUI Class . 869

The SDLGUIItem Class . 874

The SDLGUI Items . 876

The SDLGUIFrame . 876

Conclusion . 878

Appendix D

Introduction to the Standard

Template Library 879
STLPort . 880
STL Versus This Book. 882
Namespaces . 883
The Organization of STL . 885
Containers . 889

Sequence Containers . 890

Associative Containers . 896

Container Adaptors . 896

The Miscellaneous Containers . 898

Conclusion . 899

Index. 901

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxx

xxxxxxxxx Letter from the Series Editor

Letter from the
Series Editor

Dear reader,

I’ve always wanted to write a book on data structures. However, there is
simply no way to do the job right unless you use graphics and animation,
and that means a lot of work. I personally think that all computer books
will be animated, annotated, and interactive within 10 years—they have to
be. There is simply too much information these days to convey with text
alone; we need to use graphics, color, sound, animation—anything and
everything to try to make the complex computer science subjects under-
standable these days.

With that in mind, I wanted a data structures book that was like no
other—a book using today’s technology that could live up to my high stan-
dards. So I set out to find the perfect author and finally Ron Penton came
along to take on the challenge. Ron, too, had my same vision for a data
structures book. We couldn’t do something that had been done—there are
a zillion boring data structure books—but if we could apply gaming tech-
nology and graphics to teach the subject, we would have something
unique. Moreover, this book is for anyone who wants to learn data struc-
tures and related important algorithms. Sure, if you’re a game program-
mer then you will feel at home, but if you’re not, then believe me, put
down that hardbound college text and pick this book up because not only
will you absolutely know this stuff inside and out by the time you’re done,
but you will have an image in your mind like you have never had before.

All right, now I want to talk about what you’re going to find inside.

First, Ron has really outdone himself with the demonstrations in this book.
I would have been happy with little dots moving around and some arrows,
but he has created an entire system to build the book demos in so that you
can see the data structures working and the algorithms processing them.
It’s simply amazing to actually see bubble sort, quick sort, heap sort, and
so on all race each other, or the insertion and deletion of nodes in a tree.
Only a game programmer could bring these and more to you—no one
else would have the programming mastery of all the fields necessary to

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxi

xxxixxxixxxixxxi Letter from the Series Editor

pull this off. On the other hand, if you are a game programmer, then you
will greatly appreciate Ron’s insight into applications of various data struc-
tures and algorithms for game-related programs. In fact, he came up with
some pretty cool applications I hadn’t thought of!

So what’s inside? Well, the book starts off with an introduction, gets you
warmed up with arrays, bit vectors, and simple stuff like that, and talks
about the use of SDL (the simple direct media layer) used for the demos.
Then the book drives a steak through the heart of the data structure drag-
on and covers asymptotic analysis, linked lists, queues, heaps, binary trees,
graphs, hash tables, and the list goes on and on. After Ron has made you a
believer that hash tables are the key to the universe, he switches gears to
algorithms and covers many of the classic algorithms in computer science,
such as sorting, searching, compression, and more. Of course, no book
like this would be complete without coverage of recursion, and that’s in
here, too—but you will love it because for once, you will be able to see the
recursion! Finally, the book ends with primers on C++, SDL, and the stan-
dard template library, so basically you will be a data structure god when
you’re done!

In conclusion, this book is for the person who is looking for both a practi-
cal and a theoretical base in data structures and algorithms. I guarantee
that it will get you farther from ground zero than anything else.

André LaMothe
Series Editor

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxii

Introduction

What is a computer program? When you get down to the lowest level, you can sepa-
rate a program into two main sections: the data and the instructions that operate
on the data. These two sections of a program are commonly called the data struc-
tures and the algorithms.

This book will teach you how to create many data structures, ranging from the very
simple to the moderately complex.

Understanding data structures and algorithms is an essential part of game pro-
gramming. Knowing the most efficient way to store data and work with the data is
an important part of game programming; you want your games to run as quickly as
possible so you can pack as many cool features into them as you can.

I have a few goals with this book:

■ Teach you how the most popular data structures and algorithms work
■ Teach you how to make the structures and algorithms
■ Teach you how to use the data structures in computer games

Mark Twain once said this:

It is a good thing, perhaps, to write for the amusement of the public. But it is a far
higher and nobler thing to write for their instruction.

I have always tried to help people whenever they need it. However, most of my help
has been interactive—in chat rooms or in person. People ask me questions, and I
answer them. If they don’t understand, I can explain it better. A book is a different
format for me because you cannot ask me a question if there is something you
don’t understand. So I have used the only method I can think of to prevent you
from needing to ask questions: I explain everything. Well, not quite everything
because that is pretty much impossible, but I have tried to explain as much as possi-
ble to help you understand things better.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxiii

xxxiiiIntroduction

Who Is This Book For?

If you’re standing in the bookstore reading this Introduction and wondering, “Is
this book good for me?”, then read this section. If you’ve already bought the book,
thank you! I am going to assume that you’re reading this book because you want to
learn more (unless some diabolical person is forcing you to read this as an arcane
form of torture...).

This is a somewhat complex book because it deals with lots of concepts. However, I
feel that I have included ample introductory material as well. Therefore, this book
is for the game programmer who is just starting out at an intermediate level. So what
do I expect you to know?

I expect you to know basic C++, but don’t feel confused if you don’t feel like an
expert. Pretty much every complex topic I use in C++ is covered in Appendix A, so
if you’re unfamiliar with a concept or just forget how something works, take a few
minutes to read that appendix.

The most complex feature of C++ that I use is templates, but you don’t need to know
about them before you read this book. Chapter 2 is an extensive introduction to
templates, so don’t worry if you don’t know what they are just yet.

One advanced concept I use often in the later parts of the book is recursion, but
you don’t have to know about that, either. Chapter 10 is a small introduction to
recursion.

This book is for anyone who wants to learn more about how a computer works,
how to store data, and how to efficiently work on that data. All of this material is
essential to game programming, so take a glance at the Table of Contents. If there
is anything there that you don’t already know about, this book is for you. Even if
you know a little about the topics, this book is still good for you because every
chapter goes in depth about these subjects.

Topics Covered in This Book

In this book, I cover many data structures and how to use them in games, ranging
from the simple (arrays) to the complex (graphs and trees).

I have tried to make every chapter follow a certain format. First, I begin explaining
the data structure or algorithm in theory so that you can see how it works and
why it works. After that, I show you an interactive Graphical Demonstration of the
structure, which is a demo on the CD that you can play around with to help you

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxiv

xxxiv Introduction

understand how it works. These demonstrations all use the Simple DirectMedia Layer
(SDL) multimedia library, which I go more into depth on in just a little bit. All of
these demonstrations are located in the \demonstrations\ directory on the CD.

After that, I show you how to actually code the structure or algorithm in C++. The
code for these sections is mostly platform free, so it will usually compile on any
compiler. I mention any sections that are platform-specific in the book. All of
the code for the data structures and algorithms can be found on the CD in the
directory \structures\ for your convenience. Copies of the files have also been
placed in the directories of every demo that uses them. Whenever necessary, I have
included console mode Examples on how these structures work in the \examples\
directory on the CD. All of the examples use pure C/C++, with no extra SDKs or
APIs needed, so they use input and output to the text console window on your
computer.

CAUTION
You are free to use any of the data structures included on the CD in any projects
you use. However, be warned; they were designed to demonstrate the structures
and are not super-optimized. Many functions can be made faster, particularly the
small functions that can be inlined (see Appendix A).You cannot copy any of the
structures because none of them implements proper copy constructors.
Whenever you pass a structure into a function as a parameter, make absolutely
certain that you pass-by-reference or use a pointer; otherwise, it will mess up
your structure. If you don’t know what this means just yet, look at the functions
that use the data structures; they demonstrate how to use them correctly.

Finally, I show you an interactive Game Demonstration, which highlights the usage of
the structure or algorithm in a game-like atmosphere. Most of these games are sim-
ple, but they prove a point. These demonstrations also use the SDL multimedia
library and are located on the CD in the directory \demonstrations\ .

Some chapters might deviate from the format to show you different versions of the
structures.

I’ve separated this book into six main parts:

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxv

xxxvIntroduction

■	 Concepts
■	 The Basics
■	 Recursion and Trees
■	 Graphs
■	 Algorithms
■	 Appendixes

Concepts
In this part, I introduce you to some of the concepts used when dealing with data
structures and algorithms. You might know some of them, or you might not.

■	 Basic Algorithm Analysis—This chapter is a little on the theoretical side, and
it deals with topics that are usually taught in school. This chapter shows you
how algorithms are rated for speed so that you can see how to choose the
best algorithm for your needs.

■	 Templates—This is a somewhat advanced C++ concept. Some C++ books
don’t cover templates well, and because this book uses them extensively, I
feel that it is a good idea to include a chapter on how to use them.

You can safely skip this section if you already know the material.

The Basics
In this part, I show you many of the basic data structures used within games and
how to use them. These include

■	 Arrays—This chapter teaches you everything you ever needed to know about
arrays. You might not think arrays need this much explaining, but they are
an important structure in computing.

■	 Bitvectors—Bitvectors are an important part of space optimization. This
chapter shows you how to store data in as small of a place as possible.

■	 Multi-Dimensional Arrays—This chapter expands on the array chapter and
shows you how to use arrays with more than one dimension.

■	 Linked Lists—This chapter introduces you to the concept of linked data,
which has many insertion and deletion benefits.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxvi

xxxvi Introduction

■	 Stacks and Queues—This is the first chapter that doesn’t introduce you to a
new structure. Instead, it shows you how to access data in certain ways.

■	 Hash Tables—This chapter shows you an advanced method of storing data by
using both arrays and linked lists. It is the last structure covered in this part
of the book.

In addition to those, the last chapter in this part (Chapter 9) is the first of the
“Tying It Together” chapters. There are four of these chapters throughout the
book, one at the end of Parts Two, Three, Four, and Five. In Chapter 9, I introduce
you to the ideas of learning how to store custom game data and designing your
own classes. After that, I show you how to design a basic game using many of the
structures from this part of the book.

Recursion and Trees

In this Part, I introduce you to the ideas of recursion, recursive algorithms, and
recursive data structures, namely trees. This Part includes the following chapters:

■	 Recursion—This is a small chapter introducing you to the idea of recursion
and how it works. Recursion is a tough subject and isn’t covered well in most
C++ books, so I felt that I needed to include an introduction to the concept.

■	 Trees—This chapter introduces you to the idea of a linked tree data struc-
ture and how it is used.

■	 Binary Trees—This chapter shows you a specific subset of trees. Binary trees
are the most frequently used tree structures in computing.

■	 Binary Search Trees—This chapter shows you how to store data in a recursive
manner so that you can access it quickly later.

■	 Priority Queues and Heaps—Heaps are another variation of the binary tree.
This chapter shows you how to use a binary tree to implement an efficient
queue variation called the priority queue.

■	 Game Trees and Minimax Trees—Game Trees are a different kind of tree
used to store state information about turn-based games.

In addition, Chapter 16 expands upon Chapter 9 and adds some tree-like proper-
ties to the game from Chapter 9.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxvii

xxxviiIntroduction

Graphs

In this part, I introduce you to the graph data structure, which is another linked
data structure that is somewhat like trees. This part of the book is broken down
into the following chapters:

■	 Graphs—This chapter introduces you to the idea of the graph structure and
its many derivatives. Graphs are used all over in game programming.

■	 Using Graphs for AI: Finite State Machines—This is an application of the
graph data structure to the field of artificial intelligence—a way to make your
games smarter.

Chapter 19 applies some concepts from the graph chapter and adds them to the
game from Chapter 16.

Algorithms

Originally, I had planned to include these topics in the previous three parts, but
they really fit better in a section of their own. Some of the topics use concepts from
all three of the previous parts, and others don’t. This part is composed of the fol-
lowing chapters:

■	 Sorting Data—This chapter covers four different sorting algorithms.
■	 Data Compression—This chapter shows you two ways to compress data.
■	 Random Numbers—This chapter shows you how to use the random number

generator built into the C standard library and how to use some algorithms
to get impressive results from generating random numbers.

■	 Pathfinding—This chapter shows you four different pathfinding algorithms
to use on the maps you create in your games.

The final chapter, Chapter 24, expands on the game from Chapters 9, 16, and 19
by adding pathfinding support to the AIs in the game.

Appendixes
Finally, there are four appendixes in the book that cover a variety of topics:

■	 A C++ Primer—This appendix attempts to cover the features of C++ that are
used in this book so you don’t have to go running for a reference book every
time I use something that you want to know more about.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxviii

xxxviii Introduction

■	 The Memory Layout of a Computer Program—To understand how to use a
computer to its fullest extent, you must know about how it structures its
memory. This appendix tells you this information.

■	 Introduction to SDL—This is a basic introduction to the Simple DirectMedia
Layer library, which the book uses for all of the demonstrations. It also goes
over the two SDL libraries I’ve developed to make the demonstrations in the
book.

■	 Introduction to the Standard Template Library—This appendix introduces
you to the C++ Standard Template Library, which is a built-in structure and
algorithm library that should come with every compiler.

What’s on the CD?

The CD for this book contains every Example, Game Demonstration, and
Graphical Demonstration for the book. There are 33 Examples, 26 Game
Demonstrations, and 34 Graphical Demonstrations. That is 93 examples and
demonstrations! That should be enough to keep you busy for a while.

Just in case you end up wanting more, however, there’s even more stuff on the CD.
There are 19 code files full of the data structures and algorithms in this book, con-
veniently located in the directory \structures\, as well as the two SDL libraries I’ve
developed for the book (see Appendix C).

In the \goodies\ directory, there are four articles—two dealing with trees and two
dealing with SDL. They expand on the topics covered in this book.

In addition, the SDL, SDL_TTF, STLPort, and FreeType libraries (see Appendixes
C and D for more information) are in that directory.

Figure I.1 shows you the layout of the CD.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xxxix

xxxixIntroduction

the CD is laid
out.

Figure I.1

This is the way

The Simple Directmedia
Layer
This is a game programming book, and as such, I had to choose an Application
Programming Interface (API) to use that would allow me to graphically demonstrate
the data structures and show them to you in real-world demos. At first, I thought I
would use DirectDraw, but that idea was quickly laid to rest. DirectX, although a wor-
thy API, is just a little too low level, and it would likely get in the way of describing
the data structures. Also, I would have had to include a lengthy section telling you
how to set up DirectX and all its hundreds of structures.

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xl

xl Introduction

A friend of mine recently introduced me to a very simple API called SDL: The
Simple Directmedia Layer. I think that the S part of the title should be emphasized
because the API is simple. I was able to make a working SDL program (no, it wasn’t
“Hello World”. It’s the Array Demonstration from Chapter 3) in less than an hour
after first looking at the header files. It truly is that simple.

Therefore, I decided that SDL was the API I wanted to use to demonstrate the con-
cepts in this book. It’s simple enough so that it will not get in the way of the theory,
and I am confident that you will be able to pick it up in almost no time at all. I’ve
provided a simple primer for SDL in Appendix C to get you started with it. So if
you get confused by the graphics code, just take a peek at Appendix C. I promise,
the book won’t go anywhere until you return.

Coding Conventions Used in
This Book
Although the point of this book is to demonstrate how to effectively organize your
data, organizing your code is still somewhat important. Because of this, I will be
adopting a simple coding standard.

In an effort to emphasize the scope of the different variables within the book, I
have used a simple mutation of the popular Hungarian Notation:

■	 Global variables will be prefixed with g_.

Examples: g_name, g_state

■	 Class/Structure member variables will be prefixed with m_.

Examples: m_name, m_state

■	 Parameter variables will be prefixed with p_.

Examples: p_name, p_state

■	 Local function variables have no prefix.

Examples: name, state

Besides the prefix, all variables will be lowercase.

Class and function names will be title-cased, with each major word in the name

capitalized.

Examples: ClassOne, ClassTwo, Function(), FunctionOne(), DoSomething()

Team LRN

Data Structures FM 11/5/02 9:28 AM Page xli

xliIntroduction

Artwork

Two people provided the artwork used for the demos in this book. First and fore-
most, I would like to thank Steve Seator for making all of the person sprites
and weapon icons in the game demos. He has an excellent Web site at
http://www.spritedomain.net. If you’re interested in his artwork, I urge you
to visit the site.

The other artist is Ari Feldman, who provided most of the other sprites in the
demos. His Web site is http://www.arifeldman.com.

I would like to thank both of them, because without them, my game demos would
be even cheesier than they already are.

All of the artwork is copyrighted by them, so you cannot use it in your own game
projects.

Are You Ready?

I suppose you’re getting bored with all of this introductory stuff and anxious to get
to the good stuff, so I’ll stop blabbering on about all of this and let you read on.
Have fun!

Team LRN

This page intentionally left blank

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 1

PART ONE

Concepts

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 2

1 Basic Algorithm Analysis

2 Templates

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 3

CHAPTER 1

Basic
Algorithm

Analysis

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 4

4 1. Basic Algorithm Analysis

Almost any computer science teacher would probably kill me for including
this topic as such a small chapter. After all, entire books are dedicated to this

subject. But we’re not computer science professors—we’re game programmers! We
don’t care about all of this highly mathematical stuff, right? Well, that’s only half
right. We should at least pay some attention to the algorithms we write. In this
chapter, you will learn

■ How algorithms are rated for growth
■ The most common complexity classes
■ How each of the complexity classes compares to the others

A Quick Lesson on

Algorithm Analysis

Some people spend their careers studying algorithms and data structures, and you
should be thankful for them. These are the people who invented some of the nifty
things you’ll be using in this book. These things are used because people have
proven that they work. For those of us who don’t want to spend years proving that
the efficiency of algorithm 1 is better than algorithm 2, this is a godsend.

However, I still think that at least some knowledge of how algorithms are analyzed
is required. This section is meant to introduce you to the very basics of these con-
cepts so that you can understand why some of the data structures and algorithms
we use are better than others. Throughout the book, I refer to some of the termi-
nology I’ve introduced here, so unless you already know a little about algorithm
analysis, I beg you to please read this section.

Big-O Notation

Big-O notation is a helpful tool that computer scientists often use to help define
the complexity of a function. Simply put, the Big-O of an algorithm is a function
that roughly estimates how the algorithm scales when it is used on different sized
datasets. Big-O notation is shown like this:

O(function);

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 5

5A Quick Lesson on Algorithm Analysis

The function is usually a mathematical formula based on the letters n and c, where
n represents the number of data elements in the algorithm and c represents a con-
stant number.

Imagine having a huge collection of action figures—at least 1,000 of them. But
you’re a very sloppy person, and you don’t have them organized in any manner at
all. (Okay, maybe you’re not so sloppy, but just pretend.) Now, one of your friends
comes over and wants to look at your exclusive Boba Fett action figure—the really
rare one. In the worst-case scenario, you need to search through every single one of
your figures because Boba Fett might be the 1000th figure in your collection.

In this example, the Big-O of the search would be O(n), because the number of
items to search is 1,000, and in the worst-case scenario, you have to search through
every figure in the collection. (Technically, the worst case would be not finding him
at all because your mom sold him for grocery money.) Of course, Boba Fett might
be the first figure you look at or he might be the 500th, but when analyzing an
algorithm, you don’t (usually) care about the best case because the best case only
occurs in optimal conditions, which almost never occur.

A number of different functions are typically used to examine the complexity of an
algorithm, and these are (listed in order from the lowest complexity to the highest
complexity) constant, log2n, n, nlog2n, n2, n3, and 2n. It’s okay if you don’t know
exactly what these functions do. Just look at the graphs that follow; they will show
you visually how the function looks as the number of data items increases.

O(c)
As I stated before, the C in a Big-O expression is a constant. Figure 1.1 illustrates
the constant function. The graphs produced by the constant function are all hori-
zontal, meaning that no matter how large the dataset is, the algorithm will take the
same amount of time to complete. These functions are usually considered the
fastest. Some of the structures in this book have algorithms associated with them
that approach O(c) as a best-case scenario.

Figure 1.1

The constant function does not vary
based on the size of the data. It operates
at the same speed, no matter what the
size of the data is.

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 6

6 1. Basic Algorithm Analysis

O(Log2n)
Figure 1.2 shows the logarithm base 2 function. In case you don’t know, a loga-
rithm function is the inverse of an exponential function. The best way to describe it
is this: In a base 2 logarithm, the vertical component is increased by 1 whenever
the dataset size is doubled. The log of 1 is 0, the log of 2 is 1, the log of 4 is 3, the
log of 8 is 4, and so on. Logarithm-based algorithms are generally considered the
most efficient algorithms in existence that depend on the size of the data.
(Remember: O(c) algorithms don’t depend on the size of the data.)

Figure 1.2

The Log2n function varies with the size of
the data, but becomes more efficient as
more data is added.

O(n)
O(n) is called the linear function. Figure 1.3 illustrates what this function looks
like. Basically, an O(n) algorithm grows at a constant rate with the data size. This
growth rate means that if an O(n) algorithm takes 20 seconds to operate on 1,000
data items, it would take roughly 40 seconds to operate on 2,000 data items. The
scenario of trying to find the Boba Fett action figure is an example of an O(n)
algorithm.

Figure 1.3

The linear function varies directly with
the size of the data.Twice as much data
will take twice as long to compute.

O(n log2n)
This function, shown in Figure 1.4, is a popular lower-bound function for sorting
algorithms. It is basically n multiplied by log2n, so it is larger than any of the

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 7

7A Quick Lesson on Algorithm Analysis

previous graphs, but compared to some of the more complex functions I discuss
next, it is also considered a fairly efficient algorithm class.

Figure 1.4

The n log2n function varies with
the size of the data, but has a
relatively shallow curve, which
makes functions that fall into this
category seem efficient.

O(n 2)
This is where the more complex functions begin. An n2 function (shown in Figure
1.5) is typically considered inefficient for most tasks because the function grows at
an enormously high rate. For example, if it took 20 seconds to perform an algo-
rithm on 1,000 data items, it would take 80 seconds for 2,000 items—4 times as
long! In general, you should stay away from O(n2) algorithms unless you have no
other choice. An example of an O(n2) function would be a for-loop with another
for-loop nested inside.

Figure 1.5

The n2 function has a steep incline,
which makes it undesirable.

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 8

8 1. Basic Algorithm Analysis

O(n 3)
If you thought O(n2) was bad, O(n3) is even worse! Even though the graph looks
almost identical to O(n2) (see Figures 1.5 and 1.6), it shoots up at a much higher
rate. If it took 20 seconds to perform an algorithm on 1,000 items, it would take
160 seconds for 2,000 items! That’s 8 times longer!

Figure 1.6

The n3 function has an even
steeper incline than the n2

function.

O(2n)
The O(2n) function is commonly called the base-2 exponential function. Every time
the number of items in the algorithm increases by 1, the time it takes to complete
the function doubles. See Figure 1.7 for the graph of this function. These are really
inefficient algorithms—take care to avoid these at all costs!

Figure 1.7

The base-2 exponential function is
inefficient; every time you increase
the size of the data by 1, the time
it takes to complete the function
doubles.

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 9

9A Quick Lesson on Algorithm Analysis

O(2n n3

n

n
n) is faster than O(n3).

NOTE
) algorithms are actually faster than O() algorithms for very small

datasets.This has to do with the way an O(2) algorithm slopes: It starts out slow,
but shoots up quicker than all the other algorithms. For values of that are less
than 10, O(2

Comparing the Various
Complexities
The following table is a comparison of the various functions that gives you a better
understanding of how the complexity functions affect the running time of an algo-
rithm. (This is a generic algorithm prediction that assumes it takes exactly 1 second
to process each item.)

TABLE

16 Items 32 Items 64 Items 128 Items

O(log2n) 4 seconds 5 seconds 6 seconds 7 seconds

O(n) 16 seconds 32 seconds 64 seconds 128 seconds

O(nlog2n) 64 seconds 160 seconds 384 seconds 896 seconds

O(n2) 256 seconds

O(n3) 73 hours

O(2n) 18 hours 500,000 millennia —————-*

1.1 Running Time Comparisons

Complexity

17 minutes 68 minutes 273 minutes

68 minutes 546 minutes 24 days

136 years

* My calculator doesn’t go this high.

As you can see, this table puts things in a better perspective. Even if you were to
speed up a 2n algorithm so that it spends a millisecond per item, it would still take
millions of years to complete for 128 items. Isn’t that insane? I hope you under-
stand now why algorithms should be analyzed carefully for their complexity. You
could accidentally create an algorithm that takes too much time to complete—and
not even realize it!

There is one last thing to note about algorithm complexity. Let’s say that you have
an algorithm that performs a double-nested loop on n items and then performs a

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 10

10 1. Basic Algorithm Analysis

single loop on the same number of items. What would the complexity of this algo-
rithm be? It is natural to assume that it would be O(n2 + n), but that is incorrect.
Remember, when you measure the complexity of an algorithm, you really care only
about how it grows as the data size increases. Eventually, the single n term will be
overpowered by the much larger n2 term and become insignificant. So the correct
complexity of the algorithm is actually O(n2).

Also, keep in mind that dividing or multiplying by a constant has no effect on the
complexity of an algorithm. If you had an algorithm consisting of a single for-loop
and it only processed half of the items, the algorithm would not be O(n/2). It
would still be O(n) because the growth of the algorithm is still linear; doubling the
number of items that the algorithm works on still doubles the amount of time
taken to complete the algorithm.

I’m sorry to lay down so much mathematical buzz-speak so early in the book, but I
feel that it’s important. If you walk away from this chapter having learned one
thing, it should be the knowledge of which algorithm classes are generally faster
than others.

Graphical Demonstration:
Algorithm Complexity
I’ve included a demonstration of the different complexity graphs on the CD-ROM
that comes with this book. It’s a really simple program, and I encourage you to play
around with it to gain an understanding of how the graphs of the functions look.
The program is quite simple to understand, and you can find it in the \demonstra-
tions\ch01\Demo01 - Algorithm Complexity\ directory on the CD.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH01 11/5/02 8:29 AM Page 11

11Conclusion

When you start the program, as shown in Figure 1.8, you see a graph, six check
boxes, and four arrows.

Figure 1.8

This is a screenshot of the
demonstration in action.

You can click on any of the check boxes to make a graph appear. You can click any
combination at the same time, which enables you to compare the different graphs.

The arrows adjust the graph axes. The up and down arrows increase and decrease
the Y axis within a range of 10–5,000. The left and right arrows decrease and
increase the X axis, also within a range of 10–5,000.

Conclusion

Algorithm analysis is a complex subject that many computer scientists spend a lot
of time analyzing. Sometimes the topics in this chapter are called asymptotic analysis,
which is the same thing. If you’re confused by some of the stuff in this chapter,
don’t worry about it much; instead, just try to remember which running times are
faster than others. Whenever I use Big-O notation in this book (which isn’t fre-
quently, by the way), I always take time to explain it.

Team LRN

This page intentionally left blank

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 13

CHAPTER 2

Templates

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 14

14 2. Templates

In this chapter, you learn about templates. Templates are a fairly important con-
cept in computer programming when you are dealing with data structures

because they allow you to easily maintain your code. If you already know about
templates, you can safely skip this chapter, but if you are not very good at them
(or have never even heard of them), I’d advise you to read on. In this chapter, you
will learn

■ What a template is
■ How to create template functions
■ How to create template classes
■ How to use multiple template parameters
■ How to use values as a template parameter
■ The limitations and problems of templates
■ How templates work under the hood

What Are Templates?

Templates are a relatively new concept in computer languages. A template is a soft-
ware engineering tool that enables a programmer to reuse code on many different
datatypes.

The best way to describe a template is as a pattern, or a mold, which will be reused
over and over again. A real-world example would be the procedures of a company
that manufactures figurines. First, the company produces a mold of the figure they
want to produce. After that, they choose which material they want the figures made
of, and then they use the mold to create the figure. With the same mold, they can
make a figure out of plastic, pewter, iron, or even gold and silver.

A template in C++ is basically the same concept. A template is a mold for an algo-
rithm or a class, and the programmers decide what type of material they want to
use with it. This is a tremendously powerful tool, as you can see, because you can
make a generic algorithm or a class that will theoretically operate on hundreds of
different datatypes. The main advantage of using a template is that it allows you to
stop copying and pasting code that operates on a specific datatype and changing it
to a different datatype.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 15

15Template Functions

Say you want a specific algorithm to work on six different types of datatypes.
Without templates, you would have to copy and paste the algorithm six times and
manually change the datatypes in each copy! With templates, it is possible to make
only one copy of the code and use that one copy over and over again. The algo-
rithm on the right-hand side of Figure 2.1 is your mold, which allows you to make
figurines of any type you want.

Figure 2.1

Using templates, you
can make just one
function that operates
with many different
datatypes.

C++ supports two kinds of templates: template functions and template classes.

Template Functions
A template function is a function that can operate on a generic datatype, which will
allow you to use the same function on many different types of data.

Doing It the Old Way

Say that you want to make a function that performs an operation on an array of
integers that sums up every item in the array and returns the result. Back in the
bad old days, before templates, you would just make a function to do this, like so
(the following functions are based on Example 2-1 on the CD, which you can find
in the directory \examples\ch02\01 - Template Functions\):

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 16

16 2. Templates

NOTE
Although Chapter 3, “Arrays,” discusses arrays, I am introducing them a little bit
earlier here. If you’re reading this book, you should probably know a little bit
about arrays already. However, if you don’t know about them, you may want to
skip ahead and read the first part of Chapter 3 and then come back here.

1: int SumIntegers(int* p_array, int p_count)
2: {
3: int index;
4: int sum = 0;
5: for(index = 0; index < p_count; index++)
6: sum += p_array[index];
7: return sum;
8: }

Line 3 defines the index variable, which will be used to access each item in p_array.
On line 4, I define the sum variable, which is initially empty, and on lines 5 and 6,
we loop through the array, adding each index to the sum. Lastly, on line 7, the sum
is returned.

A little further down the line, you might want to do the same thing, but with floats.
Without templates, you would probably just copy the code and replace the ints
with floats, like this:

1: float SumFloats(float* p_array, int p_count)
2: {
3: int index;
4: float sum = 0;
5: for(index = 0; index < p_count; index++)
6: sum += p_array[index];
7: return sum;
8: }

This is not too difficult, right? So what’s the problem? What happens if you need to
change the way the function sums the numbers? Although this situation is not very
likely with the given example, it happens all the time in real code. You’d have to go
back and change every copy of the code that you’ve made. What a pain in the butt!

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 17

17Template Functions

Doing It with Templates

C++ comes to the rescue by allowing us to create template functions, which use the
same algorithm but operate on different datatypes. The syntax for a template func-
tion is such:

template< class T >

returntype functionname(parameter list)

You first declare that you are creating a template by putting in the template key-
word. You then put the class keyword and the name of the generic datatype after
that, contained within the <> brackets. In the preceding example, T (which stands
for “Template”) is the name of the generic datatype, and whenever I want to use
the class in the function, I refer to it as T. After that, you write the function declara-
tion the same way you normally would. In my examples, I separate the template
declaration and the function declara-
tion into two lines, but you aren’t
required to do that. Technically, they
can be on the same line, but I prefer
separating them because it makes the
code more readable.

Let’s look at an example of a template
function by condensing the two sum functions into one template function called
sum:

T is called a in the

NOTE
parameterized type

world of software engineering.

1: template< class T >
2: T Sum(T* p_array, int p_count)
3: {
4: int index;
5: T sum = 0;
6: for(index = 0; index < p_count; index++)
7: sum += p_array[index];
8: return sum;
9: }

On line 1, I use the template keyword to tell the compiler that I am creating a tem-
plate function that will have one generic datatype as a parameter, henceforth
referred to as T. You can replace T with whatever name you want as long as it does not
conflict with an existing class or type name. Some people would prefer to use more
descriptive type names, such as DataType or SumType. Whatever name you choose
should make sense and describe the usage of the datatype within the function.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 18

18 2. Templates

a template function that calls its
foo

foo

CAUTION
It is essential, upon choosing a name
for your generic datatype within the
template, that you choose one that
does not conflict with an existing
class name. For example, if you have

generic class , but you also have a
regular class named , the compil-
er won’t like this and will barf error
messages all over you.

On line 2, I declare the function signa-
ture. It will return an instance of type T,
and it takes a pointer of type T as a para-
meter, which will be the array. Note how
the count variable is an integer; there is
no need to use a generic counting type
because arrays are always indexed on
discrete integer boundaries.

On line 4, I declare an integer index
variable, which will be used to access
the appropriate items in the array. On
line 5, I declare the sum variable to be of
type T, meaning that the sum will be the

same datatype as the items in the array. I
also initialize it to the value ‘0’, which is important because the datatype T must
have an overloaded assignment operator that takes a parameter of type int
(because the compiler treats the constant ‘0’ as an integer). If you are unfamiliar
with operator overloads, please read about them in Appendix A, “A C++ Primer.”

On line 6 and 7, I loop through the array and add every item in the array to the
sum variable. Please note, however, that in order for line 7 to operate correctly,
type T must have a working += operator. I go over the limitations of parameterized
types in more detail in a later section.

On line 8, I simply return the sum variable.

Let’s see this new function in action! Let’s test it out on two different types of
arrays!

1: void main()
2: {
3: int intarray[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
4: float floatarray[9] = { 1.1f, 2.2f, 3.3f, 4.4f, 5.5f,
5: 6.6f, 7.7f, 8.8f, 9.9f };
6:
7: // first sum the two arrays using the non-templated functions.
8: cout << “Using SumIntegers, the sum of intarray is: “;
9: cout << SumIntegers(intarray, 10) << endl;
10: cout << “Using SumFloats, the sum of floatarray is: “;
11: cout << SumFloats(floatarray, 9) << endl;
12:

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 19

19Template Classes

13: // now sum the two arrays using the templated function.
14: cout << “Using Sum, the sum of intarray is: “;
15: cout << Sum(intarray, 10) << endl;
16: cout << “Using Sum, the sum of floatarray is: “;
17: cout << Sum(floatarray, 9) << endl;
18: }

On lines 3 and 4, I declare the two arrays, one of type int and one of type float.
On lines 8 through 11, I call the two non-templated sum functions SumIntegers and
SumFloats and output the results to the console.

Lastly, on lines 13 through 17, instead of using the two separate sum functions, I use
the templated Sum function on each array, even though they are of two totally differ-
ent datatypes! Magic? Nope, it’s one of C++’s niftier features.

Figure 2.2 shows Example 2-1 in action.

Figure 2.2

Screenshot for
Example 2-1.The
Sum function was
used on two
different arrays
with no problems.

Template Classes

A template class is similar to a template function, except that a template class is an
entire class that operates on a generic datatype. I base most of my data structures
on templates within this book, so you need to understand what a template class is.

For example, say I want to create a class that is meant to retain a sum and have
numerous types of data added to it. This is similar to the sum function I created in

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 20

20 2. Templates

the previous section; however, it is based on a class instead. The following classes
can be found on the CD in the directory \examples\ch02\02 - Template Classes\)

1: class IntAdder
2: {
3: public:
4: // constructor
5: IntAdder()
6: {
7: m_sum = 0;
8: }
9: // add function
10: void Add(int p_number)
11: {
12: m_sum += p_number;
13: }
14: // get sum function.
15: int Sum()
16: {
17: return m_sum;
18: }
19: private:
20: // sum variable.
21: int m_sum;
22: };

In the previous section, I declared a local variable sum to maintain the sum of the
numbers as the function looped through the array. This time, I let the class main-
tain a variable called m_sum (line 21) and keep track of it. On lines 5–8, I declare a
constructor that initializes the m_sum variable to 0.

On lines 10–13 is the Add function, which takes an integer as a parameter and adds
it to the m_sum variable.

The function Sum on lines 15–18 returns the current sum.

Say you now need the same functionality, but you need it to add floats instead of
integers. You could copy and paste the entire class and create something that looks
like this:

1: class FloatAdder
2: {
3: public:
4: // constructor

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 21

21Template Classes

5: FloatAdder()
6: {
7: m_sum = 0.0f;
8: }
9: // add function
10: void Add(float p_number)
11: {
12: m_sum += p_number;
13: }
14: // get sum function.
15: float Sum()
16: {
17: return m_sum;
18: }
19: private:
20: // sum variable.
21: float m_sum;
22: };

In this class, there are three functions. The constructor clears the m_sum variable, Add
adds a number to the current sum, and Sum returns the value of the current sum.

Look at how long the function is this time. It’s no longer a simple 8-line function,
but an entire 22-line class, almost three times as large! What happens if the class is
responsible for doing even more things (like computing an average as well)? What
happens when the class is changed after you have already copied it and modified it
to work with floats? Now that you see the problem, you’ll have to track down every
single copy of the class that you’ve made and change each one! What a mess! Chances
are likely that you won’t have every function in an organized manner, and each one
will probably be placed somewhere that seemed appropriate at the time you coded
it. However, you have no reliable way of tracking each and every copy of the code, so
the code will be thrown around and separated by chaos, as in Figure 2.3!

Figure 2.3

The organization of a non-
templated class tends to be
chaotic because you almost never
have all of the classes in the
same file.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 22

22 2. Templates

So instead of copying the entire class every time you want it to operate on a differ-
ent datatype, you can create a templated class that operates on a single generic
type, like this:

1: template< class T >
2: class Adder
3: {
4: public:
5: // constructor
6: Adder()
7: {
8: m_sum = 0;
9: }
10: // add function
11: void Add(T p_number)
12: {
13: m_sum += p_number;
14: }
15: // get sum function.
16: T Sum()
17: {
18: return m_sum;
19: }
20: private:
21: // sum variable.
22: T m_sum;
23: };

On line 1, I declare that I am creating a template that will operate on one generic
datatype, named T. Starting at line 2, I declare the class just as I usually would,
except that it operates on type T instead of a specific datatype.

On line 8, I set the initial value of m_sum to 0, which, as before, requires that the
datatype have an assignment operator capable of accepting an integer parameter.
On line 13, I increment the m_sum variable, which requires that datatype T have a +=
operator.

This is the syntax required to declare an instance of the adder class that operates
on integers:

Adder<int> intadder;

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 23

23Template Classes

The declaration of a template class instance is almost the same as declaring an
instance of a normal class or datatype, except that a template class must have its
parameterized types explicitly declared, within the arrow brackets, after the class
name. In this example, I created an adder of type int, called intAdder. Here’s how
to use the adder class:

1: void main()
2: {
3: IntAdder iadder1;
4: Adder<int> iadder2;
5: FloatAdder fadder1;
6: Adder<float> fadder2;
7: int i;
8: float f;
9: for(i = 0, f = 0.0f; i < 10; i++, f += 1.1f)
10: {
11: iadder1.Add(i);
12: iadder2.Add(i);
13: fadder1.Add(f);
14: fadder2.Add(f);
15: }
16: cout << “The integer sum using an IntAdder: “ << iadder1.Sum() << endl;
17: cout << “The integer sum using an Adder: “ << iadder2.Sum() << endl;
18: cout << “The float sum using a FloatAdder: “ << fadder1.Sum() << endl;
19: cout << “The float sum using an Adder: “ << fadder2.Sum() << endl;
20: }

On lines 3–6, I create four adders, which I’ll use to keep track of sums.

On lines 7–11, I loop 10 times, telling the adders to add 10 different values, and
then retrieve the final sums on lines 16–19. Neat, huh?

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 24

24 2. Templates

Figure 2.4 shows Example 2-2 in action.

This is a

Example 2-2.

Figure 2.4

screenshot for

Multiple Parameterized
Types
Templates do not have to be based on a single generic datatype. A template class or
function can have any number of parameterized types! You declare each type
within the arrow brackets as such:

template< class one, class two, class three >

You must separate each datatype name by a comma within the brackets. This
scenario is an example of a time when naming your generic datatypes with descrip-
tive names becomes important because each generic type usually has a different
purpose.

Functions and classes that have multiple template parameters are usually chunks of
code in which you want to modify more than one datatype to suit different pur-
poses. Without templates, it is even easier for your code to degenerate into pure
chaos, as shown in Figure 2.5.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 25

25Multiple Parameterized Types

Figure 2.5

This demonstrates the chaos
separating all the different
kinds of classes without using
templates.

Next, I’ll create a template function that determines the average of an array
of arbitrary datatypes. (This class can be found on the CD in the directory
\examples\ch02\03 - Multiple Parameters\ .)

1: template< class Sumtype, class Averagetype >
2: Averagetype Average(Sumtype* p_array, Averagetype p_count)
3: {
4: int index;
5: Sumtype sum = 0;
6: for(index = 0; p_count > index; index++)
7: sum += p_array[index];
8: return (Averagetype)sum / p_count;
9: }

On line 1, I declare that I will be making a template that has two generic datatypes:
a Sumtype and an Averagetype. The Sumtype is the datatype I will be summing, and
the Averagetype is the datatype that I will be returning from the function.

On line 2, I declare that I am returning a value of type Averagetype and receiving
an array of Sumtypes. Note also that the count is of type Averagetype because the
average of a list is defined as the sum over the count.

On lines 6 and 7, I loop through the list, just like the Sum template function I
defined earlier, except for one small difference. Because the p_count variable is no
longer of definite type, it must support a > (greater-than) operator that compares
itself to an int.

The rest of this function is the same as the Sum template function I created earlier,
with one exception: On line 8, I convert the local variable sum into an Averagetype,
divide the sum by the count, and return the result. This line assumes that it is possi-
ble to convert an instance of Sumtype into an Averagetype.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 26

26 2. Templates

Here, you can see this function in action:

1: void main()
2: {
3: int array[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
4: cout << “Average(array, 10) = “ << Average(array, 10) << endl;
5: cout << “Average(array, 10.0f) = “ << Average(array, 10.0f) << endl;
6: }

An array of integers is defined on line 3. On lines 4 and 5, the Average function is
called with two different sets of parameters. The first one is called with 10 as the sec-
ond parameter, and the second one is
called with 10.0f as the second parame-
ter. Because C++ treats 10 as an int and
10.0f as a float, the two functions are
called with two different sets of template
parameters: <int, int> and <int, float>.

The compiler determines which
datatypes to use at compile time by ana-
lyzing the parameters of the function.
Because 10.0f is passed in on line 5, the
compiler treats that as a float, calls the
<int, float> version, and returns the
average as a float.

The results of the example are shown in Figure 2.6.

The compiler determines the types
of a template function implicitly

meters.

NOTE

. In
plain English, the compiler analyzes
the datatypes that are passed into
the function and creates the appro-
priate template.The type of a tem-
plate function is never determined
by its return value, only by the para-

Example 2-3.

Figure 2.6

This is a screenshot for

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 27

27Using Values as Template Parameters

Using Values as Template
Parameters
Until now, you’ve only seen me using datatypes as parameters for a template func-
tion or class. However, you don’t necessarily need to use datatypes as parameters;
C++ allows you to use values of a particular datatype. C++ is so flexible that it even
allows you to use a value of a generic datatype as a template parameter.

Using Values of a Specific
Datatype
First, let me show you how to declare a template parameter with a value of a spe-
cific datatype. Templates of this type are declared as such:

template< datatype value >

where datatype is a datatype and value is a specific value of that type. Note that
because templates are a compile-time feature, the value in a template parameter
must be resolved at compile time; that is, you cannot create a template based on a
variable.

Try using this feature by creating a simple fixed-length array class. (You can find
this class in the directory \examples\ch02\04 - Values as Parameters\ on the CD;
don’t confuse it with the Array class of the same name found in the \structures\
directory. Arrays will be discussed in far more detail in Chapter 3.)

1: template< class Datatype, int size >
2: class Array
3: {
4: public:
5: // set function, sets an index
6: void Set(Datatype p_item, int p_index)
7: {
8: m_array[p_index] = p_item;
9: }
10: // get function, gets an index
11: Datatype Get(int p_index)
12: {
13: return m_array[p_index];
14: }
15: private:

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 28

28 2. Templates

16: // the array.
17: Datatype m_array[size];
18: };

On line 1, I declare that I am creating a
template that will have one generic
datatype, Datatype, and one integer
value, size. On lines 6–14, define the
Set and Get functions, which set an item
in the array or get an item in the array.

The most important part of this class
declaration is on line 17: I declare an
array of Datatype with a size of size,
which will never change.

Figure 2.7 shows how three different
Array classes are created, using different
parameters.

Note that template classes with dif-

Array<int,5> as a para-

Array<int,4>

NOTE

ferent value parameters are consid-
ered totally different types. For
example, if you create a function
that takes an
meter and you try passing an

into it, the compiler
will give you an error.

Figure 2.7

The Array class with
three different
parameter
configurations.
Remember that
doubles are twice as
large as ints.

Here it is in action:

1: void main()
2: {
3: Array<int, 5> iarray5;
4: Array<int, 10> iarray10;
5: Array<float, 15> farray15;
6: iarray5.Set(10, 0);
7: iarray5.Set(3, 1);
8: iarray10.Set(11, 9);
9: iarray10.Set(2, 4);
10: farray15.Set(10.1f, 3);

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 29

29Using Values as Template Parameters

11: farray15.Set(3.1415f, 14);
12: cout << “iarray5.Get(0) = “ << iarray5.Get(0) << endl;
13: cout << “iarray5.Get(1) = “ << iarray5.Get(1) << endl;
14: cout << “iarray10.Get(9) = “ << iarray10.Get(9) << endl;
15: cout << “iarray10.Get(4) = “ << iarray10.Get(4) << endl;
16: cout << “farray15.Get(3) = “ << farray15.Get(3) << endl;
17: cout << “farray15.Get(14) = “ << farray15.Get(14) << endl;
18: }

On lines 3–5, I declare three arrays: one of type int which will hold 5 items,
another one of type int which will hold 10 items, and an array of type float which
will hold 15 items. Lines 6–17 just set various items in the arrays and then retrieve
them again. Figure 2.8 shows Example 2-4 in action.

This is a

Example 2-4.

Figure 2.8

screenshot from

You might be saying to yourself, “Well, that was pretty cool, but I could do the same
thing without as much code.” You would be absolutely correct, but keep something
in mind: Because you’re encapsulating the array into a class, you could add func-
tions or even bounds checking, which checks to make sure that you are reading and
writing data in the valid parts of the array. In the Set and Get functions, you could
add some code that compares the index variable to see if it is within the range of 0
to size-1 and then take action depending upon whether or not it is. Besides, the
point of this demonstration was to show how to use value parameters in a template.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 30

30 2. Templates

Using Values of Other

Parameterized Types

You don’t necessarily need to use a value of a specific datatype as a parameter, how-
ever. A value parameter could be of a generic datatype, like so:

template< class T, T value>

This code declares a template of a generic datatype T, which will also have a value
of the same type. This can be useful in several respects. What if you wanted to mod-
ify the array class so that it had a Clear function? This function clears a particular
index to a value that is considered to be ‘zero’ by the parameterized class. The sim-
plest way would be to add a Clear function to the array class, like this:

1: void Clear(int p_index)
2: {
3: m_array[p_index] = 0;
4: }

This code certainly looks harmless, but it is flawed nonetheless. Line 3 assumes that
Datatype has an assignment operator that is capable of accepting a right-hand value
of the integer 0. If you decide to make a custom class which does not have an
assignment operator and then create an array of that class, the Clear function will
cause a compiler error. In fact, the only types that you can safely use this function
with are the C built-in types: int, float, char, and double.

The easy solution would be to define the zero value of Datatype within the template
parameter list, like this:

1: template< class Datatype, int size, Datatype zero >

The clear function can now be safely modified to look like this (this function is
added to the Array class from Example 2-4 and can be found in Example 2-5 on the
CD):

1: void Clear(int p_index)
2: {
3: m_array[p_index] = zero;
4: }

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 31

31Using Values as Template Parameters

Now, on line 3, instead of setting the item at the index to the integer value 0, you
set it to the specific instance of the zero value for the given class! These changes
can easily be made to the previous templated Array class from this section.

So how would you declare an instance of the modified Array class? It is the same as
declaring the previous Array class, with the inclusion of one template parameter:

Array< int, 10, 0 > intarray10;

This declares an Array of type int whose size will be 10, which will treat the number
0 as its zero value. You can declare a floating-point array in the same way:

Array< float, 10, 0.0f > floatarray10;

In an interesting side effect, you can also have your array clear indexes to a value
other than zero by defining an array like this:

Array< int, 15, 42 > intarray15;

This Array will clear the specified index to 42 instead of 0 whenever the Clear func-
tion is called. The full effect is demonstrated in this code snippet:

1: Array< int, 5, 0 > array1;
2: Array< int, 10, 42 > array2;
3: Array< float, 5, 0.5f > array3;
4: array1.Clear(0);
5: array2.Clear(0);
6: array3.Clear(0);
7: cout << “array1.Get(0) = “ << array1.Get(0) << endl;
8: cout << “array2.Get(0) = “ << array2.Get(0) << endl;
9: cout << “array3.Get(0) = “ << array3.Get(0) << endl;

I declare three arrays on lines 1–3: a 5-index integer array that clears to 0, a 10-
index integer array that clears to 42, and a 5-index float array that clears to 0.5f.
Then, on lines 4–6, I call the Clear function on each array at index 0. Lines 7–9
print out the values of the cleared indexes: 0, 42, and 0.5. Figure 2.9 shows
Example 2-5 in action.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 32

32 2. Templates

As you can see, templates open up a whole new world of possibilities.

This is a

Example 2-5.

Figure 2.9

screenshot of

Problems with Templates

Templates, like all good things, have a few “gotchas.” Because a template function
or class is designed to work with a broad range of datatypes, the number of things
you can do with a template is somewhat limited. Sure, you can use certain functions
of a parameterized datatype if you assume that the datatype has that function. For
example, look at the following template function. (All the functions and classes in
this section can be found on the CD in Example 2-6.)

1: template<class T>
2: void Function(T p_item)
3: {
4: p_item.DoSomething();
5: }

On line 1, I state that I am creating a template of one generic type, T. Line 2
defines the function name, Function, which will take one instance of datatype T and
return nothing. On line 4, the function calls the DoSomething function of the item
that was passed into Function.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 33

33Problems with Templates

The function in this example assumes that datatype T has a function called
DoSomething and will work fine if Function is called with ClassOne as a parameter:

1: class ClassOne
2: {
3: public:
4: void DoSomething()
5: {
6: return;
7: }
8: };

But what happens when ClassTwo is passed in? ClassTwo doesn’t have a DoSomething
function, but it has a DoSomethingElse function:

1: class ClassTwo
2: {
3: public:
4: void DoSomethingElse()
5: {
6: return;
7: }
8: };

See what happens when you try to run this code using the two classes defined previ-
ously:

1: void main()
2: {
3: ClassOne a;
4: ClassTwo b;
5: Function(a);
6: Function(b);
7: }

Microsoft Visual C++ 6.0 spits out this
error message: error C2039:
‘DoSomething’ : is not a member of
‘ClassTwo’. If you’re using a different
compiler, it should give you an error
similar to that.

use with it.

NOTE
Take care to always document which
operators, conversion operators, and
functions of a parameterized
datatype you use so that people who
use this class or function know what
is expected of the datatypes they

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 34

34 2. Templates

Visual C++ and Templates

Another thing I must warn you about is Microsoft Visual C++ 6.0 ’s method of
implementing templates. Templates are a relatively recent addition to the C++ stan-
dard, and Microsoft’s implementation of them is not exactly standard. There is one
tiny problem with the way MSVC6 handles templates. (In fact, most compilers have
the same flaw.)

Normally, when programming a non-template class, you would separate the class
header and the class implementation into two files: an .h file and a .cpp file. The
function declarations and data declarations go in the header file, and the imple-
mentations of each of the functions go into a .cpp file.

If you try programming a template class in this way, MSVC6 will give you errors. It
has to do with the way template classes are implemented (see the next section).
You’ll notice that in every implementation of a template class, I’ve defined the
functions inline, within the header files. This is to get around the problem in
MSVC6, which happens to be my main compiler.

It took me a long time to figure this out, so hopefully I’m saving you a bit of trou-
ble if you decide to do this on your own.

Under the Hood

This section is strictly optional and is intended for those of you who wonder how a
template works. Remember when I said that the alternative to copying and pasting
lots of code was to use a template? Well, that’s exactly how C++ implements a tem-
plate. C++ goes through the template definition, copies the code, and replaces
every instance of the parameterized type name with the actual type name. Figure
2.10 shows how C++ basically takes one copy of the code and converts it into as
many copies as are needed.

Figure 2.10

The compiler performs the
copying for you automatically
when you compile the program
so that you don’t have to do it
manually.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 35

35Conclusion

The beauty of template implementation
is that instead of managing all the copy-
ing and pasting yourself, you make the
compiler do it instead, allowing you to
maintain only one copy of the code.

Take a look at the Sum function from
earlier, for example. When I compiled
the code that called the function, once
for an integer array, and once for a float
array, the compiler actually made two
copies of that function. In the first copy,
it replaced every instance of T with int
(creating an exact replica of the
SumIntegers function from the “Doing It
the Old Way” section), and it replaced every instance of T with float in the second
copy (creating an exact replica of the SumFloats function).

templates demonstrate this fact per-

than a copied-and-pasted bunch of
code—the compiler does all the

NOTE
C++ often gets a bad rap as being
“slow.” This accusation is false, and

fectly. A template is nothing more

work for you.Therefore, you can
write a really fast algorithm and
have it run at full speed for every
datatype you want! Isn’t that cool?

Essentially, this means that a template is very similar to a #define macro. The main
difference is that #define is done with the pre-processor, whereas templates are
done by the compiler with complete type-safety. This difference is the reason why
MSVC6 requires template functions and classes to be defined inline; if they aren’t,
it cannot find the code, and it will give you a compiler error.

Of course, templates rarely need to be so complex that you need to modularize the
code. Writing template functions and classes entirely inline is generally acceptable,
at least until the problem is fixed.

Conclusion

I hope by now you can see why templates are tremendously powerful. I must admit,
when I first saw something about templates in a book, I skipped the chapter
because it sounded boring, but after getting tired of making a different sorting
algorithm for every different kind of data that I wanted to sort, I decided to look
into templates.

I’m glad I did learn about templates because I don’t know how I ever lived without
them before. Granted, the syntax can get a little ugly here and there, but that is
just a minor problem when compared with how useful they are.

Team LRN

Data Structures CH02 11/5/02 8:30 AM Page 36

36 2. Templates

It is important that you gain at least a little working knowledge of how templates
work because almost all of the data structures in this book use templates.

There is one final thing that I feel should be mentioned: Some people love to
abuse templates and make really strange-looking code that is almost impossible to
read or understand, which is why a lot of new programmers tend to dislike tem-
plates. I have not done this at all. Every template class or function in this book uses
simple template features so that you can understand them better.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 37

PART TWO

The Basics

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 38

3

4

5

6

7

8

9

Arrays

Bitvectors

Multi-Dimensional Arrays

Linked Lists

Stacks and Queues

Hash Tables

Tying It Together: The Basics

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 39

CHAPTER 3

Arrays

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 40

40 3. Arrays

Arrays are perhaps the most basic data structures in existence; they have been
around since the very first computers. Some of you might already know all

there is to know about arrays, and you can safely skip this chapter. Those of you
who aren’t so keen as to how arrays work might want to read on, though. In this
chapter, you’ll learn

■ What an array is
■ How to create native static arrays
■ How to create native dynamic arrays
■ How to delete dynamic arrays to prevent memory leaks
■ How to resize dynamic arrays
■ What a string is
■ How to create your own robust array class
■ How to insert and remove cells from an array
■ How to load and store arrays to disk
■ How to use arrays to store data in a game

What Is an Array?
In computer terms, arrays have been around forever. The array is perhaps the most
basic data structure in a computer, and it’s still the most widely used.

You can think of an array as a jail block. It is a long one-dimensional structure con-
taining numerous cells. Each cell can contain exactly one item, and an index num-
ber is used to access each cell.

Typically, when we represent an array in figures, we use squares to represent the
cells, as in Figure 3.1.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 41

41Graphical Demonstration: Arrays

Figure 3.1

Here is a
figurative
representation of
an array.

When dealing with arrays, each cell has its own index number. Typically, the very
first cell has an index of 0 (zero), but that doesn’t always have to be the case, as you
shall see later on.

An array is called a linear data structure, as opposed to some of the more advanced
branching data structures, which I go over in the later chapters of the book. Arrays
are also called random-access structures because it is possible to instantly access any
item within an array if you know its index. Accessing items within an array is an
O(c) algorithm; no matter how many items are in an array, it will still take the same
amount of time to access any index.

Graphical Demonstration:
Arrays
The graphical demonstration for arrays is located on the CD in the directory
\demonstrations\ch03\Demo01 - Array. This demonstration is designed to be a help-
ful tool for you to use to augment your understanding of the array data structure.
If any of the algorithms that are explained in the chapter don’t make immediate
sense to you, I highly recommend checking out this graphical demonstration.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 42

42 3. Arrays

When you start the program, you will be greeted with four buttons and a pictorial
representation of a ten-cell array. Figure 3.2 is a screenshot of the program in action.

Figure 3.2

This is the starting screen for the
array demo.

Each of the four buttons performs a different function upon the array. I explain
them in the following sections.

Use the mouse to select a cell, which then turns red.

Press the R button to insert a random number from 0–99 into the current cell.

When you press any of the buttons, an animation starts and text relating to the
algorithm appears. When an animation is complete, a button with the caption
“Continue” appears. Press this button to continue the algorithm.

Occasionally, you might notice that some cells contain a red X instead of a number.
Figure 3.3 shows an array with a red X in it.

Figure 3.3

The array has a red X, which
means that the data in that cell is
undefined garbage.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 43

43Native C Arrays and Pointers

The red X signifies that the contents of the cell are undefined. See the section on
resizing arrays later in this chapter.

Increasing or Decreasing Array Size

These two buttons increase or decrease the array size by one cell. The demo goes
through the algorithm step by step and shows you the process that occurs. When
an array is increased in size, the extra cell at the end contains a red X because the
value of that cell is undefined.

Inserting or Removing an Item

These two buttons either insert a new random number into the current cell or
remove the item in the current cell. The demo shows you the step-by-step process
that occurs.

Native C Arrays and
Pointers
I’m sure you’ve used an array of some sort before. However, more advanced array
tricks in C and C++ always tend to trip up beginner programmers. I certainly had
some problems with arrays when I first started using C. My problem was that I came
from BASIC programming, where arrays are much more user-friendly.

Arrays in C are closely bound to pointer tricks. Therefore, it is very important that
you know how to use pointers to your own advantage before we go much further.

Static Arrays

An array is called static when its size cannot be modified. These are the easiest types
of arrays to create and manipulate.

Declaring a Static Array
The easiest way to create a static array in C is to use the bracket notation:

int array[10];

This code creates an integer array with 10 items in it. Because native C arrays are
numbered starting with 0, the range of valid indexes for this array is 0–9. Trying to

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 44

44 3. Arrays

access index 10 in this array is considered a fencepost error. If you look at a fence,
you’ll see that there are more fenceposts than there are parts of the fence. Figure
3.4 shows how you can easily confuse the number of fence sections and the number
of fenceposts.

Figure 3.4

There are more fence posts
than fence sections.This is
the same situation with
arrays, where you can
easily read or write past
the end of the array
because you think there
are more cells than there
really are.

Normally, you would expect that the
tenth index in an array would have the
index 10, but it is really 9. Remember,
this is due to the arrays being counted
up from 0, not 1. I cannot stress enough
the importance of keeping this fact in
mind. Perhaps my most frequent source
of bugs is fencepost errors, or being off
by one.

Accessing an
Array
Accessing the array is as simple as plac-
ing the index of the cell you want to view
or modify within the brackets when referring to the array:

the end of the second.

NOTE
This is the same reason that many
mathematicians say that the third
millennium started in 2001 and not
2000. Because the calendar starts at
year 1 and not 0, the year 2000 was
the 2000th year and thus the last
year of the second millennium. If
they had started counting at 0
instead, 2000 would have been the
start of the third millennium, not

1: array[0] = 5;
2: array[1] = array[0];

Line 1 sets cell 0 to hold the integer 5, and line 2 sets cell 1 to hold the same inte-
ger as cell 0. Figure 3.5 shows a picture of what the array should look like after exe-
cuting the previous code snippet.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 45

45Native C Arrays and Pointers

contents of the

Figure 3.5

Here are the

array after
executing the
simple 2-line code
segment.

Cells 0 and 1 both hold 5, but what the
heck happened to all the other cells?
Why do they hold all those weird num-
bers? When you create an array in
C/C++, the array is not initialized. So
what happens is that the array holds
junk, and you have no idea what is in
the array right after you create it.

What happens when an array is accessed
past the end? One of several things, actu-
ally. If you are just reading memory,
there might not be a problem. One
thing that could happen would be that
your program would crash because your
compiler has code that detects if you
are reading memory out of bounds and
the code throws an error.

Another thing could happen, and this is
usually more devastating. Your program
could read a value that was total junk
and not crash at all. I say that it’s more
devastating because it is a source of
some very nasty and undetectable bugs.
Your program reads a junk value, and for
all intents and purposes, it thinks the value is valid. Nasty little things like this can
be very difficult and time consuming to track down.

mation.

0xcd

contain 0xcdcdcdcd

NOTE
You must take care to initialize
arrays after you declare or create
them because you might end up
with nasty bugs if your code assumes
that the array contains valid infor-

NOTE
Microsoft’s Visual C++ sets all byte
memory it uses to the hex value

when it is in debug mode, so
each item in the integer array will

(integers are 4
bytes), which is equivalent to the
base 10 number –842,150,451.
Whenever you’re looking at memory
and it contains that number, you can
be certain that you forgot to initial-
ize the memory with a value.

What if you are writing past the end of an array? The end effect of this is usually
worse than reading past the end of an array. This time, you might manage to
change memory that isn’t even yours to touch. This is usually referred to as an

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 46

46 3. Arrays

access violation and results in damaging data. Sometimes it messes up important data
and sometimes it doesn’t, but you can never be sure. Bugs of this type are even
more deadly because the bug is caused by
code that you wouldn’t even suspect of
causing the bug in the first place!
Another possibility would be that the
program just crashes. Either way, the
end result is undesirable, and you
should avoid it at all costs.

CAUTION
Never read or write past the end of
an array, even if you think it is safe.

Passing an Array into a Function
So how do you pass this array into a function? There are several ways to do this.
The first way is to declare the function parameter using the bracket notation, like
this:

1: void ArrayFunction(int p_array[])
2: {
3: p_array[0] = 10;
4: }

On line 1, I declare that the function will be taking an integer array as a parameter.
Line 3 sets the first index to 0. Now, all I have to do if I want to pass the array into
this function is to do this:

ArrayFunction(array);

Note that you can put a number within the brackets of the function definition, but
the compiler will ignore the numbers within the brackets.

The other way to declare that an array is being passed into a function is to use the
pointer symbol, like this:

1: void ArrayFunction(int* p_array)
2: {
3: p_array[0] = 10;
4: }

This function works the same as the first ArrayFunction, except that I use the
pointer symbol instead of the brackets. I’m sure many of you are now sitting there
with question marks above your heads, wondering, “Why does that work?”

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 47

47Native C Arrays and Pointers

Inside an Array
The simple answer is that it works because p_array is a pointer. When C/C++ cre-
ates an array, it does two things: It makes enough room for the array in memory,
and it treats the name of the array as a pointer to the block of memory where the
array is stored.

So, what you end up with is something like Figure 3.6.

Figure 3.6

An array is just
a large chunk
of continuous
memory,
internally.

Why is an array a pointer? Well, an array is a pointer because of the way an array is
accessed. Remember when I said that an array is random-access and that the algo-
rithm to access any cell within the array is an O(c) algorithm? What your compiler
is essentially doing is taking the pointer to the start of the array and calculating the
position in memory of the cell you want to access. Here’s what happens when you
want to get the fifth cell of the array:

1.	 The compiler multiplies 5 by the size of the data.

2.	 The compiler adds that to the pointer.

3.	 The compiler treats that as a new pointer and returns the value at that

address.

Isn’t that cool? Playing around with an
array is all about playing around with
pointers. The compiler literally turns
the line

x = array[5];

into

x = *(array + 5);

Now, lucky for us, the compiler does
the multiplication automatically, so we
don’t even need to multiply. It adds 5
to the array pointer and then retrieves

TIP

x = 5[array];

Because the compiler does the multipli-
cation automatically, you can actually
reverse the order of the pointer and the
subscript like this: , and it
will still work! You can amaze your
friends by writing totally unreadable
code like this! I wouldn’t recommend
doing anything like this in serious code,
however. I only include it here to show
you how it works.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 48

48 3. Arrays

the value at that index. You can replace 5 with any index you want, and the algo-
rithm will take the same exact amount of time. Figure 3.7 shows how this algorithm
is performed.

the data you

adding the

Figure 3.7

The address of

want to access
is calculated by

starting offset
pointer to the
size of the data
multiplied by
the index you
want to get.

Initializing a Static Array
C++ allows you to initialize a static array with a pre-determined number of values so
that the array contains valid information from the very start. For example, to initial-
ize a five-cell integer array with the numbers 1 through 5, you would code this:

int array[5] = { 1, 2, 3, 4, 5 };

C++ also allows you to leave out the length of the array and determine it automati-
cally by counting the number of items contained within the initializing list:

int array[] = { 1, 2, 3, 4, 5, 6 };

This time, the array is created and automatically sized to hold six cells. The only
difficult part about doing something like
this is figuring out the size of the array
after it is created, but you can do that
by using the sizeof operator. Note that
the sizeof operator returns the number
of bytes contained within the array, so
you’ll need to divide the answer by the
size of the datatype that was used in
the array:

int size = sizeof(array) / sizeof(int
);

The sizeof

sizeof operator will

NOTE
operator only works on a

static array within the same scope in
which it was defined. If you pass the
array to a function or return it from
a function, the
no longer return the actual size of
the array.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 49

49Native C Arrays and Pointers

Example 3-1
Here is the listing of Example 3-1, which demonstrates all of the major concepts of
static arrays. It is on the CD in the directory \examples\ch03\01 - Static Arrays\ .

void main()
{

// declare an array with 10 cells.
int array1[10];
// declare x
int x;
// set the first cell to 5, then set the second
// cell to the first cell.
array1[0] = 5;
array1[1] = array1[0];
// DONT EVER DO THIS:
// this next line of code writes past the end
// of the array, potentially causing harm.
// array1[10] = 0;
// pass the array to a function.
ArrayFunction(array1);
// set cell 5 to 42.
array1[5] = 42;
// retrieve the value of cell 5 using 3 different methods.
// x should be 42 after each operation.
x = array1[5];
x = *(array1 + 5);
x = 5[array1];
// declare a second array and initialize it.
int array2[5] = { 1, 2, 3, 4, 5 };
// declare a third array and initialize it without a specific size
int array3[] = { 1, 2, 3, 4, 5, 6 };
// retrieve the number of cells in array3:
int size = sizeof(array3) / sizeof(int);

}

This example has no output.

Dynamic Arrays

Dynamic arrays are more complex than static arrays. You cannot create a dynamic
array as easily as a static array. Instead, you must use the pointer notation to create

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 50

50 3. Arrays

and manage a dynamic array. There are two main ways of creating a dynamic array:
By using C’s malloc/calloc (memory allocate and clear allocate) or by using C++’s
new. Both malloc and calloc require the inclusion of the malloc.h header file, but
new is a built-in language feature and doesn’t need a header. Each method has its
strengths and weaknesses, and both of them allocate memory on the heap. (See
Appendix B for an explanation of the memory layout.) Whichever method you use
to create a dynamic array, the arrays are declared the same way.

When you declare a dynamic array, you declare it just like you would declare a
pointer. (Note that it is not an array yet.)

int* array = 0;

Note that I’ve initialized the array pointer to 0. When you declare a basic type in
C++, it is almost always filled with random data, so the pointer will be pointing
somewhere in memory that you shouldn’t be pointing to. The value 0 is considered
to be the universal value for an uninitialized pointer. It is mostly a safety precaution
so you know that the array has not been initialized yet.

Allocating a Dynamic Array
There are three different ways you can allocate memory for a dynamic array:
malloc, calloc, and new.

Malloc
To use malloc, you must tell it how many bytes you want it to allocate. If you know
the size of the datatype you want to create, multiply that by the number of cells you
want in the array. However, most of the time you don’t know the size of the struc-
ture (or it is a pain in the butt to figure it out manually), so you should let the
compiler figure it out for you. To do this, you must use the sizeof operator multi-
plied by the number of cells you want in the array. Malloc then returns a void
pointer to the memory that it has just allocated on the heap.

array = (int*)malloc(sizeof(int) * 10);

Look at the parameter of malloc first. You retrieve the size of an integer (which is
usually four bytes, but some compilers use different-sized integers) and multiply
that by 10. This should give you enough space for an array that will contain ten
integers. Now, look in front of the malloc call; you see the int keyword followed by
a pointer symbol, all within parentheses. This part is only needed if you are using
C++. Remember, malloc returns a void pointer, which means that it has no type. C
was lax and allowed you to implicitly cast the pointer into an integer pointer, but

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 51

51Native C Arrays and Pointers

Calloc

type-checking

malloc

NOTE
C++ has a new feature called strong

. It does not allow you
to convert pointers of one type into
a pointer of another type unless you
explicitly tell it to.

NOTE
Make sure you always check to see if
your calls to return a non-
zero value. If it does return 0, then
you should take an appropriate
action from there, such as displaying
an error message to the user or
propagating the error to a higher
level and exiting with an error code.

Whenever you get memory from malloc, the memory you get is mostly junk. Most
of the time you will have to manually reset the memory to the values you want.
Usually the most popular initial value is 0. This is what calloc is for. Calloc is exactly
like malloc, except that it goes one step further and resets every byte that it allo-
cates to 0.

array = (int*)calloc(10, sizeof(int));

Note that calloc has 2 parameters instead of 1. Whereas malloc accepts the number
of bytes you want to allocate as the only parameter, calloc wants the number of cells
as the first parameter and the size of each cell in bytes as the second parameter.

Figure 3.8 shows an array created by calloc.

C++ doesn’t allow you to do that.
Implicit conversion means that it will
automatically convert the void pointer
that malloc returns into an int pointer.
C++ will complain about the line with-
out that conversion.

Now, if everything goes as planned,
array should now point to a valid array.
There is a chance that array doesn’t
point to a new array, however. It might
still be 0. If the amount of memory
you ask for is not available, malloc
returns 0.

Now that you have your array, you can
use it exactly like you used the static
array.

by calloc has all

Figure 3.8

An array created

of its memory

cleared to 0.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 52

52 3. Arrays

New
C++ uses a different method of creating dynamic arrays, but the end result is the
same. The new operator places all memory it allocates on the heap, just like malloc
does. The new operator, however, doesn’t return a void pointer. Instead, it returns a
pointer to whichever datatype you request from it, thus removing the requirement
to cast the pointer to the appropriate datatype. The new operator also automatically
determines the datatype’s size, so you don’t have to use the sizeof operator at all.
Here’s an example of how to create a 10-cell integer array using new:

1: int* array = 0;
2: array = new int[10];

On line 1, I declare the array just like I did before and set it to 0. On line 2, I tell
new to give me an array with ten integers.

Unlike malloc, there is some confusion as to what happens when a call to new fails.
Before the C++ standard was actually standardized, new used to act just like malloc
when it failed and return 0. However, when exceptions (a new error-handling fea-
ture) were added to the C++ standard, new was changed to throw an exception
whenever it failed. (See Appendix A, “A C++ Primer,” for more information about
exceptions.) In the official standard, new throws an exception of type bad_alloc.
However, most compilers just return 0 anyway and don’t throw the exception. This
is because the makers of the compilers want to be able to let people compile code
that was made prior to the standard. You should check your compiler documenta-
tion to determine which event happens. MSVC6 currently returns 0 whenever a call
to new fails.

The new approach looks a lot cleaner than the malloc approach, and it’s generally
more understandable. There is one major difference between this approach and
malloc, however: malloc returns memory that will contain junk, but new executes the
default constructor for each item in the array. (See Appendix A if you are unfamil-
iar with constructors.) In this example, both methods are the same because ints
don’t have constructors and will contain junk no matter which method you use, but
if you used new to create an array of classes, each class will be constructed properly.

This approach can either be a good thing or a bad thing, depending on how you
use it. Logic tells us that if a constructor is called on every item, it will take longer
to create the array, so malloc should be faster. However, constructors are meant to
initialize a class so that it contains useful information. Most of the time, you’ll find
yourself manually initializing your arrays after using malloc anyway, so the loss of
speed from using new is usually minimal. Personally, I recommend using new over
malloc because it is cleaner and safer.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 53

53Native C Arrays and Pointers

Deleting a Dynamic Array
When you are using a static array, it is automatically created for you when it goes in
scope and destroyed when it goes out of scope. This is not so with a dynamic array.
Because you have to manually create a dynamic array yourself, you also have to man-
ually destroy the array as well. If you don’t
destroy it, you will have a memory leak.

The way you destroy a dynamic array
depends on the method you used to
create it. If you used malloc to create
the array, then you need to use the free
function to destroy it. If you used new to
create the array, then you need to use
the delete operator to destroy it.

CAUTION
Be sure to destroy every dynamic
array that you create, or you will
have a memory leak.

Free
When you use malloc or calloc to create an array, you must use free to destroy it.
The free function is fairly simple and accepts a single pointer, which should be a
pointer to your array. It is used like this:

free(array);

The free function accepts a void pointer, but unlike malloc and calloc, free doesn’t
require that you cast the pointer first. C++ allows you to cast any pointer to void
without explicitly saying so. The end result is that the program tells the computer
that you are no longer using the memory and it is free to use it for other purposes.

Unfortunately, your array pointer has not changed. It still points to the same place
in memory that it pointed to before, but
that memory is no longer yours to
touch. It is generally considered a good
idea to clear the pointer to 0 right after
you call free. Otherwise, you have what
is called a stray pointer. Stray pointers are
dangerous, because using them will give
the same effects as reading or writing
past the end of an array: unpredictable.

CAUTION
Always reset your pointers to 0 after
freeing them, even if you don’t plan
on using them again. If you end up
adding code later on, you might acci-
dentally forget to reset the pointer.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 54

54 3. Arrays

Delete
If you’ve created an array with new, then you must destroy it using the delete key-
word. Using delete on an array is different from deleting a normal pointer, how-
ever: You must be sure to use the brackets after the keyword, like this:

delete[] array;

If you don’t use the brackets when you
delete an array, delete will only destroy
the first cell and nothing else. This will
lead to a memory leak.

The main difference between delete and free is that delete calls the destructor of
every item in the array, whereas free doesn’t. This can be quite a helpful feature if
the items in the array need to be destructed. This way, you don’t have to manually
call a cleanup function for each item in the array before you delete the array. You
will see how useful destructors are when you learn about the Array class later in this
chapter.

use

CAUTION
When deleting an array, always
the bracket notation.

Resizing a Dynamic Array
Perhaps the most important part of using a dynamic array is having the ability to
resize it. Depending upon the method you used to create the array, you can use
one of two methods.

Realloc
You would use realloc when you have created an array using malloc. Realloc is a
really nice function that tries to resize the array without moving it, if possible. You
pass in a pointer the old array and the size of the new array, and it will return a
pointer to the resized array. Here’s how you would resize an array from 10 cells to
20 cells:

1: int* array = 0;
2: array = (int*)malloc(10 * sizeof(int));
3: array = (int*)realloc(array, 20 * sizeof(int));

Lines 1 and 2 should be nothing new; they declare and allocate a 10-cell integer
array. On line 3, you pass the array pointer as the first argument to realloc and
indicate the size of the new array in bytes as the second argument. Just as you did
for malloc, you must cast the result of realloc to an integer pointer. If everything
went all right, you now have a 20-cell array.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 55

55Native C Arrays and Pointers

There is one little catch, however. The call to realloc might not be able to find
enough memory for the new array and thus will return 0. But what happened to the
old array, you ask? It’s gone. It was not
destroyed, and you now have a memory
leak.

What happens is that it tries to create
enough memory for the new array, and
if it can’t, then it returns 0 and leaves
the original array alone. Unfortunately,
in the previous example, you overwrote
the pointer to the 10-cell array, and you
now have no way to get that back.

So how can you fix this problem? You need to create a temporary variable to hold
the address of the array:

CAUTION
Never write over a pointer to an
array that you have not destroyed
unless you’ve stored the address of
the array somewhere else first.You
will end up with memory leaks.

1: int* array = 0;
2: int* temp = 0;
3: array = (int*)malloc(10 * sizeof(int));
4: temp = array;
5: array = (int*)realloc(array, 20 * sizeof(int));
6: if(array == 0)
7: {
8: array = temp;
9: // insert error handling code here.
10: }

As you can see, this code is much more
complex than the first realloc example,
but it is a necessity. Checking for errors
when resizing arrays is an absolute must.

The great thing about realloc is that it
automatically copies over everything
from the old array into the new array.
This saves you a lot of hassle. Another
good thing about realloc is that it
might not move the array at all; it might
be able to find out if there is unused
space after the current array and just
tell the memory manager that it’s taking

NOTE
Always check to see if your memory
allocations have not failed. Nothing
ticks off a gamer more than working
for hours on a game and then having
the game crash on them for no
apparent reason.You should at least
be able to implement an error
checking system that saves the cur-
rent game state and exits with an
error message, keeping the game
player from going crazy and hunting
you down.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 56

56 3. Arrays

over that memory as well. If this happens, then the function doesn’t even move any
data over to a new array, because there is no new array! It just returns a pointer to
the same array! As you can imagine, this is really fast. Figure 3.9 shows how a larger
array is created using realloc.

to realloc to a

will be contained

Figure 3.9

This shows a call

bigger array
without moving
data.There is no
way to determine
beforehand what

in the extra
indexes added at
the end.

Another thing you should note is that you might lose data if you make the array
smaller. If you go from 20 cells to 10 cells, the first 10 cells will be preserved, but
the last 10 cells will be lost, because there is not enough room for them in the new
array. Figure 3.10 demonstrates what happens when you make an array smaller.

to realloc to a

items at the end

Figure 3.10

This shows a call

smaller array.The

that were
chopped off are
now lost.

Resizing Arrays Created with new
Unfortunately, the process of resizing arrays created with the new operator is its
main weakness. There is no C++ equivalent to the realloc function. Instead, you

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 57

57Native C Arrays and Pointers

must resize the array manually. Yes, this is usually a big pain in the butt, but if you
encapsulate this functionality into an array class, you almost never need to worry
about it.

Resizing a dynamic array created with new is a three-step process:

1. Create a new array with the new size.

2 Copy over all possible data.

3. Delete the old array.

Here’s the algorithm in action:

1: int* array = 0;
2: int* temp = 0;
3: int index;
4: array = new int[10];
5: temp = new int[20];
6: for(index = 0; index < 10; index++)
7: temp[index] = array[index];
8: delete[] array;
9: array = temp;
10: temp = 0;

In this example, the array is declared on line 1 and allocated on line 4, just like in
the previous examples using new. A temporary array, named temp, is also used. This
array is defined on line 2 and allocated on line 5. This temporary array will hold
the resized array so you can copy over all the data before you delete the old array.
So, by line 6, there are two arrays in memory, occupying a total of 30 cells.

On line 6 and 7, you loop through the first 10 cells and copy them over from array
to temp. Note that you cannot copy any more than that, because the original array is
only 10 cells long.

After the array is copied over, the old array is destroyed by using the delete[] oper-
ator and the new array is assigned over to the old pointer (line 9). Last, the temp
pointer is cleared to 0 as a precautionary measure.

This method does not use any error checking code, however. In this example, you
would have to add a line after line 5 that checks to see if the new array that temp
points to is valid or not. If temp contains 0, then you would have to handle the error
somehow—most likely by saving all valid data, telling the user there was an error,
and quitting out gracefully.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 58

58 3. Arrays

Example 3-2
Here is the code listing for Example 3-2, which demonstrates creating, clearing,
resizing, and deleting an array. The code is on the CD in the directory
\examples\ch03\02 - Dynamic Arrays\ .

void main()
{

// declare 3 array pointers, and set them to 0.
int* array1 = 0;
int* array2 = 0;
int* array3 = 0;

// allocate an array with 10 cells using malloc.

array1 = (int*)malloc(10 * sizeof(int));

// allocate an array with 10 cells using calloc.

array2 = (int*)calloc(10, sizeof(int));

// allocate an array with 10 cells using new.

array3 = new int[10];

// resize array1 and array2 using realloc.

// note that the end of array2 will not have 0s in it.

array1 = (int*)realloc(array1, 20 * sizeof(int));

array2 = (int*)realloc(array2, 20 * sizeof(int));

// resize array3 using the resize algorithm.

int* temp = 0;

int index;

temp = new int[20];

for(index = 0; index < 10; index++)

temp[index] = array3[index];

delete[] array3;

array3 = temp;

temp = 0;

// free the first two arrays using free.

free(array1);

free(array2);

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 59

59An Array Class and Useful Algorithms

// free the third array using delete[]
delete[] array3;

}

Example 3-2 has no output.

An Array Class and Useful
Algorithms
By this point, you have seen how an array works and how to resize them. The ques-
tion remains, however, if there is a way to make the process of creating, resizing,
and deleting arrays easier. Yes, there is.

It turns out that you can easily encapsulate the common array algorithms into a
class of its own. What’s even better is that you can make it templated, so you can
create an array based on any datatype that you want.

This data structure is located on the CD in the file \structures\array.h.

The Data
First, you need to think about the things you want in the array class. Two things
pop immediately into mind: a pointer to the array and the length of the array. I put
them into a template array class like this:

1: template<class Datatype>
2: class Array
3: {
4: public:
5: Datatype* m_array;
6: int m_size;
7: };

On lines 1 and 2, I declare a template class named Array, which will have one para-
meterized type, named Datatype. This is the type of data that will be stored within
the array.

The Constructor

Now, I want to make a constructor that initializes the array automatically. The con-
structor of the Array class will take one parameter: the size of the array.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 60

60 3. Arrays

1: Array(int p_size)
2: {
3: m_array = new Datatype[p_size];
4: m_size = p_size;
6: }

The constructor first allocates enough
space for the array using new, and then
it makes m_array point to the memory
and sets the size of the array.

This line of code constructs an integer
array to contain 10 cells:

Array<int> intarray(10);

the Array

new

NOTE
Note that it is possible to construct

with negative values for
the size, which will cause the array
to not get created (on your own, you
might want to add that kind of pro-
tection). It is also possible to create
an array with a size of 0.The C++

operator will return a valid
pointer to an array with no cells! The
worst part is that if you don’t delete
the empty array when you’re done
with it, you get a memory leak any-
way! Don’t look at me—I didn’t
make the C++ standard!

The Destructor

Now, perhaps the coolest thing about creating your own array class is that you can
make it manage your memory for you automatically. Now you don’t have to worry
about deleting your array; the array class does this for you in the destructor!

1: ~Array()
2: {
3: if(m_array != 0)
4: delete[] m_array;
5: m_array = 0;
6: }

Pay close attention to line 3: I check to see if the array pointer is not 0 before I
delete the array. This is because the array is assumed to be invalid if the pointer is
0, and deleting it will cause errors.

The Resize Algorithm

I now need to add a method to resize the array by using the algorithm I discussed
earlier. Remember, this algorithm creates a new array, copies everything it can over,
and then deletes the old array.

1: void Resize(int p_size)
2: {

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 61

61An Array Class and Useful Algorithms

3: Datatype* newarray = new Datatype[p_size];
4: if(newarray == 0)
5: return;
6: int min;
7: if(p_size < m_size)
8: min = p_size;
9: else
10: min = m_size;
11: int index;
12: for(index = 0; index < min; index++)
13: newarray[index] = m_array[index];
14: m_size = p_size;
15: if(m_array != 0)
16: delete[] m_array;
17: m_array = newarray;
18: }

On line 1, I accept a single integer as a parameter, which will be the new size of the
array, named p_size. On line 3, I declare a new array pointer named newarray. This
pointer will hold the new array.

On line 4, I check to see if I was able to allocate enough memory for the new array.
If new failed, then either newarray will contain 0 (on most compilers) or a bad_alloc
exception will have been thrown (on ISO-standard compilers). Because most com-
pilers return 0, I handle that case only and just return without modifying anything.
This way, when you cannot allocate enough memory, your array will still contain all
of its data. You should make sure that the routine didn’t fail when you resize the
array so you can handle the error as you deem necessary.

On line 6, I declare the min variable. This variable is quite important when copying
data from the old array to the new array. If p_size is smaller than the current size,
then you can only copy p_size items over to the new array, and everything in the
old array past that will be lost. If p_size is larger than the current size, you can only
copy the entire array over and nothing more. So, on lines 7–10, I determine which
is smaller, m_size or p_size, and set min to that value.

On lines 11 and 12, I loop through from index 0 to min and copy every item from
the old array to the new array. Note that if the old array doesn’t exist (i.e. m_size is
0 and so is min), the loop doesn’t copy anything.

On line 13, I set the current size to the new size of the array, and on line 14, I
check to see if the old array existed. If so, I delete the old array on line 15 and
finally make the m_array pointer point to the new array.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 62

62 3. Arrays

The Access Operator

I’m well on my way to having a fully functional array class, with one exception: I
have yet to add a feature that allows me to access and modify the array contents. I
think that one of the coolest features of C++ is its ability to overload operators. In
this case, I will overload the offset (square bracket) operator so I can use the array
just like a normal array! If you are unfamiliar with operator overloads, see
Appendix A.

This routine will allow the client of the class to access or modify the contents of the
array, but also allow you to have access protections built in.

1: Datatype& operator[] (int p_index)
2: {
3: return m_array[p_index];
4: }

You need to pay particular attention to the return type of this function: It returns a
reference to a Datatype. Why does it return a reference? It returns a reference so that
you can do something like this:

1: Array<int> intarray(10);
2: intarray[5] = 42;

On line 1, I declare an integer array using the array class, and I make it 10 cells
large.

So what happens on line 2? The offset operator is called, and it returns a reference
to the item at index 5, which is then set to 42. So what ends up happening is that
the value 42 is physically placed inside the array. If the offset operator function
only returned a value, then that line of code would accomplish absolutely nothing:
It would load the value at index 5 onto the stack, set the value on the stack to 42,
and then totally discard the value.

So why would you prefer to have a function that accesses cells of an array, instead
of just using the regular offset operator on the m_array variable? One reason has to
do with error checking. Most programmers like to put error-checking code in the
access routine. This way, we can be sure that the client never touches memory that
they aren’t allowed to touch.

It also makes it much cleaner and clearer to access the array. Tell me, which way do
you prefer:

1: intarray.m_array[5] = 42;
2: intarray[5] = 42;

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 63

63An Array Class and Useful Algorithms

Line 1 looks like an ugly mess. Line 2 is nice and pretty, and it is safer to use if the
class has built-in bounds checking.

The nice thing about the offset operator algorithm I made up is that I can use it to
retrieve items within the array too, like this:

int temp = intarray[5];

The Conversion Operator

Now that you’ve got a flexible and working array class, you can start to use it in
your programs. You might notice a problem with it, however.

If you have a function that accepts a standard array pointer as a parameter, and you
try passing in this array class, the compiler will tell you that you cannot do that.
This seems a bit awkward because you want to use the nifty features of the Array
class, but you don’t want to spend weeks updating all of your code to use the new
Array class. The inside of the array is a pointer anyway, so why should this incom-
patibility exist?

C++ offers a really neat feature to fix this problem: a conversion operator. A conver-
sion operator allows you to implicitly convert a class into a different data type. For
example, when the function process expects an int* and you pass in an Array<int>,
you want the compiler to treat the array as an int*.

Here is how you would code the conversion operator for the Array class:

operator Datatype* ()

{

return m_array;

}

The first line declares that this conversion operator will be returning a pointer to a
Datatype. Conversion operators do not have parameters. This operator is simple
because the internal representation of the array is already in the form that you
want it to be, so it just returns the pointer to the array.

If you have a function that takes an integer array pointer like this:

void Process(int* p_array);

you can easily use the function like this:

// declare 3 different types of arrays
Array<int> array1(16);
int array2[16];

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 64

64 3. Arrays

int* array3 = new int[16];
// call the function on the three arrays
Process(array1);
Process(array2);
Process(array3);

The conversion operator for the Array class automatically treats the class as a stan-
dard pointer. This makes the two different ways of representing arrays interchange-
able.

Inserting an Item Between Two
Existing Items
One thing I haven’t covered yet is how to insert an item into an array in between
two existing items. The reason for this is that it is not a straightforward operation.
To insert an item into the array, you need to first move everything after the desired
index up one cell. Figure 3.11 shows what happens when you insert an item at
index 3.

Figure 3.11

Inserting into an
array involves
moving everything
up to the next
cell and then
inserting the new
value.

Everything from index 4 through index 8 must be moved up one cell. The item in
cell 9 cannot be moved up, so it is overwritten. Therefore, this algorithm will only
work on arrays that aren’t full: You don’t want to be writing over anything in your
array. Here’s the algorithm:

1: void Insert(Datatype p_item, int p_index)
2: {
3: int index;
4: for(index = m_size - 1; index > p_index; index—)
5: m_array[index] = m_array[index - 1];

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 65

65An Array Class and Useful Algorithms

6: m_array[p_index] = p_item;
7: }

On line 1, I take two parameters: p_item, which is the item I want to insert into the
array, and p_index, the index at which I want to insert p_item. I declare an index
variable on line 3, which will count from the end of the array downwards in the for-
loop on lines 4 and 5.

Why do you count backwards? The reason has to do with the way that data is
copied over: Say you have a 10-cell array and you want to insert something into cell
3. If you copied cell 3 over to cell 4, and then cell 4 over to cell 5, and so on, you
would end up with everything in cells 4-9 being the same. This is because you’d
have written over the data in cell 4 before you were able to copy it over to cell 5—
and in actuality, you’d copy cell 3 over into every cell after it. So instead, the algo-
rithm would start at cell 9 and copy cell 8 into it, and then copy cell 7 into cell 8,
and so on.

Lastly, on line 6, I copy p_item into the array at cell p_index.

Removing an Item from the Array

Removing an item from an array is almost the same algorithm as inserting one, but
there are a few differences. First of all, if an item is removed, everything above the
index is moved down one index, and the last item in the array is duplicated. Figure
3.12 shows how this is accomplished.

Figure 3.12

Removing an
item from an
array involves
moving
everything
down by one
index.

It is important to note that the loop algorithm is normal (as opposed to a reversed
loop for item insertion) for item removal because you are moving data down the
array instead of up the array. You end up with the following algorithm:

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 66

66 3. Arrays

1: void Remove(int p_index)
2: {
3: int index;
4: for(index = p_index + 1; index < m_size; index++)
5: m_array[index - 1] = m_array[index];
6: }

This time, the only parameter is the index that you want to remove, p_index. On
line 3, I declare an index variable to loop through the array, and I move every item
down one index on lines 4 and 5.

A Faster Removal Method

There is a faster removal algorithm, but it only works when the order of items in
your array doesn’t matter. In addition, it requires you to constantly keep track of
the number of items actually in the array, as opposed to just the capacity.

For example, you have a 10-cell array in which you have 8 items stored in indexes
0–7. If the order of your items in your array doesn’t matter and you want to remove
the item at index 3, you can move the item at index 7 into index 3. The order of
your array is altered, but the removal algorithm moved only one item, a significant
savings of speed.

Unfortunately, the array class doesn’t keep track of how many items you’ve put into
the array, so to use this algorithm, you would need to keep track of this informa-
tion yourself. The good thing is that the algorithm is so simple, it’s not too difficult
to implement. For this example, I’ll assume that count is a variable that maintains
the current count of items in the array, and intarray is the actual array.

1: count—;
2: intarray[3] = intarray[count];

In this example, I removed index 3 from the array by overwriting it with the item in
the last index. If there are 8 items in the array, then count will contain 8, but the
last item is in cell 7. So in line 1, I decrement the count from 8 to 7 and move cell
7 into cell 3 on line 2.

Pretty neat, huh? Figure 3.13 shows how this algorithm works.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 67

67An Array Class and Useful Algorithms

index using the

index of the item

Figure 3.13

This figure shows
how to remove an

fast removal
algorithm.The last
item is moved
down into the

that is being
removed.

In the figure, the array contains 9 items and 10 cells. The last cell, although con-
ceptually empty, still has a value in it. (Memory has a value in it at all times.) When
the fast-remove algorithm is performed, the 4 from the last cell is copied into the
cell that you are removing, and the last item pointer is decremented so that it
points to the cell with 0 in it. Note how the last two indexes, although conceptually
empty, still have data in them, and the value 4 is duplicated in the array.

Retrieving the Size of an Array

The great thing about having your own array class is that it remembers the size of
the array for you, unlike native arrays. Here is a function to retrieve the size of the
array:

1: int Size()
2: {
3: return m_size;
4: }

Example 3-3

Here is the code listing for Example 3-3. It uses the Array class, which you can find
in the \structures\ directory on the CD, and demonstrates the major features of the
class:

void main()
{

// create two arrays, one for an integer array
// and one for a float array.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 68

68 3. Arrays

Array<int> intarray(10);

Array<float> floatarray(5);

// use the access operator to store values.

intarray[0] = 10;

floatarray[0] = 3.1415f;

// use the access operator to retrieve values.

int i = intarray[0];

float f = floatarray[0];

// store values at index 1 in both arrays.

intarray[1] = 12;

floatarray[1] = 6.28f;

// insert values between cells 0 and 1 in both arrays.

intarray.Insert(11, 1);

floatarray.Insert(4.2f, 1);

// remove the items at cell 0 in both arrays.

intarray.Remove(0);

floatarray.Remove(0);

// resize both arrays

intarray.Resize(3);

floatarray.Resize(4);

// both arrays are automatically deleted by the Array
// class destructor.

}

Example 3-3 has no output.

Storing/Loading Arrays on
Disk
Quite often, you will want to store the contents of your arrays onto a more perma-
nent medium, such as a hard disk. In this way, you can easily store and retrieve
information for a game, which will make it easy for you to implement a save/load
feature.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 69

69Storing/Loading Arrays on Disk

For saving and loading, I will use the standard C file functions (I like them better
than C++’s): fopen, fread, fwrite, fclose. If you are unfamiliar with them, please see
Appendix A.

Luckily, C’s file IO functions operate on arrays! This means that you have to do
very little work to read or write an array. I’ll be adding these functions to the array
class I just created.

Writing an Array to Disk

You want a routine that writes an array to disk first. It will be straightforward and
write the entire array to a single file.

1: bool WriteFile(const char* p_filename)
2: {
3: FILE* outfile = 0;
4: int written = 0;
5: outfile = fopen(p_filename, “wb”);
6: if(outfile == 0)
7: return false;
8: written = fwrite(m_array, sizeof(datatype), m_size, outfile);
9: fclose(outfile);
10: if(written != m_size)
11: return false;
12: return true;
13: }

On line 1, I declare the function to take one parameter: the name of the file I am
writing the array to. On line 3, I declare a FILE pointer, which will point to the
open FILE in memory. I declare an integer on line 4, which will keep track of how
many items were actually written to disk.

One line 5, I open the file in “wb”
mode. This mode tries to open the
given file for writing and destroys its
contents, essentially emptying the file.
This mode also opens the file in binary
mode, which is the mode in which all
non-text data is stored.

On line 6, I check to see if the file was
actually opened. There are numerous
reasons why opening a file for writing

WriteFile

because it uses “wb”

no

CAUTION
Please be careful when dealing with
files.The algorithm will
destroy any file that already exists

mode, and if you
accidentally tell it to write to an
important file, there is absolutely
way to get the file back.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 70

70 3. Arrays

might fail, so it’s a good idea to check for this. If the file hasn’t been opened, the
function returns false.

The array is written to disk on line 8 by using fwrite. This function tries to write
the entire array to disk by first passing a pointer to the array, and then the size of
the items in the array, and then the number of items in the array, and finally the
file that the array should be written to. fwrite returns the number of full items that
were actually written to disk, which I store in the written variable.

On line 10, I check to see if the entire array was written. If not, the function
returns false on line 11. If all went well, however, the function reaches line 12 and
returns true.

If this function returned true, then your array is now safely stored on disk.

Reading an Array from Disk
Now, there really isn’t much use in writing an array to disk if you don’t have some
way to retrieve the array. Luckily (again), C’s fread function works really well with
arrays, so I’ll create a read function just like my write function:

: bool ReadFile(const char* p_filename)
2: {
3: FILE* infile = 0;
4: int read = 0;
5: infile = fopen(p_filename, “rb”);
6: if(infile == 0)
7: return false;
8: read = fread(m_array, sizeof(datatype), m_size, infile);
9: fclose(infile);
10: if(read != m_size)
11: return false;
12: return true;
13: }

This function is almost exactly like the WriteFile function. This time, instead of
opening the file in “wb” mode, I open it in “rb” mode, which means that I’ll be
reading binary information from the file. If the file doesn’t exist, the call to fopen
will fail, and the ReadFile function will return false (lines 6–7).

On line 8, you read in the same number of items as there are cells in the array,
which means that you must resize the array to the number of items you want to
load from the file.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 71

71Application: Using Arrays to Store Game Data

If you could not read in all the items from disk, then the routine returns false.
Lastly, it returns true if the function was able to read everything it expected.

Considerations for Writing and
Reading Files
You must take some things into consideration when writing an array of objects to a
file. Mainly, you must be sure that the object contains only values and no pointers.

For example, if you have a class that contains a pointer to another class and you
write that class to disk using fwrite, the pointer value is stored on disk, but not
what it points to. This could get quite messy later on when you attempt to load the
class from disk; you’ll end up with a class pointing to a place in memory that was
valid when you saved the class but isn’t valid anymore.

You can see how to fix these kinds of problems in Chapter 9, “Tying It Together:
The Basics.”

Application: Using Arrays to
Store Game Data
This is Game Demonstration 3-1, which can be found on the CD in the directory
\demonstrations\ch03\Game01 - Monsters\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Games need to keep track of great amounts of information. Games also need to be
able to access and modify this information rather quickly; no one likes a slow game.
Arrays offer both of these advantages and are thus used quite often within games.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 72

72 3. Arrays

This section shows you a very simple demonstration game to help you understand
how to store objects within a game. I’ll be storing monsters in an array.

The Monster Class

I begin by first defining the Monster class:

class Monster
{
public:
int m_x;
int m_y;
int m_hitpoints;

};

This is a very simplistic monster class—all it has is three variables: The x and y coor-
dinates of the monster in the game world and its hit points. Obviously, a real mon-
ster would have much more information associated with it in a real game, but this
is just for demonstration purposes.

Declaring a Monster Array

In the game, you want to declare an array of monsters. Where you put the array is
up to you, but for this simple demonstration, I will make it global. I will also have a
separate integer that will keep track of how many monsters are currently in the
game. Remember, arrays do not need to be packed full, and initially there will be
no monsters.

In this demo, I am going to limit myself to 32 total monsters, so I will initialize the
array to 32 cells and reset the monster count to 0:

Array<Monster> g_monsterarray(32);
int g_monsters = 0;

These are both global variables, which I don’t recommend for a real game, but it
increases the readability of this simple example.

Adding a Monster to the Game

So, now that I have my array of monsters, I want to be able to create a monster and
put it into the game, right? For this, I will make an AddMonster function, which will
try to add a random monster to the game. (See Chapter 22, “Random Numbers,”
and Appendix A for information on random numbers.)

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 73

73Application: Using Arrays to Store Game Data

1: bool AddMonster()
2: {
3: if(g_monsters == 32)
4: return false;
5: g_monsterarray[g_monsters].m_x = rand() % 640;
6: g_monsterarray[g_monsters].m_y = rand() % 480;
7: g_monsterarray[g_monsters].m_hitpoints = 11 + (rand() % 10);
8: g_monsters++;
9: return true;
10: }

First, note the return type on line 1. The function returns a Boolean. If the func-
tion returns false, then the function failed and could not add a monster. If the
function returned true, then it placed a new monster in the array.

On line 3, I check to see if there are 32 monsters in the game. If so, I return false,
because I can’t fit any more monsters in the array.

On lines 5–7, I set the information for the new monster, which is at the same index
as the g_monsters variable. For example, if there are 0 monsters, then the new mon-
ster should be placed at index 0, and if there is 1 monster, then the new monster
should be placed at index 1.

As for the variables, I simply set the x position of the monster to a number between
0 and 639 and the y position to a number between 0 and 479 because the screen is
in 640 � 480 resolution. On line 7, I set the monsters hitpoints to a value between
11 and 20.

On line 8, I increment the monster count to signify that I have added a monster,
and I return true on line 9, telling the caller that the routine has finished success-
fully and the monster has been added to the array.

Making a Better Insertion
Algorithm
I bet many of you are looking at the AddMonster algorithm and saying to yourselves,
“Why should I limit myself to only 32 monsters?” Well, you shouldn’t. Because the
Array class supports dynamic resizing, you can easily adapt the algorithm so that it
increases in size when you need to add more monsters.

When do you resize the array, though? Do you resize it by one cell if you determine
that the array is full? No! Doing it that way is wasteful and slow. Remember, when
you resize an array, the algorithm first needs to allocate new memory. Then it

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 74

74 3. Arrays

needs to copy everything over, and then it needs to delete the old array. This is
quite wasteful in terms of speed.

So what do you do instead? The most popular approach is to increase the size of
the array in “chunks.” Because the array originally carries 32 monsters, when you
try to insert the 33rd monster, you should make enough room for future expansion
and resize it to 64 cells. That way, you can insert 32 more monsters before you need
to resize again!

This method of resizing is pretty efficient in real-world use. Some people prefer to
double the size of the array each time it is expanded. STL’s vector does this. In
most cases, that method is wasteful in terms of space. What happens if you have a
1024-cell vector and you insert 1025 monsters? Then the vector resizes itself to 2048
cells, which is almost twice as many as you need.

I find that increasing the size of an array by a constant amount is much more effi-
cient in the long run, so in the revised algorithm, I’ll increase the monster array by
32 cells each time I reach the limit:

1: bool AddMonster()
2: {
3: if(g_monsters == g_monsterarray.Size())
4: g_monsterarray.Resize(g_monsterarray.Size() + 32);
5: g_monsterarray[g_monsters].m_x = rand() % 640;
6: g_monsterarray[g_monsters].m_y = rand() % 480;
7: g_monsterarray[g_monsters].m_hitpoints = 11 + (rand() % 10);
8: g_monsters++;
9: return true;
10: }

This algorithm is identical to the previous one, with one exception: Lines 3 and 4
are different. On line 3, I first check to see if the monster array can hold enough
monsters. If not, line 4 resizes the array to g_monsterarray.Size() + 32, adding 32
cells.

Removing a Monster from the
Game
You want it to be possible to remove monsters from the game. You also want it to
be possible to remove any monster in the array at any time from the game, and
there are two approaches you can take to do this.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 75

75Application: Using Arrays to Store Game Data

The first method uses the Remove function of the array class. It would look like this:

void RemoveMonster(int p_index)
{
g_monsterarray.Remove(p_index);
g_monsters—;

}

The game demo won’t use this method, however. The problem with this method is
that it takes too long. Sure, in the demo I won’t be creating more than a few dozen
monsters at most. That doesn’t seem like a
lot right now, but what happens when
you eventually get hundreds or thou-
sands of monsters in a game? This algo-
rithm slows things down considerably.

Lucky for me, the order of the monsters
in the array doesn’t matter in this simple
demo, and I’ll be using the fast removal
algorithm instead:

void RemoveMonster(int p_index)
{
g_monsters—;
g_monsterarray[p_index] = g_monsterar-

ray[g_monsters];
}

With this approach, I take the last mon-
ster in the array and move it into the cell
that the monster I want to remove previ-
ously occupied. Instead of moving many
monsters down the array, I only move
one monster.

The RemoveMonster

AddMonster

absolutely

NOTE
algorithm does

not resize the array at all, but the
algorithm does.Why is

this? Well, I generally consider it
wasteful to downsize arrays unless I

need the extra space that
is being cleared up. So what ends up
happening in the game is that the
monster array will eventually reach
the worst-case size and then stay at
that size forever, allowing you to add
many monsters rapidly after the
array has reached its optimum.This
is also helpful for profiling your
game because after you are done
running it, you can see how large
your monster array is and have an
estimate of the maximum number
of monsters you had in the game at
any point in time.

Checking for Monster Removal

In this little game, there is only one condition which must be true in order for a
monster to be removed: The monster’s hitpoints must be 0 or less. To check for
this condition, I need to have a function that loops through the monster array and
checks each monster. If a monster is found to have 0 or fewer hitpoints, it is then
removed:

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 76

76 3. Arrays

1: void CheckMonsters()
2: {
3: int index = 0;
4: while(index < g_monsters)
5: {
6: if(g_monsterarray[index].m_hitpoints <= 0)
7: RemoveMonster(index);
8: else
9 : index++;
10: }
11: }

On line 3, I declare an index variable. This variable will be used to loop through
every index in the g_monsterarray. It is initially set to 0. Lines 4-10 are one large
while loop, which continues looping while index is less than g_monsters. On line 6, I
check to see if the current monster is dead (m_hitpoints <= 0). If so, I remove the
monster using the RemoveMonster function. If the monster isn’t dead, I skip it and go
on to the next monster by incrementing index (line 9).

The reason I don’t increment index if I remove the monster is because a new mon-
ster is moved into the same index I just removed. If I incremented index anyway,
I’d totally skip over a monster, which might be dead. That would be a very interest-
ing bug.

Playing the Game

When you start up the game, you are faced with a blank screen. You can add mon-
sters to the screen by pressing any key on the keyboard except Escape, which causes
the game to exit.

After you’ve added monsters to the screen, you can click on them to “hit” them,
causing their hitpoints to decrease. Once a monster’s hitpoints reach 0, the mon-
ster is removed from the game using the CheckMonsters function defined in the pre-
vious section, which is called once every frame.

Figure 3.14 shows a screenshot of this game demo in action.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 77

77Analysis of Arrays in Games

Figure 3.14

This is a screenshot
of the Array Game
Demonstration in
action.

Analysis of Arrays in Games

Arrays are the most common data structure. I’ve never seen a complicated program
that doesn’t use arrays. Let’s face it, arrays are great to use for several reasons:

■ They are easy to create.
■ They are fast to access.
■ They are easy to maintain and destroy when needed.

So if arrays have all these good attributes, why aren’t they used for everything?
Simple: Arrays aren’t perfect—they do have some flaws.

Cache Issues

Arrays are great for being able to access every item in the array randomly... in the-
ory. In reality, arrays aren’t actually randomly accessible. This has to do with the
way computers actually work.

A computer is a complex machine with many layers of memory. The lowest of these
layers is called the registers. Data needs to be loaded into these registers in order for
the processor to actually do anything with them. The good thing is that registers
are the fastest blocks of memory in the entire computer. The bad thing is that
there aren’t very many registers. The x86 and x87 architecture only has (8) 32-bit
registers and (8) 80-bit floating point registers, so only a very small amount of data
can be manipulated at the same time.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 78

78 3. Arrays

Luckily for us, all processors have a larger memory area almost as fast as the regis-
ters called the level 1 cache (L1 cache). This cache is where the computer puts
important data that it will need to access often (the actual binary code of each pro-
gram is stored in this cache, too). There might be other levels of cache as well, but
the most important is the level 1 cache. The size is usually around 32–128 kilobytes
of memory, which doesn’t seem too large, but it’s a great deal larger than the regis-
ters. Figure 3.15 shows the speed/size relationship between the various memory lev-
els.

Figure 3.15

This shows the
speed/size
relationship between
different memory
levels. Generally,
larger memory is
slower, and smaller
memory is faster.

So whenever data needs to be accessed, the processor needs to search for it in one
of the memory levels. If it’s already in the registers, it just performs the operation
on it. If the data is in the L1 cache, it makes space in the registers by saving
whichever data was in the registers previously and moving the new data into the
registers. If the data isn’t in the L1 cache, the processor needs to find it in one of
the other memory levels, which can become a slow process.

What does this have to do with arrays? When the memory is moved from level to
level (except from the L1 to the registers), a large chunk is always moved at one

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 79

79Analysis of Arrays in Games

time because it is more efficient to move chunks. When you access a cell of an
array, the processor actually loads a chunk of your array into the L1 cache.

Say you’re working on a simple system that has a cache of 8 cells and you are
accessing a 16-cell array. Figure 3.16 shows the described system. When you access
the first cell in your array, the processor loads the first 8 cells of the array into the
cache. After that, you can access cells 1–7 really quickly because they are already in
the cache. You can change them and do whatever you want to them.

Now, say you want to access the last cell of the array. Well, because you’ve modified
some cells in the first half of the array, the processor needs to move those back into
memory, and then it needs to load the second half of the array into the cache. This
whole process took a lot longer than the supposed “instant access” an array theoret-
ically has.

Figure 3.16

When the first part
of the array is
accessed, it is stored
in the cache.When
the second part is
accessed, the first
part is written back
out to memory, and
the second part is
stored in the cache.

So that’s one thing you have to pay attention to when dealing with arrays. Looping
through them in a single loop is nice and fast because you use as much of the array
as possible at one time. However, an algorithm that randomly jumps to different
cells that are far away from each other will be slow because you’re causing the
processor to move around a great deal of memory. Profiling programs have shown
that the processor spends most of its time moving memory around, which is a
major optimization concern.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 80

80 3. Arrays

Try to keep this in mind when working with arrays. After all, if something appears
to be too good to be true, it probably is.

Resizing Arrays

Perhaps the largest problem with arrays is that they are mostly inflexible in size.
When you have really large arrays containing mounds of data and all of a sudden
you want to resize it, it’s going to take a while. The reason for this is that the array
resize algorithm is O(n), and that’s not even counting the compiler’s implementa-
tion of new and delete.

First, the compiler must find enough memory to contain the old array and the new
array at the same time, which can be quite difficult to do if you’re low on memory.
Then you need to copy every item that you can from the old array into the new
array and delete the old array. This is not something you want to be doing too
often in a real-time game.

Here are the downsides:

■	 Resizing an array takes as much memory as the old array plus the new array.
■	 Resizing an array is an O(n) algorithm—the larger the array, the longer it

takes.

Inserting/Removing Cells

Another downside to arrays is that it is not very easy to insert and remove items
while preserving the order of the array. To do this, you must physically move every
item past the cell where you want to insert/remove up or down one cell. This algo-
rithm is also O(n), and it takes longer as the size of the array increases.

There is, of course, the fast removal algorithm if you don’t care about preserving
the order of the array, but that doesn’t help if you need the order to stay the same.

Conclusion

You might have read this chapter not knowing anything about arrays, or you might
not have. Either way, I hope this chapter presented some new information that you
can use to better your programming.

There is a weird cycle in game programming that is often used. A programmer
starts off learning how to use arrays and uses them almost exclusively. Then, later

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 81

81Conclusion

on, he learns about the nifty advanced data structures such as linked lists (see
Chapter 6, “Linked Lists”). Eventually, though, he ends up using arrays again.
Simply put, arrays are the most often used data structures in game programming
simply because processors are optimized to process arrays. With the advent of vector
processing features in the x86 microprocessors (MMX, 3DNow, SSE, and SSE2),
arrays have become even more important because these new features operate even
more efficiently on arrays.

My advice is to become as familiar with arrays as humanly possible. You will be
using them for the rest of your life. You will see that almost all of the chapters in
this book use arrays in one form or another.

Team LRN

Data Structures CH03 11/5/02 8:31 AM Page 82

This page intentionally left blank

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 83

CHAPTER 4

Bitvectors

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 84

84 4. Bitvectors

Bitvectors are an important part of optimizing small data items, yet they are so
frequently missing from data structures books. Because they are fairly easy to

understand, I have included them in this book. Bitvectors have many names, and
you might have used something similar before, in which case you can skip this
chapter. In this chapter, you will learn

■ What a bitvector is
■ How to create a bitvector
■ How to access the bits inside a bitvector
■ How to rapidly set and clear every bit within a bitvector
■ How to read and write a bitvector to disk
■ How to apply bitvectors to games using the quicksave method
■ What a bitfield is
■ How to declare and access bitfields

What Is a Bitvector?
A bitvector is a specialized kind of array. Basically, a bitvector is meant to condense
bit values (or booleans) into an array so that no space is wasted.

So why not just create a Boolean array? The reason is not so simple: Most compilers
use a larger datatype, such as an integer, in place of a Boolean. They do this
because most computers can only send a fixed amount of bits at a time through
memory and to the processor. Every x86 machine from the 386 upwards can only
send data in packs of 32 bits.

Unfortunately, this is inefficient on a size basis. You often want data to take up the
smallest amount of size possible, especially when you’re dealing with network trans-
fers and saving massive virtual worlds to disk.

Enter the bitvector, designed to pack the data as closely as possible.

Designing a bitvector is a tricky task, however, because you need to use bit manipu-
lation (see Appendix A if you are unfamiliar with bit manipulation). The method I
use is to create an array of long integers, which are usually 32 bits long (see Figure
4.1). You should check your compiler documentation—if your compiler doesn’t

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 85

85Graphical Demonstration: Bitvectors

support 32-bit integers, you can easily modify the bitvector class to work on larger
or smaller integer sizes.

Now, for each index in the array, you should be able to access 32 individual bits.

Figure 4.1

bitvector
containing 32

Here is a

indexes. On
most machines,
these 32
indexes take up
the same
amount of room
as a single
integer.

Graphical Demonstration:
Bitvectors
The graphical demonstration for bitvectors is located on the CD that comes with
this book in the directory \demonstrations\ch04\Demo01 - Bitvectors\ . This demon-
stration shows you how to set and clear the bits within a bitvector. The other com-
mon operations on a bitvector, such as resizing, creating, and deleting, are not
shown in this demo because they are the same as the array algorithms that I have
already demonstrated.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for the
book. For more information about this library, see Appendix B,“The Memory
Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the directory or
create your own project using the settings described in Appendix B. If you cre-
ate your own project, all of the files you need to include are in the directory.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 86

86 4. Bitvectors

The Main Screen

When you run the program, you are presented with the main screen, as shown in
Figure 4.2. There are two buttons and a long bar containing white or grey boxes.
This represents a bitvector that is two cells large, and each cell has 32 bits, giving you
a total of 64 bits. White boxes mean that the cell has a value of 0, and grey boxes con-
tain a value of 1. The boxes are somewhat small, but you can click on a box to select
the current index, which is indicated with a red border around the box.

Figure 4.2

This is the main
screen of the
Bitvector Graphics
Demonstration.

Using the Buttons

When you have selected the index that you want to set or clear, you must click on
the Set Bit or Clear Bit buttons. After you do this, the demo goes through the pro-
cedure to set or clear a bit. I cover the algorithm for these functions in the next
section, and you can follow along using the demo.

Creating a Bitvector Class

In this section, I’m going to build a bitvector class. This class will assume that an
unsigned long int is 32 bits, which should work on the majority of systems out
there. If not, it can easily be modified so that it works on integers of any bit size.

The bitvector class is contained on the CD in the file \structures\bitvector.h.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 87

87Creating a Bitvector Class

The Data

First, I begin by creating the data members of the class:

class Bitvector
{
protected:
unsigned long int* m_array;
int m_size;

};

You’ll notice that the data members look almost exactly like the ones I used in the
Array class (see Chapter 3, “Arrays”), with the exception of the type of m_array. This
time, it is an unsigned long int instead of a generic datatype, because a bitvector is
only suitable for storing booleans.

The size variable keeps track of the number of integers within the array. Note that
because I am using 32-bit integers to store the bitvector, the number of bits in the
vector must be a multiple of 32 (32, 64, 96, and so on). Therefore, to find out how
many bits are in the vector, you simply multiply the number of integers by 32. A 1-
integer array can hold 32 bits, a 2-integer array can hold 64 bits, and so on.

The Constructor
The constructor for this class is the same as the array constructor:

Bitvector(int p_size)
{
m_array = 0;
m_size = 0;
Resize(p_size);

}

This piece of code clears the array pointer to 0, sets the size to 0, and then calls the
Resize algorithm to resize the array to the correct size.

The Destructor
Again, this part is the same as the array destructor:

~Bitvector()
{
if(m_array != 0)

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 88

88 4. Bitvectors

delete[] m_array;
m_array = 0;

}

This deletes the array if it exists.

The Resize Algorithm

The bitvector resize algorithm is similar to the array resize algorithm, with one
exception: Instead of resizing the array to a certain number of integers, I perform a
few calculations and resize the vector to the given number of bits. This change
allows users of the class to request a certain number of bits without having to figure
out how many integers they will turn into.

1: void Resize(int p_size)
2: {
3: unsigned long int* newvector = 0;
4: if(p_size % 32 = = 0)
5: p_size = p_size / 32;
6: else
7: p_size = (p_size / 32) + 1;
8: newvector = new unsigned long int[p_size];
9: if(newvector == 0)
10: return;
11: int min;
12: if(p_size < m_size)
13: min = p_size;
14: else
15: min = m_size;
16: int index;
17: for(index = 0; index < min; index++)
18: newvector[index] = m_array[index];
19: m_size = p_size;
20: if(m_array != 0)
21: delete[] m_array;
22: m_array = newvector;
23: }

The only part of this algorithm that is different from the array resize algorithm is
within lines 4–7. When a size is passed into this routine, it is assumed to be in bits,
so I need to take that number and figure out how many cells to make. On line 4, I
check to see if the number of bits is divisible by 32. If so, then the size of the array

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 89

89Creating a Bitvector Class

is the number of bits required divided by 32. Hence, passing in 32 will result in 1
cell, 64 will result in two cells, and so on.

However, if the user passes in a number that is not divisible by 32, I need to do a lit-
tle work. If the user passes in 31, for example, 31 divided by 32 will result in 0,
because it is an integer division. 0 cells is obviously an incorrect amount, so I need
to add 1 to the cell count, which is what happens on line 7. The end result of this
algorithm is that you will always end up with a bitvector that contains as many bits
as you need, plus some additional bits if the number isn’t divisible by 32.

If the integer you are using to store the bits isn’t 32 bits long, it is a simple task to
change it. In lines 4–7, all you need to do is change all occurrences of 32 into the
size of the integer you are using. If, for example, you are using an older 16-bit sys-
tem, those four lines would look like this:

4: if(p_size % 16 == 0)
5: p_size = p_size / 16;
6: else
7: p_size = (p_size / 16) + 1;

The same goes for 8 bits, or 64 bits, or however many bits your integers use.

The Access Operator
This is one part of the bitvector class that deviates from the array class. In the array,
I was able to make the access operator act in two ways: It could retrieve the value at
an index and at the same time allow you to modify the item. You cannot do that
with a bitvector.

The array access operator returned a reference to the item in the given cell, but
because I am playing around with individual bits and not actual datatypes, I am not
allowed to return a reference to a specific bit. So the access operator is limited to
retrieving the value at a given index.

There are several parts to retrieving an individual bit within a bitvector:

1. Find the cell that the bit is in.

2. Find which bit in the cell is the required one.

3. Retrieve the bit.

4. Shift it down so it has a value of 0 or 1.

Step 1 is easy: To find out which cell a bit is in, divide the index by 32. If you want
to find any bit from 0–31, it will be in the first cell; any bit from 32–63 will be in the
second cell, and so on.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 90

90 4. Bitvectors

The next step is a little tricky. To figure out which bit in the cell you want to access,
you need to take the original index and modulo it by 32. Any index from 0–31
modulo 32 will give you the same number, so if you want bit 5, you will need to
retrieve the 5th bit of cell 0. What happens when you want to get bit 34? 34 modulo
32 is 2, so you access bit 2 of cell 1.

1: bool operator[] (int p_index)
2: {
3: int cell = p_index / 32;
4: int bit = p_index % 32;
5: return (m_array[cell] & (1 << bit)) >> bit;
6: }

Lines 3 and 4 find the cell and bit-index that you want to retrieve, which parallel
steps 1 and 2 of the algorithm, but line 5 needs some explaining. First of all, you
access the integer at index cell. This returns an integer. Next, you take 1 and shift
it up bit spaces. Now, this should give you a 1 at the same bit position as the bit you
want to retrieve, right? Take a look at Figure 4.3 to see how this works.

Figure 4.3

This shows the 1
being shifted up into
the correct position.

If you want to retrieve bit 0, then 1 shifted up 0 places is still 1. If you want to
access bit 5, then 1 shifted up 5 places is 32, which, represented in binary, is
100000. The 1 is in index 5.

Now that you have shifted a 1 into the appropriate place, you need to retrieve the
bit in the cell. This step is easy—all you need to do is binary and the two numbers
together. Remember the binary rules:

1 & 1 = 1

1 & 0 = 0

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 91

91Creating a Bitvector Class

So when you take that 1 and binary and it with the given cell, you essentially
retrieve the bit in the array at the correct bit-position. However, the result of the
binary and isn’t a 1 or a 0. If bit 5 had a 1 in it, then the result of the operation
would be 32, or 100000. You need to shift this number back down so that it is
either a 1 or a zero. So you shift it down 5 bits, and voila! You have a 1!

Note that you can modify the access algorithm for any size integer by replacing all
occurrences of 32 with whatever integer size your platform uses.

The Set Function

Setting a bit within the bitvector is a slightly more complicated task. Because there
is no single way to set an individual bit within an integer, you need to rely on the
binary math rules: Use the and operator to clear bits and use the or operator to set
bits.

1: void Set(int p_index, bool p_value)
2: {
3: int cell = p_index / 32;
4: int bit = p_index % 32;
5: if(p_value == true)
6: m_array[cell] = (m_array[cell] | (1 << bit));
7: else
8: m_array[cell] = (m_array[cell] & (~(1 << bit)));
9: }

Lines 3 and 4 are the same from the access operator; they retrieve the cell number
and the bit number. At this point, you need to make a choice: If the value you want
to set is true, then you want to set the correct bit within the vector; if the value you
want to set is false, then you want to clear the correct bit within the vector. To do
this, you rely on four binary math rules:

1. x and 1 = x

2. x and 0 = 0

3. x or 1 = 1

4. x or 0 = x

Rules 1 and 4 are known as identity functions, which just return the same value as x.
Rule 2 is the clear function—no matter what x is, the result is 0. Rule 3 is the set
function—the result is 1, no matter what x is.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 92

92 4. Bitvectors

For the set function to work (line 6), you shift a 1 into the bit position that you
want to set, and you logically or that with the correct cell. This process is demon-
strated in Figure 4.4.

Figure 4.4

This shows how to
set a bit. Note that
every bit in the final
result is the same
except for the one bit
that I wanted to set,
which became 1.

Once you are done with the operation, the correct bit is set.

For the clear function to work, you need to do a little more work. This time, to clear
the correct bit and keep all the other bits the same, the bit you want to clear needs
to be 0, and every other bit needs to be 1. Remember, using the logical and opera-
tor with a 1 is the identity function. Figure 4.5 demonstrates this algorithm.

Figure 4.5

This shows how to
clear a bit. Note that
every bit in the final
result is the same
except for the one bit
that you wanted to
clear, which became 0.

So you use the shift operator to first shift a 1 into the desired position that you
want to clear. Then, the logical not operator reverses every bit so that there is a 0
where the 1 was, and everything else is now 1. After using the logical and operator
on the cell, the desired bit is now cleared.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 93

93Creating a Bitvector Class

If you want to convert the algorithm to an integer size different from 32 bits, just
change all instances of 32 to the desired bit size.

The ClearAll Function

There are times when you will want to clear the entire contents of a bitvector
quickly, and as you might guess, looping through every bit and clearing it doesn’t
seem to be efficient. Instead, there is a better method, where you set each integer
in each cell to 0. On a 32-bit system, you’ve just set 32 bits to 0 at once.

1: void ClearAll()
2: {
3: int index;
4: for(index = 0; index < m_size; index++)
5: m_array[index] = 0;
6: }

The algorithm loops through and sets every cell to 0. Figure 4.6 shows how the
clear function works.

Figure 4.6

This figure represents
an 8-celled bitvector.
If each cell had 32
bits, then there would
be 256 bits.The
algorithm sets each
cell to 0, clearing 32
bits at a time.

The SetAll Function
There might also be times when you need to set every bit in the bitvector to 1.
Luckily, the procedure is just as easy as the ClearAll function—instead of replacing
each integer with 0, you replace each integer with a number that is all 1s. On a 32-
bit system, this number would be hexadecimal FFFFFFFF, or decimal 4,294,967,295.
Each F in the hex representation is 4 bits, so you need 8 of them for 32 bits.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 94

94 4. Bitvectors

1: void SetAll()
2: {
3: int index;
4: for(index = 0; index < m_size; index++)
5: m_array[index] = 0xFFFFFFFF;
6: }

If you were to use this algorithm for a different integer size, you would need to
replace 0xFFFFFFFF with the hex equivalent for the correct size. 8 bits would be 0xFF,
16 bits would be 0xFFFF, and so on.

The WriteFile Function

Because a bitvector is an array of integers, saving a bitvector to disk is the same as
the way you save arrays to disk.

1: bool WriteFile(const char* p_filename)
2: {
3: FILE* outfile = 0;
4: int written = 0;
5: outfile = fopen(p_filename, “wb”);
6: if(outfile == 0)
7: return false;
8: written = fwrite(m_array, sizeof(unsigned long int), m_size, outfile);
9: fclose(outfile);
10: if(written != m_size)
11: return false;
12: return true;
13: }

The only change in the algorithm is on line 8—instead of passing the size of a
generic datatype, you pass the size of an unsigned long integer.

The ReadFile Function

Like the WriteFile function, the ReadFile function is almost the same as the
Array::ReadFile algorithm:

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 95

95Creating a Bitvector Class

1: bool ReadFile(const char* p_filename)
2: {
3: FILE* infile = 0;
4: int read = 0;
5: infile = fopen(p_filename, “rb”);
6: if(infile == 0)
7: return false;
8: read = fread(m_array, sizeof(unsigned long int), m_size, infile);
9: fclose(infile);
10: if(read != m_size)
11: return false;
12: return true;
13: }

The only change is on line 8, where you change the generic datatype to an unsigned
long int.

Example 4-1

This is Example 4-1, which can be found on the CD in the directory
\examples\ch04\01 - The Bitvector Class\ .

Here is the code listing for Example 4-1, which covers all of the basic features of
the Bitvector class:

void main()
{

// create a bitvector with 32 bits.
Bitvector bitv(32);
bool b;

// set index 0 to true and retrieve it again.

bitv.Set(0, true);

b = bitv[0];

// set index 31 to false and retrieve it again.

bitv.Set(31, false);

b = bitv[31];

// set all the bits in the vector to 0

bitv.ClearAll();

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 96

96 4. Bitvectors

// set all the bits in the vector to 1

bitv.SetAll();

// resize the bitvector to 48 bits

bitv.Resize(48);

// get the size of the bitvector.

int s = bitv.Size();

// Why is s = 64? Remember, because you are on a 32-bit system,
// you can only have multiples of 32. Because you asked for 48
// bits, the resize algorithm had to make enough room for 48 bits,
// so it jumped up to the next level and made 64.

}

This example has no output.

Application: The Quicksave

This is Game Demonstration 4-1, which can be found on the CD in the directory
\demonstrations\ch04\Game01 - Saving Players\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Games these days are huge. They take up hundreds of megabytes of memory at any
given time and simulate many things all at once. Games are usually so large that
saving the entire state of the game is a big pain in the butt. However, games are

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 97

97Application: The Quicksave

also pretty much useless if they don’t have a save feature. What’s the point of play-
ing a long and complex game without being able to start up where you left off the
last time?

Unfortunately, a ton of data usually needs to be stored whenever you save a game.
Almost all the time, this data is going to be stored on some kind of hard disk,
which is significantly slower than system memory. The larger the game gets, the
longer it will take to save the game.

If you’ve played some of the more recent games, you’ll notice that many of them
have a quicksave feature, which seems to instantly save the game without lagging up
the game at all. It’s a pretty neat trick, and it can be accomplished by using bitvectors.

For most games, most of the actual game world doesn’t change much in the matter
of a few minutes, especially if the game is single player. Typically, a player can only
be in one place at a time, and there is a limited amount of things that the person
can modify in the time between saves. So if a player saves the game and moves
around for a little bit and then saves the game again, instead of re-saving every-
thing to disk, you just need to save the things that have changed! This is the rea-
soning behind the quicksave.

Creating a Player Class

In this demonstration, you will be keeping track of a number of players within the
game. They aren’t necessarily actual people, but might also represent monsters and
computer-controlled players as well.

class Player
{
public:
int m_life;
int m_money;
int m_experience;
int m_level;

};

This is an overly simplistic player class that only has four statistics: life, money, expe-
rience, and level. Their purpose is not very important here; you only need to know
that these variables will be changed within the game.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 98

98 4. Bitvectors

Storing the Players in the Game

For this demonstration, I’ll use my good old friend, the array, to store the players
in the game. This is somewhat important for this demonstration because each
player in the game is assigned an ID number that corresponds to his index in the
array. I’ll also define a bitvector, which will keep track of which players have been
modified.

For this demonstration, you have 64 players, so the array and the bitvector are ini-
tialized to hold 64 items:

Array<Player> g_playerarray(64);
Bitvector g_modifiedstates(64);

These variables are global in the demo so that you can always easily access them.
The g_modifiedstates vector will be the same size as the g_playerarray. Each index
in the vector will correspond to the same index in the playerarray. If any given bit
is zero, that means that the corresponding player has not been modified since the
last game save, but if the bit is 1, then the corresponding player has been modified
since the last game save and thus needs to be written to disk.

Initializing the Data Structures

You need to initialize the array and the bitvector somehow, so create a loop inside a
GameInit function and use random numbers for the player statistics:

1: void GameInit()
2: {
3: int index;
4: for(index = 0; index < 64; index++)
5: {
6: g_playerarray[index].m_life = 11 + rand() % 10;
7: g_playerarray[index].m_money = rand() % 100;
8: g_playerarray[index].m_experience = 0;
9: g_playerarray[index].m_level = 1 + rand() % 5;
10: }
11: g_modifiedstates.SetAll();
12: }

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 99

99Application: The Quicksave

On lines 4–10, the algorithm loops through and initializes all the players, giving
them 11–20 life, 0–99 money, and 0 experience and making them level 1–5.

Lastly, on line 11, I call the SetAll function of the bitvector, setting every item in
the vector to 1. The reason I do this is because every player has just been initialized
and has not been saved to disk yet.

Modifying Player Attributes

Now, whenever you modify the attributes of a player, you need to make sure that
the modified bit is set in the g_modifiedstates bitvector. The best way to assure this
is to use specialized functions that set the values of the player variables:

void SetLife(int p_player, int p_life)
{
g_playerarray[p_player].m_life = p_life;
g_modifiedstates.Set(p_player, true);

}

This sets the new life of the player and sets the corresponding g_modifiedstates flag
at the same time. The other three functions are alike:

void SetMoney(int p_player, int p_money)
{
g_playerarray[p_player].m_money = p_money;
g_modifiedstates.Set(p_player, true);

}

void SetExperience(int p_player, int p_experience)

{

g_playerarray[p_player].m_experience = p_experience;
g_modifiedstates.Set(p_player, true);

}
void SetLevel(int p_player, int p_level)
{
g_playerarray[p_player].m_level = p_level;
g_modifiedstates.Set(p_player, true);

}

Each of the functions modifies the player class and updates the modified flag in the
g_modifiedstates bitvector.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 100

100 4. Bitvectors

Saving the Player Array to Disk

Now, to save the player array to disk, you’re going to need a more complicated
algorithm than just saving the entire array to disk. The algorithm you’re going to
use is to iterate through the entire array and check the modified flag for each
player. If the flag is true, you write the player to the appropriate place on the disk.

1: bool SavePlayers(const char* p_filename)
2: {
3: int index;
4: FILE* savefile = fopen(p_filename, “wb”);
5: if(savefile == 0)
6: return false;
7: for(index = 0; index < 64; index++)
8: {
9: if(g_modifiedstates[index] == true)
10: {
11: fseek(savefile, sizeof(Player) * index, SEEK_SET);
12: fwrite(&(g_playerarray[index]), sizeof(Player), 1, savefile);
13: }
14: }
15: g_modifiedstates.ClearAll();
16: return true;
17: }

On line 1, you declare the SavePlayers function. This will take a string, which is the
name of the file you want to save the players in. On line 4, you open that file for
writing. You check to see if the file cannot be opened on line 5, and if not, return
failure on line 6.

On lines 7–14, you loop through all 64 players in the game. First, you check to see
if the player has been modified since the last save (line 9). If the player hasn’t been
modified, you skip over him and go on to the next player.

If the player has been modified, then you need to do two things: find the right
place in the file to write the player and then actually write the player. These things
are accomplished, respectively, on lines 11 and 12.

On line 12, you use the fseek command to move the file pointer to the appropriate
place in the file. Because the file is basically just an array of Players, the position of
the current player is the size of the Player class times the current index. Remember,
files are byte-based, so you need to multiply by the size of the player yourself.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 101

101Application: The Quicksave

After that, you write the individual player to file by first getting the player and then
using the address-of operator (&) to pass a pointer into fwrite (if you’ll recall,
fwrite requires a pointer to the data you want to write).

Finally, after all the players have been written, you call the ClearAll function of the
g_modifiedstates bitvector, clearing every bit to 0. This signifies that every single
player is now up to date and written to file. If you were to call the SavePlayers func-
tion twice in a row, the second call would do nothing, because none of the players
have changed since they were last saved to disk. Figure 4.7 demonstrates how the
algorithm writes players to disk.

Figure 4.7

The g_modifiedstates
bitvector determines
which players are written
to disk.

NOTE
This method in this particular example is probably slower than writing the
entire array to disk, or at least not any faster.This is because of the way com-
puters write data to disk today:They use a caching system.When you write
something to disk, it isn’t written immediately; it goes in a memory chip in the
hard drive called the cache buffer. When the cache buffer is full enough, the
hard drive then writes all the data in the buffer to the disk. In the previous
example, the data you were saving wasn’t large enough to fill a disk cache and
you probably didn’t save any time by only writing the things that didn’t change.
However, this is only because the data is small. Once you start working on large
projects in which many megabytes of data need to be written to a file, the
method of writing only what has changed becomes a very efficient method of
saving data.

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 102

102 4. Bitvectors

Playing the Game

When you start the game up, 64 “players” will be shown on the screen, each one
with a box around it. The boxes signify that the players haven’t been saved to disk
yet, and the boxes will disappear when you press the S key on the keyboard.
Clicking on a player will randomize their attributes and cause a box to appear
around the player, signifying that the player has been modified since the last time it
was saved to disk.

Figure 4.8 shows a screenshot of the game in action.

Figure 4.8

This is a screenshot
of the Bitvector
Game Demo in
action.

Bitfields

Bitvectors are great for packing Boolean variables into as small a space as possible,
but what if you need something larger than a Boolean? Imagine a system in which
a player can be in one of four states: walking, attacking, sleeping, or dead.

Because a boolean can only hold two values, it is not going to be large enough
for these four states, but an integer which can store four billion values is clearly
too large.

The number of bits needed to hold four values is two, because 22 = 4. C++ doesn’t
come with a 2-bit datatype, though, so the smallest you could use would be an 8-bit
char, which wastes 6 bits. Although this might seem small, when you’re talking

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 103

103Bitfields

about saving or sending the states of hundreds of players over a network, that
means you’re sending 4 four times as much data that you need to be transmitted.
This is obviously a large waste.

Luckily, C++ introduces the notion of bitfields, individual integer variables within a
class or structure that contain a certain number of bits.

Declaring a Bitfield

As the name implies, a bitfield is simply a
small field within a class or structure
that has a specific size in bits. There are
only two types of bitfields: signed and
unsigned. Both types are assumed to be
integers.

Here is how you declare a bitfield:

signed a : 4;

This declares a signed bitfield named a
with a size of 4 bits. Because it is 4 bits,
it can hold a total of 16 values. Because
this is a signed field, the range of valid
numbers is –8 through 7.

Using a Bitfield

n-1

n-1-1.

NOTE
A bitfield cannot be declared outside
of a class or a structure; they can only
exist within a class or a structure.

NOTE
Because of the way signed integers
are encoded, there is always one
more negative value than positive
value.The exact formula for the
minimum value is: -2 , where n is
the size of the bitfield.The formula
for the maximum value is: 2

A bitfield can be used exactly like a nor-
mal integer. Here it is in action first:

class Player
{
public:
unsigned m_state : 2;
unsigned m_haskey : 1;

};

First, this declares a very simple player class that has two variables, a 2-bit state and
a 1-bit flag determining if the player has a key. You can access each of the fields in
the same way you access any integer:

Team LRN

Data Structures CH04 11/5/02 8:32 AM Page 104

104 4. Bitvectors

Player bob;
bob.m_state = 0;
bob.m_haskey = 1;

From now on, you can do anything you want to the bitfield that you can do with an
integer, with one exception: the address-of (&) operator doesn’t work on bitfields.
This is because bitfields are not variables; they are just small parts of one larger
variable.

One cool thing about bitfields is that they can be used in conjunction with other
variables seamlessly. You can mix bitfields and regular variables easily within the
same structure or class.

class Player
{
unsigned m_state : 2;
unsigned m_haskey : 1;
int m_hitpoints;

};

In the preceding example, I’ve combined two bitfields with an integer. On MSVC6,
the size of this class would be 8: 4 bytes for the integer, and 4 bytes for the two
bitfields.

Some compilers aren’t too smart, though. For example, what happens if you
were to adjust the order of the variables so that they were in this order: m_state,
m_hitpoints, m_haskey? MSVC6 creates the structure, but this time it takes up 12
bytes: 4 for m_state, 4 for m_hitpoints, and 4 for m_haskey. Figure 4.9 shows how
the two different structures are created in memory.

Figure 4.9

This figure
represents the two
different structures
that are possible by
rearranging the
declarations of
bitfields.

Team LRN

Data Structures CH04 11/5/02 8:33 AM Page 105

105Analysis of Bitvectors and Bitfields in Games

NOTE
Make sure that you keep all of your
bitfields together when you define
them.You cannot rely on the compil-
er to optimize the structure auto-
matically for you.

NOTE
Also keep in mind that a single bit-
field is useless on its own.The reason
for this is that most compilers put
the bitfields into a padded structure.
So a bitfield of size 1 in MSVC6 will
still take up a full 32 bits if there are
no other bitfields around.

Analysis of Bitvectors and
Bitfields in Games
Bitfields and bitvectors are really useful for efficient memory usage. Unfortunately,
this comes at a cost: Compared to normal booleans and integers, bitvectors and bit-
fields require more processing time to retrieve and store values.

Most computers these days come with so much memory, however, that we don’t
know what to do with all of it. So this begs the question: Is the amount of memory
that you have saved worth the extra processing power? There is no correct answer
to this question, and whatever choice you make depends on your circumstances.

In most cases, the amount of space you save using bitvectors and bitfields is really
negligible, but I wouldn’t rule them out quite yet. Within the past few years,
Massively Multiplayer Online (MMO) games have become hugely popular. In these
types of games, many thousands of players could theoretically be playing at any
given moment. As these games get larger and more complex, the strains that these
games will place on the network will be tremendous. Storing data as efficiently as
possible is a major focus in these games, and the technologies behind bitvectors
and bitfields helps quite a bit.

In the end, it comes down to the most popular tradeoff in computer programming:
Should you sacrifice speed for memory or memory for speed? If memory is more
important, then you should use bitvectors and bitfields.

Team LRN

Data Structures CH04 11/5/02 8:33 AM Page 106

106 4. Bitvectors

Conclusion

In this chapter, you learned how to store bits into a larger integer structure, how to
read them back out again, and how to create a class that automates these proce-
dures for you. In addition, you learned how to use bitvectors to implement a simple
quicksave system.

You also learned how to use bitfields as an alternative to bitvectors to save data that
doesn’t need large amounts of memory but requires more than a single bit.

Bitvectors and bitfields are topics that I see neglected in a lot of books. In fact, I
have only seen one book that even mentions bitfields; I had to do most of the
research on them by experimentation. Perhaps it is because they aren’t generally as
useful as other data structures, or perhaps it is because they are somewhat awkward
to work with. Either way, I still consider it important to at least know about them
and know when to use them. This chapter introduced a major point in game pro-
gramming: the speed versus memory tradeoff.

In almost every program, there is a place where you must decide whether it is bet-
ter to have a faster algorithm or to take up less memory. This problem will show up
a few times later in this book as well, so keep a lookout for it.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 107

CHAPTER 5

Dimensional
Arrays

Multi-

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 108

108 5. Multi-Dimensional Arrays

Previously, I’ve only talked about linear array structures—those with only one
dimension. This chapter will introduce you to the more complex class of

arrays named multi-dimensional arrays. You will find that multi-dimensional arrays
are more specific in their nature and cannot be applied to as many situations as
regular arrays can be. In this chapter, you will learn:

■ What a multi-dimensional array is
■ How to declare native multi-dimensional arrays
■ How to initialize multi-dimensional arrays
■ How to pass multi-dimensional arrays into functions
■ How to access multi-dimensional array cells
■ How a multi-dimensional array is structured internally
■ How to create a dynamic 2D array class
■ How to create a dynamic 3D array class
■ How to make a tilemap using 2D arrays
■ How to make a layered tilemap using 3D arrays

What Is a Multi-Dimensional
Array?
By now, you should know quite a bit about arrays. If not, you can read all about
them in Chapter 3, “Arrays.” The arrays I describe in Chapter 3 are more formally
known as single-dimension arrays, but no one actually calls them that. They are called
that because they can be thought of in a single dimension.

If you think about graphs for a moment, the single-dimension universe has only
one axis (traditionally called the x axis), often referred to as length. Any item in a
single-dimension universe can only have one coordinate. What you end up with is a
long one-dimensional line for the entire universe. See Figure 5.1 for a pictorial rep-
resentation of the different dimensions.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 109

109What Is a Multi-Dimensional Array?

Now, imagine expanding that universe into two dimensions by adding another axis:
height (traditionally called the y axis). Instead of just a line, this time you have a
plane, and any point on the plane can have two coordinates instead of just one.

And finally, there is the three-dimensional universe, in which the third axis is depth
(traditionally called the z axis). All points in the three-dimensional universe have
three coordinates.

Figure 5.1

The three common
universes.The z axis
for the third
dimension can be
thought of as coming
out of the paper,
toward you.

Now, there are other dimensions past the third dimension, but they are pretty
much impossible to draw in a way you could understand. Therefore, this chapter
will mainly be concerned with two- and three-dimensional arrays.

If a one-dimensional array looks like a plain line, then a two-dimensional array
looks like a grid. Figure 5.2 shows how a two-dimensional array is usually repre-
sented.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 110

110 5. Multi-Dimensional Arrays

Figure 5.2

This is a two-
dimensional array of
size (8,8).

A two-dimensional array has two dimensions, a length and a height. In Figure 5.2,
both of these dimensions are 8 cells, giving us a total of 64 cells.

A three-dimensional array uses all three dimensions, as demonstrated by Figure 5.3.
As you can see, it’s difficult to represent a 3D array because half of the information
is hidden. After all, the paper is only 2D. The 3D array shown in Figure 5.3 has a
size of (4,4,4), giving us 64 cells.

Figure 5.3

This is a three-
dimensional array of
size (4,4,4).

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 111

111Graphical Demonstration

Graphical Demonstration

The graphical demonstration for this chapter can be found in the directory
\demonstrations\ch05\Demo01 - 2D Array\ . Because it is very difficult to represent
arrays with more than two dimensions graphically, this demonstration only shows
2D arrays and the algorithm to resize them.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When you start the program, you will be presented with a screen like the one
shown in Figure 5.4.

Figure 5.4

This is a screenshot
for the Array2D
Graphical
Demonstration.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 112

112 5. Multi-Dimensional Arrays

There are two buttons shown on the screen, one that will let you resize the array
and one that will let you randomize the number in every cell.

The demonstration will show the exact algorithm used to resize a 2D array and will
show red Xs in cells whose value is “invalid.” I used this same approach in the Array
Graphical Demonstration from Chapter 3. When resizing an array, four arrows
appear on the upper-right side of the screen—use these to change the size of the
new array, which will be shown in gray boxes. After you have attained the size that
you want, press the Continue button, and the program will illustrate how it copies
cells over into the new array.

Native Multi-Dimensional
Arrays
C++ has native support for static multi-dimensional arrays. This is usually the most
common way of using a multi-dimensional array because resizing one of these
arrays is a rarely needed occurrence.

Declaring a Multi-Dimensional
Array
Creating a multi-dimensional array in C++ is very similar to creating a regular array.
Instead of just one dimension being specified, you add the additional dimensions
in square brackets after the other dimensions:

int array2d[5][5];
int array3d[4][4][4];
int array4d[3][3][3][3];

These declarations declare a 2D array, a 3D array, and a 4D array, respectively. The
number of cells each array contains is determined by multiplying all of the dimen-
sions together, so the 2D array has 25 cells, the 3D array has 64 cells, and the 4D
array has 81 cells.

Even though I only talk about 2D and 3D arrays in the beginning of this chapter, in
reality you can have an array with as many dimensions as you want, depending on
the limitations of your compiler. The problems with arrays with more than three
dimensions are numerous though. First of all, they are impossible to visualize,
unless you come from an alternate dimension where you can see more than three
dimensions. Second, arrays with large dimensions tend to get much larger quickly

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 113

113Native Multi-Dimensional Arrays

due to the fact that their dimensions are multiplied to get the size. For example,
even though each dimension in array4d in the previous code segment is only three
cells large, the entire array takes up 81 cells. Compare this to array3d, however, in
which each dimension is four cells large, yet the entire array only takes up 64 cells.

Initializing a 2D Array
Initializing a multi-dimensional array is just like initializing a normal array, except
that it involves a lot more curly brackets. For example, if you want to initialize a 3x3
array to contain the numbers 1 through 9, you would declare it like so:

int array[3][3] = { { 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 } };

Because a 2D array can be thought of as an array of arrays, each row in the array is
defined like a normal array. Outside, each row is combined together again, sepa-
rated by commas and enclosed in brackets.

Initializing Arrays with More Than Two
Dimensions
Using the logic from the previous section, you can extend the idea into three
dimensions:

int array[2][2][2] = { { { 1, 2 },
{ 3, 4 } },

{ { 5, 6 },
{ 7, 8 } } };

That looks bad and difficult to understand, but you can see the structure if you
stare at it long enough. Lines 1 and 2 form a 2 � 2 2D array, and so do lines 3 and
4, so you’re looking at two 2D arrays put together, forming a 3D array.

For the particularly devious people out there, here is a 2 � 2 � 2 � 2 4D array ini-
tialization:

int array[2][2][2][2] = { { { { 1, 2 },
{ 3, 4 } },

{ { 5, 6 },
{ 7, 8 } } },

{ { { 9, 10 },
{ 11, 12 } },

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 114

114 5. Multi-Dimensional Arrays

{ { 13, 14 },
{ 15, 16 } } } };

I do not recommend initializing arrays like this often. As you can see, the definition
gets quite messy, and it becomes almost impossible to keep track of all the little
brackets. It is not intuitive to initialize arrays with more than two dimensions in
code because code is represented on a 2D plane (your screen or paper).

Initializing Non-Symmetrical Multi-
Dimensional Arrays
Now you need to figure out which dimensions are initialized first. Due to C++’s
notational conventions (see the “Inside a Multi-Dimensional Array” section for a
more in-depth examination), the first dimension defined represents the number of
rows in a 2D array. So, to initialize a 3x2 array, you would write this:

int array[3][2] = { { 1, 2 },
{ 3, 4 },
{ 5, 6 } };

In other words, the array is in row major form. Each row consists of two columns.
The layout in memory is linear starting with row 0, followed by row 1, and lastly by
row 2. Due to this arrangement, defining the array with three items in each inner-
most bracket will cause a compiler error. Arrays with more than two dimensions fol-
low the same pattern. For example, a 3D array with dimensions 3 � 2 � 1:

int array[3][2][1] = { { { 1 },
{ 2 } },

{ { 3 },
{ 4 } },

{ { 5 },
{ 6 } } };

All multi-dimensional arrays follow the same pattern: The last dimension defined
determines the number of items that are placed in the innermost brackets.

Initializing Variable Length Multi-
Dimensional Arrays
Last, like regular arrays, it is possible to define a multi-dimensional array in which
you let the compiler determine the size of the array automatically, depending on
how many items are in the initializer list.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 115

115Native Multi-Dimensional Arrays

There is one catch, however: Only the first dimension can be left out. Every other
dimension must be explicitly defined. I explain the reasons for this in the section
entitled “Inside a Multi-Dimensional Array” later on.

For example, this is invalid:

int array[][] = { { 1, 2 },
{ 3, 4 } };

Even though it is obvious to us that this is a 2 � 2 array, the compiler will not
accept this. The proper declaration is this:

int array[][2] = { { 1, 2 },
{ 3, 4 } };

The same applies to every array of any dimension—only the first dimension can be
left blank.

Accessing a Multi-Dimensional
Array
Accessing the items in a multi-dimensional array is just as easy as accessing items in
a regular array.

array2d[4][3] = 10;
array3d[3][1][0] = 15;
array4d[2][2][1][0] = 20;

These operations put numbers into the arrays at different indexes. array2d puts the
value 10 into the array at (4,3), which on a 2D grid would look like Figure 5.5. 15 is
put into array3d at index (3,1,0), which would look like Figure 5.6. Of course, it is
impossible to visualize where the 20 is put within array4d, so I cannot show a figure
of that here.

Figure 5.5 This
figure shows where
the 10 is put within
array2d.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 116

116 5. Multi-Dimensional Arrays

Figure 5.6

This figure shows
where the 15 is put
within array3d.

Inside a Multi-Dimensional Array

So how does C++ represent a multi-dimensional array internally? Remember how a
normal array works, first of all. You hand it an index, and it figures out the correct
place in memory by multiplying the size of an item and adding that to the array off-
set. Hold on to this thought for a moment.

Inside 2D Arrays
When you think of a two-dimensional array, isn’t it really just an array of arrays?
Look at Figure 5.7 for a moment.

Figure 5.7

This is how you
convert a 2D array
into a 1D array.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 117

117Native Multi-Dimensional Arrays

You see, if you treat each row in the 2D array as a single item, you can view the 2D
array as a 1D array of arrays. Figure 5.7 shows how you slide each row out to the
right and combine all four rows into a single array.

The general formula for converting a 2D coordinate into a 1D coordinate is then:

y * width + x

Therefore, if you wanted the cell at row 2, column 3 in a 4 � 4 array, the result
would be 2 * 4 + 3, which turns out to be 11.

This is how C++ stores and accesses 2D arrays. It stores the array data as a single
array and uses the formula for getting indexes.

Expanding to Higher Dimensions
If a 2D array can be thought of as a 1D array of arrays, then a 3D array can be
thought of as an array of 2D arrays. (See Figure 5.8.) Expanding upon this, a 3D
array is really just an array of arrays of arrays (say that ten times fast!). How about a
4D array? Isn’t that just an array of 3D arrays? Of course, after your dimensions get
larger than 3, it becomes very difficult to imagine how an array is stored visually.

Figure 5.8

A 3D array is just an
array of 2D arrays.

So now you want to figure out how to access a cell within a 3D array. Because a 3D
array is essentially an array of 2D arrays, you need to figure out which 2D array you
want to access first. To do that, you need to know the size of each 2D array, which is
simply the width times the height. After that, the algorithm is exactly like accessing
a 2D array:

(z * width * height) + (y * width) + (x)

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 118

118 5. Multi-Dimensional Arrays

The first term, z * width * height, finds which 2D array you want to access first. If z
was 2 in a 3 � 3 � 3 array, then this would give you 2 * 3 * 3, which is 18. The sec-
ond term determines which row within the 2D array you want to access. If y was 1,
then you would have 1 * 3, which is 3. Then the third term is simply the index of
the 1D array that you now have the address of. If x is 1, then you simply add 18, 3,
and 1, and the final index is 22.

A Note on Conventions
Up until this point, I’ve used the standard mathematical convention for represent-
ing the axes of 2D and 3D arrays. The x dimension (width) is always represented as
the horizontal axis, the y dimension (height) is always represented as the vertical
axis, and the z dimension (depth) is always represented as going into or out of the
paper.

Unfortunately, C++ uses a different convention and reverses the ordering of the
axis. When you define a 1D array, there is no confusion, because there is only one
dimension. Here is how C++ arrays are defined:

int array1d[width];
int array2d[height][width];
int array3d[depth][height][width];

This doesn’t look like such a large deal on the surface. This is because when deal-
ing with multi-dimensional arrays, the axes are largely arbitrary to the users’ needs.
For example, you could create a simple 2D array that keeps track of the different
types of monsters in a game. One axis of the array represents the size of the mon-
sters (small, medium, large), and the other axis represents the types of monsters
(goblin, orc, troll). Does it matter which axis is defined first? In this case, it doesn’t
seem to matter. Declaring the monster array either way seems to be acceptable:

int monsters[SIZES][TYPES];
int monsters[TYPES][SIZES];

So as long as your axes are always the same for the arrays, it should cause no prob-
lems. The only time the ordering of your axes matters is when you use static multi-
dimensional arrays and you pass them into functions, which I discuss in the next
section.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 119

119Native Multi-Dimensional Arrays

Passing Multi-Dimensional Arrays to
Functions
Multi-dimensional arrays can be passed into functions just like normal arrays can.
There are several ways to do this.

The most popular way is to have the function assume that it will be receiving an
array of a specific size, like this:

void Function(int p_array2d[4][5], int p_array3d[2][4][2]);

This function can accept a 2D array with dimensions 4 � 5 and a 3D array with
dimensions 2 � 4 � 2 (technically, in both cases, the compiler ignores the first
dimension, so passing a 6 � 5 and a 3 � 4 � 2 array would work perfectly fine as
well. You’ll see why this is later on). If you try passing in a 2D array or 3D array with
different dimensions, it won’t work and will give you a compiler error.

That works fine, but what happens when you want to pass arrays that don’t have
specific sizes? You could easily do this with a 1D array by neglecting the number in
the function call, but you have no such luck with multi-dimensional arrays. The fol-
lowing line of code is invalid in C++:

void Function(int p_array2d[][]);

In MSVC6, this will generate an error message: error C2087: ‘<Unknown>’ : missing
subscript. Of course, if you had no idea that this code was invalid, that error would
make no sense.

So why can’t you do this in C++? Remember how the compiler accesses an element
within the 2D array: it multiplies the row number times the width of each row and
then adds the column number. Trying to pass in a 2D array without a specified
width causes a problem, because then the compiler will not have any idea how to
access a particular row. So to pass a 2D array into a function, you are required to at
least give the width of the array as a parameter, like this:

void Function(int p_array[][4]);

This function accepts any 2D array with a width of 4. You can pass in a 1 � 4 array
or a 2 � 4 array or a 100 � 4 array. However, you cannot pass in an array with a dif-
ferent width. C++ will not let you.

Note that reversing the order of the subscript will cause a compiler error. This is
invalid:

void Function(int p_array[4][]);

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 120

120 5. Multi-Dimensional Arrays

The same applies to 3D arrays, too, except with 3D arrays, you need to know the
width and the height to access any given cell, so you can only pass in 3D arrays with
a fixed width and height.

void Function1(int p_array[][][]);
void Function2(int p_array[][][5]);
void Function3(int p_array[][4][5]);

Functions 1 and 2 are both invalid; they will not compile. Function 2 will not com-
pile for the same reason a 2D array with no sizes won’t compile: you need both a
height and a width to access a 3D array. Function 3 is the only function that will
compile, and it only accepts arrays with a height of 4 and a width of 5, such as 1 �
4 � 5 or 3 � 4 � 5 or 100 � 4 � 5.

As it turns out, any multi-dimension array with N dimensions requires N-1 dimen-
sion sizes to access any element within the array. Therefore, a 4D array will require
three static dimension sizes, and a 5D array will require four static dimension sizes,
and so on:

void Function4(int p_array[][3][2][3]);
void Function5(int p_array[][4][5][4][3]);
void Function6(int p_array[][3][6][7][4][5]);

This basically means that for any array, no matter how many dimensions it has, you
can only have one dimension that varies in size when you pass it into a function.

Take a look back at the monster array example from the previous section. In your
game, you only plan on having three different sizes of monsters (small, medium,
large), and you don’t plan on having different sizes in the future. Right now you
only have three different monster types as well (goblin, orc, troll), but you think
you might add different monster types in the future (such as a skeleton or even a
dragon). You also have a function that is designed to process the monster array
somehow. You could do it this way:

void Process(int p_monsters[3][3]);

But there is a problem. This function needs to be changed every time you add
another monster. What you want to do is make it more flexible so that it can accept
arrays with any number of monster types:

void Process(int p_monsters[][3]);

This is where the order of your axes becomes important. Because you want to be
able to process any number of monster types but have a fixed number of monster
sizes, you need to declare the array with the variable dimension first:

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 121

121Dynamic Multi-Dimensional Arrays

int monsters[TYPES][SIZES];

I need to say one more thing about passing arrays into functions. If you pass in an
array with a variable dimension size, there is no way for C++ to determine the size
of that dimension. With the previous example, if you passed in a 5 � 3 array to
Process, there is really no way for the function to tell that the array has a height of
5. Instead, it is usually a good idea to pass in another variable to the function
telling it how large the variable dimension is. For example, it would be better to
redefine the Process function to look like this:

void Process(int p_monsters[][3], int p_monstertypes);

This way, when you do anything with the p_monsters array, you know exactly how
large it is.

Example 5-1
Example 5-1 can be found on the CD in the directory \examples\ch05\01 - Static
XD Arrays\ . It combines most of the code snippets from this section into one file to
demonstrate how static multi-dimensional arrays work. There is no need for a code
listing here.

Dynamic Multi-Dimensional
Arrays
Sometimes in game programming, you will need to have a dynamically sized multi-
dimensional array. This usually happens when you don’t know the dimensions of the
array you need at compile time (this happens very frequently with bitmap and game-
map loading), so you need some way to create a dynamic multi-dimensional array.

If you remember from the last section, C++ stores multi-dimensional arrays in a
normal array and uses a formula to access each cell. You use this same method to
create 2D and 3D array classes.

The Array2D Class

You can find the source for the Array2D class on the CD in the file
\structures\Array2D.h.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 122

122 5. Multi-Dimensional Arrays

The Template Parameters
Because you want your class to be able to work with many different types of
datatypes, you’ll be making it templated just like the Array class from Chapter 3.
The Array2D class only needs one template parameter: the datatype of the items
that will be stored in the array, which I’ll call Datatype:

template <class Datatype>
class Array2D

The Data
The first thing you need to determine is what kind of data your Array2D class
requires. You know that you need a pointer to Datatype, just like the Array class.
Because this is going to be a 2D array, though, you need more than just a size vari-
able. This time, you need a width and a height:

Datatype* m_array;
int m_width;
int m_height;

The Constructor
The Array class took a single integer as a parameter for its constructor, which was
the size of the array. For a 2D array, because you need two dimensions, you’ll take
two parameters as well:

1: Array2d(int p_width, int p_height)
2: {
3: m_array = new Datatype[p_width * p_height];
4: m_width = p_width;
5: m_height = p_height;
6: }

On line 3 you create the new array with a size of p_width * p_height, which is the
formula for the total number of cells in a 2D array (5 � 5 = 25 cells, 3 � 4 = 12
cells, and so on).

On lines 4 and 5, you just set the width and height member variables.

The constructor is used just like the Array constructor:

Array2D<int> intarray(10, 10);
Array2D<float> floatarray(5, 7);

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 123

123Dynamic Multi-Dimensional Arrays

The Destructor
Remember how the Array class was able to automatically delete the memory of the
array for us? You’ll be doing the same exact thing with the Array2D class:

1: ~Array2D()
2: {
3: if(m_array != 0)
4: delete[] m_array;
5: m_array = 0;
6: }

On line 3 you check to make sure the pointer is valid, just in case it isn’t, and on
line 4 you delete the array.

The Get Function
Unfortunately, you cannot overload the double bracket operators ([][]), because
C++ will not allow it. Therefore, you need to use your own function to be able to
access items within the 2D array. I call it the Get function because it gets an item
within a cell.

The function will take 2 arguments, the x and the y coordinates of the cell to
retrieve:

1: Datatype& Get(int p_x, int p_y)
2: {
3: return m_array[p_y * m_width + p_x];
4: }

Remember the algorithm used to access a cell in a 2D array from the section on
static 2D arrays? That’s the same algorithm you’ll find within the brackets!

The Get function works two ways. It can retrieve a value from an array, and it can
also store a value back into the array:

intarray.Get(4, 5) = 10;
int value = intarray.Get(4, 5);

The Resize Function
Sometimes you might want to resize the array to a different size and keep every-
thing that already exists within the current array. Although this was a simple task to
complete with a 1D array, it is a bit more complex with a 2D array.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 124

124 5. Multi-Dimensional Arrays

This time, because it is possible to resize two dimensions at the same time (requir-
ing the user to only resize one dimension at a time is easier to code, but it is waste-
ful in terms of processing power), you need to keep track of only the cells that will
exist in both arrays. Figure 5.9 shows which cells need to be copied over when resiz-
ing a 4 � 5 array to a 6 � 4 array. The size of the sub-array that needs to be copied
is 4 � 4.

Figure 5.9

The shaded cells
are the cells that
will be copied
from the old
array to the new
array.

Remember the algorithm used to resize a 1D array? You choose the smaller of the
two dimensions and only copy over that many cells. For a 2D array, you need to do
that for each dimension. For example, for the array in Figure 5.9, the first dimen-
sion changes from 4 to 6, so 4 is chosen because it is the smaller of the two. The
second dimension changes from 5 to 4, so 4 is also chosen.

In this manner, you can code the 2D array resize function:

1: void Resize(int p_width, int p_height)
2: {
3: Datatype* newarray = new Datatype[p_width * p_height];
4: if(newarray == 0)
5: return;
6: int x, y, t1, t2;
7: int minx = (p_width < m_width ? p_width : m_width);
8: int miny = (p_height < m_height ? p_height : m_height);
9: for(y = 0; y < miny; y++)
10: {
11: t1 = y * p_width;
12: t2 = y * m_width;
13: for(x = 0; x < minx; x++)

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 125

125Dynamic Multi-Dimensional Arrays

14: {
15: newarray[t1 + x] = m_array[t2 + x];
16: }
17: }
18: if(m_array != 0)
19: delete[] m_array;
20: m_array = newarray;
21: m_width = p_width;
22: m_height = p_height;
23: }

If you look closely, this is nothing more than a 2D extension of the Array::Resize
algorithm. On line 3, you allocate the new array and check to see if it was allocated
correctly on line 4. If not, the routine just exits on line 5, without changing any-
thing.

On line 6, you declare four variables, x, y, t1, and t2. The first two, x and y, will be
used as coordinates when moving items from the old array to the new array. The
second two, t1 and t2, are temporary variables which will be used for optimizing
the algorithm a little bit.

On lines 7 and 8, you simply find the smallest x dimension and the smallest y
dimension and store those values in minx and miny.

On lines 9–17, there is a doubly-nested for-loop. The outer loop goes through all
the y-coordinates first and the inner loop goes through all the x-coordinates, so you
end up copying the items over in this order (for a 3 � 2 array): (0,0), (1,0), (2,0),
(0,1), (1,1), (2,1). The top row is copied first, and then the bottom row is copied.

Lines 11 and 12 contain a special optimization. Remember how the algorithm for
getting the index of a cell is y * w + x? Well, in the innermost loop, the y doesn’t
change at all; only the x does. So this means that you can move the multiplication
out of the inner loop and store the result in t1 and t2. When reading line 15, just
replace t1 with y * p_width and t2 with y * m_width in your mind. There are other
optimizations that can be made as well, but I’ve opted to leave them out, because
this method is more readable.

After the loop is done, lines 18–22 just delete the old array and set the new
variables.

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 126

126 5. Multi-Dimensional Arrays

Getting the Size of the Array
Because this is a 2D array, there isn’t just one size now; three different sizes can be
associated with the array: the number of cells in the array, the width, and the
height. The width and the height are easy sizes to retrieve:

int Width()
{
return m_width;

}
int Height()
{
return m_height;

}

These functions just return the associated variables.

To retrieve the number of cells, you need to do a little more work:

int Size()
{
return m_width * m_height;

}

This multiplies the width and the height.

Example 5-2
Example 5-2 demonstrates how to use the Array2D class. Here is a code listing of the
example:

void main()
{

// declare the arrays.
Array2D<int> iarray(5, 5);
Array2D<float> farray(4, 4);
int i, x, y;
float f;
// We cannot do this with the Array2D class:
// iarray[4][4] = 10
// do this instead:
iarray.Get(4, 4) = 10;
// set a cell in farray.
farray.Get(3, 2) = 0.5f;

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 127

127Dynamic Multi-Dimensional Arrays

// retrieve the cells that we just set.

i = iarray.Get(4, 4);

f = farray.Get(3, 2);

// get the size of each array.

i = iarray.Size();

i = farray.Size();

// fill the integer array with consecutive numbers

for(y = 0; y < 5; y++)

{

for(x = 0; x < 5; x++)

{

iarray.Get(x, y) = y * 5 + x;

}

}

// resize the array to make it larger:

iarray.Resize(6, 6);

// resize the array to make it smaller:

iarray.Resize(3, 3);

}

The Array3D Class

The most commonly used arrays are one, two, and three dimensions, in order from
the most popular to the least. Arrays with more than three dimensions are some-
what rare and thus do not warrant having their own classes in this book, but I did
create an Array3D class for you to play around with as well.

Code Listing
Because the Array3D class is another extension of the Array2D class, and I have
explained all the major concepts, here is a code listing of the class:

template <class Datatype>
class Array3D
{
public:

// constructor

Array3D(int p_width, int p_height, int p_depth)

{

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 128

128 5. Multi-Dimensional Arrays

m_array = new Datatype[p_width * p_height * p_depth];

m_width = p_width;

m_height = p_height;

m_depth = p_depth;

}
// destructor
~Array3D()
{

if(m_array != 0)
delete[] m_array;

m_array = 0;
}

Datatype& Get(int p_x, int p_y, int p_z)
{

return m_array[(p_z * m_width * m_height) +

(p_y * m_width) +

p_x];

}

void Resize(int p_width, int p_height, int p_depth)
{

// create a new array.
Datatype* newarray = new Datatype[p_width * p_height * p_depth];
if(newarray == 0)

return;
// create the three coordinate variables and the four temp
// variables.
int x, y, z, t1, t2, t3, t4;
// determine the minimum of all dimensions.
int minx = (p_width < m_width ? p_width : m_width);
int miny = (p_height < m_height ? p_height : m_height);
int minz = (p_depth < m_depth ? p_depth : m_depth);
// loop through each cell and copy everything over.
for(z = 0; z < minz; z++)
{

// precalculate the outer term (z) of the

// access algorithm

t1 = z * p_width * p_height;

t2 = z * m_width * m_height;

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 129

129Dynamic Multi-Dimensional Arrays

for(y = 0; y < miny; y++)
{

// precalculate the middle term (y) of the
// access algorithm
t3 = y * p_width;
t4 = y * m_width;
for(x = 0; x < minx; x++)
{

// move the data to the new array.
newarray[t1 + t3 + x] = m_array[t2 + t4 + x];

}
}

}

// delete the old array.

if(m_array != 0)

delete[] m_array;
// set the new array, and the width, height, and depth
m_array = newarray;
m_width = p_width;
m_height = p_height;
m_depth = p_depth;

}

int Size()
{

return m_width * m_height * m_depth;
}

int Width()
{

return m_width;
}

int Height()
{

return m_height;
}

int Depth()
{

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 130

130 5. Multi-Dimensional Arrays

return m_depth;

}

private:
Datatype* m_array;
int m_width;
int m_height;
int m_depth;

};

The entire class is virtually identical to Array2D, except that there is a new dimen-
sion, the depth, and the Constructor, Get, and Resize functions have been modified
to take this into account.

Example 5-3
Example 5-3 on the CD is an almost exact copy of Example 5-2, except that it has
been modified to work with three dimensions rather than two.

void main()
{

// declare the arrays.
Array3D<int> iarray(2, 5, 3);
Array3D<float> farray(3, 4, 5);
int i, x, y, z;
float f;
// set a few cells
iarray.Get(1, 4, 0) = 10;
farray.Get(3, 2, 3) = 0.5f;
// retrieve the cells that we just set.
i = iarray.Get(1, 4, 0);
f = farray.Get(3, 2, 3);
// get the size of each array.
i = iarray.Size();
i = farray.Size();
// fill the integer array with consecutive numbers
for(z = 0; z < 3; z++)
{

for(y = 0; y < 5; y++)
{

for(x = 0; x < 2; x++)

{

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 131

131Application: Using 2D Arrays as Tilemaps

iarray.Get(x, y, z) = (z * 2 * 5) + (y * 2) + (x);
}

}

}

// resize the array to make it larger:

iarray.Resize(3, 6, 4);

// resize the array to make it smaller:

iarray.Resize(2, 2, 2);

}

Application: Using 2D Arrays
as Tilemaps
This is Game Demonstration 5-1, which you can find on the CD in the directory
\demonstrations\ch05\Game01 - Tilemapping\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When you look at an image on your computer screen, you’re seeing a 2D array of
pixels. A graphical computer game, then, is nothing other than a 2D array of pixels
that changes at 30 to 60 times per second. Obviously, it is very difficult to control
every single pixel on the screen at that high of a framerate, so the idea of tilemaps
surfaced. A tilemap is a 2D array of tiles, in which each tile acts like a pixel on its
own. Tilemaps are used quite often in games, and they still have applications in
newer 3D games (they are usually called terrain maps in 3D, a 2D array represents
the height of each tile in a level).

Because tilemaps allow you to abstract the idea of pixels to a higher level, this sig-
nificantly simplifies a drawing engine. For example, without tilemaps, a large game

Team LRN

Data Structures CH05 11/5/02 8:33 AM Page 132

132 5. Multi-Dimensional Arrays

would have a huge bitmap representing the entire game world. Using tilemaps, you
can have your artists draw up a few tiles and then use a map editor to arrange the
tiles so that they form a complete picture. See Figure 5.10 for a pictorial represen-
tation of both of these methods.

Figure 5.10

This is a comparison
of the two image
storing methods.

Now, when you want to design your tilemap, you’ll have a palette of tiles (grass,
stone path, snow, and so on), and you can design your map using these tiles, as
Figure 5.11 shows.

Figure 5.11

Here is a sample
tilemap showing
grass, snow, and a
stone path.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 133

133Application: Using 2D Arrays as Tilemaps

Now, instead of drawing every pixel of the entire map, you only have three differ-
ent tiles.

Storing the Tilemap

In the demo, I will need some way to store the tilemap. Naturally, because this
chapter is about multi-dimensional arrays, I’ll use one of those. In this case, a 2D
array looks like it is optimal for the task, because a tilemap is just a simple 2D array
of tiles, so I’ll use the Array2D class. The simple demo will use a map of 16 tiles by
16 tiles, so I’ll need declarations for those, too:

const int MAPWIDTH = 16;

const int MAPHEIGHT = 16;

Array2D<int> g_tilemap(MAPWIDTH, MAPHEIGHT);

I defined the width and height as global constants so that it will be easy to change
them in the future. So the game demo creates a 16x16 array of integers, which will
be the tilemap. The integers in each cell of the tilemap will then reference a tile
number. When the tiles are loaded into the game, each one is given a number in
the tile bitmap array:

SDL_Surface* g_tiles[TILES];
g_tiles[0] = SDL_LoadBMP(“grass1.bmp”);
g_tiles[1] = SDL_LoadBMP(“grass2.bmp”);
g_tiles[2] = SDL_LoadBMP(“grass3.bmp”);
g_tiles[3] = SDL_LoadBMP(“grass4.bmp”);
g_tiles[4] = SDL_LoadBMP(“roadh.bmp”);
g_tiles[5] = SDL_LoadBMP(“roadv.bmp”);
g_tiles[6] = SDL_LoadBMP(“roadtopleft.bmp”);
g_tiles[7] = SDL_LoadBMP(“roadtopright.bmp”);
g_tiles[8] = SDL_LoadBMP(“roadbottomleft.bmp”);
g_tiles[9] = SDL_LoadBMP(“roadbottomright.bmp”);
g_tiles[10] = SDL_LoadBMP(“snow1.bmp”);
g_tiles[11] = SDL_LoadBMP(“snow2.bmp”);

The g_tiles array is just an array of SDL_Surfaces. The four grass bitmaps are given
the indexes 0–3, the road bitmaps are given indexes 4–9, and the snow bitmaps get
indexes 10 and 11.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 134

134 5. Multi-Dimensional Arrays

Generating the Tilemap

Now I need an algorithm to generate the tilemap. For this demo, I’ve used a simple
method: Randomization of the grass and snow and a pre-set loop to create the
road.

First, take a look at the grass and snow:

for(y = 0; y < MAPHEIGHT; y++)
{

for(x = 0; x < (MAPWIDTH / 2); x++)

{

g_tilemap.Get(x, y) = rand() % 4;

g_tilemap.Get(x + (MAPWIDTH / 2), y) = (rand() % 2) + 10;

}

}

This is a simple doubly-nested for-loop that iterates through all 16 tiles on the verti-
cal axis but only 8 tiles on the horizontal axis. This is because the left 8 columns of
the map are grass and the right 8 columns are snow. For each grass tile, I generate
a number 0–3, which is a grass tile, and for each snow tile, I generate the number
10 or 11, which matches the snow indexes.

Now I generate the road, which will be a rectangle:

for(x = 4; x < 10; x++)
{

g_tilemap.Get(x, 2) = 4;

g_tilemap.Get(x, 6) = 4;

}

for(y = 3; y < 7; y++)

{

g_tilemap.Get(4, y) = 5;
g_tilemap.Get(9, y) = 5;

}

g_tilemap.Get(4, 2) = 6;

g_tilemap.Get(9, 2) = 7;

g_tilemap.Get(4, 6) = 8;

g_tilemap.Get(9, 6) = 9;

The road will be a rectangle from (4,2) to (9,6). The first for-loop places horizon-
tal road tiles from (4,2) to (9,2) and from (4,6) to (9,6). The second for-loop
places vertical road tiles from (4,3) to (4,6) and from (9,3) to (9,6).

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 135

135Application: Using 2D Arrays as Tilemaps

The last four lines of code place the corner tiles at each corner.

Drawing the Tilemap

In this demo, you will be using a tilemap drawing algorithm that will draw the
tilemap with the upper-left tile being drawn at the given coordinates.

1: void DrawTilemap(int p_x, int p_y)
2: {
3: int x, y;
4: int bx = p_x;
5: int by = p_y;
6: for(y = 0; y < MAPHEIGHT; y++)
7: {
8: for(x = 0; x < MAPWIDTH; x++)
9: {
10: SDLBlit(g_tiles[g_tilemap.Get(x, y)], g_window, bx, by);
11: bx += TILESIZE;
12: }
13: bx = p_x;
14: by += TILESIZE;
15: }
16: }

On line 3, you declare x and y, which will keep track of the current tile that is
being drawn. On lines 4 and 5, you declare bx and by, which will keep the current
drawing coordinates of the algorithm.

On line 6, you start the drawing algorithm by looping through all the Ys on the
outside, and the Xs on the inside, so you draw horizontally, left to right. Line 10 is
important because it demonstrates how you use the 2D array. The code
g_tilemap.Get(x, y) retrieves the bitmap number of the current tile, which is
then used to access a bitmap within the g_tiles array, which is passed into the
SDLBlit function (using my SDLHelpers library, see Appendix C, “Introduction to
SDL,” for more information) using the bx and by values. After every tile is drawn,
the bx value is increased by TILESIZE, which in this program is 64. After each row is
completed, the bx value is reset to p_x and by is incremented by TILESIZE, moving
the rendering down one row.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 136

136 5. Multi-Dimensional Arrays

Playing the Game

When you launch the game, you are greeted with the tilemap! Hooray! It should
look like Figure 5.12.

Figure 5.12

Here is a screenshot
of Game Demo 5-1.

You can use the arrow keys on your keyboard to move the map around. Don’t
worry about going off the edges of the map; the algorithm still works fine.

Application: Layered Tilemaps

This is Game Demonstration 5-2, and you can find it on the CD in the directory
\demonstrations\ch05\Game02 - Layered Tilemapping\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 137

137Application: Layered Tilemaps

If you look at the line separating the snow and the grass tiles from the previous
example, you immediately notice that it doesn’t look right. Snow just doesn’t fall in
a solid line like that. The easiest solution would be to draw a “transition” tile, in
which you would draw some snow on the grass tile to make it look more natural.
This method is fine for your small demo, but it has some problems in real life.
What happens when you want to create an overlapping snow tile on other terrain
types as well? You’ll have to create a transition tile for each type of different tile
that you want snow to be on top of, which quickly takes up lots of memory and
might even anger your artists.

So, a more efficient system was devised, called layered tilemaps. This method allows
you to have two or more layers on your tilemap. Figure 5.13 shows an example of a
two-layer tilemap.

Figure 5.13

This is a two-layer
tilemap, with a
semi-transparent
tile on the second
layer.

Notice something about the figure? That’s right, it’s really a 3D array! So you’ll be
using the Array3D class to store your layered tilemap.

In the figure, the bottom (base) layer is composed of pure grass and snow tiles.
The second layer is more interesting, though. First of all, you might notice that
most of the tiles are blank. This is frequently the case with multi-layer tilemaps,
because not every tile needs to have more than one layer. Second, the only bitmap
on the second layer is described as “semi-transparent snow,” and it is layered right
over the grass tiles that are adjacent to the snow tiles. This means that

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 138

138 5. Multi-Dimensional Arrays

the tile should be transparent in some places, letting the renderer show some of
the tiles underneath. Figure 5.14 shows the bitmap you will use for the second
layer. Every pure black pixel on the bitmap is treated as a transparent pixel and
won’t be drawn. This means that the grass texture from the base layer will show
through the snow texture.

This is a semi-

alpha blending

Figure 5.14

transparent snow
bitmap.The black
pixels are ignored by
the drawing function,
so that anything below
it shows through.

NOTE
The bitmap in Figure 5.14 is relatively simple and causes harsh contrasts
between the snow pixels and the grass pixels. If you are using a more complex
API with support for , you can create some cool smooth transition
effects from the snow to the grass.

The implications of this method are numerous. You can easily replace the grass tex-
tures with something else, perhaps gravel, road, or dirt, and make it look like the
snow is covering it without needing to create a whole new set of transition tiles.

Redefining the Tilemap

I need to use a 3D array instead of 2D for this game demo. Almost nothing else in
this demo is changed from the 2D tilemap demo.

const int LAYERS = 2;

Array3D<int> g_tilemap(MAPWIDTH, MAPHEIGHT, LAYERS);

You might note the addition of another variable, LAYERS. This is just to determine
how many layers the tilemap should have. This particular demo uses two layers,
although you might find uses for more than two.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 139

139Application: Layered Tilemaps

Reinitializing the Tilemap

Because the tilemap now has two layers instead of just one, you need to determine
which tiles go on which layer. You’ll be using the same half-grass/half-snow design
of the previous demo for layer 0 (the base layer). There is absolutely no change in
the code except for the addition of the number 0 in the third parameter of the Get
function.

The road is created on the base layer as well, with no changes.

For this demonstration, I’ve decided to add another road below the first one,
which only goes halfway through the map horizontally. The reason it only goes
halfway will become apparent when you see the demo; it looks like this road was
snowed on and not cleared off.

// create another road

for(x = 0; x < (MAPWIDTH / 2); x++)

{

g_tilemap.Get(x, 8, 0) = 4;

}

Now, you will clear the second layer and initialize it all to -1, which is the value that
the tile renderer uses to show that the tile doesn’t exist.

// clear the second layer

for(y = 0; y < MAPHEIGHT; y++)

{

for(x = 0; x < MAPWIDTH; x++)

{

g_tilemap.Get(x, y, 1) = -1;

}

}

After that, you need to create one long vertical line of partially transparent snow
tiles to cover up the grass, like Figure 5.13 shows.

// add the transparent snow tiles over the grass.

for(y = 0; y < MAPHEIGHT; y++)

{

g_tilemap.Get((MAPWIDTH/2) - 1, y, 1) = 12;

}

This runs vertically down the grass line, which is located at x coordinate MAPWIDTH/2,
and sets all the tiles to 12, the transparent snow sprite.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 140

140 5. Multi-Dimensional Arrays

Because the rectangular road path goes over both the snow and the grass, the
transparent snow tiles will overlap with the road, which will make it look weird. So
you need to clear off the snow tiles that lie on top of the first road.

// clear the snow off of the path tiles.

g_tilemap.Get((MAPWIDTH/2) - 1, 2, 1) = -1;

g_tilemap.Get((MAPWIDTH/2) - 1, 6, 1) = -1;

Modifying the Rendering Algorithm

To draw multiple layers, you need to change the rendering algorithm into a triply-
nested for-loop instead of just a doubly-nested one. This doesn’t pose much of a
problem; you simply add an outer loop that goes through each layer:

1: void DrawTilemap(int p_x, int p_y)
2: {
3: int x, y, z;
4: int bx = p_x;
5: int by = p_y;
6: int index;
7: for(z = 0; z < LAYERS; z++)
8: {
9: bx = p_x;
10: by = p_y;
11: for(y = 0; y < MAPHEIGHT; y++)
12: {
13: for(x = 0; x < MAPWIDTH; x++)
14: {
15: index = g_tilemap.Get(x, y, z);
16: if(index != -1)
17: {
18: SDLBlit(g_tiles[index], g_window, bx, by);
19: }
20: bx += TILESIZE;
21: }
22: bx = p_x;
23: by += TILESIZE;
24: }
25: }
26: }

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 141

141Application: Layered Tilemaps

This time, I’ve added a third looping variable, z. This will loop through each layer
of the tilemap.

On line 6, I’ve added an index variable, which will be used to cache the bitmap
index of the current tile. You will see the reason for it in a little bit.

The outermost loop, starting on line 7, loops through each layer, starting with the
base layer. Every time a new layer is started, the loop resets bx and by to the original
values because each layer is drawn directly on top of the previous layer.

Starting at line 15, I determine if the tile should be drawn and then draw it. In the
first tilemap demonstration, I assumed that every tile will be a valid tile. However, I
cannot do that this time, because many of the tiles on some of the layers might be
�1, which is invalid. So on line 15, I get the index of the current tile, and if it isn’t
invalid, I continue to draw it. If it is invalid, I don’t draw anything.

The rest of the algorithm is the same as the original.

Playing the Game
The game demo plays the same way as the first one. The arrow keys move the map
around on the screen. Figure 5.15 shows a screenshot from the game demo.

Figure 5.15

This is a screenshot
from the Layered
Tilemap demo.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 142

142 5. Multi-Dimensional Arrays

Notice how the second road disappears into the snow? That’s the power of layered
tilemaps.

Comparing Performance

There is one important note that I feel I must make about the layered tilemap
demo. It will be significantly slower than the single-layer tilemap version. The rea-
son for this is because the rendering routine now adds an if statement for every
tile to check if it is valid. Although this might not seem to be a lot of overhead, it
adds up. However, there is another problem with many if statements: They mess
with the processor’s branch prediction unit.

Modern processors don’t actually compute one instruction at a time. They are actu-
ally working on many instructions all at once! The processors use a feature called
pipelining, in which each instruction is entered into a large pipeline and processed
at different stages, all in the same clock cycle. The Pentium 3 and the Athlon each
have 10 pipeline stages, and the Pentium 4 has 20 stages! That means that these
processors are working on 10 to 20 instructions at the same time! The big problem
is that the processor always tries to keep the pipeline full at all times, and so when
it puts a conditional instruction (if, while, for, else if) into the pipeline, it has no
way to know if the statement will return true or false until 10 to 20 instructions
later. So how does it determine which instructions to put in the pipeline after a
conditional instruction? It guesses. The processor uses a special unit called the
branch predictor to determine which instruction is placed into the pipeline next. If it
guesses wrong, the pipeline needs to be flushed, and everything the processor has
done since it made the wrong guess needs to be ignored.

For example, Figure 5.16 shows a simple four-stage pipeline, with five instructions
being processed. A four-stage pipeline means that every instruction can be sepa-
rated into four different parts (such as loading the instruction, decoding the
instruction, and so on). You can think of this as an assembly line in a car factory;
each one of the stages in the pipeline performs one dedicated task on a car (or
piece of data in a computer). After the current stage is complete, it passes the
instruction onto the next stage and gets a new instruction from the previous stage.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 143

143Application: Layered Tilemaps

Figure 5.16 This is
a four-stage pipeline,
with five instructions
being computed.

In the first part, all four stages are empty, and the processor isn’t doing anything. After
an instruction is executed, it takes four clock cycles to complete because each stage in
the pipeline takes one cycle to complete. When one cycle has passed, the first instruc-
tion moves on to stage 2, and instruction 2 is added into the pipeline. This process
continues until three cycles later, when the first instruction is finally finished.

This pipeline has a latency

NOTE
of four cycles, which means that it takes four cycles for

any single instruction to complete.This pipeline has a throughput of one cycle,
though, because after every cycle, another instruction is completed.When the
amount of work per cycle is decreased, the processor runs more quickly.This is
why the Pentium 3 and Athlon processors are faster than the Pentium 4 proces-
sor at the same speed.The Pentium 4 has a larger pipeline and does less work per
clock cycle, so it can run at a faster clock speed. An Athlon can calculate one
instruction in 10 cycles, whereas a Pentium 4 needs 20 cycles for that one instruc-
tion. Although theoretically the Pentium 4 should be faster because it has a larger
throughput, that benefit rarely appears in real life due to frequent pipeline flushes.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 144

144 5. Multi-Dimensional Arrays

When you have lots of if statements in your code, the chances that the processor
will make a correct guess on the result of the conditional are lowered, and you end
up with code that is significantly slower as a result. These problems are very large
for processors that have huge pipelines (such as the P4), but don’t cause quite as
many problems on smaller pipelines (P3 and Athlon).

Comparing Size

Another problem with using a 3D layered tilemap is the waste of space. In the first
tilemap demo, the tilemap used 256 tiles (16*16). In this demo, the tilemap can
store 512 tiles, but I only use 270 of them, which means that I waste 242 tiles! 47
percent of all the tile space is wasted on blank tiles! This is just one thing you need
to think about when dealing with tilemaps.

Analysis of Multi-
Dimensional Arrays in Games
Multi-dimensional arrays are not as “general-purpose” as 1D arrays and thus are
more suited to specific problems. You’ll find, more often than not, that if a prob-
lem requires a 2D or 3D array, there probably isn’t any other way to solve the prob-
lem. This puts you into a predicament because you’ve seen how multi-dimensional
arrays can easily become huge very quickly. Although memory concerns are no
longer a primary concern with game programming, don’t forget that multi-dimen-
sional arrays do not increase in size linearly, especially if you increase more than
one dimension at a time.

Perhaps the largest thing you should be concerned with when dealing with multi-
dimensional arrays is how to iterate through them. If you are not familiar with how
computer cache systems work, take a look back to Chapter 3 for a moment and
read the section on caches.

When you iterate through a multi-dimensional array, you need to keep track of
which dimension you iterate through on the innermost loop. For example, when
you iterate through a 2D array with the horizontal x coordinate as the inner loop,
you visit the cells in the order shown in Figure 5.17 in the top 1D array. The order
goes in a straight line from left to right.

However, when you iterate with the vertical y coordinate as the inner loop, you visit
the cells in the order shown in the second 1D array. The order jumps around on
every access to the array. For large arrays, this will wreak havoc with the cache.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 145

145Conclusion

Figure 5.17

This figure shows the
order of visitation
using two different
loops on a 2D array.

Conclusion

In this chapter, you learned everything a normal human being should know about
multi-dimensional arrays, such as how to declare them, initialize them, access their
cells, and pass them into functions. You also learned how to encapsulate 2D and 3D
arrays into a class by using a 1D array and how to resize them.

Although the two game demos in this chapter only taught you how to use multi-
dimensional arrays in relation to tilemaps (a subject that will be expanded in
Chapters 6, “Linked Lists,” 17, “Graphs,” and 23, “Pathfinding”), there are still
plenty of uses for multi-dimensional arrays. If you work with bitmapped graphics,
you will use 2D arrays quite often.

Of course, multi-dimensional arrays are not nearly as universally usable as 1D
arrays; multi-dimensional arrays are designed to store data that is ordered in a com-
plex manner, whereas 1D arrays can store anything.

Team LRN

Data Structures CH05 11/5/02 8:34 AM Page 146

This page intentionally left blank

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 147

CHAPTER 6

Linked Lists

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 148

148 6. Linked Lists

I’m sure you’ve wished many times when you’ve been programming that you
could use a more flexible data structure than an array. Perhaps you’ve wanted to

conserve memory or be able to insert and remove data quickly. If so, then the
linked list is the answer to your problems. In this chapter, you will learn

■ What a linked list is
■ How to create two different versions of linked lists
■ How to insert and remove data from linked lists
■ How to write linked lists to disk
■ How to use linked lists in games
■ How the two linked list versions compare to each other, and also to arrays

What Is a Linked List?
In Chapter 3, “Arrays,” I introduced you to arrays. I went over the downsides of
using arrays: You cannot insert or remove data into them quickly (at least in the
middle), and they are fixed at a certain size. Now, imagine that you have a con-
tainer that acts similarly to an array, but fixes those problems. The data structure
that does this is called a linked list, sometimes known as just a list.

Like an array, a linked list is composed of many cells that contain data, although
they are called nodes when referring to linked lists. In an array, cells are packed
right next to each other in memory, and cells contain nothing but the data in the
array. A node is different, however. The nodes in a linked list are not packed
together like cells.

Instead, each node in a linked list points to the next node in the list. Figure 6.1
shows a graphical representation of a linked list with four nodes. Each node in a
linked list is actually a class on its own and contains a pointer to the next node in
the list.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 149

149Singly Linked Lists

Figure 6.1

Here is a pictorial
representation of a four-
node linked list. Each
node points to the next
node in the list.

Because of the way that linked lists are structured, you can easily add or remove
nodes at the beginning or the end of a list, or even in the middle of the list.

Many different linked list variations exist, but I only cover two of them here.

Singly Linked Lists
Singly linked lists are the simplest types of linked lists. Each node in the list points
only to the next node. Figure 6.1 is an example of a singly linked list.

Graphical Demonstration: Singly
Linked Lists
You can find the singly linked list graphical demo on the CD in the directory
\demonstrations\ch06\Demo01 - Linked List\ . This demo shows you how to iterate
through singly linked lists and how to insert and remove nodes from them.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 150

150 6. Linked Lists

When the program starts, you are presented with four buttons and a five-node
singly linked list. Figure 6.2 shows a screenshot of this scenario.

Figure 6.2

Here is a screenshot
from the Singly
Linked List graphical
demonstration.

The very first node on the left will be colored red to indicate that it is the current
node. In the Chapter 3 array demo, you could click on any cell in the array to
select it. You cannot do that here, for reasons that I explain later on. Instead, you
must select the nodes using the two buttons on the left side: Reset and Forth.

The Reset button makes the very first node in the list the current node. The Forth
button selects the next node in the list. These two controls are called the iteration
controls.

On the right-hand side, you have two more buttons, Insert and Remove. The Insert
button starts an animation that demonstrates how to insert a node into the list, and
the Remove button demonstrates how to remove a node from the list. When I
describe these algorithms later on, I think it will help you a lot to see the demo in
action.

Structure

This section deals with the code of the singly linked list class, which can be found
on the CD in the \structures\ directory in the file SLinkedList.h.

Even though a singly linked list is in theory a specific type of structure, it turns out
that there are many ways of implementing this type of list. I start off by looking at
the simplest way to implement a singly linked list: with a plain node class.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 151

151Singly Linked Lists

The SListNode Class
I call this class the SListNode. It is simple and contains only two data members:

template<class Datatype>
class SListNode
{
public:

Datatype m_data;
SListNode<Datatype>* m_next;

};

The first member is m_data, which holds the data that is going to be stored in the
node. The second member is m_next, which is a pointer to another SListNode class.
Using this, it is possible to create a linked list, like Example 6-1 shows (this can be
found on the CD in the directory \examples\ch06\01 - Building a simple List\):

1: SListNode<int>* list = new SListNode<int>;
2: list->m_data = 10;
3: list->m_next = new SListNode<int>;
4: list->m_next->m_data = 20;
5: list->m_next->m_next = new SListNode<int>;
6: list->m_next->m_next->m_data = 30;

On line 1, I declare a pointer to the SListNode class, list, and create a new node
for it. Line 2 sets the data inside the node to the value 10.

Now, on line 3, I create a new node and tell list to point to it. Then, on line 4, I
set the data inside the second node to 20. Finally, I repeat this process again and
create a third node. On line 5, I tell the second node to point to the third node
and set the third node to 30. Figure 6.3 shows this process.

Figure 6.3

This is how you
create a new linked
list without a
container class, as in
Example 6-1.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 152

152 6. Linked Lists

As you can imagine, this method tends to become a little cumbersome. Adding
items to the list becomes very difficult as the size increases. Accessing items becomes
just as difficult. Because of this, you should find a better way to access the list.

The InsertAfter Function
First of all, you need a better method of inserting nodes. I’ll build this into the
SListNode class and call it InsertAfter because I am inserting a node after the
current node.

The purpose of this function is to insert a new node after an existing node.
However, if there is already a node after the current node, you need to move that
node over. Figure 6.4 shows what I want to do. If InsertAfter is called on node 10,
then I want to insert the new node immediately after 10, but before 30.

Figure 6.4

This shows the
process of inserting a
new node into a
linked list.

This process has two steps:

1. Create a new node that points to 30.

2. Make 10 point to the new node.

This process can also be viewed graphically using the Singly Linked List graphical

demonstration, which I introduced earlier.

The code looks like this:

void InsertAfter(Datatype p_data)
{

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 153

153Singly Linked Lists

// create the new node.
SListNode<Datatype>* newnode = new SListNode<Datatype>;
newnode->m_data = p_data;
// make the new node point to the next node.
newnode->m_next = m_next;
// make the previous node point to the new node
m_next = newnode;

}

The first step is to create a new node and set its data. You then take that new node
and make it point to the next node in the list. Finally, you make the current node
point to the next node.

This is a very simple process, as you can see, which makes linked lists a powerful
and flexible tool.

Iterators
Now that you’ve automated the insertion process, you need to have some way of
moving through a linked list and accessing all of the nodes. Obviously the method
used in Example 6-1 is too cumbersome to use with ease, so you need a new con-
cept, called iterators.

An iterator is simply a structure that allows you to move through a linked list from
start to finish, for singly linked lists, at least. The definition of an iterator becomes
more general when you go on to different kinds of lists.

An iterator basically points to a specific node in a list. Figure 6.5 shows four differ-
ent iterators, named itr1 through itr4, pointing to various nodes in a three-node
linked list. Note that any number of iterators can point to the same node in a list.

Figure 6.5

The structures on the
bottom are iterators,
pointing to nodes in
a list. Many different
iterators can point to
the same node.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 154

154 6. Linked Lists

For this simple iteration example, I’ll just use a SListNode pointer as the iterator.
This is Example 6-2:

// create a new linked list.

SListNode<int>* list = new SListNode<int>;

list->m_data = 10;

// insert 30 and then 20 before that, so the list is 10, 20, 30.

list->InsertAfter(30);

list->InsertAfter(20);

cout << “the list contains: “;

// create a new iterator and make it point to the

// beginning of the list.

SListNode<int>* itr = list;

cout << itr->m_data << “, “;

// move the iterator to the next node in the list.

itr = itr->m_next;

cout << itr->m_data << “, “;

// move the iterator forward again.

itr = itr->m_next;

cout << itr->m_data << “, “;

// reset the iterator to the beginning again.

itr = list;

In this example, the iterator can only
move forward. This is one of the limita-
tions of a singly linked list. To get to a
previous node in the list, you need to
reset the iterator all the way back to the
beginning and move it forward again.

NOTE
Because of the forward-only motion
of singly linked list iterators, these
types of lists are rarely used in the
real world.

Encapsulating a Linked List
Up until now, you’ve only been dealing with the linked list node structure and not
any specific linked list class. I have always preferred to wrap the node structure into
another class, however, because it makes working with the linked list much easier.

So I’ll begin by creating the SLinkedList class, which will contain pointers to the
front and back nodes of the list. I call these the head and the tail.

template<class Datatype>
class SLinkedList
{
public:

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 155

155Singly Linked Lists

SListNode<Datatype>* m_head;
SListNode<Datatype>* m_tail;
int m_count;

};

So what you end up with is a class that contains three things, as Figure 6.6 depicts:
a pointer to the first node in the list, a pointer to the last node in the list, and the
total number of nodes in the list. This class will make working with linked lists
much easier.

Figure 6.6

When a linked list is
encapsulated into a
container class, it is
easier to work with.
The class manages
the pointers for you.

The Constructor
The first function I’ll give to the SLinkedList class is a constructor. This function
sets the pointers and the count to 0 so you know that the list has nothing in it and
doesn’t point to any nodes.

SLinkedList()
{

m_head = 0;
m_tail = 0;
m_count = 0;

}

Whenever the head or the tail is 0, the list is empty.

The Destructor
After you are done using the list, you want it to be able to delete all the nodes that
it has created automatically so you don’t have to manually clean them up yourself.
You can do this by using the same kind of iterators I used earlier to iterate through
the list and delete each node.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 156

156 6. Linked Lists

~SLinkedList()
{

// temporary node pointers.
SListNode<Datatype>* itr = m_head;
SListNode<Datatype>* next;
while(itr != 0)
{

// save the pointer to the next node.

next = itr->m_next;

// delete the current node.

delete itr;

// make the next node the current node.

itr = next;

}
}

This method uses two iterators: itr and next. When this code starts out, it initializes
itr to point to the first node in the list and then enters a loop. The next pointer
points to the node directly after itr. I do this for a reason: When itr is deleted,
you have no way of telling where the next node is going to be.

So you delete the node that the iterator points to and then move it forward. You
do this until the iterator is 0. Because the last node in the list points to nothing, its
m_next pointer will contain 0. Therefore, when itr is 0, every node in the list has
been deleted.

The Append Function
After that, you want to give the SLinkedList class a function to add nodes. This is
the Append function. This function adds a new node to the end of the list.

void Append(Datatype p_data)
{

if(m_head == 0)
{

// create a new head node.

m_head = m_tail = new SListNode<Datatype>;

m_head->m_data = p_data;

}

else

{

// insert a new node after the tail and reset the tail.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 157

157Singly Linked Lists

m_tail->InsertAfter(p_data);
m_tail = m_tail->m_next;

}
m_count++;

}

To append an item to the end of the list, you could simply call InsertAfter on the
last node of the list, right? Well, it’s not quite that simple. What happens if there is
no last node? This is why the if/else block exists.

If m_head is 0, the list is empty and you need to create a new head node. In this case,
you simply create a new node and make the m_head and the m_tail pointers point to
that node.

If m_head isn’t 0, you can call InsertAfter on the tail node. The thing you have to
remember in this case is that because you’ve added another node to the back, you
need to update the m_tail pointer so that it points to the new node.

Figure 6.7 shows the process of appending a new node.

Figure 6.7

This is the process of
adding a new node
at the end of a singly
linked list.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 158

158 6. Linked Lists

The Prepend Function
Now that you can add items to the end of a linked list, wouldn’t it be cool to be
able to add items to the beginning? This method is called prepending.

void Prepend(Datatype p_data)
{

// create the new node.
SListNode<Datatype>* newnode = new SListNode<Datatype>;
newnode->m_data = p_data;
newnode->m_next = m_head;
// set the head node and the tail node if needed.
m_head = newnode;
if(m_tail == 0)

m_tail = m_head;
m_count++;

}

This method is actually a little bit simpler. First, you create a new node and initial-
ize it. Then, you tell it to point to the head node in the list. Now the m_head pointer
is still pointing to the old head node, so you need to update it to point to the new
node. Note that this algorithm works even if the list is empty because m_head was 0
and the new nodes’ m_next pointer will also end up being 0.

You still need to check if the list was empty, though. If the list was empty, then
m_tail will also be 0, so you need to update it to point to the head. Figure 6.8 shows
the process.

The RemoveHead Function
As you can see with the Append function, adding nodes to the beginning of a
linked list is easy to do. Removing nodes from the beginning of a list is easy as well.

void RemoveHead()
{

SListNode<Datatype>* node = 0;

if(m_head != 0)

{

// make node point to the next node.

node = m_head->m_next;

// then delete the head and make the pointer

// point to node.

Team LRN

Data Structures CH06 11/5/02 8:34 AM Page 159

159Singly Linked Lists

delete m_head;

m_head = node;

// if the head is null, then you’ve just deleted the only node

// in the list. set the tail to 0.

if(m_head == 0)

m_tail = 0;
m_count—;

}
}

Figure 6.8

This is the process of
adding a new node
to the front of a
singly linked list.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 160

160 6. Linked Lists

All you need to do is delete the first node and move the head pointer up to point
to the next node in the list. There are two special cases, though. First of all, the list
might be empty. In that case, do nothing. In the second case, there might be only
one node left in the list. In that case, delete the node and set the head and tail
pointers to 0.

The RemoveTail Function
Unfortunately, removing the tail of a singly linked list is much more difficult than
removing the head. When you remove the head of the list, all you need to do is
update the head pointer to point to the next node. This task is easy because the
head node already has a pointer to the next node.

When you remove the tail node, you want to make the tail pointer point to the pre-
vious node in the list. This is a problem because a singly linked list node doesn’t
point to the previous node. Instead, you need to go through the entire list and find
the previous node. This makes the RemoveTail algorithm much slower than the
RemoveHead algorithm because it needs to do searching.

void RemoveTail()
{

SListNode<Datatype>* node = m_head;
// if the list isn’t empty, then remove a node.
if(m_head != 0)
{

// if the head is equal to the tail, then
// the list has 1 node, and you are removing it.
if(m_head == m_tail)
{

// delete the node and set both pointers
// to 0.
delete m_head;
m_head = m_tail = 0;

}
else
{

// skip ahead until you find the node
// right before the tail node
while(node->m_next != m_tail)

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 161

161Singly Linked Lists

node = node->m_next;
// make the tail point to the node before the
// current tail and delete the old tail.
m_tail = node;
delete node->m_next;
node->m_next = 0;

}

m_count—;

}

}

Figure 6.9 shows the process of removing the tail node.

Figure 6.9

This is the process of
removing the tail
node of a linked list.
Note how it is a
more involved
process than
removing the head
node.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 162

162 6. Linked Lists

The SListIterator Class
Now, to interface with your new SLinkedList class, you should create an iterator
class, which automates the iterator functions I covered earlier. This class contains
two things: A pointer to the current node and a pointer to the list that the node is
in. You’ll see why in a little bit.

template<class Datatype>
class SListIterator
{
public:

SListNode<Datatype>* m_node;
SLinkedList<Datatype>* m_list;

};

The Constructor
The constructor for the SListIterator takes two parameters: The list that the itera-
tor is for and the current node of the iterator.

SListIterator(SLinkedList<Datatype>* p_list = 0,

SListNode<Datatype>* p_node = 0)

{

m_list = p_list;

m_node = p_node;

}

If the parameters are missing, then they default to 0, making the iterator somewhat
worthless.

The Start Function
The Start function resets the iterator to point to the very first node in the list.

void Start()

{

if(m_list != 0)

m_node = m_list->m_head;

}

This is very straightforward: If the list is valid (not 0), then make the iterator point
to the head.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 163

163Singly Linked Lists

The Forth Function
The Forth function moves the iterator to the next node in the list.

void Forth()

{

if(m_node != 0)

m_node = m_node->m_next;

}

The only time this function does nothing is when the current node is 0. When the
current node is 0, then this iterator isn’t pointing at anything and is invalid.

The Item Function
This function returns a reference to the item stored in the node that the iterator is
pointing to.

Datatype& Item()

{

return m_node->m_data;

}

The Valid Function
This function checks to see if the iterator is pointing to a non-0 node. If so, then it
returns true; otherwise, it returns false.

bool Valid()

{

return (m_node != 0);

}

The GetIterator Function
Now that you’ve created a basic iterator class, you need a way to be able to generate
iterators.

SListIterator<Datatype> GetIterator()

{

return SListIterator<Datatype>(this, m_head);

}

This function creates a new iterator pointing to the head of the current list.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 164

164 6. Linked Lists

Using Iterators
Now that you have the basic functions set, try rewriting Example 6-2 so that you use
the SLinkedList and SListIterator classes. This is Example 6-3:

// create a new linked list.

SLinkedList<int> list;

// insert 10, 20 and 30.

list.Append(10);

list.Append(20);

list.Append(30);

cout << “the list contains: “;

// create a new iterator and make it point to the

// beginning of the list.

SListIterator<int> itr = list.GetIterator();

// loop through the list while the iterator is valid.

for(itr.Start(); itr.Valid(); itr.Forth())

{

cout << itr.Item() << “, “;

}

// reset the iterator to the beginning again.

itr.Start();

You should immediately notice that this version of the program is much easier to
read and understand than Example 6-2.

The iterator functions make it easy to use a linked list in a for-loop. In the first part
of the for-loop, the iterator is reset to the beginning of the list. Then it loops while
the iterator is valid and moves the iterator forward by one node each time.

The Insert Function
Now that you have iterators working, you can move on to the more advanced
linked list routines. The first is the Insert function, which inserts a node after an
iterator. This function allows you to insert nodes into the list at any position you
like.

// inserts an item after the current iterator or appends

// data if iterator is invalid.

void Insert(SListIterator<Datatype>& p_iterator, Datatype p_data)

{

// if the iterator doesn’t belong to this list, do nothing.
if(p_iterator.m_list != this)

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 165

165Singly Linked Lists

return;

if(p_iterator.m_node != 0)

{

// if the iterator is valid, then insert the node

p_iterator.m_node->InsertAfter(p_data);

// if the iterator is the tail node, then

// update the tail pointer to point to the

// new node.

if(p_iterator.m_node == m_tail)

{

m_tail = p_iterator.m_node->m_next;

}

m_count++;

}

else

{

// if the iterator is invalid, just append the data

Append(p_data);

}

}

The first thing you need to do is to make sure that the iterator that was passed in is
an iterator for this list. You don’t want an iterator belonging to a different list to be
passed into this list, right? So if the iterator doesn’t match, the function just returns
and doesn’t do anything. A more complex system would probably return an error
code or throw an exception, but that is outside the scope of this book.

When you are sure that the iterator belongs to this list, there are two major condi-
tions for this function: The iterator can be valid, or it can be invalid.

If the iterator is valid, then all you need to do is insert the node after the iterator.
Because the function only inserts nodes after the iterator, the function can never
insert a node in front of the head node. However, because the function can put a
node at the end of the list, you need to check if it did so and update the tail
pointer accordingly.

If the iterator isn’t valid, I prefer to append the node at the end of the list, so you
just call the Append function.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 166

166 6. Linked Lists

The Remove Function
The Remove function is the most complicated of all of the singly linked list func-
tions. The reason for this is because of the nature of a singly linked list node: It
only points to the next node. If you want to remove any node within a list, you
need to find the previous node first and link that up to the next node in the list,
like the Singly Linked List demo shows you.

void Remove(SListIterator<Datatype>& p_iterator)
{

SListNode<Datatype>* node = m_head;

// if the iterator doesn’t belong to this list, do nothing.

if(p_iterator.m_list != this)

return;

// if node is invalid, do nothing.

if(p_iterator.m_node == 0)

return;

if(p_iterator.m_node == m_head)

{

// move the iterator forward and delete the head.

p_iterator.Forth();

RemoveHead();

}

else

{

// scan forward through the list until you find
// the node prior to the node you want to remove
while(node->m_next != p_iterator.m_node)

node = node->m_next;
// move the iterator forward.
p_iterator.Forth();
// if the node you are deleting is the tail,
// update the tail node.
if(node->m_next == m_tail)
{

m_tail = node;

}

// delete the node.

delete node->m_next;

// re-link the list.

node->m_next = p_iterator.m_node;

}

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 167

167Singly Linked Lists

m_count—;

}

The first thing you check is to see if the iterator is valid. If it isn’t, then you just
return and don’t do anything.

One thing I want to call attention to is the behavior of the iterator. When you
inserted a node using an iterator, the iterator stayed pointing to the same node.
However, you can’t do that when you are removing nodes. You are left with two
options. You can either invalidate the iterator or move the iterator to the next item
in the list. I prefer the second method, so whenever you remove a node, the itera-
tor will be moved forward to the next node.

Figure 6.10 illustrates this process.

Figure 6.10

This shows how to
remove a node that an
iterator is pointing to. It
is similar to removing
the tail of a list.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 168

168 6. Linked Lists

The algorithm then loops through the list until you find the node prior to the
node you want to remove. Remember, you did this with the RemoveTail function as
well, because the node doesn’t point back to the prior node.

So before you actually delete the node, you move the iterator forward and make it
point to the next node in the list. This
method is nice because it allows you to
iterate through a list and remove
selected items at a whim, and you don’t
have to reset the iterator every time you
delete an item.

Finally, you delete the node and tell the
node prior to it to point to the node
after the node you just removed.

CAUTION
The last step in the Remove algo-
rithm is very important. If you don’t
relink the list, the last half of the list
will essentially be lost. Not only can
you not access the data anymore,
but it is a memory leak as well
because you cannot delete it.

Example 6-4

Now that you’ve completed the SlinkedList class, I can demonstrate the advanced
features of the iterators. This is Example 6-4. (It can be found on the CD in the
directory \examples\ch06\04 - Using SLinkedList\ .)

// create a new linked list.

SLinkedList<int> list;

SListIterator<int> itr;

// insert 10, 30 and 40.

list.Append(10);

list.Append(30);

list.Append(40);

PrintList(list);

// use the iterator to insert 20 between 10 and 30.

itr = list.GetIterator();

list.Insert(itr, 20);

PrintList(list);

// use the iterator to remove 30.

itr.Forth();

itr.Forth();

list.Remove(itr);

PrintList(list);

PrintList is a simple function that just iterates through the list and prints out what
it contains. It really isn’t much more than the for-loop that was used in Example
6-3, so I do not list it here.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 169

169Doubly Linked Lists

In the first code block after the list and the iterator declarations, you append 10,
30, and 40 to the list in that order and print it out. That was simple—you’ve seen
the Append function before.

In the second code block, you get an iterator and reset it to the beginning of list.
At this point, itr should be pointing to 10. Now you call the Insert function on the
list and insert 20 right after 10, making the list 10, 20, 30, 40.

Finally, in the third code block, you move the iterator forward by two places so that
it points to 30 and then remove it. This gives you 10, 20, 40.

Final Thoughts on Singly Linked
Lists
Now that you’ve seen the structure and the usage of singly linked lists, I can make a
few observations about them.

First of all, the most obvious strength is that you can insert and delete items from a
singly linked list quite quickly. With an array, you are forced to move lots of data
around to insert an item, but you don’t have to do any of that with a linked list.

Another strength is the ability to expand to indefinite sizes. You can store as many
items within a linked list as you want to, as long as you have enough memory to
do so.

The major downside is that you cannot access items within the list like you can with
an array. You can only use an iterator to go through the list, and you can only go
from start to finish. This limitation makes linked lists somewhat less useful than
arrays in some instances.

Doubly Linked Lists

Now you can move on to the most common linked lists: doubly linked lists. Whereas
a singly linked list only had one pointer per node, a doubly linked list has two
pointers per node. (Bet you didn’t see that one coming!) The second pointer in a
doubly linked list node is a pointer to the previous node in the list. Figure 6.11
shows a four-node doubly linked list.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 170

170 6. Linked Lists

Figure 6.11

A four-node doubly linked list
is a more complex version of
a singly linked list. Each node
now has two pointers, instead
of just one.

Most of the algorithms involving a doubly linked list are very similar to the singly
linked versions, so we won’t spend much time discussing them. I’ll mainly go over
the important additions or differences between the algorithms, because the con-
cepts are all basically the same for both types of lists.

Graphical Demonstration: Doubly
Linked Lists
You can find the graphical demonstration for doubly linked lists on the CD in the
directory \demonstrations\ch06\Demo02 - Doubly Linked List\ . This demo is very
similar to the singly linked list demo. It has a few new buttons, though, as Figure
6.12 shows.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 171

171Doubly Linked Lists

Figure 6.12

This is a screenshot
from the Doubly
Linked List Graphical
Demonstration.

On the left are two new buttons: Back and End. The Back button moves the itera-
tor to the previous node in the list, and the End button moves the iterator to the
end of the list.

On the right is one new button: Insert Before. This button inserts a new node
before the current node.

Creating a Doubly Linked List

The classes used for doubly linked lists are the same as those used for the singly
linked lists, with minor changes. You change the S to a D to denote that the list is
doubly linked. The classes are all located in \structures\DLinkedList.h.

Because the two different lists are so similar in nature, I describe doubly linked lists
differently, without code, instead of just pasting all the code into the book. If you
really must see the code, then please follow along by reading the code from the
CD, but it shouldn’t be necessary.

The Node Structure
As I stated earlier, each linked list node has two pointers instead of just one. The
additional pointer points to the previous node on the list. Figure 6.13 shows a dou-
bly linked list node.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 172

172 6. Linked Lists

Figure 6.13

This is a doubly
linked list node.

Because a doubly linked list node has two pointers, it is a little more complicated to
add and remove nodes from the list because there are more pointers to rearrange.

Doubly Linked List Algorithms

I’ll now briefly cover the most common algorithms used on doubly linked lists:
insertion and removal of nodes. All of the other algorithms (remove head or tail,
append, prepend) are based on the same concepts. As with the SLinkedList class,
all the code is on the CD if you need to see these algorithms in action.

Inserting a Node
The method for inserting a node into a doubly linked list is slightly more complex
than the singly linked list method. If you are inserting node N between nodes L
(left) and R (right), the basic algorithm follows these steps:

1. Create a new node, N.

2. Make N’s previous pointer point to L.

3. Make N’s next pointer point to R.

4. If L exists, make L’s next pointer point to N.

5. If R exists, make R’s previous pointer point to N.

Figure 6.14 shows this process.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 173

173Doubly Linked Lists

Figure 6.14

This is how you insert
a node into a doubly
linked list.

Because you might be inserting a node at the front or the end of the list, the if
statements in Steps 4 and 5 are important. If you’re inserting a node at the front of
the list, then node L doesn’t exist. The same applies with the end, in which case R
doesn’t exist.

If you compared this algorithm to the singly linked version, Steps 2 and 5 wouldn’t
exist.

Removing a Node
This algorithm differs the most from the singly linked list version. In a singly linked
list, you had to search the list for the node prior to the node you wanted to remove
because the node didn’t know which node was behind it. Because each node in a
doubly linked list points back to the prior node, you can use that information and
simply remove the node without searching through the list.

If you are removing node N, which is in between nodes L and R, the algorithm is as
follows:

1. If L exists, make L’s next pointer point to R.

2. If R exists, make R’s previous pointer point to L.

3. Delete N.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 174

174 6. Linked Lists

This process is demonstrated in Figure 6.15.

Figure 6.15

This is how you
remove a mode from
a doubly linked list.

As you can see, removing a node from a doubly linked list is much easier.

Reading and Writing Lists to
Disk
In Chapter 3, when I showed you how to read and write arrays onto disk, it was nice
and easy because C file functions work directly with arrays. With linked lists, you
have no such luck; you have to make your own. Luckily, it is not that difficult to
read and write linked lists. I’ll show you how to read and write SLinkedLists to disk
but not DLinkedLists. Don’t worry, though; the algorithms are virtually identical for
each list type.

Writing a Linked List

The process for writing the contents of a linked list to disk is simple: You create an
iterator, iterate through the list, and store the contents of every node into the file.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 175

175Reading and Writing Lists to Disk

Because lists have a variable size, it is often a good idea to store the number of
nodes that are being written to the file first. This way, when it comes time to read
the list back in, the algorithm first reads the number of nodes stored in the file and
then reads all the nodes in.

Here is the SaveToDisk function in SLinkedList:

1: bool SaveToDisk(char* p_filename)
2: {
3: FILE* outfile = 0;
4: SListNode* itr = m_head;
5: outfile = fopen(p_filename, “wb”);
6: if(outfile == 0)
7: return false;
8: fwrite(&m_count, sizeof(int), 1, outfile);
9: while(itr != 0)
10: {
11: fwrite(&(itr->m_data), sizeof(Datatype), 1, outfile);
12: itr = itr->m_next;
13: }
14: fclose(outfile);
15: return true;
16: }

You open the file, like you did last time, in “write binary” mode. However, instead
of just writing the list, you first write the size of the list on line 8. After that, you
loop through the list on lines 9–13 and write the data at each node.

Line 11 is where the actual writing is accomplished. The first parameter to fwrite is
a pointer to the data that you want to write. Because you want to write the data in
the iterator, you use the & operator to get a pointer to the data. The second para-
meter is the size of the data. Because you don’t know the size of the datatype, you
use the sizeof operator to calculate that automatically. The next parameter is the
number of items you are writing to disk, which is 1, because you can only write one
node at a time. The last parameter is a pointer to the file.

Reading a Linked List

Reading a linked list is a little more involved than writing one. First, you need to
read in the number of nodes that were saved to the file. Then you need to read in
each of the nodes from the disk into a temporary buffer. Finally, you append that
buffer to the list and repeat the process.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 176

176 6. Linked Lists

Here is the code:

1: bool ReadFromDisk(char* p_filename)
2: {
3: FILE* infile = 0;
4: Datatype buffer;
5: int count = 0;
6: infile = fopen(p_filename, “rb”);
7: if(infile == 0)
8: return false;
9: fread(&count, sizeof(int), 1, infile);
10: while(count != 0)
11: {
12: fread(&buffer, sizeof(Datatype), 1, infile);
13: Append(buffer);
14: count—;
15: }
16: fclose(infile);
17: return true;
18: }

The first thing you do is read in the size of
the list on line 9. Then you enter a loop
which decrements the count variable
until it is zero, reading in a node at a
time. The function reads each node
into the buffer and appends the buffer
to the end of the list.

It is a little more work to read and write
linked lists, but it is still pretty easy. The
DLinkedList file algorithms are literally
exactly the same, and there is no need
to show them here.

Application: Game
Inventories

The beauty of these methods is that

NOTE

you can swap the different contain-
ers at will. Data saved from a singly
linked list can be loaded into an
array (you need to ignore the lead-
ing size variable, though) or a doubly
linked list, and vice versa.

This is Game Demonstration 6-1, and it can be found on the CD in the directory
\demonstrations\ch06\Game01 - Inventories\ .

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 177

177Application: Game Inventories

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

The main use of a linked list in games involves things for which you don’t want to
have a finite limit. For example, in a role-playing game, you could make it so that
the player can only carry 32 items and give him a 32-item array, but why would you
want to? Why should he be limited to 32 items? What happens if your game has dif-
ferent types of characters that can gradually carry more items as they grow stronger?

For a solution to this problem, I look at linked lists, which are good at storing any
number of items.

The Player Class

Your simple game player will only have two attributes: the weight of all the items he
can carry and the weight of all the items he is currently carrying. For the inventory,
you’ll use a doubly linked list.

class Player
{
public:

int m_weightMax;
int m_currentWeight;
DLinkedList<Item> m_inventory;

};

The Item Class

The Item class will also be very simple and will only have two attributes: the type of
the item and the weight of the item. The type will be a number from 0–7 because I
have 8 different kinds of items in this demo. The weight will be a randomly gener-
ated number from 10–20. (See Chapter 22, “Random Numbers,” for more informa-
tion about random numbers.)

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 178

178 6. Linked Lists

class Item
{
public:

int m_type;
int m_weight;

};

Adding an Item to the Inventory

Whenever the player picks up a new item, you want to add that to the inventory. In
this demo, I use an algorithm that randomly generates a weight for a given item
type and adds it to the player’s inventory:

1: void AddItem(int p_type)
2: {
3: Item item;
4: item.m_type = p_type;
5: item.m_weight = rand() % 11 + 10;
6: if(item.m_weight + g_player.m_currentWeight < g_player.m_weightMax)
7: {
8: g_player.m_inventory.Append(item);
9: g_player.m_currentWeight += item.m_weight;
10: }
11: }

The user passes in an item type as a parameter, which is set on line 4. A random
weight from 10–20 is generated on line 5.

On line 6, you see if the item is too heavy to pick up or not. If it is too heavy, then
you do nothing. If it isn’t, you add the item to the inventory list. You also update
the player’s current weight on line 9.

Not too difficult, is it? The easiest part is using the Append function—it adds the item to
the inventory automatically, and you don’t have to worry about overflowing anything!

Removing an Item from the
Inventory
Removing an item is somewhat more difficult than adding an item because you can
remove any item in your inventory at any time. Therefore, you need some method
of specifying which item to remove.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 179

179Application: Game Inventories

In the demo, you keep track of a current item, and you can only remove the current
item. You keep track of it by using an iterator. Whenever you want to remove the
item, you pass the iterator into the function:

1: void RemoveItem(DListIterator<Item> p_itr)
2: {
3: if(p_itr.Valid())
4: {
5: g_player.m_currentWeight -= p_itr.Item().m_weight;
6: g_player.m_inventory.Remove(p_itr);
7: }
8: }

So the user passes in an iterator pointing to the player’s linked list. The algorithm
then determines if the iterator is valid on line 3, and if so, it proceeds to subtract
the items weight from the player’s weight and then removes the item from the list.

Playing the Demo

When the demo starts out, you are given one sword in your inventory. Figure 6.16
shows a screenshot of the program. The icons at the bottom represent the eight
different items you can add to your inventory. The line of items in the middle of
the screen represent your inventory. The item within the black box represents the
current item in your inventory.

Figure 6.16

This is a screenshot
from Game
Demonstration 6-1.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 180

180 6. Linked Lists

The demo is compiled so that you can only hold a weight of 100, so you can add up
to 10 items to your inventory if they each weigh 10 units.

Table 6.1 lists the commands that are used in the game.

Table 6.1 Inventory Demo Controls
Action Effect

Clicking on icons on bottom

Clicking in black box

Pressing left arrow key

Pressing right arrow key

Pressing up arrow key

Pressing down arrow key

Adds item to inventory

Removes current item from inventory

Moves focus to previous inventory item

Moves focus to next inventory item

Increases player’s capacity by 50

Decreases player’s capacity by 50

The game is pretty simple and is meant to just demonstrate having a flexible num-
ber of items in your inventory.

Application: Layered
Tilemaps Revisited
This is Game Demo 6-2, and the files for it are located on the CD in the directory
\demonstrations\ch06\Game02 - Layered Tilemapping\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 181

181Application: Layered Tilemaps Revisited

In Chapter 5, “Multi-Dimensional Arrays,” I showed you how to use 3D arrays to
represent a layered tilemap. The biggest flaw with that method, however, was that it
wasted space for layers that are mostly blank.

Using a 2D array of linked lists can solve this problem.

For example, say you have an 8 � 8 map. You want the top row of the map to have
another layer on top of that. Using a 3D array, you’d need to make it 8 � 8 � 2,
which is 128 cells. To make things even worse, what if half of those tiles needed
another layer on top of them? Then you would need an 8 � 8 � 3 array, which
takes up 192 cells, when you’re only using 64 + 8 + 4 of them, which is 76 cells.
That means you’re only using 40 percent of the cells that are in the array for any-
thing useful, which is a big waste of space.

Now, what would happen if you made a 2D array and stored a linked list in each of
the cells in the array? If you wanted to create the map that I just described, it would
look something like Figure 6.17.

Figure 6.17

Here is a 2D array
of linked lists.This
allows you to have
an infinite number
of layers on each
tile, without wasting
space.

As you can see, you use the linked list structure to conserve space that would other-
wise be wasted. Any cell that only has one layer only has one node in its linked list.
The top right cell has three nodes in its linked list.

Declaring the Tilemap
Take a look at how this tilemap would be defined:

Array2D< SLinkedList<int> > g_tilemap(MAPWIDTH, MAPHEIGHT);

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 182

182 6. Linked Lists

This definition creates a 2D array of
singly linked lists. The 2D array has
dimensions MAPWIDTH and MAPHEIGHT,
which are constants defined in the
demo program.

As before, each tile will be an integer,
which will determine which tile graphic
is drawn.

>

will see the >>

NOTE
Please take notice of the space
between the two brackets. It is
very important that you place the
space there. Otherwise, the compiler

operator, which will
cause a compiler error.

Creating the
Tilemap
Now that you’ve defined the tilemap, you need to fill it with values. You’ll use the
same map that you used in Game Demonstration 5-2, so you can see how similar
this method is to the 3D method.

Remember back to the 3D array method:

g_tilemap.Get(x, y, 0) = rand() % 4;

This line set the tile at (x, y, 0) to a random number from 0–3. Layer 0 was the
lowest layer, and tiles 0–3 are grass tiles.

Using an array, the line looks only slightly different:

g_tilemap.Get(x, y).Append(rand() % 4);

Because you’re using a 2D array this time, you don’t access a specific layer number;
instead, you just access a cell within the 2D array at coordinates (x, y) and add a
new node to the list stored in that cell. This isn’t really an earth-shattering change;
it’s actually quite cool.

So whenever you want to add another layer on top of a given tile, all you need to
do is append another tile to the list! This way, some tiles can have as many layers as
you want, and others will only have one, and no space will be wasted!

Drawing the Tilemap

Drawing the tilemap in this layout is a little different than drawing it with a 3D
array. When you used a 3D array, you drew the entire bottom layer first, and then
the next layer up, and so on until all layers were drawn.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 183

183Application: Layered Tilemaps Revisited

Because you’re using linked lists now, you can’t really draw each layer individually.
This time, you loop through each x and y coordinate in the map and draw every
layer for the current tile. Here is the algorithm used with linked lists:

1: void DrawTilemap(int p_x, int p_y)
2: {
3: int x, y;
4: int bx = p_x;
5: int by = p_y;
6: int index;
7: SListIterator<int> itr;
8: for(y = 0; y < MAPHEIGHT; y++)
9: {
10: for(x = 0; x < MAPWIDTH; x++)
11: {
12: itr = g_tilemap.Get(x, y).GetIterator();
13: for(itr.Start(); itr.Valid(); itr.Forth())
14: {
15: index = itr.Item();
16: SDLBlit(g_tiles[index], g_window, bx, by);
17: }
18: bx += TILESIZE;
19: }
20: bx = p_x;
21: by += TILESIZE;
22: }
23: }

The main difference with this algorithm when compared to the 3D array version is
that the x and the y loops are on the outside and the layer loop (previously z) is on
the inside. The important changes are in bold; the rest of the algorithm is
unchanged.

Instead of a z coordinate, I now have an iterator, itr. For every tile, I get an iterator
pointing at the list in that tile (line 12). On the next line, I start a for-loop that
loops through each layer on the current tile.

Remember in the 3D array version when I checked to see if the current tile num-
ber was �1? I did this because some tiles might be invalid, and I did not draw them
if they were. This time, I don’t need to check for that because there are no invalid
tiles. The linked list structure only stores valid tile numbers, so I can assume that
every tile is valid.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 184

184 6. Linked Lists

Analysis and Comparison of
Linked Lists
This was a long chapter, but it was packed full of information. You learned about
two variations of the linked list data structure and two uses of them in game pro-
gramming. You might, however, be surprised to learn that this is nowhere near the
end of it. There are many more variations of lists, but most of them serve very spe-
cific purposes, so they aren’t used too often in the real world. My favorite variation
is the circular doubly linked list, and I would advise you to look further into that if you
are interested.

Algorithm Comparisons

I would like to now show you a chart that details the strengths and weaknesses of
the three general linear structures I’ve analyzed: arrays, singly linked lists, and dou-
bly linked lists. This is Table 6.2.

Resize O(n) * *

O(n) c) c)

O(n) n) c)

O(c)

Append O(c)/O(n)*** O(c) c)

O(n) c) c)

O(c) n) c)

O(n) c) c)

Access Random Index O(c) n) n)

*

**
*** n) but

Table 6.2 The Linear Data Structures Compared
Algorithm Array Singly Linked Doubly Linked

Insertion O(O(

Removal O(O(

Fast Removal ** **

O(

Prepend O(O(

Remove Tail O(O(

Remove Head O(O(

O(O(

Resize for lists is not a specific algorithm, it is automatically performed in the Insertion and
Removal algorithms.

Lists do not need the Fast Removal algorithm.
With arrays, if there isn’t enough room to store the new item, Append becomes O(

Prepend stays the same.Technically, the prepend algorithm will take twice as long, but the con-
stant 2 is ignored.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 185

185Analysis and Comparison of Linked Lists

If the O(n) and O(c) notation doesn’t look familiar, please go back and read
Chapter 1, “Basic Algorithm Analysis”; it has all the information you need about
algorithm analysis.

Basically, O(c) means that the algorithm completes itself quickly and doesn’t
depend on the number of items in the array or list. O(n) is slower than O(c), how-
ever, because the amount of time that it takes to complete depends on the number
of items in the array or list.

The first thing that you should notice from Table 6.2 is that the different structures
have different strengths and weaknesses. You can access any given index in an array
instantly, which you cannot do with a list. On the other hand, inserting an item
into an array is slower than inserting an item into a list. Finally, the two types of lists
themselves have differences; removing a node from a doubly linked list is far faster
than removing a node from a singly linked list.

Size Comparisons

Another downside that isn’t apparent from looking at Table 6.2 is the size of the
structure. You might think that an array, a singly linked list, and a doubly linked list
all holding 2,000 integers would all be the same size, but that is not the case.

An array that has a capacity of 2,000 cells will take up 8,000 bytes of memory
(assuming you are using 32-bit integers, which are 4 bytes each).

A singly linked list will take up 16,000 bytes of memory, though! Why is this?
Remember that each node in a linked list has two items: the data and the pointer.
On 32-bit systems, the pointers are 32 bits, and if you are using integers, so is the
data. So you end up using 2 * 4 * 2,000 bytes of memory, or twice as much as an
array of the same size!

If that wasn’t bad enough, a doubly linked list takes three times as much memory
as the array because it has two pointers per node. That puts it at 24,000 bytes of
memory!

This concept in linked lists is called overhead. Table 6.3 shows how much overhead
each of the structures has, based on the number of items in the structure.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 186

186 6.

x * s

n * 4

n * 8

Linked Lists

Table 6.3 Data Structure Overhead
Structure Overhead (Bytes)

Array

Singly Linked List

Doubly Linked List

x is the number of cells that are unused in an array. s is the size of the data structure in bytes.
n is the number of items in the data structure.

Just to get an idea of how overhead is measured, let’s compare the different struc-
tures with two different datatypes. The first datatype is a plain integer, which is 4
bytes. The second datatype is an imaginary complex character within a computer
game, which takes up 1,024 bytes. Table 6.4 shows the overhead of the node point-
ers in each of the lists.

Datatype 1L-List % 2L-List %

int n * 8 50% n * 12 66%

n * 1,028 0.39% n * 1032 0.78%

Table 6.4 Overhead Comparison
1L-List Size 2L-List Size

player

As you can see from the table, 50 percent of the space in a singly linked list of inte-
gers is wasted on the nodes. That’s half of the entire space! It gets even worse with
a doubly linked list—66 percent of the space used is for nodes in a list of integers!

This isn’t so bad, though. Look at the second row now, where you use a list of play-
ers instead of integers. The size of the player far outweighs the size of the node
pointers, so the amount of space in a list of players that is dedicated to the nodes is
much less. In a singly linked list, this turns out to be 0.39 percent. In a doubly
linked list, the number is larger, but still relatively small at 0.78 percent.

What kind of conclusion can you make from this? It is far more efficient to store
large data structures in linked lists than to store small ones. Of course, you might
not care about all of this if you have lots of memory at your disposal.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 187

187Analysis and Comparison of Linked Lists

Real-World Issues

What I’m going to tell you in this section will probably make you want to hit me—
hard. Linked lists in games don’t have many uses if you want to make your game
super fast. The reason for this is caching. Remember when I told you in Chapter 3
about how caches work? They load entire chunks of memory into ultra-fast memory
so it can work with the memory quickly. This method works great with arrays,
because an array is a chunk of memory.

A linked list is not a chunk of memory, though. Because of the linked nature of
lists, the nodes can be anywhere in memory. Figure 6.18 shows an example of
linked list nodes in memory. In this figure, each block represents one of the nodes
in a seven-node singly linked list. Each one of the shaded blocks represents any
number of memory positions separating the nodes in memory.

Figure 6.18

The location of
nodes in memory
isn’t continuous.
They might be all
over the place in
memory.

As you can see, the nodes aren’t in order. The first node is at the beginning, but
the next one is way over at the end of the memory, and the next jumps back again,
and the nodes jump all over the place in memory. This isn’t like an array at all.

So what ends up happening when you process a linked list is that the cache is con-
stantly swapping blocks of memory in and out, giving the same effect of randomly
accessing elements in an array. For this reason, lists are generally slower than arrays
when performing small algorithms on every item in the list.

If, on the other hand, you have a large algorithm that does a lot of work on each
node in the list, then the overhead of the cache swapping is diminished greatly.

You also must remember that every time you create a new node, you tell the com-
puter to allocate more memory for you, which is slow.

The end result? Don’t use linked lists for things that require little processing or
things that will be created and destroyed quickly.

Team LRN

Data Structures CH06 11/5/02 8:35 AM Page 188

188 6. Linked Lists

For example: Using a linked list to maintain information about the number of bul-
lets flying around in a game at any given time is not worthwhile. The lifetime of a
bullet is a few frames at most (1/10 of a second?), so you would have to delete it
almost immediately after creating it! You’re much better off creating a large array
to store all these bullets instead, even if you are limiting yourself to a certain num-
ber of bullets in the game at a given time. (Honestly, though, when was the last
time you played a game where there were more than 1,000 bullets in the air at any
given time?)

Always remember: When you are not sure which data structure you should use, try all
the options and benchmark them. If one method slows your game down to a crawl,
then it is no good for you. If another structure causes you to code massive amounts
of code just to do one thing, you should consider using a different structure.

Conclusion

Most programming books only briefly cover data structure topics, usually ending with
a simple introduction to linked lists. Chances are, you’ve already seen linked lists
before. But even if you haven’t, this chapter covered linked lists in far more detail
than other programming books do, so I hope you have learned something new.

From now on, you’ll be learning about data structures that aren’t usually seen in gen-
eral programming books, so there is a lot more you can learn from this book.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 189

CHAPTER 7

Queues
Stacks and

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 190

190 7. Stacks and Queues

The chapters before this one have only been concerned with methods of storing
data within a program. This chapter will introduce you to two new abstract

structures, which, instead of specifying how data is stored, will specify how data is
accessed. They are the stack and the queue data structures. Because these structures
are very similar in nature, they are both in the same chapter.

In this chapter, you will learn

■ What a stack is
■ How to implement a stack as a linked list
■ How to implement a stack as an array
■ How to create a simple menu system using stacks
■ What a queue is
■ How to implement a queue as a linked list
■ How to implement a queue as an array
■ How to create a command queue

Stacks
Even if you’ve never heard of a stack, you’ve most likely used one. In fact, pretty
much every program you’ve ever written has used a stack. After you have learned
what a stack is, check out Appendix B, “The Memory Layout of a Computer
Program.” That Appendix shows you how stacks are used in all programs.

What Is a Stack?

I’m sure you’ve eaten at a buffet restaurant before. If not, then let me explain what
happens: You go up to the counter, grab a plate from the top of a stack of plates,
and serve yourself some food. Whenever the restaurant cleans a dish, they put it
back onto the stack. Figure 7.1 shows a stack of dishes.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 191

191Stacks

Figure 7.1

A stack of dishes.You
can only take a dish
from the top or place
a new dish on top.
The dishes on the
bottom are not
accessible to you.

There are only two things that you can
do with a stack of dishes: You can put a
dish on top of it, and you can take a dish
off of the top. With computer stacks,
putting something on top of the stack is
called pushing. When you take some-
thing off of the top, it is called popping.

Stacks are commonly known as LIFO
structures, which stands for Last In, First
Out. (Some people call them FILO struc-
tures—First In, Last Out. It means the
same thing.) It is called LIFO because
the last item that you put into a stack is
the first item that is removed. Figure 7.2
shows what happens when you push 3 numbers onto a stack, and then pop them
off. The number 10 is pushed first, and then 20, and then 30. Then 30 is popped
off, and then 20, and then 10. 30 is the last number put into the stack and the first
one removed. This is why a stack is often called LIFO.

the stack implementations in this

NOTE
In a theoretical stack, the only item
that is ever visible is the item at the
top of the stack. However, in the real
world, you often look at more than
just the top of the stack.The com-
puter accesses items below the top
of the stack all the time, in fact. (See
Appendix B.) For this reason, all of

book provide ways for you to access
more than just the top of the stack.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 192

192 7. Stacks and Queues

Figure 7.2

This figure shows
how to push and pop
numbers onto and
from a stack.

Graphical Demonstration: Stacks

The graphical demonstration for the stack data structure is on the CD in the direc-
tory \demonstrations\cd07\Demo01 – Stacks\ . This demo is quite simple and only
has two functions: You can push a number onto the stack or you can pop a number
off of the stack.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When the program starts, you are presented with two buttons and an empty stack.
You can press the Push button to push numbers into the stack and the Pop button
to pop numbers off of the stack. Like I said, it really is simple. Figure 7.3 shows a
screenshot from the demo.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 193

193Stacks

Figure 7.3

Here is a screenshot
from the Stack
demo.

The Stack Functions

Table 7.1 shows the functions that the stack classes in this book have. All of the
stack classes are on the CD in the \structures\stack.h file.

Table 7.1 Stack Functions
Name Description

Push This places an item on the top of the stack.

Pop This removes the item at the top of the stack.

Top This accesses the item at the top of the stack.

Count This returns the number of items in the stack.

Implementing a Stack

As I stated before, a stack doesn’t define how you store data, but rather how you
access it. Because of this, you can implement a stack in many ways. I show you two
ways here, one using linked lists and one using arrays.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 194

194 7. Stacks and Queues

Linked Stacks
A linked stack uses a linked list to store the data in the stack. Your linked stack class
will be called LStack. To gain the capabilities of the DLinkedList class, your LStack
class will inherit it. If you are unfamiliar with inheritance, the first section of
Chapter 9, “Tying It Together: The Basics,” discusses inheritance.

The LStack definition (without function definitions) will look like this:

template<class Datatype>

class LStack : public DLinkedList<Datatype>

{

public:

};

You don’t need to add any data at all for this implementation.

If you look at a linked list, you can easily see how you can turn it into a stack.
Figure 7.4 shows how you can look at a linked stack. The head of the list points to
the bottom of the stack, and the tail of the list points to the top of the stack.

Figure 7.4

You can use a linked
list as a stack if you
treat the head of the
stack as the bottom
and the tail as the
top of the stack.

The Push Function
Because the Push function only places a new item at the top of the stack, all you
need to do is call the Append function of the linked list, and it will add a new node
to the top of the list.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 195

195Stacks

void Push(Datatype p_data)
{

Append(p_data);
}

The Pop Function
To pop an item off the top of the stack, all you need to do is remove the tail of the
list:

void Pop()
{

RemoveTail();
}

The Top Function
Now you need a function that makes it easy to access the top of the stack. This is
easy—just return the item that the tail points to:

Datatype Top()
{

return m_tail->m_data;
}

The Top

call this function.

CAUTION
function will not work correctly if the stack is empty. In all likelihood, it

will cause the system to crash because you are trying to access an item that
doesn’t exist. Be careful and make sure that the stack is not empty before you

The Count Function
Last, you need some way to figure out how many items are in the stack:

int Count()
{

return m_count;
}

This just returns the count of the nodes in the linked list.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 196

196 7. Stacks and Queues

Using the DLinkedList Functions
Because the LStack class inherited the DLinkedList class, you are able to use any
instance of a LStack as a DLinkedList as well. This means that you can create itera-
tors and iterate through the entire stack like a linked list and even remove items
from the middle of the stack.

Granted, that is not very stack-like behavior, but it makes the class more flexible. A
computer science teacher would probably yell at me for telling you that, though.

Why Use a Linked Stack?
As you can see, a linked list is a nice structure to use when implementing a stack. In
fact, I listed it first because it is so easy to implement.

The advantages are that you can push as many items as you want onto the stack
without having to worry about running out of room. Also, because every operation
is performed at the end of the list, pushing and popping are both O(c) algorithms.

Arrayed Stacks
You can also implement a stack as an array. Arrayed stacks are a little bit more diffi-
cult to work with than linked stacks, but not by much. The only real limitation they
introduce is that they are of a fixed size, but you can use the array’s Resize function
to make it bigger or smaller as you desire. This class is called the AStack class.

Like the LStack, the AStack will inherit its base structure, which will be an array this
time. Unlike the LStack, however, this time a new variable needs to be added. This
variable will keep track of the current top of the stack.

template<class Datatype>

class AStack : public Array<Datatype>

{

public:

int m_top;
};

If you flip an array so that it is drawn vertically, you can see how it looks like a stack.
Figure 7.5 shows how an arrayed stack would look. In an eight-cell array, index 0 is
the bottom of the stack, and the top of the stack varies depending on how many
items are in the stack. In the stack in the figure, there are five items in the stack,
and the m_top index points to the first empty index, which is 5 in this case.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 197

197Stacks

Figure 7.5

You can use an array as a
stack by using the lowest
index as the bottom of the
stack and the higher indexes
as the top of the stack.

The Constructor
Because the Array class constructor requires an integer as a parameter, so does the
AStack class. The constructor will also clear the m_top variable to 0 because the ini-
tial stack will be empty.

AStack(int p_size) : Array<Datatype>(p_size)
{

m_top = 0;
}

The first line uses the standard C++ inherited class constructor notation. It basically
says, “I am an Array; construct me with size p_size.” The syntax looks funny, but it’s
really simple. Then m_top is initialized to 0.

An instance of AStack is declared like this:

AStack<int> stack(10);

That creates a stack of integers with 10 cells.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 198

198 7. Stacks and Queues

The Push Function
Because the m_top index always points at the first empty index, the Push function
can simply place the new item into that index. After the item is inserted, the m_top
index can be incremented.

bool Push(Datatype p_data)
{

if(m_size != m_top)
{

m_array[m_top] = p_data;
m_top++;
return true;

}
return false;

}

Note that this function returns a bool. The LStack class didn’t return anything
because it never runs out of room, but it is possible for the AStack to run out of
room. Therefore, when it does run out of room, it returns false.

The Pop Function
The Pop function is simpler than the Push function. Whenever something is popped
off the stack, all you need to do is decrement the m_top index. You don’t need to
physically remove the item at all.

void Pop()

{

if(m_top > 0)

m_top—;

}

However, you do need to check to see if the stack is empty. If m_top is 0, then it is
empty, and you shouldn’t do anything or else you’ll end up with a negative m_top
index. This is a good place to add some error-checking code. You can make the
function return an error value.

The Top Function
Because the m_top index always points to the first empty cell, subtracting 1 from it
will give you the index of the top item in the stack.

Datatype Top()

{

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 199

199Stacks

return m_array[m_top - 1];

}

The Count Function
The m_top function also tells us how many items are stored in the stack. For exam-
ple, if m_top is 0, the first open index is the very first index in the array, which
means that the stack is empty.

int Count()

{

return m_top;

}

Why Use an Arrayed Stack?
As you can see, an arrayed stack requires a little more code to implement, but it
really isn’t a big deal. An arrayed stack is nice because it doesn’t have the overhead
that a linked stack does.

One of the major disadvantages is the amount of time it takes to resize an arrayed
stack because the array resize algorithm is O(n). If you never need to resize the
stack, you don’t have to worry about this.

Application: Game Menus

This is Game Demo 7-1, which is located on the CD in the directory \demonstra-
tions\ch07\Game01 – Menus\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

I’m sure you’ve played a game that has menus before. Games like Quake3, Half-Life,
and Doom all have the menus that I am talking about. If you are unfamiliar with
these types of menus, let me explain them a little bit.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 200

200 7. Stacks and Queues

During the game, you usually press Escape to bring up an options menu. From this
main menu, several options are displayed. Typically, the options allow you to create
a new game, save the game, load a new game, or configure game options. Figure
7.6 shows an example of one of these menus.

Figure 7.6

This is a sample game
main menu that allows
you to perform functions
related to the game
management or options.

Now that you’re at the main menu, you can select one of the options listed, and it
will bring up a new menu based on your selection. These are sometimes called sub-
menus. For example, if you selected Game Options from the main menu, it would
bring up something like Figure 7.7.

Figure 7.7

This is a sample sub-menu
from the main menu.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 201

201Stacks

Now you have several options from this menu: You could press Escape and go back
to the main menu or you could choose one of the three options listed, each of
which brings up another menu.

It turns out that a stack can model a menu system like this quite easily. Every time
you go to a sub-menu from an existing menu, the new menu is created and pushed
onto the stack. Every time you press Escape, the current menu is popped off of the
stack and you go back to the previous menu. The current menu is always on the
top of the stack.

The Stack and the Array
For this demo, I will create a simple Menu class to use, which I go over in the next
section. Right now, all you need to know is that is exists.

The demo will use 10 total menus, and the maximum number of menus that can
be open at a time is 3. I create an array to store 10 menus and a stack that stores 3
menu pointers:

Array<Menu> g_menus(10);
AStack<Menu*> g_stack(3);

When the demo begins, the main menu should be showing, so it is added to the
menu stack using the Push function before any menu drawing is done. The main
menu is in the g_menus array at index 0.

g_stack.Push(&(g_menus[0]));

Note how the address of the menu is pushed onto the stack because the stack holds
menu pointers. This is done to conserve memory; there is no point in copying the
menu over.

Creating a Menu Class
You’ll be using a very simple menu class for this demo. It will only contain coordi-
nates, a background color, three text strings representing the options, and three
indexes of the menus that are spawned from each of the options.

Here is the class listing:

class Menu
{
public:

char* m_options[3];
int m_optionSpawns[3];

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 202

202 7. Stacks and Queues

int m_x;

int m_y;

int m_w;

int m_h;

SDL_Color m_color;

};

The m_options array holds pointers to strings, and the m_optionsSpawns array holds
indexes. For example, if m_options[0] was “Sound Menu” and the sound menu is at
index 1 in the g_menus array, then the menu will be initialized like this:

menu.m_options[0] = “Sound Menu”;
menu.m_optionSpawns[0] = 1;

This simply means that if the “Sound Menu” option is selected, the sound menu

will be pushed onto the stack.

The other options are all cosmetic.

Here is the initialization of the main menu:

// main menu

g_menus[0].m_options[0] = “1 - Sound”;

g_menus[0].m_optionSpawns[0] = 1;

g_menus[0].m_options[1] = “2 - Graphics”;

g_menus[0].m_optionSpawns[1] = 2;

g_menus[0].m_options[2] = “3 - Controls”;

g_menus[0].m_optionSpawns[2] = 3;

g_menus[0].m_x = 16;

g_menus[0].m_y = 16;

g_menus[0].m_w = 768;

g_menus[0].m_h = 568;

g_menus[0].m_color = LTGREY;

The main menu has three options: Sound, Graphics, and Controls. These menus
have indexes of 1, 2, and 3, respectively.

Adding a Menu to the Stack
The program detects which option you’ve selected at each menu and pushes the
selected menu onto the menu stack:

x = g_stack.Top()->m_optionSpawns[0];

if(x != 0)

{

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 203

203Stacks

g_stack.Push(&g_menus[x]);
}

Because not all options are valid in every menu, the value 0 is used to denote that
an option doesn’t spawn a new menu. The top of the stack is accessed, and if
option 0 spawns a new window, the appropriate menu is retrieved and pushed onto
the stack.

Removing a Menu from the Stack
Whenever you go back to a previous menu in the demo, the current menu is
popped off the stack.

if(g_stack.Top() != &g_menus[0])
g_stack.Pop();

This code checks to see if you are trying to pop off the main menu (index 0). If you
are, then it does nothing, because you cannot remove the main menu in this demo.

If you are removing another menu, it pops the menu off the stack. It’s that simple.

Playing the Demo
The commands for this demo are fairly simple and are shown in Table 7.2.

Action

Esc

0

1

2

3

Table 7.2 Menu Demo Controls
Key

Quits the demo at any time

Goes back to the previous menu

Goes to sub-menu 1

Goes to sub-menu 2

Goes to sub-menu 3

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 204

204 7. Stacks and Queues

Figure 7.8 shows a screenshot from the demo in action.

Figure 7.8

This is a screenshot
from the menu game
demo.

Queues

I’m sure that you know what a queue is. If you’ve never heard of the term before,
you probably still know what they are. If you’ve ever been to a grocery store, you
stand in a queue when you are checked out.

Basically, a queue is a FIFO structure (First In, First Out). The person who gets into
line first will be checked out first.

Queues, like stacks, only have two functions: Enqueue and Dequeue. You can add
items to the end of a queue, and you can remove items from the front of a queue.

Graphical Demonstration: Queues

This demonstration can be found on the CD in the directory
\demonstrations\ch07\Demo02 – Queues\ .

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 205

205Queues

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo is very similar to the stack demo, and you only have two buttons:
Enqueue and Dequeue. The queue starts on the left side of the screen and ends at
the right side.

Figure 7.9 shows the demo in action.

Figure 7.9

This is a screenshot
from the queue
demo.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 206

206 7. Stacks and Queues

The Queue Functions

Table 7.3 shows the functions that the queue classes in this book will have. All
queue classes are located on the CD in the \structures\queue.h file.

Name Description

Enqueue

Dequeue

Count

Table 7.3 Queue Functions

Puts a new item at the end of the queue

Removes the item at the front of the queue

Front Returns the item at the front of the queue

Returns the number of items currently in the queue

Implementing a Queue

Like stacks, queues can be implemented in many different ways. I’ve implemented
two of them for you, one using linked lists and the other using arrays. Because the
linked queue is very similar to the linked stack, I only show you the two functions
that change.

The arrayed queue is very different from an arrayed stack, however, and needs to
be explained in detail.

Linked Queues
As I stated previously, linked queues are almost identical to linked stacks, so I only
need to cover the two functions that have changed. Both stacks and queues use the
Append function to add an item to the structure, so the Push and the Enqueue func-
tions are identical, but where a stack removes the last item that was inserted, a
queue instead removes the first item that was inserted.

The Dequeue Function
This function is similar to the stack’s Pop function. Because a queue removes the
first item instead of the last, you just need to switch the RemoveTail function to the
RemoveHead function.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 207

207Queues

void Dequeue()
{

RemoveHead();
}

The Front Function
Again, because the queue reads the front item instead of the last, the m_tail
pointer in the Top function needs to be changed to the m_head pointer.

Datatype Front()

{

return m_head->m_data;

}

Arrayed Queues
Arrayed queues are the most complex implementation of all of the structures I
cover in this chapter. They are sometimes known as circular queues.

First, to see why these are more difficult to implement than the others, I need to
show you how they work. Imagine an empty array with eight cells. This will be the
queue. When an item is first placed into the queue, it will go into index 0. Then
the next item will be placed into index 1, and the next one into index 2, and so on.

After five items have been inserted, they take up indexes 0 through 4, as in
Figure 7.10.

Figure 7.10

This is an arrayed
queue with five
items.

Now, you could do one of two things if you wanted to dequeue an item from the
arrayed queue.

The first option you could do is move everything down, like Figure 7.11 shows. This
option seems nice and simple, but it has a major flaw: It uses the array’s Remove
function, which, as you saw in Chapter 3, “Arrays,” is an O(n) algorithm. This
means that removing an item from the queue like this will take some time, and it
will take longer amounts of time on larger queues. Plus, it involves physically mov-
ing around lots of data, which is slow.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 208

208 7. Stacks and Queues

Figure 7.11

This is the slow
method of dequeuing
something by moving
everything down by
one index to remove
the first item.

Because you naturally want everything to run as fast as possible, you need to find a
faster way to do this.

The second method is somewhat simple, but you need a new variable to implement
it. Instead of having index 0 at the front of the queue, a variable index points to
the front of the queue. So when the first item in the queue from Figure 7.10 is
removed, the front index will be incremented, and it will end up looking like
Figure 7.12.

Figure 7.12

This is the fast
method of
dequeueing
something.The front
index is incremented
when the front of the
queue is removed.

While this method seems really cool when you first start out, you quickly realize
that there is a problem. You can insert three more items into this queue, but what
happens when you try to insert a fourth item?

The fourth item is wrapped around the end of the array and is placed into index 0
again. This is where the term circular queue comes from—you need to treat this
array like it is a circle. Figure 7.13 shows what the queue looks like as a circle if you
insert 5, 6, 7, and 8 into the queue from Figure 7.12.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 209

209Queues

Figure 7.13

A full circular queue:
The items wrap
around the boundary
and start at the
beginning when you
go past the end.

The Structure
For a circular queue, you need to have two new variables: the index of the front of
the queue and the number of items within the queue.

template<class Datatype>

class AQueue : public Array<Datatype>

{

public:

int m_front;
int m_count;

};

The Constructor
Because the AQueue class is inherited from the Array class like the AStack class is, you
need to use a constructor that constructs the array and initializes the variables.

AQueue(int p_size) : Array<Datatype>(p_size)
{

m_front = 0;
m_count = 0;

}

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 210

210 7. Stacks and Queues

The queue calls the Array constructor to tell it the size it wants to be, and the front
index and the count variable are both reset to 0 because the queue is empty.

AQueues are constructed the same way AStacks are:

AQueue<int> queue(10);

This creates a queue of integers with a size of 10.

The Enqueue Function
The Enqueue function is fairly straightforward: You need to find the first empty
index and put the new item into it. You can find the first open index by using the
following formula:

index = m_first + m_count;

However, that line of code has a problem. Remember when I inserted 8 into the
queue from Figure 7.12? In that figure, m_first was 1 and m_count was 7. 7 + 1 is 8,
but 8 is an invalid index for that array because the only valid indexes are 0–7.
Oops.

You need to take an extra step: Use the modulo operator to wrap the index around
to the other end of the array:

index = (m_first + m_count) % m_size;

In the example queue, m_size is 8. 8 modulo 8 is 0, which is the correct index!

Here is the function:

bool Enqueue(Datatype p_data)
{

if(m_size != m_count)
{

m_array[(m_count + m_front) % m_size] = p_data;
m_count++;
return true;

}

return false;

}

Also note that the size of the array is checked against the number of items in the
queue. If they match, there is no room left, and false is returned. The important
algorithm is in bold in the code snippet.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 211

211Queues

The Dequeue Function
The Dequeue function is much simpler. If there are items left in the queue, the front
index is incremented by 1. If the front index passes the end of the array, it is reset
to 0 again.

void Dequeue()
{

if(m_count > 0)

{

m_count—;

m_front++;

if(m_front == m_size)

m_front = 0;

}

}

The Front Function
The Front function is the simplest of them all. You just need to return the item at
the index that m_front points to.

Datatype Front()
{

return m_array[m_front];
}

The Access Operator
There is one more thing that needs to be changed to make this class useful.
Because this class inherits from the Array class, it can use all of the functions that
came with the Array class. This includes the access operator, which allows you to
access any item in the array given an index. So how should this operator work with
a queue? Should it return the correct index all of the time? Or should it return an
index based on the front of the queue?

I prefer the second method. I like the idea of accessing the queue and having
index 0 always return the front of the queue and index 1 return the second item in
the queue, and so forth. To do this, all I need to do is redefine the access operator
function so that it calculates the index based on the front of the queue.

Datatype& operator[] (int p_index)

{

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 212

212 7. Stacks and Queues

return m_array[(p_index + m_front) % m_size];

}

The code in bold is the important part of the algorithm. Do you notice anything
about it? It is almost exactly the same as the code I used to access the end of the
array! All I do is add the front index to the index I want and then wrap the result
around using the modulo function.

Resizing
Resizing a circular queue is a complicated procedure, which I have not imple-
mented here because I am running out of room for this chapter. If you use the
array’s Resize function, the queue will be corrupted, so you really should not use it
with a circular queue. If you decide that you really want to resize circular queues,
the process goes like this: Create a new array and start copying the items over so
that the front of the queue gets placed into index 0 in the new array.

Application: Command Queues

This is Game Demo 7-2, located on the CD in the directory
\demonstrations\ch07\Game02 - Command Queues\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

I’m sure you’ve played some sort of Real Time Strategy (RTS for short) game before.
Some of the games that fall into this category are Command & Conquer, Warcraft,
and Starcraft. If not, then let me briefly explain them for a moment. In these
games, you are presented with an overhead view of a map, and you are supposed to
move different units around on the map so that they do various things. Most of the
time they end up waging war with the computer players or other humans.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 213

213Queues

In some of these games, it is possible to tell your units to move to one place and
then move to another place after they are done making the first move. This is
called command queuing.

For this demo, you will use a queue to implement the movement of a spaceship fly-
ing around the screen.

The Player and the Coordinates
To make things easier, a simple coordinate class is used. There is nothing special
about it; it contains x and y coordinates:

class Coordinates
{
public:

int x;
int y;

};

Now, a class for the player needs to be created. The player will have three variables:
the current x and y positions and a queue of all movement commands.

class Player
{
public:

int x;

int y;

LQueue<Coordinates> m_queue;

};

I used a linked queue here because it is flexible. You can issue as many commands
as you want.

The queue holds coordinates. If the queue is empty, the player isn’t moving at all.
If there are coordinates in the queue, the player is currently moving toward the
first pair of coordinates.

For example, if the spaceship starts out at coordinates (20,10), and you were to add
(30,30), (50,20), (40,10), and (10,30) coordinates to the queue, the spaceship
would move in a path like the one shown in Figure 7.14.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 214

214 7. Stacks and Queues

Figure 7.14

The figure shows the
path of the
spaceship. Each pair
of coordinates was
stored in a queue.

Adding a Command to the Queue
In the demo, a set of coordinates is added to the players queue whenever the
mouse is clicked. Here is how it is accomplished:

SDL_GetMouseState(&c.x, &c.y);
g_player.m_queue.Enqueue(c);

The c variable is an instance of the Coordinate class. The g_player variable is an
instance of the Player class.

Whenever the mouse is clicked, the coordinates of the mouse are retrieved by
using the SDL_GetMouseState function and placed into c. The c variable is then
added to the player queue.

The beauty of this is that it is a fire and forget method. You don’t care what the
player is currently doing; you just add the command to the players queue, and he
will eventually get to it.

Removing a Command from the Queue
This is a little more difficult than adding a command to the queue because you
need to be able to detect if a command has been completed or not. Because this
demo only involves the movement of a spaceship, it is easy to detect if the space-
ship has reached its destination.

if(g_player.x == g_player.m_queue.Front().x &&
g_player.y == g_player.m_queue.Front().y)

{

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 215

215Queues

g_player.m_queue.Dequeue();
if(g_player.m_queue.Count() > 0)

Calculate();
}

This code snippet checks to see if the current position of the spaceship is equal to
the position of the current command in the queue. If it is, then the spaceship has
completed the movement command, and the command should be removed.

After the command is removed, you still have some work to do. You need to start
processing the next command in the queue. The second if statement in the code
snippet checks to see if there are any more commands in the queue. If so, then it
calls the Calculate function, which is a helper function that calculates some vari-
ables that determine the direction that the spaceship flies.

What the Calculate function does exactly is not important for this demo. Instead,
you should see that after a command is completed, you need to start processing the
next command in the queue. In a more complicated system with more than one
command type, you would call a function that does even more than Calculate does.

Playing the Game
This game is very simple. All you need to do is move the mouse around and click
on the window where you want the spaceship to go. The spaceship will then move
to that place in one second. If you’re fast enough, you can enqueue many different
coordinates. Figure 7.15 shows a screenshot from the game in action.

Figure 7.15

This is a screenshot
from the command
queue demo.

Team LRN

Data Structures CH07 11/5/02 8:36 AM Page 216

216 7. Stacks and Queues

As the figure shows, the ship will follow the line on the screen. The line represents
all of the coordinates that are in the queue.

Conclusion

After reading this chapter, you should see that not all data structures have a specific
implementation. As this chapter showed, the stack and the queue data structures
really don’t specify how the data is stored underneath.

This freedom means that you should take time to analyze what your program
needs. If expandability is more important than speed, use linked stacks and queues.
If speed is more important than expandability, use arrayed stacks and queues.

Everything in game programming is a tradeoff, and you should always try to spend
time analyzing exactly what you want your game to do before you jump right in and
start coding.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 217

CHAPTER 8

Hash
Tables

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 218

218 8. Hash Tables

This chapter covers the most advanced of what I like to call the basic data struc-
tures. I must warn you, though; this chapter isn’t very basic. In fact, most peo-

ple I know who like computer programming absolutely hate the topics I cover in
this chapter.

However, I feel that this hatred exists because no one ever teaches this material in a
way that makes it easy to understand. I hope to fix that and give you an enlightening
and educational look at these topics so you can see how useful they are in real life.

In this chapter, you will learn

■ What sparse data is
■ What key-based data is
■ What a hash table is
■ How to store data into a hash table
■ What a hash table is
■ What a hash collision is
■ How to solve hash collisions
■ How to create a linked hash table
■ How to store and retrieve string-based game resources quickly

What Is Sparse Data?
Most books and classes that teach hash tables jump right into their implementation
and give no background on what they are meant to do. Instead of taking that
route, I give you a little background information.

The first thing you should know about is sparse data. Imagine that you are imple-
menting a complex game world in which each player in the game is accessed by an
identification number. This number is often called a key in programming. Each key
will be unique, and no two players will have the same key. Now, imagine that these
keys are not contiguous; they are instead generated by a complex algorithm that
produces seemingly random numbers from 0 to 1,000,000. For example, in a sys-
tem with three players, the players might have these keys:

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 219

219The Basic Hash Table

Player 1: 945,253

Player 2: 433,455

Player 3: 36,549

These numbers are sparse; they are far away from each other.

Now what happens when you want to store the players in a data structure so that
you can easily access a player by their key? Your first instinct should be to use an
array so you can access them quickly, but you will end up with an array looking like
Figure 8.1.

Figure 8.1

Sparse data stored in
an array. Note how
much space is
wasted when these
players are stored in
the same indexes as
their keys.

Only three indexes out of 1,000,000 are used, which is a waste of memory.

The other option is to store the data in a linked list. Although a linked list works
great for only three pieces of data, what happens if the game needs 10,000?
Searching through a linked list of 10,000 players just to find one is a waste of time.
Note that even with 10,000 players, the array option is still out of the question,
because for every player there will be 100 empty cells, which is a waste of memory.

The Basic Hash Table

The hash table data structure turns out to be the perfect solution to the problem.
It allows you to do the following:

■ Quickly store sparse key-based data in a reasonable amount of space
■ Quickly determine if a certain key is within the table

The important word here is quickly. You’ll begin to see why as you read on.

For right now, you can think of a hash table as just an array. If you want to store 10
players, you should create an array with 10 cells. Figure 8.2 shows a very basic hash
table.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 220

220 8.

TIP

Hash Tables

It is actually more efficient to make your hash table sizes prime numbers. I
can’t really explain why this is without going into a whole discussion about dis-
crete mathematics, but you should generally try to find a prime number above
the desired number of items you store in the table. For example, if I wanted to
store 10 items in a hash table, I would make it 11 cells large. However, I use 10
cells throughout this chapter because it makes the hashing functions easier to
explain. I will go more in depth on this topic later on in this chapter.

Figure 8.2

This is a basic hash
table, which is really
just an array.

Now you want to insert Player 1 into the table. Where would you put him? The easi-
est and most common way of placing a key into a hash table is to modulo the key by
the size of the table.

For example, Player 1 would be placed into cell 3 because 945253 % 10 = 3.
Likewise, Player 2 would be placed in cell 5, and Player 3 would be placed in cell 9,
yielding an array that looks like Figure 8.3.

This is a 10-cell hash

Figure 8.3

table with three
players in it, stored
by key.

Whenever you want to access a player by their key, you just use a simple algorithm
like this:

player = table[key % 10];

This example is a very simple hash table, and it has many problems, which will be
addressed later on.

You can see how a hash table can be a powerful tool, though. Because of the way
you look up keys, the algorithm to determine whether an item is in the table is

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 221

221The Basic Hash Table

essentially instantaneous. An ideal hash table can search for items in O(c) time,
which is a tremendous benefit for fast programs.

Collisions

One of the major problems with a hash table is that collisions occur frequently for
simple tables. For example, try inserting these two players with these keys into the
ten-cell table: 143,674 and 645,394.

You can’t. Because both numbers
modulo down to 4, they should both
be placed into the same cell, but a
cell can only hold one item! This is
called a collision. The only ways to
resolve a collision are to use a hashing
function or modify the table in a way
that makes collisions okay.

I’ll explore both methods for you.

TIP
Remember when I said to use prime
numbers for your table size? That was
because you get fewer collisions when
you modulo a key by a prime number.
Having fewer collisions makes your
tables easier to work with and more effi-
cient.There is a complicated mathemat-
ical reasoning behind this, but it is okay
to just assume that this is true for us.

Hashing
Functions
Most hash tables are more complex
than the one I just showed to you. In
fact, most of the time, just using a mod-
ulo function is a very bad way to store
data into a hash table.

One method of solving collisions is to
use a hashing function. The word hash,
when applied to food, means to mince
or mash. The same definition applies
here; you need to hash the data so that
it will fit into a table easier.

Note that the modulo function used

of the hash functions in this book

then be hashed with a modulo func-

purpose hashing method.

NOTE

in the basic hash table is a hash func-
tion for integers.There are many
ways to hash data, but modulo is the
most common. For that reason, all

will produce an integer, which will

tion to fit within the table. In my
experience, this is the best general-

Digit Addition
A simple alternative hashing function used on a key from 0 to 1,000,000 would be
to add all of the digits together. For example, if you add all of the digits from the
two numbers that collided with the modulo method, you would get these results:

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 222

222 8. Hash Tables

1 + 4 + 3 + 6 + 7 + 4 = 25 and 6 + 4 + 5 +
3 + 9 + 4 = 31. Because these numbers
are larger than the boundaries of the
array, you have two options. You may
expand the table so that it has 54 cells
(the largest number that can be
obtained using this method is 9 + 9 + 9
+ 9 + 9 + 9 = 54), or you may use the
method I describe in the next section.

Double Hashing
The second solution I will show you is called double hashing. This method involves
using one function to hash a key and then using the same function, or possibly a
different function, to hash the result of the first function.

For example, if you used these two numbers again, 143,674 and 645,394, and
hashed them both using the digit addition method, you would get 25 and 31. You
could then hash these numbers again, using the same method, and you would get 7
and 4, which both fit into the 10-cell table.

Another double hashing method would be to use the same digit addition function
for the first hash, but then use modulo for the second hash. In that case, you would
get 25 and 31 again, but they would modulo down to 5 and 1.

Other Hash Functions
There are literally an infinite number of hash functions you could use on an inte-
ger. I’m sure you are already thinking of a few. You could multiply the integers by a
constant, divide them, perform binary arithmetic on them, or any combination of
those methods.

Unfortunately, no hash function is perfect. No matter what method you use, you
will end up with collisions if your dataset is large enough. When choosing a hash
function, it is usually best to test it out on data that you are expecting to process. If
one function produces no collisions and another does, then it is obvious which
function you should choose.

If you are unaware of the exact type of data you will be getting, then it is impossible
to create a function that you know will not cause collisions. This issue can only be
solved by changing the structure of a hash table.

CAUTION
Using digit addition solved the colli-
sion in the case that was shown, but
it still produces collisions. For exam-
ple, 123,456 and 654,321 both hash
to 21 using digit addition, even
though they are different keys.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 223

223The Basic Hash Table

Hashing Strings
There is one more important hash function I want to show you. Besides integers,
the other popular datatype that is frequently hashed is strings. The following algo-
rithm does a really good job at hashing strings into an integer with very few colli-
sions:

unsigned long int StringHash(const char* p_string)
{

unsigned long int hash = 0;
int i;
int length = strlen(p_string);
for(i = 0; i < length; i++)
{

hash += ((i + 1) * p_string[i]);
}
return hash;

}

This method is based on the fact that a character in a string is essentially an inte-
ger. This way, you can look at a string as a number where each digit is a number
from 0–255 (for example, a base-256 number). This method is similar to the digit
addition method, but instead of just adding the digits, it multiplies each digit by an
integer and then adds them.

You can look at a string like it appears in Figure 8.4. The string “Hello!” is really an
array of 6 integers: 72, 101, 108, 108, 111, and 33.

Figure 8.4

This is how you
represent a string as
a number.

Now, using the algorithm, you would multiply the numbers like this: (72 * 1) +
(101 * 2) + (108 * 3) + (108 * 4) + (111 * 5) + (33 * 6). This gives you 1783 as the
integer value.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 224

224 8. Hash Tables

Multiplying each letter of the string by its index makes the hash function useful
because you don’t have the problems that plain digit addition has. You can reverse
the string and it will become a totally different hash value.

Enhancing the Hash Table
Structure
There is no perfect hash function. You will probably always end up with collisions.
Most people realize this and have created ways to handle these collisions. There are
many methods of dealing with collisions without modifying the underlying hash
table structure, but I feel that they are usually inferior solutions.

Linear Overflow

For example, one popular method is called linear overflow. With this method, you
hash a number and then try to insert the number into the index that the hash
function created. If there is an item already in the hash table at that index, you
increment the index and try to insert it again. If that index is full, then you incre-
ment the index again and repeat the method until you find an empty index.

For example, if you hashed a key to 3 and indexes 3 through 6 were already full,
you would need to jump all the way over to index 7 before you found an empty
cell. Figure 8.5 demonstrates this.

Figure 8.5

This shows a linear
overflow collision
resolution.The
function inserts the
item into the first
open cell it finds after
it hashes the key.

Personally, I think this method is ridiculous and destroys the benefits of a hash
table. In order to find out if an item exists within the hash table, you have to search
every index in the table to find out if it is in there! This turns the fast O(c) hash
table search time into a slow O(n) time.

Even worse, if you put data into a cell that it didn’t hash to and you later get data
that hashes into that same cell, you’re making the data even more spread out and

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 225

225Enhancing the Hash Table Structure

inefficient. I wouldn’t bother with this kind of collision resolution unless I was
absolutely forced to.

Quadratic Overflow

There are many other methods based on the same idea, such as quadratic overflow
collision resolution, where instead of incrementing the index by 1, you increment
the index by 12 (1) and then 22 (4) and then 32 (9) and so on until you find an
open index. The end result is the same; you still need to search the entire table to
find something. This method is even worse, in my opinion, because there is no easy
way to tell if you’ve searched through the entire table!

Linked Overflow

This leads me to the method that works best in my opinion, linked overflow. This
method gives each cell in the hash table a linked list.

Inserting into a Linked Overflow Table
To demonstrate how these work, I will go back to the original collision problem.
I’m using a 10-cell array for the table and using modulo-10 to insert the keys into
the table. Now, I want to insert the following players into the table:

Player 1: 345,752

Player 2: 546,182

Player 3: 798,500

Player 4: 123,430

These keys hash down to 2, 2, 0, and 0 using modulo-10. Previously, this would have
caused a problem because there are two collisions. However, because each cell of
the table now contains a linked list, I can insert each player into the list in the
appropriate cells, giving me a table that looks like Figure 8.6.

Figure 8.6

This is a linked
overflow hash table.
Each cell has a linked
list in it to hold all
keys that hash into
that cell.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 226

226 8. Hash Tables

Using this method, you don’t have to worry about collisions at all! Whenever two
hashes collide, the data is just appended to the back of the list.

Searching for Keys
If your hash function is efficient and doesn’t cause many collisions, then theoreti-
cally you achieve an almost instant search time when searching for data in a hash
table. In order to search for data within this kind of table, you first hash the key to
find the desired index. Once you have found the correct index, you need to search
the linked list within that cell and nowhere else. If you find the data, you’ve
searched through only one or two items (depending on how well your hash func-
tion works, it could be more). If you don’t find the data, you’ve still only searched
through one or two items!

This beats the heck out of the other collision resolution methods I’ve shown you
because you don’t waste your time searching for data that isn’t in the table.

Of course, because you could theoretically use a bad hash function that stores every
item in the same linked list, the search algorithm is considered to be O(n), but
with a good hash function, it comes remarkably close to approaching O(c).

Graphical Demonstration:
Hash Tables
This is Graphical Demo 8-1, located on the CD in the directory
\demonstrations\ch08\Demo01 - Hash Tables\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 227

227Graphical Demonstration: Hash Tables

In the other chapters of this book, I usually put the graphical demonstrations near
the front of the chapter. I felt, however, that I needed to build up to the linked
overflow hash table before I showed you a graphical demo. I only showed you the
primitive hash table types in order to lead up to the linked table so that you would
understand the concepts behind them. I would not use anything but a linked hash
table in real life, however.

This demonstration will show you how a linked hash table works internally. Figure
8.7 shows a screenshot of the demo in action.

Figure 8.7

This is a screenshot
from Graphical
Demonstration 8-1.

Button

Find

Random

Table 8.1 shows a listing of the commands and their effects in the demo.

Table 8.1 Commands for Graphical Demo 8-1
Effect

Insert This button tries to insert the number in the text box into the hash table.

This button finds the given key in the hash table.

Remove This button removes the given key from the hash table.

This puts a random number into the text box.

Text Box This is where you can type in numbers to insert, search for, or remove.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 228

228 8. Hash Tables

The demo shows a 10-cell hash table, the same kind I’ve been using for the entire
chapter so far. The hash table is designed to store three-digit integers where each
integer is its own key. In reality, the key and the data stored in the table do not
have to be the same, but I go into that later. For simplicity, each number stored in
the table is its own key value.

Figure 8.7 shows a hash table where I’ve inserted 10 random numbers. Note that
the most numbers contained within any cell is three (in cell 6). This means that in
order to find out if a given key is contained within this particular hash table, you
will make at most three comparisons!

Implementing a Hash Table

Now it is finally time to create a hash table class. The code from this section is con-
tained in the \structures\HashTable.h file on the CD. As I have stated before, there
are two pieces of data associated with a hash table entry: a key and the actual data
that will be entered into the table.

The key for the data must be unique for the data that it is associated with. For
example, if you live in the United States, every person is issued a Social Security num-
ber (SSN). This would be a very good key to use if you were putting people into a
hash table, because SSNs are unique; no two people have the same SSN.

When you put data into a hash table, you put in both data and the key associated
with the data. The hash table will remember the key and the data. Whenever you
want to search for data in the hash table, you tell the table which key you are look-
ing for, and the table will return the data if it exists.

The HashEntry Class

Because the hash table needs to store two pieces of information for every item you
insert, it is easiest to create a class that holds both pieces of data. Because both
pieces of data can be of different types, the HashEntry class will have two template
parameters:

template< class KeyType, class DataType >
class HashEntry
{
public:

KeyType m_key;

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 229

229Implementing a Hash Table

DataType m_data;
};

The two template parameters are a KeyType and a DataType.

The HashTable Class
The HashTable class will have the same two template parameters as the HashEntry
class. Table 8.2 shows a listing of all the functions the HashTable class will support.

Function Name Purpose

Constructor
hash function.

KeyType/DataType couple into the hash

Find
to the data.

associated with it.

Count

Table 8.2 HashTable Functions

This creates the hash table with a given size and a fixed

Insert This inserts a
table.

This finds the given key in the table and returns a pointer

Remove This finds the given key in the table and removes the data

This returns the number of entries that are in the table.

The Data
The HashTable class will need to have several member variables. It needs to keep
track of the size of the table, the number of entries within the table, the array of
linked lists that makes up the actual table, and a function pointer to the hash func-
tion. If you are unfamiliar with function pointers, please read Appendix A, “A C++
Primer,” where I explain them.

template< class KeyType, class DataType >
class HashTable
{
public:

typedef HashEntry<KeyType, DataType> Entry;

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 230

230 8. Hash Tables

int m_size;
int m_count;
Array< DLinkedList< Entry > > m_table;
unsigned long int (*m_hash)(KeyType);

};

The typedef on Line 5 is there to make your life easier. Without this typedef, you
need to type HashEntry<KeyType, DataType> whenever you want to use a HashEntry,
which makes the code long and ugly. The typedef condenses this down to just
Entry, saving us lots of typing and making the code easier to read.

The size and the count are obvious in their function.

The third member variable, m_table, is an array of DLinkedLists. Each linked list in
each cell of the array contains Entrys.

The fourth member variable is a function pointer to the hash function. The hash
function takes a key as a parameter and returns an unsigned long integer. I have
the hash function as a function pointer for several reasons.

First, it is nice to be able to give the hash table a hash function that is independent
from the table. This allows you to use all different kinds of data in the table. Some
hash table implementations build the hash function right into the table, which
makes it extremely limiting. This way, you can have two hash tables that store the
same keytypes and datatypes, but both tables can use a different hash function.

Second, it is easy to make the hash table keep track of the hash function, so the
hash table automatically hashes keys that are passed into the table. This way, the
user of the table doesn’t have to remember to hash the keys; he or she can just pass
the key directly into the table.

Third, you don’t want the hash function to change. If the user is allowed to change
the hash function, the hash table becomes worthless. For example, say the user
inserts a key/data pair into the table using one hash function. Then the user
changes the hash function and tries to search for the same key. If the new hash
function hashes the key to a different number, then the table will not find the data,
even though it is in the table!

You will see how the hash function pointer works later on.

The Constructor
The constructor for the HashTable will take two parameters: the size of the table and
a pointer to the hash function.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 231

231Implementing a Hash Table

HashTable(int p_size, unsigned long int (*p_hash)(KeyType))
: m_table(p_size)

{
// set the size, hash function, and count.
m_size = p_size;
m_hash = p_hash;
m_count = 0;

}

On the second line of code, I use the standard C++ constructor notation to call the
constructor of m_table so that it is initialized with the correct size. If you are unfa-
miliar with this notation, please read Appendix A, where I explain this.

The Insert Function
As I have stated before, the Insert function will take a key and data couple and
insert them into the table.

void Insert(KeyType p_key, DataType p_data)
{

Entry entry;

entry.m_data = p_data;

entry.m_key = p_key;

int index = m_hash(p_key) % m_size;

m_table[index].Append(entry);

m_count++;

}

First, an Entry structure is created with the key and the data that are passed in.

Then, the m_hash function pointer is called on the key that was passed in. Because
the function is supposed to return an unsigned long int, that result may be out of
bounds for the table. Because of this, the
result is then modified using the modulo
function so that it becomes a valid index
for the table.

Finally, the entry is appended to the end
of the linked list in the cell that index
points to, and the count is incremented.

uses the double hashing method I

modulo function.

NOTE
Note that this hash table essentially

described earlier. First, the key is
hashed into an integer, and then that
integer is hashed again using the

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 232

232 8. Hash Tables

The Find Function
This function is designed to search the hash table to see if a certain key is in the
table. If so, it will return a pointer to the entry structure that the key is in. If not, it
will return 0.

Entry* Find(KeyType p_key)
{

int index = m_hash(p_key) % m_size;
DListIterator<Entry> itr = m_table[index].GetIterator();
while(itr.Valid())
{

if(itr.Item().m_key == p_key)
return &(itr.Item());

itr.Forth();
}
return 0;

}

The key is hashed into an index using
the same exact method that you used
when inserting the key into the table.
Then an iterator is created, which
points to the linked list in the cell that
the key hashed to.

The function then iterates through the
linked list, checking to see if the keys
match. If they do, then a pointer to the
entry is returned. If not, it keeps loop-
ing. If the key isn’t in the table, then 0
is returned.

The Remove Function
The Remove function is essentially the same as the search function, but instead of
returning a pointer to the entry, it removes the entry from the table.

The function returns a boolean. True means that an entry was found and removed;
false means that the entry didn’t exist.

bool Remove(KeyType p_key)
{

Please note that the Find function
uses the ==

==

char* string as a

because the ==

to see if the letters in the string

strcmp function instead (in string.h).

lem later on.

NOTE

operator to compare
keys.This means that the keys need
to support the operator. Note
that this makes things a little more
difficult in some cases. For example,
if you were to use a
key, the hash table wouldn’t really
work the way you wanted it to

operator only com-
pares the address of the strings to
see if they are equal. If you wanted

were equal, you’d need to use the

I demonstrate how to fix this prob-

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 233

233Implementing a Hash Table

int index = m_hash(p_key) % m_size;

DListIterator<Entry> itr = m_table[index].GetIterator();

while(itr.Valid())

{

if(itr.Item().m_key == p_key)
{

m_table[index].Remove(itr);

m_count—;

return true;

}
itr.Forth();

}

return false;

}

Example 8-1: Using the Hash Table

I’ve put together a simple text-based demo for you to run to see how a hash table
works. You can find it on the CD in the directory \examples\ch08\01 - Using the
Hash Table\.

First of all, this demo uses a hash table where both the keys and the data are inte-
gers. The keys don’t have to be the same as the data, however. Figure 8.8 shows a
screenshot of the program running.

Figure 8.8

This is a screenshot
from Example 8-1.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 234

234 8. Hash Tables

The Hash Function
The first thing you need to do is create a hash function. For this simple demo, I
used a very basic hash function that doesn’t modify the key at all:

unsigned long int Hash(int k)
{

return k;
}

So whatever key is passed into the hash function is returned unmodified.

Creating the Hash Table
Now you need to create the hash table. The program asks you for the size of the
table, which is placed into the size variable.

HashTable<int, int> table(size, Hash);

HashEntry<int, int>* entry;

The table is created with the size that you’ve entered and the Hash function. Note
that a pointer to a HashEntry is also created. This is used for searching the table
later on.

Inserting Keys
If you choose the Insert data option from the menu, the program will ask you to
enter a key and data pair. Once you have entered those, it inserts them into the
hash table:

table.Insert(key, data);

Finding Keys
The program asks you to enter a key to find. Once you have done so, it searches for
the key in the table:

entry = table.Find(key);

If the key exists, entry will point to the entry that contains the key and the data. If
not, entry will be 0.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 235

235Application: Using Hash Tables to Store Resources

Removing Keys
Removing a key is just like searching for one; the program asks you for a key and
then tries to remove it:

table.Remove(key);

Application: Using Hash
Tables to Store Resources
This is Game Demonstration 8-1, which can be found on the CD in the directory
\demonstrations\ch08\Game01 - Resources\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

It has become more and more common for games to have elaborate scripting sys-
tems, but even if they don’t, they usually have a mod system implemented where
you can make custom maps and characters. In both cases, most of these systems
allow you to specify game resources with their names instead of a number.

For example, in a game I might be able to say that a certain wall should use a
bitmap named “stone.” Without hash tables, the game would need to search
through every bitmap it has loaded, checking to see if there is one named “stone.”
This can take quite a while, and because you want the game to be as fast as possi-
ble, this option is out of the question.

The better method to use would be to use a hash table. The hash table would use
strings as keys and bitmaps as data. This is what I’ve done with this game demo.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 236

236 8. Hash Tables

The String Class

I mentioned before that you cannot easily use strings as the keys with the HashTable
class. This was because the built-in string type is char*, which is a pointer, and
whenever you used the == operator on a pointer, it would compare the address of
the strings and not the contents.

The easiest way around this would be to use a string wrapper class. In this solution,
you create a small class that contains a string and has a few helpful functions.

class String
{
public:

char m_string[64];

String()

{

strcpy(m_string, “”);

}

String(char* p_string)

{

strcpy(m_string, p_string);

}

bool operator== (String& p_right)

{

return !strcmp(m_string, p_right.m_string);
}

};

You’ll note first that the string is very primitive; it is limited to 64 characters (63
plus the NULL terminator). I did this for simplicity’s sake; I’d rather not get into the
complex pointer manipulation involved in more complex classes for such a simple
demo.

There are two constructors. The first one takes no parameters and sets the string to
an empty string.

The second constructor takes a char* as a parameter and copies it into the string.
This structure allows you to do things like this:

String str(“hello!”);

The third function is the most important. It is an overloaded comparison operator
(if you are not familiar with operator overloading, please read Appendix A). This

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 237

237Application: Using Hash Tables to Store Resources

allows you to compare two strings using the == operator, and it will return true or
false. For example:

String str1(“hello!”);
String str2(“Hey!”);
if(str1 == str2)

// strings are equal
else

// strings are unequal

The demo uses a slightly modified StringHash algorithm, which I discussed earlier.
The only change is that the function works with the String class instead of char*s
now. There is no need to list the code here.

Using the Table

You will be using the String class as the keys for the resources. For this demo, the
only resources you will be using are graphics, so the SDL_Surface* will be the
datatype.

HashTable< String, SDL_Surface* > g_table(7, StringHash);

The table is seven cells in size because I’ve included seven bitmaps with the demo.

Whenever you want to add a bitmap into the table, all you need to do is this:

g_resource = SDL_LoadBMP(“sky.bmp”);
g_table.Insert(“sky”, g_resource);

The first line loads a bitmap from disk into g_resource, which is a global
SDL_Surface*. The second line inserts the bitmap into the hash table with the name
“sky”. Now, all you need to do to load the sky bitmap again is to do this:

HashEntry< String, SDL_Surface* >* entry;

entry = g_table.Find(“sky”);

if(entry != 0)

g_resource = entry.m_data;

The hash table quickly finds the resource you asked for—almost instantly.

How the Demo Loads Resources

In the demo, there is a text box into which you can type resource names.
Whenever you type a name and press Enter, it calls this function:

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 238

238 8. Hash Tables

void Find()
{

String str(g_name);
HashEntry< String, SDL_Surface* >* entry;
entry = g_table.Find(str);
if(entry != 0)

g_resource = entry->m_data;
else

g_resource = 0;
}

The g_name variable is a char* that contains the string that is in the text box. The
function creates a String and copies the contents of the text box string into it and
then creates a HashEntry. The function then searches the table and sets the
g_resource variable if the resource was found.

Playing the Demo
The demo is quite simple. Figure 8.9 is a screenshot from the demo in action.

Figure 8.9

This is a screenshot
from Game
Demonstration 8-1.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 239

239Conclusion

When the demo starts out, there is a text box in the upper-left corner of the screen
and nothing else. You type the name of a resource into the text box and press
Enter, and the requested resource will be drawn on the screen.

The valid resources for this demo are sky, water, water2, fire, snow, vortex, and stone.

Conclusion
I hope that you’ve gotten a good idea of what hash tables are and what they’re
good for. Essentially, they have the fastest known search time of all data structures
in existence. Most databases use hash tables or variants of them.

Table 8.3 shows a listing of the speeds of the various hash table functions.

Function Best Case

O(c) O(c)

Find O(n) c)

O(n) c)

Table 8.3 Hash Table Function Speeds
Worst Case

Insert

O(

Remove O(

Keep in mind that these figures are only for the linked hash table. You could tech-
nically replace the linked list with an array, but that would either slow everything
down or take up more space. That is because you cannot be sure how many cells
each array will have when you create the array. I’ve never seen a hash table imple-
mented this way, so don’t worry about it.

Keep in mind that the worst-case figures there rarely happen if you have a good
hash function. The best-case figures happen more often than not if your hash func-
tion produces few collisions.

If done correctly, hash tables offer potentially instant search times.

Team LRN

Data Structures CH08 11/5/02 8:37 AM Page 240

This page intentionally left blank

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 241

CHAPTER 9

Tying It
Together:

The Basics

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 242

242 9. Tying It Together: The Basics

Congratulations! You have just finished reading about all of the basic data struc-
tures. Each of the previous chapters introduced you to a new data structure,

showed you how it worked, and gave you an example of how it works in computer
games. Most of the advanced chapters in this book make use of the structures from
this part of the book, so it is a good idea to be well acquainted with them.

This chapter, however, goes over a different sort of data structure topic: how to cre-
ate classes for things in your games.

Learning about data structures isn’t just about learning which container classes are
good in which circumstances. You should also know a little about how to design the
classes in your game so that you can store game data efficiently.

In this chapter, you will learn:

■ How to use classes
■ How to make your games bug safe by hiding data
■ How to make your games flexible by using inheritance
■ How to use virtual functions
■ What the different types of inheritance are and how they work
■ What Real-Time Type Information (RTTI) is
■ How to enable RTTI in Visual C++
■ How to avoid using RTTI
■ How to design a simple adventure game
■ How to make a map editor for the adventure game

Why Classes Are Good

What is a game? Most games are reality simulators, which try to simulate aspects of
the real world. So what is the most logical way to store data in a game, then? It
makes sense to store all of your data in classes that represent the nouns of your
world (a noun in English is defined as a person, place, or thing).

Each one of these nouns can perform tasks, called verbs (a verb in English is defined
as a word that describes an action).

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 243

243Storing Data in a Class

In programming, classes are nouns, and their functions are verbs. You can take the
English sentence:

The hero hits the monster!

And turn that into code:

Hero.Hit(Monster);

This is one aspect of object-oriented programming (OOP). In the past, game developers
have typically avoided OOP because early implementations were slow and game
developers wanted to squeeze every bit of speed out of their games to push the lim-
its. Games like DOOM ran on a 386 with no problem because the programmers at
i.d. software used some assembly language (ASM)and a lot of low-level C code to pro-
gram the game. Assembly language is a very basic kind of computer language
where you actually control each individual instruction that the computer will exe-
cute. When a compiler compiles your C or C++ code, it turns it into assembly.

Even though DOOM was mostly C code, the assembly was there in a few parts. See,
way back in the bad old days of the early 1990s, it was a good idea to write parts of
your code in assembly language, especially the parts that would be executed many
times. Compilers back then weren’t too smart, and people like John Carmack and
Michael Abrash (the people who programmed DOOM) found clever ways to make
their assembly language faster than the code the compiler would produce.

Back then, games were relatively simple. You could get away with writing in C and
ASM because the programs were not large and complex.

Using ASM in games has now died out completely because processors have gotten
very complex, and compilers almost always produce faster code than you could pro-
duce by hand.

However, C is still used a lot in game programming, but more and more people are
learning how C++ can make game programming much easier and flexible.

OOP is a very natural way of representing games because you naturally think in
terms of objects and verbs.

Storing Data in a Class

Before classes (and structures—for the purpose of this chapter, whenever I refer to
classes, I mean structures as well) were around, all you could use to store your data
in was global memory. This method is shown in Figure 9.1.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 244

244 9. Tying It Together: The Basics

Figure 9.1

This is how
programmers used to
store data globally.

With this method, you stored each variable globally, and whenever you wanted to
add a new monster or player, you would have to add new variables for each one
and find a new name that was available. This isn’t very flexible.

After global memory came arrays. Arrays made things easier, as you can see in
Figure 9.2.

Figure 9.2

Arrays allowed you to
keep better control of
your variables.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 245

245Storing Data in a Class

Now you can reference each monster’s statistics by its number in the arrays. But
this method also has problems; what happens when you want to add a new variable
to the monsters and players? Then you have to find the array declarations and add
a new array for each.

Enter classes, as seen in Figure 9.3.

Figure 9.3

Classes allow you to
make your games
even more flexible.

Now, both the player and the monster use the same class, and whenever you want
to change the class, all of the monsters and players will automatically use the
changes.

Hiding Data

I hear this question almost on a daily basis: “Why the hell would I want to hide my
data?!” There are many reasons for this.

Implementing a Class with No Data
Hiding
Take this simple class, for example:

class Person
{
public:

int m_health;
int m_score;

}; The public

the class.

NOTE
keyword means that any-

one can modify and read the data in

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 246

246 9. Tying It Together: The Basics

Now imagine a simple game where you gain points whenever your health increases
and lose points whenever you lose health. While coding the game, you put this
sequence of code in all over the place:

player.m_health -= damage;
player.m_score -= damage;

In other places, you put this segment of code:

player.m_health += bonus;
player.m_score += bonus;

And for a while, that works. Whenever your player gets health, his score goes up,
and whenever your player loses health, his score goes down.

Imagine that you change your mind a few days later (you never change your mind,
do you?) and decide that you want to double the amount of points the player gets
or loses when his health changes.

This means that you have to manually find every place in your code where you
modified the score. If you did it many times, I guarantee that you will miss one,
and you will end up with a hard-to-find bug.

Even worse, what happens if you forget to add or subtract the score once when you
are modifying the health? That’s another hard-to-find bug right there!

Implementing a Class with Data Hiding
In the previous example, anyone was free to go in and mess around with the data
in the class. This is generally a bad thing because it can cause many small mistakes
to appear in your game.

Now, imagine if you re-implemented that class using data hiding:

class Person
{
private:

int m_health;
int m_score;

public:
int GetHealth() { return m_health; }
int GetScore() { return m_score; }
void ChangeHealth(int p_change)
{

m_health += p_change;

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 247

247Storing Data in a Class

m_score += p_change;
}

};

The functions that read and write to
hidden variables are called accessor func-
tions because they access the data.

“But that code is so much longer!” says
the nay-sayer. Yes, that’s correct. But what would you rather do: spend an extra
minute typing out accessor functions or spend an extra few hours tracing down a
bug? I thought so.

The private
nothing inside a class can be accessed

NOTE
keyword makes it so that

from outside of the class. Class data is
always private by default.

“But that code is also slower!!” Yes, correct again. However, you can easily speed the
code up so that it is just as fast by using the inline keyword. See Appendix A, “A
C++ Primer,” if you are unfamiliar with inlining functions.

Now, whenever the player’s health is changed, this function is called:

player.ChangeHealth(-damage);

or

player.ChangeHealth(bonus);

First of all, using the function is much cleaner in the code because you can tell that
the health is being changed by the name of the function. Second of all, you don’t
care how the health is changed, you only care that it is changed. You trust the
Person class to take care of all the little details for you automatically.

For example, your game has been going along nicely, but you’re getting bored and
want to add new features, so you decide that you want to add a speed variable to your
player, which determines how fast the player can move. Naturally, if your player is at
full health, he can move fast, but if he’s almost dead, then he can barely move.

class Person
{
private:

int m_health;

int m_score;

int m_speed;

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 248

248 9. Tying It Together: The Basics

public:
int GetHealth() { return m_health; }
int GetScore() { return m_score; }
int GetSpeed() { return m_speed; }
void ChangeHealth(int p_change)

{

m_health += p_change;
m_score += p_change;
m_speed = m_health / 10;

}
};

The three lines in bold show the differences in this class from the previous version.
The speed will always be the health of the player divided by 10, which is an arbi-
trary number that doesn’t really mean anything in this example.

So, now you can see how much more flexible your games can be if you use data
hiding. In fact, there are a few more things you may want to implement in this
ChangeHealth function, such as a health cap, which limits the maximum amount of
health you can get, or a death detector, which detects if the health goes below 0 and
acts upon that.

Every time you make a change to what the class does inside of the class, you are sav-
ing yourself lots of pain and bugs.

Inheritance

Inheritance is one of those subjects that no one likes. Unfortunately, it is also a very
cool feature to use, but only when used correctly.

So what is so neat about inheritance? If you don’t know too much about it already,
here is a little primer.

Think about a dog for a moment. A dog is-a mammal. A mammal is-a vertebrate
(something that has a backbone or spine), and a vertebrate is-a living thing.

The key to inheritance is the is-a relationship. Whenever something inherits from
something else, it is said to be a more refined version of the base. Figure 9.4 shows
an incomplete inheritance tree for living things.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 249

249Storing Data in a Class

Figure 9.4

This is an incomplete
inheritance tree of
some common living
things.

Both the vertebrates and the invertebrates inherit from the living things category;
that is, they share some of the same aspects. Fish and mammals inherit from the ver-
tebrates category, and all fish and mammals share the vertebrate properties: They
have backbones.

It goes even further than that. Cats, dogs, and humans all inherit from the mam-
mal category; we all share similar respiratory systems and have hair.

Things that inherit from other things are said to be children. Dogs and cats are chil-
dren of the Mammals category. Likewise, mammals are called the parents of the
dogs and cats.

So what does inheritance mean for a game?

Think about the objects in your game and see if you can figure out an inheritance
tree. Figure 9.5 shows a simple one I made for this book.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 250

250 9. Tying It Together: The Basics

This is a game object

Figure 9.5

inheritance tree.

The Object Class
So how does this actually help you program a game? Look at this simple class out-
line for the Object class:

class Object
{
public:

virtual void Draw() { Draw(g_screen, blank, m_x, m_y); };

int GetX() { return m_x; };

int GetY() { return m_y; };

int SetX(int p_x) { m_x = p_x; };

int SetY(int p_y) { m_y = p_y; };

protected:
int m_x;
int m_y;

};

Ignore the Draw command for a moment;
I get into that in a bit. Look at the x and
y variables. Every object in the game will
have an x and a y coordinate represent-
ing its position on the game map.

The protected
same as the private

cannot access private members of

NOTE
keyword is almost the

keyword.The
difference is that inherited classes

their parents, but they can access
protected members.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 251

251Storing Data in a Class

For example, within the game, you will
declare an array of objects:

Array<Object*> g_objects(OBJECTS);

After this, you will fill the array with
objects, but don’t worry about that for
now; I show you how in a bit. For now,
just assume that the array is full of
object pointers.

NOTE
For reasons that I explain in a bit,
you are required to use pointers in
order to take advantage of the bene-
fits of inheritance.

Now, whenever you want to read or change the coordinates of any object, you just
do this:

g_objects[object].SetX(x);
g_objects[object].SetY(y);

And so forth.

Well, now you have an object class that is only capable of storing coordinates. What
use could that be?

Virtual Functions
The Draw function of the Object class has a funny word in front of it: virtual. This
word essentially means “this function is valid for this class, but inherited classes may
change what this function does.”

See, the object class has a Draw function, and this function draws a blank bitmap
onto the main screen, which isn’t what you want. Later on, when other classes
inherit from the Object class, they will re-implement this function so that it works
properly.

Pure Virtual Functions
When you look at the implementation of the Draw function and you see that it
draws absolutely nothing, you should be thinking to yourself, “Why bother?”

That’s a good way to think, because you know that the sub-classes (classes that
inherit from the parent class) will just implement their own method of drawing.

So, instead of wasting your time writing a function that does nothing, you can
declare the function as pure virtual, which means that it will not have an implemen-
tation in this class and it will definitely be redefined in later classes.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 252

252 9. Tying It Together: The Basics

Here is how you redefine the Draw function to be pure virtual:

virtual void Draw() = 0;

The = 0 part is what makes it pure. This says, “This function is empty, but sub-
classes will implement it for me.”

However, there is one gotcha, which is either good or bad, depending on how you
look at it. None of these lines of code will compile:

g_objects[0] = new Object;

Object obj;

Array<Object> objectarray(OBJECTS);

The compiler will stop and say: Cannot instantiate class Object due to the fol-
lowing pure virtual members: void Draw().

Because these classes have pure virtual functions, they cannot be used directly.
These classes are called abstract classes because they don’t actually exist. Instead,
these classes describe what can be done (called the interface) and let other classes
actually implement these features (the implementation).

Why Do You Need to Use Pointers?
When you think about a class in a computer program, it is just a chunk of memory.
For instance, you have a class named Item, and you create three of them, as shown
in Figure 9.6.

Figure 9.6

Here are three
instances of the
Item class. Each
instance holds its
own data, but the
functions used on
that data are all
stored in one place in
memory.

Whenever you create a new instance of the Item class, a new chunk of memory con-
taining the data of that class is created. What happens when you add functions to
that class? Is the actual function code added to each class so that every instance of
the class has its own code representing the functions? (See Appendix B, “The

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 253

253Storing Data in a Class

Memory Layout of a Computer Program,” if you are unfamiliar with how instruc-
tion code is stored in a computer.)

This is a wasteful approach. The actual code for the functions is never changed, so
why should each instance of a class have its own code? Instead, the code is stored in
one single place in memory, such as the last box in Figure 9.6.

Now, whenever you make a function call in a program, the compiler actually does
something neat. Imagine that the Item class has a function called Draw for a
moment:

Item one;
one.Draw();

Whenever the compiler sees this, it manually translates it into what actually hap-
pens in the computer. (This code will not actually work if you type it in, but it is
theoretically what happens.)

Item one;
Item::Draw(&one);

Whenever the compiler creates a class function, it adds an extra parameter: a

pointer to the class that the function is a part of. Therefore, an instance of the Item

class is actually passed into the function as a pointer. (You can access that pointer

by using the this keyword. See Appendix A for more information.)

Now, enter inheritance. When you pass an object into a function, the function

needs to know how to access the data and call the functions.

If the Item class inherits from the Object class, Figure 9.7 shows how the Object

functions work with this.

Figure 9.7

This is how the Object
functions view Objects
and Items that are passed
into it.The function cannot
see the extra Item
variables.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 254

254 9. Tying It Together: The Basics

If you pass by value an Object into a function that wants an Object, there is no prob-
lem. This is because the entire Object is placed onto the stack (see Appendix B).
However, what happens when you pass an Item into the function, instead of an
Object? In that case, the entire Item is copied onto the stack as well, but there is a
problem. Items are larger than Objects, so they occupy more room on the stack.
This messes up the entire function because it accesses parts of the Item, thinking
that they are something different.

Whenever you try to pass by value an Item into a function that expects an Object,
the compiler gives you an error. Instead, you must use pointers because they always
take up the same amount of room on the stack. Whenever a function accesses an
Item or an Object, it gets the address of the object, finds the address of the item it
wants to access, and uses that, instead of a value on the stack.

How Virtual Functions Work
Virtual functions are quite complex, and you might wonder how they work. When
you use non-virtual inheritance, every inherited class executes the same code when-
ever a single function is called. Therefore, an Item and an Object both execute the
same code for non-virtual functions. However, if you have a virtual function, such as
the Draw function, the actual code that is called can be changed depending on what
kind of class it is.

In this section, I will explain non-pure virtual functions.

As soon as you add one virtual function to a class, a virtual function table is added to
each instance of the class. This table is essentially a table of function pointers (see
Appendix A) that point to a function. Figure 9.8 shows this.

Figure 9.8

A virtual function
table is added to
each class instance
whenever a virtual
function exists in the
class.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 255

255Storing Data in a Class

Now, whenever you create an instance of the Object class, it has one virtual function
entry, for the Draw function, and it points to the Object’s drawing code.

Whenever you create an Item, it fills in the table entry with a pointer to the Item’s
drawing code, as shown in Figure 9.9.

Figure 9.9

Each instance of a
class points to the
function code it will
execute.

Now, whenever you call the Draw function of an Object or an Item, it will derefer-
ence the pointer in the virtual function table and call the function at that address.
There is a little overhead associated with the function calling because you need to
dereference the pointers first, but not much.

Because a class with a pure virtual function cannot be instantiated, the virtual func-
tion pointer table will always hold a valid pointer.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 256

256 9. Tying It Together: The Basics

The Item Class
Now you should think about what kinds of data you want to store in an item class.
For demonstration purposes, the only new thing that the Item class will have is a
graphic (using the SDL_Surface class—see Appendix C, “Introduction to SDL”).

class Item : public Object
{
protected:

SDL_Surface* m_graphic;
public:

void Draw()
{

SDLBlit(g_screen, m_graphic, m_x, m_y);

}

void SetGraphic(SDL_Surface* p_graphic)

{

m_graphic = p_graphic;
}

};

On the first line, the class is declared as an Item, and it inherits from the Object
class.

Inheritance Types
The public keyword in the first line deals with the type of inheritance you are
using. You will almost always use public inheritance when inheriting classes. Table
9.1 shows a listing of the different types of inheritance and who can access which
types of variables in the base class.

Class Can Use Others Can Use

Public public

Private none

Table 9.1 Inheritance Types
Inheritance Type

public, protected

public, protected

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 257

257Storing Data in a Class

Figure 9.10 shows the relationship between a base class, a publicly inherited class,
and some other class or function accessing the other two classes. The child class
can access all of the public and protected members of the base, but private mem-
bers are hidden. Other classes and functions can access the public members of the
child class, and they can access the public members of the base class as well.

using public

access the
public and

only public

Figure 9.10

This figure
shows how
classes can
access different
class members

inheritance.The
child class can

protected
members of its
parent, and the
other unrelated
class can access

members of
both the child
and the parent.

So what this means is that not only can you use the Draw and SetGraphic functions
of the Item class, but you can also use the GetX, GetY, SetX, and SetY functions of the
Object class!

If you used private inheritance, though, things would be different. Figure 9.11
shows the relationship between the classes in private inheritance.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 258

258 9. Tying It Together: The Basics

Figure 9.11

This figure shows
how classes can
access different class
members using
private inheritance.
The child class can
access the public and
protected members
of its parent, but the
other unrelated class
can only access the
public members of
the child. External
classes do not know
about the parent.

In private inheritance, the child class
has access to the public and protected
members of the base class, but outside
classes and functions no longer have any
access to any members of the base class.

If you inherited the Item class from the
Object class using private inheritance,
you would not be able to use the GetX,
GetY, SetX, and SetY functions outside of
the Item class.

The Person Class
Now, think of the kinds of things you want in a player class. Every person in the
game must have some sort of health indicator, right? How about an inventory of
items, too?

class Person : public Object
{

NOTE
Private inheritance has its uses, but
they are very limited, and it’s not
often used (I’ve only used private
inheritance once before). I included
it here for completeness so you
won’t be confused if you see it used
elsewhere. Nothing in this book uses
private inheritance.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 259

259Storing Data in a Class

protected:
int m_health;
Item* m_inventory[16];
SDL_Surface* m_animation[16];
int m_currentframe;

public:
Person()
{

int i;

for(i = 0; i < 16; i++)

{

m_animation[i] = 0;

}

m_currentframe = 0;

}

int GetHealth() { return m_health; };

void SetHealth(int p_health) { m_health = p_health; };

Item* GetInventory(int p_index)

{

return m_inventory[p_index];

}

void SetInventory(int p_index, Item* p_item)

{

m_inventory[p_index] = p_item;

}

void SetFrame(int p_frame, SDL_Surface* p_graphic)

{

m_animation[p_frame] = p_graphic;

}

void Draw()

{

SDLBlit(g_screen, m_animation[m_currentframe],
m_x, m_y);

}

void SetFrame(int p_frame) { m_currentframe = p_frame; };

int GetFrame() { return m_currentframe; };

};

This is getting somewhat complex, isn’t it? The Player class adds four new variables:
a health, an inventory array, an array of graphics, and a frame counter. The health

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 260

260 9. Tying It Together: The Basics

is easy to set and get, using the two
accessor functions near the top, but the
inventory array is a little bit more diffi-
cult to use.

The inventory array is limited to 16
items and has two functions to retrieve
or insert items at the various indexes.

Keep in mind that this class is just a
hypothetical class and not something
that you should use in a real game. The graphic array is limited to 16 different
graphics.

I chose not to use the Array class in

NOTE

this demonstration because it would
actually confuse things a little bit, as
it is resizable and requires a complex
constructor. I just want to focus on
the general class structure for now.

Person
Item

Person

NOTE
In real life you would probably want the graphic array at a variable size,
depending on the kind of artwork you use. Or, if you are not even using 2D, you
would have the 3D representation of the class stored there.The point I
am trying to make with this class is that s are usually stationary objects
and require only one graphic, and s are usually animated objects and
require a more complex representation in the game world.

Using the Classes in a Game

Now that I have showed you three very basic classes, I want to show you how they
are used within a game.

First, let’s say you keep one large array of Objects:

Array<Object*> g_objects(1024);

This array can store up to 1024 objects. Now, throughout the game, you fill up the
array with people and items:

g_objects[0] = new Person;

// set up the person here

g_objects[1] = new Item;

// set up the item here

// continue adding persons and items...

Now, this is your global array of items. What is so neat about it? What happens if
you want to draw every item in your game?

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 261

261Storing Data in a Class

int i;

for(i = 0; i < g_objects.Size(); i++)

{

if(g_objects[i] != 0
g_objects[i].Draw();

}

This little function draws every single object in the game (if it exists), and it doesn’t
care how it is drawn! The Item class and the Person class theoretically draw in two
totally different ways, and your renderer doesn’t even care! This is the power of
inheritance.

The Object class says to you: “Every single child of Object will know how to draw
itself.”

Using the Child-Specific Features
Unfortunately, there is a flaw using this method to store data in the game. Say you
know that you put a Person into index 0 of the g_objects array and you wanted to
change his health.

You would think that you could do this:

g_objects[0].SetHealth(100);

This line will not compile; the compiler will complain that the SetHealth is not a
member of the Object class! Now, before you call your compiler stupid and kick it
to death, you should know that the compiler is right; the Object class does not have
a SetHealth function. See, the compiler looks at everything in that array and sees
them all as Objects and not their actual classes.

The compiler doesn’t know that the Object in index 0 is actually a Person, so you
have to tell it that. Telling the compiler this, however, is an ugly process.

The first thing you need to do is make sure your compiler supports a feature called
Run Time Type Information (RTTI). Most newer compilers do. Microsoft Visual C++
supports this feature, but it is not enabled by default. Instead, you need to turn it
on manually.

Enabling RTTI in Visual C++

Figures 9.12 and 9.13 show screenshots of the menus you should go to. First, open
your project and go the Project menu and select Settings. Next, make sure the
Settings For field says All Configurations, and then switch to the C++ tab. In the

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 262

262 9. Tying It Together: The Basics

Category field, select C++ Language. Finally, click on the box that says Enable Run-
Time Type Information (RTTI).

Figure 9.12

Go to the Project
menu, and then
select the Settings
option.

Figure 9.13

These are the
settings you need to
have enabled to use
RTTI.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 263

263Storing Data in a Class

Now your project is set up to use RTTI,
which is what you need to use to tell
your compiler that an Object is really a
Person.

Using RTTI

Now, say that you know that the first
item in the item array is a Person. This is
the “correct” way to convert it into a
Person class:

Person* p = 0;
p = dynamic_cast<Person*>(g_objects[0]
);

This code makes use of a new keyword
called the dynamic_cast operator, which
is the “safe” way to convert a parent
class into a child class. If everything was
successful, p is now a valid Person, and
you can change his health. This process
is called down-casting.

What happens if that index wasn’t actu-
ally a Person, but an Item instead? Say
you did this:

g_objects[0] = new Item;

Person* p = 0;

p = dynamic_cast<Person*>(g_objects[0]);

a pointer to an Object

p =
g_objects[0]

g_objects[0] is a Person

NOTE
Why do you need to specifically
enable RTTI in Visual C++? The
designers of the compiler feel that
RTTI is a very slow feature and
should only be used sparingly, and
they are correct. I deal with this
matter later.

NOTE
You’re not actually converting data
at all.What you are doing is copying
the pointer over into a new pointer
so that the compiler knows what
features it has. Both pointers point
to the same exact data, except that

doesn’t know
about all the extra data that is in the
class. If you tried just saying

, the compiler would
complain because it doesn’t know if

or not yet.
This is for your safety, which I will
show you in a bit.

What does p contain? Because you tried converting an Item into a Person, the
dynamic_cast operator detects this and just returns 0 instead of a valid pointer. This
prevents you from accidentally trying to turn an Item into a Person or vice versa.

Another Way, Without RTTI

There is another way to convert parent classes into child classes, but you must be
absolutely certain that the classes are what you think they are, or you will get some
very bad bugs.

This method doesn’t use RTTI and is much faster, but much less safe, too:

Person* p = (Person*)g_objects[0];

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 264

264 9. Tying It Together: The Basics

This is just the standard C typecasting method; the compiler will treat any object in
that array as a Person after this line, even if it isn’t a person!

Figure 9.14 shows the representation of the Item and the Person classes in memory.

Figure 9.14

This is the memory
representation of the
two classes. Only the
first two variables,
the x and the y
coordinates, are
shared between
them.

Both classes have their coordinates in the same place because they inherit from the
Object class, but the similarities end there.

When you accidentally treat an Item as a Person and then try accessing something a
Person has but an Item doesn’t, you end up with a big error. Look at where the
graphic and the health data members are for each class. Look at this code, for
example:

g_objects[0] = new Item;
// fill in item information

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 265

265Making a Game

Person* p = (Person*)g_objects[0];
p.SetHealth(100);

This sets up an Item in the first index and then treats it as a Person and modifies the
health of the Person. There is one problem: You’re trying to modify data that does-
n’t exist! When you modify the health of this fake player, the function changes the
data in the place in memory where the health should be if it were a player, which is
the same place where the Item class stores its graphic pointer!

So when you do this, you’re modifying the pointer of an Item graphic and not the
health of a player.

It gets even worse. What happens when you try to modify the inventory or the ani-
mation pointers of this fake player? The Item class doesn’t even have memory down
there, so you have no idea what you are reading or writing over!

Finding bugs caused by this kind of programming is next to impossible.

Tips
So it seems that both methods have catches, and neither one seems to be a clear
winner. The unsafe method is much faster, but can lead to disastrous bugs. The safe
way is very slow, however, and you really don’t want to be doing stuff like that in a
game.

I’ll leave you off with a few tips. First of all, inheritance is a very complex subject,
one that takes many years to master. I have kept inheritance usage in this book to
an absolute minimum, and almost none of the chapters use it. If you didn’t really
understand what this section is about, don’t worry about it; almost no one under-
stands it right away.

If you find yourself needing to down-cast your classes a lot, then that is a sign that
your design is inefficient. Inheritance is a very neat feature that allows us to reuse
code, but you should only use it when it makes sense. I will show you a more
proper example of how to use inheritance in the next section.

Making a Game

The rest of this chapter is concerned only with making a simple tile-based game
using the data structures from this part of the book and the design techniques dis-
cussed in this chapter.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 266

266 9. Tying It Together: The Basics

The game demo is pretty complex, and it is the largest game demo in the book so
far. All of the source code for this entire section is on the CD in the directory
\demonstrations\ch09\Game01 - Adventure v1\ .

Compiling the Game

This game uses the SDLHelpers library that I have developed for the
book. For more information about this library, see Appendix B.

To compile this game, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Adventure: Version One

The game is called Adventure: Version One. The name isn’t very imaginative, but
remember, this is a demonstration. The game will be upgraded and expanded in
later chapters of the book after you learn more-complex data structures and algo-
rithms (see Chapters 16, “Tying It Together: Trees,” 19, “Tying It Together:
Graphs,” and 24, “Tying It Together: Algorithms”).

Designing the Base
The first thing you are going to do when designing a game (after you’ve already
figured out what genre and what motif you will be using) is to lay out the major
classes that will be used in the game.

When designing a game, it always comes down to this: How will you store the data?

To find this out, you need to first think about what kind of objects (things) you will
have in the game. In this game, which is relatively simple, there are Items, People,
Maps, and Cells.

After you decide on objects, you need to figure out the relationships between
the Items.

Items represent non-animated things that sit on the ground (armor, weapons).
People represent animated creatures that can move around on a map and pick up
items on the ground. Maps are a collection of Cells, and Cells hold Items or People.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 267

267Making a Game

It usually helps to draw a diagram so you can visualize the relationship between the
objects, like Figure 9.15 shows.

Figure 9.15

This is a simple class
relationship diagram.
The arrows show
which classes contain
others.

At the top of the chain is the map class, which will be the basis of the game. The
map is made up of a bunch of cells, and each cell can contain an item and a per-
son. Furthermore, the person will know about items and will have items in its
inventory.

When you have worked out the general design, you can then focus on one of two
design methods: bottom-up design or top-down design.

When you start at the top, you decide what features the top classes will need and
work your way down. I prefer this method over bottom-up design because it gives
you a greater sense of the whole game.

At this point in the design, you should be thinking more about what your game will
do rather than how to do it. Therefore, you shouldn’t be thinking about code at all
at this point.

The Map
Because the first design already contains cell structures, you might have guessed
that I am designing a tile-based map structure. Each cell will be a tile, and these
tiles will be pieced together to form the entire map.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 268

268 9. Tying It Together: The Basics

Until now, the only tile arrangements you have seen in this book are 2D (and 3D)
tilemaps (in Chapters 5, “Multi-Dimensional Arrays,” and 6, “Linked Lists”), so it
would make sense that this is the kind of tilemap that the game will use.

However, I want to show you an example of good data structure design, so when
designing the map, you should not assume that the cells are arranged in any spe-
cific manner right now. Instead, you want to design the class with these parameters
in mind:

■	 You can access each cell in the map by an index.
■	 Each cell also has x and y coordinates.
■	 Each cell can hold one item and one person.
■	 You can move in four directions from each cell (north, east, south, west).
■	 The map can draw itself on the screen.
■	 The map should know which cells are blocked.
■	 The map should know the direction any person should move to get closer to

another person.
■	 The map will have a viewer, which is a person that determines where the map

is drawn on screen.

The Map class will be abstract and virtual, meaning that it will not have a specific
implementation defined. This means that the Map class for this game demo will
define what the map can do with the map, but not how it is done. This is an impor-
tant point for expandable structure design, and the reason for this method will
become completely obvious in Chapter 19, when a new Map class is added and seam-
lessly weaved into the game project.

The Cells
Although the Cell class is integral to the layout of the map, it is still only a concep-
tual class at this point in time. As a programmer, when accessing the map, you
won’t be touching the cells directly. Instead, you will tell the map what to store in
each cell, and so on. Therefore, you really shouldn’t be thinking about the cells too
much at this point.

The Items
The items in the game won’t be too complex. There are two major types of items:
weapons and armor. None of these items are animated, so each item will need to
hold only one graphic. Items should also know which cell and what coordinates

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 269

269Making a Game

they are at in the map (this is thinking ahead; maybe someday you will implement
a system where you keep track of an item and where it is on the map).

If the item is a weapon, then you need two pieces of data about it: how long it takes
between attacks and how much damage it does. Some weapons are lighter than
others, so you will be able to attack with them more often than others.

If the item is armor, then it will have a strength to it, which determines how strong
the armor is.

The last thing an item can do is block a path. Some items, like trees and walls, can
block a cell on the map so that you can’t walk through it.

The People
People in the game are like items, only they are a lot more complex. Here is a list
of the attributes that a person can have:

The cell that the person is in

The x and y coordinates of the person

Health, 0-100

Armor, 0-100

The direction that the person is facing

A collection of items, representing the inventory of the person

Something that keeps track of the current item that the person is using

A bunch of graphics representing the person walking in each direction

Timers that keep track of when the person can attack or move next

A handicap, which determines how fast or slow the person is

Designing the Interfaces
After you compile a list of all of the features that your classes will use, you want to
create interfaces for them. Sometimes interfaces are called stubs, and they are basi-
cally just a list of all the functions you will be using for the classes.

The Map Interface
Here is a listing of the map interface (which is a condensed version of the class
found in the Map.h file; I’ve removed the comments because all of the functions
are pretty much self-explanatory here) :

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 270

270 9. Tying It Together: The Basics

class Map
{
protected:

Person* m_viewer;
public:

Map()
Person* GetViewer()
void SetViewer(Person* p_viewer)

virtual void Draw(SDL_Surface* p_surface,
int p_midx, int p_midy) = 0;

virtual bool CanMove(Person* p_person, int p_direction) = 0;
virtual void Move(Person* p_object, int p_direction) = 0;
virtual int GetCellNumber(int p_cell, int p_direction) = 0;
virtual Item* GetItem(int p_cell) = 0;
virtual void SetItem(int p_cell, Item* p_item) = 0;
virtual Person* GetPerson(int p_cell) = 0;
virtual void SetPerson(int p_cell, Person* p_person) = 0;
virtual int GetNumberOfCells() = 0;
virtual int GetClosestDirection(Person* p_one, Person* p_two) = 0;

};

The first three functions are non-virtual. It is assumed that every map will have a
person as a viewer, so it is safe to implement the viewer functions in the Map class.

Every other function, however, depends on the implementation of the map and is
not actually implemented in the Map class.

The Draw function draws the map on the given surface, treating the p_midx and
p_midy variables as the midpoint of the screen.

The CanMove function determines if a person can move in the selected direction.
When it has been determined that he can move, you can then call the Move func-
tion to actually move the person.

The GetCellNumber function gets the number of an adjacent cell to the given cell
number. If the function returns -1, there is no valid cell in that direction.

The GetClosestDirection function, when given two Person pointers, will find the
direction that the first person needs to move to get closer to the second person.

The rest of the functions are used to get and set items and people in various cells
and get the number of cells in the map.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 271

271Making a Game

Now, look at the interface of the map. Does it reveal anything about the actual
implementation of the map? Does the setup say that you have to use a 2D array for
the tilemap? It doesn’t, and that is the beauty of such a system; you can swap out
many different kinds of maps and the game engine that uses this map interface will
not need to be changed at all. This feature will be demonstrated in far more depth
in Chapter 19.

The Object Interface
Look back to the requirements of the Item and Person classes and see if you can
find any similarities between them.

Notice how they both have three variables in common: The x, y, and cell coordi-
nates. Using this idea, you can see that these two classes are clearly related some-
how in that they are both stored on the map using the same coordinate system.

My original design for this game had both the Item and Person classes being inher-
ited from the same base class, and each cell on the map would contain a pointer to
this Object class. However, after dissecting the design, I ended up concluding that
this wasn’t a very good way to run the game. The game needs to frequently tell the
difference between items and people so that a person doesn’t try picking up
another person or an item doesn’t pick up a person. It turns out that making the
map only store things as generic objects might make your game a little more flexi-
ble (yes, it would be cool to treat everything as objects so you can attack items and
people at the same time, but in a game interface, it doesn’t add much to the game-
play), but it requires a significant amount of work.

So instead of the map being class-agnostic, it specifically knows about items and
people. However, because both classes share the same coordinate system, it makes
sense to create one base class that implements these features, and the Item and
Person classes will inherit from them:

class Object
{
protected:

int m_x, m_y;
int m_cell;

public:
Object()
{

m_x = 0;
m_y = 0;

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 272

272 9. Tying It Together: The Basics

m_cell = 0;
}
int GetCell() { return m_cell; }
void SetCell(int p_cell) { m_cell = p_cell; }
int GetX() { return m_x; }
void SetX(int p_x) { m_x = p_x; }
int GetY() { return m_y; }
void SetY(int p_y) { m_y = p_y; }

};

The benefit of having a class such as this is that it is easily expandable. Of course,
having six functions to read and write three variables seems kind of stupid, but
remember what I told you at the beginning of the chapter: When you need to add
features to this class later on, you will be thankful that you did it this way.

Another benefit of this base class is that all items inherited from it get the same
implementation. If you decide to go 3D and add a z dimension, then you can easily
add that variable and its appropriate accessor functions.

The Item Interface
Now you need to design the functions to access your Item class. Using the require-
ments that you determined previously, you should come up with something like
this:

class Item : public Object
{
public:

Item();

int GetType();

void SetType(int p_type);

int GetSpeed();

void SetSpeed(int p_speed);

int GetStrength();

void SetStrength(int p_strength);

void SetGraphic(SDL_Surface* p_graphic);

SDL_Surface* GetGraphic();

void SetBlock(bool p_block);

bool CanBlock();

void SetArmor(bool p_armor);

bool IsArmor();

};

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 273

273Making a Game

There are functions to determine what type the item is (the game will have hard-
coded item types—6 is an axe, for example), the speed and strength of the item
(speed is ignored for armor types), the graphic of the item, whether it can block
your path, and whether it is armor or not.

The Person Interface
Last, there is the person interface. You need to figure out what a person can do,
given the requirements.

At this point, you know that this class isn’t abstract, so you should start thinking
about the implementation. You know that the Person class will have a collection of
items, so you need to think about how you are going to store those items. You
could simply go for an arrayed approach and limit yourself to a given number of
items. This method sort of makes sense because you, as a person, can only hold so
many items at any given time. Of course, the problem with this method is that
while you can probably only hold one large sword at a time, you can hold thou-
sands of feathers.

For a simple flexible system, why not use linked lists? Although linked lists aren’t
that great for items that are created and deleted a lot, they are perfect for some-
thing like an inventory.

Here’s the data listing for the class (which can be found in the Person.h file):

class Person : public Object
{
protected:

int m_health;
int m_armor;
int m_type;
int m_direction;
DLinkedList<Item*> m_inventory;
DListIterator<Item*> m_currentweapon;
SDL_Surface* m_graphics[DIRECTIONS][FRAMES];
int m_lastattack;
int m_lastmove;
int m_attackmodifier;

Now that you’ve seen the data in the class, here are the constructors, destructors,
and operators:

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 274

274 9. Tying It Together: The Basics

NOTE
Note that the class is defined entirely in-line.That means that the function
bodies are all in the .h file. For this listing, I have removed the function bodies,
so that you can see all the functions of the class listed in one place easily. So
the actual header file does not look like the code listing you see here.

public:
Person()
~Person()
Person(Person& p_person)
void operator= (Person& p_person)

The last two functions allow you to copy
a person over into another person,
essentially making a clone. However,
because the Person class is more com-
plex than other classes and stores
classes of other data types (the inven-
tory of items, in particular), you need
to make sure that the person is copied
over correctly (see Appendix A for
more information on copy construc-
tors).

void SetDirection(int p_direction
);

int GetDirection();
void SetPersonType(int p_type);
int GetPersonType();
void SetHealth(int p_health);
int GetHealth();
void SetArmor(int p_armor);
int GetArmor();
DListIterator<Item*> GetItemIterator();
void AddItem(Item* p_item);
int GetItemCount();
void NextWeapon();
void PreviousWeapon();
Item* GetCurrentWeapon();

shal-
and deep cloning

itemA =
itemB;

structor and an assignment operator

NOTE
The reason for the assignment oper-
ator and copy constructor has to do
with two copy methods called
low cloning . If you
don’t have a copy constructor or an
assignment operator, then C++ per-
forms a shallow clone on the class
whenever you do this:

.Whenever there are pointers
in that class, the value of the pointer
is copied over, so both objects point
to the same member object. If either
of the objects deletes it, then the
other object is in trouble. Because of
this, you should create a copy con-

that copy the class correctly.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 275

275Making a Game

void SetGraphic(SDL_Surface* p_graphic, int p_direction, int p_frame);

SDL_Surface* GetGraphic();

void SetAttackTime(int p_time);

int GetAttackTime();

void SetMoveTime(int p_time);

int GetMoveTime();

void SetAttackModifier(int p_modifier);

int GetAttackModifier();

All of the previous functions are accessor functions. They are all pretty much self-
explanatory, with the exception of a few. The GetItemIterator function will return a
DListIterator<Item*>, but the iterator will be pointing to the current item instead
of the start of the inventory. This is done this way because it is easier to use. If you
need an iterator at the start of the inventory, you can easily just reset the iterator.

The NextWeapon and PreviousWeapon functions move the current weapon iterator to
the next weapon or previous weapon in the inventory.

Whereas the SetGraphic function takes two parameters that determine which frame
and direction a graphic should appear in, the GetGraphic function doesn’t have any
parameters. This is to make drawing the sprite easier. Whenever the function is
called, it returns a pointer to the graphic that should be drawn at that point in
time. If the person is facing north, then this function will return the appropriate
graphic.

Finally, there are the more complex functions, which accomplish a lot of work:

void Attack(Person* p_person);
void GetAttacked(int p_damage);
bool IsDead();
void PickUp(Item* p_item);

};

The Attack function makes a person attack another person. The GetAttacked func-
tion is called whenever the person is attacked. The IsDead function determines if
the person is dead, and the PickUp function makes the player pick up an item. After
an item is passed into the PickUp function, you don’t have to worry about it any-
more; the player keeps track of the item from now on.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 276

276 9. Tying It Together: The Basics

Creating an Implementation for
the Map
Before you go any further, take a look at Figure 9.16. This figure shows an updated
class diagram for the game.

Figure 9.16

Here is the updated class
diagram for the game.

This is your game engine interface. The game logic module, which makes these things
actually work, will (theoretically) only know about these classes.

Now you want to actually create an implementation for the map. For this demo,
you are going to use a more complex version of the tilemap from Chapter 5. This
class is contained in the Tilemap.h file.

The Direction Table
In this game engine, you can move in four directions: north, east, south, and west.
Each of these directions is associated with a number from 0 through 3. North is 0,
east is 1, south is 2, and west is 3.

To make it easy to move around the map given an x and a y coordinate, you can
easily make a 2D array that contains offsets for each direction:

const int DIRECTIONTABLE[4][2] = { { 0, -1 },
{ 1, 0 },
{ 0, 1 },
{ -1, 0 } };

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 277

277Making a Game

This means that if you are moving north (direction 0), you add 0 to the x coordi-
nate and -1 to the y coordinate. This is usually accomplished like this:

x = x + DIRECTIONTABLE[direction][0];
y = y + DIRECTIONTABLE[direction][1];

The TileCell Class
Back in Figure 9.15, there was a Cell class, but somehow while I was designing the
overall design, the Cell class kind of disappeared. The reason it disappeared was
because the Cell class is more of an implementation-specific class rather than an
interface class. Besides, there really is no reason to give the user of the system
access to the Cell class; he should do everything through the Map class interface
instead.

However, now that you are implementing a tilemap, you need to create a Cell class
that will store information about each cell. Because each cell will hold a person and
an item, it obviously needs to contain pointers to these classes. Also, features of the
geometry may block certain cells, so there needs to be some way to tell if the cell is
blocked or not. Here is the class:

class TileCell
{
public:

bool m_blocked;
Item* m_item;
Person* m_person;

TileCell()
{

m_blocked = false;
m_item = 0;
m_person = 0;

}
};

“Wait a minute!” you might be saying. “You broke all of your accessor rules!” True.
However, this Cell class will be closely related to the Tilemap class, and the class is
simple, so the accessor functions aren’t entirely necessary.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 278

278 9. Tying It Together: The Basics

The TileMap Class Interface
Now that you are focusing on an implementation rather than an interface, you need
to start thinking about how you are going to store the data in the map.

For the graphics, a 3D array will be used so that you can use some cool layered
tilemapping effects. The cells in this array will store the index of the tile graphics,
which means that the graphics them-
selves will be stored in an array.

However, that is not all the information
you need. In addition, a 2D array will
store instances of the TileCell class
defined previously.

Granted, the TileCell class could have
contained a linked list of integers, so
you could store the tilemap like the
Game Demo 2 from Chapter 6, but this
method makes it easier to load levels
from disk.

Finally, there is one more piece of data
the Tilemap class keeps track of: an array
of graphics, which the tilemap will use
to draw its tiles.

Here is the code listing for the data in
the class, which is in the TileMap.h file:

LinkedTileMap
Map class,

NOTE
If you wanted to make a linked-layer
tilemap like the one from Chapter 6,
you can easily make a
class inherited from the
and the game logic wouldn’t care. As
long as the map does what its inter-
face says it does, everything will
work perfectly.

NOTE
Like the Person.h file, the non-virtual
functions of this class are imple-
mented in-line, so the header file
does not look exactly like this.

class TileMap : public Map
{
protected:

Array3D<int> m_tiles;
Array2D<TileCell> m_tilemap;
SDL_Surface** m_tilebmps;

The class inherits from the Map class and defines the three data members as speci-
fied previously. Now, here is a listing of the new functions that the TileMap class
adds:

TileMap(int p_x, int p_y, int p_z, SDL_Surface** p_tilebmps);

~TileMap();

void SetTile(int p_x, int p_y, int p_z, int p_tile);

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 279

279Making a Game

int GetCell(int p_x, int p_y);
void LoadFromFile(char* p_filename);

};

There is the constructor, which takes three coordinates: the width, height, and
depth of the tilemap. It also takes a pointer to an array of SDL_Surface pointers so
the tilemap knows which tiles to draw.

Then there is a destructor. This is important because the map keeps track of the
people and items on the map, and all of these people and items need to be deleted
when the map is deleted. The destructor does this.

The next function sets the graphic value of certain cells throughout the map. The
GetCell function gets the cell number of a pair of x and y coordinates, and last, the
LoadFromFile function does just what it says and loads a map from a file on disk.

The TileMap Class Implementation
Because the TileMap class is-a map, it needs to implement all of the pure virtual
functions that the Map class had, as well as its own functions. In addition, because
there are many plain accessor functions that do nothing more than directly set the
value of a member variable or return the value of a member variable, I will not
show the source for those functions here.

The Constructor

Here is the code for the TileMap constructor:

TileMap(int p_x, int p_y, int p_z, SDL_Surface** p_tilebmps)
: m_tiles(p_x, p_y, p_z), m_tilemap(p_x, p_y)

{
m_tilebmps = p_tilebmps;

}

This function uses the standard constructor member-initialization to construct the
3D and 2D arrays (if you are unfamiliar with this notation, please see Appendix A).
Then the m_tilebmps pointer (which points to an array of graphics, which represent
the tiles) is set to point to the array that was passed in.

The Destructor

The destructor, as I have said before, is very important to this class. The map con-
tains all of the people and items in the game, and when the map is deleted, these
should be as well.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 280

280 9. Tying It Together: The Basics

~TileMap()
{

int x, y;
for(y = 0; y < m_tilemap.Width(); y++)
{

for(x = 0; x < m_tilemap.Height(); x++)

{

if(m_tilemap.Get(x, y).m_item != 0)

delete m_tilemap.Get(x, y).m_item;

if(m_tilemap.Get(x, y).m_person != 0)

delete m_tilemap.Get(x, y).m_person;

m_tilemap.Get(x, y).m_item = 0;

m_tilemap.Get(x, y).m_person = 0;

}
}

}

The function goes through every cell in the map, and if an item or person exists in
any of the cells, it is deleted and the pointer is set to zero.

The GetCell Function

This function returns the cell number of any given x and y coordinates in the map.
Remember in Chapter 5 when I showed you how to convert those coordinates so
that you could store a 2D array as a regular array? This map will use the same
encoding. So cell (0,0) will be 0, (1,0) will be 1, and so forth.

int GetCell(int p_x, int p_y)
{

return p_y * m_tiles.Width() + p_x;
}

The LoadFromFile Function

This next function is somewhat long and complex, and you won’t completely under-
stand it until you go over the map editor in the next game demo from this chapter
(Game Demonstration 9-2). I will try to make it as simple as possible, though.

The map format that this game uses can theoretically have many different sizes of
maps because the constructor lets you use different sizes as the dimensions.
However, the file format that the map editor uses assumes that the map will be
64 � 64 tiles and have two layers.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 281

281Making a Game

The file will actually store four layers, like Figure 9.17 shows.

Figure 9.17

The map file format
is stored as a four-
layered 2D array.

The first two layers should be familiar to you; they both serve the same functions as
they did in the game demo from Chapter 5. The base layer stores all valid tiles, and
the second layer stores overlay tiles, which are usually transparent and let you
achieve some nice transition effects.

The third layer is the item layer. Each cell can only store one item, so it is some-
what easy to keep track of items in the map when editing it. It also prevents two or
more items from occupying the same cell, which cannot happen in the game. The
fourth layer is the same, except that it stores people instead of items.

Each cell in the map file will store one integer. This integer will correspond to a
given cell, item, or person. For example, in the game, tiles 0 through 3 are all grass
tiles, 4 and 5 are snow tiles, and so on. Items 0 through 5 are walls, 6 is an axe, and
so on. There are only three types of people, though, and this is a special case.
Person 0 is assumed to be the player, and people 1 and 2 are enemies.

void LoadFromFile(char* p_filename)
{

int x, y;
int item;
int person;

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 282

282 9. Tying It Together: The Basics

Array2D<int> items(64, 64);

Array2D<int> people(64, 64);

There are two integers to loop through each tile on the map and two integers that
are used to load item and person indexes from the file. The last two variables are
2D arrays, which are only temporary for this function and will be deleted when the
function ends.

FILE* f = fopen(p_filename, “rb”);

if(f == 0)

return;

This section of code opens the file and checks to see if it is a valid file. If not, then
the function just returns without doing anything.

fread(m_tiles.m_array, 64 * 64 * 2, sizeof(int), f);

fread(items.m_array, 64 * 64, sizeof(int), f);

fread(people.m_array, 64 * 64, sizeof(int), f);

In this part, the whole file is read in three chunks. The first line reads the first two
layers of the map, which are the tiles, and it puts them into the m_tiles 3D array
(which should be of size 64 � 64 � 2).

After that, the third layer (items) is read into the item array. Finally, the fourth
layer is read into the people array.

Because the items and people are now stored in separate 2D arrays, you need to go
through those arrays and convert the numbers into actual Items and Persons:

for(y = 0; y < 64; y++)
{

for(x = 0; x < 64; x++)
{

item = items.Get(x, y);
if(item != -1)
{

m_tilemap.Get(x, y).m_item =
MakeItem(item, x, y, GetCell(x, y));

}

This segment loads in the item number at each cell. If the number is -1, then that
means that there is no Item in that cell, and nothing should happen. If there is an
Item, however, the function then calls a helper function, called MakeItem, which
takes the item number, its coordinates, and its cell number and converts them into
an actual Item. I explain this helper function in more detail later on.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 283

283Making a Game

person = people.Get(x, y);

if(person != -1)

{

m_tilemap.Get(x, y).m_person =
MakePerson(person, x, y, GetCell(x, y));

After it loads the Item, it looks to see if there is a Person in that cell as well. If so,
then it calls the MakePerson helper function to create a new Person. However, this
doesn’t end here—it goes on:

if(person == 0)
{

SetViewer(m_tilemap.Get(x, y).m_person);
}

}
}

}
}

If the Person in the current cell has a type of 0, then the Person is the player in the
game. So the function then calls the SetViewer function to set the viewer of the
map. There is one tiny little flaw in this function, however. If there is more than
one type 0 Person on the map, then the last one it finds will become the player, and
all other ones will be AI-controlled enemies.

The Draw Function

Now all of the new TileMap functions are implemented, so you must implement the
Map functions. The first of these is the Draw function, which draws the tilemap onto
the screen, so that the map is centered around the viewer. Here is the code listing:

void Draw(SDL_Surface* p_surface, int p_midx, int p_midy)
{

int x, y, z; // counting variables
int px, py; // pixel coordinates
int ox, oy; // offset coordinates
int current;
Item* i;
Person* p;

The x, y, and z variables will be used to loop through the 3D tilemap array, px and
py are used to store the pixel coordinates of a tile, and ox and oy are used to store
the pixel offset coordinates of the viewer. This means that px and py will store the
coordinates of the tile in world space. World space is the coordinates of things

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 284

284 9. Tying It Together: The Basics

located in the world. The ox and oy coordinates keep track of how many pixels
things in the world space need to be moved over to get into screen space. Figure 9.18
shows an 800 � 600 screen that is currently viewing a 1024 � 1024 (-pixel) tilemap.

Figure 9.18

This figure depicts
the two different
coordinate systems:
world space and
screen space.

The tiles start at (0,0) in world space, but the screen is smaller and at a different
part of the map. You can see from the figure that cell (1,2) is drawn at the upper-
left corner of the screen. The world space coordinates for that cell are (64,128)
because each cell is 64 pixels square, so you need to find a way to convert those
coordinates so that they are drawn in the correct place on the screen. Because this
is a 2D linear conversion, all you need to do is calculate the offset and add it to the
drawing coordinates. You’ll see how this works in a bit.

int minx = m_viewer->GetX() - (p_midx / 64) - 1;

int maxx = m_viewer->GetX() + (p_midx / 64) + 1;

int miny = m_viewer->GetY() - (p_midy / 64) - 1;

int maxy = m_viewer->GetY() + (p_midy / 64) + 1;

The previous section of code declares four integers and calculates values for them.
These four values are the coordinates of the tiles that are on the edge of the
screen. Examine the first line, for example. It retrieves the x coordinate of the
viewer first. Then it takes the p_midx value, which is the midpoint of the screen in
pixels. As the game runs in 800 � 600 mode, this should be 400. (Technically, it’s
399.5, but we don’t have to be that exact.) Then it divides 400 by 64 (because the
tiles are 64 � 64 pixels square) to get the number of tiles that will fit in that part of
the screen. It subtracts the number of tiles from the x coordinate of the viewer and
then subtracts another tile, just to be safe.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 285

285Making a Game

These lines determine the bounds of the cells that are actually visible on the
screen. For example, if the viewer was at (20,16), it would calculate minx to be
20 � (400 / 64) �1, which ends up being 13. This means that any cells with an x
coordinate less than 13 are not on the screen at all and therefore should not be
drawn. The four lines of code do the same thing for each edge of the screen.

if(minx < 0) { minx = 0; }

if(maxx >= m_tiles.Width()) { maxx = m_tiles.Width() - 1; }

if(miny < 0) { miny = 0; }

if(maxy >= m_tiles.Height()) { maxy = m_tiles.Height() - 1; }

Now this section of code makes sure that the calculated coordinates are valid.
There are negative cells, but you obviously don’t want to try drawing them; so if
either of the min variables are negative, they are set to zero instead so that it starts
drawing at the edge of the map. Likewise, it checks to see if either of the max vari-
ables have gone past the edge of the array and resets those.

ox = (-m_viewer->GetX() * 64) + p_midx - 32;

oy = (-m_viewer->GetY() * 64) + p_midy - 32;

This is the last part of the initialization, which calculates the offset coordinates so
that the tile that the viewer is on is drawn in the center of the screen. Figure 9.19
shows how this works in the x axis.

Figure 9.19

This shows how to
calculate the screen
offset for the black
tile, which the viewer
is on.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 286

286 9. Tying It Together: The Basics

Even though the figures show the
screen moving, keep in mind that you
are actually moving around the coordi-
nates of the tiles. First, you subtract the
number of pixels from the end of the
map to the viewer tile, which places the
viewer tile at the left side of the screen.
Then, to center the viewer on the
screen, half of the width of the screen is
added to the offset. Even though it is
closer to the middle of the screen now,
it still isn’t exactly in the center. The tile
is 64 pixels wide, so just subtract 32 pix-
els from the offset, and the tile is cen-
tered on the screen! The process works
the same way for the y axis.

for(y = miny; y <= maxy; y++)

NOTE
Theoretically, because you are deal-
ing with units of measurement, you
should be able to access coordinates
on a decimal scale. However, pixels
are discreet objects, and you can
only access them on integer bound-
aries.This can bring a few off-by-one
errors into your code because when-
ever you use integer division, you
usually truncate the remainder. Just
be aware that you can never get the
exact center of a pixel because you
can only draw whole pixels on the
screen.

{
for(x = minx; x <= maxx; x++)
{

px = x * 64 + ox;
py = y * 64 + oy;

Remember how the tilemap was rendered in the tilemap demo from Chapter 5?
The method used there just drew every tile on the map. This is somewhat wasteful,
so this newly updated algorithm is more efficient and starts drawing tiles starting at
the boundaries that were calculated before. This way, the algorithm only draws tiles
that will be shown on the screen.

At each cell, the algorithm calculates the world coordinates of the tile, adds the
screen offset coordinates, and stores that into px and py.

for(z = 0; z < m_tiles.Depth(); z++)

{

current = m_tiles.Get(x, y, z);
if(current != -1)

SDLBlit(m_tilebmps[current], p_surface, px, py);
}

This is the inner loop that goes through all the layers of the current cell and draws
them from the bottom up. The current tile number is loaded into the current

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 287

287Making a Game

variable and then compared to �1, which represents the empty tile. If the tile isn’t
empty, then it is drawn on the screen.

i = m_tilemap.Get(x, y).m_item;

p = m_tilemap.Get(x, y).m_person;

if(i != 0)

SDLBlit(i->GetGraphic(), p_surface, px, py);
if(p != 0)

SDLBlit(p->GetGraphic(), p_surface, px, py);
}

}
}

Finally, the Item and the Person of the tile are extracted. If either of them are valid,
then they are also drawn. Items are drawn first, and then People are drawn on top.

The CanMove Function

This function is pretty easy to implement if you use all of the features available to
you.

bool CanMove(Person* p_person, int p_direction)
{

int newx = p_person->GetX() + DIRECTIONTABLE[p_direction][0];
int newy = p_person->GetY() + DIRECTIONTABLE[p_direction][1];

First you get the coordinates for the cell that is in the direction that you want to go.

if(newx < 0 || newx >= m_tiles.Width() ||

newy < 0 || newy >= m_tiles.Height())

return false;

Then you check to see if those coordinates are in bounds of the map. If not, the
function returns false.

if(m_tilemap.Get(newx, newy).m_blocked == true)

return false;

Now check to see if the path is blocked by the geography.

if(m_tilemap.Get(newx, newy).m_person != 0)

return false;

Then check to see if there is a Person blocking the path.

if(m_tilemap.Get(newx, newy).m_item != 0)

{

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 288

288 9. Tying It Together: The Basics

if(m_tilemap.Get(newx, newy).m_item->CanBlock() == true)

return false;

}

Finally, check to see if an Item is blocking your way.

return true;
}

If the function has reached this point, then you know that nothing is blocking the
path into the cell, so it returns true.

The Move Function

This function physically moves a Person from one cell into another.

void Move(Person* p_person, int p_direction)
{

int newx = p_person->GetX() + DIRECTIONTABLE[p_direction][0];
int newy = p_person->GetY() + DIRECTIONTABLE[p_direction][1];
if(CanMove(p_person, p_direction) == true)
{

First, calculate the coordinates of the cell that you want the Person to move into
and make sure that the Person can move into that cell.

m_tilemap.Get(newx, newy).m_person = p_person;

m_tilemap.Get(p_person->GetX(), p_person->GetY()).m_person = 0;

p_person->SetX(newx);

p_person->SetY(newy);

p_person->SetCell(GetCell(newx, newy));

}
}

When you know that the Person can move into the new cell, the pointer to that
Person is placed into the new cell and the pointer to the Person is removed from the
old cell. Because a Person cannot move into a cell that is occupied by another
Person, you can be sure that this function won’t write over any existing Person.

After that, the new coordinates are given to the Person, as well as the new cell
number.

The GetCellNumber Function

This function retrieves the number of a cell in any given direction. It will return
the cell number if there is a cell in the given direction, but return �1 if the cell
doesn’t exist (if it is off the edge of the map, for example).

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 289

289Making a Game

int GetCellNumber(int p_cell, int p_direction)
{

int x, y;
y = p_cell / m_tiles.Width();
x = p_cell - (y * m_tiles.Width());
x = x + DIRECTIONTABLE[p_direction][0];
y = y + DIRECTIONTABLE[p_direction][1];

The first two lines calculate the x and y coordinates of the current cell number by
reversing the algorithm that turns a 2D array coordinate into a 1D array coordi-
nate. The y coordinate is calculated by dividing the cell number by the width of the
map (the remainder is truncated), and then the x coordinate is calculated by sub-
tracting the total of the y coordinate multiplied by the width of the map from the
cell number.

After that, the adjacent cell coordinates are calculated.

if(x < 0 || x >= m_tiles.Width() ||

y < 0 || y >= m_tiles.Height())

return -1;

return GetCell(x, y);
}

Finally, the function checks to see if the cell is within the bounds of the map. If
not, then it returns -1. If it is within the bounds, then it returns the cell number.

The GetClosestDirection Function

This function calculates which direction will get one Person closer to another. This
will be quite useful in calculating the AI of the enemies in the game. For right now,
you don’t know of anything more complex, so you just want to use a simple little
algorithm to do it:

int GetClosestDirection(Person* p_one, Person* p_two)
{

int direction = -1;
if(p_one->GetY() > p_two->GetY())

direction = 0;

else if(p_one->GetX() < p_two->GetX())

direction = 1;

else if(p_one->GetY() < p_two->GetY())

direction = 2;

else if(p_one->GetX() > p_two->GetX())

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 290

290 9. Tying It Together: The Basics

direction = 3;
return direction;

}

This checks the relative x and y coordinates of the two players. If the first player has
a greater y value than the second, this means that the first player is to the south
and therefore must move north to get closer.

The next three blocks follow in the same manner, figuring out which direction will
get the first player closer to the second player. Finally, the direction is returned.

The Item Class Implementation
For right now, every function in the Item class is just a plain accessor function that
either sets or gets the value of each member variable. Because of this, there really
isn’t any reason to post the implementation of this class.

The Person Class Implementation
The Person class is a little bit more complex than the Item class, but not by much.
Some of the functions are just plain accessor functions that do nothing but return
the value of or set a member function. These functions will not be shown.

The Constructor
When a Person is constructed, it is always a good idea to set the data inside the
Person so that it doesn’t contain random data. This constructor does that:

Person()
{

m_type = 0;
m_health = 100;
m_armor = 100;
m_direction = 2;
m_currentweapon = m_inventory.GetIterator();

These lines set up the Person so that he is type 0, has full health and armor, and is
facing south. The last line retrieves an iterator from the inventory linked list. Even
though the iterator will be invalid, because the inventory is empty, the iterator will
now be pointing to the list. If you didn’t call that line, the iterator wouldn’t be
pointing at any list.

int f, d;

for(d = 0; d < DIRECTIONS; d++)

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 291

291Making a Game

{

for(f = 0; f < FRAMES; f++)

{

m_graphics[d][f] = 0;

}

}

This loop goes through the graphics array and clears all the graphics.

m_lastmove = 0;

m_lastattack = 0;

m_attackmodifier = 0;

}

Last, the function clears the timers to 0 and sets the attack modifier to 0 as well.

The Destructor
The destructor of a Person is very important in this game. Because every Item in the
game is an actual object that is created at one point in time using the new function
to allocate memory, the Items must eventually be deleted as well, or else you will get
a memory leak.

So when a Person dies, everything that the Person has in its inventory should be
deleted. The destructor handles this:

~Person()
{

DListIterator<Item*> itr = m_inventory.GetIterator();
for(itr.Start(); itr.Valid(); itr.Forth())
{

if(itr.Item() != 0)
delete itr.Item();

}
}

This loop makes sure that every item in the inventory is deleted.

The Copy Constructor and Assignment Operator
I approached this issue previously when I showed you the interface of this class.
Here is the actual implementation of these two functions:

Person(Person& p_person)
{

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 292

292 9. Tying It Together: The Basics

*this = p_person;
}

void operator= (Person& p_person)
{

int d, f;
m_health = p_person.m_health;
m_armor = p_person.m_armor;
m_type = p_person.m_type;
m_direction = p_person.m_direction;

for(d = 0; d < DIRECTIONS; d++)

{

for(f = 0; f < FRAMES; f++)
{

m_graphics[d][f] = p_person.m_graphics[d][f];
}

}
m_lastattack = p_person.m_lastattack;
m_lastmove = p_person.m_lastmove;
m_attackmodifier = p_person.m_attackmodifier;
m_x = p_person.m_x;
m_y = p_person.m_y;
m_cell = p_person.m_cell;

}

The copy constructor basically just calls the assignment operator by dereferencing
the this pointer (see Appendix A). The statement *this = p_person literally says,
“The value of this current Person should be set to the value of the parameter.”

The assignment operator essentially copies everything over, with the exception of
two things: the current weapon iterator and the inventory linked list. This is
because, as of right now, there is no need to copy the inventory of a Person over.
Maybe someday you might need that functionality, but you don’t right now, so it
isn’t implemented. The iterator should never be copied over from one Person to
another because the iterator’s copy constructor will now make the iterator in the
current Person point to the inventory of the other Person, which is not a good idea.

The SetDirection Function
This function sets the direction of the Person, but it also does a little error checking
as well.

Team LRN

Data Structures CH09 11/5/02 8:38 AM Page 293

293Making a Game

void SetDirection(int p_direction)
{

m_direction = (p_direction + 4) % 4;
}

First, it adds 4 to the new direction, and then it modulos that by 4. The reason this
is done is so that you can do easy turns in the game. For example, if you want the
Person to turn left, you just subtract 1 from the direction. Instead of requiring all
the code outside of this class to check to see if the new direction is �1, this handles
it for you. This adds 4 to that, which gives you direction 3. It works the same way in
the other direction too, which is what the modulo function is for. Anything larger
than 3 will be wrapped down to the 0–3 range.

The SetHealth Function
A player’s health can range from 0–100. It is important that it never goes outside of
these ranges if you assume that it will always be in there somewhere.

The function that sets the health of a player manages this for you:

void SetHealth(int p_health)
{

m_health = p_health;
if(m_health < 0)

m_health = 0;
if(m_health > 100)

m_health = 100;
}

If the health dips below 0, then it is automatically reset to 0, and if the health goes
above 100, then it is reset to 100 again.

The SetArmor Function
The function that sets the armor of the player is exactly the same:

void SetArmor(int p_armor)
{

m_armor = p_armor;
if(m_armor < 0)

m_armor = 0;
if(m_armor > 100)

m_armor = 100;
}

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 294

294 9. Tying It Together: The Basics

The AddItem Function
This function adds an item to the inventory of the player.

void AddItem(Item* p_item)
{

m_inventory.Append(p_item);
if(m_currentweapon.Valid() == false)
{

m_currentweapon.Start();
}

}

The item is first appended to the end of the inventory list. After that, the function
checks to see if the current weapon iterator is valid. If the iterator is invalid, then
the Person didn’t have any items in the inventory. Now that it has one, you can set
the current weapon to the first item in the list (remember, this is because this sim-
ple game only allows weapon items in a Person’s inventory).

The NextWeapon and PreviousWeapon Functions
These functions move the weapon to the next or previous weapon in the list.

void NextWeapon()
{

m_currentweapon.Forth();
if(m_currentweapon.Valid() == false)

m_currentweapon.End();
}
void PreviousWeapon()
{

m_currentweapon.Back();
if(m_currentweapon.Valid() == false)

m_currentweapon.Start();
}

Both functions move the iterator and then check to see if it has been moved past
the end of the list. If so, then the iterator is moved back to the end that it passed.

The GetCurrentWeapon Function
This function returns a pointer to the current weapon in the player’s inventory.

Item* GetCurrentWeapon()
{

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 295

295Making a Game

if(m_currentweapon.Valid())
return m_currentweapon.Item();

return 0;
}

The function makes sure that the iterator is valid first, and then it returns the item.
If the iterator wasn’t valid, then 0 is returned, meaning that the player doesn’t have
a current weapon.

The GetAttackTime Function
When the game wants to know when the last time the player has attacked, this func-
tion is called. However, this function does a little more than just return the last
time the player has attacked:

int GetAttackTime()
{

return m_lastattack - m_attackmodifier;
}

It takes the time that the player last attacked and subtracts the attack modifier from
it. If this value is positive, it has the effect of making the computer think that the
player attacked earlier than he did. A positive attack modifier makes the player
attack faster.

Likewise, a negative attack modifier would make the player attack slower.

The Attack Function
This is the function that is called whenever you want the player to attack another
player:

void Attack(Person* p_person)
{

Item* weapon = GetCurrentWeapon();
p_person->GetAttacked(weapon->GetStrength());

}

The function gets the current weapon from the Person (note that it assumes that
the weapon will be valid; you may want to add some error checking here) and tells
the target that it was attacked with the strength rating of the weapon. Though this
is just a simple system, it does its job. In more complex systems, you may want to
add random numbers to the damage (see Chapter 22, “Random Numbers,” for
more information on random numbers) or modify the damage based on the
strength of the player or any other system you can think of.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 296

296 9. Tying It Together: The Basics

This is also a good point to add death detection. If you killed the Person, then you
might want something to happen to the current Person, such as gaining experience
points.

The GetGraphic Function
This function retrieves the current graphic of the player, based on the time and the
direction he is facing.

SDL_Surface* GetGraphic()
{

int index = (SDL_GetTicks() % 1000) * FRAMES;
index /= 1000;
return m_graphics[m_direction][index];

}

This makes the animation loop through once every second. First, the current time
(in milliseconds) is retrieved via the SDL_GetTicks function, and then it is moduloed
by 1,000. You now have a number from 0–999, which is then multiplied by the
number of frames. After that, the number is divided by 1,000, which should give
you the current frame number.

For example, if you have four frames and the timer returns 12,430, then this is
what it does: 12,430 is moduloed by 1,000, giving you 430, which is then multiplied
by 4. This gives you 1,720. Now the number is divided by 1,000, which gives you
1.72. Because the division is an integer division, the decimal is chopped off, which
gives you 1 as the frame number.

Finally, the graphic in the 2D array using the current direction and the current
frame is returned.

The GetAttacked Function

This is the function that is called whenever a player is attacked by another player.
This function takes a damage value as a parameter:

void GetAttacked(int p_damage)
{

int newdamage = (p_damage * (100 - m_armor)) / 100;
SetHealth(GetHealth() - newdamage);
SetArmor(GetArmor() - p_damage);

}

I’m not going to spend much time explaining this function because it doesn’t
really have much to do with the data structures. Basically, if you have 80 armor,

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 297

297Making a Game

then the amount of damage done to you is reduced by 80 percent. Then the armor
is degraded by the amount of damage.

The IsDead Function
A person is dead if he has no health:

bool IsDead()
{

return (m_health == 0);
}

The PickUp Function
This is the function that is called whenever a person picks up an item from the map.

void PickUp(Item* p_item)
{

if(p_item->IsArmor())
{

First, it checks to see if the item is armor. If so, then the person shouldn’t actually
pick it up, but instead should have the strength of the armor added to the person’s
armor.

SetArmor(m_armor + p_item->GetStrength());
delete p_item;
return;

}

Once that happens, the armor is deleted, and the function exits.

AddItem(p_item);
}

If the item isn’t armor, then it is just added to your inventory.

Creating People and Items
Earlier, I used two functions in the code, MakeItem and MakePerson. These functions,
when called, will produce an item or a person, copying them from an array of tem-
plates (not to be confused with the C++ template feature).

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 298

298 9. Tying It Together: The Basics

Figure 9.20 shows how this is accomplished.

Figure 9.20

This shows how the
MakePerson

function works. It
copies a Person out
of the template array
and returns the new
Person.

There is an array filled with three Persons, and whenever you ask for a Person of
type x, it looks up the Person at index x in the array, copies that Person, and returns
it. It works the same way with the Items.

Here is the code for the MakeItem function and the global array that is associated
with it:

Item g_itemtemplates[16];

Item* MakeItem(int p_type, int p_x, int p_y, int p_cell)
{

Item* i = new Item;

*i = g_itemtemplates[p_type];
i->SetX(p_x);
i->SetY(p_y);
i->SetCell(p_cell);
return i;

}

This game demo limits the number of
item templates to 16; if you want more,
you should make the array larger.

This creates a new Item, copies the Item
over from the template, and sets the x and
y coordinates and then the cell number.

NOTE
Note that the global arrays for both
of these functions are meant to be
filled out by the actual game so that
none of the templates are hardcoded
into the engine.This allows you to
have more flexibility.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 299

299Making a Game

The MakePerson function is very similar, with one major difference:

Person g_persontemplates[16];

Person* MakePerson(int p_type, int p_x, int p_y, int p_cell)
{

Person* p = new Person;

*p = g_persontemplates[p_type];

p->SetX(p_x);

p->SetY(p_y);

p->SetCell(p_cell);

p->AddItem(MakeItem(8, 0, 0, 0));
return p;

}

This function creates a Person, but it also gives the Person a knife (Item number 8).
Yes, this is a crude hack, but I couldn’t think of an easier way to do it that would
not have taken another page of code.

Game Logic
Finally, the game engine is complete. However, you don’t quite have a game yet.
Now you need to create the game controlling logic, which controls your engine. All of
the code for this part is stored in the file g0901.cpp.

Data and Initialization
The first thing you need to do is declare the data and initialize it. Here are the
global constants:

const int TILES = 24;
const int ITEMS = 14;
const int PEOPLE = 3;
const int MOVETIME = 750;

There are 24 tiles, 14 items, and 3 people. Likewise, each AI-controlled person can
move one square every 750 milliseconds.

After that, there are the global variables. There are a few graphics:

SDL_Surface* g_tiles[TILES];
SDL_Surface* g_items[ITEMS];

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 300

300 9. Tying It Together: The Basics

SDL_Surface* g_people[PEOPLE][DIRECTIONS][FRAMES];

SDL_Surface* g_statusbar;

SDL_Surface* g_verticalbar;

SDL_Surface* g_youlose;

These store the tile graphics, the item graphics, the people graphics, the status bar,
another vertical status bar, and the graphic that is displayed when you die. How
boring.

Map* g_currentmap = 0;

Person* g_currentplayer = 0;

Array<Person*> g_peoplearray(128);

int g_peoplecount;

bool g_dead = false;

bool g_cheat = false;

Now, here are the game-logic related variables. There is a pointer to the current
map and a pointer to the current player, as well as an array of people. This array
will be used later on, when AI is computed. It stores pointers to all of the people
on the map for easy access. There is also an integer that keeps track of how many
people are in the array.

Then there are two booleans, which have to do with the current game state. At the
start, the player is neither dead nor cheating, so they are both false.

The Init function that initializes everything is somewhat long, so I will cut out most
of the repetitive things:

void Init()
{

int x;
int d, f;
g_tiles[0] = SDL_LoadBMP(“grass1.bmp”);
// ... lots of bitmap loading

The function declares three looping variables and then starts loading the tile
bitmaps. The item and person bitmaps are also loaded into their appropriate
arrays.

In the next part, the item templates are set up:

for(x = 0; x < ITEMS; x++)
{

g_itemtemplates[x].SetType(x);

g_itemtemplates[x].SetGraphic(g_items[x]);

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 301

301Making a Game

}

for(x = 0; x < 6; x++)

{

g_itemtemplates[x].SetBlock(true);

}

g_itemtemplates[6].SetSpeed(1500);

g_itemtemplates[6].SetStrength(15);

// ... lots of weapon loading ...

g_itemtemplates[12].SetStrength(30);

g_itemtemplates[12].SetArmor(true);

// ... more armor loading ...

First, the function goes through each item in the template and assigns it a type
number. Then it tells each item which graphic it will be using by loading the
graphic pointers from the g_items array.

After that, it goes through the first six items and tells them that they can block the
path. The first six items in this demo are wall segments.

Finally, it goes through and sets the speed and strength of all the items and the
strength of all the armor.

The same thing happens with the people templates:

for(x = 0; x < PEOPLE; x++)
{

g_persontemplates[x].SetPersonType(x);

for(d = 0; d < DIRECTIONS; d++)

{

for(f = 0; f < FRAMES; f++)
{

g_persontemplates[x].SetGraphic(g_people[x][d][f], d, f);
}

}

}

g_persontemplates[1].SetArmor(10);

g_persontemplates[1].SetHealth(20);

g_persontemplates[1].SetAttackModifier(-500);

g_persontemplates[2].SetArmor(15);

g_persontemplates[2].SetHealth(30);

g_persontemplates[2].SetAttackModifier(-300);

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 302

302 9. Tying It Together: The Basics

The templates for people 1 and 2 are modified, but not person 0. Persons 1 and 2
are made to be much weaker than you are, and slower as well.

SetNewMap(“default.map”);

Finally, the map is loaded using the default.map file. This function will be shown
later on.

The LoadMap Function
This function will take a filename, load the file, create a new map from that file,
and return it.

Map* LoadMap(char* p_filename)
{

TileMap* t = new TileMap(64, 64, 2, g_tiles);
t->LoadFromFile(p_filename);
return t;

}

In this game demo, you know that the
map file format contains only 64 � 64
� 2 TileMaps, but you don’t want to
expose the actual game logic to that
fact. So this function is created to hide
the fact that it is loading a tile map. The
reasons for this function become per-
fectly clear in Chapter 19.

So the function creates a new TileMap,
loads the map from file, and finally
returns the TileMap.

The SetNewMap Function
Whenever you want to switch maps in the program (which doesn’t actually happen
in this demo, but you should always allow for the possibility) or load the map in the
beginning, you should call this function.

This function will load a new map from file, delete the current map (if any), and
set the current player and map.

void SetNewMap(char* p_filename)
{

int x;

TileMap

a Map

NOTE
When the function returns a

, the users of this function
don’t know it.The users of this func-
tion only know that they are getting

and don’t care how it works, as
long as it works.This is one of the
more useful features of object-
oriented programming.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 303

303Making a Game

Map* newmap;

newmap = LoadMap(p_filename);

The new map is loaded using the LoadMap function.

g_peoplecount = 0;

for(x = 0; x < newmap->GetNumberOfCells(); x++)

{

if(newmap->GetPerson(x) != 0)

{

AddPersonToArray(newmap->GetPerson(x));

}

}

Now, the g_peoplecount variable is reset to 0, which means that the global people
array is now empty. Even if it has people in it already, it is assumed that they are
contained in the current map. When the current map is deleted, all of these peo-
ple will be deleted anyway.

So after the count is reset to 0, the function goes through every cell in the new
map and puts all of those people into the people array.

if(g_currentmap != 0)

{

delete g_currentmap;
}
g_currentmap = newmap;
g_currentplayer = newmap->GetViewer();

}

Finally, the program checks to see if there is a current map, and if so, it is deleted.
Then the current map is set to the new map, and the current player is set to the
current viewer of the new map.

Miscellaneous Functions
The game uses a bunch of miscellaneous functions to accomplish things. However,
none of them are really important for knowing how to store and design your game
data, so I am leaving them out of the book. If you are interested in their implemen-
tations, they are fully commented and can be found in the g0901.cpp file. These
functions are DrawStatus, which draws the status bar and the inventory on the
screen, AddPersonToArray, which adds a person to the global person array (how
exciting!), and Distance, which calculates the distance between two objects.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 304

304 9. Tying It Together: The Basics

Now on to the more interesting functions!

The Artificial
Intelligence
Artificial Intelligence (AI) hasn’t been dis-
cussed at all in this book up until this
point. Some of the later chapters
(Chapters 15, “Game Trees and
Minimax Trees,” and 18, “Using Graphs
for AI: Finite State Machines,” specifi-
cally) have a lot to do with AI, so I don’t
want to show you anything too complex
right now. This demo will just use a sim-
ple (and somewhat stupid) AI for the
computer characters.

Here is the function that performs the
AI calculations for all the people in the
game:

void PerformAI(int p_time)
{

int i;
float dist;
int x = g_currentplayer->GetX();
int y = g_currentplayer->GetY();
int direction;

This function needs to know the current time of the game to figure out what the
people should be doing, so that is passed in as a parameter.

Then, five local variables are defined.

for(i = 0; i < g_peoplecount; i++)
{

if(g_peoplearray[i] != g_currentplayer)
{

The function loops through every person in the global person array and then
checks to see if that person is the current player or not. If it is the current player,
then the function does nothing. (You don’t want the computer to calculate AI for
the player!) If not, then it continues:

rithms use

use

NOTE
There is a new book being published
by Premier Press with information
specifically about advanced AI tech-
niques. It is called AI Techniques for
Game Programming by Mat Buckland.
It is supposed to be very good, going
over a great deal of advanced AI
techniques, such as neural networks
and genetic algorithms.That materi-
al is really an extension of the mate-
rial presented in this book because
both of those AI methods directly
utilize some of the structures in this
book. For example, genetic algo-

bitvectors (see Chapter 4,
“Bitvectors”), and neural networks

graphs (see Chapter 17,
“Graphs”). I’m looking forward to it.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 305

305Making a Game

direction =
g_currentmap->GetClosestDirection(g_peoplearray[i],

g_currentplayer);

This code segment determines which direction the AI needs to move to get closer
to the player.

dist = Distance(g_peoplearray[i], g_currentplayer);

Then the function calculates the distance from the AI to the player.

if(dist > 1.0f && dist <= 6.0f &&

p_time - g_peoplearray[i]->GetMoveTime() > MOVETIME)

{

g_peoplearray[i]->SetMoveTime(p_time);

g_peoplearray[i]->SetDirection(direction);

g_currentmap->Move(g_peoplearray[i], direction);

}

If the distance is less than 6 tiles and greater than 1 tile, then the AI needs to move
closer to the player. Also, the function checks to see if the right amount of time has
passed since the AI has last moved. If so, then the AI is okay to move. The move
time of the AI is reset to the current time, the direction the AI is facing is changed
to face the direction he is moving, and finally, the AI is actually moved.

if(dist <= 1.0f)
{

g_peoplearray[i]->SetDirection(direction);
Attack(g_peoplearray[i]);

}
}

}
}

If the distance is less than or equal to 1, then the AI is in range to attack the player,
so the AI turns toward the player and attacks.

The Attack Function
This is the function that is called in the game whenever a person initiates an attack.

void Attack(Person* p_person)
{

int time;
int difference;

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 306

306 9. Tying It Together: The Basics

int cell;

Item* weapon;

Person* person;

The person that is passed in is the person that is attacking. The function will deter-
mine what he is attacking later.

time = SDL_GetTicks();

difference = time - p_person->GetAttackTime();

weapon = p_person->GetCurrentWeapon();

The current time and the amount of time since the person last attacked are calcu-
lated. Then the weapon of the person is retrieved.

if(difference >= weapon->GetSpeed())

{

cell = g_currentmap->GetCellNumber(p_person->GetCell(),

p_person->GetDirection());

person = g_currentmap->GetPerson(cell);

If the time between the last attack and the current time is more than or equal to
the speed of the weapon, then the person can attack. So the cell that the person is
facing is retrieved, and the function then tries to get a pointer to the person in that
cell.

if(person != 0)
{

p_person->Attack(person);

p_person->SetAttackTime(time);

}
}

}

If there was a person in that cell, then the first person attacks him, and his attack
time is reset. If there wasn’t, nothing happens.

The Pickup Function
This function is called whenever a person wants to pick up something from
the floor.

void PickUp(Person* p_person)
{

Item* i = g_currentmap->GetItem(p_person->GetCell());
if(i != 0)

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 307

307Making a Game

{

p_person->PickUp(i);

g_currentmap->SetItem(p_person->GetCell(), 0);

}
}

The function gets a pointer to the item in the cell that the person is in, and if an
item exists, then the person picks it up, and the pointer in the cell is cleared.

The CheckForDeadPeople Function
Finally, this is the last independent function in the game logic. This function goes
through all of the people in the person array and checks to see if any of them are
dead. If so, then they are removed from the game.

void CheckForDeadPeople()
{

int i;
Person* p;
for(i = 0; i < g_peoplecount; i++)
{

if(g_peoplearray[i]->IsDead())

{

The function scans through and looks for any people that are dead.

if(g_peoplearray[i] == g_currentplayer)
{

g_dead = true;

return;

}

If the person who died is the current player, then the game is over, so the g_dead
flag is set, and the function returns.

p = g_peoplearray[i];

g_peoplearray[i] = g_peoplearray[g_peoplecount - 1];

g_peoplecount—;

i—;

g_currentmap->SetPerson(p->GetCell(), 0);

delete p;

}
}

}

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 308

308 9. Tying It Together: The Basics

If the dead person isn’t the current player, then an AI was killed. The function
saves a pointer to the dead person and then uses the fast remove algorithm from
Chapter 3, “Arrays,” to move the last person down into the index of the dead per-
son. The function then sets the person pointer in the cell he was in to zero and
deletes the person.

The Game Loop
And at long last, here is the game loop. There is a lot more code to this section
than I will paste here; however, a lot of it doesn’t really have much to do with the
overall structure of the game. And it’s messy too. Most of the ugly code will be com-
mented out in the next listing:

Init();
while(1)
{

// if user presses ‘[‘, move to the previous weapon

g_currentplayer->PreviousWeapon();

// if the user presses ‘]’, move to the next weapon

g_currentplayer->NextWeapon();

// if the user presses ‘ENTER’, try to pick up an item

PickUp(g_currentplayer);

// if the user presses ‘SPACE’, try to attack a person

Attack(g_currentplayer);

// if the user presses ‘C’, toggle the cheat mode

g_cheat = !g_cheat;

After all of that code, the main loop tries to figure out if you’re moving in a
direction:

int direction = -1;

// if the user pressed ‘UP’

direction = 0;

// if the user pressed ‘DOWN’

direction = 2;

// if the user pressed ‘LEFT’

direction = 3;

// if the user pressed ‘RIGHT’

direction = 1;

By this point, if the user pressed one of the four direction keys, direction will be a
value from 0 through 3. If not, then it will be �1.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 309

309Making a Game

if(direction != -1)
{

g_currentplayer->SetDirection(direction);

g_currentmap->Move(g_currentplayer, direction);

}

This checks to see if the user wants to move, so it sets the direction of the player
and then moves him in the right direction.

if(g_dead == false)
{

PerformAI(SDL_GetTicks());

CheckForDeadPeople();

if(g_cheat == true)

g_currentplayer->SetAttackTime(0);

if(g_currentmap != 0)

g_currentmap->Draw(g_window, WIDTH/2, HEIGHT/2);

DrawStatus();

}

At this point in time, the loop checks to see if the user is dead or not. If he’s not
dead, then it performs the AI calculations at the current time. After the AI is per-
formed, the loop checks for dead people.

The next section checks to see if the player is cheating. The cheat mode in this
game lets you attack instantaneously, so it sets the attack time of the player down to
0, which makes the computer think that you’ve never attacked.

If the current map exists, then it is drawn on the screen, and finally, the status bar
is drawn as well.

else
{

SDLBlit(g_youlose, g_window, 0, 0);
}

}

If the player is dead, then nothing happens except that a screen appears that says
“You lose.” That’s all there is to the game!

Playing the Game
It took quite a bit of code to actually get to this point, so now you should enjoy it:
Sit back, relax, and play the delightfully simple game.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 310

310 9. Tying It Together: The Basics

There are a few commands in this game. First, to move around, you must use the
four arrow keys on your keyboard. Whenever you are on top of an item, you can
press the Enter key to pick it up.

When you are facing an enemy and want to attack him, press the spacebar. Your
attack meter on the right of the screen will reset to zero and slowly go up to full
again when you can attack again. If you want to switch what weapon you are cur-
rently using, press either the left square bracket ([) or the right square bracket (])
on your keyboard.

Escape exits the game.

Figure 9.21 shows a screenshot of the game in action.

Figure 9.21

Here is a screenshot
from the game.

Unfortunately, due to my slim deadlines, I was unable to obtain animated direc-
tional sprites for all three characters in the game, so only the main player will have
full sprite animations. The other characters will have a large arrow pasted on them
to indicate which direction they are facing, as you can see in the figure.

Game 2—The Map Editor

Now, you must be tired after reading that huge section about designing the game.
Luckily, the map editor is much easier to program (you can take a sigh of relief now).

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 311

311Making a Game

The map editor is Game Demonstration 9-2, which is on the CD in the directory
\demonstrations\ch09\Game02 - Map Editor\. Because the map editor’s primary
purpose is to load, edit, and store maps, I focus primarily on these areas. The edi-
tor has some extra graphics features (such as the mini-map and current-tile high-
lighting), but those are included only as a bonus. If you are interested in them, you
can view the source on the CD, which is all commented, of course.

The Map
Earlier, I showed you how the data is stored on disk. It is stored in a 3D array with
dimensions of 64 � 64 � 4, with each layer stored as shown in Figure 9.17.

The bottom two layers are the tiles, the third layer stores the items, and the fourth
layer stores the people on the map. Here is the 3D array that stores the map infor-
mation:

Array3D<int> g_map(64, 64, 4);

The map editor is like a drawing application; you select a tile to draw, and wherever
your mouse is, if the button is down, a tile is drawn. So that you can do this, the
entire map will be displayed on the screen all the time.

The Drawing Information
There are a few variables needed to store information about which tile is being
drawn:

int g_currenttile = -1;
int g_currentlayer = 1;

These two variables determine which tile should be drawn and which layer it
should be drawn on. The variables are set to start off by clearing tiles on layer 1
because -1 is the clear tile value. Layer 0 is the bottom tile layer, 1 is the overlay tile
layer, 2 is the item layer, and 3 is the person layer.

There is one other important variable:

bool g_mousedown = false;

This remembers whether the mouse button is down or not. Whenever it is down
and the mouse moves, you want to draw a tile on the map.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 312

312 9. Tying It Together: The Basics

The Tile Drawing
As I have said before, whenever the mouse is moved around, a tile is drawn on the
map:

SDL_GetMouseState(&x, &y);

x = x / 8;

y = y / 8;

if(x < g_map.Width() && y < g_map.Height()

&& g_mousedown == true)
{

g_map.Get(x, y, g_currentlayer) = g_currenttile;
}

The mouse coordinates are retrieved into x and y. Because the entire map is drawn
on the screen at once, the tiles have been shrunken down to 8 � 8 tiles, so you just
divide the coordinates by 8 to get the coordinates of the tile in the map.

After that, it checks to see if the tile coordinates are valid and if the mouse button
is down. If so, then the tile at those coordinates and the current layer is set to the
tile that is being drawn. It’s as simple as that.

Saving the Map
Saving the map is an amazingly simple process using the C-standard library file IO
functions (see Chapter 3 and Appendix A):

void Save()
{

FILE* f = fopen(g_filename, “wb”);
if(f == 0)

return;
fwrite(g_map.m_array,

g_map.Depth() * g_map.Height() * g_map.Width(),

sizeof(int),

f);

fclose(f);
}

The function opens up a file using the global g_filename string and returns if the file
could not be opened. Then, the contents of the file are read into the array of g_map.
The data stored on disk is in integer form (4 bytes), and there are 64 � 64 � 4 cells.
This means that the file will take up 65,336 bytes on disk, or exactly 64 kilobytes.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 313

313Making a Game

Loading the Map
Loading the map is just as easy as saving the map.

void Load()
{

FILE* f = fopen(g_filename, “rb”);
if(f == 0)

return;
fread(g_map.m_array,

g_map.Depth() * g_map.Height() * g_map.Width(),

sizeof(int),

f);

fclose(f);
}

The file is opened and then read into the array so that you can edit it.

Using the Editor
The editor is pretty simple to use. I’ve included a small tileset to be used with the edi-
tor, and it includes grass, snow, and stone base tiles, as well as two sets of snow overlay
tiles and walls, items, and players. Figure 9.22 shows a screenshot of the editor

Figure 9.22

Here is a screenshot
from the map editor.

On the upper-left side of the screen is the entire map. Each tile is represented as
an 8 � 8 square, so the entire thing can fit.

Team LRN

Data Structures CH09 11/5/02 8:39 AM Page 314

314 9. Tying It Together: The Basics

Below the map is the palette of tiles. Only eight tiles can be displayed at a time, so
the tiles you can draw are arranged in groups. You can select which group of tiles
you want to draw from by using the buttons on the right-hand side of the map.

After you select the group you want to draw from, a new palette appears on the bot-
tom. Click on one of the tiles in that palette to choose it as the current tile. A red
outline will appear around the tile, and now you can move the mouse over the map
and start drawing!

You can type the name of a file to load in the box on the bottom of the screen
and then either load that file into the current map or save the current map to
that filename.

The final feature is the check box on the right side of the screen. If you click that,
then every tile that is the same as your selected tile is drawn in blue on the map.
This allows you to easily see where items are on the map.

Play around with it; I’ve included a map file called default.map.

Conclusion
This was one huge chapter, wasn’t it? That is because games are a huge topic. Just
that simple little game demo took 80 percent of this chapter to explain, and it is
nowhere near as complex as some games in the stores!

Hopefully, this chapter has taught you how to design your classes better so that you
can make your games much more flexible than you could before.

You need to keep your eyes open for places where you should use classes and
inheritance. These can be the most important tools you have. Don’t worry if you
don’t get the hang of them right now; using inheritance is quite complex, and it
took me a while to understand it, too. If you feel that you need to know more
about inheritance and other complex object-oriented subjects, tons of books out
there cover these subjects.

One more thing you should notice is the lack of any RTTI in the game demos in
this chapter. There wasn’t any need for them, which usually tells you that your
design is pretty good. Remember: Don’t use RTTI unless it is absolutely necessary.

This chapter was large because it covered material about how to design classes to
store your game. The chapters that expand upon the demos from this chapter
(Chapters 16, 19, and 24) will be shorter because the base is now complete, and
these chapters will be adding features relating to the structures in the sections of
the book they were in.

Team LRN

Data Structures CH10 11/5/02 8:39 AM Page 315

Recursion

PART THREE

and Trees

Team LRN

Data Structures CH10 11/5/02 8:39 AM Page 316

10 Recursion

11 Trees

12 Binary Trees

13 Binary Search Trees

14 Priority Queues and Heaps

15 Game Trees and Minimax Trees

16 Tying It Together: Trees

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 317

CHAPTER 10

Recursion

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 318

318 10. Recursion

Up until now, you’ve only learned about the simple linear data structures.
While they are the most common structures out there, they can be limiting

sometimes. With this part of the book, I introduce you to some new concepts in
data structures: recursive data structures. I have no doubt that the mention of that
word has caused some of you to cringe in fear; recursion is a difficult concept to
learn for some people.

Recursion is not some evil thing invented by CS professors to punish you; it’s a
really powerful tool that you can use to solve some problems.

In this chapter, you will learn

■ What recursion is
■ What the Towers of Hanoi Puzzle is
■ How to solve the Towers of Hanoi Puzzle using recursion
■ How to think recursively

What Is Recursion?
Recursion is a very difficult concept for some people to understand. I’ll just throw
the basic definition of recursion out to you right now: Recursion is the ability of a
function to call itself.

Now, that doesn’t seem so difficult, does it? Years ago, in the bad old days, com-
puter languages didn’t support recursion. See the section called “The Stack” in
Appendix B, “The Memory Layout of a Computer Program,” to find out why.

The reason most people don’t understand recursion is not because it is difficult to
understand, but that it is difficult to apply. To properly understand recursion, you
have to understand why you should use it, not how it is used.

The problem is that there really aren’t any simple problems that demonstrate how
recursion can be used. I see a lot of books that use recursion to calculate things
like the Fibbionacci series (it’s basically a sequence that looks like this: 1, 1, 2, 3, 5, 8,
13,… you add the previous two numbers to arrive at the next in the sequence) or
to calculate a power, xy. The truth of the matter is that both of these common

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 319

319What Is Recursion?

examples can be solved easier, faster, and more cleanly using iteration. Iteration is
just a fancy way of describing a for-loop.

So what kinds of problems are better solved using recursion? As you’ll see in
Chapter 20, “Sorting Data,” the fastest sorting algorithm known to us is recursive.
You’ll also see countless examples throughout Part III of the book, because every
structure used in this part is recursive. You’ll even see recursion in action in
Chapter 17, “Graphs.”

You cannot escape recursion. Sure, you can ignore it and pretend that you don’t
need to know it, but you’re missing out on a huge tool in game programming.
Most Artificial Intelligence (AI) algorithms are recursive, and AI is one of the most
popular fields in game programming these days.

A Simple Example: Powers

As I stated previously, you can use recursion to calculate the answer to the mathe-
matical formula: x y. The very first thing you need to do is try to find out how the
function can be represented in terms of itself. Here is a simple example: the first
few powers of 2, 3, and 4. They are listed in Table 10.1.

y) 2y 3y 4y

0 1 1 1

1 2 3 4

2 4 9

3 8 27 64

10.1 The Powers of 2, 3, and 4
Power (

16

Look at the row where y is 0. Note how every entry is 1. This will be the base case of
the recursive function. Whenever the function detects that y is 0, it will return 1.

This is the function so far:

int Power(int x, int y)
{

if(y == 0)

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 320

320 10. Recursion

return 1;
}

This version of the function isn’t really functional at this point; it only works with a
power of 0.

Now you want to look at the function and see how it can be represented in terms of
itself. Look at the second row in Table 10.1, and see if you can come up with a rela-
tion with the first row.

If you think about the function in terms of itself, you can see that the power of 1 is
the same as x * Power(x, 0), which is x * 1. So, 21 is 2 * 1, and 31 is 3 * 1, and so
forth.

For further proof, go down one more level, and look at the third row. You can just
as easily represent the value of x 2 like this: x * Power(x, 1), which expands to x *
(x * Power(x, 0)). Because you know that Power(x, 0) is equal to 1, you can
see that the entire thing compresses down to x * x * 1, or just x * x, which is the

2same thing as x .

So, when y is not equal to 0, then the
value of the function is x * Power(x, y
- 1). Here is a listing of the final func-
tion:

int Power(int x, int y)
{

if(y == 0)
return 1;

else
return x * Power(x, y - 1);

}

for-

NOTE
At this point in time, you might be
wondering, “Why use recursion to
calculate the power of a number?”
The answer is this:You shouldn’t.You
can calculate the power of a number
much easier by using a simple
loop.This was intended as a simple
example, just to show you how
recursion works.

The Towers of Hanoi

I will demonstrate more advanced recursion to you by using the most classic exam-
ple. If there is a book that discusses recursion without showing you the Towers of
Hanoi problem, then it is incomplete in my opinion.

The Towers of Hanoi was a popular children’s puzzle, invented over 100 years ago
by a mathematician by the name of Edouard Lucas. In the game, there are three
pillars, and any number of discs is placed on the leftmost pillar. Figure 10.1 shows
an arrangement with three discs. Note that all the discs are a different size. The

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 321

321The Towers of Hanoi

pillars are assigned the numbers 1, 2, and 3, and the discs are assigned the letters a,
b, and c.

Figure 10.1

This is a simple
Towers of Hanoi
setup with three discs
on the first pole.

The Rules
The goal is to move the discs around so that the tower on Pillar 1 is moved to Pillar
3. There are two rules:

■ A larger disc can never be placed on top of a smaller disc.
■ You can only move one disc at a time.

Solving the Puzzle
So how would you go about solving the game in Figure 10.1? It turns out that this
particular game needs seven moves to be solved. Here they are:

1. Move a to 3.

2. Move b to 2.

3. Move a to 2.

4. Move c to 3.

5. Move a to 1.

6. Move b to 3.

7. Move a to 3.

Figure 10.2 shows the first three steps of the process. Essentially, they move the top
two discs onto Pillar 2.

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 322

322 10. Recursion

Figure 10.2

This figure shows
steps 1, 2, and 3.

Now take a look at Figure 10.3, which shows Step 4.

step 4.

Figure 10.3

This figure shows

Finally, take a look at Figure 10.4, which shows the last three steps: 5, 6, and 7.

Figure 10.4

This figure shows
steps 5, 6, and 7.

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 323

323The Towers of Hanoi

Well, that wasn’t so difficult, was it? What happens when you add a fourth disc to
the puzzle, though? Four discs require 15 moves to solve, and it’s more difficult if
you don’t know the trick to solving it.

Now that you know how the basic puzzle works, though, you can move on to trying
to solve it with an algorithm.

Solving the Puzzle with a
Computer
I want you to sit down (if you’re not already doing so...) and think about this prob-
lem for a few minutes. I want you to think about how you would create an algo-
rithm to solve The Towers of Hanoi. If you already know the answer, you can skip
the rest of the chapter.

Keep thinking; I’ll wait right here until you come back.

Okay, time’s up! Have you got an answer for me? Probably not. That’s because mak-
ing an iterative solution to this puzzle is a very difficult thing to do.

Instead of iteration, you need to use recursion to solve the puzzle. Take a look back
at Figures 10.2, 10.3, and 10.4. I split the figures up that way for a reason. What
happens if, instead of looking at the movements as seven commands, you look at
them as if they were three commands?

1. Move Discs a and b onto Pillar 2 (Figure 10.2).

2. Move Disc c onto Pillar 3 (Figure 10.3).

3. Move Discs a and b onto Pillar 3 (Figure 10.4).

An iterative solution to the problem involves itself at the lowest level; it will look at
the positions of every disc and figure out which disc to move and where to move it.
That is very difficult to do.

What I’ve done is split the three-disc problem into three different parts instead of
seven. This is a recursive problem, where you condense the problem into this one
small algorithm:

If you want to move n discs:

1. Move the top n-1 discs to Pillar 2.

2. Move the nth disc to Pillar 3.

3. Move the n-1 discs from Pillar 2 to 3.

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 324

324 10. Recursion

Well, that’s easy to say, but the rules say you can only move one disc at a time,
right? You can think of moving the top n-1 discs to Pillar 2 as the same problem, just
with one less disc!

1. Move the top n-2 discs to Pillar 3.

2. Move the n-1 disk to Pillar 2.

3. Move the n-2 discs from Pillar 3 to 2.

Wait a moment for that to sink in...

Remember in The Matrix when Neo said, “Whoa...”? That was my exact reaction
when I first understood this. This is a very cool solution.

Let me expand this to four discs now. How would I solve four discs? I would move
the top three discs to Pillar 2, move the bottom disc to Pillar 3, and then move the
top three discs to Pillar 3. Figure 10.5 shows this process.

Figure 10.5

Solving for four discs
involves moving the
top three discs to
Pillar 2, the bottom
disc to Pillar 3, and
the top three discs to
Pillar 3.

In Figure 10.5, the top three discs are in a box. The algorithm doesn’t care how
many discs are in the box, it just moves them all to Pillar 2. The algorithm then
moves the bottom disc to Pillar 3 and then moves the contents of the box onto
Pillar 3.

Take a look at the psuedocode algorithm:

Hanoi(int n, int start, int destination, int open)
Hanoi(n - 1, start, open, destination)
Move(n, start, destination)
Hanoi(n - 1, open, destination, start)

The algorithm takes four parameters: the number of discs to move, the number of
the starting pillar, the number of the destination pillar, and the number of the
open pillar.

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 325

325The Towers of Hanoi

The algorithm recursively moves the top n-1 discs from the starting pillar onto the
open pillar, moves the bottom disc from the starting pillar onto the destination pillar,
and then moves the top n-1 discs from the open pillar onto the destination pillar.

Terminating Conditions

The algorithm is missing one thing, though: It doesn’t end. This algorithm, as it is
now, will keep calling itself over and over again. This is a very bad thing because
every time the function is called, it pushes more data onto the stack. (See
Appendix B.) Eventually, the stack will run out of room, and the program will
crash. This is called a stack overflow.

So you need to add a terminating condition, which tells the function that it is done
and shouldn’t call itself anymore. The easiest way you can do this is to check to see
if n is 0. Obviously, if n is 0, then the function isn’t supposed to move any discs and
should exit out. The improved function looks like this:

Hanoi(int n, int start, int destination, int open)
if(n != 0) then

Hanoi(n - 1, start, open, destination)
Move(n, start, destination)
Hanoi(n - 1, open, destination, start)

Example 10-1: Coding the Algorithm
for Real
This is Example 10-1, and can be found on the CD in the directory
\examples\ch10\01 - Towers of Hanoi\ .

Now, you’ve reached the point where you should (hopefully) understand the solu-
tion. That huge complicated puzzle is reduced to only nine lines of code! Isn’t that
neat?

void Hanoi(int n, int s, int d, int o)
{

if(n > 0)
{

Hanoi(n-1, s, o, d);
cout << “Moving “ << n << “ from “ << s << “ to “ << d << endl;
Hanoi(n-1, o, d, s);

}
}

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 326

326 10. Recursion

Instead of actually storing the discs in a
data structure somewhere and moving
them around, this algorithm just prints
out the moves that are made.

Here is how you would call the function:

Hanoi(3, 1, 3, 2);

This says: Move four discs from Pillar 1
onto Pillar 3, where Pillar 2 is empty.

Example 10-1 asks you to enter the
number of discs you want to solve for
and then runs the Hanoi function until
it is solved.

Figure 10.6 shows a screenshot from the example. The screenshot shows the moves
needed to solve for four discs. If you’re up to it, you can draw it on paper to verify it.

2n-1 n

CAUTION
Do not run this example with more
than 16 discs unless you want to wait
a very long time for it to complete.
This is because the number of
moves made in the Towers of Hanoi
problem is . If is 16, it will move
the discs 65,535 times. It needs twice
as many, 131,071 moves, to solve the
problem for 17 discs!

Figure 10.6

Here is a screenshot
from the Towers of
Hanoi example.

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 327

327Graphical Demonstration: Towers of Hanoi

Graphical Demonstration:
Towers of Hanoi
Just for fun, I’ve included a little graphical demonstration of the Towers of Hanoi.
If you’re interested, it can be found on the CD in the directory
\demonstrations\ch10\demo01 - towers of hanoi\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

If you browse the source, notice how I use queues to store the moves of the discs
and stacks to store the discs on the pillars. That is a nice application of some of the
structures you’ve learned about already.

Figure 10.7 shows a screenshot from the demo.

Figure 10.7

Here is a screenshot
from the Towers of
Hanoi demo.

Team LRN

Data Structures CH10 11/5/02 8:40 AM Page 328

328 10. Recursion

Table 10.2 shows the commands in the demo.

Button Function

Reset

Table 10.2 Towers of Hanoi Commands

This resets the game and moves all the discs back to Pillar 1.

Set Delay This sets the number of milliseconds that will pass between disc
movements.

Solve This causes the demo to solve the puzzle for you.

The demo can solve any number of discs from 1–10.

Conclusion
I hope this was a useful introduction to recursion for you. I have by no means cov-
ered every detail about recursion, but I’ve given you a first glimpse, which should
serve for now. As I progress through the book, I will show you more recursion
examples, and you should begin to get a grasp of why it is important.

The main thing I want you to get from this chapter is how to think recursively.
Essentially, you should try to see different problems in computer science in differ-
ent ways. The Towers of Hanoi is an interesting example because it is very difficult
to solve iteratively, but very simple to solve recursively.

Recursion is a simple concept. It tries to break down a problem into smaller parts,
essentially defining the problem as a larger problem that can be solved in terms
of itself.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 329

CHAPTER 11

Trees

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 330

330 11. Trees

By now, you should have a solid understanding of the basic data structures,
especially linked lists. You should also be fairly comfortable with the concept

of recursion. If you’re not entirely confident of these two areas, go back and read
Chapter 6, “Linked Lists,” and Chapter 10, “Recursion,” because much of what I
show you in this chapter builds upon the concepts in those chapters.

You will probably not find any of the structures discussed from this point on in a
professional container library, such as STL. The reason is that these structures are
now becoming very specific; they are meant for a special purpose and cannot easily
be applied to general problems.

This chapter is about trees in the most general sense. Sometimes they are called gen-
eral trees, but I just refer to them as trees.

In this chapter, you will learn

■ What a tree is
■ How trees are recursive
■ How to build a tree
■ How to move around a tree
■ How to build a tree class
■ How to build a tree iterator class
■ How to traverse a tree using a recursive function
■ How to use trees to store plotline information in games

What Is a Tree?
Go outside and look at a tree. In case that is not possible, I provide you with a nice
diagram of a tree in Figure 11.1.

Figure 11.1

This is a tree.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 331

331What Is a Tree?

The tree has several major components. The largest is the trunk, or root, at the bot-
tom. Branches come off of the trunk, and they spread out into twigs, which have
leaves. The general structure of the tree spreads out from the root.

If you think about it, a branch is really nothing but a smaller root, right? So a twig
is nothing but a smaller branch as well. By looking at a tree in this manner, it is
easy to see how it is considered a recursive structure. Essentially, each level is a
smaller version of the level before it (except for the leaves).

Figure 11.2 shows how a tree container class looks. Instead of being drawn with the
root at the bottom, though, it is drawn with the root on top. It usually makes more
sense to draw them this way. Before I go any further, I’ll introduce some terminology.
Table 11.1 shows the common names for nodes in a tree; it refers to Figure 11.2.

Description

Root Node a

Child b is a child of a.

b c.

Sibling c is a sibling of d.

Leaf c and d

Describes the height of a node a b c
and d

b a.

Figure 11.2

This is a tree when
it’s represented inside
a computer.

Table 11.1 Tree Terminology

Term Example (Figure 11.2)

Topmost node in a tree is the root.

A node below another in a branch

Parent A node above another in a branch is the parent of

A node on the same level as another

A node with no children are leaves.

Level is at level 0, is at level 1, and
are at level 2.

Subtree A tree contained within another tree is the root of a subtree of

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 332

332 11. Trees

Now that you know the terminology of a
tree, I can go into a little more detail. A
tree, like a linked list, is a node-based
structure. The nodes point to the next
node in the structure. However, a linked
list points to only one node, whereas a
tree node can point to any number of
children.

one child.

NOTE
You can think of a linked list as a
very basic tree. A linked list is simply
a tree in which each node has only

The Recursive Nature of Trees

Trees are considered a recursive data structure because trees are said to contain
themselves. The last entry in Table 11.1 gives you a brief glimpse into this nature:
Every child of a tree is a tree on its own. Figure 11.3 shows an example.

Figure 11.3

Here is a tree that
demonstrates the
recursiveness of
trees; nodes b and c
are trees themselves.

There are 3 nodes labeled in this tree: a, b, and c. Node a is the root of the entire
tree. However, if you look a little lower, you can see that node b is the root of a
smaller tree, and so is node c.

So you can easily say that a tree is a structure that holds trees!

Common Structure of Trees

The tree structure is very similar to a linked list, as I’ve said before. A tree is node-
based, so each node needs a way to point to its children. In a general tree, each
node can have any number of children.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 333

333Graphical Demonstration: Trees

So what data structure that you know of can easily be expanded to hold any num-
ber of items? That’s right, linked lists!

So each node will have a linked list where each node in the list points to another
tree node. Whew, what a mouthful! Figure 11.4 can better illustrate what is going
on in a tree node.

Figure 11.4

This is the internal
representation of a
tree node.The
structure in the box
is a linked list, where
each node points to
a tree node.

The figure shows a tree node that has four children. The top node has a linked list,
which is shown inside the box. The linked list has four nodes, each of which holds
a tree node pointer.

TIP
As you can see, the tree structure is built using linked list concepts, and it actu-
ally uses a linked list inside.The rest of the data structures in this book are pri-
marily built upon the data structures that I cover in Part I.Therefore, it is very
important that you understand everything in Part I before you continue.

Graphical Demonstration:
Trees
This is Graphical Demonstration 11-1, which you can find on the CD in the direc-
tory \demonstrations\ch11\Demo01 - Trees\ .

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 334

334 11. Trees

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This is the most complex demonstration in the book so far, so I need to do a lot of
explaining before you can just jump into the demo and start playing around.
Figure 11.5 shows a screenshot of the demo.

Figure 11.5

Here is a screenshot
from Graphical
Demonstration 11-1.

The first thing you should notice is that there are more buttons than there were in
previous demos. This is because trees are the most complex structures in the book
so far.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 335

335Graphical Demonstration: Trees

One thing that you won’t see in the screenshot is that two of the nodes are colored
differently. If you start up the demo, the root node will be colored red (node 29 in
Figure 11.5), and the root’s first child will be colored blue (node 1 in Figure 11.5).

When you iterate through a tree, you really need two iterators. If you are unfamil-
iar with what an iterator is, please read Chapter 6.

The first iterator, which is represented in red in the demo, keeps track of the cur-
rent tree node. The second iterator, which is blue in the demo, keeps track of the
current child of the current node.

Because the children in a tree are stored in a linked list, the blue iterator is just a
normal DListIterator. Table 11.2 shows a listing of the commands in the demo and
their functions.

Commands

Command Function

Randomize

Goto Root

Back

Up

Child End

Table 11.2 Graphical Demonstration 11-1

Insert Before Inserts a new node to the left of the blue node

Insert After Inserts a new node to the right of the blue node

Remove Child Removes the blue node from the tree

Creates a new random tree

Moves the red iterator to the root of the tree

Child Start Moves the blue iterator to the first child of the red node

Moves the blue iterator to the previous child of the red node

Moves the red iterator to the parent of the current red iterator

Down Moves the red iterator to the current child node (blue)

Moves the blue iterator to the last child of the red node

Forth Moves the blue iterator to the next child of the red node

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 336

336 11. Trees

There are a lot of commands, and it’s okay if you don’t understand how they work
just yet. I’m going to take you through a little tutorial with the demo.

TIP
If you want to see a cool application of recursion when dealing with trees, take a
look at the source code for this demo.The DrawSubTree algorithm is recursive,
and it is very simple, too. Essentially, the function draws a node and then calls
itself to draw every child node.

Tutorial

First, run the program. You should end up with a random tree like the one in
Figure 11.5. Now, click the Remove Child button. This should remove the blue
node from the tree. Click that button until there is only one node left in the tree.
You should only need to click it two or three times.

Now that you have an empty tree, here’s how to build one.

Step 1: Build a Basic Tree
In this step, I want you to add three children to the root node. To do so, you must
complete these commands:

1. Goto Root.

2. Click Insert After three times.

After you do this, you should have a tree that looks like Figure 11.6. The numbers
in your nodes will be different, but just pay attention to the structure for now.

Figure 11.6

Here is the tree after
Step 1.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 337

337Graphical Demonstration: Trees

Step 2: Traverse the Tree
Now that you have built a basic tree, I want you to traverse the tree by using the
buttons on the right side of the screen.

1. Click Child Start.

2. Click Forth.

3. Click Back.

4. Click Child End.

5. Click Back.

6. Click Down.

Your red node should now be the middle node on the second level of the tree.
During Steps 1–5, you should have seen the blue node moving back and forth, as if
you were traversing a doubly linked list.

Step 3: Build a More Complex Tree
Now I want you to build a more complex tree. Your red node should still be on the
middle node in the second level.

1. Click Insert After twice.

2. Click Child Start.

3. Click Down.

4. Click Insert After twice.

5. Click Up.

6. Click Forth.

7. Repeat Steps 3, 4, and 5.

After Step 7, you should have a tree that looks similar to Figure 11.7.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 338

338 11.

Step 3.

Trees

Figure 11.7

This is the tree after

Step 4: Play Around
Now that you’ve created a neat-looking
tree, I want you to play around with the
commands—see what you can come up
with. The program doesn’t have any lim-
its on the number of nodes you can
add, but adding too many might make
the program run slowly.

I want you to get acquainted with the
manner in which you build and manip-
ulate trees.

Building the Tree Class

The file containing all the tree classes can be found on the CD in the \structures\
directory. It’s named Tree.h.

Now you should have some idea of how trees are structured. Although the actual
structures themselves are not very complicated, working with the trees can get
difficult.

I’ll be perfectly honest with you: The classes that you are about to see are on their
third major revision. When I first started working on the source code, I wanted to

bottom-

NOTE
The method that you just used to
build your tree is called top-down
tree construction.There is another
method to build trees, called
down, but the demo doesn’t support
this method of tree building. I show
you how this is done later on.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 339

339Building the Tree Class

build the tree so that it was nicely contained within a single class and easy to work
with, like all of the classes I’ve used previously in the book. This method ended up
being more work than it was worth, and it was more complicated to use!

So I decided to use an ultra-simplistic approach and create just the node class with
very few functions. This approach didn’t work, either. When I was writing Graphical
Demonstration 11-1, I realized that I would end up re-writing all of the iterator
functions if I ever wanted to use the tree class in another program.

My third and final revision of the class uses a mixture of these two approaches, as
you’ll see in this section. I ended up creating an iterator class so that you don’t
have to constantly rewrite the most-used functions.

The Structure

I already explained how general trees are structured, so I’ll just post the code to
show you how it looks.

1: template<class DataType>
2: class Tree
3: {
4: public:
5: typedef Tree<DataType> Node;
6: DataType m_data;
7: Node* m_parent;
8: DLinkedList<Node*> m_children;
9: };

As usual, I’m using a templated class so that you can store any type of data you
want into the tree.

The first thing to note is on line 5. On that line, I used a typedef so that using the
tree class is easier to do. Now, instead of saying Tree<DataType> whenever you want
to use a node, you can just type Node instead. Typedefs make life so much easier.

On line 6, I define the holder for the data, just like the linked list classes.

On line 7, I put a pointer to the parent node. I like having a parent pointer in my
trees because it allows me to easily backtrack, but having a pointer to the parent
node is not necessary.

On line 8, I define the linked list of nodes that will store the pointers to the node’s
children.

All in all, this is not a difficult structure to visualize on a node-per-node basis.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 340

340 11. Trees

The Constructor

Here is the code for the constructor:

Tree()
{

m_parent = 0;
}

I want you to pay attention to the fact that the parent is cleared to 0. Whenever I
deal with tree nodes, the node is considered a root node if the parent pointer is 0.

Also, note the other cool thing: Because the DLinkedList class already has a con-
structor, the m_children list is automatically initialized and holds 0 nodes.

The Destructor

Whenever a tree node is deleted, you need to make sure that it is properly cleared
from memory. However, this process is not like deleting a linked list node. For
example, take a look at Figure 11.8.

Figure 11.8

This is a tree that is
used in the
destruction example.

You determine that you no longer want node b in the tree in Figure 11.8. How do
you go about removing the node from the tree?

Perhaps the easiest thing to do would be to take nodes c and d and add them as
children to node a. Or maybe you want to make some other arrangement, and you
can move c and d around to different places in the tree.

But how do you determine where those nodes go? You really can’t do that with a
general-purpose tree. The previous method is usually only used in specific tree

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 341

341Building the Tree Class

types, such as the binary search tree (see Chapter 13, “Binary Search Trees”) and
heaps (see Chapter 14, “Priority Queues and Heaps”).

However, most of the time, you will find that the children of any given node are
directly related to its parent. If you remove the parent node, you should also remove
the children nodes as well as all of their children, and so on. So if you want to
remove node b, you need to remove node c and d as well. If c or d had any children,
you should remove them, continuing this way down to the bottom of the tree. To
do this, you call the trees’ Destroy function:

// destructor

~Tree()

{

Destroy();
}

The Destroy Function

The Destroy function is called whenever a node is destructed or whenever you want
to delete all of a tree’s children. Note that it uses recursion; if you aren’t familiar
with recursion yet, please go back and read Chapter 10. The function is very simple
if you think about it recursively:

1: void Destroy()
2: {
3: DListIterator<Node*> itr = m_children.GetIterator();
4: Node* node = 0;
5: itr.Start();
6: while(itr.Valid())
7: {
8: node = itr.Item();
9: m_children.Remove(itr);
10: delete node;
11: }
12: }

The function starts off by creating an iterator to the list of children. Then, for each
child in the list, the function removes the pointer from the child list (line 9) and
then deletes the node (line 10).

So how is this function recursive? Well, the destructor of each child node is called
whenever a node is deleted, and the destructor calls the Destroy function. So, in
effect, the function is recursive.

Team LRN

Data Structures CH11 11/5/02 8:40 AM Page 342

342 11. Trees

Look back to Figure 11.8. If you were to delete node b from that tree, this function
would first loop through and remove c and d from its child list and then delete c
and d. But the act of deleting c and d calls their destructors, which in turn calls
Destroy again! If those nodes had any children, they would be deleted, too! This
function is one large chain reaction that deletes every single node in a subtree.
Isn’t recursion neat?

The Count Function

The Tree class has one more function: Count. This function counts the number of
nodes in a subtree and returns the result.

int Count()
{

int c = 1;
DListIterator<Node*> itr = m_children.GetIterator();
for(itr.Start(); itr.Valid(); itr.Forth())

c += itr.Item()->Count();
return c;

}

Note that this function is also recursive. (Are you noticing a trend?) The function
creates an integer variable, c, and sets it to 1. That 1 represents the current node.

Then, an iterator to the child list is retrieved, and the function loops through every
child and adds the count of the child to c. Finally, c is returned.

In effect, this algorithm says: The count of any subtree is equal to 1 plus the count
of each child.

The Tree Iterator

I mentioned before that this class has undergone several variations. The first
method I tried used an iterator, and the second didn’t use any at all. This is the
third version, in which I made the iterator into one class that is easily managed.
This way, you won’t have to rewrite every iterator function on your own when work-
ing with trees.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 343

343The Tree Iterator

The Structure

The TreeIterator structure is simple; it only has two variables:

template<class DataType>
class TreeIterator
{
public:

Node* m_node;
DListIterator<Node*> m_childitr;

};

The first variable is a pointer to the current node, and the second is a
DListIterator, which points to the current child in the current node. If you don’t
understand why there are two iterators, please go back and play around with
Graphical Demonstration 11-1. That demo gives you a good idea of why two itera-
tors are needed.

This iterator class neatly encapsulates both iterators into one class so that they are
easier to use.

The Basic Iterator Functions

These are the basic iterator functions, which allow you to create an iterator and set
it up to point to a node.

The Constructor
The tree iterator is different from the linked list iterators you’ve used before.
Instead of getting an iterator from a general list object, you pass a tree node into
the iterator’s constructor.

// constructor

TreeIterator(Node* p_node = 0)

{

*this = p_node;

}

This function calls the assignment oper-
ator, which I go over next. Before that,
however, I want to clarify how an itera-
tor is used.

The

NOTE
If you do not pass a node into the
constructor, this function still works.

= 0 in the parameter list says,
“If the user didn’t pass anything in as
a parameter, then use the value 0
instead.”

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 344

344 11. Trees

Say you have a tree node that you want to get an iterator for, like this:

Tree<int>* node = new Tree<int>;

This node is just a plain integer tree node with no children and no parents. It does-
n’t really matter, though; this same method works with any tree node pointer. Now
you want to get an iterator to that node, which you can do in one of two ways:

TreeIterator<int> itr(node);
itr = node;

The first line of code uses the constructor to make the iterator point to the node.
The second method uses the assignment operator to do the same thing.

The Assignment Operator
The assignment operator for the iterator class is somewhat confusing at first, but
you’ll understand it after you work with trees a little more.

void operator= (Node* p_node)
{

m_node = p_node;
ResetIterator();

}

The first strange thing is that the operator takes a tree node pointer as a parame-
ter, which is something you don’t usually see when dealing with assignment opera-
tors. However, when you’re working with nodes, you usually are dealing with node
pointers, right? The function takes pointers as a parameter so it is easier to work
with.

So the function takes a node pointer as a parameter. It then sets the m_node pointer
to point to the tree node. After that, the function calls the ResetIterator helper
function, which makes the m_childitr iterator point to the first child of p_node. That
particular sequence of code is called often in the iterator, and rather than copying
the code 20 times, I placed it into a function of its own.

The ResetIterator Function
This resets the child iterator, and it is meant to be called whenever the m_node
pointer is changed. It is really just a helper function and is not meant to be called
outside of the iterator class.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 345

345The Tree Iterator

void ResetIterator()
{

if(m_node != 0)
{

m_childitr = m_node->m_children.GetIterator();

}

else

{

m_childitr.m_list = 0;
m_childitr.m_node = 0;

}
}

The first part checks to see whether the node is 0. If not, then it resets m_childitr
to point to the child list of m_node. If the node is 0, then it is invalid, so you need to
make the child iterator invalid, too. If not, then the child iterator might be point-
ing to the child list of a different node.

The Vertical Iterator Functions

The following functions are the so-called vertical iterator functions because they
deal with moving the iterator up and down through the tree.

The Root Function
This simple function moves the iterator
to the root of the tree. Notice how this
function would not be possible if the
tree node class didn’t point to its parent.

The code is pretty simple, so I’m not
going to bother pasting it here. The
basic premise is this: While the current
node’s parent is not 0, move the iterator
up one level.

because the iterator has no idea of

NOTE
Note that if you invalidate the itera-
tor somehow, you can’t call this func-
tion to move back to the root

where the root node actually is.You
need to manually reset the iterator
using the assignment operator.

The Up Function
The Up function is very similar to the Root function, except that it moves the itera-
tor up only one level, and it might actually go past the root node. Because of that,
this function could possibly invalidate the iterator if you make it go past the root.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 346

346 11. Trees

void Up()
{

if(m_node != 0)
{

m_node = m_node->m_parent;

}

ResetIterator();

}

This function makes sure that the node is valid before it does anything. If so, then
it moves the iterator up to the previous node.

The Down Function
This function is the opposite of Up; it moves the iterator downward to the current
child iterator. However, if the child iterator isn’t valid, this function doesn’t do any-
thing.

void Down()
{

if(m_childitr.Valid())
{

m_node = m_childitr.Item();
ResetIterator();

}
}

The Horizontal Iterator Functions

The horizontal functions of a tree iterator are called so because they allow you to
move the current child iterator back and forth, like a linked list iterator. They are
ChildForth, ChildBack, ChildStart, and ChildEnd.

However, there really is no point in pasting the code here; these functions are all
one line long and directly call the DListIterator version of the same function.

The Other Functions

The iterator class has several other functions that make it easier to add and remove
nodes to the tree and to access their contents.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 347

347Traversing a Tree

The functions are AppendChild, PrependChild, InsertChildBefore, InsertChildAfter,
RemoveChild, ChildValid, and ChildItem. Notice something about all of these? These
functions all correspond to functions within the linked list classes!

Because all of these functions directly call linked list iterator functions, there is no
need for me to paste them here, either.

Building a Tree

There are two common methods of building trees: top-down and bottom-up. They
are used in different situations, depending on what you want a tree to do.

Top Down

I’ve already shown you how to build a tree one way, which is called top-down con-
struction. I used this method in Graphical Demonstration 11-1. In this method you
create the root node of the tree first, and then add children from there.

Bottom Up

There is another way to build trees, however, and it is very different from top-down.
This method is called bottom-up construction, mainly because the tree is built with
the bottom nodes first (the leaves) and then expanded upward. This method of
tree construction is not used as often as top-down, but there are several uses for it.
For example, when building Huffman trees, bottom-up construction is used. You’ll
see what Huffman trees are in Chapter 21, “Data Compression,” when I show you
different methods of compressing data.

Traversing a Tree

You can traverse the nodes in a tree in many ways. Using the tree iterator is one of
them, but that method is sometimes too difficult to use if you just want to perform
a function on every single node in the tree.

You can use two different simple methods when you want to traverse a tree, and
they are both recursive.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 348

348 11. Trees

The Preorder Traversal

The first method I show you is the preorder traversal. You’ll see why it is called so
when you look at the pseudo-code:

Preorder(node)
Process(node)
For each child

Preorder(child)
end For

end Preorder

This algorithm accepts a node as a parameter and uses a function named Process.
You shouldn’t care what Process does; it is just a function that does something to
the node.

The function first processes the node that is passed into the function. It then loops
through each child and calls Preorder on each child node.

Let me show you how this is run through on a simple tree. Figure 11.9 shows
the tree.

Figure 11.9

This is the sample
tree that is used in
the traversal
examples.

Now, you call Preorder on the root node, so that gets processed first. The root has
three children, so the function calls Preorder on each child. The function calls
Preorder on the leftmost child first, which means that the leftmost child gets
processed second. Now the function loops through all of the children of the left-
most child of the root, so the three children are processed third, fourth, and fifth.
Now the function jumps back up to the second child of the root and repeats the
process.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 349

349Traversing a Tree

The order in which the nodes are processed is shown in Figure 11.10.

Figure 11.10

This is the order in
which nodes are
processed with
Preorder.

In a preorder traversal, each subtree is processed before the next subtree is
processed. You can see why it is called a preorder search from the algorithm; the
current node is processed before the children.

Coding the Preorder Function
Now you need to actually put the algorithm into code. The method I used for the
Preorder function is very flexible, and the code looks very ugly because of it.

The Preorder function takes a function pointer as a parameter. You’ve seen func-
tion pointers before in Chapter 8, “Hash Tables,” but in case you aren’t familiar
with them, you can read more about them in Appendix A, “A C++ Primer.”

1: template <class DataType>
2: void Preorder(Tree<DataType>* p_node, void (*p_process)(Tree<DataType>*))
3: {
4: p_process(p_node);
5: DListIterator<Tree<DataType>*> itr = p_node->m_children.GetIterator();
6: for(itr.Start(); itr.Valid(); itr.Forth())
7: Preorder(itr.Item(), p_process);
8: }

First off, the function is a template function. This allows Preorder to work on any
type of tree easily.

On line 2, the function takes a node pointer and a function pointer as parameters.
The function that is passed into Preorder is a simple function, which takes a Tree
pointer as a parameter and doesn’t return anything. I show you how to use this
shortly.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 350

350 11. Trees

On line 4, the p_process function pointer is called on the node.

On line 5, an iterator to the child list of the node is retrieved, and the function
uses this iterator to loop through each child node and call Preorder on them in
lines 6 and 7.

Using the Function Pointer
Say you have a tree of integers already built, and its name is g_tree. Now, you want
to add together every number in the tree, but you don’t want to bother using an
iterator to do this.

So, you create a function called sum, which sums together the contents of tree
nodes and puts them into a global integer named g_sum:

void sum(Tree<int>* p_node)
{

g_sum += p_node->m_data;
}

Now, all you need to do to sum together the values of all the nodes in g_tree is to
call these two lines of code:

g_sum = 0;

Preorder(g_tree, sum);

The first line clears the sum, and the second line traverses the tree, calling sum on
each node.

The Postorder Traversal

The other major traversal type for trees is called the postorder traversal. If the pre-
order traversal was called pre order because it processed the current node before the
child nodes, what do you think the post order traversal does?

That’s right—it processes the current node after the child nodes.

Postorder(node)
For each child

Postorder(child)
end For
Process(node)

end Postorder

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 351

351Traversing a Tree

If you were to postorder traverse the tree from Figure 11.9, the nodes would be
processed in the order shown in Figure 11.11.

Figure 11.11

This is the order in
which the nodes are
processed using the
postorder traversal.

This time, Postorder is called on the first child of the root, then the first child of
that node, so that the first node to be processed is a leaf node. You can see from
the figure that every child node is processed before its parent node.

I won’t bother to paste the code for the actual Postorder function because it is so
similar to the Preorder function. If you want to see it, it is in the tree.h file in the
\structures\ directory on the CD.

Graphical Demonstration: Tree
Traversals
This is Graphical Demonstration 11-2, which can be found on the CD in the direc-
tory \demonstrations\ch11\Demo02 - Tree Traversal\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 352

352 11. Trees

This demonstration is very simple; it only has three buttons, as shown in Figure 11.12.

Figure 11.12

Here is a screenshot
from Graphical
Demonstration 11-2.

The Random Tree button generates a new random tree, as in the previous demo.

The other two buttons, Preorder and Postorder, make the demo go into an anima-
tion. The demo highlights the nodes using the preorder or postorder algorithms at
750 millisecond intervals. If you clicked Preorder, for example, Node 58 would be
highlighted first, and then 63, and then 38, and then 98, and so on.

Game Demo 11-1: Plotlines

This is Game Demonstration 11-1. It is on the CD in the directory \demonstra-
tions\ch11\Game01 - Plotlines\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 353

353Game Demo 11-1: Plotlines

For years and years, games have been linear with their stories and plots. What does
this mean? You start the game and you play around, progressing from level to level,
until you beat the game. Figure 11.13 shows how the levels progress throughout the
game. Notice that it is a straight line, which is where the term linear comes from.

Figure 11.13

This is a linear level
progression. Each level
leads to the next.

Well, these types of games can be fun the first time through, but they tend to get
boring. If you play the same levels over and over again, the game could get boring
really quickly.

Now, imagine a game where the actions you take in the game directly affect the
plot of the game. Say that at one point in the game, you are required to make a
choice that will cause the game to branch out, and everything that happens during
the rest of the game happens as a result from your choice.

For example, at level 2, you’re required to make a choice; from that point, the
game is different, depending on the choice you made. Figure 11.14 shows this.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 354

354 11. Trees

Figure 11.14

This is a branching
level progression.You
can choose which path
to take at level 2.

Now, whenever you play through the game, you can go with branch a the first time
and branch b the second time!

It turns out that trees are the ideal structure to store game data like this. You can
see how the level progression from Figure 11.14 looks like a tree, albeit a basic one.

Using Trees to Store Plotlines

Obviously, creating a branching plotline takes a lot of work, and because the pur-
pose of the demo is to show you how the data structure works, this demo doesn’t
really have a plot. Instead, I’ll call the different story branches a, b, c, and so on. If
you want, you can make up a plotline for yourself in your head—just don’t make it
too bad; I hate games with bad plots!

The first thing you need to do is create a storyline. In this little demo, the storyline
will look like Figure 11.15.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 355

355Game Demo 11-1: Plotlines

Figure 11.15

Here is the branching
plotline for the demo.

Declaring the Tree
The premise of the demo is simple; when a level is completed, the player has a
choice of which level to go to next. This information is stored in a tree:

Tree<int>* g_tree;
TreeIterator<int> g_itr;

The g_tree pointer will always point to the root of the tree, and the g_itr pointer
will point to the current level in the tree.

The tree only stores integers, which represent which tile the level is made up of.
Each level in the game demo has a different tile.

Initializing the Tree
The root of the tree is then initialized:

g_tree = new Tree<int>;
g_tree->m_data = 0;
g_itr = g_tree;

The root node is created with the value 0, which means that the player starts out on
level 0. On line 3, the global iterator is assigned to point to the root node, which
means that the player starts out on the root level.

After the root is initialized, a temporary iterator named itr is created so that I can
build the tree with it. Using this iterator, I build the tree using the iterator functions:

TreeIterator<int> itr;
Tree<int>* node;
itr = g_tree;
// add the ‘2a’ branch

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 356

356 11. Trees

node = new Tree<int>;
node->m_data = 1;
itr.AppendChild(node);

This code shows the addition of level 2a to the tree. The other seven levels of the
tree are added in the same fashion; the iterator is moved around and child nodes
are appended to the tree to give you the tree in Figure 11.15.

Changing Levels
Whenever the player “wins” a level in the demo, the demo switches to a state where
it selects the next level.

The screen that draws the levels that are available for choosing uses the child itera-
tor of g_itr to loop through each child and draw it.

for(g_itr.ChildStart(); g_itr.ChildValid(); g_itr.ChildForth())
{

// draw the level that the current child contains
}

When the user selects a level, the child iterator is moved to the correct level. The
integer x will contain the number of the child which the player selected.

g_itr.ChildStart();

while(x > 0)

{

g_itr.ChildForth();
x—;

}
g_itr.Down();

When the child iterator is in the correct place, the Down function is called, moving
the iterator to the next level.

Playing the Game

The game starts off with a little dude standing on some weird alien world at the top
left corner of the screen. Your mission? You are to use the arrow keys on the key-
board to successfully walk him off the edge of the screen to the right. It might be
difficult and you might not succeed, but you’ll make me proud by trying!

Okay, you really can’t lose. There are no enemies or obstacles. Figure 11.16 shows
the opening screen.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 357

357Game Demo 11-1: Plotlines

Figure 11.16

This is a screenshot
of Level 0.

After you have successfully moved your little dude across the screen to the right,
the level selection screen appears, as shown in Figure 11.17.

Figure 11.17

This is the level
selection screen.

Team LRN

Data Structures CH11 11/5/02 8:41 AM Page 358

358 11. Trees

You use the mouse to click on one of the tiles to select the next level. That’s pretty
much all there is to the demo.

Conclusion

One thing you should realize about trees is that they are complex structures. They
are obviously not suitable for storing any types of data, like arrays and linked lists
are, so that makes trees a more specialized structure.

Only certain types of data can be stored in trees, but which kind? It turns out that
hierarchical data fits nicely into trees, but that’s not all. I only went into one use of
trees; there are many.

For example, you could store AI decision paths into a tree. Imagine the AI process
of a character within a shoot-’em-up game, as shown in Figure 11.18.

Figure 11.18

This is an AI
decision tree
showing the
thought
process of a
character
when he sees
another
character in
the game.

So, as you can see, there are tons of uses for trees. The main purpose of this chap-
ter was to introduce you to the concepts of trees and practice your recursion skills.

The next few chapters go over some more specialized trees and their uses.

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 359

CHAPTER 12

Binary
Trees

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 360

360 12. Binary Trees

In the previous chapter, you learned about general trees, which are trees that can
have any number of branches per node. Now I’m going to show you the most

popular variant of the tree structure: the binary tree.

In this chapter, you will learn

■ What a binary tree is
■ Some common traits of binary trees
■ Two common implementations of binary trees
■ How to program a linked binary tree
■ How to perform the two tree traversals on a binary tree
■ How to perform a new traversal specific to the binary tree structure
■ How to build a simple arithmetic expression parser using binary trees

What Is a Binary Tree?
A binary tree is a very simple variant of the general tree structure, and it is often
used in game programming. In fact, almost every tree-based structure in this book
uses a binary tree as its base.

Simply put, a binary tree is a tree that can have up to two children. These two chil-
dren are usually called the left and the right children of the tree. Figure 12.1 shows
a binary tree node.

Figure 12.1

This is a binary tree
node.

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 361

361What Is a Binary Tree?

As you can see, there really isn’t much to learn about plain binary trees because
they are the simplest of all tree structures. A binary tree can have several traits that
general trees cannot have, though.

Fullness

A binary tree can be full. Because each node can have a maximum of two child
nodes, you can fill up a tree so that you cannot insert any more nodes without mak-
ing the tree go down a level.

Figure 12.2 shows a full four-level binary tree.

Figure 12.2

Here is a full binary
tree.You cannot add
more nodes to this
tree without making
it increase in size by
another level.

In a full binary tree, every leaf node must be on the same level, and every non-leaf
node must have two children.

Denseness

Another property of binary trees is called denseness. Sometimes this is also called
completeness or leftness. A dense binary tree is similar to a full tree, except that in the
bottom level of a tree, every node is packed to the left side of the tree.

Figure 12.3 shows a dense binary tree.

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 362

362 12. Binary Trees

Figure 12.3

Here is a dense
binary tree. Every
level is full, except
the last level, where
the nodes are all
packed to the left of
the tree.

Denseness is an important trait with some variants of binary trees, as you’ll see later
on in this chapter and when I teach you about heaps in Chapter 14, “Priority
Queues and Heaps.”

Balance

Even though I don’t really use this trait in this book, I feel it is important enough
to mention. A balanced tree is a tree in which every node in the tree has approxi-
mately as many children in the left side as the right side. This property becomes
important when using some of the binary search tree (BST) variants, such as AVL
trees and red-black trees (RBT). I discuss BSTs in Chapter 13, “Binary Search Trees,”
but not AVL trees or RBTs. They are fairly complex and used to solve specific prob-
lems that don’t occur in most game programming situations; we will skip them
because this is a game programming book.

Structure of Binary Trees

You can store a binary tree in two ways. The first method is the most common, and
it’s very similar to the Tree class. The second method is not as common, but it has
its uses.

Linked Binary Trees

A linked binary tree is just like the regular tree structure and therefore is node-
based. Instead of using a linked list of child pointers, though, the linked binary

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 363

363Structure of Binary Trees

tree node has two fixed pointers. The fixed pointers either point to the left or right
child nodes or contain 0 if the node doesn’t have a child. The structure for these
kinds of nodes is shown in Figure 12.4

Figure 12.4

This is a linked
binary tree node.

The three boxes with arrows coming out of them are all pointers that point to
another node structure. Note that I included a parent pointer in the node; even
though it is not necessary, I feel that it saves a lot of trouble when working with
binary trees.

This method of structuring nodes is great because it allows for an effectively limit-
less tree size due to the linked nature of the tree.

Arrayed Binary Trees

There is another method of storing binary trees, however. You’ve seen how a binary
tree can be full because the number of children in a binary tree is fixed at two.

Because you know that a binary tree can only have a certain number of nodes
depending on the height of the tree, you can make certain assumptions. For exam-
ple, imagine what would happen if you turned every node from the full binary tree
in Figure 12.2 into an array cell. Figure 12.5 shows what I mean by this.

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 364

364 12. Binary Trees

Figure 12.5

This is a full binary
tree where the nodes
have been turned
into array cells.

Pay particular attention to the order in which I numbered the cells. The root starts
at index 1 and the numbering goes from left to right all the way down to the last
node on the right, 15. Now, imagine if you concatenated all of the cells into an
array of cells, like Figure 12.6 shows.

Figure 12.6

This is how you
would represent a
binary tree as an
array.

The array is separated into four different segments, each with a number on top.
The segments represent the levels of the tree. The first segment is only one cell in
size because there is only one root node. The second segment contains two cells
because there are two nodes on the second level of a binary tree. Likewise, the
third segment has four cells, and the fourth segment has eight cells.

Size of Arrayed Binary Trees
The number of nodes on a level of a full binary tree doubles with each new level,
and follows this formula: nodes for level n = 2n-1. Therefore, the number of nodes
required for level 5 would be 24, or 16.

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 365

365Structure of Binary Trees

2

The total number of cells in a binary tree of a particular depth follows this formula:
cells for depth n = 2n-1. For example, in the four-level tree in Figure 12.5, there are

4 – 1 nodes, or 15. A binary tree with five levels requires 31 nodes.

Traversing Arrayed Binary Trees
You don’t need iterators to traverse arrayed binary trees. A few easy algorithms
allow you to determine the index of the left, right, and parent nodes of a binary
tree cell.

Take a look back at Figure 12.5 and see if you can find a relationship between the
index of any node and its left child. It is easy to see that the index of the left child
of any node is twice the index of its parent. By using this knowledge, you can create
a function that determines the left child of any cell in the tree:

left = index * 2;

That was easy enough, wasn’t it? Now, see if you can figure out how to calculate the
index of the right child of any cell. Because the right child of any node is only one
index higher than the left child, you can use that formula to create the formula for
finding the right child:

right = index * 2 + 1;

The last thing you need to figure out is how to get to the parent node from any
node in the tree. If you look at the formula for finding the left node and reverse it,
you get this:

parent = index / 2;

That works for left children, because the left children are all even numbers and are
divisible by 2, but what about right children? What happens when you divide 3 in
half? Although 3/2 is 1.5, the extra 0.5 is cut off because these algorithms are using
integers, giving 1 as the result. So the parent algorithm works on any node.

Size Efficiency
I’ve said before that arrayed binary trees are not as common as linked trees. This is
due to several reasons, but first, look at Figure 12.7.

Team LRN

Data Structures CH12 11/5/02 8:41 AM Page 366

366 12. Binary Trees

Figure 12.7

Here is another
binary tree, where a
lot of space is
wasted.

The tree in Figure 12.7 is the same as the tree in Figure 12.5, but the entire subtree
starting with index 3 has been removed. Imagine how this tree looks when stored
into an array, though. Figure 12.8 shows this.

Figure 12.8

This is the tree from
Figure 12.7 stored in
an array.

The tree from Figure 12.7 has 8 nodes, but the array has 15 cells, which means that
7 cells are empty! That’s almost half of the array!

Granted, the last 4 cells are unused, so you could chop them off the array, but what
happens if you insert a left child onto node 8? Then the child would need to be
stored into cell 16, requiring you to resize the array.

This example shows that using arrays to store binary trees is very inefficient if your
trees aren’t full or dense.

Graphical Demonstration:
Binary Trees
This is Graphical Demonstration 12-1, which you can find on the CD in the direc-
tory \demonstrations\ch12\Demo01 – Binary Trees\ .

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 367

367Graphical Demonstration: Binary Trees

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Figure 12.9 shows a screenshot from this demonstration. The demo has eight dif-
ferent buttons, and Table 12.1 has a listing of what they do.

Figure 12.9

Here is a screenshot
from the binary tree
demonstration.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 368

368 12.

Command Action

none

Go Left

Go Right

Randomize

Goto Root

Go Up

Binary Trees

Table 12.1 Binary Tree Demonstration Commands

Insert Left Inserts a new node to the left of the current node if there is none

Insert Right Inserts a new node to the right of the current node if there is

Moves the current node to the left child node

Moves the current node to the right child node

Randomizes the tree

Remove Removes the current node, unless it is the root

Moves the current node iterator to the root of the tree

Moves the current node iterator up one level

As in the Tree graphical demonstration, the current node is highlighted in red.
Play around with the demo to familiarize yourself with binary trees a bit more.

Coding a Binary Tree

All of the code for the Binary Tree structure and algorithms is located on the CD in
the file \structures\BinaryTree.h.

Lucky for you, coding a binary tree isn’t nearly as difficult as coding a general tree.
In fact, you don’t even need an iterator class with a binary tree; you can just as eas-
ily use a pointer to a node as the iterator.

Note that I’m not including an Arrayed Binary Tree class. Because an arrayed
binary tree is essentially an array, there is no need to include one.

The Structure
As I stated before, the binary tree class has four variables:

template<class DataType>

class BinaryTree

{

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 369

369Coding a Binary Tree

public:
DataType m_data;
Node* m_parent;
Node* m_left;
Node* m_right;

};

They are the data, a pointer to the parent, and a pointer to the left and right
children.

The Constructor

The constructor exists to clear the pointers so that they aren’t filled with garbage
data when a node is created.

BinaryTree()
{

m_parent = 0;
m_left = 0;
m_right = 0;

}

The Destructor and the Destroy
Function
The destructor of the BinaryTree class just calls the Destroy function, like the Tree
class did, so there is no need to paste the code here.

However, the Destroy function is slightly different than before:

void Destroy()
{

if(m_left)
delete m_left;

m_left = 0;

if(m_right)

delete m_right;
m_right = 0;

}

This function determines if the node has a left child and deletes it if it does, and
then it determines if it has a right child and deletes it if it does. As before, the func-
tion is recursive because the destructor of each child node calls Destroy.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 370

370 12. Binary Trees

The Count Function

The Count function is only slightly modified from the Tree version; instead of loop-
ing through the child list, it calls the Count function on each child of the node.

int Count()
{

int c = 1;
if(m_left)

c += m_left->Count();
if(m_right)

c += m_right->Count();
return c;

}

Note that it checks to see if each child node exists before calling the Count function
on it.

Using the BinaryTree Class

This is Example 12-1, which can be found on the CD in the directory
\examples\ch12\01 – Binary Tree\ .

This example takes you through the process of building a simple three-level full
binary tree.

The first step is to declare the tree root and an iterator:

BinaryTree<int>* root = 0;

BinaryTree<int>* itr = 0;

After that, you need to initialize the root of the tree:

root = new BinaryTree<int>;

root->m_data = 1;

Then you create the left and right child nodes of the root node:

root->m_left = new BinaryTree<int>;

root->m_left->m_data = 2;

root->m_left->m_parent = root;

root->m_right = new BinaryTree<int>;

root->m_right->m_data = 3;

root->m_right->m_parent = root;

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 371

371Traversing the Binary Tree

Now, the iterator is put to work to create the nodes lower down in the tree:

itr = root;

itr = itr->m_left;

itr->m_left = new BinaryTree<int>;

itr->m_left->m_data = 4;

itr->m_left->m_parent = itr;

itr->m_right = new BinaryTree<int>;

itr->m_right->m_data = 5;

itr->m_right->m_parent = itr;

The iterator is first pointed at the root node and then is moved down to the left
node of the root. After that, node 4 is inserted at the left of node 2, and node 5 is
inserted at the right.

Now you want to go back up one level:

itr = itr->m_parent;

And now go back down to the right and do the same thing:

itr = itr->m_right;

itr->m_left = new BinaryTree<int>;

itr->m_left->m_data = 6;

itr->m_left->m_parent = itr;

itr->m_right = new BinaryTree<int>;

itr->m_right->m_data = 7;

itr->m_right->m_parent = itr;

As you can see, iterating through a binary tree is simple because you know there
are only two children per node.

Traversing the Binary Tree

If you remember, the general tree structure had two simple traversal methods: the
preorder and the postorder. The binary tree structure allows for another type of
traversal, called the inorder traversal, as well.

I’ll show you how to accomplish all three. The actual C++ code for these functions is
in the BinaryTree.h file and is almost identical to the code for the general tree tra-
versal functions, so I won’t include it here. If you need clarification, the “Traversing
a Tree” section in Chapter 11, “Trees,” describes how the traversal functions work.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 372

372 12. Binary Trees

The Preorder Traversal

The preorder traversal for a binary tree is simple, and it is almost identical to the
algorithm used for general trees:

Preorder(node)
process(node)
Preorder(node.left)
Preorder(node.right)

End Preorder

It is important to note that the left node is processed before the right node; that is
the general convention used by all binary trees.

The Postorder Traversal

Just like last time, the postorder traversal processes the current node after the child
nodes:

Postorder(node)
Postorder(node.left)
Postorder(node.right)
process(node)

End Postorder

The Inorder Traversal

So, if the pre order traversal processes the current node before the children, and the
post order traversal processes the current node after the children, what do you think
the inorder traversal does?

That’s right, it processes the current node in between the children nodes:

Inorder(node)
Inorder(node.left)
process(node)
Inorder(node.right)

End Inorder

This traversal assures that the entire left subtree of every node is processed before
the current node and the right subtree. Remember this traversal; you’ll be using it
for a neat trick in Chapter 20, “Sorting Data.”

Figure 12.10 shows the order in which nodes are processed in a binary tree using the
inorder traversal. Note the general trend of processing the nodes from left to right.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 373

373Traversing the Binary Tree

Figure 12.10

This is the order of
nodes processed
using the inorder
traversal.

Graphical Demonstration: Binary
Tree Traversals
This is Graphical Demonstration 12-2, which is located on the CD in the directory
\demonstrations\ch12\Demo02 - Binary Tree Traversals\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demonstration is almost the same as Graphical Demonstration 11-2, except
that it has an extra button to execute the inorder traversal. Figure 12.11 shows a
screenshot of the demo in action.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 374

374 12. Binary Trees

Figure 12.11

Here is a screenshot
from the traversal
demo.

As before, the nodes will be highlighted for 700 milliseconds while they are being
processed to show you the order in which they are visited by the algorithms.

Application: Parsing

This next topic, although it’s a little advanced, is a really neat application of binary
trees. The code for this section is on the CD in the directory
\demonstrations\ch12\Game01 - Parsing\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 375

375Application: Parsing

Parsing is the act of breaking up a sentence into easy-to-understand segments. For
example, when you read a sentence, your mind mentally parses it into a form that
makes sense to you.

Take the following sentence, for example: “Bob runs up the hill.” Your mind recog-
nizes that sentence, and it has parsed it into several segments. I don’t want to turn
this into an English lecture, but a lot of computer language theory is based in con-
cepts that English linguists invented.

The sentence can be broken up into these fragments: verb phrase, preposition,
noun phrase. Bob runs, up, the hill. The two phrases can then be broken down fur-
ther; the verb phrase is a combination of a noun and a verb, and the noun phrase
is a combination of an article and a noun. Figure 12.12 shows the tree that is cre-
ated when your mind parses the sentence.

Figure 12.12

This is a parse tree
for an English
sentence.

Now, don’t be put off if you didn’t understand that; this is a complex topic in
English, after all. I showed that to you so that you can begin to understand how
computers parse the code that you send into your C++ compiler.

“Okay,” you say, “parsing is important when you’re making compilers, but what the
heck does it have to do with game programming?”

I’m sure you’ve played Quake before. If you have made custom maps for Quake,
you know that Quake has a scripting system known as QuakeC. This system allows you
to add little bits of C code to Quake maps so that code is executed when the player
or monsters do something on the map.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 376

376 12. Binary Trees

A scripting system essentially allows you to make very customizable maps for a
game. I’m sure you’ve played some of the Quake modules (mods) before. One of my
favorites is Team Fortress Classic (TFC). These mods allow you to drastically change
the way the game operates, expanding upon the original game’s capabilities.

One of the reasons games like Quake are so popular is because they are so
modifiable.

This section introduces you to basic arithmetic parsing, which is the first step
toward creating your very own scripting system.

Arithmetic Expressions

Don’t be confused by that big name; arithmetic expressions are really just mathemati-
cal formulas involving numbers and variables. x = 24 + y is an arithmetic expression.

The standard four operators in math are addition, subtraction, multiplication, and
division. All four of these operators are binary operators, which means that they
operate on two numbers.

Parsing an Arithmetic Expression

Look at this expression for a moment: 2 * (y / z). There are two operators in this
expression: multiplication and division. Each operator has a term on the left and the
right sides of itself. Does that remind you of anything—possibly something in this
chapter? That’s right—binary tree nodes have left and right children!

So you can treat the operator as a node and put the terms into the left and right
nodes of a binary tree. For example, the term inside the parentheses can be viewed
like the first tree in Figure 12.13. Then, if you create a node with the multiplication
symbol in it and put 2 as the left child node and the subtree created inside the
parentheses as the right child node, you get the second tree in Figure 12.13.

Figure 12.13

This is the parse tree
for the arithmetic
expression 2 * (y / z).

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 377

377Application: Parsing

Well, now you’ve got a tree; what do you do with it? You can perform a postorder
traversal on the tree to calculate its value!

For example, you start at the root node and tell it to return the value of the left
node first. The left node just returns 2. Then, you tell the right node to return its
value. Because the right node is another operator, the postorder algorithm is called
again. The division node asks its left node for its value, which is y, and then asks the
right node for its value, which is z. Now that both child nodes have returned their
values, the division node can divide y by z and return the result back up to the mul-
tiplication node. Now that the multiplication node has the values of both of its chil-
dren, it multiplies both of them together and returns that result! Whoa, that’s cool.

Recursive Descent Parsing

I’m going to show you an amazingly simple demonstration of what is called recursive
descent parsing, which you can use to parse a simple arithmetic expression and turn
it into a tree that your program can then use as a simple script.

Tokens
The first thing you need to do is turn the actual arithmetic expression into a list of
tokens. A token is basically a structure that says, “This is a number,” “This is an oper-
ator,” or “This is a variable.”

I’ll first create an enumerated type, which will help you determine the type of a
token:

enum TOKEN
{

NUMBER,
VARIABLE,
OPERATOR,
LPAREN,
RPAREN

};

After that, I create the actual Token class:

class Token
{

TOKEN m_type;
float m_number;

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 378

378 12. Binary Trees

int m_variable;
int m_operator;

};

This class has a type variable that deter-
mines which of the following three vari-
ables is valid.

If the type of the token is NUMBER, then
m_number will hold the number. If the
type of the token is VARIABLE, then
m_variable will hold the number of the
variable (you’ll see how this works in a bit). If the token is OPERATOR, then m_operator
has a number from 0–3, where 0 is addition, 1 is subtraction, 2 is multiplication,
and 3 is division.

union

union is,

NOTE
More-complex implementations of a
token class would use the C++
directive and have a different class
structure for each kind of token type.
If you don’t know what a
don’t worry; I’m not using them in this
demo because this demo is simple.

Variables
This very simple demo only has four variables for now, so the only valid values of
m_value are 0–3. More-complex systems might have more variables than this. The
most complex systems don’t use this method at all; instead, they store information
about whether the variable is global or local and the memory offset and datatype of
the variable. It gets very complex.

For this system, the only valid variables are c, s, t, and l, which stand for cosine,
sine, time, and life. The cosine and the sine variables keep track of the cosine and
sine of the current game time. The time variable keeps track of the current time of
the system, and the life variable keeps track of the amount of life that the player
has left.

Scanning
The process of converting the text string into a stream of tokens is called scanning,
or tokenizing. The scanner will read each part of an expression into a string and
then determine if it is an operator, variable, number, or parenthesis.

The code for this process isn’t very complex, but it is long, bulky, and boring.

The scanning process for a simple system works like this:

1. Read in a character.

2. If the character is one of the four variables, create a variable token.

3. If the character is one of the four operators, create an operator token.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 379

379Application: Parsing

4.	 If the character is a number, read in the rest of the number and create a
number token.

5.	 Place the token into a queue.

6.	 Repeat.

You can find the code in the g12-01.cpp file on the CD if you’re really interested
(the Scan function); I have decided not to include it here because it doesn’t have
anything to do with trees. The scanner just provides an easy way of turning a string
of characters into a queue of items that the parser recognizes.

Parsing
There are basically two different forms for an arithmetic expression term:

1.	 It can be a single constant or variable.

2. It can be two constants or variables with an operator in between.

I established previously that the operators in this demo are all binary; they operate
on two numbers. In languages like C++, you can chain operators together, like this:

c + s + t

For simplicity, the parser doesn’t support statements like that. Instead, parentheses
must surround two of the variables. Either of these corrections is acceptable:

c + (s + t)

(c + s) + t

So the parser’s job is to view the queue of tokens and turn it into a binary tree. The

parser is a recursive function, which makes your life much easier.

I’m going to show you the pseudocode algorithm in a few sections so you can

understand what is going on.

The parse algorithm takes a queue of tokens and returns a tree. The algorithm also

creates three tree nodes as local variables:

Tree Parse(Queue)
Tree left, center, right

Now, the first thing to do is to check the first token.

if Queue.First == LPAREN

Queue.Dequeue

left = Parse(Queue)

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 380

380 12. Binary Trees

Queue.Dequeue

else if Queue.First == VARIABLE or NUMBER

left = VARIABLE or NUMBER

Queue.Dequeue

There are three valid token types for the
first token of the queue. If the first token
is a left parenthesis, then the parenthesis
is taken off the queue and the rest of the
queue is passed into the parse algorithm
again. The result of the recursively called
parse algorithm is placed into the left
tree node. Theoretically, the parse algo-
rithm should have removed everything
after the first left parenthesis up to a
matching right parenthesis, so there
should be a right parenthesis at the front
of the queue. That is also removed from
the queue.

If the first token was a variable or a constant number instead, then the left tree node
is made into a leaf node that contains information about the variable or constant.

Finally, the token is removed from the queue. After the first token is processed, the
algorithm decides if the term is just a single variable or number or if it is two vari-
ables or numbers separated by an operator.

If the current term is just a single variable or number, then that token has already
been processed and the queue will either be empty or have a right parenthesis at
the front.

if 	 Queue.Empty or Queue.Front == RPAREN

return left

The function returns the left node at this point because it contains the single term.

If it isn’t a single term, then the queue must contain an operator:

if Queue.Front == OPERATOR
center = OPERATOR

Queue.Dequeue

If the queue doesn’t contain an operator at the front, then the string is invalid, and
the parser should handle the error by informing the user. For simplicity, this demo
doesn’t have that kind of error checking.

CAUTION
Real parsers would check to see if
the queue actually contained a right
parenthesis after the parse algo-
rithm returns. If it isn’t a right
parenthesis, the string that is being
parsed is illegal. For the purposes of
the demo, I left error checking out,
but you should be aware that a clean
system would use error checking. I
recommend using exceptions if you
know how to use them.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 381

381Application: Parsing

Now that you’ve gotten to this point, there is only one more token to process for
the term. Like the first token, the only valid types it can be are variables, numbers,
or left parentheses:

if Queue.First == LPAREN

Queue.Dequeue

right = Parse(Queue)

Queue.Dequeue

else if Queue.First == VARIABLE or NUMBER

right = VARIABLE or NUMBER

Queue.Dequeue

And finally, attach the left and right children to the center and return it:

center.left = left

center.right = right

return center

If you can think recursively, this algorithm will appear amazingly simple for the task
it does. If you don’t quite understand recursion yet, I’ll show you a few examples
on how this algorithm works.

Using the Algorithm
First, I’ll start off with the simplest example:

t

This is a single-variable term. Naturally, you should expect the parser to return a
tree with one node: t at the root. The algorithm looks at the token, sees that it is a

variable, and then sets the left node so that it is a variable node.

Now the function checks the queue and sees that it is empty, so it returns the left

node, giving us a simple one-node tree with t in it.

Now I’ll move on to a more complicated example:

t + (5 * c)

The first step is the same; the left node is turned into a variable node. The second
step is different, however. Last time, the queue was empty; this time, an operator

token is in it.

So now the algorithm creates the center node and turns it into a +.

Now it looks at the next token, which is a left parenthesis. So it strips off the

parenthesis and passes the queue (which contains 5 * c) now) into the parse

algorithm again.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 382

382 12. Binary Trees

This time, the second parse algorithm strips off the 5 and makes the left node a
constant number node. It strips off the star and turns the center node into a multi-
plication operator node. Finally, it strips off the c and turns the right node into a
constant node. The second parse algorithm then returns the center node up to the
first parse algorithm.

Now the result of the second parse algorithm is placed in the right node and the
first center node is returned, resulting in the tree in Figure 12.14.

Figure 12.14

The parse tree for a
simple expression.

Now you can see how recursion is your friend here: It takes care of those nasty nested
parentheses automatically so you don’t have to mess around with them much.

Source Listing
Here is the source code listing for the ParseArithmetic function used in the demo.
Pay attention to where the comments are; they alert you as to where proper error
checking should be inserted.

BinaryTree<Token>* ParseArithmetic(LQueue<Token>& p_queue)
{

BinaryTree<Token>* left = 0;
BinaryTree<Token>* center = 0;
BinaryTree<Token>* right = 0;
// make sure the queue has something in it.
if(p_queue.Count() == 0)

return 0;

// take off the first token and determine what it is

switch(p_queue.Front().m_type)

{

case LPAREN:

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 383

383Application: Parsing

p_queue.Dequeue();

left = ParseArithmetic(p_queue);

// if(p_queue.Front().m_type != RPAREN)

// this is where you would throw an error;
// the string is unparsable with our language.

p_queue.Dequeue();
break;

case VARIABLE:
case NUMBER:

left = new BinaryTree<Token>;
left->m_data = p_queue.Front();
p_queue.Dequeue();
break;

// case OPERATOR:
// this is where you would throw an error;
// the string is unparsable with our language.

}
if(p_queue.Count() == 0)

return left;
if(p_queue.Front().m_type == RPAREN)

return left;
// if(p_queue.Front().m_type != OPERATOR)

// this is where you would throw an error;
// the string is unparsable with our language.

center = new BinaryTree<Token>;

center->m_data = p_queue.Front();

p_queue.Dequeue();

// make sure the queue has something in it.

if(p_queue.Count() == 0)

return 0;
// take off the third token and determine what it is
switch(p_queue.Front().m_type)
{
case LPAREN:

p_queue.Dequeue();

right = ParseArithmetic(p_queue);

// if(p_queue.Front().m_type != RPAREN)

// this is where you would throw an error;
// the string is unparsable with our language.

p_queue.Dequeue();
break;

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 384

384 12. Binary Trees

case VARIABLE:
case NUMBER:

right = new BinaryTree<Token>;
right->m_data = p_queue.Front();
p_queue.Dequeue();
break;

// case OPERATOR:

// this is where you would throw an error;
// the string is unparsable with our language.

}

center->m_left = left;
center->m_right = right;
return center;

}

You can probably see why I didn’t just paste the code right away; pseudo-code is
almost always easier to understand.

Executing the Tree
Now that the parser has built the parse tree, you need to be able to evaluate it
somehow. I mentioned before that you can use a simple postorder traversal to eval-
uate the tree, which is what I will show you now.

The Evaluate function is also (take a guess!) recursive! Gee, that was surprising,
wasn’t it? I hope you’re beginning to see a trend when using trees. Recursion really
makes some things easy.

The function will evaluate a tree node, returning a float value. There are three
types of nodes, so I’ll split the code up into five parts: the beginning, the three
node types, and the end.

Here is the beginning:

float Evaluate(BinaryTree<Token>* p_tree)
{

if(p_tree == 0)
return 0.0f;

float left = 0.0f;
float right = 0.0f;

This sets everything up first. If the node passed into the algorithm is 0, then 0 is
returned. If not, then the left and right variables are set to 0.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 385

385Application: Parsing

Now, the algorithm uses a switch statement to determine which of the three node
types it is:

switch(p_tree->m_data.m_type)

{

case VARIABLE:

return g_vars[p_tree->m_data.m_variable];

break;

The first node type is a variable. Because the demo has four valid variables, all four
variables are stored in an array, g_vars. The m_variable member of the Token class
will contain a number from 0 to 3, so the function gets that number and returns
the correct value from the variable table.

case NUMBER:

return p_tree->m_data.m_number;

break;

The second node type is a constant number. This case is easy; it just returns the
number stored within the token.

case OPERATOR:

left = Evaluate(p_tree->m_left);

right = Evaluate(p_tree->m_right);

switch(p_tree->m_data.m_operator)

{

case 0:

return left + right;

break;

case 1:

return left - right;

break;

case 2:

return left * right;

break;

case 3:

return left / right;

break;

}

}

The third node type is the most interesting: the operator. If the node is an opera-
tor, then it recursively calls the Evaluate function on its left and right children,
determines which operation to execute on the two values, and returns the result.

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 386

386 12. Binary Trees

return 0.0f;
}

Last, in case something messed up, 0 is returned at the end. Hopefully nothing did,
but it is always safe to do so anyway.

Playing the Demo

This is the most complex demo in the book so far, so it needs a fair amount of
explanation. Figure 12.15 shows a screenshot from the demo in action.

Figure 12.15

Here is a screenshot
from the demo.

At the bottom are four text boxes. They represent the life of the player, the current
time, and the x and y formulas for the player. You’ll be using the bottom boxes to
control the position of the player on-screen.

To start off, try entering these two lines into the x and y boxes:

t * 100

Now check the check box on the right of the screen so that it will display the parse
trees. After that, click the Parse button; you should see two trees drawn on the

0

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 387

387Application: Parsing

screen now. The x tree is on the left and the y tree is on the right. This way, you can
visually see how your expression was parsed by the system.

Next, you want to set up your life variable. You can click on the L box and enter a
life value.

You cannot modify the T value, though.
The Execute button is a toggle that
resets the time to 0 when you click it
and then starts the demonstration.

Now that you’ve entered your formula,
click the Execute button. A UFO should
appear on the screen at the upper left,
and it should move to the right at 100
pixels per second. It will take 8 seconds
to travel off the screen, and you need to
reset it when it’s done. Clicking the
Execute button again will stop the demo
from running.

I urge you to play around with different
formulas to see what you can accom-
plish. Table 12.2 holds some of the cool
ones that I’ve discovered.

use the c and s

NOTE
A lot of the formulas in Table 12.2

variables, which are
the sine and cosine of the time. If
you know trigonometry, then the
effect of these variables should be
obvious to you.This book doesn’t
teach trigonometry, but trig isn’t a
requirement for the book, so the
best I can do is tell you to sit back
and enjoy the pretty effects that
they produce. If you don’t know
trigonometry, though, you’re missing
out on a lot.Trig is one of the most
important math subjects you can
use when programming games.

x y

400 + (c * 100) 300 + (s * 100)

t * 100 300 + (s * 100)
pattern

400 + (c * 200) 300

(t * t) * 10 300

400 + (c * (t * 10)) 300 + (s * (t * 10))

Table 12.2 Cool Formulas

Effect

Makes the ship fly around in circles

Makes the ship fly in a sine wave

Makes the ship fly back and forth
rapidly

Makes the ship slowly accelerate off
the screen

Makes the ship slowly circle out of
control

Team LRN

Data Structures CH12 11/5/02 8:42 AM Page 388

388 12. Binary Trees

I made these formulas after playing around for a minute; I’m sure you can come up
with some even neater ones. For example, you could make the speed of the space-
ship depend on the amount of health you have left. The possibilities are endless.

Conclusion

This chapter turned out to be a lot longer than I expected, mainly due to the
extensive parsing section I included. I hope you understood it, because parsing is a
very neat area of game developing. Nothing beats a game that is 100 percent
extendible and modifiable.

If anything, this chapter should have reinforced the idea that recursion is a very
important area of programming. Some people may say that recursion is too slow
for game programming, and they are sometimes right. The key is knowing when
recursion is used best.

Binary trees aren’t very exciting on their own, but I included them here to lead up
to the next few chapters. BSTs (see Chapter 13), heaps (see Chapter 14), and
Huffman trees (see Chapter 21, “Data Compression”) all use binary trees as their
base. In addition, a lot of trees that aren’t covered in this book are based on binary
trees, such as AVL trees and red-black trees, as I mentioned before.

Team LRN

Data Structures CH13 11/5/02 8:42 AM Page 389

CHAPTER 13

Binary
Search

Trees

Team LRN

Data Structures CH13 11/5/02 8:42 AM Page 390

390 13. Binary Search Trees

Previously, you learned about recursion, general trees, and binary trees. This
chapter deals with a variant of the binary tree called a Binary Search Tree (BST).

The BST is a structure where recursion is more important in determining how the
data is stored rather than how the data is accessed. You’ll see what I mean by this
later in the chapter.

In this chapter, you will learn

■ What a BST is
■ How to insert data into a BST
■ How to find data in a BST
■ How to code a BST class
■ How to use a BST to search for resources in a game

What Is a BST?
Imagine that you have to sort a group of people by height so that you can easily
search for someone by their height later on. How would you go about doing this?

Figure 13.1 shows six people that you need to sort.

Don’t hate them

beautiful.

Figure 13.1

because they’re

The easiest way to sort them is to find the shortest person and put him/her first,

and then find and place the next shortest, and so on. This method of sorting on

a computer is slow, though. You can stand back and immediately see the shorter

Team LRN

Data Structures CH13 11/5/02 8:42 AM Page 391

391What Is a BST?

people in the line of people waiting to be sorted; the computer can’t do that. The
computer would need to look at every person in line to find out who is the shortest.

Instead, why don’t you do something clever? Pick a midpoint (say, 5 feet, 6 inches)
and look at the first person in line. If he/she is below that height, you move
him/her to the left. If he/she is above that height, you move him/her to the right.
Now, whenever you want to search for someone of a particular height, all you need
to do is determine which half of the line that height would be in and search only
that half of the line!

For example, if you wanted to find someone with a height of 6 feet, you would look
in the right half of the line because no one who is 6 feet tall would be in the left half.

Figure 13.2 shows the group of people partitioned in half.

Figure 13.2

The perfume models
are now partitioned
into two groups, the
tallest on one side,
and the shortest on
the other.

This sorting method is employed by the Binary Search Tree data structure. It
attempts to split data in half to make searching easier.

Inserting Data into a BST

Say you have a queue of data that you want to search through. You take the first
item off the queue and put it as the root of the tree. Then, you take the next item
off the queue and compare it with the root. If it is less than the root, then you
make it the left child of the root. If it is more than the root, then you make it the
right child of the root.

Now, repeat the process. Take another item off the queue and do the same thing. If
a node already exists on the left or the right children, then you go down another
level and compare the items again.

Team LRN

Data Structures CH13 11/5/02 8:42 AM Page 392

392 13. Binary Search Trees

For example, say you have a queue containing this data: 4, 2, 6, 5, 1, 3, 7. The first
step is to take off the 4 and insert it as the root node in a BST. Then you take off
the 2 and compare it with the 4. Because 2 is less than 4, you insert 2 as the left
child of the root. Then you take off 6, which is placed as the right child of the root
because it is more than 4. Figure 13.3 shows the first three steps.

Figure 13.3

This is how you insert
the first three nodes
into the BST.

After you have completed that step, you want to insert 5 into the tree. First, you
compare it with 4 at the root, and because it is larger than 4, you try to insert it to
the right. However, there is already a node to the right! So you compare the 5 with
the 6 in the right node; because 5 is less than 6, you insert the 5 as the left child of

Team LRN

Data Structures CH13 11/5/02 8:42 AM Page 393

393What Is a BST?

the 6. Likewise, the 1 is compared to the 4 and then the 2 and then inserted as the
left child of the 2. Figure 13.4 shows these two steps.

Figure 13.4

This is how you insert
the next two nodes.

See if you can figure out where the 3 and the 7 go. Figure 13.5 shows where they
are inserted if you’re stumped.

Figure 13.5

Finally, this is how
you insert the last
two nodes.

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 394

394 13. Binary Search Trees

So, now that you have the final BST in Figure 13.5, see if you can figure out why
I’ve partitioned the data like this.

Finding Data in a BST

Now that the data has been inserted into the tree, how do you search for the data
quickly? By using the same algorithm, of course! If you want to search for 3, you
compare it with 4, go left, compare it with 2, and go right, and you’ve found it!
That was nice and easy, wasn’t it? In fact, the most comparisons you can make when
searching for something within this tree is 3, and there are 7 items within the tree.
If the tree was one level larger, it could hold 15 items, but the most comparisons
you could make would be 4!

In Chapter 1, “Basic Algorithm Analysis,” I introduced you to the logarithm func-
tion. The base-2 logarithm of 8 is 3 (because 23 = 8 and the logarithm is the inverse
of the power function), and the base-2 logarithm of 16 is 4 (24 = 16). You can see
that the BST search algorithm is roughly O(log2n). However, this is the best-case
scenario; you will see why in a bit.

Removing Data from a BST

There is a BST node removal algorithm, but I don’t cover it here. The algorithm is
long and messy, and because I consider BSTs to be of only marginal importance to
general game programming, I refer you to an article I’ve included on the CD in
the \goodies\articles\ directory entitled Trees Part II: Binary Trees. It has the complete
algorithm for removing nodes from a BST.

The BST Rules
You must always follow two rules for every node in a BST:

1. Every node in the left subtree must be less than the current node.

2. Every node in the right subtree must be greater than the current node.

You can see that this is a recursive definition; it applies to every node in the tree.
You can also see that these rules effectively (in an optimal tree) split the amount of
data you need to search through by half for every level you search in the tree.

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 395

395Graphical Demonstration: BSTs

Sub-Optimal Trees

I admit it: The first BST example I gave you was doctored. I fixed the data so that
the tree ends up being full. However, data is usually not organized like that, and it
usually produces BSTs that are not optimal.

First, let me show you the absolute worst case for inserting data into a BST. Say you
have a queue of this data: 1, 2, 3, 4, 5. Inserting this data into a BST creates the
tree shown in Figure 13.6.

Figure 13.6

This is a worst-case
BST; it looks just like
a linked list.

The 1 is inserted as the root, the 2 as the right child of 1, the 3 as the right child of
2, and so on. What does this resulting tree look like? A linked list, of course. There
is no branching done at all in this tree, and if you want to search for data within it,
you’re stuck doing a linear search, O(n), which is considerably slower than
O(log2n). This is rather unfortunate, and there are ways around this, but they are
beyond the scope of the book. AVL trees, splay trees, and red-black trees are all special
forms of BSTs that perform rotations on the nodes when they are inserted so that
the tree ends up more balanced.

As long as the data you are inserting is somewhat random, you will end up with
decent trees. However, if data is sorted already or has some statistical correlation,
you might end up with less than optimal trees.

Graphical Demonstration:
BSTs
This is Graphical Demonstration 13-1, which you can find on the CD in the direc-
tory \demonstrations\ch13\Demo01 - BSTs\ .

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 396

396 13. Binary Search Trees

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demonstration is fairly simple because the BST structure is fairly simple to use.
Figure 13.7 shows a screenshot from the demo in action.

Figure 13.7

Here is a screenshot
from the BST demo.

As you can see from the screenshot, the demo has three buttons and a text box.
You can type any number from 0–99 in the text box, or you can click the Random
button to insert a random number into the text box.

After you have a number in the text box, you can do two things with it: You can
either insert that number into the BST or search for that number in the BST.

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 397

397Coding a BST

Clicking either button makes the demo follow a path down the tree, either trying
to insert a node or just finding a node.

Play around with it and get to know how BSTs work a little better.

Coding a BST
The code for the Binary Search Tree is located on the CD in the file

\structures\BinarySearchTree.h.

The Structure

The binary search tree uses a binary tree as its underlying structure, but the actual
class is just a container; it has a pointer to the root node and a comparison func-
tion.

template <class DataType>
class BinarySearchTree
{
public:

typedef BinaryTree<DataType> Node;
Node* m_root;
int (*m_compare)(DataType, DataType);

};

Comparison Functions

You’ve seen function pointers a few times already in this book; the hash functions
for hash tables (see Chapter 8, “Hash Tables”) and the process functions for the
tree traversals (see Chapters 11, “Trees,” and 12, “Binary Trees”) come to mind.
This time, I introduce you to the idea of comparison functions.

The idea here is that you are probably going to be storing complex structures in
the BST, right? So how, exactly, does one determine if one class is “larger” or
“smaller” than another? Sure, it’s easy with integers, but what about other classes,
say, a complex game player class?

Using a custom comparison function allows you to customize how data is stored in
the BST. For example, you may want to store characters in a BST based on how
much life they have left and search based on that. Then, sometime down the road,
you might want to make a different BST that stores characters, but this time you

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 398

398 13. Binary Search Trees

want to search based on another attribute—perhaps how strong the character is. By
using a comparison function, this change is easy; you can make a new function that
compares the strength of two characters instead of the health.

The definition of the comparison function is simple: It takes two parameters of
type DataType and returns an integer. The integer return value can have three
meanings. If the number is negative, then the left parameter is less than the right.
If the number is 0, then the two parameters are equal. If the number is positive,
then the left parameter is more than the right.

For example, you can create a simple comparison function for integers, like this:

int CompareInts(int left, int right)
{

return left - right;
}

If the left is less than the right, then the result is negative. If they are equal, then
the result is 0. If left is larger than right, then the result is positive.

The Constructor

The constructor function basically takes
a comparison function as a parameter
and sets the root to null.

BinarySearchTree(int
(*p_compare)(DataType, DataType))
{

m_root = 0;
m_compare = p_compare;

};

Note that the comparison function

NOTE

is set in the constructor because you
don’t want it to change after you’ve
already inserted items into the tree.
If you could change the comparison
function, you’d end up invalidating
the tree because it would search dif-
ferently.

The Destructor

The destructor should simply delete the root node. Remember from Chapter 12
that the BinaryTree destructor recursively destroys every node in the tree. That
makes this function really simple:

~BinarySearchTree()
{

if(m_root != 0)
delete m_root;

}

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 399

399Coding a BST

The Insert Function

Now comes the Insert function. There are two ways you can insert the node into
the binary tree; one is recursive, and the other is iterative. The recursive function
in this case is pointless because this isn’t really a recursive algorithm. So instead of
recursion, I use the iterative algorithm. I split this up into a few segments so that it
is easier to understand.

void Insert(DataType p_data)
{

Node* current = m_root;
if(m_root == 0)

m_root = new Node(p_data);

This first segment takes a piece of data as a parameter and creates an iterator
named current, which points to the root of the tree. If the root is empty, the func-
tion creates a new root node.

If not, the function continues:

else

{

while(current != 0)
{

This segment starts the while loop. The function travels down the tree while the
iterator is valid, and as soon as the function inserts a node into the tree, it sets the
iterator to 0 so that the loop will exit.

if(m_compare(p_data, current->m_data) < 0)
{

if(current->m_left == 0)
{

current->m_left = new Node(p_data);
current->m_left->m_parent = current;
current = 0;

}

else

current = current->m_left;

}

The previous segment of code does a few things. It first compares the data in the
current node with the data that you want to insert into the tree. If the result of the
m_compare function is less than 0, you want to insert it into the left child. The next

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 400

400 13. Binary Search Trees

step is to check if the left child exists. If not, create a new left child and set current
to 0. If it does, then move the current pointer to the left.

This next code segment does the same thing, but to the right this time:

else
{

if(current->m_right == 0)

{

current->m_right = new Node(p_data);
current->m_right->m_parent = current;
current = 0;

}
else

current = current->m_right;
}

}
}

}

And that’s the function.

The Find

Function

This function is almost the same as the
Insert function except that it just
returns a pointer to the node if it finds
the data in the tree.

Node* Find(DataType p_data)
{

Node* current = m_root;
int temp;
while(current != 0)
{

temp = m_compare(p_data, current->m_data);

if(temp == 0)

return current;

if(temp < 0)

current = current->m_left;

else

This function does not

Find
find it.

CAUTION
check for

duplicated data.Typically, BSTs do
not allow for duplicated data to be
entered into the tree, but some-
times they do. Because this BST
class doesn’t support node removal,
you’re just wasting space if you
insert duplicated data into the
tree—the function will never

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 401

401Coding a BST

current = current->m_right;

}

return 0;

}

If the data isn’t found in the tree, this function returns 0.

Example 13-1: Using the BST Class

This is Example 13-1, which demonstrates how to use the BinarySearchTree class
with integers. The source code for this example is on the CD in the directory
\examples\ch13\01 - Binary Search Trees\ .

The example uses the CompareInts function I showed you earlier to store integers in
a BST:

void main()
{

BinarySearchTree<int> tree(CompareInts);
BinaryTree<int>* node;
// insert data
tree.Insert(8);
tree.Insert(4);
tree.Insert(12);
tree.Insert(2);
tree.Insert(6);
tree.Insert(10);
tree.Insert(14);
// these searches are successful
node = tree.Find(8);
node = tree.Find(2);
node = tree.Find(14);
node = tree.Find(10);
// these searches return 0
node = tree.Find(1);
node = tree.Find(3);
node = tree.Find(5);
node = tree.Find(7);

}

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 402

402 13. Binary Search Trees

Application: Storing
Resources, Revisited
This is Game Demonstration 13-1, and you can locate it on the CD in the directory
\demonstrations\ch13\Game01 - Resources Revisited\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When you think about them, binary search trees are nothing more than a different
version of the hash tables from Chapter 8. They are designed for storing data so
that you can retrieve it again quickly by using a key.

Because of this, I want to go back to Game Demonstration 8-1 and rewrite it so that
it uses Binary Search Trees instead.

The Resource Class

You may have noticed that using a BST is slightly different than using a hash table;
whereas a hash table used a key/value pair to store and retrieve data, my BST class
doesn’t do that. Instead, it just stores the data right in the tree. This particular
quirk of my implementation causes me to code the demo a little differently.

First of all, I create a Resource class, which will have two things, a string and an
SDL_Surface pointer:

class Resource
{
public:

char m_string[64];
SDL_Surface* m_surface;

};

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 403

403Application: Storing Resources, Revisited

The Comparison Function

The next thing that I need to do is to create the comparison function. Because you
want to search the tree for string matches, you’ll use the standard C strcmp func-
tion to compare the strings.

int ResourceCompare(Resource p_left, Resource p_right)
{

return strcmp(p_left.m_string, p_right.m_string);
}

Luckily, the strcmp function returns a negative number if the left string is less than
the right string, 0 if they are equal, and a positive number if the left is greater than
the right!

So this function compares resources based on name only, not based on the actual
bitmap that the Resource class contains. This is important when you search for
something in the tree.

Inserting Resources

Inserting resources into the tree is similar to inserting them into a hash table
except that instead of inserting a string/surface pair into the tree, you create a
resource structure first.

Resource res;
res.m_surface = SDL_LoadBMP(“sky.bmp”);
strcpy(res.m_string, “sky”);
g_tree.Insert(res);

The strcpy function copies the string into the resource’s name. This step is
repeated for every resource in the demo.

Finding Resources

To search for a resource, you need to set up a dummy resource, which doesn’t con-
tain a surface, but only a string:

Resource res;
strcpy(res.m_string, g_name);

The g_name variable is a string that contains the name of the resource you are
searching for. The m_surface variable of res is left blank.

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 404

404 13. Binary Search Trees

After that, you declare a binary tree node pointer, which will hold the node that is
returned from the BST’s Find function:

BinaryTree<Resource>* node = 0;

node = g_tree.Find(res);

Now the BST will compare the dummy resource’s name with the name of the
resources in the BST, and if it finds a match, it will return the node that contains
the resource. When the node is returned, all you need to do is determine whether
it is valid and then use it:

if(node != 0)
g_resource = node->m_data.m_surface;

else

g_resource = 0;

Playing the Demo

The demo plays exactly like Game Demo 8-1. Figure 13.8 shows a screenshot of the
program in action.

Figure 13.8

Here is a screenshot
from the demo.

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 405

405Conclusion

As before, you enter the name of the resource you want to load into the text box,
and it loads the resource for you automatically. The valid resource names are sky,
water, water2, snow, fire, vortex, and stone.

Conclusion

I’m going to be honest with you: Binary Search Trees don’t really do much that a
hash table doesn’t do better. Whereas a hash table’s search time runs close to O(c),
the best-case search time for a BST is still higher than that, at O(log2n). So why did
I even bother to teach you BSTs?

Well, BSTs introduce you to the concept of recursively storing data. This concept
becomes very important when you get into the more advanced trees used in game
programming, such as Binary Space Partition (BSP) trees. BSPs are a really neat form
of tree that splits polygons in a 3D (or even 2D—John Carmack used them in
DOOM) world so that you can easily determine which polygons in a scene are visi-
ble. The concepts used in BSP trees are remarkably similar to the concepts of BSTs.

All in all, I hope you’re getting a feel of how recursive tricks are used to split up
large amounts of work into smaller problems.

Team LRN

Data Structures CH13 11/5/02 8:43 AM Page 406

This page intentionally left blank

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 407

CHAPTER 14

Queues and
Heaps

Priority

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 408

408 14. Priority Queues and Heaps

The subjects I introduce you to in this chapter build off of two previous subjects
in this book: queues from Chapter 7, “Stacks and Queues,” and binary trees

from Chapter 12, “Binary Trees.” The structures in this chapter are used quite
often in game programming, but not directly. More often, priority queues and heaps
are helper structures, which help you solve a problem. You’ll see them used again
several times in this book, so this is an important chapter to read.

In this chapter, you will learn

■ What a priority queue is
■ What a heap is
■ How a heap is structured
■ How to use a heap as a priority queue
■ How to create a heap using an array
■ How to use a heap in a game to implement a simple AI

What Is a Priority Queue?

You should already know what a queue is by now: The line down at your local
supermarket is one example. The first person who gets in line gets checked out
first, and the last person gets checked out last. Pretty much everything in life where
you stand in line is a queue: the tollbooth to go over a bridge, the line at the
Department of Motor Vehicles (yuck), and even the line at a nightclub.

If you’ve ever seen nightclub lines at the movies, you can see that they are different
kinds of queues than a normal queue. Very Important People (VIPs) always seem to
go right up to the bouncer and get let into the club without waiting in line! That’s
not a queue—it’s a priority queue.

In a priority queue, data is associated with a priority value, and that value determines
how it is placed in the queue. For example, if you placed this data into a normal
queue in this order—4, 2, 5, 3, 1—you would end up with the queue in Figure 14.1.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 409

409What Is a Priority Queue?

Figure 14.1

This is a normal
queue.

The data would be processed in the order that it was inserted into the queue: first
4, then 2, then 5, and so on.

Now, pretend that the number that is being inserted into the queue is its priority
value: the higher the number, the higher the priority. Insert the five numbers into
a priority queue in the same order, and you get the queue in Figure 14.2.

Figure 14.2

This is a priority
queue, having five
items inserted into it.

You can see that as items are inserted into the priority queue, they aren’t just added
to the back of the queue. Instead, they are placed in order into the queue. For
example, because the queue is empty when 4 is inserted, it is the only item in the
queue. Then, 2 is inserted. Because 2 is less than 4, it goes behind 4. Then 5 is
inserted, which is larger than 4, so it is placed at the front of the queue. 3 is placed
between 4 and 2, and 1 is placed at the end of the queue.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 410

410 14. Priority Queues and Heaps

The more important items are placed closer to the front. That’s pretty much all
there is to the priority queue concept. Removing items from the priority queue is
the same as before; the front item is removed first.

There are several ways to implement priority queues. The easiest way is to have a
linked list for the queue. Whenever you insert an item, search through the list until
you find the right place to insert the item. Although this method is straightforward
and easy to understand, it is slow. In fact, almost no one really makes a priority
queue like that.

Instead, there is a much faster and more efficient method of making a priority
queue using special binary trees called heaps.

What Is a Heap?

A heap is a special kind of binary tree in which every node is greater than all of its
children. This definition is somewhat similar to the BST definition from Chapter
13, “Binary Search Trees,” which says that for a tree to be a heap, every node in the
tree must have the heap property.

For example, Figure 14.3 shows a sample heap.

Figure 14.3

A heap is a binary
tree where every
node is greater than
all of the nodes in its
subtrees.

The root node in this tree holds the highest value, 93. Every single child node of
the root holds a smaller value. Because every node in the tree is larger than all of
its children, you know that the second highest value in the tree is one of the root’s
children. You can’t immediately determine where the third highest value in the

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 411

411What Is a Heap?

tree is, though, because it might be the other child of the root or it might be some-
where on the third level of the tree.

Why Can a Heap Be a Priority
Queue?
Because the highest value in a heap is always at the root node, the heap can easily
be used as a priority queue. To access the front value in the priority queue, all you
need to do is look at the root.

Adding and removing the items from the heap is a little bit difficult to understand
at first, so let me show you what kind of heaps are used for making a priority queue.

Needed Heap Attributes
In Chapter 12, I introduced to you the binary tree property called denseness. To
build a quick priority queue, the heap needs to be dense. I show you why when I go
over the algorithm used to insert items into the heap.

Also, heaps are usually implemented as arrayed binary trees instead of linked. This is
due to the need for the heap to be dense; determining if a linked tree is dense is a
much more complicated task than determining if an arrayed tree is dense.

Inserting an Item into a Heap
Inserting an item into a heap is an interesting problem. How would you maintain
the heap property for every node in the tree?

You could try to start at the root and swap nodes around until every node is in the
right place, but that is a complex and time-consuming algorithm. You also end up
with the problem of having a non-dense and unbalanced tree, which is bad because
you want to keep the tree as balanced as possible (this will become clear in a bit).

The easiest way to insert a node into a heap is to use an algorithm called the walk
up algorithm. The basic theory is this: Insert the new item at the bottom of the tree
and then make it walk up the tree until it is above every node that is less than it and
below a node that is larger than it.

For example, take the heap in Figure 14.4. There are four levels in the tree; the
first three are totally full. Because the only node on the fourth level is all the way to
the left, this heap is also dense.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 412

412 14. Priority Queues and Heaps

Figure 14.4

This is a four-level
heap.

The algorithm for inserting an item into the heap is actually quite easy when you
understand how it works. Say you want to insert the number 85 into the heap from
Figure 14.4. To keep the heap dense, you are going to place it in the first open
node on the lowest level, which is the right child of 60. This produces the tree
shown in Figure 14.5.

Figure 14.5

Step 1 is to insert a
new item at the
bottom.

Now the tree is still dense, but it is no longer a heap. Node 60 and node 80 are
both invalid, because 85 is larger than them both, but below them in the tree. Now
you need to walk 85 up the tree into the correct place. The first step is to compare
85 with its parent, 60. Since 85 is more than 60, they need to be swapped. Figure
14.6 shows the resulting tree from the first swap.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 413

413What Is a Heap?

Figure 14.6

Then you swap 60
and 85 to make it
more like a heap.

After the swap, one node is still invalid in the tree: node 80. You need to compare
85 with its parent again and swap them if it is larger. Figure 14.7 shows the tree
after the second swap.

Figure 14.7

Then swap 85 and
80 to turn the tree
into a heap.

After the second swap is made, one more comparison is done: 85 is compared with
the root node, 90. Because 90 is larger than 85, the algorithm is complete, and the
tree is a heap again. If you were inserting 95 into the heap, it would have been
swapped into the root node.

Using this method, the next item to be inserted into the heap would be placed as
the left child of node 50; that keeps the tree dense. Then the same walk-up algo-
rithm would be executed on the new item until the tree is a heap again.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 414

414 14. Priority Queues and Heaps

Because a heap is always dense, it is easy to figure out how long inserting an item
takes. On a four-level tree, you make at most three comparisons on an insertion.
On a five-level tree, you make at most four comparisons, and so on. Because the
number of items in the tree doubles with each new level, yet the number of com-
parisons required to insert an item only increases by one for each new level, you
can see that this is an O(log2n) algorithm.

If you implemented a priority queue using the linked list method I described ear-
lier, you would potentially have to look at every item in the list to find out where to
insert the item, making it an O(n) algorithm. If you remember back to Chapter 1,
“Basic Algorithm Analysis,” O(log2n) is significantly faster than O(n) for large
datasets, so you can see how the heap is considerably faster than a linked list for
priority queue insertion.

Removing an Item from a Heap
Because you’re using the heap as a priority queue, the only item you are interested
in removing is the root of the tree, but this algorithm works for any item in the
heap anyway.

So you want to remove the root node from Figure 14.4. Great, you removed the
root node, but what happens next? How do you move data up the tree so that it
remains a heap?

The easiest way is to take the lowest node in the tree and move it into the root
node, which will give you Figure 14.8.

Figure 14.8

The first step of
removing the root is
to replace the root
with the bottommost
item.

Now the tree is no longer a heap because the root node is less than its children, so

you need to do something to the tree to make it a heap again. This time, instead of

walking the node up the tree, you’ll walk the node down the tree. However, walking

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 415

415What Is a Heap?

a node down the tree is a little more difficult because you have two choices of
where to move the node now instead of just one. The choice is an easy one, how-
ever. To keep the tree a heap, just move the larger of the two children up. In the
example, the 20 at the root is swapped with 80 because 80 is the largest child. The
result is shown in Figure 14.9.

Figure 14.9

This is the first swap.

After you do that swap, you need to check to see if you need to swap the node
again. If either one of the children is larger than the current node, then swap
them. In the example, you would swap 20 with 60 because 60 is the largest child
node. The resulting tree is shown in Figure 14.10.

Figure 14.10

This is the second
swap.

After this swap, you’ve reached the bottom of the tree, and it is now a heap again!
For reference, if you were to remove 80 from this tree, 30 would be moved up into
the root and walked down because 30 is the bottom-most and right-most node.
Remember, the idea is to keep the tree dense because dense trees are the most
efficient.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 416

416 14. Priority Queues and Heaps

NOTE
Note that the walk-down algorithm works for any node you want to remove in
the heap.You can remove any node, move the last node into its place, and use
the walk-down algorithm on it, and it will create a valid heap for you.

Because this algorithm always moves the bottommost node, the tree always remains
dense, so this algorithm is O(log2n) as well. However, because the walk-down algo-
rithm performs two comparisons at every level, it takes about twice as long as the
walk-up algorithm.

You might note one disadvantage of this algorithm, though. The linked-list priority
queue can remove items instantly, using an O(c) algorithm, because all it needs to
do is remove the front node (remember, the Linked List RemoveHead algorithm is
O(c)).

So this means that the heap removal algorithm is much slower than the process of
removing the top node of a linked-list priority queue.

Heap Efficiency
Even though heap removal is slower than list removal, it is proven that heaps are
still the most efficient implementation of priority queues. Tables 14.1 and 14.2
show an example of the number of comparisons needed for the two different prior-
ity queue implementations.

7 7 0 7

15 15 0 15

31 31 0 31

63 63 0 63

127 127 0 127

Table 14.1 Comparisons Made When Inserting and
Removing from a Linked-List Priority Queue

Data Size List-Insertion List-Removal List-Total

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 417

417

*

7 3 6 9

15 4 8 12

31 5 10 15

63 6 12 18

127 7 14 21

Graphical Demonstration: Heaps

Table 14.2 Comparisons Made When Inserting and
Removing from a Heap

Data Size Heap-Insertion Heap-Removal Heap-Total

*Remember:The walk-down algorithm performs two comparisons at every level.

In a seven-item priority queue, the linked queue clearly wins out because inserting
another item and then removing the front takes at most seven comparisons, but the
heap requires at most nine. When you get past seven nodes, though, the heap
clearly shows its superiority, especially at larger datasets, such as 127 items. Inserting
another item into a linked priority queue with 127 items in it requires at most 127
comparisons, but the heap requires at most 21!

Graphical Demonstration:
Heaps
This is Graphical Demonstration 14-1, which you can find on the CD in the direc-
tory \demonstrations\ch14\Demo01 – Heaps\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B, “The
Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the directory
or create your own project using the settings described in Appendix B. If
you create your own project, all of the files you need to include are in
the directory.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 418

418 14. Priority Queues and Heaps

This demonstration is fairly simple; there are only three commands. You can
enqueue a number into the heap, dequeue the top of the heap, and place a ran-
dom number into the text box. Figure 14.11 shows a screenshot from the demo.

Figure 14.11

Here is a screenshot
from the heap demo.

When you insert a node into the heap, it is placed at the bottom of the heap and
colored red. The demo then moves the node up in the tree using the walk-up algo-
rithm, following the progress with the red node.

The same thing occurs when removing a node from the heap; the bottom node is
moved into the root, and the new root is walked down the tree, highlighted in red.

Play around with the demo so that you understand how a heap works before going
on to the next section.

Coding a Heap Class
All of the code for heaps can be found on the CD in the file \structures\heap.h.

I mentioned earlier that heaps are best coded using an arrayed binary tree. I also
said in Chapter 12 that there really is no point in creating a specific arrayed binary
tree class because using an arrayed binary tree is just as simple as using an array.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 419

419Coding a Heap Class

Because of this, the Heap class will inherit directly from the Array class so that you
can use all of the nifty features of an array within the Heap.

The Structure

The only two things needed in addition to the array variables that are inherited are
a variable to keep track of how many items are actually within the heap and a func-
tion pointer that points to a comparison function.

I introduced you to comparison functions in Chapter 13 when I showed you binary
search trees. The concept is exactly the same in this chapter; you pass in a compari-
son function to the heap so that it knows if an object is larger than another or not.

template <class DataType>

class Heap : public Array<DataType>

{

public:

int m_count;
int (*m_compare)(DataType, DataType);

};

The Constructor

Because the Array constructor requires a size parameter and the Heap is an array,
the Heap constructor also takes a size parameter. It also takes a function pointer to
the comparison function.

Heap(int p_size, int (*p_compare)(DataType, DataType))

: Array<DataType>(p_size + 1)

{

m_count = 0;
m_compare = p_compare;

}

The second line of code calls the Array
constructor and creates an array one
cell larger than the requested heap size.
Remember back to Chapter 12: Arrayed
binary trees need to have the root at
index 1 to work correctly, so the array is
created one cell larger because index 0
is going to be unused.

Heap

NOTE
You can modify this so that you
don’t waste space and subtract 1
from every index you access in the

class, but I chose not to use this
method because the code looks ugly
and I want to show you how the
class works more than how to opti-
mize it.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 420

420 14. Priority Queues and Heaps

The Enqueue Function
This is the function that is called whenever an item is inserted into the heap:

void Enqueue(DataType p_data)
{

m_count++;
if(m_count >= m_size)

Resize(m_size * 2);
m_array[m_count] = p_data;
WalkUp(m_count);

}

The function takes the data you want to insert as a parameter and increases the
count of the heap.

Because you’re using an array for the implementation, you need to check to see if
you’re overflowing the array. The function checks to see if the array is full, and if
so, doubles its size.

After that, it places the new item into the last open index in the array and calls the
WalkUp function on the new data.

The WalkUp Function

This function does most of the work when inserting a new node into the heap. It is
designed to move a piece of data through the tree until the tree has become a valid
heap again.

1: void WalkUp(int p_index)
2: {
3: int parent = p_index / 2;
4: int child = p_index;
5: DataType temp = m_array[child];
6: while(parent > 0)
7: {
8: if(m_compare(temp, m_array[parent]) > 0)
9: {
10: m_array[child] = m_array[parent];
11: child = parent;
12: parent /= 2;
13: }
14: else
15: break;

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 421

421Coding a Heap Class

16: }
17: m_array[child] = temp;
18: }

The WalkUp function takes an index as a parameter, allowing you to call the func-
tion on any cell within the tree.

The function then creates two index variables on lines 3 and 4. These variables rep-
resent the current child and parent indexes as it walks up the tree.

On line 5, the function creates a temporary local variable, temp, which stores the
data that is being walked up the tree. This is just a little optimization, which is
demonstrated by Figure 14.12.

Figure 14.12

This is an invalid
heap.

Now, it is obvious that node 11 is in the wrong place in this tree and should be
moved up to the root node. The walk-up algorithm I demonstrated before would
swap 9 and 11 and then swap 10 and 11. This process is a waste, however, because
you know that 11 will eventually be placed at the root.

Instead, this optimized function places 11 in a temporary variable, moves 9 to
replace 11, moves 10 to replace 9, and moves 11 into the root. Figure 14.13 shows
this sequence of events.

Figure 14.13

This shows the
optimized WalkUp
function.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 422

422 14. Priority Queues and Heaps

Instead of moving 11 into where node 9 was, you skip that step and move it directly
to the root. Although this example had only trivial savings, much larger trees will
be faster.

Now, back to the function! On line 6, the function starts a loop that will continue
until the parent index is 0, which means that the child index will point to 1, the
root of the tree.

On line 8, the function determines if the node you are walking up is in the correct
place or not by checking the value of the parent node. If the parent node is greater
than the node that is being walked up, the function uses the break keyword on line
15 to break out of the while-loop because the node can’t be moved up anymore.

If the parent node is less than the node, then the node is moved down into the
child node on line 10 and both the parent and child pointers are divided by 2,
moving them up one level.

Finally, on line 17, the data that was to be moved up is moved into the cell that
child points to, which is the same as step 4 in Figure 14.13.

The Dequeue Function
The Dequeue function performs the setup for removing the root node of the heap.

void Dequeue()
{

if(m_count >= 1)
{

m_array[1] = m_array[m_count];
WalkDown(1);
m_count—;

}
}

If the heap isn’t empty, then the function moves the item at the bottom of the
heap to the root (overwriting the top node) and then calls the WalkDown function
on the root.

The WalkDown Function

This function is very similar to the WalkUp function, except that it is a little more dif-
ficult to detect the bottom of the heap than the top and you need to choose which
indexes to swap.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 423

423Coding a Heap Class

This function will use the same optimization used with the WalkUp function; it stores
the data that it is walking down in a temporary variable while nodes are moved up
the tree.

1: void WalkDown(int p_index)
2: {
3: int parent = p_index;
4: int child = p_index * 2;
5: DataType temp = m_array[parent];
6: while(child < m_count)
7: {
8: if(child < m_count - 1)
9: {
10: if(m_compare(m_array[child], m_array[child + 1]) < 0)
11: {
12: child++;
13: }
14: }
15: if(m_compare(temp, m_array[child]) < 0)
16: {
17: m_array[parent] = m_array[child];
18: parent = child;
19: child *= 2;
20: }
21: else
22: break;
23: }
24: m_array[parent] = temp;
25:}

The function starts out with the same variables that the WalkUp function did: a par-
ent and child index and a temporary variable. The item that is being walked down
the tree is placed in temp.

Then, on line 6, a while-loop is started, which loops through the tree until the
child index is larger than the size of the tree.

Line 8 is important because it starts the block of code that detects which child
node of the current parent is larger. For example, look at the tree in Figure 14.14.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 424

424 14. Priority Queues and Heaps

Figure 14.14

The function must
check whether p has
only one child.

The parent index is pointing to node p, and the child index is pointing to node c.
The code on line 8 determines if the right child of p exists. In this example, it
doesn’t, so c is automatically assumed to be the larger child of p. If p had two chil-
dren, then the code on lines 10–13 detects this and finds out which child is larger.
If the right child is larger than the left, then the child index is incremented
because the index of the right child of any node is one larger than the index of the
left child.

Now that the function knows which child node it wants to move upward, it deter-
mines whether the child node needs to be moved upward by comparing it to the
temp node on line 15. If no swap needs to be made, the function exits out of the
while-loop on line 22. If a swap needs to be made, the function moves the parent
node into the correct child node and then moves both the parent and child
indexes down a level on lines 18 and 19.

Finally, the value in temp is placed into the correct index on line 24 when the loop
is finished executing.

Application: Building Queues

This is Game Demo 14-01, which you can find on the CD in the directory \demon-
strations\ch14\Game01 - Building Queues\ .

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 425

425Application: Building Queues

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

I’m sure you’ve played a Real-Time Strategy (RTS) game before—there are many
famous ones, including Warcraft, Starcraft, and Command & Conquer. In these games,
you usually have some sort of building or factory that allows you to produce your
units in the game.

For example, in Starcraft, you can build a factory that lets you make tanks and
mechs.

These systems use simple queues for building units; when you tell a factory to build
a unit, it places the unit in the queue. Although priority queues aren’t used much
in these situations, you can use them for a very simple Artificial Intelligence (AI).

For example, say you have an RTS game that has three units: a worker, an attacker,
and a defender. A very simple AI would assign an importance to each of the units:

■	 Defenders are the most important; you need them to defend your base.
■	 Workers are moderately important; you need them to build and repair your

base.
■	 Attackers are the least important; you only need to consider attacking after

your base is well defended.

Now, whenever the AI wants to create a new unit, it places the units into a priority
queue. Using this system, defenders will always end up at the front of the queue,
workers after them, and attackers at the end of the queue.

The little system I’ve created works like this: You have four factories, each of which
can be turned on or off. You also have a priority queue of units that you want to
build. Whenever a factory is available to manufacture a unit, the factory starts mak-
ing the item at the front of the priority queue.

Team LRN

Data Structures CH14 11/5/02 8:43 AM Page 426

426 14. Priority Queues and Heaps

The Units

As I stated before, the game has three unit types, which are stored in an enumer-
ated type:

enum UNIT
{

ATTACKER,
WORKER,
DEFENDER

};

Creating a Factory
The Factory class is simple—it has only four variables:

class Factory
{
public:

UNIT m_currentUnit;
int m_startTime;
bool m_working;
bool m_functioning;

};

The factory knows what kind of unit it is currently producing, so it has a UNIT vari-
able, called m_currentUnit.

After that, the factory keeps track of when it started making the unit. Each unit
takes 10 seconds to complete, so when the current time is 10 seconds more than
this value, the factory outputs the new unit into the game world.

The next two variables are Booleans. The first Boolean, m_working, keeps track of
whether or not the factory is working on a unit or not. Sometimes the factory can
be idle, and if so, this Boolean would be false.

The other Boolean determines if the factory is functioning. This has many mean-
ings in a game. For example, the factory could be damaged badly or have no
power, and so on. Whenever this Boolean is false, the factory cannot start working
on a new unit.

There are four factories in this game, and they are placed in a global static array:

Factory g_factories[4];

Team LRN

Data Structures CH14 11/5/02 8:44 AM Page 427

427Application: Building Queues

The Heap

Because the Heap class is the only (and most efficient) implementation of a priority
queue that I’ve shown you, you have to use a heap in the game as a priority queue.

Heap<UNIT> g_heap(64, CompareUnits);

The heap holds UNITs, and it starts off being able to hold 64 of them. Because the
Heap class automatically resizes itself when needed, you can enqueue as many units
as you want. Flexibility is a really neat feature.

The heap also uses a function called CompareUnits as its comparison function. Here
is what the function looks like:

int CompareUnits(UNIT p_left, UNIT p_right)
{

return p_left - p_right;
}

The p_left and p_right variables are
both UNITs and not integers, so how will
you determine which one is greater
than the other? If you remember how
C++’s enumerations work, each enumer-
ation is really just an integer. In the UNIT
enumeration, ATTACKER has a value of 0,
WORKER has a value of 1, and DEFENDER has
a value of 2. So the function subtracts
the right from the left, just like you did
with the integer comparison function I
showed you earlier.

on the

(int)(p_left) p_left is con-

CAUTION
Treating enumerations like integers
works on most compilers, but some
compilers don’t like it.Truly picky
compilers might say, “You cannot
subtract enums—they aren’t real
numbers!” But you can fool them by
performing an explicit cast
enums.To cast an enum to an inte-
ger, all you need to do is this:

.Then,
verted into its integer equivalent.

Enqueuing a Unit

Enqueuing a unit onto the heap is a very simple task; all you need to do is
type this:

g_heap.Enqueue(ATTACKER);
g_heap.Enqueue(WORKER);
g_heap.Enqueue(DEFENDER);

These three lines enqueue an Attacker, a Worker, and a Defender on the queue. Of
course, given their priorities, the Defender will be moved up to the front of the
queue because it has the highest priority of them all.

Team LRN

Data Structures CH14 11/5/02 8:44 AM Page 428

428 14. Priority Queues and Heaps

Starting Construction

In the demo, you need to loop through the factories to see if any of them are able
to start construction of a new unit.

1: for(x = 0; x < 4; x++)
2: {
3: if(g_factories[x].m_working == false &&
4: g_factories[x].m_functioning == true &&
5: g_heap.m_count > 0)
6: {
7: g_factories[x].m_currentUnit = g_heap.Item();
8: g_factories[x].m_working = true;
9: g_factories[x].m_startTime = SDL_GetTicks();
10: g_heap.Dequeue();
11: }
12:}

The loop goes through each factory and checks three things. First, it makes sure
that the factory isn’t already making something (line 3). If it is, then m_working
would be true. Second, it makes sure that the factory is functioning (line 4).
Finally, it makes sure that a new unit is waiting to be produced on the queue. If
there is, then the count of the heap will be more than 0 (line 5).

If all three of these conditions are met, then the current factory will start construc-
tion. First, the current unit of the factory is set to whatever unit is at the front of
the queue (line 7). Then, the factory is told to start working (line 8), and the time
that construction started is recorded using the SDL_GetTicks function (line 9). After
the factory has been set up to construct a new unit, the new unit is removed from
the heap (line 10).

Completing Construction

Now you need a way to determine when construction is completed. This is also
done with a loop:

1: for(x = 0; x < 4; x++)
2: {
3: if(g_factories[x].m_working == true)
4: {
5: if(SDL_GetTicks() - g_factories[x].m_startTime > 10000)
6: {
7: g_factories[x].m_working = 0;

Team LRN

Data Structures CH14 11/5/02 8:44 AM Page 429

429Application: Building Queues

8: }
9: }
10:}

The loop goes through all four factories again, this time just checking to see if they
are currently producing a unit (line 3). If they are, then it checks to see how long
they have been working on the current unit (line 5). This line of code subtracts the
time that the factory started working from the current time. SDL_GetTicks returns a
number in milliseconds. There are 1,000 numbers per second and, therefore,
10,000 in 10 seconds. The if statement on line 5 checks to see if more than 10,000
milliseconds have passed, and if so, then the unit has been completed.

On line 7, the factory is stopped. Because this simple demo doesn’t actually do any-
thing with the units that are created, this is where you would add code to physically
place the unit into the game so that the player can actually use it.

Playing the Demo
Figure 14.15 shows the game demo in action.

Figure 14.15

Here is a screenshot
from the demo.

On the left side of the screen, there are three buttons. Clicking any one of these
buttons adds a new unit onto the queue. Below the buttons, the next unit in the
queue is displayed.

Team LRN

Data Structures CH14 11/5/02 8:44 AM Page 430

430 14. Priority Queues and Heaps

On the right are four factories, each with a progress bar and a text field saying
which unit they are currently building. By clicking on the factory boxes to the left
of the progress bars, you can turn the factories on or off. When a factory is turned
off, the box will turn red, signifying that it is not functioning.

You’ll notice the priority queue at work as soon as all the factories are busy. For
example, start building four Attackers, and when they are building, add a few more
Attackers to the queue. After you have done that, quickly add a Worker or
Defender to the queue; it will immediately be placed above the Attackers that are
already on the queue.

So the AI ends up creating the more important units before the least important
units unless they have already started construction. This is a very simple way of
implementing an AI for an RTS game.

Conclusion

The priority queue isn’t something you will use as much as a linked list or an array
in a game; nevertheless, it’s a useful data structure. Instead of being used directly in
applications, though, you’ll find that priority queues are used far more often in
conjunction with complex algorithms or other data structures. You’ll see them used
a few more times in this book, in Chapters 21, “Data Compression,” 23,
“Pathfinding,” 24, “Tying It Together: Algorithms,” and Appendix D, “Introduction
to the Standard Template Library.”

The main thing I wanted to emphasize, however, was how much time you save by
storing data recursively in a tree. You’ve seen two examples now, the binary search
tree and the heap, each of which stores data in a different way, but stores the data
so that you don’t have to do much work on it. The key to making fast programs is
to find ways to do less work.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 431

CHAPTER 15

and Minimax
Game Trees

Trees

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 432

432 15. Game Trees and Minimax Trees

Until this point in the book, I have shown you data structures that can be used
for any type of game. None of the structures was specific to a certain genre.

This chapter introduces you to a data structure that departs from this non-specific
nature.

Almost all of the game demos and examples in the book so far mimic real-time
games, or games which run continuously in time. I have overlooked discrete games—
games where the players take turns playing. Some of the oldest discrete games, such
as checkers, chess, and tic-tac-toe, were around long before computers were. The
structures introduced in this chapter are designed to map out the progress of these
types of games and aid the computer in figuring out how to beat you in them.

In this chapter, you will learn

■ What a game tree is
■ What a minimax tree is
■ How to generate game trees and minimax trees for a simple game
■ How to store game states
■ How to program a simple game using minimax trees
■ How to prevent infinite recursion in more complex games
■ How to limit the minimax algorithm by using limited depth searching

What Is a Game Tree?
A game tree isn’t a special new data structure—it’s a name for any regular tree that
maps how a discrete game is played.

I’ll start with a simple example, Rocks. In this game, you have different piles of
rocks, with one or more rocks in each pile. The game has two players, who take
turns taking one or more rocks from a single pile until one pile is left. When one
pile is left, your goal is to force your opponent to remove the last rock. The person
who removes the last rock loses.

Figure 15.1 shows a simple setup for a game of Rocks.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 433

433What Is a Game Tree?

Figure 15.1

This is a simple
game of Rocks with
two piles.The first
pile has two rocks,
and the second pile
has one.

In the figure, there are two piles. The first pile has two rocks, and the second pile
has only one rock. If you are the first player, you have three choices:

■ Remove one rock from pile 1.
■ Remove two rocks from pile 1.
■ Remove one rock from pile 2.

You can start the game off with one of those three moves. You can create a simple
game tree to represent these moves, as shown in Figure 15.2.

Figure 15.2

Here are the first
two levels of a game
tree, demonstrating
the three possible
moves.

After Player 1 has moved, it is now Player 2’s turn. His choice of a move is limited
to the current state of the game, however. In the leftmost state of Figure 15.2,
Player 2 has two choices: He can remove one rock from pile 1 or one rock from
pile 2.

His choice for the middle state is even less useful He can only remove one rock
from pile 2. Of course, because this is the last rock, Player 2 has lost the game.

On the right state, Player 2 has two options again: He can remove one or two rocks
from pile 2.

Figure 15.3 shows the game tree for all five of these moves and goes down one
more level to show you the complete game tree.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 434

434 15. Game Trees and Minimax Trees

Figure 15.3

This is the complete
game tree,
demonstrating every
possible move in the
game.

The game is entirely complete by the time the fourth level is reached—the game
can have up to three moves because there were only three rocks. You can also tell
from the tree that there are five total outcomes from the game because there are
five leaf nodes. The game always ends on a leaf node because there are no more
moves that can be made.

So what can you tell about the game tree that you couldn’t easily tell about the ini-
tial game setup?

If you are Player 1, the obvious first move is the second one, removing the two
stones from pile 1. By doing that, you are forcing Player 2 to lose, because he has
no other option and cannot possibly win.

Another thing you would notice if you were Player 1 is that the leftmost move,
removing one rock from pile 1, is a death sentence. If you make that move, then
you have given Player 2 a free win, because no matter what move he makes, there is
no chance for you to win in that branch.

If you take the third route on the opening move, then Player 2 decides the outcome
of the game. If Player 2 removes both rocks in pile 1 (a very stupid move), he loses. If
he only removes one rock, then he forces you to remove the last one, and you lose.

What Is a Minimax Tree?

A minimax tree is the same as a game tree. In fact, it’s not even a tree; it’s actually
an algorithm that is used on a game tree. Everyone calls it a minimax tree, though,
so I will, too.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 435

435What Is a Minimax Tree?

The minimax algorithm is a really neat way of transforming a game tree into data
that a computer can analyze so it can make an intelligent choice about which move
is the best at the moment.

The minimax algorithm is designed for two
players: Min and Max. The algorithm
works like this: Max starts, so he has the
dominant position and he will be the
aggressor in the game. Every time he
moves, he chooses the best move for
himself. Min is on the defensive, and
every time she moves, she will try to put
Max in the worst position possible.

NOTE
Max moves first, so why don’t they
call them maxmin trees? I have no
idea. I guess minimax sounds better.

To make a minimax tree, you need to use an algorithm called a heuristic algorithm.
A heuristic is really just a fancy word that means general rule of thumb. Different AIs
for different games have different heuristic functions for different purposes. The
job of a heuristic function is to look at a move in a game and evaluate if it is a good
move or a bad move.

The minimax algorithm works like this: It goes down to every leaf node and ana-
lyzes the state of the game at that point. It then uses the heuristic algorithm to pro-
duce a number. A high number means that the state is good for Max and bad for
Min, and a low number means that the state is bad for Max and good for Min.

For example, look at the game in Figure 15.3 again. I’m going to use a very simple
heuristic algorithm that returns 1 if Max wins and 0 if Max loses.

The first step of this process is shown in Figure 15.4.

Figure 15.4

The first step of the
minimax algorithm is
to give an initial
value to the end
states of the game.
When Max wins, a 1
is placed in the node.
When Min wins, a 0
is placed in the node.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 436

436 15. Game Trees and Minimax Trees

The algorithm analyzes all five leaf nodes of the game tree from Figure 15.3. The
states where Player 1 (Max) lost are made into a 0, and the states where Player 2
(Min) lost are made into a 1.

After that has been completed, the minimax algorithm backtracks through the
tree. Whenever it is Min’s turn, she selects the move that has the lowest score.
Whenever is it Max’s turn, he selects the move that has the highest score.

Figure 15.5 shows the backtracking.

Figure 15.5

This is a full minimax
tree that has been
backtracked through.
The path that is
taken by the
minimax algorithm is
in bold.

Look at the lowest node on the left side and its parent node. The parent node is on
Max’s turn, so Max takes the highest child node. Unfortunately for Max, there is
only one child node, and it contains 0, so a 0 is placed in the parent node. The
same goes with the next node over to the right on Max’s turn—the only choice is a
loss for Max. There is one other branch on Max’s turn if you traverse the tree
going right and then left from the root. This node also becomes a 0 because it only
has one child.

Now take a look at all the nodes on Min’s first move. Min has two choices on the
leftmost move, both of which end in 0. Because Min is looking for the lowest score
possible, this situation is good, because two 0s mean that Max can’t win. The next
node over is bad for Min; it only has one child, and it contains 1. Min has no
choice, however, so Min must take that value. The third child of the root finally
offers a choice for Min; its two children contain a 0 and a 1. Because it is Min’s
turn, she selects the 0. If it were Max’s turn, he would have selected the 1.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 437

437Graphical Demonstration: Minimax Trees

Finally, the root node is evaluated. It has three children, and Max needs to choose
the node with the largest value. Because two of the nodes are 0 and only one is 1,
Max chooses the node with the 1 in it.

What does all this mean? How do you use this information to determine which
move Max will make? Because Max chose the node with the 1 in it, his next move
will be to take the middle path and remove the two rocks from pile 1. After that
move, Min has no choice and will lose.

Say, for example, Max was an inferior player, perhaps a human, who took the third
path instead of the second path and removed the one rock from pile 2. Now it is
Min’s turn, and she has two choices. The minimax algorithm has decided that she
will follow the left path, because it is 0, and this eventually leads to Max losing.

One more thing needs explanation, however. What if there are two options with
the same Min or Max value? What path should the AI take? You can see that this sit-
uation occurs in the left child of the root node in the example tree. It is Min’s
turn, and both moves are 0, so which one should she take? The heuristic algorithm
you used to generate the score values treats both paths of the tree equally because
they have the same value, so you can take either path. A random number can be
used to make the computer AI seem more lifelike, or you could just take the first
lowest path you find. The choice is up to you.

Graphical Demonstration:
Minimax Trees
This is Graphical Demonstration 15-1, which can be found on the CD in the direc-
tory \demonstrations\ch15\Demo01 - Minimax trees\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 438

438 15. Game Trees and Minimax Trees

This is just a simple graphical demonstration that shows you how a few different
minimax trees are generated. The demo uses the same game that I showed you pre-
viously—the rock pile game. Figure 15.6 shows a screenshot from the demo.

Figure 15.6

Here is a screenshot
from the demo.

Notice the three little boxes at the top. Those boxes represent your rock piles. The
demo allows up to three piles. You can use the arrows above and below the piles to
increase or decrease the number of rocks in a given pile. I decided to limit the
number of total rocks in the demo to 4, though, because any more than that will
cause everything to look very messy.

The screenshot shows a configuration you should be familiar with; it is the same
rock pile configuration I showed you earlier.

Every time you add or remove a rock from a pile, the game tree is automatically
updated on the screen. Even though the game tree doesn’t show you which states
each nodes represent, it is fairly easy to figure out. The algorithm I used to figure
out the next gamestate from each node works like this: Try to subtract one rock
from pile 1, two rocks from pile 1, three rocks from pile 1, and four rocks from pile
1, and then switch to pile 2 and repeat.

So in the figure, the leftmost subtree from the root represents the game if you
removed one rock from the first pile, the middle subtree represents the game if
you removed two rocks from the first pile, and the right subtree represents the
game if you removed one rock from the second pile.

After you have set up the desired rockpile configuration, all you need to do is click the
Minimax button and the program will generate the minimax values for each node.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 439

439Game States

NOTE
Note the order in which the program generates the minimax values. Recognize
it? It is our old friend, the postorder traversal! You first saw the postorder tra-
versal in Chapter 11, “Trees.” The postorder traversal works like this: For each
node, it figures out the minimax values for all of its children, picks the min or
max value depending on whose turn it is, and then returns up the tree.

Figure 15.7 shows a screenshot from a different game setup after it has been
calculated.

Figure 15.7

This is a screenshot
of a more complex
game, solved by the
minimax algorithm.

If Max is smart, he can win the game on the first move by removing one rock from
pile 1. Every path after that move leads to a win on his part. If not, he removes
both rocks from pile 1 and forces himself to lose.

Game States

Normally, this is where I would jump into the code for the data structure described
in this chapter. However, the code for the minimax tree already exists; it’s just a
plain tree. Instead of coding a minimax tree, I want to instead go over more con-
cepts involved with minimax trees. The first concept is a game state.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 440

440 15. Game Trees and Minimax Trees

A discrete game will have a certain state
at any given time. The state of a rock
pile game stores how many rocks are in
each pile. The state of a tic-tac-toe game
stores which boxes are empty, have Xs,
or have Os. The state of a chess or
checkers game stores the locations of
each of the markers on the game board.

To use a minimax tree, you need to be
able to store this state somehow. Not
only that, but you must also do so effi-
ciently.

So now you need to figure out a good
way to store a game state. In Graphical
Demonstration 15-1, I used a three-cell
array to store the number of rocks in
each pile. This example was easy to fig-
ure out, though.

How about a game like tic-tac-toe?
In tic-tac-toe, you have a 3x3 grid in
which each cell can have one of
three different values: it can be

have an O. Figure 15.8 shows a
sample tic-tac-toe board.

TIP

up to 900,000 total nodes in their game

This is a sample tic-

empty, it can have an X, or it can

Because games like tic-tac-toe can have

trees, storing game trees can take huge
amounts of memory. Making your game
states take as little memory as possible
is important.

Figure 15.8

tac-toe game board.

NOTE
I initially wanted to show you mini-
max trees for tic-tac-toe. I decided
that it was simple enough to show
you. I was wrong; the complete
game tree for tic-tac-toe has 10
nodes after the first move, 82 nodes
after the second move, and 586
nodes after the third move.There
are around 900,000 total nodes for a
complete expansion of tic-tac-toe,
which is kind of hard to draw on
paper or show on a computer
screen. Because I wanted to show
you a complete minimax tree first, I
skipped over tic-tac-toe and made a
much simpler game example.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 441

441Game States

If you don’t already know, the object of the game is to get three of your symbols in
a row, either horizontally, vertically, or diagonally.

The game has nine squares, each of which can contain one of three different
things. If you had two squares, there would be a total of nine different states, as
shown in Figure 15.9.

Figure 15.9

These are the
possible two-celled
combinations; each
line represents a pair
of cells.There are
nine lines.

If you count all the lines, you’ll see that there are nine of them. Likewise, if you
add another cell, you’ll need to multiply 9 by 3, to get 27 different combinations.
One cell is 31, two cells is 32, and three cells is 33, so 9 cells is 39, or 19,683 different
gamestate combinations.

The easiest way to store a tic-tac-toe game state would be to use a nine-celled array
of chars where each cell contains 0, 1, or 2 (empty, X, or O).

NOTE
If you know how to represent numbers in different bases, such as base 2 (bina-
ry), base 3 (trinary), base 8 (octal), or base 16 (hexadecimal), just to name a few,
you might have seen that you can store the game state as a single nine-digit
base-3 number. Because each digit in a base-3 number can be 0, 1, or 2, this fits
nicely. For example, the base-10 number 19,682 (one less than the maximum
number of states) expands to the base 3 number 222,222,222. Because the max-
imum number of states is 19,683, you can store the state of a tic-tac-toe game
in a 16-bit integer (2 bytes), which has a maximum value of 65,535 (or a total of
65,536 values, including 0). Compare this with the 9 bytes required for a char
array and you can see how much better this method is.The only downside, of
course, is the extra processing power required to convert a base-10 number into
a base-3 game state. As always, the memory versus speed tradeoff exists.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 442

442 15. Game Trees and Minimax Trees

NOTE
Note that not every game state is valid for a game of tic-tac-toe. For example,
the base 3 number 19,682 converts to 222,222,222, which is a board filled com-
pletely with Os. Obviously, this state can never be reached in a real game of tic-
tac-toe because X and O alternate turns. So there are actually about half as
many valid game states for tic-tac-toe, or around 10,000.

More Complex Games

How about a game like checkers or chess? How would you go about storing the
gamestate of those games?

Both of them operate on an 8 � 8 grid, so you have 64 cells right there. A full
game of checkers only uses half of those squares, though, because your pieces stay
on the black squares, so you can cut that down to 32 cells.

Checkers also only uses two units, a normal piece and a king, so each cell can have
up to 5 different values: empty, red piece, black piece, red king, black king. You
could use a large 32-cell array of chars (32 bytes). There are at most 24 pieces on
the field at one time, so you could also have a 24-cell array of bytes keeping track of
the location and the type of each unit (24 bytes). It only takes three bits to keep
track of each coordinate (23 = 8), and you’ll have an extra two bits to keep track of
what kind of unit each piece is (22 = 4, which is how many different units there are).

Chess uses all 64 cells, though, and has many more units than checkers does. There
are six units per team (king, queen, bishop, knight, rook, pawn), so each cell can
have 13 different values. Using an array of 64 cells would take 64 bytes for each
game state, but with chess it’s probably a better idea to keep track of each player
individually. There is a maximum of 32 pieces on the board at any time in a chess
game, so that splits the game state size in half. Again, you’d use three bits per coor-
dinate, using just six bits of a char. However, this time, each index in the array
defines what a unit is. For example, index 0 would mean “white’s king”, and 16
would mean “black’s king”, and so on.

Application: Rock Piles

This is Game Demonstration 15-1, which is located on the CD in the directory
\demonstrations\ch15\Game01 - Rock Piles\ .

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 443

443Application: Rock Piles

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Now the time has come to implement a game using a minimax tree. This section
shows you how to actually code the rock pile game.

The Game State

First of all, you need to be able to store a rock pile game state. I call this class the
RockState class. I separate the data in the class into two areas.

First, there is the actual game state data:

int m_rocks[PILES];

This is just a simple array. The PILES constant is defined at the top of the program;
in this particular program, PILES is 5. The array contains simple integers; each pile
has a certain number of rocks in it. Obviously, the number is positive, because
there shouldn’t ever be a negative number of rocks in a pile.

Second, to make things simpler, I have included more data in the RockState class:

int m_minimaxValue;

Tree<RockState>* m_nextState;

The first variable, m_minimaxValue, holds the minimax value of the game state.
Because the game states will be stored in a game tree and a minimax tree will have
the same structure, why not combine them into one structure? So the program, when
it creates the minimax tree, will go through the game tree (in which every node will
hold a RockState) and automatically fill in the minimax value for each state.

The next variable is a tree node pointer. The same algorithm that fills in the mini-
max values also fills in the pointer in each game state. Each game state will point to
the next node in the game tree, or the choice that the computer would make at
any point in the game. Look at Figure 15.10 for an example.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 444

444 15. Game Trees and Minimax Trees

Figure 15.10

The node pointers
point to the game
state that the AI
should move to next.
They are represented
by the bold lines.

When the minimax algorithm for this game demo goes through the tree and calcu-
lates the minimum and maximum values for each node, it also keeps track of the
child node that has the min or max value. For example, in the root node from
Figure 15.10, the minimax algorithm detects that the middle child has the max
value of all of its children. Therefore, the algorithm sets the m_minimaxValue variable
to 1 and sets the m_nextState pointer to point to the middle child node. In Figure
15.10, every node’s m_nextState pointer is shown in bold.

The Constructor
The constructor of the RockState is meant to clear all the variables so that you can
tell whether a state has been initialized.

RockState()
{

int x;
for(x = 0; x < PILES; x++)

m_rocks[x] = 0;
m_minimaxValue = -1;
m_nextState = 0;

}

The function goes through each pile and sets the rocks to 0. Then it sets the mini-
max value to –1. Because the only valid minimax values are 0 and 1, you can tell
right away if the minimax algorithm has processed this state.

Finally, it sets the next state pointer to 0 so that it doesn’t point to something ran-
dom in memory.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 445

445Application: Rock Piles

The Equivalence Operator
The next function is used to determine if two states are equal to each other.

bool operator== (RockState& p_rock)
{

int x;

for(x = 0; x < PILES; x++)

{

if(m_rocks[x] != p_rock.m_rocks[x])
return false;

}

return true;

}

This function compares the number of rocks in all of the piles in each state, and if
any pile is different from another, it immediately returns false. If the loop ends and
it hasn’t exited the function yet, then all of the piles are the same, and the function
should return true.

The Empty Function
This function checks to see if a rock pile is empty; this is important because the
game ends when all piles are empty.

bool Empty()
{

int x;
for(x = 0; x < PILES; x++)
{

if(m_rocks[x] != 0)
return false;

}

return true;

}

This function loops through each pile and checks if any of them are not empty. If
any aren’t empty, then the function immediately returns false. If they are all empty,
then it returns true.

The Global Variables

There are many global variables used in this game, and each one is used for a dif-
ferent purpose.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 446

446 15. Game Trees and Minimax Trees

Tree<RockState>* g_tree;
RockState g_startingState;
Tree<RockState>* g_current = 0;
bool g_playing = false;
bool g_hint = false;
bool g_yourturn = true;
bool g_gameOver = false;

The variables for the most part should be self-explanatory by their names, but let
me go over them just in case.

The g_tree variable is a pointer to the game tree. Each node holds RockStates.

The g_startingState variable holds the initial state of the game. The game demo
will allow you to customize this when you first start the program.

The g_current pointer points to the node in the game tree that contains the cur-
rent game state. For example, when the game just starts out, it will point to the root
of the game tree.

The g_playing boolean determines if the game is being played yet. There are basi-
cally two states in the game: creating the rock piles and actually playing the game.
If this is false, then you’re still setting up the rock piles.

The g_hint boolean determines if the game should show you a hint on what move
you should make next. This feature works by analyzing the minimax tree and see-
ing what move the computer would make if it were playing. Isn’t that cool?

The g_yourturn boolean determines whose turn it is. If true, then it’s your turn, if
false, then it is the computer’s turn.

Last, there is the g_gameOver variable, which determines if the game is over or not.
Basically all this does is tell the game that nothing can be done but exit.

Generating the Game Tree

Now that you have the game state class and the tree variable defined, you need to
make a function that will generate a game tree for you.

Luckily for you, this can be done very simply by using recursion (there’s that word
again!). All you need to do is pass in a game state to the function, and it will figure
out every possible state that can be reached from the current state. It will then
recursively call the function on all of those new states. The function then returns a
game tree, starting at the state that it was given.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 447

447Application: Rock Piles

1: Tree<RockState>* CalculateTree(RockState p_state)
2: {
3: int i;
4: int rocks;
5: Tree<RockState>* tree = new Tree<RockState>;
6: Tree<RockState>* child = 0;
7: RockState state;
8: TreeIterator<RockState> itr = tree;
9: tree->m_data = p_state;
10: for(i = 0; i < PILES; i++)
11: {
12: for(rocks = 1; rocks <= p_state.m_rocks[i]; rocks++)
13: {
14: state = p_state;
15: state.m_rocks[i] -= rocks;
16: child = CalculateTree(state);
17: itr.AppendChild(child);
18: }
19: }
20: return tree;
21:}

The function is meant to take a RockState as a parameter and return a game tree
starting at that state.

It starts out by creating two integers: i and rocks. These two integers will be used to
loop through the current state and generate a new state. I show you how this is
done in a little bit.

On lines 5 and 6, two tree node pointers are created. The first one is called tree,
and it is initialized to point to a new tree node, which will be the tree node that
this function generates. The second pointer, child, will be used to hold temporary
tree pointers and is initialized to 0.

On line 7, a temporary RockState variable is declared. This variable will hold the
modified states that can be reached from the current state.

On line 8, a TreeIterator is declared and made to point to the tree. This iterator
will be used to insert child nodes into the tree.

On line 9, the game state that was passed into the function is placed inside the
tree node.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 448

448 15. Game Trees and Minimax Trees

Now, the function starts generating all the possible states that can be reached from
the current state. This is accomplished by using a simple algorithm. Figure 15.11
shows the four states that are generated on a sample state.

Figure 15.11

These are the four
states that can be
reached from the
current state.

First, the algorithm tries to subtract one rock from the first pile, producing the
child state on the left of Figure 15.11. Then it tries to subtract two rocks from the
first pile, and then three, and it continues until there are no more rocks to subtract
from that pile. Then it moves to the next pile and repeats the process.

For each newly generated state, the
function recursively calls itself to gener-
ate a new game tree based on that new
state. This happens on line 16, and the
result is placed in the child node
pointer.

Using the tree iterator, the child is then
added as a child to the tree node.

When the loop is complete, the function
returns the tree node that was generated. I hope you can see how recursion made
your job really easy in this function by splitting the problem up into little pieces.

and so on.

NOTE
Note that this algorithm is essential-
ly the same as a preorder tree traver-
sal.The current node is created, and
then all of the children are created,

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 449

449Application: Rock Piles

Generating the MiniMax Tree
Now you need a function that will traverse the game tree and fill in the minimax
values. I start by showing you the recursive postorder function that calls the mini-
max calculation algorithm.

void MiniMax(Tree<RockState>* p_tree, bool p_max)
{

TreeIterator<RockState> itr = p_tree;
for(itr.ChildStart(); itr.ChildValid(); itr.ChildForth())
{

MiniMax(itr.m_childitr.Item(), !p_max);
}

CalculateMiniMaxValue(p_tree, p_max);
}

This function is very simple. You send it a tree node to calculate the minimax value
of, as well as a boolean named p_max. This boolean is meant to determine whose
turn it is. If it is true, then it is currently Max’s turn. If it is false, then it is currently
Min’s turn.

The function first creates a tree iterator that points to the tree node passed into
the function. Then it loops through each child and recursively calls the MiniMax
function on each child. Note that the
p_max boolean is flipped using the !
operator. This is because on the current
level, if it is Max’s turn, the next level
down will be Min’s turn, and vice versa.

Finally, the CalculateMiniMaxValue func-
tion is called on the current node. This
function does exactly what its name
implies—it calculates the minimax value
of the node.

NOTE
Note that this algorithm is essential-
ly the same as a postorder traversal
because it processes all the children
first and then processes the current
node.

The Heuristic Function
Next, you need to create a heuristic function, a function that generates a value that
determines how “good” a given state is for a player. In the minimax algorithm, it is
assumed that the heuristic function will generate high numbers if the state is good
for Max and low numbers if the state is good for Min.

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 450

450 15. Game Trees and Minimax Trees

In this simple game, the only states that are evaluated are the ending states of the
game, and there can only be two outcomes for those states: Max won or Min won.
Therefore, the heuristic function you will be using only generates two different val-
ues: 0 or 1. A 0 means that Min has won the game, and a 1 means that Max has
won the game.

int Heuristic(RockState p_state, bool p_max)

{

return p_max;

}

The function takes in a state and a
boolean. The boolean is used to deter-
mine whose turn it is when this state is
reached. The only time this function is
called on a state is when the rock piles
in the state are totally empty, so in this
demo, the p_state parameter is ignored.

So the only thing this function does is evaluate whose turn it is when the game
ends. If it is Max’s turn when there are no more rocks, that means that it was Min
who removed the last rock. Therefore, this state should return a 1, because Max
has won this game. Because p_max is 1 if it is Max’s turn, the function simply returns
the value of the boolean. Likewise, if it is Min’s turn when the game ends, it just
returns 0.

NOTE
Even though the state parameter is
ignored, it is still included here to
demonstrate a point. Later on, you’ll
see heuristic functions that actually
do use the state to calculate a value.

The MiniMax Calculation Function
This is the function that the MiniMax function shown previously calls to generate the
minimax value of each node in the tree. It is quite long and complex, so allow me
to separate it into different sections so you can better understand how it works.

First of all, the function takes a game state node and a boolean as parameters.
These function exactly as they did with the MiniMax function.

void CalculateMiniMaxValue(Tree<RockState>* p_tree, bool p_max)

After that, the first thing the function does is check to see if the node has any chil-
dren. If it has no children, that means that the node is an ending state of the game,
so the heuristic function should be called on that state to determine its value.

{
if(p_tree->m_children.m_count == 0)
{

Team LRN

Data Structures CH15 11/5/02 8:44 AM Page 451

451Application: Rock Piles

p_tree->m_data.m_minimaxValue = Heuristic(p_tree->m_data, p_max);

return;

}

After the node has been set with its heuristic value, the function just returns. There
is no need to do anything else.

If the node has children, you need to apply the minimax algorithm to the node.
This involves a few things. You need an integer that will keep track of the current
lowest or highest value that has been found so far. You must also use a tree iterator
to loop through each child.

int minmax;

TreeIterator<RockState> itr = p_tree;

itr.ChildStart();

minmax = itr.ChildItem().m_minimaxValue;

p_tree->m_data.m_nextState = itr.m_childitr.m_node->m_data;

itr.ChildForth();

After the two variables are declared, they are initialized. The iterator is told to
point to the very first child in the tree node, and the minimax variable is set to the
minimax value of the first child node. The line directly below that makes the
m_nextState pointer of the current node point to the first child node. Finally, the
iterator is moved forward to the next child.

After the iterator is moved to the next node, the loop to find the minimum or max-
imum value begins. Here is the loop if it is Max’s turn:

if(p_max == true)
{

while(itr.ChildValid())

{

if(itr.ChildItem().m_minimaxValue > minmax)
{

minmax = itr.ChildItem().m_minimaxValue;
p_tree->m_data.m_nextState = itr.m_childitr.m_node->m_data;

}

itr.ChildForth();

}

}

And here is the loop to find the minimum value when it is Min’s turn:

else

{

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 452

452 15. Game Trees and Minimax Trees

while(itr.ChildValid())

{

if(itr.ChildItem().m_minimaxValue < minmax)
{

minmax = itr.ChildItem().m_minimaxValue;
p_tree->m_data.m_nextState = itr.m_childitr.m_node->m_data;

}
itr.ChildForth();

}

}

Both loops are almost identical; one looks for larger values, and the other looks
for smaller values. If either loop detects a smaller/larger value than the previous
smallest/largest value, then the function resets the minimax variable to the newer
min/max value and sets the current node’s m_nextState pointer to point to the
child node that has the new min/max value.

Last, the current node’s minimax value is updated to the min/max that was found,
and the function ends:

p_tree->m_data.m_minimaxValue = minmax;
}

That’s all there is to calculate the minimax tree.

Simulating Play
Two functions are used in this demo to simulate gameplay. The first one calculates
what happens when the player moves, and the second one calculates what happens
when the computer moves.

The Player’s Turn
Whenever the player of the game makes a move, the program calls a function
called ClickRock. Here is the function:

1: void ClickRock(int p_pile, int p_rock)
2: {
3: RockState newstate = g_current->m_data;
4: TreeIterator<RockState> itr = g_current;
5: if(p_rock > newstate.m_rocks[p_pile])
6: p_rock = newstate.m_rocks[p_pile];
7: newstate.m_rocks[p_pile] -= p_rock;

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 453

453Application: Rock Piles

8: for(itr.ChildStart(); itr.ChildValid(); itr.ChildForth())
9: {
10: if(itr.ChildItem() == newstate)
11: {
12: g_current = itr.m_childitr.Item();
13: return;
14: }
15: }
16:}

The function takes two parameters: which pile the player is removing rocks from
and how many rocks to remove.

On line 3, the function creates a new temporary state variable, which is initialized
to the same state as the current state. On line 4, a tree iterator is created, and it is
pointed toward the current tree node.

The code on lines 5 and 6 determines if the user is trying to remove more rocks
than are currently in the pile. If so, then the function decreases the number of
rocks to remove so that every rock from that pile is removed. For example, if the
player tries to remove 6 rocks from a pile with only 3 rocks, the function will only
remove 3 rocks. This is just to ensure that there is never a negative number of
rocks in a given pile.

On line 7, the function creates the new game state by subtracting the correct
number of rocks from the requested pile. Now that the new game state has been
created, you need to search every child node to find which node contains the
same state as the new state. This loop takes place on lines 8–15. When the node
is found, the g_current pointer is set to point to the new current node, and the
function exits.

The Computer’s Turn
The function for the computer’s turn is much simpler because of the minimax
tree. The tree has already been generated, so the computer knows which move it
should make at every game state in the game.

void OpponentMove()
{

g_current = g_current->m_data.m_nextState;
}

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 454

454 15. Game Trees and Minimax Trees

NOTE
This function has had all the unimportant GUI code stripped from it in the book;
don’t be afraid if you notice that there is extra code in the version on the CD.

This function was remarkably simple, wasn’t it? Because the minimax tree generation
already did all of the work, each node has an m_nextState pointer to the state that the
computer would make. The g_current pointer is simply moved to the next state.

Playing the Game

There are two phases to the game. In the first phase, you set up a game to play. In
the second phase, you actually play the game.

Setting Up the Game
Figure 15.12 shows a screenshot from the first phase of the demo.

Figure 15.12

This is a screenshot
of the phase of the
demo when you set
up the game board.

This setup is very similar to the one you saw in Graphical Demonstration 15-1, ear
-
lier in this chapter. You use the buttons on the top of each pile to add a rock to the

pile and the buttons on the bottom to subtract a rock. For speed reasons, the demo

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 455

455Application: Rock Piles

is limited to a total number of 8 rocks. I tried 16, but the minimax tree took a few
minutes to generate on my old K6-2 300MHz system, which was too long.

After you are done setting up the piles, you click Play!

Playing
Figure 15.13 shows a screenshot from the playing section of the demo.

Figure 15.13

Here is a screenshot
while playing the
game.

This time, there
are two buttons. The first button, Hint, toggles the hint display. This is the game
state shown in the middle of the screen. Figure 15.13 shows a game in which the
hints are on. The hint state drawn shows the next state the computer would move to
if it were playing. For example, if it were the computer’s turn in Figure 15.13, it
would want to remove the two rocks from the first pile on the left.

The current game state is shown at the top of the screen, and the game will tell you
whose turn it is by displaying Your Turn or My Turn. Whenever it is your turn, you
have to click on the rocks that you want to remove.

For example, if you wanted to remove only one rock from the first pile, you would
click on the bottom rock. To remove two rocks from that pile, click on the second
rock, and so on. The same goes with every pile.

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 456

456 15. Game Trees and Minimax Trees

You always move first in this game. After you have made your move, it becomes the
computer’s turn. Rather than moving immediately, however, the computer waits
until you click the Computer button. When you click that button, the computer
moves, and it is your turn again.

You’ll find that you can win most games by following the hints, but there are some
games that you just cannot win.

More Complex Games

Up to this point, I’ve only really shown you one game using the minimax tree algo-
rithm. Unfortunately, this one game is very simple. I mentioned earlier that with 16
rocks, it took my old computer two minutes to calculate a game tree. That is quite a
long time; imagine how long it would take to calculate the full tree for tic-tac-toe.

Or worse yet, imagine how you would calculate the complete minimax tree for a
game of checkers... you can’t!

Never-Ending Games

Checkers is a game played on an 8 � 8 grid, and there are two players. The squares
of the board alternate color, as shown in Figure 15.14. Each piece in the game can
only move on the black squares of the board.

Figure 15.14

This is a
checkerboard.

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 457

457More Complex Games

The pieces of the game can only capture pieces of the other team by jumping over
them. This is really all that you need to know about the game for now.

Now, consider the game in Figure 15.15. There are two pieces on the board, and
they make the four moves shown in the figure.

Figure 15.15

Here are four
consecutive moves in
a checkers game
that will result in the
same game state at
the end.

After the four moves are made, the game is in the same exact state that it was in
before. In the rock pile game, this could never happen; no matter what moves you
made, the game could never end up in a state that it was in previously.

These particular moves lead to a problem; if they are repeated over and over again,
the recursive game tree generator will never complete; you’ll run out of memory
and the computer will crash.

Imagine that the states in Figure 15.15 are named 1, 2, 3, and 4. The game tree for
State 1 may lead to many different states, but the only one you are concerned with
is State 2. State 2 leads to State 3, State 3 leads to State 4, and finally, State 4 leads
back to State 1. Figure 15.16 shows a sample game tree.

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 458

458 15. Game Trees and Minimax Trees

Figure 15.16

Here is a partial
game tree for the
four checkers moves
from Figure 15.15.

The states marked with the question marks represent the states that you don’t care
about at this point, so they aren’t expanded at all. Note that a regular recursive
algorithm will think that both of the nodes marked 1 are different states, even
though they are the same exact state. This is a problem with games like checkers
and chess, because there are certain sequences of moves that will make the game
play on forever.

The only way to fix a problem like this would be to make node 4 point back to
node 1, as the dotted line in Figure 15.16 shows. Unfortunately, if you do this, the
game “tree” is no longer a tree. You have just made it into a graph, which you will
learn more about in Chapter 17, “Graphs.”

To do something like this, you need to be able to find out if a given state has been
processed before. Although this seems like an impossibly difficult task, you previously
learned about a data structure that can help you out immensely: the hash table.

You need to create a hash function that hashes a game state into an integer.
Whenever you process a new state, you check to see if the state is already in the
hash table. If not, then process the state as usual and add the new state into the
hash table. If the state already exists in the hash table, then just link the current
node with the node in the hash table. Here is some pseudo-code showing how this
would work:

Tree CalculateGameTree(Gamestate)
Tree node

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 459

459More Complex Games

for each next gamestate
if HashTable.has(next gamestate)

node.AddChild(HashTable.find(next gamestate))
else

node.AddChild(CalculateGameTree(next gamestate))
HashTable.add(next gamestate)

end if
end for
return node

end function

Obviously, this pseudo-code is a lot less complex than any real C++ function you
would make. For instance, the part where each next state is generated is left out.

You can see how this can be really fast if you remember the speed of hash tables
from Chapter 8, “Hash Tables.” You get an almost instant search and retrieval time
by using them, so even if you have millions of states, it takes almost no effort to
search to see if you’ve already processed a state before.

The great thing about this algorithm is that you don’t waste your time re-processing
game states that you have already processed. This method very neatly solves the
never-ending game problem.

Huge Games

In the opening move of chess, there are 20 different possible moves. The second
move also has another 20 possibilities. No matter what piece you move and where
you move it, there are more than 20 moves on the third move of the game, and the
same goes for the fourth. By the time you get to the fifth move of the game, you
have more than 160,000 possible states! Chess is a huge game.

If you play a medium game with only 50 turns and assume only 20 possible moves
per turn, you end up with 112 � 1063 different moves, which is called 112 vigintil-
lion. (I didn’t even know that word existed until I decided to just look it up right
now.) Assuming that each node in your gametree used a modest 64 bytes, that
many nodes would take up 6 quattuordecillion yottabytes (I’m really not making
this up), 6 � 1057 gigabytes, or 7 � 1063 kilobytes. If you could store the information
about a single atom in one kilobyte, you’d be well on your way to being able to
store the entire galaxy in that much memory, because it is estimated that there are
around 1066 atoms in the Milky Way galaxy.

Needless to say, the number of possible moves in chess is simply staggering, and
we’ll never (I’m 99 percent sure of this, at least) be able to generate a complete
game tree for chess. So kids, please don’t try that at home.

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 460

460 15. Game Trees and Minimax Trees

Limited Depth Games

So how in the world would someone implement a minimax algorithm on a chess
game? Well, you would use a limited-depth algorithm. These algorithms, instead of
generating every possible end state of the game, only look ahead a certain number
of moves. The depth that the algorithm looks to is called the ply of the game.
Looking ahead two moves is called 2-ply, four moves is 4-ply, and so on.

When you’re using a limited depth, the heuristic function becomes much more
important because the computer must now use more “thought”. Instead of analyz-
ing which game paths lead directly down to a winning state, it must now look down
a few moves and determine the strength of every state at that level.

It may sound difficult at first, but when you think about it, this method is really
simple. For example, you could just count the number of pieces left on the board,
add one for every piece that Max has left, and subtract one for every piece that
Min has left.

In a simple checkers heuristic, if Max has 10 pieces and Min has 7 pieces, the value
of that state is 3. If the roles were reversed, the value of that state would be –3.

In games like chess, this method is somewhat stupid because the computer will view
losing the most important piece in the game the same as losing the least important
piece. Because of this, you may want to assign values to each of the pieces. Luckily,
chess scoring rules already assign each piece in the game a value ranging from 1
point for the weakest piece (the pawn) to 9 points for the strongest piece (the
queen). Of course, the most important piece, the king, has no value; to have your
king captured would be to end the game. Using this system, the computer would
sacrifice nine pawns before it would give up its queen, making it look pretty smart.

So what ply should you use for a game? That depends entirely on the circumstances
of the game, and what system you play it on. You should experiment with a low ply
at first and then slowly increase the ply until the game takes too long to play. For
example, the most powerful chess computer in the world, Deep Blue, only has a
ply of 12.

Conclusion

I would have liked to have shown you a more complex game, something similar to
checkers that would demonstrate looping trees and limited depth searches, but
alas, I just don’t have the room. This chapter is already much larger than I

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 461

461Conclusion

planned, and judging from the feedback I got from my fellow game programmers,
minimax trees aren’t a subject that appeals to the majority of game programmers.

I’ve covered the most important aspects of minimax trees, and I’ve shown you
enough to finally conclude with a point to this chapter. There are a few complex
topics that I have left out, such as alpha-beta pruning, which is a method that tries to
determine which branches of the tree it doesn’t need to evaluate.

In 1989, Gary Kasperov, one of the world’s best chess players, stated, “Human cre-
ativity and imagination will truly triumph over silicon and wires,” when asked if he
ever thought a computer could beat a human in chess. In 1996, Deep Blue
defeated him once in a six-game match, but he ultimately won the match. In 1997,
he fought an improved Deep Blue and lost two games, only winning one game.

Why did Kasperov lose the match? Was it because the computer was smarter than
he was? Hardly. The computer is a dumb machine; it does nothing but what it is
told, and it only gives the illusion of thought. Kasperov lost because playing chess
against a human is very different than playing chess against a computer. Deep Blue
in 1997 was capable of looking at 200 million game states per second. How many
different game states can a human analyze per second? Two? Three?

Minimax trees show an interesting method of playing games, which is called brute
force. The minimax algorithm looks at every state it can and makes a decision based
on that. The computer will even look at the most stupid moves, moves that a
human mind will discard immediately. Naturally, because of this, minimax trees are
very limited in their usefulness and most of the time end up being used for very
simple turn-based games. This chapter has led up to the idea of trying to make the
computer work smarter, not harder. Obviously, it is impossible for a computer to
analyze every single outcome of its moves in a real-time game, so the minimax algo-
rithm is entirely inappropriate for those types of games. I show you more about try-
ing to make the computer work smarter in Chapter 24, “Tying It Together:
Algorithms,” when I go over pathfinding.

Team LRN

Data Structures CH15 11/5/02 8:45 AM Page 462

This page intentionally left blank

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 463

CHAPTER 16

Tying It
Together:

Trees

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 464

464 16. Tying It Together: Trees

By now, I hope you’ve gotten more of an idea of what trees are and how they
are used in game programming. In this chapter, I show you how to use tree-

like branching concepts in your game that are similar to the ones used in Game
Demonstration 11-1.

In this chapter, you will learn

■ How to alter the map format to store more information
■ How to alter the game to handle the new exit information
■ How to alter the map editor to handle the new exit information

Expanding the Game
This chapter is primarily concerned with expanding the game base from Chapter 9,
“Tying It Together: The Basics,” to add map branching capabilities. For this simple
game, there can be a total of three exits leading to different maps.

You can think of each map as a tree node in itself, like Figure 16.1 shows.

Figure 16.1

Here is a hierarchy
of maps. Each map
can potentially lead
to three other maps,
creating a tree
structure.

You saw this functionality before in Chapter 11, “Trees,” in Game Demonstra-
tion 11-1.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 465

465Expanding the Game

Altering the Map Format

The first thing you need to figure out is how you’re going to modify the map for-
mat so that it stores information on which map it should load next when one of the
exits is entered. For demonstration purposes, I chose to limit the number of exits
to three. The map format will stay the same as before, but this time, three strings
representing the filenames of the next maps will be added to the end of the file.
Figure 16.2 shows the differences between the two map formats. The one on the
left is the format used in Chapter 9, and the one on the right is the format used in
this chapter.

Figure 16.2

This figure shows the
differences in the
map file formats.The
format on the left is
from Chapter 9, and
the one on the right
is the modified
version for this
chapter.

When you think of a string, it is usually just an array of characters. Every cell in the
array may have a letter in it, but more often, it won’t. A string that can hold up to
64 characters may have only 10 characters in it.

So how do you save this to a disk? You could store the size of the string to disk and
then save the actual string after that. The benefit of this method is that you save
space and you can store strings with different lengths. The problem with this
method, however, is that it makes searching for things within the file very difficult.

For example, if you are trying to find some data after the text strings, you need to
go to where the strings are, find out how long they are, and skip over them. This
makes it very difficult to jump around the file.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 466

466 16. Tying It Together: Trees

An easier way is to assume that the string will have a maximum length and set aside
that much space in the file for it. Then, if you ever need to skip around the file,
you know exactly how long the data is. The down side is that space is wasted using
this method. However, the amount of space the text takes up compared to other
data is negligible, so this really isn’t a large problem.

Figure 16.3 shows these two methods compared.

Figure 16.3

Here is a comparison
of the way strings
can be stored.The
top method stores an
integer first, which is
the size of the string,
and then stores the
actual string; in
contrast, the bottom
method stores the
entire string buffer.

Even though the first method is smaller, the second method is faster to move
around in. I decided to use the second method in the demo and limit the string
buffers to 64 characters. Because standard C strings require a null character at the
end of the string, the filenames of the levels can have up to 63 characters in them.
This should be enough for any game of reasonable length.

Game Demo 16-1: Altering the
Game
This is Game Demonstration 16-1, which you can find on the CD in the directory
\demonstrations\ch16\Game01 - Adventure v2\. Most of the source was copied over
from Game Demonstration 9-1 and then modified to add the new features. Because
of this, I will only show you what functions were modified and how.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 467

467Expanding the Game

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Luckily, not too many things have changed. Three new types of items were added
to the map: numbers 14, 15, and 16. These items represent the red, green, and
blue vortexes, which will be used to transport you from one map to another.

There may be more than one vortex of the same color on the map, but they all
lead to the same map.

The vortexes are Items, so that will be the first class to modify.

The New Item Class
In the previous demo, it was assumed that someone could pick up all items.
However, you don’t want the exits being picked up, do you? Now you need a func-
tion that checks to see if the item can be picked up or not.

Also, while planning for the future, you might want to add more items that are not
exits, but can’t be picked up, either (like a tree). Therefore, you need a way to find
out whether the item is an exit.

Finally, if the item is an exit, you need to be able to find out what kind of exit it is.
Because there are a total of three different exits allowed per map, you should be
able to tell which of the three exits this current item is.

Determining Whether the Item Is Gettable
To determine whether an item is gettable, you need to add one variable and two
accessor functions:

bool m_canGet;

void SetGet(bool p_get) { m_canGet = p_get; }

bool CanGet() { return m_canGet; }

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 468

468 16. Tying It Together: Trees

Pretty simple, isn’t it? Then, when items are initialized in the game, if they can be
picked up, they have their m_canGet boolean set with the SetGet function.

Determining Whether the Item Is an Exit
Adding this ability is similar to adding the previous ability:

bool m_isExit;

void SetExit(bool p_exit) { m_isExit = p_exit; }

bool IsExit() { return m_isExit; }

These are also just plain accessor functions.

Determining the Exit Number
Finally, if the item is an exit, you need a way to determine what kind of exit it is:

int m_whichExit;

void SetExitNumber(int p_exit) { m_whichExit = p_exit; }

int GetExitNumber() { return m_whichExit; }

This variable is an integer. In this particular demo, the only valid numbers are 0
through 2, but you can change that. There is no need to build that limitation into
the code.

The Constructor
Finally, a few lines need to be added to the constructor:

m_canGet = true;
m_isExit = false;
m_whichExit = -1;

These say that by default an item that can be gotten is not an exit, and the exit
number is invalid. These are the most popular values for normal items, so when-
ever you create an exit item, you need to be sure to reset these values.

The Modified Map Class
Now that the Item class has been modified, you need to modify the Map class so that
you can retrieve exit names.

First, you need a way to store the names of the exits in the map. This is accom-
plished by using a 2D array of characters:

char m_exits[3][64];

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 469

469Expanding the Game

This array defines three strings that are 64 characters long. Whenever you want to
access a certain string, all you need to do is this:

char* string = m_exits[0];

Then you will have a pointer to the first string in the array. This function handles
this for you because the string array is hidden:

char* GetExitName(int p_exit)
{

return m_exits[p_exit];
}

Modifying the TileMap Class
Now that you’ve modified the Map class, you need to modify the map-loading algo-
rithm in the TileMap class so that it loads the exit names for you. These lines of
code are added right after the map is loaded in the LoadFromFile function:

fread(m_exits[0], 64, sizeof(char), f);
fread(m_exits[1], 64, sizeof(char), f);
fread(m_exits[2], 64, sizeof(char), f);

That’s it! All three strings are read into the string array.

Modifying the Player Class
In the game engine from Chapter 9,
there was never any need to copy the
inventory of a person over into the
inventory of another person, so that
functionality wasn’t programmed in.

However, now the maps are going to be
switched in the game. When a new map
is created, so is a new current player.
This means that the inventory from the
old current player needs to be copied
into the new current player.

only

NOTE
As a game-logic decision, I have
decided to copy the inventory
over.The health and armor of the
player can remain at full.This is
because in the game, the vortexes
recharge the player and give him full
health and armor.

This function copies the inventory of the parameter person into the current per-
son:

void CopyInventory(Person* p_person)
{

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 470

470 16. Tying It Together: Trees

Item* item;

DListIterator<Item*> itr = p_person->GetItemIterator();

while(m_inventory.Size() > 0)

{

delete m_inventory.m_head->m_data;

m_inventory.RemoveHead();

}

The above loop goes through the inventory of the current person and deletes all
the items in the inventory.

m_currentweapon.Start();

for(itr.Start(); itr.Valid(); itr.Forth())

{

item = new Item;
*item = *itr.Item();
AddItem(item);

}
}

Then this loop copies everything over from the other person’s inventory. After this
function is complete, the inventories of both people will be the same.

Modifying the Game Logic
Now that the game engine has been modified to handle exits, you need to modify
the game logic to handle them as well.

Loading the Exit Templates
The following code sets up the item templates so that when a map is loaded, the
items are created correctly:

g_itemtemplates[14].SetGet(false);
g_itemtemplates[14].SetExit(true);
g_itemtemplates[14].SetExitNumber(0);

g_itemtemplates[15].SetGet(false);
g_itemtemplates[15].SetExit(true);
g_itemtemplates[15].SetExitNumber(1);

g_itemtemplates[16].SetGet(false);
g_itemtemplates[16].SetExit(true);
g_itemtemplates[16].SetExitNumber(2);

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 471

471Expanding the Game

Earlier, I said that the three new items were numbered 14, 15, and 16. These repre-
sent the first, second, and third exits. You can’t pick up any of them, so the SetGet
function is called and false is passed in. They are all exits, so the SetExit function
is called, and true is passed in. Finally, their corresponding exit numbers are set.

The PickUp Function
Now, whenever a person tries to pick up an item, you need to check if he is actually
picking up an item. The item might be an exit, so you want the player to go
through the exit instead of picking it up. Here is the new function:

void PickUp(Person* p_person)
{

Item* i = g_currentmap->GetItem(p_person->GetCell());
if(i != 0)
{

if(i->CanGet() = = true)
{

p_person->PickUp(i);
g_currentmap->SetItem(p_person->GetCell(), 0);

}

else if(i->IsExit() = = true)
{

char* filename = g_currentmap->GetExitName(i->GetExitNumber());
SetNewMap(filename);

}

}
}

The new code is listed in bold; everything else is the same from the previous project.
If the item can be gotten, then the function makes the player pick up the item. If
not, then the function checks to see if the item is an exit. If it is, then the name of
the exit is retrieved, and the SetNewMap function is called to load the new map.

The SetNewMap Function
Finally, you need to modify the SetNewMap function so that it loads a new map
correctly.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 472

472 16. Tying It Together: Trees

The changed portions are highlighted in bold:

void SetNewMap(char* p_filename)
{

int x;
Map* newmap;
Person* newperson;
newmap = LoadMap(p_filename);
newperson = newmap->GetViewer();
g_peoplecount = 0;

for(x = 0; x < newmap->GetNumberOfCells(); x++)

{

if(newmap->GetPerson(x) != 0)

{

AddPersonToArray(newmap->GetPerson(x));

}

}

if(g_currentplayer != 0)

{

newperson->CopyInventory(g_currentplayer);

}

if(g_currentmap != 0)

{

delete g_currentmap;

}

g_currentmap = newmap;

g_currentplayer = newmap->GetViewer();

}

The only thing this function adds is a call to the CopyInventory, which copies the
inventory of the current player into the new player if the current player exists.

Playing the Game
The gameplay for this version of the game is the same, with the addition of the
map-switching functions. As you saw before, all you have to do is press Enter when
you’re over a vortex.

Figure 16.4 shows a screenshot of the game when the player is approaching a vortex.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 473

473Expanding the Game

Figure 16.4

Here is a screenshot
from the demo.

The Map Editor

The new version of the map editor is on the CD in the directory
\demonstrations\ch16\Game02 - Map Editor\ .

The map editor required very few changes to support the vortex tiles. The most
complicated part of the code was adding the part that would load and save the
names of the next levels to disk.

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 474

474 16. Tying It Together: Trees

Saving the Exits to Disk
The Save function is modified so that the following lines of code are added after
the map data is stored:

fwrite(g_exits[0], 64, sizeof(char), f);
fwrite(g_exits[1], 64, sizeof(char), f);
fwrite(g_exits[2], 64, sizeof(char), f);

These lines of code essentially write the three strings to disk.

Reading the Exits from Disk
The Load function is modified to look almost the same as the LoadFromFile function
in the TileMap class from the previous demo, and these three lines are added:

fread(g_exits[0], 64, sizeof(char), f);
fread(g_exits[1], 64, sizeof(char), f);
fread(g_exits[2], 64, sizeof(char), f);

Playing the Demo
The rest of the demo was modified to add the three vortex graphics to the editor,
using the same methods as the demo from Chapter 9.

Figure 16.5 shows a screenshot from the demo.

Figure 16.5

Here is a screenshot
from the map editor
demo.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 475

475Conclusion

You’ll notice that there are only four new things on the map: three text boxes and
one new button. The new button opens up the Exit palette, which allows you to
draw one of the three vortexes. Each one has a different color: red, green, or blue.
Whenever the player enters a red vortex, the map name in the red map text box
will be loaded. The same goes for the green and blue vortexes. For example, on
this map, if the player enters a green vortex, he will be taken to level2.map, and if
he enters a blue vortex, he will be taken to level3.map. That is all there is to it.

Further Enhancements

This was just one simple enhancement to the game involving trees. In reality, there
are many more that you can implement if you have the time to.

For example, the game could use the arithmetic script system from Chapter 12,
“Binary Trees,” to load functions for the different characters. These functions could
then be used to determine how much damage a person does based on certain fac-
tors in the game or any number of things.

If your game also had a skill system, you could use trees to represent skill trees, like
RPGs such as Diablo 2 do. For example, in those kinds of games, you have a tree
representing all of the skills you have. When you start off, you can choose one gen-
eral area of skills you want to be able to use, such as fighting skills or healing skills.

Later on in the game, you will be faced with sub-sets of the skill categories, and you
need to choose which of these sub-sets you want to be able to use, such as armed
weapons, unarmed combat, magical healing, or standard real-world medical tech-
niques, such as stitching and finding medicines. A tree is perfect for storing this
kind of information.

Conclusion

This chapter is fairly short, but that is a good thing. The design for the game
engine developed in Chapter 9 is flexible, and you can see how easy it is to add fea-
tures to a game when you have a good solid foundation underneath.

In Chapters 19, “Tying It Together: Graphs,” and 24, “Tying It Together:
Algorithms,” I go over even more enhancements to the game engine, mostly deal-
ing with the topics from the sections that those chapters are in.

Team LRN

Data Structures CH16 11/5/02 8:45 AM Page 476

This page intentionally left blank

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 477

PART FOUR

Graphs

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 478

17

18
Machines

19

Graphs

Using Graphs for AI: Finite State

Tying It Together: Graphs

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 479

CHAPTER 17

Graphs

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 480

480 17. Graphs

Now that you’ve learned about all of the basic data structures and all of the tree
data structures, it’s time to learn about the most complex and flexible data

structure in the book, the graph data structure. Graphs are used for all sorts of things,
and believe it or not, you used a form of a graph previously in this book. I won’t tell
you where right now, so see if you can figure out where you’ve used them before.

In this chapter, you will learn

■ What a graph is
■ How graphs relate to linked lists and trees
■ The basic parts of a graph
■ The difference between weighted and unweighted graphs
■ The difference between bi-directional and uni-directional graphs
■ How a tilemap is a graph
■ What an adjacency table graph is
■ What a direction table graph is
■ What a linked graph is
■ Two ways to traverse graphs
■ How to code a linked graph class
■ How to make a direction table graph dungeon
■ How to make a portal engine using linked graphs

What Is a Graph?
To understand what graphs are and where they stand in relation to everything else,
you need to first look back on what you already have learned about node-based
data structures.

Linked Lists and Trees

In Chapter 6, “Linked Lists,” you learned about linked lists. A linked list is a
node-based structure in which every node in the list points to one node (ignore
doubly linked lists for the moment). Figure 17.1 shows a linked list.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 481

481What Is a Graph?

Figure 17.1

This is a linked list.

NOTE
Figure 17.1 is drawn vertically, unlike the linked lists you have seen before in the
book. Don’t worry about it; I did it to illustrate a point.

After you learned about linked lists, you moved onto trees in Chapter 11, “Trees.”
You learned that a tree is a node-based data structure where each node in the tree
can point to any number of children nodes. Figure 17.2 depicts a tree.

Figure 17.2

This is a tree.

There is an important relationship between a linked list and a tree that you should
be able to see: A linked list is really a tree. If you look at Figure 17.1, you can see
how a linked list is really just a tree where each node points to only one node.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 482

482 17. Graphs

Graphs

If you can make a linked list more flexible so that it becomes a tree, you can also
do the same thing with a tree.

If you take a tree and make it possible for each node in the tree to point to any
other node in the tree, you end up with a graph. Figure 17.3 shows a sample graph.

Figure 17.3

This is a graph,
where any node can
point to another.

Quite simply, a graph is a node-based data structure where any node can point to
any other node. You can see that a tree is a graph where the nodes branch out, and
a linked list is a graph where the nodes are lined up in a chain.

Parts of a Graph

There are two things that make up a graph. You already know about the nodes, rep-
resented by the circles in all of the figures. The nodes contain the actual data in
the data structure.

The other part of a graph is the arcs. An arc is basically a line connecting one node
to another. The linked list and tree data structures didn’t need the concept of an
arc, but they are important to graphs, as you’ll see later on.

Types of Graphs

There are many different types and implementations of graphs. I’ll show you the
most important variations.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 483

483Types of Graphs

Bi-Directional Graphs

The simplest kind of graph is a bi-directional graph. This is a graph in which each
arc in the graph points to two nodes. For example, take a look at Figure 17.4. In
this graph, node A points to node B, and node B points to node A. You can think
of every arc in the graph as a two-way street; you can get from A to B and you can
get from B to A.

Figure 17.4

This is a bi-directional
graph. Each arc
points to two nodes.

Uni-Directional Graphs

A uni-directional graph is a little bit more limited than a bi-directional graph. In a
uni-directional graph, each arc can only point to one node, so you end up with a
graph like the one in Figure 17.5.

Figure 17.5

This is a uni-
directional graph.
Each arc points only
to a single node.

Note how the arrowhead on the arc between nodes A and B in the figure points to
node A, but not B. You can think of this as a one-way street; you can get from B to
A, but you can’t go back the other way.

To simulate a bi-directional graph using a uni-directional graph, you’d need to add
another arc going from A to B, like Figure 17.6 shows.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 484

484 17. Graphs

Figure 17.6

This figure shows you
how to simulate a bi-
directional graph
using a uni-directional
graph.

This approach to a graph seems a little wasteful because the number of arcs is
potentially doubled, but uni-directional graphs give you a little bit more control
over the structure than bi-directional graphs. I touch on this more later when I
explain how to use graphs in games.

Weighted Graphs

Weighted graphs (sometimes called networks) introduce a new level of complexity for
graphs. Imagine you have a map of the available flights on a particular airline in
the United States, like Figure 17.7 shows.

Figure 17.7

This is a weighted
graph, where the
distance to go from
one city to another is
stored in the arc.

You can view the map as a graph easily enough. The six cities are the nodes of the
graph, and the lines between the cities are the arcs. Each arc in the map has a
weight (sometimes known as the cost) associated with it. In the case of this map, the
weight is the number of miles between the cities connected by the arcs.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 485

485Types of Graphs

Tilemaps

You should be thinking, “Hey! Didn’t I already learn about tilemaps?” The answer
is yes. If you think about it for a moment, you can see that a tilemap is really just a
different form of a graph. Figure 17.8 shows a figure of a 4 � 4 2D tilemap, like
you’ve seen before.

Figure 17.8

This is a 2D tilemap.

Now, take the map apart and turn each square in the tilemap into a node. Each of
the new nodes will have an arc connecting it to the tiles that were next to it in the
tilemap. Figure 17.9 shows how a 4 � 4 tilemap can be viewed as a graph.

Figure 17.9

This is a 2D tilemap
when viewed as a
graph.There are bi-
directional arcs
connecting every
adjacent square.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 486

486 17. Graphs

As you can see, it is assumed in a tilemap that there is a pathway open from one tile
to another. The arcs serve to visualize the paths that are available in a tilemap.

If you’re into hex-tile games (many strategy games use hex-tiles), Figure 17.10
shows an example of how to visualize a hex map as a graph.

Figure 17.10

This is a hex-tilemap
converted into a
graph.

It is worthwhile to note that while a tilemap is essentially a graph, it is a limited form
of a graph. For example, in a plain tilemap, each tile can only have up to eight arcs
because each tile is adjacent to eight other tiles. The same goes with the hex-tilemap,
only this time each tile can have up to six arcs and no more. A “pure” graph data
structure doesn’t have a limit on the number of arcs each node can have.

Implementing a Graph

Let me first start out by saying that there are many different ways to implement a
graph. You have already seen one way to implement a graph: by using 2D Arrays for
tilemaps. The arcs in tilemaps are only a theoretical structure; they don’t actually
exist. Instead, it is assumed that at each tile, you can go right (add 1 to x), go left
(subtract 1 from x), go up (subtract 1 from y), go down (add 1 to y), or go in any
of the four diagonal directions.

There are many more ways to represent a graph in a computer. I’ll introduce you
to some of the more common methods.

Adjacency Tables

The first method of storing a graph is called the adjacency table method. Like the
tilemapping method, this method also uses 2D arrays. However, it uses them in a
different manner.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 487

487Implementing a Graph

Adjacency tables are always square. For example, look back at Figure 17.7, the map

of the United States. There are a total of six nodes, so the adjacency table would be

a 6 � 6 array. Figure 17.11 shows the adjacency table for the graph from Figure 17.7

simple: If you want to know the cost to
get from city A to city B, you look up
city A on the x axis of the array and city
B on the y axis, and the cost is in the

miles, and vice-versa.

If you’re using a non-weighted graph,
you could just use booleans in the cells,
where 1 means that the two nodes are

cost

So how does the table work? It’s really

cell (A,B). New York to Atlanta is 850

connected and 0 means that they aren’t

Figure 17.11

Here is the adjacency
table for Figure 17.7.

NOTE
Whenever I use the word , it is
referring to the weight of an arc.
Usually, when dealing with graphs,
the cost of an arc has to do with
how much “work” it takes for you to
go from one place to another. In the
distance-table graph, the cost is
measured in miles.

connected.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 488

488 17. Graphs

The first thing you should notice about this method is the wasted space. In a graph
with n nodes, you will need n2 cells to store the arc information. There are a total
of 5 Bi-directional arcs in the graph, yet you are required to use 36 cells for this
information.

Another thing you may notice is that this method is really only suited toward uni-
directional graphs. Because Figure 17.7 is bi-directional, you are required to put the
weight information into the adjacency table twice to simulate each arc in the graph.

On the positive side, looking to see if an arc exists is really quick with this method.

Direction Tables
I’m making this name up because I’ve never seen this method actually named. This
method also uses a 2D array to store adjacency information, but it is usually more
compact than the adjacency table method. This method is certainly related to the
adjacency table method, however.

This method assumes that there are a limited number of directions you can take
from any given node, which makes it well suited for limited tilemap-like graphs. For
example, if you assume that any given node can have four exits—north, south, east,
and west—your 2D array would be of the size N � 4, where N is the number of
nodes in the graph.

For example, Figure 17.12 shows a graph and the direction table that is associated
with the graph.

Figure 17.12

Here is a graph and
its direction table.
Each entry in the
table denotes an exit.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 489

489Implementing a Graph

The way that this method works may not be completely obvious at the first glance,
but this is the same exact method I used to store the maps of my very first com-
puter game, which was a dungeon text-adventure game. The way it works is this: To
see what exits room R has, go down the y axis to that room, and then look at the
exits. For example, in Figure 17.12, you can see that room 3 has three exits. Room
4 lies to the east, room 5 is to the south, and room 2 lies to the west. Because there
is no entry for the north exit, room 3 has no exit to the north.

This is a very elegant way of storing dungeon-like maps—maps with long and twisty
passages and hallways.

You may notice that this method is also suited for uni-directional maps. This use
can work in your favor. For example, what if you want the player to be able to walk
from room 3 to room 5 but not be able to walk back (because the door slams shut
and gets locked)? All you need to do is remove the north entry for room 5, and
voila, the player can no longer get from room 5 back into room 3.

I show you how to implement these kinds of maps later on, in a game demo.

General-Purpose Linked Graphs

Most graphs you will encounter will probably be of the linked variety, similar to the
way linked trees are implemented.

Bi-Directional Graphs
The simplest way to implement a bi-directional graph would be to have two differ-
ent structures, a graph node and a graph arc. The graph would hold an array (or a
linked list—the choice is up to you, depending on how you’re going to use the
graph) of graph nodes and have an array (or a linked list) of arcs. The graph
nodes would only be responsible for storing the data for that particular node; the
arcs would have two pointers and possibly a weight variable, depending on whether
or not the graph is weighted. Figure 17.13 shows this setup.

Figure 17.13

This is a bi-directional
linked graph. Each
arc points to two
nodes.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 490

490 17. Graphs

There are four nodes and three arcs in the graph on the left of the figure, and the
right side of the figure shows the internal representation of this graph. There is an
array of four nodes, containing the data of the graph, and an array of three arcs.
Arc A points to nodes 0 and 1, B points to 1 and 2, and C points to 2 and 3.

This method of storing graphs is somewhat awkward because the nodes don’t point
to the arcs. To find out if any node connects to another, you need to search
through all of the arcs, which can be a long process on large graphs.

To fix the lookup problem, you can add a linked list of arc pointers to each node
so that each node knows which arcs it connects to. This method gets very messy,
though, as you can see in Figure 17.14.

Figure 17.14

Making the nodes
point back to the
arcs not only takes
up more room, but
also involves a lot of
housekeeping work.

You should notice that the lines pointing from the arcs back to the nodes are miss-
ing in the figure; they still exist, but I couldn’t add them in without making the fig-
ure look totally incomprehensible, which should say something about this method.
It is a pain in the butt to implement, is even more difficult to manage and modify,
and takes up a lot of memory. (Look at all the pointers all over the place!)

Needless to say, this method is stupid because it takes up more room with all of the
pointers, and will make your graph much slower because of all the links between
the nodes and the arcs that it needs to keep track of. It is often far easier to imple-
ment a bi-directional graph using a uni-directional graph structure.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 491

491Implementing a Graph

NOTE
My suggestion is this: Don’t store your graphs using the structure I just
described in this section. I wanted to show you one bad approach to storing
graphs so that you can see how much more efficient other methods are.

Uni-Directional Graphs
This is the most common form of a linked graph that you will see, as it is very flexi-
ble and speedier than the bi-directional method.

The basic premise is somewhat similar; you have a node class and an arc class, but
the graph data structure will have an array (or linked list) of nodes, but not arcs.
The arc class is essentially just a pointer to one node (and possibly a weight as
well), so each node in the graph will have a linked list of these arcs, like Figure
17.15 shows.

Figure 17.15

Here is a uni-
directional graph,
where each node
(the boxes) has a
linked list of arcs (the
circles), and each arc
points to one node.

The left side of the figure shows the graph, and the right shows the internal repre-
sentation of the graph. Each node has a linked list of arcs that point back to a
node. This method is simple and easy to develop, and to see if any node connects
to another, all you need to do is search through the linked list of the starting node
(rather than every arc in the entire graph for the bi-directional graphs). This is the
linked graph implementation that I show you later on in the chapter.

Team LRN

Data Structures CH17 11/5/02 8:46 AM Page 492

492 17. Graphs

Graphical Demonstration:
Graphs
This is Graphical Demonstration 17-1, which you can find on the CD in the direc-
tory \demonstrations\ch17\Demo01 - Graphs\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo will show you how a uni-directional graph is created and linked graphi-
cally. Figure 17.16 shows a screenshot from the demo.

Figure 17.16

This is the screenshot
from the
demonstration.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 493

493Graph Traversals

The demonstration has four buttons, which you use for adding or removing nodes
or arcs from the graph.

When you click on the Add Node button, a gray circle appears on your cursor.
When you have moved the circle to where you want to put it, click your mouse but-
ton. A new node will now be in your graph.

When you click on the Remove Node button, all you have to do is highlight the
node you want to remove with your mouse and click it; the node will be removed.

To add an arc to the graph, click on Add
Arc first. After you have done that, click
on the node where the arc starts. It
should turn red and stay that way no
matter where your cursor moves. Now
move the cursor to the destination node
and click that. A new arc should appear
that connects the two nodes.

The process for removing an arc is iden-
tical to adding an arc: Click the button
and click the starting node and the des-
tination node.

NOTE
The demo uses a uni-directional
graph as its basis.Therefore, you can
add arcs from one node to another,
but if you try removing arcs in the
opposite order, nothing will happen
because no arc is connecting the two
nodes in the other direction.

Graph Traversals

There are two different ways to traverse a graph. The first method, called the depth-
first search, is almost the same as one of the tree traversal algorithms. The second
method, the breadth-first search, is a lot more useful to game programming.

One of the ways that these traversals differ from regular tree traversals is that they
can be started on any node in the graph, whereas tree traversals always start at the
root. This is because a graph traversal/search is meant to process every node that is
reachable from a certain node or stop when a given node is found.

The Depth-First Search

Let me start off by saying that the depth-first search is almost the same as the tree’s
preorder traversal. Previously, I said that a tree is really just a limited form of a
graph, so let me start off by showing you a tree again. Figure 17.17 shows a plain
two-level tree with each node numbered by its order in a preorder traversal (see
Chapter 11 if you are unfamiliar with this traversal method).

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 494

494 17. Graphs

Figure 17.17

A preorder traversal
on a tree is the same
as a depth-first
search on a graph.
Each complete path
is followed before a
new branch is
started.

First, the root node is processed, and then the algorithm follows one branch from
the root node all the way down to the leaf. After that, it backtracks up to the last
node with another branch (node 1 in the figure) and processes the next branch all
the way to the bottom.

Now I want to show you how to perform a depth-first search on a real graph. Figure
17.18 shows a simple eight-node graph, which looks very similar to a tree.

Figure 17.18

This is the order in
which the nodes are
processed during a
depth-first search on
a simple graph.

The only thing preventing this graph from looking entirely like a tree is the link
from node 7 pointing to node 4. The depth first traversal is started on node 0,
which promptly travels down the path 1, 2, 3. After this path has been explored,

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 495

495Graph Traversals

the algorithm backtracks and looks for the next open path to travel down, which
starts on node 4. Because node 4 doesn’t lead anywhere, the algorithm backtracks
to 0 again and takes the path starting with node 5.

Eventually, the algorithm ends up at node 7, which is where the algorithm becomes
different from the preorder traversal algorithm. In a tree, it is not possible for two
nodes to point to the same node, but it happens all the time in a graph. When the
algorithm reaches node 7, it sees that this node points to node 4, but node 4 was
already processed. Most of the time, you don’t want nodes to be processed more
than once in one traversal, so you need to have some way to determine whether a
node has already been processed or not. I call this process marking the nodes.

You can use many methods to mark the nodes. For example, you can create a
bitvector (see Chapter 4, “Bitvectors”) that determines which nodes have been
marked already. Or, if you are using a linked node class, you could put a boolean in
the node class that determines if a node has been visited before or not.

If you mark each node as it is processed, when the algorithm reaches node 4 for
the second time, it will ignore it.

Let me show you the pseudo-code for
the depth-first search:

DepthFirst(Node)
Process(Node)
Mark(Node)
For Every Child of Node

If NotMarked(Child)
DepthFirst(Child)

End If
End For

End Function

The two lines in bold are the only
things that are different from a pre-
order tree traversal.

TIP
In the real world, depth-first searches
are always implemented using a stack.
Each node, as it is processed, is placed
on the stack.When a node that has no
children is processed, it is popped off the
stack, and the previous node is checked
to see if it has any un-processed nodes. I
used recursion here because it is easier
to understand. Even though the recur-
sive method for this is usually slower, it
doesn’t really matter since it is rarely
used in game programming anyway. I
just wanted you to know that this search
exists.

The Breadth-First Search

Whereas the depth-first search went to the bottom of each search path first (hence
the name depth), the breadth-first search is broader. (Breadth is a synonym for
broadness.) This search method works by processing each node that is one step away
from the starting node, and then every node that is two steps away, and then three
steps, and so on.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 496

496 17. Graphs

Figure 17.19 shows a graph that has been traversed using the breadth-first search.

7

8

0

3

9

1

6 5

2

12

11

4

10

Figure 17.19

The breadth-first
search processes all
the nodes that are
closest to the starting
node first.

Notice how the four nodes connecting to node 0 are processed first, and then the
nodes connecting to each of those nodes are processed after that. The breadth-first
search is an outward search, where the
nodes closest to the starting node are
processed first and the farthest nodes
are processed last.

Although this search is very simple to
visualize, it is a little more difficult to
put into code than the depth-first
search is. To implement the algorithm,
you need to enlist the help of our old
pal the queue. (See Chapter 7, “Stacks
and Queues,” if you need a refresher.)

Here is the pseudo-code for the breadth-first search algorithm:

NOTE
The breadth-first search is very
important in game programming—
so important, in fact, that I dedicate
an entire chapter to algorithms
based on the breadth-first search:
Chapter 24, “Tying It Together:
Algorithms.”

BreadthFirst(Node)
Queue.Enqueue(Node)

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 497

497Graph Traversals

Mark(Node)
While(Queue.IsNotEmpty)

Process(Queue.Front)

For Each Child of Queue.Front

if NotMarked(Child)

Queue.Enqueue(Child)

Mark(Child)

end if

end For

Queue.Dequeue()

End While
End Function

As you can see, this function is a little more complex, and it isn’t recursive, either.
I’ll have to illustrate this example a little bit more for you. Figure 17.20 shows a ten-
node graph, which I will use to illustrate the algorithm.

Figure 17.20

This is the graph that I
demonstrate the
breadth-first search on.

The node that this algorithm will start with is the center node in the graph—the
one with five arcs coming out of it and no arcs leading into it.

The algorithm starts off by enqueing the middle node into the queue and marking
it. When that step is completed, the while-loop starts, and it doesn’t end until the
queue is empty. Remember, the breadth-first search algorithm marks nodes as they

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 498

498 17. Graphs

are put into the queue instead of when they are processed. This is a small optimiza-
tion that prevents nodes from being placed into the queue more than once. This
becomes much more important later on, when I discuss finding paths through
huge graphs in Chapter 24.

After the while-loop starts, it processes the node in front of the queue. After that, it
looks at all the children of the node, and it adds them to the queue if they aren’t
marked. This ends up giving you the graph in Figure 17.21.

Figure 17.21

After the first iteration
of the BFS, all nodes
one arc away from the
center are now
processed, marked, and
in the queue.

At this point, node 0 is processed, and nodes 1, 2, 3, 4, and 5 are all marked and
on the queue. Node 0 has no more children, so it is removed from the queue. Now,
node 1 is at the front of the queue, and the loop repeats. Node 1 is processed, and
then the two children of node 1 are marked and added to the queue as nodes 6
and 7. Because it has no more children, 1 is removed from the queue, and 2 is now
at the front of the queue, which is processed, and the loop repeats. This time, 2 has
no children, so nothing is added to the queue. The same situation occurs with
node 3: It has no children, so it is processed and removed from the queue, with
nothing new added.

Node 4 is just like node 2; it is processed, and its two children are added to the
queue as 8 and 9, and then 4 is removed. Node 5 has no children, so it is processed
and removed from the queue, and finally, something interesting happens. Node 6
has one child, node 5. However, node 5 has already been marked, so it is not added

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 499

499Graph Traversals

into the queue. Finally, all of the rest of the nodes have no children, so they are
processed and removed from the queue. Figure 17.22 shows the final order of
processing.

NOTE
Make a special note of this:When node 5 was added to the queue, it was marked
but not processed.When node 6 was processed, it only needed to check to see if
node 5 was marked and not if it was processed already. It is possible for a node to
be marked but not processed, so you don’t want to add it to the queue again.
This is why nodes are marked as they are put into the queue and not as they are
processed.

Figure 17.22

Here is the final
processing order of
the BFS.

A Final Word on Graph Traversals

In this section, I only showed you the pseudo-code for the traversals and not any
actual code. I get to the code later on when I show you how to code a linked graph
class. In Chapter 24, I even show you many different ways to code different BFS
variations on different types of graphs, so you haven’t seen the end of them yet.

The DFS isn’t an important algorithm in game programming, but the BFS defi-
nitely is, for reasons that will become very clear in Chapter 24. The one thing that

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 500

500 17. Graphs

these algorithms have in common is that they process every node that is reachable
from a given starting point. In uni-directional graphs, this is important because of
the many different one-way routes that can exist in a graph.

Using this method, you can easily check to see which nodes are reachable by pro-
cessing them or check which nodes are unreachable by checking to see if they
aren’t marked.

Graphical Demonstration: Graph
Traversals
This is Graphical Demonstrations 17-2, which you can find on the CD in the direc-
tory \demonstrations\ch17\Demo02 - Traversals\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo is almost the same as Graphical Demonstration 17-1, with the addition
of two buttons that animate the two traversal algorithms for you. You build a graph
the same way that you did for the previous demo, and when you are done, you click
on one of the traversal buttons.

After you do that, you should move your mouse cursor over the node you want to
start the traversal on and click it. The animation will start and the order in which
the numbers are processed will appear in the nodes as they are processed.

Figure 17.23 shows a screenshot from the demo.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 501

501The Graph Class

Figure 17.23

Here is a screenshot
from the demo.

The Graph Class

Now I will show you how to program a linked-node uni-directional weighted graph
class. The other graph types (direction tables, adjacency tables, and tilemaps) are
simple and need nothing more than a 2D array to implement.

However, a flexible linked graph class is a little more difficult to program. The
code in this section can be found on the CD in the file \structures\graph.h.

All of the graph classes use two template parameters, a NodeType and an ArcType.
The NodeType datatype determines the kind of data that is stored in each node, and
the ArcType datatype determines the kind of data that is stored in each arc (the
weight or cost of the arc).

The GraphArc Class

This is just a simple class that is meant to store a pointer to a node and associate a
weight with the arc:

template<class NodeType, class ArcType>
class GraphArc
{
public:

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 502

502 17. Graphs

GraphNode<NodeType, ArcType>* m_node;
ArcType m_weight;

};

There isn’t much to explain about this class except that it is flexible enough that
you can use any kind of datatype for the weight of the arc. For example, you can
use integers or floats or even create a custom weight class to use with this. Most of
the time, you’ll probably just use numbers.

The GraphNode Classes

After you have the arc class, you need to create a node class. This class will be a lit-
tle bit more complex than the tree node class, but not much.

The Structure
This simple node class only needs three variables:

template<class NodeType, class ArcType>
class GraphNode
{
public:

typedef GraphArc<NodeType, ArcType> Arc;
typedef GraphNode<NodeType, ArcType> Node;

NodeType m_data;
DLinkedList<Arc> m_arcList;
bool m_marked;

};

The two typedefs at the top are there to make your life easier; instead of typing
GraphArc<NodeType, ArcType> every time you want to use an arc, all you need to type
is Arc. The same goes with the GraphNode class.

After that, the three variables are declared. The graph holds its data in m_data, just
like every other node class in this book.

Like the tree node class, this class has a linked list. Instead of holding pointers to
other nodes, though, the linked list holds Arcs.

Finally, the last variable is a boolean, and it determines if the node has been
marked or not. This is important when you are performing searches and traversals
on the graph. You remember them from earlier.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 503

503The Graph Class

The Functions
Like the linked list and tree node classes you’ve seen before, this class needs a few
helper functions to make it easier to use. The functions of the graph node class are
primarily concerned with adding, finding, and removing arcs from the node, the
most common operations.

All of these functions are relatively simple.

Adding an Arc
This function adds an arc to the current node, leading to a different node with a
given weight.

void AddArc(Node* p_node, ArcType p_weight)
{

Arc a;

a.m_node = p_node;

a.m_weight = p_weight;

m_arcList.Append(a);

}

The function takes a pointer to the destination node and a weight for the arc. After
that, it creates a temporary arc and sets the arc’s node pointer and weight variables.
Then, it uses the linked list’s Append function to add the new arc to the end of the
node’s arc list. Like I said, it is pretty simple.

Finding an Arc
The algorithm for this is fairly simple; all you need to do is use a linked list iterator
to search through every arc until you find the one that points to the node you
want.

Arc* GetArc(Node* p_node)
{

DListIterator<Arc> itr = m_arcList.GetIterator();

for(itr.Start(); itr.Valid(); itr.Forth())

{

if(itr.Item().m_node == p_node)
return &(itr.Item());

}

return 0;

}

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 504

504 17. Graphs

The function returns a pointer to the arc, so you can modify it if you want. Also,
because it returns a pointer, it can return 0 if the arc you want to find doesn’t exist
in the node.

The function simply makes a linked list iterator and loops through, checking to see
if the arc you want to find is located within the arc list. If so, then the function uses
the & operator to get the address of the arc and returns it. If the loop terminates
before the function ends, then the arc doesn’t exist in the node, so 0 is returned.

Removing an Arc
Removing an arc is the same as finding an arc, except the line where the address of
the arc is returned is changed into this:

m_arcList.Remove(itr);

The arc is removed from the arclist, and the function returns. Of course, if the arc
isn’t found in the arclist, then the function does nothing.

The Graph Class

The last class that is used is the actual Graph class. This class manages all of the
nodes and has functions to add nodes, remove nodes, add arcs, remove arcs, clear
the marks on the nodes, and traverse the nodes.

The Structure
You can choose to implement your Graph class in a few different ways, as I’ve men-
tioned a few times before. You’ve already seen the node class, so you know that I
prefer to use linked lists for arcs. Because arcs in a graph are usually likely to change
often, I wanted to use a simple class that is easy to insert and remove items from.

The node situation is a little different, though. In most graph applications, nodes
are inserted and removed far less often, so I prefer to have an array of nodes in the
graph rather than a linked list. The choice is really up to you, but this implementa-
tion will use an array of graph nodes.

template<class NodeType, class ArcType>
class Graph
{
public:

typedef GraphArc<NodeType, ArcType> Arc;
typedef GraphNode<NodeType, ArcType> Node;

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 505

505The Graph Class

Array<Node*> m_nodes;
int m_count;

};

Again, the arc and the node typedefs are present to make life easy on you, so your
code doesn’t end up looking ugly.

The graph class only has two variables in it: an array of Node pointers and a count
variable. As you can guess, the array holds the nodes in the graph. Because I’m
using an array, the graph will not always have a full array of nodes, so the count
variable keeps track of the number of nodes that are actually in the graph at the
moment.

The Constructor
Because the graph has an Array in it and the Array class requires a parameter to
determine what size it should be, the Graph class also needs a constructor to do the
same thing.

Also, because the node array holds pointers and the array will probably contain
junk data when it is initialized, you need to loop through the array and clear every
index to 0.

Graph(int p_size) : m_nodes(p_size)

{

int i;
for(i = 0; i < p_size; i++)

m_nodes[i] = 0;

m_count = 0;

}

The Graph constructor takes an integer, which will determine the size of the node
array. On the first line, the standard “member constructor” notation is used to ini-
tialize m_nodes to the proper size.

After that, the function loops through each index in the array and clears it to 0.
You don’t want the node pointers pointing to nodes that don’t actually exist.

Finally, the count variable is set to 0.

The Destructor
The destructor is fairly simple, and it is needed to delete all of the nodes in
the graph.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 506

506 17. Graphs

~Graph()
{

int index;

for(index = 0; index < m_nodes.m_size; index++)

{

if(m_nodes[index] != 0)

delete m_nodes[index];

}

}

It is just a simple loop that deletes any nodes that are valid. Remember, some nodes
in the array may not be valid, so you need to check if they are 0 or not.

Adding a Node to the Graph
One of the benefits of using an array for storing nodes is that you can easily access
the nodes by using an index number. This method of storing the nodes makes it
easy to add and remove nodes to the graph.

bool AddNode(NodeType p_data, int p_index)

{

if(m_nodes[p_index] != 0)

return false;

m_nodes[p_index] = new Node;

m_nodes[p_index]->m_data = p_data;

m_nodes[p_index]->m_marked = false;

m_count++;

return true;

}

The function takes two parameters: the data that you want to store in the node and
the index where you want the node to be placed. If a node already exists, the func-
tion doesn’t add the new node and returns false, signifying that the operation failed.

If the index is empty, then a new node is created at the index, and its data is set to
the data from the parameter p_data. Its m_marked flag is also cleared, and the count
of the graph is increased by one. Finally, the function returns true, which means
that it was successful.

Removing a Node from the Graph
Removing a node from a graph isn’t as simple as you may think it is. Sure, you
could just delete the node from the graph, but what happens then? Figure 17.24

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 507

507The Graph Class

shows a graph before and after you delete a node if you just delete the node and
do nothing else.

Figure 17.24

Deleting a node
without deleting the
arcs that point to it
can cause large bugs.

You can see that all arcs coming out of that node are deleted, but all arcs pointing
to the deleted node still exist! The two nodes are now pointing to a node that
doesn’t exist anymore, which is a very bad thing.

So, to delete a node in a graph, you need to search through every node in the
graph to see if it points to the node you want to delete. This makes the node
removal algorithm very slow, but it is a necessity to keep the graph valid.

To make the function more readable, I separate it into sections.

void RemoveNode(int p_index)

{

if(m_nodes[p_index] == 0)

return;

First, the function takes the index of the node you want to remove. If the node
doesn’t exist, the function returns and doesn’t do anything.

int node;
Arc* arc;

These two variables are declared next; they will be used to loop through all the
nodes in the graph and store the results of searching for arcs.

Now the loop starts:

for(node = 0; node < m_nodes.Size(); node++)

{

if(m_nodes[node] != 0)
{

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 508

508 17. Graphs

arc = m_nodes[node]->GetArc(m_nodes[p_index]);

if(arc != 0)

RemoveArc(node, p_index);

}

}

This goes through every node in the graph. For each node, if it is valid, it checks to
see if there is an arc from the current node pointing to the node you want to
remove. If there is, then arc will have a pointer to the arc that exists between the
two nodes. If there isn’t, arc will be zero. If an arc exists from node to p_index (the
index of the node that is being removed), then the RemoveArc function is called to
remove the arc from the graph.

Finally:

delete m_nodes[p_index];
m_nodes[p_index] = 0;
m_count—;

}

The node is deleted, the index that it was in is cleared to 0, and the count is
decreased by 1.

As you can see, deleting a node from a graph is a slow algorithm. Its worst case per-
formance is O(n2) because you have to search through every node, and every arc in
every node, which is essentially a doubly nested for-loop (remember that in a
graph, each node can point to every other node in the graph, which means that in
the worst case, every node has a pointer to every other node).

Adding an Arc to the Graph
The function to add an arc to the graph is made simple by the helper functions
that I showed you earlier in the node class.

bool AddArc(int p_from, int p_to, ArcType p_weight)

{

if(m_nodes[p_from] == 0 || m_nodes[p_to] == 0)

return false;

if(m_nodes[p_from]->GetArc(m_nodes[p_to]) != 0)

return false;
m_nodes[p_from]->AddArc(m_nodes[p_to], p_weight);
return true;

}

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 509

509The Graph Class

The function adds an arc from index p_from to index p_to with a weight of p_weight.
The first thing the function does is make sure that both nodes exist, and if either
of them doesn’t exist, the function returns false, for failure.

After that, the function checks to see if an arc already exists from the first node to
the second. If so, the function exits with false again because you don’t want to be
adding two arcs from one node to another in a graph.

Finally, the function calls the AddArc function on the first node, adding the second
node and the weight to its arc list, and then returns true, signifying that the func-
tion completed successfully.

Removing an Arc from the Graph
The arc removal algorithm is similar to the AddArc function:

void RemoveArc(int p_from, int p_to)

{

if(m_nodes[p_from] == 0 || m_nodes[p_to] == 0)

return;

m_nodes[p_from]->RemoveArc(m_nodes[p_to]);

}

First, the function verifies that both nodes exist in the graph. If either of them
doesn’t exist, the function exits without doing anything.

Then, the function calls the RemoveArc function of the first node, telling it to
remove the second node.

Finding an Arc in the Graph
This function is almost the same as the arc removal function, but instead of remov-
ing the arc, it returns a pointer to the arc:

Arc* GetArc(int p_from, int p_to)

{

if(m_nodes[p_from] == 0 || m_nodes[p_to] == 0)

return 0;

return m_nodes[p_from]->GetArc(m_nodes[p_to]);

}

That’s all there is to it.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 510

510 17. Graphs

Clearing All the Marks
This function is here to clear all the marks on every node, which you should do
before calling the traversal algorithms.

void ClearMarks()
{

int index;

for(index = 0; index < m_nodes.m_size; index++)

{

if(m_nodes[index] != 0)

m_nodes[index]->m_marked = false;

}

}

The function clears the mark on every valid node. Very simple.

The Depth-First Search
Earlier, I showed you the pseudo-code for this algorithm, and here I show you how
it is actually coded.

void DepthFirst(Node* p_node, void (*p_process)(Node*))

{

if(p_node == 0)

return;

The function takes a node pointer, which is the starting node, and a function
pointer. (You’ve seen them before in Chapter 11 and Chapter 15, “Game Trees and
Minimax Trees,” and I also explain them in Appendix A, “A C++ Primer.”) The
function pointer is a function that takes a node pointer as a parameter and
processes the node, allowing you to use the same algorithm with different process-
ing functions.

If the node that is being processed is null, then the function just exits.

p_process(p_node);

p_node->m_marked = true;

Now the node that is passed into the function is processed and marked.

DListIterator<GraphArc<Coordinates, int> > itr =
p_node->m_arcList.GetIterator();

for(itr.Start(); itr.Valid(); itr.Forth())

{

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 511

511The Graph Class

if(itr.Item().m_node->m_marked == false)

{

DepthFirst(itr.Item().m_node, p_process);

}

}

}

This last section creates an iterator and iterates through all the arcs in the current
node. If any of the arcs point to a node that isn’t marked, the function recursively
calls the DepthFirst function on that node, which is almost the same as the tree pre-
order traversal function.

The Breadth-First Search
As with the depth-first search, the breadth-first search algorithm has already been
given to you, so here is the code:

void BreadthFirst(Node* p_node, void (*p_process)(Node*))

{

if(p_node == 0)

return;

The parameters are the same with this function and the DepthFirst function, and so
are the first two lines of the function. If the starting node is null, then the function
just exits.

LQueue<Node*> queue;
DListIterator<Arc> itr;

Now the queue and the arc iterator are created.

queue.Enqueue(p_node);
p_node->m_marked = true;

This is the first step of the actual algorithm; the starting node is placed in the
queue and marked.

Here is the main loop:

while(queue.Count() != 0)
{

p_process(queue.Front());
itr = queue.Front()->m_arcList.GetIterator();
for(itr.Start(); itr.Valid(); itr.Forth())
{

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 512

512 17. Graphs

if(itr.Item().m_node->m_marked == false)
{

itr.Item().m_node->m_marked = true;
queue.Enqueue(itr.Item().m_node);

}
}
queue.Dequeue();

}

}

While the queue is not empty, the loop processes the first node on the queue and
then adds all non-marked child nodes from the first node onto the queue and
marks them. Finally, the first node is dequeued, and the loop repeats.

Application: Making a
Direction-Table Dungeon
This is Game Demo 17-1, which can be found on the CD in the directory \demon-
strations\ch17\Game01 - DTDungeon\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Earlier, I showed you how a direction table graph works, and I said that all it needs is
a 2D array. In this demo, I show you how to implement one.

The Map
The first thing you need is an array that stores the map:

Array2D<int> g_map(ROOMS, DIRECTIONS);

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 513

513Application: Making a Direction-Table Dungeon

The array simply stores integers. If you access the array with a certain room and
direction, the contents of the array at that index should be the number of the
room that the exit leads to, as I showed you previously.

The demo has two constant variables, ROOMS and DIRECTIONS, which specify the num-
ber of rooms there are in the dungeon and how many directions there are. (This
demo only supports four directions.)

Creating the Map
The map that is used in the demo is fairly simple and only has 16 rooms. Figure
17.25 shows the map that is used in the demo and its direction table.

Figure 17.25

Here is the map in
the demo and its
direction table.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 514

514 17. Graphs

You should already know how to read this table; if not, please go back and re-read
the section in this chapter where I introduce them to you.

If you look at the direction table, I’ve shaded all the invalid entries. All of this data
needs to be stored in a 2D array somehow, so I’ve picked an arbitrary value that
means, “This exit is invalid.” That number is –1.

Because most of the entries in the table are invalid, it makes sense to fill the entire
table with –1 first and then overwrite the valid entries with their correct values. The
function that creates the map will first fill in every cell with –1, like this:

int room, direction;

for(room = 0; room < ROOMS; room++)

{

for(direction = 0; direction < DIRECTIONS; direction++)

{

g_map.Get(room, direction) = -1;

}

}

After that, the function will fill in the valid entries:

g_map.Get(0, 0) = 1;

g_map.Get(1, 0) = 3;

g_map.Get(1, 1) = 2;

g_map.Get(1, 2) = 0;

g_map.Get(2, 3) = 1;

g_map.Get(3, 0) = 4;

g_map.Get(3, 2) = 1;

There are 30 entries altogether, which is a lot to show, so I just showed you the
entries for the first four rooms. I’m sure you get the idea.

Drawing the Map

I admit it; I found a use for the depth-first search. I used it to draw the map simply
because it is easier to program than a breadth-first search.

The DrawMap function is recursive and is just a modified depth-first search. It takes
the current room number and x and y drawing coordinates as its parameters.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 515

515Application: Making a Direction-Table Dungeon

The Helper Structures
I’ve used a few “helper” structures to make this function easier to program,
however.

The first is a bitvector (see Chapter 4 if you are unfamiliar with bitvectors):

Bitvector g_marked(ROOMS);

This bitvector keeps track of which rooms have been marked during the drawing
process because there isn’t a specific node class that can be used to contain a
marked boolean. The array is the same size as the number of rooms in the map, so
each node corresponds to an index within the bitvector.

The next helper structure is a 2D array:

int directionarray[4][2] = { { 0, -64 },
{ 64, 0 },
{ 0, 64 },
{ -64, 0 } };

This is simply an array that tells the algorithm how many pixels to move horizon-
tally or vertically in each direction. For example, direction 0 corresponds with
north, which is up on the computer screen. If you are drawing the tile directly
north of the current tile, the x coordinate doesn’t change at all, which is the mean-
ing of the 0 in the first index. Of course, a computer screen’s coordinates increase
when going from the top to the bottom, so you need to subtract 64 pixels (the tile
is 64 pixels high) to draw the tile on top of the current one.

The same goes for the other three directions; direction 1 (east) is 64 pixels to the
right, direction 2 (south) is 64 pixels downward, and direction 3 (west) is 64 pixels
to the left.

The DrawMap Function
Now you finally get to draw the map!

void DrawMap(int p_room, int p_x, int p_y)
{

SDLBlit(g_tile, g_window, p_x, p_y);
g_marked.Set(p_room, true);

Remember, the first part of the DFS algorithm is to process the current node, and
this does so by drawing the current node. Then it marks the current node.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 516

516 17. Graphs

After that, it loops through all four directions of the current node:

int room;

int direction;

for(direction = 0; direction < DIRECTIONS; direction++)

{

room = g_map.Get(p_room, direction);

if(room != -1)

{

if(g_marked[room] == false)

{

DrawMap(room,
p_x + directionarray[direction][0],
p_y + directionarray[direction][1]);

}
}

}
}

For each direction, the function retrieves the value of the 2D array and stores it in
room. If the room number isn’t –1, then it is a valid exit, so the function then checks
to see if that room has been marked. If it hasn’t been marked, the function recur-
sively calls itself and tells itself to draw the new room at the appropriate coordinates.

Simple enough, right?

Moving Around the Map

Finally, you need some method of moving around the map. Luckily for you, this
process is simple and painless.

First of all, the program has a global integer that stores the index of the room that
the player is currently in:

int g_room = 0;

From that line, you can see that the player starts off in room 0 in this demo.

Now, whenever a key is pressed, this segment of code is executed:

x = -1;

switch(event.key.keysym.sym)

{

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 517

517Application: Making a Direction-Table Dungeon

case SDLK_UP:

x = 0;

break;

case SDLK_RIGHT:

x = 1;

break;

case SDLK_DOWN:

x = 2;

break;

case SDLK_LEFT:

x = 3;

break;

}

The four keys that change x are the up, right, down, and left arrow keys on the key-
board. Each key corresponds to a direction; the up arrow key is direction 0
(north), and so on. Whenever an arrow key is pressed, x is changed to the correct
direction.

Now that you know that the user wants to move somewhere, you need to check to
see if she can move in that direction:

if(x != -1)

{

if(g_map.Get(g_room, x) != -1)

g_room = g_map.Get(g_room, x);

}

First, make sure x is a valid direction by making sure it isn’t –1. If so, then check to
see that the entry in the direction table isn’t –1, either. If not, then the player is mov-
ing to a valid room, and the function makes the current room index point to the new
room. This is a very simple and elegant way to store and move around simple maps.

Playing the Demo

The demo is very simple to play; all you do is move the little dude around the map
using the arrow keys. Figure 17.26 shows a screenshot from the demo in action.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 518

518 17. Graphs

Figure 17.26

Here is a screenshot
from the game
demo.

Application: Portal Engines

This is Game Demo 17-2, which can be found on the CD in the directory \demon-
strations\ch17\Game02 – Portals\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Portal engine was a huge buzzword a few years ago, right after the BSP phase of the
game industry. Games like Descent, Quake2, and the ill-fated Prey used portal engines
to gain a huge boost in performance.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 519

First I want to start off by telling you an
optimization hint. Most people, when
they start programming in 3D (or even
2D), think that they can just throw the

and let the clipping and culling algo-

This is an inefficient method of render-

cient to figure out what the user can see
and then tell the video card to only
draw that.

519Application: Portal Engines

Clipping and culling

some of them might be off the

this is called clipping

which whole items cannot be seen

culling.

TIP

bus

entire game’s graphics at the video card

rithms sort everything out.

ing things, however. It is far more effi-

NOTE
are two words

that mean similar things. When you
draw things on the screen, some-
times you send a bunch of pixels, and

screen.When the computer figures
out which ones aren’t on the screen,

. Earlier in the
drawing cycle, you should figure out

and prevent them from even being
sent to the video card to be drawn.
This process is called

It is more efficient to send less information to the video card because any infor-
mation you send to the card must travel down the slow system .This bus is
many times slower than the video card or the processor, and most of the time,
if you send too much graphics data that won’t even be drawn in the end, your
performance is going to go down the tubes.

So the portal method of drawing game levels is very efficient because it segments a
level into many different parts and then determines which segments should be
drawn.

NOTE
Because I do not have the space or time to teach you 3D graphics, I can only
show you this process working in a 2D environment. I hope you don’t mind, but
the focus is on the data structures involved, not the graphics.

Sectors

The very first thing that happens is that the level is broken up into sectors. If
you’ve made custom levels for any first-person shooter game since Doom, you

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 520

520 17. Graphs

probably know what a sector is. A sector is simply a room in a level, like Figure
17.27 shows.

Figure 17.27

This is a five-sector
level.

This is a simple overhead view of a level in a game that is separated into five sec-
tors. This can very easily be broken down into a graph, as you might guess (this is a
chapter about graphs, after all!), which you can see in Figure 17.28.

Figure 17.28

This is the level
represented as a
graph.

See, a portal engine keeps track of the number of exits in any given room so that
you know which portals are visible and which sectors can be seen through a portal.
Thus, you can send only a few sectors out of any given level to be drawn instead of
the whole level.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 521

521Application: Portal Engines

Determining Sector Visibility

A true portal engine uses a visibility algorithm, which determines which sectors are
visible from any given sector and viewpoint. This is a complex algorithm that takes
a long time to perfect, and it is somewhat outside of the scope of this book, so I
want to show you instead a quick little hack that allows you to quickly draw adjacent
sectors while still keeping most of the benefits of a portal engine.

The Depth-Limited Depth-First Search
The method I’m going to show you is called the depth-limited depth-first search
(DLDFS). Using this method, you can control how many levels of a depth-first
search are traversed. For example, look at the graph in Figure 17.29.

Figure 17.29

Here is another graph,
color-coded from lightest
to darkest by the number
of arcs each node is
from the center.

The graph in the figure is color-coded by depth from the center node, which is
white. All nodes that are one arc away from the center node are light gray, all
nodes that are two arcs away from the center node are dark gray, and all nodes that
are three arcs away from the center node are black. Using a DLDFS algorithm, you
can specify how deep the search goes. For example, if you want the algorithm to
only visit nodes within two arcs from the starting node, the black nodes in the

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 522

522 17. Graphs

figure would not be processed. If you tell the algorithm to only visit one arc from
the center, then it will not process the black nodes or the dark gray nodes.

The DLDFS search works exactly like the regular DFS, except that it has one more
parameter:

DepthFirst(Node, depth)
if depth == 0, then return
Process(Node)

Mark(Node)

For Every Child of Node

If NotMarked(Child)
DepthFirst(Child, depth - 1)

End If
End For

End Function

The bold lines of code show you the only lines that are different in a DLDFS. The
algorithm checks to see if the depth is 0, and if so, it returns and doesn’t process
any further.

Later on, when the function recursively calls itself, it subtracts 1 from the depth
parameter and passes that into the function call. This is another great example of
recursion. If you look at Figure 17.29 again, you can say, “I want to process every
node within two arcs of the white node,” but that gets translated into, “I want to
process every node within one arc of the light-gray nodes”, which can then be
translated again into, “I want to process every node within 0 arcs of the dark-gray
nodes.” So that is essentially what you are doing. If you call this function on the
center node with a depth value of 3, then the function will process the white node
and then call the function on each of its children with a depth value of 2.

Using the DLDFS in a Portal Engine
Using this method, you can limit the number of sectors that are drawn at any given
time. In the demo, I’ve picked an arbitrary limit of three levels, but this number
really depends on how the sectors are arranged.

Using the DLDFS, you can be assured that only sectors within a certain range are
drawn, which can be quite a cool effect, as you’ll see in the demo.

Coding the Demo

Now that I’ve got most of the theory out of the way, I can get onto the good stuff:
code! When I first started making this demo, I thought it would be very difficult to

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 523

523Application: Portal Engines

do and wouldn’t demonstrate much. To my surprise, the demo turned out to be
very easy to code, and the result was great!

The Sector Class
The very first thing you need is a sector
class. For this demo, I’m using a very
primitive rectangle-based sector class.
Even games like DOOM had much more
complex sector formats than this.

The sector class has four integers: x and
y coordinates and a height and a width:

class Sector
{
public:

int x;
int y;
int w;
int h;

};

The Map

DOOM

cal line segments that turn into

NOTE
More complex sector classes will
probably use an array of vertexes,
which define walls. If you’re using a
3D engine, the vertexes will probably
be grouped into triplets of triangles,
and if you’re using a “2.5D” engine
like , the vertexes will be
grouped into pairs to form the verti-

walls.The idea behind an engine like
this is to minimize the amount of
things that are drawn, so the sector
class might know which items or
characters are within the sector at
any given time.That way, you can
quickly draw only those characters
and items that are within the sector.

I created a 16-sector map for use in the demo, which is shown in Figure 17.30.

Figure 17.30

Here is the map
used in this demo.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 524

524 17. Graphs

Each sector is labeled with its sector number. I used graph paper to draw the map

and figure out the coordinates of each sector, which I did not include in the figure,

because it would be too crowded.

In the demo, the graph is declared

like this:

Graph<Sector, int> g_map(ROOMS);

The ROOMS variable is actually a con-
stant declared at the beginning of the
program that allows you to easily
change how many rooms are used in
the demo. The graph nodes hold
Sectors, which I showed you previ-
ously, and the arcs hold ints, though
they really don’t mean anything in
this demo.

TIP
In a real-world game, you’d use an
unweighted graph for this demo.
However, because I’m limited on space,
I can only show you one graph class
without weight, so I’m stuck with using
it. In essence, it is far easier for me to
ignore the weight on the arcs and sacri-
fice a little memory in the demo rather
than code a whole new unweighted
graph class.

Initializing the Map
The map is initialized in a special function called InitialiseMap. Because the map
initialization is a long and tedious function, I only show you the sections that are
important.

First, you need to create each sector in the map and add it to the graph. This is
how the first sector is created:

Sector s;
s.x = 300;
s.y = 400;
s.w = 300;
s.h = 100;
g_map.AddNode(s, 0);

The sector has a position of (300,400)
and a size of 300 � 100. On the final
line, the sector is added to the graph
into index 0. This function then con-
tinues to repeat the process for all 16
sectors in the map.

TIP
It would be far easier to store the map
data on disk somewhere so that you can
easily create an automated function that
reads the file and creates a map based
on the information in the file.The file
format would probably store the number
of sectors in the map, the coordinates
and size of each sector, and finally, which
sectors are linked to other sectors.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 525

525Application: Portal Engines

After all of the sectors are added to the map, you need to connect the sectors with
their portals (which is really just another name for an arc).

From Figure 17.30, you can see that Sector 0 connects to Sectors 1, 2, 4, 5, and 8.
Therefore, the code to attach those sectors looks like this:

g_map.AddArc(0, 1, 0);

g_map.AddArc(0, 2, 0);

g_map.AddArc(0, 4, 0);

g_map.AddArc(0, 5, 0);

g_map.AddArc(0, 8, 0);

Each line adds an arc from Sector 0 to one
of the other sectors with a weight of 0
(remember, the weights aren’t used in
this demo).

Now, because this is a uni-directional
graph class, you need to add arcs from
all five of those sectors back to sector
0. This code shows the arcs that Sector
1 has:

g_map.AddArc(1, 0, 0);
g_map.AddArc(1, 3, 0);

Sector 1 leads back to Sector 0 and has
an arc leading to Sector 3.

need

NOTE
You don’t to add two arcs to
every pair of sectors that are con-
nected, of course.You can achieve
some neat “hidden room” effects by
using only one arc. For example, if
you didn’t add an arc from Sector 1
or Sector 2 to Sector 3, then you
can’t see Sector 3 from either of
those hallways, but the sector still
exists.

Drawing the Map
Like I said before, the engine will use a depth-limited depth-first search to draw the
map. I gave you the pseudo-code for that, and now here is the full code:

void DrawMap(GraphNode<Sector, int>* p_node, int p_x, int p_y, int p_depth,

SDL_Color p_col)

{

if(p_depth == 0 || p_node == 0)
return;

SDLBox(g_window,

p_node->m_data.x - p_x, p_node->m_data.y - p_y,
p_node->m_data.w, p_node->m_data.h,
p_col);

p_node->m_marked = true;

DListIterator< GraphArc<Sector,int> > itr;

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 526

526 17. Graphs

itr = p_node->m_arcList.GetIterator();

for(itr.Start(); itr.Valid(); itr.Forth())

{

if(itr.Item().m_node->m_marked == false)
{

DrawMap(itr.Item().m_node, p_x, p_y, p_depth - 1, p_col);
}

}
}

The function is a little bit more complex than the pseudo-code I showed you ear-
lier, but it isn’t difficult to comprehend. The x and y coordinates passed into the
function serve as the global offset of the map, which means that each sector will be
drawn relative to those coordinates. This allows you to easily scroll the map around
by changing the coordinates.

The function basically draws a rectangle to represent the sector. I know it’s boring,
but it does the job. The rest of the function should make plenty of sense because
this is the third variation of the DFS you’ve seen in this chapter.

Calling the DrawMap Function
Finally, the game demo calls the DrawMap function twice:

g_map.ClearMarks();

DrawMap(g_map.m_nodes[g_current], g_x - WIDTH/2, g_y - HEIGHT/2,

100, GREY);
g_map.ClearMarks();
DrawMap(g_map.m_nodes[g_current], g_x - WIDTH/2, g_y - HEIGHT/2,

DEPTH, WHITE);

Now, what is the point of calling DrawMap twice? It’s for demonstration purposes.
The demo first clears all the map marks and then calls DrawMap with a depth value
of 100. This means that on the small map I’m using, the entire map will be drawn
in gray. After that, the map is drawn again with a depth value of DEPTH instead, and
in white. DEPTH is a constant that has a value of 3 in this demo, but you can change
it and recompile it if you want. 3 seems to work best for the demo, though.

So what does this accomplish? The entire map is always drawn on the screen all the
time in gray so you can see what it looks like, but the sectors that are actually drawn
using a proper depth are highlighted in white, which is a very neat effect.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 527

527Application: Portal Engines

Playing the Demo

Figure 17.31 shows a screenshot from the demo in action. You are the little red dot
in the center of the screen, and you’re supposed to move around the map. I didn’t
implement bounds checking, so you can walk off the map into the black void, but
please don’t do that. Instead, try to focus on moving around the hallways and pay-
ing attention to which sectors are drawn (white) and which aren’t (gray).

You use the arrow keys to move around.

Figure 17.31

Here is a screenshot
from the demo.

You can see that most of the time, the only sectors that are white are the ones that
are visible from the current sector, which is pretty cool. You did that by using a very
simple algorithm. There was no need to go ahead and make a perfect line-of-sight
algorithm that detects which sectors are visible at any given time.

Remember, the key to game programming is to work smarter, not harder.

Team LRN

Data Structures CH17 11/5/02 8:47 AM Page 528

528 17. Graphs

Conclusion

This is a pretty big chapter, but it’s also a pretty big subject. As you can see from all
the examples I’ve given you in this chapter, graphs in game programming are
almost always used to store map or level information. This isn’t a trivial matter,
because maps are a huge part of most games out there; you optimize maps for
drawing or find paths through them.

There are many uses for graphs besides maps, but not too many of them apply to
game development directly. I go a little more in-depth into graphs in Chapters 18,
“Using Graphs for AI: Finite State Machines,” 19, “Tying It Together: Graphs,” and
23, “Pathfinding.”

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 529

CHAPTER 18

Using

State

Graphs for
AI: Finite

Machines

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 530

530 18. Using Graphs for AI: Finite State Machines

So far, you’ve only used graphs for one purpose: storing map data in a game. I
said that graphs aren’t used for much more in game programming, but there

are a few ways to use graphs to simulate artificial intelligence (AI) in a computer. I
show you one of the simpler methods, using finite state machines.

In this chapter, you will learn

■ What a finite state machine is
■ How to use FSMs to simulate artificial intelligence
■ How to create FSMs
■ How to add additional states
■ How to add conditional states
■ How to create two different AI machines and use them in a game

What Is a Finite State
Machine?
Imagine that you’re making a shooter game and you start working on the AI for
the computer-controlled characters. How would you control what they are doing?

One of the oldest ways of determining their actions is to use something called
states. Each computer-controlled character in the game will be in a specific state at
any given time. For a shooter, the character might be guarding a checkpoint, look-
ing for ammo, looking for health, or fighting. Those are four examples of states.

Using state-based AI is one form of a high-level AI. It is called high-level because the
methods used in this chapter don’t care how the character is currently following
his state (if he’s looking for ammo, the methods you use don’t care how he finds
it). Instead, the methods in this chapter are more concerned with how the player
knows what state he is in.

I start off with a very simple example, using the four states I mentioned before.
First, start off by drawing four boxes on paper, like Figure 18.1 shows.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 531

531What Is a Finite State Machine?

Figure 18.1

Here are the four AI
states.

This should already look suspiciously like a graph to you—a graph with no arcs.
Okay, so now what? The AI, when the game starts off, should be in a default state.
In this example, you probably want to put your character at a checkpoint and make
him guard it by default, so the AI is in the Guarding state. Now, what happens if
the AI sees an enemy? He should immediately start attacking, right? Okay, then,
what happens when you kill the enemy? He should start looking for health to fix
himself.

Figure 18.2 shows the arcs that connect the different states when different events
occur.

Figure 18.2

Now the states are
connected with
event-arcs.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 532

532 18. Using Graphs for AI: Finite State Machines

Congratulations—you’ve just created your very first finite state machine. In this
simple example, there are four states and four events. Combining these states
(nodes) and events (arcs) into a graph produces a finite state machine.

Here’s how it works: At any given state, whenever an event occurs, if there is an arc
leading from the current state and that arc corresponds to the event that occurred,
the arc points to the new state. For example, if the AI is in the Guarding state and
the event See Enemy occurs, then the AI immediately switches to the Attacking
state. Likewise, if the AI is Attacking and the Killed Enemy event occurs, the AI then
switches to the Find Health state so he can replenish himself for the next attack.

One additional note: If an event occurs, but has no arc from the current node,
then it is assumed that the AI stays in the same state. If the AI finds health while he
is guarding, he just keeps guarding.

Admittedly, this example is simplistic, and you can probably see a flaw in it right
away: What happens if the AI sees another player while he is searching for health
or ammo? That can be fixed easily enough, as Figure 18.3 shows.

Figure 18.3

This AI is a little
smarter because it
acts on more events.

Now, no matter what state the AI is in, he will immediately stop what he’s doing
and attack an enemy if he sees one. Of course, this is also somewhat limited; the
AI will suicidally attack any enemy that he sees, even if he has no ammo or is close
to dead.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 533

533Complex Finite State Machines

Complex Finite State
Machines
If you want your AIs to be smarter, you can create even more complex state
machines with more states and more events. Sometimes drawing these complex
machines can get a little cumbersome, though.

Imagine that you are making a new machine that is more complex and can handle
team-based behavior and let the AI know when to run away from a battle.

In this little example, the AI will have the following states:

■	 Guarding – AI is guarding base.
■	 Attacking/Full Health – AI is attacking and has full health.
■	 Attacking/Injured – AI is attacking, but is injured.
■	 Finding Health – AI is looking for health.
■	 Finding Ammo – AI is looking for ammo.
■	 Finding Base – AI is looking for its base so the AI can guard it.
■	 Running for Help – AI is running away from an enemy, looking for help.
■	 Finding Enemy/With Help – AI has help following and is looking for an

enemy.
■	 Finding Enemy/Full Health – AI has full health and is searching for an

enemy.
■	 Following Ally – AI is following an ally.

So there are 10 states in this particular machine, which is a lot more complex than
the last machine. Here are the events:

■	 See Enemy – AI sees an enemy.
■	 Get Injured – AI gets hit by something.
■	 Seriously Injured – AI gets hit badly and is about to die.
■	 Kill Enemy – AI just killed an enemy.
■	 Found Health – AI just found some health.
■	 Found Ammo – AI just found some ammo.
■	 Found Base – AI just found the base.
■	 Found Help – AI found an ally who will follow.
■	 Ally Needs Help – An ally asks AI for help.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 534

534 18. Using Graphs for AI: Finite State Machines

That’s nine different events, much more than the four events from the first exam-
ple. Now, put them together and you will probably get something like Figure 18.4.

Figure 18.4

Here is a large finite
state machine AI.

At a first glance, that machine looks incredibly complex, and you’re correct—it is.
However, you may notice some things missing that you think should be there. For
example, what happens if the AI runs out of ammo? Shouldn’t there be an Out of
Ammo event? Well, for this example, I elected to leave that out. Granted, the AI
would become a magnitude “smarter” if I had included that possibility, but the fig-
ure is already complex enough. In this example, I assume that the AI will have
some sort of ammo-less weapon (fists? knife? chainsaw?), so it can always attack.

Another thing you may think is missing is an Ally Needs Help arc from the Finding
Health state to the Following Ally state. Well, I decided not to include that, because
if you’re looking for health, you’re in no condition to help friends yourself, so you
turn them down.

There are many possibilities in this machine, and that’s the beauty of using this
method for AI: You can customize it any way you want.

The machine in Figure 18.4 is reasonably complex. The AI knows if it needs to get
health after a battle or not, and it knows to run away and find help if it is about to
die. After a battle, the AI tries to replenish its ammo and then finds its way home.
You can see that this is a pretty cool method of implementing a high-level AI.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 535

535Implementing a Finite State Machine

Implementing a Finite State
Machine
The best thing about finite state machines is that they are fast. When I say “fast,” I
mean “incredibly super-duper fast.” I’ll show you what I mean.

To implement a finite state machine, you use a 2D array. Down one side of the
array, the states are listed. Down the other side, the events are listed. This table is
called a state transition table. Figure 18.5 shows the state transition table for the
machine from Figure 18.3.

Figure 18.5

Here is the state
transition table for the
machine in Figure 18.3.

Now, whenever an event occurs, the program will look up the current state on the
vertical axis and then look up what event occurred on the horizontal axis.
Whichever value is in the cell is the new state. For example, in the figure, if the AI
is in state Guarding and the event See Enemy occurs, then the AI switches to the
Attacking state because it is in the cell. Determining which state the AI should be
in on any event is almost instant.

In the table, whenever a cell is blank, it is assumed that the state will stay the same,
so the real transition table would look like Figure 18.6 instead.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 536

536 18. Using Graphs for AI: Finite State Machines

Figure 18.6

Here is the full state
transition table.

I usually find it easier to leave the cells blank when I’m drawing the tables because
it makes them easier to read.

Figure 18.7 shows you the state transition table for the machine in Figure 18.4.

Figure 18.7

This is the state transition
table for the machine in
Figure 18.4.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 537

537Graphical Demonstration: Finite State Machines

Graphical Demonstration:
Finite State Machines
This is Graphical Demonstration 18-01, which can be found on the CD in the direc-
tory \demonstrations\ch18\Demo01 – Simple FSM\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demonstration will let you manually step through the machine from Figure
18.3 to show you how it works.

On the left side of the screen there are four buttons, which correspond to the four
events that can occur in this machine. Clicking on any of the buttons will cause
that event to occur.

In the center of the screen is the machine, and the current state will always be
highlighted in red.

Figure 18.8 shows a screenshot from the demo.

Figure 18.8

Here is a screenshot
from the demo.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 538

538 18. Using Graphs for AI: Finite State Machines

Even More Complex Finite
State Machines
The finite state machines I showed you previously are called pure finite state
machines. An entire area of computer science is dedicated to studying finite state
machines. I only showed you a very limited form of a finite state machine called a
deterministic finite automaton, or a DFA for short. I have a textbook on the subject
that dedicates a lot of space to proving
various things about DFAs, and let me
assure you, it is very nasty stuff. Chances
are, you’ll never even use 90 percent of
the theory behind DFAs unless you
become a discrete mathematician, some-
one who does nothing but study
computer-related mathematics.

Using the DFA model, you can see from the machine from Figure 18.4 that I had
to do a lot of messing around to make the AI detect if he should get health or not.
What if there was a better and easier way to do this without needing 50 different
states to detect the current health status of the AI?

NOTE
You really don’t have to understand
what a DFA is or even what the
name means. If you already know,
well, congratulations!

There is a way to do this, and it breaks the standard DFA model, but I don’t care; I
just use whatever works.

Multiplying States

First, let me show you how to create a “pure” DFA model of a finite state machine,
just so you can see how cumbersome it is.

If you look back to the machine in Figure 18.4, you can see that several states are
duplicated to implement a “smart” AI who can tell if he’s wounded or not—for
example, the Attacking state and the Finding Enemy state. This can get to be a big
pain in the butt later on with more complex AIs.

You are essentially storing the current physical state of the player into the state
machine, as well as his action state.

Now, imagine if there were two physical states for the player: good health and bad
health. I’m going to use the machine from Figure 18.3 as an example.

Now, because there are four different action states and two different physical states,
then you need eight states to create this machine. Why eight states? Well, for each

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 539

539Even More Complex Finite State Machines

different action state, the player can be in two different physical states, and
4 � 2 = 8. Figure 18.9 shows the resulting machine (plus an extra event, Injured).

Figure 18.9

Here is the machine
from Figure 18.3
with two different
physical states.

The four states in the top half of the figure represent the player when he has good
health, and the four states on the bottom represent the player when he has bad
health. Follow the arcs for a while to become familiar with how the machine works.

You can see that this machine is smarter than the machine from Figure 18.3 in a
few ways. First of all, if the AI kills an enemy while he still has good health, he just
goes and looks for ammo instead of searching for health that he doesn’t need.

If the player is attacking and he has bad health and he picks up some ammo dur-
ing the battle, then he goes immediately back to the Attacking/Good Health state.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 540

540 18. Using Graphs for AI: Finite State Machines

Now, you should notice something: Three of the states aren’t used. The Finding
Health with Good Health state is worthless; why would the AI look for health when
he doesn’t need it?

Also, the Finding Ammo with Bad Health state is worthless; why would the AI try
searching for ammo before he is healed? Same thing with the Guarding with Bad
Health state; the AI won’t guard until he knows that he can guard properly.

These three states aren’t used in this AI, but you may find a use for them with dif-
ferent AIs. You could make a very vigilant guard who stays at his post even when
he’s about to die, or you could make a gung-ho guard who values ammo more than
health; the choices are up to you. The main point is that there will be unused states
in this type of AI, which can make it somewhat complicated to design.

To illustrate, let me show you the addition of another physical state: the amount of
ammo that the player has left. For simplicity, I’ll have two values: high ammo and
low ammo.

Unfortunately, that means that the number of possible states in this machine is 16,
twice as many as before! There are four action states, two health states, and two
ammo states, so 4 � 2 � 2 = 16.

Figure 18.10 shows the new machine.

Figure 18.10

Here is the machine
with two ammo
states.

This time, you can see that eight states aren’t used at all for this AI, which is fully

half of them. In this machine, it is assumed that if you’re guarding, then you have

good health and high ammo; if you’re finding health, then you have low health; if

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 541

541Even More Complex Finite State Machines

you’re finding ammo, then you have good health and low ammo; and so on. Again,
as before, you can customize the machine any way you want to make it work with a
specific goal in mind.

Conditional Events

Now, take one look at the machine from Figure 18.10, and you can see that it is
complex. Furthermore, if you’re in any one of the four attacking states, the actual
attacking algorithm won’t care what your health or ammo status is, so why have
four states that do the same thing?

There is a way to change the DFA model so that your machines not only look sim-
pler, but also become easier to understand.

Instead of using extra states to store the player information, you can instead store
that information in the event arcs. For example, in the Finding Health state, when
a Found Health event occurs, it checks the ammo status. If the AI has low ammo, it
switches to the Finding Ammo state; if not, it switches to the Guarding state. Figure
18.11 shows the machine from Figure 18.10 converted into a smaller machine
using this method.

Figure 18.11

This is Figure 18.10
converted into a
smaller machine by
using conditional
event arcs.

Now you’re back down to 4 states and 9 arcs. For reference, Figure 18.10 had 16
states and 20 arcs. This new machine is easier to understand as well. For example, if
the AI is in the Attacking state and he kills someone, there are a total of three
choices: If his health is low, then he finds health; if his ammo is low and his health
is high, then he finds ammo; and if his ammo is high and his health is high, then
he goes back to guarding.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 542

542 18. Using Graphs for AI: Finite State Machines

NOTE
Please note that by using this system, there is no need for the Low Ammo or
Injured events. In the previous system, those events served only to update the
current state so that it could “remember” if you were injured or had low ammo.
Now, these conditions are evaluated when a major state change occurs, so there
is no need for them. However, in a more complex system, you may plan on keep-
ing those events so that you can make your AI do something smart if it has low
health or ammo.

Representing Conditional Event
Machines
Unfortunately, there really isn’t a single easy way to represent a Conditional Event
Finite State Machine. I’ll show you the easiest method to do so, using a data struc-
ture you should be familiar with already.

Multi-Dimensional Arrays
First, you should recall that a 2D array is almost always used to store simple finite
state machines without conditional events. One axis is the current state, and the
other axis is the event that occurred.

Now, think of a simple system where the only physical player attribute is health
and, as you used it before, it has two values: good health and bad health. Start off
by drawing a grid that shows every possible combination of the events and the
player’s health, like Figure 18.12 shows.

combinations of

Figure 18.12

There are eight

events.

You can see how the events combined with a single physical state create a 2D array
of possible event occurrences. Now, bear with me here for a moment. Remember
when I said that the easiest way to represent a plain finite state machine was to use
a 2D array with the states on one axis and the events on the other axis? Well, what
if the events are a 2D array, like in Figure 18.12? Then we’d have a 2D array of

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 543

543Even More Complex Finite State Machines

arrays, or an array of 2D arrays. If you remember back to Chapter 5, “Multi-
Dimensional Arrays,” this is the same thing as a 3D array! Figure 18.13 shows this.

Figure 18.13

This is the finite state
machine represented
as a 3D array, with
16 combinations.

To access which state comes next, you go to the index of the current state, the
event that occurred, and the current health state, and the new state should be in
that cell.

This method is extremely fast because looking up an array index is practically
instantaneous. There is a downside, though; this method takes up a lot of memory.
In the previous example, if the transition from any state doesn’t need any condition-
als (for example, no matter what health the AI has, he will always attack an enemy
when he sees it), then there is repeated data in the array, and space will be wasted.

It gets even worse when you add more conditional attributes, though. If you add
the ammo state into the equation, that adds a whole new variable. You will then
require a 4D array, which increases the entire size of the array by a magnitude. For
example, if there were two ammo states, the 4D array would need 64 cells (4 states
� 4 events � 2 health states � 2 ammo states)! With more action states and more
physical states, however, this number will grow much larger. Adding another value
to the health state, for example (good health, medium health, bad health), will
increase the size of the array to 96 cells (4 states � 4 events � 3 health states � 2
ammo states)!

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 544

544 18. Using Graphs for AI: Finite State Machines

There is some good news at the end of the tunnel, though. Typically, in a very large
game, you’ll have many players following the same AI pattern, so there is no need
to have a different machine for every AI; they can all use the same machine.
Because the lookup method is very fast, you can also have hundreds of AI players
running all at the same time!

Other Methods
There are other methods, of course, and some of them are quite complex, espe-
cially when you get past having more than one or two physical attributes.

Linked Ranges
Some methods keep a linked list of ranges for certain values in each of the 2D array
cells, so they go through each node in the linked list checking to see if a variable is
in a certain range. Figure 18.14 shows a simple linked list of ranges.

Figure 18.14

Here is a linked list
of ranges.

The linked list nodes contain a range, and it will know what state is next. On any
given state/event combo, the algorithm iterates through the linked list, checking to
see if a physical state value fell within one of those ranges, and if so, the node with
the range that matches the given attribute will have the next state in it.

Of course, you can easily see that this method requires more work than the array
method, but it is generally more flexible because you can define custom ranges for
each state, depending on the event. For example, say you have two events, See
Enemy and Ally Needs Help. Now, the AI would need to make a choice based on his
health when seeing an enemy, so say the AI attacks if his health is above 66 percent
and runs if his health is below 66 percent. Now, with the other event, your AI will
follow the ally and help him if the AI has more than 50 percent health, but not help
him if the AI has less than 50 percent health because he needs to find health
quickly. Using the array method, you need to create at least three different health
states: Less than 50 percent, Between 50 and 66 percent, and More than 66 percent.

Using the linked list method, each event only needs two ranges, though. The See
Enemy event will have 0–65 and 66–100, and the Ally Needs Help event will have
0–49 and 50–100. You can see the space savings right away.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 545

545Even More Complex Finite State Machines

It gets even better for events that aren’t conditional at all. For example, if you cre-
ated a suicidal AI bot that would attack any enemy, no matter his health, then you
would only need one range for the See Enemy event, 0–100.

This method gets very difficult to use with more than one variable, however, which
leads us to the next method...

with 0.

CAUTION
Be careful when you’re comparing ranges because this is a common place to
make off-by-one errors.You might think that the bottom half of a 50-50 split is
0–50, but it is actually 0–49. Remember: Counting on a computer usually starts

Trees
Trees! And you thought you saw the last of them a few chapters ago...

Trees can be used to store complex range combinations. For example, look back to
Figure 18.11 again, and look at the Attacking state. There are three different arcs
from that state with the Kill Enemy event, but in reality, there are four different
outcomes. If the AI kills an enemy with good health and high ammo, he goes back
to guarding again. If the AI has good health but low ammo, he starts looking for
ammo. If the AI has bad health and high ammo, he goes off looking for health,
and he does the same thing if he has bad health and low ammo.

Now, imagine if you set up a tree like Figure 18.15.

Figure 18.15

This is a tree
representing the various
physical state ranges.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 546

546 18. Using Graphs for AI: Finite State Machines

Wow, isn’t that cool? This method should remind you of something that you saw
earlier. Near the end of Chapter 11, “Trees,” I showed you decision trees, which are
remarkably similar to this method.

This is essentially using a decision tree for each state and event combination, so
you would end up with a 2D array of trees. This method can get pretty complex
quickly, though, and every time an event occurs, you need to search through the
tree for the right set of ranges.

Because of this, this method can be slow when you have many AIs running at the
same time. However, in complex AIs that check the status of many physical states,
this method may be the only way to go to keep your memory sizes down to a rea-
sonable level.

Graphical Demonstration:
Conditional Events
This is Graphical Demonstration 18-2, which you can find on the CD in the direc-
tory \demonstrations\ch18\Demo02 – Conditional Events\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo, like the first one, is based on a machine I’ve shown you already. This
time, the demo is based on the machine from Figure 18.11.

In addition to the four event buttons from Graphical Demonstration 18-1, there
are now two text boxes that hold the AI’s health and ammo status. For the purpose
of this demo, health and ammo below 50 are Bad Health or Low Ammo and any-
thing above 50 is Good Health or High Ammo. Figure 18.16 shows a screenshot
from the demo in action.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 547

547Game Demo 18-1: Intruder

Figure 18.16

This is a screenshot
from the demo.

Game Demo 18-1: Intruder

This is Game Demonstration 18-1. It is located on the CD in the directory
\demonstrations\ch18\Game01 - Intruder\ .

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Now I want to take you through the construction of a very simple game demo that
uses the FSM AI model that I’ve shown you throughout the chapter. In this game,
you will play the part of an intruder who is trying to get into a building. However,
there are guards in front of the building (oh, no!), and they will stop at nothing
trying to prevent you from entering the building.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 548

548 18. Using Graphs for AI: Finite State Machines

So, naturally, you want to create an AI that has more of an emphasis on guarding
the entrance of a base. Just to spice things up a little, though, I’m going to have two
different types of guard AIs instead of just one! Yeah, how’s that for a deal?

The first AI type is called the defender AI, which, as you can imagine, defends the
base vigilantly. He will stand by the base and defend it; it is much more important
to defend the base to him than to go off hunting for health or running after the
intruder.

The second AI type is called the attacker AI. This AI will hunt you down and follow
you until either you or he dies. If he doesn’t die, then he hunts down health and
eventually meanders over to the base again. He isn’t as concerned with defense as a
defender is.

The AIs will have four different states, and the great thing about each machine is
that they both use the same states! You’ll see why this is important later on.

The states that the AI can be in in this demo are Guarding, Attacking, Finding
Health, and Finding the Base. I removed ammunition from the equation to make
the game easier to program.

The events that can happen are these: See Intruder, Kill Intruder, Found Health,
Found Base, and Out of Range. Most of these are easily understandable, except the
last one. The last event, Out of Range, occurs when the AI moves out of the defense
zone, which is an arbitrary range around the base. This event is designed so that
the defender AI can determine if it has gone too far away from the base and should
return.

Finally, there is one physical state in this game, health. The two possible health
states are Good Health and Bad Health, like you used before.

Figure 18.17 shows the machines for the two different AIs.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 549

549Game Demo 18-1: Intruder

Figure 18.17

Here are the
machines for the
defender and
attacker AIs.

Study them for a little bit and try to figure out what they do on your own.

You can see that the attacker AI looks similar to many of the AIs that I’ve shown
you before. When it is guarding the base and it sees an intruder, it immediately
starts attacking. If it kills the intruder and gets hurt in the process, then it tries to
find health. If not, then it finds its way back to base. Finally, when it finds the base,
it goes back into the Guarding state.

The defender AI is almost the same, with a few additions. Now, at the Attacking
and Finding Health states, if the AI moves out of the defense zone, it will get an

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 550

550 18. Using Graphs for AI: Finite State Machines

Out of Range event and will switch into the Finding Base state. This prevents the
defender AI from walking outside of the defense zone.

The Code

Code-wise, this is the most complicated demo in the book so far. The parts dealing
with the finite-state-machine logic were the easy parts; the difficult parts were actu-
ally implementing what the AI does at certain states.

There is simply no way to get the entire code from the program into this book, as it
is very large, but I’ll show you the most important things.

The Constants
I used a few constant variables within the program. To make things more customiz-
able, you can change these values and re-compile them if you want.

const float DEFENSEZONE = 256.0f;
const float VISUALZONE = 64.0f;
const float ATTACKZONE = 16.0f;
const float GETZONE = 8.0f;
const float PLAYERSPEED = 64.0f;
const float AISPEED = 48.0f;

The first four constants are the zones of the game. The defense zone, as I’ve men-
tioned before, is the zone that the defenders cannot leave. In the demo, the default
radius for this value is 256 pixels, so the defenders never go more than 256 pixels
away from their base.

The second zone, the visual zone, is the zone in which the AIs can see things.
When the player enters within 64 pixels of the AI, the See Intruder event is set off.
Likewise, this is the range at which the AIs also see their home base.

The attack zone describes how close you must be to attack someone. I go into the
attack system more in depth later on.

And finally, there is the get zone, which determines how close you have to be to an
object (a health pack, for instance) to pick it up.

After that is the player speed. Players can move up to 64 pixels per second in hori-
zontal and vertical directions.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 551

551Game Demo 18-1: Intruder

NOTE
Because of the simple system I’ve implemented, the player can actually move up
to 90 pixels per second when moving diagonally. Because this demo isn’t really
concerned with movement consistency, I didn’t want to take the extra time to
make this algorithm perfect. In other words, don’t worry about it.

The AI is a little slower and can only move at 48 pixels per second. This allows you
to maneuver around them and outrun them to test how their AI works.

The Enumerations
These are all fairly obvious:

enum AIType
{

ATTACKER,
DEFENDER

};
enum AIState
{

GUARDING,

ATTACKING,

FINDINGHEALTH,

FINDINGBASE

};
enum AIEvent
{

SEEINTRUDER,

KILLINTRUDER,

FOUNDHEALTH,

FOUNDBASE,

OUTOFBOUNDS

};
enum HealthState
{

GOODHEALTH,
BADHEALTH

};

There are two AI types, four states, five events, and two health states.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 552

552 18. Using Graphs for AI: Finite State Machines

The AI Class
Now I’ll show you the class used to store all of the AIs in the game.

class AI
{
public:

AIState m_state;
AIType m_type;
float m_x, m_y;
int m_health;
void Init(AIType p_type, float p_x, float p_y, int p_health)
{

m_type = p_type;
m_x = p_x;
m_y = p_y;
m_health = p_health;
m_state = GUARDING;

}
};

Each AI has a current state (guarding, attacking, and so on), a current type
(attacker/defender), a position in the world, and a health variable. There is also a
function called Init that will initialize the AI with the given parameters and set the
AI to the GUARDING state.

The game will have an array of these AIs so that you can have a bunch of them at
the same time.

The Globals
There are a number of global variables in the game demo to make it easier to use.

The Machines
First of all, there are the two finite state machines:

AIState g_defender[4][5][2];
AIState g_attacker[4][5][2];

They are both 3D arrays and hold AIStates. Remember that a finite state machine
with one physical state requires a 3D array, so the dimensions match up to the
number of states (4) times the number of events (5) times the number of health
states (2).

I’ll show you how they are initialized later.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 553

553Game Demo 18-1: Intruder

The AIs
After that, there are the AIs:

AI g_AIs[8];
int g_numAIs = 0;

The array of AIs is limited to 8, so there can be at most 8 AIs in the game at any
time. The g_numAIs variable keeps track of how many AI’s are actually in the game
at any given time.

The Player
Because this is a simple game demo,
it is assumed that there is only one
player, and the player’s variables are
all stored as globals:

float g_x = 700.0f;
float g_y = 500.0f;
int g_dx = 0;
int g_dy = 0;
int g_health = 75;

TIP
In real games, players are not imple-
mented like this, especially if you want
the game to be expandable. See
Chapter 9, “Tying It Together:The
Basics,” for more details.

The player starts off at position (700,500), which is on the lower right side of the
screen. The g_dx and g_dy variables store whether or not the player is holding
down any arrow keys.

Other Globals
Finally, there are other miscellaneous globals that are used throughout the demo.

First, there are the coordinates of the base that the AIs are defending:

float g_basex = 0;
float g_basey = 0;

This puts the base at the top-left corner of the screen in the demo.

Then there is the array of health packs:

int g_healthPacks[8][2];

This is a 2D array that holds the locations of all eight health packs in the demo. For
example, if you wanted the x coordinate of the third health pack, you would access
it like this: g_healthPacks[3][0], and the y coordinate would be this:
g_healthPacks[3][1].

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 554

554 18. Using Graphs for AI: Finite State Machines

Finally, there are the timer variables:

int g_timer;
int g_combattimer;
int g_timedelta;

The first variable, g_timer, holds the time of the game when the last frame was
started. The combat timer keeps track of when the last combat round occurred,
and the time delta variable keeps track of how much time has passed since the last
frame updated.

Initializing the Machines
Now you get to initialize the machines so that they look like the machines from
Figure 18.17. This isn’t too difficult.

The First Step
First of all, I mentioned before that all of the empty cells in a finite state machine
are assumed to point to the same state (see Figures 18.5, 18.6, and 18.7). Most of
the cells in a finite state machine transition table are empty, so it makes sense to
create an automated loop that fills in all of the empty cells first and then write over
the cells that lead to different states later.

For this, you need a loop:

int state;

int event;

for(state = 0; state < 4; state++)

{

for(event = 0; event < 5; event ++)
{

g_attacker[state][event][0] = (AIState)state;
g_attacker[state][event][1] = (AIState)state;
g_defender[state][event][0] = (AIState)state;
g_defender[state][event][1] = (AIState)state;

}
}

This loops through all four states and all five events. Inside the loops, the good
health/bad health cells for both machines are filled in with the current state value.

Initializing the Arcs
The act of initializing each of the machines is simple, but it requires many lines of code.
Therefore, I’m going to show you a few examples and not the entire piece of code.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 555

555Game Demo 18-1: Intruder

g_attacker[GUARDING][SEEINTRUDER][GOODHEALTH] = ATTACKING;
g_attacker[GUARDING][SEEINTRUDER][BADHEALTH] = ATTACKING;

Using the enumerated values that you defined earlier, this looks very readable,
doesn’t it? These lines basically say this: When the attacker machine is in the guard-
ing state, sees an intruder, and has good health, move into attack mode.

The second line says the same thing, except that the attacker machine has bad health.

Let me show you one more example:

g_defender[ATTACKING][KILLINTRUDER][GOODHEALTH] = FINDINGBASE;
g_defender[ATTACKING][KILLINTRUDER][BADHEALTH] = FINDINGHEALTH;
g_defender[ATTACKING][OUTOFBOUNDS][GOODHEALTH] = FINDINGBASE;
g_defender[ATTACKING][OUTOFBOUNDS][BADHEALTH] = FINDINGBASE;

These four lines handle two events for the defender machine. When the defender
is attacking and he kills the intruder and he still has good health, then he goes to
find the base. If he has bad health, he starts to look for health.

The second event occurs when the defender leaves the defense zone. No matter
what health he has, he turns around and starts heading back to the base, because a
defender cannot leave the defense zone.

Pretty easy, isn’t it?

Handling Events
Handling an event in the demo is pretty simple. It involves calculating the current
health state and then doing a lookup in the machine to see what state is next.

void Event(int p_AI, AIEvent p_event)
{

HealthState health = BADHEALTH;
if(g_AIs[p_AI].m_health > 50)
{

health = GOODHEALTH;

}

if(g_AIs[p_AI].m_type == ATTACKER)

{

g_AIs[p_AI].m_state =
g_attacker[g_AIs[p_AI].m_state][p_event][health];

}

else

{

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 556

556 18. Using Graphs for AI: Finite State Machines

g_AIs[p_AI].m_state =
g_defender[g_AIs[p_AI].m_state][p_event][health];

}
}

The function takes the index of the AI that is processing the event and which event
has occurred. In the first part of the function, it determines whether the health of
the AI is good or bad.

After that, the computer determines which machine the AI is using, the defender or the
attacker machine. Then it looks up the state of the current AI using the correct machine:
g_attacker if he is an attacker, and g_defender if he is a defender. The new state is looked
up using the current state, the event, and the health state of the current AI.

The Auxiliary Functions
This is a very complex demo. In fact, it demonstrates far more than just finite state
machine AI. However, because this is a FSM chapter and I am limited on space and
time, I cannot possibly go into depth about every function used in this demo.

I have tried my best to separate everything not related to the AI into neat little
functions that act separately from the AI. These functions are listed in Table 18.1.

Function Purpose

AddHealthPack

MatchHealthPacks

FindClosestAI

FindClosestHealthPack Returns the index of the closest health pack

MoveAI

AIAttack
right amount of time has passed

AddAIs

Distance

Table 18.1 The Auxiliary Functions

Adds a random health pack into the game

Determines if an AI or the player is within range of pick-
ing up a health pack and returns its index

Returns the index of the closest AI

Moves the AI toward the given coordinates at the cor-
rect speed

Makes the AI attack the player if he is in range and the

Adds all 8 AIs to the game

Calculates the distance between two sets of coordinates

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 557

557Game Demo 18-1: Intruder

Some of these functions are complex, like the MoveAI function. That function
requires some basic knowledge of trigonometry to understand, but unfortunately I
have no room to teach trigonometry in this book. Each of these functions is com-
mented in detail, so if you are interested in them, you may look at their source on
the CD. But for the purpose of this book, all you need to know is that these func-
tions do as they are told; you don’t need to know how they actually work.

The ProcessAI Function
This is the big function that processes all of the AI events in the game. It makes
heavy use of the auxiliary functions I just mentioned, and because it does, it should
be fairly easy to comprehend.

As with most large functions in the book, I separate this into segments so I can
explain it better:

void ProcessAI(int p_AI)
{

int i;

First of all, the function takes the index of the AI that is being processed. After
that, it creates a generic variable, i, which will be used for various things in the
function.

i = MatchHealthPacks(g_AIs[p_AI].m_x, g_AIs[p_AI].m_y);

if(i != -1)

{

Event(p_AI, FOUNDHEALTH);
g_AIs[p_AI].m_health = 100;
AddHealthPack(i);

}

The first thing the function does when it gets to work is check if the AI has picked
up a health pack. This section of code makes use of the MatchHealthPacks auxiliary
function to find out if the current AI is in range to pick up a health pack. If it
returns �1, then the AI isn’t in range, and nothing happens. If the AI is in range,
then a FOUNDHEALTH event is passed into the AI, and his health is set to its full value
again. Finally, a new health pack is added into the game, as the game always keeps
8 health packs in the world.

if(Distance(g_AIs[p_AI].m_x,

g_AIs[p_AI].m_y,

g_basex,

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 558

558 18. Using Graphs for AI: Finite State Machines

g_basey) <= VISUALZONE)

Event(p_AI, FOUNDBASE);

After that, the AI checks to see if it can see the base. It does this by checking to see
if the distance between the AI and the base is less than the VISUALZONE constant. If
so, then a FOUNDBASE event is sent to the AI.

if(Distance(g_AIs[p_AI].m_x,

g_AIs[p_AI].m_y,

g_x,

g_y) <= VISUALZONE)

Event(p_AI, SEEINTRUDER);

Then it checks to see if the AI can see the player. If so, then a SEEINTRUDER event is
sent to the AI.

if(Distance(g_AIs[p_AI].m_x,

g_AIs[p_AI].m_y,

g_basex,

g_basey) >= DEFENSEZONE)

Event(p_AI, OUTOFBOUNDS);

Then it checks to see if the AI has left the defense zone, and if so, it sends an OUT-
OFBOUNDS event to the AI.

Now that all of the event checking has been processed, the function continues on
and performs all the actions of the AI:

if(g_AIs[p_AI].m_state == ATTACKING)

{

if(Distance(g_AIs[p_AI].m_x,

g_AIs[p_AI].m_y,

g_x, g_y) <= ATTACKZONE)

{
AIAttack();

}

else

{

// move the AI closer to the player

MoveAI(p_AI, g_x, g_y);

}

}

If the AI is in attack mode and he is within attacking distance of the player, then
the AI attacks him.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 559

559Game Demo 18-1: Intruder

If the AI is not within attacking distance, then the AI moves closer to the player,
chasing after him.

if(g_AIs[p_AI].m_state == FINDINGBASE)

{

MoveAI(p_AI, g_basex, g_basey);

}

If the AI is trying to find the base, he moves closer to the base.

if(g_AIs[p_AI].m_state == FINDINGHEALTH)
{

i = FindClosestHealthPack(g_AIs[p_AI].m_x, g_AIs[p_AI].m_y);

MoveAI(p_AI, g_healthPacks[i][0], g_healthPacks[i][1]);

}
}

And finally, if the AI is finding health, the function finds out which health pack is

closest to the AI and moves the AI toward the health pack.

See, that was a long function, but when you think about it, it really is quite simple

to use.

Playing the Demo

The demo is quite simple to play. You’re the little black square, the blue squares
are health packs, the green squares are defenders, and the red squares are attack-
ers. Your health bar is on the left side of the screen, and the AIs’ health bars are on
the top right of the screen.

Figure 18.18 shows a screenshot of the demo in action.

Figure 18.18

Here is a screenshot
from the demo.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 560

560 18. Using Graphs for AI: Finite State Machines

It looks kind of simple for a game demo, but I decided to use simplicity for this
one because I wanted you to see the whole game screen at all times. This way, you
can mess around and then watch what the AI does in response even if you’re on
the other side of the map. Of course, this meant that I needed to use very small
graphics, and they looked bad, so I used squares instead.

The dark gray circle at the top left of Figure 18.18 represents the defense zone of
the AIs, and the light gray circles represent the AIs’ visual zones. If you walk within
those circles, they can see you.

You move your guy around using the arrow keys on your keyboard, and whenever
you get within attacking range of one of the AIs, you automatically attack them
once every second. Each time you die, you are respawned where you first started, so
don’t worry about dying. In fact, I recommend that you die a few times so you can
see what the AIs do when you die.

Conclusion

The material covered in this chapter is usually taught to senior-level college stu-
dents. In fact, over half of my class failed this topic in college. Granted, there is a
lot more to this topic that I showed you, but this is the first 6 weeks of a 15-week
course, or over one-third of the information.

I guess my point is that this is a difficult subject to learn, depending on how you
learn it. When I first learned about finite state machines, it was in relation to game
AI, and I was naturally interested. I did well in my class because I already knew a lot
of the material and because I was able to apply it to a real-world solution.

When I was playing around and testing the Graphical Demonstrations for this
chapter, my brother was watching me, and he said, “Wow, that is really cool.” He
doesn’t know anything about computer programming and he understood the basic
principles easily. So I hope you had no problem with this subject.

If there is one thing I want you to get out of this chapter, it is how easy it is to make
a finite state machine AI. I want you to understand how fast they are in real life and
how easy it is to change the entire behavior of one machine by changing the arcs
around.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 561

561Conclusion

You saw from the game demo that I had two machines that operated very differ-
ently, but they used the same code for every AI! The only difference was the addi-
tion of a few arcs to the defender machine to make it head back to the base if it
wandered too far away.

The topic of real-time AI in computer games is a vast one, and I’ve by no means
covered even a fraction of it. I feel that this is a good enough start for now, though.
You might want to look into algorithms to minimize redundant machines.

Team LRN

Data Structures CH18 11/5/02 8:48 AM Page 562

This page intentionally left blank

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 563

CHAPTER 19

Tying It
Together:

Graphs

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 564

564 19. Tying It Together: Graphs

You’ve just finished the part of the book dealing with graphs, so now you want

to do something with them.

This chapter continues to expand the game demo that I developed in Chapters 9,

“Tying It Together: The Basics,” and 16, “Tying It Together: Trees.” As you might

guess, this chapter is concerned with adding graph features to the game engine.

In this chapter, you will learn

■	 How to design a new map format that uses directionmaps
■	 How to extend the Map interface of the Adventure game to accommodate the

new maps
■	 How to create an editor that loads and saves directionmaps
■	 How to convert a directionmap into a grid and back for easy editing
■	 How to convert older tilemap files into the new tilemap file format

The New Map Format
The feature that will be added to the game is an entirely new map format. This is
the same type of map that I used in Game Demonstration 17-1. Remember, instead
of having a giant square tilemap like the game has been using up until this point,
the map will now be a collection of rooms in which each room knows which rooms
are connected to it. If you don’t remember how these work, Figure 19.1 should
refresh your memory.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 565

565The New Map Format

Figure 19.1

Here is a direction-
table map.

The graphical representation of the map is on the left, but the computer represen-
tation of the map is in the table on the right. The table has two variables; the index
on the vertical axis represents the room numbers. Each room can have four exits;
there are four entries per room, representing the exits. The value in these entries
represents the number of the room that exit leads to.

For example, if you look at the entry for room number 1, you can see that going
north leads you to room 0, east to room 2, and south to room 4. The entry for west
is blank because there is no exit to the west. Basically, the table encodes an adja-
cency graph.

The New Room Entry Structure

Now, that was just a simple format that defines map information only. To make a
new map format for the game, you need more information.

Because you want every room in the map to have two tile layers (the base tile and
the overlay tile) and an item and a person, you need to add those into the format.

Also, you will want each room in the map to know its relative x and y coordinates
when compared to other rooms in the map. This is useful for moving around the
map so you can see where a room lies in relation to another room. If you read

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 566

566 19. Tying It Together: Graphs

Chapter 9 where the Map class interface and Object class were designed, you should
remember that the Object class maintains x and y coordinates so that objects can
find out which direction they should move to get closer to another object.

Figure 19.2 shows the structure of a single room entry for this map format.

Figure 19.2

This is the structure
of a map entry for a
direction-table map.

The File Format
Now that you are going to have two different map formats in the game, you need
some way to differentiate the formats. The easiest way to do something like this is
to add an identification number at the front of the map format. Using this method,
you assign a number to each map format so that a map loader can tell what kind of
map you are trying to load.

For example, I am going to assign the
number 0 to the tilemap format from
Chapters 9 and 16 and the number 1 to
the directionmap format from this
chapter.

Therefore, when the map is loaded, the
function that loads it reads in the first
number in the file and checks to see
what it is. If it is 0, then it knows that
you are loading a tilemap, and if it is 1,
then it knows that you are loading a
directionmap.

Game Demonstration 19-3.

NOTE
Unfortunately, the tilemap file for-
mat doesn’t have a 0 at the begin-
ning of the file.This is going to cause
some problems, but I deal with this
matter later on, in Example 19-1 and

Unlike a tilemap, a directionmap will not have a set number of rooms in it. Instead,
the number of rooms can vary, so you need to store the number of rooms in the
map after the map identification.

Then you store the array of map entries. Finally, the three exit strings are stored at
the end of the file, just like they are in the tilemap format. What you end up with is
a file looking like the one in Figure 19.3.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 567

567Game Demonstration 19-1: Adding the New Map Format

Figure 19.3

This is the
directionmap file
format.

Game Demonstration 19-1:
Adding the New Map Format
This section deals with Game Demonstration 19-1. The source code for this chapter
is on the CD in the directory \demonstrations\ch19\Game01 - Adventure v3\ , and
this is the third version of the adventure game that I have developed for the book
in Chapters 9 and 16 so far.

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 568

568 19. Tying It Together: Graphs

When designing the Map class in Chapter 9, I made some design choices that might
not have made sense to you at the time, such as making the map be accessible by
cell number and 2D coordinates and making every function virtual.

This chapter will show you why I made those choices and why they make the game
so flexible.

The DirectionMap

You want to add an entirely new map format to the game. Years ago, before object-
oriented programming was invented, you probably would have just designed the
game with one format in mind, and when you wanted to add something like this to
the game, you had a few options. Unfortunately, almost all of those options
involved recoding the entire map system to work with the new maps. This always
took a lot of work and frequently caused lots of new bugs.

Instead of doing that, you’re going to create a new class that inherits from the Map
class: the DirectionMap. This class and all accompanying classes are in the
DirectionMap.h file.

The DirectionCell Class
This class is almost equivalent to the TileCell class in the tilemap implementation
of the map. It will store data about a single cell/room in the map. Like the TileCell
class, this class will also know if the cell is blocked and which item and person is
stored in the cell.

However, it adds a few new items as well.

The class needs to know about the exits from the cell, the x and y coordinates of
the cell, and the number of the base and overlay tiles. Here is a listing of the data
from the class:

class DirectionCell
{
public:

bool m_blocked;
Item* m_item;
Person* m_person;
int m_exits[4];
int m_tiles[2];
int m_x;
int m_y;

};

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 569

569Game Demonstration 19-1: Adding the New Map Format

Also, the class has a constructor, which constructs each cell so that it doesn’t con-
tain junk data:

DirectionCell()
{

m_blocked = false;
m_item = 0;
m_person = 0;
m_exits[0] = -1;
m_exits[1] = -1;
m_exits[2] = -1;
m_exits[3] = -1;
m_tiles[0] = -1;
m_tiles[1] = -1;
m_x = -1;
m_y = -1;

}

Note that the exits are all initialized to –1. Because room 0 is a valid room, the
value –1 is used to denote that there is no exit in that direction, just like –1 is used
to say that the tile number is invalid as well.

The MapEntry Class
This is a simple class that will be used to load data from disk. Because the map files
store an actual number representing the item and the person, and the
DirectionCell class will store pointers to the Item and Person classes, you can’t
directly load each room into its DirectionCell class, so this class is needed as an
intermediate step.

Here is the class listing:

class MapEntry
{
public:

int x;

int y;

int directions[4];

int layers[4];

};

This data corresponds exactly with the data shown in Figure 9.2.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 570

570 19. Tying It Together: Graphs

The DirectionMap Class
As I’ve said before, the DirectionMap class will inherit from the Map class. This means
that it needs to implement all of the functions from that class on its own. The great
thing about this method is that the game cannot tell the difference between a
tilemap and a directionmap. Think about that statement for a moment.

This means that the game and the Map class have made an agreement. The Map class
has promised to perform certain functions, and the game will utilize those func-
tions. The game does not care about how those functions are implemented, it only
cares that the Map class does what it has promised to do.

The TileMap class implemented all of the Map functions using a 64 � 64 grid imple-
mentation, but the game doesn’t actually care how the map is represented.
Likewise, the DirectionMap class will support all of the same functions, yet it accom-
plishes these functions in a different way.

Why is this a good way to program? Because you can essentially create an infinite
number of map implementations, and as long as they all implement the Map inter-
face, the game does not need to ever change the way it works. This is the same
method that I use in this chapter. The actual game logic will not need to be
changed at all, yet it still uses the new map seamlessly.

The Data
Whereas the TileMap class needed two
arrays (a 2D array for cell info and a 3D
array for tile info), the DirectionMap
class only needs a single 1D array to
store the cells in the map:

class DirectionMap : public Map
{
protected:

Array<DirectionCell> m_rooms;
SDL_Surface** m_tilebmps;

};

The m_rooms array holds a bunch of
DirectionCells, which represent each
cell in the map. Also, like the TileMap
class, this has a pointer to an array of
SDL_Surfaces, which represents the tile-
set that will be used with this map.

m_tilebmps

the Map

Map class does

NOTE
If you know a little bit more about
object-oriented design than I have
taught you, then you may be asking,
“Why did you duplicate the

data in these two classes?
Wouldn’t it be better to have this in

class?” You have a valid point
here; however, there is a reasoning
to this method.The
not explicitly say that it will be using
bitmaps to draw the rooms. Instead,
you might make a variant that will
actually draw a 3D map using tex-
tures and all sorts of cool geometry.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 571

571Game Demonstration 19-1: Adding the New Map Format

The DirectionMap
Functions
The DirectionMap class only has three
functions on top of the Map functions: a
constructor, a destructor, and the
LoadFromFile function.

The Constructor

The constructor will set the tileset
pointer according to its parameter:

The LoadFromFile function is not
Map

RandomMap

NOTE

part of the class because you
may create some sort of
class someday that randomly creates
maps using an algorithm.Therefore,
saying that all maps can be loaded
from disk doesn’t really make sense.

DirectionMap(SDL_Surface** p_tilebmps)
: m_rooms(0)

{
m_tilebmps = p_tilebmps;

}

Note also that the m_rooms array is initialized to size 0 so that it takes up no room.
This is because you don’t know how many rooms the map will hold, and guessing
at this point doesn’t make much sense.

The Destructor

The destructor is vital in this class because the map keeps track of all of the items and
people on it, and when the map is deleted, all the items and people must be, too.

~DirectionMap()
{

int x;
for(x = 0; x < m_rooms.Size(); x++)
{

if(m_rooms[x].m_item != 0)
delete m_rooms[x].m_item;

if(m_rooms[x].m_person != 0)
delete m_rooms[x].m_person;

m_rooms[x].m_item = 0;
m_rooms[x].m_person = 0;

}
}

This basically loops through every room in the map, and if a room has an Item or a
Person in it, they are deleted and set to zero. This will assure that you get no mem-
ory leaks.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 572

572 19. Tying It Together: Graphs

The LoadFromFile Function

This function will load a directionmap from disk using the same file format you saw
in Figure 9.3.

void LoadFromFile(char* p_filename)
{

int x;
int maptype;
int cells;
MapEntry entry;

The function takes a string as the parameter; this is the name of the file that the
function will load. The x variable is used to count through each room in the map,
and the maptype variable stores the ID of the map (the first value in Figure 9.3).
The cells variable keeps track of the total number of cells in the map, and the
entry variable is used to store the raw cell data as it is loaded from disk.

FILE* f = fopen(p_filename, “rb”);

if(f == 0)

return;

As with almost all of the file loading/saving functions in this book, the file is
opened and checked to see if it was actually opened. If not, the function returns
and does nothing.

fread(&maptype, 1, sizeof(int), f);

if(maptype != 1)

{

fclose(f);

return;

}

Then the type of the map is read in from the file. If the type is not 1, then the map
is of a format that this class doesn’t know about. Remember from before that the
ID 1 means that the file is a directionmap. So if the type isn’t 1, then the function
closes the file and returns without doing anything else.

fread(&cells, 1, sizeof(int), f);

m_rooms.Resize(cells);

Then the number of cells is read in from the file and the m_rooms array is resized to
hold the current amount of rooms.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 573

573Game Demonstration 19-1: Adding the New Map Format

NOTE
Please note that this function will cause a memory leak if a map is already
loaded.The array is resized, and if the new map is smaller than the old map, the
cells at the end of the map are destroyed, but the cells don’t destroy their con-
tents when they are destroyed. Also, when the rooms are loaded in, they over-
write all the data that is already in the cells, causing the items and people to be
lost.This function is only meant to be called once, right after the map is con-
structed. If you need to load another map from file, destruct the map and create
a totally new one.

for(x = 0; x < cells; x++)
{

fread(&entry, 1, sizeof(MapEntry), f);

Next, a single for-loop goes through each room in the map and loads in the map
entry for the current room.

m_rooms[x].m_tiles[0] = entry.layers[0];

m_rooms[x].m_tiles[1] = entry.layers[1];

m_rooms[x].m_x = entry.x;

m_rooms[x].m_y = entry.y;

The tile data and the coordinate data are just copied over from the MapEntry struc-
ture into the DirectionCell structure.

if(entry.layers[2] != -1)

{

m_rooms[x].m_item = MakeItem(entry.layers[2],
entry.x,
entry.y,
x);

}

However, the items and people cannot be loaded the same way. Instead, the func-
tion checks to see if the item in the cell is not –1 (–1 means that an item doesn’t
exist in that cell). If so, then the MakeItem function is called to create a new Item
using the global person template. If you don’t remember how this function works,
please go back to Chapter 9 and review it.

if(entry.layers[3] != -1)

{

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 574

574 19. Tying It Together: Graphs

m_rooms[x].m_person = MakePerson(entry.layers[3],
entry.x,
entry.y,
x);

if(entry.layers[3] == 0)

{

SetViewer(m_rooms[x].m_person);

}

}

The same thing happens with the person in each cell, with one addition.
Remember person number 0 is considered the player of the map, so whenever per-
son 0 is detected, the function sets the viewer of the map to that person.

m_rooms[x].m_exits[0] = entry.directions[0];
m_rooms[x].m_exits[1] = entry.directions[1];
m_rooms[x].m_exits[2] = entry.directions[2];
m_rooms[x].m_exits[3] = entry.directions[3];

}

Last, the exits of each room are loaded from the MapEntry class into the current
DirectionCell.

fread(m_exits[0], 64, sizeof(char), f);
fread(m_exits[1], 64, sizeof(char), f);
fread(m_exits[2], 64, sizeof(char), f);
fclose(f);

}

After all of the rooms are loaded in, the names of the exits are loaded from the
file, and the file is finally closed.

The Map Functions
Now that you’ve created the data and the DirectionMap-specific functions, you want
to go ahead and implement all of the regular Map functions.

The Draw Function

First up is the Draw function, which draws the map on the screen. There are several
ways to accomplish the drawing of this map. You could do a breadth-first traversal on
the map and draw every cell, or you could do a limited-depth-first traversal and only
draw cells that are a certain depth from the cell that the viewer is in. However, nei-
ther of these methods is a very good choice.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 575

575Game Demonstration 19-1: Adding the New Map Format

If you use the breadth-first drawing algorithm, then you need a queue to help you
draw everything. If you use the depth-first method, then you need a stack or a
recursive function, which uses a stack anyway.

Because the drawing function will be called often, you want this function to be as
fast as possible. Unfortunately, both of the previous methods are somewhat slow
because they need extra structures to process the cells in the map.

There is a simpler method right under your nose, though. Each cell keeps track of
its x and y coordinates in relation to the other cells, so you can use this information
to determine where each cell is drawn. You can just go through every cell in the
map and draw it using its coordinates. There is no need to perform a complicated
traversal algorithm.

void Draw(SDL_Surface* p_surface, int p_midx, int p_midy)
{

int i, z; // counting variables
int px, py; // pixel coordinates
int ox, oy; // offset coordinates
int current;
Item* item;
Person* person;

The variables used are similar to those used in the TileMap’s Draw function (from
Chapter 9), but instead of x and y coordinates to loop through a tilemap, there is
just one index variable, i, which will loop through every cell in the map.

ox = (-m_viewer->GetX() * 64) + p_midx - 32;

oy = (-m_viewer->GetY() * 64) + p_midy - 32;

As before, the function calculates the offset of the viewer and the coordinates of
the cell that the viewer is on. Then it can calculate how to move the cells so that
the cell that the viewer is on is centered on the screen. See Chapter 9 for more
information about this.

for(i = 0; i < m_rooms.Size(); i++)
{

px = m_rooms[i].m_x * 64 + ox;
py = m_rooms[i].m_y * 64 + oy;

Now the function loops through every cell in the map and calculates the pixel
coordinates for each room.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 576

576 19. Tying It Together: Graphs

for(z = 0; z < 2; z++)

{

current = m_rooms[i].m_tiles[z];

Now it loops through both layers of the cell and gets the tile number for each layer.

if(current != -1)

{

SDLBlit(m_tilebmps[current], p_surface, px, py);

}

}

If the tile number isn’t –1, then it is a valid tile, and it should be drawn.

item = m_rooms[i].m_item;

person = m_rooms[i].m_person;

if(item != 0)

SDLBlit(item->GetGraphic(), p_surface, px, py);
if(person != 0)

SDLBlit(person->GetGraphic(), p_surface, px, py);
}

}

Finally, it checks to see if the item and person in the cell are valid. If either of them
is, then it is drawn on the map, too.

The CanMove Function

Determining if a person can move in a certain direction is even easier with a direc-
tionmap than it is with a tilemap because you don’t have to find the x and y coordi-
nates of the adjacent cell; the directionmap actually points directly to the next
room, so you can tell what it is immediately.

bool CanMove(Person* p_person, int p_direction)
{

int cell = GetCellNumber(p_person->GetCell(), p_direction);
if(cell == -1)

return false;

This function utilizes the GetCellNumber function to get the number of the cell in
the given direction. If it returns –1, then this function returns false because a
player cannot walk into a wall.

if(m_rooms[cell].m_blocked == true)

return false;

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 577

577Game Demonstration 19-1: Adding the New Map Format

if(m_rooms[cell].m_person != 0)

return false;

Then the function checks to see if the cell in that direction is blocked and if a per-
son is in that cell. You cannot move into either of those kinds of rooms, so if either
of them is true, false is returned.

if(m_rooms[cell].m_item != 0)

{

if(m_rooms[cell].m_item->CanBlock() == true)

return false;

}

Finally, it checks to see if there is an item blocking the path into the new cell. If
there is, then it returns false.

return true;
}

If it has passed all of those tests, then the cell is not blocked, and a player can move
into it, so true is returned.

The Move Function

This function also works in a similar way to the TileMap version.

void Move(Person* p_person, int p_direction)
{

int newcell;
if(CanMove(p_person, p_direction) == true)
{

First, it makes sure that the person can move in the given direction.

newcell = GetCellNumber(p_person->GetCell(), p_direction);

m_rooms[newcell].m_person = p_person;

m_rooms[p_person->GetCell()].m_person = 0;

p_person->SetX(m_rooms[newcell].m_x);

p_person->SetY(m_rooms[newcell].m_y);

p_person->SetCell(newcell);

}
}

After that, it retrieves the number of the new cell and moves the person into the
new cell. After that, it removes the pointer to the person from the old cell and
updates the x and y coordinates and the cell number of the person.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 578

578 19. Tying It Together: Graphs

The GetItem and SetItem Functions

These functions just get and set an item at a certain cell number.

Item* GetItem(int p_cell)
{

if(p_cell >= GetNumberOfCells() || p_cell < 0)
return 0;

return m_rooms[p_cell].m_item;
}
void SetItem(int p_cell, Item* p_item)
{

if(p_cell >= GetNumberOfCells() || p_cell < 0)
return;

m_rooms[p_cell].m_item = p_item;
}

Both functions check to make sure that the cell is in-bounds first and then get or
set the item pointer in the correct cell.

The GetPerson and SetPerson Functions

These functions are almost the same as the GetItem and SetItem functions listed pre-
viously:

Person* GetPerson(int p_cell)
{

if(p_cell >= GetNumberOfCells() || p_cell < 0)
return 0;

return m_rooms[p_cell].m_person;
}
void SetPerson(int p_cell, Person* p_person)
{

if(p_cell >= GetNumberOfCells() || p_cell < 0)
return;

m_rooms[p_cell].m_person = p_person;
}

The GetCellNumber Function

This is the function that gets the number of a cell, given a cell and a direction. This
function is much easier with a directionmap than it was with a tilemap because
each cell in a directionmap points to the adjacent cell instead of needing an algo-
rithm to calculate the number of an adjacent cell.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 579

579Game Demonstration 19-1: Adding the New Map Format

int GetCellNumber(int p_cell, int p_direction)
{

return m_rooms[p_cell].m_exits[p_direction];
}

The function first accesses the m_rooms array to get the starting room and then
accesses its m_exits array to find out the number of the room in the given direc-
tion.

The GetNumberOfCells Function

This is a pretty simple function; it just returns the size of the room array:

int GetNumberOfCells()
{

return m_rooms.Size();
}

The GetClosestDirection Function

Finally, here is the function that will determine which direction a person has to go
to get closer to another person.

For now, this function is the same as the GetClosestDirection function in the
TileMap class. This will change in Chapter 24, “Tying It Together: Algorithms,” how-
ever.

int GetClosestDirection(Person* p_one, Person* p_two)
{

int direction = -1;
if(p_one->GetY() > p_two->GetY())

direction = 0;
else if(p_one->GetX() < p_two->GetX())

direction = 1;
else if(p_one->GetY() < p_two->GetY())

direction = 2;
else if(p_one->GetX() > p_two->GetX())

direction = 3;
return direction;

}

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 580

580 19. Tying It Together: Graphs

Changes to the Game Logic

If you look at the kinds of maps that are best represented by a tilemap, you can see
that they are usually outdoor maps. That’s because the outdoors is a wide-open
area, and a tilemap represents that kind of environment.

Indoor environments are a different story, however. Indoor areas are usually small
and separated by many walls and hallways. Coincidentally, directionmaps represent
these kinds of environments much better than tilemaps do.

Now look at the image sets for both types of environments. For the first two itera-
tions of the game, the tilemap class has used a standard grass/snow image set,
which you usually see outdoors. If you’re going to be using the directionmap to
represent indoor maps, though, you probably don’t want to see grass and snow on
the map. Instead, you’ll need another type of image set.

The New Image Set
For the games’ medieval motif, I have decided to go with a dark-stone and dirt feel
so that it seems like the player is in a dungeon or cavern. Now the game will have
two different image sets (also known as a tileset). In the earlier versions of the game,
the single tileset and its size were stored in the game like this:

const int TILES = 24;
SDL_Surface* g_tiles[TILES];

Because there isn’t a single tileset anymore, I needed to add another tileset and a
way to differentiate between the two. So I renamed the original tileset like this:

const int OUTDOORTILES = 24;

SDL_Surface* g_outdoortiles[OUTDOORTILES];

And the new tileset like this:

const int DUNGEONTILES = 14;

SDL_Surface* g_dungeontiles[DUNGEONTILES];

As with the original tileset, the new tileset is loaded within the Init function:

g_dungeontiles[0] = SDL_LoadBMP(“stone.bmp”);
// lots more bitmap loading ...

Now, only one more change needs to be made to the game logic to get this working.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 581

581Game Demonstration 19-1: Adding the New Map Format

The New LoadMap Function
In Chapter 9, I showed you that the game demo will separate the map-loading logic
into a function called LoadMap, but I told you that the explanation would have to
wait until Chapter 19, “Tying It Together: Graphs.” Well this is Chapter 19, so I sup-
pose I should explain it to you.

In the first two versions of the game, the only map type was a tilemap, so it was easy
to assume that this was the kind of map that the game would always use. I showed
you how to avoid this thinking, however, and showed you how to abstract the tilemap
into an interface called the Map class. However, there is still a problem with that
method: Someone somewhere needs to know when to create a tilemap. You can’t just
take a file and say, “Load this map,” without knowing what kind of map it is.

So this functionality was separated from the rest of the game and placed into a
function called LoadMap. This function takes the name of a map file, creates a new
map, and then returns a pointer to that map. Outside of this function, nothing in
the actual game logic knows anything about tilemaps or directionmaps; they all use
the generic Map class.

So now that you’ve added a new map type to the game, you need to modify the
LoadMap function so that it can create DirectionMaps, too. The function is essentially
a heavily extended version of the old version.

Map* LoadMap(char* p_filename)
{

int maptype;
FILE* f = fopen(p_filename, “rb”);

In the old version, you assumed that you would be loading a tilemap. Now, you
don’t know what kind of map you will be loading. Remember the ID number
tacked onto the front of each file that denotes what kind of map it is? The function
must now check that, so the file is opened in this function.

TileMap* tmap;
DirectionMap* dmap;

Then a TileMap and DirectionMap pointer are declared.

if(f == 0)

return 0;

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 582

582 19. Tying It Together: Graphs

If the file could not be opened, it returns an empty pointer.

fread(&maptype, 1, sizeof(int), f);

fclose(f);

if(maptype == 0)

{

tmap = new TileMap(64, 64, 2, g_outdoortiles);
tmap->LoadFromFile(p_filename);
return tmap;

}

else if(maptype == 1)

{

dmap = new DirectionMap(g_dungeontiles);
dmap->LoadFromFile(p_filename);
return dmap;

}
return 0;

}

After that, the type of the map is loaded into maptype, and the file is closed. At this
point, maptype should be either 0 or 1, so those are the two conditions that are
tested. If the map type is 0, then you know that the file contains a tilemap, so a new
TileMap is created with the outdoor tileset, loaded from the file, and then returned.

If the type is 1, then a new DirectionMap is created with the dungeon tileset, loaded
from the file, and then returned. If the number isn’t 0 or 1, then you have no idea
what kind of file is being loaded, so the function just returns 0.

Playing the Game

Now that the game has been modified to take advantage of the new map format,
you can actually play the game. The gameplay is the same as before, and there is
one directionmap level included for you to play around with: level4.map.

You can get to that level by entering the red vortex on level 1, the green vortex on
level 2, or the blue vortex on level 3. Figure 19.4 shows a figure of that level.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 583

583Converting Old Maps

Figure 19.4

Here’s a screenshot
of the directionmap
level. Note the black
blanks in an irregular
pattern:This is not
possible with a
tilemap, but it’s easy
to do with a
directionmap.

Converting Old Maps

When I introduced the idea of an ID number in each map file, I said you needed a
way to convert an old map produced from the level editors from Chapters 9 and 16
so that it has an ID number in it as well.

Example 19-1 shows you how to accomplish this. You can find this on the CD in the
directory \examples\ch19\01 - Map Converter\ .

Basically, all you want to do is load in the entire tilemap file, write out the ID, and
then write the entire map out again.

void main()
{

char filename[64];
Array3D<int> mapdata(64, 64, 4);
char exits[3][64];
int maptype = 0;
FILE* f = 0;

Here is all the data used in the conversion. The filename comes first; it is a string
limited to 64 characters. Then there are the four-layer tilemap and the three exit
strings. Both of those structures represent the entire tilemap.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 584

584 19. Tying It Together: Graphs

After that is the map type variable, which is set to 0 to denote that this is a tilemap.
Finally, the file is declared.

cout << “Enter a filename: “;

cin >> filename;

cout << “converting file...”;

After that, the filename is requested from the user of the program.

f = fopen(filename, “rb”);

fread(mapdata.m_array, 64*64*4, sizeof(int), f);

fread(exits[0], 64, sizeof(char), f);

fread(exits[1], 64, sizeof(char), f);

fread(exits[2], 64, sizeof(char), f);

fclose(f);

This sequence of code opens up the file for reading and then reads in all of the
map data and exit data, and closes the file again. At this point, all of the valid data
is now in the memory of the computer.

f = fopen(filename, “wb”);

fwrite(&maptype, 1, sizeof(int), f);

fwrite(mapdata.m_array, 64*64*4, sizeof(int), f);

fwrite(exits[0], 64, sizeof(char), f);

fwrite(exits[1], 64, sizeof(char), f);

fwrite(exits[2], 64, sizeof(char), f);

fclose(f);

}

In the second part of the program, the file is opened again, this time in wb mode.
This mode destroys all the contents of the file, so you’re writing over the old file.

Then the map type is written out, and the map data, the exit data, and the file are
closed. That was pretty simple, wasn’t it?

Now, if you’ve created a really cool map using the map editors from Chapter 9 or
16, you can easily convert them to use with the new version of the game.

The Directionmap Map
Editor
This is Game Demonstration 19-2, which you can find on the CD in the directory
\demonstrations\ch19\Game02 - DirectionMap Editor\ .

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 585

585The Directionmap Map Editor

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Now that you have a game and a new map format created, you need a way to make
maps with the new map format. This map editor will be used to create direction-
maps.

The actual editor is essentially the same as the editor from Chapter 16. A few but-
tons have been moved around and renamed to use the dungeon tileset, but those
are just cosmetic differences.

If you read on, I list the most important differences in the game demo.

The Initial Map
Previously, when the program started out it would loop through every tile on the
map and set the base layer to a random value from 0 through 3. In the outdoor
tileset, these four values represent one of the four grass tiles, so the entire map
started out covered in grass. This was essential for a tilemap because the base layer
of a tilemap can never be empty.

However, with a directionmap, things are different. To make editing the map eas-
ier, the map is still going to be stored in a 64 � 64 � 4 3D array, but when it is
loaded or saved to disk, the editor will run it through a conversion function.

Because a directionmap is supposed to represent sparse indoor environments, the
initial map will be completely empty. This also means that in the editor, the base
tile of any cell in the 3D array can be empty.

Here is the code that initializes the map:

for(y = 0; y < g_map.Height(); y++)
{

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 586

586 19. Tying It Together: Graphs

for(x = 0; x < g_map.Width(); x++)
{

g_map.Get(x, y, 0) = -1;

g_map.Get(x, y, 1) = -1;

g_map.Get(x, y, 2) = -1;

g_map.Get(x, y, 3) = -1;

}
}

All four layers of the map are cleared to nothing so that when you start the map
editor, the map is completely empty.

Setting and Clearing Tiles

In a tilemap, you had a full 64 � 64 grid to work with, and it was assumed that
every single tile existed. When using a directionmap, you can have weird map
shapes that don’t conform to a rectangle. See Figure 19.5 for an example.

Figure 19.5

This is a grid containing
a directionmap. Only
the cells that have gray
in them are actually
rooms in the map.

In the figure is a grid, and some of the cells in the grid are gray. These gray cells
represent the actual map—all the white cells are empty, cells that don’t exist in
the map.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 587

587The Directionmap Map Editor

When creating a directionmap, all of the cells in the 64 � 64 grid will be part of
the void, and they will be blank. How does the program tell if a cell is part of the
map or part of the void, then? This editor uses a simple assumption: If a cell has a
base tile (on layer 0), then it is part of the map. If the base tile is –1, then the cell is
part of the void.

When converting a map from the grid form into the directionmap form, it goes
through and picks out all of the cells that have a base tile value of 0 or more and
ignores everything else.

Now, because a room doesn’t exist if it doesn’t have a base tile, you don’t want the
map editor to be able to draw items, people, and overlay tiles on cells that aren’t
part of the map, so the part of the program that actually draws the current tile onto
the map is modified a little bit. To make the program cleaner, the function has now
been moved into its own separate function:

void DrawTile(int p_x, int p_y)
{

int z;

This function takes the coordinates of the cell on the grid that the user wants to
draw on. The rest of the drawing information is stored in global variables, which
are easy to access in this function.

if(p_x < g_map.Width() && p_y < g_map.Height())

{

if((g_currentlayer > 0 && g_map.Get(p_x, p_y, 0) == -1))

return;

First, the function makes sure that the coordinates are valid coordinates on the
map. If so, then it continues. The second if statement in the previous code seg-
ment implements a check on the base tile. If you are drawing a non-base tile (cur-
rent layer is more than 0) and the current base tile doesn’t exist (the value is –1),
you are trying to draw an item, a person, or an overlay on a room that doesn’t exist
in the map. The function knows this, so it exits out and doesn’t actually draw the
tile.

if(g_currentlayer == 0 && g_currenttile == -1)
{

for(z = 0; z < 4; z++)
{

g_map.Get(p_x, p_y, z) = -1;

}

}

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 588

588 19. Tying It Together: Graphs

The preceding code segment is somewhat important. Previously, whenever you
wanted to clear the tile on a given layer, the g_currentlayer variable was set to the
layer that you wanted to clear, and the g_currenttile variable was set to –1. Then,
whenever you draw on the map, a –1 is placed into the current layer, and any item
that was there is now cleared. Unfortunately, there is a problem with this method.
If you clear the base tile in a directionmap, you are actually deleting the entire
room. Using the old method of clearing a layer would not work because the base
tile would be cleared, but the overlay, item, and person layers would not be. Then
your map would look weird in the editor and not even work right in the game
because all of these tiles would just be ignored.

So, whenever the function detects that you are trying to clear the base layer, it
loops through all four layers on that cell and clears them all, essentially deleting
the entire cell from the map.

else
{

g_map.Get(p_x, p_y, g_currentlayer) = g_currenttile;
}

}
}

If you’re not clearing the base layer, then the current tile is written to the map.

Loading a Map
You should know what the file format for the directionmaps look like by now. If
not, please go back and take a look at Figures 19.2 and 19.3.

The MapEntry class from Game Demonstration 19-1 is also used in this game demo.
If you remember, this class follows the structure shown in Figure 19.2 and stores
information about a single room in the map.

Here is the function listing:

void Load()
{

MapEntry entry;
int x, y, z;
int cells;

The entry variable loads in each map entry, the x, y, and z variables loop through
the grid, and the cells variable holds the number of rooms in the map.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 589

589The Directionmap Map Editor

for(z = 0; z < 4; z++)
{

for(y = 0; y < g_map.Height(); y++)

{

for(x = 0; x < g_map.Width(); x++)

{

g_map.Get(x, y, z) = -1;

}

}

}

This code segment goes through every cell in the entire map and clears it out to
–1. When a new map is loaded, each room is read in from disk and then placed
into the grid. When this happens, you may end up getting cells from a previous
map enmeshed into the cells of the map that you are loading, so this clears out the
map and prevents this from happening.

FILE* f = fopen(g_filename, “rb”);

if(f == 0)

return;

fread(&x, 1, sizeof(int), f);

if(x != 1)

{

fclose(f);

return;

}

The previous code segment tries to open the map for reading. If it can’t be
opened, then the function just returns. Then the function reads in the ID of the
map and returns if the ID isn’t 1 (which is the ID for all directionmaps).

fread(&cells, 1, sizeof(int), f);

for(x = 0; x < cells; x++)

{

After that, the number of rooms in the map is read in and a for-loop is started that
will loop through every room in the file.

fread(&entry, 1, sizeof(MapEntry), f);

for(z = 0; z < 4; z++)

{

g_map.Get(entry.x, entry.y, z) = entry.layers[z];

}

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 590

590 19. Tying It Together: Graphs

The entry of each room in the file is read into the entry variable. The x and y vari-
ables of each entry tell the editor at which grid position each room should be
placed. Then the function loops through each layer of the entry and copies the tile
value of the entry into the map grid at the coordinates of the entry. Note that all
exit information for each room is discarded; the editor assumes that two rooms
next to each other will automatically be connected, so this information is automati-
cally generated when the map is saved back to disk.

}
fread(g_exits[0], 64, sizeof(char), f);
fread(g_exits[1], 64, sizeof(char), f);
fread(g_exits[2], 64, sizeof(char), f);
fclose(f);

}

Finally, the level exit information is read from the file into the three exit strings,
and the file is closed.

Saving a Map

Saving a directionmap to disk is a slightly more complicated process than loading
one in because it requires more processing.

When saving a directionmap to disk from a grid form, several things need to hap-
pen. First, the function needs to go through each cell in the grid and pick out
which cells are valid rooms and which ones aren’t. Every time it finds a new valid
room, it is assigned a new cell number, which will be the room’s number in the
directionmap.

After every valid cell has a number, the function then needs to go through each
cell again and calculate its exit information. After that has happened, the rooms
can be saved to disk. Here is the function:

void Save()
{

MapEntry entry;
Array2D<int> cellnumbers(g_map.Width(), g_map.Height());
int tilecount = 0;
int x, y, z;
int ax, ay;
int d;

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 591

591The Directionmap Map Editor

Again, there is a MapEntry variable, but this time it will be used to save each room to
disk instead of loading it. After that is a 2D array called cellnumbers. This array will
store the room number of each cell in the grid if it is a valid room.

The tilecount variable will be used to keep track of the number of rooms in the
map, as well as assign room numbers to each one during the first pass. The rest of
the variables are used for storing temporary results and looping.

FILE* f = fopen(g_filename, “wb”);

if(f == 0)

return;

As usual, the function tries to open the file to write to and returns if it could not
do so.

for(y = 0; y < g_map.Height(); y++)
{

for(x = 0; x < g_map.Width(); x++)

{

if(g_map.Get(x, y, 0) != -1)
{

cellnumbers.Get(x, y) = tilecount;

tilecount++;

}

}

}

Now the loop goes through each base tile in the grid. If it finds a base tile that isn’t
empty, then the number of that cell is set to the current tile count, and the tile
count is incremented. This means that the very first room the function finds will be
room number 0, and the next one will be 1, and so on.

x = 1;

fwrite(&x, 1, sizeof(int), f);

fwrite(&tilecount, 1, sizeof(int), f);

At this point, the first pass has completed, so you are ready to write the map to
disk. The ID number, 1, is stored into x, which is then written to the file. The num-
ber of rooms in the map is written next.

for(y = 0; y < g_map.Height(); y++)
{

for(x = 0; x < g_map.Width(); x++)

{

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 592

592 19. Tying It Together: Graphs

if(g_map.Get(x, y, 0) != -1)

{

Now the second and final pass is started. It goes through every cell once again and
picks out the cells that have a base tile.

entry.x = x;

entry.y = y;

The x and y coordinates of the current room entry are set to be the same as the
coordinates of the room on the 64 � 64 grid. This is an easy way to tell where the
rooms are in relation to each other.

for(d = 0; d < 4; d++)
{

ax = DIRECTIONTABLE[d][0] + x;
ay = DIRECTIONTABLE[d][1] + y;

Now the function loops through all four directions from the current cell, computes
the coordinates of the current adjacent cell, and stores them into ax and ay. After
those coordinates have been calculated, the function needs to find out if those
coordinates are valid on the grid:

if(ax >= 0 && ax < g_map.Width() &&
ay >= 0 && ay < g_map.Height())

{
if(g_map.Get(ax, ay, 0) != -1)
{

entry.directions[d] =
cellnumbers.Get(ax, ay);

}
else
{

entry.directions[d] = -1;
}

}
}

After it has verified that the coordinates are on the map, it needs to check to see if
the cell in those coordinates is a real room or part of the void. If it’s real, then
the entry of the current room is updated so that the direction pointer points to
the room that is in the adjacent cell. The room number is retrieved from the
cellnumbers array that was calculated in the first pass.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 593

593The Directionmap Map Editor

If there is no cell there, then the direction entry is set to –1, which means that
there is no exit in that direction.

for(z = 0; z < 4; z++)

{

entry.layers[z] = g_map.Get(x, y, z);
}
fwrite(&entry, 1, sizeof(MapEntry), f);

}

}

}

The tile numbers of each layer of the entry are set to the same values as the cell in
the grid, and then the entry is written to disk. When every room has been written,
that is the end of the second pass.

fwrite(g_exits[0], 64, sizeof(char), f);
fwrite(g_exits[1], 64, sizeof(char), f);
fwrite(g_exits[2], 64, sizeof(char), f);
fclose(f);

}

Finally, the three exit strings are written to disk, and the file is closed. You now
have a directionmap on disk!

Using the Editor

The editor, with the exception of the new tileset and the del base button, is virtu-
ally identical to the editor from Chapter 16. This editor will only read and write
directionmap files, so don’t try editing tilemap files in this editor—it won’t work.

Figure 19.6 shows a screenshot of the editor in action, editing the level I provided
for the demo.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 594

594 19. Tying It Together: Graphs

Figure 19.6

Here is a screenshot
from the
directionmap
dungeon editor.

Play around with it, and see what you can do.

Upgrading the Tilemap
Editor
There is one more thing that needs to be done—a very quick edit to the old
tilemap editor from Chapter 16 so that it supports the new ID number on tilemaps.
This update is so simple that I probably don’t need to mention it, but it is here for
completeness nonetheless.

The updated map editor is on the CD in the directory
\demonstrations\ch19\Game03 - TileMap Editor\ .

The only two things that are changed are the Load and Save functions.

The Save Function
The code in bold has been added to the function:

void Save()
{

int maptype = 0;

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 595

595Upgrading the Tilemap Editor

FILE* f = fopen(g_filename, “wb”);

if(f == 0)

return;

fwrite(&maptype, 1, sizeof(int), f);
fwrite(g_map.m_array,

g_map.Depth() * g_map.Height() * g_map.Width(),
sizeof(int),
f);

fwrite(g_exits[0], 64, sizeof(char), f);
fwrite(g_exits[1], 64, sizeof(char), f);
fwrite(g_exits[2], 64, sizeof(char), f);
fclose(f);

}

The code just saves the map ID before all the rest of the data.

The Load Function
The code in bold has been added to this function from the previous version:

void Load()
{

int maptype = 0;
FILE* f = fopen(g_filename, “rb”);

if(f == 0)

return;

fread(&maptype, 1, sizeof(int), f);

if(maptype != 0)

return;

fread(g_map.m_array,
g_map.Depth() * g_map.Height() * g_map.Width(),
sizeof(int),
f);

fread(g_exits[0], 64, sizeof(char), f);
fread(g_exits[1], 64, sizeof(char), f);
fread(g_exits[2], 64, sizeof(char), f);
fclose(f);

}

The code reads in the map type and quits if it is not the type that is expected.

Team LRN

Data Structures CH19 11/5/02 8:49 AM Page 596

596 19. Tying It Together: Graphs

Conclusion

Hopefully, now you can see how designing your game structures to be flexible at
the very beginning can really save you a lot of work later on when you want to add
features to the game.

Although I could have used tons of other examples to integrate graphs into this
chapter, this chapter had two major points I wanted to get across. First and fore-
most, I wanted to show you how easy it is to extend your game if you design it cor-
rectly. A computer program is nothing more than data and functions that operate
on that data, so it is essential that you design your data correctly from the start.
Second, I wanted to reinforce some graph-like concepts in this chapter and show
you how to use directionmaps.

I hope you understand everything in this chapter. You have now completed the
data structure segment of the book. From now on, you will be learning about popu-
lar algorithms used in game programming, a subject that goes hand-in-hand with
data structures.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 597

PART FIVE

Algorithms

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 598

20 Sorting Data

21 Data Compression

22

23

24

Random Numbers

Pathfinding

Tying It Together: Algorithms

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 599

CHAPTER 20

Sorting
Data

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 600

600 20. Sorting Data

When people teach you how to sort data in a book, they usually either put
the information up near the front of the book or spread the information

haphazardly throughout the book. I’ve decided to use a different method. Now
that you’ve learned about every structure in the book, I feel it is safe to introduce
you to some of the more famous algorithms.

Sorting data is an important subject because just about every program out there
sorts data in one way or another. In this chapter, you will learn

■ What the bubble sort is
■ How to code the bubble sort
■ What the heap sort is
■ How to code the heap sort
■ What the quicksort is
■ How to code the quicksort
■ How the bubble, heap, and quicksorts compare to each other
■ What the radix sort is
■ How to code the radix sort

The Simplest Sort: Bubble Sort

Every sorting tutorial or book in the world shows you, or at least mentions, the bub-
ble sort. This is because the bubble sort is the easiest sort in the world to code.
Unfortunately, it is also one of the slowest sorts in existence.

The bubble sort is a brute force sort; it uses a very simple algorithm to actually move
data around so that it ends up sorted.

Look at Figure 20.1 for a moment. You want to sort the data in the array on the left
so that the highest number is at the top. Using the bubble sort, you would first
compare the bottom two indexes, which hold 7 and 2. Because 7 is larger than 2,
they are swapped. The process continues, and the indexes containing 7 and 1 are
compared. Again, because 7 is larger than 1, they are swapped. This process contin-
ues until the 7 is bubbled up to the top of the array.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 601

601The Simplest Sort: Bubble Sort

Figure 20.1

This is one pass of
the bubble sort.

Now that the highest number in the array has been bubbled up to the top of the
array, this process is repeated, as shown in Figure 20.2.

Figure 20.2

This is the second pass
of the bubble sort.

Notice that this time fewer swaps occur. This time, the 1 and the 2 are swapped,
and then the 6 and the 4 are swapped. Amazingly, after just two passes of the bub-
ble sort, this array was sorted.

Worst-Case Bubble Sort

Unfortunately, it isn’t always like this. Most of the time, the bubble sort takes much
longer to complete. Take the array in Figure 20.3, for example. On the first pass, 6
is bubbled up to the top. On the second pass, 5 is bubbled up to the top, and this
continues with each iteration until it is sorted. This array requires 5 iterations of
the bubble sort to become sorted.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 602

602 20. Sorting Data

Figure 20.3

Here is the worst-
case scenario for a
bubble sort.

Because a bubble sort is essentially a doubly-nested for-loop, the algorithm is classi-
fied as an O(n 2) algorithm.

All in all, the bubble sort is pretty “dumb.”

Graphical Demonstration:
Bubble Sort
This is Graphical Demonstration 20-1, which can be found on the CD in the direc-
tory \demonstrations\ch20\Demo01 – Bubble Sort\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo graphically shows you how the bubble sort actually works. When the
demo starts off, the screen is full of a huge mess of colored bars and two buttons, as
shown in Figure 20.4.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 603

603The Simplest Sort: Bubble Sort

Figure 20.4

Here is a screenshot
from the demo.

Clicking the Randomize button will randomize the bars, and clicking the Sort but-
ton will start the sorting animation. This will graphically show you how the bubble
sort works.

Figure 20.5 shows a screenshot of the same array, sorted.

Figure 20.5

Here is the sorted
array.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 604

604 20. Sorting Data

When you’re watching the demo, it is very easy to see how the bubble sort works,
because you can see the tallest bars being bubbled up to the end of the array.

Coding the Bubble Sort

All of the sorting functions found in this chapter can be found on the CD in the
file \structures\sorts.h.

Even though I don’t expect you to ever use the bubble sort in real life, the code is
available to you to test out if you want to. But trust me when I say that you don’t
ever want to be caught using the bubble sort in a real program.

Optimizations
There are two things that you need to keep in mind when coding the bubble sort.
The first thing you should notice is that if the function doesn’t swap any indexes on
a single pass, then the array is sorted and the function is complete.

The second thing you should notice is that because the bubble sort moves the highest
value into the top index on every pass, you know that the upper x indexes in a bubble
sort are sorted after x passes of the algorithm. Figure 20.6 illustrates this point.

Figure 20.6

The upper x indexes
are guaranteed to be
sorted after x passes.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 605

605The Simplest Sort: Bubble Sort

So this means that you don’t have to do any calculations in the upper part of the
array during each pass because you know that the upper part of the array is
already sorted.

Psuedo-Code
To start with, let me show you the algorithm in psuedo-code:

Bubblesort(Array)
int swaps = 1
int top = Array.size - 1
int index
while(top != 0 AND swaps != 0)

swaps = 0
for(index = 0; index < top; index++)

if Array[index] > Array[index + 1]
Swap(Array[index], Array[index + 1])
swaps++

end if
end for
top—

end while
end function

The function keeps track of how many swaps are made in each iteration. If there
weren’t any swaps made in the last iteration, then the array is sorted, and the loop
will end.

The inner loop goes through the array until it hits the top index, which represents
the highest unsorted index in the array. This takes advantage of the fact I demon-
strated in Figure 20.6 by not bothering to compare indexes in the sorted portion of
the array.

The C++ Code
The reason I showed you the pseudo-code for the bubble sort first is because I
decided to make the C++ Bubblesort function a little more complex, and you might
not have understood what the code meant if I just threw it at you.

Templates are a really wonderful thing, you know. They allow you to use the same
code over and over again, but I’m sure you already knew that because you’ve
already read Chapter 2, “Templates.”

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 606

606 20. Sorting Data

I’ll be using templates and function pointers to make the sorting functions in this
book as flexible as possible so that you will never need to program another sorting
algorithm after you have programmed these.

I’ve used the notion of comparison
functions before in Chapters 13,
“Binary Search Trees,” and 14,
“Priority Queues and Heaps,” and I’ll
be using them here again. To recap,
the comparison functions I use in this
book take two objects of the same
type and compare them. If the left
one is less than the right one, then
the function returns a number less
than 0; if they are equal, the function
returns 0; and if the left is greater
than the right, the function returns a
number greater than 0.

template<class DataType>

void BubbleSort(Array<DataType>& p_array,

int (*p_compare)(DataType, DataType))
{

int top = p_array.Size() - 1;
int index;
int swaps = 1;
while(top != 0 && swaps != 0)
{

swaps = 0;
for(index = 0; index < top; index++)
{

if(p_compare(p_array[index], p_array[index + 1]) > 0)
{

Swap(p_array[index], p_array[index + 1]);
swaps++;

}
}
top—;

}
}

TIP

whether or not the pointer is less than

comparison function can fix this and

Comparison functions allow for a great
deal of flexibility. For example, if you had
an array of pointers to objects, obviously
you would not want to compare the
pointers using the less-than or greater-
than operators, because it would return

or greater than the other pointer, but it
would not compare the actual objects. A

even allow you to reverse the sorting
order if you want to.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 607

607The Simplest Sort: Bubble Sort

The p_array variable is a reference to the array that you want to sort, and p_compare
is a pointer to the comparison function. The only things that are different from the
pseudo-code version is the call to p_compare, instead of a less-than comparison, and
the C++ template syntax.

Example 20-1
Using the bubblesort algorithm is somewhat easy, which is demonstrated by
Example 20-1. You can find this example on the CD in the directory
\examples\ch20\01 - Bubble Sort\ .

The example will use two arrays, one with integers and one with floats, and it will
sort them both using the BubbleSort function. To do this, you must first create the
comparison functions:

int compareint(int l, int r)
{

return l - r;
}

int compareintreverse(int l, int r)
{

return r - l;
}

int comparefloat(float l, float r)
{

if(l < r)
return -1;

if(l > r)
return 1;

return 0;
}

The first function compares integers normally by subtracting the right from the
left. If the left is less than the right, then it will return a negative number. If they
are equal, it will return 0, and if the left is greater than the right, it will return a
positive number.

The second function utilizes the flexible nature of using a comparison function
and reverses the order of subtraction so that lower numbers are actually seen as
being higher when using that comparison function.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 608

608 20. Sorting Data

The final function compares floats and returns a number based on how they
compare.

value with a

if(fabs(l-r) < threshold)

NOTE
Most floating point comparison functions are a little more complex than mine
here. For example, look at the numbers 1.00001 and 1.00002, which are practically
equal for all intents and purposes (except for intensely accurate scientific pro-
grams... but this is for games!).This comparison algorithm will see them as differ-
ent, which may or may not be what you intended. If you wanted to treat really
close floats as equal, you would do this by subtracting them and comparing that

threshold value.This value is arbitrary and can be whatever you want
it to be. If you wanted numbers that are less than 0.0001 apart to be considered
equal, then that is your threshold value. For the purposes of sorting an array, a
threshold is not really needed, which is why I did not include that feature.The
code would look somewhat like this: .The fabs func-
tion finds the absolute value of a float, so this line of code will determine if the
two numbers differ by the threshold.

After you create the comparison functions, you move on to creating the arrays:

Array<int> iarray(16);

Array<float> farray(16);

for(index = 0; index < 16; index++)

{

iarray[index] = rand() % 256;
farray[index] = (float)(rand() % 256) / 256.0f;

}

This code creates two arrays and fills them with random values. The integer array is
filled with integers from 0 to 255, and the float array is filled with floats from 0.0 to
1.0.

Finally, you get to the easy part, sorting the arrays (hooray!):

BubbleSort(iarray, compareint);
BubbleSort(farray, comparefloat);
BubbleSort(iarray, compareintreverse);

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 609

609The Hacked Sort: Heap Sort

Wasn’t that easy? You pass in the array you want to sort and the comparison func-
tion. The first two sorts sort the arrays in ascending order so that the lowest values
are first in the array. The third sort re-sorts the integer array in descending order
because the comparison function is reversed.

Isn’t that neat?

The Hacked Sort: Heap Sort

The heap (see Chapter 14) is one of my favorite data structures. Not only is it very
efficient for priority queues, but it can also be used as an efficient sorting algo-
rithm. I call it a hacked sort because heaps were never meant to sort data; this is just
a neat side effect of the heap data structure.

Just think about it for a moment: The heap is really efficient at inserting items
(O(log2n)), and really efficient at removing the highest item (also O(log2n)). So
what would happen if you were able to take the contents of an array, stick them all
into a heap, and then remove the highest item one at a time? You’d get a (less effi-
cient) version of the heap sort!

The downside of the algorithm I just described is that it requires twice the space of
the array, and if you’re sorting large amounts of items, this can be a problem.

So you need to think of a way to keep the data all in one place.

What if there was a way to convert an array of random data into a heap? That
would solve half the problem right there.

Luckily, there is a simple algorithm to turn an array into a heap, and it doesn’t use
any new algorithms to implement it! It’s very simple:

1. Find the last index on the second-lowest level of the heap.

2. Call the WalkDown function on that index.

3. Decrease the index by one.

4. Repeat steps 2 and 3 until the index is 0.

Amazingly, this simple process converts an array of items into a heap. Figure 20.7
shows you how to treat the array as a binary tree.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 610

610 20. Sorting Data

Figure 20.7

This is how you treat
an array as a binary
tree.

Note that this is just a conceptual conversion; you really haven’t done anything to
the array except look at it differently so you can understand how the algorithm
works better.

Now you can begin the process of converting the array into a valid heap, which is
shown in Figure 20.8.

Figure 20.8

This is how you
turn the array into
a heap.

First you call the WalkDown function on the 9 because it is the rightmost node on the
second-lowest level. Nothing happens in this case, though, because the 9 is higher
than both the 3 and the 7. Next, you call WalkDown on the 4, and it can be walked

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 611

611The Hacked Sort: Heap Sort

down, so it is swapped with the 6. Finally, you call WalkDown on the 2, and it is
walked down to the bottom of the heap. Congratulations, you now have a heap.

How do you turn the heap into a sorted array, though? Think about two things.
One, you always remove the highest item in the heap, and two, when you remove
the top of the heap, the size of the heap goes down by one.

In a normal heap, you discard the top of the heap and throw it away because you
don’t need it anymore, and then you move the last item to the top and walk it
down. For a heap sort, instead of discarding the top item, you just swap it with the
last item in the array and then perform the walkdown algorithm as usual. Figure
20.9 shows the first two passes of this process.

Figure 20.9

Here are the first
two passes of the
heap sort algorithm
on a heap.

The 9 and 2 are swapped first, and the 2 is walked down the tree, which puts 7 in
the root. In the second pass, the 7 and the 2 are swapped, and the 2 is again walked
down the tree. After these two passes, the last index of the array contains 9, and the
second-to-last index contains 7. If you continue using this process, you will eventu-
ally end up with a sorted array.

Graphical Demonstration: Heap
Sort
This is Graphical Demonstration 20-2, which you can find on the CD in the direc-
tory \demonstrations\ch20\Demo02 - Heap Sort\ .

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 612

612 20. Sorting Data

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo’s interface is the same as the previous demo, and the only difference is
that it uses the heapsort algorithm to sort the data.

Figure 20.10 shows a screenshot of the demo right after the heap-conversion phase,
where the array is now turned completely into a heap.

Figure 20.10

Here is a screenshot
of the array after it
has been turned into
a heap.

Figure 20.11 shows a screenshot of the demo in the middle of the sorting phase.

You can see that the left part of the array is a heap while the right half is sorted.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 613

613The Hacked Sort: Heap Sort

Figure 20.11

Here is a screenshot
of the half-sorted
array.

The first thing you should notice about this demo is that it is significantly faster
than the bubble sort demo (I demonstrate its speed later). The heap sort is a
smarter algorithm than the bubble sort; it focuses its efforts into finding the high-
est item in the array and quickly getting it to the correct position. This is different
from the bubble sort, which focuses its efforts in moving the highest item through-
out the entire array before it finds the correct place.

The heap sort is an O(n log2n) function. Remember, the WalkDown function is
O(log2n), and you call it n times. If you remember back to Chapter 1, “Basic
Algorithm Analysis,” you can see that a O(n log2n) function is much more efficient
than an O(n2) function like the bubble sort.

Coding the Heap Sort

There really isn’t much to coding the heap sort because you rely on functions that
you’ve already made.

The WalkDown Function
However, because you want to be able to pass the array into the heap sort function,
you won’t actually be using the heap class that you used in Chapter 14. Instead, a
new stand-alone WalkDown function is created so that it works on regular arrays:

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 614

614 20. Sorting Data

template<class DataType>
void HeapWalkDown(Array<DataType>& p_array,

int p_index,
int p_maxIndex,
int (*p_compare)(DataType, DataType))

{
int parent = p_index;
int child = p_index * 2;
DataType temp = p_array[parent - 1];
while(child <= p_maxIndex)
{

if(child < p_maxIndex)
{

if(p_compare(p_array[child - 1], p_array[child]) < 0)
{

child++;
}

}

if(p_compare(temp, p_array[child - 1]) < 0)

{

p_array[parent - 1] = p_array[child - 1];

parent = child;

child *= 2;

}

else

break;

}

p_array[parent - 1] = temp;

}

The main changes from the heap’s WalkDown function are highlighted in bold. The
function is a template function, so it works on any data type, and it takes a compari-
son function pointer so you can customize the way the sorting works.

Another change is the way the indexes are accessed. Each index has been
decreased by one in this version of the function. If you’ll remember, heaps need to
be accessed starting at index 1, and arrays start at index 0. For the heap, it is okay
to waste one index, but that index is not wasted here, so you need to treat each
index properly. For example, if you want to call WalkDown on the root, you pass the
function index 1 (the root index of a binary tree array), and it will automatically
figure out the real index, 0.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 615

615The Hacked Sort: Heap Sort

The HeapSort Function
Finally, here is the HeapSort function, split into sections so you can understand
it better.

template<class DataType>

void HeapSort(Array<DataType>& p_array, int (*p_compare)(DataType, DataType))

{

int index;
int maxIndex = p_array.Size();
int rightindex = maxIndex / 2;

The three variables that are used are the index, which will loop through the array,
the max index, which keeps track of the size of the heap at all times, and the right
index, which holds the index of the parent of the lowest node—the first node in
the tree that could possibly be walked down.

for(index = rightindex; index > 0; index—)

{

HeapWalkDown(p_array, index, maxIndex, p_compare);

}

The previous code segment starts at the lowest node that can be walked down and
walks everything down, turning the array into a heap.

while(maxIndex > 0)
{

Swap(p_array[0], p_array[maxIndex - 1]);
maxIndex—;
HeapWalkDown(p_array, 1, maxIndex, p_compare);

}
}

Finally, the algorithm swaps the first and last indexes, decreases the size of the
heap, and walks the top index down. This is repeated until the entire array is
sorted.

Example 20-2
Example 20-2 can be found on the CD in the directory \examples\ch20\02 - Heap
Sort\ . This example is the same as Example 20-1, except the calls to BubbleSort are
replaced with calls to HeapSort:

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 616

616 20. Sorting Data

HeapSort(iarray, compareint);
HeapSort(farray, comparefloat);
HeapSort(iarray, compareintreverse);

That’s all there is to it.

The Fastest Sort: Quicksort

This is the last general-purpose sort that I will go into in depth in this book for a
very simple reason: The quicksort is the fastest sort (so it isn’t just a clever name).

The quicksort is probably the sort that you will use the most in the real world
because it is so fast. The quicksort is a recursive algorithm that uses a divide and con-
quer approach to sorting the array.

The basic operation of the quicksort works like this:

1. Pick a pivot index.

2. Move everything that is less than the pivot to the left side of the array.

3. Move everything that is greater than the pivot to the right side of the array.

4. Recursively quicksort the array segment below the pivot.

5. Recursively quicksort the array segment above the pivot.

Sounds simple, doesn’t it? It really is simple when you think about it.

Picking the Pivot

The first thing you need to do is pick a pivot. Simple quicksort algorithms usually
pick the first or last index in the array and use that as a pivot, but that method has
a problem.

For the quicksort algorithm to work efficiently, you need to make sure that the sub-
arrays that are recursively sorted are about equal in size. Figure 20.12 shows a dia-
gram of the different outcomes of a quicksort.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 617

617The Fastest Sort: Quicksort

Figure 20.12

These are the best-
case and worst-case
quicksorts.

On the top, the pivot that is chosen is the median value in the array. The median
value in a bunch of numbers is the number that will fall in the middle of the array
when they are sorted.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 618

618 20. Sorting Data

Statistics Terms

Here are a few common terms used in statistics:
■	 mean - The mean is the average of a list of numbers,

which is simply their sum divided by their quantity.

■	 median - The median of a list of numbers is the num-
ber that is exactly in the center if the list is sorted.

■	 mode - The mode of a list of numbers is the most fre-
quent value in the list.

So if the median value of the array is picked as the pivot at each level in the func-
tion, everything below the pivot is moved to the left, and everything above is moved
to the right. The array is split exactly in half, and the quicksort is called on each
half. This is the optimal way for the quicksort to operate.

If, on the other hand, you choose a pivot close to the beginning or end of the
array, you get the picture on the bottom of Figure 20.12, the worst case. The quick-
sort has to do lots of work if it looks like that.

Unfortunately, there is no easy way to find the median of the array. In fact, the only
way that I know of to find the median of the array is to actually sort it, which is
what you’re trying to do anyway!

Instead, you must resort to a simple algorithm to find a good pivot; the most
famous of these algorithms is called the median-of-three algorithm. This algorithm
looks at three indexes: the first, the middle, and the last. It then chooses the
median of those three indexes and uses that as the pivot.

It turns out that this little optimization usually makes the quicksort an amazingly
fast sorting algorithm.

Performing the Quicksort

Now that you’ve chosen the pivot, you need to do something with the array. The
quicksort usually works by scanning downward and then upward, swapping num-
bers if they are on the wrong side of the array.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 619

619The Fastest Sort: Quicksort

To show you how this works, I have to take you through an example. Figure 20.13
shows the array you want to sort and how the pivot is chosen. In this example, you
examine 11, 1, and 5 and choose 5 as the pivot because it is the median value of
those three.

Figure 20.13

This is how you set
up an array for the
quicksort, by picking
a pivot.

Now that you have chosen the pivot, you have an empty cell. In order for the algo-
rithm to work correctly, you need to move that empty cell to the beginning of the
array. This isn’t a big problem because you can just swap 11 into the empty cell.

You are now ready to begin quicksorting.

After the array is set up, you perform a bunch of scans through the array. The first
thing to do is to scan downward, starting at the last index in the array. You con-
tinue scanning downward until you find a value that is lower than the pivot. At this
point you stop scanning and swap that value into the empty cell.

Now, you start at the bottom of the array and scan upward looking for values larger
than the pivot. Whenever you find one, it should be swapped into the empty cell.

This process continues until you have found the correct place for the pivot in the
array. Figure 20.14 illustrates this process.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 620

620 20. Sorting Data

Figure 20.14

Here is the first level
of the quicksort
algorithm.

You can see that the function starts scanning downward, and when it finds the 2, it
moves that into the empty cell because it is less than the pivot, 5.

Next, it scans upward and moves the 10 into the empty cell because it is greater
than the pivot. This process repeats, back and forth, until the scanning reaches the
empty cell. If you’re scanning and you’ve reached the empty cell going both ways,
then you know that you’ve found the correct position in the array for the pivot, so
you place the pivot back into the array and call quicksort on each of the two halves
of the array separated by the pivot.

Figure 20.15 shows the recursively called quicksort on the left half of the array.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 621

621The Fastest Sort: Quicksort

Figure 20.15

This is the quicksort
called on the left half
of the first partition.

You can see that this little segment is almost sorted now. Just one more call to the
Quicksort function should get that little section sorted.

NOTE
One of the more famous computer scientists, Donald Knuth, recommends that
instead of using a quicksort on really small array segments (somewhere around 5
cells), you should instead switch to a faster sort for small segments, such as the
bubble sort. Of course, this optimization really only matters when you are sorting
trillions of pieces of data, so it is unlikely you will notice much of a difference in
any of your games.

Graphical Demonstration:
Quicksort
This is Graphical Demonstration 20-3, which can be found on the CD in the direc-
tory \demonstrations\ch20\Demo03 - Quick Sort\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 622

622 20. Sorting Data

Again, this demo is just like the previous two, so I’ll just leave you with a pretty
screenshot demonstrating the partitioning of the array in Figure 20.16.

Figure 20.16

Here is a screenshot
from the quicksort
demo.

As you can see, the first pass of the
quicksort has separated the items so
that the small items are on the left and
the large items on the right.

See, the quicksort is a very fast sorting
algorithm because it works smarter than
all the rest. Instead of wasting time mov-
ing items all over the place, the func-
tion focuses on breaking the array in
half and splitting up the amount of
work done. Even though the quicksort
technically has a worst-case perfor-
mance of O(n2), which is in the range
of the bubble sort, in reality, you will
never see that. The quicksort almost
always runs in O(n log2n) time, which is
the fastest a sort can get.

n 2n

NOTE
Even though the heap sort and the
quicksort both share the same best-
case running time classes, the quick-
sort will always win.The heap sort
involves much more jumping around
in memory, which screws up the
cache, if you remember from
Chapter 3, “Arrays.” The quicksort is
much more cache-friendly because
you do a lot of continuous scanning.
Also, the heap sort is slower because
it actually does more work—you’re
calling two O(log) functions, and
the quicksort only uses one.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 623

623The Fastest Sort: Quicksort

Coding the Quicksort

The QuickSort function is very similar to the previous sorting functions because it is
templated and makes use of a comparison function.

The MedianOfThree Function
The first thing you need to do is create a function that will find the median of
three values in the array and return the index of the median value. As before, I
split the function up to make it more understandable:

template<class DataType>
int FindMedianOfThree(Array<DataType>& p_array,

int p_first,
int p_size,
int (*p_compare)(DataType, DataType))

{
int last = p_first + p_size - 1;
int mid = p_first + (p_size / 2);

The function takes an array as the first parameter, which is where the function will
find the median values. The next two parameters, p_first and p_size, tell the func-
tion the starting index and the size of the array segment that it is operating on.
Remember, because the quicksort is recursive, it operates on many array segments
during the process of sorting.

The last parameter is the comparison function.

After that, the function calculates the last index and the middle index of the array.

if(p_compare(p_array[p_first], p_array[mid]) < 0 &&

p_compare(p_array[p_first], p_array[last]) < 0)

{

if(p_compare(p_array[mid], p_array[last]) < 0)

return mid;

else

return last;

}

After the indexes have been calculated, you can begin to find the median value.
The first step is to find out if the first index has the smallest value. If it does, then
both the middle index and the last index are larger, so logically you can figure out
that the median value is the lesser of the middle and last indexes.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 624

624 20. Sorting Data

if(p_compare(p_array[mid], p_array[p_first]) < 0 &&

p_compare(p_array[mid], p_array[last]) < 0)

{

if(p_compare(p_array[p_first], p_array[last]) < 0)

return p_first;

else

return last;

}

By the same logic, the function then tests to see if the middle index is the smallest.
If so, then the smaller value of the first and last indexes is the median.

if(p_compare(p_array[mid], p_array[p_first]) < 0)

return mid;

else

return p_first;

Finally, if the function has not ended by this point, you know that the last index is
the smallest index in the array, so you compare the middle and first indexes to see
which one is lower.

NOTE
I’m sure there are more efficient implementations of this function. However, they
also are convoluted, look ugly, and are very difficult to understand.

The QuickSort Function
Finally, here is the actual QuickSort function. I’ve made a few optimizations to the
algorithm to make it more efficient, and I will explain them as I reach them.

template<class DataType>
void QuickSort(Array<DataType>& p_array,

int p_first,
int p_size,
int (*p_compare)(DataType, DataType))

{

As with the MedianOfThree function, this also has the same four parameters because
it can be called on any array segment in the array.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 625

625The Fastest Sort: Quicksort

int pivot;

int last = p_first + p_size - 1;

int mid;

int lower = p_first;

int higher = last;

The first variable is the pivot, which you should already be familiar with. The last
index holds the index of the last cell in the current array segment, and the mid
index holds the index of the median value of the array.

The lower and higher variables are used
to implement the optimization I men-
tioned a moment ago. Right now they
contain the indexes of the lowest part of
the array segment and the highest part
of the array segment.

if(p_size > 1)

{

At this point, the function checks to
make sure that it is sorting an array seg-
ment that is larger than one cell.
Obviously, an array segment with one
cell is already sorted, so there is no
need to waste time processing it.

I mentioned earlier that it is some-

segment.

NOTE

times more efficient to switch to a
different sorting algorithm when the
array segment gets smaller. Instead
of checking to see if the array size is
less than 1 right here, you could
check to see if the array size is less
than 5 or 6 (or anything you want)
and have the function call a different
sorting algorithm on the array

mid = FindMedianOfThree(p_array, p_first, p_size, p_compare);

pivot = p_array[mid];

p_array[mid] = p_array[p_first];

Now the function finds the index of the median value and places that into the
pivot. The function then moves the first index of the array into the index where
the median value was located so that the first cell in the array is empty.

while(lower < higher)
{

Now the loop begins, and it will continue looping while the lower index is lower
than the higher index.

while(p_compare(pivot, p_array[higher]) < 0 && lower < higher)
higher—;

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 626

626 20. Sorting Data

This code segment starts at the higher index and scans downward until it finds a
value lower than the pivot or the higher index becomes equal to the lower index.
This is important because it deviates from the algorithm I explained in Figure
20.14. If you could just take a moment to look back at that figure, I will show you
what is happening.

The function first looks at 11 and sees that it is larger than the pivot, 5, so it contin-
ues downward. It also looks at 9 and ignores that as well. The scan-down loop stops
when it reaches the 2 because it is lower than the pivot. At this point in time, higher
points to the index where 2 is, and lower points to the empty index at the start of
the array. The next step is to move the 2 into the lower index, which you shall see
in a moment, but the interesting part is on the third array in Figure 20.14. The fig-
ure shows that it started scanning down from the end of the array again, but why
should you waste your time doing that? You know that the 11 and the 9 are already
higher than the pivot, so instead of scanning down from the end of the array again,
you start scanning down from the higher index. It’s a neat optimization.

if(higher != lower)

{

p_array[lower] = p_array[higher];
lower++;

}

After the scanning is complete, the function checks to see if the higher and lower
indexes are equal or not. If they aren’t equal, then the scanning stopped because it
found a value less than the pivot, so it moves the value from the higher index to
the lower index and increases the lower index by one. This completes the scan-
down section.

while(p_compare(pivot, p_array[lower]) > 0 && lower < higher)
lower++;

After the scanning down is completed, the function now scans upward, trying to
find a value greater than the pivot.

if(higher != lower)
{

p_array[higher] = p_array[lower];
higher—;

}

}

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 627

627Graphical Demonstration: Race

When a value greater than the pivot has been found, it is moved into the higher
index, and the lower index is now considered empty.

p_array[lower] = pivot;
QuickSort(p_array, p_first, lower - p_first, p_compare);
QuickSort(p_array, lower + 1, last - lower, p_compare);

}
}

Finally, the pivot is placed back into the array at the correct position, and the two
halves of the array (not including the pivot) are recursively quicksorted.

Example 20-3
This is Example 20-3, which you can find on the CD in the directory
\examples\ch20\03 - Quicksort\ .

This example is very similar to Examples 20-1 and 20-2, except for three lines
of code:

QuickSort(iarray, 0, 16, compareint);
QuickSort(farray, 0, 16, comparefloat);
QuickSort(iarray, 0, 16, compareintreverse);

Note that you must include the starting index and the size parameters in the
QuickSort call, whereas you didn’t with the BubbleSort and HeapSort functions. This
actually allows you to have a little bit more customizability with the functions
because you can choose to sort only specific parts of the array instead of the
whole thing.

Graphical Demonstration:
Race
This is Graphical Demonstration 20-4, which you can find on the CD in the direc-
tory \demonstrations\ch20\Demo04 - Race\ .

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 628

628 20. Sorting Data

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

What would a chapter on sorting be without a hands-on comparison of the speed
of the different sorts? Ladies and gentlemen, start your engines!

This demonstration has the same interface as all the other demonstrations in this
chapter so far, except that there are now three arrays shown on the screen, like
Figure 20.17 shows.

This is the initial

demo.

Figure 20.17

screen from the

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 629

629Graphical Demonstration: Race

The array on top will be bubble sorted, the array in the middle will be heap sorted,
and the array on the bottom will be quicksorted. Care to place any wagers on who
will win this race?

And they’re off! Figure 20.18 shows a screenshot of the demo when the quicksort
completes.

Figure 20.18

Here is a screenshot
when the quicksort
completes.

The quicksort is clearly the champion here, because it is already sorted when the
heap sort is only half done and the bubble sort has barely even started the race!

Figure 20.19 shows a screenshot of the demo when the heap sort completes.

Figure 20.19

Here is a screenshot
when the heap sort
completes.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 630

630 20. Sorting Data

Can you believe that? The heap sort, while still being twice as slow as the quicksort,
still manages to kick the crap out of the bubble sort! The bubble sort array is still
almost entirely unsorted!

Play with the demo, and you will see that the quicksort is clearly superior to all the
other sorts and that the bubble sort is to be avoided at any cost!

The Clever Sort: Radix Sort

The three sorts I showed you previously are called general-purpose sorting algo-
rithms. They are called that because they can be used to sort any types of data.

There is one more special sorting algorithm that I want to show you, but it is not a
general-purpose sort. This sorting algorithm is really only useful for sorting num-
bers, but it is pretty much the fastest sort in the world (for huge datasets, it is even
faster than the quicksort).

The word radix means root or base, and you will see why this sort is called a radix
sort soon. (Sometimes it is also called the bin sort, which will become obvious in
a moment.)

Say you have an array of numbers and you want to sort them using a base-10 radix
sort. To do this, you need to set up a collection of ten bins. The bins can be arrays
or linked lists; the implementation is up to you. Remember, arrays are faster but
take up more memory, and linked lists are more memory efficient but a little slower.

So you set up ten bins and label them from 0 to 9. Now, when you start the radix
sort, you look at the last digit of each of the items in the array and then put them
in the appropriate bin. In Figure 20.20, the first number is 18, so it is placed in bin
8. The second number is 45, so it is placed in bin 5, and so on.

Figure 20.20

This is the first pass
of the radix sort.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 631

631The Clever Sort: Radix Sort

After the entire array is in the bins, the bins are then emptied into the array again,
starting at the first bin, so that 10 is put in first, then 72, and so on.

After the first step has been completed, you repeat the process, this time using the
second digit in the numbers. Figure 20.21 shows the second pass.

Figure 20.21

This is the second
pass of the radix
sort.

After that second pass, the entire array is sorted. Note that if you were using three-
digit numbers, sorting the array would require three passes.

Graphical Demonstration: Radix
Sorts
This is Graphical Demonstration 20-5, which you can find on the CD in the direc-
tory \demonstrations\ch20\Demo05 - Radix Sort\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 632

632 20. Sorting Data

Again, the interface is almost identical to the previous sorting demos, except that
there are three sorting buttons this time. Figure 20.22 shows a screenshot.

Figure 20.22

Here is a screenshot
from the Radix
Sort demo.

The three different buttons perform the radix sort using three different bases: base
2, base 4, and base 8.

In base 2, you only need two bins, but it takes seven passes to sort the array because
the values go up to 128 (27 = 128). Base 4 needs four bins, but it only takes four
passes to complete. (44 = 256, which is the smallest power of four above 128. Three
passes can only sort numbers up to 64, as 43 = 64.) Finally, base 8 needs only three
passes to complete, because 83 = 512, the smallest power of 8 above 128. Two passes
can only sort numbers up to 64, because 82 = 64.

So what does this mean? Table 20.1 shows the maximum size of the numbers that
the radix sorts can sort with different amounts of passes.

Base
2 0–1 0–3 0–7 0–15

4 0–3 0–15 0–63 0–255

8 0–7 0–63 0–511 0–4095

10 0–9 0–99 0–999 0–9999

16 0–15 0–255 0–4095 0–65535

Table 20.1 Radix Sort Passes

1 Pass 2 Passes 3 Passes 4 Passes

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 633

633The Clever Sort: Radix Sort

So, you can see from the table that the radix sort becomes more efficient with
larger bases, but the tradeoff is that the bins require more space with larger bases.

The upside is that this algorithm is very fast for large data sets because the algo-
rithm essentially runs in O(n) time; much better than the quicksort. The downside
is that there is a lot of overhead when using this sort, which means that the quick-
sort usually wins for small amounts of data. For example, the quicksort demo on
128 items runs faster than the base-8 radix sort on 128 items. It isn’t until you get
into the hundred thousand number range that the radix sort starts to become
faster than the quicksort.

Coding the Radix Sort

The radix sort is sometimes difficult to code. You need to first figure out how you
want the radix sort to actually work and which structures you’re going to use. I
mentioned before that you could use either arrays or linked lists for the bins, and
that is the major decision.

For the radix sorts in this book, I am assuming that speed is much more important
than conserving memory (have you seen the RAM prices lately? You’re nuts if you
don’t have at least 128MB now!), so I will use an array to store the bins.

The Bin Size
To optimize the way the memory is used in the process of the radix sort, I have
decided to make all of the bins static so that they are not allocated and deallo-
cated when the functions start and end.

To make a static array, though, I needed to use a global constant to determine the
maximum size of each bin:

const int RADIXBINSIZE = 1024;

The bins have a maximum bin size of 1024, but you can easily change that to a
larger number.

Base 2
Base-2 radix sorts take many more passes than other radix sorts because 2 is the
smallest base out there.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 634

634 20. Sorting Data

void RadixSort2(Array<int>& p_array, int p_passes)
{

if(p_array.Size() > RADIXBINSIZE)
return;

The radix sort takes the array you want to sort and the number of passes you want
to do on it as parameters.

The first thing the radix sort does is check to see if the array is larger than the bin
size. If it is, then the function exits out without sorting the array. Why does it do
this? Think about it for a minute; if the array has all even numbers in it (every item
has 0 for the last bit), then the first pass of the radix sort will throw them all in the
first bin. If the bin isn’t as large as the size of the array, you will get an overflow and
probably crash the program.

static int bins[2][RADIXBINSIZE];
int bincount[2];
int radix = 1;
int shift = 0;
int index;
int binindex;
int currentbin;

Next, the bins and the local variables are declared. The bins are static, so they
always stay in global memory, and they aren’t allocated and deallocated every time
the function is executed.

The bincount array keeps track of how many items are in each bin. The radix and
shift variables keep track of the current digit that is being examined and how
many places down it needs to be shifted to get a valid bin index. For example, the
radix in this starts off at 1 (binary 1) and goes to 2 (binary 10), and then 4 (binary
100), and so on. The shift variable keeps track of how many places the radix needs
to be shifted to the right to make the binary digit at the lowest position (0 when
radix is 1, 1 when radix is 2, 3 when radix is 4, 4 when radix is 8, and so on).

The other three variables are used to count through the array.

while(p_passes != 0)

{

p_passes—;

Now the loop starts, and it loops through with the number of passes you told it to.
This feature is added because you may want to only perform a few passes on an
array if you know that it contains small numbers so that you don’t waste your time
sorting an already-sorted array.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 635

635The Clever Sort: Radix Sort

bincount[0] = bincount[1] = 0;

for(index = 0; index < p_array.Size(); index++)

{

binindex = (p_array[index] & radix) >> shift;
bins[binindex][bincount[binindex]] = p_array[index];
bincount[binindex]++;

}

This segment first clears the bin counts and then loops through the array. This is
the process where the array is sorted into the bins. First, the correct bin index is
calculated by extracting the current binary digit (you saw how to extract binary dig-
its in Chapter 4, “Bitvectors”) and then shifting it downward.

After that, the item is moved into the correct bin, and the bin count is incre-
mented.

index = 0;

for(currentbin = 0; currentbin < 2; currentbin++)

{

binindex = 0;

while(bincount[currentbin] > 0)

{

p_array[index] = bins[currentbin][binindex];

binindex++;

bincount[currentbin]—;

index++;

}

}

The preceding code segment puts the items in each bin back into the array. First,
the index of the array is reset to 0, and then the outer loop loops through all of the
bins (only two in this case).

Then the inner loop loops through all of the items in each bin and copies them
back over into the array.

radix <<= 1;
shift += 1;

}
}

Finally, the current digit is shifted left by one digit, and the shift variable is incre-
mented.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 636

636 20. Sorting Data

Base 4
The base-4 radix sort is only slightly different than the base-2 radix sort. Instead of
inspecting individual bits, you will now be inspecting pairs of bits.

First, the initialization is a little different:

static int bins[4][RADIXBINSIZE];

int bincount[4];

int radix = 3;

Notice that radix is now 3, which in binary is 11. You want to extract a pair of bits,
so this works nicely. Of course, now that you are inspecting two bits at a time, you
need to shift the digit up by two bits now and not just one:

radix <<= 2;
shift += 2;

That’s really all there is to it; the rest of the function is pretty much identical.

Base 16
The base-16 radix sort looks at four bit-digits (also known as nibbles) instead of two
or one.

static int bins[16][RADIXBINSIZE];

int bincount[16];

int radix = 15;

Now the radix is 15, which in binary is 1111, because you want to inspect four digits
at once.

And finally:

radix <<= 4;
shift += 4;

You shift the radix up by four bits every pass.

Example 20-4
This is Example 20-4, which you can find on the CD in the directory
\examples\ch20\04 - Radix Sort\ .

Because the radix sort algorithm in this book only works on integers (you can
make one for floats if you want to, although it takes a lot of effort), this example
is simpler than the previous examples. In fact, there is no longer any need for a

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 637

637Other Sorts

comparison function at all. Unfortunately, due to the lack of a comparison func-
tion, the radix sort is very limited in what it can do.

Array<int> array(16);

int index;

for(index = 0; index < 16; index++)

{

array[index] = rand() % 256;
}

First fill up an array with 16 values from 0-255 (eight bit values).

RadixSort2(array, 8);
cout << “Integer Array: “;
PrintArray(array);
cout << endl;

Then sort the array using the base-2 radix sort, using eight passes. Remember,
because the array contains eight bit values, and the base-2 sort only looks at one bit
at a time, you need eight passes.

RadixSort4(array, 4);
cout << “Integer Array: “;
PrintArray(array);
cout << endl;

The base-4 radix sort looks at two bits at a time, so it only needs four passes.

RadixSort16(array, 2);
cout << “Integer Array: “;
PrintArray(array);
cout << endl;

Finally, the base-16 radix sort looks at four bits at a time, so it only needs two passes.

Other Sorts
There are literally tons of sorts out there. I showed you three of the most important
sorts (and the bubble sort to show you how not to do things).

Some of the other sorts you may hear about are the insertion sort, which is an algo-
rithm that basically searches through a sorted array for the right place to put some-
thing and inserts it; the shell sort, which I don’t understand—and the quicksort is
faster, anyway; and the merge sort, which is another recursive O(n log2n) sort.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 638

638 20. Sorting Data

However, I chose not to show you that sort here because the quicksort is almost
always faster and the merge sort requires an extra array in memory to work. It’s
really not worth it to learn that sort.

There is one more trick I want you to know about, the binary search tree sort. You last
encountered BSTs in Chapter 13. Figure 20.23 shows a diagram of a BST to refresh
your memory.

Figure 20.23

This is a binary
search tree.

Now, think back to Chapter 12, “Binary Trees,” and the in-order binary tree traversal.
Remember how that worked? If not, please go back and read up on it and then
come back here.

I want you to perform an in-order traversal on Figure 20.23 and write down the
numbers as you process them. Notice anything? The order is 3, 6, 11, 12, 18, 22,
and so on.

The order in which those numbers are listed is sorted. Isn’t that cool?

Application: Depth-Based
Games
This is Game Demo 20-1, which is on the CD in the directory
\demonstrations\ch20\Game01 - Depth\ .

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 639

639Application: Depth-Based Games

Compiling the Demo

This demonstration uses the SDLHelpers library that I have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

You often have an array of something in
a game that you want to sort, which
makes choosing a good sorting algo-
rithm very important in game program-
ming because sorting algorithms
typically take a long time.

Perhaps the most popular use of sorting
algorithms is depth-sorting. In 2D
games like The Legend of Zelda, it was
common to have sprites appear to be
3D and have the screen look slanted to
give some sense of depth.

To accomplish something like this, you
need to be able to sort the sprites on
the screen by their y-coordinates so that
players who are lower on the screen
appear closer.

The Player Class

NOTE
Depth sorting is probably even more
important today in 3D games. Most
video cards these days can support
all kinds of neat transparency effects,
and in order for them to work cor-
rectly, you need to be able to sort
your polygons and draw them in the
correct order. Although technologies
like the z-buffer make sorting less
important, you can also get some
nice speed increases by sorting your
polygons so that the closest polygons
are drawn first and therefore avoid
overdraw by marking pixels that have
already been drawn. If you don’t
know much about 3D programming
yet, don’t worry about this.

This simple demo will use a simple player class to store players in the game:

class Player
{
public:

int type;

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 640

640 20. Sorting Data

float x;
float y;

};

There are four types of players: the hero, the two monsters, and the tree. Okay,
technically a tree isn’t a player, but it really doesn’t matter for now.

The player also has two coordinates, which determine where it will be drawn on the
screen.

The Globals

The only global variables in the demo related to drawing the players are these two
arrays:

Array<Player> g_players(PLAYERS);
Array<Player*> g_sortedplayers(PLAYERS);

There are two arrays for a reason: The first array contains all of the players. The
second array holds pointers to all of the players in the player array. Every time a
frame is drawn, the program sorts the pointers by their y-coordinates and then
draws them in that order.

The Player Comparison Function

The player comparison function compares the y-coordinates of the players. This
function is almost exactly like the comparefloats functions from Examples 20-1,
20-2, and 20-3.

int CompareY(Player* l, Player* r)
{

if(l->y < r->y)
return -1;

if(l->y > r->y)
return 1;

return 0;
}

Initializing the Players

This function randomizes the players and copies the pointers to all of them over
into the sorted array:

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 641

641Application: Depth-Based Games

void InitPlayers()
{

int index;
for(index = 1; index < PLAYERS; index++)
{

g_players[index].type = rand() % 3 + 1;

g_players[index].x = rand() % WIDTH - 64;

g_players[index].y = rand() % HEIGHT + 64;

}

for(index = 0; index < PLAYERS; index++)

{

g_sortedplayers[index] = &(g_players[index]);
}

}

It is very important that you copy the pointers over to the array before you sort it. If
you don’t, you will be sorting dead pointers, and you will probably end up crashing
your program.

Sorting the Players

Sorting the players is simple.

DrawMap();

QuickSort(g_sortedplayers, 0, PLAYERS, CompareY);

DrawPlayers();

First the map is drawn, and then the players are sorted by using the QuickSort func-
tion from earlier, and then the players are drawn.

Drawing the Players

Drawing the players is as simple as looping through the sorted player array and
drawing each player in that order:

void DrawPlayers()
{

int index;
Player* p;
for(index = 0; index < PLAYERS; index++)
{

p = g_sortedplayers[index];

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 642

642 20. Sorting Data

SDLBlit(g_bmps[p->type], g_window, p->x, p->y - g_bmps[p->type]->h);
}

}

The y-coordinate manipulation in the call to SDLBlit makes sure that the bitmap is
drawn with the y-coordinate referring to the bottom of the bitmap (as opposed to
the top of the bitmap, which is how all blitting algorithms work). Don’t worry, all it
does is subtract the height of the bitmap from the coordinate and then draw it. If
you have sprites with different heights, then this step is absolutely necessary to get a
convincing depth effect.

Playing the Game

The game is simple. All you do is use your arrow keys on the keyboard to move the
player around the map. Pay attention to how things are drawn, and walk up and
down through the trees and monsters. This simple little sorting algorithm makes
the game seem a lot more realistic.

Figure 20.24 shows a screenshot from the game. The player is hiding behind a tree.

Figure 20.24

Here is a screenshot
from the sorting
demo.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 643

643Conclusion

Conclusion

There really isn’t much more to say about sorting except this: Use the quicksort.
Even if you’re afraid of recursion and you actually believe those people who say
that recursion slows things down (they are wrong, by the way), the quicksort does
far less work than any other sort in existence.

There is one final note that needs to be made. Most of the time, the data you will
be sorting in a computer game isn’t completely random. In fact, many times you
can somewhat predict how the data is ordered because you know how your game
creates and removes things from arrays. Using this knowledge, you are usually able
to optimize your games further, by knowing what areas of your arrays aren’t sorted,
and then only sorting those portions. So keep an eye out for places that you know
contain mostly sorted data.

Team LRN

Data Structures CH20 11/5/02 8:50 AM Page 644

This page intentionally left blank

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 645

CHAPTER 21

Data
Compression

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 646

646 21. Data Compression

You may not think that data compression is a very important topic in game
programming today. After all, we have computers now with up to and some-

times more than 1GB of RAM and hard drives with up to 200GB of storage. With
DVD-ROMs becoming more common, soon many games will start shipping on
them instead of CD-ROMs, giving game developers up to 4.7GB of storage on one
disc instead of just 650MB, like on a CD.

So, with all this storage space available, why bother trying to fit as much data into
as small of a place as possible?

It wasn’t very long ago when people were saying, “I can’t imagine an entire game
needing 650MB of space.” Now there are games that take two or three or even
more CD-ROMs. Face it: Game programmers always push the edge of available
technology. How long do you think it is going to be before DVD-ROMs seem too
small to hold a single game? The DVD Consortium is already designing a new for-
mat, called the blue ray DVD, which will hold up to 25GB of data!

In this chapter, you will learn

■ Why data is compressed
■ How to compress data using RLE compression
■ How to code an RLE compression class
■ How to use the RLE class to compress and decompress files
■ How to compress data using Huffman compression
■ How to code a Huffman compression class
■ How to use the Huffman class to compress and decompress files

Why Compress Data?
It is not just storage space that drives the need for data compression. There are a
few areas of game programming that still require efficient data compression

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 647

647Why Compress Data?

Data Busses

The most pressing concern today is the rapidly widening gap between the speed of
the processors in a system and the data bus. Figure 21.1 shows a diagram of the bus
between the Graphics Processing Unit (GPU) and the Central Processing Unit (CPU). The
GPU is the chip on your video card, and the CPU is the main processor on your
motherboard.

Figure 21.1

This is the bus
between the GPU
and the CPU.

When your processor wants things drawn, it sends data down the bus to the GPU,
which then takes that data and draws it.

Unfortunately, GPUs are getting so fast that they can draw more data than the CPU
can actually send to it. This problem is caused by the fact that computer busses are
very slow in comparison to the CPU and GPU speeds.

For example, in the early 1990s, you could get a 66MHz 486 processor that ran on
a 33MHz bus, which was half as fast. This meant that if the processor wanted infor-
mation that wasn’t in its cache (remember from Chapter 3, “Arrays,” that the cache
is memory directly on the processor itself), it would have to wait two cycles to get it.
Considering that most instructions take longer than two cycles to complete, that
wasn’t a big deal.

Fast forward a few years to the Pentiums, which ran on a 66MHz bus. The proces-
sors ran at up to 233MHz. The processor was running 3.5 times faster than the bus!
The processor had to wait even longer to transfer memory around.

I once put together a computer that ran on a 200MHz bus. The AMD Athlon
processor runs at 1.5GHz. This means that the processor is now running 7.5 times
faster than the bus!

As you can see, the faster processors get, the more waiting they have to do. This is a
huge problem for game developers because we want to be able to throw tons of
huge textures at the video card to make our worlds look nice and pretty, but the
bus just doesn’t want to transfer as much as we would like!

Early on, this problem was fixed by putting ultra-fast memory on video cards, like
Figure 21.2 shows. This way, whenever the video card needs to draw a big texture, it

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 648

648 21. Data Compression

doesn’t need to get the texture from the CPU; it already has the texture in its own
memory, and it draws it immediately.

Figure 21.2

This shows localized
memory sub-systems
for each of the
processors.

Another solution to the problem is what the Microsoft XBox did. They used a uni-
fied memory system, which looks like Figure 21.3.

Figure 21.3

This is the bus
system for the XBox.

The XBox solved the problem of fast memory access by keeping the memory all in
one place instead of duplicating the memory and sending it over the bus to the
video card.

Unfortunately, the amount of very fast memory that can be put on video cards or in
the XBox is usually not enough for most game programmers, so another solution is
needed.

Texture compression was invented, and nowadays most video cards support it. By
using texture compression features, you can compress textures to a much smaller
size than they were before and toss them all into video card memory, saving lots of
space and using less transfer time.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 649

649Run Length Encoding

The Internet

As a game programmer, you’ve been acquainted with the Internet for a while now,
I’m sure. The vast majority of the rest of the world is just learning about it, how-
ever, and multi-player gaming is the wave of the future. We saw the releases of the
blockbusters Quake 3 and Unreal Tournament a few years ago, and now Massively
Multi-player Online Role Playing Games (MMORPG) are becoming very popular. Some
of these games are absolutely huge and have hundreds of people playing at the
same time.

Unfortunately, the Internet is still young, and the more people who use it, the
slower it will get for everyone. Because of this, you need to make your multi-player
games as efficient as possible when sending information over the Internet. It is usu-
ally safer to spend a little more effort in making your game memory efficient than
to make it wait for lots of data while the players are playing the game.

Run Length Encoding
Perhaps the simplest way to compress data is by using Run Length Encoding (RLE).

To understand how RLE works, you first must think about how data is stored.
Whether it is an image, a document, or any other piece of data, the data inside is
always broken down into discrete elements, which have a definite value. Documents
have characters, images have pixels, and so on.

Sometimes the individual data elements in a piece of data repeat themselves. For
example, Figure 21.4 shows the contents of a simple text file that has repeating
characters.

Figure 21.4

Here is a simple text
file with repeating
characters.

Now, instead of representing each character in that file, wouldn’t it be easier to say,
“There are 3 As, 5 Bs, 6 Cs, and 2 Ds”? Figure 21.5 shows this.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 650

650 21. Data Compression

Figure 21.5

This is how you
convert text into RLE.

That’s all there is to the basic theory of RLE. The idea is that some types of data
have runs of data that are repeated, and keeping track of the runs is cheaper than
keeping track of the actual data. It converts a run of a piece of data into a length
and one instance of that data.

What Kinds of Data Can Be Used
for RLE?
Because this is a very simple compression scheme, it also has lots of drawbacks. For
example, look at the text in Figure 21.6.

Figure 21.6

This is a bad
example of using
RLE.The text has
almost no repeating
characters.

As you can see from the figure, using RLE on the text actually makes it bigger
because there are almost no runs in the text at all!

Letters rarely repeat themselves in text files, so text is a very bad kind of data to
compress using RLE.

On the other hand, bitmaps with transparency are a really nice kind of data to
compress using RLE compression—especially fonts. Look at Figure 21.7 for an
example.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 651

651Run Length Encoding

Figure 21.7

This is a 64 � 64
pixel bitmap of the
letter A.

In this bitmap, all of the transparent pixels (the pixels that aren’t drawn) are white,
and all the visible pixels are black. Think of the bitmap as a 2D array for a moment.
You can see that a lot of the pixels in the bitmap repeat each other, which makes it
ideal for RLE compression.

Look at the first row on the top; you can see that every pixel is white. The same
goes with the next row, and the third row has 27 white pixels before a black pixel is
seen. If you treat the bitmap like an array, there are 155 white pixels in a row.

After the 155 white pixels, there are 11 black pixels, and then it switches to white
again. If you used one byte to store the length of the run and one byte to store the
color, then you can condense the first 166 pixels (166 uncompressed bytes, assum-
ing you use 1 byte per pixel) into just 4 bytes!

Isn’t that amazing? I’d say so.

Graphical Demonstration: RLEs

This is Graphical Demonstration 21-1, which is on the CD in the directory \demon-
strations\ch21\Demo01 - RLE Compression\ .

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 652

652 21. Data Compression

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo is fairly simple. It lets you load in a bitmap, and it calculates how many
pixels there are and how many runs there would be if you converted it into an
RLE. Figure 21.8 shows a screenshot.

Figure 21.8

Here is a screenshot
from the demo.

In the figure, there are four text boxes that contain information about the bitmap
file and the RLE it would be converted into. The first box is where you type the
name of the BMP file. After you type in the name of the file you want to load, press
Enter, and the next three boxes will be loaded with information about the file.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 653

653Run Length Encoding

The box labeled File size holds the size of the bmp file, in bytes. This information
is not compressed in any way. The next box, RLE size, holds the number of runs
that will be needed to store the image, using the current length of a run. The final
box, byte size, shows the size of the actual RLE when it is compressed.

Keep in mind that each run takes about twice as much memory as a single pixel,
depending on how you store the data.

For example, your length size is up to you. You can use a single byte (8 bits) to
store the length of a run, but then you’re limited to runs of 255 pixels in length
(the highest number an 8-bit number can store is 2n �1, which is 255 when n is 8).
You can also use 2 bytes, 3 bytes, or even 4 bytes per run, and the program will cal-
culate those for you.

If you’re not quite sure about what I mean by this, look at Figure 21.9, which shows
you the four different run combinations that this program uses.

available run

Figure 21.9

These are the

configurations.

This demo assumes that you will be using 24-bit color for the bitmaps, which is stan-
dard for most true color bitmap file formats. Each pixel will take 3 bytes. The first run
option, 8-bit, uses 4 bytes total for each run. Likewise, the second uses 5 bytes, the
third 6 bytes, and the fourth 7 bytes per run if you use 32 bits for the run length.

I have provided several bitmaps for you to test the demo out with. For example,
load up the demo and type in a.bmp into the Filename text box and press Enter.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 654

654 21. Data Compression

The program should tell you that the bitmap is 4096 pixels. It should also tell you
that it will take 206 runs to store the bitmap using an 8-bit length. Because an 8-bit
length takes up 4 bytes per run, this bitmap will take up 824 bytes total to store in
RLE form. That’s a nice compression right there because the actual a.bmp file
takes up 5,174 bytes on disk, so you’ve achieved a 6:1 compression ratio.

Now I want you to switch to 16-bit mode. Note that the number of runs has gone
down by one, from 206 to 205. This is because there is one run in the bitmap
that is longer than 256 pixels, so it had to be split up into two runs when using an
8-bit length. But even though you’ve decreased the number of runs, the overall
file size has gone up to 1,025 bytes because each run now takes up five bytes
instead of just four.

You can switch to 24- and 32-bit modes, too, but you can clearly see that this is a
waste of memory because no runs go longer than 65,336 pixels, which is how many
pixels a 16-bit run can hold.

Now load the file biga.bmp. In 8-bit mode, there are 846 runs, which takes the RLE
size to 3,384 bytes. That bitmap file is 196,662 bytes in size, so you’ve achieved a
58:1 compression ratio with this bitmap!
That’s impressive, but you also need to
consider that you’re using what is essen-

Anti-aliasing

TIP

defi-
nitely
lengths.

NOTE
is the process of blend-

ing sharp edges in a picture so that
you don’t see the individual pixels.

I personally recommend always using 1
byte for the run size. In RLE images,
you’re pretty lucky if you get a lot of
runs that are over 256 pixels in size, so it
is usually a waste of space to pick a larg-
er length size, like 16 bits, and it is

not worth it to use 24- and 32-bit

tially a monochrome (black-and-white)
bitmap, so there is a lot less change in
the image. To compare this compres-
sion ratio to a more realistic image, load
the bigaa.bmp file, which is the same
image with the edges anti-aliased.

The anti-aliased image requires 1,820
runs in 8-bit mode, which takes up
7,280 bytes. This is “only” a 27:1 com-
pression ratio, much less than the
non-anti-aliased version.

Go back to the biga.bmp file now and
switch to 16-bit mode. Notice that this
time the runs went down to 819 from
845. In this bitmap, 27 runs were
longer than 255 and had to be split
up. Unfortunately, even though there were more runs that needed to be split up, it
still makes the file bigger in 16-bit mode.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 655

655Run Length Encoding

I only provided one bitmap that is smaller when you go up to the 16-bit length mode,
and that is blank.bmp. This bitmap is a blank white 256 � 256 image. In 8-bit mode,
there are 258 runs in the image, which take up 1,032 bytes. Switch to 16-bit mode,
and the runs drop down to 2! In 16-bit mode, this takes up 10 bytes. Now take it
down one more level to 24-bit and you get 1 run, for a total file size of 6 bytes!

The original bitmap file takes up 196,662 bytes, so this is a compression ratio of
32,777:1! Now, hold on a moment, and don’t get too excited.

Think about it, RLE is most efficient when storing large amounts of repeating data.
But repeating data is boring! Bitmaps that are compressed well using RLE compres-
sion aren’t very exciting at all!

To demonstrate, load up the
marble.bmp and the stone.bmp
bitmaps, to see what kind of file sizes
you would get with RLE compression.

With the marble bitmap, you get
64,253 runs in 8-bit mode, but there
are 65,336 pixels total! That means
that there are only around 1,000 runs
in the image that have more than 1
pixel in them, which is clearly a waste.
Using 8-bit mode, the RLE takes up
257,012 bytes, whereas the actual
bitmap takes up only 196,662 bytes—
RLE compression actually made the
file bigger!

The situation is the same with the
stone bitmap, which takes up 941,104
bytes as an RLE but 263,222 bytes as a
bitmap.

So, you can see that the RLE compres-
sion only works on certain kinds of
bitmaps.

TIP
This may not be very relevant with
today’s games, but a few years ago I was
able to receive a really nice speed boost
by using RLE sprites.You see, when a
sprite is drawn, the video card checks to
see which pixels are drawn and which
pixels are transparent. By using RLEs, I
was able to reduce the number of
checks dramatically. So if I had a run of
128 transparent pixels, I could just skip
over all 128 pixels and didn’t need to
check each one like a standard blitter.
Of course, most video cards these days
are faster using the standard blitter any-
way because they store the entire image
in video memory, whereas the RLE blit-
ting method requires you to manually
send every pixel to draw over the video
bus during run time, which makes this
method somewhat worthless on modern
hardware.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 656

656 21. Data Compression

Coding an RLE Compressor and
Decompressor
The file that contains all the RLE source code in this section is on the CD in the
directory \structures\RLE.h.

In this section, I take you through creating a generic RLE compressor and decom-
pressor.

The Structure
The structure of the RLE class is simple; it will hold an array of runs. A run is really
just a pair of data: the actual data and the length.

template<class DataType>
class RLEPair
{
public:

DataType m_data;
unsigned char m_length;

};

This is a templated class, so you can use
any type of data you want with the RLE
compressor and decompressor. Notice
how the length is an unsigned char; this
is because this implementation of the
RLE algorithm uses an 8-bit length.
Remember the analysis from the last
section, where I showed that an 8-bit
length is almost always a better idea
than any other length?

So this RLE class is somewhat flexible, but not 100 percent flexible. Some com-
puter science professor out there is calling me an idiot for this, but I don’t care
(hah!).

After declaring the pair class, the actual RLE container class is declared. Here is
the declaration and the data inside the class.

template<class DataType>
class RLE
{

data has huge
data.

NOTE
If you’re really into flexible program-
ming, you could modify this class so
that you can use a variable length
type, but I don’t think it’s worth it
because using higher length is only
suitable for the rare case when your

amounts of repeating

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 657

657Run Length Encoding

public:
typedef RLEPair<DataType> Pair;
Array<Pair> m_RLE;
int m_runs;
int m_size;

}

The RLE class is templated, so you can store any type of data in it. The only limita-
tion is that the data type you use should support the comparison operator (==).

The class has an array of pairs and keeps track of how many runs are in the array
and the number of items that the runs represent.

For example, if you compress an array of 1,000 items into 20 runs, then m_runs will
hold 20 and m_size will hold 1,000. The array itself is automatically resized by the
compression function, so you never have to worry about running out of room for
the runs.

The Constructor
The constructor just initializes the RLE array to one index and clears the other
variables.

RLE()
: m_RLE(1)

{
m_runs = 0;
m_size = 0;

}

Later on you’ll see that the compression algorithm doubles the size of the RLE
array every time it runs out of space, so making it one cell in size makes the algo-
rithm easy to use.

The Compression Algorithm
The compression algorithm takes an array of items and turns them into an RLE.
This is accomplished using the CreateRLE function.

Here is the source code, which is pretty simple when you think about it. I will split
it up into sections to explain it better.

void CreateRLE(Array<DataType>& p_array)
{

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 658

658 21. Data Compression

int currentrun = 0;

int index;

The function is very simple and takes an array reference as a parameter. There are
two local counting variables, one that keeps track of the current run and one that
keeps track of the index in the uncompressed array.

m_RLE[0].m_data = p_array[0];

m_RLE[0].m_length = 1;

Because the RLE array is always at least one cell in size, it is safe to assume that
index 0 is valid. Therefore, the first index in the array is placed into the first run in
the RLE array, and the size of the run is set to 1. Note that this function overwrites
any RLE information that already exists.

m_size = p_array.Size();

To complete the function initialization, the size of the uncompressed array is
recorded to make decompression easier later on.

for(index = 1; index < p_array.m_size; index++)

{

Now the function loops through each item in the uncompressed array.

if(p_array[index] != m_RLE[currentrun].m_data)

{

currentrun++;
if(m_RLE.m_size == currentrun)

m_RLE.Resize(currentrun * 2);
m_RLE[currentrun].m_data = p_array[index];
m_RLE[currentrun].m_length = 1;

}

If the current item in the uncompressed array doesn’t match the item in the cur-
rent run, you need to start a new run. So the current run index is incremented.
After that, the function checks to see if the current RLE array has been filled up,
and if so, it doubles the size of the RLE array.

Then the current item in the array is placed into the new run and the length is set
to 1.

else

{

if(m_RLE[currentrun].m_length == 255)
{

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 659

659Run Length Encoding

currentrun++;

if(m_RLE.m_size == currentrun)

m_RLE.Resize(currentrun * 2);
m_RLE[currentrun].m_data = p_array[index];
m_RLE[currentrun].m_length = 1;

}

If the next item in the uncompressed array is the same as the item in the current
run, the function increases the length of the current run. However, it is not that
simple. First, the function needs to check to see if the length of the current run is
255. Remember, because the RLE class uses 8-bit lengths, 255 is the highest run
length you can have. If your run is longer than 255 items, you need to split it up
into another run. So if the run is too long, the function creates a new run, like
before, and sets it up accordingly (resizing the RLE array if necessary).

else

{

m_RLE[currentrun].m_length++;

}

}

}

If the run didn’t overflow, then the
length of the current run is just incre-
mented. This ends the loop through
the uncompressed array.

// set up the number of runs
m_runs = currentrun + 1;

}

And finally, the number of runs is
recorded in the m_runs variable.

TIP
To expand this function to different
length sizes, you only need to change
the part where it compares the length
to 255 (and the pair data structure so
that it holds a larger size, of course). If
you’re using a larger length size, com-
pare the current length with the maxi-
mum number of your new length size.

The Decompression Algorithm
Decompressing a RLE is even easier than compressing one. It is accomplished by
using the FillArray function:

void FillArray(Array<DataType>& p_array)
{

if(p_array.Size() < m_size)
p_array.Resize(m_size);

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 660

660 21. Data Compression

This function also takes an array reference. The array will be overwritten with the
RLE data, so don’t pass in an array of data that you want to keep.

If the array is too small, then it is resized so it is large enough to hold the uncom-
pressed RLE.

int currentrun;
int index;
int offset = 0;

The first variable serves the same purpose as it did in the CreateRLE function; it
keeps track of the run it is currently expanding.

The index and the offset variables keep track of the current position in the uncom-
pressed array.

for(currentrun = 0; currentrun < m_runs; currentrun++)

{

The loop to expand the RLE is a doubly nested for-loop. The preceding line of
code is the outer loop, which loops through each run in the RLE.

for(index = 0; index < m_RLE[currentrun].m_length; index++)
{

This is the inner loop, which loops through each item in the current run. If the
run’s length is 16, this inner loop goes through 16 times. The offset variable keeps
track of the index in the uncompressed array where the run begins, and the index
variable keeps track of the current item in the run.

p_array[offset + index] = m_RLE[currentrun].m_data;

}

The offset and the index are added to get the correct index in the uncompressed
array, and the item in the current run is placed into the uncompressed array.

offset += m_RLE[currentrun].m_length;
}

}

Finally, the offset is incremented by the number of items that were in the current
run, which gives you the index of the starting place for the next run in the uncom-
pressed array.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 661

661Run Length Encoding

The SaveData Function
Most of the time, you want to compress your data and then store it onto disk some-
where, so you want to have a function that can save the data easily.

This function will use the standard C++ file I/O functions. If you are unfamiliar
with them, please see Chapter 3, “Arrays,” or Appendix A, “A C++ Primer.”

void SaveData(char* p_name)
{

FILE* file = fopen(p_name, “wb”);

The function takes a string as a parameter and opens it for writing in binary mode
(almost every file you will deal with is binary data anyway).

fwrite(&m_size, sizeof(int), 1, file);

fwrite(&m_runs, sizeof(int), 1, file);

The first two things it writes are the size of the uncompressed data and the number
of runs that the data takes up when compressed.

fwrite(m_RLE.m_array, sizeof(Pair), m_runs, file);
fclose(file);

}

After that, the actual array of Pairs is written out to disk, and the file is closed.

The LoadData Function
There is a function to save data to disk, so there should also be one to load the
data back into memory, right? This is that function.

void LoadData(char* p_name)
{

FILE* file = fopen(p_name, “rb”);

This time, instead of opening the file in writing mode, it is in reading mode. (I bet
you didn’t see that one coming!)

fread(&m_size, sizeof(int), 1, file);

fread(&m_runs, sizeof(int), 1, file);

The function then reads in the size of the uncompressed data and the number of
runs in the compressed data.

if(m_RLE.Size() < m_runs)

m_RLE.Resize(m_runs);

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 662

662 21. Data Compression

If the RLE array is too small to hold the compressed RLE data, it is resized to hold
the data.

fread(m_RLE.m_array, sizeof(Pair), m_runs, file);
fclose(file);

}

Finally, the compressed RLE data is read into the RLE array, and the file is closed.

Example 21-1
This is Example 21-1, which you can find on the CD in the directory
\examples\ch21\01 - RLE\ .

This demo program loads a file and then tries to compress it using RLE compres-
sion and saves it back to disk. Because of that, you should copy the files onto your
hard drive to run it, or it will fail to work (because it can’t write onto the CD-
ROM).

The program does a few things: it loads a file, compresses it, writes it out to disk,
uncompresses the file into a new array, and compares the contents with the
original array.

void main()
{

Array<char> original(1);
Array<char> uncompressed(1);
RLE<char> compressed;

The original array holds the data that is read from the file. The uncompressed array
holds the data as it is decompressed out of the RLE again, and the compressed vari-
able holds the compressed RLE data.

char filename[80];

int index;

cout << “Enter file name: “;

cin >> filename;

The function uses a string to load in the name of the file you want to compress.

original.Resize(GetFileSize(filename));

Then the function resizes the original array to the size of the file due to a limita-
tion in the array’s ReadFile function, which only reads in as much memory as the
array can store. This way, the entire file can be read in. The GetFileSize function is
a simple little helper function I included in the file.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 663

663Run Length Encoding

original.ReadFile(filename);

compressed.Compress(original);

The file is then read in and compressed.

strcat(filename, “.rle”);

compressed.SaveData(filename);

Using the strcat function, .rle is added to the end of the file name, and the RLE
data is then saved to disk using that file name.

cout << “Original File Size: “ << compressed.m_size << endl;

cout << “Compressed File Size: “ << compressed.m_runs * 2 << endl;

cout << “Compression Ratio: “;

cout << (float)(compressed.m_size) / (float)(compressed.m_runs * 2);

cout << endl;

Statistics about the RLE are printed out to the screen, including the original file
size in bytes and the size of the RLE in bytes (the number of runs times 2, because
the data and the length of each run are both 1 byte).

It also prints out the compression ratio; anything larger than 1.0 is good, and any-
thing less than 1.0 means that you actually made the file bigger.

compressed.FillArray(uncompressed);

The compressed RLE is then decompressed into the uncompressed array so it can
verify that the data was preserved.

cout << “Checking Array Integrity...” << endl;

for(index = 0; index < compressed.m_size; index++)

{

if(original[index] != uncompressed[index])
{

cout << “ERROR, DECOMPRESSION UNSUCCESSFUL!!” << endl;
return;

}

}

cout << “Arrays match!” << endl;

}

This loops through both arrays and compares the items; if any two items don’t
match, then it prints out an error and quits. If the loop ends, then both arrays
matched.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 664

664 21. Data Compression

I’ve provided four test files to use, test1.txt, test2.txt, test3.txt, and test4.txt.
Each of these files demonstrates something, so I urge you to open them and see
what they look like.

The first file contains 26 different letters repeated a random number of times in a
row. This file compressed nicely with about a 38:1 compression ratio.

Test2.txt contains the same pattern as test1.txt, repeated many more times. You
should note that this file gets the same compression ratio.

The third test file contains one letter repeated around 600,000 times. From what
you know, you should be able to tell that this file will compress wonderfully, and it
does! You get around a 127:1 compression ratio.

The final file holds around 200,000 characters, and not a single character is
repeated twice. You should be able to tell that this file will not compress at all, but
rather expand. In fact, the actual RLE “compression” on this file results in a file
that is exactly twice as large.

Example 21-2
This is Example 21-2, which does the opposite of Example 21-1; it loads in a com-
pressed RLE, decompresses it into an array, and then saves the uncompressed data
into a new file.

Basically, you’re supposed to use Example 21-1 to compress data and then use this
example to decompress data back into its original form.

void main()
{

typedef unsigned char uchar;
Array<uchar> uncompressed(1);
RLE<uchar> compressed;

Two structures are declared: the array of uncompressed bytes and the RLE that
contains the compressed bytes.

char dataname[80];

cout << “Enter data file name: “;

cin >> dataname;

The filename string is declared and then read in.

compressed.LoadData(dataname);

compressed.Decompress(uncompressed);

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 665

665Huffman Trees

Then the RLE data is loaded from the file and then decompressed into the array.

dataname[strlen(dataname) - 4] = 0;
uncompressed.WriteFile(dataname);
cout << “Decompressed to “ << dataname << endl;

}

The last four characters are chopped off of the filename (it is assumed that the file-
name will end with the four characters .rle, which is what Example 21-1 adds to
the end of each file), and the uncompressed file is then written out to disk.

You can try decompressing all of the RLE files that were provided with the previous
example; you will see that they all work flawlessly.

Huffman Trees

Trees again? Oh, no!

Oh, yes. There is no avoiding trees in the wonderful world of game programming,
and it turns out that they can be used very efficiently for data compression.

Huffman encoding (invented by David Huffman in 1952 at MIT) works by trying to
make the most frequently occurring items in a chunk of data take up the least
amount of space.

Think about this for a moment: You have a text file full of characters. Each charac-
ter takes up one whole byte, or 8 bits. So each byte can represent up to 256 differ-
ent letters or numbers or symbols. What is the likelihood that every text file out
there has at least one instance of every symbol? Not very likely. In fact, most text
files rarely use more than 50–60 different characters, so the extra bits needed to
provide you with all 256 characters are wasted!

So Huffman encoding attempts to make the most frequent characters take up a
small amount of space and the least frequent characters take up the most amount
of space.

Huffman Decoding

In order for you to understand how Huffman compression works, it is easiest for
me to show you an example of how to decode a binary string first. Figure 21.10
shows a simple Huffman tree.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 666

666 21. Data Compression

Figure 21.10

Here is a simple
Huffman tree.

So what the heck do you do with this?

Imagine you have a binary message: 0100111110. Place your finger on the root node
of the tree. You read the binary message in, one bit at a time. Whenever you read in
a 0, you move your finger to the left child of the current node, and whenever you
read in a 1, you move your finger to the right child of the current node. Whenever
you reach a child node, write down that letter and move your finger up to the root
node again. Repeat this process until the entire message has been decoded.

Get the message? Hello! If you’re not saying “hello” to me right now, then try it
again to see if you can correctly decode the message.

Figure 21.11 shows the decoding of the first two letters.

Figure 21.11

This is how you
decode the first two
letters of the
message.

Of course, in that simple example, every character was two bits in length. You’ll
find that more-complex Huffman trees give varying lengths to different characters.

Let me show you one more example of decoding, this time using a much larger
tree. Figure 21.12 shows the tree.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 667

667Huffman Trees

Figure 21.12

Here is a larger
Huffman tree.

This time, the message is: 000 1111 001 001 111 1001 110 000 101 0111 110 0100
0101 1111 110 1000 101 0110 1110. See if you can decode it accurately. SP means
“space” and CM means “comma,” by the way.

The answer is “hello, how are you?”

Pretty simple, isn’t it?

Creating a Huffman Tree

The tree in Figure 21.12 didn’t just appear, I had to create it. I didn’t just throw it
together, though, I had to use a special process to create the tree so that the most
used characters are higher up and the lesser used characters are down at the bot-
tom of the tree. Notice which characters in the phrase “hello, how are you?” are
seen the most. The letter o and the space character are each repeated three times,
and they are higher in the tree than most characters—on the third level. This
means that they each take three bits.

Characters that only appear once are on the lowest level of the tree, such as w and
y, and they take four bits each.

The Frequency Table
The first step you must take when generating a Huffman tree is to create a frequency
table. This table will hold the frequencies of each character in a sample set of data.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 668

668 21. Data Compression

You see, just like RLEs, certain Huffman trees may actually end up making your
files bigger. Each Huffman tree is optimized for a certain set of data. The tree in
Figure 21.12 was optimized for the phrase “hello, how are you?”

Table 21.1 shows the frequency table for that phrase.

Character

A 1

E 2

H 2

L 2

O 3

R 1

U 1

W 1

Y 1

Space 3

Comma 1

? 1

Table 21.1 Frequency Table

Frequency

Now that you have the frequency, you can move on to generating the tree.

Generating the Tree
This process requires some help from our old pal, the priority queue (see Chapter 14,
“Priority Queues and Heaps”). The first thing you need to do is put every character
into a plain binary tree node and put them into the priority queue, but instead of
the characters with the highest frequency going first, the characters with the lowest
frequency are first. Figure 21.13 shows the priority queue for this table. Please note
that I am using the standard priority queue representation for the drawing, not the
heap representation. Heaps make things look complicated in the figures.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 669

669

This is the initial

Huffman Trees

Figure 21.13

priority queue.

I will be referring to the frequency of the nodes as the weight of the nodes from now
on. Now comes the actual tree generation algorithm, which is really quite simple:

1.	 Take the first node off of the priority queue.

2.	 Take the second node off of the priority queue.

3.	 Create a new binary tree node that has the first node as its left child and the
second node as its right child.

4.	 Make the weight of the new node equal to the weight of its child nodes
added together.

5.	 Place the new node into the priority queue.

6.	 Go to step 1 and repeat until only one node is left in the priority queue.

Let’s see this in action! Figure 21.14 shows the first iteration of these steps on
the queue.

Figure 21.14

Here is the first
iteration on the
queue.

The queue is also sometimes called a forest (because you’re building trees in it, get
it?). So now you have a bunch of single nodes and one two-level tree in your forest,
and you repeat the process. The new node is called T1, which stands for Tree 1.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 670

670 21. Data Compression

Figures 21.15, 21.16, 21.17, 21.18, and 21.19 show the complete algorithm. The last
tree in Figure 21.19 is the same as the tree in Figure 21.12.

Figure 21.15

These are the second
and third iterations.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 671

671Huffman Trees

Figure 21.16

These are the fourth
and fifth iterations.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 672

672 21. Data Compression

Figure 21.17

These are the sixth
and seventh
iterations. Note how
these iterations are
the first to combine
trees instead of just
the single nodes.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 673

673Huffman Trees

Figure 21.18

These are the eighth
and ninth iterations.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 674

674 21. Data Compression

Figure 21.19

These are the tenth
and eleventh
iterations.These are
the last two iterations
of the algorithm.

Graphical Demonstration: Creating a
Huffman Tree
This is Graphical Demonstration 21-2, which is on the CD in the directory \demon-
strations\ch21\Demo02 - Huffman Tree Creation\ .

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 675

675Huffman Trees

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

The demo has one text box and two buttons, only one of which is visible when the
demo starts. You start off by typing a string of text into the text box. Then, click the
Calculate button. Immediately, the Calculate button disappears, and a bunch of
nodes appear at the bottom of the screen. This is the priority queue of nodes.

A new button has appeared—the Iterate button. Pressing it once pulls the first
node off of the queue and puts it in the middle of the screen. Pressing it again
pulls another node off the queue and also puts that in the middle of the screen.

Pressing the button a third time creates
a new node connecting the two nodes
in the middle of the screen, and press-
ing it once more places the new node
into the priority queue.

button, watching how the tree is created,
until the entire tree is complete.

When the tree is complete, the
Calculate button reappears.

because this demo puts the items in
the priority queue based on their

the queue first instead of the letters.

�

You should continue pressing the Iterate

NOTE
If you type in the phrase “hello, how
are you?” you will get a different
tree from the one in Figure 21.12

ASCII value, so the comma and
question mark and the space are in

CAUTION
Trees are big structures, and the demo only runs at 800 600 resolution.With
larger phrases, the demo may end up drawing trees on top of each other. Don’t
worry too much about it—there is really nothing that can be done about it.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 676

676 21. Data Compression

Figure 21.20 shows a screenshot from the demo.

Figure 21.20

Here is a screenshot
from the demo.

Coding a Huffman
Tree Class
This section takes you through the cod-
ing of a Huffman compressor and
decompressor class. All of the code is
located in the file \structures\huffman.h
on the CD.

You’ll note that this class builds upon
and uses many of the classes you’ve
learned about previously in this book,
such as the Array, Bitvector, BinaryTree,
and Heap classes.

The Huffman Node Class
This is the class that will store all of the relevant information for the nodes in the
Huffman tree.

CAUTION
You must be aware of one thing
before you use these classes:They
only work on integral (integer)
numeric types, and 32-bit numeric
types don’t work with them (due to
a limitation that I explain when you
get to it).The demos I show you use
8-bit integers to compress the data,
and that seems to work fairly well.

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 677

677Huffman Trees

template<class DataType>
class HuffmanNode
{
public:

DataType m_data;
unsigned long int m_code;
int m_codeLength;

};

Each node has an instance of data in it,
m_data, so you know which item the
node represents when encoding and
decoding.

After that, the node has an unsigned
long int that stores the actual Huffman
code to get to the node. I used this data
type because it is 32 bits long and it is
unlikely that you will be using any set of
data that will end up having a code
longer than 32 bits.

Finally, there is a code length variable, which keeps track of how many bits long the
code is. Because a 32-bit integer is being used, this is the only way to keep track of
how long the actual code is.

is written out to disk.

NOTE
If you do end up using data that
needs more than 32 bits per code,
you could probably use a bitvector
here instead of an integer. My reason
for using an integer was to save on
disk space when this tree structure

The Frequency Class
The frequency class is used to store (logically enough) the frequency information
of a certain instance of data.

template<class DataType>
class HuffmanFrequency
{
public:

DataType m_data;
int m_frequency;

};

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 678

678 21. Data Compression

The Frequency Comparison Function
Because you’re using a heap to store the data, you need a comparison function to
get the heap to work. If you remember back to an earlier section, the priority
queue needs to put the items with the lowest frequency first:

template<class DataType>
int CompareNodes(BinaryTree< HuffmanFrequency<DataType> >* left,

BinaryTree< HuffmanFrequency<DataType> >* right)
{

return right->m_data.m_frequency - left->m_data.m_frequency;
}

This function takes binary tree pointers, which contain the actual frequency class.
This is because the priority queue actually contains trees, remember?

The function is templated, so it will work with any data type. Because you know that
the frequency is an integer, you don’t need to mess around with anything but that,
so the left is subtracted from the right and returned.

The Huffman Class
This is the class that will actually accomplish everything, such as compressing,
decompressing, calculating the tree, and saving and loading the files to disk.

The Declaration, Typedefs, and Data
template<class DataType, unsigned long int MaxValue>

class Huffman

{

First is the declaration of the class. As usual, the class is templated, so it will work
with different datatypes, but only if they are integral datatypes valid for this class
(unsigned char, char, unsigned short int, short int). I discuss this limitation later
on. The main thing to notice from the declaration is the additional template value,
MaxValue. This tells the Huffman class what the maximum value of the data is. For
example, if you were using unsigned chars, this value should be 255. This is so the
class can efficiently store the tables for compression.

public:
typedef HuffmanNode<DataType> Node;
typedef HuffmanFrequency<DataType> Frequency;
typedef BinaryTree<Frequency> TreeNode;

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 679

679Huffman Trees

There are three typedefs, which exist to make your life easier. Instead of referenc-
ing a node in the Huffman tree as BinaryTree< HuffmanFrequency< DataType > >, you
can just type TreeNode instead. Typedefs, if you haven’t noticed yet, make code easier
to write and understand.

Bitvector m_compressedData;

int m_dataLength;

int m_compressedLength;

First, there is the bitvector that stores the compressed data. It is easy to use a bitvec-
tor, because Huffman-compressed data is variable in length and doesn’t fall on
standard bitwise boundaries. Therefore, you need to be able to access individual
bits easily, and the bitvector allows you to do just that.

The next two variables store the size of the uncompressed data in units (if the data
is chars, then this stores how many bytes the data takes up) and the size of the com-
pressed data in bits.

Array<Node> m_huffmanTree;

int m_maxEntry;

Next, the actual Huffman tree is declared... but wait! It’s an array! No, I didn’t lie
to you, it really is a tree, I promise. Remember in Chapter 12, “Binary Trees,” when
you first learned about binary trees and
how they can be stored as an array? This
is exactly what is happening here—the
Huffman tree will be stored in an array.
This is mainly because you need to be
able to eventually store the tree onto
disk somehow, and linked structures
don’t really transfer to disk well. So the
program converts the Huffman tree
into an array and uses that.

The max entry variable keeps track of
the index of the last entry in the tree.

NOTE
Of course there are more efficient
ways to actually store the tree to
disk. Unfortunately, I don’t have the
time or the room to describe them.
A lot of the nodes in the tree array
are unused, so there is some amount
of wasted space, but it’s usually not
enough to matter much.

Array<Node> m_lookupTable;
}

Finally, there is the lookup table. This table is used to speed up the compression
because it stores the code data for each possible data item. This way, if you want to
know the code for byte 142, just look up that index, and it will have the right node

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 680

680 21. Data Compression

structure. This way, you don’t need to search the tree for each item you want to
compress.

The Constructor
The constructor sets up the data in the Huffman structure.

Huffman()
: m_compressedData(1),

m_huffmanTree(1),
m_lookupTable(MaxValue + 1)

{
m_dataLength = 0;
m_compressedLength = 0;
m_maxEntry = 0;

}

It initializes the compressed data and the tree arrays to 1 so they don’t take up
much room before they are initialized. The lookup table, because it will always
remain the same size for a single Huffman structure, is initialized to hold as many
indexes as there are valid items. For example, if you are using unsigned chars, then
the max value is 255, so the array should hold 256 indexes (0–255). This is one of
the reasons you shouldn’t use 32-bit data; this would try to create an array with four
billion entries (yikes!).

The three counting variables are cleared to 0 because there is no data yet.

Calculating the Tree
This function will calculate the frequency table and Huffman tree for a specific set
of data. It is much easier to generate a Huffman tree using a linked binary tree, so
that is what the algorithm uses to actually generate the tree. After the tree is gener-
ated, the function converts that tree into an array.

void CalculateTree(Array<DataType>& p_array)
{

Array<int> frequencyTable(MaxValue + 1);
int index;

The function takes an array as its parameter, which it will use to calculate the
Huffman tree. First, it declares an array that holds an integer for each possible data
item and an index that will be used for looping.

for(index = 0; index <= MaxValue; index++)

{

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 681

681Huffman Trees

frequencyTable[index] = 0;

}

for(index = 0; index < p_array.Size(); index++)

{

frequencyTable[p_array[index]]++;

}

The first step is to clear the frequency table directly to all 0s and then calculate the
frequency of each item in the array. Whenever an instance of a particular data item
is found, its entry in the frequency table is incremented by one.

Heap<TreeNode*> heap(frequencyTable.Size(), CompareNodes);

TreeNode* parent;

TreeNode* left;

TreeNode* right;

After that, a heap is created which will have enough room for every possible item,
and it uses the CompareNodes function that was defined earlier.

After that, three tree node pointers are defined, and they will be used in construct-
ing the Huffman tree.

for(index = 0; index <= MaxValue; index++)
{

if(frequencyTable[index] != 0)

{

parent = new TreeNode;

parent->m_data.m_data = index;

parent->m_data.m_frequency = frequencyTable[index];

heap.Enqueue(parent);

}

}

This loop goes through the frequency table, and whenever it finds an item with a
frequency greater than zero (items with no frequency are not added to the tree
because they don’t exist in the file), a new node is created and added to the heap.

while(heap.m_count > 1)
{

left = heap.Item();

heap.Dequeue();

right = heap.Item();

heap.Dequeue();

parent = new TreeNode;

Team LRN

Data Structures CH21 11/5/02 8:51 AM Page 682

682 21. Data Compression

parent->m_left = left;

parent->m_right = right;

parent->m_data.m_frequency = left->m_data.m_frequency +

right->m_data.m_frequency;

heap.Enqueue(parent);

}

This is the function that actually calculates the Huffman tree. It takes off the first
and second items from the heap and puts them into the left and right node point-
ers. It then creates a new parent node and makes it point to the two nodes that
were pulled off the heap. After that, the frequency of the parent node is updated
to be the sum of both of its child nodes. Finally, the parent node is added back into
the heap.

ConvertTreeToArray(heap.m_array[1]);

CreateLookupTable();

delete heap.m_array[1];

}

Now the function converts the tree to an array and stores it into the m_huffmanTree
array. Then the lookup table is calculated, and the binary tree is deleted.

test3.txt

NOTE
Calculating a tree where only one item exists in the data is not a good idea.
Huffman compression doesn’t work on data that has only one repeated value
because the tree will end up with one node at the root and nothing else. If this
happens, then the code for that data doesn’t exist, because the length of the
code is 0.The tree calculation algorithm will work for such data, but trying to
compress it will crash the program.When testing out Examples 21-3 and 21-4,
try using from Example 21-1.You’ll see that because the file contains
only the letter a, it will not compress and decompress correctly.

Compressing Data
Just like the RLE class, the Huffman class has a Compress function that works the same
way. You pass an array into the function and it will compress the data for you.

void Compress(Array<DataType>& p_array)
{

int index;
int vectorindex = 0;

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 683

683Huffman Trees

int codeindex;

int codelength;

unsigned long int code;

bool value;

There are three looping index values. The index keeps track of the current index
in the uncompressed array, the vectorindex keeps track of the current index in the
bitvector while it is compressing the data, and the codeindex keeps track of the cur-
rent bit in the code for the current value in the uncompressed array.

The codelength, code, and value variables are used to make the code look better;
they are used to retrieve values that will be used later.

for(index = 0; index < p_array.Size(); index++)

{

This starts the compression routine. The uncompressed array is scanned through at
each index.

code = m_lookupTable[p_array[index]].m_code;

codelength = m_lookupTable[p_array[index]].m_codeLength;

The code for the current item and its length are both looked up in the lookup
table. Remember, the lookup table holds information about every possible item in
the array that is being compressed, so if you want to find the code and length for
the value 142, that information can be found in the lookup table at that index.

if(m_compressedData.Size() < vectorindex + codelength)
m_compressedData.Resize(m_compressedData.Size() * 2);

Now that you know the length of the current code, you can check to see if the
bitvector is large enough to store the code. If it isn’t, then the algorithm just dou-
bles the size of the vector.

for(codeindex = 0; codeindex < codelength; codeindex++)
{

value = (1 << codeindex) & code;
m_compressedData.Set(vectorindex, value);
vectorindex++;

}

}

This section of code loops through each bit in the current code and copies each bit
over into the bitvector. It shifts a 1 into the place of the bit that you want to extract
and performs a binary-and on the code to extract the digit into value. (See Chapter

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 684

684 21. Data Compression

4, “Bitvectors,” or Appendix A if you are unfamiliar with bit-extraction.) After that
bit is extracted, it is then set in the bitvector, and the vector index is incremented.

m_compressedLength = vectorindex;
m_dataLength = p_array.Size();

}

Finally, the length in bits of the bitvector and the length in items of the uncom-
pressed array are both recorded for future use.

The compressed Huffman codes are now stored in the bitvector.

Decompressing Data
Obviously, there needs to be a data decompression function, too, because there is a
compression function, so here it is:

void Decompress(Array<DataType>& p_array)
{

int vectorindex;
int arrayindex = 0;
int treeindex = 1;
int value;

There are three indexes again, but they aren’t all the same as in the compression
function. The vector index keeps track of the current bit in the bitvector, and the
array index keeps track of the current item in the uncompressed array, but the
treeindex is new. This variable keeps track of the current node in the Huffman tree
as you travel down it, decoding the bits. Note how the treeindex is initialized to 1,
which is the theoretical root of a binary tree when represented as an array (see
Chapter 12).

if(p_array.Size() < m_dataLength)

p_array.Resize(m_dataLength);

If the array isn’t large enough to store the compressed data, it is resized so that the
data will fit.

for(vectorindex = 0; vectorindex < m_compressedLength; vectorindex++)

{

This begins the decompression loop. This time, instead of looping through each
uncompressed array index, it loops through each bit in the bitvector.

value = m_compressedData[vectorindex];
treeindex = treeindex * 2 + value;

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 685

685Huffman Trees

The value of the current bit is extracted from the bitvector, and then the tree index
is moved down to the correct child node, depending on the value of the bit.
Remember back to Chapter 12, when I showed you how to traverse a binary tree
when it is an array? To go to the left child, you multiply the index by 2, and to go
to the right child, you multiply the index by 2 and add 1. Well, if the bit is 0, then
you want to go to the left child in a Huffman tree, and if the bit is 1, you want to go
to the right child. So if value is 0, then the algorithm goes to the left, and if value is
1, it goes to the right. Neat, isn’t it?

if(m_huffmanTree[treeindex-1].m_codeLength != 0)

{

Next, the code length of the current node is retrieved and compared to 0. One is
subtracted from the index, though. This is because a binary tree represented as an
array starts off at index 1, but to save space and prevent index 0 from being
unused, 1 is subtracted from the current tree index. So index 1 is really stored in
index 0, and 2 is stored in 1, and so on.

If the code length is 0, then the current node in not a valid node (that is, it is one
of the temporary tree nodes that were created to join other nodes together), and
the function skips over the next part and looks at the next bit.

p_array[arrayindex] = m_huffmanTree[treeindex-1].m_data;
arrayindex++;
treeindex = 1;

}
}

}

If the code length of the current node wasn’t 0, then you’ve reached a valid node
that contains data. That data is retrieved from the current node and placed into
the uncompressed array, the array index is incremented, and the tree index is
moved back to the root.

At the end of the function, the array will contain the uncompressed data.

Saving the Tree to Disk
Unlike the RLE class, a Huffman compressed chunk of data has two distinct parts.
The first part is the tree that is used to compress and decompress data, and the
second part is the actual data. So to actually decode the data someday, you need
the tree.

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 686

686 21. Data Compression

This function will save the tree to disk for you.

void SaveTree(char* p_name)
{

FILE* file = fopen(p_name, “wb”);

First the file is opened in binary writing mode

fwrite(&m_maxEntry, sizeof(int), 1, file);

The size of the tree is stored to disk first.

fwrite(m_huffmanTree.m_array, sizeof(Node), m_maxEntry, file);
fclose(file);

}

And finally, the actual tree is stored on disk.

Loading the Tree from Disk
This function loads a tree from disk.

void LoadTree(char* p_name)
{

FILE* file = fopen(p_name, “rb”);
fread(&m_maxEntry, sizeof(int), 1, file);

The file is opened and the size of the tree is read in.

m_huffmanTree.Resize(m_maxEntry);

The Huffman tree is then resized so it has enough room to store the tree.

fread(m_huffmanTree.m_array, sizeof(Node), m_maxEntry, file);

fclose(file);

CreateLookupTable();

}

Finally, the tree is read in, the file is closed, and the lookup table is re-generated.
The table needs to be generated because you loaded in a new tree. If you try to
compress data that needs the lookup table and the lookup table doesn’t exist, it
won’t work.

Saving the Data to Disk
This function is used to save the compressed data to disk.

void SaveData(char* p_name)
{

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 687

687Huffman Trees

FILE* file = fopen(p_name, “wb”);

fwrite(&m_dataLength, sizeof(int), 1, file);

fwrite(&m_compressedLength, sizeof(int), 1, file);

The file is again opened for binary writing, and the size of the uncompressed data
and the compressed data are both saved into the file.

fwrite(m_compressedData.m_array,

sizeof(unsigned long int),

(m_compressedLength / 32) + 1,

file);

After that, the actual compressed data is stored into the disk. Because you are sav-
ing a bitvector and the bitvector class uses unsigned long ints for its data, you are
saving each cell of the bitvector to disk. Each cell contains 32 bits, so divide the
number of bits by 32 and that should give you the number of cells that the bits take
up. Unfortunately, due to the fact that integer division discards the remainder of
the division, the number of cells will be off by one, so you should add one cell to
the final total.

fclose(file);
}

Finally the file is closed.

Loading the Data from Disk
This function will load the data from disk back into the class.

void LoadData(char* p_name)
{

FILE* file = fopen(p_name, “rb”);
fread(&m_dataLength, sizeof(int), 1, file);
fread(&m_compressedLength, sizeof(int), 1, file);

The size of the uncompressed data and the compressed bitvector are loaded from
the file first.

m_compressedData.Resize(m_compressedLength);

Then the bitvector is resized so that it has enough room for the compressed data.

fread(m_compressedData.m_array,

sizeof(unsigned long int),

m_compressedData.m_size,

file);

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 688

688 21. Data Compression

fclose(file);
}

Finally, the compressed data is loaded into the bitvector.

Converting the Binary Tree to an Array
Earlier, I told you that you would be converting the binary tree to an array so you
can store it to disk easily. This function and the next one after it are the two func-
tions that actually convert the tree into an array.

void ConvertTreeToArray(TreeNode* p_tree)
{

int index;

The function takes a binary tree node pointer as its parameter, and this will be the
root of the tree that is being converted into an array. An index looping variable is
also declared.

index = (2 << GetDepth(p_tree)) - 1;

This part takes a little explaining to understand. There is a function in the binary-
tree.h file that retrieves the maximum depth of a binary tree. If there is only one
node in the tree, then the depth is 0, and so on. Now, if the depth of the tree is 1,
there are two levels and a maximum of three nodes. This function calculates the
depth, which should end up being 1. It then takes the value 2 and shifts it up by
the depth of the tree. Remember, the expression x << n is equivalent to the mathe-
matical formula x * 2n. So you’re multiplying 2 by 2 to the 1st power, giving you the
value 4. Finally, you subtract 1 from that number, giving you 3, the maximum index
of a two-level tree.

This works on any tree of any depth.

if(m_huffmanTree.Size() < index)

m_huffmanTree.Resize(index);

Now that you know the largest possible size of the tree array, the tree array is
resized so that the tree will fit into it.

m_maxEntry = 0;

for(index = 0; index < m_huffmanTree.Size(); index++)

{

m_huffmanTree[index].m_code = 0;

m_huffmanTree[index].m_codeLength = 0;

}

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 689

689Huffman Trees

The maximum entry index is cleared to 0, and then the entire tree has its codes
and code lengths set to 0, which means that those nodes are all invalid.

Convert(p_tree, 1, 0, 0);
}

Finally, the recursive Convert function is called on the root node. I explain the
Convert function in the next section.

The Convert Function
The previous function, ConvertTreeToArray, doesn’t actually convert the tree to an
array. Instead, it just sets up the tree array so that the recursive Convert function can
actually do the conversion.

When you stop to think about it, converting a binary tree to an array is somewhat
simple. If a node knows its own index, then it can easily tell its children what
indexes they are, right? And after you tell the children nodes what indexes they
are, they can tell their children, and so on. You can see how this function works
nicely as a recursive function.

Another thing this function does is figure out the length of the code for each
node—and the actual code, too.

Here is the function definition:

void Convert(TreeNode* p_tree,
int p_index,
int p_length,
unsigned long int p_code)

{

The function is called with a node pointer, the index of that node, the length of
the code to reach that node, and the actual code to reach that node.

When the function is first called, it is called on the root node. The root has an
index of 1, and because there is no code to get to the root node, the length and
the code are both 0.

if(p_tree->m_left == 0 && p_tree->m_right == 0)

{

if(p_index > m_maxEntry)

m_maxEntry = p_index;
m_huffmanTree[p_index-1].m_data = p_tree->m_data.m_data;
m_huffmanTree[p_index-1].m_code = p_code;

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 690

690 21. Data Compression

m_huffmanTree[p_index-1].m_codeLength = p_length;

}

The first thing the function does is check to see if the current node is a leaf node
(it has no children). If so, then it needs to set the max entry variable to the current
index, as it is now the maximum entry in the tree array. Remember, the tree might
not actually fill up, so this allows you to see where the last valid entry resides.

Then the data, the code, and the code length are all copied into the tree array at
the appropriate index (remember, one is subtracted from the index to offset the
tree into index 0, so no extra space is wasted).

This is a leaf node, so there are no other nodes below it, and the recursive function
terminates here.

else
{

if(p_tree->m_left != 0)

{

Convert(p_tree->m_left,

p_index * 2,

p_length + 1,

p_code);

}

If the current node isn’t a leaf node, then it is one of the temporary nodes that
were created to join nodes during the tree creation process. It doesn’t contain any
code or data information because only leaf nodes contain data information.

First, the function checks to see if the left child exists. If it does, then the Convert
function is recursively called on the left child. The index is twice that of the cur-
rent index, and the length is incremented by one. Because going left only adds a 0
to the code, the code doesn’t change at all and is passed into the function with no
changes.

if(p_tree->m_right != 0)

{

Convert(p_tree->m_right,

p_index * 2 + 1,

p_length + 1,

p_code | (1 << p_length));

}
}

}

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 691

691Huffman Trees

If there is a right child, the Convert function is called on that child. This time, the
index is two times the current index plus one, and the length is incremented again.
Because a 1 is added to the end of the current code, the bit setting algorithm is
used to add a new bit at the current length of the code (see Chapter 4 or Appendix
A for more information on bit setting).

So this function not only converts the binary tree into an array, but it also calculates
the code and the code length for each piece of data in the tree and sets them, too.

Creating the Lookup Table
This is the helper function that will calculate the lookup table so that compressing
data is nice and fast.

void CreateLookupTable()
{

int index;
for(index = 0; index < m_maxEntry; index++)
{

if(m_huffmanTree[index].m_codeLength != 0)
{

m_lookupTable[m_huffmanTree[index].m_data] =
m_huffmanTree[index];

}
}

}

This function essentially loops through the entire tree array. Whenever it finds a
node that has a non-zero length (meaning that the node is a leaf and has a valid
code in it), it copies that node into the lookup table. For example, if a node is
found that has the data 12 in it, it looks up the index 12 in the lookup table and
copies the node into the table at that index.

Example 21-3

This is Example 21-3, which you can find on the CD in the directory
\examples\ch21\03 - Huffman Compression\ . Because this example creates files, it
will not run correctly on the CD, and you should copy it onto your hard drive to
run it properly.

This example is very similar to Example 21-1, except that it will encode a file using
Huffman compression instead of RLE compression.

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 692

692 21. Data Compression

In fact, the entire example is exactly the same, save for these lines:

compressed.CalculateTree(original);
compressed.Compress(original);
strcat(filename, “.tree”);
compressed.SaveTree(filename);
filename[strlen(filename) - 5] = 0;
strcat(filename, “.huff”);
compressed.SaveData(filename);

The lines in bold are new in this demo; the lines that are not bold are similar to
those in Example 21-1.

First, the original array is passed into the Huffman class so that it can generate a
proper tree for the data. Then the original array is compressed.

Then .tree is added to the end of the filename, and the tree is saved to disk using
that filename. So if you were compressing test.bmp, the tree would be named
test.bmp.tree.

After that, the last five characters are chopped off of the filename (the .tree part),
and .huff is added to the end. Now the actual compressed data is saved to disk
using the new filename (test.bmp.huff, using the same example as before).

You can use this example to compress any file you want using Huffman compression.

Test Files
I have included several test files for you to test out. They are biga.bmp,
plasma.bmp, plasma2.bmp, and test.bmp. Every file except plasma2.bmp com-
presses well.

So why doesn’t it compress well? The data file ends up only being 96 kilobytes,
down from 193K, but the tree file is 286K, which is bigger than the original file!

I have to admit, this is my fault. When I decided to use an array to store the tree, I
thought the extra memory usage would be negligible, but it turns out that it makes
a big difference. Not only that, but I’ve discovered a new problem as well: Using a
heap for a priority queue in combination with arrayed binary trees gives you huge
trees. You see, when you’re using a heap, it usually produces trees that are taller
than those you get when using a regular priority queue. This doesn’t matter much
for the actual data compression (both methods compress data at approximately the
same ratio), but it does matter when you’re storing the tree to disk using an array.

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 693

693Data Encryption

If you’ve got a hex editor handy, you can open the plasma2.bmp.tree file that was
produced and take a look at it; it is almost entirely composed of 0s. This is clearly a
waste of space.

However, I don’t have the time to show you a better way of storing the trees right
now, so I will leave you with this suggestion: RLE compress the tree files. Sure, it’s a
little more work, but it will compress those huge trees down to a better size.

If you’re really ambitious, you might even find a better way to store the tree to disk.

Example 21-4
This is Example 21-4, which you can find on the CD in the directory
\examples\ch21\04 - Huffman Decompression\ . Because this example creates files, it
will not run correctly on the CD, and you should copy it onto your hard drive to
run it properly.

This example is almost exactly like Example 21-2, except that it decompresses
Huffman files instead of RLE files.

Here are the main differences:

compressed.LoadTree(treename);
compressed.LoadData(dataname);
compressed.Decompress(uncompressed);

The tree is loaded, the data is loaded, and then the tree is decompressed. Pretty
simple, isn’t it? Try decompressing the files produced by Example 21-3.

Data Encryption

Data compression is a form of data encryption, which is the act of taking a piece of
data and making it unreadable to people who don’t know how to decode it.

Data encryption is a vast subject, and it is of some importance here. If you were to
compress a text file using Huffman compression and then look at the resulting
data, would you be able to tell that it was text at one time? Probably not.

One of the most frequent questions I hear from programmers is, “How do I make
my graphics and sound so that no one can read it or modify it?” You would nor-
mally use a form of data encryption, but you could also use compression. The aver-
age person will not know how to decode your Huffman-encoded graphics. This is
one easy way to prevent people from ripping your graphics and sound from your
game and using them all over the place.

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 694

694 21. Data Compression

Further Topics in
Compression
This chapter only gives you a very brief glimpse into the world of compression.
There are tons of methods out there to compress data.

One of the most exciting areas of compression is called fractal compression. A fractal
is a geometrical object that exhibits repeating and recurring features. For example,
if you look at a mountain and then zoom in to a small piece of it, it will look like a
smaller mountain. You can zoom in many times, and still see repeating patterns.
This type of thing happens all over the place in nature, such as coastlines, forests,
flowers, and so on. This type of compression tries to find repeating areas of graph-
ics or data and stores information on that.

Other forms of compression also exist. Another famous method is called wavelet
compression, which is used a great deal in signal processing because it is a good
method of compressing waveform data. I haven’t done much research in the field,
so I can’t say more about it.

Just be aware that the field of data compression is absolutely huge.

Conclusion
This was a big chapter, wasn’t it? Well, that’s because compression is a huge and
complex topic. Compression is important to game programming in many ways,
some of which I outlined at the beginning of the chapter.

Now that you know two methods of compression, you can begin to see how data
compression in general works.

The two methods that I showed you are called lossless compression. When you com-
press something using lossless compression, it will decompress to the same exact
data that it was before the compression. You didn’t lose any data.

There is another form of data compression that I didn’t cover here called lossy com-
pression. This is the kind of compression where some of the data is sacrificed to
make the compression ratio higher. The JPEG image file format is lossy: It doesn’t
actually store information about every pixel; instead, it stores information in little 8
x 8 chunks (interestingly enough, JPEGs use RLE and Huffman compression in
combination with other algorithms).

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 695

695Conclusion

To give you a better example of lossy compression, look at mp3 audio files. On the
first level of mp3 compression, the higher frequencies of sound are removed from
the sound file. Standard wave files can store very high frequency sounds that most
people cannot hear, so the mp3 format removes this information, among other
things. Don’t get the impression that this is all mp3 compression does, though,
because mp3 compression is a huge and complex task.

I regret not being able to put a game demonstration into this chapter, but I couldn’t
find a suitable use for data compression in a real-time game. Instead, you can use
the four examples in this chapter as tools to compress and decompress your data.

Team LRN

Data Structures CH21 11/5/02 8:52 AM Page 696

This page intentionally left blank

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 697

CHAPTER 22

Random
Numbers

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 698

698 22. Random Numbers

Almost every game out there uses random numbers to simulate things,
whether they are attributes, damage, shooting angles, or other elements.

Therefore, random number generation is an important topic in game program-
ming. If you already know a little about random numbers, you might want to skip
the first few sections of this chapter. The last part of this chapter is a somewhat
complex but interesting subject that I think everyone getting into game program-
ming should read.

In this chapter, you will learn

■ How to generate random integers
■ How to generate random percents
■ How to generate random floating-point numbers
■ How to generate non-linear random numbers

Generating Random Integers

I’m sure you are familiar with a die. If not, look at Figure 22.1, which shows a die.

Figure 22.1

A six-sided die can
produce a random
number from 1–6.

A die is typically a 6-sided cube, which has dots on each side of the cube. On a stan-
dard die, the sides have 1, 2, 3, 4, 5, and 6 dots, respectively. The die is meant to be
dropped onto a flat surface (commonly called rolling the die), and the number on
top of the die is recorded. There are other kinds of dice as well, with different
numbers of sides: 4, 6, 8, 10, 12, 20, and even 100 sides!

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 699

699Generating Random Integers

In real life, a die is a random number gen-
erator. You throw it, and it gives you a
number from 1 to 6.

The great thing about a die is that every
side has an equal chance of coming up
on top. The chance that you will get a 1
is 1/6, and the chance that you will get
a 5 is also 1/6. This feature is known as
an even distribution, and it is essential to
a pure random number generator. If
the die has a tendency to land on 6
more often than any of the other num-
bers, then it is not a pure random num-
ber generator, and it is flawed.

NOTE
In fact, because the geometry of
each face is slightly different in real
life due to flaws in manufacturing, no
die will give truly random numbers.
Try it. Roll a dice 100 times, and cal-
culate the probability of each throw
and see if they are equally likely.
Each outcome will be around the
same probability, but you will find
that one number will usually come
up more often than the others.

Generating Random Numbers in
a Program
There are many ways to generate random numbers in a program. However, almost
none of the methods used are truly random. In order for a number to truly be ran-
dom, it must have the following qualities:

■ It must have an even distribution.
■ It must not be deterministic.
■ It must not have repeating patterns.

You already know about the first property because I discussed it in the previous
section.

If something is deterministic, that means that it can be calculated. Take the numeri-
cal constant pi, for example. The digits of pi are deterministic; they can always be
determined and will never change. The first digit is always 3, the next is 1, and then
4, and so on.

Unfortunately, most computer-based random number generation algorithms are
deterministic, and thus are not truly random. Because random number generators
use an algorithm to generate a number, it is almost always possible to pre-calculate
what number will be generated. I discuss this property a little more later on.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 700

700 22. Random Numbers

The third property is a trait of the C++ rand function. The MSVC6 version of rand
repeats itself every 2 billion numbers. This number is called the period of the ran-
dom number generator. For example, if you ask it for three random numbers and
you get 3, 7, and 2, and then you ask it for 2 billion more numbers, and finally you
ask for 3 more, those 3 will be 3, 7, and 2 again.

Two billion is a lot of numbers, so this really doesn’t pose a large problem.

Using rand and srand
There are many random number generators out there, some of them better than
others. The most popular method is called linear congruency random number gener-
ating. I would explain to you what the name means, except that it requires a fair
amount of mathematical jargon. All you need to know is that this is the method
that the C++ rand function uses to generate random numbers. Because I mentioned
before that it doesn’t generate truly random numbers, it is called a pseudo random
number generator.

Seeding the Generator
Try this simple example (Example 22-1 on the CD) on your own:

#include <iostream.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{

cout << “Random number: “ << rand() << endl;
cout << “Press enter to continue...” << endl;
getchar();

}

Run it, and watch the output. Figure 22.2 shows a screenshot from when I run it.
On my computer, it prints the number 41. It might print something different on
your computer.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 701

701Generating Random Integers

Figure 22.2

Here is a screenshot
from Example 22-1.

Now run it again. Why does it return the same value? Isn’t it supposed to be ran-
dom? Well, not quite. The algorithm that rand uses needs a seed value.

A seed value is a special number that is used with linear congruency random num-
ber generators that determines where the generator should start generating values.

If you don’t seed the random number generator, it will generate the same exact
sequence of numbers every time you run it.

The seed value acts as the first random number in the sequence. Once you tell the
random number generator a seed value, it then calculates a sequence of random
numbers based on the seed.

In Example 22-2, I added one line to Example 22-1:

srand(100);

The srand function allows you to set the seed of the random number generator.
The seed of a random number generator is usually only set once, at the very begin-
ning of a program. In Example 22-2, I set the seed to 100 and then test the output
of rand. On my system, the example returns the number 365. When I run the pro-
gram again, I still get 365 because the seed value is the same.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 702

702 22.

TIP

Random Numbers

If you use a constant seed value every time you run the random generator, you
will always get the same sequence of random numbers. Although this might
seem like an undesirable effect at first, I prefer this behavior over a true random
number generator.This method allows me to debug things very easily because I
can use the same seed over and over again to simulate the same circumstances
if my program crashes.

Using a Non-Constant Seed Value

When I made my very first video game, I used a random number generator to
place monsters into random rooms. I played through it once and was pleased with
the outcome; it certainly seemed random enough.

I then decided to play it through again, but to my dismay, the monsters were in the
same rooms! This frustrated me very much, and it took a long time for me to figure
out why this was happening.

Now, a game in which the random numbers never change is going to be very bor-
ing, so you need to find a way to seed the random number generator with a differ-
ent seed every time the program is run.

The most common method is to use the current system time. C++ has a time func-
tion that returns the current time of the system in seconds. If you use this as the
seed value, then the system appears to generate different sequences of random
numbers because the system will have a different time every time the srand function
is called.

Example 22-3 replaces the srand line with the following:

srand(time(0));

And now the program will generate a new random number every time it is run. You
need to include the time.h file into your files to use the time function.

Generating a Random Number
Within a Range
The rand function returns a random number from 0 to RAND_MAX, which is a con-
stant defined by the compiler. In VC6, RAND_MAX is equal to 0x7FFF, or 32,767 in

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 703

703Generating Random Integers

decimal. Well, that’s great and all—it gives me a huge range—but what if I want a
random number between 1 and 6? What do I do then?

There are two ways to generate a random number within a specific range. The first
method, using modulo, is what has been used in this book up until this point. The
other method uses division.

Modulo Range Determination
There are two steps you must take to get a random number within a specified
range using this method. First, you need to find out the size of the range. If you
want a number from 1–6, then the size of the range is 6, because there are 6 possi-
ble outcomes: 1, 2, 3, 4, 5, and 6.

The easiest way to chop the huge number returned by rand() down to a range of 6
is to use the modulo function. For example, if you take any number and modulo it by
6, the result is a number from 0–5, giving you six total outcomes.

int x = rand() % 6;

After the preceding line of code is executed, x will contain a random number from
0–5. You’re not quite done yet, however. Because you need a number from 1–6 and
you have a number from 0–5, you just need to add 1 to the result:

int x = (rand() % 6) + 1;

Now, x will have a random number from 1–6! The entire process can be general-
ized into this function, which can be found in RandomNumbers.h in the
\structures\ directory on the CD:

int RandomRangeModulo(int p_min, int p_max)
{

int difference = (p_max - p_min) + 1;
return (rand() % difference) + p_min;

}

The function takes two parameters: p_min and p_max. These will be the minimum
range and the maximum range of the result. For a six-sided die, you would pass in
1 and 6.

On line 3, I calculate the difference between the min and max by subtracting p_min
from p_max and adding 1. Adding the 1 is very important. If you wanted to find the
difference in range from 1–6, you would end up with 5 if you didn’t add the 1,
which is wrong because you need six numbers, not five.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 704

704 22. Random Numbers

On the next line, I call rand and modulo it by the difference, which gives me a ran-
dom number in the range of 0 through difference – 1. Now all that is left is to add
the minimum value, and I have a random number in the correct range!

That was a big leadup to such a small function, wasn’t it?

Why This Is a Bad Method
The modulo-based random number generator has a flaw in it due to the rand func-
tion. Even though the rand function returns a number with a period of 2 billion,
using the modulo function reduces the period of the numbers that are generated.
The method that the rand function uses actually creates patterns in the lower bits of
the generated number that have periods that are far shorter than 2 billion. The
modulo function essentially chops off the higher bits of the number, so the result-
ing value always has a shorter period and produces more recognizable patterns. To
create a better generator that has fewer repeating patterns, you need to find a way
to use the upper bits of the generated number instead of the lower bits.

Division Range Determination
Using the division operator on a random number turns out to be the easiest way to
generate a number that uses the upper bits. This is the formula to use instead if
you want to generate a number from 1–6:

number = ((6 * rand()) / (RAND_MAX + 1)) + 1;

You multiply the number returned by the rand function by the range that you want,
and then divide that result by the total range possible plus one. This produces a
number in the range of 0–5. Finally, 1 is added to the overall total to increase the
range from 1–6.

Following is the general function for this algorithm:

int RandomRange(int p_min, int p_max)
{

int difference = (p_max - p_min) + 1;
return ((difference * rand()) / (RAND_MAX + 1))+ p_min;

}

This function has one downside, however: The range of the function cannot be
more than 217, or the numbers will overflow, and you’ll get weird results. This is
because rand returns a 15-bit number, so you can’t use a number more than 17 bits
large. A 15-bit number � a 17-bit number potentially generates a number that is 32
bits large, so using any number that requires 18 bits will end up giving you a 33-bit

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 705

705Generating Random Percents

number, which is too big for most computers. So just remember not to use this
function when you’re generating numbers with a range larger than 131,072.

RAND_MAX + 1 in MSVC6 is
15

to rand
rand

NOTE
Although the division in this algorithm at first appears to make the function
slower than the modulo function, in reality, it is faster.
a power of two, 2 .The compiler knows this, and instead of dividing by that num-
ber, it shifts the number down by 15 bits (see Appendix A, “A C++ Primer,” for
more information on bitshifting). So this function takes up one multiply, one call

, one shift down, and one addition.The modulo function takes up one divi-
sion (modulo is really a division), one call to , and one addition. Even though
there is one less command in the modulo function, remember that a multiply
and a shift is always faster than a single divide.

Generating Random
Percents
Up until now, you’ve only generated random integers, which are discrete numbers.

A discrete number is a number with an exact integer value, such as 1, 2, 3, and so on.
The area of mathematics that is involved with computers is called discrete mathemat-
ics because of the exact nature of computers.

Many times, you might find yourself needing a random percent, however. Percents
are useful because they fall within the range of 0.0–1.0, and they can be used for
many purposes.

The rand function only returns discrete numbers, though, so how do you convert
the output of rand into a percent from 0.0 to 1.0? The answer is simple: Because
the range of the random number is from 0 to RAND_MAX, you can take the result of
rand and divide it by RAND_MAX. If rand returns RAND_MAX, then RAND_MAX/RAND_MAX is 1.
Likewise, 0/RAND_MAX is 0.

You can turn this into a function:

float RandomPercent()
{

return (float)rand() / (float)RAND_MAX;
}

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 706

706 22. Random Numbers

The most important thing to remember is that you are dealing with floats here, so
you need to convert the result from rand into a float and RAND_MAX into a float as
well before you do the division, or else the compiler will think you are performing
an integer division and return exactly 0 or 1, and nothing else.

Generating Random Floats

Generating a random floating-point number is very similar to the RandomPercent
function. Because you want a random floating-point number in any given range,
you’ll use the RandomPercent function to generate a float from 0 to 1 first and then
modify the result to fit in the new range.

Luckily, this algorithm is not much different than the RandomRange function. Say you
want a random floating-point number from 0.0 to 5.0. All you need to do is multi-
ply the result of RandomPercent by 5.0. Figure 22.3 shows this expansion.

Figure 22.3

Here is how you
expand a number
from 0–1 to 0–5 by
multiplying it by 5.

float x = RandomPercent() * 5.0f;

After the preceding line of code is executed, x will contain a random floating-point
number anywhere between 0 and 5.

Now what if you want a number from 1–6? Like the integer example, all you need
to do is add 1 to the final result:

float x = (RandomPercent() * 5.0f) + 1.0f;

Like the RandomRange function, this can be expanded into a general-purpose func-
tion:

float RandomRangeF(float p_min, float p_max)
{

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 707

707Generating Non-Linear Random Numbers

float difference = (p_max - p_min);
return (RandomPercent() * difference) + p_min;

}

You can see that this is almost the same as the RandomRange function. On a test run, I
received the following values when I asked for numbers from 1–6: 2.99789, 5.48180,
3.79229, 4.43303, 5.20530, and 1.21805.

Generating Non-Linear
Random Numbers
Up until now, you’ve only generated linear random numbers. This means that
every number that they generate has the same probability of being generated. If
you call RandomRange and ask for a number from 0–4, each number will be gener-
ated approximately 20 percent of the time. There are five total numbers that can
be generated, so the probability that one of them will be generated is 1/5.

Although this is a good feature to have in some cases, it doesn’t make sense in
other cases.

For example, say you are randomly generating the height of characters in a game,
and you can choose from five sizes: very short, short, average, tall, and very tall. With
a random number generator, there will theoretically be the same number of people
in each category. Out of 100 people, each category will have about 20 people.

This model doesn’t mimic real life, though. If you randomly pick 100 people out of a
city, you’ll only find 1 or 2 very short people and probably 40 or 50 average people!

Probability Distribution Graphs

There is an easy way to visualize how a random number will look. Figure 22.4 is
called a Probability Distribution Graph because it shows how random numbers in a
certain range are distributed. Figure 22.4 shows a linear distribution from 0–4. The
numbers at the bottom are the possible outcomes. The bold line above the num-
bers represents the distribution. Because every number is distributed evenly, they
all have the same value: 20 percent.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 708

708 22. Random Numbers

Figure 22.4

This is an even
distribution graph.
Every number has an
equal chance of
being generated if
the random number
generator has this
distribution.

If you take the height example from the previous section in the real world, you will
probably end up with a graph that looks like Figure 22.5. See how the number of
average-height people far outnumbers the very tall or the very short? This is gener-
ally how the distributions work in real life, and this graph is commonly called the
bell curve, because it looks like a bell.

Figure 22.5

This is a bell-curve
distribution graph.
The middle numbers
are more likely to be
generated if the
random number
generator has this
distribution.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 709

709Generating Non-Linear Random Numbers

Adding Two Random Numbers

Now you need to find a way to generate a non-linear random distribution. Luckily,
the easiest way is to add two random numbers.

Say you add two random numbers, each of them ranging from 0–4, like this:

int x = RandomRange(0, 4) + RandomRange(0, 4);

Obviously, x will contain a number from 0–8, but its distribution is no longer even.
The probability that you will get a 0 is much less than the probability that you will
get a 4. Why is this? You need to analyze what happens when you add two random
numbers.

The first call to RandomRange will generate a random number from 0–4, and each
number will have a 20 percent chance of being generated. But then another ran-
dom number is generated. If the first call generates a 0, the second call could gen-
erate any number from 0 to 4.

You can easily represent the results in a 2D array, like Figure 22.6 shows.

Figure 22.6

Here are the results
of adding two
random numbers
from 0–4.

If we count the number of boxes, we get 25 total results. Note that a result of (0,1)
is considered to be a different event than (1,0), even though they both add up to 1.
This is important. Count how many outcomes add up to 0. There is only one: (0,0).
So that means that the value 0 shows up 1/25 of the time, or 4 percent. Now count
how many outcomes add up to 1. There are two this time, (0,1), and (1,0), which
means that the number 1 shows up 2/25ths of the time, or 8 percent.

Table 22.1 shows the distribution of adding two random numbers from 0–4.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 710

710 22.

Result

0 1/25

1 2/25

2 3/25

3 4/25

4 5/25

5 4/25

6 3/25

7 2/25

8 1/25

Random Numbers

Table 22.1 Probabilities of Two Random Numbers
from 0–4

Probability Percent

4 percent

8 percent

12 percent

16 percent

20 percent

16 percent

12 percent

8 percent

4 percent

So, if you put this into a graph, you get a distribution that looks like Figure 22.7.
Clearly, 4 will occur more often than any other of the numbers, but this graph isn’t
quite close to the bell curve yet.

Figure 22.7

This figure shows you
the distribution graph
of two random
numbers from 0–4.
The result 4 occurs
the most often (five
times), and the
results 0 and 8 occur
the least often (one
time each).

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 711

711Generating Non-Linear Random Numbers

Adding Three Random Numbers

If you’ve ever played Dungeons & Dragons, you might have wondered why they
require you to roll three six-sided dice for your character attributes. The reason is
that adding three random numbers gives you a random distribution that is very
close to the bell curve.

It is difficult to show the outcomes of three random numbers because it requires a
3D array, so I will just show you a table instead. Table 22.2 shows the probability of
the results of adding three random numbers from 0 to 3.

Table 22.2 Results of Three Random Numbers

from 0–3

Result Probability Percentage

0 1/64 1.6 percent

1 3/64 4.7 percent

2 6/64 9.6 percent

3 10/64 15.6 percent

4 12/64 18.75 percent

5 12/64 18.75 percent

6 10/64 15.6 percent

7 6/64 9.6 percent

8 3/64 4.7 percent

9 1/64 1.6 percent

Figure 22.8 shows the distribution graph of adding three random numbers from
0–3. That looks pretty close to a bell curve, doesn’t it?

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 712

712 22. Random Numbers

Figure 22.8

This is the
distribution graph of
adding three random
numbers.This looks
similar to a bell
curve.

Graphical Demonstration: Random
Distribution Graphs
I created a little program that will generate random distribution graphs for you.
Figure 22.9 shows a screenshot of the program in action. The source code for this
demo is on the CD in the directory \demonstrations\ch22\Demo01 - Random
Distribution\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 713

713Conclusion

Figure 22.9

Here is a screenshot
of Graphical
Demonstration 22-1.

The demonstration works by adding four different random numbers together. On
the left side of the screen, there are eight boxes representing the minimum and
maximum values of each of the four different ranges. You can click on the boxes
and type the numbers you want in them. The only thing you need to watch out for
is entering very large numbers. Large numbers will cause the program to run very
slowly when it calculates the graphs. A range of less than 100 for each of the four
numbers is perfectly suitable for the demonstration, anyway.

At the bottom of the screen, there are two check boxes: Theoretical Distribution
and Actual Distribution. This program calculates the theoretical distribution of the
ranges that you create and draws it on the screen in blue (in the screenshot, it is
the smooth curve).

The program also uses the RandomRange function to generate a graph of results that
you will see in real-life programs, which is drawn in red (in the screenshot, it is the
spiky curve). The program takes the number found in the Random Trials box and
adds together that many numbers. The default is set to 1,000 trials, which is fine for
small distributions, but you will find that the red graph gets more uneven as the
range of the random numbers increases. If you increase the number of trials to a
large number, then the red graph will get closer and closer to matching the blue
graph.

Team LRN

Data Structures CH22 11/5/02 8:57 AM Page 714

714 22. Random Numbers

The Current text box contains the current number. You can move this forward and
backward, and the two text boxes to the right will update themselves to show the
percent value of the current number. In the example in the screenshot, the chance
that the number 0 will be generated is 0.01 percent, and with 1,000 random trials,
it was actually generated 0 percent of the time. If I increased the number of trials
or pressed the Calculate button, the number of times 0 is actually generated might
be increased.

Play around with the program; it’s kind of fun to see what kind of graphs you can
generate using different ranges. Remember, you don’t need to use the same range
for all four numbers—you can create a small range for the first one and a large
range for the second, or practically any combination you want!

Conclusion

In this chapter, you learned how to generate linear random numbers using the
standard C library’s rand function. This can be useful in games for simulating the
unpredictability of things in real life.

You also learned how to use non-linear random number generators to generate
bell-curved random numbers. This is also a useful way to generate random num-
bers because it gives you a little bit more stability when generating numbers.

This is only a brief glimpse into the world of random number generation. Entire
books and university classes are based around this subject, so there is a lot more
information to be gleaned out there. I hope you found some of this information
new and interesting. Probability and statistics is one of my favorite topics.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 715

CHAPTER 23

Pathfinding

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 716

716 23. Pathfinding

At last, you have reached the final algorithm in this book: pathfinding.
Pathfinding is an important topic in game programming because almost all

games use some sort of map system, and they need a method to move the units
around on the maps. Be it role-playing games, first-person shooters, real-time
strategies, or any other game with a map, they all use some sort of pathfinding.

This chapter will teach you how to think about pathfinding and how to do intelli-
gent pathfinding.

In this chapter, you will learn

■ How to use the breadth-first search to find a path
■ How to modify the breadth-first search and make it better
■ How to use heuristics to make your pathfinder smarter
■ How to create an even better heuristic
■ How the A* pathfinder works
■ How to use weighted maps within your games
■ How to perform non–tile-based pathfinding

Basic Pathfinding
Look at Figure 23.1. The little guy in the middle of the map wants to get to the
square with the pattern in it. How would you go about moving him toward the goal?

Figure 23.1

This is a simple
tilemap that will be
used for the
pathfinding
examples.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 717

717Basic Pathfinding

In a game, you’ll know the coordinates of the goal and the coordinates of the
player, too. You can figure out which direction the goal is in and move him toward
it. Figure 23.2 shows this.

Figure 23.2

The AI is heading
toward the goal.

The coordinates of the player and the goal are compared, and the computer
notices that the goal has a larger x value than the player, so the player is moved in
the positive x direction.

This works for the example because there are no obstacles. What happens when
you add a wall into the equation, as in Figure 23.3?

Figure 23.3

This is a more complex
map, with a wall
blocking the path.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 718

718 23. Pathfinding

This time, you cannot simply move the player toward the goal because he cannot
walk through the wall. You must find a better alternative.

There are many simple (simple to code, at least) ways to get around this problem,
but I don’t want you to spend too much time focusing on them.

Random Bouncing

This is the most basic method of pathfinding and it produces the simplest results.
In fact, there is no reason for a game to use this kind of pathfinding today unless
you’re trying to emphasize that your AIs are kind of stupid.

The basic premise of this method is the same as before, only this time, when the
player hits a wall, he moves in a random direction and then resumes toward the goal.

Unfortunately, if the wall is big, the player may spend lots of time wandering back
and forth before he finally finds a way around the wall. Figure 23.4 shows the path
that this kind of pathfinder takes with a wall in its path.

Figure 23.4

The random bouncing
pathfinder tries going
straight for the goal until it
hits an obstacle.When that
happens, the pathfinder
moves one cell in a random
direction and continues
toward the goal.

You can’t see exactly how it works from the picture, but just imagine the player bounc-
ing up and down the wall many times until he finally finds his way past the wall.

If someone saw your AIs doing that in a game, they would think you were a very
poor programmer.

Needless to say, this is a very stupid method to find paths with, and you shouldn’t
use it. Not only that, but the algorithm won’t even work with complex maps like
the one shown in Figure 23.5.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 719

719Basic Pathfinding

Figure 23.5

This is a map that will
cause a random bouncer
to become trapped.

The random bounce algorithm will never find its way out of the little cove that it
is in.

Object Tracing

Have you ever tried to solve a maze before? There is an old rule that will get you
through the maze every time: Follow either the left wall or the right wall, and even-
tually you will reach the end of the maze.

Figure 23.6 shows a sample maze.

Figure 23.6

This is a maze.The cell
with the cross pattern in
it is the goal.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 720

720 23. Pathfinding

Now, imagine you’re the little stick figure and you have to find your way to the
square with the cross pattern in it. Although it is pretty easy to eyeball your way
through this maze, think about it like a computer for a moment. How would you
generate a solution for the maze that a computer would understand that would
work every time?

Imagine that you put your hand on the left wall of the maze. Now, keep your hand
on the maze wall and walk forward. Whenever you reach a turn in the maze, just
keep your hand on the wall and follow the path.

You will end up retracing your steps a few times, but in the end, you will find the
exit to the maze, which is all this algorithm is concerned with. Figure 23.7 shows
the solution to the maze if you used your left hand to follow the walls.

Figure 23.7

Here is the solution
to the maze if you
use the left-wall
tracing method.

This is exactly how object tracing works. Whenever it finds an obstacle, it traces the
outline of the obstacle until it finds a way around it. Figure 23.8 shows this algo-
rithm applied to a single obstacle.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 721

721Robust Pathfinding

Figure 23.8

This shows how to use
object tracing to get
around an obstacle.

While this method seems far more useful than other methods, it is still undesirable
in games these days. This is because the algorithm needs to choose which way to go
whenever it hits an obstacle, and either way may end up being the longer of the
two routes. About half of the time, the pathfinder will take the longer route around
the object, which is usually a bad idea.

Robust Pathfinding

The previous two pathfinding algorithms were instant pathfinders. They determine
the path that the AI will be following every time the AI moves into a new square.
There are other ways that find a much more efficient path.

In games, especially real-time strategies such as Warcraft and all its sequels, the players
expect their units to get to where they told them to go in the shortest time possible.
This means that they need to find the shortest path from the beginning to the end.

The Breadth-First Search

Remember the breadth-first search from Chapter 17, “Graphs”? It turns out that this
searching algorithm is a very basic method for searching for the shortest path
through a map or a graph.

Remember, the algorithm first processes all of the cells that are one jump away from
the starting cell, and then every cell that is two jumps away, and then three, and so
on. To apply this to pathfinding, the algorithm stops when the goal is found.

Here is the algorithm described in pseudo-code (remember, the breadth-first
search requires a queue to work). Note that the cells also require a new variable,

Team LRN

the previous pointer. It tells each cell which cell pointed to it during the search. I
make that clear in a moment.

1. Add the starting cell to the queue.

2. Mark the starting cell.

3. Take the first cell off of the queue.

4. If the cell is the goal, then the algorithm is complete.

5. If any of the children aren’t marked, set their previous pointer to the current
cell and add them to the queue.

6. Go to step 3 until the algorithm is complete or the queue is empty.

Let me take you through this algorithm on the simple map from Figure 23.8.

When a cell is added to the queue, it is turned light gray. Whenever a cell is not in
the queue but is marked, it will be dark gray. Each cell in the queue will have a
pointer to the previous cell.

Figure 23.9 shows the entire process of the breadth-first search, level by level.

722 23. Pathfinding

Figure 23.9

This shows the
breadth-first search.

Data Structures CH23 11/5/02 8:58 AM Page 722

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 723

723Robust Pathfinding

On the second iteration (see Figure 23.9.B), all eight surrounding cells of the start-
ing cell are placed into the queue. The images don’t show it, but the cells are
processed in clockwise order, starting with the top-most cell.

On the third iteration (see Figure 23.9.C), the next layer of cells is processed, and so
on. At the end of the last iteration (Figure 23.9.I), the goal cell is found, at which
point the function terminates. Now, in order to get the path from the start to the goal,
you just follow the arrows from the goal to the starting cell and reverse the order.

Figure 23.10 shows the final path.

Figure 23.10

The final path is
shown in bold.

Modifying the BFS Pathfinder
The plain breadth-first pathfinding algorithm has a few flaws. First of all, it treats all
adjacent cells as the same distance away from the center, which is not true. Figure
23.11 clearly shows that the distance from the center to a diagonal cell is more
than the distance from the center to a horizontal or vertical cell.

Figure 23.11

This shows the distance
between cells.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 724

724 23. Pathfinding

Because of this flaw, the paths that a BFS pathfinder take tend to be more diagonal,
because it treats all eight directions as the same length. The paths usually end up
being longer and don’t look as good.

There are two ways to fix this.

Modifying the Visitation Order
In the example I showed you previously, the adjacent cells are visited in clockwise
order. Instead of using that method, why not change the visitation order so that the
horizontal and vertical cells are added to the queue before the diagonal cells?

Figure 23.12 shows the visitation orders.

Figure 23.12

This shows the two
different visitation
orders.

The benefit of this new ordering method may not be apparent to you immediately,
so let me show you an example. Imagine for a moment that you have a simple
9 � 9 tile map with an AI at the center. He wants to go three squares to the right by
using the breadth-first search pathfinder.

Figure 23.13 shows this scenario, computed first using the old traversal order and
then using the new traversal order.

Figure 23.13

These are the two
different path
calculations using two
different visitation
orders.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 725

725Robust Pathfinding

The top path looks undesirable right away because it goes up and then down again.
The bottom path looks much better, as it is just a straight line. The problem with
this algorithm is that it sees both paths as being the same length, even though they
are clearly not.

Although changing the visitation order makes things a little better, there are still
places where it will run into trouble (mostly on large maps).

Therefore, another method is required.

A True Breadth-First Search
The problem with the previous method is that the algorithm still treats every cell as
the same distance from the center cell. When you perform this kind of a search,
you end up with a search area that is square.

What if you were able to process each cell based on the distance it takes to travel to
the starting cell? For example, look at Figure 23.14. It has three 5 � 5 grids in it.

Figure 23.14

This shows the
distances of each cell
from the center cell,
and the orders in
which the cells are
visited using the two
different visitation
orders.

The first grid shows the approximate distance of each cell from the middle. You
can see that cells that are on the same level (or are the same number of “jumps”
away from the center) have varying distances. A standard breadth-first search would
consider cell (0,0) the same distance away as cell (0,2), even though their actual
distances from the center are quite different. The first cell is 2.8 units away from
the center, and the second one is only 2.0 units away, a difference of almost an
entire cell! In order to avoid confusion between these two different methods, I call
the new method the distance-first search because it processes all of the cells with the
smallest distance first.

The second grid in Figure 23.14 shows the order in which each level of cells is
processed. On the first iteration, all 8 cells surrounding the center are processed,
and the 16 cells on the outside are processed on the second iteration.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 726

726 23. Pathfinding

The third grid in Figure 23.14 shows the order in which cells are processed using
their actual distance from the center. You can see that the cells are processed in a
more radial fashion, so the pattern goes outward in a circle.

So what does this mean? It means that this method is somewhat faster than a plain
breadth-first search. First of all, consider what happens when you find a horizontal
path that is 64 squares away from the start. Using the standard breadth-first search,
you end up searching 1282 squares (remember, it searches in each direction, so it
ends up searching 64 squares up, down, left, and right, which is a 128 � 128
square) before it finds the goal, which is 16,384 squares.

Using the distance-first method, you search a smaller circular area, which is approx-
imately pi * 642, or 12,867 squares. So for horizontal and vertical goals, the dis-
tance-first search will do about 21 percent less searching. Hooray!

But wait! What happens when you search for a goal that is directly diagonal from
the starting point, 64 units away? Well, using the distance-first algorithm, you end
up searching pi * 642 squares, the same as for horizontal and vertical goals, 12,867.
But the breadth-first algorithm gets there quicker because it searches fewer cells.
Consider the number of squares the pathfinder will go through when moving 64
units diagonally, which is 64/√2, or around 45 squares. So it searches 45 squares in
all four directions, giving you a total of 902 squares searched, or 8,100 squares. This
works out to be about 36 percent less searching!

How to Calculate the Number of Squares
in the Search Areas

The area in a circle is a simple mathematical formula: area = pi * radius2. In
the example, the radius is 64, so you get pi * 4096, which is approximately
12867.963509. If you truncate the decimal, you get 12,867 squares that fall
in a radius of 64 squares on a tilemap.

When a square is 64 units away on the diagonal, that square isn’t actually
64 jumps away. Because each diagonal is actually 1.4 units long, the square
that is 64 units away is 64/1.4, or 45.254834.That means that on the diago-
nal, the 45th square away is 64 units away.The traditional breadth-first
search searches a square area, 45 units in each direction in this case, so it
searches around 90 squares on each side, or 902, which is 8,100 squares.

All of these figures are approximate, of course, because I only wanted to
give you a general idea of how many squares are searched in each method.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 727

727Robust Pathfinding

Figure 23.15 shows a comparison of these two scenarios.

Figure 23.15

Here are the search
areas of the two
different pathfinders.

So which method is better? At a first glance, you can see that the distance-first
search has a worse worst case than the breadth-first search, but there is one thing
that the BFS neglects: weighted cells.

Imagine for a moment that in your game, you have two types of terrain: grass and
rocks. It is easy to walk through areas of the map with grass in them, but harder to
walk through the rocky areas of the map. The standard BFS search doesn’t take
into account how long it takes to walk through these areas, but the distance-first
search does (if you pretend that walking through one rocky cell is the same as walk-
ing through two grassy tiles).

Just keep this idea in the back of your mind for now. I go over it in more detail
later on.

I show you the algorithm for this pathfinder later in this chapter.

Graphical Demonstration: Distance
First Pathfinder
This is Graphical Demonstration 23-1, which is on the CD in the directory \demon-
strations\ch23\Demo01 - Distance First\ .

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 728

728 23. Pathfinding

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo starts off with a large grid full of white squares and four buttons. In the
lower right corner, there is a square. This square contains the color of the tile that
will be drawn if you move your mouse over the map and click it. You can change
the color by pressing the numbers 0 through 9 on the keyboard. Each color has a
different weight associated with it. For example, 0 draws a tile with a weight of 1, 4
draws a tile with a weight of 5, and 9 draws a wall, which is impassable.

Once you have drawn all the walls and tiles, you put your mouse over the place where
you want to start pathfinding and press the S key. Then put the mouse over the place
where you want the goal to be and press the G key. Figure 23.16 shows a screenshot.

Figure 23.16

Here is a screenshot
of the demo.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 729

729Robust Pathfinding

The little guy on the map represents the starting place, and the X marks the goal.
When your map is totally set up, click the Go! button, and watch it find your path!

It’s a bit slow, isn’t it? Well, to fix that, click the Faster button a few times and watch
it fly! If you want it to slow down again, click the Slower button.

When it is done finding the path, it will look something like Figure 23.17.

Figure 23.17

Here is a screenshot
of the demo after it
has calculated a
path.

While the demo is calculating the path, certain cells will turn different colors. Table
23.1 shows a listing of the meanings of the colors.

Table 23.1 Cell Color Meanings

Color Meaning

Black Cell is unprocessed and is not in the queue.

Green Cell is unprocessed but it is in the queue.

Blue Cell is already processed and removed from the queue.

Red Cell is being processed.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 730

730 23. Pathfinding

Play around with the demo a bit to try to get the hang of how the algorithm works.
After the path has been found, it is shown with a bold red line.

Coding the Distance-First Pathfinder
This section will show you how to go about programming a distance-first
pathfinder. All of the pathfinding algorithms can be found in the Pathfinding.h file
in the \structures\ directory on the CD.

The Base Code
Because this section deals with many dif-
ferent pathfinders, it makes sense to
create a base in which to test the
pathfinders.

The four pathfinders in this section will
all operate on 2D arrays.

The Cell Class

Because the pathfinding algorithms
need to maintain information about
individual cells, it makes sense to make
a class that will store this data.

NOTE
Even though all of the demos and
figures in this chapter show 2D top-
down views, pathfinding can be
applied to any game anywhere.The
2D view is only used to emphasize
the basic concepts; if you were using
a 3D world with heightmaps, you
could easily adapt these algorithms
into your game.This information
won’t limit you.

This is the Cell class:

class Cell
{
public:

bool m_marked;
float m_distance;
int m_lastx;
int m_lasty;
bool m_passable;
float m_weight;

};

The first item is a boolean, which is used to tell if the cell has been marked or not
by the pathfinding algorithm.

Then the cell retains information about the distance it takes to travel from the
starting cell to this cell.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 731

731Robust Pathfinding

The two integers are used as a pointer to point to the previous cell in the path.

The last two variables determine if the cell is passable (if it is not, then it has an
obstruction in it, like a wall or a tree) and the weight of the cell. The weight is
defined as the amount of work it takes to walk into a particular cell. Using the grass
and rocks example, the grass would have a weight of 1.0, and the rocks would have
a weight of 2.0.

If you haven’t already guessed, the pathfinders will be finding paths through maps
that are stored in a 2D array of this Cell class.

The Coordinate Class

Whenever a cell is placed in the queue for processing, the actual cell structure isn’t
placed in the queue. It is far easier to use a small structure that points to the cell
that is in the queue instead.

Here is the class definition:

class Coordinate
{
public:

int x;
int y;
float heuristic;

};

The class has the x and y coordinates of the cell in the queue and another variable,
the heuristic value of the cell. If that word sounds familiar to you, it’s because I used
it in Chapter 15, “Game Trees and Minimax Trees.” Remember, a heuristic is a
function that tries to pick out a smart choice from all of the options it has available.
The reason this variable is here will become apparent when I start explaining the
actual pathfinding function.

The Comparison Function

This is a comparison function that the pathfinders will use to figure out which cell
to process next.

int CompareCoordinatesDescending(Coordinate left, Coordinate right)
{

if(left.heuristic < right.heuristic)
return 1;

if(left.heuristic > right.heuristic)
return -1;

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 732

732 23. Pathfinding

return 0;
}

This function compares the heuristic value of two Coordinates. This is a descending
function, so it treats lower heuristic values as if they were actually higher. Again,
you will see why this is used when the pathfinding function is described.

Clearing the Cells

Whenever a pathfinder function is called, the first thing it does is go through every
cell in the 2D array and clear all of the variables it is going to use for pathfinding.

void ClearCells(Array2D<Cell>& p_map)
{

int x;
int y;
for(y = 0; y < p_map.Height(); y++)
{

for(x = 0; x < p_map.Width(); x++)
{

p_map.Get(x, y).m_marked = false;

p_map.Get(x, y).m_distance = 0.0f;

p_map.Get(x, y).m_lastx = -1;

p_map.Get(x, y).m_lasty = -1;

}
}

}

The function performs a standard doubly-nested for-loop to go through every cell
in the map. (See Chapter 5, “Multi-Dimensional Arrays,” if you don’t remember
how this works.)

For each cell, the marked flag is set to false, the distance is reset to zero, and the
previous-cell pointers are both reset to �1. Because the map starts at index (0,0), it
is easy to tell whether the cell has been processed already.

The other two variables of the cell class, m_passable and m_weight, are not modified
by this function. The pathfinders only look at these variables and do not modify
them in any way because they define the map and are meant for you to modify.

The Distance Function

Some of the pathfinders need the ability to find the distance between two cells, so
there is a function to do this easily.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 733

733Robust Pathfinding

float CellDistance(int x1, int y1, int x2, int y2)
{

int dx = x1 - x2;
int dy = y1 - y2;
dx = dx * dx;
dy = dy * dy;
return (float)sqrt((double)dx + (double)dy);

}

This function uses the standard mathematical distance formula: distance = square
root(dx2 + dy2), where dx and dy are the distance between the x and the y coordi-
nates, respectively. If you don’t know how this works, don’t worry about it; you can
just assume that the function works properly.

The Constants

There are a number of constants defined in the file to speed up some calculations.

const int QUEUESIZE = 1024;

The first one is the queue size. Naturally, arrayed queues (specifically, heaps, but
I’ll get into that later) are better for these algorithms because they are faster to
insert and remove items from. Because resizing the arrays during run-time is usu-
ally a bad idea, you want to start the array off at a decent size. I think 1024 cells is a
decent size to use because it doesn’t seem too likely that you’ll have more than
1024 cells in the queue at any given time. However, if you do end up needing a
larger queue size, just increase this constant, and everything will be handled auto-
matically.

const int DIRTABLE[8][2] = { { 0, -1 },
{ 1, 0 },
{ 0, 1 },
{ -1, 0 },
{ 1, -1 },
{ 1, 1 },
{ -1, 1 },
{ -1, -1 } };

Next, there is a direction table. This defines the coordinate offsets for each of the
eight directions that are possible at each cell. This particular table defines north,
east, south, and west first, and then northeast, southeast, southwest, and northwest.
How is the data interpreted? Well, direction 0 represents north, so to go north
from any given cell, you add 0 to the x coordinate and add �1 to the y coordinate.
In effect, you get this code:

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 734

734 23. Pathfinding

x = x + DIRTABLE[direction][0];
y = y + DIRTABLE[direction][1];

For the second index, 0 means x and 1 means y.

const float DISTTABLE[8] = { 1.0f, 1.0f, 1.0f, 1.0f,
1.414214f, 1.414214f, 1.414214f, 1.414214f };

Finally, there is a table that stores the distance from a cell to an adjacent cell. The
first four distances (for the N, E, S, and W directions) all contain 1.0, and the sec-
ond four distances (for the NE, SE, SW, and NW directions) all contain 1.414214,
which is the distance for a diagonal cell. You’ll see how this works when you get
into the pathfinding algorithms.

The Distance-First Pathfinder
This is a long and complex function. It should be—it performs a long and complex
task. Because it is so long, I split it up into several segments and explain what each
segment does after the code listing to make it easier to understand.

void PathDistanceFirst(Array2D<Cell>& p_map,
int p_x, int p_y,
int p_gx, int p_gy)

{

First are the parameters. The function accepts an Array2D as the map and four inte-
gers. The integers are map coordinates; the first two are the starting position of the
pathfinder, and the second two are the goal position.

Coordinate c;
int x, y;
int ax, ay;
int dir;
float distance;

These variables are all used to cache data in the function so it doesn’t have to be
looked up constantly. The c variable is used to set up Coordinates that are then
added into the queue. The x and y coordinates store the coordinates of the current
cell that is being processed; the ax and ay coordinates store the coordinates of the
current adjacent cell. The dir variable stores the current direction, and distance
stores distance calculations.

Heap<Coordinate> queue(QUEUESIZE, CompareCoordinatesDescending);

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 735

735Robust Pathfinding

Next, the queue is defined. Note that the queue isn’t a regular queue, but it is
instead a priority queue heap. The heap is defined with a size of QUEUESIZE and the
descending coordinate comparison function, which means that coordinates with
the smallest heuristic value are always at the top of this queue.

ClearCells(p_map);
c.x = p_x;
c.y = p_y;
c.heuristic = 0.0f;

queue.Enqueue(c);

The cells of the map are all cleared using the ClearCells function, and then the
starting cell in the map is placed into the queue with a heuristic value of 0.0. This
value really isn’t important, as you’ll see in a moment.

while(queue.m_count != 0)
{

x = queue.Item().x;
y = queue.Item().y;
queue.Dequeue();

This begins the pathfinding loop. The first item is pulled off of the queue. Because
there was only one item on the queue in the first loop, it is pulled off right away, so
its heuristic value didn’t really matter.

The coordinates of the cell are recorded in the x and y coordinates.

if(p_map.Get(x, y).m_marked == false)

{

p_map.Get(x, y).m_marked = true;

This section of code makes sure that the cell that was on top of the queue wasn’t
already marked. If the cell was already marked, then nothing happens; the cell is
discarded, and the loop starts over, pulling off another cell. If the cell wasn’t
marked yet, it is then marked, and the algorithm continues.

I know that sounds a little weird. “How can a cell that is already marked still be on
the queue?”, you might be asking. Well, the pathfinder might actually end up
enqueuing a cell several times. Figure 23.18 shows how this happens.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 736

736 23. Pathfinding

Figure 23.18

Some cells end up in
the queue more than
once.This is why it is
important to mark
them when they are
removed from the
queue the first time.

The leftmost grid shows the processing of one cell, and the middle grid shows the
processing of the cell above it. Now, if the first cell is processed, all of the dark cells
are added to the queue but not marked. Then the second cell is processed, and all
of the dark cells are added to the queue again. The third grid shows which cells are
in the queue twice in black.

So why does this happen? Wouldn’t it be better not to add the cells again? The
answer is no. When a cell is added to the queue, it points to the cell that was being
processed at the time. However, this does not mean that the cell was the best
choice at the time. It might turn out, later on, that when a cell is again added to
the queue, there might be a shorter path leading to it. You’ll see this in action in a
moment. Back to the algorithm:

if(x == p_gx && y == p_gy)

break;

If the current cell is the goal cell, the algorithm just exits out with a break call.
There is no need to continue processing.

for(dir = 0; dir < 8; dir++)
{

ax = x + DIRTABLE[dir][0];
ay = y + DIRTABLE[dir][1];

Now the function loops through all eight directions. The ax and ay variables hold
the coordinates of the current adjacent cell.

if(ax >= 0 && ax < p_map.Width() &&
ay >= 0 && ay < p_map.Height() &&

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 737

737Robust Pathfinding

p_map.Get(ax, ay).m_passable == true &&
p_map.Get(ax, ay).m_marked == false)

{

This large if statement checks many things. First of all, it checks to see if the adja-
cent cell is within the bounds of the map. Sometimes the adjacent coordinates are
invalid, so this is important.

Then it checks to see if the adjacent cell is passable. If it isn’t passable, then it will
not process the cell.

Finally, it checks to see if the cell is marked. This part of the algorithm ignores
marked cells because those cells have already been processed.

distance = p_map.Get(x, y).m_distance +
p_map.Get(ax, ay).m_weight * DISTTABLE[dir];

Next, the function calculates the dis-
tance to the adjacent cell. The function
calculates this value by adding the dis-
tance of the current cell to the distance
from the current cell to the adjacent
cell. For now, just think of the weight as
being 1.0. So if the adjacent cell is
either horizontal or vertical, then the
distance to get into that adjacent cell is
1.0. If the cell is a diagonal cell, then
the distance is 1.414.

2

= side12 + side22

2 +
12

NOTE
The Pythagorean theorem states
that the relationship between the
three sides of a right triangle is gov-
erned by this equation: hypotenuse

. Because both sides
of a square are 1.0, the length of the
hypotenuse is the square root of 1

, or the square root of 2: 1.414.

if(p_map.Get(ax, ay).m_lastx != -1)
{

Now the function checks to see whether the adjacent cell has valid pointer links. If
it doesn’t, then this is the first time the cell is being added to the queue. If the
m_lastx variable isn’t -1, then it has been added to the queue before.

if(distance < p_map.Get(ax, ay).m_distance)
{

At this point in the code, you know that the adjacent cell is in the queue at least
once already. Now the function tries to figure out if it should add it to the queue
again. The distance variable holds the distance it takes to get into the adjacent cell
through the current cell, so it compares that value with the existing m_distance
value in the adjacent cell. Remember: Because the cell is already in the queue, it
has a valid distance value that was calculated by going through a different cell.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 738

738 23. Pathfinding

If the new distance is less than the distance through a different cell, then the func-
tion needs to add the cell to the queue again. If the new distance is more than the
existing distance, then nothing happens, and the adjacent cell is not added to the
queue again. (Why bother looking into that path if a better path has already been
found?)

p_map.Get(ax, ay).m_lastx = x;
p_map.Get(ax, ay).m_lasty = y;
p_map.Get(ax, ay).m_distance = distance;

At this point, you know that the path through the current cell to the adjacent cell is
shorter than a path that has already been found, so the m_lastx and m_lasty pointer
links are updated, as well as the distance.

c.x = ax;
c.y = ay;
c.heuristic = distance;

queue.Enqueue(c);

}

}

The temporary Coordinate value is set up pointing to the adjacent cell and added to
the queue. Notice what value it uses as the heuristic value: the distance it took to
reach that cell. This means that the cells are processed so that the cells with the
smallest distance (that is, closest to the starting point) are processed first. This gives
the effect of the distance-first pathfinder, which gradually expands outward in all
directions.

else
{

p_map.Get(ax, ay).m_lastx = x;
p_map.Get(ax, ay).m_lasty = y;
p_map.Get(ax, ay).m_distance = distance;

At this point in the code, you know that the adjacent cell is not in the queue at all,
so you set its pointer links to point to the current node and set its distance.

c.x = ax;
c.y = ay;
c.heuristic = distance;

queue.Enqueue(c);

}

}

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 739

739Robust Pathfinding

}
}

}
}

And finally, the adjacent node is added to the queue.

That was a very long function, but when you think about it, the function isn’t really
very complex. It follows the same basic formula as the 6-line description of the
breadth-first search earlier in this chapter.

Making a Smarter Pathfinder

I want you to try something. Load Graphical Demonstration 23-1 again and place
the starting point in the very center of the map. Then place the goal at the right-
most edge of the map, on the same horizontal level as the starting point, so that it
looks like Figure 23.19.

Figure 23.19

You should set up the
demo like this.

Now click Go! And wait... and wait... and wait. Gee, this is slow, isn’t it?

Imagine that you’re playing a game and it shows you where the pathfinder is
searching for the path. You notice that it is searching not only toward the goal, but
in every other direction, too! Don’t you just want to jump up and yell, “Hey, stupid,

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 740

740 23. Pathfinding

the goal is to your right—go that way! Don’t bother searching to the left, or up, or
down!”? Figure 23.20 shows a screenshot of the demo after it has found the path.
Pay attention to how much of the map has been searched.

Figure 23.20

Almost all of the
map is searched
using this algorithm.

The distance-first pathfinder is neat because it will always find the shortest path from
one point to another. But it is also stupid because it searches in every direction. As a
human, you can look at a map and generally figure out the best way to get from
point A to point B. For a computer to do that is generally more difficult, though.

This is where heuristic searching becomes important. I briefly mentioned it when
going over the code for the distance-first pathfinder.

A heuristic, when applied to pathfinding, is a method used to pick which cells
should be processed first. When the distance-first pathfinder picks the next node to
process, it picks the closest node to the starting point that has not been processed
yet. This isn’t a very smart method.

What if you were to create a method that would choose nodes that are closer to the
goal first rather than closer to the start?

Imagine a system that would rate a cell based on how much closer it got you toward
the goal. If you got closer to the goal in the x axis, it would subtract 1, if it stayed
the same, it wouldn’t do anything, and if you got further away in the x axis, it would

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 741

741Robust Pathfinding

add 1 to the heuristic value. Then it would do the same thing to the y axis. Figure
23.21 shows this.

Figure 23.21

This is a smart but
simple heuristic.

The center cell is the starting point. First, it processes the northern node. Because
it gets closer in the y axis but the x axis stays the same, its heuristic is –1.

Then the northeast cell is processed; it gets closer in both axes, so its heuristic
value is –2.

This process continues, as you can see, and all eight cells now have a heuristic
value. So now all eight of these cells are in the queue. The first one it processes is
the cell with the lowest value, which is the cell that got the closest to the goal.

Figure 23.22 shows the next iteration of this algorithm.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 742

742 23. Pathfinding

Figure 23.22

This is the second
iteration of the
algorithm.

Again, all the surrounding cells have their heuristic values calculated, and the cell
that moved the closest to the goal is again the lowest in the queue. This process
continues, and the search moves toward the goal in a straight line, not bothering to
search elsewhere.

Isn’t that simple? That’s why I call this the Simple Heuristic Pathfinder.

Graphical Demonstration: Simple
Heuristic Pathfinder
This is Graphical Demonstration 23-2, which you can find on the CD in the direc-
tory \demonstrations\ch23\Demo02 - Simple Heuristic\ .

This demonstration is exactly the same as Graphical Demonstration 23-1, except
that the Go! button now processes the map using the simple heuristic pathfinder.

Figure 23.23 shows a screenshot.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 743

743Robust Pathfinding

Figure 23.23

Here is a screenshot
of the demo.

You can see that this pathfinding algorithm is smarter than the distance-first algo-
rithm in terms of how much time it spends searching.

Problems with This Pathfinder
There are many problems with this pathfinder. First of all, it doesn’t take into
account the weight of each cell, so it will not find the shortest path from any two
points. However, even on a map with no weights, it still won’t find the shortest path.
This search method focuses on making an intelligent decision on the general direc-
tion to search rather than being complete.

Figure 23.24 shows what I mean.

Figure 23.24

The pathfinder found
a sub-optimal path
that wanders all over
the map.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 744

744 23. Pathfinding

This is what I call the mutant-4 test—the walls look similar to a disfigured number
4. Note that the player starts off slightly higher than the goal, so the heuristic starts
off trying to go south. After messing around in the little area where he started, he
finds his way out around the bottom and under the goal. At this point, he is trying
to find his way upward again to get closer to the goal. So he goes up again and
finally gets over the top of the 4 and finds the goal.

That is clearly the long way around. However, the path was found in a relatively short
amount of time because the pathfinder was always trying to move closer to the goal.

You can see that although this pathfinder is smarter, it will not always find the
best path.

Coding the Simple Heuristic Pathfinder
Let me first start off by saying that coding this pathfinder is incredibly easy. In fact,
the algorithm is almost the same as the distance-first pathfinder.

The Heuristic Function
The first thing you need to do is create a function that will calculate a heuristic
value based on the current cell and the direction of the adjacent cell.

float SimpleHeuristic(int x, int y, int gx, int gy, int dir)
{

float h = 0.0f;
int diff1;
int diff2;

The function takes five parameters: the coordinates of the current cell, the coordi-
nates of the goal cell, and the direction of the adjacent cell (which is the cell that
the heuristic is being calculated for).

diff1 = gx - x;
diff2 = gx - (x + DIRTABLE[dir][0]);
if(diff1 < 0)

diff1 = -diff1;

if(diff2 < 0)

diff2 = -diff2;

First, it finds the difference between the goal’s x coordinate and the current x coor-
dinate. Then it finds the difference between the goal’s x coordinate and the adja-
cent cell’s x coordinate. After that, it gets the absolute value of both of those values
(if either of them is below zero, then it just negates them).

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 745

745Robust Pathfinding

if(diff1 > diff2)

h -= 1.0f;

else if(diff1 < diff2)

h += 1.0f;

This is the part that determines the heuristic. If diff1 is greater than diff2, the
adjacent cell is closer in the x axis, so 1.0 is subtracted from the heuristic. If, on the
other hand, diff1 is less than diff2, then the current cell is closer to the goal on
the x axis, so 1.0 is added to the heuristic because it is getting farther away.

diff1 = gy - y;

diff2 = gy - (y + DIRTABLE[dir][1]);

if(diff1 < 0)

diff1 = -diff1;

if(diff2 < 0)

diff2 = -diff2;

if(diff1 > diff2)

h -= 1.0f;

else if(diff1 < diff2)

h += 1.0f;

This process is repeated, this time for the y axis.

return h;
}

Finally, the heuristic is returned.

The Simple Heuristic Pathfinder
Only two lines of code need to be changed from the distance-first pathfinder to
make it use the new heuristic.

Look back to the distance-first pathfinder and find the two lines that look like this:

c.heuristic = distance;

Now, in order to make this use the simple heuristic, just change both lines to this:

c.heuristic = SimpleHeuristic(x, y, p_gx, p_gy, dir);

Now, instead of picking the cells that are closest to the starting point, the algorithm
picks the cells that move closer to the goal first.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 746

746 23. Pathfinding

Making a Better Heuristic

I want you to try something. Open up Graphical Demonstration 23-2 again and set
up the map like in Figure 23.25.

Figure 23.25

Set up the demo like
this to test out the
simple heuristic.

Now click the Go! button. You’ll see the search start off toward the goal, which is
good. Eventually it will hit the wall, so it will search out along the wall, trying to get
around it. Soon, it will hit the top and bottom walls, so the algorithm backtracks,
looking for a way out.

Eventually it will search every node within the little cove and then get back to the
starting position. What does it do then? It searches backward, away from the goal!

Why does it do this? It does this because the heuristic thinks that going directly
backward is better than going backward and upward, which is the direction that
you need to take to get out of the cove. The algorithm ends up just traveling back-
ward until it can’t go backward anymore, and then it decides to go up, at which
point it discovers that it can go toward the goal again.

When the algorithm is complete, you should get something similar to the screen-
shot in Figure 23.26.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 747

747Robust Pathfinding

Figure 23.26

The complete path
went farther than
you wanted it to go.

That path looks quite dumb, don’t you think? The pathfinder didn’t really know
any better, though.

So it looks like you need a better pathfinder. To do this, you need to create a better
heuristic function.

Last time, the function judged each move based on if it got any closer to the goal
or not. What if you modified the heuristic so that it judges each cell based on its
distance from the goal?

Figure 23.27 shows the first calculation of this heuristic on a simple map.

Figure 23.27

The first iteration is
performed, and each
cell contains the
heuristic value from
the more complex
function.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 748

748 23. Pathfinding

The cell with 5.00 has the lowest value, so it is processed first, creating the map in
Figure 23.28.

Figure 23.28

Here is the second
iteration of the
algorithm.

Whereas the simpler heuristic treated all moves that moved toward the goal as the
same value, this heuristic treats cells that are physically closest to the goal as the
best choice.

Graphical Demonstration: Complex
Heuristic
This is Graphical Demonstration 23-3, which is on the CD in the directory \demon-
strations\ch23\Demo03 - Complex Heuristic\ . Although the heuristic function isn’t
very complex, I still call this a complex heuristic because it uses a more complex
idea for its heuristic calculations.

The demo has the same interface as the previous two demos in this chapter, so you
can just play around with it.

Figure 23.29 shows a screenshot of this demo solving the cove problem I showed
you before. This pathfinder actually finds the optimal path to the goal this time,
which shows that it is somewhat better than the simple heuristic pathfinder.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 749

749Robust Pathfinding

Figure 23.29

Here is a screenshot
of the complex
heuristic solving the
cove problem.

Problems with This Heuristic
Unfortunately, this heuristic has problems as well. This one also fails the mutant-4
test and makes the path go around the 4 the long way (see Figure 23.24 for refer-
ence). This is because these two pathfinders don’t take into account how long the
path is when they are calculating where to go, so when the pathfinder is searching
around for a path, it always thinks it is getting closer, even though it is going
around the long way.

See, this algorithm doesn’t consider that it might have to get farther away from the
goal to find a shorter path.

If you play around with the demo, you can see that it always quickly heads for the
goal, but it will not always find the shortest path.

Another problem with this pathfinder is that it doesn’t factor in the weight of the
paths, so it will walk through heavily weighted areas with no second thoughts. I will
go into this in more depth later.

Coding the Complex Heuristic
Luckily for you, making this pathfinder work requires only one new function and
two lines of code to be changed from the original distance-first search.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 750

750 23. Pathfinding

The New Heuristic Function
This heuristic function will return the amount of distance from the adjacent cell to
the goal.

float ComplexHeuristic(int x, int y, int gx, int gy, int dir)
{

x = x + DIRTABLE[dir][0];
y = y + DIRTABLE[dir][1];
return CellDistance(x, y, gx, gy);

}

The first two lines calculate the coordinates of the adjacent cell, and the last line
calls the CellDistance function to get the distance between the goal and the adja-
cent cell.

The Complex Heuristic
Pathfinder
Just like the simple pathfinder, this
requires only two lines of code from
the distance-first pathfinder to be
changed.

Find the two lines of code in the dis-
tance-first pathfinder that look like
this:

c.heuristic = distance;

These two lines will be replaced with
this:

c.heuristic = ComplexHeuristic(x, y,
p_gx, p_gy, dir);

Then the function is complete.

The A*
Pathfinder
If you look at any game in existence, it probably uses the A* (pronounced A-star)
pathfinder. This is because this pathfinder is much faster than the breadth- or
distance-first pathfinders, and it doesn’t have any of the problems of the other
two pathfinders, either.

TIP

pathfinders should
grammed to accept the heuristic func-
tion as a parameter so that the same

endless.

Whenever you see many functions using
almost identical code, it’s a sign that you
are doing something the hard way.These

have been pro-

function could be used to find paths, but
I felt that this function was already com-
plex enough. Feel free to modify the
pathfinder to take custom heuristic
functions and then play around with
them to see which ones work best in
your games. For example, you could
make a heuristic function that avoids
certain cells for particular players in a
game, but goes right through them for
other players.The possibilities are really

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 751

751Robust Pathfinding

In games, finding the shortest path from any two points is somewhat important.
Although it is usually more important to get a faster pathfinder, you also don’t want
it doing the stupid things that the simple and complex heuristic pathfinders did.

So now you go back to the drawing board and try to make a better heuristic func-
tion. You see that the previous heuristic was pretty smart, but got fooled easily into
taking long detours because it didn’t take into consideration the length of the cur-
rent path, so you want to take that into account.

You want to find the shortest path from the start to the goal, right? So what if the
heuristic value of each cell was the combination of the actual distance it took to get
to that cell and the estimated distance from that cell to the goal?

Figure 23.30 shows the calculation of two different cells (the ones with the dark
outline).

Figure 23.30

This is how the A*
heuristic is calculated.

The first path is the solid black line, which takes 2.41 units to get to the cell from
the starting point. The function doesn’t yet know the path from that cell to the
goal, so it estimates the length by using a straight line, which is 4.12 units long. So
the heuristic for that cell is 6.53 units.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 752

752 23. Pathfinding

The second path is dotted. It only takes 2.0 units to get to that cell, so a distance-
first pathfinder would prefer this cell over the first one. However, the A* pathfinder
estimates that the path from that cell to the goal will take 6.32 units, which means
that this cell has a heuristic of 8.32 units.

So the first cell is the winner in this case because it has a lower value. That’s all
there is to this pathfinder; you can see that it is just a combination of the distance-
first pathfinder and the complex-heuristic pathfinder.

Graphical Demonstration: A*
This is Graphical Demonstration 23-4, which you can find on the CD in the direc-
tory \demonstrations\ch23\Demo04 - A-Star\ .

This demo uses the same interface as the previous three, so I’ll just show you a
screenshot of this pathfinder solving the mutant-4 problem. See Figure 23.31.

Figure 23.31

Here’s a screenshot
from the demo
solving the mutant-4
problem.

Coding the A* Pathfinder
Believe it or not, the A* pathfinder is almost the same as the three previous
pathfinders, with the exception of two lines of code.

Go to the complex-heuristic pathfinder and locate the two lines of code that look
like this:

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 753

753Robust Pathfinding

c.heuristic = ComplexHeuristic(x, y, p_gx, p_gy, dir);

To turn this into an A* pathfinder, you just need to add one thing to those lines:

c.heuristic = ComplexHeuristic(x, y, p_gx, p_gy, dir) + distance;

And that’s it. See, I told you it was easy.

Graphical Demonstration: Path
Comparisons
This is Graphical Demonstration 23-5, which is on the CD in the directory \demon-
strations\ch23\Demo05 - Path Comparisons\ .

This demo changes the interface of the previous four demos slightly. The way you
draw the maps is the same, but the speed buttons and the Go! button are now
gone. Instead, there are four new buttons, each representing one of the four
pathfinders, as you can see in Figure 23.32.

Figure 23.32

Here’s a screenshot
from the demo.

Just for fun, I drew up the mutant-4 problem and took screenshots of the solution
for each pathfinder. See Figure 23.33.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 754

754 23. Pathfinding

Figure 23.33

Here are the four
solutions to the
Mutant-4 map. At the
top left is the
distance-first search,
at the top right is the
simple-heuristic, at
the bottom left is the
complex-heuristic,
and at the bottom
right is the A* search.

Play around with this program; it will give you a good idea of the strengths and
weaknesses of each of the pathfinders. From the figure, you can see that the dis-
tance-first and A* pathfinders found the same exact path, except that the distance-
first pathfinder searched a lot more cells than the A*. The simple search
performed lots of searching and came up with a long path, and the complex search
did less searching, but still managed to go the long way around the 4.

Weighted Maps

At long last, here is the section dealing with weighted maps. You got just a hint of
what weighted maps and pathfinding meant before, and now here is the whole thing.

There will be times when you want to make it harder for things in your game to go
through a certain area of your map. For example, say you are making a tank game.
The tank will go around the terrain and shoot at things.

So if the tank is going around on grass, dirt, or road, it can go nice and fast.
However, if the tank is going to travel over rocks or shallow water, then it will go
somewhat slower. And if there is a minefield on the map, it should be avoided at all
costs. Figure 23.34 shows an example of what a map would look like.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 755

755Weighted Maps

Figure 23.34

Here is an example map
for a tank game.

Each of these regions would be weighted differently. The grass and dirt sections
would have a weight of, say, 1.0, which is the base weight. Then, the rocks would
have a weight of 2.0, which means that the pathfinder will treat moving through
one rock tile as the same amount of effort as moving through two grass or dirt tiles.

Now, moving through shallow water is even tougher than going over rocks for a
tank, so that should have a weight of 3.0, which means that moving through one
tile of shallow water is the same as moving through three tiles of grass or dirt.

Finally, you want to avoid the minefield if possible, so you assign that a high value,
like 9.0.

Figure 23.35 shows a screenshot of Graphical Demonstration 23-5 with the map set
up to look like Figure 23.34.

Figure 23.35

Here is Graphical
Demonstration 23-5
set up to look like
Figure 23.34.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 756

756 23. Pathfinding

Now, Figure 23.36 shows a screenshot of the path taken through that map.

Figure 23.36

Here is the path that
the pathfinder takes.

Study the path for a moment.

The path spends as much time as possible in the grassy region first, and then it cuts
through a tiny area of rocks. After that, it takes the shortest straight path through
the water, and then it neatly goes around the minefield and ends up at the goal.

Isn’t that cool?

Weighting the tiles of your maps has thousands of applications. You can literally do
anything to discourage your pathfinders from going into certain regions.

Application: Stealth

This is Game Demonstration 23-1, which is on the CD in the directory \demonstra-
tions\ch23\Game01 - Stealth\ .

You’re a secret agent sent to spy on an area in a forest. Your primary concerns are
to gather information and not get caught.

In the area, there are six different types of terrain: dense forest, light forest, grass-
land, dirt road, paved road, and stone walls. In each terrain type, you have a differ-
ent chance of being seen by the enemies. You are least likely to be seen in the

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 757

757Weighted Maps

dense forest and most likely to be seen on the paved road. Table 23.2 shows a list-
ing of the weights for each terrain type.

4.0

8.0

Grassland 12.0

16.0

20.0

Impassable

Table 23.2 Terrain Weights

Terrain Weight

Dense Forest

Light Forest

Dirt Road

Paved Road

Stone Wall

To prevent being caught, you would be advised to stay in the forest areas as much
as possible when moving around.

The Variables
There are a few variables used for this game demo:

const int MAPX = 100;
const int MAPY = 75;
Array2D<Cell> g_map(MAPX, MAPY);
LStack<int> g_xmovement;
LStack<int> g_ymovement;
int g_goalx = -1,

g_goaly = -1;
int g_currentx = -1,

g_currenty = -1;
bool g_moving = false;

The first two are the size of the map, which is a 100 � 75 tilemap. The second vari-
able is the actual map, stored in a 2D array.

After that, there are two stacks. Don’t worry about them now; I get into them a lit-
tle later.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 758

758 23. Pathfinding

Then there are two sets of coordinates: the goal position and the current position
of the player.

Finally, there is a boolean, which determines whether the player is moving.

Loading and Saving the Map
The map is stored on disk, so you can load it up, modify it, and then save it back to
disk. Here are the routines that load and save the map to disk:

void SaveMap()
{

FILE* f = fopen(“map”, “wb”);
fwrite(g_map.m_array, MAPX * MAPY, sizeof(Cell), f);
fclose(f);

}

void LoadMap()
{

FILE* f = fopen(“map”, “rb”);
fread(g_map.m_array, MAPX * MAPY, sizeof(Cell), f);
fclose(f);

}

They directly store and load the map data from the Array2D class.

Finding the Path
When the map is loaded and the starting and goal positions are placed on the map,
the program can then begin pathfinding. Here is the section of code that does this:

g_moving = true;
while (g_xmovement.Count() != 0 ||

g_ymovement.Count() != 0)
{

g_xmovement.Pop();
g_ymovement.Pop();

}

This first part sets the moving boolean to true so that the program now knows that
the player is following a path. After that, both of the stacks are emptied.

PathAStar(g_map, g_currentx, g_currenty, g_goalx, g_goaly);

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 759

759Weighted Maps

Now, the A* pathfinding algorithm is called on the map, so it will trace a path from
the current position to the goal. After this call, the path is stored in the map within
the m_lastx and m_lasty variables of each cell.

x = g_goalx;
y = g_goaly;

Now, to convert the path into a list of coordinates, you need to reverse the path on
the map into something you can use. This part just notes the last coordinates of the
path and places them into the x and y variables.

while(x != -1 && y != -1)
{

g_xmovement.Push(x);
g_ymovement.Push(y);
t = g_map.Get(x, y).m_lastx;
y = g_map.Get(x, y).m_lasty;
x = t;

}

This section loops through the path, starting at the goal node, and traces it back-
ward toward the starting node. For each new coordinate, it is pushed onto the
stacks, and the next coordinate in the path is retrieved. The temporary t variable is
used because you don’t want to overwrite the x variable yet because it is used again
on the next line.

Why use a stack? Well, remember that a stack is a last-in first-out data structure, and
the path in the map is backward. So the last move is placed into the stack first, and
the first move is placed into the stack last, which means that the first move will be
removed from the stack first, essentially reversing the order of the path so that it is
usable!

g_xmovement.Pop();
g_ymovement.Pop();

These lines pop off the first pair of coordinates from the stacks. This is done
because the starting coordinates are pushed onto the stack last, and because the
player is already at the starting position, there is really no need for them to be on
the stack.

Walking the Path
Now, whenever it comes time to move to the next square, the following piece of
code is executed:

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 760

760 23. Pathfinding

if(g_xmovement.Count() == 0)
{

g_moving = false;
}
else
{

g_currentx = g_xmovement.Top();
g_currenty = g_ymovement.Top();
g_xmovement.Pop();
g_ymovement.Pop();

}

If the size of the stacks is zero, then the path has been traced, and the movement is
halted. If not, then the current position of the player is updated by getting the next
coordinates off the stack, and then both stacks are popped.

That was simple enough, wasn’t it?

Playing the Game
The game is fairly simple to play. When the game starts off, the map is shown, as in
Figure 23.37.

Figure 23.37

Here is a screenshot
from the Stealth
game demo.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 761

761Weighted Maps

Press the S key on your keyboard to place the player’s start position where your
mouse cursor is pointing (represented by a red square).

Press the G button on your keyboard to place the goal on the map (represented by
a blue square).

To get the player moving, just press the Spacebar on your keyboard, and the player
will begin his long trek toward the goal.

Table 23.3 shows the colors of each of the terrains.

Color

Grass

Black

Table 23.3 Colors of the Terrain Squares

Terrain

Dark Green Dense Forest

Medium Green Light Forest

Light Green

Brown Dirt Road

Gray Paved Road

Stone Wall

When you play around with the game, you will see that the player in general will try
to stick to the forest areas and avoid the grasslands if possible.

Bonus Feature: Editing the Map
You can edit the map. By pressing D on the keyboard, you enable the drawing
mode. Be careful, though; the map is saved when the game exits, so any changes
you make will still be there the next time the game starts up. You can change the
current tile by pressing the number keys on your keyboard. Table 23.4 shows a list-
ing of each number.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 762

762 23. Pathfinding

Table 23.4 Keys

Key Terrain

0 Dense Forest

1 Light Forest

2 Grass

3 Dirt Road

4 Paved Road

5 Stone Wall

Thinking Beyond Tile-Based
Pathfinding
Lets face it; many games are not tile based. But tile-based pathfinding is so easy that
it sometimes ends up deciding what kind of game engine you will use. If, however,
you end up creating a game engine that doesn’t handle tiles, then you’ll need to
learn some new pathfinding techniques. Unfortunately, I don’t have room to do
much but explain them, but hopefully that will be enough to get your brain run-
ning at full speed.

Line-Based Pathfinding

In many games, the players are not restricted to occupying certain tiles in a game;
instead, they can go anywhere they want at any degree and speed. Pathfinding for
these types of games is difficult, however, so most of the time these games use sim-
ple pathfinding methods (such as the random bounce method I mentioned at the
beginning of the chapter).

Figure 23.38 shows an example of this kind of pathfinding.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 763

763Thinking Beyond Tile-Based Pathfinding

Figure 23.38

Line pathfinding tries
to find a line straight
to the goal.

Unfortunately, this method doesn’t work for maps with obstacles. Of course, you
could use a random bouncer to move around obstacles, but that doesn’t usually
work well.

Whenever you have an obstacle in a map like this, you could pre-generate a path
around the obstacle, like in Figure 23.39.

Figure 23.39

This map shows how
to use a pre-
generated path to get
around an obstacle.

The path itself would be just an array of lines. Whenever a player gets too close to
an obstacle, it would attach itself to the path around the obstacle. Then the player
would just follow each line in the path until it finds that it can break away from the
path and start getting closer to the goal again.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 764

764 23. Pathfinding

To optimize this method, perhaps you could also store the lengths of each line in
the path and figure out which way around the path is the shortest to get to the
other side.

Quadtrees

Oh, no! Not trees again! Trust me, trees are amazing wonderful structures that can
do almost anything, even your laundry. Okay, maybe not your laundry, but they can
still do tons of stuff.

Imagine that you have a large square game world. You split that up into four
squares. Then you go to each square and split it up into another four squares. And
you keep doing this over and over. This is called a quadtree. Figure 23.40 shows a
map divided into quadtrees and the corresponding tree on the right side.

Figure 23.40

This figure shows a
quadtree.

The root node of the tree represents the entire map. Each node in a quadtree has
four children: the top left, top right, bottom left, and bottom right quads. The
main map is divided into four quads, so the root node has four children. In this
particular map, the top left and bottom right quads aren’t divided any more, so
those nodes are leaf nodes. However, the top right and bottom left nodes continue
to subdivide, so the tree continues downward.

What does this have to do with pathfinding, though? Imagine you have a large map
with a large lake in one part of it. This lake is impassable to most units in the game,
so you want some way to go around it.

Now, create a quadtree out of the map so that the tree is full to a certain number
of levels (3 or 4 is good). Now, for each quad on the lowest level of the tree, check
the midpoint of each quad. If all four of the quad’s midpoints are not obstructed,

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 765

765Thinking Beyond Tile-Based Pathfinding

then you can remove that branch of the tree. When the lowest level is complete, go
up to the next level and continue removing nodes, but only if all four branches of
each node go down to the same level.

Eventually, you will end up with a quadtree that looks like the one in Figure 23.41.
Now you have all these nodes that are linked together, and you can store them into
a graph.

Figure 23.41

This demonstrates
using quadtrees to
make paths around a
map for pathfinding.

How do you find the shortest path through this graph, though? I discuss that in the
next section.

NOTE
There is also a 3D version of quadtrees, called octrees. An octree is simply a cubic
volume split up into eight equally sized sub-cubes.

Waypoints

Suppose you have a map in a shooter game like Quake. Figure 23.42 shows this
map. Each of the little dots on the map represents an item in the game—say, a
weapon or a powerup or some health. It doesn’t matter at this point in time; all
that matters is that the points represent something.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 766

766 23. Pathfinding

Figure 23.42

The dots in this map
store item waypoints,
and the AIs follow the
lines to get to the
item they want.

Now, all the points are connected together using lines, and a graph is formed. Each
of the points on the graph is called a waypoint. When you want to find a path
through this map, you get to the closest waypoint and then follow the lines until
you get to the waypoint where you want to be.

This method is popular in shooter games because it works well with finite state
machine AI (see Chapter 18, “Using Graphs for AI: Finite State Machines”). The AI
decides what item it wants and then attaches itself to the graph and follows the
paths until it gets to the point that has the item that it wants. If a particular AI
prefers the rocket launcher, then he follows the paths toward the rocket launcher
waypoint. If he needs health, then he follows the paths toward a health node.

So how does the AI know which paths to follow? Simple. The AI uses a pathfinding
algorithm. The great thing about pathfinding algorithms is that they work for
graphs of any type, not just tilemaps.

Here is the tilemap pathfinding algorithm:

TilePathfind(map, start, goal)
Queue q
q.Enqueue(start)
while(q is not empty)

current = q.Front
q.Dequeue
Mark(current)

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 767

767Conclusion

for(all 8 directions)
if(adjacent node not marked)

q.Enqueue(adjacent node)

adjacent node.previous = current

end if
end for

end while
end Function

Now, to adapt this algorithm to linked graphs, you just need to change one thing.
Change this:

for(all 8 directions)

To this:

for(each linked node)

And the algorithms fit perfectly.

Conclusion

This was another large chapter packed with tons of information. Unfortunately,
what I showed you was barely a glimpse into the realm of pathfinding. There are so
many more algorithms out there that they could probably fit into an entire book.

Hopefully, the information I have given you has inspired you to think about
smarter ways to perform pathfinding. The most important thing to learn about
game programming is that there are always better ways to do things. Sure, you
could have just stuck with a breadth-first search for your pathfinding needs, but
why should you waste precious CPU time on an inefficient algorithm?

Even though all of the methods I showed you were 2D algorithms, you can easily
adapt them to 3D games. The easiest way to do this is to treat your game world as a
conceptual graph. If your game is separated into rooms, then that would be a good
structure to use as your graph nodes.

Hopefully, by now you have learned a few things and are able to spot a brute-force
algorithm and a smart algorithm.

Team LRN

Data Structures CH23 11/5/02 8:58 AM Page 768

This page intentionally left blank

Team LRN

Data Structures CH24 11/5/02 8:59 AM Page 769

CHAPTER 24

Tying It
Together:

Algorithms

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 770

770 24. Tying It Together: Algorithms

This is it! The final chapter! By now, you should be well acquainted with all of
the data structures and algorithms in this book and with the Adventure game

that is developed in Chapters 9, “Tying It Together: The Basics,” 16, “Tying It
Together: Trees,” and 19, “Tying It Together: Graphs.” This final chapter shows you
how to add some of the new algorithms you’ve learned into the game demo.

In this chapter, you will learn

■ How to add A* pathfinding to a tilemap
■ How to add A* pathfinding to a directionmap
■ How to optimize the game logic to use these new pathfinders

Making the Enemies
Smarter with Pathfinding
When you play the Adventure demos from Chapters 9, 16, and 19, you may have
noticed something: The AI is dumb. Not just dumb, but seriously digitally handi-
capped. Look at Figure 24.1, for instance.

Figure 24.1

Hey dummy, just
walk up and then
right! He won’t get it;
he’ll stand there until
you move around.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 771

771Making the Enemies Smarter with Pathfinding

The AI in the figure will stand there, like a 4-bit calculator, just looking at you. He
won’t go and attack you or anything else.

The GetClosestDirection function I implemented for those demos was simple, fast,
and stupid. It just tried to figure out which direction a person should move in
order to get closer to the player; it didn’t care if there was a wall or another person
in the way.

Now that you have gotten this far in the book, you know enough to fix this prob-
lem. In this demo, the A* pathfinding algorithm is added to the map classes to
make it possible for the AIs to find their way around the map.

Unlike Chapters 9, 16, and 19, this chapter only modifies the game engine and
logic. The map format stays the same, so the map editors stay the same as they were
in Chapter 19.

All of the code modifications are on the CD in the directory
\demonstrations\ch24\Game01 - Adventure v4\ .

Compiling the Demo

This demonstration uses the SDLGUI library that I have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

If you aren’t familiar with the A* pathfinding algorithm, now is a good time to go
back to Chapter 23, “Pathfinding,” and read about it.

Adding Pathfinding to the TileMap
Class
When I built the pathfinding functions for Chapter 23 (they are all in the file
\structures\pathfinding.h), I assumed that they were going to be used on an
8-direction tilemap.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 772

772 24. Tying It Together: Algorithms

However, when I build the Adventure demo, the player is limited to 4-direction
movement; diagonals are not allowed in the demo. Unfortunately, this means that
the PathAStar function cannot be reused on this class, and I will need to code a new
function that performs the same algorithm.

The Consequences of a Bad Design

The fact that I need to re-code the A* algorithm should be flashing
warning bells in your head right now. Usually, it is a bad idea to re-
code algorithms for specific purposes after they have already been
coded. Chapter 2, “Templates,” should have given you an idea of why
re-coding is bad. So why does this large and complex algorithm need
to be re-coded? This is a mixture of the function being coded for
learning and bad design.When the original Adventure engine was cre-
ated, all of the map data was stored in the Map class, so it was logical
that the map would know how to move things around.When you
actually think about real life, though, it is the person who decides
where to go, not the map. A more flexible method would have put the
pathfinder into the Person class and find a path through the map by
using the Map class interface.This method has many advantages. For
example, you can

■	 Make different pathfinders with different agendas for each of the AI
types (that is, make certain pathfinders avoid certain areas of the
map).

■	 Use the same pathfinding algorithm on every map implementation,
as the map interface hides the implementation from the user.

Unfortunately, now I must deal with the consequences of this decision
and implement the A* pathfinding algorithm twice.

Also, the pathfinding functions implemented in Chapter 23 were
designed to show you how the algorithms actually worked, and there-
fore they weren’t as complicated or flexible as they could be.This is
why the function cannot be adapted to the TileMap class.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 773

773Making the Enemies Smarter with Pathfinding

The Coordinate Class and Comparison
Function
If you remember the algorithm from Chapter 23, then you also remember that I
needed an extra class to store information about the cells that are in the priority
queue and their current heuristic value. Also, because the Heap class (which is act-
ing like the priority queue) needs to sort items inside of it, it needs a comparison
function (see Chapter 14, “Priority Queues and Heaps,” for more information).

Here is the Coordinate class:

class Coordinate
{
public:

int x;
int y;
float heuristic;

};

Whenever a cell is added to the queue, its coordinates are stored in a Coordinate,
and so is its heuristic value.

Here is the comparison function, which treats cells with lower heuristic values as
“better”:

int CompareCoordinates(Coordinate left, Coordinate right)
{

if(left.heuristic < right.heuristic)
return 1;

if(left.heuristic > right.heuristic)
return -1;

return 0;
}

The New Data
You might remember from Chapter 23 that the A* pathfinding algorithm requires
some extra data to be contained in each cell so that it knows which cells it has
searched. Therefore, new data has been added to the TileCell class (in the
Tilemap.h file):

bool m_marked;
float m_distance;

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 774

774 24. Tying It Together: Algorithms

int m_lastx;

int m_lasty;

This data is virtually identical to the data found in the Cell class from
\structures\pathfinding.h. Each cell knows if it has been marked, its distance from
the starting cell in the map, and the coordinates of the previous cell in the path. If
any of this information is unfamiliar to you, please, go back and review Chapter 23
before continuing.

The ClearCells Function
Whenever the pathfinder is called, it needs to clear all the marks, distances, and
links in each cell (the data declared in the previous section). Therefore, this func-
tion was created to accomplish this:

void ClearCells()
{

int x, y;

for(x = 0; x < m_tilemap.Width(); x++)

{

for(y = 0; y < m_tilemap.Height(); y++)
{

m_tilemap.Get(x, y).m_marked = false;

m_tilemap.Get(x, y).m_distance = 0.0f;

m_tilemap.Get(x, y).m_lastx = -1;

m_tilemap.Get(x, y).m_lasty = -1;

}

}

}

All of the marks are cleared to false, the distances are cleared to 0, and the last cell
links are set to �1, meaning that they point to an invalid cell.

The Heuristic Function
This function finds out the coordinates of the cell adjacent to the current cell and
estimates the distance from this cell to the goal. (I discussed this function in
Chapter 23.)

float Heuristic(int x, int y, int gx, int gy, int dir)

{

x = x + DIRECTIONTABLE[dir][0];

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 775

775Making the Enemies Smarter with Pathfinding

y = y + DIRECTIONTABLE[dir][1];
return Distance(x, y, gx, gy);

}

The Distance

NOTE
function is just a small helper function, which you have seen previ-

ously in a few demos.

The AStar Function
Because this algorithm has been discussed in depth in the previous chapter, there
really isn’t a need to explain the entire thing again. However, this particular
implementation differs a little bit from the PathAStar function (in the
\structures\pathfinding.h file) to make it work with the Adventure map format. I will
focus on pointing out these differences:

void AStar(Person* p_one, Person* p_two)
{

Coordinate c;
int x, y;
int ax, ay;
int dir;
float distance;
static Heap<Coordinate> queue(1024, CompareCoordinates);

The PathAStar function (from \structures\pathfinding.h) uses a heap as the priority
queue. However, it uses a local heap that is allocated and deallocated whenever the
pathfinder is called. This can be quite inefficient. In this function, I have placed
the static keyword in front of the heap this time (see Appendix A, “A C++ Primer,”
if you are unfamiliar with this keyword). This means that the queue is created when
the program starts up and isn’t deleted until the program ends. The static queue is
sort of like a global variable because there is only one instance of it and it always
exists, but it is sort of like a local variable, too, because only this function can access
it. This will save on speed because the heap doesn’t have to be created and deleted
every time the function is called.

queue.m_count = 0;

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 776

776 24. Tying It Together: Algorithms

When the function starts, the queue should be empty. When the A* pathfinder fin-
ishes, there might still be cells in the queue that weren’t emptied out. This line sets
the count of the heap to 0, which makes the queue think that it is empty.

// clear the cells first.

ClearCells();

// enqueue the starting cell in the queue.

c.x = p_one->GetX();
c.y = p_one->GetY();
queue.Enqueue(c);

// start the main loop.

while(queue.m_count != 0)

{

// pull the first cell off the queue and process it.

x = queue.Item().x;

y = queue.Item().y;

queue.Dequeue();

// make sure the node isn’t already marked. If it is, do

// nothing.

if(m_tilemap.Get(x, y).m_marked == false)

{

// mark the cell as it is pulled off the queue.
m_tilemap.Get(x, y).m_marked = true;
// quit out if the goal has been reached.
if(x == p_two->GetX() && y == p_two->GetY())

break;

// loop through each direction.

for(dir = 0; dir < 4; dir++)

{

Note that it loops through four directions this time instead of eight.

// retrieve the coordinates of the current adjacent cell.

ax = x + DIRECTIONTABLE[dir][0];

ay = y + DIRECTIONTABLE[dir][1];

if((CanMove(x, y, dir) &&
m_tilemap.Get(ax, ay).m_marked == false) ||
(ax == p_two->GetX() && ay == p_two->GetY()))

{

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 777

777Making the Enemies Smarter with Pathfinding

The previous line is somewhat important. In the PathAStar function from Chapter
23, the pathfinder determined if it could go through a cell solely by accessing an
m_passable variable in each cell. Although the TileCell class has a similar variable
(m_blocked), the game is generally more complex than the old pathfinder could
handle. For example, there could be a person in the cell or an item that blocks the
path, and so on. This means that the function now needs to check to see if it can
go through a cell with more conditions. Luckily, there already is a function that can
tell that: the CanMove function. This makes sure that a person can move into the cur-
rent adjacent cell. It also makes sure that the cell isn’t marked. If the cell is
marked, then the function just ignores it (because the shortest path to that cell has
already been found).

Unfortunately, there is a problem with the CanMove function. It always returns false
when the pathfinder is trying to move into the final cell, so the pathfinder can
never find a path into the cell. Therefore, I had to add a special case to the if
statement. Whenever the current adjacent cell’s coordinates are the same as the
goal’s coordinates (the coordinates of p_two), then the function automatically
processes the cell, even though the CanMove function says it is blocked.

// calculate the distance to get into this cell.

distance = m_tilemap.Get(x, y).m_distance + 1;

// check if the node has already been calculated before.

if(m_tilemap.Get(ax, ay).m_lastx != -1)

{

// the node has already been calculated; see if the
// new distance is shorter. If so, update the links.
if(distance < m_tilemap.Get(ax, ay).m_distance)
{

// the new distance is shorter; update the links.
m_tilemap.Get(ax, ay).m_lastx = x;
m_tilemap.Get(ax, ay).m_lasty = y;
m_tilemap.Get(ax, ay).m_distance = distance;
// add the cell to the queue.
c.x = ax;
c.y = ay;
c.heuristic = distance +

Heuristic(x, y, p_two->GetX(),
p_two->GetY(), dir);

queue.Enqueue(c);
}

}

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 778

778 24. Tying It Together: Algorithms

else
{

// set the links and the distance.
m_tilemap.Get(ax, ay).m_lastx = x;
m_tilemap.Get(ax, ay).m_lasty = y;
m_tilemap.Get(ax, ay).m_distance = distance;
// add the cell to the queue.
c.x = ax;
c.y = ay;
c.heuristic = distance +

Heuristic(x, y, p_two->GetX(),
p_two->GetY(), dir);

queue.Enqueue(c);
}

}
}

}
}

}

The rest of the function is the same as the A* pathfinder from Chapter 23.

Modifying the GetClosestDirection
Function
The modification isn’t quite done yet. The last thing that needs to be done is to
modify the GetClosestDirection function so that it calculates which direction the AI
should move to get closer to the player. Now it needs to call the AStar function to
calculate a path from the AI to the player:

int GetClosestDirection(Person* p_one, Person* p_two)
{

AStar(p_one, p_two);

int lx, ly, x, y;

x = p_two->GetX();

y = p_two->GetY();

The very first thing the function does is calculate the path from the first person to
the second person. After that, it declares four integers, which represent two pairs of
coordinates. You’ll see what they represent in a bit. One of the pairs of coordinates
is initialized to the same coordinates as the goal.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 779

779Making the Enemies Smarter with Pathfinding

while(x != p_one->GetX() || y != p_one->GetY())
{

lx = x;

ly = y;

x = m_tilemap.Get(lx, ly).m_lastx;

y = m_tilemap.Get(lx, ly).m_lasty;

Remember, once the A* pathfinder is complete, you need to start at the goal and
backtrack through the path. To find out which direction to move, you need to
backtrack to the first cell and keep track of the cell right before the first cell in the
path. This will be the cell that the AI moves into. So the loop keeps track of the
previous cell in the path (lx and ly) and gets the next cell and stores in into
x and y.

if(x == -1 || y == -1)

{

return rand() % 4;

}

}

During the loop, if at any time it finds that the previous cell in the path is (�1,�1),
that means that there is no path from the AI to the player. If this happens, then the
function returns a random number from 0–3. This has the effect of making the AI
walk around like he is frustrated (or has lost his keys).

if(ly < y)

return 0;

if(lx > x)

return 1;

if(ly > y)

return 2;

if(lx < x)

return 3;

}

When the loop is done, the lx and ly variables should contain the coordinates of
the first cell in the path, and x and y should contain the coordinates of the starting
position. The previous code segment determines which direction the next cell lies
in. If the next cell’s y coordinate is above the first cell’s, then he needs to move
north (direction 0), and so forth.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 780

780 24. Tying It Together: Algorithms

Adding Pathfinding to the
DirectionMap Class
Adding pathfinding to the DirectionMap class is similar to adding pathfinding to the
TileMap class.

similar to the

NOTE
Keep in mind what I said earlier about how you should be careful about duplicat-
ing code.The fact that the pathfinder for the directionmap is very
one for the tilemap should tell you that there is a way to make the function
more flexible. Remember, part of learning is making mistakes.

In a tilemap, it is easier to access each cell by its 2D coordinates, but in a direction-
map, it is easier to use the cell’s number.

The CellCoordinate Class
This is just like the Coordinate class used with the tilemap pathfinder; however, it
has been updated to use the cell number instead of its coordinates:

class CellCoordinate
{
public:

int cell;
float heuristic;

};

Likewise, there is also a comparison function to use along with this when it is in the
priority queue:

int CompareCellCoordinates(CellCoordinate left, CellCoordinate right)
{

if(left.heuristic < right.heuristic)
return 1;

if(left.heuristic > right.heuristic)
return -1;

return 0;
}

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 781

781Making the Enemies Smarter with Pathfinding

The New Data
New data needs to be added to the DirectionCell class to use the A* pathfinder
algorithm. The new data is similar to the data added to the TileCell class earlier,
with one difference.

bool m_marked;

float m_distance;

int m_lastcell;

The two m_lastx and m_lasty variables have been replaced with just one m_lastcell
variable.

The ClearCells Function
This function loops through each cell in the map and clears the pathfinding vari-
ables.

void ClearCells()
{

int x;

for(x = 0; x < m_rooms.Size(); x++)

{

m_rooms[x].m_marked = false;

m_rooms[x].m_distance = 0.0f;

m_rooms[x].m_lastcell = -1;

}

}

The Heuristic Function
To make things a little easier, the Heuristic function takes the number of the cell it
will calculate the heuristic of and the number of the goal cell.

float Heuristic(int p_cell, int p_goal)

{

return Distance(m_rooms[p_cell].m_x,

m_rooms[p_cell].m_y,

m_rooms[p_goal].m_x,

m_rooms[p_goal].m_y);

}

This function assumes that the cell numbers will both be valid, so if you don’t
check it before sending them to this function, you may end up with some bad bugs.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 782

782 24. Tying It Together: Algorithms

The AStar Function
This function is almost exactly the same as the AStar function in the TileMap class.
When reading through this code, you can go back and compare it with the tilemap
version. Note that the x and y coordinate references have been replaced with cell
number references.

void AStar(Person* p_one, Person* p_two)
{

CellCoordinate c;
int cell;
int adjacentcell;

For example, the tilemap version had four integers: x, y, ax, and ay. Those have
been replaced with cell and adjacentcell.

int dir;

float distance;

static Heap<CellCoordinate> queue(1024, CompareCellCoordinates);

// clear the queue.

queue.m_count = 0;

// clear the cells first.

ClearCells();

// enqueue the starting cell in the queue.

c.cell = p_one->GetCell();

queue.Enqueue(c);

Also, whenever a cell is enqueued or dequeued, its cell number is retrieved, not its
coordinates.

// start the main loop.

while(queue.m_count != 0)

{

// pull the first cell off the queue and process it.

cell = queue.Item().cell;

queue.Dequeue();

// make sure the cell isn’t already marked. If it is, do

// nothing.

if(m_rooms[cell].m_marked == false)

{

// mark the cell as it is pulled off the queue.

m_rooms[cell].m_marked = true;

// quit out if the goal has been reached.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 783

783Making the Enemies Smarter with Pathfinding

if(cell == p_two->GetCell())

break;

This is somewhat simpler in some parts, like the two lines of code listed previously.
You only need to check to see if the cell number of the current cell and the goal
cell are equal instead of comparing two sets of coordinates.

// loop through each direction.

for(dir = 0; dir < 4; dir++)

{

// retrieve the index of the current adjacent cell.

adjacentcell = m_rooms[cell].m_exits[dir];

// check to see if the adjacent cell is passable

// and not marked.

// note that the CanMove function will return false

// when adjacentcell is the same as the goal because there

// is a person on that cell. Therefore, you need to make

// a special exception to allow that cell to be processed.

if((CanMove(cell, dir) &&

m_rooms[adjacentcell].m_marked == false) ||
adjacentcell == p_two->GetCell())

{
// calculate the distance to get into this cell.
distance = m_rooms[cell].m_distance + 1;
// check if the node has already been calculated before.
if(m_rooms[adjacentcell].m_lastcell != -1)
{

// the cell has already been calculated; see if the
// new distance is shorter. If so, update the link.
if(distance < m_rooms[adjacentcell].m_distance)
{

// the new distance is shorter; update the link.

m_rooms[adjacentcell].m_lastcell = cell;

m_rooms[adjacentcell].m_distance = distance;

// add the cell to the queue.

c.cell = adjacentcell;

c.heuristic = distance +

Heuristic(adjacentcell,
p_two->GetCell());

queue.Enqueue(c);
}

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 784

784 24. Tying It Together: Algorithms

}

else

{

// set the links and the distance.

m_rooms[adjacentcell].m_lastcell = cell;

m_rooms[adjacentcell].m_distance = distance;

// add the cell to the queue.

c.cell = adjacentcell;

c.heuristic = distance +

Heuristic(adjacentcell,
p_two->GetCell());

queue.Enqueue(c);
}

}
}

}
}

}

Overall, the code for the directionmap pathfinder is a little easier, but not by
much. I’ve stated before that the code for both pathfinders are so similar that you
would probably be better off abstracting the pathfinder from the map, but the cur-
rent design would need a complete overhaul. This code demonstrates an important
point: Plan for everything before you write a single line of code. You never know
what you will add in the future.

Modifying the GetClosestDirection
Function
Again, the GetClosestDirection function must be modified in order to take advan-
tage of the new pathfinder that has been installed into the map.

The directionmap implementation of this function is almost the same as the
tilemap implementation, but the path is now in terms of the cell numbers instead
of the coordinates, so the path is traced using cell numbers:

int GetClosestDirection(Person* p_one, Person* p_two)
{

// calculate the path between the two persons.

AStar(p_one, p_two);

int lastcell, cell, d;

// now follow the path from the goal to the start.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 785

785Making the Enemies Smarter with Pathfinding

cell = p_two->GetCell();

// loop through the path while the current cell

// isn’t the goal.

while(cell != p_one->GetCell())

{

// save the last cell number.

lastcell = cell;

// calculate the next cell number.

cell = m_rooms[cell].m_lastcell;

if(cell == -1)

{

// the path is unreachable, so return a random

// direction.

// this makes the AI seem frustrated.

return rand() % 4;

}
}
// the path was reached, so calculate which direction the person
// needs to move to get closer.
for(d = 0; d < 4; d++)

{

if(lastcell == m_rooms[cell].m_exits[d])

return d;

}

}

The only thing of major difference is the loop that figures out which direction to
return. This code is shown in bold in the previous code listing. Instead of figuring
out which direction the function should return based on coordinates, this time it
loops through each exit of the starting room. If any of the exits leads to the next
cell in the path, then the current direction is returned.

Visualizing the GetClosestCell
Algorithm
Sometimes it is difficult to understand just how a piece of code works unless you
see it illustrated. This happens particularly often in the field of data structures, as it
is a very visual subject. Now I will demonstrate the GetClosestCell algorithm for
you. This applies to both versions of the function.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 786

786 24. Tying It Together: Algorithms

Figure 24.2 shows a simple map, which could either be a directionmap or a
tilemap. It really doesn’t matter at this point.

Figure 24.2

This is the process of the
GetClosestCell

function.The path is
calculated from S to F;
after that happens, the
function backtracks from
F to S.

After the call to AStar has completed, the map has the data for a path from the
starting position (F in the figure) to the final position (F in the figure). Now, the
function starts at F and follows the path backward to S. When the function is at cell
5, the previous cell pointer is pointing to S. Then it goes on to cell 4, and the previ-
ous cell pointer points to node 5. This continues until the current cell pointer is
pointing to cell F and the previous cell pointer is pointing to 1. Finally, the func-
tion figures out which direction the AI needs to move in order to get into that cell
and returns that direction.

Is That All?

Right about now, you might be asking, “Is that all I need to do to add pathfinding?”
The answer is both “yes” and “no.” True, you now have a working, fully functional
smart pathfinder.

If you compile this demo right now, though, you will be greeted with a very slow
game. “Gee, thanks, you’ve made me implement a slow algorithm,” you might be
thinking right now, and you’re somewhat correct.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 787

787Making the Enemies Smarter with Pathfinding

To understand what is going on, you need to go and look at the game logic from
Chapter 19 (in the file \demonstrations\ch19\Game01 - Adventure v3\g19-01.cpp).
Look for the PerformAI function.

In that function, you will see these lines of code:

for(i = 0; i < g_peoplecount; i++)
{

if(g_peoplearray[i] != g_currentplayer)
{

direction =
g_currentmap->GetClosestDirection(g_peoplearray[i],

g_currentplayer);

This function loops through every AI on the map for every frame and calculates
the closest direction for each AI to move toward the player.

This was just fine when the pathfinding function was small and simple. Now that
you’ve implemented a rather large and complex pathfinder, though, calling this
function for every player once every frame is an incredible waste of processing power.

Implementation Versus Interface

In Chapter 9, I emphasized how you can make games much more flexi-
ble by separating the implementation and the interface of your game
classes.Therefore, you can swap out implementations and the rest of
your game will still work properly.

Replacing the pathfinder, in this instance, exposes a flaw in this method.
When you first programmed something that used an interface, you
programmed it thinking that the implementation was simple. However,
in this case, you ended up replacing a simple function with a complex
one and ended up making the game very slow.

Sometimes knowing how fast an implementation works is important. It
is also important to optimize your code after you know that it works.
When you don’t know how fast an algorithm is, always assume that it
is slow and should be called as little as possible.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 788

788 24. Tying It Together: Algorithms

Instead of calling this function every frame for every person, you want to call it only
when you need a result from it.

This requires several modifications.

The Person’s Following Status
Now that you have a decent pathfinder, you will want the people in the game to act
more realistically. For example, in the old version, if you came within six cells of an
enemy, he would start to chase you, but it you went outside of the six-cell range, he
would forget about you.

This isn’t very realistic, as a real enemy would still chase you even if he couldn’t see
you. So now you want to add a new piece of data to the Person class so that the per-
son knows if he is chasing the player or not:

bool m_following;

void SetFollow(bool p_follow)

{

m_following = p_follow;

}

bool GetFollow()

{

return m_following;

}

The game logic will now be able to tell if the person is following the player or not
and calculate the next node in the path whenever he is following.

The New PerformAI Function
Now you are ready to modify the PerformAI function to make it more efficient.

void PerformAI(int p_time)
{

int i;
float dist;
int x = g_currentplayer->GetX();
int y = g_currentplayer->GetY();
int direction;
for(i = 0; i < g_peoplecount; i++)
{

if(g_peoplearray[i] != g_currentplayer)

{

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 789

789Making the Enemies Smarter with Pathfinding

The function starts off in much the same way as it did before by getting the coordi-
nates of the player and storing them into x and y and starting a loop that will go
through every AI in the game. It changes after that, though:

dist = Distance(g_peoplearray[i], g_currentplayer);

if(dist > 10.0f)

{

g_peoplearray[i]->SetFollow(false);

}

if(dist <= 6.0f)

{

g_peoplearray[i]->SetFollow(true);

}

First, the distance from the player to the current AI is calculated. Whenever the dis-
tance between the two is more than ten cells, the AI forgets about the player and
stops moving. Whenever the distance goes below six cells, the AI sees the player
and starts following him.

if(dist > 1.0f && g_peoplearray[i]->GetFollow() &&
p_time - g_peoplearray[i]->GetMoveTime() > MOVETIME)

{
direction =

g_currentmap->GetClosestDirection(g_peoplearray[i],
g_currentplayer);

g_peoplearray[i]->SetMoveTime(p_time);
g_peoplearray[i]->SetDirection(direction);
g_currentmap->Move(g_peoplearray[i], direction);

}

This code segment calculates a few things. First, it makes sure that the distance
from the player to the AI is greater than one (which means that the AI isn’t within
attacking range, so the AI should move closer), and then it checks to see if the cur-
rent AI is following the player. Finally, the second line in the if statement checks to
see if enough time has passed since the last time the AI has moved to see if he can
move again.

If all of those checks pass, then the AI can move closer to the player. You can calcu-
late the direction the AI should move now that you know that the AI is actually
going to move.

After that, the movement time is reset, the AI is turned to face the right direction,
and the AI is moved in that direction.

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 790

790 24. Tying It Together: Algorithms

if(dist <= 1.0f &&
p_time - g_peoplearray[i]->GetAttackTime() >
g_peoplearray[i]->GetCurrentWeapon()->GetSpeed())

{
direction =

g_currentmap->GetClosestDirection(g_peoplearray[i],
g_currentplayer);

g_peoplearray[i]->SetDirection(direction);
Attack(g_peoplearray[i]);

}
}

}
}

If the distance is less than or equal to one, then the AI is within attack range, and
he should attack the player. However, it first checks to see if enough time has
passed since the last time he has attacked so that he can attack again. After this,
you know that the AI is going to attack, so you call the pathfinder to make the AI
face the player so he can attack him, and finally, the AI attacks him.

And that is all that needs to be done. Congratulations! You now have a really smart
AI that will hunt you down.

Efficiency

Now you need to sit back and consider how much more efficient the new pathfind-
ing AI is. Pathfinding is a very difficult thing to implement in games, as it is a really
complex and time-consuming task. Most games, such as Diablo II, cheat with their
pathfinding. If you’ve ever played that game and had a computer-controlled ally
following you, try outrunning him. After a few seconds, the ally will magically
appear right next to you if you get too far away. This is because the pathfinding in
a huge game like that would take forever if every AI had to find an individual path.

Generally speaking, the larger your maps are, the longer it will take to perform
pathfinding on them. This can get to be a very large problem because most
pathfinders increase at around O(n2), which means that maps twice as large will
take four times longer to find a path in.

The pathfinding done in this demo isn’t very complicated when using the new and
improved PerformAI function. When you think about it, the AIs never calculate the
path when they are more than 10 cells away from the player. Not only that, but

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 791

791Conclusion

each AI only calculates a path once every 750 milliseconds, which is the amount of
time before each AI moves around.

Overall, the pathfinding in this demo is smart yet efficient because you really aren’t
searching a large area (most searches are in an area smaller than 10 cells), and
searches don’t happen too often.

Playing the Game

The game demo plays exactly the same as all the demos before it, so there is no
need to post the instructions here. Just play around and try running away from the
AIs to see how long they will chase you and what kind of obstacles they will avoid.
Figure 24.3 shows a screenshot of the game in action.

Figure 24.3

Oh, no! The enemy
found his way out of
his box the moment I
stepped into view!
Run! Run for the
hills! They’re chasing
me!

Conclusion

Chapters 9, 16, 19, and this one all followed a single theme: creating a simple game
and extending it to reinforce your understanding of the data structures and algo-
rithms in this book. In Chapters 16, 19, and this one, I only chose one aspect/struc-
ture/algorithm to implement into the game, but don’t think that these are the only
extensions you can make. There are hundreds of ways you can apply the things

Team LRN

Data Structures CH24 11/5/02 9:00 AM Page 792

792 24. Tying It Together: Algorithms

you’ve learned in this book to a game. You can use stacks to create a menu system
in the game, bitvectors to implement a quicksave, queues to store commands for
the player, hash tables to store resource data, and so on. You could use binary trees
to make a simple scripting system or add a sorting algorithm to the items in the
game so you could use larger sprites that stick out of the map. I’ve showed you all
of these concepts before, so it shouldn’t be any problem for you to add these into
the game.

Use your imagination; after all, that is what game programming is all about.

Team LRN

Data Structures CHconcl 11/5/02 9:04 AM Page 793

Conclusion

Team LRN

Data Structures CHconcl 11/5/02 9:04 AM Page 794

794 Conclusion

Congratulations! You have just completed the main part of this book! Do you
know everything there is to know about data structures and algorithms? Well,

of course not; no one does!

This book shows you only a tiny fraction of the world of data structures and algo-
rithms. Yes, there is a lot of information that you need to absorb to fully under-
stand this book, but there is so much more out there in the real world.

However, you should now be well on your way to understanding how data struc-
tures in games work and why it is important to study them. Some people dedicate
their lives to this stuff, and you should be glad that people have already figured out
most of it for you. Imagine discovering all those sorting algorithms—yuck!

Extra Topics

When I was designing this book, I had to cut out some of the less important mater-
ial to make room for the stuff you will use most often in game programming. When
you have mastered the things in this book, you can move on to some of the more
advanced data structures and algorithms out there.

I have mentioned some of them, and others I haven’t mentioned. If you’re inter-
ested in expanding your knowledge in data structures and algorithms, look into the
following topics:

■ Red-black trees
■ AVL trees
■ Skip lists
■ The binary search
■ Minimum spanning tree algorithms
■ Dijkstra’s “all shortest paths” pathfinding algorithm
■ Quadtrees
■ Binary space partition trees

The list could go on forever, but those topics listed are immediately applicable to
game programming, so that should give you a good start.

Team LRN

Data Structures CHconcl 11/5/02 9:04 AM Page 795

795Further Reading and References

Further Reading and
References
When writing this book, I referenced many other books and sources of informa-
tion. I must admit, I learned quite a bit about some of the things I wrote about.
This just goes to show that we are constantly learning and we should never stop.

Data Structure Books

When researching the data structures and algorithms for this book, I referenced
quite a few books.

Sams Teach Yourself Data Structures
and Algorithms in 24 Hours
By Robert Lafore (ISBN 0-672316-33-1)

This book was recommended to me by André LaMothe, and it is very good. My
only problem with it is that the examples that come with the book are all in Java,
and they take forever to run. Other than that, Lafore covers a very wide area of
structures and algorithms. I had a difficult time finding this one, though. It took
me a month to track down a copy, and even then, it was a used copy!

Introduction to Data Structures and
Algorithm Analysis with C++
By George Pothering and Thomas Naps (ISBN 0-314045-74-0)

This was my very first data structures book, and it is an okay book. I would only
look into this book if you were required to buy it for a class, like I was.

Introduction to Algorithms, 2nd Edition
By Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
(ISBN 0-262032-93-7)

This is one HUGE book. By huge, I mean that it is almost 1,200 pages long! This
book has almost everything in it, but it takes a very academic approach to teaching
data structures and algorithms, which you may not like. If you’re going to school for
a computer science degree, chances are that one of your classes will use this book.

Team LRN

Data Structures CHconcl 11/5/02 9:04 AM Page 796

796 Conclusion

The Art of Computer Programming
By Donald Knuth (ISBN 0-201485-41-9)

This is actually a set of three books, and it is considered the bible of data structures
and algorithms. Again, this is a more academic book, but it contains almost every-
thing you will ever want to know about the topics.

Effective STL
By Scott Meyers (ISBN 0-201749-62-9)

This is a great book for learning how to use STL in different situations. It’s rela-
tively cheap, too, so you can’t use that as an excuse not to buy it! Meyers also has
some good optimized C++ books out, including Effective C++ and More Effective C++.

The C++ Standard Library: A Tutorial
and Reference
By Nicolai M. Josuttis (ISBN 0-201379-26-0)

This is an excellent introduction and reference manual for the entire C++ standard
library, which includes STL. If you’re ever interested in learning all there is to learn
about STL, this is the book to buy.

C++ Books

Here is a list of the C++ books that I referenced when writing this book. Some of
them are quite well written, and I would recommend them to you.

Object Oriented Programming in C++
By Robert Lafore (ISBN 1-571691-60-X)

This is a really great C++ book that explains things in an easy-to-understand way
and has good chapters on arrays, strings, and templates.

Sams Teach Yourself C++ in 21 Days
By Jesse Liberty (ISBN 0-672320-72-X)

This is the C++ book that I first learned C++ with, and it is pretty good. It separates
the material into well-paced segments, and it even has a little introduction to
linked lists and binary trees.

Team LRN

Data Structures CHconcl 11/5/02 9:04 AM Page 797

797Further Reading and References

C++ How to Program
By Deitel & Deitel (ISBN 0-130895-71-7)

This is a very popular introduction to C++ programming, and it has a lot of infor-
mation. Most notable about this book is that it has a large section on the STL,
which is great for learning how to use it for the first time.

Game Programming Books

Of course, I can’t forget to include the many game programming books out there
that you might be interested in.

Game Programming All in One
By Bruno Sousa (ISBN 1-931841-23-3)

This is written by a friend of mine, and it is a very ambitious book. Basically, it is a
huge introduction into game programming and everything you ever wanted to
know about DirectX. It’s a good read and a great reference.

Focus On SDL
By Ernest Pazera (ISBN 1-59200-030-4)

This is a complete reference to SDL, the media API that I’ve used throughout the
book. If you’re at all interested in SDL, this is the book to buy!

Focus On 3D Terrain Programming
By Trent Polack (ISBN 1-59200-028-2)

This is a book all about storing 3D terrain information and generating the informa-
tion as well. Naturally, this applies to data structures and algorithms.

Focus On 3D Models
By Evan Pipho (ISBN 1-59200-033-9)

This is another book dealing with data structures, and specifically how to store 3D
Model information efficiently in a computer game.

Team LRN

Data Structures CHconcl 11/5/02 9:04 AM Page 798

798 Conclusion

Game Scripting Mastery
By Alex Varanese (ISBN 1-931841-57-8)

This book is all about game scripting. I hinted on this subject a little bit in Chapter
12, with the arithmetic parser game demo. This book will expand upon those con-
cepts and give you a great deal of information on game scripting, virtual machines,
and all that great stuff.

AI Techniques for Game Programming
By Mat Buckland (ISBN 1-931841-08-X)

This book is mentioned earlier in the book. It looks like it will be a great book
dealing with all sorts of advanced AI techniques, such as genetic algorithms and
neural nets. These topics can be applied to data structures because they use bitvec-
tors and graphs.

Web Sites

Last, there are a number of great Web sites out there with tons of information on
game programming. Here are a few of my favorites:

■ http://www.gamedev.net
■ http://www.flipcode.com
■ http://www.gamasutra.com

Conclusion
I would just like to take this time to thank you for purchasing and reading this book.
As my family and friends can well attest to, I have invested a significant part of my
life for the past few months writing this. I hope you understood everything that
I have written, but if not, you can usually find me in the Gamedev.net chat room,
which you can get to by going to this address: http://www.gamedev.net/
community/chat/. I am usually there with the nickname Mithrandir. I have
set up an e-mail account for this book at this address: RonPenton@Hotmail.com.
Please send bug reports, errors, compliments, and free gifts to me there. Thank
you once again.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 799

PART SIX

Appendixes

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 800

Appendix A

Appendix B

Appendix C

Appendix D

A C++ Primer

The Memory Layout of a
Computer Program

Introduction to SDL

Introduction to the Standard
Template Library

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 801

APPENDIX A

A C++
Primer

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 802

802 A. A C++ Primer

This is an intermediate-level book, and I use some complex features in it. You
should probably know most of them, but no one is perfect, and you might

have forgotten something. That is why this Appendix is here. If I use something
you have forgotten how to use or something you have never learned, this Appendix
will give you a little overview of it.

Basic Bit Math

Some of the chapters in this book get down to the lower levels of programming
and work with the individual bits of a number in memory. Some C++ books don’t
really get into the nitty-gritty details
though, so I’ll go over the basics here.

The most basic form of storage on a
computer is called the bit. The word bit
is short for binary digit. When you look
at a standard everyday number, it is usu-
ally in a form called base-10, which
means that there are a total of 10 digits.

A digit is the name of a single number,
like 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In
base-10, there are 10 digits, numbered
0–9. The binary number system is some-
times called base-2, because there are
two digits: 0 and 1.

Binary Numbers

Binary numbers are different from the normal numbers you have used all of your
life. Whenever I am referring to a binary number, I will postfix it with the letter b
so you know that it is a binary number.

Because there are only two digits in a binary number, all binary numbers look
something like this: 1,0011,1010,0101b. Most people separate binary numbers in
groups of four bits, and you will see why later on.

NOTE
Computers use binary numbers
because it is much easier to build
circuits that detect binary numbers.
When a bit is being sent over the
wires in a processor, it is really a
pulse of electricity, which can either
be in a high voltage state (1) or a
low voltage state (0). It is much
harder to make circuits that detect
more than two different voltages,
and more expensive as well. People
have made trinary computers before,
but they didn’t really work out.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 803

803Basic Bit Math

When you think about a decimal num-
ber, what do the digits actually mean?

Take the number 1,234 for example.
Start from the right. The 4 is in the ones
column, so that represents 4 items in
the real world. The 3 in the number is
in the tens column, which represents 30
items. The 2 in the number is in the
hundreds column, and the 1 is in the
thousands column.

So, the number 1,234 can be treated as
the same as this:

1 * 1000 + 2 * 100 + 3 * 10 + 4 * 1.

Take a look at the base value of each
column (the 1, 10, 100, and 1000 num-
bers). Notice any relationship between
them? Each base number, going from
right to left, is ten times the value as the
previous number. You can also repre-
sent the number 1,234 in terms of 10
(since this is base-10): 1 * 103 + 2 * 102 +
3 * 101 + 4 * 100.

Converting from
Binary to Decimal

with n n � 1.

signed

method called 2s complement

n-1

n-1

7 to 27 �1,
which is –128 to 127.

NOTE
A three-digit base-10 number can
represent numbers from 000 to 999.
Likewise, a three-bit base-2 number
can represent binary numbers from
000b to 111b. Of course, that num-
ber doesn’t mean much to you, so
here’s an easy way to figure out the
maximum value of a binary number

digits: max = 2

NOTE
Sometimes you want to be able to
store negative numbers as well.
These kinds of numbers are called

numbers. Due to the way
binary numbers are encoded (a

), a
signed number can store negative
numbers from –2 to 0 and positive
numbers from 0 to 2 -1. For exam-
ple, an 8-bit signed number can
store numbers from –2

A binary number can be represented in
the same way as a decimal number. Take the number 1011b, for example; if you
take out the 10s in the digit expansion and replace them with 2s, you get this: 1 * 2

3

+ 0 * 22 + 1 * 21 + 1 * 20.

The base values for each digit are 8, 4, 2, and 1, so if you expand this expression, it
becomes 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1, or 8 + 2 + 1. 1011b is the same number as 11.

Converting from Decimal to Binary
This is a slightly more complex procedure than converting a binary number to dec-
imal. To do this, you must create a long string of zeros, like in Figure A.1. It helps if
you write the base value of each cell underneath it, like in the figure.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 804

804 A. A C++ Primer

Figure A.1

This is an empty
binary number.The
base value for each
cell is written
underneath the cell.

After that, you need to first find the
largest power of two that is smaller than
or equal to the number. So if the num-
ber was 512, the largest power of two
smaller than or equal to that is 512.
However, if the number was 511, the
largest power of two smaller than that
is 256.

x x

NOTE
Powers of two are numbers of the
form 2 where is any number
greater than or equal to 1.

As an example, I am going to show you how to convert the number 1,996 into
binary. If you look at the base numbers in the figure (or if you have memorized
them), you can see that the largest power of two that is smaller than 1,996 is 1,024.
Place a 1 in the cell 1,024. After that, subtract 1,024 from 1,996, and you get 972.
Now, repeat this process again, and keep repeating it until the number is 0. Figure
A.2 shows this process.

Figure A.2

This is the process of
converting a decimal
number into binary.

So the number 1,996 is the same as 111,1100,1100b.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 805

805Basic Bit Math

Computer Storage

When dealing with computers, a single bit is usually too small to do anything useful
with. So early on, computers bunched bits together in groups. First, they were
grouped into bunches of four bits, and these were called nibbles. These could store
numbers from 0–15 (remember, 24 �1 is 16 �1, or 15). Although they are more
useful than just plain bits, only being able to use numbers from 0–15 is still quite
limiting.

So then the byte was invented, which is a
group of eight bits. They can store val-
ues from 0–255, which is a lot more
useful.

There are no official names for bit-groups larger than 8 bits. However, on the Intel
x86 platform, groups of 16 bits are called words, and groups of 32 bits are called
double words. I don’t believe there is an official name for anything past 32 bits, but
the next logical expansion would be a 64-bit quad word. Figure A.3 shows the rela-
tive sizes of these structures.

NOTE
Bit, nibble, byte... get it?

Figure A.3

Here are the relative
sizes of the basic
integer types.

Table A.1 shows the range of each of the types of numbers.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 806

806 A. A C++ Primer

Unsigned Signed

Bit 0 to 1 -1 to 0*

Nibble 0 to 15 -8 to 7

Byte 0 to 255 -128 to 127

0 to 65,535 -32,768 to 32,767

0 to 4,294,967,296 -2,147,483,648 to
2,147,483,647

0 to 18,446,744,073,709,551,616 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Table A.1 Integer Data Sizes

Type

Word

Double Word

Quad Word

*Negative bits aren’t really useful for anything.

On x86 C++ compilers, some of these integer types correspond to built-in
datatypes. Table A.2 shows you the C++ equivalents of the data sizes in Visual C++.

C++ Datatype

char

int

long int

float*

double*

Table A.2 Datatype Sizes

Size

byte

short int word

double word

double word

double word

quad word

*floats and doubles aren’t integer types, but they are stored in memory just like everything
else.They just have a different encoding method. I have included them here for completeness.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 807

807Basic Bit Math

Bitwise Math

There is an area of math involved with binary numbers called Boolean math, named
after its inventor, James Boole. The math operates on bits, and there are four basic
Boolean operators: not, and, or, and xor. The first one, not, is a unary operator,
which means that it operates on only one bit at a time. The other three are binary
operators, which means that they operate on two bits.

Table A.3 shows a listing of the results of the operators on different bit combinations.

Table A.3 The Not Operator

x y not x x and y x or y x xor y

0 0 1 0 0 0

0 1 1 0 1 1

1 0 0 0 1 1

1 1 0 1 1 0

You can see from the table that the not operator simply flips the bit from 0 to 1 or
from 1 to 0.

The and operator only returns 1 if both x and y are 1; it returns 0 if they are any
other combination.

The or operator returns 1 if either x or y are 1 or if they are both 1. The only time
it returns 0 is when both x and y are 0.

Finally, the xor operator only returns 1 when x and y are different, and it returns 0
when they are both the same.

Bitwise Math in C++

Unfortunately, because the lowest size data you have access to in C++ is a byte,
using bitwise math is somewhat awkward.

When you perform a binary operator on a C++ integer type, it performs the opera-
tion on every bit of that integer. For example, if you use the not operator on a byte,
every bit in that byte will be flipped.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 808

808 A. A C++ Primer

Likewise, if you and two integers, the bits in the resulting integer will be the value
of the and operator on each of the pairs of bits in the two original integers. Figure
A.4 shows how this works.

Figure A.4

Here are the four
Boolean operators
used on bytes in
C++.

Every bit in the not operation is reversed. The only time any 1s appear in the result
of the and operator are when both x and y had a 1 in the same position. Likewise,
the only time any 0s appear in the result of the or operator is when both x and y
had a 0 in the same position. Finally, the only time the result of the xor operator
has a 1 in it is when the bits in x and y at the same positions were different.

Table A.4 shows the C++ symbols that are used for each of these operators.

Operator Symbol Example

not ~ x = ~x

and* & x = x & y

or * | x = x | y

xor ^ x = x ^ y

*Do not confuse the & and | bitwise operators with the && and || logical operators used in
conditional if-statements.

Table A.4 C++ Boolean Operator Symbols

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 809

809Basic Bit Math

Bitshifting

There is one last topic that I must discuss when dealing with bits: bitshifting.
Bitshifting is the act of taking the bits in a number and shifting them all left or right.

There are two types of bitshifting: You can either shift left or shift right. The idea
behind this is amazingly simple. If you shift a number left, you just take every bit
and move it to the left by one position. To shift a number right, you take every bit
and move it a cell to the right.

Figure A.5 shows these operations in action.

Figure A.5

This shows a number
being shifted left
twice and then right
twice.

There are two things you need to watch out for when shifting. If there is a 1 in the
left-most cell and you shift left, then that 1 is carried out and lost. The same thing
happens when you shift right; the right-most bit is also shifted out and lost. This
can cause some problems if you don’t compensate for it.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 810

810 A. A C++ Primer

So why would you want to bitshift numbers around? Chapter 4, “Bitvectors,” uses it

a lot to gain access to the individual bits in an integer. It turns out that bitshifting is

also a very quick way to do some mathematical tricks, such as multiplying and divid
-
ing by powers of two.

Take the following binary number, for example: 1b. Now, shift it left by one space,

and you get 10b. Shift it again, and you get 100b. These numbers in decimal are 1,

2, and 4. Each time you shift a number left by one bit cell, you multiply it by 2.

Likewise, shifting right has the effect of dividing by 2.

C++ gives you the ability to shift left and right at varying number of bits. Take the

following code for example:

x = x << 2;

This is also called shifting left, and the << operator is called the left shift operator. That

code takes the value of x and shifts each bit left by two places and then stores the

result back into x. You can also do the same thing with right shifting:

x = x >> 3;

Likewise, this is called shifting right, and the >> operator is called the right shift opera
-
tor. You can put any number you want to the right or even use a variable.

Table A.5 shows the effect of shifting a number in mathematical terms.

Shift Code Mathematical

left x = x << y x = x * 2y

right x = x >> y x = x / 2y

Table A.5 Shifting Numbers in Code and Math

So you can think of x = x << 3 as the same statement as x = x * 8 and x = x >> 5
as x = x / 32.

x =
x * 4 x = x << 2? It turns out that bitshifting is a lot faster than

utilizing it.

NOTE
Why would anyone use bitshifting for math when it is easier to type and read

, as opposed to
multiplication or division, and you can make many performance optimizations by

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 811

811Standard C/C++ Functions Used in This Book

Standard C/C++ Functions
Used in This Book
C/C++ is much more than just a programming language. It also comes with a huge
collection of built-in functions, a lot of which I use throughout this book. I show
you the most popular ones here as a quick reference guide.

All of the header files listed in this section come with your compiler and should
always be accessible to you.

Basic
Input/Output
None of the Examples in the book,
located on the CD in the \examples\
folder, use a fancy graphical user inter-
face. Instead, they use a plain console-
based text input and output (I/O) system.
C++ has a built-in text I/O system
because when it was invented, graphical
user interfaces (GUI) weren’t very popu-
lar. Luckily for us, using this kind of
I/O in C++ is very easy.

The very first thing you need to do
when you want to use the I/O functions
in C++ is to include the appropriate
header file, which contains the code for
the functions you want to use. This
header file is called stdio.h.

the

NOTE
Newer revisions of the C++ standard
have renamed this file to stdio, with-
out the .h ending.The difference
between these two files is that the
functions and classes in stdio.h are in

global namespace, and everyone
can access them.The functions and
classes in stdio, however, are in the
std namespace. If you don’t know
anything about namespaces, don’t
worry; this book doesn’t use them
much (only in Appendix D,
“Introduction to the Standard
Template Library,” when using the
STL). All of the Examples in this
book use stdio.h, which almost every
compiler supports.

Screen Output
This is a simple example that shows you how to put a piece of text on the screen:

cout << “Hello!” << endl;

The cout variable listed is defined in the stdio.h file. Previously, you’ve seen the <<
operator used in bitshifting; however, it has a completely different meaning in this
case. When dealing with screen I/O, the operator is called the stream insertion opera-
tor instead of the left shift operator. That means that the program takes the string

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 812

812 A. A C++ Primer

“Hello!” and streams it into cout, which is just a big buffer that holds characters of
text. The endl constant, when streamed into cout, tells the buffer to end the cur-
rent line by inserting a newline character and then flushing the buffer. When the
buffer is flushed, all of its contents are printed to the screen. If you don’t flush cout
with an endl, the contents of the buffer are never written to the screen.

If you just want to flush the buffer without inserting a newline character, then you
can manually flush it like this:

cout.flush();

You can also print out any of the built-in datatypes, such as characters, floats, dou-
bles, and integers, using cout:

float pi = 3.1415f;

int answer = 42;

char letter = (char)65;

cout << “The answer to life, the universe, and everything is “;

cout << answer << “.” << endl;

cout << “The value of pi is “ << pi << “.” << endl;

cout << “The letter that has the ASCII value of 65 is “;

cout << letter << “.” << endl;

When these lines of code are executed, the program will print:

The answer to life, the universe, and everything is 42.

The value of pi is 3.1415.

The letter that has the ASCII value of 65 is A.

There are a ton of formatting options available when using cout, but they aren’t
important for this book, so I do not cover them here.

Keyboard Input
C++ also provides an easy way to enter input by using the cin variable. Look at this
example for a moment:

char string[64];
cin >> string;

This example gets a string of characters from the keyboard and puts it into the
string. Input works the same way as output; cin is a buffer just like cout, and it only
spits out information when it is flushed.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 813

813Standard C/C++ Functions Used in This Book

When you are typing into a console screen, the only time it is flushed is when you
press Enter. However, using cin can sometimes give you unexpected results. For
example, say you’re executing the previous two lines of code. When the second line
is executed, the program stops and waits until the input buffer is flushed. When the
program stops, it just displays a blinking cursor. Say you typed in the following text:

Hello! How are you?

Normally, you would expect string to now contain “Hello! How are you?”, but
unfortunately, it will not. It will instead contain only the word “Hello!”.

The cin variable will only flush the input buffer when you press Enter on the key-
board, but when it is executing the stream extraction (the opposite of stream inser-
tion), it copies everything it has until it reaches whitespace. Whitespace is considered
any character that is empty, such as a space, a tab, or a newline. When cin is copy-
ing the string over, it checks for whitespace, and when it finds some, it stops
copying characters over into the string. There are ways around this, of course,
but becaues console input is rarely used anymore and this book doesn’t need
spaces in the input strings, I do not cover that topic here.

So what happens to the rest of the string? Is it discarded and thrown away? No, the
cin buffer keeps track of it, and whenever you try getting input again, it starts with
the rest of the string.

For example, you might have this code later in the program:

char filename[64];
cin >> filename;

When the first call to cin was completed, the string “Hello!” was extracted from the
buffer, but the buffer still contains “How are you?” After these lines of code, the
filename string will now contain “How”, which is probably not what you wanted. So,
just beware that cin separates input by whitespace by default.

You can also use cin to get numbers from input, like this:

int x;
float y;
cin >> x;
cin >> y;

If you run this code with the following input:

3.1415
10

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 814

814 A. A C++ Primer

then the variables x and y will contain 10 and 3.1415, respectively. That’s pretty
much all you need to know for the input and output functions in this book.

File I/O

C++ provides a file library called file stream that is just like using cin and cout.
However, I don’t really like that method of file I/O, and it is usually much easier to
use the file I/O functions included with C.

The C file functions and classes are located in the header file stdio.h.

The FILE Structure
The C file library has provided you with a structure that will point to a file, and it is

called the FILE structure. Because it is

just a plain structure, there really isn’t

much to be said about it.

Most of the time, you want to declare

and use a pointer to a FILE structure

because the C file functions all operate

with pointers to the FILE structure. You

declare one like this:

FILE* f = NULL;

You should always clear it to NULL, so

that you know it isn’t pointing to a file.

Opening a File
Opening a file is an easy task; all you need to do is call the fopen function. The
function definition for fopen looks like this:

FILE* fopen(const char* filename, const char* mode);

You can see from the definition that it returns a pointer to a FILE structure and
takes two strings as parameters. The first string is the name of the file, and the sec-
ond string is the mode in which the file should be opened.

0 in
place of NULL

NULL

NOTE
Sometimes in this book, I use

.You should know that
although almost every compiler in
the world treats as 0, they don’t
have to. In fact, some compilers
could choose a random number out
of nowhere and use that instead. So
just be careful.

The const
ify the strings.

NOTE
keyword before both parameters says that the function will not mod-

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 815

815Standard C/C++ Functions Used in This Book

The list of different modes is listed in Table A.6.

Mode Meaning

r fopen

w

a

r+ fopen
the file does not exist.

w+ r+

a+

b* This opens the file in

Table A.6 fopen Modes

This opens the file for reading.The function will return 0 if the file can-
not be found.

This opens the file for writing. If a file already exists with the same name, the
file is destroyed and its contents are overwritten.This is a very dangerous
option, and you should be careful using it so you don’t accidentally overwrite
anything important.

This opens the file for appending, which means that it will start writing data at
the end of the file. If the file does not exist, then it will create it automatically.

This opens the file for reading and writing.The function will return 0 if

This mode is like the mode, but it will create the file if it doesn’t exist.

This opens the file in reading and writing mode, but when you start writing to
the file, it will write at the end of the file.

binary mode.

*This mode can be combined with any of the first six modes. For example, you can combine
this and reading mode by typing rb.

There are two types of files that the C file library supports: ASCII files and binary
files. I rarely use ASCII files, and I don’t know anyone who uses them often either,
so it is somewhat confusing to me that ASCII mode is the default for fopen. When a
file is in ASCII mode and you write out a newline character (ASCII value of 10), it
will actually write out two characters to disk: a linefeed (10) and a carriage return
(13). These two characters are pretty much useless in modern computers, but they
are still supported. (Don’t ask me why!)

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 816

816 A. A C++ Primer

NOTE
The linefeed/carriage return combination is a holdover from the bad old days
when the very first computers were created and they used advanced typewriters
to print their output (there weren’t any monitors!).Whenever you wanted to
advance to the next line of output, you had to do two things: you had to move the
roller so that the paper would be moved up by one line (the linefeed command)
and then you had to move the printing head, also known as a carriage, back to the
left (the carriage return command). Now you know why ASCII is like this, and
knowing is half the battle.

In binary mode, the data that is written to disk is the same as it is in the computer
memory.

Perhaps the number one cause of file I/O errors is people accidentally opening their
files in ASCII mode when they needed binary mode instead. Be careful when open-
ing your files and make sure they are opened in the correct mode.

Writing to Disk
The fwrite function writes data to disk. Here is the function header:

size_t fwrite(const void* buffer, size_t size, size_t count, FILE* stream);

This function takes four variables and returns a piece of data of the type size_t,
which is a built-in typedef for an integer.

The first parameter is a pointer to the place in memory where the function should
start reading data that is going to be written to disk. The second parameter is the
size of the type of data that is being written. For example, if you are writing inte-
gers, then you should pass sizeof(int) into that parameter.

The third variable is the number of items that you are saving to disk. If you’re sav-
ing an array of integers, you should pass how many integers you’re saving into the
function.

Finally, the last function is a pointer to the file that the files will be written to.

The function returns the number of items that were actually written to disk. If the
number is 0, or less than the count variable that you passed in, then that might
mean you ran out of disk space

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 817

817Standard C/C++ Functions Used in This Book

This function is demonstrated in a lot of the chapters in this book, most notably
Chapters 3, “Arrays,” 4, “Bitvectors,” and 21, “Data Compression.”

Reading from Disk
If you want to read data from the disk, you can use the fread function, which has
the same interface as fwrite:

size_t fread(void* buffer, size_t size, size_t count, FILE* stream);

All of the parameters have the same meaning. The only difference is that the func-
tion reads data in from the file and stores it into the buffer.

This function returns the number of items that were read from the disk; if that
number is smaller than you expected, you may be dealing with an incomplete file.

Closing the File
Finally, when you are done working with a file, you should close it so that other
programs can use it.

NOTE
What actually happens when you try reading or writing to an open file from a
different program varies from operating system to operating system. Some
operating systems won’t allow you to open a file that is already open, and others
will let you only open it for reading. In general, it is a bad idea to try messing
around with a file that is already open.

For this, you must use the fclose function. Here is the function header:

int fclose(FILE* stream);

This function simply closes the file and returns 0 if it was successfully closed. I’m
really not sure that this can fail because I’ve never had it return anything but 0
before, but it is always wise to check for an error anyway.

Math Functions

C++ comes with a really large math library, which is quite useful, considering that
most games use lots of math. All of the math functions are located in the math.h file.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 818

818 A. A C++ Primer

Table A.7 lists most of the popular functions.

Function Name Function Purpose

abs(int x) Computes the absolute value of x

xy.

x.

sin(double x) Computes the sine of x.

cos(double x) Computes the cosine of x.

tan(double x) Computes the tangent of x.

asin(double x)

acos(double x)

atan(double x)

exp(double x)* x

mathematical constant equal to 2.718282…)

log(double x)* e x.
y

doing this: log(x) / log(y).

log10(double x) 10x.

Table A.7 Math Functions

. Basically converts
negative numbers to positive and leaves positive num-
bers alone.

pow(double x, double y) Computes the power of two numbers,

sqrt(double x) Computes the square root of

Computes the arcsine (or inverse sine) of x.

Computes the arccosine (or inverse cosine) of x.

Computes the arctangent (or inverse tangent) of x.

Computes the exponential of x, which is e . (e is a

Computes the natural logarithm of x, which is log
Note that you can compute the log x of any number by

Computes the base-10 logarithm of x, which is log

*The mathematical constant e is used frequently in calculus equations and really doesn’t have
much to do with anything in this book. I mention base-2 logarithms a few times in the Tree
chapters, so it might help to know how to calculate the value of a base-2 logarithm.

The Time Function

A few times throughout the book, I mention the time function that comes with the
C standard library. This function is located in the file time.h, and here is its func-
tion header:

time_t time(time_t* timer);

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 819

819Standard C/C++ Functions Used in This Book

The function takes a pointer to a time_t
structure and fills it in with the current
time. It also returns the same value,
which is kind of redundant. This is why
I always pass 0 into the function when-
ever it is called.

The time_t structure is really just a
typedef for an integer. This return value
from this function is the number of sec-
onds that have passed since midnight
on January 1, 1970.

The Random
Functions
The random number generation func-
tions are stored in the stdlib.h file. Two
of them are used throughout the book,
and Chapter 22, “Random Numbers,”
focuses on them exclusively.

The time_t type is a signed long int,

time_t

NOTE

which is 32 bits. Normally, a 32-bit
number can hold up to four billion
seconds, but because this is signed, it
can hold only up to two billion sec-
onds.Why did they make
signed? I don’t know, maybe they
wanted to be able to go back in time
or something. Unfortunately, this
poses a very large problem, one that
will probably cause more problems
than the Y2K scare of 2000.Two bil-
lion seconds represent a span of time
that is 68 years long, and because the
counting started in 1970, that time is
almost half over already. In the year
2038, the standard system timer for
most computer programs will roll
over and reset itself.

The srand Function
The srand function is short for seed random generator. I cover random seeds in
Chapter 22, so here I will just show you the function header:

void srand(unsigned int seed);

The function takes a number and sets that as the random seed. The most popular
seed value is the value you get from the time function discussed previously.

The rand Function
The rand function is also discussed completely in Chapter 22, so I will only post the
header here:

int rand(void);

This function returns a random integer from 0 to RAND_MAX, which is a constant
defined by the compiler.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 820

820 A. A C++ Primer

Exceptions and Error Handling

Although I don’t use exceptions anywhere in the book, they are mentioned quite a
few times in reference to error checking code.

Before exceptions came along, you had two basic methods to check for errors in
your programs. You could use the ASSERT debug macro, or you could have your
functions return an error code.

Assertions
When you use an assert macro, your code will look like this:

ASSERT(condition);

This line of code is only executed in debug mode in most compilers, which is a spe-
cial compiling mode that allows you to debug the program. Most compilers ignore
this line of code when they are in release mode.

Whenever this line is executed and the condition evaluates to false, the program
ends, and it usually spits out a message like “debug assertion error in file blah.cpp
at line 345.”

This method can be useful sometimes because it halts right when it detects an
error. Of course, it is also a pain in the butt because many times you cannot repeat
the circumstances that caused the assertion to fail.

Return Codes

Sometimes when you detect an error, you don’t want the program to just shut
down. So you want to tell the function that called the current function that an
error occurred. Usually, this looks like this:

if(error)
return error_code;

This method is quite popular, mainly because it was the only flexible method to
detect errors for a very long time.

Unfortunately, it has big problems. First of all, you need to make your functions so
that they can return error codes. What happens if you’re returning integers from a
function? Do you set one number aside as the error code? What happens if the
function accidentally generates that same number as its result and did not mean it
as an error?

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 821

821Exceptions and Error Handling

Also, you end up with huge gobs of ugly code, 90 percent of which is dedicated to
checking for errors:

if(function() == error)
// handle error

if(anotherfunction() == error)
// handle error

if(yetanotherfunction() == error)
// handle error

if(thelastfunction() == error)
// handle error

If you’ve ever programmed in DirectX, you will be very familiar with this method
because every DirectX function returns a code, which can be an error or a success
code.

Exceptions

Finally, exceptions allow you to code in a cleaner fashion. An exception is sort of like
an error code, except that you don’t return it. Let me show you an example:

void function()
{

// do stuff
if(error)

throw exception();
// continue to do stuff

}

When the exception is thrown, the function immediately halts and returns to the
function that called it. What happens then? The function that called function will
probably look like this:

try
{

// do lots of stuff
function();
// do more stuff

}
catch(exception)
{

// handle error
}

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 822

822 A. A C++ Primer

There are two new keywords defined that deal entirely with exceptions: the try key-
word and the catch keyword. When you start a try block, the code inside of the
block is monitored for exceptions. If any of the code inside throws an exception, the
execution immediately jumps to the catch block, which will then handle the error.

The benefits of this method are many, because it allows you to execute all the code
within the try block and assume that it will all work correctly. If anything fails, it is
handled by a separate piece of code.

One more thing needs to be noted: The exception used in the examples is actually
a class, defined in the file exception (it has no extension, and it should come with
your compiler). C++ allows you to create your own exception classes that store cus-
tom information about what kind of error occurred and throw them instead of the
standard exception. In the previous line of code, throw exception(), you may have
wondered about the parentheses after the class name. Those are there because
you’re really calling the constructor of the exception class.

When you catch an exception, you can catch specific types of exceptions. For
example:

catch(exception e)
{

// handle regular exception
}
catch(userexception u)
{

// handle custom exception
}

This code catches two types of exceptions. If you throw an exception of type excep-
tion, the first segment will execute. If you create your own userexception class and
throw that, the second segment will execute.

A final thing to note is that the e and the u in the previous code segment are
optional (the e wasn’t in the first catch block you saw). The e and the u are the
actual instances of the exception, and you can use them to get data about what
happened. If you don’t put a name for the exceptions in there, like in the first
catch example, then you only know what kind of exception was thrown, and you
cannot access any of the data in the exception.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 823

823Why C++?

stack unwinding

this: Unhandled exception in module blah.

NOTE
If you don’t have a try block in a function and something it calls causes an excep-
tion to be raised, then the exception is passed up along the hierarchy until it is
caught or the program exits.This is called (see Appendix B, “The
Memory Layout of a Computer Program,” for more information on the function-
call stack). I’m sure you’ve seen an error in a program before that looks just like

Why C++?

Let me tell you, C++ is one of the most controversial programming languages in
the industry at the moment. Everyone seems to have a strong opinion on it, and
most of them fall into one of two categories: You either love C++ or hate C++.

So why is C++ so controversial? It has to do with its origins. C++ didn’t just magi-
cally appear one day. The creator wanted to take the most popular programming
language of the day, which was C, and apply some of the new object-oriented con-
cepts to it. The end result is that C++ is essentially the same language as C, but with
many features added to it.

However, many people who program never want to change their ways and stuck to
C when C++ was unveiled, and still do so today. Of course, there are places where
programming in C is preferred, such as low-level systems programming, but niches
like that are becoming few and far between.

Unfortunately, C++ is a pretty complex language. No single person could learn the
entire language inside and out in a reasonable amount of time. This is probably
the largest factor of keeping people away from C++. I’ll admit, some of this stuff is
pretty darn hard to learn. In fact, one of the largest problems with C++ is that most
of the basic stuff in the language doesn’t even begin to make sense until you’ve
learned the more complex things. C++ is definitely a big-picture language. There
really is no easy way to start at the bottom and work your way up. Luckily for you,
however, I will not focus on any of the really deep features of C++. This is a data
structures book, after all. I will only use what I think is important to get the points
across to you in the easiest way possible.

Up until very recently, the realm of game programming has stayed mostly with C.
After all, they had good reasons to:

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 824

824 A. A C++ Primer

■ C compilers were generally faster than the relatively new C++ compilers.
■ C is a tried-and-true language.
■ C allowed you to interface more efficiently with low-level hardware.
■ C++ is complex. C is much easier to learn.
■ Older games were simple and didn’t need much organization.

Look at some recent games, however. Games are no longer little one-man projects
that keep a person entertained for a few hours. Games are beginning to become
entire life simulators! Companies spend millions of dollars on games nowadays, and
they want a return on their investment. Programming teams are made up of a dozen
or more people, and thus, an efficient method of programming must be utilized.

C++ is generally considered one of the best languages to program in group settings,
and that is the main reason many people are switching to C++. However, that is not
the main reason I want to use C++ in this book.

Data structures are an object-oriented concept. C++ is an object-oriented language.
Thus it seems perfectly natural to use a language that was designed for objects to
describe objects to you.

Class Topics

You should already know something about classes if you’re reading this book, but
some class features used in this book are a little complex, and you might not be
entirely familiar with them.

Constructors

Every class has a special function called a constructor, which constructs the object. The
main reason for this is to assure that your classes always have correct data in them.

For example, if you’ve ever declared a new integer in a release-mode project and
then printed its contents, you may notice that it contains a seemingly random num-
ber. When memory is deleted, the program really doesn’t do anything with it; it just
tells the operating system that the memory is now free and can be used for some-
thing else. When you ask the system for memory again, it gives you that memory,
but it still contains the information that was in it before it was deleted.

So the program calls a constructor implicitly whenever you create a new object (the
only exceptions are the built-in numerical types, like int, float, and char).

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 825

825Class Topics

The compiler automatically creates a default constructor for you, which does
absolutely nothing. Take the following class, for example:

class Foo
{
public:

int x;
};

Now, whenever this class is constructed like this, nothing happens:

Foo f1;

Foo* f2 = new Foo();

Foo f3 = Foo();

All three of these functions are valid, and the second two make reference to a con-
structor call, even though there isn’t one. C++ says that every class will have a con-
structor, so it just pretends that there is one and doesn’t do anything.

Now, later on, you want to add a constructor to the class Foo:

class Foo
{
public:

Foo() { x = 42; }
int x;

};

Now that there is a constructor, all three of the Foo declarations above will call it.
All three Foos will have their x value set to 42. This is called an implicit constructor
because it is called implicitly whenever the class is created.

There are other types of constructors available, too—ones that take parameters:

class Foo
{
public:

Foo() { x = 42; }
Foo(int y) { x = y; }
int x;

};

This class has added a new constructor, one with a parameter. Now you can con-
struct the class in many different ways:

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 826

826 A. A C++ Primer

Foo f1;

Foo* f2 = new Foo();

Foo f3 = Foo();

Foo f4(5);

Foo* f5 = new Foo(5);

Foo f6 = Foo(42);

The first three methods call the first
constructor, and the second two meth-
ods call the second constructor.

There is another form of syntax used in constructors. Here is an example:

constructor lines of f1 and f3 as the

constructor lines of f4 and f6.

NOTE
Note that most compilers treat the

same thing.The same goes with the

class Foo()

{

public:

Foo()
: x(42) {};

int x;
}

The colon after the constructor name starts something that is called an initializer
list. This is just a list, separated by commas, that calls the constructors of the mem-
ber variables. This is the only way you can initialize references inside a class, and it is
also the only way to initialize a member class that doesn’t have a default construc-
tor. This is used a few times in the book, like in Chapter 8, “Hash Tables,” and
Chapter 14, “Priority Queues and Heaps.”

Destructors

A destructor is a special function of a class that is called whenever an object goes out
of scope or is deleted. Most of the time, you will probably have complicated classes
that allocate memory when they are constructed (the Array class from Chapter 3 is
one example), so when the class itself goes out of scope or is deleted, you want the
memory it has allocated to be deleted as well. Here is an example of a class that
allocates something in a constructor and then deletes it in the destructor:

class Foo
{
public:

Foo() { x = new int; }
~Foo() { delete x; }

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 827

827Class Topics

int* x;
};

The class now has a pointer to an integer, and when it is created, a new integer
from the free store is allocated and stored into x. (See Appendix B for more infor-
mation about the free store.)

When the object goes out of scope or is destructed, the destructor is called, and it
deletes the integer. Look at the following code:

void function()
{

Foo f1; // constructor called on f1
Foo* f2 = new Foo(); // constructor called on f2
delete f2; // destructor called on f2

} // destructor called on f1

When the function ends, the destructor for f1 is automatically called because it is a
local variable.

Operator Overloads

A neat new addition to C++ is the ability to create your own custom operator func-
tions. This is a pretty cool feature, but it has the ability to be abused quite easily.

Say you create your own fractional number class, with a numerator and a denomi-
nator:

class Fraction
{
public:

int numerator;
int denominator;

};

Now, you can create fractions using this class, but it is a little bit difficult to use the
standard mathematical operations using it. You can’t, for example, do this:

// one, two, and three are all Fractions:
three = one * two;

Normally, you’d want that to multiply those two fractions together and store the
result into the third one. Unfortunately, this code will not work. Operator over-
loads can fix this, though. This next function is an operator overload that will over

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 828

828 A. A C++ Primer

load the * operator of the Fraction class so that the compiler will automatically call
the function whenever it sees one * two.

Fraction& operator* (const Fraction& p_frac)
{

Fraction result;
result.numerator = numerator * p_frac.numerator;
result.denominator = denominator * p_frac.denominator;
return result;

}

Fraction:: operator*.

NOTE
The operator function, to work correctly in its present form, must be defined
inside the class definition. If you wanted to define it outside of the class, you
would need to add a in front of the

The function takes a single fraction reference as its parameter (see Appendix B as
to why you should always try to pass references into functions), and the result is a
reference to another fraction.

Whenever the compiler sees this code in the program:

three = one * two;

It automatically treats that as this:

three = one.operator*(two);

The call to operator* is made on the object on the left, and the parameter is passed
into the function, which returns a new fraction.

Almost every operator in the C++ language can be overloaded, and Table A.8 has a
list of them.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 829

829

+ / %

+= -= *= /= %=

& | ^

&= |= ^= >>= <<=

&& || ! != ==

< > <= >= =

, ~ [] () ->

->* new delete ++ —

-, +, * &

and
and .

Class Topics

Table A.8 Operators That Might Be Overloaded

-*

>> <<

Some operators have two meanings.They are the , and operators.As unary operators,
they don’t have a parameter, and they are the negate operator, positive operator, dereference oper-
ator, address-of operator. When they have a parameter, they become unary operators and
are the subtraction operator, addition operator, multiplication operator, binary-and operator
There are some operators that you may never use in real life, such as the comma operator
and the unary+ operator. I included them only to be complete.

Conversion Operators

Conversion operators are another neat feature of C++ that allows you to expand
upon classes and treat them as other classes implicitly. Say, for example, you create
your own string class:

class String
{
public:

char m_string[64];
};

Later on in the program, you want to copy the string over into a regular char*
array, using the strcpy function. So you type in the following lines of code and hit
compile:

String string1;
char string2[128];
strcpy(string2, string1);

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 830

830 A. A C++ Primer

Bzzzt! Error! The compiler has no idea how to convert a String into a char*, so that
last line will cause an error.

This can be fixed, and you can tell the compiler how to convert a String into a
char* using a conversion operator:

operator char* ()
{

return m_string;
}

The syntax is: operator <typename> (). Because the string in the class is really a
char* to begin with, all you need to do is return the string, and the strcpy function
will automatically use that as its parameter!

The This Pointer

There is a special pointer that is available in every class function, called the this
operator. It essentially returns a pointer to the current class that the function is in.

For example, look at this piece of code:

class Foo
{
public:

Foo() { this->x = 42; }
int x;

};

The this pointer is just a pointer to the current class.

Inline Functions
When programming, the word inline has two meanings. The first meaning is when
you define a function within the class definition:

class Foo
{
public:

void DoSomething() { x = 10; }
int x;

};

The DoSomething function is defined inline.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 831

831Class Topics

However, there is another meaning to the word: the inline keyword in the C++ lan-
guage.

When a function uses the inline keyword, it looks like this:

inline int Function()
{

return 50;
}

The meaning of the word inline here is completely different. In this case, it is
telling the compiler that this function is pretty small and should be directly
inserted into code that uses this function. For example, if the compiler sees this
code later on:

x = Function() * y;

It will automatically turn it into this:

x = 50 * y;

The inline keyword essentially tells the compiler that the function is so small that it
really shouldn’t be a function, but it is used so often that you don’t want to copy
and paste it into a hundred different places in your program.

This has the effect of removing the function-call overhead that you get with un-
inlined functions (see Appendix B for more information about function call over-
head) and usually makes things faster.

There is one caveat, however. The compiler only takes the inline keyword as a sug-
gestion. It doesn’t have to actually inline the function. If the compiler thinks that
the function is too large to be inlined (inlining is only really beneficial when the
function is really small), then it will ignore your command and implement it as a
regular function.

TIP

inline
functions.

Most of the small accessor functions in C++ classes (the ones you learn about in
Chapter 9, “Tying It Together:The Basics”) should be inlined.The number one
argument against accessor functions is that they are slower than direct access
to variables, but inlining them effectively destroys that argument. None of the
data structures in this book have inlined functions, but if you decide to use
them on your own, you may want to add the keyword to the smaller

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 832

832 A. A C++ Primer

Function Pointers

Function pointers are one of those features in C++ that are life savers, but they will
also cause you to start cussing at your compiler. The idea of a function pointer is
simple: It is simply a pointer that points to a function, rather than a variable.

Using function pointers, you can have a variable that keeps track of a function and
then replace it with a different function while the program is still running. I use
function pointers quite a bit in this book in Chapters 8, 13, 14, and 20.

Unfortunately, their syntax is ugly. The basic structure of a function pointer decla-
ration looks like this:

returntype (*functionname)(parameters);

Although this doesn’t look so ugly now, it does get worse. Let me show you an
example of how to use function pointers. Pretend that you are developing a game
that uses a lot of advanced features on the newest video cards, but you also want
the game to run on regular video cards. Here are the two different drawing func-
tions:

void DrawNormal();
void DrawAdvanced();

Now, during the game, you have a choice. You might do this every time you draw a
new frame:

if(videocard == advanced)
DrawAdvanced();

else
DrawNormal();

This isn’t a very good idea because you know that the video card will not change in
the middle of a game, so you will always be calling one function all the time.
Instead, you can create a function pointer at the beginning of the game:

void (*DrawFunction)(void);
if(videocard == advanced)

DrawFunction = DrawAdvanced;
else

DrawFunction = DrawNormal;

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 833

833Conclusion

Then, during the game, all you need to do is this:

DrawFunction();

Isn’t that neat? There are a few rules, however. A function pointer has a fixed
return type and argument list, so it can only point to functions that have the same
return type and argument list.

Also, regular function pointers can only point to global functions; they cannot
point to functions inside of a class. Function pointers that point inside of a class are
an entirely different topic. In fact, the syntax for function pointers within classes is
even uglier. Because I don’t use them at all in this book, there isn’t a need to go
over them here.

Conclusion

As I have stated many times before, C++ is a complicated language. This is an inter-
mediate level book, so it is assumed that you know most of the C++ that I use in
this book. However, it is reasonable to assume that you might have forgotten how
to use some of the features in this appendix. While writing this book, I had to look
up syntax for some of the features many times (I can never remember the syntax
for function pointers!), so don’t feel bad if you keep flipping back to this appendix
to look something up.

Team LRN

Data Structures CHAppendixA 11/5/02 9:01 AM Page 834

This page intentionally left blank

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 835

APPENDIX B

Computer

The Memory
Layout of a

Program

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 836

836 B. The Memory Layout of a Computer Program

To fully understand how a program works, you must first understand how it is
structured. This is one topic that is almost always lacking in computer books,

yet I consider it very important. Knowing how a program is structured is essential to
understanding how to optimize a program, and this is especially important for
game programming.

The Memory Sections

I will be dealing with four main memory sections in this appendix:

■ The code memory
■ The global memory
■ The stack
■ The free store

When a program is run by the operating system, the operating system creates the
first three sections of memory for the program automatically. Every program in
memory has its own code memory, global
memory, and stack memory. The free
store is a separate area of memory that
is shared by all programs at the same
time, depending on the operating sys-
tem. Conceptually, the free store takes
up all of the memory that isn’t being
used by the other segments and the
operating system memory. See Figure
B.1 for a diagram showing the memory
of a computer that is running two
programs.

NOTE
Different operating systems handle
the free store in different ways. For
example, in Windows, the operating
system gives each program its own
little free store, and if the program
fills it up, it gives more memory to
the program (if it is available).
However, it is much easier to think
of the free store as a gigantic area in
memory that all programs have
access to.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 837

837The Code Memory

Figure B.1

This is a sample
memory layout for a
computer that has
two programs
running.

The Code Memory

When you write a program in C++, it is just text stored in a .cpp file. The computer
has no idea that this is a program. To make this text into a program, you tell your
compiler to convert the program into commands that the processor understands.
When the operating system runs the program, it loads the program code into the
code memory (also known as the code segment).

When the program is running, the computer copies portions of the code from the
code segment into the instruction cache (a little memory chip on the processor),
which is the place the processor runs the code from.

Because the code is stored in memory, you can do some neat (and potentially dan-
gerous) tricks with it and modify the code manually while the program is running!
Of course, to do something like this, you need to use assembly language. I wouldn’t
recommend trying to do something like this, however, unless you are an assembly
language master, but even then you have a chance of messing up the code so that it
does something malicious. I only mention this ability here to show you that the pro-
gram is actually stored in memory.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 838

838 B. The Memory Layout of a Computer Program

The Global Memory

Everyone is familiar with global memory. It is usually the first place you store data
in memory when you first start programming. Each program has its own global
memory section (sometimes known as the data segment) where all the global data
of a program is stored.

Global Variables

When you define a global variable in a program, you just make a variable definition
outside of any class or function:

int g_integer = 5;
char g_text[] = “012345678”;

A global variable is then accessible by every function in the program, as Figure B.2
illustrates. Every time g_integer is referenced in the program, the computer looks
at the same variable in global memory.

Figure B.2

Any function or class
has direct access to
global variables.

When you compile a program with global variables, the compiler actually creates a
whole area in the file where the values of the global variables are placed. Figure B.3
shows how the actual program file is laid out (different implementations might use
different formats, but the concepts are all the same).

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 839

839The Global Memory

Figure B.3

This is the file layout of
a program that uses
g_integer and
g_text. All numbers
are in hexadecimal.The
hexadecimal value 30
is the ASCII equivalent
of the character 0, and
so on.

So the operating system creates the global memory section when it loads a pro-
gram, and it loads all the global data from the file and places it into the global
memory section.

NOTE
When you don’t initialize a global variable, some compilers will still make room
for them in the compiled program file anyway. I remember using an uninitialized
global array that was about 4 megs in size once, and I could not understand why
my program files ended up being 4 megs! Of course, I didn’t find this out until
much later, so I’m hoping to alert you on this little occurrence. Some compilers
have an option that allows you to prevent this from happening.

Static Variables

When you define a static variable within a function, it is also placed in the global
memory section. Although static variables reside in the global memory section, they
can only be accessed by the function that they are defined in. This is a C++ feature.
With some assembly hacks, you should be able to access static function data outside
of the function it is defined in, but I would recommend against that because it
defeats the purpose behind static data and you have no guarantees that the static
data will be where you think it will be.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 840

840 B. The Memory Layout of a Computer Program

The Stack

Up until now, the memory sections have been simple and straightforward. The
stack in a computer program is probably the most complex part, though. If you are
unfamiliar with how a stack works, please familiarize yourself with Chapter 7,
“Stacks and Queues,” first.

Every program has a stack, but it hasn’t always been this way. Back in the bad old
days, when memory was scarce, people did whatever they could to conserve memory.

Local Variables

Old languages used to store local function variables in the global memory section.
What does this mean? Consider the following example:

void function()
{

int variable;
variable = 5;
// do stuff with variable here
function();

}

Although this is a stupid example that leads to an infinite loop, you need to exam-
ine what actually happens. The local variable is stored in global memory and then
set to 5. Pretend that the function does other things to variable where the com-
ment is. Now, the function calls itself, and then it resets variable back to 5, because
the function references the same exact place in memory. Without a stack, this func-
tion works exactly as if variable was static. Obviously, this would cause a lot of prob-
lems with recursive algorithms (see Chapter 10, “Recursion,” if you are unfamiliar
with recursion), so you need a way to be able to have many copies of the variable at
the same time.

Because there is no way for a program to be able to determine how many times
function will be called at the same time, you need some sort of flexible memory.
The stack data structure comes to your rescue.

When a function is called and it is told to create a local variable, like the function
example, the computer puts the local variables onto the stack. Figure B.4 shows the
stack local variable stack for the function example.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 841

841The Stack

Figure B.4

The local variable is
placed on the current
top of the stack.
Because this
particular stack is
empty, it is placed on
the bottom.

Now, whenever variable is referenced, the computer accesses that particular place
on the stack. The neat stuff happens when you call function within itself: A differ-
ent version of variable is placed on top of the stack. Figure B.5 shows this.

Figure B.5

When function is
called again, it
creates another
instance of
variable on the
stack.

Now each instance of the function can use its local variables without worrying
about modifying global data.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 842

842 B. The Memory Layout of a Computer Program

When the second function exits, its version of variable is popped off of the stack,
and the end result looks exactly like Figure B.4.

Parameters

Parameters to functions are also placed on the stack. They are pushed onto the
stack before the local variables are. Consider the following function:

void function(int parameter)
{

int local;
}

When this function is called, the program places the parameter on the stack, and
then it places the local variable on the stack, like Figure B.6 shows.

Figure B.6

This shows a
parameter and a local
variable on the stack.

When a function exits, the local variables are popped off first, before the parameters.

TIP
When you pass a large structure into a function using the pass-by-value method,
the entire structure is copied onto the stack. If you call this function a lot, the
computer is forced to do tons of work just moving data around.This is the main
reason why pass by reference is much more efficient for large structures.When
you pass by reference, the only thing that is copied onto the stack is a pointer to
the structure, which is much smaller than the entire structure.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 843

843The Stack

Return Values

When a function returns a value from a function, it is also placed onto the stack.
However, the return value is placed on the stack even before the parameters are
placed on the stack. The computer makes space on the stack for the return value,
even though the value won’t be filled in until the function returns.

Take the following function, for example:

int function(int parameter)
{

int local = 3;
return 6;

}

When this function is called, these events occur:

1.	 An empty integer placeholder is pushed onto the stack (return value).

2.	 The parameter is pushed onto the stack.

3.	 The local value is pushed onto the stack.

4.	 The value 6 is placed into the return value cell on the stack.

5.	 The local variable and the parameter are popped off the stack.

6.	 The calling function can use the return value because it is on top of

the stack.

Figure B.7 illustrates this process, using the value 4 as the parameter.

Figure B.7

This is an example of
calling a function
with a return value, a
parameter, and a
local variable.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 844

844 B. The Memory Layout of a Computer Program

CAUTION
What happens when you try returning a pointer or a reference to a local vari-
able or a parameter? You end up with some big bugs! If you try to return a point-
er to a local variable, the pointer will not be valid, because the computer pops
off the local variables when it returns. So you end up with a pointer to memory
that isn’t valid anymore!

NOTE
There are other things that go on the stack besides the local variables and para-
meters shown, such as the return address of the function that called the current
function.These things are different for every system, and you should only be con-
cerned about them if you are programming in assembly language. For high-level
programming, you only need to know that local variables, parameters, and return
values are placed on the stack.

The Free Store

Sometimes this section of memory is known as the heap, but I don’t want to confuse
this with the data structure of the same name (they are totally unrelated).

Whenever you use dynamic memory (created with either malloc or new), the com-
puter places this memory on the free store. The free store is basically just a huge area
of memory that can be used for anything you want it to.

The free store acts just like global memory, except that you can create new data
and then delete it later, whereas you cannot create or delete globals while the pro-
gram is running.

You should be aware of a few things
about the free store. First of all, allo-
cating memory takes time. The com-
puter needs to find a place in
memory where it can fit what you
want, and this doesn’t happen
instantly.

TIP
Don’t allocate and delete memory
rapidly; this is a very slow operation.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 845

845Conclusion

The other thing you need to worry about is
memory leaks. When you allocate mem-
ory from the free store and then never
delete it, you end up with a memory
leak. The computer will think that
you’re using the memory, even if you
aren’t, and this will cause large prob-
lems if the program slowly leaks all of its
memory.

CAUTION
Always delete memory that you allo-
cate from the free store.

Conclusion

If you didn’t know much about how memory is arranged in a computer, hopefully
you know now. This is an important topic when you’re trying to optimize how a
computer works. Quite often, someone will pass a huge data structure into a func-
tion that is called many times in a program, and not even know that this is going to
slow down the computer.

You should walk away from this appendix remembering the following three points:

■	 Function calls take time to complete because they need to put all of the para-
meters and other data on the stack.

■	 Never pass entire classes into a function. Use pointers or references instead.
■	 Remember to delete all memory that you allocate in the free store.

Team LRN

Data Structures CHAppendixB 11/5/02 9:02 AM Page 846

This page intentionally left blank

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 847

APPENDIX C

to SDL
Introduction

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 848

848 C. Introduction to SDL

When I was trying to figure out how to demonstrate the examples for this
book, I had originally just planned on making everything use the text-based

console. How boring!

I quickly realized that I needed to use a graphical API to demonstrate the nifty
demonstrations you see throughout the book. I am very familiar with DirectX, but
DirectX is a fairly complex and low-level API.

OpenGL is even worse because it has no 2D portion.

Then, along comes my pal Ernest Pazera, and he introduces me to a little game
API called the simple directmedia layer, or SDL for short.

SDL is separated into many different components, such as graphics, sound, input,
network, and so on. Only three of these components are used in this book: the
video component, the input component, and the timer component.

The Licensing

SDL is a free open-source API that is licensed using the GNU Lesser General Public
License (LGPL). You can find this license at the URL
http://www.gnu.org/copyleft/lgpl.html.

You can always find the newest version of the SDL library at the URL
http://www.libsdl.org/ and a whole collection of add-on modules at
http://www.libsdl.org/libraries.php.

To use the SDL library in your own projects, you must comply with the LGPL
license, which states:

To comply with this license, you must give prominent notice that you use the
Simple DirectMedia Layer library, and that it is included under the terms of
the LGPL license. You must include a copy of the LGPL license.

You must also do one of the following:

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 849

849Setting Up SDL

1. Include the source code for the version of SDL that you link with, as
well as the full source or object code to your application so that the
user can relink your application,

2. Include a written offer, valid for at least three years, to provide the
materials listed in option 1, charging no more than the cost of pro-
viding this distribution,

3. Make the materials listed in option 1 available from the same place
that your application is available.

The most common way to comply with the license is to dynamically link
with SDL, and then include the SDL source code and appropriate notices
with your application.

This basically states that you must include the source code of SDL with all of your
projects, as well as the text of the LGPL license. In addition, you need to make
available your source code or, if you don’t want to include your source code, the
object code that your compiler produces (all those .o files that appear when your
compiler compiles your project) is okay, too. As long as people can re-link your
project, you comply with the license.

Setting Up SDL

You can always download the newest version of SDL on the SDL Web site. During
development of this book, I used SDL Version 1.2.3, but a new version was devel-
oped halfway through (Version 1.2.4). Version 1.2.4 is the version I’ve included on
the CD for you.

The Files

Table C.1 shows the directories on the CD where the SDL files are located and
what is located in those directories.

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 850

850 C. Introduction to SDL

Contents

Operating System prior to OS X.

Operating System X.

Table C.1 SDL Files on the CD

Directory

\Source Code\ This holds all of the source code to SDL in
.zip format.

\Development Libraries\ This holds all of the files you need to develop
SDL applications.

\Development Libraries\BeOS\ The development library for BeOS.

\Development Libraries\Linux\ The development libraries for Linux, which
includes three versions: one for PowerPC
processors, one for x86 processors, and one
for the PlayStation 2 Linux development kit.

\Development Libraries\MacOS\ The development libraries for the Macintosh

\Development Libraries\MacOSX\ The development libraries for the Macintosh

\Development Libraries\Win32\ The development libraries for the Windows32
platform.There are two libraries: one for
Microsoft Visual C++ and one for MinGW,
which is another Windows compiler.

All of these directories are inside the \goodies\SDL\ directory.

There are two ways to install SDL. The first method is to use the source code of
SDL directly, but technically this is a violation of the LGPL because your projects
will not be re-linkable with newer versions of SDL. Because of this, I don’t cover
how to set it up this way.

The other way is the most popular method, and I show you how to set it up for
Visual C++.

Setting Up the Files

The first thing you need to do is go into the CD and navigate to this directory:
\goodies\SDL\Development Libraries\Win32\ . After you get there, you can unzip the
SDL-devel-1.2.4-VC6.zip file onto your hard drive in a place where you keep your

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 851

851Setting Up SDL

libraries. For example, I keep mine in the directory D:\programming\SDL\ . You can
put yours wherever you want.

In that directory, you should have three subdirectories and a bunch of files; it
should look like the screenshot in Figure C.1.

Figure C.1

Here are the files
that should be in
your SDL directory.

There are three directories, one con-
taining the documentation for SDL in
HTML format. The \include\ directory
has all of the header files for SDL in it.
The \lib\ directory contains the Visual
C++ library files for SDL and the
SDL.DLL file, which you need to
include with every program you create
in SDL.

will not run.

NOTE
The SDL.DLL file must be contained
in the same directory as any SDL
program you try to run, or else it

The rest of the files contain information about bugs, a copy of the LGPL license
(in the file COPYING), and information about setting up Visual C++ for SDL.

Setting Up Visual C++

After you do all that, you are ready to set up Visual C++ to use SDL. The first thing
you need to do is set up your library and header paths so that you use the SDL
libraries. To do this, you must open up Visual C++ and choose Tools, Options.
Figure C.2 shows this.

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 852

852 C. Introduction to SDL

Options menu.

Figure C.2

Here is the Tools,

After you choose Tools, Options, click the Directories tab to bring up a screen that
looks like Figure C.3.

Figure C.3

Here is the
Directories tab.

Now that you have the window open to the Directories tab, make sure that the
Platform drop-down list says Win32 and the Show directories for drop-down list says
Include files. Click the dotted square button that is circled in the figure. A new box
appears below the last entry of the list. In this box, type the location of your SDL
include directory. In my case, this is D:\PROGRAMMING\SDL\SDL-1.2.4\INCLUDE.

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 853

853Setting Up SDL

After you have entered the name, press
Enter, make sure your SDL include
directory is highlighted, and then click
the up-arrow button (next to the X in
the figure) until your include directory
is at the top of the list.

Next, go to the Show directories for
drop-down list and select Libraries this
time. Now you will add another new
directory to the list, but this time it will
point to the SDL lib folder. In my case,
this is D:\PROGRAMMING\SDL\
SDL-1.2.4\LIB.

Now Visual C++ is set up to use SDL! Hooray!

NOTE
Visual C++ looks for the header files
that you’ve included in the directo-
ries listed in that box. It searches
each directory until it finds a match
for the filename and then uses that.
By putting the SDL include directory
at the top, it will search there first, in
case you have header files with the
same name in any of the other
directories.

Setting Up Your Project

Unfortunately, you’re not quite done yet. You still need to set up each project you
create to use SDL. To do this, you must first create a project. SDL projects are cre-
ated just like you would create a normal Win32 project; you go to the File menu
and choose the first option, New. A window pops up, as shown in Figure C.4.

Figure C.4

Here is where you
create a new project.

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 854

854 C. Introduction to SDL

In this window, enter the name of your project in the Project name box and enter
the directory it will be in in the box directly below it. Then select Win32
Application from the list on the left and click OK, and you’re almost there!

When the window pops up asking you what kind of project you want to create,
select An empty project and click Finish.

Now, choose Project, Settings. The window shown in Figure C.5 appears.

Go to the Settings For box and select
All Configurations. This will ensure
that you set both debug and release
modes up to use SDL.

Now click on the C/C++ tab and

Generation. After you do that, select
Multithreaded DLL in the Use run-

TIP

move the category box down to Code

time library box. This is the only run-
time library that works with SDL, so

Figure C.5

This is the Project
Settings window.

There have been times when I only set
SDL up for debug mode, and then when
I switch to release mode, it won’t com-
pile.This is frustrating because you don’t
immediately know what is wrong on a
large project. So make sure you set up
SDL for all configurations.

this is a very important step. Figure C.6 shows a screenshot of this.

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 855

855Setting Up SDL

Figure C.6

Here are the code
generation settings.

Now that you have set the code generation settings, you must do one more thing.
Go to the next tab over, Link. Go to the Object/library modules text box and enter
the names of the two SDL library files, sdl.lib and sdlmain.lib. Figure C.7 shows this.

Figure C.7

Here are the link
settings.

Now click OK. Your project is set up to use SDL.

Team LRN

Data Structures CHAppendixC 11/5/02 9:02 AM Page 856

856 C. Introduction to SDL

Setting Up SDL_TTF

Unfortunately, SDL doesn’t have a built-in font library, so you cannot display text
unless you build your own font library or use one that someone has already devel-
oped.

I have chosen the latter method and used the SDL_TTF add-on library. You can
always find the newest version of the SDL_TTF library on the SDL Web site at this
address: http://www.libsdl.org/projects/SDL_ttf/.

The SDL_TTF library is set up just like the base SDL library was set up. The Web
page has links to the source code and development libraries available to download.
As of this writing, the newest version is 2.0.5, which is included on the CD in the
directory \goodies\SDL_TTF\ .

do

NOTE
If you know what you’re doing, you can set up your program so that you can use
the source code provided in the \goodies\SDL_TTF\Source Code\ directory to
build your application and link it statically without needing to use the
SDL_TTF.DLL file. However, this is again a violation of the LGPL, so I wouldn’t
recommend doing it. If you decide to statically link your project, you need
to use the FreeType Font Library because this is what the SDL_TTF library
is built on top of.You can find the newest version of FreeType at
http://www.freetype.org/, and Version 2.1.2 is included on the CD for your use
(\goodies\FreeType\). Be warned, though: FreeType is difficult to set up, and you
should only use it if you really want to mess around with it. It is better to just use
the SDL_TTF library in the way that this appendix explains instead. I don’t dis-
cuss how to statically link FreeType, SDL_TTF, or SDL itself.

There are several different SDL_TTF development libraries available using the
same platforms as the SDL base libraries, with two exceptions: There is no
PlayStation 2 SDL_TTF development library, nor is there a MinGW library. The
libraries are all in their appropriate directories on the CD in
\goodies\SDL_TTF\Development Libraries\ .

I am covering the installation and setup of the Win32 development library, which is
on the CD in the directory \goodies\SDL_TTF\Development\Libraries\Win32\ in the
file SDL_ttf-devel-2.0.5-VC6.zip. You should unzip this file into a directory where
you store all of your libraries. For example, I like to keep this library unzipped into

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 857

857Setting Up SDL_TTF

the same directory where I unzipped the base SDL library: D:\Programming\SDL\ .
After you unzip it, your directory should look something like Figure C.8.

Figure C.8

Here are the files in
your SDL_TTF library
directory after
unzipping it.

After you have done that, you need to set up Visual C++ to recognize your
SDL_TTF directory. This is done the same way as when you set up Visual C++ to
recognize your base SDL directory. Go to the Tools, Options menu and select the
Directories tab.

Figure C.9 shows how you set up the include file directory by making it point to the
\include\ directory inside of the directory where you unzipped SDL_TTF. You must
also do this for the library file, which is located in the \lib\ subdirectory of your
SDL_TTF directory.

Figure C.9

This is where you
add the TTF
directories to your
compiler’s path.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 858

858 C. Introduction to SDL

Now Visual C++ recognizes the SDL_TTF library, but you have one more step to do.

This next step must be performed for every project you create that uses the
SDL_TTF library. Remember how you needed to add the sdl.lib and sdlmain.lib
files to your project before? Now you need to add the sdl_ttf.lib file to your project.
When your project is open, choose Project, Settings and switch to the Link tab.
When you have done that, you just add SDL_TTF.LIB to the text box where you
added the other two library files.

Now your project is ready to use SDL_TTF.

Distributing Your Programs

When you have the compiler set up and you actually compile some programs, you
need to include both the SDL.DLL file and the SDL_TTF.DLL file with your pro-
grams to make them run. They will not run if they cannot find the DLLs.

The DLLs come with the Win32 development libraries, and they are both located
in the \lib\ directory of each library where you unzipped them. Just copy the DLL
and paste it into the same directory as your EXE, and you’re ready to go.

Using SDL

As I have stated before, this book only uses a few of the SDL modules. This section
gives you a very brief introduction to them and how to use them. It isn’t a very
comprehensive overview, but it should be enough to get you familiar with the com-
mon functions and structures. For a slightly more informative approach, you can
take a look at Ernest Pazera’s SDL articles that are included on the CD in the direc-
tory \goodies\articles\ . If you’re really interested in some hard-core SDL usage, you
should also check out his new book Focus On SDL, published by Premier Press
(ISBN 1-59200-030-4).

SDL_Video

The component of SDL that handles all of the graphics is called SDL_Video. It is a
fairly easy component to use, which is one of the main reasons I chose to use SDL
with this book.

The SDL_Video component supports hardware video drawing if your video card is
capable, but even if it isn’t, SDL_Video supports a software drawing mode that will
work no matter what you have installed on the computer as far as hardware goes.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 859

859Using SDL

The Structures
There are several structures that are used frequently with the SDL_Video compo-
nent.

First, there is the SDL_Surface, which is really just a bitmap. These structures can
hold bitmaps in any format, and the SDL drawing routines will draw them correctly.

Then there are SDL_Rects, which are rectangles. These are often used in the draw-
ing functions to define the source and destination areas. They have four variables:
an x and a y coordinate and a width and a height.

There is also an SDL_PixelFormat structure, which defines the exact format that a
surface is in, in case you ever need to do any image editing or converting.

Finally, you have SDL_Color, which is a simple structure that stores a single color value.

You will see how these structures are used in the next few sections.

Initializing the Video
Setting up video in SDL takes three easy steps. You need to initialize the video
library, set the video mode, and set the window caption. You should note that the
third step is optional.

SDL_Surface* g_window;

SDL_Init(SDL_INIT_VIDEO);

g_window = SDL_SetVideoMode(WIDTH, HEIGHT, 0, SDL_ANYFORMAT);

SDL_WM_SetCaption(PROGRAM_NAME, 0);

In the first step, the video module is initialized. This must be performed before the
other two steps.

Then, the SDL_SetVideoMode function is called with the width, the height, and the
bitdepth of the surface (use 0 if you want to use the default depth, which varies
based on the system) and the format of the video mode. In this example, I have
passed in the SDL_ANYFORMAT flag, which means that SDL should use the best format
it can find. This assures that it will work on pretty much every system out there.
The g_window variable is just a regular SDL_Surface pointer, and you will use it when-
ever you draw anything on the screen.

Finally, the caption of the window is set to a name, and the second parameter is a
string of the name of the icon to use (a filename of a .bmp, I suppose. I’m not sure
because I never needed to play around with it, and the docs don’t really specify it
anyway).

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 860

860 C. Introduction to SDL

That’s it! That’s all you need to set up the video component. Didn’t I tell you it was
simple?

Loading and Drawing Bitmaps
If you’ve ever played around with the windows .bmp file format, you know how dif-
ficult and awkward it is to work with. Not only is the data stored in BGR format
(when almost everyone else uses RGB), but the bitmap is also stored upside-down!

SDL is really a lifesaver in this respect; it does everything for you. Look at this code,
for example:

SDL_Surface* bitmap = SDL_LoadBMP(“bitmap.bmp”);

Now, wasn’t that easy? SDL automatically loads the bitmap and creates a new sur-
face for you. You can instantly draw it to any other surface that you want, too.

Here is how you would blit onto the screen:

SDL_Rect sourcerect = { 0, 0, 64, 64 };

SDL_Rect destrect = { 32, 32, 64, 64 };

SDL_BlitSurface(bitmap, sourcerect, g_window, destrect);

SDL_UpdateRect(g_window, 0, 0, 0, 0);

The first two lines declare two rectangles. When SDL draws surfaces onto other sur-
faces, it needs two rectangles. The source rectangle determines what part of the
source bitmap it is going to copy over. The destination rectangle determines where
on the destination the source will be drawn. Look at Figure C.10 for example.

source and
destination

Figure C.10

This shows the

rectangles.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 861

861Using SDL

Say, for example, that the bitmap surface is 64 � 64 pixels. The source rectangle
starts at coordinates (0, 0) and has a size of 64 � 64, which means that the entire
surface is going to be drawn. Then, the destination rectangle is set up. This time,
its coordinates start at (32, 32), but the size still stays at 64 � 64. This means that
you want the entire source rectangle drawn on the destination at (32, 32).

The third line of the code snippet actually performs the drawing. Although the
bitmap is now drawn on the screen surface, it won’t actually show up on your
screen. You need to do one more thing: update the surface. When you draw to the
screen surface, the data isn’t actually sent to the video card until you call this func-
tion. So SDL_UpdateRect function updates a rectangle on the screen. You can pass in
four coordinates (x, y, width, and height variables), or you can pass in all 0s. If you
pass in all 0s, the entire screen is updated, and any changes you made now appear
on the monitor.

That’s pretty much all there is to drawing stuff.

Freeing Surfaces
When you are done with a surface, you should always free the surface to clear the
memory. Here is how you do it:

SDL_FreeSurface(bitmap);

SDL Event Handling

This is the SDL module that takes care of program events and user input. It works
very similarly to the windows message pump, if you’ve ever worked with that before.

There really isn’t much to the system. Pretty much everything that occurs in SDL is
considered an event. If the user presses or releases a key, moves the mouse, or
clicks, an event is generated. The SDL_Event structure is designed to store informa-
tion about an event.

Your game loop should check to see if an event has occurred fairly frequently. I
prefer to check for events every loop, like this:

SDL_Event event;
while(1)
{

if(SDL_PollEvent(&event))
{

// handle the event here

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 862

862 C. Introduction to SDL

}

// handle the game logic here

}

The SDL_PollEvent function fills in an SDL_Event structure with event information if
an event has occurred and returns 1 if there are any events or 0 if there haven’t
been any events. So if there were any events, then the function starts handling the
input; otherwise, it just processes the game logic as usual.

You want to check for events as often as possible because if you let events get piled
up in the queue while the game is busy doing other things, it will look like the
input is lagging, and the users don’t like that.

There are a few events that I usually check for, and here is a listing of how to check
for them:

if(event.type == SDL_QUIT)
break;

if(event.type == SDL_MOUSEBUTTONDOWN)
{

// handle mouse button down
}
if(event.type == SDL_MOUSEBUTTONUP)
{

// handle mouse button up
}
if(event.type == SDL_KEYDOWN)
{

// handle keyboard down
}

The first event is important; it is a signal from the program that it is shutting down.
So you should always detect the SDL_QUIT event. Because this loop is within the
while(1) loop I showed you previously, a break call will literally break you out of
the while-loop.

The other events detect some of the more common events in a game. You can add
code to handle these easily.

For example, you can use the SDL_GetMouseState function to get the coordinates of
the mouse on the window like this:

SDL_GetMouseState(&x, &y);

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 863

863Using SDL

The function gets the mouse coordinates and stores them into two integers. Note
that you must pass pointers into the function because the function physically modi-
fies the integers that are passed in.

You may also detect what key was pressed or released like this:

if(event.key.keysym.sym == SDLK_ESCAPE)

SDL has a whole mess of key defines that you can use, all of which are defined in
the sdl_keysym.h file (this is located in the \include\ directory wherever you have
installed SDL).

SDL_Timer

The SDL_Timer component is pretty small and simple to use. You initialize it like
this:

SDL_Init(SDL_INIT_TIMER);

When you have initialized the timer component, you have access to the
SDL_GetTicks function, which returns the number of milliseconds that have passed
since the program was started.

Because the function uses 32-bit integers to store the time, the timer will reset itself
every 49 days.

SDL_TTF

The very first thing you must do in order to use the SDL_TTF library is to initialize
it with this function:

TTF_Init();

After it is initialized, you can use the functions in the library to create fonts and
text.

The main structure in the SDL_TTF library is the TTF_Font structure. Fonts are
amazingly easy to open, and you can do so with just one function call:

TTF_Font* font = TTF_OpenFont(“arial.ttf”, 16);

This line of code opens the TrueType font file arial.ttf at 16 points.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 864

864 C. Introduction to SDL

The

NOTE
point size of a font is the vertical size of a font.Traditionally, on paper, there

are 72 points per inch vertically. However, every computer system uses a different
measure to convert them to actual pixels, so you have to experiment with font
sizes to see what is the best one to use.

CAUTION
Many TrueType font files are copyrighted, so you should be sure to get permission
from the copyright holder before distributing one with your game.

You can change the style of a font file after it’s been opened, but you cannot
change its size. This is the function you would use to set the style of a font:

TTF_SetFontStyle(font, TTF_STYLE_BOLD);

This example makes the font bold. There are a total of four different flags you can
use: TTF_STYLE_NORMAL, TTF_STYLE_BOLD, TTF_STYLE_ITALIC, and TTF_STYLE_UNDERLINE.
The last three styles may be combined using the binary-or operator, like this:

TTF_SetFontStyle(font, TTF_STYLE_BOLD | TTF_STYLE_ITALIC);

This makes the font bold and italic.

Now, you can finally create text using a font. The font library renders text onto a
new surface, so you need to be careful. This is a cool feature and a pain in the butt
at the same time. You can keep the text rendered onto a surface so that you can
quickly draw it whenever you want it, but don’t forget to free it, or you will end up
with large memory leaks.

Here’s how you render text:

bitmap = TTF_RenderText_Shaded(font, “Hello!”, BLACK, WHITE);

This is only one of the font rendering functions. There are two more:
TTF_RenderText_Solid and TTF_RenderText_Blended.

The solid function is the fastest; it draws plain solid-edged text onto a surface, but
this can look bad sometimes, especially with small text.

The shaded function is slightly slower, but it draws the font with anti-aliasing, which
smoothes out the edges so that it looks better to your eyes. Figure C.11 shows a

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 865

865The SDLHelpers Library

screenshot of the letter C. On the left is a solid font; compare it to the anti-aliased
font on the right.

Figure C.11

The C on the left is drawn
normally.You can easily see the
sharp edges on a computer
screen.The C on the right is
drawn with anti-aliasing; the
font blends into the background
and makes it easier to read.

The blended font function apparently uses alpha blending to achieve some cool
blending effects, but I’ve never been able to get it working properly (probably
because I never really tried).

The render function renders a piece of
text with the supplied font and then
uses two SDL_Color structures to deter-
mine the foreground and the back-
ground colors. The solid rendering
function only uses a foreground color
because it doesn’t need to blend the
edges of the font.

When you are done using a font, you
should close the font, like this:

The BLACK and WHITE

NOTE
color structures

are defined in my own SDLHelpers
library, which I show you in a little
bit.They are not part of SDL, but I
found it easier to have a few pre-
defined colors to use.

TTF_CloseFont(font);

And finally, when you are completely done with the font library, you can shut it
down like this:

TTF_Quit();

That’s pretty much all of the font functions that are used in the demos for the book.

The SDLHelpers Library
When I started developing demos for this book, I realized that SDL is great for
bitmapped graphics, but it is somewhat lacking in the vector graphics department.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 866

866 C. Introduction to SDL

So I decided to make my own functions that would automate some of the most
common things that I needed to do in SDL.

NOTE
Because these functions are somewhat long and they don’t have any direct rela-
tion to the book besides the fact that they are used in the graphical demos to
demonstrate the data structures, I left the source code out. I am showing you the
function definitions so you can understand what they do if you see them used in
the book. If you’re really interested in how these functions work, you can always
look at the source code. I’ve commented it all to make it easy to understand.

The SDLHelpers library is contained in two files, SDLHelpers.h and
SDLHelpers.cpp. You can find both of these files on the CD in the
\structures\SDLHelpers\ directory. They also appear wherever they are needed in
the demonstration directories.

The first function I created was a function to draw pixels on a surface.

void SDLPoint(SDL_Surface* p_surface, int x, int y,
SDL_Color p_color);

The function draws a point of the specified color at the given x and y coordinates
on the surface.

The next function draws a line of a specific color on a surface:

void SDLLine(SDL_Surface* p_surface, int x1, int y1,
int x2, int y2, SDL_Color p_color);

Then there is a function that draws an arrow line, which has optional arrows at
each end:

void SDLArrowLine(SDL_Surface* p_surface, int x1, int y1,
int x2, int y2, int r1, int r2,
bool arrow1, bool arrow2, SDL_Color p_color);

The function adds four new variables to the regular line function: two radiuses
and two booleans. The booleans determine if an arrow should be drawn or not at
each end. The radiuses take a little more explanation, though. This function is
designed to be drawn so that the arrows can be pointing to circles. See Figure C.12
for reference.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 867

867The SDLFrame

Figure C.12

Here is an example
of the SDLArrowLine
function.

In the figure, a line is drawn between two circles. Both pairs of coordinates lie
directly in the center of the circles, and the radius variables contain the size of the
radius of each circle. The function automatically figures out how far away from the
center of the circle it should be drawn and then adds the arrowheads on after that.

If you don’t want to constantly be setting up rectangles just to draw things in SDL,
you can use this function instead. It automatically sets up the rectangle structures
for you and draws the entire bitmap at the requested coordinates:

void SDLBlit(SDL_Surface* p_source, SDL_Surface* p_dest, int x, int y);

Finally, you may want to draw solid boxes on surfaces to clear out parts of the sur-
face. The SDL rectangle-fill function also uses lots of rectangle structures, so I
made this function to make things easier for you:

void SDLBox(SDL_Surface* p_surface, int x, int y,
int width, int height, SDL_Color p_color);

Finally, I have defined preset colors that you can use in any of the SDL functions.
They are WHITE, BLACK, RED, BLUE, GREEN, YELLOW, ORANGE, CYAN, DCYAN, PINK, GREY, LTGREY,
DKBLUE, DKRED, and DKGREEN.

The SDLFrame

I have created a very basic framework file for you to use with the SDLHelpers
library. A lot of the Game Demonstrations in the book are based on this frame-
work. It is located on the CD in the directory \structures\SDLHelpers\, in the file
SDLFrame.cpp. Here is a listing of the file:

#include “SDL.h”

const char PROGRAM_NAME[] = “INSERT PROGRAM NAME HERE”;

const int WIDTH = 640;

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 868

868 C. Introduction to SDL

const int HEIGHT = 480;

// this is the main window for the framework

SDL_Surface* g_window = 0;

// main function

int main(int argc, char* argv[])

{

// declare coordinates.

int x, y;

// declare event holder

SDL_Event event;

// initialize the video system.

SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER);

// set our at exit function

atexit(SDL_Quit);

// set the video mode.

g_window = SDL_SetVideoMode(WIDTH, HEIGHT, 0, SDL_ANYFORMAT);

SDL_WM_SetCaption(PROGRAM_NAME, 0);

// the main game loop

while(1)

{

//look for an event

if(SDL_PollEvent(&event))

{

//an event was found

if(event.type == SDL_QUIT)

break;
if(event.type == SDL_MOUSEBUTTONDOWN)
{

// get the mouse state.
SDL_GetMouseState(&x, &y);

}
if(event.type == SDL_MOUSEBUTTONUP)
{

// get the mouse state.
SDL_GetMouseState(&x, &y);

}
if(event.type == SDL_KEYDOWN)
{

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 869

869The SDLGUI Library

// a key was pressed.
if(event.key.keysym.sym == SDLK_ESCAPE)
{

// if ESC was pressed, quit the program.

SDL_Event quit;

quit.type = SDL_QUIT;

SDL_PushEvent(&quit);

}
}

} // end event loop.

// do all game-related stuff here.

// update the entire window.

SDL_UpdateRect(g_window, 0, 0, 0, 0);

}

// do game cleanup here

// done

return 0;

}

The SDLGUI Library

The SDLHelpers library is great, but it is not really useful for lots of complex GUI-
type stuff, like the stuff you see in all of the Graphical Demonstrations in this book,
so I went ahead and created a new object-oriented GUI library to use.

Like the SDLHelpers library, I don’t show the code in the book. It is simply too
large to show in this book, and it has little to do with the actual subject matter any-
way. As always, the source code is freely available on the CD, fully commented and
ready for you to use on your own.

In this section, I show you how to set up and use the GUI just like it is used in the
Graphical Demonstrations throughout the book.

All of the files you need are located on the CD in the directory \structures\SDLGUI\ .

The SDLGUI Class
The main class you will be using in this library is the SDLGUI class, located in the
SDLGUI.h and SDLGUI.cpp files.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 870

870 C. Introduction to SDL

The GUI class keeps track of every button, label, text box, and check box in the
GUI, as well as all the fonts it will use. When you construct one, here is what it
looks like:

SDLGUI g_gui(800, 600, 32, WHITE);

This constructs a GUI with a size of 800 � 600 that can hold a maximum of 32 GUI
items (buttons and so on) and has a background color of white.

The GUI class can have a total of 16 different fonts loaded at any given time, and
you must load them through the GUI by using this function:

const int ARIAL = 0;

g_gui.SetFont(“arial.ttf”, ARIAL, 16, TTF_STYLE_NORMAL);

Note the constant integer declaration that comes first; when accessing the fonts
through the GUI, you must use an index, but using a number to refer to a font can
get ugly quickly. So now you have defined the constant ARIAL to be the index 0.
Whenever you want to access that font from the GUI from now on, instead of typ-
ing 0, you type ARIAL instead. It makes your programs much more legible.

The last two parameters are the point size of the font and the style of the font (see
the SDL_TTF section).

The GUI Objects
Now that you’ve got your GUI and a font created, you want to add elements to it.
You can do so by using a few functions. For example, the following function adds a
button to the GUI:

void AddButton(int p_x, int p_y,

const char* p_up,

const char* p_down,

const char* p_text,

int p_font,

SDL_Color p_fore,

SDL_Color p_back,

void (*p_func)(void));

You pass in the coordinates of the button and then the names of the bitmaps you
want to represent the up and down states of the button. After that, you pass in the
text that will be shown on the button and then the font index number. Then, there
are two colors: the foreground and background colors of the text on the button.
Finally, there is a function pointer to a callback function. Whenever this button is

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 871

871The SDLGUI Library

pressed, it will call that function. This allows you to create buttons that will call
whatever function you want (as long as it takes no parameters and doesn’t return
anything) whenever the button is pressed!

The other object types are all similar, with minor differences:

void AddCheckbox(int p_x, int p_y,

const char* p_up,

const char* p_down,

const char* p_text,

int p_font,

SDL_Color p_fore,

SDL_Color p_back,

void (*p_func)(void));

The AddCheckBox function has the same parameters and will call its callback func-
tion every time it is clicked on. There is no immediate way to retrieve the current
status of the check box, so you must store a boolean yourself that keeps track of the
state of the check box. By default, check boxes are unchecked.

void AddLabel(int p_x, int p_y,

const char* p_text,

int p_font,

SDL_Color p_fore,

SDL_Color p_back);

A label is just a piece of text that sits on the screen and does nothing.

void AddTextBox(int p_x, int p_y,

int p_w, int p_h,

char* p_string,

int p_length,

int p_font,

SDL_Color p_fore,

SDL_Color p_back,

bool p_enabled,

void (*p_func)(void));

The most complex GUI item is the text box. It adds a height and a width, as it is
not based on a graphic. Also, the string that you pass in to the p_string parameter
is the string that this text box will display and modify. The p_length variable deter-
mines the maximum length of the text box in case you want to limit the number of
characters the user can input. Finally, the p_enabled boolean determines if the box
can be edited or not. If this is false, then the text box cannot be edited.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 872

872 C. Introduction to SDL

All of these functions create the appropriate classes and add them to the GUI. All
four GUI objects inherit from a class called SDLGUIItem.

The Drawing Function Wrappers
The GUI class doesn’t allow you to easily access the main surface, so I have
included a few wrapper functions into it that use the standard SDLHelper drawing
functions: Point, Line, ArrowLine, Blit, and Box. These functions are essentially the
same as their regular counterparts except that they assume that the destination sur-
face is the screen and therefore don’t have the p_surface parameters.

The Utility Functions
There are a few utility functions included in the GUI class in order to get informa-
tion about it.

The first function is the GetFont function, which gets a pointer to the TTF_Font at
the index that you requested:

TTF_Font* GetFont(int p_index);

Then there is a function that gets a pointer to the requested GUI item:

SDLGUIItem* GetItem(int p_item);

All of the GUI items are stored in an array, so the very first item you added to the
GUI is number 0, the next item is 1, and so on. I will show you how to use these
item pointers later.

After that, there is a function to get a pointer to the screen surface:

SDL_Surface* GetScreen();

Finally, there is a function to set the focus of the GUI. The GUI can be focused on
an item, but this really only matters with the text box items. When you are typing
on the keyboard, the text is sent to the item with the focus. Obviously, sending text
to labels, buttons, or check boxes does nothing, but sending text to a text box will
add the letters to the box or, if you press Delete, delete letters from the box.

void SetFocus(int p_item);

The Event Functions
Whenever an event happens in an SDL program, you want the GUI to know about
it as well. You need to send messages to the GUI yourself, as the GUI doesn’t auto-
matically control the SDL event loop.

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 873

873The SDLGUI Library

Whenever the mouse is pressed, you should call this function:

void MouseDown(int p_x, int p_y);

The two parameters are the coordinates of
the mouse when the mouse was pressed
down. Likewise, there is a command
that should be called whenever the
mouse button is released:

void MouseUp(int p_x, int p_y);

Finally, there is a function that should
be called whenever a key on the key-
board is pressed:

void KeyDown(SDLKey p_key, SDLMod
p_mod, Uint16 p_char);

The first parameter is the SDLKey code
for the key that was pressed (i.e.,
SDLK_ENTER and so on). The second para-
meter is an instance of the SDLMod struc-
ture. This structure tells you what
keyboard modifier buttons are pressed
(Shift, Alt, Control). The last parameter
is a Uint16, which is an SDL typedef
meaning unsigned integer that is 16 bits
long. This is the Unicode representation of
the key that was pressed.

!

NOTE
Unicode (also known as UTF-16) is a
16-bit character encoding format
that is meant to replace standard
ASCII characters. ASCII can only
represent 256 different letters, but
UTF-16 can represent 65,536 differ-
ent letters.This may seem to be
enough for every language in the
entire world, but it really isn’t.This
means that a new Unicode format,
called UTF-32, needed to be created.
This new format can represent 4 bil-
lion characters! That’s enough for
every language on this planet, I
think.The UTF-32 spec is so large
that they even have a whole range of
letters that represent the Klingon
Alphabet from Star Trek

The Unicode representation of the key that was pressed varies depending on what
keys were pressed. For example, pressing Shift and Z gives you the letter Z, whereas
leaving off Shift will give you z.

These three parameters can be gotten from the SDL_keysym structure, which you can
find in the event structures when an event occurs in SDL. I will show you an exam-
ple of how to do this later.

The Display Functions
The GUI also has two functions that you use to make it display itself on the screen.
The first is the Draw function:

void Draw();

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 874

874 C. Introduction to SDL

This function, when called, will clear the background of the screen to the color
that you set in the GUI’s constructor. Then it will go through every item in the GUI
and draw each of them onto the screen surface. However, nothing will display on
the screen if you only call this function. Therefore, the GUI also has a function that
will actually display the contents of the screen surface on your monitor:

void Update();

The SDLGUIItem Class

Whenever you add items to the GUI or retrieve them, you’re dealing with the
SDLGUIItem class. This is a virtual base class for the four different kinds of items. If
you’re not familiar with inheritance, Chapter 9, “Tying It Together: The Basics,”
introduces you to this concept and why it is useful. For now, if you don’t know what
a virtual base class is, all you need to know is that every single GUI item supports
the functions that are contained within this class. The code for this class is con-
tained within the SDLGUIItem.h file. Because this is a virtual class, there isn’t a
.cpp file accompanying it.

The Visibility Functions
Every GUI item has a visibility status. You can make certain items visible or invisible.
When an item such as a button or a check box is invisible, you cannot click it with
the mouse. Here are the functions to set and get the visibility status:

void SetVisibility(bool p_vis);
bool Visible();

The Position Functions
There are two functions that deal with the position of the item on the screen. The
first one moves the item to a different set of coordinates:

void Move(int x, int y);

The second one determines if a set of coordinates is over the item (used to detect
if the mouse is over an item):

bool IsOver(int p_x, int p_y);

The Input Functions
There are four user input functions for each item. The first two tell the item that a
mouse button was clicked on or released when the mouse cursor was over the button:

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 875

875The SDLGUI Library

void ClickDown();
void ClickUp();

The next function is called whenever a key is pressed and the item is the one that
the GUI is currently focused on:

void KeyPress(SDLKey p_key, SDLMod p_mod, Uint16 p_char);

These parameters are the same as in the KeyDown function in the SDLGUI class.
Whenever that function is called, it finds out what item currently has the focus and
sends the key information to that item.

The last function is a crude hack I made because my GUI system doesn’t support
mouse-movement events:

void ResetOnUp();

This function is called for every item every time the mouse button is released. This
has to do with the way buttons are implemented. When you click a button, it goes
into the down state and stays that way until you release the button. However, if you
move the mouse off of the button and then release it, a release-button event is
never sent to the button, so it still thinks you’re pressing on it, and it looks stupid.
This function says to every item that a mouse button was released and it should
reset its state if needed.

Focus Functions
There are two functions that deal with the focus of an item.

bool CanGetFocus();

First, the GUI must be able to find out if an item can actually get the focus before
it decides to focus on it. Therefore, this function will return true if it can get the
focus or false if not. Currently, the only items that can get the focus are text boxes.

void GetFocus(bool p_focus);

Then this function tells an item if it has gotten (true) the focus or lost (false) the
focus.

The Drawing Function
The last function an item has is a function to draw itself on a surface:

void Draw(SDL_Surface* p_dest);

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 876

876 C. Introduction to SDL

Considering that an item doesn’t know where the surface is, and you might want to
draw items on other surfaces in the future anyway, you need to pass the surface in
as a parameter.

The SDLGUI Items

I don’t post how to use any of the specific GUI items here because they aren’t really
used directly in the Graphical Demonstrations throughout the book; the GUI class
manages them for you. If you’re interested, though, you can find the source code
in these files: SDLButton.h, SDLButton.cpp, SDLCheckBox.h, SDLCheckBox.cpp,
SDLLabel.h, SDLLabel.cpp, SDLTextBox.h, and SDLTextBox.cpp. From their
names, you can tell what classes are contained within each file.

The SDLGUIFrame

I have included a simple framework to use with the SDLGUI library. In fact, every
Graphical Demonstration was built from this framework, which is located in the file
SDLGUIFrame.cpp. Here is a listing of the code:

#include “SDLGUI.h”

const char PROGRAM_NAME[] = “INSERT PROGRAM NAME HERE”;
const int WIDTH = 640;
const int HEIGHT = 480;
const int ITEMS = 32;

SDLGUI* g_gui;

int main(int argc, char* argv[])
{

// declare coordinates.
int x, y;
// declare event holder.
SDL_Event event;
// set the at exit function.
atexit(SDL_Quit);
// initialize systems
SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER);
TTF_Init();

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 877

877The SDLGUI Library

// create the GUI and set the caption.

g_gui = new SDLGUI(WIDTH, HEIGHT, ITEMS, WHITE);

SDL_WM_SetCaption(PROGRAM_NAME, 0);

// add your GUI items here.

// main message loop.

while(1)

{

// look for an event.

if(SDL_PollEvent(&event))

{

// an event was found.

if(event.type == SDL_QUIT)

break;
if(event.type == SDL_MOUSEBUTTONDOWN)
{

// get the mouse state.
SDL_GetMouseState(&x, &y);

// tell the GUI that a button has been pressed.
g_gui->MouseDown(x, y);

}
if(event.type == SDL_MOUSEBUTTONUP)
{

// get the mouse state.
SDL_GetMouseState(&x, &y);

// tell the GUI that a button has been released.
g_gui->MouseUp(x, y);

}

if(event.type == SDL_KEYDOWN)

{

// a key was pressed.
if(event.key.keysym.sym == SDLK_ESCAPE)
{

// if ESC was pressed, quit the program.

SDL_Event quit;

quit.type = SDL_QUIT;

SDL_PushEvent(&quit);

}

Team LRN

Data Structures CHAppendixC 11/5/02 9:03 AM Page 878

878 C. Introduction to SDL

// tell the GUI that a key was pressed.
g_gui->KeyDown(event.key.keysym.sym, event.key.keysym.mod);

}
} // end event loop.

// do all game-related stuff here.

// tell the GUI to redraw itself.

g_gui->Draw();

// DO ALL YOUR RENDERING HERE.

// tell the GUI to update itself.

g_gui->Update();

}

// do game cleanup here.

// done.
return 0;

}

Conclusion

This concludes my small introduction to SDL and the two libraries I’ve developed to
make those pretty demos that accompany each chapter. I hope I’ve given you enough
information so that you can compile any of the demos in this book on your own.

If you are interested in more SDL, there are two articles on the CD written by
Ernest Pazera about setting up SDL and using the SDL_Video component. They
are quite thorough and do a good job of explaining everything you would ever
want to know about SDL_Video. If you’re really interested, then you can pick up his
new book that I mentioned, Focus On SDL. It’s bound to be great.

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 879

APPENDIX D

to the
Standard

Introduction

Template
Library

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 880

880 D. Introduction to the Standard Template Library

This book has three primary goals:

■	 To teach you about the various data structures that exist
■	 To show you how to code the data structures for yourself so you get hands-on

experience seeing how they work
■	 To instruct you on applying these data structures directly to computer games

Most other data structures books only focus on one of those goals; I have books
that teach you how data structures work but have no code examples. I have books
that teach you how to code the data structures, but don’t use them in any applica-
tions. I also have books that teach you only how to use data structures. These last
books usually use something called the standard template library (STL), which is a
container library that is included into the C++ standard.

I chose not to use the STL for general use in this book for several reasons:

■	 It is a complex library, using lots of complex template features.
■	 It only covers about half of the structures and algorithms in this book.
■	 Every compiler has a different version, and not all of them are standard.
■	 STL only defines an interface, not an implementation. To understand data struc-

tures better, you must be shown an implementation.

The last point is the most important. STL only defines an interface for each of the
classes and a general performance rating for each operation on them. Every STL
implementation is different, and I can’t really teach you how data structures work
under the hood with STL.

This appendix is meant to be read after you have read the rest of the book because
it references many of the chapters within.

STLPort

Unfortunately, every version of STL is different in its own little way, and this can
cause problems. The STL implementation that comes with Microsoft Visual C++ 6
is generally considered by most to be a slow and incomplete version (it was

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 881

881STLPort

Microsoft’s first try, after all) of the STL. (Apparently the STL in Microsoft Visual
C++ .NET is much better; however, I have not had a chance to test it.)

So, most of the time, people like to replace the compiler’s version of STL with a
better and more standard version. The most popular of these is STLPort, which is a
totally free version of STL based on the SGI version. The Web site is located at
http://www.stlport.org, and the newest version can always be downloaded from the
page http://www.stlport.org/download.html. I have included the newest version
that was available at the time of writing this on the CD. STLPort version 4.5.3 is
located on the CD in the directory \goodies\stlport\ in the STLport-4.5.3.zip file.

If you want to install STLPort for Visual C++, you must follow a process similar to
that of installing SDL and SDL_TTF, which I explain in Appendix C, “Introduction
to SDL.” First, unzip your file onto your hard drive somewhere, preferably the
place where you keep all of your libraries and things. For example, I keep mine in
the directory D:\Programming\STLport-4.5.3\ .

Figure D.1 shows a screenshot of the directory after you’ve unzipped it.

Figure D.1

This shows the
contents of your
STLPort directory.

There are a number of directories that contain documents, source code, header
files, and test files. You want to add the file that has all of the headers in it to your
compilers path list, which is \stlport\ . You can do this by choosing Tools, Options,
Directories and entering the path of that directory into the box. Make absolutely
certain that the STLPort directory is moved to the top so that whenever you use the
STL headers, the compiler will use the STLPort versions and not its own.

After you have done that, you are almost ready to use STLPort. To get STLPort
working to use just the structures and algorithms, you need to disable the
IOStream portion that comes with STLPort. If you don’t disable it, you need to

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 882

882 D. Introduction to the Standard Template Library

actually build the IOStream portion into a compiled library file in order to use it,
and quite frankly, that is a very complicated task that I still haven’t figured out how
to do yet.

So, to disable the IOStream portion, you need to go into the \stlport\ directory and
find the file stl_user_config.h. When you find it, open it up and search for a line
that looks like this:

// #define _STLP_NO_OWN_IOSTREAMS 1

You need to remove the comment slashes from this line and save the file. After you
do that, you can use STLPort!

STL Versus This Book

This book has covered many data structures and algorithms, some of which the STL
implements as well. Table D.1 shows a listing of all the data structures and algo-
rithms covered in this book and their equivalent STL structures and algorithms.

STL Equivalent

3

4 bitset

5 *

5 *

6 list

7 Stack stack

7 Queue queue**

8 *

11 *

12 *

Table D.1 STL Equivalence Table

Chapter Data Structure/Algorithm

Array vector

Bitvector

2D Array

3D Array

Linked List

Hash Table

Tree

Binary Tree

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 883

883Namespaces

STL Equivalent

13

14 priority_queue

15 *

17 *

20 *

20

20

20 *

21 *

21 *

22 Random Number Generation *

23 *

23 Heuristic Pathfinder *

deque

.

Chapter Data Structure/Algorithm

Binary Search Tree set/multiset/map/multimap***

Heap

Game Tree/Minimax Tree

Graph

Bubble Sort

Heap Sort make_heap/sort_heap

Quick Sort sort

Radix Sort

RLE Compression

Huffman Compression

Breadth First Pathfinder

*There are no STL equivalents to these.
**There is an STL structure known as the , which is often used as an arrayed queue,
somewhat similar to the circular queue, but not quite the same.
***These usually use a variant of the BST called a red-black tree

As you can see from the table, STL doesn’t cover about half of what I showed you
in the book. At first glance, this may appear as if the STL is a tiny library, but this is
incorrect. In this book, I focus on a lot of advanced data structure and algorithms.
The STL has a different focus, though. The STL has an absolutely huge library of
small functions that are used all the time for things like searching, moving, and
copying data structures.

Namespaces

There is one final thing that you need to know about STL before I dive into
explaining it: Everything within the STL exists within the std namespace.

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 884

884 D. Introduction to the Standard Template Library

Namespaces are a new feature in C++. They allow you to place variables, functions,
and classes within a certain space so they don’t cause name collisions.

For example, say you accidentally create two functions that do two totally different
things, but they both have the same name: DoSomething. Normally, C++ will spit out
an error at you when you try to compile this, so you need to rename one of them.
If you just programmed that function, that shouldn’t be too difficult, but imagine
this situation:

You’re trying to create a brand-new game, and you want to combine parts from two
games that you’ve already made before, so you include the header files from each
project into your new one, and you forget that they both have some functions with
the same names.

There are two ways you can fix this. The first way is the old way; just rename every
conflicting function, find out where they are referenced, and change them. This
can get ugly quickly, and there is a better way to do this.

The other way is to place each of the game libraries into a namespace. The easiest
way is to create a new header file (like gameone.h) and put this in it:

namespace gameone
{

// #include all of game one’s header files here
}

This places everything defined in the header files into a namespace called game-
one. Now you can do the same thing with the second game’s headers in a file
called gametwo.h:

namespace gametwo
{

// #include all of game two’s header files here
}

CAUTION
Make sure that if you use the method of including the header files into a new
namespace, you only include the gameone.h or gametwo.h files into the new
project. If you include any of the actual files (the ones that are commented out),
they will be treated as part of the global namespace again.

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 885

885The Organization of STL

Figure D.2 shows how the namespaces are separated from each other.

Figure D.2

This is the orientation of
namespaces; everything is in
the global namespace by
default, but putting
something in a namespace
separates it from the rest of
the project.

Now, whenever you want to access the function DoSomething from either of the
libraries, you can do this:

gameone::DoSomething();
gametwo::DoSomething();

This calls both of the functions, specifying which library to call them from.

Unfortunately, having to continuously type the name of the namespace in front of
every class, function, or variable can get quite cumbersome.

Therefore, C++ allows you to set a default namespace. Take the following code, for
example:

void Function()
{

using namespace gameone;
DoSomething(); // same as gameone::DoSomething();

}

Now, inside that function, you can use anything within the gameone namespace as
if it were part of the global namespace.

The Organization of STL

STL is organized into two major sections: the structures and the algorithms. STL uses
a unique approach to data structures and tries to separate the algorithms from the

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 886

886 D. Introduction to the Standard Template Library

structure as much as possible so that the algorithms are usable on as many data
structures as possible.

STL achieves this by using iterators extensively; I introduce the concept in Chapter
6, “Linked Lists.” STL has five categories of iterators related in the hierarchy shown
in Figure D.3.

Figure D.3

This shows the
relative flexibility of
the different iterator
categories.The
iterators on the top
are the most flexible.

The iterator on the top, the random access iterator, is the most flexible and can do
the most. Likewise, the iterators on the bottom are the least flexible and can do the
least. Table D.2 shows the iterator categories and what they can do.

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 887

887

Purpose

Input

Output

tainer to access cells based on an index.

The Organization of STL

Table D.2 Iterator Categories

Category

These iterators can only be used to get data from a container.
You cannot write data into an input iterator, and they can only
move in one direction.

These iterators can only write data into a container.You can-
not read data from an output iterator, and they can only move
in one direction.

Forward These iterators combine the features of input and output itera-
tors:They can both read and write data to a container, but still
can only move in one direction.

Bidirectional These iterators have all the functionality of a forward iterator,
and they can be moved backward as well.

Random Access These iterators are the most flexible; they have all the features
of a bidirectional iterator and can also skip around the con-

The categories of iterators aren’t actually real classes. Most structures in STL have
iterators, and their iterators are rated with a certain category. The algorithms in
STL operate on iterators of a certain category as well.

For example, the vector class in STL has iterators that are rated as random access.
The STL sort algorithm requires iterators that are rated as random access. This
means that you can use the sort algorithm on the vector data structure. However,
the list data structure has iterators that are only rated as being bidirectional.
Because the sort algorithm requires a random-access iterator, you cannot sort a list
with it.

Here’s another example. STL has a function called remove, which will go through a
container and remove the item that you tell it to. This algorithm requires a forward
iterator. This means that you can use both the list structure and the vector struc-
ture with it because they both have higher-class iterators. Table D.3 shows the rela-
tionship between the structure’s iterator categories and the algorithms you can use
on them.

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 888

888 D. Introduction to the Standard Template Library

No

Table D.3 Structure-Algorithm Support

Can Structure Use
Category Relationship Algorithm?

Structure has higher iterator class than algorithm Yes

Structure has same iterator class as algorithm Yes

Structure has lower iterator class than algorithm

STL separates the structures it has into several different categories as well. There
are sequence containers, which are basically one-dimensional containers. There are
associative containers, which have no defined structure but are designed to have
very quick search times. There are container adapters, which encapsulate a different
class and change the way you access things in it. Finally, there are the miscellaneous
structures, ones that don’t fit in any of the previous categories.

Table D.4 shows a listing of the STL container classes, their structure categories,
and their iterator categories, if available.

Container

sequence random access

deque sequence random access

list sequence

stack none

queue none

priority_queue none

bitset miscellaneous none

string miscellaneous none

Table D.4 STL Containers and Their Categories

Category Iterator Category

vector

bidirectional

set/multiset associative bidirectional

map/multimap associative bidirectional

adapter

adapter

adapter

Team LRN

Data Structures CHAppendixD 11/5/02 9:03 AM Page 889

889Containers

Note that the only iterators in the table are bidirectional and random access; there
are more classes in the STL that use the different iterator types (mainly
IOStreams), but I don’t cover them at all in this book.

Containers

Every container class has a certain set of functions in STL. Table D.5 shows a listing
of what they are and their purpose.

Function Purpose

Constructor

will point to the same items.

operator=

Destructor

size

max_size

empty

begin

end
This does not point to a valid item.

Table D.5 Container Functions

Constructs the container.

Copy Constructor Copies the contents of the current container into a new con-
tainer of the same type. Uses a shallow value-copy so that if
the container holds pointers, pointers in the new container

Same as copy constructor.

Destroys every item in the container. If container contained
pointers, then you may end up with a memory leak.

Returns the number of items in the container.

Returns the largest possible size of the container.

Returns true if container is empty, false if not.

swap(C) Swaps the contents of the container with container C.

Returns an iterator pointing to the very first item in the con-
tainer.

Returns an iterator pointing past the end of the container.

There are also three other general classes of containers: forward containers,
reversible containers, and random access containers. Table D.6 shows the functions
that each of these container classes has.

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 890

890 D. Introduction to the Standard Template Library

Container Functions

Function Purpose

operator==

operator< Determines if the contents of the left

rbegin

random access operator[I] Returns the element at index I.

Table D.6 Forward, Reversible, and Random Access

Container Type

forward Determines if the contents of two con-
tainers are equal and in the same order.

forward
container are less than the contents in
the right container.

reversible Returns a reverse iterator starting at the
back of the container.These iterators,
when moved forward, actually move
backward through the container.

reversible rend Returns a reverse iterator pointing to an
invalid position before the start of the
container.

Sequence Containers

There are three sequence containers. You should be familiar with two of them, but
the third one is a structure that I haven’t used at all in this book, the deque (pro-
nounced deek). All sequence containers have the same functions listed in Table D.5,
plus the additional ones listed in Table D.7.

Function Purpose

Table D.7 Sequence Functions

front Returns the first item in the container.

insert(I, D) Inserts new data D into the container before iterator I.

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 891

891Containers

Function Purpose

erase(I)

(but not including E).

clear

Resizes container so that it contains N items.

insert(I, N, D) Inserts N copies of D into container before iterator I.

Removes the item in the container pointed to by iterator I.

erase(S, E) Removes the items starting at iterator S and ending with iterator E

Totally erases everything in the container.

resize(N, D) Resizes container so that it contains N items. If any new items are
needed, they are placed at the end of the array and are copies of
item D.

resize(N)

Additionally, there are two more types of sequence containers, called front insertion
and back insertion sequences. Table D.8 shows a listing of the functions these con-
tainers add.

Function Purpose

back back

back push_back(D)

back pop_back

Table D.8 Insertion Sequences

Type

front push_front(D) Adds data D at the front of the container.

front pop_front Removes the first item from the container.

Returns the last item in the container.

Adds data D to the end of the container.

Removes the last item from the container.

The Vector
The vector structure (stored in the vector file) is just another name for the data
structure you know and love so much: the array. However, a vector is more than just
an array; it is a smart array, even smarter than the Array class I developed in

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 892

892 D. Introduction to the Standard Template Library

Chapter 3, “Arrays.” A vector can automatically resize itself when you insert items
into it. The STL vector class belongs to the back insertion sequence container category
and also the random access container category, so that means it supports all of the
functions for those two classes, as well as the sequence and container class functions.

Furthermore, the vector class adds two new functions, shown in Table D.9.

Function Purpose

Table D.9 Vector Functions

capacity Returns the actual size of the vector, not how many items are cur-
rently in it.

reserve(N) Resizes the array, but unlike the sequence resize function, it does
not construct any of the new items created by resizing.

Here is an example of the vector class in use:

using namespace std; // use the std namespace.
vector<int> v; // declare an int vector.
v.push_back(10); // add 10 to the end of the vector.
v.push_back(20); // vector automatically resizes
v.push_back(30); // whenever you add items to it.
v[0] = v[2]; // copy 30 into 10.
v.pop_back(); // erase the last item.
int s = v.size(); // s should be 2.
v.resize(32); // make array hold 32 items.

I think you can get the point from those functions how a vector is used. Now, let
me show you how to use iterators with the vector class:

vector<int>::iterator itr = v.begin(); // get an iterator.

int i = *itr; // get value that iterator points to.

++itr; // move to the next item.

i = *itr; // get that item.

—itr; // move back to the first item again.

*itr = 10; // put 10 back into the first index.

sort(v.begin(), v.end()); // sort the vector.

As you can see, the iterator for a vector acts exactly as if it were a pointer into an

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 893

893Containers

array, so you can move it forward and backward, and dereference it.

Also, take a look at the last line, the one that calls sort. The sort algorithm takes
two random-access iterators and sorts everything between them, not including the
item that the end iterator points to. So you can call the begin and end functions of
the vector and pass them into sort, and it will automatically sort everything in the
array for you.

The Deque
The deque (stored in the deque file) is a strange vector-like structure that is ran-
dom access, but it provides O(c) insertion to the front of the container as well as
the back. If you remember how an array or a vector works, you can easily insert
items at the back of the container in O(c) time, but inserting anywhere else in the
container is O(n)—much slower. The deque structure fixes that and provides very
quick insertion to either the back or front of the container and O(n) insertion in
the middle.

chunks

c c

NOTE
The deque structure is usually implemented in a series of linked memory

.Whenever you add an item to the end of a full chunk, a new chunk is
allocated, and the data is placed into the beginning of the new chunk. Likewise, if
you add an item to the front of a full chunk, then a new chunk is created, and
the data is placed at the end of the new chunk. Although this means that insert-
ing to the beginning is now an O() algorithm and accessing items is still O(), it
is slower than a vector when accessing indexes because it needs to find the right
chunk first and then locate the index within the chunk.

NOTE
Most implementations of the deque do not deallocate chunks when they are
emptied, so you might end up wasting a lot of space sometimes. For example, if
you continuously insert items at the back of a deque and remove them from the
front, you will end up with a constant number of items in the deque, but the place
of the items inside will slowly travel from chunk to chunk, and you will end up
with lots of empty chunks at the beginning of the deque.

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 894

894 D. Introduction to the Standard Template Library

The deque class does not add any new functions, so it is the same as the vector but it
is missing the capacity and reserve functions and has access to the front insertion
sequence functions push_front and pop_front.

Here is some code demonstrating deques:

using namespace std;

deque<int> d;

deque<int>::iterator i;

// create a deque containing 70, 60, 50, 40, and 30:

d.push_front(50);

d.push_back(40);

d.push_front(60);

d.push_back(30);

d.push_front(70);

// multiply each item in the deque by 2.

for(i = d.begin(); i != d.end(); ++i)

{

(*i) *= 2;
}
// sort the deque.
sort(d.begin(), d.end());

The List
The STL list class (stored in the list file) is a doubly linked list, just like the
DLinkedList class from Chapter 6. However, it is usually implemented as a circular
linked list, which I only mentioned and did not actually show you. However, it
doesn’t matter; the way the list works internally doesn’t make a difference to you
when you’re using this class.

The list is a sequence, and it is bidirectional, but it is not random access. Table
D.10 shows a listing of all of the new functions that the list class adds.

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 895

895Containers

Function Purpose

iterator I.

unique

merge(L)

O(nlog2n

Table D.10 List Functions

splice(I, L) All items inside of list L are removed from L and placed into the
current list in front of iterator I.

splice(I, L, F) This removes the item pointed to by iterator F inside of list L
and inserts it into the current list before iterator I.

splice(I, L, F, L) This removes every item in list L between the iterators F and L
(not including L) and places them into the current list before

remove(D) This removes all instances of D within the list.

This goes through the entire list and removes all but the first
item in any group of repeated items.

This performs one iteration of the mergesort algorithm and
merges list L with the current list. Both lists must be sorted
first, and list L will be completely emptied.

sort This will sort the list. No algorithm is specified, but it runs in
) time, so it could be a quicksort or a mergesort.

The only way you can access items inside of a linked list is by using iterators or the
front and back functions defined by the sequence and front insertion sequence containers.

Here is some code demonstrating lists:

using namespace std;

list<int> l;

list<int>::iterator i;

// fill the list so that it has 20, 10, 50, 40:

l.push_back(50);

l.push_back(40);

l.push_front(10);

l.push_front(20);

// this next line wont work, since the list class doesn’t have

// random access iterators:

// sort(l.begin(), l.end());

// instead, do this:

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 896

896 D. Introduction to the Standard Template Library

l.sort();

// multiply each item by 2:

for(i = l.begin(); i != l.end(); ++i)

{

(*i) *= 2;
}

Associative Containers

Associative containers differ from the sequence containers. All four of them have
bi-directional iterators, but you cannot insert items into an associative container
like you can with sequential containers. Due to space restraints, I don’t have time
to go over them here, but they are similar to some of the structures I’ve shown you
in the book.

For example, the set and multiset structures (contained in the file set) are
designed to store data like the BinarySearchTree from Chapter 13, “Binary Search
Trees,” does; it stores the data directly in the structure.

The map and multimap structures (contained in the file map), on the other hand,
store data like the HashTable class from Chapter 8, “Hash Tables,” with a key and
data associated with that key.

Of course, they aren’t actually BSTs or hash tables, I was just using examples to
show how each structure manages data. In reality, almost every implementation of
all four classes uses a red-black tree underneath, which is a variant of the binary
search tree.

Container Adaptors

There are three container adaptors: the stack (in the file stack), the queue, and the
priority_queue (both contained in the queue file).

The stack and the queue classes are the easiest to use:

using namespace std;

stack<int> s;

queue<int> q;

int i;

// push 10 and 20

s.push(10);

s.push(20);

i = s.top(); // i should be 20

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 897

897Containers

s.pop(); // pop off 20
i = s.top(); // i should be 10
s.pop(); // pop off 10
// put 10 and 20 into the queue
q.push(10);
q.push(20);
i = q.front(); // i should be 10
q.pop(); // pop off 10
i = q.front(); // i should be 20
q.pop();

Now, both the stack and the queue in this example use a deque as their base, but
you can change that. The whole point of the adapter classes is to allow you to adapt
another container into the same interface.

Remember how I showed you how to create a linked stack and then an arrayed
stack? That took two different classes, but the STL version only uses one class:

using namespace std;
stack< int, vector<int> > vs;
stack< int, list<int> > ls;
stack< int, deque<int> > ds;

This creates three stacks: one using a vector, one using a list, and one using a
deque. You can do this with a queue also:

using namespace std;
queue< int, vector<int> > vq;
queue< int, list<int> > lq;
queue< int, deque<int> > dq;

The stack and queue adapters can use any sequence container.

The other adapter, the priority_queue, doesn’t work with all sequence containers,
though, so it needs random access containers because it usually uses a heap imple-
mentation underneath (see Chapter 14, “Priority Queues and Heaps”).

using namespace std;
priority_queue< int > pq; // vector priority queue
priority_queue< int, vector<int> > vpq; // vector priority queue
priority_queue< int, deque<int> > dpq; // deque priority queue

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 898

898 D. Introduction to the Standard Template Library

As you can see from the example, the default implementation of a priority_queue
uses vectors, but you can explicitly state that it should use vectors or deques. The
priority queue class supports all of the stack functions: push, top, and pop. I guess
they used top instead of front because you’re accessing the top of the heap.

functor Heap
operator()

functor

NOTE
STL priority queues by default use the less-than operator of the datatype that
is stored in the container, so this means that pointers do not work correctly in
priority queues. However, you can change this by creating something called a

, which is like the function pointers I used for the class. In reality, a
functor is a class that overloads so that you can use it like a function.
This is a somewhat advanced topic, so I don’t explain it in this book, but any
book dedicated to STL will explain this for you.The class is usually a
static class with no data, and it is passed in as the third template parameter of
the priority_queue.

The Miscellaneous Containers

The two main miscellaneous structures are the bitset and the string. Strings aren’t
covered in depth in this book, so I will only show you how to use the bitset class.

The bitset structure is contained within the bitset file and acts very much like the
Bitvector class from Chapter 4, “Bitvectors.” There are a few differences, though.

First of all, a bitset cannot be resized. When you create it, it must be a certain size,
like this:

using namespace std;
bitset<64> b;

This creates a bitset with 64 bits in it. You can do many things with a bitset:

b = 100; // set the bitset to 100, which is 1100100
b |= 1; // set the first bit to 1
b |= 15; // set the first 4 bits to 1
b &= 31; // chop off every bit past the 5th bit
int i = b[4]; // get bit 4
b[4] = 1; // set bit 4 to 1
b <<= 2; // shift the bitset up by 2

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 899

899Conclusion

b >>= 3; // shift the bitset down by 3
b = ~b; // flip every bit

The bitset also has other functions, which make your programs cleaner to read:

b.reset(); // clear every bit to 0
b.set(); // sets every bit to 1
b.flip(); // flips every bit
b.set(10); // sets bit 10
b.set(10, 0); // clears bit 10
b.reset(10); // clears bit 10
b.flip(10); // flips bit 10
i = b.size(); // gets the size of the set (64 in this case)
i = b.count(); // gets the number of bits that are 1
bool a = b.any(); // a is true if any bits are set
a = b.none(); // a is true if no bits are set
a = b.test(10); // a is true if bit 10 is 1, false otherwise

That’s pretty much all you need to know to use a bitset.

just use the set function instead.

NOTE
Remember back to the bitvector implementation from Chapter 4, where I
showed you that you could use the operator[] to access bits, but not write
them? The STL bitset, however, lets you do things like this: b[5] = 1;. How is this
possible, considering that you cannot return a reference to an individual bit?
The STL uses a clever hack called a proxy class. It doesn’t actually return a ref-
erence to a bit, but a class that has an overloaded operator= and a pointer to
the bit. So when you call b[5], it returns a new proxy class.When you put
the = 1 after it, it calls the assignment operator of the proxy class, and this in
turn sets the bit. As you can imagine, this adds a lot of overhead to the whole
operation, so this is usually a bad way to set bits. It is usually a better idea to

Conclusion
The material contained within this Appendix is just the tip of the iceberg; the STL
is a huge library, and it takes a long time to master it. Luckily, there are also lots of
resources for STL. For example, the most complete online documentation is on
SGI’s Web site at http://www.sgi.com/tech/stl/. Beware, however, because it

Team LRN

Data Structures CHAppendixD 11/5/02 9:04 AM Page 900

900 D. Introduction to the Standard Template Library

includes documentation on non-standard containers that SGI has added in their
version of the STL. The conclusion section of this book also contains a listing of
helpful STL books.

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 901

Index

Symbols
#define macros, 35

2D arrays. See also arrays

data storage, 116-117

defined, 108-110

graphical demonstration, 111-112

initializing, 113

tilemaps, 131-136

3D arrays. See also arrays

data storage, 117-118

defined, 108-110

tilemaps, 136-144

4D arrays, 117-118

A
A* pathfinding, 750-752

code, 752-753

DirectionMap class, 780-785

graphical demonstration, 752

Tilemap class, 771-779

abstract classes, 252

access operator, 89-91

accessing

multi-dimensional arrays, 115-116

static arrays, 44-46

accessor functions, 247

adaptors (containers), 896-898

Add function, 20, 72-74

AddArc function, 503, 508-509

AddButton function, 870

AddCheckbox function, 871

addition, digit (hash tables), 221-222

AddLabel function, 871

AddNode function, 506

AddTextBox function, 871

adjacency tables (graphs), 486-488

Adventure

AI, 304-305

designing, 266-269

troubleshooting, 772

directionmaps, 567

A* pathfinding, 780-785

DirectionCell class, 568-569

DirectionMap class, 570-579, 780-785

game logic, 580

image sets, 580

LoadFromFile function, 572-574

LoadMap function, 581-582

map functions, 574-579

MapEntry class, 569

playing, 582

tilesets, 580

game logic, 299-309, 470-472

speed, 787-790

gameplay, 309-310

interfaces, 269-275

loop, 308-309

MakePerson function, 297-299

pathfinding, 770

Person class, 290-297

Tilemap class (A* pathfinding), 469,

771-779

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 902

902 Index

tilemap editor, 310-314 AI class, 552
tilemaps, 275-290 algorithms. See also functions
trees Array class, 59-68

game logic, 470-472 asymptotic analysis, 11
Item class, 467-468 doubly linked lists, 172-174
Map class, 468-469 functions, 9-10
map editor, 473-475 graphical demonstration, 10-11
maps, 464, 465-466 linked lists, 184-185
Player class, 469-470 O notation, 4-9
TileMap class, 469 parsing binary trees, 381-382

AI (Artificial Intelligence), 304 recursion, 319
Adventure, 304-305 Towers of Hanoi, 320-328
finite state machines, 530-532 STL, 885-889

AI class, 552 walk down (heaps), 414
attackers, 548 walk up (heaps), 411
complex, 533-534 analysis
conditional events, 541-546 arrayed stacks, 199
constants, 550-551 arrays, 77-80
defenders, 548 bitfields, 105
DFAs, 538 bitvectors, 105
enumerations, 551 linked lists, 184
Event function, 555-556 multi-dimensional arrays, 144-145
graphical demonstration, 537, 546-547 singly linked lists, 169
implementing, 535-536 stacks, 196
initializing, 554-555 and operator, 91-93
Intruder, 547-560 API (SDL). See SDL
linked ranges, 544-545 Append function, 156-157
multi-dimensional arrays, 542-544 AQueue class, 209-212
multiplying states, 538-541 arcs
ProcessAI function, 557-559 cost, 484
pure, 538 graphs, 482
state transition tables, 535-536 ArcType datatype, 501
trees, 545-546 arithmetic expressions, 376-377

high-level, 530 Array class, 27-32
intelligence (game logic), 788-790 algorithms, 59-68
priority queues, 425 constructor, 59-60
recursion, 319 conversion operators, 63-64

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 903

903Index

data, 59 free function, 53
destructor, 60 malloc function, 50-51
inserting items, 64-65 memory leaks, 53-55
intarray operator, 62-63 new function, 52
removing items, 65-66 pointers, 53
Resize function, 60-61 realloc function, 54-57
size, 67-68 size, 54-57

Array2D class, 121 functions (templates), 15-16
constructor, 122 graphical demonstration, 41-43
data, 122 inserting, 80
destructor, 123 loading, 68-71
Get function, 123 memory cache, 77-80
Height function, 125 multi-dimensional
parameters, 122 analysis, 144-145
Resize function, 123-125 branch predictors, 142-144
Size function, 125 finite state machines, 542-544
Width function, 125 performance, 142-144

Array3D class, 127-130 pipelining, 142-144
arrayed binary trees, 363-366 size, 144

graphical demonstration, 366-368 speed, 142-144
size, 364-366 reading, 70-71
traversing, 365-366 removing, 80

arrayed heaps, 411 size, 80
arrayed queues, 207-212 sorting. See sorts
arrayed stacks, 196-199 static, 43-49
arrays. See also 2D arrays; 3D arrays accessing, 44-46

analysis, 77-80 declaring, 43-44
bitvectors. See bitvectors fencepost errors, 44
Boolean, 84 initializing, 48
bounds checking, 29 passing to functions, 46-48
classes, 243-245 pointers, 47-48

parameters, 30-31 reading, 45-46
declaring, 72 size, 48
defined, 40-41 troubleshooting, 45-46
dynamic, 49-59 writing, 45-46

calloc function, 51 storing, 68-71
deleting, 53-54 storing data, 71-77
exceptions, 52 writing, 69-70

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 904

904 Index

Artificial Intelligence. See AI

ASM (assembly languages), 243

assembly languages (ASM), 243

ASSERT macro, 820

assignment operator, 344

associative containers, 896

AStack class, 197-199

AStar function, 775-784

asymptotic analysis, 11

attackers (finite state machines), 548

Averagetype data type, 25

AVL BSTs, 395

B
bad alloc exception, 61

balance (binary trees), 362

base 2 radix sorts, 633-635

base 4 radix sorts, 636

base 16 radix sorts, 636

base case (recursion), 319

base numbers (minimax trees), 441

bi-directional graphs, 483-491

bin sorts, 630

binary and operator, 90-91

binary math rules, 91

binary numbers, 802-804

binary search trees. See BSTs

binary trees

arrayed, 363-366

graphical demonstration, 366-368

size, 364-366

traversing, 365-366

balance, 362

BSTs. See BSTs

code, 368-371

defined, 360-361

dense, 361-362

full, 361

game demo, 386-388

heaps. See heaps

left, 361

linked, 362-363

parsing, 374-376

algorithms, 381-382

arithmetic expressions, 376-377

code, 382-384

executing, 384-386

recursive descent, 377-386

scanning, 378-379

tokenizing, 378-379

tokens, 377-378

variables, 378

right, 361

structure, 362-366

traversing, 371-374

graphical demonstration, 373-374

BinarySearchTree class, 397-401

BinaryTree class, 368-371

bins (radix sorts), 633

bit maths, 802-810

binary numbers, 802-804

bitshifting, 809-810

bitwise, 807-808

datatype sizes, 805-806

integer data sizes, 805-806

bitfields

analysis, 105

declaring, 103

defined, 102-103

using, 103-105

bitshifting math, 809-810

Bitvector class, 86

access operator, 89-91

binary and operator, 90-91

ClearAll function, 93

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 905

905Index

constructor, 87

data, 87

destructor, 87-88

ReadFile function, 94-95

Resize function, 88-89

Set function, 91-93

SetAll function, 93-94

WriteFile function, 94

bitvectors

analysis, 105

arrays, 98-99

defined, 84-85

graphical demonstration, 85-86

memory caching, 101

saving players, 96-102

bitwise math, 807-808

blue ray DVD, 646

books

C++, 796-797

data structures, 795-796

game programming, 797-798, 858

Boolean arrays, 84

bouncing, 718-719

bounds checking, 29

branch predictors (multi-dimensional

arrays), 142-144

branching data structures, 41

BreadthFirst function, 511-512

breadth-first pathfinding, 721-727

breadth-first searches, 495-499

brute force sorts, 600

BSTs (binary search trees), 390

AVL, 395

code, 397-401

data

finding, 394

inserting, 391-394

removing, 394

defined, 390-391

graphical demonstration, 395-397

red-black, 395

rotations, 395

rules, 394

sorts, 638

splay, 395

storing resources, 402-405

sub-optimal, 395

bubble sorts

code, 605-609

comparison functions, 606

defined, 600-602

graphical demonstration, 602-604

optimizing, 604-605

Bubblesort function, 605-609

buffers (z-buffers), 639

building

priority queues, 424-430

trees, 347

busses (data compression), 647-648

C
C++

books, 796-797

controversy, 823-824

SDL, 851-853

cache

arrays, 77-80

memory (bitvectors), 101

Calculate function, 215

CalculateMiniMax function, 449

CalculateMiniMaxValue function, 450-452

CalculateTree function, 446-448, 680-682

calculating (pathfinding), 726

calloc function, 51

catch keyword, 821-823

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 906

906 Index

Cell class, 730-731 Array3D, 127-130
CellCoordinate function, 780 arrays, 243-245
CellDistance function, 732-733 parameters, 30-31
Central Processing Unit (CPU), 647-648 AStack, 197-199
Check function, 75-77 BinarySearchTree, 397-401
checkers BinaryTree, 368-371

game trees, 456-459 Bitvector, 86
minimax trees, 442, 456-459 access operator, 89-91

chess, 442 binary and operator, 90-91
children (classes), 249 ClearAll function, 93
cin variable, 812-814 constructor, 87
circular queues, 207 data, 87
class keyword, 17 destructor, 87-88
classes ReadFile function, 94-95

abstract, 252 Resize function, 88-89
AI, 552 Set function, 91-93
AQueue, 209-212 SetAll function, 93-94
Array, 27-32 WriteFile function, 94

algorithms, 59-68 Cell, 730-731
constructor, 59-60 CompareNodes, 678
conversion operators, 63-64 constructors, 824-826
data, 59 conversion operators, 829-830
destructor, 60 Coordinate, 731-773
inserting items, 64-65 Coordinates, 213-214
intarray operator, 62-63 data storing, 243-245
removing items, 65-66 destructors, 826-827
Resize function, 60-61 DirectionCell, 568-569
size, 67-68 DirectionMap, 570-579

Array2D, 121 A* pathfinding, 780-785
constructor, 122 DLinkedList, 196
data, 122 Factory, 426
destructor, 123 functions
Get function, 123 inline, 830-831
Height function, 125 pointers, 832-833
parameters, 122 Graph, 501, 504-512
Resize function, 123-125 GraphArc, 501-502
Size function, 125 GraphNode, 502-504
Width function, 125 HashEntry, 228-229

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 907

907Index

HashTable, 229-233 Append function, 156-157
Heap, 418-424 constructor, 155
Huffman, 678-691 destructor, 155-156
HuffmanFrequency, 677 encapsulating, 154-155
HuffmanNode, 676-677 InsertAfter function, 152-153
inheritance, 248-260 iterators, 153-154

children, 249 Prepend function, 158
down-casting, 263 RemoveHead function, 158-160
Object class, 260-265 RemoveTail function, 160-161
parents, 249 String, 236-237
types, 256-258 templates, 19-24

Item, 256, 290, 467-468 declaring, 23
LStack, 196 instances, 23
Map, 468-469 this pointer, 830
MapEntry, 569 TileCell, 773-774, 781
Menu, 201-204 TileMap
Monster, 72 A* pathfinding, 771-779
Object, 250-255 Adventure, 469

inheritance, 260-265 Tree, 338
overloading operators, 827-829 constructor, 340
Person, 258-260, 290-297, 788 Count function, 342
Player, 97, 469-470 Destroy function, 341-342
pointers, 252-254 destructor, 340-341
private, 246-248 structure, 339
public, 245-246 TreeIterator, 342
Resource, 402 assignment operator, 344
RLE, 656-665 constructor, 343-344
RLEPair, 656 Down function, 346
RockState, 443-445 horizontal functions, 346

global variables, 445-446 ResetIterator function, 344-345
SDLFrame, 867-868 Root function, 345
SDLGUI, 869-874 structure, 343
SDLGUIFrame, 876-878 Up function, 345-346
SDLGUIItem, 874-876 Clear function, 30
Sector, 523 clear functions, 91
SListIterator, 162-163 ClearAll function, 93, 101
SListNode, 151-152 ClearCells function, 732, 774, 781

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 908

908 Index

ClearMarks function, 510 Compress function, 682-684
ClickRock function, 452-453 compression. See data compression
clipping, 519 compressor (RLE), 656-665
code conditional events

binary trees, 368-371 finite state machines, 541-546
parsing, 382-384 graphical demonstration, 546-547

BSTs, 397-401 const keyword, 814
Huffman trees, 677-692 constants (finite state machines), 550-551
memory, 837 constructors
pathfinding Array class, 59-60

A* pathfinding, 752-753 Array2D class, 122
distance-first pathfinding, 730-739 Bitvector class, 87
heuristics, 744-745, 749-750 classes, 824-826

return codes, 820-821 SListNode class, 155
sorts Tree class, 340

bubble sorts, 605-609 TreeIterator class, 343-344
heap sorts, 613-616 containers, 898-899
quicksorts, 623-627 adaptors, 896-898
radix sorts, 633-637 associative, 896

collisions (hash tables), 221 categories, 888-889
commands functions, 889-890

fseek, 100 sequence, 890-896
fwrite, 101 conventions
queues, 212-216 multi-dimensional arrays, 118

Compare function, 640 STL, 882-883
CompareCellCoordinates function, 780 conversion operators, 63-64, 829-830
CompareCoordinateDescending function, Convert function, 689-691

731-732 converting maps, 583-584
CompareCoordinates function, 773 ConvertTreeToArray function, 688-689
comparefloat function, 607 Coordinate class, 731, 773
compareint function, 607 coordinates (multi-dimensional arrays),
compareintreverse function, 607 118
CompareInts function, 397-398 Coordinates class, 213-214
CompareNodes function, 678 cost (arcs), 484
CompareUnits function, 427 Count function, 195, 199, 370
comparison functions, 606 Tree class, 342
complex finite state machines, 533-534 cout variable, 811-812
ComplexHeuristic function, 750 CPU (Central Processing Unit), 647-648

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 909

909Index

crashes, memory, 55

CreateLookupTable function, 691

CreateRLE function, 657-659

culling, 519

D
data

Array class, 59

Array2D class, 122

Bitvector class, 87

BSTs

finding, 394

inserting, 391-394

removing, 394

compression. See data compression

sorting. See sorts

sparse, 218-219

storing

2D arrays, 116-117

3D arrays, 117-118

4D arrays, 117-118

arrays, 71-77

classes, 243-245

data compression, 646

busses, 647-648

CPU, 647-648

encryption, 693

fractal, 694

GPU, 647-648

Huffman trees, 665

code, 677-692

decoding, 665-667

frequency tables, 667-668

graphical demonstration, 674-676

lookup tables, 691

priority queues, 668-674

Internet, 649

Pentiums, 647

RLE, 649-651

compressor, 656-665

decompressor, 656-665

graphical demonstration, 651-655

sprites, 655

test files, 692-693

wavelets, 694

XBox, 648

data structures

books, 795-796

branching, 41

linear, 41

random-access, 41

STL, 885-889

deque, 893-894

list, 894-896

vector, 891-893

data types

ArcType, 501

Averagetype, 25

NodeType, 501

references (functions), 62

sizes, 805-806

Sumtype, 25

template parameters, 24-26, 29

declaring

arrays, 72

bitfields, 103

multi-dimensional arrays, 112-115

static arrays, 43-44

template classes, 23

decoding (Huffman trees), 665-667

Decompress function, 684-685

decompressor (RLE), 656-665

defenders (finite state machines), 548

#define macros, 35

defining Monster class, 72

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 910

910 Index

delete operator, 54-57 DirectionMap class, 570-579
deleting dynamic arrays, 53-54 game logic, 580
dense binary trees, 361-362 image sets, 580
dense heaps, 411 LoadFromFile function, 572-574
depth-based sorts, 638-642 LoadMap function, 581, 582

z-buffers, 639 map functions, 574-579
DepthFirst function, 510-511, 522 MapEntry class, 569
depth-first searches, 493-495 playing, 582
depth-limited depth-first searches tilesets, 580

(DLDFS), 521-522 identification numbers, 566, 583
deque data structure, 893-894 map editor, 584-593
Dequeue function, 206-207, 422 loading maps, 588-590
design saving maps, 590-593

Adventure, 266-269 tiles, 586-588
troubleshooting, 772 maps

Destroy function, 341-342 converting, 583-584
destructors formats, 564-567

Array class, 60 memory leaks, 573
Array2D class, 123 directory (STLPort), 880-882
Bitvector class, 87-88 discrete games, 432
classes, 826-827 distance-first pathfinding, 725-727
SListNode class, 155-156 code, 730-739
Tree class, 340-341 graphical demonstration, 727-730

determinism (random integers), 699-700 distributing programs (SDL), 858
DFAs (deterministic finite automatons), DLDFS (depth-limited depth first)

538 searches, 521-522
dice (random integers), 698-699 DLinkedList class, 196
digit addition (hash tables), 221-222 documenting templates, 33
direction tables double hashing, 222

dungeons, 512-518 doubly linked lists, 169
graphs, 488-489 algorithms, 172-174
portal engines, 518-527 graphical demonstration, 170-171

DirectionCell class, 568-569 inserting nodes, 172-173
DirectionMap class, 570-579 node structure, 171-172

A* pathfinding, 780-785 ReadFromDisk function, 175-176
directionmaps removing nodes, 173-174

Adventure, 567 SaveToDisk function, 174-175
DirectionCell class, 568-569 Down function, 346

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 911

911Index

down-casting, 263

DrawMap function, 514-516

DrawTile function, 587

DrawTilemap function, 135

dungeon direction tables, 512-518

DVD Consortium, 646

dynamic arrays, 49-59

calloc function, 51

deleting, 53-54

exceptions, 52

free function, 53

malloc function, 50-51

memory leaks, 53-55

new function, 52

pointers, 53

realloc function, 54-57

size, 54-57

dynamic multi-dimensional arrays, 121-131

E
editors

maps

Adventure, 473-475

directionmaps, 584-593

loading, 588-590

saving, 590-593

tiles, 586-588

tilemap, 310-314

upgrading, 594-595

efficiency

heaps, 416-417

pathfinding, 790-791

Empty function, 445

encapsulating (SListNode class), 154-155

encryption, 693

Enqueue function, 420

enumerations (finite state machines), 551

equivalence operator, 445

error handling, 820-823. See also

troubleshooting
fencepost errors (static arrays), 44

Evaluate function, 384-386

Event function, 555-556

events

conditional

finite state machines, 541-546

graphical demonstration, 546-547

handling (SDL), 861-863

exceptions, 820-823

bad alloc, 61

dynamic arrays, 52

F
Factory class, 426

fclose function, 817

fencepost errors (static arrays), 44

Fibbionacci series, 318

FILE pointer, 69

file streams (I/O), 814-817

FILE structure, 814

files

data compression test, 692-693

SDL, 849-851

STLPort directory, 880-882

FillArray function, 659-660

FILO (First In, Last Out), 191

Find function, 400-401

finding data, 394

finite state machines

AI, 530-532

AI class, 552

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 912

912 Index

attackers, 548 AddNode, 506
complex, 533-534 AddTextBox, 871
conditional events, 541-546 algorithms, 9-10
constants, 550-551 Append, 156-157
defenders, 548 AStar, 775-784
DFAs, 538 BreadthFirst, 511-512
enumerations, 551 Bubblesort, 605-609
Event function, 555-556 Calculate, 215
graphical demonstration, 537, 546-547 CalculateMiniMax, 449
implementing, 535-536 CalculateMiniMaxValue, 450-452
initializing, 554-555 CalculateTree, 446-448, 680-682
Intruder, 547-560 calloc, 51
linked ranges, 544-545 CellCoordinate, 780
multi-dimensional arrays, 542-544 CellDistance, 732-733
multiplying states, 538-541 Check, 75-77
ProcessAI function, 557-559 clear, 91
pure, 538 Clear, 30
state transition tables, 535-536 ClearAll, 101
trees, 545-546 Bitvector class, 93

floats (random), 706-707 ClearCells, 732, 774, 781
fopen function, 69-70, 814-816 ClearMarks, 510
formats (directionmaps), 564-567 ClickRock, 452-453
Forth function, 163 Compare, 640
fractal compression, 694 CompareCellCoordinates, 780
fread function, 70, 817 CompareCoordinateDescending,
free function, 53 731-732
free store, 836, 844-845 CompareCoordinates, 773
frequency tables (Huffman trees), 667-668 comparefloat, 607
Front function, 207 compareint, 607
fseek command, 100 compareintreverse, 607
full binary trees, 361 CompareInts, 397-398
functions. See also algorithms CompareUnits, 427

accessor, 247 comparison, 606
Add, 20, 72-74 ComplexHeuristic, 750
AddArc, 503, 508-509 Compress, 682-684
AddButton, 870 containers, 889-890
AddCheckbox, 871 Convert, 689-691
AddLabel, 871 ConvertTreeToArray, 688-689

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 913

913Index

Count, 195, 199, 370 Height, 125
Tree class, 342 Heuristic, 449-450, 774-775, 781

CreateLookupTable, 691 horizontal, 346
CreateRLE, 657-659 identity, 91
data types, 62 inline, 830-831
Decompress, 684-685 Inorder, 372-373
DepthFirst, 510-511, 522 Insert, 64-65, 399-400
Dequeue, 206-207, 422 singly linked lists, 164-167
Destroy, 341-342 InsertAfter, 152-153
Down, 346 Item, 163
DrawMap, 514-516 KeyDown, 873
DrawTile, 587 Load, 313, 588-590, 595
DrawTilemap, 135 LoadData, 661-662, 687-688
Empty, 445 LoadFromFile, 572-574
Enqueue, 420 LoadMap, 302-303, 581-582
Evaluate, 384-386 LoadTree, 686
Event, 555-556 MakePerson, 297-299
fclose, 817 malloc, 50-51
FillArray, 659-660 map, 574-579
Find, 400-401 math, 817-818
fopen, 69-70, 814-816 MedianOfThree, 623-624
Forth, 163 MiniMax, 449
fread, 70, 817 MouseDown, 873
free, 53 MouseUp, 873
Front, 207 new, 52
fwrite, 69, 816-817 OpponentMove, 453-454
GameInit, 98 ParseArithmetic, 382-384
Get, 123 passing
GetArc, 503-504, 509 multi-dimensional arrays, 119-121
GetClosestDirection, 778-779, 784-785 static arrays, 46-48
GetFollow, 788 PathAStar, 775-778
GetFont, 872 PathDistanceFirst, 734-739
GetItem, 872 PerformAI, 787-790
GetIterator, 163 PickUp, 471
GetMouseState, 214 pointers, 832-833
GetScreen, 872 Pop, 195, 198
hash tables, 221-224 Postorder, 350-351, 372
HeapWalkDown, 614 Preorder, 348-350, 372

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 914

914 Index

Prepend, 158 SDLBox, 867
ProcessAI, 557-559 SDLLine, 866
Push, 194-195, 198 SDLPoint, 866
queues, 206 set, 91
QuickSort, 624-627 Set, 91-93
rand, 700-702, 819 SetAll, 93-94
random integers, 700-702 SetFocus, 872
RandomPercent, 705-706 SetFollow, 788
RandomRange, 704-705 SetFont, 870
RandomRangeF, 706-707 SetLife, 99
RandomRangeModulo, 702-704 SetNewMap, 302-303, 471-472
ReadFile, 70-71 SimpleHeuristic, 744-745

Bitvector class, 94-95 Size, 67-68
ReadFromDisk, 175-176 Array2D class, 125
realloc, 54-57 srand, 700-702, 819
recursion, 318 stacks, 193

base case, 319 Start, 162
Remove, 65-66, 74-76, 504 strcat, 663

singly linked lists, 166-168 StringHash, 223-224
RemoveArc, 509 switch, 516-517
RemoveHead, 158-160 templates. See templates, 24
RemoveNode, 506-508 TilePathfind, 766-767
RemoveTail, 160-161 time, 818-819
ResetIterator, 344-345 Top, 195, 198
Resize Up, 345-346

Array class, 60-61 Valid, 163
Array2D class, 123-125 virtual, 251-255
Bitvector class, 88-89 WalkDown, 422-424

ResourceCompare, 403 WalkUp, 420-422
return values, 843 Width, 125
Root, 345 WriteFile, 69
Save, 312, 590-595 Bitvector class, 94
SaveData, 661, 686-687 fwrite command, 101
SavePlayers, 100-101 fwrite function, 69, 816-817
SaveToDisk, 174-175
SaveTree, 686
SDLArrowLine, 866
SDLBlit, 135, 867

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 915

915Index

G
Game Demos

Game Demo 3-1, 71-77

Game Demo 4-1, 96-102

Game Demo 5-1, 131-136

Game Demo 5-2, 136-144

Game Demo 6-1, 176-180

Game Demo 6-2, 180-183

Game Demo 7-1, 199-204

Game Demo 7-2, 212-216

Game Demo 8-1, 235-239

Game Demo 9-1, 266-314

Game Demo 11-1, 352-358

Game Demo 12-1, 386-388

Game Demo 13-1, 402-405

Game Demo 14-1, 424-430

Game Demo 15-1, 442-456

Game Demo 16-1, 466-475

Game Demo 17-1, 512-518

Game Demo 17-2, 518-527

Game Demo 18-1, 547-560

Game Demo 19-1, 567-583

Game Demo 19-2, 584-593

Game Demo 20-1, 638-642

Game Demo 23-1, 756-762

game programming books, 797-798, 858

game trees

checkers, 456-459

defined, 432-434

game logic, 470-472

limited depth algorithms, 460

GameInit function, 98

games. See also game trees

discrete, 432

gameplay (Adventure), 309-310

logic

Adventure, 299-309, 580

AI, 788-790

speed, 787-790

trees, 470-472

MMO, 105

states, 439-442

Get function, 123

GetArc function, 503-504, 509

GetClosestDirection function, 778-779,

784-785

GetFollow functions, 788

GetFont function, 872

GetItem function, 872

GetIterator function, 163

GetMouseState function, 214

GetScreen function, 872

global memory, 838-839

global variables, 838-839

RockState class, 445-446

GPU (Graphics Processing Unit), 647-648

Graph class, 501-512

GraphArc class, 501-502

graphical demonstration

2D arrays, 111-112

A* pathfinding, 752

algorithms, 10-11

arrayed binary trees, 366-368

arrays, 41-43

binary trees, 373-374

bitvectors, 85-86

BSTs, 395-397

conditional events, 546-547

distance-first pathfinding, 727-730

doubly linked lists, 170-171

finite state machines, 537, 546-547

graphs, 492-493

traversals, 500-501

hash tables, 226-228

heaps, 417-418

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 916

916 Index

Huffman trees, 674-676

minimax trees, 437-439

pathfinding, 753-754

heuristics, 742-744, 748-749

queues, 204-205

quicksorts, 621-622, 627-630

radix sorts, 631-633

Random Distribution Graphs, 712-714

RLE, 651-655

singly linked lists, 149-150

sorts

bubble sorts, 602-604

heap sorts, 611- 613

stacks, 192-193

Towers of Hanoi, 327-328

trees, 333-338

traversing, 351-352

weighted maps, 755-756

graphics (SDL), 858-861

vector, 865-867

Graphics Processing Unit (GPU), 647-648

GraphNode class, 502-504

graphs

adjacency tables, 486-488

arcs, 482

bi-directional, 483, 489-491

clipping, 519

culling, 519

direction tables, 488-489

dungeons, 512-518

portal engines, 518-527

directionmaps. See directionmaps

graphical demonstration, 492-493

implementing, 486-491

linked, 489-491

linked lists, 480-481

networks, 484

nodes, 482

Probability Distribution Graphs, 707-708

sectors, 519-522

tilemaps, 485-486

traversals, 493

breadth-first searches, 495-499

depth-first searches, 493-495

graphical demonstration, 500-501

marking nodes, 495

stacks, 495

trees, 480-481

uni-directional, 483-484, 491

weighted, 484

GUI (SDL), 869-878

H
hash tables

collisions, 221

digit addition, 221-222

double hashing, 222

graphical demonstration, 226-228

hashing functions, 221-224

implementing, 228-233

keys, 218-219

linear overflow, 224-225

linked overflow, 225-226

overview, 219-221

quadratic overflow, 225

resources, 235-239

searching keys, 226

strings, 223-224

using, 233-235

HashEntry class, 228-229

HashTable class, 229-233

header files (I/O), 811

Heap class, 418-424

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 917

917Index

heap sorts, 609-611

code, 613-616

graphical demonstration, 611-613

heaps

arrayed, 411

defined, 410-411

dense, 411

efficiency, 416-417

graphical demonstration, 417-418

items

inserting, 411-414

removing, 414-416

linked, 411

memory, 844-845

walk down algorithm, 414

walk up algorithm, 411

HeapSort function, 615

HeapWalkDown function, 613-614

Height function, 125

Heuristic function, 449-450, 774-775, 781

heuristics (pathfinding), 739-742, 746-748

code, 744-745, 749-750

graphical demonstration, 742-744,

748-749

high-level AI, 530

horizontal functions, 346

Huffman class, 678-691

Huffman trees

data compression, 665

code, 677-692

decoding, 665-667

frequency tables, 667-668

graphical demonstration, 674-676

lookup tables, 691

priority queues, 668-674

HuffmanFrequency class, 677

HuffmanNode class, 676-677

I-J
identification numbers (maps), 566, 583

identity functions, 91

image sets, 580

implementing

finite state machines, 535-536

graphs, 486-491

hash tables, 228-233

queues, 206-212

speed, 787

stacks, 193-199

templates, 34-35

tilemaps, 275-290

index variable, 16

inheritance (classes), 248-265

children, 249

down-casting, 263

parents, 249

types, 256-258

initializing

2D arrays, 113

finite state machines, 554-555

multi-dimensional arrays, 113-114

non-symmetrical, 114

variable length, 114-115

static arrays, 48

inline functions, 830-831

inline keyword, 247, 830-831

Inorder function, 372-373

input. See I/O

Insert function, 64-65, 399-400

singly linked lists, 164-167

InsertAfter function, 152-153

inserting

arrays, 80

data (BSTs), 391-394

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 918

918 Index

items (heaps), 64-65, 411-414

nodes (doubly linked lists), 172-173

insertion sorts, 637

instances (template classes), 23

intarray operator, 62-63

integers. See also numbers

bitfields. See bitfields

data sizes, 805-806

random, 698-699

determinism, 699-700

functions, 700-702

linear congruency, 700

non-constant values, 702

ranges, 702-705

repeating patterns, 699-700

interfaces

Adventure, 269-275

speed, 787

Internet data compression, 649

Intruder (finite state machines), 547-560

inventories (linked lists), 176-180

I/O (input/output), 811-814

file streams, 814-817

header files, 811

Item class, 256-290

trees, 467-468

Item function, 163

items

inserting, 64-65

heaps, 411-414

removing, 65-66

heaps, 414-416

iterators

singly linked lists, 164

SListNode class, 153-154

STL, 886

K
KeyDown function, 873

keys

hash tables, 218-219

searching, 226

keywords

catch, 821-823

class, 17

const, 814

inline, 247, 830-831

template, 17

try, 821-823

L
left binary trees, 361

libraries, SDL. See SDL

licensing SDL, 848-849

LIFO (Last In, First Out), 191

limited depth algorithms

game trees, 460

minimax trees, 460

linear congruency (random integers), 700

linear data structures, 41

linear overflow, 224-225

line-based pathfinding, 762-764

linked binary trees, 362-363

linked graphs, 489-491

linked heaps, 411

linked lists

algorithms, 184-185

analysis, 184

doubly, 169

algorithms, 172-174

graphical demonstration, 170-171

inserting nodes, 172-173

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 919

919Index

node structure, 171-172

ReadFromDisk function, 175-176

removing nodes, 173-174

SaveToDisk function, 174-175

graphs, 480-481

inventories, 176-180

nodes, 148-149

singly linked lists

analysis, 169

Append function, 156-157

constructor, 155

destructor, 155-156

encapsulating, 154-155

graphical demonstration, 149-150

Insert function, 164-167

InsertAfter function, 152-153

iterators, 153-154, 164

Prepend function, 158

Remove function, 166-168

RemoveHead function, 158-160

RemoveTail function, 160-161

SListIterator class, 162-163

SListNode class, 151-152

structure, 150

size, 185-186

speed, 187-188

tilemaps, 180-183

trees, 332

linked overflow, 225-226

linked queues, 206-207

linked ranges (finite state machines),

544-545

linked stacks, 194-196

list data structure, 894-896

lists. See linked lists

Load function, 313, 588-590, 595

LoadData function, 661-662, 687-688

LoadFromFile function, 572-574

loading

arrays, 68-71

directionmaps, 588-590

LoadMap function, 302-303, 581-582

LoadTree function, 686

local variables, 840-842

logic, 580

lookup tables (Huffman trees), 691

loop (Adventure), 308-309

LStack class, 196

M
macros

ASSERT, 820

#define, 35

MakePerson function, 297-299

malloc function, 50-51

Map class, 468-469

map editor

directionmaps, 584-593

loading, 588-590

saving, 590-593

tiles, 586-588

tilemaps, upgrading, 594-595

trees, 473-475

map functions, 574-579

MapEntry class, 569

maps

directionmaps

converting, 583-584

format, 564-567

loading, 588-590

saving, 590-593

identification numbers, 566, 583

tilemaps, upgrading, 594-595

trees, 464-466

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 920

920 Index

weighted, 754-755 menus (stacks), 199-204
graphical demonstration, 755-756 merge sorts, 637
pathfinding, 758-759 Microsoft XBox data compression, 648
terrain, 756-762 min variable, 61

marking nodes, 495 MiniMax function, 449
Massively Multiplayer Online games, 105 minimax states (tic tac toe), 439-442
math minimax trees

bit math, 802-810 base numbers, 441
binary numbers, 802-804 checkers, 442, 456-459
bitshifting, 809-810 chess, 442
bitwise, 807-808 defined, 434-437
datatype sizes, 805-806 game states, 439-442
integer data sizes, 805-806 graphical demonstration, 437-439

functions, 817-818 limited depth algorithms, 460
math rules (binary), 91 recursion, 446-448

mazes (pathfinding), 719-721 Rock Piles, 442-456
mean (statistics), 618 MMO (Massively Multiplayer Online)
median (statistics), 618 games, 105
median-of-three (quicksorts), 618 mode
MedianOfThree function, 623-624 wb, 69
memory statistics, 618

arrays modulo, 703-704
cache, 77-80 Monster class, 72
size, 80 monsters Game Demo, 71-77

caching (bitvectors), 101 MouseDown function, 873
code, 837 MouseUp function, 873
crashes, 55 multi-dimensional arrays. See also 2D arrays;
free store, 836, 844-845 3D arrays
global, 838-839 accessing, 115-116
leaks analysis, 144-145

directionmaps, 573 branch predictors, 142-144
dynamic arrays, 53- 55 conventions, 118
troubleshooting, 168 coordinates, 118

overhead, 185-186 declaring, 112-115
sections, 836-837 defined, 108-110
speed, 105 dynamic, 121-131
stack, 840-844 finite state machines, 542-544

Menu class, 201-204

Team LRN

Data Structures Index 11/5/02 9:05 AM Page 921

921Index

initializing, 113-114

non-symmetrical, 114

variable length, 114-115

passing functions, 119-121

performance, 142-144

pipelining, 142-144

size, 144

speed, 142-144

N
namespaces (STL), 883-885

naming conventions (STL), 882-883

network graphs, 484

new function, 52

nodes

graphs, 482

doubly linked lists

inserting, 172-173

removing, 173-174

structure, 171-172

linked lists, 148-149

marking, 495

NodeType datatype, 501

non-constant values (random integers),

702

non-linear random numbers, 707-714

non-symmetrical multi-dimensional arrays,

114

nonvariable length symmetrical multi
-
dimensional arrays, 114-115

notation. See algorithms

numbers. See also integers

base (minimax trees), 441

binary, 802-804

random, non-linear, 707-714

O
O notation, 4-9

Object class, 250-255

inheritance, 260-265

object tracing, 719-721

OOP (object-oriented programming), 243

operators

access, 89-91

and, 91-93

assignment, 344

binary and, 90-91

conversion, 63-64, 829-830

delete, 54, 57

equivalence, 445

intarray, 62-63

or, 91-93

overloading, 827-829

sizeof, 48

OpponentMove function, 453-454

optimizing bubble sorts, 604-605

or operator, 91-93

output. See I/O

overflow

linear, 224-225

linked, 225-226

quadratic, 225

overhead (memory), 185-186

overloading operators, 827-829

P
parameterized types, 17

parameters

classes

Array2D class, 122

arrays, 30-31

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 922

922 Index

templates line-based, 762-764
data types, 24-29 object tracing, 719-721
values, 27-32 overview, 716-718

parents (classes), 249 quadtrees, 764-765
ParseArithmetic function, 382-384 random bouncing, 718-719
parsing binary trees, 374-376 speed, 786-790

algorithms, 381-382 waypoints, 765-767
arithmetic expressions, 376-377 weighted maps, 758-759
code, 382-384 patterns (random integers), 699-700
executing, 384-386 Pentium data compression, 647
recursive descent, 377-386 percents (random), 705-706
scanning, 378-379 PerformAI function, 787-790
tokenizing, 378-379 performance (multi-dimensional arrays),
tokens, 377-378 142-144
variables, 378 performing quicksorts, 618-621

passing functions Person class, 258-260, 290-297, 788
multi-dimensional arrays, 119-121 PickUp function, 471
static arrays, 46-48 pipelining multi-dimensional arrays,

PathAStar function, 775-778 142-144
PathDistanceFirst function, 734-739 pivots (quicksorts), 616-618
pathfinding Player class, 97

A*, 750-752 trees, 469-470
code, 752-753 players, saving, 96-102
DirectionMap class, 780-785 playing Adventure, 582
graphical demonstration, 752 plotlines (trees), 352-358
Tilemap class, 771-779 pointers

Adventure, 770 classes, 252-254
breadth-first, 721-727 dynamic arrays, 53, 55
calculating, 726 FILE, 69
distance-first, 725-727 functions, 832-833

code, 730-739 memory leaks, 55
graphical demonstration, 727-730 static arrays, 47-48

efficiency, 790-791 strong type-checking, 51
graphical demonstration, 753-754 this, 830
heuristics, 739-748 Pop function, 195, 198

code, 744-745, 749-750 popping stacks, 191
graphical demonstration, 742-744, portal engines, 518-527

748-749 Postorder function, 350-351, 372

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 923

923Index

postorder traversal, 449

powers (recursion), 319-320

Preorder function, 348-350, 372

Prepend function, 158

priority queues

AI, 425

building, 424-430

defined, 408-410

Huffman trees, 668-674

private classes, 246-248

Probability Distribution Graphs, 707-708

ProcessAI function, 557-559

programs, distributing, 858

projects (SDL), 853-855

public classes, 245-246

pure finite state machines, 538

Push function, 194-195, 198

pushing

stacks, 191

Q
quadratic overflow, 225

quadtrees, 764-765

queues

arrayed, 207-212

circular, 207

commands, 212-216

defined, 204

functions, 206

graphical demonstration, 204-205

implementing, 206-212

linked, 206-207

priority queues. See priority queues

QuickSort function, 624-627

quicksorts, 616

code, 623-627

graphical demonstration, 621-622,

627-630

median-of-three, 618

performing, 618-621

pivots, 616-618

R
radix sorts, 630-631

base 2, 633-635

base 4, 636

base 16, 636

bin size, 633

code, 633-637

graphical demonstration, 631-633

rand function, 700-702, 819

random bouncing, 718-719

Random Distribution Graphs graphical

demonstration, 712-714

random floats, 706-707

random integers, 698-699

determinism, 699-700

functions, 700-702

linear congruency, 700

non-constant values, 702

ranges, 702-705

repeating patterns, 699-700

random non-linear numbers, 707-714

random percents, 705-706

random-access data structures, 41

RandomPercent function, 705-706

RandomRange function, 704-705

RandomRangeF function, 706-707

RandomRangeModulo function, 702-704

ranges

linked, 544-545

random integers, 702-705

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 924

924 Index

ReadFile function, 70-71, 94-95

ReadFromDisk function, 175-176

reading

arrays, 70-71

static arrays, 45-46

realloc function, 54-57

recursion

AI, 319

algorithms, 319

defined, 318-319

Fibbionacci series, 318

functions, 318

base case, 319

minimax trees, 446-448

powers, 319-320

Towers of Hanoi, 320-328

graphical demonstration, 327-328

trees, 332

recursive descent (binary trees), 377-386

red-black BSTs, 395

references (data types), 62

registers (arrays), 77-80

Remove function, 65-66, 74-76, 504

singly linked lists, 166-168

RemoveArc function, 509

RemoveHead function, 158-160

RemoveNode function, 506-508

RemoveTail function, 160-161

removing

arrays, 80

data (BSTs), 394

items, 65-66, 414-416

nodes (doubly linked lists), 173-174

repeating patterns (random integers),
699-700

ResetIterator function, 344-345

Resize function

Array class, 60-61

Array2D class, 123-125

Bitvector class, 88-89

Resource class, 402

ResourceCompare function, 403

resources

hash tables, 235-239

storing (BSTs), 402-405

return codes, 820-821

return values (functions), 843

right binary trees, 361

RLE (Run Length Encoding)

compressor, 656-665

data compression, 649-651

decompressor, 656-665

graphical demonstration, 651-655

sprites, 655

RLE class, 656-665

RLEPair class, 656

Rock Piles (minimax trees), 442-456

RockState class, 443-445

global variables, 445-446

Root function, 345

rotations (BSTs), 395

RTTI (Run Time Type Information),

261-263

rules (BSTs), 394

Run Length Encoding. See RLE

Run Time Type Information (RTTI),

261-263

S
Save function, 312, 590-595

SaveData function, 661, 686-687

SavePlayers function, 100-101

SaveToDisk function, 174-175

SaveTree function, 686

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 925

925Index

saving sectors (graphs), 519-522
directionmaps, 590-593 sequence containers, 890-896
players, 96-102 Set function, 91-93

scanning (binary trees), 378-379 set functions, 91
SDL (simple directmedia layer), 848 SetAll function, 93-94

C++, 851-853 SetFocus function, 872
distributing programs, 858 SetFollow function, 788
event handling, 861-863 SetFont function, 870
files, 849-851 SetLife function, 99
graphics, 858-861 SetNewMap function, 302-303, 471-472
GUI, 869-878 setup (SDL), 849-855
licensing, 848-849 shell sorts, 637
projects, 853-855 simple directmedia layer. See SDL
SDL TTF, 856-858, 863-865 SimpleHeuristic function, 744-745
setup, 849-855 singly linked lists
text, 856-858, 863-865 analysis, 169
timer, 863 Append function, 156-157
using, 858 constructor, 155
vector graphics, 865-867 destructor, 155-156
video, 858-861 encapsulating, 154-155

SDL TTF, 856-858, 863-865 graphical demonstration, 149-150
SDLArrowLine function, 866 Insert function, 164-167
SDLBlit function, 135, 867 InsertAfter function, 152-153
SDLBox function, 867 iterators, 153-154, 164
SDLFrame class, 867-868 Prepend function, 158
SDLGUI class, 869-874 Remove function, 166-168
SDLGUIFrame class, 876-878 RemoveHead function, 158-160
SDLGUIItem class, 874-876 RemoveTail function, 160-161
SDLHelpers library, 865-867 SListIterator class, 162-163
SDLLine function, 866 SListNode class, 151-152
SDLPoint function, 866 structure, 150
searches size

breadth-first, 495-499 arrayed binary trees, 364-366
depth-first, 493-495 arrays (memory), 80
DLDFS, 521-522 bins (radix sorts), 633
keys, 226 datatype sizes, 805-806
pathfinding. See pathfinding dynamic arrays, 54-57

Sector class, 523 integer data sizes, 805-806

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 926

926 Index

linked lists, 185-186 median-of-three, 618
multi-dimensional arrays, 144 performing, 618-621
static arrays, 48 pivots, 616-618

Size function, 67-68 radix, 630-631
Array2D class, 125 base 2, 633-635

sizeof operator, 48 base 4, 636
SListIterator class, 162-163 base 16, 636
SListNode class, 151-152 bin size, 633

Append function, 156-157 code, 633-637
constructor, 155 graphical demonstration, 631-633
destructor, 155-156 shell, 637
encapsulating, 154-155 statistics
InsertAfter function, 152-153 mean, 618
iterators, 153-154 median, 618
Prepend function, 158 mode, 618
RemoveHead function, 158-160 sparse data, 218-219
RemoveTail function, 160-161 speed

sorts culling, 519
bin, 630 game logic, 787-790
brute force, 600 linked lists, 187-188
BSTs, 638 memory, 105
bubble multi-dimensional arrays, 142-144

code, 605-609 pathfinding, 786-790
comparison functions, 606 speed variable, 247
defined, 600-602 splay BSTs, 395
graphical demonstration, 602-604 sprites (RLE), 655
optimizing, 604-605 srand function, 700-702, 819

depth-based, 638-642 stacks
z-buffers, 639 analysis, 196

heap, 609-611 arrayed, 196-199
code, 613-616 analysis, 199
graphical demonstration, 611-613 defined, 190-192

insertion, 637 FILO, 191
merge, 637 functions, 193
quicksorts, 616 graphical demonstration, 192-193

code, 623-627 graphs (traversals), 495
graphical demonstration, 621-622, implementing, 193-199

627-630 LIFO, 191

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 927

927Index

linked, 194-196

memory, 840-844

menus, 199-204

popping, 191

pushing, 191

standard template library. See STL

Start function, 162

state transition tables, 535-536

states

FSM. See Finite State Machines

games, 439-442

static arrays, 43-49

accessing, 44-46

declaring, 43-44

fencepost errors, 44

initializing, 48

passing to functions, 46-48

pointers, 47-48

reading, 45-46

size, 48

troubleshooting, 45-46

writing, 45-46

static variables, 839

statistics, 618

STL (standard template library), 880

algorithms, 885-889

containers, 898-899

adaptors, 896-898

associative, 896

categories, 888-889

functions, 889-890

sequence, 890-896

data structures, 885-889

deque, 893-894

list, 894-896

vector, 891-893

iterators, 886

namespaces, 883-885

naming conventions, 882-883

STLPort directory, 880-882

STLPort directory, 880-882

storing

data

2D arrays, 116-117

3D arrays, 117-118

4D arrays, 117-118

arrays, 68-77

classes, 243-245

resources (BSTs), 402-405

stray pointers (dynamic arrays), 53

strcat function, 663

String class, 236-237

StringHash function, 223-224

strings (hash tables), 223-224

strong type-checking, 51

structure

binary trees, 362-366

doubly linked lists, 171-172

singly linked lists, 150

Tree class, 339

TreeIterator class, 343

trees, 332-333

structures. See data structures

sub-optimal BSTs, 395

sum variable, 16

Sumtype data type, 25

switch function, 516-517

T
tables. See also hash tables

adjacency, 486-488

direction, 488-489

frequency tables, 667-668

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 928

928 Index

lookup tables, 691 timer (SDL), 863
state transition tables, 535-536 tokenizing (binary trees), 378-379

template keyword, 17 tokens (binary trees), 377-378
templates Top function, 195, 198

classes, 19-24 Towers of Hanoi, 320-328
declaring, 23 graphical demonstration, 327-328
instances, 23 tracing objects, 719-721

documenting, 33 traversals
functions, 15-19 graphs, 493
implementing, 34-35 breadth-first searches, 495-499
overview, 14-15 depth-first searches, 493-495
parameters graphical demonstration, 500-501

data types, 24-26, 29 marking nodes, 495
values, 27-32 stacks, 495

troubleshooting, 32-33 postorder, 449
Visual C++, 34-35 traversing

terrain (weighted maps), 756-762 arrayed binary trees, 365-366
pathfinding, 758-759 binary trees, 371-374

test files (data compression), 692-693 graphical demonstration, 373-374
text (SDL), 856-858, 863-865 trees, 347-351
this pointer, 830 graphical demonstration, 351-352
tic tac toe, 440-442 Tree class, 338
TileCell class, 773-774, 781 constructor, 340
TileMap class Count function, 342

A* pathfinding, 771-779 Destroy function, 341-342
trees, 469 destructor, 340-341

tilemap editor, 310-314 structure, 339
tilemaps TreeIterator class, 342

2D arrays, 131-136 assignment operator, 344
3D arrays, 136-144 constructor, 343-344
Adventure, 275-290 Down function, 346
graphs, 485-486 horizontal functions, 346
linked lists, 180-183 ResetIterator function, 344-345
map editor, upgrading, 594-595 Root function, 345

TilePathfind function, 766-767 structure, 343
tiles (directionmaps), 586-588 Up function, 345-346
tilesets, 580 trees
time function, 818-819 Adventure

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 929

929Index

game logic, 470-472

Item class, 467-468

Map class, 468-469

map editor, 473-475

maps, 464-466

Player class, 469-470

TileMap class, 469

binary. See binary trees

BSTs. See BSTs

building, 347

defined, 330-332

finite state machines, 545-546

game trees. See game trees

graphical demonstration, 333-338

graphs, 480-481

heaps. See heaps

Huffman. See Huffman trees

linked lists, 332

minimax trees. See minimax trees

plotlines, 352-358

quadtrees. See quadtrees

recursion, 332

structure, 332-333

traversing, 347-351

graphical demonstration, 351-352

troubleshooting. See also error handling

bad alloc exception, 61

design, 772

memory crashes, 55

memory leaks, 55, 168

directionmaps, 573

dynamic arrays, 53

speed (pathfinding), 786-790

static arrays, 45-46

templates, 32-33

try keyword, 821-823

type-checking (pointers), 51

types. See data types

U
uni-directional graphs, 483-484, 491

Up function, 345-346

upgrading tilemaps, 594-595

using

bitfields, 103-105

hash tables, 233-235

SDL, 858

V

Valid function, 163

values

non-constant, 702

return, 843

templates (parameters), 27-32

variables

cin, 812-814

cout, 811-812

global, 838-839

RockState class, 445-446

index, 16

local, 840-842

min, 61

parsing, 378

speed, 247

static, 839

sum, 16

vector data structure, 891-893

vector graphics (SDL), 865-867

video (SDL), 858-861

virtual functions, 251-255

Visual C++ templates, 34-35

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 930

930 Index

W-Z
walk down algorithm (heaps), 414

walk up algorithm (heaps), 411

WalkDown function, 422-424

WalkUp function, 420-422

wavelets (data compression), 694

waypoints (pathfinding), 765-767

wb mode, 69

Web sites, 798, 881

weighted graphs, 484

weighted maps, 754-755

graphical demonstration, 755-756

pathfinding, 758-759

terrain, 756-762

Width function, 125

WriteFile function, 69, 94

writing

arrays, 69-70

static arrays, 45-46

XBox data compression, 648

z-buffers, 639

Team LRN

Take Your
Game to the

X TREME!

Xtreme Games LLC was founded to help small game developers
around the world create and publish their games on the commercial
market. Xtreme Games helps younger developers break into the field
of game programming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of developers around
the world, if you’re interested in becoming one of them, then visit us
at www.xgames3d.com.

www.xgames3d.com

Team LRN

“Game programming is without a doubt the most intellectually challenging field of Computer Science in the world.
However, we would be fooling ourselves if we said that we are ‘serious’ people! Writing (and reading) a game
programming book should be an exciting adventure for both the author and the reader.”

—André LaMothe,
Series Editor

Premier Press, Inc.
™ www.premierpressbooks.com

Team LRN

Team LRN

Data Structures Index 11/5/02 9:06 AM Page 934

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions. If,
upon reading the following license agreement and notice of limited warranty, you cannot agree to the
terms and conditions set forth, return the unused book with unopened disc to the place where you
purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You
are licensed to copy the software onto a single computer for use by a single user and to a backup disc.
You may not reproduce, make copies, or distribute copies or rent or lease the software in whole or in
part, except with written permission of the copyright holder(s). You may transfer the enclosed disc
only together with this license, and only if you destroy all other copies of the software and the trans-
feree agrees to the terms of the license. You may not decompile, reverse assemble, or reverse engineer
the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Premier Press, Inc. to be free of physical defects in materials and
workmanship for a period of sixty (60) days from end user’s purchase of the book/disc combination.
During the sixty-day term of the limited warranty, Premier Press will provide a replacement disc upon
the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PREMIER PRESS OR THE
AUTHORS BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF
DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERAT-
ING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPE-
CIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PREMIER
AND/OR THE AUTHORS HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF
SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUITABIL-
ITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO
NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL
OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Indiana without regard to choice of law princi-
ples. The United Convention of Contracts for the International Sale of Goods is specifically dis-
claimed. This Agreement constitutes the entire agreement between you and Premier Press regarding
use of the software.

Team LRN

