. CD INCLUDED

DATH
STRUCTURES

FOR
GAME PROGRANMMERS

T) .
RONBEENIOr
I:iy(‘lll.‘l"l_l_ 7
1D r’:\’-—* . SR AT L
4 by /) AndrealfaMothe
LD oS 5. S Team LRN CEO Xtreme Games LLC

B — | L= [‘——',—Q_L—J_L W E '_’LIJ_

DATAH
SETRUCTURES
FOR GAME
FPROGRANMMNMERS

EEEEEEEEEEEEEEE

This page intentionally left blank

Team LRN

DATAH
SETRUCTURES
FOR GAME
FPROGRANMMERS

Ron Penton

EEEEEEEEEEEEEEE

r-e-85S

© 2003 by Premier Press, a division of Course Technology. All rights reserved. No part of this book
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system without written permission
from Premier Press, except for the inclusion of brief quotations in a review.

Premier The Premier Press logo and related trade dress are trademarks of Premier Press and may not
be used without written permission.

Press

Publisher: Stacy L. Hiquet

Marketing Manager: Heather Hurley
Acquisitions Editor: Emi Smith

Project Editor: Karen A. Gill

Technical Reviewer: André LaMothe
Copyeditor: Stephanie Koutek

Interior Layout: L] Graphics, Susan Honeywell
Cover Design: Mike Tanamachi

Indexer: Kelly Talbot

Proofreader: Jenny Davidson

Microsoft, Windows, and Visual C++ are trademarks of Microsoft Corporation.Wolfenstein, Doom, and

Quake are trademarks of Id Software, Inc. Warcraft and Starcraft are trademarks of Blizzard
Entertainment.

The artwork used in this book is copyrighted by its respective owners, and you may not use it in your
own commercial works.

All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-chang-
ing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-94-2

Library of Congress Catalog Card Number: 2002111226
Printed in the United States of America
0304050607BH10987654321

Premier Press, a division of Course Technology
2645 Erie Avenue, Suite 41
Cincinnati, Ohio 45208

Team LRN

To my famaly, for always being there for me.

Team LRN

iy S S ‘ SE e, L o
Acknowledgments

would first like to thank my family for putting up with me for the past nine
months. Yes, yes, I'll start cleaning the house now.

I would like to thank all of my friends at school: Jim, James, Dan, Scott, Kevin, and
Kelvin, for helping me get through all of those boring classes without falling asleep.

I would like to thank everyone at work for supporting me through this endeavor.

I especially want to thank Ernest Pazera, André LaMothe, and everyone else at
Premier Press for giving me this tremendous opportunity and believing in me.

I would like to thank Bruno Sousa for opening the door to writing for me.

I want to thank the pioneers of Gamedev.net, Kevin Hawkins and Dave Astle, for
paving the road for me and making a book such as this possible.

I would like to thank all of you in the #gamedev crew, specifically (in no particular
order) Trent Polack, Evan Pipho, April Gould, Joseph Fernald, Andrew Vehlies,
Andrew Nguyen, John Hattan, Ken Kinnison, Seth Robinson, Denis Lukianov, Sean
Kent, Nicholas Cooper, Ian Overgard, Greg Rosenblatt, Yannick Loitiere, Henrik
Stuart, Chris Hargrove, Richard Benson, Mat Noguchi, and everyone else!

I would like to thank my artists, Steven Seator and Ari Feldman, who made this
book’s demos look so much better than they would have been.

And finally, I would like to thank the Pepsi Corporation, for making that wonderful
“stay awake” juice known as Mountain Dew.

Team LRN

e el 1~ L=~ JHh
About the Author

Ron Penton’s lifelong dream has always been to be a game programmer. From the

age of 11, when his parents bought him his first game programming book on how

to make adventure games, he has always striven to learn the most about how games
work and how to create them.

Ron is currently finishing up his bachelor’s degree in computer science at the State
University of New York at Buffalo. He hopes to have a long career in game develop-
ment.

Team LRN

Jr._“‘___"_-l_“-'——‘_r__"l_lL. - 5= ; =i e LA
Lr’L.__L—'—'—L,—F N M == = P

Contents at a Glance

INTRODUCTION &« s s s s s s s s = = & & & & & XXXI11

Part One
Concepts.1

CHAPTER 1 BAsic ALGORITHM ANALYSIS s s s s s m o ¢ 1 X

CHAPTER 2 TEMPLATES s s s s s s s s s s o v o n n n o o 0 1X

Part Two
TheBasics.c.c......37

CHAPTER X ARRAYSs: s s s s s s s s s v v oo X9

CHAPTER Y RITVECTORSs s s s s s s s s » n s » s s s s » « HX
CHAPTER 5 MuLTI-DIMENSIONAL ARRAYS » = = = = » « « 107
CHAPTER B LINKED LISTS s s s s s s s s s s s 0 5 n » » » 147
CHRAPTER 7 STACKS AND QQUEUES « s s s = s = = = = = s 1HS
CHAPTER H HASH TABLES o« s s s s s s s s s s s s » » » 0 217
CHAPTER 9 TYING 1T TOGETHERI THE BASICSs s s s = « 241

Part Three
Recursionand Trees. 315

CHAPTER 10 RECURSION s s s s s s s s s s s s s s » » » » X17
CHAPTER 11 TREES a s s s s s v s n n n »s »s » s » u » v v ¢ X289
CHAPTER 12 TRKINARY TREES s s s s s s s s s s n = = » » » X585
CHAPTER 1X <KINARY SEARCH TREESs » s = = = = = = « « XHY

CHAPTER 14 PRIORITY QUEUES AND HEAPS s & & = = &« « H0O7

Team LRN

Contents at a Glance ix

N — r—= L= —Lr"]_

CHAPTER 15 GAME TREES AND IMIINIMAX TREES s & 1 1 1 HX1

CHRAPTER 1B TYING 1T TOGETHERE TREES s s s s s » 1 1 HBEX

Part Four
Graphs 49477
CHRPTER 17 GRAPHS » s s s s s s s s s s n s n nn n n n » H79

CHAPTER 1H UsiNG GRAPHS FOR A1l FINITE STATE
IMIACHINES: =« s s s s s s s s s s s s s n n » » S28

CHAPTER 19 TYING 1T TOGETHEREI GRAPHS « s s s 1 1 1 SBEX

Part Five

Algorithms597
CHAPTER 20 SORTING DATA« « s s s s s s s s s s v v« « 598
CHAPTER 21 DATA COMPRESSIONs = = = = = = = = = = » « BH5
CHAPTER 22 TRANDOM NUMEBERS s s s s s s s » = = = » « BHE7
CHAPTER 22X PATHFINDINGs =« s s s s s s s s s s n ns u n n 2 715
CHAPTER 249 TYING 1T TOGETHER: FALGORITHMS « &« » » « 7658

CoNCcLuUSs10N " EEEEEE R E R E Y A=

Part Six
Appendixes. 799

ArrPENDIX H AC++ PRIMER s s s s s s B0O1

ArrPENDIX B THE MEMORY LAYOuT oF A CoOMPUTER
PROGRAM s« s s s s s s s s s s s s s » s » v s HIS

ArrPENDIX C INTRODUCTION TO SDLs s s s s s v » & = » « Y47

ArrPENDIX D INTRODUCTION TO THE STANDARD TEMPLATE
LIRRARYs s s s s s s s s s v s s s » v » v v v B782

INDEXs s s s s s s s s s s nnnsssssssnn 301

Team LRN

S S Sy SR i
U"L‘—\'Zl—‘—'—b—-'_! — =l Tl ="2= = < 1_—"'J”~L;_‘_
Contents

LETTER FROM THE SERIES EDITOR s s s 5 1 5 58 8 XXX

INTRODUCTION= = = = = s s s " o n n u = m n n m n ®w XXX

Part One
Concepts.1

CHAPTER 1
BAs1CcC ALGORITHM ANALYSIS s« s s 58 58 5 8 X

A Quick Lesson on Algorithm Analysis...............coiiiiiiiiian. 4
Big-O Notationo e e 4
Comparing the Various Complexities. 9

Graphical Demonstration: Algorithm Complexity 10

Conclusion ittt i i i i i i i et ettt e 1

CHAPTER £
TEMPLATES s s s s s s s s s s s oo lX

WhatAreTemplates?.ttt ittt tieeneeneeneannnns 14
Template Functionsottt ittt it iineennneennens 15
Doing ltthe OldWay e I5
Doing It with Templates. o e 17
Template Classes oo vttt iiiieiiietinieetneeenneeoneeennens 19
Multiple Parameterized Types.ttt it ittt neenennnnns 24
Using Values as Template Parameters.cciiiiiiieenennns 27
Using Values of a Specific Datatypettt 27
Using Values of Other Parameterized Types. 30

Team LRN

Contents

Problems withTemplates. ittt ittt nnenns 32
Visual C++andTemplates ci ittt ittt iieenennenns 34
Underthe Hood.00ttt neeneneennannns 34
(@07 el (1T T o 35
Part Two

The Basics. ¢ ¢ ¢cccee...37

CHAPTER X
ARRAYS s s s s s s s s s m s X8

Whatlsan Array?iiiiiiiiiiieiietneoneneenessssnssnenns 40
Graphical Demonstration: Arraysc.c.ciiteiteneeeencenceneas 41
Increasing or Decreasing Array Size......... il 43
Inserting or Removingan ltem 43
Native CArraysand Pointersccitiiiiitiiitieeneeneennnns 43
Static Arrays 43
Dynamic Arrayso e 49
An Array Class and Useful Algorithms, 59
The Data.o e 59
The Constructor. . ..o v e e e et 59
The Destructor. 60
The Resize Algorithm 60
The Access OPeratorottt e ettt et 62
The Conversion Operator. vttt ettt aee e 63
Inserting an ltem Between Two Existing ltems. 64
Removing an Item from the Array 65
A Faster Removal Method. i 66
Retrieving the Size of anArray i 67
Example 3-3. . ..o e 67
Storing/Loading Arrayson Disk. ittt 68
Writing an Array to Disk. L 69
Reading an Array from Disk. 70
Considerations for Writing and Reading Files 71

Team LRN

N — r—= L= —Lr"]_

Xii Contents

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Application: Using Arrays to Store Game Data 71
The Monster Classt e e e 72
Declaring a Monster Array. ot e 72
Adding a Monster to the Game. 72
Making a Better Insertion Algorithm o oL 73
Removing a Monster fromthe Game, 74
Checking for Monster Removal. 75
Playing the Game. e 76

Analysis of Arrays in Gamescoiittiiiitiiieeineeenneennnns 77
Cache Issuesot e 77
ReSIZING Arraysot e 80
Inserting/Removing Cells. 80

Conclusion . ..ottt i i i i i i i et e s et e 80

CHAPTER Y
RITVECTORS s s s s s s s s s s s s s s s s HX

WhatlIsa Bitvector?0ttt iiennennennannens 84
Graphical Demonstration:Bitvectors ittt 85
The Main Screeno e e e 86
Using the Buttons e 86
CreatingaBitvector Class.ttt ennns 86
The Data.oi e e e 87
I =T O] 0 13 o ') o 87
The DestrUCtor. . o oot et e e e 87
The Resize Algorithm 88
The Access OPeratorottt e e ettt 89
The Set FUNCLION.o e et e e 9l
The ClearAll Function. e e e ieee e 93
The SetAll Function. i e e e e 93
TheWriteFile Function e e 94
The ReadFile Function. it 94
Example 4-1. . ..o 95

Team LRN

Contents

Application:The Quicksave ittt inenenns 96
Creatinga Player Classot e 97
Storing the Playersinthe Game i 98
Initializing the Data Structures. it e 98
Modifying Player Attributes 99
Saving the Player Array to Disk i 100
Playing the Game. e 102

Bitfields.ttt i i i i i i it it 102
Declaring a Bitfield 103
Using a Bitfield. e 103

Analysis of Bitvectors and Bitfieldsin Games....................... 105

Conclusionttt it i i i i i i et ettt e e 106

CHRAPTER 5
MuLTI-DIMENSIONAL ARRAYS s & = & & « 107

What Is a Multi-Dimensional Array?ciiiiiiiiiiiieneens 108
Graphical Demonstrationc.iiiiiiiiiiiieiietnennennns 111
Native Multi-Dimensional Arrays.ottt ittt eneeneanenns 112
Declaring a Multi-Dimensional Array i 112
Accessing a Multi-Dimensional Array. i 15
Inside a Multi-Dimensional Array 116
Dynamic Multi-Dimensional Arrays.cciiiiiiiiiiieenneenns 121
The Array2D Classottt e 121
The Array3D Classo i i e e 127
Application: Using 2D Arrays asTilemaps...............ciiiiiiin.. 131
StoringtheTilemap 133
Generating theTilemap i 134
DrawingtheTilemap i 135
Playing the Game. e e 136
Application: Layered Tilemaps. oo oviiiiiiiiiiiiiiiiiinneeeennnns 136
Redefining the Tilemap. i e 138
Reinitializing the Tilemap 139
Modifying the Rendering Algorithm o i 140

Team LRN

N — r—= L= —Lr"]_

xXiv Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Playing the Game. e 141
Comparing Performance 142
Comparing Sizeo 144
Analysis of Multi-Dimensional ArraysinGames.ccvive.n 144
Conclusionottt i i i i i i it e i et 145

CHRAPTER B
LINKED L1ISTS s« s s s s s s s s ¢ n n »n »n »n 147

WhatlIsalLinked List? 00ttt inerenneennnnns 148
Singly Linked Lists oottt ittt iinnnnnnns 149
Graphical Demonstration: Singly Linked Lists. 149
Structure. . .o e 150
Example 6-4. 168
Final Thoughts on Singly Linked Lists. 169
Doubly Linked Lists 0iiiii ittt iiiiiiiiitieenennnnnenns 169
Graphical Demonstration: Doubly Linked Lists 170
Creating a Doubly Linked List. i, 171
Doubly Linked List Algorithms. i i i 172
Reading and Writing Liststo Disk. o i, 174
Writing a Linked List. e 174
Reading a Linked List.o i e e 175
Application:Game Inventories ittt 176
The Player Classo e e 177
Theltem Class i e 177
Addingan ltemtothelnventory i il 178
Removing an Item from the Inventory. 178
Playing the Demo o e 179
Application: Layered Tilemaps Revisitedt 180
Declaring theTilemapo e e e 181
CreatingtheTilemapot e 182
DrawingtheTilemap o i 182
Analysis and Comparison of Linked Lists 184
Algorithm Comparisons.t e 184

Team LRN

Contents XV

N — r—= L= —Lr"]_

Size ComMPariSONSottt e e 185
Real-World Issueso 187
CoNCIUSION « vt ittt ittt ittt et teeeeeeeeeeeessnsooseensnnannns 188

CHRAPTER 7
STACKS AND QQUEUES « = = = s s = = = =« 1HS

1] o T ol L 190
What Is a Stack? e 190
Graphical Demonstration: Stacks. L i 192
The Stack Functions e 193
Implementing a Stack. e 193
Application: Game Menus 199

QUEUES . . o it ittt ittt tieteoeeseaeaseneesessesessenesasencanans 204
Graphical Demonstration: QUeues.ttt 204
The Queue FUNCLIONS o i e e 206
Implementinga Queue 206
Application: Command Queues. 212

Conclusionottt i i i i i i it e i e 216

CHAPTER H
HASH TABLES s« s s s s s s s s s s n s »n » 217

WhatlsSparseData?c.iiiiiiiiitiieeineeneonsnnnanenns 218
The BasicHashTable...........c0 ittt iieieennennans 219
ColliSioNs. . . .o e 221
Hashing Functions e 221
Enhancing the Hash Table Structure.................... .. . att. 224
Linear Overflow e 224
Quadratic Overflow e 225
Linked Overflow e e e e 225
Graphical Demonstration:HashTables 226
ImplementingaHashTable................c ittt 228

Team LRN

XVi Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The HashEntry Class. e 228
TheHashTable Class i i 229
Example 8-1: Using the HashTable., 233
Application: Using Hash Tables to Store Resources 235
The String Classt e e e 236
UsingtheTable 237
How the Demo Loads Resources 237
Playing the Demo o e 238
Conclusionttt i i i i i i et e i e e 239

CHAPTER 9
TYING 1T TOGETHERI THE EASICS & s » 241

Why Classes Are Goodciii ittt iiieeineeenneeonneenneess 242
StoringDatainaClassciiiiiiiiiiiiitiiieiiennenaennns 243
Hiding Data.o e e 245
Inheritance. e e 248
Using the Classesina Game ittt e 260
MakingaGameottt neeneenensennenncanenns 265
Adventure:Version One.ttt e 266
Game 2—The Map Editor. 310
Conclusionttt i i i i i it e i et 314
Part Three

Recursionand Trees. 315

CHAPTER 10
RECURSION s s s s s s s s s s nnnn n n X17

WhatlIsRecursion?ttt renneeennnennenns 318
A Simple Example:Powers. 319
TheTowersof Hanoi i ittt 320
TheRules o 321
Solvingthe Puzzle 321

Team LRN

Contents

Solving the Puzzle witha Computer i, 323
Terminating Conditions i e 325
Example 10-1: Coding the Algorithm for Real 325
Graphical Demonstration:Towersof Hanoi. 327
Conclusionottt i i i i i i i ettt et 328

CHAPTER 11
TREES s s s s s s s s s s s nnnnonnsns X283

Whatls aTree?ttt iiiiiiiieeeneeoesesesesesossosnsasanss 330
The Recursive Nature of Trees i e 332
Common Structure of Trees oottt e e e e 332

Graphical Demonstration:Treesciiiiiiiitiiieinennennns 333
Tutorial . .. 336

BuildingtheTree Class. ittt ittt ittt iiiiieanennn 338
The STrUCTUrEttt e e e e e e e e e 339
LI 3 T3 O 4 13 o U) 340
The DestrUCtor. . ..o vttt e ettt e et e e e 340
The Destroy Function i e 341
The Count FuNCtion i e e e 342

TheTreelterator.t i ittt ieeeesensassssssssesosnsnns 342
The STrUCTUrEttt e e e e e e e e 343
The Basic Iterator Functions 343
The Vertical Iterator Functions i, 345
The Horizontal Iterator Functions 346
The Other FUNCtions. i e e 346

BuildingaTreettt tiennennennanns 347
Top DoOWN . ..o e 347
Bottom Up . ..o 347

Traversing aTree cii ittt tieenesnessesnesnannans 347
The Preorder Traversal i e 348
The Postorder Traversal. it e 350
Graphical Demonstration: Tree Traversals 351

Team LRN

XVi

N — r—= L= —Lr"]_

X Viii Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Game Demo II-1:Plotlines.ttt iineennnns 352
Using Trees to Store Plotlines i 354
Playing the Game. 356

Conclusionttt i i i e i et e i et 358

CHAPTER 12
RBINARY TREESs s s s s s s s 5 s » s » » X589

WhatlsaBinaryTree?. ittt ittt tieiiennennennans 360
Fullnesso e 361
DENsSeNesso 361
Balance 362

Structure of BinaryTrees.ottt ittt ittt ittt nnennns 362
Linked Binary Treesot iiee 362
Arrayed Binary Trees o 363

Graphical Demonstration: BinaryTrees i, 366

CodingaBinaryTreeciiiiitiiiiiiiieineeinennennennennns 368
The Structure e 368
The CoNStrUCtOr. . . o oottt e e e e e e ettt e 369
The Destructor and the Destroy Function 369
The Count Functiont 370
Using the BinaryTree Class i e 370

Traversingthe BinaryTree. ittt ittt iiennennns 371
The Preorder Traversal e 372
The Postorder Traversal.o i e 372
The Inorder Traversal. o 372
Graphical Demonstration: Binary Tree Traversals 373

Application:Parsing o i i i i i i i i e i 374
Arithmetic Expressions 376
Parsing an Arithmetic Expression. i i 376
Recursive Descent Parsing. i e 377
Playing the Demo i e 386

Conclusionttt i i i i i i et e i et 388

Team LRN

Contents Xix

N — r—= L= —Lr"]_

CHAPTER 1=X
RINARY SEARCH TREES «» v s 5 & 5 » » XHBH

Whatls aBST? ittt tieneenneeonneennnnns 390
Inserting Data intoa BST 391
Finding Datain a BST e 394
Removing Data froma BST........ i 394
The BST Rules.o e e 394
Sub-Optimal Treesot e 395

Graphical Demonstration:BSTsttt 395

CodingaBSTttt teiitnnneeeeeonnnnnans 397
The Structure e 397
Comparison Functions. i e 397
The CoNStrUCtOr. . . o oottt it e e e e e e et e e e et 398
The Destructor.ot e e 398
The lnsert Function. e 399
The Find Function e e 400
Example 13-1:Usingthe BST Class 401

Application: Storing Resources,Revisited, 402
The Resource Class.ottt e et e 402
The Comparison Function. i 403
Inserting Resources. 403
Finding Resources e 403
Playing the Demo o e 404

L@ oY s ol (111 ' o 405

CHAPTER 14
PRI1ORITY QUEUES AND HEAPS: & » « « HO7

WhatIsaPriority Queue?.ottt ittt 408
WhatlsaHeap?.ttt ittt teeeeesnennannans 410

Why Can a Heap Be a Priority Queue?. 411
Graphical Demonstration:Heapsttt 417
CodingaHeapClassciiiiiiiiiiiiiiiiiieitiennennennns 418

Team LRN

XX Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Structure e 419
The Constructor.ttt e e e 419
The Enqueue Function. o i 420
TheWalkUp Function e 420
The Dequeue Function e 422
TheWalkDown Function. e 422
Application: BuildingQueues. i i i i i i i 424
The Units . ..o 426
Creatinga Factory. 426
The Heap . ..o o e e 427
Enqueuinga Unit. e e 427
Starting ConStructionttt 428
Completing Constructionttt ittt e 428
Playing the Demo e e 429
Conclusionottt i i i i i i i et e et e 430

CHAPTER 15
GAME TREES AND IMMINIMAX TREES: » » HX1

WhatlsaGameTreelcciiiiiiiiiiietiineenneeenneennnnns 432
WhatilsaMinimaxTree?ottt ineeenneennnens 434
Graphical Demonstration: MinimaxTrees.ciivivennn. 437
Game States. . ..o i vttt i i it et et et et 439
More Complex Games. oi it ittt ieteeseeneennennnnns 442
Application:Rock Piles. i i i i i i 442
The Game Stateo i e 443
The Global Variables 445
Generating the GameTree i e 446
Simulating Play o 452
Playing the Game. e 454
More Complex Games. oi ittt tiitieeneenessenneancanenns 456
Never-Ending Games. i 456
Huge Games e 459

Team LRN

Contents xxi

N — r—= L= —Lr"]_

Limited Depth Games e e e 460
Conclusionottt i i i i it i e i et 460

CHAPTER 1B
TYING 1T TOGETHEREI TREES s s s s s HEBEX

Expandingthe Gameciiiiiiiiiiiiiiieiiennenneanenns 464
Alteringthe Map Format. i i 465
Game Demo 16-1:Alteringthe Game 466
The Map Editor. e e 473

Further Enhancements ittt ennenns 475

Conclusionttt i i i i et et et et 475

Part Four

Graphs 49477

CHRAPTER 17
GRAPHS s s s s s s s s s s v s s » n » » H789

Whatlsa Graph?. ittt ittt nnennannans 480
Linked Listsand Treesottt e 480
Graphs. 482
Parts ofa Graph e 482

Typesof Graphs it ittt i ittt tieaneanennennans 482
Bi-Directional Graphs 483
Uni-Directional Graphs 483
Weighted Graphs. e 484
Tilemapso e 485

Implementinga Graph.0ttt 486
Adjacency Tables e 486
DirectionTables. e 488
General-Purpose Linked Graphs i 489

Graphical Demonstration: Graphs. i iiiiiiiiiiiiiiin., 492

GraphTraversals.ottt ittt ittt iinnnnnnns 493

Team LRN

xXxii Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Depth-First Search 493
The Breadth-First Search. 495
A FinalWord on GraphTraversals o ... 499
Graphical Demonstration: Graph Traversals. 500
TheGraph Classoitiiiiiiiitiitietneeneosennennennens 501
The GraphArc Class 501
The GraphNode Classest e 502
The Graph Classot e e e 504
Application: Making a Direction-Table Dungeon..................... 512
The Map .. 512
Creatingthe Map. i 513
Drawingthe Map. i 514
Moving Around the Map e 516
Playing the Demo e e 517
Application: Portal Engines ittt 518
SBCtOrS ot e 519
Determining Sector Visibility 521
Codingthe Demo 522
Playing the Demo e 527
Conclusionottt i i i i it i i e i et 528

CHAPTER 1H
UsiING GRAPHS FOR AHl1: FINITE STRATE
WMACHINES s« s s s s s s s s s s 529

What Is a Finite State Machine?, 530
Complex Finite State Machines. oo, 533
Implementing a Finite State Machine................, 535
Graphical Demonstration: Finite State Machines.................... 537
Even More Complex Finite State Machines 538
Multiplying States. L 538
Conditional Events. 541
Representing Conditional Event Machines 542

Team LRN

Contents xXXiii

N — r—= L= —Lr"]_

Graphical Demonstration: Conditional Events 546
GameDemo I8-I:Intruder.ttt 547
The Code . ..ot e e 550
Playing the Demo e 559
L@ o T ol 1T T 560

CHAPTER 19
TYING 1T TOGETHERI GRAPHS »«» s s s 1« SBX

The NewMapFormat............iiiiiiiiiiiiiieiieinennennens 564
The New Room Entry Structure. it 565
The File Format.o 566

Game Demonstration 19-1: Adding the New Map Format............. 567
The DirectionMap o 568
Changes to the Game Logic i 580
Playing the Game. i e e 582

Converting Old Maps. it ittt ittt it 583

The Directionmap Map Editor. i, 584
The lnitial Map. e 585
Settingand Clearing Tiles. i 586
Loadinga Mapo e 588
Savinga Map 590
Usingthe Editor 593

Upgrading the Tilemap Editor. i i, 594
The Save Function. i 594
The Load Function i e 595

Conclusionttt i i i i i i i et i i et 596

Team LRN

xXXiv Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Part Five
Algorithms597

CHAPTER 20
SORTING DATAs s s s s s s s v s = » v «» 588

The Simplest Sort:Bubble Sort. 600
Worst-Case Bubble Sort........ 601
Graphical Demonstration: Bubble Sort L. 602
Coding the Bubble Sort. 604

The Hacked Sort:Heap Sort......... i, 609
Graphical Demonstration:Heap Sort. i .. 611
Codingthe Heap Sort. o e 613

The Fastest Sort: Quicksortc..cciiiiiieteneeenneeeoneennens 616
Picking the Pivot e 616
Performing the Quicksort 618
Graphical Demonstration: Quicksort. i 621
Coding the Quicksort i e 623

Graphical Demonstration: Race. it iiiiiiiieinnennns 627

The Clever Sort:Radix Sortiiiitiiiiiiiiiiinneennenns 630
Graphical Demonstration: Radix Sorts. 631
Coding the Radix Sort. e 633

Other SOrtsii ittt ittt ittt ttnetenseennetsnnesnnans 637

Application: Depth-Based Games ittt 638
The Player Classo e e 639
The Globals. e 640
The Player Comparison Function. 640
Initializing the Players. 640
Sortingthe Players. 641
Drawing the Players. 641
Playing the Game. e 642

Conclusionttt i i i i e i et et et e 643

Team LRN

Contents XXV

N — r—= L= —Lr"]_

CHRAPTER 21
DATA COMPRESSIONs » s s = = = = = = s BHS

Why CompressData?ciiiiiiiiiiiiiieiiiiinnneeeennns 646
Data Busses.o 647
Thelnternet 649

RunLengthEncoding.......... ... ittt iiiiiiineeennn 649
What Kinds of Data Can Be Used for RLE?. 650
Graphical Demonstration:RLEs. 651
Coding an RLE Compressor and Decompressor. 656

HuffmanTreescciiiiiiiiiiiiiiiieiineeienneenneeonneenns 665
Huffman Decoding.o i e 665
Creatinga HuffmanTree 667
Coding a HuffmanTree Class.ttt 676
Example 21-3. . .o 691
Test Fileso 692
Example 21-4. e 693

Data Encryption.c.iiiiiiiiiiiiiiiiieeineenennenncanenns 693

Further TopicsinCompressionciiiiiiiiiiiiiiieeennns 694

Conclusionttt i i i i e i et e it et 694

CHRAPTER 22
RANDOM NUMBRERS s s s s s s = s v » » 87

Generating RandomiIntegers i iiiiiiiiinnrnnns 698
Generating Random Numbersina Program 699
Usingrandandsrand. i 700
Using a Non-Constant SeedValue i .. 702
Generating a Random NumberWithinaRange. 702

GeneratingRandom Percentsttt 705

GeneratingRandom Floats i ittt 706

Generating Non-Linear Random Numbers. 707
Probability Distribution Graphs.......... L. 707
Adding Two Random Numbers i 709

Team LRN

XX Vi Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Adding Three Random Numbers o ... 711
Graphical Demonstration: Random Distribution Graphs 712
Conclusionttt i i i i i i et et e e 714

CHAPTER 22X
PATHFINDING: = s s s s s s s s s s s s s n 715

BasicPathfinding ittt i, 716
Random Bouncingo 718
Object Tracingo oot e e 719

Robust Pathfinding. ittt 721
The Breadth-First Search. 721
Making a Smarter Pathfinder L 739
Making a Better Heuristic i i 746
The A* Pathfinder 750
Graphical Demonstration: Path Comparisons 753

Weighted Mapsttt nanns 754
Application: Stealth 756

Thinking Beyond Tile-Based Pathfinding 762
Line-Based Pathfinding. 762
QUAALIEES . . o ottt e 764
WVayPointsot e 765

Conclusion ittt i i i i i i i et e it e e 767

CHAPTER 24
TYING 1T TOGETHERI ALGORITHMS: =« « 76583

Making the Enemies Smarter with Pathfinding 770
Adding Pathfinding to the TileMap Class 771
Adding Pathfinding to the DirectionMap Class. 780
Visualizing the GetClosestCell Algorithm. 785
IsThat AllZ . .o 786
Efficiencyo 790
Playing the Game. 791

Conclusion ittt i i i i i it i e i e 791

Team LRN

Contents XX Vii

N — r—= L= —Lr"]_

CONCLUSTION s s s s s s s s s s n n n » 789X

EXtraTopics ..o v vttt ittt ittt tneenesnsnnnansannnns 794
Further Readingand References.............. .. i i, 795
Data Structure Books 795
CHF BoOKS . o et e 796
Game Programming Books 797
Web Sites . ..o 798
Conclusion cii it i i i i i i et e i et e 798

Part Six
Appendixes 799

HPPENDIX H
A C++ PRIMER s s s s s s s s s s » v » « BO1

BasicBit Math ittt neoneconnannans 802
Binary Numbers 802
CoOMPULEr StOrage. v vttt ettt e e e 805
Bitwise Math e e 807
Bitwise Math in CH+ e 807
Bitshifting. e 809

Standard C/C++ Functions Used inThisBook 81l
Basic INnpUt/OULPULo e 811
File 11O . e e e e 814
Math Functions e 817
TheTime Function. e e e e e 818
The Random Functions i e 819

Exceptionsand Error Handling.c i i, 820
ASSBItIONS . . oottt e e e 820
Return Codes . ..ottt e e e e 820
EXceptions. 821

Why Gl ittt ittt ittt taeetonnesansssnnesannass 823

Team LRN

xxviii Contents

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

(@] - T o o ol 824
CONStIUCEONS. .« o v vttt ettt e et e et et e e 824
DS rUCEO S . .« v v e e e e 826
Operator Overloads i e 827
Conversion OPeratorsttt ettt et et 829
The This Pointer e ettt 830
Inline FUNCLIONS i e e e 830
Function Pointers i e 832

ConclusSioni ittt ittt ittt ittt 833

HrrPENDIX K
THE IEMORY LAYOUT OF A
CoOomMPUTER PROGRAM s = s = = = = = = s HXS

The Memory Sectionsci ittt iieeeennennennens 836
The Code MEemMOrY. . . o ittt ittt ittt eeeeonesesssesesesesnsnns 837
The Global Memory.ottt i ittt ittt nnennens 838
Global Variables e e 838
StaticVariables. e 839
The Stack. ittt iiiiiii ittt eeesossossassssesesesoscnanns 840
LocalVariables o e 840
Parameters e e 842
ReturnValues.ot e e 843
TheFree Store.ottt ittt ietieeeessosssssssesesossnsnss 844
L@ oY s ol (1T ' o 845

ArrPENDIX C
INTRODUCTION TO SDL u s s s s » =« » « BH47

The Licensing.ottt tieeeeseessennennannans 848
Setting Up SDL ittt ittt tnennennennennss 849
The Files . ..o e 849
SettingUp the Files 850
Setting UpVisual CH+ . ..o 851
Setting Up Your Project it e 853

Team LRN

Contents XXiX

N — r—= L= —Lr"]_

Setting Up SDL _TTF. ... it iiiiiiiiitiiitiiiieeeeeannnnenns 856
DistributingYour Programsci ittt anenns 858
Using SDL i ittt ittt ieiitnnneeeennnnnns 858
SDL _VIdeOo . .ottt 858
SDL Event Handling.t e e 861
) I I I 7= N 863
SO T . L 863
The SDLHelpers Libraryci ittt iiiiiiinennens 865
The SDLFramettt iiitiintieereeseeseesscascanennsns 867
The SDLGUILibraryottt eennnnenns 869
The SDLGUI Classo ittt e ettt 869
The SDLGUIItem Class ot it e e e 874
The SDLGUI Items oot 876
The SDLGUIFrameo e e e 876
L@ o7 s el (1T ' o 878

HrerPENDIX D
INTRODUCTION TO THE STANDARD
TEMPLATE L1IERARY s s s s s s s s s s » 782

STLPOKt . .ttt ittt ittt enssssssasesssssssasassssasanas 880
STLVersusThisBook.ciiitiitiiiiiitiiriienensnsnsnananes 882
Namespaces. ciiiiiiiiiitinteneeeeseenesnessessssnsanenns 883
The Organization of STL. ittt 885
Lo 41t T 1= 889
Sequence Containers.ttt e 890
Associative Containersttt e e 896
Container Adaptors.ottt e 896
The Miscellaneous Containers.ttt e 898
ConclusSion . ..o ittt ittt ittt ittt 899

INDEXs =« s s s s s s " s s s o v v nnwwnwouowu s 3O1

Team LRN

XXX Letter from the Series Editor

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

LETTER FROM THE
S ERIES ED1TOR

Dear reader,

I’ve always wanted to write a book on data structures. However, there is
simply no way to do the job right unless you use graphics and animation,
and that means a lot of work. I personally think that all computer books
will be animated, annotated, and interactive within 10 years—they have to
be. There is simply too much information these days to convey with text
alone; we need to use graphics, color, sound, animation—anything and
everything to try to make the complex computer science subjects under-
standable these days.

With that in mind, I wanted a data structures book that was like no
other—a book using today’s technology that could live up to my high stan-
dards. So I set out to find the perfect author and finally Ron Penton came
along to take on the challenge. Ron, too, had my same vision for a data
structures book. We couldn’t do something that had been done—there are
a zillion boring data structure books—but if we could apply gaming tech-
nology and graphics to teach the subject, we would have something
unique. Moreover, this book is for anyone who wants to learn data struc-
tures and related important algorithms. Sure, if you’re a game program-
mer then you will feel at home, but if you're not, then believe me, put
down that hardbound college text and pick this book up because not only
will you absolutely know this stuff inside and out by the time you’re done,
but you will have an image in your mind like you have never had before.

All right, now I want to talk about what you’re going to find inside.

First, Ron has really outdone himself with the demonstrations in this book.
I would have been happy with little dots moving around and some arrows,
but he has created an entire system to build the book demos in so that you
can see the data structures working and the algorithms processing them.
It’s simply amazing to actually see bubble sort, quick sort, heap sort, and
so on all race each other, or the insertion and deletion of nodes in a tree.
Only a game programmer could bring these and more to you—no one
else would have the programming mastery of all the fields necessary to

Team LRN

xXxxi Letter from the Series Editor xXXXxi

N — r—= L= —Lr"]_

pull this off. On the other hand, if you are a game programmer, then you
will greatly appreciate Ron’s insight into applications of various data struc-
tures and algorithms for game-related programs. In fact, he came up with
some pretty cool applications I hadn’t thought of!

So what’s inside? Well, the book starts off with an introduction, gets you
warmed up with arrays, bit vectors, and simple stuff like that, and talks
about the use of SDL (the simple direct media layer) used for the demos.
Then the book drives a steak through the heart of the data structure drag-
on and covers asymptotic analysis, linked lists, queues, heaps, binary trees,
graphs, hash tables, and the list goes on and on. After Ron has made you a
believer that hash tables are the key to the universe, he switches gears to
algorithms and covers many of the classic algorithms in computer science,
such as sorting, searching, compression, and more. Of course, no book
like this would be complete without coverage of recursion, and that’s in
here, too—but you will love it because for once, you will be able to see the
recursion! Finally, the book ends with primers on C++, SDL, and the stan-
dard template library, so basically you will be a data structure god when
you’re done!

In conclusion, this book is for the person who is looking for both a practi-
cal and a theoretical base in data structures and algorithms. I guarantee
that it will get you farther from ground zero than anything else.

st o=

André LaMothe
Series Editor

Team LRN

F““W r e] Nontin =
Introduction

What is a computer program? When you get down to the lowest level, you can sepa-
rate a program into two main sections: the data and the instructions that operate
on the data. These two sections of a program are commonly called the data struc-
tures and the algorithms.

This book will teach you how to create many data structures, ranging from the very
simple to the moderately complex.

Understanding data structures and algorithms is an essential part of game pro-
gramming. Knowing the most efficient way to store data and work with the data is
an important part of game programming; you want your games to run as quickly as
possible so you can pack as many cool features into them as you can.

I have a few goals with this book:

® Teach you how the most popular data structures and algorithms work
® Teach you how to make the structures and algorithms

® Teach you how to use the data structures in computer games
Mark Twain once said this:

It is a good thing, perhaps, to write for the amusement of the public. But it is a far
higher and nobler thing to write for their instruction.

I have always tried to help people whenever they need it. However, most of my help
has been interactive—in chat rooms or in person. People ask me questions, and 1
answer them. If they don’t understand, I can explain it better. A book is a different
format for me because you cannot ask me a question if there is something you
don’t understand. So I have used the only method I can think of to prevent you
from needing to ask questions: I explain everything. Well, not quite everything
because that is pretty much impossible, but I have tried to explain as much as possi-
ble to help you understand things better.

Team LRN

Introduction xxxiii

N — r—= L= —Lr"]_

Who Is This Book For?

If you're standing in the bookstore reading this Introduction and wondering, “Is
this book good for me?”, then read this section. If you’ve already bought the book,
thank you! I am going to assume that you’re reading this book because you want to
learn more (unless some diabolical person is forcing you to read this as an arcane
form of torture...).

This is a somewhat complex book because it deals with lots of concepts. However, I
feel that I have included ample introductory material as well. Therefore, this book
is for the game programmer who is just starting out at an infermediate level. So what
do I expect you to know?

I expect you to know basic C++, but don’t feel confused if you don’t feel like an
expert. Pretty much every complex topic I use in C++ is covered in Appendix A, so
if you’re unfamiliar with a concept or just forget how something works, take a few
minutes to read that appendix.

The most complex feature of C++ that I use is templates, but you don’t need to know
about them before you read this book. Chapter 2 is an extensive introduction to
templates, so don’t worry if you don’t know what they are just yet.

One advanced concept I use often in the later parts of the book is recursion, but
you don’t have to know about that, either. Chapter 10 is a small introduction to
recursion.

This book is for anyone who wants to learn more about how a computer works,
how to store data, and how to efficiently work on that data. All of this material is
essential to game programming, so take a glance at the Table of Contents. If there
is anything there that you don’t already know about, this book is for you. Even if
you know a little about the topics, this book is still good for you because every
chapter goes in depth about these subjects.

Topics Covered in This Book

In this book, I cover many data structures and how to use them in games, ranging
from the simple (arrays) to the complex (graphs and trees).

I have tried to make every chapter follow a certain format. First, I begin explaining
the data structure or algorithm in theory so that you can see how it works and

why it works. After that, I show you an interactive Graphical Demonstration of the
structure, which is a demo on the CD that you can play around with to help you

Team LRN

xxxiv Introduction

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

understand how it works. These demonstrations all use the Simple DirectMedia Layer
(SDL) multimedia library, which I go more into depth on in just a little bit. All of
these demonstrations are located in the \demonstrations\ directory on the CD.

After that, I show you how to actually code the structure or algorithm in C++. The
code for these sections is mostly platform free, so it will usually compile on any
compiler. I mention any sections that are platform-specific in the book. All of

the code for the data structures and algorithms can be found on the CD in the
directory \structures\ for your convenience. Copies of the files have also been
placed in the directories of every demo that uses them. Whenever necessary, I have
included console mode Examples on how these structures work in the \examples\
directory on the CD. All of the examples use pure C/C++, with no extra SDKs or
APIs needed, so they use input and output to the text console window on your
computer.

CAUTION

You are free to use any of the data structures included on the CD in any projects
you use. However, be warned; they were desighed to demonstrate the structures
and are not super-optimized. Many functions can be made faster, particularly the
small functions that can be inlined (see Appendix A).You cannot copy any of the
structures because none of them implements proper copy constructors.
Whenever you pass a structure into a function as a parameter, make absolutely
certain that you pass-by-reference or use a pointer; otherwise, it will mess up
your structure. If you don’t know what this means just yet, look at the functions
that use the data structures; they demonstrate how to use them correctly.

1 [1

Finally, I show you an interactive Game Demonstration, which highlights the usage of
the structure or algorithm in a game-like atmosphere. Most of these games are sim-
ple, but they prove a point. These demonstrations also use the SDL multimedia
library and are located on the CD in the directory \demonstrations\.

Some chapters might deviate from the format to show you different versions of the
structures.

I've separated this book into six main parts:

Team LRN

Introduction XXXV

N — r—= L= —Lr"]_

= Concepts

= The Basics

m Recursion and Trees
= Graphs

= Algorithms

= Appendixes

Concepts

In this part, I introduce you to some of the concepts used when dealing with data
structures and algorithms. You might know some of them, or you might not.

® Basic Algorithm Analysis—This chapter is a little on the theoretical side, and
it deals with topics that are usually taught in school. This chapter shows you
how algorithms are rated for speed so that you can see how to choose the
best algorithm for your needs.

® Templates—This is a somewhat advanced C++ concept. Some C++ books
don’t cover templates well, and because this book uses them extensively, I
feel that it is a good idea to include a chapter on how to use them.

You can safely skip this section if you already know the material.

The Basics

In this part, I show you many of the basic data structures used within games and
how to use them. These include

= Arrays—This chapter teaches you everything you ever needed to know about
arrays. You might not think arrays need this much explaining, but they are
an important structure in computing.

= Bitvectors—Bitvectors are an important part of space optimization. This
chapter shows you how to store data in as small of a place as possible.

® Multi-Dimensional Arrays—This chapter expands on the array chapter and
shows you how to use arrays with more than one dimension.

® Linked Lists—This chapter introduces you to the concept of linked data,
which has many insertion and deletion benefits.

Team LRN

xxxvi Introduction

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

® Stacks and Queues—This is the first chapter that doesn’t introduce you to a
new structure. Instead, it shows you how to access data in certain ways.

® Hash Tables—This chapter shows you an advanced method of storing data by
using both arrays and linked lists. It is the last structure covered in this part
of the book.

In addition to those, the last chapter in this part (Chapter 9) is the first of the
“Tying It Together” chapters. There are four of these chapters throughout the
book, one at the end of Parts Two, Three, Four, and Five. In Chapter 9, I introduce
you to the ideas of learning how to store custom game data and designing your
own classes. After that, I show you how to design a basic game using many of the
structures from this part of the book.

Recursion and Trees

In this Part, I introduce you to the ideas of recursion, recursive algorithms, and
recursive data structures, namely frees. This Part includes the following chapters:

® Recursion—This is a small chapter introducing you to the idea of recursion
and how it works. Recursion is a tough subject and isn’t covered well in most
C++ books, so I felt that I needed to include an introduction to the concept.

® Trees—This chapter introduces you to the idea of a linked tree data struc-
ture and how it is used.

= Binary Trees—This chapter shows you a specific subset of trees. Binary trees
are the most frequently used tree structures in computing.

= Binary Search Trees—This chapter shows you how to store data in a recursive
manner so that you can access it quickly later.

= Priority Queues and Heaps—Heaps are another variation of the binary tree.
This chapter shows you how to use a binary tree to implement an efficient
queue variation called the priority queue.

® Game Trees and Minimax Trees—Game Trees are a different kind of tree
used to store state information about turn-based games.

In addition, Chapter 16 expands upon Chapter 9 and adds some tree-like proper-
ties to the game from Chapter 9.

Team LRN

Introduction xxxvii

N — r—= L= —Lr"]_

Graphs

In this part, I introduce you to the graph data structure, which is another linked
data structure that is somewhat like trees. This part of the book is broken down
into the following chapters:

® Graphs—This chapter introduces you to the idea of the graph structure and
its many derivatives. Graphs are used all over in game programming.

® Using Graphs for Al: Finite State Machines—This is an application of the
graph data structure to the field of artificial intelligence—a way to make your
games smarter.

Chapter 19 applies some concepts from the graph chapter and adds them to the
game from Chapter 16.

Algorithms

Originally, I had planned to include these topics in the previous three parts, but
they really fit better in a section of their own. Some of the topics use concepts from
all three of the previous parts, and others don’t. This part is composed of the fol-
lowing chapters:

® Sorting Data—This chapter covers four different sorting algorithms.

= Data Compression—This chapter shows you two ways to compress data.

= Random Numbers—This chapter shows you how to use the random number
generator built into the C standard library and how to use some algorithms
to get impressive results from generating random numbers.

= Pathfinding—This chapter shows you four different pathfinding algorithms
to use on the maps you create in your games.

The final chapter, Chapter 24, expands on the game from Chapters 9, 16, and 19
by adding pathfinding support to the Als in the game.

Appendixes

Finally, there are four appendixes in the book that cover a variety of topics:

® A C++ Primer—This appendix attempts to cover the features of C++ that are
used in this book so you don’t have to go running for a reference book every
time I use something that you want to know more about.

Team LRN

xxxviii Introduction

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

® The Memory Layout of a Computer Program—To understand how to use a
computer to its fullest extent, you must know about how it structures its
memory. This appendix tells you this information.

® Introduction to SDL—This is a basic introduction to the Simple DirectMedia
Layer library, which the book uses for all of the demonstrations. It also goes
over the two SDL libraries I've developed to make the demonstrations in the
book.

® Introduction to the Standard Template Library—This appendix introduces

you to the G++ Standard Template Library, which is a built-in structure and
algorithm library that should come with every compiler.

What’'s on the CDO?

The CD for this book contains every Example, Game Demonstration, and
Graphical Demonstration for the book. There are 33 Examples, 26 Game
Demonstrations, and 34 Graphical Demonstrations. That is 93 examples and
demonstrations! That should be enough to keep you busy for a while.

Just in case you end up wanting more, however, there’s even more stuff on the CD.
There are 19 code files full of the data structures and algorithms in this book, con-
veniently located in the directory \structures\, as well as the two SDL libraries I've
developed for the book (see Appendix C).

In the \goodies\ directory, there are four articles—two dealing with trees and two
dealing with SDL. They expand on the topics covered in this book.

In addition, the SDL, SDL_TTF, STLPort, and FreeType libraries (see Appendixes
C and D for more information) are in that directory.

Figure I.1 shows you the layout of the CD.

Team LRN

Introduction xxxix

N — r—= L= —Lr"]_

B3 o
E-) demonstratons
H-3) examples
B+ goodies
é-w;. Articles
5.9 SOL

B-3) Trees
-----) Trees Fart 1_flles
el Trees Part 2 - Binary Trees_fies
-----) Freetype

(= soL

------ o win32
-3 Source Code
=2 SOL_TTF

-3 Source Code
-3 STLPort
B+ structures

3 SOLGUI
-3 SDLHelpers

) GameDey_net - The Simple Directivedia Layer from a Win32 Perspective, Part 1 £
) Gameley_net - The Simple DirectMedia Layver from a WIN32 Perspective, Part 2 ¢

Figure I.1

This is the way
the CD is laid
out.

The Simple Directmedia

Layer

This is a game programming book, and as such, I had to choose an Application
Programming Interface (API) to use that would allow me to graphically demonstrate
the data structures and show them to you in real-world demos. At first, I thought I
would use DirectDraw, but that idea was quickly laid to rest. DirectX, although a wor-
thy API, is just a little too low level, and it would likely get in the way of describing
the data structures. Also, I would have had to include a lengthy section telling you
how to set up DirectX and all its hundreds of structures.

Team LRN

xI Introduction
=T e e = S e

A friend of mine recently introduced me to a very simple API called SDL: The
Simple Dirvectmedia Layer. I think that the S part of the title should be emphasized
because the API is simple. I was able to make a working SDL program (no, it wasn’t
“Hello World”. It’s the Array Demonstration from Chapter 3) in less than an hour
after first looking at the header files. It truly is that simple.

Therefore, I decided that SDL was the API I wanted to use to demonstrate the con-
cepts in this book. It’s simple enough so that it will not get in the way of the theory,
and I am confident that you will be able to pick it up in almost no time at all. I've
provided a simple primer for SDL in Appendix C to get you started with it. So if
you get confused by the graphics code, just take a peek at Appendix C. I promise,
the book won’t go anywhere until you return.

Coding Conventions Used in
This Book

Although the point of this book is to demonstrate how to effectively organize your
data, organizing your code is still somewhat important. Because of this, I will be
adopting a simple coding standard.

In an effort to emphasize the scope of the different variables within the book, I
have used a simple mutation of the popular Hungarian Notation:

® Global variables will be prefixed with g_.
Examples: g_name, g_state

® (Class/Structure member variables will be prefixed with m_.
Examples: m_name, m_state

= Parameter variables will be prefixed with p_.
Examples: p_name, p_state

® Local function variables have no prefix.
Examples: name, state

Besides the prefix, all variables will be lowercase.

Class and function names will be title-cased, with each major word in the name
capitalized.
Examples: ClassOne, ClassTwo, Function(), FunctionOne(), DoSomething()

Team LRN

Introduction xli

N — r—= L= —Lr"]_

Artwork

Two people provided the artwork used for the demos in this book. First and fore-
most, I would like to thank Steve Seator for making all of the person sprites

and weapon icons in the game demos. He has an excellent Web site at
http://www.spritedomain.net. If you’re interested in his artwork, I urge you

to visit the site.

The other artist is Ari Feldman, who provided most of the other sprites in the
demos. His Web site is http://www.arifeldman.com.

I would like to thank both of them, because without them, my game demos would
be even cheesier than they already are.

All of the artwork is copyrighted by them, so you cannot use it in your own game
projects.

Are You Ready?*

I suppose you’re getting bored with all of this introductory stuff and anxious to get
to the good stuff, so I’ll stop blabbering on about all of this and let you read on.
Have fun!

Team LRN

This page intentionally left blank

Team LRN

PART ONE

CONCEFPTS

1 Basic Algorithm Analysis

2 Templates

o g WSO . e ' e e e el
w_IJL'Lr_'_"_‘[—| l_—,'—q *'=-—I—.—- I_l_n—'_‘—,JL_nJ '—'\—l_l_[_l{ !._n—A'JLL_r

CHAPTER |

EAS1C
HLGORITHM
HNALYSIS

4 1. Basic Algorithm Analysis

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Almost any computer science teacher would probably kill me for including
this topic as such a small chapter. After all, entire books are dedicated to this
subject. But we’re not computer science professors—we’re game programmers! We
don’t care about all of this highly mathematical stuff, right? Well, that’s only half
right. We should at least pay some attention to the algorithms we write. In this
chapter, you will learn

= How algorithms are rated for growth
® The most common complexity classes

= How each of the complexity classes compares to the others

A Duick Lesson on
Algorithm Analysis

Some people spend their careers studying algorithms and data structures, and you
should be thankful for them. These are the people who invented some of the nifty
things you’ll be using in this book. These things are used because people have
proven that they work. For those of us who don’t want to spend years proving that
the efficiency of algorithm 1 is better than algorithm 2, this is a godsend.

However, I still think that at least some knowledge of how algorithms are analyzed
is required. This section is meant to introduce you to the very basics of these con-
cepts so that you can understand why some of the data structures and algorithms
we use are better than others. Throughout the book, I refer to some of the termi-
nology I've introduced here, so unless you already know a little about algorithm
analysis, I beg you to please read this section.

Big-0 Notation

Big-O notation is a helpful tool that computer scientists often use to help define
the complexity of a function. Simply put, the Big-O of an algorithm is a function
that roughly estimates how the algorithm scales when it is used on different sized
datasets. Big-O notation is shown like this:

O(function);

Team LRN

A ODuick Lesson on Algorithm Analysis 5

N — r—= L= —Lr"]_

The function is usually a mathematical formula based on the letters n and ¢, where
n represents the number of data elements in the algorithm and ¢ represents a con-
stant number.

Imagine having a huge collection of action figures—at least 1,000 of them. But
you're a very sloppy person, and you don’t have them organized in any manner at
all. (Okay, maybe you’re not so sloppy, but just pretend.) Now, one of your friends
comes over and wants to look at your exclusive Boba Fett action figure—the really
rare one. In the worst-case scenario, you need to search through every single one of
your figures because Boba Fett might be the 1000th figure in your collection.

In this example, the Big-O of the search would be O(n), because the number of
items to search is 1,000, and in the worst-case scenario, you have to search through
every figure in the collection. (Technically, the worst case would be not finding him
at all because your mom sold him for grocery money.) Of course, Boba Fett might
be the first figure you look at or he might be the 500th, but when analyzing an
algorithm, you don’t (usually) care about the best case because the best case only
occurs in optimal conditions, which almost never occur.

A number of different functions are typically used to examine the complexity of an
algorithm, and these are (listed in order from the lowest complexity to the highest
complexity) constant, log,n, n, nlog,n, n2, n?, and 2". It’s okay if you don’t know
exactly what these functions do. Just look at the graphs that follow; they will show
you visually how the function looks as the number of data items increases.

0(o)

As I stated before, the C in a Big-O expression is a constant. Figure 1.1 illustrates
the constant function. The graphs produced by the constant function are all hori-
zontal, meaning that no matter how large the dataset is, the algorithm will take the
same amount of time to complete. These functions are usually considered the
fastest. Some of the structures in this book have algorithms associated with them
that approach O(¢) as a best-case scenario.

Figure 1.1

The constant function does not vary
based on the size of the data. It operates

at the same speed, no matter what the
size of the data is.

Team LRN

b 1. Basic Algorithm Analysis

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

O(Log.m)

Figure 1.2 shows the logarithm base 2 function. In case you don’t know, a loga-
rithm function is the inverse of an exponential function. The best way to describe it
is this: In a base 2 logarithm, the vertical component is increased by 1 whenever
the dataset size is doubled. The log of 1 is 0, the log of 2 is 1, the log of 4 is 3, the
log of 8 is 4, and so on. Logarithm-based algorithms are generally considered the
most efficient algorithms in existence that depend on the size of the data.
(Remember: O(¢) algorithms don’t depend on the size of the data.)

Figure 1.2
The Log,n function varies with the size of
logzn the data, but becomes more efficient as
O(n) more data is added.
0 n

0lr)

O(n) is called the linear function. Figure 1.3 illustrates what this function looks
like. Basically, an O(n) algorithm grows at a constant rate with the data size. This
growth rate means that if an O(n) algorithm takes 20 seconds to operate on 1,000
data items, it would take roughly 40 seconds to operate on 2,000 data items. The
scenario of trying to find the Boba Fett action figure is an example of an O(n)

algorithm.
Figure 1.3
The linear function varies directly with
the size of the data.Twice as much data
O n will take twice as long to compute.
0 n
00 log_mn)

This function, shown in Figure 1.4, is a popular lower-bound function for sorting
algorithms. It is basically n multiplied by log,n, so it is larger than any of the

Team LRN

A ODuick Lesson on Algorithm Analysis 7

N — r—= L= —Lr"]_

previous graphs, but compared to some of the more complex functions I discuss
next, it is also considered a fairly efficient algorithm class.

Figure 1.4

The n log,n function varies with
the size of the data, but has a
relatively shallow curve, which
makes functions that fall into this
category seem efficient.

O(n) n logzn
0 n
O(n=)

This is where the more complex functions begin. An n? function (shown in Figure
1.5) is typically considered inefficient for most tasks because the function grows at
an enormously high rate. For example, if it took 20 seconds to perform an algo-
rithm on 1,000 data items, it would take 80 seconds for 2,000 items—4 times as
long! In general, you should stay away from O(#n?) algorithms unless you have no
other choice. An example of an O(7?) function would be a for-loop with another
forloop nested inside.

Figure 1.5

The n? function has a steep incline,
which makes it undesirable.

Team LRN

8 1. Basic Algorithm Analysis

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

0O(n=)

If you thought O(n2) was bad, O(7?) is even worse! Even though the graph looks
almost identical to O(n?) (see Figures 1.5 and 1.6), it shoots up at a much higher
rate. If it took 20 seconds to perform an algorithm on 1,000 items, it would take

160 seconds for 2,000 items! That’s 8 times longer!

Figure 1.6
The n? function has an even
steeper incline than the n?

function.

on)| [n?
0 n
0o(2")

The O(2") function is commonly called the base-2 exponential function. Every time
the number of items in the algorithm increases by 1, the time it takes to complete
the function doubles. See Figure 1.7 for the graph of this function. These are really
inefficient algorithms—take care to avoid these at all costs!

Figure 1.7

The base-2 exponential function is
inefficient; every time you increase
the size of the data by |, the time
it takes to complete the function
doubles.

Team LRN

-‘A_';lill;!il:k"'LESSD_n on Algorithm Analysis

NOTE

O(2") algorithms are actually faster than O(n?) algorithms for very small
datasets. This has to do with the way an O(2") algorithm slopes: It starts out slow,
but shoots up quicker than all the other algorithms. For values of n that are less
than 10, O(2") is faster than O(n?).

Comparing the Various
Complexities

The following table is a comparison of the various functions that gives you a better

understanding of how the complexity functions affect the running time of an algo-

rithm. (This is a generic algorithm prediction that assumes it takes exactly 1 second
to process each item.)

TABLE |I.I Running Time Comparisons

Complexity 16 Items 32 Iltems 64 Items 128 Items
O(log,n) 4 seconds 5 seconds 6 seconds 7 seconds
O(n) 16 seconds 32 seconds 64 seconds 128 seconds
O(nlog,n) 64 seconds 160 seconds 384 seconds 896 seconds
O(m) 256 seconds |7 minutes 68 minutes 273 minutes
O(m) 68 minutes 546 minutes 73 hours 24 days

O(2") 18 hours 136 years 500,000 millennia =~ ———-*

* My calculator doesn’t go this high.

As you can see, this table puts things in a better perspective. Even if you were to
speed up a 2" algorithm so that it spends a millisecond per item, it would still take
millions of years to complete for 128 items. Isn’t that insane? I hope you under-
stand now why algorithms should be analyzed carefully for their complexity. You
could accidentally create an algorithm that takes too much time to complete—and
not even realize it!

There is one last thing to note about algorithm complexity. Let’s say that you have
an algorithm that performs a double-nested loop on 7 items and then performs a

Team LRN

10 1. Basic Algorithm Analysis

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

single loop on the same number of items. What would the complexity of this algo-
rithm be? It is natural to assume that it would be O(n2 + n), but that is incorrect.
Remember, when you measure the complexity of an algorithm, you really care only
about how it grows as the data size increases. Eventually, the single n term will be
overpowered by the much larger n? term and become insignificant. So the correct
complexity of the algorithm is actually O (7).

Also, keep in mind that dividing or multiplying by a constant has no effect on the
complexity of an algorithm. If you had an algorithm consisting of a single for-loop
and it only processed half of the items, the algorithm would not be O(n/2). It
would still be O(n) because the growth of the algorithm is still linear; doubling the
number of items that the algorithm works on still doubles the amount of time
taken to complete the algorithm.

I'm sorry to lay down so much mathematical buzz-speak so early in the book, but I
feel that it’s important. If you walk away from this chapter having learned one
thing, it should be the knowledge of which algorithm classes are generally faster
than others.

Graphical Demonstration:
Algorithm Complexity

I've included a demonstration of the different complexity graphs on the CD-ROM
that comes with this book. It’s a really simple program, and I encourage you to play
around with it to gain an understanding of how the graphs of the functions look.
The program is quite simple to understand, and you can find it in the \demonstra-
tions\chO1\Demo01 - Algorithm Complexity\ directory on the CD.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Conclusion n

N — r—= L= —Lr"]_

When you start the program, as shown in Figure 1.8, you see a graph, six check

boxes, and four arrows.

__ Algorithm Complexity Graphical Demaonstration = & Figure 1.8

leg n ni2 ﬁ This is a screenshot of the

') & demonstration in action.
24N < :,:I ‘:\’ >
100 !

0 Data size 100

You can click on any of the check boxes to make a graph appear. You can click any
combination at the same time, which enables you to compare the different graphs.

The arrows adjust the graph axes. The up and down arrows increase and decrease
the Y axis within a range of 10-5,000. The left and right arrows decrease and
increase the X axis, also within a range of 10-5,000.

Conclusion

Algorithm analysis is a complex subject that many computer scientists spend a lot
of time analyzing. Sometimes the topics in this chapter are called asymptotic analysis,
which is the same thing. If you’re confused by some of the stuff in this chapter,
don’t worry about it much; instead, just try to remember which running times are
faster than others. Whenever I use Big-O notation in this book (which isn’t fre-
quently, by the way), I always take time to explain it.

Team LRN

This page intentionally left blank

Team LRN

‘—‘JLLJ-—‘_‘[—' ==L — M= —] l"J‘zﬁ—’lﬂi

CHAPTER 2

TEMPLATES

19 2. Templates

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

In this chapter, you learn about templates. Templates are a fairly important con-
cept in computer programming when you are dealing with data structures
because they allow you to easily maintain your code. If you already know about
templates, you can safely skip this chapter, but if you are not very good at them
(or have never even heard of them), I’d advise you to read on. In this chapter, you
will learn

= What a template is

= How to create template functions

= How to create template classes

= How to use multiple template parameters
= How to use values as a template parameter
® The limitations and problems of templates

= How templates work under the hood

What Are Templates?

Templates are a relatively new concept in computer languages. A template is a soft-
ware engineering tool that enables a programmer to reuse code on many different
datatypes.

The best way to describe a template is as a pattern, or a mold, which will be reused
over and over again. A real-world example would be the procedures of a company
that manufactures figurines. First, the company produces a mold of the figure they
want to produce. After that, they choose which material they want the figures made
of, and then they use the mold to create the figure. With the same mold, they can
make a figure out of plastic, pewter, iron, or even gold and silver.

A template in C++ is basically the same concept. A template is a mold for an algo-
rithm or a class, and the programmers decide what type of material they want to
use with it. This is a tremendously powerful tool, as you can see, because you can
make a generic algorithm or a class that will theoretically operate on hundreds of
different datatypes. The main advantage of using a template is that it allows you to
stop copying and pasting code that operates on a specific datatype and changing it
to a different datatype.

Team LRN

Template Functions 15

N — r—= L= —Lr"]_

Say you want a specific algorithm to work on six different types of datatypes.
Without templates, you would have to copy and paste the algorithm six times and
manually change the datatypes in each copy! With templates, it is possible to make
only one copy of the code and use that one copy over and over again. The algo-
rithm on the right-hand side of Figure 2.1 is your mold, which allows you to make

figurines of any type you want.

Figure 2.1
Copies of code Copies of code]
without templates with templates Using templates, you

can make just one
function that operates

1 2 1 with many different
datatypes.

3 4

5 6

C++ supports two kinds of templates: template functions and template classes.

Template Functions

A template function is a function that can operate on a generic datatype, which will
allow you to use the same function on many different types of data.

Doing It the 0Old Way

Say that you want to make a function that performs an operation on an array of
integers that sums up every item in the array and returns the result. Back in the
bad old days, before templates, you would just make a function to do this, like so
(the following functions are based on Example 2-1 on the CD, which you can find
in the directory \examples\ch02\01 - Template Functions\):

Team LRN

16

2. Templates

NOTE

Although Chapter 3, ‘“Arrays,” discusses arrays, | am introducing them a little bit
earlier here. If you’re reading this book, you should probably know a little bit
about arrays already. However, if you don’t know about them, you may want to
skip ahead and read the first part of Chapter 3 and then come back here.

int SumIntegers(int* p_array, int p_count)
{
int index;
int sum = 0;
for(index = 0; index < p_count; index++)
sum += p_array[index];
return sum;

}

0 N o o B W N

Line 3 defines the index variable, which will be used to access each item in p_array.
On line 4, I define the sum variable, which is initially empty, and on lines 5 and 6,
we loop through the array, adding each index to the sum. Lastly, on line 7, the sum
is returned.

A little further down the line, you might want to do the same thing, but with floats.
Without templates, you would probably just copy the code and replace the ints
with floats, like this:

1: float SumFloats(float* p_array, int p_count)
2: {

3 int index;

4 float sum = 0;

5: for(index = 0; index < p_count; index++)

6 sum += p_array[index];

7 return sum;

8

:)

This is not too difficult, right? So what’s the problem? What happens if you need to
change the way the function sums the numbers? Although this situation is not very
likely with the given example, it happens all the time in real code. You’d have to go
back and change every copy of the code that you’ve made. What a pain in the butt!

Team LRN

Template Functions 17

e = = = L T =

Doing It with Templates

C++ comes to the rescue by allowing us to create template functions, which use the
same algorithm but operate on different datatypes. The syntax for a template func-
tion is such:

template< class T >
returntype functionname(parameter Tist)

You first declare that you are creating a template by putting in the template key-
word. You then put the class keyword and the name of the generic datatype after
that, contained within the <> brackets. In the preceding example, T (which stands
for “Template”) is the name of the generic datatype, and whenever I want to use
the class in the function, I refer to it as T. After that, you write the function declara-
tion the same way you normally would. In my examples, I separate the template
declaration and the function declara-
tion into two lines, but you aren’t

required to do that. Technically, they NOTE
can be on the same line, but I prefer T is called a parameterized type in the
separating them because it makes the world of software engineering.

code more readable.

— —

Let’s look at an example of a template
function by condensing the two sum functions into one template function called
sum:

1: template< class T >

2: T Sum(T* p_array, int p_count)

3: {

4: int index;

5: T sum = 0;

6: for(index = 0; index < p_count; index++)
7 sum += p_array[index];

8: return sum;

9: }

On line 1, I use the template keyword to tell the compiler that I am creating a tem-
plate function that will have one generic datatype as a parameter, henceforth
referred to as T. You can replace T with whatever name you want as long as it does not
conflict with an existing class or type name. Some people would prefer to use more
descriptive type names, such as DataType or SumType. Whatever name you choose
should make sense and describe the usage of the datatype within the function.

Team LRN

18 2. Templates

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

— — On line 2, I declare the function signa-
CAUTION ture. It will return an instance of type T,
and it takes a pointer of type T as a para-
meter, which will be the array. Note how
the count variable is an integer; there is

:| It is essential, upon choosing a name [
for your generic datatype within the
template, that you choose one that

does not conflict with an existing no need to use a generic counting type
class name. For example, if you have because arrays are always indexed on
a template function that calls its discrete integer boundaries.

generic class foo, but you also have a
regular class named foo, the compil-
:| er won’t like this and will barf error

messages all over you.

On line 4, I declare an integer index
variable, which will be used to access
L the appropriate items in the array. On
line 5, I declare the sum variable to be of
type T, meaning that the sum will be the
same datatype as the items in the array. I
also initialize it to the value ‘0’, which is important because the datatype T must
have an overloaded assignment operator that takes a parameter of type int
(because the compiler treats the constant ‘0’ as an integer). If you are unfamiliar
with operator overloads, please read about them in Appendix A, “A C++ Primer.”

1 1

On line 6 and 7, I loop through the array and add every item in the array to the
sum variable. Please note, however, that in order for line 7 to operate correctly,
type T must have a working += operator. I go over the limitations of parameterized
types in more detail in a later section.

On line 8, I simply return the sum variable.

Let’s see this new function in action! Let’s test it out on two different types of
arrays!

1: void main()

2: |

3 int intarrayf10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
4. float floatarray[9] = { 1.1f, 2.2f, 3.3f, 4.4f, 5.5f,
5: 6.6f, 7.7f, 8.8f, 9.9f };

6

7

8

// first sum the two arrays using the non-templated functions.

: cout << "Using SumIntegers, the sum of intarray is: ";
9: cout << SumIntegers(intarray, 10) << endl;

10: cout << "Using SumFloats, the sum of floatarray is: ";
11: cout << SumFloats(floatarray, 9) << endl;
12:

Team LRN

Template Classes 19

N — r—= L= —Lr"]_

13: // now sum the two arrays using the templated function.
14: cout << "Using Sum, the sum of intarray is: ";

15: cout << Sum(intarray, 10) << endl;

16: cout << "Using Sum, the sum of floatarray is: ";

17: cout << Sum(floatarray, 9) << endl;

18: }

On lines 3 and 4, I declare the two arrays, one of type int and one of type float.
On lines 8 through 11, I call the two non-templated sum functions SumIntegers and
SumFloats and output the results to the console.

Lastly, on lines 13 through 17, instead of using the two separate sum functions, I use
the templated Sum function on each array, even though they are of two totally differ-
ent datatypes! Magic? Nope, it’s one of C++’s niftier features.

Figure 2.2 shows Example 2-1 in action.

o x| Figure 2.2

B C:\Documentz and Settings\All Users\Documentz\Data Structures\COVexamplesich02\a01\Debu. ..

Screenshot for
Example 2-1.The
Sum function was
used on two
different arrays
with no problems.

Template Classes

A template class is similar to a template function, except that a template class is an
entire class that operates on a generic datatype. I base most of my data structures
on templates within this book, so you need to understand what a template class is.

For example, say I want to create a class that is meant to retain a sum and have
numerous types of data added to it. This is similar to the sum function I created in

Team LRN

20 2. Templates

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

the previous section; however, it is based on a class instead. The following classes
can be found on the CD in the directory \examples\ch02\02 - Template Classes\)

1: class IntAdder
2: {

3: public:

4 // constructor

5: IntAdder()

6: |

7 m_sum = 0;

8: }

9: // add function

10: void Add(int p_number)

11: |
12: m_sum += p_number;
13: 1}

14: // get sum function.
15: int Sum()

16: |

17: return m_sum;
18:)}

19: private:

20: // sum variable.
21: int m_sum;
22: };

In the previous section, I declared a local variable sum to maintain the sum of the

numbers as the function looped through the array. This time, I let the class main-
tain a variable called m_sum (line 21) and keep track of it. On lines 5-8, I declare a
constructor that initializes the m_sum variable to 0.

On lines 10-13 is the Add function, which takes an integer as a parameter and adds
it to the m_sum variable.

The function Sum on lines 15-18 returns the current sum.

Say you now need the same functionality, but you need it to add floats instead of

integers. You could copy and paste the entire class and create something that looks
like this:

1: class FloatAdder
2: {

3: public:

4: // constructor

Team LRN

Template Classes 21

N — r—= L= —Lr"]_

5: FloatAdder()

6:

7: m_sum = 0.0f;

8: }

9: // add function

10: void Add(float p_number)
11: |

12: m_sum += p_number;
13: 1}

14: // get sum function.
15: float Sum()

16: |

17: return m_sum;
18: 1}

19: private:

20: // sum variable.
21: float m_sum;
22: };

In this class, there are three functions. The constructor clears the m_sum variable, Add
adds a number to the current sum, and Sum returns the value of the current sum.

Look at how long the function is this time. It’s no longer a simple 8-line function,
but an entire 22-line class, almost three times as large! What happens if the class is
responsible for doing even more things (like computing an average as well)? What
happens when the class is changed affer you have already copied it and modified it
to work with floats? Now that you see the problem, you’ll have to track down every
single copy of the class that you’ve made and change each one! What a mess! Chances
are likely that you won’t have every function in an organized manner, and each one
will probably be placed somewhere that seemed appropriate at the time you coded
it. However, you have no reliable way of tracking each and every copy of the code, so
the code will be thrown around and separated by chaos, as in Figure 2.3!

- Figure 2.3
ntClass c
HAOS The organization of a non-
templated class tends to be
\(\Po% FloatClass chaotic because you almost never
(@) have all of the classes in the
same file.
(&)
DoubleClass /7408

Team LRN

el 2. Templates

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

So instead of copying the entire class every time you want it to operate on a differ-
ent datatype, you can create a templated class that operates on a single generic
type, like this:

1: template< class T >
2: class Adder

3: |

4: public:

5: // constructor

6: Adder()

7 {

8 m_sum = 0;

9: }

10: // add function
11: void Add(T p_number)

12: |

13: m_sum += p_number;
14: }

15: // get sum function.
16: T Sum()

17: |

18: return m_sum;

19:)

20: private:

21: // sum variable.
22: T m_sum;
23: };

On line 1, I declare that I am creating a template that will operate on one generic
datatype, named T. Starting at line 2, I declare the class just as I usually would,
except that it operates on type T instead of a specific datatype.

On line 8, I set the initial value of m_sum to 0, which, as before, requires that the
datatype have an assignment operator capable of accepting an integer parameter.
On line 13, I increment the m_sum variable, which requires that datatype T have a +=
operator.

This is the syntax required to declare an instance of the adder class that operates
on integers:

Adder<int> intadder;

Team LRN

Template Classes e3

N — r—= L= —Lr"]_

The declaration of a template class instance is almost the same as declaring an
instance of a normal class or datatype, except that a template class must have its
parameterized types explicitly declared, within the arrow brackets, after the class
name. In this example, I created an adder of type int, called intAdder. Here’s how
to use the adder class:

1: void main()

2: {

3 IntAdder iadderl;

4. Adder<int> iadder2;
5: FloatAdder fadderl;
6 Adder<float> fadder?;
7

8

int 1;
. float f;
9: for(i=0, f=0.0f; i <10; i++, f += 1.1f)
10: |

11: iadderl.Add
12: iadder2.Add
13: fadderl.Add
14: fadder2.Add
15: 1}

16: cout << "The integer sum using an IntAdder: " << iadderl.Sum() << endl;
17: cout << "The integer sum using an Adder: " << jadder2.Sum() << endl;
18: cout << "The float sum using a FloatAdder: " << fadderl.Sum() << endl;
19: cout << "The float sum using an Adder: " << fadder2.Sum() << endl;

20: }

i

—~ o~ o~ o~

)
i);
f)
f);

s

On lines 3-6, I create four adders, which I'll use to keep track of sums.

On lines 7-11, I loop 10 times, telling the adders to add 10 different values, and
then retrieve the final sums on lines 16—-19. Neat, huh?

Team LRN

24 2. Templates

Figure 2.4 shows Example 2-2 in action.

@ c:\Documentz and Settings\All Users\Documentz\Data Structurss\CD\examplesich02\e02\Debu... _ | X Flgure 2'4

45 *1 Thisisa
. 49.5 | screenshot for
Example 2-2.

Multiple Parameterized
Types

Templates do not have to be based on a single generic datatype. A template class or
function can have any number of parameterized types! You declare each type
within the arrow brackets as such:

template< class one, class two, class three >

You must separate each datatype name by a comma within the brackets. This
scenario is an example of a time when naming your generic datatypes with descrip-
tive names becomes important because each generic type usually has a different
purpose.

Functions and classes that have multiple template parameters are usually chunks of
code in which you want to modify more than one datatype to suit different pur-
poses. Without templates, it is even easier for your code to degenerate into pure
chaos, as shown in Figure 2.5.

Team LRN

Multiple Parameterized Types 5

N — r—= L= —Lr"]_

Figure 2.5
Int-Int-Class
Int-Float-Class This demonstrates the chaos
c separating all the different
CcH HAOS kinds of classes without using
A0s o° templates.
ol P

Float-Float-Class

Float-Int-Class

Q
S A,
o‘(\‘“o “og

Next, I’ll create a template function that determines the average of an array
of arbitrary datatypes. (This class can be found on the CD in the directory
\examples\ch02\03 - Multiple Parameters\.)

1: template< class Sumtype, class Averagetype >
2: Averagetype Average(Sumtype* p_array, Averagetype p_count)
3:

4 int index;

5: Sumtype sum = 0;
6: for(index = 0; p_count > index; index++)

7 sum += p_array[index];

8 return (Averagetype)sum / p_count;

9: }

On line 1, I declare that I will be making a template that has two generic datatypes:

a Sumtype and an Averagetype. The Sumtype is the datatype I will be summing, and
the Averagetype is the datatype that I will be returning from the function.

On line 2, I declare that I am returning a value of type Averagetype and receiving
an array of Sumtypes. Note also that the count is of type Averagetype because the
average of a list is defined as the sum over the count.

On lines 6 and 7, I loop through the list, just like the Sum template function I
defined earlier, except for one small difference. Because the p_count variable is no
longer of definite type, it must support a > (greater-than) operator that compares
itself to an int.

The rest of this function is the same as the Sum template function I created earlier,
with one exception: On line 8, I convert the local variable sum into an Averagetype,
divide the sum by the count, and return the result. This line assumes that it is possi-
ble to convert an instance of Sumtype into an Averagetype.

Team LRN

26 2. Templates

Here, you can see this function in action:

1: void main()

2: |

3: int arrayfl10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

4: cout << "Average(array, 10) = " << Average(array, 10) << endl;

5: cout << "Average(array, 10.0f) = " << Average(array, 10.0f) << endl;
6: }

An array of integers is defined on line 3. On lines 4 and 5, the Average function is
called with two different sets of parameters. The first one is called with 10 as the sec-
ond parameter, and the second one is
called with 10.0f as the second parame-

ter. Because C++ treats 10 as an int and NOTE
10.0f as a float, the two functions are The compiler determines the types
called with two different sets of template of a template function implicitly. In

parameters: <int, int> and <int, float>. plain English, the compiler analyzes
the datatypes that are passed into

The compiler determines which the function and creates the appro-

datatypes to use at compile time by ana- priate template. The type of a tem-

lyzing the parameters of the function. plate function is never determined
Because 10.0f is passed in on line 5, the by its return value, only by the para-

compiler treats that as a float, calls the meters.
<int, float> version, and returns the
average as a float.

me

The results of the example are shown in Figure 2.6.

B C\Documents and Settings\All Users\Documents\Data Struciures\CDVvexamplesichO2\e03\Debu... - O x| Flgure 2-6
rray, 18.8fF) = 5.5 = This is a screenshot for
Example 2-3.

Team LRN

Using Values as Template Parameters 27

N — r—= L= —Lr"]_

Using Values as Template
Parameters

Until now, you’ve only seen me using datatypes as parameters for a template func-
tion or class. However, you don’t necessarily need to use datatypes as parameters;
C++ allows you to use values of a particular datatype. C++ is so flexible that it even
allows you to use a value of a generic datatype as a template parameter.

Using Values of a Specific
Datatype

First, let me show you how to declare a template parameter with a value of a spe-
cific datatype. Templates of this type are declared as such:

template< datatype value >

where datatype is a datatype and value is a specific value of that type. Note that
because templates are a compile-time feature, the value in a template parameter
must be resolved at compile time; that is, you cannot create a template based on a
variable.

Try using this feature by creating a simple fixed-length array class. (You can find
this class in the directory \examples\ch02\04 - Values as Parameters\ on the CD;
don’t confuse it with the Array class of the same name found in the \structures\
directory. Arrays will be discussed in far more detail in Chapter 3.)

1: template< class Datatype, int size >
2: class Array

3:

4. pubTic:

5: // set function, sets an index

6: void Set(Datatype p_item, int p_index)
7 {

8 m_array[p_index] = p_item;

9: }

10: // get function, gets an index

11: Datatype Get(int p_index)

12: |

13: return m_array[p_index];
14:)

15: private:

Team LRN

238 =

Templates

16: // the array.
17: Datatype m_array[sizel;
18: };

On line 1, I declare that I am creating a
template that will have one generic
datatype, Datatype, and one integer
value, size. On lines 6-14, define the
Set and Get functions, which set an item
in the array or get an item in the array.

The most important part of this class
declaration is on line 17: I declare an
array of Datatype with a size of size,
which will never change.

Figure 2.7 shows how three different
Array classes are created, using different
parameters.

NOTE

Note that template classes with dif-
ferent value parameters are consid-
ered totally different types. For
example, if you create a function
that takes an Array<int,5> as a para-
meter and you try passing an
Array<int,4> into it, the compiler
will give you an error.

Array<int,5> Array<int,4>

Array<double,3>

Figure 2.7

The Array class with

three different

parameter

configurations.

Remember that
doubTles are twice as
large as ints.

Here it is in action:

1: void main()

2: {

3 Array<int, 5> iarray5;
4. Array<int, 10> iarraylO;
5: Array<float, 15> farraylb;
6: diarray5.Set(10, 0);
7: iarray5.Set(3, 1)

8: iarrayl0.Set(11, 9);
9: darrayl0.Set(2, 4);

10: farrayl5.Set(10.1f, 3);

Team LRN

Using Values as Template Parameters 29
_-:.'_Lu_l‘"—-—lF —= -——|_|—-—|_.—"|J_”‘|5|—l—|__p—'—|_'_

11: farrayl5.Set(3.1415f, 14);

12: cout << "iarray5.Get(0) = " << iarray5.Get(0) << endl;

13: cout << "iarray5.Get(1) = " << iarray5.Get(1) << endl;

14: cout << "iarrayl0.Get(9) = " < iarrayl0.Get(9) << endl;
15: cout << "iarrayl0.Get(4) = " << iarrayl0.Get(4) << endl;
16: cout << "farrayl5.Get(3) = " << farrayl5.Get(3) << endl;
17: cout << "farrayl5.Get(14) = " << farrayl5.Get(14) << endl;

18: }

On lines 3-5, I declare three arrays: one of type int which will hold 5 items,
another one of type int which will hold 10 items, and an array of type float which
will hold 15 items. Lines 6-17 just set various items in the arrays and then retrieve
them again. Figure 2.8 shows Example 2-4 in action.

Figure 2.8

[c:\Documents and Settings\All Users\Dacuments\Data Structures\CO\examples\ch02\e04\Debu. .. _ | %

This is a
screenshot from

farrayl1s.Get(3) 2 : Example 2-4.
farraylS.Get{ 14) = 3

You might be saying to yourself, “Well, that was pretty cool, but I could do the same
thing without as much code.” You would be absolutely correct, but keep something
in mind: Because you’re encapsulating the array into a class, you could add func-
tions or even bounds checking, which checks to make sure that you are reading and
writing data in the valid parts of the array. In the Set and Get functions, you could
add some code that compares the index variable to see if it is within the range of 0
to size-1 and then take action depending upon whether or not it is. Besides, the
point of this demonstration was to show how to use value parameters in a template.

Team LRN

30 2. Templates

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Using Values of Other
Parameterized Types

You don’t necessarily need to use a value of a specific datatype as a parameter, how-
ever. A value parameter could be of a generic datatype, like so:

template< class T, T value>

This code declares a template of a generic datatype T, which will also have a value
of the same type. This can be useful in several respects. What if you wanted to mod-
ify the array class so that it had a Clear function? This function clears a particular
index to a value that is considered to be ‘zero’ by the parameterized class. The sim-
plest way would be to add a Clear function to the array class, like this:

1: void Clear(int p_index)
2: |

3: m_array[p_index] = 0;

4: }

This code certainly looks harmless, but it is flawed nonetheless. Line 3 assumes that
Datatype has an assignment operator that is capable of accepting a right-hand value
of the integer 0. If you decide to make a custom class which does not have an
assignment operator and then create an array of that class, the Clear function will
cause a compiler error. In fact, the only types that you can safely use this function
with are the C built-in types: int, float, char, and double.

The easy solution would be to define the zero value of Datatype within the template
parameter list, like this:

1: template< class Datatype, int size, Datatype zero >

The clear function can now be safely modified to look like this (this function is
added to the Array class from Example 2-4 and can be found in Example 2-5 on the
CD):

1: void Clear(int p_index)
2: |
3: m_array[p_index] = zero;
4: }

Team LRN

Using Values as Template Parameters

31

= = =

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

Now, on line 3, instead of setting the item at the index to the integer value 0, you

set it to the specific instance of the

zero value for the given class! These changes

can easily be made to the previous templated Array class from this section.

So how would you declare an instance of the modified Array class? It is the same as
declaring the previous Array class, with the inclusion of one template parameter:

Array< int, 10, 0 > intarrayl0;

This declares an Array of type int whose size will be 10, which will treat the number

0 as its zero value. You can declare

a floating-point array in the same way:

Array< float, 10, 0.0f > floatarraylQ;

In an interesting side effect, you can also have your array clear indexes to a value
other than zero by defining an array like this:

Array< int, 15, 42 > intarraylb;

This Array will clear the specified index to 42 instead of 0 whenever the Clear func-
tion is called. The full effect is demonstrated in this code snippet:

int, 5, 0 > arrayl;

int, 10, 42 > array2;

Array<
Array<

1:

2:

3: Array< float, 5, 0.5f > array3;
4: arrayl.Clear(0);

5: array2.Clear(0);

6: array3.Clear(0);

7: cout << "arrayl.Get(0) = " K
8: cout << "array2.Get(0) = " K
9: cout << "array3.Get(0) = "

I declare three arrays on lines 1-3:

arrayl.Get(0) << endl;
array2.Get(0) << endl;
array3.Get(0) << endl;

a b-index integer array that clears to 0, a 10-

index integer array that clears to 42, and a 5-index float array that clears to 0.5f.

Then, on lines 4-6, I call the Clear

function on each array at index 0. Lines 7-9

print out the values of the cleared indexes: 0, 42, and 0.5. Figure 2.9 shows

Example 2-5 in action.

Team LRN

32 2. Templates

As you can see, templates open up a whole new world of possibilities.

B c:\Documents and Settings\All Users\Dacuments\Data Structures\CD\examples\eh02\e0E\Debu. .. _ | X Figure 2'9
| Thisisa
screenshot of
Example 2-5.

Problems with Templates

Templates, like all good things, have a few “gotchas.” Because a template function
or class is designed to work with a broad range of datatypes, the number of things
you can do with a template is somewhat limited. Sure, you can use certain functions
of a parameterized datatype if you assume that the datatype has that function. For
example, look at the following template function. (All the functions and classes in
this section can be found on the CD in Example 2-6.)

1: template<class T>

2: void Function(T p_item)
3: {

4: p_item.DoSomething();

5: }

On line 1, I state that I am creating a template of one generic type, T. Line 2
defines the function name, Function, which will take one instance of datatype T and
return nothing. On line 4, the function calls the DoSomething function of the item
that was passed into Function.

Team LRN

' . 'P_-rul:il_ems with Templates 33

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

The function in this example assumes that datatype T has a function called
DoSomething and will work fine if Function is called with ClassOne as a parameter:

1: class ClassOne

2: |

3: public:

4: void DoSomething()
5: |

6 return;

7: }

8: };

But what happens when ClassTwo is passed in? ClassTwo doesn’t have a DoSomething
function, but it has a DoSomethingElse function:

1: class ClassTwo

2: |

3: public:

4: void DoSomethingElse()
5: |

6 return;

7: 1}

8: };

See what happens when you try to run this code using the two classes defined previ-

ously:

1: void main()

2: {

3: C(ClassOne a;

4. ClassTwo b;

5: Function(a);
6: Function(b);
7:)

Microsoft Visual C++ 6.0 spits out this
error message: error €2039:
'DoSomething' : is not a member of
"ClassTwo'. If you’re using a different
compiler, it should give you an error
similar to that.

NOTE

Take care to always document which
operators, conversion operators, and
functions of a parameterized

datatype you use so that people who
use this class or function know what
is expected of the datatypes they
use with it.

-

Team LRN

349 2. Templates

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Visual C++ and Templates

Another thing I must warn you about is Microsoft Visual C++ 6.0’s method of
implementing templates. Templates are a relatively recent addition to the C++ stan-
dard, and Microsoft’s implementation of them is not exactly standard. There is one
tiny problem with the way MSVC6 handles templates. (In fact, most compilers have
the same flaw.)

Normally, when programming a non-template class, you would separate the class
header and the class implementation into two files: an .h file and a .cpp file. The
function declarations and data declarations go in the header file, and the imple-
mentations of each of the functions go into a .cpp file.

If you try programming a template class in this way, MSVC6 will give you errors. It
has to do with the way template classes are implemented (see the next section).
You’ll notice that in every implementation of a template class, I've defined the
functions inline, within the header files. This is to get around the problem in
MSVC6, which happens to be my main compiler.

It took me a long time to figure this out, so hopefully I'm saving you a bit of trou-
ble if you decide to do this on your own.

Under the Hood

This section is strictly optional and is intended for those of you who wonder how a
template works. Remember when I said that the alternative to copying and pasting
lots of code was to use a template? Well, that’s exactly how C++ implements a tem-
plate. C++ goes through the template definition, copies the code, and replaces
every instance of the parameterized type name with the actual type name. Figure
2.10 shows how C++ basically takes one copy of the code and converts it into as
many copies as are needed.

compiled code Figure 2.10

The compiler performs the

Function()
Template it copying for you automatically
Function() [—19at _y.[" Function() when you compile the program

% so that you don’t have to do it
Function() manually.

Team LRN

Conclusion

The beauty of template implementation
is that instead of managing all the copy- NOTE
ing and pasting yourself, you make the
compiler do it instead, allowing you to
maintain only one copy of the code.

C++ often gets a bad rap as being
“slow.” This accusation is false, and
templates demonstrate this fact per-
Take a look at the Sum function from fectly. A template is nothing more
earlier, for example. When I compiled
the code that called the function, once
for an integer array, and once for a float
array, the compiler actually made two
copies of that function. In the first copy,
it replaced every instance of T with int
(creating an exact replica of the
SumIntegers function from the “Doing It
the Old Way” section), and it replaced every instance of T with float in the second
copy (creating an exact replica of the SumFloats function).

than a copied-and-pasted bunch of
code—the compiler does all the
work for you.Therefore, you can
write a really fast algorithm and
have it run at full speed for every
datatype you want! Isn’t that cool?

[1 [

Essentially, this means that a template is very similar to a #define macro. The main
difference is that #define is done with the pre-processor, whereas templates are
done by the compiler with complete type-safety. This difference is the reason why
MSVC6 requires template functions and classes to be defined inline; if they aren’t,
it cannot find the code, and it will give you a compiler error.

Of course, templates rarely need to be so complex that you need to modularize the
code. Writing template functions and classes entirely inline is generally acceptable,
at least until the problem is fixed.

Conclusion

I hope by now you can see why templates are tremendously powerful. I must admit,
when I first saw something about templates in a book, I skipped the chapter
because it sounded boring, but after getting tired of making a different sorting
algorithm for every different kind of data that I wanted to sort, I decided to look
into templates.

I'm glad I did learn about templates because I don’t know how I ever lived without
them before. Granted, the syntax can get a little ugly here and there, but that is
just a minor problem when compared with how useful they are.

Team LRN

35

36 2. Templates

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

It is important that you gain at least a little working knowledge of how templates
work because almost all of the data structures in this book use templates.

There is one final thing that I feel should be mentioned: Some people love to
abuse templates and make really strange-looking code that is almost impossible to
read or understand, which is why a lot of new programmers tend to dislike tem-
plates. I have not done this at all. Every template class or function in this book uses
simple template features so that you can understand them better.

Team LRN

PART TWO

THE EAS51CS

=

e e

e

1 Arrays

nmmensiona

6 Linked Lists

7 Stacks and Queues

8 Hash Tables

9 Tying It Together: The Basics

3 Arrays
<4 Bitvectors
5 Multi-D

e ’- l W
I e g U Sl A [o

CHAPTER 3

HRRAYS

40 3. Arrays

Arrays are perhaps the most basic data structures in existence; they have been
around since the very first computers. Some of you might already know all
there is to know about arrays, and you can safely skip this chapter. Those of you
who aren’t so keen as to how arrays work might want to read on, though. In this
chapter, you'll learn

= What an array is

= How to create native static arrays

= How to create native dynamic arrays

= How to delete dynamic arrays to prevent memory leaks

= How to resize dynamic arrays

= What a string is

= How to create your own robust array class

= How to insert and remove cells from an array

= How to load and store arrays to disk

= How to use arrays to store data in a game

What Is an Array?*

In computer terms, arrays have been around forever. The array is perhaps the most
basic data structure in a computer, and it’s still the most widely used.

You can think of an array as a jail block. It is a long one-dimensional structure con-
taining numerous cells. Each cell can contain exactly one item, and an index num-
ber is used to access each cell.

Typically, when we represent an array in figures, we use squares to represent the
cells, as in Figure 3.1.

Team LRN

Graphical Demonstration: Arrays 41

N — r—= L= —Lr"]_

Figure 3.1
0 1 2 3 4 5 6 7 8 9 Here is a

figurative

representation of
an array.

When dealing with arrays, each cell has its own index number. Typically, the very
first cell has an index of 0 (zero), but that doesn’t always have to be the case, as you
shall see later on.

An array is called a linear data structure, as opposed to some of the more advanced
branching data structures, which I go over in the later chapters of the book. Arrays
are also called random-access structures because it is possible to instantly access any
item within an array if you know its index. Accessing items within an array is an
O(¢) algorithm; no matter how many items are in an array, it will still take the same
amount of time to access any index.

Graphical Demonstration:
Arrays

The graphical demonstration for arrays is located on the CD in the directory
\demonstrations\ch03\Demo0O1 - Array. This demonstration is designed to be a help-
ful tool for you to use to augment your understanding of the array data structure.
If any of the algorithms that are explained in the chapter don’t make immediate
sense to you, I highly recommend checking out this graphical demonstration.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

42 3. Arrays

[=L = L E::T__Ezam_i—————fﬁ1rr—1;L__

When you start the program, you will be greeted with four buttons and a pictorial
representation of a ten-cell array. Figure 3.2 is a screenshot of the program in action.

'- Array Graphical Demenstration (] Figu re 3.2
increase | decrease insert | remove This is the starting screen for the
Click on a cell to select it. array demo.

Press 'r' to put a random number in the current cell.

41]9s|79]66|67]78]77]20]08] 82|

Each of the four buttons performs a different function upon the array. I explain
them in the following sections.

Use the mouse to select a cell, which then turns red.
Press the R button to insert a random number from 0-99 into the current cell.

When you press any of the buttons, an animation starts and text relating to the
algorithm appears. When an animation is complete, a button with the caption
“Continue” appears. Press this button to continue the algorithm.

Occasionally, you might notice that some cells contain a red X instead of a number.
Figure 3.3 shows an array with a red X in it.

Figure 3.3

BB Array Graphical Demonstration

increase | decrease insert || remove The array has a red X, which
Click on a céu to seiéct -it. i means that the data in that cell is
Press 'r' to put a random number in the current cell. undefined garbage.

33 16[73]52[36]22]75]43]es] x |

Team LRN

Native C Arrays and Pointers 43

N — r—= L= —Lr"]_

The red X signifies that the contents of the cell are undefined. See the section on

resizing arrays later in this chapter.

Increasing or Decreasing Array Size

These two buttons increase or decrease the array size by one cell. The demo goes
through the algorithm step by step and shows you the process that occurs. When
an array is increased in size, the extra cell at the end contains a red X because the
value of that cell is undefined.

Inserting or Removing an Item

These two buttons either insert a new random number into the current cell or
remove the item in the current cell. The demo shows you the step-by-step process
that occurs.

Native C Arrays and
Pointers

I'm sure you’ve used an array of some sort before. However, more advanced array
tricks in C and C++ always tend to trip up beginner programmers. I certainly had
some problems with arrays when I first started using C. My problem was that I came
from BASIC programming, where arrays are much more user-friendly.

Arrays in C are closely bound to pointer tricks. Therefore, it is very important that
you know how to use pointers to your own advantage before we go much further.

Static Arrays

An array is called static when its size cannot be modified. These are the easiest types
of arrays to create and manipulate.

Declaring a Static Array

The easiest way to create a static array in C is to use the bracket notation:
int array[10];

This code creates an integer array with 10 items in it. Because native C arrays are
numbered starting with 0, the range of valid indexes for this array is 0-9. Trying to

Team LRN

449 3. Arrays

access index 10 in this array is considered a fencepost error. If you look at a fence,
you’ll see that there are more fenceposts than there are parts of the fence. Figure
3.4 shows how you can easily confuse the number of fence sections and the number
of fenceposts.

Figure 3.4
1 /\ 2 /\ 3 /\ 4 /\ 5 There are more fence posts

than fence sections. This is

the same situation with
arrays, where you can
easily read or write past

] P) 3 2 5 6 the end of the array

because you think there

are more cells than there
really are.

Normally, you would expect that the
tenth index in an array would have the NOTE
index 10, but it is really 9. Remember, 1

o ; This is the same reason that many
this is due to the arrays being counted

mathematicians say that the third

up from 0, not 1. I cannot stress enough millennium started in 2001 and not

the importance of keeping this fact in 2000. Because the calendar starts at
mind. Perhaps my most frequent source year | and not 0, the year 2000 was

of bugs is fencepost errors, or being off the 2000th year and thus the last

by one. year of the second millennium. If
they had started counting at 0

A - instead, 2000 would have been the
ccessing an start of the third millennium, not

AI'I‘EIQ the end of the second.
Accessing the array is as simple as plac-

ing the index of the cell you want to view
or modify within the brackets when referring to the array:

1: array[0] 5;
2: array[l] = array[0];

Line 1 sets cell 0 to hold the integer 5, and line 2 sets cell 1 to hold the same inte-
ger as cell 0. Figure 3.5 shows a picture of what the array should look like after exe-
cuting the previous code snippet.

Team LRN

Eitive C Arrays and Pointers 45

Figure 3.5

5 5 6 4 5 8 9 2 1 3 Here are the
contents of the

array dfter
executing the
simple 2-line code
segment.

Cells 0 and 1 both hold 5, but what the
heck happened to all the other cells?

Why do they hold all those weird num- NOTE
bers? When you create an array in
C/C++, the array is not initialized. So
what happens is that the array holds
junk, and you have no idea what is in
the array right after you create it.

You must take care to initialize
arrays after you declare or create
them because you might end up
with nasty bugs if your code assumes
that the array contains valid infor-
mation.

What happens when an array is accessed
past the end? One of several things, actu-
ally. If you are just reading memory,
there might not be a problem. One NOTE
thing that could happen would be that

Microsoft’s Visual C++ sets all byte
your program would crash because your

memory it uses to the hex value

compiler has code that detects if you 0xcd when it is in debug mode, so
are reading memory out of bounds and each item in the integer array will
the code throws an error. contain Oxcdcdcdcd (integers are 4

bytes), which is equivalent to the

Another thing could happen, and this is base 10 number ~842, 150,451.

usually more devastating. Your program e e e Jralting o Fe
could read a value that was total junk and it contains that number, you can
and not crash at all. I say that it’s more be certain that you forgot to initial-
devastating because it is a source of ize the memory with a value.

some very nasty and undetectable bugs.
Your program reads a junk value, and for
all intents and purposes, it thinks the value is valid. Nasty little things like this can
be very difficult and time consuming to track down.

What if you are writing past the end of an array? The end effect of this is usually
worse than reading past the end of an array. This time, you might manage to
change memory that isn’t even yours to touch. This is usually referred to as an

Team LRN

46 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

access violation and results in damaging data. Sometimes it messes up important data
and sometimes it doesn’t, but you can never be sure. Bugs of this type are even
more deadly because the bug is caused by

code that you wouldn’t even suspect of — —

causing the bug in the first place! CAUTION

Another possibility would be that the
program just crashes. Either way, the
end result is undesirable, and you
should avoid it at all costs. — —

Never read or write past the end of
an array, even if you think it is safe.

Passing an Array into a Function

So how do you pass this array into a function? There are several ways to do this.
The first way is to declare the function parameter using the bracket notation, like
this:

1: void ArrayFunction(int p_array[])
2: |

3: p_array[0] = 10;

4: 1}

On line 1, I declare that the function will be taking an integer array as a parameter.
Line 3 sets the first index to 0. Now, all I have to do if I want to pass the array into
this function is to do this:

ArrayFunction(array);

Note that you can put a number within the brackets of the function definition, but
the compiler will ignore the numbers within the brackets.

The other way to declare that an array is being passed into a function is to use the
pointer symbol, like this:

1: void ArrayFunction(int* p_array)
{

p_array[0] = 10;

}

B~ w o

This function works the same as the first ArrayFunction, except that I use the
pointer symbol instead of the brackets. I'm sure many of you are now sitting there
with question marks above your heads, wondering, “Why does that work?”

Team LRN

Native C Arrays and Pointers 47

N — r—= L= —Lr"]_

Inside an Array

The simple answer is that it works because p_array is a pointer. When C/C++ cre-
ates an array, it does two things: It makes enough room for the array in memory,
and it treats the name of the array as a pointer to the block of memory where the
array is stored.

So, what you end up with is something like Figure 3.6.

Figure 3.6

Y
(6]
6]
o
IN
o
[e2)
©
N
-
w

array An array is just

a large chunk
of continuous
memory,
internally.

Why is an array a pointer? Well, an array is a pointer because of the way an array is
accessed. Remember when I said that an array is random-access and that the algo-
rithm to access any cell within the array is an O(¢) algorithm? What your compiler
is essentially doing is taking the pointer to the start of the array and calculating the
position in memory of the cell you want to access. Here’s what happens when you
want to get the fifth cell of the array:

1. The compiler multiplies 5 by the size of the data.

2. The compiler adds that to the pointer.

3. The compiler treats that as a new pointer and returns the value at that
address.

Isn’t that cool? Playing around with an

array is all about playing around with
pointers. The compiler literally turns TIP
the line Because the compiler does the multipli-

cation automatically, you can actually
reverse the order of the pointer and the
into subscript like this: x = 5[array]l;, and it
will still work!You can amaze your
friends by writing totally unreadable

NOW, lucky for us, the Compiler does code like this! | wouldn’t recommend

the multiplication automatically, so we doing anything like this in serious code,
however. | only include it here to show

you how it works.
[1 [1

X = array[5];

X = *(array + 5);

don’t even need to multiply. It adds 5
to the array pointer and then retrieves

Team LRN

48 3. Arrays

the value at that index. You can replace 5 with any index you want, and the algo-
rithm will take the same exact amount of time. Figure 3.7 shows how this algorithm
is performed.

Figure 3.7
array [~ 5 5 6 4 5 8 9 2 1 3 The address of
the data you
7 ¢ want to access
address + SiZeof g is calculated by
an integer .
adding the

starting offset
pointer to the
size of the data
multiplied by
the index you
want to get.

Initializing a Static Array

C++ allows you to initialize a static array with a pre-determined number of values so
that the array contains valid information from the very start. For example, to initial-
ize a five-cell integer array with the numbers 1 through 5, you would code this:

int array[5] = { 1, 2, 3, 4, 5 };

C++ also allows you to leave out the length of the array and determine it automati-
cally by counting the number of items contained within the initializing list:

int arrayl]l = {1, 2, 3, 4, 5, 6 };

This time, the array is created and automatically sized to hold six cells. The only
difficult part about doing something like
this is figuring out the size of the array
after it is created, but you can do that

by using the sizeof operator. Note that | NOTE
the sizeof operator returns the number The sizeof operator only works on a
of bytes contained within the array, so static array within the same scope in

you’ll need to divide the answer by the which it was defined. If you pass the

size of the datatype that was used in
the array:

array to a function or return it from
a function, the sizeof operator will
no longer return the actual size of
int size = sizeof(array) / sizeof(int the array.

);

Team LRN

Native C Arrays and Pointers 49

N — r—= L= —Lr"]_

Example 3-1

Here is the listing of Example 3-1, which demonstrates all of the major concepts of
static arrays. It is on the CD in the directory \examples\ch03\01 - Static Arrays\.

void main()
{
// declare an array with 10 cells.
int arrayl[10];
// declare x
int x;
// set the first cell to 5, then set the second
// cell to the first cell.
arrayl[0] = 5;
arrayl[1] = arrayl[0];
// DONT EVER DO THIS:
// this next Tine of code writes past the end
// of the array, potentially causing harm.
// arrayl[10] = 0;
// pass the array to a function.
ArrayFunction(arrayl);
// set cell 5 to 42.
arrayl[5] = 42;
// retrieve the value of cell 5 using 3 different methods.
// x should be 42 after each operation.
arrayl[5]1;
x = *(arrayl + 5);
x = 5[arrayl];
// declare a second array and initialize it.
int array2[5] = { 1, 2, 3, 4, 5 };
// declare a third array and initialize it without a specific size
int array3[] = (1, 2, 3, 4, 5, 6 };
// retrieve the number of cells in array3:
int size = sizeof(array3) / sizeof(int);

X

}

This example has no output.

Dynamic Arrays

Dynamic arrays are more complex than static arrays. You cannot create a dynamic
array as easily as a static array. Instead, you must use the pointer notation to create

Team LRN

50 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

and manage a dynamic array. There are two main ways of creating a dynamic array:
By using C’s malloc/calloc (memory allocate and clear allocate) or by using C++’s
new. Both malloc and calloc require the inclusion of the malloc.h header file, but
new is a built-in language feature and doesn’t need a header. Each method has its
strengths and weaknesses, and both of them allocate memory on the heap. (See
Appendix B for an explanation of the memory layout.) Whichever method you use
to create a dynamic array, the arrays are declared the same way.

When you declare a dynamic array, you declare it just like you would declare a
pointer. (Note that it is not an array yet.)

int* array = 0;

Note that I've initialized the array pointer to 0. When you declare a basic type in
C++, it is almost always filled with random data, so the pointer will be pointing
somewhere in memory that you shouldn’t be pointing to. The value 0 is considered
to be the universal value for an uninitialized pointer. It is mostly a safety precaution
so you know that the array has not been initialized yet.

Allocating a Dynamic Array

There are three different ways you can allocate memory for a dynamic array:
malloc, calloc, and new.

Malloc

To use malloc, you must tell it how many bytes you want it to allocate. If you know
the size of the datatype you want to create, multiply that by the number of cells you
want in the array. However, most of the time you don’t know the size of the struc-
ture (or itis a pain in the butt to figure it out manually), so you should let the
compiler figure it out for you. To do this, you must use the sizeof operator multi-
plied by the number of cells you want in the array. Malloc then returns a void
pointer to the memory that it has just allocated on the heap.

array = (int*)malloc(sizeof(int) * 10);

Look at the parameter of malloc first. You retrieve the size of an integer (which is
usually four bytes, but some compilers use different-sized integers) and multiply
that by 10. This should give you enough space for an array that will contain ten
integers. Now, look in front of the malloc call; you see the int keyword followed by
a pointer symbol, all within parentheses. This part is only needed if you are using
C++. Remember, malloc returns a void pointer, which means that it has no type. C
was lax and allowed you to implicitly cast the pointer into an integer pointer, but

Team LRN

Nf:itive C Arrays and Pointers

C++ doesn’t allow you to do that.
Implicit conversion means that it will
automatically convert the void pointer
that malloc returns into an int pointer.
C++ will complain about the line with-
out that conversion.

Now, if everything goes as planned,
array should now point to a valid array.
There is a chance that array doesn’t
point to a new array, however. It might
still be 0. If the amount of memory
you ask for is not available, malloc
returns 0.

Now that you have your array, you can
use it exactly like you used the static
array.

Calloc

NOTE

C++ has a new feature called strong
type-checking. It does not allow you
to convert pointers of one type into
a pointer of another type unless you
explicitly tell it to.

L W

NOTE

Make sure you always check to see if
your calls to malloc return a non-
zero value. If it does return 0, then
you should take an appropriate
action from there, such as displaying
an error message to the user or
propagating the error to a higher
level and exiting with an error code.
\

Whenever you get memory from malloc, the memory you get is mostly junk. Most
of the time you will have to manually reset the memory to the values you want.
Usually the most popular initial value is 0. This is what calloc is for. Calloc is exactly
like malloc, except that it goes one step further and resets every byte that it allo-

cates to 0.

array = (int*)calloc(10, sizeof(int));

Note that calloc has 2 parameters instead of 1. Whereas malloc accepts the number
of bytes you want to allocate as the only parameter, calloc wants the number of cells
as the first parameter and the size of each cell in bytes as the second parameter.

Figure 3.8 shows an array created by calloc.

Figure 3.8

An array created

by calloc has all

of its memory
cleared to 0.

Team LRN

52 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

New

C++ uses a different method of creating dynamic arrays, but the end result is the
same. The new operator places all memory it allocates on the heap, just like malloc
does. The new operator, however, doesn’t return a void pointer. Instead, it returns a
pointer to whichever datatype you request from it, thus removing the requirement
to cast the pointer to the appropriate datatype. The new operator also automatically
determines the datatype’s size, so you don’t have to use the sizeof operator at all.
Here’s an example of how to create a 10-cell integer array using new:

1: int* array = 0;
2: array = new int[10];

On line 1, I declare the array just like I did before and set it to 0. On line 2, I tell
new to give me an array with ten integers.

Unlike malloc, there is some confusion as to what happens when a call to new fails.
Before the C++ standard was actually standardized, new used to act just like malloc
when it failed and return 0. However, when exceptions (a new error-handling fea-
ture) were added to the C++ standard, new was changed to throw an exception
whenever it failed. (See Appendix A, “A C++ Primer,” for more information about
exceptions.) In the official standard, new throws an exception of type bad_alloc.
However, most compilers just return 0 anyway and don’t throw the exception. This
is because the makers of the compilers want to be able to let people compile code
that was made prior to the standard. You should check your compiler documenta-
tion to determine which event happens. MSVC6 currently returns 0 whenever a call
to new fails.

The new approach looks a lot cleaner than the malloc approach, and it’s generally
more understandable. There is one major difference between this approach and
malloc, however: malloc returns memory that will contain junk, but new executes the
default constructor for each item in the array. (See Appendix A if you are unfamil-
iar with constructors.) In this example, both methods are the same because ints
don’t have constructors and will contain junk no matter which method you use, but
if you used new to create an array of classes, each class will be constructed properly.

This approach can either be a good thing or a bad thing, depending on how you
use it. Logic tells us that if a constructor is called on every item, it will take longer
to create the array, so malloc should be faster. However, constructors are meant to
initialize a class so that it contains useful information. Most of the time, you’ll find
yourself manually initializing your arrays after using malloc anyway, so the loss of
speed from using new is usually minimal. Personally, I recommend using new over
malloc because it is cleaner and safer.

Team LRN

Native C Arrays and Pointers 53

N — r—= L= —Lr"]_

Deleting a Dynamic Array

When you are using a static array, it is automatically created for you when it goes in
scope and destroyed when it goes out of scope. This is not so with a dynamic array.
Because you have to manually create a dynamic array yourself, you also have to man-
ually destroy the array as well. If you don’t

destroy it, you will have a memory leak. - -

The way you destroy a dynamic array CAUTION
depends on the method you used to Be sure to destroy every dynamic

create it. If you used malloc to create array that you create, or you will
the array, then you need to use the free have a memory leak.

function to destroy it. If you used new to — A
create the array, then you need to use
the delete operator to destroy it.

Free

When you use malloc or calloc to create an array, you must use free to destroy it.
The free function is fairly simple and accepts a single pointer, which should be a
pointer to your array. It is used like this:

free(array);

The free function accepts a void pointer, but unlike malloc and calloc, free doesn’t
require that you cast the pointer first. C++ allows you to cast any pointer to void
without explicitly saying so. The end result is that the program tells the computer
that you are no longer using the memory and it is free to use it for other purposes.

Unfortunately, your array pointer has not changed. It still points to the same place
in memory that it pointed to before, but

that memory is no longer yours to L L

touch. It is generally considered a good CAUTION

idea to clear the pointer to 0 right after
you call free. Otherwise, you have what
is called a stray pointer. Stray pointers are
dangerous, because using them will give
the same effects as reading or writing
past the end of an array: unpredictable.

Always reset your pointers to 0 after
freeing them, even if you don’t plan
on using them again. If you end up
adding code later on, you might acci-
dentally forget to reset the pointer.

1 1

Team LRN

54 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Delete

If you’ve created an array with new, then you must destroy it using the delete key-
word. Using delete on an array is different from deleting a normal pointer, how-
ever: You must be sure to use the brackets after the keyword, like this:

deletel] array; — —

If you don’t use the brackets when you CAUTION

delete an array, delete will only destroy When deleting an array, always use
the first cell and nothing else. This will the bracket notation.

lead to a memory leak. — —d

The main difference between delete and free is that delete calls the destructor of
every item in the array, whereas free doesn’t. This can be quite a helpful feature if
the items in the array need to be destructed. This way, you don’t have to manually
call a cleanup function for each item in the array before you delete the array. You
will see how useful destructors are when you learn about the Array class later in this
chapter.

Resizing a Dynamic Array

Perhaps the most important part of using a dynamic array is having the ability to
resize it. Depending upon the method you used to create the array, you can use
one of two methods.

Realloc

You would use realloc when you have created an array using malloc. Realloc is a
really nice function that tries to resize the array without moving it, if possible. You
pass in a pointer the old array and the size of the new array, and it will return a
pointer to the resized array. Here’s how you would resize an array from 10 cells to

20 cells:

1: int* array = 0;

2: array = (int*)malloc(10 * sizeof(int));

3: array = (int*)realloc(array, 20 * sizeof(int));

Lines 1 and 2 should be nothing new; they declare and allocate a 10-cell integer
array. On line 3, you pass the array pointer as the first argument to realloc and
indicate the size of the new array in bytes as the second argument. Just as you did
for malloc, you must cast the result of realloc to an integer pointer. If everything
went all right, you now have a 20-cell array.

Team LRN

'jﬁl_:l_ri_'li:ive C Arrays and Pointers 55

There is one little catch, however. The call to realloc might not be able to find
enough memory for the new array and thus will return 0. But what happened to the
old array, you ask? It’s gone. It was not

destroyed, and you now have a memory L L

leak.
CAUTION

Never write over a pointer to an
array that you have not destroyed
unless you’ve stored the address of

; i the array somewhere else first.You
in the previous example, you overwrote will end up with memory leaks.

the pointer to the 10-cell array, and you
now have no way to get that back.

What happens is that it tries to create
enough memory for the new array, and
if it can’t, then it returns 0 and leaves
the original array alone. Unfortunately,

1 1

So how can you fix this problem? You need to create a temporary variable to hold
the address of the array:

1: int* array = 0;

2: int* temp = 0;

3: array = (int*)malloc(10 * sizeof(int));

4: temp = array;

5: array = (int*)realloc(array, 20 * sizeof(int));

6: if(array == 0)

7: |

8: array = temp;

9 // insert error handling code here.

10: }

As you can see, this code is much more NOTE

complex than the first realloc example, Always check to see if your memory
but it is a necessity. Checking for errors allocations have not failed. Nothing

ticks off a gamer more than working
for hours on a game and then having

when resizing arrays is an absolute must.

The great thing about realloc is that it the game crash on them for no
automatically copies over everything apparent reason.You should at least
from the old array into the new array. be able to implement an error
This saves you a lot of hassle. Another checking system that saves the cur-

good thing about realloc is that it rent game state and exits with an
might not move the array at all; it might error message, keeping the game
be able to find out if there is unused player from going crazy and hunting
space after the current array and just you down.

tell the memory manager that it’s taking

Team LRN

56 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

over that memory as well. If this happens, then the function doesn’t even move any
data over to a new array, because there is no new array! It just returns a pointer to
the same array! As you can imagine, this is really fast. Figure 3.9 shows how a larger
array is created using realloc.

old array Figure 3.9
This shows a call
1 5 8 5 4 3 8 0 torealloctoa
bigger array
without moving
new array data.There is no
] 5 8 5 4 3 8 0 X X way to determine
beforehand what

will be contained
in the extra
indexes added at
the end.

Another thing you should note is that you might lose data if you make the array
smaller. If you go from 20 cells to 10 cells, the first 10 cells will be preserved, but
the last 10 cells will be lost, because there is not enough room for them in the new
array. Figure 3.10 demonstrates what happens when you make an array smaller.

old array Figure 3.10
This shows a call
1 5 8 o 4 3 8 0 4 2 torealloctoa
smaller array.The
items at the end
new array
that were
1 5 8 5 4 3 8 0 chopped off are
now lost.

Resizing Arrays Created with new

Unfortunately, the process of resizing arrays created with the new operator is its
main weakness. There is no C++ equivalent to the realloc function. Instead, you

Team LRN

Native C Arrays and Pointers 57

N — r—= L= —Lr"]_

must resize the array manually. Yes, this is usually a big pain in the butt, but if you
encapsulate this functionality into an array class, you almost never need to worry
about it.

Resizing a dynamic array created with new is a three-step process:

1. Create a new array with the new size.
2 Copy over all possible data.
3. Delete the old array.

Here’s the algorithm in action:

1: int* array = 0;

2: int* temp = 0;

3: int index;

4: array = new int[10];

5: temp = new int[20];

6: for(index = 0; index < 10; index++)
7: temp[index] = array[index];

8: deletel[] array;

9: array = temp;

10: temp = 0;

In this example, the array is declared on line 1 and allocated on line 4, just like in
the previous examples using new. A temporary array, named temp, is also used. This
array is defined on line 2 and allocated on line 5. This temporary array will hold
the resized array so you can copy over all the data before you delete the old array.
So, by line 6, there are two arrays in memory, occupying a total of 30 cells.

On line 6 and 7, you loop through the first 10 cells and copy them over from array
to temp. Note that you cannot copy any more than that, because the original array is
only 10 cells long.

After the array is copied over, the old array is destroyed by using the delete[] oper-
ator and the new array is assigned over to the old pointer (line 9). Last, the temp
pointer is cleared to 0 as a precautionary measure.

This method does not use any error checking code, however. In this example, you
would have to add a line after line 5 that checks to see if the new array that temp
points to is valid or not. If temp contains 0, then you would have to handle the error
somehow—most likely by saving all valid data, telling the user there was an error,
and quitting out gracefully.

Team LRN

58

_J_l_"l_l_'_'Eru—”_'_‘—'_'_l_l——'

3. Arrays

Example 3-2

Here is the code listing for Example 3-2, which demonstrates creating, clearing,
resizing, and deleting an array. The code is on the CD in the directory
\examples\ch03\02 - Dynamic Arrays\.

void main()

{

// declare 3 array pointers, and set them to 0.

int* arrayl = 0;
int* array2 = 0;
int* array3 = 0;

// allocate an array with 10 cells using malloc.
arrayl = (int*)malloc(10 * sizeof(int));

// allocate an array with 10 cells using calloc.
array2 = (int*)calloc(10, sizeof(int));

// allocate an array with 10 cells using new.
array3 = new int[10];

// resize arrayl and array2 using realloc.

// note that the end of array2 will not have 0s in it.

(int*)realloc(arrayl, 20 * sizeof(int));
(int*)realloc(array2, 20 * sizeof(int));

arrayl
array?2

// resize array3 using the resize algorithm.

int* temp = 0;

int index;

temp = new int[20];

for(index = 0; index < 10; index++)
temp[index] = array3[index];

deletel[] array3;

array3 = temp;

temp = 0;

// free the first two arrays using free.

free(arrayl);
free(array2);

Team LRN

LT L

E::r__EEEI_J_____JﬂLUJ——1EL__

An Array Class and Useful Algorithms 59
= = = = L = 1L _

// free the third array using delete[]
delete[] array3;

}

Example 3-2 has no output.

An Array Llass and Useful
Algorithms

By this point, you have seen how an array works and how to resize them. The ques-
tion remains, however, if there is a way to make the process of creating, resizing,
and deleting arrays easier. Yes, there is.

It turns out that you can easily encapsulate the common array algorithms into a
class of its own. What’s even better is that you can make it templated, so you can
create an array based on any datatype that you want.

This data structure is located on the CD in the file \structures\array.h.

The Data

First, you need to think about the things you want in the array class. Two things
pop immediately into mind: a pointer to the array and the length of the array. I put
them into a template array class like this:

1: template<class Datatype>
2: class Array

3: {

4: public:

5 Datatype* m_array;

6 int m_size;

7

I

On lines 1 and 2, I declare a template class named Array, which will have one para-
meterized type, named Datatype. This is the type of data that will be stored within
the array.

The Constructor

Now, I want to make a constructor that initializes the array automatically. The con-
structor of the Array class will take one parameter: the size of the array.

Team LRN

60 . E

Arrays

1: Array(int p_size)

2: |

3: m_array = new Datatypelp_size];
4: m_size = p_size;

6: }

The constructor first allocates enough
space for the array using new, and then
it makes m_array point to the memory

and sets the size of the array.

This line of code constructs an integer
array to contain 10 cells:

Array<int> intarray(10);

The Destructor

NOTE

Note that it is possible to construct
the Array with negative values for
the size, which will cause the array
to not get created (on your own, you
might want to add that kind of pro-
tection). It is also possible to create
an array with a size of 0.The C++

new operator will return a valid
pointer to an array with no cells! The
worst part is that if you don’t delete
the empty array when you’re done
with it, you get a memory leak any- (
way! Don’t look at me—I didn’t
make the C++ standard!

Now, perhaps the coolest thing about creating your own array class is that you can
make it manage your memory for you automatically. Now you don’t have to worry
about deleting your array; the array class does this for you in the destructor!

1: ~Array()

2: {

3: if(m_array !=0)
4. deletel[] m_array;
5: m_array = 0;

6: }

Pay close attention to line 3: I check to see if the array pointer is not 0 before 1
delete the array. This is because the array is assumed to be invalid if the pointer is

0, and deleting it will cause errors.

The Resize Algorithm

I now need to add a method to resize the array by using the algorithm I discussed
earlier. Remember, this algorithm creates a new array, copies everything it can over,

and then deletes the old array.

1: void Resize(int p_size)
2: |

Team LRN

An Array Class and Useful Algorithms b1
= = = = L = 1L _

Datatype* newarray = new Datatypelp_sizel;
if(newarray == 0)

return;
int min;
if(p_size < m_size)

min = p_size;
9: else
10: min = m_size;
11: int index;

12: for(index = 0; index < min; index++)
13: newarray[index] = m_array[index];

14: m_size = p_size;

15: if(m_array !=0)

16: delete[] m_array;

17: m_array = newarray;

18: }

On line 1, I accept a single integer as a parameter, which will be the new size of the
array, named p_size. On line 3, I declare a new array pointer named newarray. This
pointer will hold the new array.

On line 4, I check to see if I was able to allocate enough memory for the new array.
If new failed, then either newarray will contain 0 (on most compilers) or a bad_alloc
exception will have been thrown (on ISO-standard compilers). Because most com-
pilers return 0, I handle that case only and just return without modifying anything.
This way, when you cannot allocate enough memory, your array will still contain all
of its data. You should make sure that the routine didn’t fail when you resize the
array so you can handle the error as you deem necessary.

On line 6, I declare the min variable. This variable is quite important when copying
data from the old array to the new array. If p_size is smaller than the current size,
then you can only copy p_size items over to the new array, and everything in the
old array past that will be lost. If p_size is larger than the current size, you can only
copy the entire array over and nothing more. So, on lines 7-10, I determine which
i1s smaller, m_size or p_size, and set min to that value.

On lines 11 and 12, I loop through from index 0 to min and copy every item from
the old array to the new array. Note that if the old array doesn’t exist (i.e. m_size is
0 and so is min), the loop doesn’t copy anything.

On line 13, I set the current size to the new size of the array, and on line 14, I
check to see if the old array existed. If so, I delete the old array on line 15 and
finally make the m_array pointer point to the new array.

Team LRN

b2 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Access Operator

I'm well on my way to having a fully functional array class, with one exception: I
have yet to add a feature that allows me to access and modify the array contents. I
think that one of the coolest features of C++ is its ability to overload operators. In
this case, I will overload the offset (square bracket) operator so I can use the array
just like a normal array! If you are unfamiliar with operator overloads, see

Appendix A.

This routine will allow the client of the class to access or modify the contents of the
array, but also allow you to have access protections built in.

1: Datatype& operator[] (int p_index)
2: |

3: return m_array[p_index];

4.}

You need to pay particular attention to the return type of this function: It returns a
reference to a Datatype. Why does it return a reference? It returns a reference so that
you can do something like this:

1: Array<int> intarray(10);
2: intarray[b] = 42;

On line 1, I declare an integer array using the array class, and I make it 10 cells
large.

So what happens on line 2? The offset operator is called, and it returns a reference
to the item at index 5, which is then set to 42. So what ends up happening is that
the value 42 is physically placed inside the array. If the offset operator function
only returned a value, then that line of code would accomplish absolutely nothing:
It would load the value at index 5 onto the stack, set the value on the stack to 42,
and then totally discard the value.

So why would you prefer to have a function that accesses cells of an array, instead
of just using the regular offset operator on the m_array variable? One reason has to
do with error checking. Most programmers like to put error-checking code in the
access routine. This way, we can be sure that the client never touches memory that
they aren’t allowed to touch.

It also makes it much cleaner and clearer to access the array. Tell me, which way do
you prefer:

1: intarray.m_array[5] = 42;
2: intarray[5] = 42;

Team LRN

An Array Class and Useful Algorithms b3

N — r—= L= —Lr"]_

Line 1 looks like an ugly mess. Line 2 is nice and pretty, and it is safer to use if the
class has built-in bounds checking.

The nice thing about the offset operator algorithm I made up is that I can use it to
retrieve items within the array too, like this:

int temp = intarray[5];

The Conversion Operator

Now that you've got a flexible and working array class, you can start to use it in
your programs. You might notice a problem with it, however.

If you have a function that accepts a standard array pointer as a parameter, and you
try passing in this array class, the compiler will tell you that you cannot do that.
This seems a bit awkward because you want to use the nifty features of the Array
class, but you don’t want to spend weeks updating all of your code to use the new
Array class. The inside of the array is a pointer anyway, so why should this incom-
patibility exist?

C++ offers a really neat feature to fix this problem: a conversion operator. A conver-
sion operator allows you to implicitly convert a class into a different data type. For
example, when the function process expects an int* and you pass in an Array<int>,
you want the compiler to treat the array as an int*.

Here is how you would code the conversion operator for the Array class:

operator Datatype* ()
{
return m_array;

}

The first line declares that this conversion operator will be returning a pointer to a
Datatype. Conversion operators do not have parameters. This operator is simple
because the internal representation of the array is already in the form that you
want it to be, so it just returns the pointer to the array.

If you have a function that takes an integer array pointer like this:
void Process(int* p_array);
you can easily use the function like this:

// declare 3 different types of arrays
Array<int> arrayl(16);
int array2[16];

Team LRN

64 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

int* array3 = new int[16];

// call the function on the three arrays
Process(arrayl);

Process(array2);

Process(array3);

The conversion operator for the Array class automatically treats the class as a stan-
dard pointer. This makes the two different ways of representing arrays interchange-
able.

Inserting an Item Between Two
Existing Iltems

One thing I haven’t covered yet is how to insert an item into an array in between
two existing items. The reason for this is that it is not a straightforward operation.
To insert an item into the array, you need to first move everything after the desired
index up one cell. Figure 3.11 shows what happens when you insert an item at
index 3.

Insert 9 here Figure 3.11

i Inserting into an

array involves
moving everything

3 8 0 4 2
\ up to the next
Value is lost cell and then
9 3 8 0 4

inserting the new
value.

Everything from index 4 through index 8 must be moved up one cell. The item in
cell 9 cannot be moved up, so it is overwritten. Therefore, this algorithm will only
work on arrays that aren’t full: You don’t want to be writing over anything in your

array. Here’s the algorithm:

1: void Insert(Datatype p_item, int p_index)

2: |

3: int index;

4 for(index = m_size - 1; index > p_index; index-)
5 m_array[index] = m_array[index - 11;

Team LRN

An Array Class and Useful Algorithms b5
= = = = L = 1L _

6: m_array[p_index] = p_item;
7: 1}

On line 1, I take two parameters: p_item, which is the item I want to insert into the
array, and p_index, the index at which I want to insert p_item. I declare an index
variable on line 3, which will count from the end of the array downwards in the for-
loop on lines 4 and 5.

Why do you count backwards? The reason has to do with the way that data is
copied over: Say you have a 10-cell array and you want to insert something into cell
3. If you copied cell 3 over to cell 4, and then cell 4 over to cell 5, and so on, you
would end up with everything in cells 4-9 being the same. This is because you’d
have written over the data in cell 4 before you were able to copy it over to cell 5—
and in actuality, you’d copy cell 3 over into every cell after it. So instead, the algo-
rithm would start at cell 9 and copy cell 8 into it, and then copy cell 7 into cell 8,
and so on.

Lastly, on line 6, I copy p_item into the array at cell p_index.

Removing an Item from the Array

Removing an item from an array is almost the same algorithm as inserting one, but
there are a few differences. First of all, if an item is removed, everything above the
index is moved down one index, and the last item in the array is duplicated. Figure
3.12 shows how this is accomplished.

Remove this Figure 3.12

¢ Removing an

item from an

1 ° ® > N 3 8 0 4 2 array involves

value is duplicated | MOVIng
/ everything

down by one
11 5|8 |5 |48 0| 4]|2]o2 index.

It is important to note that the loop algorithm is normal (as opposed to a reversed
loop for item insertion) for item removal because you are moving data down the
array instead of up the array. You end up with the following algorithm:

Team LRN

66 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

1: void Remove(int p_index)

2: |

3 int index;

4. for(index = p_index + 1; index < m_size; index++)
5 m_array[index - 1] = m_array[index];

6: }

This time, the only parameter is the index that you want to remove, p_index. On
line 3, I declare an index variable to loop through the array, and I move every item
down one index on lines 4 and 5.

A Faster Removal Method

There is a faster removal algorithm, but it only works when the order of items in
your array doesn’t matter. In addition, it requires you to constantly keep track of
the number of items actually in the array, as opposed to just the capacity.

For example, you have a 10-cell array in which you have 8 items stored in indexes
0-7. If the order of your items in your array doesn’t matter and you want to remove
the item at index 3, you can move the item at index 7 into index 3. The order of
your array is altered, but the removal algorithm moved only one item, a significant
savings of speed.

Unfortunately, the array class doesn’t keep track of how many items you’ve put into
the array, so to use this algorithm, you would need to keep track of this informa-
tion yourself. The good thing is that the algorithm is so simple, it’s not too difficult
to implement. For this example, I'll assume that count is a variable that maintains
the current count of items in the array, and intarray is the actual array.

1: count-—;
2: intarray[3] = intarray[count];

In this example, I removed index 3 from the array by overwriting it with the item in
the last index. If there are 8 items in the array, then count will contain 8, but the
last item is in cell 7. So in line 1, I decrement the count from 8 to 7 and move cell
7 into cell 3 on line 2.

Pretty neat, huh? Figure 3.13 shows how this algorithm works.

Team LRN

An Array Class and Useful Algorithms b7

N — r—= L= —Lr"]_

Remove this Last ltem Figure 3.13

¢ i This figure shows
how to remove an

1 5 8 5 4 3 8 0 4 2 index using the

value is duplicated fast removal
/ algorithm. The last

item is moved

down into the

index of the item

that is being
removed.

In the figure, the array contains 9 items and 10 cells. The last cell, although con-
ceptually empty, still has a value in it. (Memory has a value in it at all times.) When
the fast-remove algorithm is performed, the 4 from the last cell is copied into the
cell that you are removing, and the last item pointer is decremented so that it
points to the cell with 0 in it. Note how the last two indexes, although conceptually
empty, still have data in them, and the value 4 is duplicated in the array.

Retrieving the Size of an Array

The great thing about having your own array class is that it remembers the size of
the array for you, unlike native arrays. Here is a function to retrieve the size of the
array:

1: int Size()

2: |

3: return m_size;
4: }

Example 3-3

Here is the code listing for Example 3-3. It uses the Array class, which you can find
in the \structures\ directory on the CD, and demonstrates the major features of the
class:

void main()

{
// create two arrays, one for an integer array
// and one for a float array.

Team LRN

68

3. Arrays

_1_J_L—41__j_T———J""7EEEEEE__J1r_1[L——L_r—4———1___r——:::= L=,

}

Array<int> intarray(10);
Array<float> floatarray(5);

// use the access operator to store values.
intarray[0] = 10;
floatarray[0] = 3.1415f;

// use the access operator to retrieve values.
int i = intarray[0];
float f = floatarray[0];

// store values at index 1 in both arrays.
intarray[1l] = 12;
floatarray[1] = 6.28f;

// insert values between cells 0 and 1 in both arrays.
intarray.Insert(11, 1);
floatarray.Insert(4.2f, 1);

// remove the items at cell 0 in both arrays.
intarray.Remove(0);
floatarray.Remove(0);

// resize both arrays
intarray.Resize(3);
floatarray.Resize(4);

// both arrays are automatically deleted by the Array
// class destructor.

Example 3-3 has no output.

Storing/Loading Arrays on

Disk

Quite often, you will want to store the contents of your arrays onto a more perma-
nent medium, such as a hard disk. In this way, you can easily store and retrieve
information for a game, which will make it easy for you to implement a save/load

feature.

Team LRN

Storing/Loading Arrays on Disk 69

N — r—= L= —Lr"]_

For saving and loading, I will use the standard C file functions (I like them better
than C++’s): fopen, fread, furite, fclose. If you are unfamiliar with them, please see
Appendix A.

Luckily, C’s file IO functions operate on arrays! This means that you have to do
very little work to read or write an array. I'll be adding these functions to the array
class I just created.

Writing an Array to Disk

You want a routine that writes an array to disk first. It will be straightforward and
write the entire array to a single file.

1: bool WriteFile(const char* p_filename)
2: |
3: FILE* outfile = 0;

4. int written = 0;

5: outfile = fopen(p_filename, "wb");

6: if(outfile == 0)

7 return false;

8: written = fwrite(m_array, sizeof(datatype), m_size, outfile);
9: fclose(outfile);

10: if(written != m_size)

11: return false;
12: return true;
13: }

On line 1, I declare the function to take one parameter: the name of the file I am
writing the array to. On line 3, I declare a FILE pointer, which will point to the
open FILE in memory. I declare an integer on line 4, which will keep track of how
many items were actually written to disk.

One line 5, I open the file in "wb" - -
n.lode. This moo‘le. tries to open th? g CAUTION ?
given file for writing and destroys its

Please be careful when dealing with
files. The WriteFiTle algorithm will
destroy any file that already exists
because it uses "wbh" mode, and if you
accidentally tell it to write to an

On line 6, I check to see if the file was i important file, there is absolutely no j

contents, essentially emptying the file.
This mode also opens the file in binary
mode, which is the mode in which all
non-text data is stored.

actually opened. There are numerous way to get the file back.

reasons why opening a file for writing M M

Team LRN

70 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

might fail, so it’s a good idea to check for this. If the file hasn’t been opened, the
function returns false.

The array is written to disk on line 8 by using fwrite. This function tries to write
the entire array to disk by first passing a pointer to the array, and then the size of
the items in the array, and then the number of items in the array, and finally the
file that the array should be written to. fwrite returns the number of full items that
were actually written to disk, which I store in the written variable.

On line 10, I check to see if the entire array was written. If not, the function
returns false on line 11. If all went well, however, the function reaches line 12 and
returns true.

If this function returned true, then your array is now safely stored on disk.

Reading an Array from Disk

Now, there really isn’t much use in writing an array to disk if you don’t have some
way to retrieve the array. Luckily (again), C’s fread function works really well with
arrays, so I’ll create a read function just like my write function:

bool ReadFile(const char* p_filename)

2: |

3: FILE* infile = 0;

4: int read = 0;

5: infile = fopen(p_filename, "rb");
6: if(infile = 0)

7: return false;

8: read = fread(m_array, sizeof(datatype), m_size, infile);
9: fclose(infile);

10: if(read != m_size)

11: return false;

12: return true;

13: }

This function is almost exactly like the WriteFile function. This time, instead of
opening the file in "wb" mode, I open it in "rb" mode, which means that I'll be
reading binary information from the file. If the file doesn’t exist, the call to fopen
will fail, and the ReadFile function will return false (lines 6-7).

On line 8, you read in the same number of items as there are cells in the array,
which means that you must resize the array to the number of items you want to
load from the file.

Team LRN

Application: Using Arrays to Store Game Data 71

N — r—= L= —Lr"]_

If you could not read in all the items from disk, then the routine returns false.
Lastly, it returns true if the function was able to read everything it expected.

Considerations for Writing and
Reading Files

You must take some things into consideration when writing an array of objects to a
file. Mainly, you must be sure that the object contains only values and no pointers.

For example, if you have a class that contains a pointer to another class and you
write that class to disk using fwrite, the pointer value is stored on disk, but not
what it points to. This could get quite messy later on when you attempt to load the
class from disk; you’ll end up with a class pointing to a place in memory that was
valid when you saved the class but isn’t valid anymore.

You can see how to fix these kinds of problems in Chapter 9, “Iying It Together:
The Basics.”

Application: Using Arrays to
Store Game Data

This is Game Demonstration 3-1, which can be found on the CD in the directory
\demonstrations\ch03\Game01l - Monsters\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Games need to keep track of great amounts of information. Games also need to be
able to access and modify this information rather quickly; no one likes a slow game.
Arrays offer both of these advantages and are thus used quite often within games.

Team LRN

72 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

This section shows you a very simple demonstration game to help you understand
how to store objects within a game. I'll be storing monsters in an array.

The Monster Class
I begin by first defining the Monster class:

class Monster
{
public:
int m_x;
int m_y;
int m_hitpoints;
s

This is a very simplistic monster class—all it has is three variables: The x and y coor-
dinates of the monster in the game world and its hit points. Obviously, a real mon-
ster would have much more information associated with it in a real game, but this
is just for demonstration purposes.

Declaring a Monster Array

In the game, you want to declare an array of monsters. Where you put the array is
up to you, but for this simple demonstration, I will make it global. I will also have a
separate integer that will keep track of how many monsters are currently in the
game. Remember, arrays do not need to be packed full, and initially there will be
no monsters.

In this demo, I am going to limit myself to 32 total monsters, so I will initialize the
array to 32 cells and reset the monster count to 0:

Array<Monster> g_monsterarray(32);
int g_monsters = 0;

These are both global variables, which I don’t recommend for a real game, but it
increases the readability of this simple example.

Adding a Monster to the Game

So, now that I have my array of monsters, I want to be able to create a monster and
put itinto the game, right? For this, I will make an AddMonster function, which will
try to add a random monster to the game. (See Chapter 22, “Random Numbers,”
and Appendix A for information on random numbers.)

Team LRN

Application: Using Arrays to Store Game Data 73

N — r—= L= —Lr"]_

1: bool AddMonster()

2: |

3 if(g_monsters == 32)

4 return false;

5: g_monsterarray[g_monsters].m_x = rand() % 640;

6: g_monsterarray[g_monsters].m_y = rand() % 480;

7: g_monsterarray[g_monsters].m_hitpoints = 11 + (rand() % 10);
8 g_monsters++;

9: return true;

10: }
First, note the return type on line 1. The function returns a Boolean. If the func-
tion returns false, then the function failed and could not add a monster. If the
function returned true, then it placed a new monster in the array.

On line 3, I check to see if there are 32 monsters in the game. If so, I return false,
because I can’t fit any more monsters in the array.

On lines 5-7, I set the information for the new monster, which is at the same index
as the g_monsters variable. For example, if there are 0 monsters, then the new mon-
ster should be placed at index 0, and if there is 1 monster, then the new monster
should be placed at index 1.

As for the variables, I simply set the x position of the monster to a number between
0 and 639 and the y position to a number between 0 and 479 because the screen is
in 640 X 480 resolution. On line 7, I set the monsters hitpoints to a value between

11 and 20.

On line 8, I increment the monster count to signify that I have added a monster,
and I return true on line 9, telling the caller that the routine has finished success-
fully and the monster has been added to the array.

Making a Better Insertion
Algorithm

I bet many of you are looking at the AddMonster algorithm and saying to yourselves,
“Why should I limit myself to only 32 monsters?” Well, you shouldn’t. Because the

Array class supports dynamic resizing, you can easily adapt the algorithm so that it
increases in size when you need to add more monsters.

When do you resize the array, though? Do you resize it by one cell if you determine
that the array is full? No! Doing it that way is wasteful and slow. Remember, when
you resize an array, the algorithm first needs to allocate new memory. Then it

Team LRN

749 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

needs to copy everything over, and then it needs to delete the old array. This is
quite wasteful in terms of speed.

So what do you do instead? The most popular approach is to increase the size of
the array in “chunks.” Because the array originally carries 32 monsters, when you
try to insert the 33" monster, you should make enough room for future expansion
and resize it to 64 cells. That way, you can insert 32 more monsters before you need
to resize again!

This method of resizing is pretty efficient in real-world use. Some people prefer to
double the size of the array each time it is expanded. STL’s vector does this. In
most cases, that method is wasteful in terms of space. What happens if you have a
1024-cell vector and you insert 1025 monsters? Then the vector resizes itself to 2048
cells, which is almost twice as many as you need.

I find that increasing the size of an array by a constant amount is much more effi-
cient in the long run, so in the revised algorithm, I'll increase the monster array by
32 cells each time I reach the limit:

1: bool AddMonster()

2: {

3: if(g_monsters == g_monsterarray.Size())

4 g_monsterarray.Resize(g_monsterarray.Size() + 32);

5: g_monsterarray[g_monsters].m_x = rand() % 640;

6: g_monsterarray[g_monsters].m_y = rand() % 480;

7: g_monsterarray[g_monsters].m_hitpoints = 11 + (rand() % 10);
8 g_monsters++;

9: return true;
10: }

This algorithm is identical to the previous one, with one exception: Lines 3 and 4
are different. On line 3, I first check to see if the monster array can hold enough
monsters. If not, line 4 resizes the array to g_monsterarray.Size() + 32, adding 32
cells.

Removing a Monster from the
Game

You want it to be possible to remove monsters from the game. You also want it to
be possible to remove any monster in the array at any time from the game, and
there are two approaches you can take to do this.

Team LRN

=T 1

ppliatinn UsintjArrags to Store Game Data

The first method uses the Remove function of the array class. It would look like this:

void RemoveMonster(int p_index)
{

g_monsterarray.Remove(p_index);
g_monsters-;

}

The game demo won’t use this method, however. The problem with this method is

that it takes too long. Sure, in the demo I won’t be creating more than a few dozen

monsters at most. That doesn’t seem like a
lot right now, but what happens when

you eventually get hundreds or thou-
sands of monsters in a game? This algo-
rithm slows things down considerably.

Lucky for me, the order of the monsters
in the array doesn’t matter in this simple
demo, and I'll be using the fast removal

algorithm instead:

void RemoveMonster(int p_index)

{

g_monsters-;

g_monsterarray[p_index] = g_monsterar-
ray[g_monsters];

}

With this approach, I take the last mon-
ster in the array and move it into the cell
that the monster I want to remove previ-
ously occupied. Instead of moving many
monsters down the array, I only move
one monster.

NOTE

The RemoveMonster algorithm does
not resize the array at all, but the
AddMonster algorithm does.Why is
this? Well, | generally consider it
wasteful to downsize arrays unless |
absolutely need the extra space that
is being cleared up. So what ends up
happening in the game is that the
monster array will eventually reach
the worst-case size and then stay at
that size forever, allowing you to add
many monsters rapidly after the
array has reached its optimum.This
is also helpful for profiling your
game because after you are done
running it, you can see how large
your monster array is and have an
estimate of the maximum number
of monsters you had in the game at
any point in time.

Checking for Monster Removal

In this little game, there is only one condition which must be true in order for a
monster to be removed: The monster’s hitpoints must be 0 or less. To check for
this condition, I need to have a function that loops through the monster array and
checks each monster. If a monster is found to have 0 or fewer hitpoints, it is then

removed:

Team LRN

75

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

76 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

1: void CheckMonsters()

2: |

3 int index = 0;

4: while(index < g_monsters)
5: |

6: if(g_monsterarray[index].m_hitpoints <=0)
7 RemoveMonster(index);

8 else

9 index++;

10: 1}

11: }

On line 3, I declare an index variable. This variable will be used to loop through
every index in the g_monsterarray. It is initially set to 0. Lines 4-10 are one large
while loop, which continues looping while index is less than g_monsters. On line 6, I
check to see if the current monster is dead (m_hitpoints <= 0). If so, I remove the
monster using the RemoveMonster function. If the monster isn’t dead, I skip it and go
on to the next monster by incrementing index (line 9).

The reason I don’t increment index if I remove the monster is because a new mon-
ster is moved into the same index I just removed. If I incremented index anyway,
I'd totally skip over a monster, which might be dead. That would be a very interest-
ing bug.

Playing the Game

When you start up the game, you are faced with a blank screen. You can add mon-
sters to the screen by pressing any key on the keyboard except Escape, which causes
the game to exit.

After you’ve added monsters to the screen, you can click on them to “hit” them,
causing their hitpoints to decrease. Once a monster’s hitpoints reach 0, the mon-
ster is removed from the game using the CheckMonsters function defined in the pre-
vious section, which is called once every frame.

Figure 3.14 shows a screenshot of this game demo in action.

Team LRN

Anal|__|5i5 of Arrays in Games 77

N — r—= L= —Lr"]_

I MONSTERS! - Game Dema 3-01 ISICTh Figure 3.14
i, O - This is a screenshot
of the Array Game
Demonstration in
action.

Analysis of Arrays in Games

Arrays are the most common data structure. I’ve never seen a complicated program
that doesn’t use arrays. Let’s face it, arrays are great to use for several reasons:

m They are easy to create.
® They are fast to access.

® They are easy to maintain and destroy when needed.

So if arrays have all these good attributes, why aren’t they used for everything?
Simple: Arrays aren’t perfect—they do have some flaws.

Cache Issues

Arrays are great for being able to access every item in the array randomly... in the-
ory. In reality, arrays aren’t actually randomly accessible. This has to do with the
way computers actually work.

A computer is a complex machine with many layers of memory. The lowest of these
layers is called the registers. Data needs to be loaded into these registers in order for
the processor to actually do anything with them. The good thing is that registers
are the fastest blocks of memory in the entire computer. The bad thing is that
there aren’t very many registers. The x86 and x87 architecture only has (8) 32-bit
registers and (8) 80-bit floating point registers, so only a very small amount of data
can be manipulated at the same time.

Team LRN

78 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Luckily for us, all processors have a larger memory area almost as fast as the regis-
ters called the level I cache (L1 cache). This cache is where the computer puts
important data that it will need to access often (the actual binary code of each pro-
gram is stored in this cache, too). There might be other levels of cache as well, but
the most important is the level 1 cache. The size is usually around 32-128 kilobytes
of memory, which doesn’t seem too large, but it’s a great deal larger than the regis-
ters. Figure 3.15 shows the speed/size relationship between the various memory lev-

els.
Figure 3.15
. . 32-128 .

Registers: bytes A taster This shows the
speed/size
relationship between

Data | Code different memory
levels. Generally,
Level 1 Cache 16-128 | 16-128

kilobytes | kilobytes larger memory is
slower, and smaller

memory is faster.

vy bigger

Other cache or

main memory 512 kilobytes to 4 gigabytes

So whenever data needs to be accessed, the processor needs to search for it in one
of the memory levels. If it’s already in the registers, it just performs the operation
on it. If the data is in the L1 cache, it makes space in the registers by saving
whichever data was in the registers previously and moving the new data into the
registers. If the data isn’t in the L1 cache, the processor needs to find it in one of
the other memory levels, which can become a slow process.

What does this have to do with arrays? When the memory is moved from level to
level (except from the L1 to the registers), a large chunk is always moved at one

Team LRN

_'=.'_LU—|J—I—|—'F

Analysis of Arrays in Games

=T 1

time because it is more efficient to move chunks. When you access a cell of an
array, the processor actually loads a chunk of your array into the L1 cache.

Say you’re working on a simple system that has a cache of 8 cells and you are
accessing a 16-cell array. Figure 3.16 shows the described system. When you access
the first cell in your array, the processor loads the first 8 cells of the array into the
cache. After that, you can access cells 1-7 really quickly because they are already in
the cache. You can change them and do whatever you want to them.

Now, say you want to access the last cell of the array. Well, because you’ve modified

some cells in the first half of the array, the processor needs to move those back into
memory, and then it needs to load the second half of the array into the cache. This
whole process took a lot longer than the supposed “instant access” an array theoret-
ically has.

access the first cell Figure 3.16

amy | | L L L L L LD LT L[] | Whenthefistpar
of the array is
YV VYV VVYVVY accessed, it is stored
beache | [| | | [| | |

in the cache. When
the second part is

then access the last cell accessed, the first

ary | | [[[T TP part is written back
A A A A A A AA out to memory, and
L1 cache the second part is
| | | | | | | | | stored in the cache.
avy | | LTI TP
Y YYYVYVYVYY
broache | | | | [[|||

So that’s one thing you have to pay attention to when dealing with arrays. Looping
through them in a single loop is nice and fast because you use as much of the array
as possible at one time. However, an algorithm that randomly jumps to different
cells that are far away from each other will be slow because you're causing the
processor to move around a great deal of memory. Profiling programs have shown
that the processor spends most of its time moving memory around, which is a
major optimization concern.

Team LRN

79

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

80 3. Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Try to keep this in mind when working with arrays. After all, if something appears
to be too good to be true, it probably is.

Resizing Arrays

Perhaps the largest problem with arrays is that they are mostly inflexible in size.
When you have really large arrays containing mounds of data and all of a sudden
you want to resize it, it’s going to take a while. The reason for this is that the array
resize algorithm is O(n), and that’s not even counting the compiler’s implementa-
tion of new and delete.

First, the compiler must find enough memory to contain the old array and the new
array at the same time, which can be quite difficult to do if you’re low on memory.
Then you need to copy every item that you can from the old array into the new
array and delete the old array. This is not something you want to be doing too
often in a real-time game.

Here are the downsides:

® Resizing an array takes as much memory as the old array plus the new array.

® Resizing an array is an O(n) algorithm—the larger the array, the longer it
takes.

Inserting/Removing Cells

Another downside to arrays is that it is not very easy to insert and remove items
while preserving the order of the array. To do this, you must physically move every
item past the cell where you want to insert/remove up or down one cell. This algo-
rithm is also O(n), and it takes longer as the size of the array increases.

There is, of course, the fast removal algorithm if you don’t care about preserving
the order of the array, but that doesn’t help if you need the order to stay the same.

Conclusion

You might have read this chapter not knowing anything about arrays, or you might
not have. Either way, I hope this chapter presented some new information that you
can use to better your programming.

There is a weird cycle in game programming that is often used. A programmer
starts off learning how to use arrays and uses them almost exclusively. Then, later

Team LRN

Conclusion a1

N — r—= L= —Lr"]_

on, he learns about the nifty advanced data structures such as linked lists (see
Chapter 6, “Linked Lists”). Eventually, though, he ends up using arrays again.
Simply put, arrays are the most often used data structures in game programming
simply because processors are optimized to process arrays. With the advent of vector
processing features in the x86 microprocessors (MMX, 3DNow, SSE, and SSEZ2),
arrays have become even more important because these new features operate even
more efficiently on arrays.

My advice is to become as familiar with arrays as humanly possible. You will be
using them for the rest of your life. You will see that almost all of the chapters in
this book use arrays in one form or another.

Team LRN

This page intentionally left blank

Team LRN

‘—‘JLLJ-—‘_‘[—' ==L — M= —] l"J‘zﬁ—’lﬂi

CHAPTER 4

EI1ITVECTORS

84 <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Bitvectors are an important part of optimizing small data items, yet they are so
frequently missing from data structures books. Because they are fairly easy to
understand, I have included them in this book. Bitvectors have many names, and
you might have used something similar before, in which case you can skip this
chapter. In this chapter, you will learn

= What a bitvector is

= How to create a bitvector

® How to access the bits inside a bitvector

= How to rapidly set and clear every bit within a bitvector

= How to read and write a bitvector to disk

= How to apply bitvectors to games using the quicksave method

®= What a bitfield is

® How to declare and access bitfields

What Is a Bitvector?™*?

A bitvector is a specialized kind of array. Basically, a bitvector is meant to condense
bit values (or booleans) into an array so that no space is wasted.

So why not just create a Boolean array? The reason is not so simple: Most compilers
use a larger datatype, such as an integer, in place of a Boolean. They do this
because most computers can only send a fixed amount of bits at a time through
memory and to the processor. Every x86 machine from the 386 upwards can only
send data in packs of 32 bits.

Unfortunately, this is inefficient on a size basis. You often want data to take up the
smallest amount of size possible, especially when you’re dealing with network trans-
fers and saving massive virtual worlds to disk.

Enter the bitvector, designed to pack the data as closely as possible.

Designing a bitvector is a tricky task, however, because you need to use bit manipu-
lation (see Appendix A if you are unfamiliar with bit manipulation). The method I
use is to create an array of long integers, which are usually 32 bits long (see Figure
4.1). You should check your compiler documentation—if your compiler doesn’t

Team LRN

Graphical Demonstration: Bitvectors a5

N — r—= L= —Lr"]_

support 32-bit integers, you can easily modify the bitvector class to work on larger
or smaller integer sizes.

Now, for each index in the array, you should be able to access 32 individual bits.

Figure 4.1

Here is a

[o[1]1]1]o[1]o[ofo[1]o[1]o[o[1[1]1]ofol1[1[1[o[O[1]o[1]O[1[1]O[1]| bitvector
containing 32

indexes. On
most machines,
these 32
indexes take up
the same
amount of room
as a single
integer.

Graphical Demonstration:
Bitvectors

The graphical demonstration for bitvectors is located on the CD that comes with
this book in the directory \demonstrations\ch04\Demo01 - Bitvectors\. This demon-
stration shows you how to set and clear the bits within a bitvector. The other com-
mon operations on a bitvector, such as resizing, creating, and deleting, are not
shown in this demo because they are the same as the array algorithms that I have
already demonstrated.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for the
book. For more information about this library, see Appendix B,“The Memory
Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the directory or
create your own project using the settings described in Appendix B. If you cre-
ate your own project, all of the files you need to include are in the directory.

Team LRN

86 <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Main Screen

When you run the program, you are presented with the main screen, as shown in
Figure 4.2. There are two buttons and a long bar containing white or grey boxes.
This represents a bitvector that is two cells large, and each cell has 32 bits, giving you
a total of 64 bits. White boxes mean that the cell has a value of 0, and grey boxes con-
tain a value of 1. The boxes are somewhat small, but you can click on a box to select
the current index, which is indicated with a red border around the box.

r Figure 4.2
set bit 1 clear bitw o)
: S This is the main
screen of the
Bitvector Graphics

Demonstration.

Click on a box to select the current bit.

Using the Buttons

When you have selected the index that you want to set or clear, you must click on
the Set Bit or Clear Bit buttons. After you do this, the demo goes through the pro-
cedure to set or clear a bit. I cover the algorithm for these functions in the next
section, and you can follow along using the demo.

Creating a Bitvector Llass

In this section, I'm going to build a bitvector class. This class will assume that an
unsigned long int is 32 bits, which should work on the majority of systems out
there. If not, it can easily be modified so that it works on integers of any bit size.

The bitvector class is contained on the CD in the file \structures\bitvector.h.

Team LRN

Creating a Bitvector Class 87

N — r—= L= —Lr"]_

The Data

First, I begin by creating the data members of the class:

class Bitvector

{

protected:
unsigned long int* m_array;
int m_size;

s

You’ll notice that the data members look almost exactly like the ones I used in the

Array class (see Chapter 3, “Arrays”), with the exception of the type of m_array. This
time, it is an unsigned long int instead of a generic datatype, because a bitvector is

only suitable for storing booleans.

The size variable keeps track of the number of integers within the array. Note that
because I am using 32-bit integers to store the bitvector, the number of bits in the

vector must be a multiple of 32 (32, 64, 96, and so on). Therefore, to find out how
many bits are in the vector, you simply multiply the number of integers by 32. A 1-
integer array can hold 32 bits, a 2-integer array can hold 64 bits, and so on.

The Constructor

The constructor for this class is the same as the array constructor:

Bitvector(int p_size)
{

m_array = 0;

m_size = 0;

Resize(p_size);

}

This piece of code clears the array pointer to 0, sets the size to 0, and then calls the
Resize algorithm to resize the array to the correct size.

The Destructor

Again, this part is the same as the array destructor:

~Bitvector()
{
if(m_array != 0)

Team LRN

88 <. Bitvectors

_1_J_L—41__j_T———J""7EEEEEE__J1r_1[L——L_r—4———1___r——:::= L=,

deletel[] m_array;
m_array = 0;
}

This deletes the array if it exists.

The Resize Algorithm

The bitvector resize algorithm is similar to the array resize algorithm, with one
exception: Instead of resizing the array to a certain number of integers, I perform a
few calculations and resize the vector to the given number of bits. This change
allows users of the class to request a certain number of bits without having to figure

out how many integers they will turn into.

1: void Resize(int p_size)

2: |

3 unsigned long int* newvector = 0;
4: if(p_size % 32 == 0)

5: p_size = p_size / 32;

6: else

7 p_size = (p_size / 32) + 1;

8: newvector = new unsigned long int[p_sizel;
9: if(newvector == 0)

10: return;

11: int min;

12: if(p_size < m_size)

13: min = p_size;
14: else
15: min = m_size;

16: int index;

17: for(index = 0; index < min; index++)
18: newvector[index] = m_array[index];
19: m_size = p_size;

20: if(m_array !=0)

21: delete[] m_array;

22: m_array = newvector;

23: }

The only part of this algorithm that is different from the array resize algorithm is

within lines 4-7. When a size is passed into this routine, it is assumed to be in bits,
so I need to take that number and figure out how many cells to make. On line 4, I
check to see if the number of bits is divisible by 32. If so, then the size of the array

Team LRN

Creating a Bitvector Class 89

N — r—= L= —Lr"]_

is the number of bits required divided by 32. Hence, passing in 32 will result in 1
cell, 64 will result in two cells, and so on.

However, if the user passes in a number that is not divisible by 32, I need to do a lit-
tle work. If the user passes in 31, for example, 31 divided by 32 will result in 0,
because it is an integer division. 0 cells is obviously an incorrect amount, so I need
to add 1 to the cell count, which is what happens on line 7. The end result of this
algorithm is that you will always end up with a bitvector that contains as many bits
as you need, plus some additional bits if the number isn’t divisible by 32.

If the integer you are using to store the bits isn’t 32 bits long, it is a simple task to
change it. In lines 4-7, all you need to do is change all occurrences of 32 into the
size of the integer you are using. If, for example, you are using an older 16-bit sys-
tem, those four lines would look like this:

if(p_size % 16 == 0)
p_size = p_size / 16;

else

p_size = (p_size / 16) + 1;

~N o o1 &~

The same goes for 8 bits, or 64 bits, or however many bits your integers use.

The Access Operator

This is one part of the bitvector class that deviates from the array class. In the array,
I was able to make the access operator act in two ways: It could retrieve the value at
an index and at the same time allow you to modify the item. You cannot do that
with a bitvector.

The array access operator returned a reference to the item in the given cell, but
because I am playing around with individual bits and not actual datatypes, I am not
allowed to return a reference to a specific bit. So the access operator is limited to
retrieving the value at a given index.

There are several parts to retrieving an individual bit within a bitvector:

1. Find the cell that the bit is in.
2. Find which bit in the cell is the required one.
3. Retrieve the bit.
4. Shift it down so it has a value of 0 or 1.
Step 1 is easy: To find out which cell a bit is in, divide the index by 32. If you want

to find any bit from 0-31, it will be in the first cell; any bit from 32-63 will be in the
second cell, and so on.

Team LRN

aqo <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The next step is a little tricky. To figure out which bit in the cell you want to access,
you need to take the original index and modulo it by 32. Any index from 0-31
modulo 32 will give you the same number, so if you want bit 5, you will need to
retrieve the 5th bit of cell 0. What happens when you want to get bit 34? 34 modulo
32 is 2, so you access bit 2 of cell 1.

1: bool operator[] (int p_index)

2: |

3: int cell = p_index / 32;

4: int bit = p_index % 32;

5: return (m_array[cell] & (1 << bit)) >> bit;
6: }

Lines 3 and 4 find the cell and bitindex that you want to retrieve, which parallel
steps 1 and 2 of the algorithm, but line 5 needs some explaining. First of all, you
access the integer at index cell. This returns an integer. Next, you take 1 and shift
it up bit spaces. Now, this should give you a 1 at the same bit position as the bit you
want to retrieve, right? Take a look at Figure 4.3 to see how this works.

you want to access this cell Figure 4.3
i This shows the |
1]lolololololo|lo|lo|o|lo|lo|lo|o]|o]|o being shifted up into

the correct position.

If you want to retrieve bit 0, then 1 shifted up 0 places is still 1. If you want to
access bit 5, then 1 shifted up 5 places is 32, which, represented in binary, is
100000. The 1 is in index 5.

Now that you have shifted a 1 into the appropriate place, you need to retrieve the
bit in the cell. This step is easy—all you need to do is binary and the two numbers
together. Remember the binary rules:

1&1=1
1&0=0

Team LRN

Creating a Bitvector Class o1

N — r—= L= —Lr"]_

So when you take that 1 and binary and it with the given cell, you essentially
retrieve the bit in the array at the correct bit-position. However, the result of the
binary andisn’ta 1 ora 0. If bit 5 had a 1 in it, then the result of the operation
would be 32, or 100000. You need to shift this number back down so that it is
either a 1 or a zero. So you shift it down 5 bits, and voila! You have a 1!

Note that you can modify the access algorithm for any size integer by replacing all
occurrences of 32 with whatever integer size your platform uses.

The Set Function

Setting a bit within the bitvector is a slightly more complicated task. Because there
is no single way to set an individual bit within an integer, you need to rely on the
binary math rules: Use the and operator to clear bits and use the or operator to set
bits.

1: void Set(int p_index, bool p_value)
2: |

3: int cell = p_index / 32;
4: int bit = p_index % 32;
5: if(p_value == true)
6 m_array[cell]l = (m_array[cell] | (1 << bit));

7: else

8 m_arraylcell]l = (m_arraylcell] & (~(1 << bit)));
9: }

Lines 3 and 4 are the same from the access operator; they retrieve the cell number
and the bit number. At this point, you need to make a choice: If the value you want
to set is true, then you want to set the correct bit within the vector; if the value you
want to set is false, then you want to clear the correct bit within the vector. To do
this, you rely on four binary math rules:

l. xand1=x
2. xand 0=0
3. xorl=1
4. xor0=x
Rules 1 and 4 are known as identity functions, which just return the same value as x.

Rule 2 is the clear function—no matter what x is, the result is 0. Rule 3 is the set
function—the result is 1, no matter what x is.

Team LRN

gz <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

For the set function to work (line 6), you shift a 1 into the bit position that you
want to set, and you logically or that with the correct cell. This process is demon-
strated in Figure 4.4.

you want to set this cell to 1 Figure 4.4
i This shows how to
olo|1l1|ol1|o]l1|1]1]o]olo]lol1]o set a bit. Note that

every bit in the final
result is the same

Logical OR
except for the one bit
ofojojofoOofoO0]1 ojofojo)jofofoOo]J0O0]O that | wanted to set,
which became |I.
Equals

Once you are done with the operation, the correct bit is set.

For the clear function to work, you need to do a little more work. This time, to clear
the correct bit and keep all the other bits the same, the bit you want to clear needs
to be 0, and every other bit needs to be 1. Remember, using the logical and opera-
tor with a 1 is the identity function. Figure 4.5 demonstrates this algorithm.

you want to clear this cell to 0 Figure 4.5

¢ This shows how to
clear a bit. Note that
every bit in the final

0]0]| 1 1101 1 1 1 11000010

result is the same
Logical AND

except for the one bit
1 1 1 1 1 1 0| 1 1 1 1 1 1 1 1 1 that you wanted to
clear, which became 0.

So you use the shift operator to first shift a 1 into the desired position that you
want to clear. Then, the logical not operator reverses every bit so that there is a 0
where the 1 was, and everything else is now 1. After using the logical and operator
on the cell, the desired bit is now cleared.

Team LRN

Creating a Bitvector Class a3

N — r—= L= —Lr"]_

If you want to convert the algorithm to an integer size different from 32 bits, just
change all instances of 32 to the desired bit size.

The Clear All Function

There are times when you will want to clear the entire contents of a bitvector
quickly, and as you might guess, looping through every bit and clearing it doesn’t
seem to be efficient. Instead, there is a better method, where you set each integer
in each cell to 0. On a 32-bit system, you’ve just set 32 bits to 0 at once.

1: void ClearAll1()

2: |

3 int index;

4: for(index = 0; index < m_size; index++)
5 m_arraylindex] = 0;

6: }

The algorithm loops through and sets every cell to 0. Figure 4.6 shows how the
clear function works.

Figure 4.6

2 2 2 2 2 2 2 2 This figure represents
an 8-celled bitvector.
If each cell had 32
Y bits, then there would
be 256 bits. The
algorithm sets each

cell to O, clearing 32

bits at a time.

The SetAll Function

There might also be times when you need to set every bit in the bitvector to 1.
Luckily, the procedure is just as easy as the ClearAll function—instead of replacing
each integer with 0, you replace each integer with a number that is all Is. On a 32-
bit system, this number would be hexadecimal FFFFFFFF, or decimal 4,294,967,295.
Each F in the hex representation is 4 bits, so you need 8 of them for 32 bits.

Team LRN

94

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

1
2
3
4.
5
6

<. Bitvectors

: void SetA11()

{
int index;
for(index = 0; index < m_size; index++)
m_array[index] = OxFFFFFFFF;
}

If you were to use this algorithm for a different integer size, you would need to
replace 0xFFFFFFFF with the hex equivalent for the correct size. 8 bits would be 0xFF,
16 bits would be 0xFFFF, and so on.

The WriteFile Function

Because a bitvector is an array of integers, saving a bitvector to disk is the same as
the way you save arrays to disk.

1
2
3
4:
5:
6
7
8

9.

10:
11:
12:
13:

: bool WriteFile(const char* p_filename)

{

FILE* outfile = 0;
int written = 0;
outfile = fopen(p_filename, "wb");
if(outfile == 0)

return false;
written = fwrite(m_array, sizeof(unsigned long int), m_size, outfile);
fclose(outfile);

if(written != m_size)

return false;

return true;

}

The only change in the algorithm is on line 8—instead of passing the size of a
generic datatype, you pass the size of an unsigned long integer.

The ReadFile Function

Like the WriteFile function, the ReadFile function is almost the same as the
Array::ReadFile algorithm:

Team LRN

Creating a Bitvector Class a5

N — r—= L= —Lr"]_

1: bool ReadFile(const char* p_filename)

2: |

3 FILE* infile = 0;

4: int read = 0;

5: infile = fopen(p_filename, "rb");

6: if(infile == 0)

7 return false;

8: read = fread(m_array, sizeof(unsigned long int), m_size, infile);
9: fclose(infile);

10: if(read != m_size)

11: return false;
12: return true;
13: }

The only change is on line 8, where you change the generic datatype to an unsigned
long 1int.

Example 4-1

This is Example 4-1, which can be found on the CD in the directory
\examples\ch04\01 - The Bitvector Class\.

Here is the code listing for Example 4-1, which covers all of the basic features of
the Bitvector class:

void main()

{
// create a bitvector with 32 bits.
Bitvector bitv(32);
bool b;

// set index 0 to true and retrieve it again.
bitv.Set(0, true);
b = bitv[0];

// set index 31 to false and retrieve it again.
bitv.Set(31, false);
b = bitv[31];

// set all the bits in the vector to 0
bitv.ClearAl1();

Team LRN

a6 <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

// set all the bits in the vector to 1
bitv.SetA11();

// resize the bitvector to 48 bits
bitv.Resize(48);

// get the size of the bitvector.
int s = bitv.Size();

// Why is s = 647 Remember, because you are on a 32-bit system,
// you can only have multiples of 32. Because you asked for 48
// bits, the resize algorithm had to make enough room for 48 bits,
// so it jumped up to the next Tevel and made 64.
}

This example has no output.

Application: The Quicksave

This is Game Demonstration 4-1, which can be found on the CD in the directory
\demonstrations\chOf\GameO01 - Saving Players\.

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Games these days are huge. They take up hundreds of megabytes of memory at any
given time and simulate many things all at once. Games are usually so large that
saving the entire state of the game is a big pain in the butt. However, games are

Team LRN

Application: The Quicksave Q7

N — r—= L= —Lr"]_

also pretty much useless if they don’t have a save feature. What’s the point of play-
ing a long and complex game without being able to start up where you left off the
last time?

Unfortunately, a ton of data usually needs to be stored whenever you save a game.
Almost all the time, this data is going to be stored on some kind of hard disk,
which is significantly slower than system memory. The larger the game gets, the
longer it will take to save the game.

If you’ve played some of the more recent games, you’ll notice that many of them
have a quicksave feature, which seems to instantly save the game without lagging up
the game at all. It’s a pretty neat trick, and it can be accomplished by using bitvectors.

For most games, most of the actual game world doesn’t change much in the matter
of a few minutes, especially if the game is single player. Typically, a player can only
be in one place at a time, and there is a limited amount of things that the person
can modify in the time between saves. So if a player saves the game and moves
around for a little bit and then saves the game again, instead of re-saving every-
thing to disk, you just need to save the things that have changed! This is the rea-
soning behind the quicksave.

Creating a Player Class

In this demonstration, you will be keeping track of a number of players within the
game. They aren’t necessarily actual people, but might also represent monsters and
computer-controlled players as well.

class Player

{

public:

int m_1ife;

int m_money;

int m_experience;
int m_level;

s

This is an overly simplistic player class that only has four statistics: life, money, expe-
rience, and level. Their purpose is not very important here; you only need to know
that these variables will be changed within the game.

Team LRN

a8 <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Storing the Players in the Game

For this demonstration, I'll use my good old friend, the array, to store the players
in the game. This is somewhat important for this demonstration because each
player in the game is assigned an ID number that corresponds to his index in the
array. I’ll also define a bitvector, which will keep track of which players have been
modified.

For this demonstration, you have 64 players, so the array and the bitvector are ini-
tialized to hold 64 items:

Array<PTayer> g_playerarray(64);
Bitvector g_modifiedstates(64);

These variables are global in the demo so that you can always easily access them.
The g_modifiedstates vector will be the same size as the g_playerarray. Each index
in the vector will correspond to the same index in the playerarray. If any given bit
is zero, that means that the corresponding player has not been modified since the
last game save, but if the bit is 1, then the corresponding player has been modified
since the last game save and thus needs to be written to disk.

Initializing the Data Structures

You need to initialize the array and the bitvector somehow, so create a loop inside a
GameInit function and use random numbers for the player statistics:

1: void GamelInit()

2: |

3 int index;

4: for(index = 0; index < 64; index++)

5: |

6 g_playerarray[index].m_Tife = 11 + rand() % 10;
7 g_playerarray[index].m_money = rand() % 100;

8 g_playerarray[index].m_experience = 0;

9: g_playerarraylindex].m_level = 1 + rand() % 5;
10: 1}

11: g_modifiedstates.SetA11();

12: }

Team LRN

Application: The Quicksave g9

N — r—= L= —Lr"]_

On lines 4-10, the algorithm loops through and initializes all the players, giving
them 11-20 life, 0-99 money, and 0 experience and making them level 1-5.

Lastly, on line 11, I call the SetA11 function of the bitvector, setting every item in
the vector to 1. The reason I do this is because every player has just been initialized
and has not been saved to disk yet.

Modifying Player Attributes

Now, whenever you modify the attributes of a player, you need to make sure that
the modified bit is set in the g_modifiedstates bitvector. The best way to assure this
is to use specialized functions that set the values of the player variables:

void SetLife(int p_player, int p_life)
{
g_playerarray[p_playerl.m_life = p_life;
g_modifiedstates.Set(p_player, true);
}

This sets the new life of the player and sets the corresponding g_modifiedstates flag
at the same time. The other three functions are alike:

void SetMoney(int p_player, int p_money)

{
g_playerarray[p_player].m_money = p_money;
g_modifiedstates.Set(p_player, true);

}

void SetExperience(int p_player, int p_experience)
{
g_playerarraylp_player].m_experience = p_experience;
g_modifiedstates.Set(p_player, true);

}

void SetlLevel(int p_player, int p_level)

{
g_playerarray[p_player].m_level = p_level;
g_modifiedstates.Set(p_player, true);

}

Each of the functions modifies the player class and updates the modified flag in the
g_modifiedstates bitvector.

Team LRN

100 <.

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

Bitvectors

LT L

E::r__EEEI_J_____JﬂLUJ——1EL__

Saving the Player Array to Disk

Now, to save the player array to disk, you’re going to need a more complicated
algorithm than just saving the entire array to disk. The algorithm you’re going to
use is to iterate through the entire array and check the modified flag for each
player. If the flag is true, you write the player to the appropriate place on the disk.

1: bool SavePlayers(const char* p_filename)
2: |

3: int index;

4: FILE* savefile = fopen(p_filename, "wb");
5: if(savefile == 0)

6 return false;

7: for(index = 0; index < 64; index++)

8: |

9 if(g_modifiedstates[index] == true)

11: fseek(savefile, sizeof(Player) * index, SEEK_SET);

12: fwrite(&(g_playerarray[index]), sizeof(Player), 1, savefile);
13: }

14:)}

15: g_modifiedstates.ClearAl1();
16: return true;
17: }

On line 1, you declare the SavePlayers function. This will take a string, which is the
name of the file you want to save the players in. On line 4, you open that file for
writing. You check to see if the file cannot be opened on line 5, and if not, return

failure on line 6.

On lines 7-14, you loop through all 64 players in the game. First, you check to see
if the player has been modified since the last save (line 9). If the player hasn’t been
modified, you skip over him and go on to the next player.

If the player has been modified, then you need to do two things: find the right
place in the file to write the player and then actually write the player. These things
are accomplished, respectively, on lines 11 and 12.

On line 12, you use the fseek command to move the file pointer to the appropriate
place in the file. Because the file is basically just an array of Players, the position of
the current player is the size of the Player class times the current index. Remember,
files are byte-based, so you need to multiply by the size of the player yourself.

Team LRN

: The Quicksave 101

After that, you write the individual player to file by first getting the player and then
using the address-of operator (&) to pass a pointer into fwrite (if you’ll recall,
fwrite requires a pointer to the data you want to write).

Finally, after all the players have been written, you call the ClearA11 function of the
g_modifiedstates bitvector, clearing every bit to 0. This signifies that every single
player is now up to date and written to file. If you were to call the SavePlayers func-
tion twice in a row, the second call would do nothing, because none of the players
have changed since they were last saved to disk. Figure 4.7 demonstrates how the
algorithm writes players to disk.

Figure 4.7
modifiedstates: | 0 [o [1 [o[1[1]o[1]1]o]ofo[1][1][1]0] o

The g_modifiedstates
playerarray: | | | | | | | | | | | | | | | | | bitvector determines

¢ ¢ ¢ ¢ \ ¢ ¢ ¢ which players are written

to disk.

Hard Disk

NOTE

This method in this particular example is probably slower than writing the
entire array to disk, or at least not any faster. This is because of the way com-
puters write data to disk today:They use a caching system.When you write
something to disk, it isn’t written immediately; it goes in a memory chip in the
hard drive called the cache buffer. When the cache buffer is full enough, the

hard drive then writes all the data in the buffer to the disk. In the previous
example, the data you were saving wasn’t large enough to fill a disk cache and
you probably didn’t save any time by only writing the things that didn’t change.
However, this is only because the data is small. Once you start working on large
projects in which many megabytes of data need to be written to a file, the
method of writing only what has changed becomes a very efficient method of
saving data.

Team LRN

102 <. Bitvectors

Playing the Game

When you start the game up, 64 “players” will be shown on the screen, each one
with a box around it. The boxes signify that the players haven’t been saved to disk
yet, and the boxes will disappear when you press the S key on the keyboard.
Clicking on a player will randomize their attributes and cause a box to appear
around the player, signifying that the player has been modified since the last time it
was saved to disk.

Figure 4.8 shows a screenshot of the game in action.

[SAVING PLAYERS! - Game Demo 04-01 Figure 4.8

This is a screenshot
of the Bitvector
Game Demo in
action.

Bitfields

Bitvectors are great for packing Boolean variables into as small a space as possible,
but what if you need something larger than a Boolean? Imagine a system in which
a player can be in one of four states: walking, attacking, sleeping, or dead.

Because a boolean can only hold two values, it is not going to be large enough
for these four states, but an integer which can store four billion values is clearly
too large.

The number of bits needed to hold four values is two, because 2° = 4. C++ doesn’t
come with a 2-bit datatype, though, so the smallest you could use would be an 8-bit
char, which wastes 6 bits. Although this might seem small, when you’re talking

Team LRN

Bitfields 103

about saving or sending the states of hundreds of players over a network, that
means you’'re sending 4 four times as much data that you need to be transmitted.
This is obviously a large waste.

Luckily, C++ introduces the notion of bitfields, individual integer variables within a
class or structure that contain a certain number of bits.

Declaring a Bitfield
As the name implies, a bitfield is simply a
small field within a class or structure

that has a specific size in bits. There are NOTE
only two types of bitfields: signed and A bitfield cannot be declared outside
unsigned. Both types are assumed to be of a class or a structure; they can only

integers. exist within a class or a structure.

Here is how you declare a bitfield:

signed a : 4; NOTE

This declares a signed bitfield named a Because of the way signed integers
with a size of 4 bits. Because it is 4 bits, are encoded, there is always one

lt can hOld a tOtal Of 16 Values. Because more negative Value than Positive

this is a signed field, the range of valid value.The exact formula for the
numbers is =8 through 7. minimum value is: -2"', where n is
the size of the bitfield. The formula

Using a Bitfield for the maximum value is: 2"'-1.

A bitfield can be used exactly like a nor-
mal integer. Here it is in action first:

class Player

{

pubTic:

unsigned m_state : 2;
unsigned m_haskey : 1;
}s

First, this declares a very simple player class that has two variables, a 2-bit state and
a 1-bit flag determining if the player has a key. You can access each of the fields in
the same way you access any integer:

Team LRN

104 <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Player bob;
bob.m_state = 0;
bob.m_haskey = 1;

From now on, you can do anything you want to the bitfield that you can do with an
integer, with one exception: the address-of (&) operator doesn’t work on bitfields.
This is because bitfields are not variables; they are just small parts of one larger
variable.

One cool thing about bitfields is that they can be used in conjunction with other
variables seamlessly. You can mix bitfields and regular variables easily within the
same structure or class.

class Player

{

unsigned m_state : 2;
unsigned m_haskey : 1;
int m_hitpoints;

}s

In the preceding example, I've combined two bitfields with an integer. On MSVC6,
the size of this class would be 8: 4 bytes for the integer, and 4 bytes for the two
bitfields.

Some compilers aren’t too smart, though. For example, what happens if you
were to adjust the order of the variables so that they were in this order: m_state,
m_hitpoints, m_haskey? MSVC6 creates the structure, but this time it takes up 12
bytes: 4 for m_state, 4 for m_hitpoints, and 4 for m_haskey. Figure 4.9 shows how
the two different structures are created in memory.

Figure 4.9
[state Jkey] [hitpoints |
This figure
[state] | hitpoints [key] | represents the two

different structures
that are possible by
rearranging the
declarations of
bitfields.

Team LRN

Analysis of Bitvectors and Bitfields in Games 105

1 NOTE NOTE

Make sure that you keep all of your Also keep in mind that a single bit-

bitfields together when you define field is useless on its own.The reason

them.You cannot rely on the compil- for this is that most compilers put

er to optimize the structure auto- the bitfields into a padded structure.

matically for you. So a bitfield of size | in MSVCé6 will
still take up a full 32 bits if there are
no other bitfields around.

Analysis of Bitvectors and
Bitfields in Games

Bitfields and bitvectors are really useful for efficient memory usage. Unfortunately,
this comes at a cost: Compared to normal booleans and integers, bitvectors and bit-
fields require more processing time to retrieve and store values.

Most computers these days come with so much memory, however, that we don’t
know what to do with all of it. So this begs the question: Is the amount of memory
that you have saved worth the extra processing power? There is no correct answer
to this question, and whatever choice you make depends on your circumstances.

In most cases, the amount of space you save using bitvectors and bitfields is really
negligible, but I wouldn’t rule them out quite yet. Within the past few years,
Massively Multiplayer Online (MMO) games have become hugely popular. In these
types of games, many thousands of players could theoretically be playing at any
given moment. As these games get larger and more complex, the strains that these
games will place on the network will be tremendous. Storing data as efficiently as
possible is a major focus in these games, and the technologies behind bitvectors
and bitfields helps quite a bit.

In the end, it comes down to the most popular tradeoff in computer programming:
Should you sacrifice speed for memory or memory for speed? If memory is more
important, then you should use bitvectors and bitfields.

Team LRN

106 <. Bitvectors

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Conclusion

In this chapter, you learned how to store bits into a larger integer structure, how to
read them back out again, and how to create a class that automates these proce-
dures for you. In addition, you learned how to use bitvectors to implement a simple
quicksave system.

You also learned how to use bitfields as an alternative to bitvectors to save data that
doesn’t need large amounts of memory but requires more than a single bit.

Bitvectors and bitfields are topics that I see neglected in a lot of books. In fact, I
have only seen one book that even mentions bitfields; I had to do most of the
research on them by experimentation. Perhaps it is because they aren’t generally as
useful as other data structures, or perhaps it is because they are somewhat awkward
to work with. Either way, I still consider it important to at least know about them
and know when to use them. This chapter introduced a major point in game pro-
gramming: the speed versus memory tradeoff.

In almost every program, there is a place where you must decide whether it is bet-
ter to have a faster algorithm or to take up less memory. This problem will show up
a few times later in this book as well, so keep a lookout for it.

Team LRN

o g WSO . e ' e e e el
w_IJL'Lr_'_"_‘[—| l_—,'—q *'=-—I—.—- I_l_n—'_‘—,JL_nJ '—'\—l_l_[_l{ !._n—A'JLL_r

CHAPTERS

IYIULT1-
D1ImMmMENSITIONAL
HRRAYS

108 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Previously, I’ve only talked about linear array structures—those with only one
dimension. This chapter will introduce you to the more complex class of
arrays named multi-dimensional arrays. You will find that multi-dimensional arrays
are more specific in their nature and cannot be applied to as many situations as
regular arrays can be. In this chapter, you will learn:

= What a multi-dimensional array is

= How to declare native multi-dimensional arrays

= How to initialize multi-dimensional arrays

= How to pass multi-dimensional arrays into functions

= How to access multi-dimensional array cells

= How a multi-dimensional array is structured internally

= How to create a dynamic 2D array class

= How to create a dynamic 3D array class

= How to make a tilemap using 2D arrays

= How to make a layered tilemap using 3D arrays

What Is a Multi-Dimensional
Array-

By now, you should know quite a bit about arrays. If not, you can read all about
them in Chapter 3, “Arrays.” The arrays I describe in Chapter 3 are more formally
known as single-dimension arrays, but no one actually calls them that. They are called
that because they can be thought of in a single dimension.

If you think about graphs for a moment, the single-dimension universe has only
one axis (traditionally called the x axis), often referred to as length. Any item in a
single-dimension universe can only have one coordinate. What you end up with is a
long one-dimensional line for the entire universe. See Figure 5.1 for a pictorial rep-
resentation of the different dimensions.

Team LRN

What Is a Multi-Dimensional Array- 109

N — r—= L= —Lr"]_

Now, imagine expanding that universe into two dimensions by adding another axis:
height (traditionally called the y axis). Instead of just a line, this time you have a
plane, and any point on the plane can have {wo coordinates instead of just one.

And finally, there is the three-dimensional universe, in which the third axis is depth
(traditionally called the z axis). All points in the three-dimensional universe have
three coordinates.

)) X Figure 5.1
one-dimension <% > g
The three common
A y universes. The z axis

for the third
dimension can be

X thought of as coming
two-dimensions < > out of the paper,
toward you.
Y
A y
X

three-dimensions <

Y

Now, there are other dimensions past the third dimension, but they are pretty
much impossible to draw in a way you could understand. Therefore, this chapter
will mainly be concerned with two- and three-dimensional arrays.

If a one-dimensional array looks like a plain line, then a two-dimensional array
looks like a grid. Figure 5.2 shows how a two-dimensional array is usually repre-
sented.

Team LRN

no 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

o 1 2 3 4 5 6 7 Figure 5.2
0 This is a two-
dimensional array of

1 size (8,8).

2

3

4

5

6

7

A two-dimensional array has two dimensions, a length and a height. In Figure 5.2,
both of these dimensions are 8 cells, giving us a total of 64 cells.

A three-dimensional array uses all three dimensions, as demonstrated by Figure 5.3.
As you can see, it’s difficult to represent a 3D array because half of the information
is hidden. After all, the paper is only 2D. The 3D array shown in Figure 5.3 has a
size of (4,4,4), giving us 64 cells.

3 Figure 5.3
1 2 This is a three-
0 P dimensional array of
- size (4,4,4).
0 T
e
e
1 L
e
e
2 -
/
/
3 |
0 1 2 3

Team LRN

Graphical Demonstration m

N — r—= L= —Lr"]_

Graphical Demonstration

The graphical demonstration for this chapter can be found in the directory
\demonstrations\ch05\Demo01 - 2D Array\. Because it is very difficult to represent
arrays with more than two dimensions graphically, this demonstration only shows
2D arrays and the algorithm to resize them.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When you start the program, you will be presented with a screen like the one
shown in Figure 5.4.

_IArray2D Graphical Demonstration g Figure 5.4
r_ r . .
Resize } Randomize] This is a screenshot
> for the Array2D
Graphical
76 25|46 |89 76|89 Demonstration.

12144 |67 | 11179 |23

49| 0 |56 2812329

25191126 0 | 80|62

74146 1 | 78|92 |76

96 |47)|170|82| 3 |14

Team LRN

12 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

There are two buttons shown on the screen, one that will let you resize the array
and one that will let you randomize the number in every cell.

The demonstration will show the exact algorithm used to resize a 2D array and will
show red Xs in cells whose value is “invalid.” I used this same approach in the Array
Graphical Demonstration from Chapter 3. When resizing an array, four arrows
appear on the upperright side of the screen—use these to change the size of the
new array, which will be shown in gray boxes. After you have attained the size that
you want, press the Continue button, and the program will illustrate how it copies
cells over into the new array.

Native Multi-Dimensional
Arrays

C++ has native support for static multi-dimensional arrays. This is usually the most
common way of using a multi-dimensional array because resizing one of these
arrays is a rarely needed occurrence.

Declaring a Multi-Dimensional
Array

Creating a multi-dimensional array in C++ is very similar to creating a regular array.
Instead of just one dimension being specified, you add the additional dimensions
in square brackets after the other dimensions:

int array2d[5][5];
int array3d[41[41[4];
int array4d[31[31[31[3];

These declarations declare a 2D array, a 3D array, and a 4D array, respectively. The
number of cells each array contains is determined by multiplying all of the dimen-
sions together, so the 2D array has 25 cells, the 3D array has 64 cells, and the 4D
array has 81 cells.

Even though I only talk about 2D and 3D arrays in the beginning of this chapter, in
reality you can have an array with as many dimensions as you want, depending on
the limitations of your compiler. The problems with arrays with more than three
dimensions are numerous though. First of all, they are impossible to visualize,
unless you come from an alternate dimension where you can see more than three
dimensions. Second, arrays with large dimensions tend to get much larger quickly

Team LRN

Native Multi-Dimensional Arrays 13

N — r—= L= —Lr"]_

due to the fact that their dimensions are multiplied to get the size. For example,
even though each dimension in array4d in the previous code segment is only three
cells large, the entire array takes up 81 cells. Compare this to array3d, however, in
which each dimension is four cells large, yet the entire array only takes up 64 cells.

Initializing a 20 Array

Initializing a multi-dimensional array is just like initializing a normal array, except
that it involves a lot more curly brackets. For example, if you want to initialize a 3x3
array to contain the numbers 1 through 9, you would declare it like so:

int array[3103]1 = ({ 1, 2,
{ 4, 5,
{7, 8,

o O W

b,
b,
bl

Because a 2D array can be thought of as an array of arrays, each row in the array is

defined like a normal array. Outside, each row is combined together again, sepa-
rated by commas and enclosed in brackets.

Initializing Arrays with More Than Two

Dimensions
Using the logic from the previous section, you can extend the idea into three
dimensions:
int array[2][21[2]1 = { { {1, 2},
{3,411},
{ {5,671,
{7,811}

That looks bad and difficult to understand, but you can see the structure if you
stare at it long enough. Lines 1 and 2 form a 2 X 2 2D array, and so do lines 3 and
4, so you’re looking at two 2D arrays put together, forming a 3D array.

For the particularly devious people out there, here isa 2 X 2 X 2 X 2 4D array ini-
tialization:

int array[2][2]1021[2] = { { {
{

{{ 10 },

— O g o1 W =

{
{
{
{
{
{

Team LRN

n4 5. Multi-Dimensional Arrays

{ {13, 14 },
{15, 16} } } };

I do not recommend initializing arrays like this often. As you can see, the definition
gets quite messy, and it becomes almost impossible to keep track of all the little
brackets. It is not intuitive to initialize arrays with more than two dimensions in
code because code is represented on a 2D plane (your screen or paper).

Initializing Non-Symmetrical Multi-
Dimensional Arrays

Now you need to figure out which dimensions are initialized first. Due to C++’s
notational conventions (see the “Inside a Multi-Dimensional Array” section for a
more in-depth examination), the first dimension defined represents the number of
rows in a 2D array. So, to initialize a 3x2 array, you would write this:

int array[3102] = { { 1, 2 },
{3,471,
{5,611}

In other words, the array is in row major form. Each row consists of two columns.
The layout in memory is linear starting with row 0, followed by row 1, and lastly by
row 2. Due to this arrangement, defining the array with three items in each inner-
most bracket will cause a compiler error. Arrays with more than two dimensions fol-
low the same pattern. For example, a 3D array with dimensions 3 X 2 X 1:

int array[31[2]1[1] = { {

{
{
{1
{
{{
{

1
2
3
4
5
6

All multi-dimensional arrays follow the same pattern: The last dimension defined
determines the number of items that are placed in the innermost brackets.

Initializing Variable Length Multi-
Dimensional Arrays

Last, like regular arrays, it is possible to define a multi-dimensional array in which
you let the compiler determine the size of the array automatically, depending on
how many items are in the initializer list.

Team LRN

Native Multi-Dimensional Arrays 15

N — r—= L= —Lr"]_

There is one catch, however: Only the first dimension can be left out. Every other
dimension must be explicitly defined. I explain the reasons for this in the section
entitled “Inside a Multi-Dimensional Array” later on.

For example, this is invalid:

int arraylI[1 = { 1, 21,
{3,411}
Even though it is obvious to us that this is a 2 X 2 array, the compiler will not

accept this. The proper declaration is this:

int arrayllf2l = { {1, 2},
{3, 41} %
The same applies to every array of any dimension—only the first dimension can be

left blank.

Accessing a Multi-Dimensional
Array

Accessing the items in a multi-dimensional array is just as easy as accessing items in
a regular array.

array2d[41[3] = 10;
array3d[31[11[0] = 15;
array4d[2]1021[11[0] = 20;

These operations put numbers into the arrays at different indexes. array2d puts the
value 10 into the array at (4,3), which on a 2D grid would look like Figure 5.5. 15 is
put into array3d at index (3,1,0), which would look like Figure 5.6. Of course, it is
impossible to visualize where the 20 is put within array4d, so I cannot show a figure
of that here.

Figure 5.5 This
figure shows where
the 10 is put within
array2d.

10

Team LRN

116 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 5.6

This figure shows
where the |5 is put
within array3d.

15

NEANEANEAN

]
]
]
-

NN

Inside a Multi-Dimensional Array

So how does C++ represent a multi-dimensional array internally? Remember how a
normal array works, first of all. You hand it an index, and it figures out the correct
place in memory by multiplying the size of an item and adding that to the array off-
set. Hold on to this thought for a moment.

Inside 20 Arrays

When you think of a two-dimensional array, isn’t it really just an array of arrays?
Look at Figure 5.7 for a moment.

Figure 5.7

This is how you
convert a 2D array

2 into a 1D array.

Team LRN

Native Multi-Dimensional Arrays 17

N — r—= L= —Lr"]_

You see, if you treat each row in the 2D array as a single item, you can view the 2D
array as a 1D array of arrays. Figure 5.7 shows how you slide each row out to the
right and combine all four rows into a single array.

The general formula for converting a 2D coordinate into a 1D coordinate is then:
y * width + x

Therefore, if you wanted the cell at row 2, column 3 in a 4 X 4 array, the result
would be 2 * 4 + 3, which turns out to be 11.

This is how C++ stores and accesses 2D arrays. It stores the array data as a single
array and uses the formula for getting indexes.

Expanding to Higher Dimensions

If a 2D array can be thought of as a 1D array of arrays, then a 3D array can be
thought of as an array of 2D arrays. (See Figure 5.8.) Expanding upon this, a 3D
array is really just an array of arrays of arrays (say that ten times fast!). How about a
4D array? Isn’t that just an array of 3D arrays? Of course, after your dimensions get
larger than 3, it becomes very difficult to imagine how an array is stored visually.

2 Figure 5.8

| | A 3D array is just an

array of 2D arrays.

NN

NN

So now you want to figure out how to access a cell within a 3D array. Because a 3D
array is essentially an array of 2D arrays, you need to figure out which 2D array you
want to access first. To do that, you need to know the size of each 2D array, which is
simply the width times the height. After that, the algorithm is exactly like accessing
a 2D array:

(z * width * height) + (y * width) + (x)

Team LRN

na 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The first term, z * width * height, finds which 2D array you want to access first. If z
was 2 in a 3 X 3 X 3 array, then this would give you 2 * 3 * 3, which is 18. The sec-
ond term determines which row within the 2D array you want to access. If y was 1,
then you would have 1 * 3, which is 3. Then the third term is simply the index of
the 1D array that you now have the address of. If xis 1, then you simply add 18, 3,
and 1, and the final index is 22.

A Note on Conventions

Up until this point, I’ve used the standard mathematical convention for represent-
ing the axes of 2D and 3D arrays. The x dimension (width) is always represented as
the horizontal axis, the y dimension (height) is always represented as the vertical

axis, and the z dimension (depth) is always represented as going into or out of the

paper.
Unfortunately, C++ uses a different convention and reverses the ordering of the

axis. When you define a 1D array, there is no confusion, because there is only one
dimension. Here is how C++ arrays are defined:

int arrayld[width];
int array2d[height][width];
int array3d[depth][height][width];

This doesn’t look like such a large deal on the surface. This is because when deal-
ing with multi-dimensional arrays, the axes are largely arbitrary to the users’ needs.
For example, you could create a simple 2D array that keeps track of the different
types of monsters in a game. One axis of the array represents the size of the mon-
sters (small, medium, large), and the other axis represents the types of monsters
(goblin, orc, troll). Does it matter which axis is defined first? In this case, it doesn’t
seem to matter. Declaring the monster array either way seems to be acceptable:

int monsters[SIZESI[TYPES];
int monsters[TYPESI[SIZEST;

So as long as your axes are always the same for the arrays, it should cause no prob-
lems. The only time the ordering of your axes matters is when you use static multi-
dimensional arrays and you pass them into functions, which I discuss in the next
section.

Team LRN

Native Multi-Dimensional Arrays 19

N — r—= L= —Lr"]_

Passing Multi-Dimensional Arrays to
Functions

Multi-dimensional arrays can be passed into functions just like normal arrays can.
There are several ways to do this.

The most popular way is to have the function assume that it will be receiving an
array of a specific size, like this:

void Function(int p_array2d[4]1[5], int p_array3d[2]1[4]1[2]);

This function can accept a 2D array with dimensions 4 X 5 and a 3D array with
dimensions 2 X 4 X 2 (technically, in both cases, the compiler ignores the first
dimension, so passing a 6 X 5 and a 3 X 4 X 2 array would work perfectly fine as
well. You’ll see why this is later on). If you try passing in a 2D array or 3D array with
different dimensions, it won’t work and will give you a compiler error.

That works fine, but what happens when you want to pass arrays that don’t have
specific sizes? You could easily do this with a 1D array by neglecting the number in
the function call, but you have no such luck with multi-dimensional arrays. The fol-
lowing line of code is invalid in C++:

void Function(int p_array2d(1[]);

In MSVC6, this will generate an error message: error €2087: '<Unknown>' : missing
subscript. Of course, if you had no idea that this code was invalid, that error would
make no sense.

So why can’t you do this in C++? Remember how the compiler accesses an element
within the 2D array: it multiplies the row number times the width of each row and
then adds the column number. Trying to pass in a 2D array without a specified
width causes a problem, because then the compiler will not have any idea how to
access a particular row. So to pass a 2D array into a function, you are required to at
least give the width of the array as a parameter, like this:

void Function(int p_array[1[4]);

This function accepts any 2D array with a width of 4. You can pass in a 1 X 4 array
or a 2 X 4 array or a 100 X 4 array. However, you cannot pass in an array with a dif-
ferent width. C++ will not let you.

Note that reversing the order of the subscript will cause a compiler error. This is
invalid:

void Function(int p_array[41[]);

Team LRN

120 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The same applies to 3D arrays, too, except with 3D arrays, you need to know the

width and the height to access any given cell, so you can only pass in 3D arrays with
a fixed width and height.

void Functionl(int p_array[1[I[]);
void Function2(int p_array[1[1[5]);
void Function3(int p_array[1[41[5]1);

Functions 1 and 2 are both invalid; they will not compile. Function 2 will not com-
pile for the same reason a 2D array with no sizes won’t compile: you need both a
height and a width to access a 3D array. Function 3 is the only function that will
compile, and it only accepts arrays with a height of 4 and a width of 5, such as 1 X
4 X50r3X4X50r100 X4 X5,

As it turns out, any multi-dimension array with N dimensions requires N-/ dimen-
sion sizes to access any element within the array. Therefore, a 4D array will require
three static dimension sizes, and a 5D array will require four static dimension sizes,
and so on:

void Functiond(int p_array[1[31021[3]);
void Function5(int p_array[1[41[51041[3]);
void Function6(int p_array[1[31061071[41(51);

This basically means that for any array, no matter how many dimensions it has, you
can only have one dimension that varies in size when you pass it into a function.

Take a look back at the monster array example from the previous section. In your
game, you only plan on having three different sizes of monsters (small, medium,
large), and you don’t plan on having different sizes in the future. Right now you
only have three different monster types as well (goblin, orc, troll), but you think
you might add different monster types in the future (such as a skeleton or even a
dragon). You also have a function that is designed to process the monster array
somehow. You could do it this way:

void Process(int p_monsters[3][3]);

But there is a problem. This function needs to be changed every time you add
another monster. What you want to do is make it more flexible so that it can accept
arrays with any number of monster types:

void Process(int p_monsters[1[3]);

This is where the order of your axes becomes important. Because you want to be
able to process any number of monster types but have a fixed number of monster
sizes, you need to declare the array with the variable dimension first:

Team LRN

Dynamic Multi-Dimensional Arrays 121
N N — —= L == —TLr"]_

int monsters[TYPESI[SIZEST;

I need to say one more thing about passing arrays into functions. If you pass in an
array with a variable dimension size, there is no way for C++ to determine the size
of that dimension. With the previous example, if you passed in a 5 X 3 array to
Process, there is really no way for the function to tell that the array has a height of
5. Instead, it is usually a good idea to pass in another variable to the function
telling it how large the variable dimension is. For example, it would be better to
redefine the Process function to look like this:

void Process(int p_monsters[1[3]1, int p_monstertypes);

This way, when you do anything with the p_monsters array, you know exactly how
large it is.

Example 5-1

Example 5-1 can be found on the CD in the directory \examples\ch05\01 - Static
XD Arrays\. It combines most of the code snippets from this section into one file to
demonstrate how static multi-dimensional arrays work. There is no need for a code
listing here.

Dynamic Multi-Dimensional
Arrays

Sometimes in game programming, you will need to have a dynamically sized multi-
dimensional array. This usually happens when you don’t know the dimensions of the
array you need at compile time (this happens very frequently with bitmap and game-
map loading), so you need some way to create a dynamic multi-dimensional array.

If you remember from the last section, C++ stores multi-dimensional arrays in a
normal array and uses a formula to access each cell. You use this same method to
create 2D and 3D array classes.

The Arraye2D Class

You can find the source for the Array2D class on the CD in the file
\structures\Array2D.h.

Team LRN

122 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Template Parameters

Because you want your class to be able to work with many different types of
datatypes, you’ll be making it templated just like the Array class from Chapter 3.
The Array2D class only needs one template parameter: the datatype of the items
that will be stored in the array, which I’ll call Datatype:

template <class Datatype>
class Array2D

The Data

The first thing you need to determine is what kind of data your Array2D class
requires. You know that you need a pointer to Datatype, just like the Array class.
Because this is going to be a 2D array, though, you need more than just a size vari-
able. This time, you need a width and a height:

Datatype* m_array;
int m_width;
int m_height;

The Constructor

The Array class took a single integer as a parameter for its constructor, which was
the size of the array. For a 2D array, because you need two dimensions, you’ll take
two parameters as well:

1: Array2d(int p_width, int p_height)

2: |

3: m_array = new Datatypel p_width * p_height 1;

4: m_width = p_width;

5: m_height = p_height;

6: }

On line 3 you create the new array with a size of p_width * p_height, which is the
formula for the total number of cells in a 2D array (b X 5 =25 cells, 3 X 4 =12
cells, and so on).

On lines 4 and 5, you just set the width and height member variables.
The constructor is used just like the Array constructor:

Array2D<int> intarray(10, 10);
Array2D<float> floatarray(5, 7);

Team LRN

Dynamic Multi-Dimensional Arrays 123

N — r—= L= —Lr"]_

The Destructor

Remember how the Array class was able to automatically delete the memory of the
array for us? You’ll be doing the same exact thing with the Array2D class:

1: ~Array2D()

2: {

3 if(m_array !'=0)
4. delete[] m_array;
5 m_array = 0;

6: }

On line 3 you check to make sure the pointer is valid, just in case it isn’t, and on
line 4 you delete the array.

The Get Function

Unfortunately, you cannot overload the double bracket operators ([1[1), because
C++ will not allow it. Therefore, you need to use your own function to be able to
access items within the 2D array. I call it the Get function because it gets an item
within a cell.

The function will take 2 arguments, the x and the y coordinates of the cell to
retrieve:

1: Datatype& Get(int p_x, int p_y)

2: {

3: return m_array[p_y * m_width + p_x 1;

4: }

Remember the algorithm used to access a cell in a 2D array from the section on
static 2D arrays? That’s the same algorithm you’ll find within the brackets!

The Get function works two ways. It can retrieve a value from an array, and it can
also store a value back into the array:

intarray.Get(4, 5) = 10;
int value = intarray.Get(4, 5);

The Resize Function

Sometimes you might want to resize the array to a different size and keep every-
thing that already exists within the current array. Although this was a simple task to
complete with a 1D array, it is a bit more complex with a 2D array.

Team LRN

124

= =

Multi-Dimensional Arrays

[=L = L E::T__Ezam_i—————fﬁ1rr—1;L__

This time, because it is possible to resize two dimensions at the same time (requir-
ing the user to only resize one dimension at a time is easier to code, but it is waste-
ful in terms of processing power), you need to keep track of only the cells that will
exist in both arrays. Figure 5.9 shows which cells need to be copied over when resiz-
ing a4 X 5 array to a 6 X 4 array. The size of the sub-array that needs to be copied
is 4 X 4.

4x5

6x4 Figure 5.9

The shaded cells
are the cells that

will be copied
from the old

array to the new
array.

Remember the algorithm used to resize a 1D array? You choose the smaller of the
two dimensions and only copy over that many cells. For a 2D array, you need to do
that for each dimension. For example, for the array in Figure 5.9, the first dimen-
sion changes from 4 to 6, so 4 is chosen because it is the smaller of the two. The
second dimension changes from 5 to 4, so 4 is also chosen.

In this manner, you can code the 2D array resize function:

1
2
3
4:
5:
6
7
8

9.

10:
11:
12:
13:

: void Resize(int p_width, int p_height)
:

Datatype* newarray = new Datatypel p_width * p_height 1;
if(newarray == 0)

return;
int x, y, tl, t2;

int minx =

int miny
=0;

for(y
{
tl
t2
for(

(p_width < m_width ? p_width : m_width);
(p_height < m_height ? p_height : m_height);
y < miny; y++)

p_width;
m_width;

=0; x < minx; x++)

Team LRN

Dynamic Multi-Dimensional Arrays 125

N — r—= L= —Lr"]_

14: {
15: newarray[tl1 + x 1 = m_array[t2 + x 1;
16: }
17: }

18: if(m_array != 0)
19: delete[] m_array;
20: m_array = newarray;
21: m_width = p_width;
22: m_height = p_height;
23: }

If you look closely, this is nothing more than a 2D extension of the Array::Resize
algorithm. On line 3, you allocate the new array and check to see if it was allocated
correctly on line 4. If not, the routine just exits on line 5, without changing any-
thing.

On line 6, you declare four variables, x, y, t1, and t2. The first two, x and y, will be
used as coordinates when moving items from the old array to the new array. The
second two, t1 and t2, are temporary variables which will be used for optimizing
the algorithm a little bit.

On lines 7 and 8, you simply find the smallest x dimension and the smallest y
dimension and store those values in minx and miny.

On lines 9-17, there is a doubly-nested for-loop. The outer loop goes through all
the y-coordinates first and the inner loop goes through all the x-coordinates, so you
end up copying the items over in this order (for a 3 X 2 array): (0,0), (1,0), (2,0),
(0,1), (1,1), (2,1). The top row is copied first, and then the bottom row is copied.

Lines 11 and 12 contain a special optimization. Remember how the algorithm for
getting the index of a cell isy * w + x? Well, in the innermost loop, the y doesn’t

change at all; only the x does. So this means that you can move the multiplication
out of the inner loop and store the result in t1 and t2. When reading line 15, just
replace t1 with y * p_width and t2 with y * m_width in your mind. There are other
optimizations that can be made as well, but I've opted to leave them out, because

this method is more readable.

After the loop is done, lines 18-22 just delete the old array and set the new
variables.

Team LRN

126 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Getting the Size of the Array

Because this is a 2D array, there isn’t just one size now; three different sizes can be
associated with the array: the number of cells in the array, the width, and the
height. The width and the height are easy sizes to retrieve:

int Width()

{

return m_width;
}
int Height()

{

return m_height;
}

These functions just return the associated variables.
To retrieve the number of cells, you need to do a little more work:

int Size()

{

return m_width * m_height;
}

This multiplies the width and the height.

Example S5-2

Example 5-2 demonstrates how to use the Array2D class. Here is a code listing of the
example:

void main()

{
// declare the arrays.
Array2D<int> iarray(5, 5);
Array2D<float> farray(4, 4);
int i, x, y;
float f;
// We cannot do this with the Array2D class:
// iarray[4]1[4] = 10
// do this instead:
iarray.Get(4, 4) = 10;
// set a cell in farray.
farray.Get(3, 2) = 0.5f;

Team LRN

Dynamic Multi-Dimensional Arrays 127
_-:.'_Lu_l‘"—-—lF —= -——|_|—-—|_.—"|J_”‘|5|—l—|__p—'—|_'_

// retrieve the cells that we just set.

i = iarray.Get(4, 4);

f = farray.Get(3, 2);

// get the size of each array.

i = iarray.Size();

i = farray.Size();

// fill the integer array with consecutive numbers
for(y = 0; y < 5; y+t)

{
for(x = 0; x < 5; x++)
{
iarray.Get(x, y) =y * 5 + x;
}
}

// resize the array to make it larger:
iarray.Resize(6, 6);
// resize the array to make it smaller:
iarray.Resize(3, 3);

The Array3D (Class

The most commonly used arrays are one, two, and three dimensions, in order from
the most popular to the least. Arrays with more than three dimensions are some-
what rare and thus do not warrant having their own classes in this book, but I did
create an Array3D class for you to play around with as well.

Code Listing

Because the Array3D class is another extension of the Array2D class, and I have
explained all the major concepts, here is a code listing of the class:

template <class Datatype>

class Array3D

{

public:
// constructor
Array3D(int p_width, int p_height, int p_depth)
{

Team LRN

128 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

m_array = new Datatypel p_width * p_height * p_depth 1;
m_width = p_width;

m_height = p_height;

m_depth = p_depth;

}

// destructor

~Array3D()

{
if(m_array !'=0)

deletel[] m_array;

m_array = 0;

}

Datatyped& Get(int p_x, int p_y, int p_z)

{
return m_array[l (p_z * m_width * m_height) +
(p_y * m_width) +
p_x 1;
}

void Resize(int p_width, int p_height, int p_depth)
{
// create a new array.
Datatype* newarray = new Datatype[p_width * p_height * p_depth 1;
if(newarray == 0)
return;
// create the three coordinate variables and the four temp
// variables.
int x, y, z, t1, t2, t3, t4;
// determine the minimum of all dimensions.
int minx = (p_width < m_width ? p_width : m_width);
int miny (p_height < m_height ? p_height : m_height);
int minz = (p_depth < m_depth ? p_depth : m_depth);
// Toop through each cell and copy everything over.
for(z = 0; z < minz; z++)
{

// precalculate the outer term (z) of the
// access algorithm

tl = z * p_width * p_height;

t2 = z * m_width * m_height;

Team LRN

Dynamic Multi-Dimensional Arrays 129
_-:.'_Lu_l‘"—-—lF —= -——|_|—-—|_.—"|J_”‘|5|—l—|__p—'—|_'_

for(y = 0; y < miny; y++)

{
// precalculate the middle term (y) of the
// access algorithm
t3 =y * p_width;
t4d =y * m_width;
for(x = 0; x < minx; xt+)
{
// move the data to the new array.
newarray[t1 + t3 + x] = m_array[t2 + t4 + x 1;
}
}

}
// delete the old array.
if(m_array !'=0)
deletel[] m_array;
// set the new array, and the width, height, and depth
m_array = newarray;
m_width = p_width;
m_height = p_height;
m_depth = p_depth;

}
int Size()
{
return m_width * m_height * m_depth;
}

int Width()

{
return m_width;

int Height()

{
return m_height;

int Depth()
{

Team LRN

130

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

5. Multi-Dimensional Arrays

return m_depth;

private:

s

Datatype* m_array;
int m_width;
int m_height;
int m_depth;

LT L

E::r__EEEI_J_____JﬂLUJ——1EL__

The entire class is virtually identical to Array2D, except that there is a new dimen-
sion, the depth, and the Constructor, Get, and Resize functions have been modified
to take this into account.

Example 5-3

Example 5-3 on the CD is an almost exact copy of Example 5-2, except that it has

been modified to work with three dimensions rather than two.

void main()

{

// declare the arrays.
Array3D<int> iarray(2, 5, 3);
Array3D<float> farray(3, 4, 5);
int i, x, vy, z;

float f;

// set a few cells

iarray.Get(1, 4, 0) = 10;
farray.Get(3, 2, 3) = 0.5f;

// retrieve the cells that we just set.
i iarray.Get(1, 4, 0);

f = farray.Get(3, 2, 3);

// get the size of each array.

i = iarray.Size();

i = farray.Size();

// fill the integer array with consecutive

for(z =0; z < 3; z++)
{
for(y = 0; y < 5; y++)
{
for(x = 0; x < 2; x+t)
{

numbers

Team LRN

Application: Using 20 Arrays as Tilemaps 131
_-:.'_Lu_l‘"—-—lF —= -——|_|—-—|_.—"|J_”‘|5|—l—|__p—'—|_'_

iarray.Get(x, y, z) =(z * 2 *5) + (y *2) + (x);

}

// resize the array to make it Targer:
iarray.Resize(3, 6, 4);

// resize the array to make it smaller:
iarray.Resize(2, 2, 2);

Application: Using 20 Arrays
as Tilemaps

This is Game Demonstration 5-1, which you can find on the CD in the directory
\demonstrations\ch05\GameO1 - Tilemapping\.

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When you look at an image on your computer screen, you're seeing a 2D array of
pixels. A graphical computer game, then, is nothing other than a 2D array of pixels
that changes at 30 to 60 times per second. Obviously, it is very difficult to control
every single pixel on the screen at that high of a framerate, so the idea of tilemaps
surfaced. A tilemap is a 2D array of tiles, in which each tile acts like a pixel on its
own. Tilemaps are used quite often in games, and they still have applications in
newer 3D games (they are usually called terrain maps in 3D, a 2D array represents
the height of each tile in a level).

Because tilemaps allow you to abstract the idea of pixels to a higher level, this sig-
nificantly simplifies a drawing engine. For example, without tilemaps, a large game

Team LRN

132 5. Multi-Dimensional Arrays

would have a huge bitmap representing the entire game world. Using tilemaps, you
can have your artists draw up a few tiles and then use a map editor to arrange the
tiles so that they form a complete picture. See Figure 5.10 for a pictorial represen-
tation of both of these methods.

Figure 5.10

This is a comparison

world bitmap world tilemap

of the two image

storing methods.

Now, when you want to design your tilemap, you’ll have a palette of tiles (grass,
stone path, snow, and so on), and you can design your map using these tiles, as

Figure 5.11 shows.

Figure 5.11

. Stone Path .
Here is a sample
Grass tilemap showing
grass, snow, and a
Snow
stone path.

Team LRN

Application: Using 20 Arrays as Tilemaps 133

N — r—= L= —Lr"]_

Now, instead of drawing every pixel of the entire map, you only have three differ-
ent tiles.

Storing the Tilemap

In the demo, I will need some way to store the tilemap. Naturally, because this
chapter is about multi-dimensional arrays, I’ll use one of those. In this case, a 2D
array looks like it is optimal for the task, because a tilemap is just a simple 2D array
of tiles, so I’ll use the Array2D class. The simple demo will use a map of 16 tiles by
16 tiles, so I'll need declarations for those, too:

const int MAPWIDTH = 16;
const int MAPHEIGHT = 16;
Array2D<int> g_tilemap(MAPWIDTH, MAPHEIGHT);

I defined the width and height as global constants so that it will be easy to change
them in the future. So the game demo creates a 16x16 array of integers, which will
be the tilemap. The integers in each cell of the tilemap will then reference a tile
number. When the tiles are loaded into the game, each one is given a number in
the tile bitmap array:

SDL_Surface* g_tiles[TILES];
g_tiles[0] = SDL_LoadBMP("grassl.bmp");
g_tiles[1] = SDL_LoadBMP("grass2.bmp");
g_tiles[2] = SDL_LoadBMP("grass3.bmp");
g_tiles[3] = SDL_LoadBMP("grass4.bmp");
g_tiles[4] = SDL_LoadBMP("roadh.bmp");
g_tiles[5] = SDL_LoadBMP("roadv.bmp");
g_tiles[6] = SDL_LoadBMP("roadtopleft.bmp");
g_tiles[7] = SDL_LoadBMP("roadtopright.bmp");
g_tiles[8] = SDL_LoadBMP("roadbottomleft.bmp");
g_tiles[9] = SDL_LoadBMP("roadbottomright.bmp");
g_tiles[10] = SDL_LoadBMP("snowl.bmp");
g_tiles[11] = SDL_LoadBMP("snow2.bmp");

The g_tiles array is just an array of SDL_Surfaces. The four grass bitmaps are given
the indexes 0-3, the road bitmaps are given indexes 4-9, and the snow bitmaps get
indexes 10 and 11.

Team LRN

134 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Generating the Tilemap

Now I need an algorithm to generate the tilemap. For this demo, I've used a simple
method: Randomization of the grass and snow and a pre-set loop to create the
road.

First, take a look at the grass and snow:

for(y = 0; y < MAPHEIGHT; y++)
{
for(x = 0; x < (MAPWIDTH / 2); x++)
{
g_tilemap.Get(x, y) = rand() % 4;
g_tilemap.Get(x + (MAPWIDTH / 2), y) = (rand() % 2) + 10;

}

This is a simple doubly-nested for-loop that iterates through all 16 tiles on the verti-
cal axis but only 8 tiles on the horizontal axis. This is because the left 8 columns of
the map are grass and the right 8 columns are snow. For each grass tile, I generate
a number 0-3, which is a grass tile, and for each snow tile, I generate the number
10 or 11, which matches the snow indexes.

Now I generate the road, which will be a rectangle:

for(x = 4; x < 10; x++)
{

I
~

g_tilemap.Get(x,
X,

2)
g_tilemap.Get(6)

I
~

}
for(y =3; y < 7; y++)
{
g_tilemap.Get(4,
g_tilemap.Get(9

—
I
ol

}

g_tilemap.Get
g_tilemap.Get
g_tilemap.Get
g_tilemap.Get

6
7
8;
9

’

(4,2)
(9,2)
(4,6)
(9,6)

The road will be a rectangle from (4,2) to (9,6). The first for-loop places horizon-
tal road tiles from (4,2) to (9,2) and from (4,6) to (9,6). The second for-loop
places vertical road tiles from (4,3) to (4,6) and from (9,3) to (9,6).

Team LRN

Application: Using 20 Arrays as Tilemaps 135

N — r—= L= —Lr"]_

The last four lines of code place the corner tiles at each corner.

Drawing the Tilemap

In this demo, you will be using a tilemap drawing algorithm that will draw the
tilemap with the upper-left tile being drawn at the given coordinates.

1: void DrawTilemap(int p_x, int p_y)

2: |

3: int x, y;

4. int bx = p_x;

5: int by = p_y;

6 for(y = 0; y < MAPHEIGHT; y++)

7 {

8 for(x = 0; x < MAPWIDTH; x++)
9: {

10: SDLB1it(g_tiles[g_tilemap.Get(x, y)1, g_window, bx, by);
11: bx += TILESIZE;

12: }

13: bx = p_x;

14 by += TILESIZE;

15: }

16: }

On line 3, you declare x and y, which will keep track of the current tile that is
being drawn. On lines 4 and 5, you declare bx and by, which will keep the current
drawing coordinates of the algorithm.

On line 6, you start the drawing algorithm by looping through all the Ys on the
outside, and the Xs on the inside, so you draw horizontally, left to right. Line 10 is
important because it demonstrates how you use the 2D array. The code
g_tilemap.Get(x, y) retrieves the bitmap number of the current tile, which is
then used to access a bitmap within the g_tiles array, which is passed into the
SDLBTit function (using my SDLHelpers library, see Appendix C, “Introduction to
SDL,” for more information) using the bx and by values. After every tile is drawn,
the bx value is increased by TILESIZE, which in this program is 64. After each row is
completed, the bx value is reset to p_x and by is incremented by TILESIZE, moving
the rendering down one row.

Team LRN

136 5. Multi-Dimensional Arrays

Playing the Game

When you launch the game, you are greeted with the tilemap! Hooray! It should
look like Figure 5.12.

|L| %:_ Figure 5.12

| Game Dema 05-01: Tilemapping Demonstration

Here is a screenshot
of Game Demo 5-1.

You can use the arrow keys on your keyboard to move the map around. Don’t
worry about going off the edges of the map; the algorithm still works fine.

Application: Layered Tilemaps

This is Game Demonstration 5-2, and you can find it on the CD in the directory
\demonstrations\ch05\Game02 - Layered Tilemapping\.

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Application: Layered Tilemaps 137

N — r—= L= —Lr"]_

If you look at the line separating the snow and the grass tiles from the previous
example, you immediately notice that it doesn’t look right. Snow just doesn’t fall in
a solid line like that. The easiest solution would be to draw a “transition” tile, in
which you would draw some snow on the grass tile to make it look more natural.
This method is fine for your small demo, but it has some problems in real life.
What happens when you want to create an overlapping snow tile on other terrain
types as well? You’ll have to create a transition tile for each type of different tile
that you want snow to be on top of, which quickly takes up lots of memory and
might even anger your artists.

So, a more efficient system was devised, called layered tilemaps. This method allows
you to have two or more layers on your tilemap. Figure 5.13 shows an example of a
two-layer tilemap.

Figure 5.13
Grass &
Snow This is a two-layer
Semi-Transparent Snow tilemap, with a
....... " Nothing semi-transparent

tile on the second

Second Layer
layer.

Base Layer

Notice something about the figure? That’s right, it’s really a 3D array! So you’ll be
using the Array3D class to store your layered tilemap.

In the figure, the bottom (base) layer is composed of pure grass and snow tiles.
The second layer is more interesting, though. First of all, you might notice that
most of the tiles are blank. This is frequently the case with multi-layer tilemaps,
because not every tile needs to have more than one layer. Second, the only bitmap
on the second layer is described as “semi-transparent snow,” and it is layered right
over the grass tiles that are adjacent to the snow tiles. This means that

Team LRN

138 5. Multi-Dimensional Arrays s 25 _

the tile should be transparent in some places, letting the renderer show some of
the tiles underneath. Figure 5.14 shows the bitmap you will use for the second
layer. Every pure black pixel on the bitmap is treated as a transparent pixel and
won’t be drawn. This means that the grass texture from the base layer will show
through the snow texture.

Figure 5.14

This is a semi-
transparent snow
bitmap.The black
pixels are ignored by
the drawing function,
so that anything below
it shows through.

The bitmap in Figure 5.14 is relatively simple and causes harsh contrasts

between the snow pixels and the grass pixels. If you are using a more complex
API with support for alpha blending, you can create some cool smooth transition
effects from the snow to the grass.

The implications of this method are numerous. You can easily replace the grass tex-
tures with something else, perhaps gravel, road, or dirt, and make it look like the
snow is covering it without needing to create a whole new set of transition tiles.

Redefining the Tilemap

I need to use a 3D array instead of 2D for this game demo. Almost nothing else in
this demo is changed from the 2D tilemap demo.

const int LAYERS =2;
Array3D<int> g_tilemap(MAPWIDTH, MAPHEIGHT, LAYERS);

You might note the addition of another variable, LAYERS. This is just to determine
how many layers the tilemap should have. This particular demo uses two layers,
although you might find uses for more than two.

Team LRN

Application: Layered Tilemaps 139

N — r—= L= —Lr"]_

Reinitializing the Tilemap

Because the tilemap now has two layers instead of just one, you need to determine
which tiles go on which layer. You’ll be using the same half-grass/half-snow design

of the previous demo for layer 0 (the base layer). There is absolutely no change in

the code except for the addition of the number 0 in the third parameter of the Get
function.

The road is created on the base layer as well, with no changes.

For this demonstration, I've decided to add another road below the first one,
which only goes halfway through the map horizontally. The reason it only goes
halfway will become apparent when you see the demo; it looks like this road was
snowed on and not cleared off.

// create another road
for(x = 0; x < (MAPWIDTH / 2); x++)
{
g_tilemap.Get(x, 8, 0) = 4;
}

Now, you will clear the second layer and initialize it all to -1, which is the value that
the tile renderer uses to show that the tile doesn’t exist.

// clear the second layer
for(y = 0; y < MAPHEIGHT; y++)
{
for(x = 0; x < MAPWIDTH; x++)
{
g_tilemap.Get(x, y, 1) = -1;

}

After that, you need to create one long vertical line of partially transparent snow
tiles to cover up the grass, like Figure 5.13 shows.

// add the transparent snow tiles over the grass.
for('y = 0; y < MAPHEIGHT; y++)
{

g_tilemap.Get((MAPWIDTH/2) - 1, y, 1) = 12;
}

This runs vertically down the grass line, which is located at x coordinate MAPWIDTH/2,
and sets all the tiles to 12, the transparent snow sprite.

Team LRN

140 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Because the rectangular road path goes over both the snow and the grass, the
transparent snow tiles will overlap with the road, which will make it look weird. So
you need to clear off the snow tiles that lie on top of the first road.

// clear the snow off of the path tiles.
g_tilemap.Get((MAPWIDTH/2) - 1, 2, 1)
g_tilemap.Get((MAPWIDTH/2) - 1, 6, 1)

_1’
_1;

Modifying the Rendering Algorithm

To draw multiple layers, you need to change the rendering algorithm into a triply-
nested for-loop instead of just a doubly-nested one. This doesn’t pose much of a
problem; you simply add an outer loop that goes through each layer:

1: void DrawTilemap(int p_x, int p_y)

2: {

3: int x, vy, z;

4. int bx = p_x;

5: int by = p_y;

6 int index;

7 for(z = 0; z < LAYERS; zt++)

8: {

9: bx = p_x;

10: by = p_y;

11: for(y = 0; y < MAPHEIGHT; y++)
12: {

13: for(x = 0; x < MAPWIDTH; x++)
14: {

15: index = g_tilemap.Get(x, y, z);
16: if(index != -1)

17: {

18: SDLB1it(g_tiles[index], g_window, bx, by);
19: }

20: bx += TILESIZE;

21: }

22: bx = p_x;

23: by += TILESIZE;

24: }

25: }

26: }

Team LRN

£ Application: Layered Tilemaps 1491

e e = L T =

This time, I've added a third looping variable, z. This will loop through each layer
of the tilemap.

On line 6, I've added an index variable, which will be used to cache the bitmap
index of the current tile. You will see the reason for it in a little bit.

The outermost loop, starting on line 7, loops through each layer, starting with the
base layer. Every time a new layer is started, the loop resets bx and by to the original
values because each layer is drawn directly on top of the previous layer.

Starting at line 15, I determine if the tile should be drawn and then draw it. In the
first tilemap demonstration, I assumed that every tile will be a valid tile. However, I
cannot do that this time, because many of the tiles on some of the layers might be
—1, which is invalid. So on line 15, I get the index of the current tile, and if it isn’t
invalid, I continue to draw it. If it is invalid, I don’t draw anything.

The rest of the algorithm is the same as the original.

Playing the Game

The game demo plays the same way as the first one. The arrow keys move the map
around on the screen. Figure 5.15 shows a screenshot from the game demo.

| Game Demao 05-01: Layered Tilemapping Demonstratiaon |£J E’: F'gure 5° I 5

o This is a screenshot
from the Layered
Tilemap demo.

Team LRN

142 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Notice how the second road disappears into the snow? That’s the power of layered
tilemaps.

Comparing Performance

There is one important note that I feel I must make about the layered tilemap
demo. It will be significantly slower than the single-layer tilemap version. The rea-
son for this is because the rendering routine now adds an if statement for every
tile to check if it is valid. Although this might not seem to be a lot of overhead, it
adds up. However, there is another problem with many if statements: They mess
with the processor’s branch prediction unit.

Modern processors don’t actually compute one instruction at a time. They are actu-
ally working on many instructions all at once! The processors use a feature called
pipelining, in which each instruction is entered into a large pipeline and processed
at different stages, all in the same clock cycle. The Pentium 3 and the Athlon each
have 10 pipeline stages, and the Pentium 4 has 20 stages! That means that these
processors are working on 10 to 20 instructions at the same time! The big problem
is that the processor always tries to keep the pipeline full at all times, and so when
it puts a conditional instruction (if, while, for, else if) into the pipeline, it has no
way to know if the statement will return true or false until 10 to 20 instructions
later. So how does it determine which instructions to put in the pipeline after a
conditional instruction? It guesses. The processor uses a special unit called the
branch predictor to determine which instruction is placed into the pipeline next. If it
guesses wrong, the pipeline needs to be flushed, and everything the processor has
done since it made the wrong guess needs to be ignored.

For example, Figure 5.16 shows a simple four-stage pipeline, with five instructions
being processed. A four-stage pipeline means that every instruction can be sepa-
rated into four different parts (such as loading the instruction, decoding the
instruction, and so on). You can think of this as an assembly line in a car factory;
each one of the stages in the pipeline performs one dedicated task on a car (or
piece of data in a computer). After the current stage is complete, it passes the
instruction onto the next stage and gets a new instruction from the previous stage.

Team LRN

I'i_fl_:_-._r_:_.ltibn: Layered Tilemaps 1493

-—'—|_|—-—|_.—l‘”_”‘|5l—l—|_p—l—|_'_

7 ® ® Figure 5.16 This is
o)) o
Qe @ Q a four-stage pipeline,
with five instructions
being computed.

1 abeis

Initial Pipeline:

Instruction 1 Added: 1

Instruction 2 Added: 2 1

Instruction 3 Added: 3 2 1

Instruction 4 Added: 4 3 2 1

Instruction 5 Added, 5 4 3 2
1 Completed:

In the first part, all four stages are empty, and the processor isn’t doing anything. After
an instruction is executed, it takes four clock cycles to complete because each stage in
the pipeline takes one cycle to complete. When one cycle has passed, the first instruc-
tion moves on to stage 2, and instruction 2 is added into the pipeline. This process
continues until three cycles later, when the first instruction is finally finished.

~ NOTE

This pipeline has a latency of four cycles, which means that it takes four cycles for
any single instruction to complete. This pipeline has a throughput of one cycle,
though, because after every cycle, another instruction is completed. When the
amount of work per cycle is decreased, the processor runs more quickly. This is

why the Pentium 3 and Athlon processors are faster than the Pentium 4 proces-
sor at the same speed.The Pentium 4 has a larger pipeline and does less work per
clock cycle, so it can run at a faster clock speed. An Athlon can calculate one
instruction in 10 cycles, whereas a Pentium 4 needs 20 cycles for that one instruc-
tion. Although theoretically the Pentium 4 should be faster because it has a larger
throughput, that benefit rarely appears in real life due to frequent pipeline flushes.

Team LRN

194 5. Multi-Dimensional Arrays

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

When you have lots of if statements in your code, the chances that the processor
will make a correct guess on the result of the conditional are lowered, and you end
up with code that is significantly slower as a result. These problems are very large
for processors that have huge pipelines (such as the P4), but don’t cause quite as
many problems on smaller pipelines (P3 and Athlon).

Comparing Size

Another problem with using a 3D layered tilemap is the waste of space. In the first
tilemap demo, the tilemap used 256 tiles (16*16). In this demo, the tilemap can
store 512 tiles, but I only use 270 of them, which means that I waste 242 tiles! 47
percent of all the tile space is wasted on blank tiles! This is just one thing you need
to think about when dealing with tilemaps.

Analysis of Viulti-
Dimensional Arrays in Games

Multi-dimensional arrays are not as “general-purpose” as 1D arrays and thus are
more suited to specific problems. You'll find, more often than not, that if a prob-
lem requires a 2D or 3D array, there probably isn’t any other way to solve the prob-
lem. This puts you into a predicament because you've seen how multi-dimensional
arrays can easily become huge very quickly. Although memory concerns are no
longer a primary concern with game programming, don’t forget that multi-dimen-
sional arrays do not increase in size linearly, especially if you increase more than
one dimension at a time.

Perhaps the largest thing you should be concerned with when dealing with multi-
dimensional arrays is how to iterate through them. If you are not familiar with how
computer cache systems work, take a look back to Chapter 3 for a moment and
read the section on caches.

When you iterate through a multi-dimensional array, you need to keep track of
which dimension you iterate through on the innermost loop. For example, when
you iterate through a 2D array with the horizontal x coordinate as the inner loop,
you visit the cells in the order shown in Figure 5.17 in the top 1D array. The order
goes in a straight line from left to right.

However, when you iterate with the vertical y coordinate as the inner loop, you visit
the cells in the order shown in the second 1D array. The order jumps around on
every access to the array. For large arrays, this will wreak havoc with the cache.

Team LRN

Conclusion 195

N — r—= L= —Lr"]_

Figure 5.17
0 1 2 0 1 2 3 4 5 6 7 8 This figure shows the
3 4 5 x as the inner iteration order of visitation
using two different
6 7 8 0 3 6 1 4 7 2 5 8 loops on a 2D array.
y as the inner iteration

Conclusion

In this chapter, you learned everything a normal human being should know about
multi-dimensional arrays, such as how to declare them, initialize them, access their
cells, and pass them into functions. You also learned how to encapsulate 2D and 3D
arrays into a class by using a 1D array and how to resize them.

Although the two game demos in this chapter only taught you how to use multi-
dimensional arrays in relation to tilemaps (a subject that will be expanded in
Chapters 6, “Linked Lists,” 17, “Graphs,” and 23, “Pathfinding”), there are still
plenty of uses for multi-dimensional arrays. If you work with bitmapped graphics,
you will use 2D arrays quite often.

Of course, multi-dimensional arrays are not nearly as universally usable as 1D
arrays; multi-dimensional arrays are designed to store data that is ordered in a com-
plex manner, whereas 1D arrays can store anything.

Team LRN

This page intentionally left blank

Team LRN

‘—‘JLLJ‘—*"_‘[—' ==L — M= —] l"J‘zﬁ—’lﬂi

CHAPTER 6

LINKED L15TS

148 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

‘m sure you’ve wished many times when you’ve been programming that you

could use a more flexible data structure than an array. Perhaps you’ve wanted to
conserve memory or be able to insert and remove data quickly. If so, then the
linked list is the answer to your problems. In this chapter, you will learn

® What a linked list is

® How to create two different versions of linked lists
= How to insert and remove data from linked lists

= How to write linked lists to disk

= How to use linked lists in games

= How the two linked list versions compare to each other, and also to arrays

What Is a Linked List*?

In Chapter 3, “Arrays,” I introduced you to arrays. I went over the downsides of
using arrays: You cannot insert or remove data into them quickly (at least in the
middle), and they are fixed at a certain size. Now, imagine that you have a con-
tainer that acts similarly to an array, but fixes those problems. The data structure
that does this is called a linked list, sometimes known as just a list.

Like an array, a linked list is composed of many cells that contain data, although
they are called nodes when referring to linked lists. In an array, cells are packed
right next to each other in memory, and cells contain nothing but the data in the
array. A node is different, however. The nodes in a linked list are not packed
together like cells.

Instead, each node in a linked list points to the next node in the list. Figure 6.1
shows a graphical representation of a linked list with four nodes. Each node in a
linked list is actually a class on its own and contains a pointer to the next node in
the list.

Team LRN

Singly Linked Lists 149

Figure 6.1

A4
®
A4
®
\4

@ Here is a pictorial

representation of a four-
T N node linked list. Each
node points to the next

cell pointer

node in the list.

Because of the way that linked lists are structured, you can easily add or remove
nodes at the beginning or the end of a list, or even in the middle of the list.

Many different linked list variations exist, but I only cover two of them here.

Singly Linked Lists

Singly linked lists are the simplest types of linked lists. Each node in the list points
only to the next node. Figure 6.1 is an example of a singly linked list.

Graphical Demonstration: Singly
Linked Lists

You can find the singly linked list graphical demo on the CD in the directory
\demonstrations\ch06\Demo01 - Linked List\. This demo shows you how to iterate
through singly linked lists and how to insert and remove nodes from them.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

150 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

When the program starts, you are presented with four buttons and a five-node
singly linked list. Figure 6.2 shows a screenshot of this scenario.

__Linked List Graphical Demonsiration - P_.ﬂ Figure 6.2

Here is a screenshot
from the Singly
Linked List graphical
demonstration.

- —-E—-0—-®

Y 3 3 3
Reset Farth Insert Remove

The very first node on the left will be colored red to indicate that it is the current
node. In the Chapter 3 array demo, you could click on any cell in the array to
select it. You cannot do that here, for reasons that I explain later on. Instead, you
must select the nodes using the two buttons on the left side: Reset and Forth.

The Reset button makes the very first node in the list the current node. The Forth
button selects the next node in the list. These two controls are called the iteration
controls.

On the right-hand side, you have two more buttons, Insert and Remove. The Insert
button starts an animation that demonstrates how to insert a node into the list, and
the Remove button demonstrates how to remove a node from the list. When I
describe these algorithms later on, I think it will help you a lot to see the demo in
action.

Structure

This section deals with the code of the singly linked list class, which can be found
on the CD in the \structures\ directory in the file SLinkedList.h.

Even though a singly linked list is in theory a specific type of structure, it turns out
that there are many ways of implementing this type of list. I start off by looking at
the simplest way to implement a singly linked list: with a plain node class.

Team LRN

Singly Linked Lists 151

N — r—= L= —Lr"]_

The SListNode (Class

I call this class the SListNode. It is simple and contains only two data members:

template<class Datatype>
class SListNode
{
public:
Datatype m_data;
SListNode<Datatype>* m_next;
}s

The first member is m_data, which holds the data that is going to be stored in the
node. The second member is m_next, which is a pointer to another SListNode class.
Using this, it is possible to create a linked list, like Example 6-1 shows (this can be
found on the CD in the directory \examples\chO6\01 - Building a simple List\):

SListNode<int>* 1ist = new SListNode<int>;
list->m_data 10;

Tist->m_next = new SListNode<int>;
list->m_next->m_data = 20;
T1ist->m_next->m_next = new SListNode<int>;
list->m_next->m_next->m_data = 30;

oS OB W N

On line 1, I declare a pointer to the SListNode class, 1ist, and create a new node
for it. Line 2 sets the data inside the node to the value 10.

Now, on line 3, I create a new node and tell 1ist to point to it. Then, on line 4, 1
set the data inside the second node to 20. Finally, I repeat this process again and
create a third node. On line 5, I tell the second node to point to the third node

and set the third node to 30. Figure 6.3 shows this process.

Figure 6.3

Step 1: list This is how you
create a new linked
list without a

Step 2: list container class, as in
Example 6-1.

Team LRN

152 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

As you can imagine, this method tends to become a little cuambersome. Adding
items to the list becomes very difficult as the size increases. Accessing items becomes
just as difficult. Because of this, you should find a better way to access the list.

The InsertAfter Function

First of all, you need a better method of inserting nodes. I’ll build this into the
SListNode class and call it InsertAfter because I am inserting a node after the
current node.

The purpose of this function is to insert a new node after an existing node.
However, if there is already a node after the current node, you need to move that
node over. Figure 6.4 shows what I want to do. If InsertAfter is called on node 10,
then I want to insert the new node immediately after 10, but before 30.

Figure 6.4

Original List: This shows the

!

process of inserting a
new node into a

Create new node: @ > 30 linked list.

Change pointer: @

i

This process has two steps:

1. Create a new node that points to 30.

2. Make 10 point to the new node.

This process can also be viewed graphically using the Singly Linked List graphical
demonstration, which I introduced earlier.

The code looks like this:

void InsertAfter(Datatype p_data)
{

Team LRN

__j:__LUjj_____L_IE;;__Fzz

Singly Linked Lists 153

=T 1

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

// create the new node.
SListNode<Datatype>* newnode = new SListNode<Datatype>;
newnode->m_data = p_data;
// make the new node point to the next node.
newnode->m_next = m_next;
// make the previous node point to the new node
m_next = newnode;
}

The first step is to create a new node and set its data. You then take that new node
and make it point to the next node in the list. Finally, you make the current node
point to the next node.

This is a very simple process, as you can see, which makes linked lists a powerful
and flexible tool.

Iterators

Now that you've automated the insertion process, you need to have some way of
moving through a linked list and accessing all of the nodes. Obviously the method
used in Example 6-1 is too cumbersome to use with ease, so you need a new con-
cept, called iterators.

An iterator is simply a structure that allows you to move through a linked list from
start to finish, for singly linked lists, at least. The definition of an iterator becomes
more general when you go on to different kinds of lists.

An iterator basically points to a specific node in a list. Figure 6.5 shows four differ-
ent iterators, named itrl through itr4, pointing to various nodes in a three-node
linked list. Note that any number of iterators can point to the same node in a list.

Figure 6.5

The structures on the
bottom are iterators,
pointing to nodes in

a list. Many different
iterators can point to

the same node.

itr1 itr2 itr3 itr4

Team LRN

154 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

For this simple iteration example, I'll just use a SListNode pointer as the iterator.
This is Example 6-2:

// create a new Tlinked 1ist.

SListNode<int>* 1ist = new SListNode<int>;

1ist->m_data = 10;

// insert 30 and then 20 before that, so the 1list is 10, 20, 30.
Tist->InsertAfter(30);
Tist->InsertAfter(20);
cout << "the Tist contains:
// create a new iterator and make it point to the
// beginning of the list.

SListNode<int>* itr = Tist;

cout << itr->m_data << ", ";

// move the iterator to the next node in the Tist.
itr = itr->m_next;

cout << itr->m_data << ", ";

// move the iterator forward again.

itr = itr->m_next;

cout << itr->m_data << ", ";

// reset the iterator to the beginning again.

itr = Tist;

In this example, the iterator can only
move forward. This is one of the limita-
tions of a singly linked list. To get to a
previous node in the list, you need to
reset the iterator all the way back to the

beginning and move it forward again.
1 1

Encapsulating a Linked List

Up until now, you’ve only been dealing with the linked list node structure and not
any specific linked list class. I have always preferred to wrap the node structure into
another class, however, because it makes working with the linked list much easier.

So I'll begin by creating the SLinkedList class, which will contain pointers to the
front and back nodes of the list. I call these the head and the tail.

template<class Datatype>
class SLinkedList

{

pubTic:

Team LRN

Singly Linked Lists 155

SListNode<Datatype>* m_head;
SListNode<Datatype>* m_tail;
int m_count;

b

So what you end up with is a class that contains three things, as Figure 6.6 depicts:
a pointer to the first node in the list, a pointer to the last node in the list, and the
total number of nodes in the list. This class will make working with linked lists
much easier.

Figure 6.6
SLinkedList: head tail 4 When a linked list is

encapsulated into a
container class, it is
easier to work with.
The class manages

Nodes: ° e 6 @ the pointers for you.

The Constructor

The first function I'll give to the SLinkedList class is a constructor. This function
sets the pointers and the count to 0 so you know that the list has nothing in it and
doesn’t point to any nodes.

SLinkedList()

{
m_head = 0;
m_tail =0

m_count = 0;
}

Whenever the head or the tail is 0, the list is empty.

The Destructor

After you are done using the list, you want it to be able to delete all the nodes that
it has created automatically so you don’t have to manually clean them up yourself.
You can do this by using the same kind of iterators I used earlier to iterate through
the list and delete each node.

Team LRN

156 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

~SLinkedList()
{
// temporary node pointers.
SListNode<Datatype>* itr = m_head;
SListNode<Datatype>* next;
while(itr !=0)
{
// save the pointer to the next node.
next = itr->m_next;
// delete the current node.
delete itr;
// make the next node the current node.
itr = next;

}

This method uses two iterators: itr and next. When this code starts out, it initializes
itr to point to the first node in the list and then enters a loop. The next pointer
points to the node directly after itr. I do this for a reason: When itr is deleted,
you have no way of telling where the next node is going to be.

So you delete the node that the iterator points to and then move it forward. You
do this until the iterator is 0. Because the last node in the list points to nothing, its
m_next pointer will contain 0. Therefore, when itr is 0, every node in the list has
been deleted.

The Append Function

After that, you want to give the SLinkedList class a function to add nodes. This is
the Append function. This function adds a new node to the end of the list.

void Append(Datatype p_data)
{
if(m_head == 0)
{
// create a new head node.
m_head = m_tail = new SListNode<Datatype>;
m_head->m_data = p_data;
}
else
{

// insert a new node after the tail and reset the tail.

Team LRN

Singly Linked Lists 157

m_tail->InsertAfter(p_data);
m_tail = m_tail->m_next;

}
m_count++;

}

To append an item to the end of the list, you could simply call InsertAfter on the
last node of the list, right? Well, it’s not quite that simple. What happens if there is
no last node? This is why the if/else block exists.

If m_head is 0, the list is empty and you need to create a new head node. In this case,
you simply create a new node and make the m_head and the m_tail pointers point to
that node.

If m_head isn’t 0, you can call InsertAfter on the tail node. The thing you have to
remember in this case is that because you’ve added another node to the back, you
need to update the m_tail pointer so that it points to the new node.

Figure 6.7 shows the process of appending a new node.

Figure 6.7

head | tail

This is the process of

adding a new node

Initial List at the end of a singly

linked list.

head | tail

Create new node X
10 20 @

head | tail

Change the tail pointer

&)

20

Team LRN

158 6. Linked Lists

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Prepend Function

Now that you can add items to the end of a linked list, wouldn’t it be cool to be
able to add items to the beginning? This method is called prepending.

void Prepend(Datatype p_data)

{
// create the new node.
SListNode<Datatype>* newnode = new SListNode<Datatype>;
newnode->m_data = p_data;
newnode->m_next = m_head;
// set the head node and the tail node if needed.
m_head = newnode;

if(m_tail ==)
m_tail = m_head;
m_count++;

}

This method is actually a little bit simpler. First, you create a new node and initial-
ize it. Then, you tell it to point to the head node in the list. Now the m_head pointer
is still pointing to the old head node, so you need to update it to point to the new
node. Note that this algorithm works even if the list is empty because m_head was 0
and the new nodes’ m_next pointer will also end up being 0.

You still need to check if the list was empty, though. If the list was empty, then
m_tail will also be 0, so you need to update it to point to the head. Figure 6.8 shows
the process.

The RemmoveHead Function

As you can see with the Append function, adding nodes to the beginning of a
linked list is easy to do. Removing nodes from the beginning of a list is easy as well.

void RemoveHead()
{
SListNode<Datatype>* node = 0;
if(m_head !=0)
{
// make node point to the next node.
node = m_head->m_next;
// then delete the head and make the pointer
// point to node.

Team LRN

Singly Linked Lists 159

delete m_head;

m_head = node;

// if the head is null, then you've just deleted the only node
// in the 1ist. set the tail to 0.

if(m_head == 0)
m_tail = 0;
m_count--;
}
}
Figure 6.8
head | tail This is the process of
adding a new node
o to the front of a
Initial List singly linked list.
head | tail
Create new node i
head | tail
Change the head pointer j i

Team LRN

160 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

All you need to do is delete the first node and move the head pointer up to point
to the next node in the list. There are two special cases, though. First of all, the list
might be empty. In that case, do nothing. In the second case, there might be only
one node left in the list. In that case, delete the node and set the head and tail
pointers to 0.

The RemoveTail Function

Unfortunately, removing the tail of a singly linked list is much more difficult than
removing the head. When you remove the head of the list, all you need to do is
update the head pointer to point to the next node. This task is easy because the
head node already has a pointer to the next node.

When you remove the tail node, you want to make the tail pointer point to the pre-
vious node in the list. This is a problem because a singly linked list node doesn’t
point to the previous node. Instead, you need to go through the entire list and find
the previous node. This makes the RemoveTail algorithm much slower than the
RemoveHead algorithm because it needs to do searching.

void RemoveTail()
{
SListNode<Datatype>* node = m_head;
// if the Tist isn't empty, then remove a node.
if(m_head !=0)
{
// if the head is equal to the tail, then
// the 1ist has 1 node, and you are removing it.
if(m_head == m_tail)
{
// delete the node and set both pointers
// to 0.
delete m_head;
m_head = m_tail = 0;

else
// skip ahead until you find the node

// right before the tail node
while(node->m_next != m_tail)

Team LRN

Singly Linked Lists 161

__j:__LUjj_____L_IE;;__Fzz

=T 1

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

node = node->m_next;
// make the tail point to the node before the
// current tail and delete the old tail.
m_tail = node;
delete node->m_next;
node->m_next = 0;
}
m_count-;

}

Figure 6.9 shows the process of removing the tail node.

head | tail
Initial List /
OO, “N
NG N _/
head | tail

right before
the tail

Find the node /
(o) oo ol) 5

head | tail

Modify the tail
pointer and
delete the last

Team LRN

Figure 6.9

This is the process of
removing the tail
node of a linked list.
Note how it is a
more involved
process than
removing the head
node.

162 6. Linked Lists

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The SlListlterator Class

Now, to interface with your new SLinkedList class, you should create an iterator
class, which automates the iterator functions I covered earlier. This class contains
two things: A pointer to the current node and a pointer to the list that the node is
in. You’ll see why in a little bit.

template<class Datatype>

class SListlterator

{

public:
SListNode<Datatype>* m_node;
SlinkedList<Datatype>* m_list;

The Constructor

The constructor for the SListIterator takes two parameters: The list that the itera-
tor is for and the current node of the iterator.

SListIterator(SLinkedList<Datatype>* p_list = 0,
SListNode<Datatype>* p_node = 0)

m_list = p_list;
m_node = p_node;
}

If the parameters are missing, then they default to 0, making the iterator somewhat
worthless.

The Start Function

The Start function resets the iterator to point to the very first node in the list.

void Start()
{
if(m_list !'=0)
m_node = m_list->m_head;
}

This is very straightforward: If the list is valid (not 0), then make the iterator point
to the head.

Team LRN

Singly Linked Lists 163

N — r—= L= —Lr"]_

The Forth Function
The Forth function moves the iterator to the next node in the list.
void Forth()
{
if(m_node != 0)

m_node = m_node->m_next;
}

The only time this function does nothing is when the current node is 0. When the
current node is 0, then this iterator isn’t pointing at anything and is invalid.

The Item Function
This function returns a reference to the item stored in the node that the iterator is
pointing to.

Datatype& Item()
{
return m_node->m_data;

The Valid Function
This function checks to see if the iterator is pointing to a non-0 node. If so, then it

returns true; otherwise, it returns false.

bool Valid()
{

return (m_node != 0);

The Getlterator Function

Now that you’ve created a basic iterator class, you need a way to be able to generate
iterators.

SListIterator<Datatype> Getlterator()
{
return SListIterator<Datatype>(this, m_head);

}

This function creates a new iterator pointing to the head of the current list.

Team LRN

164 6. Linked Lists

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Using Iterators

Now that you have the basic functions set, try rewriting Example 6-2 so that you use
the SLinkedList and SListIterator classes. This is Example 6-3:

// create a new Tinked Tist.
SLinkedList<int> Tlist;

// insert 10, 20 and 30.
Tist.Append(10);
Tist.Append(20);
Tist.Append(30);

cout << "the Tist contains:
// create a new iterator and make it point to the

// beginning of the Tist.

SListIterator<int> itr = list.GetIterator();

// loop through the 1ist while the iterator is valid.
for(itr.Start(); itr.Valid(); itr.Forth())

{

cout << itr.Item() << ", ";
}
// reset the iterator to the beginning again.
itr.Start();

You should immediately notice that this version of the program is much easier to
read and understand than Example 6-2.

The iterator functions make it easy to use a linked list in a for-loop. In the first part
of the for-loop, the iterator is reset to the beginning of the list. Then it loops while
the iterator is valid and moves the iterator forward by one node each time.

The Insert Function

Now that you have iterators working, you can move on to the more advanced
linked list routines. The first is the Insert function, which inserts a node after an

iterator. This function allows you to insert nodes into the list at any position you
like.

// inserts an item after the current iterator or appends
// data if iterator is invalid.
void Insert(SListIterator<Datatype>& p_iterator, Datatype p_data)
{
// if the iterator doesn't belong to this Tist, do nothing.
if(p_iterator.m_list != this)

Team LRN

Singly Linked Lists 165

N — r—= L= —Lr"]_

return;
if(p_iterator.m_node != 0)
{
// if the iterator is valid, then insert the node
p_iterator.m_node->InsertAfter(p_data);
// if the iterator is the tail node, then
// update the tail pointer to point to the
// new node.
if(p_iterator.m_node == m_tail)
{
m_tail = p_iterator.m_node->m_next;
}
m_count++;
}
else
{
// if the iterator is invalid, just append the data
Append(p_data);

}

The first thing you need to do is to make sure that the iterator that was passed in is
an iterator for this list. You don’t want an iterator belonging to a different list to be
passed into this list, right? So if the iterator doesn’t match, the function just returns
and doesn’t do anything. A more complex system would probably return an error
code or throw an exception, but that is outside the scope of this book.

When you are sure that the iterator belongs to this list, there are two major condi-
tions for this function: The iterator can be valid, or it can be invalid.

If the iterator is valid, then all you need to do is insert the node after the iterator.
Because the function only inserts nodes afier the iterator, the function can never
insert a node in front of the head node. However, because the function can put a

node at the end of the list, you need to check if it did so and update the tail
pointer accordingly.

If the iterator isn’t valid, I prefer to append the node at the end of the list, so you
just call the Append function.

Team LRN

166 6. Linked Lists

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Remove Function

The Remove function is the most complicated of all of the singly linked list func-
tions. The reason for this is because of the nature of a singly linked list node: It
only points to the next node. If you want to remove any node within a list, you
need to find the previous node first and link that up to the next node in the list,
like the Singly Linked List demo shows you.

void Remove(SListIterator<Datatype>& p_iterator)

{
SListNode<Datatype>* node = m_head;
// if the iterator doesn't belong to this 1ist, do nothing.
if(p_iterator.m_list != this)

return;
// if node is invalid, do nothing.
if(p_iterator.m_node == 0)
return;
if(p_iterator.m_node == m_head)
{
// move the iterator forward and delete the head.
p_iterator.Forth();
RemoveHead();
}
else
{
// scan forward through the 1ist until you find
// the node prior to the node you want to remove
while(node->m_next != p_iterator.m_node)
node = node->m_next;
// move the iterator forward.
p_iterator.Forth();
// if the node you are deleting is the tail,
// update the tail node.
if(node->m_next == m_tail)
{
m_tail = node;
}
// delete the node.
delete node->m_next;
// re-link the Tist.
node->m_next = p_iterator.m_node;
}

Team LRN

Singly Linked Lists 167

m_count--;

}

The first thing you check is to see if the iterator is valid. If it isn’t, then you just
return and don’t do anything.

One thing I want to call attention to is the behavior of the iterator. When you
inserted a node using an iterator, the iterator stayed pointing to the same node.
However, you can’t do that when you are removing nodes. You are left with two
options. You can either invalidate the iterator or move the iterator to the next item
in the list. I prefer the second method, so whenever you remove a node, the itera-
tor will be moved forward to the next node.

Figure 6.10 illustrates this process.

Figure 6.10

head | tail

This shows how to
/ remove a node that an
Initial list:
4 N

@ , . iterator is pointing to. It
N \T/ is similar to removing

the tail of a list.

itr

head | tail

Find the
previous
node:

itr

head | tail

Remove the
node and move

e ‘ e e °

itr

Team LRN

168 6. Linked Lists

—Jl_rl—l_l_'Eru—”_l_'_'_'_l—l——ll_l'—h

E::r__EEEI_J_____JﬂLUJ——1EL__

The algorithm then loops through the list until you find the node prior to the
node you want to remove. Remember, you did this with the RemoveTail function as

well, because the node doesn’t point back to the prior node.

So before you actually delete the node, you move the iterator forward and make it

point to the next node in the list. This L
method is nice because it allows you to g

iterate through a list and remove CAUTION

selected items at a whim, and you don’t The last step in the Remove algo-
have to reset the iterator every time you rithm is very important. If you don’t
delete an item. relink the list, the last half of the list

Finally, you delete the node and tell the

will essentially be lost. Not only can
you not access the data anymore,

I

node prior to it to point to the node but it is a memory leak as well
after the node you just removed. i because you cannot delete it. j
1 1

Example 6-<4

Now that you’ve completed the STinkedList class, I can demonstrate the advanced
features of the iterators. This is Example 6-4. (It can be found on the CD in the

directory \examples\ch06\04 - Using SLinkedList\.)

// create a new Tlinked 1ist.
SLinkedList<int> Tist;
SListIterator<int> itr;

// insert 10, 30 and 40.
Tist.Append(10)
Tist.Append(30)
Tist.Append(40)
PrintList(Tist);

// use the iterator to insert 20 between 10 and 30.
itr = Tist.GetIterator();

Tist.Insert(itr, 20);

PrintList(Tist);

// use the iterator to remove 30.

itr.Forth();

itr.Forth();

Tist.Remove(itr);

PrintList(Tist);

PrintList is a simple function that just iterates through the list and prints out what
it contains. It really isn’t much more than the for-loop that was used in Example

6-3, so I do not list it here.

Team LRN

Doubly Linked Lists 169

N — r—= L= —Lr"]_

In the first code block after the list and the iterator declarations, you append 10,
30, and 40 to the list in that order and print it out. That was simple—you’ve seen
the Append function before.

In the second code block, you get an iterator and reset it to the beginning of list.
At this point, itr should be pointing to 10. Now you call the Insert function on the
list and insert 20 right after 10, making the list 10, 20, 30, 40.

Finally, in the third code block, you move the iterator forward by two places so that
it points to 30 and then remove it. This gives you 10, 20, 40.

Final Thoughts on Singly Linked
Lists

Now that you've seen the structure and the usage of singly linked lists, I can make a
few observations about them.

First of all, the most obvious strength is that you can insert and delete items from a
singly linked list quite quickly. With an array, you are forced to move lots of data
around to insert an item, but you don’t have to do any of that with a linked list.

Another strength is the ability to expand to indefinite sizes. You can store as many
items within a linked list as you want to, as long as you have enough memory to
do so.

The major downside is that you cannot access items within the list like you can with
an array. You can only use an iterator to go through the list, and you can only go
from start to finish. This limitation makes linked lists somewhat less useful than
arrays in some instances.

Doubly Linked Lists

Now you can move on to the most common linked lists: doubly linked lists. Whereas
a singly linked list only had one pointer per node, a doubly linked list has two
pointers per node. (Bet you didn’t see that one coming!) The second pointer in a
doubly linked list node is a pointer to the previous node in the list. Figure 6.11
shows a four-node doubly linked list.

Team LRN

170 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 6.11

A four-node doubly linked list
is a more complex version of

@®| data |@ @| data |@ @®| data |@ @®| data |@

a singly linked list. Each node
now has two pointers, instead
of just one.

Most of the algorithms involving a doubly linked list are very similar to the singly
linked versions, so we won’t spend much time discussing them. I'll mainly go over
the important additions or differences between the algorithms, because the con-
cepts are all basically the same for both types of lists.

Graphical Demonstration: Doubly
Linked Lists

You can find the graphical demonstration for doubly linked lists on the CD in the
directory \demonstrations\ch06\Demo02 - Doubly Linked List\. This demo is very

similar to the singly linked list demo. It has a few new buttons, though, as Figure
6.12 shows.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Doubly Linked Lists

" Doubly Linked List Graphical Demenstration = T4 Figure 6.12

This is a screenshot
from the Doubly
Linked List Graphical
Demonstration.

@@ O—@—®

\ ¢))
Start End | Insert Befora Insert After |

r ‘]’
Back Forth ‘1 Remove

/

On the left are two new buttons: Back and End. The Back button moves the itera-
tor to the previous node in the list, and the End button moves the iterator to the
end of the list.

On the right is one new button: Insert Before. This button inserts a new node
before the current node.

Creating a Doubly Linked List

The classes used for doubly linked lists are the same as those used for the singly
linked lists, with minor changes. You change the S to a D to denote that the list is
doubly linked. The classes are all located in \structures\DLinkedList.h.

Because the two different lists are so similar in nature, I describe doubly linked lists
differently, without code, instead of just pasting all the code into the book. If you
really must see the code, then please follow along by reading the code from the
CD, but it shouldn’t be necessary.

The Node Structure

As I stated earlier, each linked list node has two pointers instead of just one. The
additional pointer points to the previous node on the list. Figure 6.13 shows a dou-
bly linked list node.

Team LRN

171

N — r—= L= —Lr"]_

172 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 6.13

This is a doubly
linked list node.

<z previous data next >

Because a doubly linked list node has two pointers, it is a little more complicated to
add and remove nodes from the list because there are more pointers to rearrange.

Doubly Linked List Algorithms

I'll now briefly cover the most common algorithms used on doubly linked lists:
insertion and removal of nodes. All of the other algorithms (remove head or tail,
append, prepend) are based on the same concepts. As with the SLinkedList class,
all the code is on the CD if you need to see these algorithms in action.

Inserting a Node
The method for inserting a node into a doubly linked list is slightly more complex
than the singly linked list method. If you are inserting node N between nodes L
(left) and R (right), the basic algorithm follows these steps:

1. Create a new node, N.

2. Make N’s previous pointer point to L.

3. Make N’s next pointer point to R.

4. If L exists, make L’s next pointer point to N.

5. If R exists, make R’s previous pointer point to N.

Figure 6.14 shows this process.

Team LRN

Doubly Linked Lists 173

N — r—= L= —Lr"]_

m Figure 6.14
@ \\\R/ \Q This is how you insert

a node into a doubly

step 1 @ linked list.

Because you might be inserting a node at the front or the end of the list, the if
statements in Steps 4 and 5 are important. If you're inserting a node at the front of
the list, then node L doesn’t exist. The same applies with the end, in which case R
doesn’t exist.

If you compared this algorithm to the singly linked version, Steps 2 and 5 wouldn’t
exist.

Removing a Node

This algorithm differs the most from the singly linked list version. In a singly linked
list, you had to search the list for the node prior to the node you wanted to remove
because the node didn’t know which node was behind it. Because each node in a
doubly linked list points back to the prior node, you can use that information and
simply remove the node without searching through the list.

If you are removing node N, which is in between nodes L and R, the algorithm is as
follows:

1. If L exists, make L’s next pointer point to R.
2. If R exists, make R’s previous pointer point to L.
3. Delete N.

Team LRN

174 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

This process is demonstrated in Figure 6.15.
m m Figure 6.15
@l \\N/l \R/‘ \Q This is how you

remove a mode from
step 1 m

a doubly linked list.

step 3

As you can see, removing a node from a doubly linked list is much easier.

Reading and Writing Lists to
Disk

In Chapter 3, when I showed you how to read and write arrays onto disk, it was nice
and easy because C file functions work directly with arrays. With linked lists, you
have no such luck; you have to make your own. Luckily, it is not that difficult to
read and write linked lists. I'll show you how to read and write SLinkedLists to disk

but not DLinkedLists. Don’t worry, though; the algorithms are virtually identical for
each list type.

Writing a Linked List

The process for writing the contents of a linked list to disk is simple: You create an
iterator, iterate through the list, and store the contents of every node into the file.

Team LRN

Reading and Writing Lists to Disk 175

N — r—= L= —Lr"]_

Because lists have a variable size, it is often a good idea to store the number of
nodes that are being written to the file first. This way, when it comes time to read
the list back in, the algorithm first reads the number of nodes stored in the file and
then reads all the nodes in.

Here is the SaveToDisk function in SLinkedList:

1: bool SaveToDisk(char* p_filename)

2: |

3: FILE* outfile = 0;

4. SListNode* itr = m_head;

5 outfile = fopen(p_filename, "wb");

6 if(outfile == 0)

7 return false;

8: fwrite(&m_count, sizeof(int), 1, outfile);
9: while(itr !=0)

10: {

11: fwrite(&(itr->m_data), sizeof(Datatype), 1, outfile);
12: itr = itr->m_next;

13: }

14: fclose(outfile);

15: return true;

16: }

You open the file, like you did last time, in “write binary” mode. However, instead
of just writing the list, you first write the size of the list on line 8. After that, you
loop through the list on lines 9-13 and write the data at each node.

Line 11 is where the actual writing is accomplished. The first parameter to furite is
a pointer to the data that you want to write. Because you want to write the data in
the iterator, you use the & operator to get a pointer to the data. The second para-
meter is the size of the data. Because you don’t know the size of the datatype, you
use the sizeof operator to calculate that automatically. The next parameter is the
number of items you are writing to disk, which is 1, because you can only write one
node at a time. The last parameter is a pointer to the file.

Reading a Linked List

Reading a linked list is a little more involved than writing one. First, you need to
read in the number of nodes that were saved to the file. Then you need to read in
each of the nodes from the disk into a temporary buffer. Finally, you append that
buffer to the list and repeat the process.

Team LRN

176 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Here is the code:

1 bool ReadFromDisk(char* p_filename)

2 {

3 FILE* infile = 0;

4. Datatype buffer;

5: int count = 0;

6 infile = fopen(p_filename, "rb");

7 if(infile ==)

8: return false;

9: fread(&count, sizeof(int), 1, infile);
10: while(count =0)

11: {

12: fread(&buffer, sizeof(Datatype), 1, infile);
13: Append(buffer);

14: count-;

15: }

16: fclose(infile);

17: return true;

18: }

The first thing you do is read in the size of

which decrements the count variable
until it is zero, reading in a node at a
time. The function reads each node
into the buffer and appends the buffer
to the end of the list.

the list on line 9. Then you enter a loop g LT L1

It is a little more work to read and write
linked lists, but it is still pretty easy. The
DLinkedList file algorithms are literally i

exactly the same, and there is no need
to show them here.

Application: Game
Inventories

This is Game Demonstration 6-1, and it can be found on the CD in the directory
\demonstrations\ch06\GameOl - Inventories\.

Team LRN

Application: Game Inventories 177

N — r—= L= —Lr"]_

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

The main use of a linked list in games involves things for which you don’t want to
have a finite limit. For example, in a role-playing game, you could make it so that
the player can only carry 32 items and give him a 32-item array, but why would you
want to? Why should he be limited to 32 items? What happens if your game has dif-
ferent types of characters that can gradually carry more items as they grow stronger?

For a solution to this problem, I look at linked lists, which are good at storing any
number of items.

The Player Class

Your simple game player will only have two attributes: the weight of all the items he
can carry and the weight of all the items he is currently carrying. For the inventory,
you’ll use a doubly linked list.

class Player

{

pubTic:
int m_weightMax;
int m_currentWeight;
DLinkedList<Item> m_inventory;

The Item Class

The Item class will also be very simple and will only have two attributes: the type of
the item and the weight of the item. The type will be a number from 0-7 because I
have 8 different kinds of items in this demo. The weight will be a randomly gener-
ated number from 10-20. (See Chapter 22, “Random Numbers,” for more informa-
tion about random numbers.)

Team LRN

178 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

class Item

{

pubTic:
int m_type;
int m_weight;

Adding an Item to the Inventory

Whenever the player picks up a new item, you want to add that to the inventory. In
this demo, I use an algorithm that randomly generates a weight for a given item
type and adds it to the player’s inventory:

1: void AddItem(int p_type)

2: {

3 Item item;

4 item.m_type = p_type;

5: item.m_weight = rand() % 11 + 10;

6: if(item.m_weight + g_player.m_currentWeight < g_player.m_weightMax)
7 {

8 g_player.m_inventory.Append(item);

9 g_player.m_currentWeight += item.m_weight;

10: }

11: }

The user passes in an item type as a parameter, which is set on line 4. A random
weight from 10-20 is generated on line 5.

On line 6, you see if the item is too heavy to pick up or not. If it is too heavy, then
you do nothing. If it isn’t, you add the item to the inventory list. You also update
the player’s current weight on line 9.

Not too difficult, is it? The easiest part is using the Append function—it adds the item to
the inventory automatically, and you don’t have to worry about overflowing anything!

Removing an Item from the
Iinventory

Removing an item is somewhat more difficult than adding an item because you can
remove any item in your inventory at any time. Therefore, you need some method
of specifying which item to remove.

Team LRN

Application: Game Inventories 179

N — r—= L= —Lr"]_

In the demo, you keep track of a current item, and you can only remove the current
item. You keep track of it by using an iterator. Whenever you want to remove the
item, you pass the iterator into the function:

1: void Removeltem(DListIterator<Item> p_itr)

2: |

3: if(p_itr.Valid())

4: {

5 g_player.m_currentWeight -= p_itr.Item().m_weight;
6 g_player.m_inventory.Remove(p_itr);

7
8:

}

So the user passes in an iterator pointing to the player’s linked list. The algorithm
then determines if the iterator is valid on line 3, and if so, it proceeds to subtract
the items weight from the player’s weight and then removes the item from the list.

Playing the Demo

When the demo starts out, you are given one sword in your inventory. Figure 6.16
shows a screenshot of the program. The icons at the bottom represent the eight
different items you can add to your inventory. The line of items in the middle of
the screen represent your inventory. The item within the black box represents the
current item in your inventory.

[Game Demo 06-01: Inventory Demo .1 ﬁ Figure 6.16
Total Weight: 18/100 This is a screenshot
Welght: 13 from Game

Demonstration 6-1.

Team LRN

180 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The demo is compiled so that you can only hold a weight of 100, so you can add up
to 10 items to your inventory if they each weigh 10 units.

Table 6.1 lists the commands that are used in the game.

The game is pretty simple and is meant to just demonstrate having a flexible num-
ber of items in your inventory.

Application: Layered
Tilemaps Revisited

This is Game Demo 6-2, and the files for it are located on the CD in the directory
\demonstrations\ch06\Game02 - Layered Tilemapping\.

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Application: Layered Tilemaps Revisited 181

N — r—= L= —Lr"]_

In Chapter 5, “Multi-Dimensional Arrays,” I showed you how to use 3D arrays to
represent a layered tilemap. The biggest flaw with that method, however, was that it
wasted space for layers that are mostly blank.

Using a 2D array of linked lists can solve this problem.

For example, say you have an 8 X 8 map. You want the top row of the map to have
another layer on top of that. Using a 3D array, you’d need to make it 8 X 8 X 2,
which is 128 cells. To make things even worse, what if half of those tiles needed
another layer on top of them? Then you would need an 8 X 8 X 3 array, which
takes up 192 cells, when you’re only using 64 + 8 + 4 of them, which is 76 cells.
That means you’re only using 40 percent of the cells that are in the array for any-
thing useful, which is a big waste of space.

Now, what would happen if you made a 2D array and stored a linked list in each of
the cells in the array? If you wanted to create the map that I just described, it would
look something like Figure 6.17.

Figure 6.17
A A A A Here is a 2D array
of linked lists. This
A A A A A A K& & allows you to have

an infinite number

of layers on each

tile, without wasting

space.

As you can see, you use the linked list structure to conserve space that would other-
wise be wasted. Any cell that only has one layer only has one node in its linked list.
The top right cell has three nodes in its linked list.

Declaring the Tilemap
Take a look at how this tilemap would be defined:

Array2D< SLinkedList<int> > g_tilemap(MAPWIDTH, MAPHEIGHT);

Team LRN

182 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

This definition creates a 2D array of
singly linked lists. The 2D array has
dimensions MAPWIDTH and MAPHEIGHT,
which are constants defined in the
demo program.

As before, each tile will be an integer,
which will determine which tile graphic
is drawn.

Creating the
Tilemap

Now that you've defined the tilemap, you need to fill it with values. You’ll use the
same map that you used in Game Demonstration 5-2, so you can see how similar
this method is to the 3D method.

Remember back to the 3D array method:
g_tilemap.Get(x, y, 0) = rand() % 4;

This line set the tile at (x, y, 0) to a random number from 0-3. Layer 0 was the
lowest layer, and tiles 0-3 are grass tiles.

Using an array, the line looks only slightly different:
g_tilemap.Get(x, y).Append(rand() % 4);

Because you’re using a 2D array this time, you don’t access a specific layer number;
instead, you just access a cell within the 2D array at coordinates (x, y) and add a
new node to the list stored in that cell. This isn’t really an earth-shattering change;
it’s actually quite cool.

So whenever you want to add another layer on top of a given tile, all you need to
do is append another tile to the list! This way, some tiles can have as many layers as
you want, and others will only have one, and no space will be wasted!

Drawing the Tilemap

Drawing the tilemap in this layout is a little different than drawing it with a 3D
array. When you used a 3D array, you drew the entire bottom layer first, and then
the next layer up, and so on until all layers were drawn.

Team LRN

Application: Layered Tilemaps Revisited 183

N — r—= L= —Lr"]_

Because you’re using linked lists now, you can’t really draw each layer individually.
This time, you loop through each x and y coordinate in the map and draw every
layer for the current tile. Here is the algorithm used with linked lists:

1: void DrawTilemap(int p_x, int p_y)

2: {

3: int x, y;

4. int bx = p_x;

5 int by = p_y;

6 int index;

7 SListIterator<int> itr;

8: for(y = 0; y < MAPHEIGHT; y++)

9: {

10: for(x = 0; x < MAPWIDTH; x++)

11: {

12: itr = g_tilemap.Get(x, y).GetIterator();
13: for(itr.Start(); ditr.Valid(); itr.Forth())
14: {

15: index = itr.Item();

16: SDLB1it(g_tiles[index], g_window, bx, by);
17: }

18: bx += TILESIZE;

19: }

20: bx = p_x;

21: by += TILESIZE;

22 }

23: '}

The main difference with this algorithm when compared to the 3D array version is
that the x and the y loops are on the outside and the layer loop (previously z) is on
the inside. The important changes are in bold; the rest of the algorithm is
unchanged.

Instead of a z coordinate, I now have an iterator, itr. For every tile, I get an iterator
pointing at the list in that tile (line 12). On the next line, I start a for-loop that
loops through each layer on the current tile.

Remember in the 3D array version when I checked to see if the current tile num-
ber was —17 I did this because some tiles might be invalid, and I did not draw them
if they were. This time, I don’t need to check for that because there are no invalid
tiles. The linked list structure only stores valid tile numbers, so I can assume that
every tile is valid.

Team LRN

184 6. Linked Lists

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Analysis and Comparison of
Linked Lists

This was a long chapter, but it was packed full of information. You learned about
two variations of the linked list data structure and two uses of them in game pro-
gramming. You might, however, be surprised to learn that this is nowhere near the
end of it. There are many more variations of lists, but most of them serve very spe-
cific purposes, so they aren’t used too often in the real world. My favorite variation
is the circular doubly linked list, and 1 would advise you to look further into that if you
are interested.

Algorithm Comparisons

I would like to now show you a chart that details the strengths and weaknesses of
the three general linear structures I've analyzed: arrays, singly linked lists, and dou-
bly linked lists. This is Table 6.2.

Table 6.2 The Linear Data Structures Compared

Algorithm Array Singly Linked Doubly Linked
Resize O(n) & ©

Insertion O(n) O(¢) O(c)

Removal O(n) O(n) O(c)

Fast Removal O(c) e e

Append O(c)/O(n)**+* O(c) O(c)

Prepend O(n) O(c) O(c)

Remove Tail O(c) O(n) O(c)

Remove Head O(n) O(¢) O(c)

Access Random Index O(c) O(n) O(n)

* Resize for lists is not a specific algorithm, it is automatically performed in the Insertion and
Removal algorithms.

** Lists do not need the Fast Removal algorithm.

%k With arrays, if there isn’t enough room to store the new item, Append becomes O(n) but
Prepend stays the same. Technically, the prepend algorithm will take twice as long, but the con-
stant 2 is ignored.

Team LRN

Analysis and Comparison of Linked Lists 185

N — r—= L= —Lr"]_

If the O(n) and O(¢) notation doesn’t look familiar, please go back and read
Chapter 1, “Basic Algorithm Analysis”; it has all the information you need about
algorithm analysis.

Basically, O(¢) means that the algorithm completes itself quickly and doesn’t
depend on the number of items in the array or list. O(n) is slower than O(c¢), how-
ever, because the amount of time that it takes to complete depends on the number
of items in the array or list.

The first thing that you should notice from Table 6.2 is that the different structures
have different strengths and weaknesses. You can access any given index in an array
instantly, which you cannot do with a list. On the other hand, inserting an item
into an array is slower than inserting an item into a list. Finally, the two types of lists
themselves have differences; removing a node from a doubly linked list is far faster
than removing a node from a singly linked list.

Size Comparisons

Another downside that isn’t apparent from looking at Table 6.2 is the size of the
structure. You might think that an array, a singly linked list, and a doubly linked list
all holding 2,000 integers would all be the same size, but that is not the case.

An array that has a capacity of 2,000 cells will take up 8,000 bytes of memory
(assuming you are using 32-bit integers, which are 4 bytes each).

A singly linked list will take up 16,000 bytes of memory, though! Why is this?
Remember that each node in a linked list has two items: the data and the pointer.
On 32-bit systems, the pointers are 32 bits, and if you are using integers, so is the
data. So you end up using 2 * 4 * 2,000 bytes of memory, or twice as much as an
array of the same size!

If that wasn’t bad enough, a doubly linked list takes three times as much memory
as the array because it has two pointers per node. That puts it at 24,000 bytes of
memory!

This concept in linked lists is called overhead. Table 6.3 shows how much overhead
each of the structures has, based on the number of items in the structure.

Team LRN

186 6. Linked Lists

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Table 6.3 Data Structure Overhead

Structure Overhead (Bytes)
Array x*s
Singly Linked List n*4

Doubly Linked List n*8

x is the number of cells that are unused in an array. s is the size of the data structure in bytes.
n is the number of items in the data structure.

Just to get an idea of how overhead is measured, let’s compare the different struc-
tures with two different datatypes. The first datatype is a plain integer, which is 4
bytes. The second datatype is an imaginary complex character within a computer
game, which takes up 1,024 bytes. Table 6.4 shows the overhead of the node point-
ers in each of the lists.

Table 6.4 Overhead Comparison

Datatype IL-List Size |IL-List% 2L-List Size 2L-List %

int n*8 50% n*12 66%
player n* 1,028 0.39% n* 1032 0.78%

As you can see from the table, 50 percent of the space in a singly linked list of inte-
gers is wasted on the nodes. That’s half of the entire space! It gets even worse with
a doubly linked list—66 percent of the space used is for nodes in a list of integers!

This isn’t so bad, though. Look at the second row now, where you use a list of play-
ers instead of integers. The size of the player far outweighs the size of the node
pointers, so the amount of space in a list of players that is dedicated to the nodes is
much less. In a singly linked list, this turns out to be 0.39 percent. In a doubly
linked list, the number is larger, but still relatively small at 0.78 percent.

What kind of conclusion can you make from this? It is far more efficient to store
large data structures in linked lists than to store small ones. Of course, you might
not care about all of this if you have lots of memory at your disposal.

Team LRN

Analysis and Comparison of Linked Lists 187

N — r—= L= —Lr"]_

Real-World Issues

What I'm going to tell you in this section will probably make you want to hit me—
hard. Linked lists in games don’t have many uses if you want to make your game
super fast. The reason for this is caching. Remember when I told you in Chapter 3
about how caches work? They load entire chunks of memory into ultra-fast memory
so it can work with the memory quickly. This method works great with arrays,
because an array is a chunk of memory.

A linked list is not a chunk of memory, though. Because of the linked nature of
lists, the nodes can be anywhere in memory. Figure 6.18 shows an example of
linked list nodes in memory. In this figure, each block represents one of the nodes
in a seven-node singly linked list. Each one of the shaded blocks represents any
number of memory positions separating the nodes in memory.

Figure 6.18

The location of
/_\ nodes in memory

/_\ /N isn’t continuous.

0 6 7 31415 2 1 They might be all
A over the place in
_/ \/ memory.

As you can see, the nodes aren’t in order. The first node is at the beginning, but
the next one is way over at the end of the memory, and the next jumps back again,
and the nodes jump all over the place in memory. This isn’t like an array at all.

So what ends up happening when you process a linked list is that the cache is con-
stantly swapping blocks of memory in and out, giving the same effect of randomly
accessing elements in an array. For this reason, lists are generally slower than arrays
when performing small algorithms on every item in the list.

If, on the other hand, you have a large algorithm that does a lot of work on each
node in the list, then the overhead of the cache swapping is diminished greatly.

You also must remember that every time you create a new node, you tell the com-
puter to allocate more memory for you, which is slow.

The end result? Don’t use linked lists for things that require little processing or
things that will be created and destroyed quickly.

Team LRN

188 6. Linked Lists

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

For example: Using a linked list to maintain information about the number of bul-
lets flying around in a game at any given time is not worthwhile. The lifetime of a
bullet is a few frames at most (1,/10 of a second?), so you would have to delete it
almost immediately after creating it! You're much better off creating a large array
to store all these bullets instead, even if you are limiting yourself to a certain num-
ber of bullets in the game at a given time. (Honestly, though, when was the last
time you played a game where there were more than 1,000 bullets in the air at any
given time?)

Always remember: When you are not sure which data structure you should use, try all
the options and benchmark them. If one method slows your game down to a crawl,
then it is no good for you. If another structure causes you to code massive amounts
of code just to do one thing, you should consider using a different structure.

Conclusion

Most programming books only briefly cover data structure topics, usually ending with
a simple introduction to linked lists. Chances are, you’ve already seen linked lists
before. But even if you haven’t, this chapter covered linked lists in far more detail
than other programming books do, so I hope you have learned something new.

From now on, you’ll be learning about data structures that aren’t usually seen in gen-
eral programming books, so there is a lot more you can learn from this book.

Team LRN

CHAPTER 7

STHCKS AND
QOQUEUES

Team LRN

190 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The chapters before this one have only been concerned with methods of storing
data within a program. This chapter will introduce you to two new abstract
structures, which, instead of specifying how data is stored, will specify how data is
accessed. They are the stack and the queue data structures. Because these structures
are very similar in nature, they are both in the same chapter.

In this chapter, you will learn

= What a stack is

= How to implement a stack as a linked list

= How to implement a stack as an array

= How to create a simple menu system using stacks
= What a queue is

= How to implement a queue as a linked list

= How to implement a queue as an array

= How to create a command queue

Stacks

Even if you’ve never heard of a stack, you’ve most likely used one. In fact, pretty
much every program you’ve ever written has used a stack. After you have learned
what a stack is, check out Appendix B, “The Memory Layout of a Computer
Program.” That Appendix shows you how stacks are used in all programs.

What Is a Stack?

I'm sure you’ve eaten at a buffet restaurant before. If not, then let me explain what
happens: You go up to the counter, grab a plate from the top of a stack of plates,
and serve yourself some food. Whenever the restaurant cleans a dish, they put it
back onto the stack. Figure 7.1 shows a stack of dishes.

Team LRN

Stacks 191

Figure 7.1

A stack of dishes.You
can only take a dish

from the top or place

a new dish on top.
The dishes on the
bottom are not

accessible to you.

There are only two things that you can
do with a stack of dishes: You can put a NOTE
dish on top of it, and you can take a dish
off of the top. With computer stacks,
putting something on top of the stack is
called pushing. When you take some-
thing off of the top, it is called popping.

In a theoretical stack, the only item
that is ever visible is the item at the
top of the stack. However, in the real
world, you often look at more than

just the top of the stack.The com-
puter accesses items below the top
of the stack all the time, in fact. (See
Appendix B.) For this reason, all of
the stack implementations in this
book provide ways for you to access
more than just the top of the stack.
I

Stacks are commonly known as LIFO
structures, which stands for Last In, First
Out. (Some people call them FILO struc-
tures—First In, Last Out. It means the
same thing.) It is called LIFO because
the last item that you put into a stack is
the first item that is removed. Figure 7.2
shows what happens when you push 3 numbers onto a stack, and then pop them
off. The number 10 is pushed first, and then 20, and then 30. Then 30 is popped
off, and then 20, and then 10. 30 is the last number put into the stack and the first
one removed. This is why a stack is often called LIFO.

Team LRN

192 7. Stacks and Queues
T ==L —— 5

'ﬁl_'_nl_u_,—.:_

push 10 push 20 push 30 pop pop pop Figure 7.2

This figure shows
how to push and pop

numbers onto and
10 20 30 from a stack.
10 20 20 10
10 10

Graphical Demonstration: Stacks
The graphical demonstration for the stack data structure is on the CD in the direc-
tory \demonstrations\cd07\Demo01 — Stacks\. This demo is quite simple and only

has two functions: You can push a number onto the stack or you can pop a number
off of the stack.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in

Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When the program starts, you are presented with two buttons and an empty stack.
You can press the Push button to push numbers into the stack and the Pop button

to pop numbers off of the stack. Like I said, it really is simple. Figure 7.3 shows a
screenshot from the demo.

Team LRN

Stacks 193
S = P —= L[= —1Lr7|_

__ Stack Graphical Demenstration - Ej F|gure 7-3

Push Here is a screenshot

from the Stack

Po _. demo.

p

The Stack Functions

Table 7.1 shows the functions that the stack classes in this book have. All of the
stack classes are on the CD in the \structures\stack.h file.

Implementing a Stack

As I stated before, a stack doesn’t define how you store data, but rather how you
access it. Because of this, you can implement a stack in many ways. I show you two
ways here, one using linked lists and one using arrays.

Team LRN

194 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Linked Stacks

A linked stack uses a linked list to store the data in the stack. Your linked stack class
will be called LStack. To gain the capabilities of the DLinkedList class, your LStack
class will inherit it. If you are unfamiliar with inheritance, the first section of
Chapter 9, “Iying It Together: The Basics,” discusses inheritance.

The LStack definition (without function definitions) will look like this:

template<class Datatype>

class LStack : public DLinkedList<Datatype>
{

public:

};

You don’t need to add any data at all for this implementation.

If you look at a linked list, you can easily see how you can turn it into a stack.
Figure 7.4 shows how you can look at a linked stack. The head of the list points to
the bottom of the stack, and the tail of the list points to the top of the stack.

Figure 7.4

tail You can use a linked

list as a stack if you
treat the head of the
stack as the bottom
and the tail as the
top of the stack.

head

The Push Function

Because the Push function only places a new item at the top of the stack, all you
need to do is call the Append function of the linked list, and it will add a new node
to the top of the list.

Team LRN

Stacks 195

N — r—= L= —Lr"]_

void Push(Datatype p_data)
{
Append(p_data);

The Pop Function
To pop an item off the top of the stack, all you need to do is remove the tail of the
list:

void Pop()
{
RemoveTail();

The Top Function
Now you need a function that makes it easy to access the top of the stack. This is

easy—just return the item that the tail points to:

Datatype Top()
{

return m_tail->m_data;

— T — T

CAUTION

The Top function will not work correctly if the stack is empty. In all likelihood, it
will cause the system to crash because you are trying to access an item that
doesn’t exist. Be careful and make sure that the stack is not empty before you
call this function.

The Count Function

Last, you need some way to figure out how many items are in the stack:

int Count()
{

return m_count;
}

This just returns the count of the nodes in the linked list.

Team LRN

196 7. Stacks and Queues

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Using the DLinkedList Functions

Because the LStack class inherited the DLinkedList class, you are able to use any
instance of a LStack as a DLinkedList as well. This means that you can create itera-
tors and iterate through the entire stack like a linked list and even remove items
from the middle of the stack.

Granted, that is not very stack-like behavior, but it makes the class more flexible. A
computer science teacher would probably yell at me for telling you that, though.

Why Use a Linked Stack?

As you can see, a linked list is a nice structure to use when implementing a stack. In
fact, I listed it first because it is so easy to implement.

The advantages are that you can push as many items as you want onto the stack
without having to worry about running out of room. Also, because every operation
is performed at the end of the list, pushing and popping are both O(¢) algorithms.

Arrayed Stacks

You can also implement a stack as an array. Arrayed stacks are a little bit more diffi-
cult to work with than linked stacks, but not by much. The only real limitation they
introduce is that they are of a fixed size, but you can use the array’s Resize function
to make it bigger or smaller as you desire. This class is called the AStack class.

Like the LStack, the AStack will inherit its base structure, which will be an array this
time. Unlike the LStack, however, this time a new variable needs to be added. This
variable will keep track of the current top of the stack.

template<class Datatype>
class AStack : public Array<Datatype>
{
pubTic:
int m_top;
}s

If you flip an array so that it is drawn vertically, you can see how it looks like a stack.
Figure 7.5 shows how an arrayed stack would look. In an eight-cell array, index 0 is
the bottom of the stack, and the top of the stack varies depending on how many
items are in the stack. In the stack in the figure, there are five items in the stack,
and the m_top index points to the first empty index, which is 5 in this case.

Team LRN

Stacks 197

N — r—= L= —Lr"]_

Figure 7.5

You can use an array as a
stack by using the lowest

index as the bottom of the
stack and the higher indexes
as the top of the stack.

top —>

The Constructor

Because the Array class constructor requires an integer as a parameter, so does the
AStack class. The constructor will also clear the m_top variable to 0 because the ini-
tial stack will be empty.

AStack(int p_size) : Array<Datatype>(p_size)

{
m_top = 0;
}

The first line uses the standard C++ inherited class constructor notation. It basically
says, “I am an Array; construct me with size p_size.” The syntax looks funny, but it’s
really simple. Then m_top is initialized to 0.

An instance of AStack is declared like this:
AStack<int> stack(10);

That creates a stack of integers with 10 cells.

Team LRN

198 7. Stacks and Queues

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Push Function

Because the m_top index always points at the first empty index, the Push function
can simply place the new item into that index. After the item is inserted, the m_top
index can be incremented.

bool Push(Datatype p_data)
{
if(m_size != m_top)
{
m_array[m_top] = p_data;
m_top++;
return true;
}
return false;
}

Note that this function returns a bool. The LStack class didn’t return anything
because it never runs out of room, but it is possible for the AStack to run out of
room. Therefore, when it does run out of room, it returns false.

The Pop Function

The Pop function is simpler than the Push function. Whenever something is popped
off the stack, all you need to do is decrement the m_top index. You don’t need to
physically remove the item at all.

void Pop()
{
if(m_top > 0)
m_top—;
}

However, you do need to check to see if the stack is empty. If m_top is 0, then it is
empty, and you shouldn’t do anything or else you’ll end up with a negative m_top
index. This is a good place to add some error-checking code. You can make the
function return an error value.

The Top Function

Because the m_top index always points to the first empty cell, subtracting 1 from it
will give you the index of the top item in the stack.

Datatype Top()
{

Team LRN

Stacks 199
S = P —= L[= —1Lr7|_

return m_array[m_top - 11;

}

The Count Function

The m_top function also tells us how many items are stored in the stack. For exam-
ple, if m_top is 0, the first open index is the very first index in the array, which
means that the stack is empty.

int Count()

{
return m_top;

}

Why Use an Arrayed Stack?

As you can see, an arrayed stack requires a little more code to implement, but it
really isn’t a big deal. An arrayed stack is nice because it doesn’t have the overhead
that a linked stack does.

One of the major disadvantages is the amount of time it takes to resize an arrayed
stack because the array resize algorithm is O(n). If you never need to resize the
stack, you don’t have to worry about this.

Application: Game Manus

This is Game Demo 7-1, which is located on the CD in the directory \demonstra-
tions\ch07AGame01 — Menus\.

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

I'm sure you’ve played a game that has menus before. Games like Quake3, Half-Life,
and Doom all have the menus that I am talking about. If you are unfamiliar with
these types of menus, let me explain them a little bit.

Team LRN

200 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

During the game, you usually press Escape to bring up an options menu. From this
main menu, several options are displayed. Typically, the options allow you to create
a new game, save the game, load a new game, or configure game options. Figure
7.6 shows an example of one of these menus.

Figure 7.6

This is a sample game
Super Game main menu that allows
you to perform functions
related to the game

*
New Game management or options.

* Save Game

* Load Game

* Game Options

Now that you’re at the main menu, you can select one of the options listed, and it
will bring up a new menu based on your selection. These are sometimes called sub-
menus. For example, if you selected Game Options from the main menu, it would
bring up something like Figure 7.7.

Figure 7.7

This is a sample sub-menu

Game OptIOI"IS from the main menu.

* Sound Options
*Video Options

* Control Options

Team LRN

Stacks 201

N — r—= L= —Lr"]_

Now you have several options from this menu: You could press Escape and go back
to the main menu or you could choose one of the three options listed, each of
which brings up another menu.

It turns out that a stack can model a menu system like this quite easily. Every time
you go to a sub-menu from an existing menu, the new menu is created and pushed
onto the stack. Every time you press Escape, the current menu is popped off of the
stack and you go back to the previous menu. The current menu is always on the
top of the stack.

The Stack and the Array

For this demo, I will create a simple Menu class to use, which I go over in the next
section. Right now, all you need to know is that is exists.

The demo will use 10 total menus, and the maximum number of menus that can
be open at a time is 3. I create an array to store 10 menus and a stack that stores 3
menu pointers:

Array<Menu> g_menus(10);
AStack<Menu*> g_stack(3);

When the demo begins, the main menu should be showing, so it is added to the
menu stack using the Push function before any menu drawing is done. The main
menu is in the g_menus array at index 0.

g_stack.Push(&(g_menus[0]));

Note how the address of the menu is pushed onto the stack because the stack holds
menu pointers. This is done to conserve memory; there is no point in copying the
menu over.

Creating a Menu (Class
You’ll be using a very simple menu class for this demo. It will only contain coordi-

nates, a background color, three text strings representing the options, and three
indexes of the menus that are spawned from each of the options.

Here is the class listing:

class Menu

{

public:
char* m_options[3];
int m_optionSpawns[3];

Team LRN

202 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

int m_x;

int m_y;

int m_w;

int m_h;

SDL_Color m_color;
s

The m_options array holds pointers to strings, and the m_optionsSpawns array holds
indexes. For example, if m_options[0] was “Sound Menu” and the sound menu is at
index 1 in the g_menus array, then the menu will be initialized like this:

menu.m_options[0] = "Sound Menu";
menu.m_optionSpawns[0] = 1;

This simply means that if the “Sound Menu” option is selected, the sound menu
will be pushed onto the stack.

The other options are all cosmetic.
Here is the initialization of the main menu:

// main menu

g_menus[0].m_options[0] = "1 - Sound";
g_menus[0].m_optionSpawns[0] = 1;
g_menus[0].m_options[1] = "2 - Graphics";
g_menus[0].m_optionSpawns[1] = 2;
g_menus[0].m_options[2] = "3 - Controls";
g_menus[0].m_optionSpawns[2] = 3;
g_menus[0].m_x = 16;

g_menus[0].m_y = 16;

g_menus[0].m_w = 768;

g_menus[0].m_h = 568;

g_menus[0].m_color = LTGREY;

The main menu has three options: Sound, Graphics, and Controls. These menus
have indexes of 1, 2, and 3, respectively.

Adding a Menu to the Stack

The program detects which option you've selected at each menu and pushes the
selected menu onto the menu stack:

x = g_stack.Top()->m_optionSpawns[0];
if(t x I=0)
{

Team LRN

Stacks 203
S = P —= L[= —1Lr7|_

g_stack.Push(&g_menus[x]);

}

Because not all options are valid in every menu, the value 0 is used to denote that
an option doesn’t spawn a new menu. The top of the stack is accessed, and if
option 0 spawns a new window, the appropriate menu is retrieved and pushed onto
the stack.

Removing a Menu from the Stack

Whenever you go back to a previous menu in the demo, the current menu is
popped off the stack.

if(g_stack.Top() != &g_menus[0])
g_stack.Pop();

This code checks to see if you are trying to pop off the main menu (index 0). If you
are, then it does nothing, because you cannot remove the main menu in this demo.

If you are removing another menu, it pops the menu off the stack. It’s that simple.

Playing the Demo

The commands for this demo are fairly simple and are shown in Table 7.2.

Table 7.2 Menu Demo Controls

Key Action
Esc Quits the demo at any time
0 Goes back to the previous menu

| Goes to sub-menu |
2 Goes to sub-menu 2

3 Goes to sub-menu 3

Team LRN

204 7. Stacks and DQueues S

Figure 7.8 shows a screenshot from the demo in action.

EUM:&E@%MMEEQ . ‘=j_ E’S Figure 7.8
This is a screenshot
1 - Sound h
2 - Graphics from the menu game
3-C demo.

Dueues

I'm sure that you know what a queue is. If you’ve never heard of the term before,
you probably still know what they are. If you've ever been to a grocery store, you
stand in a queue when you are checked out.

Basically, a queue is a FIFO structure (First In, First Out). The person who gets into
line first will be checked out first.

Queues, like stacks, only have two functions: Enqueue and Dequeue. You can add
items to the end of a queue, and you can remove items from the front of a queue.

Graphical Demonstration: Queues

This demonstration can be found on the CD in the directory
\demonstrations\ch07\Demo02 — Queues\.

Team LRN

Oueues 205

N — r—= L= —Lr"]_

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demo is very similar to the stack demo, and you only have two buttons:
Enqueue and Dequeue. The queue starts on the left side of the screen and ends at
the right side.

Figure 7.9 shows the demo in action.

__Qusue Graphical Demonstration [Figure 7.9

Enqueue This is a screenshot
\ from the queue
Dequeue demo.

[43]61]os]77] 7 [11] o | 8 [s0]18]34]05] 19] 59|

Team LRN

206 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Queue Functions

Table 7.3 shows the functions that the queue classes in this book will have. All
queue classes are located on the CD in the \structures\queue.h file.

Table 7.3 Queue Functions

Name Description

Enqueue Puts a new item at the end of the queue

Dequeue Removes the item at the front of the queue

Front Returns the item at the front of the queue

Count Returns the number of items currently in the queue

Implementing a Queue

Like stacks, queues can be implemented in many different ways. I’ve implemented
two of them for you, one using linked lists and the other using arrays. Because the
linked queue is very similar to the linked stack, I only show you the two functions
that change.

The arrayed queue is very different from an arrayed stack, however, and needs to
be explained in detail.

Linked Queues

As I stated previously, linked queues are almost identical to linked stacks, so I only
need to cover the two functions that have changed. Both stacks and queues use the
Append function to add an item to the structure, so the Push and the Enqueue func-
tions are identical, but where a stack removes the last item that was inserted, a
queue instead removes the first item that was inserted.

The Dequeue Function

This function is similar to the stack’s Pop function. Because a queue removes the
first item instead of the last, you just need to switch the RemoveTail function to the
RemoveHead function.

Team LRN

Oueues 207

N — r—= L= —Lr"]_

void Dequeue()
{

RemoveHead();
}

The Front Function

Again, because the queue reads the front item instead of the last, the m_tai1
pointer in the Top function needs to be changed to the m_head pointer.

Datatype Front()
{
return m_head->m_data;

Arraged Queues

Arrayed queues are the most complex implementation of all of the structures I
cover in this chapter. They are sometimes known as circular queues.

First, to see why these are more difficult to implement than the others, I need to
show you how they work. Imagine an empty array with eight cells. This will be the
queue. When an item is first placed into the queue, it will go into index 0. Then
the next item will be placed into index 1, and the next one into index 2, and so on.

After five items have been inserted, they take up indexes 0 through 4, as in
Figure 7.10.

Front End Figure 7.10

l l This is an arrayed
queue with five

items.
0 1 2 3 4

Now, you could do one of two things if you wanted to dequeue an item from the
arrayed queue.

The first option you could do is move everything down, like Figure 7.11 shows. This
option seems nice and simple, but it has a major flaw: It uses the array’s Remove
function, which, as you saw in Chapter 3, “Arrays,” is an O(n) algorithm. This
means that removing an item from the queue like this will take some time, and it
will take longer amounts of time on larger queues. Plus, it involves physically mov-
ing around lots of data, which is slow.

Team LRN

208 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Front End Figure 7.11
l l This is the slow
method of dequeuing

something by moving
everything down by

MMW one index to remove

the first item.

Because you naturally want everything to run as fast as possible, you need to find a
faster way to do this.

The second method is somewhat simple, but you need a new variable to implement
it. Instead of having index 0 at the front of the queue, a variable index points to
the front of the queue. So when the first item in the queue from Figure 7.10 is
removed, the front index will be incremented, and it will end up looking like

Figure 7.12.
Front End Figure 7.12
l l This is the fast
method of
] 5 3 4 dequeueing
something. The front
index is incremented

when the front of the
queue is removed.

While this method seems really cool when you first start out, you quickly realize
that there is a problem. You can insert three more items into this queue, but what
happens when you try to insert a fourth item?

The fourth item is wrapped around the end of the array and is placed into index 0
again. This is where the term circular queue comes from—you need to treat this
array like it is a circle. Figure 7.13 shows what the queue looks like as a circle if you
insert 5, 6, 7, and 8 into the queue from Figure 7.12.

Team LRN

__j:__LUjj_____L_IE;;__Fzz

Oueues 209

=T 1

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

T

Actual
Array
Boundary

Back

ng'\

Figure 7.13

A full circular queue:
The items wrap
around the boundary
and start at the
beginning when you
Front go past the end.

The Structure

For a circular queue, you need to have two new variables: the index of the front of
the queue and the number of items within the queue.

template<class Datatype>
public Array<Datatype>

class AQueue :

{

public:
int m_front;
int m_count;

s

The Constructor

Because the AQueue class is inherited from the Array class like the AStack class is, you
need to use a constructor that constructs the array and initializes the variables.

AQueue(int

{

m_front
m_count

p_size)

: Array<Datatype>(p_size)

Team LRN

210 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The queue calls the Array constructor to tell it the size it wants to be, and the front
index and the count variable are both reset to 0 because the queue is empty.

AQueues are constructed the same way AStacks are:
AQueue<int> queue(10);

This creates a queue of integers with a size of 10.

The Enqueue Function

The Enqueue function is fairly straightforward: You need to find the first empty
index and put the new item into it. You can find the first open index by using the
following formula:

index = m_first + m_count;

However, that line of code has a problem. Remember when I inserted 8 into the
queue from Figure 7.12? In that figure, m_first was 1 and m_count was 7. 7 + 1 is 8,
but 8 is an invalid index for that array because the only valid indexes are 0-7.
Oops.

You need to take an extra step: Use the modulo operator to wrap the index around
to the other end of the array:

index = (m_first + m_count) % m_size;
In the example queue, m_size is 8. 8 modulo 8 is 0, which is the correct index!
Here is the function:

bool Enqueue(Datatype p_data)
{
if(m_size != m_count)
{
m_array[(m_count + m_front) % m_size] = p_data;
m_count++;
return true;
}
return false;
}

Also note that the size of the array is checked against the number of items in the
queue. If they match, there is no room left, and false is returned. The important
algorithm is in bold in the code snippet.

Team LRN

Oueues 211

N — r—= L= —Lr"]_

The Dequeue Function

The Dequeue function is much simpler. If there are items left in the queue, the front
index is incremented by 1. If the front index passes the end of the array, it is reset
to 0 again.

void Dequeue()

{
if(m_count > 0)
{

m_count--;

m_front++;

if(m_front == m_size)
m_front = 0;

The Front Function

The Front function is the simplest of them all. You just need to return the item at
the index that m_front points to.

Datatype Front()

{
return m_array[m_front];

The Access Operator

There is one more thing that needs to be changed to make this class useful.
Because this class inherits from the Array class, it can use all of the functions that
came with the Array class. This includes the access operator, which allows you to
access any item in the array given an index. So how should this operator work with
a queue? Should it return the correct index all of the time? Or should it return an
index based on the front of the queue?

I prefer the second method. I like the idea of accessing the queue and having
index 0 always return the front of the queue and index 1 return the second item in
the queue, and so forth. To do this, all I need to do is redefine the access operator
function so that it calculates the index based on the front of the queue.

Datatype& operator[] (int p_index)
{

Team LRN

212 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

return m_array[(p_index + m_front) % m_sizel;

}

The code in bold is the important part of the algorithm. Do you notice anything
about it? It is almost exactly the same as the code I used to access the end of the
array! All I do is add the front index to the index I want and then wrap the result
around using the modulo function.

Resizing

Resizing a circular queue is a complicated procedure, which I have not imple-
mented here because I am running out of room for this chapter. If you use the
array’s Resize function, the queue will be corrupted, so you really should not use it
with a circular queue. If you decide that you really want to resize circular queues,
the process goes like this: Create a new array and start copying the items over so
that the front of the queue gets placed into index 0 in the new array.

Application: Command Queues

This is Game Demo 7-2, located on the CD in the directory
\demonstrations\ch07AGame02 - Command Queues\.

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

I'm sure you’ve played some sort of Real Time Strategy (RTS for short) game before.
Some of the games that fall into this category are Command & Conquer, Warcraft,
and Starcraft. If not, then let me briefly explain them for a moment. In these
games, you are presented with an overhead view of a map, and you are supposed to
move different units around on the map so that they do various things. Most of the
time they end up waging war with the computer players or other humans.

Team LRN

Oueues 213

N — r—= L= —Lr"]_

In some of these games, it is possible to tell your units to move to one place and
then move to another place after they are done making the first move. This is
called command queuing.

For this demo, you will use a queue to implement the movement of a spaceship fly-
ing around the screen.

The Player and the Coordinates

To make things easier, a simple coordinate class is used. There is nothing special
about it; it contains x and y coordinates:

class Coordinates
{
public:
int x;
int y;
}s
Now, a class for the player needs to be created. The player will have three variables:
the current x and y positions and a queue of all movement commands.

class Player
{
pubTic:
int x;
int y;
LQueue<Coordinates> m_queue;
}s

I used a linked queue here because it is flexible. You can issue as many commands
as you want.

The queue holds coordinates. If the queue is empty, the player isn’t moving at all.
If there are coordinates in the queue, the player is currently moving toward the
first pair of coordinates.

For example, if the spaceship starts out at coordinates (20,10), and you were to add
(30,30), (50,20), (40,10), and (10,30) coordinates to the queue, the spaceship
would move in a path like the one shown in Figure 7.14.

Team LRN

214 7. Stacks and Queues

L= = e

Figure 7.14
The figure shows the
(20.10) path of the
’ spaceship. Each pair
of coordinates was
stored in a queue.
(50,20)

Adding a Command to the Queue

In the demo, a set of coordinates is added to the players queue whenever the
mouse is clicked. Here is how it is accomplished:

SDL_GetMouseState(&c.x, &c.y);
g_player.m_queue.Enqueue(c);

The c variable is an instance of the Coordinate class. The g_player variable is an
instance of the Player class.

Whenever the mouse is clicked, the coordinates of the mouse are retrieved by
using the SDL_GetMouseState function and placed into c. The c variable is then
added to the player queue.

The beauty of this is that it is a fire and forget method. You don’t care what the
player is currently doing; you just add the command to the players queue, and he
will eventually get to it.

Removing a Command from the Queue

This is a little more difficult than adding a command to the queue because you
need to be able to detect if a command has been completed or not. Because this
demo only involves the movement of a spaceship, it is easy to detect if the space-
ship has reached its destination.

if(g_player.x == g_player.m_queue.Front().x &&
g_player.y == g_player.m_queue.Front().y)
{

Team LRN

Oueues 215

N — r—= L= —Lr"]_

g_player.m_queue.Dequeue();
if(g_player.m_queue.Count() > 0)
Calculate();

}

This code snippet checks to see if the current position of the spaceship is equal to
the position of the current command in the queue. If it is, then the spaceship has
completed the movement command, and the command should be removed.

After the command is removed, you still have some work to do. You need to start
processing the next command in the queue. The second if statement in the code
snippet checks to see if there are any more commands in the queue. If so, then it
calls the Calculate function, which is a helper function that calculates some vari-
ables that determine the direction that the spaceship flies.

What the Calculate function does exactly is not important for this demo. Instead,
you should see that after a command is completed, you need to start processing the
next command in the queue. In a more complicated system with more than one
command type, you would call a function that does even more than Calculate does.

Playing the Game

This game is very simple. All you need to do is move the mouse around and click
on the window where you want the spaceship to go. The spaceship will then move
to that place in one second. If you're fast enough, you can enqueue many different
coordinates. Figure 7.15 shows a screenshot from the game in action.

Figure 7.15

_ Game Dema 07-02: Command Queue Demo = zVS

This is a screenshot
from the command
queue demo.

Team LRN

216 7. Stacks and Queues

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

As the figure shows, the ship will follow the line on the screen. The line represents
all of the coordinates that are in the queue.

Conclusion

After reading this chapter, you should see that not all data structures have a specific
implementation. As this chapter showed, the stack and the queue data structures
really don’t specify how the data is stored underneath.

This freedom means that you should take time to analyze what your program
needs. If expandability is more important than speed, use linked stacks and queues.
If speed is more important than expandability, use arrayed stacks and queues.

Everything in game programming is a tradeoff, and you should always try to spend
time analyzing exactly what you want your game to do before you jump right in and
start coding.

Team LRN

‘—‘JLLJ‘—*"_‘[—' ==L — M= —] l"J‘zﬁ—’lﬂi

CHAPTER 8

HASsH
THARLES

218 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

This chapter covers the most advanced of what I like to call the basic data struc-
tures. I must warn you, though; this chapter isn’t very basic. In fact, most peo-
ple I know who like computer programming absolutely hate the topics I cover in
this chapter.

However, I feel that this hatred exists because no one ever teaches this material in a
way that makes it easy to understand. I hope to fix that and give you an enlightening
and educational look at these topics so you can see how useful they are in real life.

In this chapter, you will learn

= What sparse data is

® What key-based data is

= What a hash table is

= How to store data into a hash table
= What a hash table is

= What a hash collision is

= How to solve hash collisions

= How to create a linked hash table

= How to store and retrieve string-based game resources quickly

What Is Sparse Data*“

Most books and classes that teach hash tables jump right into their implementation
and give no background on what they are meant to do. Instead of taking that
route, I give you a little background information.

The first thing you should know about is sparse data. Imagine that you are imple-
menting a complex game world in which each player in the game is accessed by an
identification number. This number is often called a key in programming. Each key
will be unique, and no two players will have the same key. Now, imagine that these
keys are not contiguous; they are instead generated by a complex algorithm that
produces seemingly random numbers from 0 to 1,000,000. For example, in a sys-
tem with three players, the players might have these keys:

Team LRN

The Basic Hash Table 219

Player 1: 945,253
Player 2: 433,455
Player 3: 36,549

These numbers are sparse; they are far away from each other.

Now what happens when you want to store the players in a data structure so that
you can easily access a player by their key? Your first instinct should be to use an
array so you can access them quickly, but you will end up with an array looking like
Figure 8.1.

| 1,000,000 | Figure 8.1
— S 945259 Sparse data stored in

3 5 1 % an array. Note how
much space is

wasted when these

players are stored in
the same indexes as
their keys.

Only three indexes out of 1,000,000 are used, which is a waste of memory.

The other option is to store the data in a linked list. Although a linked list works
great for only three pieces of data, what happens if the game needs 10,000?
Searching through a linked list of 10,000 players just to find one is a waste of time.
Note that even with 10,000 players, the array option is still out of the question,
because for every player there will be 100 empty cells, which is a waste of memory.

The Basic Hash Table

The hash table data structure turns out to be the perfect solution to the problem.
It allows you to do the following:

® Quickly store sparse key-based data in a reasonable amount of space

® Quickly determine if a certain key is within the table
The important word here is quickly. You’ll begin to see why as you read on.

For right now, you can think of a hash table as just an array. If you want to store 10
players, you should create an array with 10 cells. Figure 8.2 shows a very basic hash
table.

Team LRN

220 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

ST o

It is actually more efficient to make your hash table sizes prime numbers. |
can’t really explain why this is without going into a whole discussion about dis-
crete mathematics, but you should generally try to find a prime number above
the desired number of items you store in the table. For example, if | wanted to
store 10 items in a hash table, | would make it |1 cells large. However, | use 10
cells throughout this chapter because it makes the hashing functions easier to

explain. I will go more in depth on this topic later on in this chapter.

1 1

Figure 8.2

0 1 2 3 4 5 6 7 8 9 This is a basic hash
table, which is really

just an array.

Now you want to insert Player 1 into the table. Where would you put him? The easi-
est and most common way of placing a key into a hash table is to modulo the key by
the size of the table.

For example, Player 1 would be placed into cell 3 because 945253 % 10 = 3.
Likewise, Player 2 would be placed in cell 5, and Player 3 would be placed in cell 9,
yielding an array that looks like Figure 8.3.

Figure 8.3

P1 P2 P3 This is a |0-cell hash
table with three
players in it, stored

by key.

Whenever you want to access a player by their key, you just use a simple algorithm
like this:

player = table[key % 10];

This example is a very simple hash table, and it has many problems, which will be
addressed later on.

You can see how a hash table can be a powerful tool, though. Because of the way
you look up keys, the algorithm to determine whether an item is in the table is

Team LRN

221

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

- The Basic Hash Table

essentially instantaneous. An ideal hash table can search for items in O(¢) time,
which is a tremendous benefit for fast programs.

Collisions

One of the major problems with a hash table is that collisions occur frequently for

simple tables. For example, try inserting these two players with these keys into the

ten-cell table: 143,674 and 645,394.

You can’t. Because both numbers
modulo down to 4, they should both
be placed into the same cell, but a
cell can only hold one item! This is
called a collision. The only ways to
resolve a collision are to use a hashing
function or modify the table in a way
that makes collisions okay.

I'll explore both methods for you.

Hashing
Functions

Most hash tables are more complex
than the one I just showed to you. In
fact, most of the time, just using a mod-
ulo function is a very bad way to store
data into a hash table.

One method of solving collisions is to
use a hashing function. The word hash,
when applied to food, means to mince
or mash. The same definition applies
here; you need to hash the data so that
it will fit into a table easier.

Digit Addition

A simple alternative hashing function used on a key from 0 to 1,000,000 would be

TIP

Remember when | said to use prime
numbers for your table size? That was
because you get fewer collisions when
you modulo a key by a prime number.
Having fewer collisions makes your
tables easier to work with and more effi-
cient.There is a complicated mathemat-
ical reasoning behind this, but it is okay
to just assume that this is true for us.

L

[1 [1

J

NOTE

Note that the modulo function used
in the basic hash table is a hash func-
tion for integers.There are many
ways to hash data, but modulo is the
most common. For that reason, all

of the hash functions in this book
will produce an integer, which will
then be hashed with a modulo func-
tion to fit within the table. In my
experience, this is the best general-
purpose hashing method.

to add all of the digits together. For example, if you add all of the digits from the
two numbers that collided with the modulo method, you would get these results:

Team LRN

e’ 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

1+4+3+6+7+4=25and6+4+5+ — —
3+ 9+ 4 =31. Because these numbers CAUTION

are larger than the boundaries of the
array, you have two options. You may
expand the table so that it has 54 cells

Using digit addition solved the colli-
sion in the case that was shown, but
it still produces collisions. For exam-

(the largest number that can be ple, 123,456 and 654,321 both hash
obtained using this method is 9 + 9 + 9 to 21 using digit addition, even
+9+9+9=>54), or you may use the though they are different keys.

method I describe in the next section.
— —

Double Hashing

The second solution I will show you is called double hashing. This method involves
using one function to hash a key and then using the same function, or possibly a
different function, to hash the result of the first function.

For example, if you used these two numbers again, 143,674 and 645,394, and
hashed them both using the digit addition method, you would get 25 and 31. You
could then hash these numbers again, using the same method, and you would get 7
and 4, which both fit into the 10-cell table.

Another double hashing method would be to use the same digit addition function
for the first hash, but then use modulo for the second hash. In that case, you would
get 25 and 31 again, but they would modulo down to 5 and 1.

Other Hash Functions

There are literally an infinite number of hash functions you could use on an inte-
ger. I’'m sure you are already thinking of a few. You could multiply the integers by a
constant, divide them, perform binary arithmetic on them, or any combination of
those methods.

Unfortunately, no hash function is perfect. No matter what method you use, you
will end up with collisions if your dataset is large enough. When choosing a hash
function, it is usually best to test it out on data that you are expecting to process. If
one function produces no collisions and another does, then it is obvious which
function you should choose.

If you are unaware of the exact type of data you will be getting, then it is impossible
to create a function that you know will not cause collisions. This issue can only be
solved by changing the structure of a hash table.

Team LRN

The Basic Hash Table 223

N — r—= L= —Lr"]_

Hashing Strings

There is one more important hash function I want to show you. Besides integers,
the other popular datatype that is frequently hashed is strings. The following algo-
rithm does a really good job at hashing strings into an integer with very few colli-
sions:

unsigned Tong int StringHash(const char* p_string)
{

unsigned long int hash = 0;

int i;

int Tength = strlen(p_string);

for(i = 0; i < length; i++)

{

hash += ((i + 1) * p_string[i]);

}

return hash;
}

This method is based on the fact that a character in a string is essentially an inte-
ger. This way, you can look at a string as a number where each digit is a number
from 0-255 (for example, a base-256 number). This method is similar to the digit
addition method, but instead of just adding the digits, it multiplies each digit by an
integer and then adds them.

You can look at a string like it appears in Figure 8.4. The string “Hello!” is really an
array of 6 integers: 72, 101, 108, 108, 111, and 33.

Figure 8.4

H e o} ! This is how you

represent a string as

a number.

72 101 108 | 108 | 111 33

Now, using the algorithm, you would multiply the numbers like this: (72 * 1) +
(101 *2) + (108 * 3) + (108 * 4) + (111 * 5) + (33 * 6). This gives you 1783 as the
integer value.

Team LRN

224 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Multiplying each letter of the string by its index makes the hash function useful
because you don’t have the problems that plain digit addition has. You can reverse
the string and it will become a totally different hash value.

Enhancing the Hash Table
Structure

There is no perfect hash function. You will probably always end up with collisions.
Most people realize this and have created ways to handle these collisions. There are
many methods of dealing with collisions without modifying the underlying hash
table structure, but I feel that they are usually inferior solutions.

Linear Overflow

For example, one popular method is called linear overflow. With this method, you
hash a number and then try to insert the number into the index that the hash
function created. If there is an item already in the hash table at that index, you
increment the index and try to insert it again. If that index is full, then you incre-
ment the index again and repeat the method until you find an empty index.

For example, if you hashed a key to 3 and indexes 3 through 6 were already full,
you would need to jump all the way over to index 7 before you found an empty
cell. Figure 8.5 demonstrates this.

try to insert here Figure 8.5
W\m This shows a linear
overflow collision
Full | Full | Full | Full resolution. The
function inserts the

item into the first
open cell it finds after
it hashes the key.

Personally, I think this method is ridiculous and destroys the benefits of a hash
table. In order to find out if an item exists within the hash table, you have to search
every index in the table to find out if it is in there! This turns the fast O(c) hash
table search time into a slow O(n) time.

Even worse, if you put data into a cell that it didn’t hash to and you later get data
that hashes into that same cell, you’re making the data even more spread out and

Team LRN

Enhancing the Hash Table Structure 2259

N — r—= L= —Lr"]_

inefficient. I wouldn’t bother with this kind of collision resolution unless I was
absolutely forced to.

Quadratic Overflow

There are many other methods based on the same idea, such as quadratic overflow
collision resolution, where instead of incrementing the index by 1, you increment
the index by 1° (1) and then 2° (4) and then 3° (9) and so on until you find an
open index. The end result is the same; you still need to search the entire table to
find something. This method is even worse, in my opinion, because there is no easy
way to tell if you’ve searched through the entire table!

Linked Overflow

This leads me to the method that works best in my opinion, linked overflow. This
method gives each cell in the hash table a linked list.

Inserting into a Linked Overflow Table

To demonstrate how these work, I will go back to the original collision problem.
I'm using a 10-cell array for the table and using modulo-10 to insert the keys into
the table. Now, I want to insert the following players into the table:

Player 1: 345,752

Player 2: 546,182

Player 3: 798,500

Player 4: 123,430
These keys hash down to 2, 2, 0, and 0 using modulo-10. Previously, this would have
caused a problem because there are two collisions. However, because each cell of

the table now contains a linked list, I can insert each player into the list in the
appropriate cells, giving me a table that looks like Figure 8.6.

Figure 8.6
This is a linked

0 overflow hash table.
Each cell has a linked

° list in it to hold all

keys that hash into

| that cell.

Team LRN

226 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Using this method, you don’t have to worry about collisions at all! Whenever two
hashes collide, the data is just appended to the back of the list.

Searching for Keys

If your hash function is efficient and doesn’t cause many collisions, then theoreti-
cally you achieve an almost instant search time when searching for data in a hash
table. In order to search for data within this kind of table, you first hash the key to
find the desired index. Once you have found the correct index, you need to search
the linked list within that cell and nowhere else. If you find the data, you've
searched through only one or two items (depending on how well your hash func-
tion works, it could be more). If you don’t find the data, you’ve still only searched
through one or two items!

This beats the heck out of the other collision resolution methods I've shown you
because you don’t waste your time searching for data that isn’t in the table.

Of course, because you could theoretically use a bad hash function that stores every
item in the same linked list, the search algorithm is considered to be O(n), but
with a good hash function, it comes remarkably close to approaching O(c).

Graphical Demonstration:
Hash Tables

This is Graphical Demo 8-1, located on the CD in the directory
\demonstrations\chO8\Demo01 - Hash Tables\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Graphical Demonstration: Hash Tables 227

N — r—= L= —Lr"]_

In the other chapters of this book, I usually put the graphical demonstrations near
the front of the chapter. I felt, however, that I needed to build up to the linked
overflow hash table before I showed you a graphical demo. I only showed you the
primitive hash table types in order to lead up to the linked table so that you would
understand the concepts behind them. I would not use anything but a linked hash
table in real life, however.

This demonstration will show you how a linked hash table works internally. Figure
8.7 shows a screenshot of the demo in action.

' Hash Table Graphical Demanstration |l E;E F|gure 8.7
\ L
| Insent This is a screenshot
T from Graphical
Find .
' J Demonstration 8-1.
)
| Remove
—
| Random |
T
256
222 26

2 B?3| |'BT’5 746 13?i
A A [

A

L] 11
Lo]z[s]a]s]e]7[e]e]

Table 8.1 shows a listing of the commands and their effects in the demo.

Table 8.1 Commands for Graphical Demo 8-I
Button Effect

Insert This button tries to insert the number in the text box into the hash table.
Find This button finds the given key in the hash table.

Remove This button removes the given key from the hash table.

Random This puts a random number into the text box.

Text Box This is where you can type in numbers to insert, search for, or remove.

Team LRN

228 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The demo shows a 10-cell hash table, the same kind I've been using for the entire
chapter so far. The hash table is designed to store three-digit integers where each
integer is its own key. In reality, the key and the data stored in the table do not
have to be the same, but I go into that later. For simplicity, each number stored in
the table is its own key value.

Figure 8.7 shows a hash table where I've inserted 10 random numbers. Note that
the most numbers contained within any cell is three (in cell 6). This means that in
order to find out if a given key is contained within this particular hash table, you
will make at most three comparisons!

Implementing a Hash Table

Now it is finally time to create a hash table class. The code from this section is con-
tained in the \structures\HashTable.h file on the CD. As I have stated before, there
are two pieces of data associated with a hash table entry: a key and the actual data

that will be entered into the table.

The key for the data must be unique for the data that it is associated with. For
example, if you live in the United States, every person is issued a Social Security num-
ber (SSN). This would be a very good key to use if you were putting people into a
hash table, because SSNs are unique; no two people have the same SSN.

When you put data into a hash table, you put in both data and the key associated
with the data. The hash table will remember the key and the data. Whenever you
want to search for data in the hash table, you tell the table which key you are look-
ing for, and the table will return the data if it exists.

The HashEntry Class

Because the hash table needs to store two pieces of information for every item you
insert, it is easiest to create a class that holds both pieces of data. Because both
pieces of data can be of different types, the HashEntry class will have two template
parameters:

template< class KeyType, class DataType >
class HashEntry
{
pubTic:
KeyType m_key;

Team LRN

Implementing a Hash Table 229

DataType m_data;

s

The two template parameters are a KeyType and a DataType.

The HashTable Class

The HashTable class will have the same two template parameters as the HashEntry
class. Table 8.2 shows a listing of all the functions the HashTable class will support.

Table 8.2 HashTable Functions

Function Name Purpose

Constructor This creates the hash table with a given size and a fixed
hash function.

Insert This inserts a KeyType/DataType couple into the hash
table.

Find This finds the given key in the table and returns a pointer
to the data.

Remove This finds the given key in the table and removes the data

associated with it.

Count This returns the number of entries that are in the table.

The Data

The HashTable class will need to have several member variables. It needs to keep
track of the size of the table, the number of entries within the table, the array of
linked lists that makes up the actual table, and a function pointer to the hash func-
tion. If you are unfamiliar with function pointers, please read Appendix A, “A C++
Primer,” where I explain them.

template< class KeyType, class DataType >
class HashTable
{
pubTic:
typedef HashEntry<KeyType, DataType> Entry;

Team LRN

230 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

int m_size;
int m_count;
Array< DLinkedList< Entry > > m_table;
unsigned Tong int (*m_hash)(KeyType);

s

The typedef on Line 5 is there to make your life easier. Without this typedef, you
need to type HashEntry<KeyType, DataType> whenever you want to use a HashEntry,
which makes the code long and ugly. The typedef condenses this down to just
Entry, saving us lots of typing and making the code easier to read.

The size and the count are obvious in their function.

The third member variable, m_table, is an array of DLinkedLists. Each linked list in
each cell of the array contains Entrys.

The fourth member variable is a function pointer to the hash function. The hash
function takes a key as a parameter and returns an unsigned long integer. I have
the hash function as a function pointer for several reasons.

First, it is nice to be able to give the hash table a hash function that is independent
from the table. This allows you to use all different kinds of data in the table. Some
hash table implementations build the hash function right into the table, which
makes it extremely limiting. This way, you can have two hash tables that store the
same keytypes and datatypes, but both tables can use a different hash function.

Second, it is easy to make the hash table keep track of the hash function, so the
hash table automatically hashes keys that are passed into the table. This way, the
user of the table doesn’t have to remember to hash the keys; he or she can just pass
the key directly into the table.

Third, you don’t want the hash function to change. If the user is allowed to change
the hash function, the hash table becomes worthless. For example, say the user
inserts a key/data pair into the table using one hash function. Then the user
changes the hash function and tries to search for the same key. If the new hash
function hashes the key to a different number, then the table will not find the data,
even though it is in the table!

You will see how the hash function pointer works later on.

The Constructor

The constructor for the HashTable will take two parameters: the size of the table and
a pointer to the hash function.

Team LRN

e

' iR = Implementing a Hash Table 231

HashTable(int p_size, unsigned long int (*p_hash)(KeyType))
: m_table(p_size)

// set the size, hash function, and count.
m_size = p_size;
m_hash = p_hash;
m_count = 0;
}

On the second line of code, I use the standard C++ constructor notation to call the
constructor of m_table so that it is initialized with the correct size. If you are unfa-
miliar with this notation, please read Appendix A, where I explain this.

The Insert Function

As I have stated before, the Insert function will take a key and data couple and
insert them into the table.

void Insert(KeyType p_key, DataType p_data)
{
Entry entry;
entry.m_data = p_data;
entry.m_key = p_key;
int index = m_hash(p_key) % m_size;
m_table[index].Append(entry);
m_count++;
}

First, an Entry structure is created with the key and the data that are passed in.

Then, the m_hash function pointer is called on the key that was passed in. Because
the function is supposed to return an unsigned long int, that result may be out of
bounds for the table. Because of this, the
result is then modified using the modulo
function so that it becomes a valid index
for the table.

NOTE

.) Note that this hash table essentially
Finally, ‘the entry is appended to‘the end uses the double hashing method |
of the linked list in the cell that index described earlier. First, the key is

points to, and the count is incremented. hashed into an integer, and then that

integer is hashed again using the
modulo function.

1

Team LRN

232 8. Hash Tables

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Find Function

This function is designed to search the hash table to see if a certain key is in the
table. If so, it will return a pointer to the entry structure that the key is in. If not, it
will return 0.

Entry* Find(KeyType p_key)
{
int index = m_hash(p_key) % m_size;
DListIterator<Entry> itr = m_table[index].GetIterator();
while(itr.Valid())
{ L] LI
if(itr.Item().m_key == p_key)
return &(itr.Item());

itr.Forth();
} itr.ror :| I:

return 0;

}

The key is hashed into an index using
the same exact method that you used
when inserting the key into the table.
Then an iterator is created, which
points to the linked list in the cell that
the key hashed to.

The function then iterates through the
linked list, checking to see if the keys
match. If they do, then a pointer to the
entry is returned. If not, it keeps loop-
ing. If the key isn’t in the table, then 0
is returned. B B

LT
1

The Remove Function

The Remove function is essentially the same as the search function, but instead of
returning a pointer to the entry, it removes the entry from the table.

The function returns a boolean. True means that an entry was found and removed;
false means that the entry didn’t exist.

bool Remove(KeyType p_key)
{

Team LRN

Implementing a Hash Table 233

__j:__LUjj_____L_IE;;__Fzz

=T 1

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

int index = m_hash(p_key) % m_size;
DListIterator<Entry> itr = m_table[index].GetIterator();

while(itr.Valid()

if(itr.Item().m_key == p_key)

m_table[index].Remove(itr);

return true;

{
{
m_count--;
}
itr.Forth();
}

return false;

Example 8-1: Using the Hash Table

I've put together a simple text-based demo for you to run to see how a hash table
works. You can find it on the CD in the directory \examples\chO8\01 - Using the

Hash Table\.

First of all, this demo uses a hash table where both the keys and the data are inte-
gers. The keys don’t have to be the same as the data, however. Figure 8.8 shows a

screenshot of the program running.

- Insert data

1 = Insert data
2?2 - Find L'_EI:{

3 - Remoue Key
Your Choice: _

Enter the size of the table:

@ c:\Documents and Settings\All Users\DocumentsiData Structures\CDVexamplesh... _ IZ

27

Figure 8.8

[rllx

This is a screenshot
from Example 8-1.

Team LRN

234 8. Hash Tables

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Hash Function

The first thing you need to do is create a hash function. For this simple demo, I
used a very basic hash function that doesn’t modify the key at all:

unsigned long int Hash(int k)
{

return k;
}

So whatever key is passed into the hash function is returned unmodified.

Creating the Hash Table

Now you need to create the hash table. The program asks you for the size of the
table, which is placed into the size variable.

HashTable<int, int> table(size, Hash);
HashEntry<int, int>* entry;

The table is created with the size that you’ve entered and the Hash function. Note
that a pointer to a HashEntry is also created. This is used for searching the table
later on.

Inserting Keys

If you choose the Insert data option from the menu, the program will ask you to
enter a key and data pair. Once you have entered those, it inserts them into the
hash table:

table.Insert(key, data);

Finding Keys
The program asks you to enter a key to find. Once you have done so, it searches for
the key in the table:

entry = table.Find(key);

If the key exists, entry will point to the entry that contains the key and the data. If
not, entry will be 0.

Team LRN

Application: Using Hash Tables to Store Resources 235

N — r—= L= —Lr"]_

Removing Keys

Removing a key is just like searching for one; the program asks you for a key and
then tries to remove it:

table.Remove(key);

Application: Using Hash
Tables to Store Resources

This is Game Demonstration 8-1, which can be found on the CD in the directory
\demonstrations\ch08\Game01 - Resources\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

It has become more and more common for games to have elaborate scripting sys-
tems, but even if they don’t, they usually have a mod system implemented where
you can make custom maps and characters. In both cases, most of these systems
allow you to specify game resources with their names instead of a number.

For example, in a game I might be able to say that a certain wall should use a
bitmap named “stone.” Without hash tables, the game would need to search
through every bitmap it has loaded, checking to see if there is one named “stone.”
This can take quite a while, and because you want the game to be as fast as possi-
ble, this option is out of the question.

The better method to use would be to use a hash table. The hash table would use
strings as keys and bitmaps as data. This is what I've done with this game demo.

Team LRN

236 8. Hash Tables

—Jl_rl—l_l_'Eru—”_l_'_'_'_l—l——ll_l'—h

E::r__EEEI_J_____JﬂLUJ——1EL__

The String Class

I mentioned before that you cannot easily use strings as the keys with the HashTable
class. This was because the built-in string type is char*, which is a pointer, and
whenever you used the == operator on a pointer, it would compare the address of
the strings and not the contents.

The easiest way around this would be to use a string wrapper class. In this solution,
you create a small class that contains a string and has a few helpful functions.

class String
{

pubTic:
char m_string[64]1;
String()

{
strcpy(m_string, "");
}
String(char* p_string)
{
strcpy(m_string, p_string);
}
bool operator== (String& p_right)
{
return !strcmp(m_string, p_right.m_string);

s

You’ll note first that the string is very primitive; it is limited to 64 characters (63
plus the NULL terminator). I did this for simplicity’s sake; I'd rather not get into the
complex pointer manipulation involved in more complex classes for such a simple
demo.

There are two constructors. The first one takes no parameters and sets the string to
an empty string.

The second constructor takes a char* as a parameter and copies it into the string.
This structure allows you to do things like this:

String str("hellol");

The third function is the most important. It is an overloaded comparison operator
(if you are not familiar with operator overloading, please read Appendix A). This

Team LRN

Application: Using Hash Tables to Store Resources 237

N — r—= L= —Lr"]_

allows you to compare two strings using the == operator, and it will return true or
false. For example:

String strl("hellol");
String str2("Hey!");
if(strl == str2)

// strings are equal
else

// strings are unequal

The demo uses a slightly modified StringHash algorithm, which I discussed earlier.
The only change is that the function works with the String class instead of char*s
now. There is no need to list the code here.

Using the Table

You will be using the String class as the keys for the resources. For this demo, the
only resources you will be using are graphics, so the SDL_Surface* will be the
datatype.

HashTable< String, SDL_Surface* > g_table(7, StringHash);
The table is seven cells in size because I've included seven bitmaps with the demo.
Whenever you want to add a bitmap into the table, all you need to do is this:

g_resource = SDL_LoadBMP("sky.bmp");
g_table.Insert("sky", g_resource);

The first line loads a bitmap from disk into g_resource, which is a global
SDL_Surface*. The second line inserts the bitmap into the hash table with the name
“sky”. Now, all you need to do to load the sky bitmap again is to do this:

HashEntry< String, SDL_Surface* >* entry;
entry = g_table.Find("sky");
if(entry I=0)

g_resource = entry.m_data;

The hash table quickly finds the resource you asked for—almost instantly.

How the Demo Loads Resources

In the demo, there is a text box into which you can type resource names.
Whenever you type a name and press Enter, it calls this function:

Team LRN

238 8. Hash T_Elb'

void Find()
{
String str(g_name);
HashEntry< String, SDL_Surface* >* entry;
entry = g_table.Find(str);
if(entry =0)
g_resource = entry->m_data;
else
g_resource

0;
}

The g_name variable is a char* that contains the string that is in the text box. The
function creates a String and copies the contents of the text box string into it and
then creates a HashEntry. The function then searches the table and sets the
g_resource variable if the resource was found.

Playing the Demo

The demo is quite simple. Figure 8.9 is a screenshot from the demo in action.

Figure 8.9

This is a screenshot
from Game
Demonstration 8-1.

Team LRN

Conclusion 239

N — r—= L= —Lr"]_

When the demo starts out, there is a text box in the upper-left corner of the screen
and nothing else. You type the name of a resource into the text box and press
Enter, and the requested resource will be drawn on the screen.

The valid resources for this demo are sky, water, water2, fire, snow, vortex, and stone.

Conclusion

I hope that you've gotten a good idea of what hash tables are and what they’re
good for. Essentially, they have the fastest known search time of all data structures
in existence. Most databases use hash tables or variants of them.

Table 8.3 shows a listing of the speeds of the various hash table functions.

Table 8.3 Hash Table Function Speeds

Function Worst Case Best Case
Insert O(c) O()
Find O(n) O(c)
Remove O(n) O(c)

Keep in mind that these figures are only for the linked hash table. You could tech-
nically replace the linked list with an array, but that would either slow everything
down or take up more space. That is because you cannot be sure how many cells
each array will have when you create the array. I've never seen a hash table imple-
mented this way, so don’t worry about it.

Keep in mind that the worst-case figures there rarely happen if you have a good
hash function. The best-case figures happen more often than not if your hash func-
tion produces few collisions.

If done correctly, hash tables offer potentially instant search times.

Team LRN

This page intentionally left blank

Team LRN

_Iﬂ_l—|_|-____u_“‘_,_[r___.—__ e [! W

] I o R M= —] 2N

CHAPTER 9

TYING 1T
TOGETHER-S=
THE EASsI1CsS

24 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Eongratulations! You have just finished reading about all of the basic data struc-
tures. Each of the previous chapters introduced you to a new data structure,
showed you how it worked, and gave you an example of how it works in computer
games. Most of the advanced chapters in this book make use of the structures from
this part of the book, so it is a good idea to be well acquainted with them.

This chapter, however, goes over a different sort of data structure topic: how to cre-
ate classes for things in your games.

Learning about data structures isn’t just about learning which container classes are
good in which circumstances. You should also know a little about how to design the
classes in your game so that you can store game data efficiently.

In this chapter, you will learn:

® How to use classes

= How to make your games bug safe by hiding data

= How to make your games flexible by using inheritance

= How to use virtual functions

® What the different types of inheritance are and how they work
= What Real-Time Type Information (RTTI) is

= How to enable RTTI in Visual C++

= How to avoid using RTTI

= How to design a simple adventure game

= How to make a map editor for the adventure game

Why Classes Are Good

What is a game? Most games are reality simulators, which try to simulate aspects of
the real world. So what is the most logical way to store data in a game, then? It
makes sense to store all of your data in classes that represent the nouns of your
world (a noun in English is defined as a person, place, or thing).

Each one of these nouns can perform tasks, called verbs (a verb in English is defined
as a word that describes an action).

Team LRN

Storing Data in a Class 243

In programming, classes are nouns, and their functions are verbs. You can take the
English sentence:

The hero hits the monster!
And turn that into code:
Hero.Hit(Monster);

This is one aspect of object-oriented programming (OOP). In the past, game developers
have typically avoided OOP because early implementations were slow and game
developers wanted to squeeze every bit of speed out of their games to push the lim-
its. Games like DOOM ran on a 386 with no problem because the programmers at
i.d. software used some assembly language (ASM)and a lot of low-level C code to pro-
gram the game. Assembly language is a very basic kind of computer language
where you actually control each individual instruction that the computer will exe-
cute. When a compiler compiles your C or C++ code, it turns it into assembly.

Even though DOOM was mostly C code, the assembly was there in a few parts. See,
way back in the bad old days of the early 1990s, it was a good idea to write parts of
your code in assembly language, especially the parts that would be executed many
times. Compilers back then weren’t too smart, and people like John Carmack and
Michael Abrash (the people who programmed DOOM) found clever ways to make
their assembly language faster than the code the compiler would produce.

Back then, games were relatively simple. You could get away with writing in C and
ASM because the programs were not large and complex.

Using ASM in games has now died out completely because processors have gotten
very complex, and compilers almost always produce faster code than you could pro-
duce by hand.

However, C is still used a lot in game programming, but more and more people are
learning how C++ can make game programming much easier and flexible.

OOP is a very natural way of representing games because you naturally think in
terms of objects and verbs.

Storing Data in a Class

Before classes (and structures—for the purpose of this chapter, whenever I refer to
classes, I mean structures as well) were around, all you could use to store your data
in was global memory. This method is shown in Figure 9.1.

Team LRN

244 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Without Arrays Figure 9.1
; This is how
!nt playerhealth; programmers used to
int playerx;

int playery; store data globally.

int monsterihealth;
int monster1x;
int monster1y;

int monster2health;
int monster2x;
int monster2y;

int monster3health;
int monster3x;
int monster3y;

With this method, you stored each variable globally, and whenever you wanted to
add a new monster or player, you would have to add new variables for each one
and find a new name that was available. This isn’t very flexible.

After global memory came arrays. Arrays made things easier, as you can see in
Figure 9.2.

With Arrays Figure 9.2
Arrays allowed you to

int playerhealth;
int playerx;
int playery;

keep better control of
your variables.

int monsterhealth[3];
int monsterx([3];
int monstery[3];

Team LRN

' - Storing Data in a Class 245

Now you can reference each monster’s statistics by its number in the arrays. But
this method also has problems; what happens when you want to add a new variable
to the monsters and players? Then you have to find the array declarations and add
a new array for each.

Enter classes, as seen in Figure 9.3.

With Classes Figure 9.3
Classes allow you to

class Person
make your games
public:
int health;
int x;
inty;

even more flexible.

Person player;
Person monsters[3];

Now, both the player and the monster use the same class, and whenever you want
to change the class, all of the monsters and players will automatically use the
changes.

Hiding Data
I hear this question almost on a daily basis: “Why the hell would I want to hide my
data?!” There are many reasons for this.

Implementing a Class with No Data
Hiding
Take this simple class, for example:

class Person
{

pubTic:
int m_health;
int m_score; NOTE
}s The public keyword means that any-

one can modify and read the data in
the class.

. S .

Team LRN

246 9. Tying It Together: The Basics

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Now imagine a simple game where you gain points whenever your health increases
and lose points whenever you lose health. While coding the game, you put this
sequence of code in all over the place:

player.m_health -= damage;
player.m_score -= damage;

In other places, you put this segment of code:

player.m_health += bonus;
player.m_score += bonus;

And for a while, that works. Whenever your player gets health, his score goes up,
and whenever your player loses health, his score goes down.

Imagine that you change your mind a few days later (you never change your mind,
do you?) and decide that you want to double the amount of points the player gets
or loses when his health changes.

This means that you have to manually find every place in your code where you
modified the score. If you did it many times, I guarantee that you will miss one,
and you will end up with a hard-to-find bug.

Even worse, what happens if you forget to add or subtract the score once when you
are modifying the health? That’s another hard-to-find bug right there!

Implementing a Class with Data Hiding

In the previous example, anyone was free to go in and mess around with the data
in the class. This is generally a bad thing because it can cause many small mistakes
to appear in your game.

Now, imagine if you re-implemented that class using data hiding:

class Person
{
private:
int m_health;
int m_score;
pubTic:
int GetHealth() { return m_health; }
int GetScore() { return m_score; }
void ChangeHealth(int p_change)
{
m_health += p_change;

Team LRN

P S - Storing Data in a Class 247

m_score += p_change;

} NOTE
b The private keyword makes it so that
The functions that read and write to nothing inside a class can be accessed
hidden variables are called accessor func- from outside of the class. Class data is
tions because they access the data. always private by default.

. N

“But that code is so much longer!” says

the nay-sayer. Yes, that’s correct. But what would you rather do: spend an extra
minute typing out accessor functions or spend an extra few hours tracing down a
bug? I thought so.

“But that code is also slower!!” Yes, correct again. However, you can easily speed the
code up so that it is just as fast by using the inline keyword. See Appendix A, “A
C++ Primer,” if you are unfamiliar with inlining functions.

Now, whenever the player’s health is changed, this function is called:
player.ChangeHealth(-damage);

or

player.ChangeHealth(bonus);

First of all, using the function is much cleaner in the code because you can tell that
the health is being changed by the name of the function. Second of all, you don’t
care how the health is changed, you only care that it is changed. You trust the
Person class to take care of all the little details for you automatically.

For example, your game has been going along nicely, but you’re getting bored and
want to add new features, so you decide that you want to add a speed variable to your
player, which determines how fast the player can move. Naturally, if your player is at
full health, he can move fast, but if he’s almost dead, then he can barely move.

class Person

{

private:
int m_health;
int m_score;
int m_speed;

Team LRN

248 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

pubTic:
int GetHealth() { return m_health; }
int GetScore() { return m_score; }

int GetSpeed() { return m_speed; }
void ChangeHealth(int p_change)
{

m_health += p_change;

m_score += p_change;

m_speed = m_health / 10;

s

The three lines in bold show the differences in this class from the previous version.
The speed will always be the health of the player divided by 10, which is an arbi-
trary number that doesn’t really mean anything in this example.

So, now you can see how much more flexible your games can be if you use data
hiding. In fact, there are a few more things you may want to implement in this
ChangeHealth function, such as a health cap, which limits the maximum amount of
health you can get, or a death detector, which detects if the health goes below 0 and
acts upon that.

Every time you make a change to what the class does inside of the class, you are sav-
ing yourself lots of pain and bugs.

Inheritance

Inheritance is one of those subjects that no one likes. Unfortunately, it is also a very
cool feature to use, but only when used correctly.

So what is so neat about inheritance? If you don’t know too much about it already,
here is a little primer.

Think about a dog for a moment. A dog is-a mammal. A mammal is-a vertebrate
(something that has a backbone or spine), and a vertebrate is-a living thing.

The key to inheritance is the is-a relationship. Whenever something inherits from
something else, it is said to be a more refined version of the base. Figure 9.4 shows
an incomplete inheritance tree for living things.

Team LRN

Storing Data in a Class 249

Figure 9.4

This is an incomplete
inheritance tree of
some common living
things.

Mammals

Both the vertebrates and the invertebrates inherit from the living things category;
that is, they share some of the same aspects. Fish and mammals inherit from the ver-
tebrates category, and all fish and mammals share the vertebrate properties: They
have backbones.

It goes even further than that. Cats, dogs, and humans all inherit from the mam-
mal category; we all share similar respiratory systems and have hair.

Things that inherit from other things are said to be children. Dogs and cats are chil-
dren of the Mammals category. Likewise, mammals are called the parents of the
dogs and cats.

So what does inheritance mean for a game?

Think about the objects in your game and see if you can figure out an inheritance
tree. Figure 9.5 shows a simple one I made for this book.

Team LRN

250 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 9.5
» This is a game object

inheritance tree.

ltem Person

O D D D > G

O @& EEEEDE

The Object (Class

So how does this actually help you program a game? Look at this simple class out-
line for the Object class:

class Object

{

public:
virtual void Draw() { Draw(g_screen, blank, m_x, m_y); }
int GetX() { return m_x; };
int GetY() { return m_y; }

int SetX(int p_x) { m_x = p_x; };
int SetY(int p_y) { m_y = p_y; };
protected: LT LT
int m_x;
int m_y;

s

Ignore the Draw command for a moment;
I get into that in a bit. Look at the x and
y variables. Every object in the game will
have an x and a y coordinate represent-
ing its position on the game map.

Team LRN

Storing Data in a Class 251

For example, within the game, you will
declare an array of objects: NOTE

Array<Object*> g_objects(OBJECTS); For reasons that | explain in a bit,
you are required to use pointers in
order to take advantage of the bene-
fits of inheritance.

After this, you will fill the array with
objects, but don’t worry about that for
now; I show you how in a bit. For now,
just assume that the array is full of
object pointers.

Now, whenever you want to read or change the coordinates of any object, you just
do this:

g_objects[object].SetX(x);
g_objects[object].SetY(y);

And so forth.

Well, now you have an object class that is only capable of storing coordinates. What
use could that be?

Virtual Functions

The Draw function of the Object class has a funny word in front of it: virtual. This
word essentially means “this function is valid for this class, but inherited classes may
change what this function does.”

See, the object class has a Draw function, and this function draws a blank bitmap
onto the main screen, which isn’t what you want. Later on, when other classes
inherit from the Object class, they will re-implement this function so that it works

properly.

Pure Virtual Functions

When you look at the implementation of the Draw function and you see that it
draws absolutely nothing, you should be thinking to yourself, “Why bother?”

That’s a good way to think, because you know that the sub-classes (classes that
inherit from the parent class) will just implement their own method of drawing.

So, instead of wasting your time writing a function that does nothing, you can
declare the function as pure virtual, which means that it will not have an implemen-
tation in this class and it will definitely be redefined in later classes.

Team LRN

ese2 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Here is how you redefine the Draw function to be pure virtual:

virtual void Draw() = 0;

The = 0 part is what makes it pure. This says, “This function is empty, but sub-
classes will implement it for me.”

However, there is one gotcha, which is either good or bad, depending on how you
look at it. None of these lines of code will compile:

g_objects[0] = new Object;
Object obj;
Array<Object> objectarray(O0BJECTS);

The compiler will stop and say: Cannot instantiate class Object due to the fol-
lTowing pure virtual members: void Draw().

Because these classes have pure virtual functions, they cannot be used directly.
These classes are called abstract classes because they don’t actually exist. Instead,
these classes describe what can be done (called the interface) and let other classes
actually implement these features (the implementation).

Why Do You Need to Use Pointers?

When you think about a class in a computer program, it is just a chunk of memory.
For instance, you have a class named Item, and you create three of them, as shown
in Figure 9.6.

Item one: Figure 9.6
ltem two: Here are three
Item three: instances of the

Item class. Each
instance holds its

own data, but the
functions used on

Class Data Class that data are all

Class Data Class Data -
Functions

stored in one place in
memory.

Whenever you create a new instance of the Item class, a new chunk of memory con-
taining the data of that class is created. What happens when you add functions to
that class? Is the actual function code added to each class so that every instance of
the class has its own code representing the functions? (See Appendix B, “The

Team LRN

Storing Data in a Class 253

Memory Layout of a Computer Program,” if you are unfamiliar with how instruc-
tion code is stored in a computer.)

This is a wasteful approach. The actual code for the functions is never changed, so
why should each instance of a class have its own code? Instead, the code is stored in
one single place in memory, such as the last box in Figure 9.6.

Now, whenever you make a function call in a program, the compiler actually does
something neat. Imagine that the Item class has a function called Draw for a
moment:

Item one;
one.Draw();

Whenever the compiler sees this, it manually translates it into what actually hap-
pens in the computer. (This code will not actually work if you type it in, but it is
theoretically what happens.)

I[tem one;
Item::Draw(&one);

Whenever the compiler creates a class function, it adds an extra parameter: a
pointer to the class that the function is a part of. Therefore, an instance of the Item
class is actually passed into the function as a pointer. (You can access that pointer
by using the this keyword. See Appendix A for more information.)

Now, enter inheritance. When you pass an object into a function, the function
needs to know how to access the data and call the functions.

If the Item class inherits from the Object class, Figure 9.7 shows how the 0Object
functions work with this.

Figure 9.7
This is how the Object
Object functions view Objects
Dat

- and 1tems that are passed
into it. The function cannot

Object Instance

see the extra Item
Object
Functions

Item Instance variables.

Object
Data

Item Data

Team LRN

254 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

If you pass by value an Object into a function that wants an Object, there is no prob-
lem. This is because the entire Object is placed onto the stack (see Appendix B).
However, what happens when you pass an Item into the function, instead of an
Object? In that case, the entire Item is copied onto the stack as well, but there is a
problem. Items are larger than Objects, so they occupy more room on the stack.
This messes up the entire function because it accesses parts of the Item, thinking
that they are something different.

Whenever you try to pass by value an Item into a function that expects an Object,
the compiler gives you an error. Instead, you must use pointers because they always
take up the same amount of room on the stack. Whenever a function accesses an
Item or an Object, it gets the address of the object, finds the address of the item it
wants to access, and uses that, instead of a value on the stack.

How Virtual Functions Work

Virtual functions are quite complex, and you might wonder how they work. When
you use non-virtual inheritance, every inherited class executes the same code when-
ever a single function is called. Therefore, an Item and an Object both execute the
same code for non-virtual functions. However, if you have a virtual function, such as
the Draw function, the actual code that is called can be changed depending on what
kind of class it is.

In this section, I will explain non-pure virtual functions.

As soon as you add one virtual function to a class, a virtual function table is added to
each instance of the class. This table is essentially a table of function pointers (see
Appendix A) that point to a function. Figure 9.8 shows this.

: Figure 9.8
Object
Instance A virtual function
table is added to
Virtual each class instance
Function .
Table whenever a virtual
function exists in the
class.
Object
Data

Team LRN

Storing Data in a Class 255

N — r—= L= —Lr"]_

Now, whenever you create an instance of the Object class, it has one virtual function
entry, for the Draw function, and it points to the Object’s drawing code.

Whenever you create an Itenm, it fills in the table entry with a pointer to the Item’s
drawing code, as shown in Figure 9.9.

: Figure 9.9
Object
Instance Each instance of a
class points to the
Draw Object::Draw . o
function code it will
execute.
Object
Data
Iltem
Instance
Draw Item::Draw
Object
Data
Item
Data

Now, whenever you call the Draw function of an Object or an Item, it will derefer-
ence the pointer in the virtual function table and call the function at that address.
There is a little overhead associated with the function calling because you need to
dereference the pointers first, but not much.

Because a class with a pure virtual function cannot be instantiated, the virtual func-
tion pointer table will always hold a valid pointer.

Team LRN

256 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Item (Class

Now you should think about what kinds of data you want to store in an item class.
For demonstration purposes, the only new thing that the Item class will have is a
graphic (using the SDL_Surface class—see Appendix C, “Introduction to SDL”).

class Item : public Object
{
protected:
SDL_Surface* m_graphic;
public:
void Draw()
{
SDLB1it(g_screen, m_graphic, m_x, m_y);
}
void SetGraphic(SDL_Surface* p_graphic)
{
m_graphic = p_graphic;

s

On the first line, the class is declared as an Item, and it inherits from the Object
class.

Inheritance Types

The public keyword in the first line deals with the type of inheritance you are
using. You will almost always use public inheritance when inheriting classes. Table
9.1 shows a listing of the different types of inheritance and who can access which
types of variables in the base class.

Table 9.1 Inheritance Types

Inheritance Type Class Can Use Others Can Use
Public public, protected public
Private public, protected none

Team LRN

Storing Data in a Class 257

Figure 9.10 shows the relationship between a base class, a publicly inherited class,
and some other class or function accessing the other two classes. The child class
can access all of the public and protected members of the base, but private mem-
bers are hidden. Other classes and functions can access the public members of the
child class, and they can access the public members of the base class as well.

Figure 9.10
Base Class .
This figure
Public [< shows how
Data/Functions| classes can
access different
Protected | _ class members

Data/Functions [~ . .
unct using public

inheritance. The

Private child class can
Data/Functions
access the
Public Child public and
protected
Data}/jl-yl.?l’l\lgﬁo ns|€ Other Class members of its

parent, and the
other unrelated

Protected
Data/Functions class can access
only public
Private members of
Data/Functions both the child

and the parent.

So what this means is that not only can you use the Draw and SetGraphic functions
of the Item class, but you can also use the GetX, GetY, SetX, and SetY functions of the
Object class!

If you used private inheritance, though, things would be different. Figure 9.11
shows the relationship between the classes in private inheritance.

Team LRN

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

258 9. Tying It Together: The Basics

LT L

Base Class

Public P
Data/Functions |

Protected | _
Data/Functions|™~

Private
Data/Functions

Public Child

Public

'ﬁl_'_nl_u_,—.:_

Figure 9.11

This figure shows
how classes can
access different class
members using
private inheritance.
The child class can
access the public and
protected members
of its parent, but the
other unrelated class

Data/Functions [€ Other Class can only access the
public members of
F—— the child. External
Data/Functions classes do not know
about the parent.
Private
Data/Functions
In private inheritance, the child class ! !
has access to the public and protected
members of the base class, but outside
classes and functions no longer have any
access to any members of the base class.
If you inherited the Item class from the
Object class using private inheritance,
you would not be able to use the GetX,
GetY, SetX, and SetY functions outside of
the Item class.
M M

The Person Class

Now, think of the kinds of things you want in a player class. Every person in the
game must have some sort of health indicator, right? How about an inventory of

items, too?

class Person : public Object
{

Team LRN

Storing Data in a Class 259

protected:
int m_health;
Item* m_inventory[16];
SDL_Surface* m_animation[16];
int m_currentframe;

public:
Person()
{
int i;
for(i =0; 1 < 16; i++)
{

m_animation[i] = 0;
}
m_currentframe = 0;
}
int GetHealth() { return m_health; };
void SetHealth(int p_health) { m_health = p_health; };
Item* GetInventory(int p_index)

{
return m_inventory[p_index];
}
void SetInventory(int p_index, Item* p_item)
{
m_inventory[p_index] = p_item;
}
void SetFrame(int p_frame, SDL_Surface* p_graphic)
{
m_animation[p_frame] = p_graphic;
}
void Draw()
{
SDLBTit(g_screen, m_animation[m_currentframel,
mox, m.y);
}

void SetFrame(int p_frame) { m_currentframe = p_frame; };
int GetFrame() { return m_currentframe; };
}s

This is getting somewhat complex, isn’t it? The Player class adds four new variables:
a health, an inventory array, an array of graphics, and a frame counter. The health

Team LRN

2b0 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

is easy to set and get, using the two
accessor functions near the top, but the
inventory array is a little bit more diffi-
cult to use.

The inventory array is limited to 16
items and has two functions to retrieve
or insert items at the various indexes.

Keep in mind that this class is just a
hypothetical class and not something
that you should use in a real game. The graphic array is limited to 16 different
graphics.

1 1

1 1

Using the Classes in a Game

Now that I have showed you three very basic classes, I want to show you how they
are used within a game.

First, let’s say you keep one large array of Objects:
Array<Object*> g_objects(1024);

This array can store up to 1024 objects. Now, throughout the game, you fill up the
array with people and items:

g_objects[0] = new Person;

// set up the person here

g_objects[1] = new Item;

// set up the item here

// continue adding persons and items...

Now, this is your global array of items. What is so neat about it? What happens if
you want to draw every item in your game?

Team LRN

Storing Data in a Class 261

int 1;
for(i = 0; i < g_objects.Size(); i++)
{

if(g_objects[i] =0
g_objects[il.Draw();
}

This little function draws every single object in the game (if it exists), and it doesn’t
care how it is drawn! The Item class and the Person class theoretically draw in two
totally different ways, and your renderer doesn’t even care! This is the power of
inheritance.

The Object class says to you: “Every single child of 0Object will know how to draw
itself.”

Using the Child-Specific Features

Unfortunately, there is a flaw using this method to store data in the game. Say you
know that you put a Person into index 0 of the g_objects array and you wanted to
change his health.

You would think that you could do this:
g_objects[0].SetHealth(100);

This line will not compile; the compiler will complain that the SetHealth is not a
member of the Object class! Now, before you call your compiler stupid and kick it
to death, you should know that the compiler is right; the Object class does not have
a SetHealth function. See, the compiler looks at everything in that array and sees
them all as Objects and not their actual classes.

The compiler doesn’t know that the Object in index 0 is actually a Person, so you
have to tell it that. Telling the compiler this, however, is an ugly process.

The first thing you need to do is make sure your compiler supports a feature called
Run Time Type Information (RTTI). Most newer compilers do. Microsoft Visual C++
supports this feature, but it is not enabled by default. Instead, you need to turn it
on manually.

Enabling RTTI in Visual C++

Figures 9.12 and 9.13 show screenshots of the menus you should go to. First, open
your project and go the Project menu and select Settings. Next, make sure the
Settings For field says All Configurations, and then switch to the C++ tab. In the

Team LRN

262 9. Tuing It Together: The Ba

Category field, select C++ Language. Finally, click on the box that says Enable Run-
Time Type Information (RTTI).

e - — gr—rer—— T - Figure 9.12

e vt Vi alt Go to the Project

D L3¢ e Feett Propt Guld Qoo RIS G
2 wuD s ncm menu, and then

LB Y 1 S o .
‘At | Cpmmon select the Settings

= - = option.
Werapece W1 Gn
- Fa et Froacd il W e

Figure 9.13

These are the

General | Debug . Linkl Resources [MID: E'Z
| settings you need to

Cateqory. | C++ Language LI Beseat

have enabled to use
RTTI.

Crme=a
Customize
Best-CaqListing Files i |
~|Optimizations

LEREIE | Precampiled Headers

| Preprocessar - I

C_lv Enable
I_Dls e CONsuLCnOn arsplacements
Common Options:

fnologo (MO /GR (G /D "WINIZ" /D _WINDOW'S" (D
"_MBCS" /vX (FD fc

Bun-Time Type Information (RTTI_2

Team LRN

...-'':_-';____Stclring Data in a Class 253

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

Now your project is set up to use RTTI,
which is what you need to use to tell NOTE
your compiler that an Object is really a

Why do you need to specificall
Person. y you pecttically

enable RTTI in Visual C++? The
designers of the compiler feel that

Using RTTI RTTI is a very slow feature and
Now, say that you know that the first should only be used sparingly, and
item in the item array is a Person. This is they are correct. | deal with this
the “correct” way to convert it into a matter later.

Person class:

Person* p = 0;

p = dynamic_cast<Person*>(g_objects[0] NOTE
) o

] You’re not actually converting data
This code makes use of a new keyword at all. What you are doing is copying
called the dynami c_cast Operator, which the Pointer over into a hew pointer
is the “safe” way to convert a parent so that the compiler knows what
class into a child class. If everything was features it has. Both pointers point
successful, p is now a valid Person, and to the same exact data, except that
you can change his health. This process a pointer to an Object doesn’t know

about all the extra data that is in the

class. If you tried just saying p =
What happens if that index wasn’t actu- g_objects[0], the compiler would

ally a Person, but an Item instead? Say complain because it doesn’t know if
you did this: g_objects[0] is a Person or not yet.
This is for your safety, which | will
show you in a bit.

S R

is called down-casting.

g_objects[0] = new Item;
Person* p = 0;
p = dynamic_cast<Person*>(g_objects[0]);

What does p contain? Because you tried converting an Iteminto a Person, the
dynamic_cast operator detects this and just returns 0 instead of a valid pointer. This
prevents you from accidentally trying to turn an Item into a Person or vice versa.

Another Way, Without RTTI

There is another way to convert parent classes into child classes, but you must be
absolutely certain that the classes are what you think they are, or you will get some
very bad bugs.

This method doesn’t use RTTI and is much faster, but much less safe, too:

Person* p = (Person*)g_objects[0];

Team LRN

2b4 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

This is just the standard C typecasting method; the compiler will treat any object in
that array as a Person after this line, even if it isn’t a person!

Figure 9.14 shows the representation of the Item and the Person classes in memory.

Figure 9.14
ltem Person
This is the memory
X X representation of the
y y two classes. Only the
. first two variables,
Graphic Health
the x and the y
coordinates, are
shared between
them.
Inventory
Animation
Current Frame

Both classes have their coordinates in the same place because they inherit from the
Object class, but the similarities end there.

When you accidentally treat an Item as a Person and then try accessing something a
Person has but an Item doesn’t, you end up with a big error. Look at where the
graphic and the health data members are for each class. Look at this code, for
example:

g_objects[0] = new Item;
// fill in item information

Team LRN

Making a Game 265

Person* p = (Person*)g_objects[0];
p.SetHealth(100);

This sets up an Item in the first index and then treats it as a Person and modifies the
health of the Person. There is one problem: You’re trying to modify data that does-
n’t exist! When you modify the health of this fake player, the function changes the
data in the place in memory where the health should be if it were a player, which is
the same place where the Item class stores its graphic pointer!

So when you do this, you're modifying the pointer of an Item graphic and not the
health of a player.

It gets even worse. What happens when you try to modify the inventory or the ani-
mation pointers of this fake player? The Item class doesn’t even have memory down
there, so you have no idea what you are reading or writing over!

Finding bugs caused by this kind of programming is next to impossible.

Tips

So it seems that both methods have catches, and neither one seems to be a clear
winner. The unsafe method is much faster, but can lead to disastrous bugs. The safe
way is very slow, however, and you really don’t want to be doing stuff like that in a
game.

I'll leave you off with a few tips. First of all, inheritance is a very complex subject,
one that takes many years to master. I have kept inheritance usage in this book to
an absolute minimum, and almost none of the chapters use it. If you didn’t really
understand what this section is about, don’t worry about it; almost no one under-
stands it right away.

If you find yourself needing to down-cast your classes a lot, then that is a sign that
your design is inefficient. Inheritance is a very neat feature that allows us to reuse
code, but you should only use it when it makes sense. I will show you a more
proper example of how to use inheritance in the next section.

Making a Game

The rest of this chapter is concerned only with making a simple tile-based game
using the data structures from this part of the book and the design techniques dis-
cussed in this chapter.

Team LRN

2bb 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The game demo is pretty complex, and it is the largest game demo in the book so
far. All of the source code for this entire section is on the CD in the directory
\demonstrations\chO9\GameOl - Adventure vI\.

Compiling the Game

This game uses the SDLHelpers library that | have developed for the
book. For more information about this library, see Appendix B.

To compile this game, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Adventure: Version One

The game is called Adventure: Version One. The name isn’t very imaginative, but
remember, this is a demonstration. The game will be upgraded and expanded in
later chapters of the book after you learn more-complex data structures and algo-
rithms (see Chapters 16, “Iying It Together: Trees,” 19, “Iying It Together:
Graphs,” and 24, “Iying It Together: Algorithms”).

Designing the Base

The first thing you are going to do when designing a game (after you’ve already
figured out what genre and what motif you will be using) is to lay out the major
classes that will be used in the game.

When designing a game, it always comes down to this: How will you store the data?

To find this out, you need to first think about what kind of objects (things) you will
have in the game. In this game, which is relatively simple, there are Items, People,
Maps, and Cells.

After you decide on objects, you need to figure out the relationships between
the Items.

Items represent non-animated things that sit on the ground (armor, weapons).
People represent animated creatures that can move around on a map and pick up
items on the ground. Maps are a collection of Cells, and Cells hold Items or People.

Team LRN

Making a Game 267

N — r—= L= —Lr"]_

It usually helps to draw a diagram so you can visualize the relationship between the
objects, like Figure 9.15 shows.

Figure 9.15

Map This is a simple class

relationship diagram.

The arrows show
which classes contain
others.

Cell

L\

ltem < Person

At the top of the chain is the map class, which will be the basis of the game. The
map is made up of a bunch of cells, and each cell can contain an item and a per-
son. Furthermore, the person will know about items and will have items in its
inventory.

When you have worked out the general design, you can then focus on one of two
design methods: bottom-up design or top-down design.

When you start at the top, you decide what features the top classes will need and
work your way down. I prefer this method over bottom-up design because it gives
you a greater sense of the whole game.

At this point in the design, you should be thinking more about what your game will
do rather than hkow to do it. Therefore, you shouldn’t be thinking about code at all
at this point.

The Map

Because the first design already contains cell structures, you might have guessed
that I am designing a tile-based map structure. Each cell will be a tile, and these
tiles will be pieced together to form the entire map.

Team LRN

268 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Until now, the only tile arrangements you have seen in this book are 2D (and 3D)
tilemaps (in Chapters 5, “Multi-Dimensional Arrays,” and 6, “Linked Lists”), so it
would make sense that this is the kind of tilemap that the game will use.

However, I want to show you an example of good data structure design, so when
designing the map, you should not assume that the cells are arranged in any spe-
cific manner right now. Instead, you want to design the class with these parameters
in mind:

® You can access each cell in the map by an index.

® Each cell also has x and y coordinates.

® Fach cell can hold one item and one person.

® You can move in four directions from each cell (north, east, south, west).

® The map can draw itself on the screen.

= The map should know which cells are blocked.

® The map should know the direction any person should move to get closer to
another person.

® The map will have a viewer, which is a person that determines where the map
is drawn on screen.

The Map class will be abstract and virtual, meaning that it will not have a specific
implementation defined. This means that the Map class for this game demo will
define what the map can do with the map, but not Aow it is done. This is an impor-
tant point for expandable structure design, and the reason for this method will
become completely obvious in Chapter 19, when a new Map class is added and seam-
lessly weaved into the game project.

The Cells

Although the Cell class is integral to the layout of the map, it is still only a concep-
tual class at this point in time. As a programmer, when accessing the map, you
won’t be touching the cells directly. Instead, you will tell the map what to store in
each cell, and so on. Therefore, you really shouldn’t be thinking about the cells too
much at this point.

The Items

The items in the game won’t be too complex. There are two major types of items:
weapons and armor. None of these items are animated, so each item will need to
hold only one graphic. Items should also know which cell and what coordinates

Team LRN

Making a Game 269

they are at in the map (this is thinking ahead; maybe someday you will implement
a system where you keep track of an item and where it is on the map).

If the item is a weapon, then you need two pieces of data about it: how long it takes
between attacks and how much damage it does. Some weapons are lighter than
others, so you will be able to attack with them more often than others.

If the item is armor, then it will have a strength to it, which determines how strong
the armor is.

The last thing an item can do is block a path. Some items, like trees and walls, can
block a cell on the map so that you can’t walk through it.

The People
People in the game are like items, only they are a lot more complex. Here is a list
of the attributes that a person can have:
The cell that the person is in
The x and y coordinates of the person
Health, 0-100
Armor, 0-100
The direction that the person is facing
A collection of items, representing the inventory of the person
Something that keeps track of the current item that the person is using
A bunch of graphics representing the person walking in each direction
Timers that keep track of when the person can attack or move next

A handicap, which determines how fast or slow the person is

Designing the Interfaces

After you compile a list of all of the features that your classes will use, you want to
create interfaces for them. Sometimes interfaces are called stubs, and they are basi-
cally just a list of all the functions you will be using for the classes.

The Map Interface

Here is a listing of the map interface (which is a condensed version of the class
found in the Map.h file; I’ve removed the comments because all of the functions
are pretty much self-explanatory here) :

Team LRN

270 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

class Map
{
protected:
Person* m_viewer;
public:
Map()
Person* GetViewer()
void SetViewer(Person* p_viewer)

virtual void Draw(SDL_Surface* p_surface,
int p_midx, int p_midy) = 0;

virtual bool CanMove(Person* p_person, int p_direction) = 0;

virtual void Move(Person* p_object, int p_direction) = 0;

virtual int GetCellNumber(int p_cell, int p_direction) = 0;

virtual Item* GetItem(int p_cell) = 0;

virtual void Setltem(int p_cell, Item* p_item) = 0;

virtual Person* GetPerson(int p_cell) = 0;

virtual void SetPerson(int p_cell, Person* p_person) = 0;

virtual int GetNumberOfCells() = 0;

virtual int GetClosestDirection(Person* p_one, Person* p_two) = 0;
s

The first three functions are non-virtual. It is assumed that every map will have a
person as a viewer, so it is safe to implement the viewer functions in the Map class.

Every other function, however, depends on the implementation of the map and is
not actually implemented in the Map class.

The Draw function draws the map on the given surface, treating the p_midx and
p_midy variables as the midpoint of the screen.

The CanMove function determines if a person can move in the selected direction.
When it has been determined that he can move, you can then call the Move func-
tion to actually move the person.

The GetCellNumber function gets the number of an adjacent cell to the given cell
number. If the function returns -1, there is no valid cell in that direction.

The GetClosestDirection function, when given two Person pointers, will find the
direction that the first person needs to move to get closer to the second person.

The rest of the functions are used to get and set items and people in various cells
and get the number of cells in the map.

Team LRN

Making a Game 271

N — r—= L= —Lr"]_

Now, look at the interface of the map. Does it reveal anything about the actual
implementation of the map? Does the setup say that you have to use a 2D array for
the tilemap? It doesn’t, and that is the beauty of such a system; you can swap out
many different kinds of maps and the game engine that uses this map interface will
not need to be changed at all. This feature will be demonstrated in far more depth
in Chapter 19.

The Object Interface

Look back to the requirements of the Item and Person classes and see if you can
find any similarities between them.

Notice how they both have three variables in common: The x, y, and cell coordi-
nates. Using this idea, you can see that these two classes are clearly related some-
how in that they are both stored on the map using the same coordinate system.

My original design for this game had both the Item and Person classes being inher-
ited from the same base class, and each cell on the map would contain a pointer to
this Object class. However, after dissecting the design, I ended up concluding that
this wasn’t a very good way to run the game. The game needs to frequently tell the
difference between items and people so that a person doesn’t try picking up
another person or an item doesn’t pick up a person. It turns out that making the
map only store things as generic objects might make your game a little more flexi-
ble (yes, it would be cool to treat everything as objects so you can attack items and
people at the same time, but in a game interface, it doesn’t add much to the game-
play), but it requires a significant amount of work.

So instead of the map being class-agnostic, it specifically knows about items and
people. However, because both classes share the same coordinate system, it makes
sense to create one base class that implements these features, and the Item and
Person classes will inherit from them:

class Object
{

protected:
int m_x, m_y;
int m_cell;
pubTic:
Object()
{
m_x = 0;
m_y = 0;

Team LRN

e’/72 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

m_cell = 0;
}
int GetCell() { return m_cell; }
void SetCell(int p_cell) { m_cell = p_cell; }
int GetX() { return m_x; }
void SetX(int p_x) { mx =p_x; }
int GetY() { return m_y; }
void SetY(int p_y) {my =py;:}

s

The benefit of having a class such as this is that it is easily expandable. Of course,
having six functions to read and write three variables seems kind of stupid, but
remember what I told you at the beginning of the chapter: When you need to add
features to this class later on, you will be thankful that you did it this way.

Another benefit of this base class is that all items inherited from it get the same
implementation. If you decide to go 3D and add a z dimension, then you can easily
add that variable and its appropriate accessor functions.

The Item Interface

Now you need to design the functions to access your Item class. Using the require-
ments that you determined previously, you should come up with something like
this:

class Item : public Object
{
pubTic:
Item();
int GetType();
void SetType(int p_type);
int GetSpeed();
void SetSpeed(int p_speed);
int GetStrength();
void SetStrength(int p_strength);
void SetGraphic(SDL_Surface* p_graphic);
SDL_Surface* GetGraphic();
void SetBlock(bool p_block);
bool CanBlock();
void SetArmor(bool p_armor);
bool IsArmor();

Team LRN

Making a Game 273

N — r—= L= —Lr"]_

There are functions to determine what type the item is (the game will have hard-
coded item types—b is an axe, for example), the speed and strength of the item
(speed is ignored for armor types), the graphic of the item, whether it can block
your path, and whether it is armor or not.

The Person Interface

Last, there is the person interface. You need to figure out what a person can do,
given the requirements.

At this point, you know that this class isn’t abstract, so you should start thinking
about the implementation. You know that the Person class will have a collection of
items, so you need to think about how you are going to store those items. You
could simply go for an arrayed approach and limit yourself to a given number of
items. This method sort of makes sense because you, as a person, can only hold so
many items at any given time. Of course, the problem with this method is that
while you can probably only hold one large sword at a time, you can hold thou-
sands of feathers.

For a simple flexible system, why not use linked lists? Although linked lists aren’t
that great for items that are created and deleted a lot, they are perfect for some-
thing like an inventory.

Here’s the data listing for the class (which can be found in the Person.h file):

class Person : public Object
{
protected:
int m_health;
int m_armor;
int m_type;
int m_direction;
DLinkedList<Item*> m_inventory;
DListIterator<Item*> m_currentweapon;
SDL_Surface* m_graphics[DIRECTIONSILFRAMES];
int m_lastattack;
int m_lastmove;
int m_attackmodifier;

Now that you've seen the data in the class, here are the constructors, destructors,
and operators:

Team LRN

274 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

1 1
public: L] L]
Person()
~Person()
Person(Person& p_person)
void operator= (Person& p_person) :I I:

The last two functions allow you to copy
a person over into another person,
essentially making a clone. However,
because the Person class is more com-
plex than other classes and stores
classes of other data types (the inven-
tory of items, in particular), you need
to make sure that the person is copied
over correctly (see Appendix A for
more information on copy construc-

tors).] [

void SetDirection(int p_direction

);
int GetDirection(); W W
void SetPersonType(int p_type);
int GetPersonType();
void SetHealth(int p_health);
int GetHealth();
void SetArmor(int p_armor);
int GetArmor();

DListIterator<Item*> GetltemlIterator();
void AddItem(Item* p_item);

int GetItemCount();

void NextWeapon();

void PreviousWeapon();

Item* GetCurrentWeapon();

Team LRN

Making a Game 275

N — r—= L= —Lr"]_

void SetGraphic(SDL_Surface* p_graphic, int p_direction, int p_frame);
SDL_Surface* GetGraphic();

void SetAttackTime(int p_time);

int GetAttackTime();

void SetMoveTime(int p_time);

int GetMoveTime();

void SetAttackModifier(int p_modifier);

int GetAttackModifier();

All of the previous functions are accessor functions. They are all pretty much self-
explanatory, with the exception of a few. The GetItemIterator function will return a
DListIterator<Item*>, but the iterator will be pointing to the current item instead
of the start of the inventory. This is done this way because it is easier to use. If you
need an iterator at the start of the inventory, you can easily just reset the iterator.

The NextWeapon and PreviousWeapon functions move the current weapon iterator to
the next weapon or previous weapon in the inventory.

Whereas the SetGraphic function takes two parameters that determine which frame
and direction a graphic should appear in, the GetGraphic function doesn’t have any
parameters. This is to make drawing the sprite easier. Whenever the function is
called, it returns a pointer to the graphic that should be drawn at that point in
time. If the person is facing north, then this function will return the appropriate

graphic.
Finally, there are the more complex functions, which accomplish a lot of work:

void Attack(Person* p_person);
void GetAttacked(int p_damage);
bool IsDead();
void PickUp(Item* p_item);

};

The Attack function makes a person attack another person. The GetAttacked func-
tion is called whenever the person is attacked. The IsDead function determines if
the person is dead, and the PickUp function makes the player pick up an item. After
an item is passed into the PickUp function, you don’t have to worry about it any-
more; the player keeps track of the item from now on.

Team LRN

276 9. Tying It Together: The Basics

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Creating an Implementation for
the Map

Before you go any further, take a look at Figure 9.16. This figure shows an updated
class diagram for the game.

Figure 9.16

Here is the updated class

Object Map diagram for the game.

ltem Person

A

This is your game engine interface. The game logic module, which makes these things
actually work, will (theoretically) only know about these classes.

Now you want to actually create an implementation for the map. For this demo,
you are going to use a more complex version of the tilemap from Chapter 5. This
class is contained in the Tilemap.h file.

The Direction Table

In this game engine, you can move in four directions: north, east, south, and west.
Each of these directions is associated with a number from 0 through 3. North is 0,
eastis 1, south is 2, and west is 3.

To make it easy to move around the map given an x and a y coordinate, you can
easily make a 2D array that contains offsets for each direction:

const int DIRECTIONTABLE[41[2] = { { 0, -1 },
{1, 01},
{0, 11},
{ -1, 0} };

Team LRN

Making a Game 277

N — r—= L= —Lr"]_

This means that if you are moving north (direction 0), you add 0 to the x coordi-
nate and -1 to the y coordinate. This is usually accomplished like this:

x + DIRECTIONTABLE[direction][0];
y + DIRECTIONTABLE[direction][1];

< Xx
I

The TileCell Class

Back in Figure 9.15, there was a Cel1 class, but somehow while I was designing the
overall design, the Cell class kind of disappeared. The reason it disappeared was
because the Cell class is more of an implementation-specific class rather than an
interface class. Besides, there really is no reason to give the user of the system
access to the Cell class; he should do everything through the Map class interface
instead.

However, now that you are implementing a tilemap, you need to create a Cell class

that will store information about each cell. Because each cell will hold a person and
an item, it obviously needs to contain pointers to these classes. Also, features of the

geometry may block certain cells, so there needs to be some way to tell if the cell is

blocked or not. Here is the class:

class TileCell

{

pubTic:
bool m_blocked;
[tem* m_item;
Person* m_person;

TileCell()

{
m_blocked = false;
m_item = 0;
m_person = 0;

s

“Wait a minute!” you might be saying. “You broke all of your accessor rules!” True.
However, this Cel1 class will be closely related to the Tilemap class, and the class is
simple, so the accessor functions aren’t entirely necessary.

Team LRN

278 9. Tying It Together: The Basics

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

The TileMap (Class Interface

L= = e

Now that you are focusing on an implementation rather than an interface, you need
to start thinking about how you are going to store the data in the map.

For the graphics, a 3D array will be used so that you can use some cool layered
tilemapping effects. The cells in this array will store the index of the tile graphics,

which means that the graphics them-
selves will be stored in an array.

However, that is not all the information
you need. In addition, a 2D array will
store instances of the TileCell class
defined previously.

Granted, the TileCell class could have
contained a linked list of integers, so
you could store the tilemap like the
Game Demo 2 from Chapter 6, but this
method makes it easier to load levels
from disk.

Finally, there is one more piece of data
the Tilemap class keeps track of: an array
of graphics, which the tilemap will use
to draw its tiles.

Here is the code listing for the data in
the class, which is in the TileMap.h file:

class TileMap : public Map

{

protected:
Array3D<int> m_tiles;
Array2D<TileCell> m_tilemap;
SDL_Surface** m_tilebmps;

s

y

R

The class inherits from the Map class and defines the three data members as speci-
fied previously. Now, here is a listing of the new functions that the TileMap class

adds:

TileMap(int p_x, int p_y, int p_z, SDL_Surface** p_tilebmps);

~TileMap();

void SetTile(int p_x, int p_y, int p_z, int p_tile);

Team LRN

Making a Game 279

int GetCell(int p_x, int p_y);
void LoadFromFile(char* p_filename);

s

There is the constructor, which takes three coordinates: the width, height, and
depth of the tilemap. It also takes a pointer to an array of SDL_Surface pointers so
the tilemap knows which tiles to draw.

Then there is a destructor. This is important because the map keeps track of the
people and items on the map, and all of these people and items need to be deleted
when the map is deleted. The destructor does this.

The next function sets the graphic value of certain cells throughout the map. The
GetCell function gets the cell number of a pair of x and y coordinates, and last, the
LoadFromFile function does just what it says and loads a map from a file on disk.

The TileMap (Class Implementation

Because the TileMap class is-@ map, it needs to implement all of the pure virtual
functions that the Map class had, as well as its own functions. In addition, because
there are many plain accessor functions that do nothing more than directly set the
value of a member variable or return the value of a member variable, I will not
show the source for those functions here.

The Constructor
Here is the code for the TileMap constructor:

TileMap(int p_x, int p_y, int p_z, SDL_Surface** p_tilebmps)
:m_tiles(p_x, p_y, p_z), m_tilemap(p_x, p_y)

m_tilebmps = p_tilebmps;
}

This function uses the standard constructor member-initialization to construct the
3D and 2D arrays (if you are unfamiliar with this notation, please see Appendix A).
Then the m_tilebmps pointer (which points to an array of graphics, which represent
the tiles) is set to point to the array that was passed in.

The Destructor

The destructor, as I have said before, is very important to this class. The map con-
tains all of the people and items in the game, and when the map is deleted, these
should be as well.

Team LRN

280 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

~TileMap()
{
int x, y;
for(y = 0; y < m_tilemap.Width(); y++)
{
for(x = 0; x < m_tilemap.Height(); x++)
{
if(m_tilemap.Get(x, y).m_item != 0)
delete m_tilemap.Get(x, y).m_item;
if(m_tilemap.Get(x, y).m_person !=0)
delete m_tilemap.Get(x, y).m_person;
m_tilemap.Get(x, y).m_item = 0;
m_tilemap.Get(x, y).m_person = 0;

}

The function goes through every cell in the map, and if an item or person exists in
any of the cells, it is deleted and the pointer is set to zero.

The GetCell Function

This function returns the cell number of any given x and y coordinates in the map.
Remember in Chapter 5 when I showed you how to convert those coordinates so
that you could store a 2D array as a regular array? This map will use the same
encoding. So cell (0,0) will be 0, (1,0) will be 1, and so forth.

int GetCell(int p_x, int p_y)
{
return p_y * m_tiles.Width() + p_x;

The LoadFromFile Function

This next function is somewhat long and complex, and you won’t completely under-
stand it until you go over the map editor in the next game demo from this chapter
(Game Demonstration 9-2). I will try to make it as simple as possible, though.

The map format that this game uses can theoretically have many different sizes of
maps because the constructor lets you use different sizes as the dimensions.
However, the file format that the map editor uses assumes that the map will be

64 X 64 tiles and have two layers.

Team LRN

__j:__LUjj_____L_IE;;__Fzz

Making a Game

=T 1

The file will actually store four layers, like Figure 9.17 shows.

People
Items
Overlay Tiles

Base Tiles

[TTTT]T]
IEEEENS,
777777
777777
IEEENNS,
777777
777777
////////////////

[[[[[[]

[

Figure 9.17

The map file format
is stored as a four-
layered 2D array.

281

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

The first two layers should be familiar to you; they both serve the same functions as
they did in the game demo from Chapter 5. The base layer stores all valid tiles, and
the second layer stores overlay tiles, which are usually transparent and let you

achieve some nice transition effects.

The third layer is the item layer. Each cell can only store one item, so it is some-
what easy to keep track of items in the map when editing it. It also prevents two or
more items from occupying the same cell, which cannot happen in the game. The
fourth layer is the same, except that it stores people instead of items.

Each cell in the map file will store one integer. This integer will correspond to a
given cell, item, or person. For example, in the game, tiles 0 through 3 are all grass
tiles, 4 and 5 are snow tiles, and so on. Items 0 through 5 are walls, 6 is an axe, and
so on. There are only three types of people, though, and this is a special case.
Person 0 is assumed to be the player, and people 1 and 2 are enemies.

void LoadFromFile(char* p_filename)
{

int x, y;

int item;

int person;

Team LRN

282 9. Tying It Together: The Basics

Array2D<int> items(64, 64);
Array2D<int> people(64, 64);

There are two integers to loop through each tile on the map and two integers that
are used to load item and person indexes from the file. The last two variables are
2D arrays, which are only temporary for this function and will be deleted when the
function ends.

FILE* f = fopen(p_filename, "rb");
if(f=20)
return;

This section of code opens the file and checks to see if it is a valid file. If not, then
the function just returns without doing anything.

fread(m_tiles.m_array, 64 * 64 * 2, sizeof(int), T);
fread(items.m_array, 64 * 64, sizeof(int), f);
fread(people.m_array, 64 * 64, sizeof(int), f);

In this part, the whole file is read in three chunks. The first line reads the first two
layers of the map, which are the tiles, and it puts them into the m_tiles 3D array
(which should be of size 64 X 64 X 2).

After that, the third layer (items) is read into the item array. Finally, the fourth
layer is read into the people array.

Because the items and people are now stored in separate 2D arrays, you need to go
through those arrays and convert the numbers into actual Items and Persons:

for(y = 0; y < 64; y++)
{
for(x = 0; x < 64; x++)
{
item = items.Get(x, y);
if(item = -1)
{
m_tilemap.Get(x, y).m_item =
MakeItem(item, x, y, GetCell(x, y));
}

This segment loads in the item number at each cell. If the number is -1, then that
means that there is no Itemin that cell, and nothing should happen. If there is an
Item, however, the function then calls a helper function, called MakeItem, which
takes the item number, its coordinates, and its cell number and converts them into
an actual Item. I explain this helper function in more detail later on.

Team LRN

Making a Game 233

person = people.Get(x, y);
if(person I= -1)
{

m_tilemap.Get(x, y).m_person =
MakePerson(person, x, y, GetCell(x, y));

After it loads the Item, it looks to see if there is a Person in that cell as well. If so,
then it calls the MakePerson helper function to create a new Person. However, this
doesn’t end here—it goes on:

if(person == 0)
{
SetViewer(m_tilemap.Get(x, y).m_person);

}

If the Person in the current cell has a type of 0, then the Person is the player in the
game. So the function then calls the SetViewer function to set the viewer of the
map. There is one tiny little flaw in this function, however. If there is more than
one type 0 Person on the map, then the last one it finds will become the player, and
all other ones will be Al-controlled enemies.

The Draw Function

Now all of the new TileMap functions are implemented, so you must implement the
Map functions. The first of these is the Draw function, which draws the tilemap onto
the screen, so that the map is centered around the viewer. Here is the code listing:

void Draw(SDL_Surface* p_surface, int p_midx, int p_midy)
{

int x, vy, z; // counting variables
int px, py; // pixel coordinates
int ox, oy; // offset coordinates
int current;

Item* 1;

Person* p;

The x, y, and z variables will be used to loop through the 3D tilemap array, px and
py are used to store the pixel coordinates of a tile, and ox and oy are used to store
the pixel offset coordinates of the viewer. This means that px and py will store the
coordinates of the tile in world space. World space is the coordinates of things

Team LRN

284 9. Tying It Together: The Basics

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

LT L

'ﬁl_'_nl_u_,—.:_

located in the world. The ox and oy coordinates keep track of how many pixels
things in the world space need to be moved over to get into screen space. Figure 9.18
shows an 800 X 600 screen that is currently viewing a 1024 X 1024 (-pixel) tilemap.

0 — world space

N

599 — screen space

Y

1023 — world space ——>

0 — screen space 799 — screen space

1023 — world space

e

Figure 9.18

This figure depicts
the two different
coordinate systems:
world space and
screen space.

The tiles start at (0,0) in world space, but the screen is smaller and at a different
part of the map. You can see from the figure that cell (1,2) is drawn at the upper-
left corner of the screen. The world space coordinates for that cell are (64,128)
because each cell is 64 pixels square, so you need to find a way to convert those
coordinates so that they are drawn in the correct place on the screen. Because this
is a 2D linear conversion, all you need to do is calculate the offset and add it to the
drawing coordinates. You'll see how this works in a bit.

int minx = m_viewer->GetX() - (p_midx / 64)

int maxx = m_viewer->GetX() + (p_midx / 64)

int miny = m_viewer->GetY() - (p_midy / 64)
0)

int maxy = m_viewer->GetY + (p_midy / 64)

+

+

—= o e

The previous section of code declares four integers and calculates values for them.
These four values are the coordinates of the tiles that are on the edge of the
screen. Examine the first line, for example. It retrieves the x coordinate of the
viewer first. Then it takes the p_midx value, which is the midpoint of the screen in
pixels. As the game runs in 800 X 600 mode, this should be 400. (Technically, it’s
399.5, but we don’t have to be that exact.) Then it divides 400 by 64 (because the
tiles are 64 X 64 pixels square) to get the number of tiles that will fit in that part of
the screen. It subtracts the number of tiles from the x coordinate of the viewer and

then subtracts another tile, just to be safe.

Team LRN

Making a Game 2385

N — r—= L= —Lr"]_

These lines determine the bounds of the cells that are actually visible on the
screen. For example, if the viewer was at (20,16), it would calculate minx to be

20 — (400 / 64) —1, which ends up being 13. This means that any cells with an x
coordinate less than 13 are not on the screen at all and therefore should not be
drawn. The four lines of code do the same thing for each edge of the screen.

if(minx <0) { minx = 0; }
if(maxx >= m_tiles.Width()) { maxx = m_tiles.Width() - 1; }
if(miny < 0) { miny = 0; }
if(maxy >= m_tiles.Height()) { maxy = m_tiles.Height() - 1; }

Now this section of code makes sure that the calculated coordinates are valid.
There are negative cells, but you obviously don’t want to try drawing them; so if
either of the min variables are negative, they are set to zero instead so that it starts
drawing at the edge of the map. Likewise, it checks to see if either of the max vari-
ables have gone past the edge of the array and resets those.

ox = (-m_viewer->GetX() * 64) + p_midx - 32;
oy = (-m_viewer->GetY() * 64) + p_midy - 32;

This is the last part of the initialization, which calculates the offset coordinates so
that the tile that the viewer is on is drawn in the center of the screen. Figure 9.19
shows how this works in the x axis.

—————> -m_viewer->GetX() * 64 <—— +p_midx Figure 9.19

This shows how to
calculate the screen
offset for the black
|| || tile, which the viewer
is on.

Team LRN

286 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Even though the figures show the L L
screen moving, keep in mind that you
are actually moving around the coordi-
nates of the tiles. First, you subtract the :I |:
number of pixels from the end of the
map to the viewer tile, which places the
viewer tile at the left side of the screen.
Then, to center the viewer on the
screen, half of the width of the screen is
added to the offset. Even though it is
closer to the middle of the screen now,
it still isn’t exactly in the center. The tile
is 64 pixels wide, so just subtract 32 pix-
els from the offset, and the tile is cen- :I I:
tered on the screen! The process works
the same way for the y axis.

for(y = miny; y <= maxy; y++)
{
for(x = minx; x <= maxx; x++)

{

X * 64 + ox;
y * 64 + oy;

pX
py

Remember how the tilemap was rendered in the tilemap demo from Chapter 57
The method used there just drew every tile on the map. This is somewhat wasteful,
so this newly updated algorithm is more efficient and starts drawing tiles starting at
the boundaries that were calculated before. This way, the algorithm only draws tiles
that will be shown on the screen.

At each cell, the algorithm calculates the world coordinates of the tile, adds the
screen offset coordinates, and stores that into px and py.

for(z = 0; z < m_tiles.Depth(); z++)
{
current = m_tiles.Get(x, y, z);
if(current I= -1)
SDLB1it(m_tilebmpslcurrent], p_surface, px, py);
}

This is the inner loop that goes through all the layers of the current cell and draws
them from the bottom up. The current tile number is loaded into the current

Team LRN

Making a Game 287

N — r—= L= —Lr"]_

variable and then compared to —1, which represents the empty tile. If the tile isn’t
empty, then it is drawn on the screen.

i =m_tilemap.Get(x, y).m_item;
p = m_tilemap.Get(X, y).m_person;
if(il=20)
SDLBTit(i->GetGraphic(), p_surface, px, py);
if(p!=0)

SDLB1it(p->GetGraphic(), p_surface, px, py);

}
Finally, the Item and the Person of the tile are extracted. If either of them are valid,

then they are also drawn. Items are drawn first, and then People are drawn on top.

The CanMove Function

This function is pretty easy to implement if you use all of the features available to
you.

bool CanMove(Person* p_person, int p_direction)

{
int newx = p_person->GetX() + DIRECTIONTABLE[p_direction][0];
int newy = p_person->GetY() + DIRECTIONTABLE[p_direction][1];

First you get the coordinates for the cell that is in the direction that you want to go.

if(newx < 0 || newx >= m_tiles.Width() ||
newy < 0 || newy >= m_tiles.Height())
return false;

Then you check to see if those coordinates are in bounds of the map. If not, the
function returns false.

if(m_tilemap.Get(newx, newy).m_blocked == true)
return false;

Now check to see if the path is blocked by the geography.

if(m_tilemap.Get(newx, newy).m_person != 0)
return false;

Then check to see if there is a Person blocking the path.

if(m_tilemap.Get(newx, newy).m_item I[= 0)
{

Team LRN

288 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

if(m_tilemap.Get(newx, newy).m_item->CanBlock() == true)
return false;

}
Finally, check to see if an Item is blocking your way.

return true;
}

If the function has reached this point, then you know that nothing is blocking the
path into the cell, so it returns true.

The Move Function

This function physically moves a Person from one cell into another.

void Move(Person* p_person, int p_direction)

{
int newx = p_person->GetX() + DIRECTIONTABLE[p_direction][0];
int newy = p_person->GetY() + DIRECTIONTABLE[p_direction][1];
if(CanMove(p_person, p_direction) == true)
{

First, calculate the coordinates of the cell that you want the Person to move into
and make sure that the Person can move into that cell.

m_tilemap.Get(newx, newy).m_person = p_person;

m_tilemap.Get(p_person->GetX(), p_person->GetY()).m_person = 0;
p_person->SetX(newx);

p_person->SetY(newy);

p_person->SetCel1(GetCell(newx, newy));

}

When you know that the Person can move into the new cell, the pointer to that
Person is placed into the new cell and the pointer to the Person is removed from the
old cell. Because a Person cannot move into a cell that is occupied by another
Person, you can be sure that this function won’t write over any existing Person.

After that, the new coordinates are given to the Person, as well as the new cell

number.

The GetCellNumber Function

This function retrieves the number of a cell in any given direction. It will return
the cell number if there is a cell in the given direction, but return —1 if the cell
doesn’t exist (if it is off the edge of the map, for example).

Team LRN

Making a Game 2389

int GetCellNumber(int p_cell, int p_direction)
{

int x, y;
y = p_cell / m_tiles.Width();

x = p_cell - (y * m_tiles.Width());
X = x + DIRECTIONTABLE[p_direction][0];
y =y + DIRECTIONTABLE[p_direction][1];

The first two lines calculate the x and y coordinates of the current cell number by
reversing the algorithm that turns a 2D array coordinate into a 1D array coordi-
nate. The y coordinate is calculated by dividing the cell number by the width of the
map (the remainder is truncated), and then the x coordinate is calculated by sub-
tracting the total of the y coordinate multiplied by the width of the map from the
cell number.

After that, the adjacent cell coordinates are calculated.

if(x <0 || x > m_tiles.Width() ||
y <0 || y >= m_tiles.Height())
return -1;
return GetCell(x, y);
}

Finally, the function checks to see if the cell is within the bounds of the map. If
not, then it returns -1. If it is within the bounds, then it returns the cell number.

The GetlClosestDirection Function

This function calculates which direction will get one Person closer to another. This
will be quite useful in calculating the Al of the enemies in the game. For right now,
you don’t know of anything more complex, so you just want to use a simple little
algorithm to do it:

int GetClosestDirection(Person* p_one, Person* p_two)
{
int direction = -1;
if(p_one->GetY() > p_two->GetY())
direction = 0;
else if(p_one->GetX() < p_two->GetX())
direction = 1;
else if(p_one->GetY() < p_two->GetY())
direction = 2;
else if(p_one->GetX() > p_two->GetX())

Team LRN

290 9. Tying It Together: The Basics

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

direction = 3;
return direction;
}

This checks the relative x and y coordinates of the two players. If the first player has
a greater y value than the second, this means that the first player is to the south
and therefore must move north to get closer.

The next three blocks follow in the same manner, figuring out which direction will
get the first player closer to the second player. Finally, the direction is returned.

The Item (Class Implementation

For right now, every function in the Item class is just a plain accessor function that
either sets or gets the value of each member variable. Because of this, there really
isn’t any reason to post the implementation of this class.

The Person Class Implementation

The Person class is a little bit more complex than the Item class, but not by much.
Some of the functions are just plain accessor functions that do nothing but return
the value of or set a member function. These functions will not be shown.

The Constructor

When a Person is constructed, it is always a good idea to set the data inside the
Person so that it doesn’t contain random data. This constructor does that:

Person()
{
m_type = 0;
m_health = 100;
m_armor = 100;
m_direction = 2;
m_currentweapon = m_inventory.GetIterator();

These lines set up the Person so that he is type 0, has full health and armor, and is
facing south. The last line retrieves an iterator from the inventory linked list. Even
though the iterator will be invalid, because the inventory is empty, the iterator will
now be pointing to the list. If you didn’t call that line, the iterator wouldn’t be
pointing at any list.

int f, d;
for(d = 0; d < DIRECTIONS; d++)

Team LRN

Making a Game 291

N — r—= L= —Lr"]_

for(f = 0; f < FRAMES; f++)
{
m_graphics[dI[f] = 0;

}
This loop goes through the graphics array and clears all the graphics.

m_lastmove = 0;

m_lastattack = 0;

m_attackmodifier = 0;
}

Last, the function clears the timers to 0 and sets the attack modifier to 0 as well.

The Destructor

The destructor of a Person is very important in this game. Because every Itemin the
game is an actual object that is created at one point in time using the new function
to allocate memory, the Items must eventually be deleted as well, or else you will get
a memory leak.

So when a Person dies, everything that the Person has in its inventory should be
deleted. The destructor handles this:

~Person()
{
DListIterator<Item*> itr = m_inventory.GetIterator();
for(itr.Start(); itr.Valid(); itr.Forth())
{
if(itr.Item() =0)
delete itr.Item();

}

This loop makes sure that every item in the inventory is deleted.

The Copy Constructor and Assignment Operator

I approached this issue previously when I showed you the interface of this class.
Here is the actual implementation of these two functions:

Person(Person& p_person)
{

Team LRN

292 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

*this = p_person;

void operator= (Person& p_person)
{
int d, f;
m_health = p_person.m_health;
m_armor = p_person.m_armor;

m_type p_person.m_type;
m_direction = p_person.m_direction;
for(d = 0; d < DIRECTIONS; d++)
{

for(f = 0; f < FRAMES; f++)
{
m_graphics[d][f] = p_person.m_graphics[d][f];

}
m_lastattack = p_person.m_lastattack;
m_lastmove = p_person.m_lastmove;
m_attackmodifier = p_person.m_attackmodifier;
mM_X = p_person.m_x;
m_y = p_person.m_y;
m_cell = p_person.m_cell;

}

The copy constructor basically just calls the assignment operator by dereferencing
the this pointer (see Appendix A). The statement *this = p_person literally says,
“The value of this current Person should be set to the value of the parameter.”

The assignment operator essentially copies everything over, with the exception of
two things: the current weapon iterator and the inventory linked list. This is
because, as of right now, there is no need to copy the inventory of a Person over.
Maybe someday you might need that functionality, but you don’t right now, so it
isn’t implemented. The iterator should never be copied over from one Person to
another because the iterator’s copy constructor will now make the iterator in the
current Person point to the inventory of the other Person, which is not a good idea.

The SetDirection Function

This function sets the direction of the Person, but it also does a little error checking
as well.

Team LRN

Making a Game 293

N — r—= L= —Lr"]_

void SetDirection(int p_direction)
{

m_direction = (p_direction + 4) % 4;
}

First, it adds 4 to the new direction, and then it modulos that by 4. The reason this
is done is so that you can do easy turns in the game. For example, if you want the
Person to turn left, you just subtract 1 from the direction. Instead of requiring all
the code outside of this class to check to see if the new direction is —1, this handles
it for you. This adds 4 to that, which gives you direction 3. It works the same way in
the other direction too, which is what the modulo function is for. Anything larger
than 3 will be wrapped down to the 0-3 range.

The SetHealth Function

A player’s health can range from 0-100. It is important that it never goes outside of
these ranges if you assume that it will always be in there somewhere.

The function that sets the health of a player manages this for you:

void SetHealth(int p_health)
{

m_health = p_health;

if(m_health < 0)

m_health = 0;
if(m_health > 100)
m_health = 100;

}

If the health dips below 0, then it is automatically reset to 0, and if the health goes
above 100, then it is reset to 100 again.

The SetArmor Function

The function that sets the armor of the player is exactly the same:

void SetArmor(int p_armor)
{
m_armor = p_armor;
if(m_armor < 0)
m_armor = 0;
if(m_armor > 100)
m_armor = 100;

Team LRN

294 9. Tying It Together: The Basics

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Addlitem Function

This function adds an item to the inventory of the player.

void AddItem(Item* p_item)
{
m_inventory.Append(p_item);
if(m_currentweapon.Valid() == false)
{
m_currentweapon.Start();

}

The item is first appended to the end of the inventory list. After that, the function
checks to see if the current weapon iterator is valid. If the iterator is invalid, then
the Person didn’t have any items in the inventory. Now that it has one, you can set
the current weapon to the first item in the list (remember, this is because this sim-
ple game only allows weapon items in a Person’s inventory).

The NextWeapon and PreviousWeapon Functions

These functions move the weapon to the next or previous weapon in the list.

void NextWeapon()
{
m_currentweapon.Forth();
if(m_currentweapon.Valid() == false)
m_currentweapon.tnd();
}
void PreviousWeapon()
{
m_currentweapon.Back();
if(m_currentweapon.Valid() == false)
m_currentweapon.Start();
}

Both functions move the iterator and then check to see if it has been moved past
the end of the list. If so, then the iterator is moved back to the end that it passed.

The GetCurrentWeapon Function

This function returns a pointer to the current weapon in the player’s inventory.

Item* GetCurrentWeapon()
{

Team LRN

Making a Game 295

if(m_currentweapon.Valid())
return m_currentweapon.Item();
return 0;

}

The function makes sure that the iterator is valid first, and then it returns the item.
If the iterator wasn’t valid, then 0 is returned, meaning that the player doesn’t have
a current weapon.

The GetAttackTime Function

When the game wants to know when the last time the player has attacked, this func-
tion is called. However, this function does a little more than just return the last
time the player has attacked:

int GetAttackTime()
{

return m_Tastattack - m_attackmodifier;
}

It takes the time that the player last attacked and subtracts the attack modifier from
it. If this value is positive, it has the effect of making the computer think that the
player attacked earlier than he did. A positive attack modifier makes the player
attack faster.

Likewise, a negative attack modifier would make the player attack slower.

The Attack Function

This is the function that is called whenever you want the player to attack another

player:

void Attack(Person* p_person)
{
Item* weapon = GetCurrentWeapon();
p_person->GetAttacked(weapon->GetStrength());
}

The function gets the current weapon from the Person (note that it assumes that
the weapon will be valid; you may want to add some error checking here) and tells
the target that it was attacked with the strength rating of the weapon. Though this
is just a simple system, it does its job. In more complex systems, you may want to
add random numbers to the damage (see Chapter 22, “Random Numbers,” for
more information on random numbers) or modify the damage based on the
strength of the player or any other system you can think of.

Team LRN

296 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

This is also a good point to add death detection. If you killed the Person, then you
might want something to happen to the current Person, such as gaining experience
points.

The GetGraphic Function

This function retrieves the current graphic of the player, based on the time and the
direction he is facing.

SDL_Surface* GetGraphic()

{
int index = (SDL_GetTicks() % 1000) * FRAMES;
index /= 1000;
return m_graphicsim_direction][index];

}

This makes the animation loop through once every second. First, the current time
(in milliseconds) is retrieved via the SDL_GetTicks function, and then it is moduloed
by 1,000. You now have a number from 0-999, which is then multiplied by the
number of frames. After that, the number is divided by 1,000, which should give
you the current frame number.

For example, if you have four frames and the timer returns 12,430, then this is
what it does: 12,430 is moduloed by 1,000, giving you 430, which is then multiplied
by 4. This gives you 1,720. Now the number is divided by 1,000, which gives you
1.72. Because the division is an integer division, the decimal is chopped off, which
gives you 1 as the frame number.

Finally, the graphic in the 2D array using the current direction and the current
frame is returned.

The GetAttacked Function

This is the function that is called whenever a player is attacked by another player.
This function takes a damage value as a parameter:

void GetAttacked(int p_damage)
{

int newdamage = (p_damage * (100 - m_armor)) / 100;
SetHealth(GetHealth() - newdamage);
SetArmor(GetArmor() - p_damage);

}

I'm not going to spend much time explaining this function because it doesn’t
really have much to do with the data structures. Basically, if you have 80 armor,

Team LRN

Making a Game 297

N — r—= L= —Lr"]_

then the amount of damage done to you is reduced by 80 percent. Then the armor
is degraded by the amount of damage.

The IsDead Function
A person is dead if he has no health:
bool IsDead()

{
return (m_health == 0);

The PickUp Function

This is the function that is called whenever a person picks up an item from the map.

void PickUp(Item* p_item)
{
if(p_item->IsArmor())
{

First, it checks to see if the item is armor. If so, then the person shouldn’t actually
pick it up, but instead should have the strength of the armor added to the person’s
armor.

SetArmor(m_armor + p_item->GetStrength());
delete p_item;
return;

}

Once that happens, the armor is deleted, and the function exits.

AddItem(p_item);
}

If the item isn’t armor, then it is just added to your inventory.

Creating People and Items

Earlier, I used two functions in the code, MakeItem and MakePerson. These functions,
when called, will produce an item or a person, copying them from an array of tem-
plates (not to be confused with the C++ template feature).

Team LRN

298 9. Tying It Together: The Basics

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

Figure 9.20 shows how this is accomplished.

LT L

X

copy person
>

person = MakePerson(1,0,0,0): > %

X

'ﬁl_'_nl_u_,—.:_

Figure 9.20

This shows how the
MakePerson
function works. It
copies a Person out
of the template array
and returns the new
Person.

There is an array filled with three Persons, and whenever you ask for a Person of
type x, it looks up the Person at index x in the array, copies that Person, and returns

it. It works the same way with the Items.

Here is the code for the MakeItem function and the global array that is associated

with it:

Item g_itemtemplates[16];

Item* Makeltem(int p_type, int p_x, int p_y, int p_cell)

{

I[tem* i = new Item;

*j = g_itemtemplates[p_typel;
i->SetX(p_x);

i->SetY(p_y);

i->SetCell(p_cell);

return i;
}

This game demo limits the number of
item templates to 16; if you want more,
you should make the array larger.

This creates a new Item, copies the Item
over from the template, and sets the x and
y coordinates and then the cell number.

Team LRN

Making a Game 299

N — r—= L= —Lr"]_

The MakePerson function is very similar, with one major difference:

Person g_persontemplates[16];

Person* MakePerson(int p_type, int p_x, int p_y, int p_cell)
{
Person* p = new Person;

*p = g_persontemplates[p_typel;
p->SetX(p_x J;

p->SetY(p_y)

p->SetCell(p_cell);

p->AddItem(MakeItem(8, 0, 0, 0));
return p;

}

This function creates a Person, but it also gives the Person a knife (Item number 8).
Yes, this is a crude hack, but I couldn’t think of an easier way to do it that would
not have taken another page of code.

Game Logic

Finally, the game engine is complete. However, you don’t quite have a game yet.
Now you need to create the game controlling logic, which controls your engine. All of
the code for this part is stored in the file g0901.cpp.

Data and Initialization

The first thing you need to do is declare the data and initialize it. Here are the
global constants:

const int TILES = 24;
const int ITEMS = 14;
const int PEOPLE = 3;

const int MOVETIME = 750;

There are 24 tiles, 14 items, and 3 people. Likewise, each Al-controlled person can
move one square every 750 milliseconds.

After that, there are the global variables. There are a few graphics:

SDL_Surface* g_tiles[TILES];
SDL_Surface* g_items[ITEMS];

Team LRN

300 9. Tying It Together: The Basics

SDL_Surface* g_people[PEOPLEI[DIRECTIONSILFRAMEST;
SDL_Surface* g_statusbar;

SDL_Surface* g_verticalbar;

SDL_Surface* g_youlose;

These store the tile graphics, the item graphics, the people graphics, the status bar,
another vertical status bar, and the graphic that is displayed when you die. How
boring.

Map* g_currentmap = 0;

Person* g_currentplayer = 0;
Array<Person*> g_peoplearray(128);
int g_peoplecount;

bool g_dead = false;

bool g_cheat = false;

Now, here are the game-logic related variables. There is a pointer to the current
map and a pointer to the current player, as well as an array of people. This array
will be used later on, when Al is computed. It stores pointers to all of the people
on the map for easy access. There is also an integer that keeps track of how many
people are in the array.

Then there are two booleans, which have to do with the current game state. At the
start, the player is neither dead nor cheating, so they are both false.

The Init function that initializes everything is somewhat long, so I will cut out most
of the repetitive things:

void Init()
{

int x;

int d, f;

g_tiles[0] = SDL_LoadBMP("grassl.bmp");
// ... lots of bitmap Toading

The function declares three looping variables and then starts loading the tile
bitmaps. The item and person bitmaps are also loaded into their appropriate
arrays.

In the next part, the item templates are set up:

for(x = 0; x < ITEMS; x++)

{
g_itemtemplates[x].SetType(x);
g_itemtemplates[x].SetGraphic(g_items[x]);

Team LRN

Making a Game 301

N — r—= L= —Lr"]_

for(x = 0; x < 6; x++)

g_itemtemplates[x].SetBlock(true);
}
g_itemtemplates[6].SetSpeed(1500);
g_itemtemplates[6].SetStrength(15);
// ... Tots of weapon loading ...
g_itemtemplates[12].SetStrength(30);
g_itemtemplates[12].SetArmor(true);
// ... more armor Tloading ...

First, the function goes through each item in the template and assigns it a type
number. Then it tells each item which graphic it will be using by loading the
graphic pointers from the g_items array.

After that, it goes through the first six items and tells them that they can block the
path. The first six items in this demo are wall segments.

Finally, it goes through and sets the speed and strength of all the items and the
strength of all the armor.

The same thing happens with the people templates:

for(x = 0; x < PEOPLE; x++)
{
g_persontemplates[x].SetPersonType(x);
for(d = 0; d < DIRECTIONS; d++)
{
for(f = 0; f < FRAMES; f++)
{
g_persontemplates[x].SetGraphic(g_people[xI[dI[f]l, d, f);

}

g_persontemplates[1].SetArmor(10);
g_persontemplates[1].SetHealth(20);
g_persontemplates[1].SetAttackModifier(-500);
g_persontemplates[2].SetArmor(15);
g_persontemplates[2].SetHealth(30);
g_persontemplates[2].SetAttackModifier(-300);

Team LRN

302 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The templates for people 1 and 2 are modified, but not person 0. Persons 1 and 2
are made to be much weaker than you are, and slower as well.

SetNewMap("default.map");

Finally, the map is loaded using the default.map file. This function will be shown
later on.

The LoadMap Function

This function will take a filename, load the file, create a new map from that file,
and return it.

Map* LoadMap(char* p_filename)

{
TileMap* t = new TileMap(64, 64, 2, g_tiles);
t->LoadFromFile(p_filename);
return t;

}

In this game demo, you know that the
map file format contains only 64 X 64 g — — ?

X 2 TileMaps, but you don’t want to
expose the actual game logic to that
fact. So this function is created to hide
the fact that it is loading a tile map. The
reasons for this function become per-
fectly clear in Chapter 19.

So the function creates a new TileMap,
loads the map from file, and finally
returns the TileMap.

]

Whenever you want to switch maps in the program (which doesn’t actually happen
in this demo, but you should always allow for the possibility) or load the map in the
beginning, you should call this function.

The SetNewMap Function

This function will load a new map from file, delete the current map (if any), and
set the current player and map.

void SetNewMap(char* p_filename)
{

int x;

Team LRN

Making a Game 303

Map* newmap;
newmap = LoadMap(p_filename);

The new map is loaded using the LoadMap function.

g_peoplecount = 0;
for(x = 0; x < newmap->GetNumber0fCells(); x++)
{
if(newmap->GetPerson(x) !=0)
{
AddPersonToArray(newmap->GetPerson(x));

}

Now, the g_peoplecount variable is reset to 0, which means that the global people
array is now empty. Even if it has people in it already, it is assumed that they are
contained in the current map. When the current map is deleted, all of these peo-
ple will be deleted anyway.

So after the count is reset to 0, the function goes through every cell in the new
map and puts all of those people into the people array.

if(g_currentmap != 0)
{
delete g_currentmap;
}
g_currentmap = newmap;
g_currentplayer = newmap->GetViewer();
}

Finally, the program checks to see if there is a current map, and if so, it is deleted.
Then the current map is set to the new map, and the current player is set to the
current viewer of the new map.

Miscellaneous Functions

The game uses a bunch of miscellaneous functions to accomplish things. However,
none of them are really important for knowing how to store and design your game
data, so I am leaving them out of the book. If you are interested in their implemen-
tations, they are fully commented and can be found in the g0901.cpp file. These
functions are DrawStatus, which draws the status bar and the inventory on the
screen, AddPersonToArray, which adds a person to the global person array (how
exciting!), and Distance, which calculates the distance between two objects.

Team LRN

3049 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Now on to the more interesting functions!

The Artificial L]
Intelligence

Artificial Intelligence (AI) hasn’t been dis-
cussed at all in this book up until this
point. Some of the later chapters :|
(Chapters 15, “Game Trees and
Minimax Trees,” and 18, “Using Graphs
for Al: Finite State Machines,” specifi-
cally) have a lot to do with Al, so I don’t
want to show you anything too complex
right now. This demo will just use a sim-
ple (and somewhat stupid) Al for the
computer characters.

Here is the function that performs the
Al calculations for all the people in the
game:

void PerformAI(int p_time) :I
{

int 1;

float dist; [] []

int x = g_currentplayer->GetX();
int y = g_currentplayer->GetY();
int direction;

This function needs to know the current time of the game to figure out what the
people should be doing, so that is passed in as a parameter.

Then, five local variables are defined.

for(i = 0; i < g_peoplecount; i+t)

{
if(g_peoplearray[i]l != g_currentplayer)
{

The function loops through every person in the global person array and then
checks to see if that person is the current player or not. If it is the current player,
then the function does nothing. (You don’t want the computer to calculate Al for
the player!) If not, then it continues:

Team LRN

Making a Game 305
__JEr—jjrf1_____1_J£E§__7=== r_____EL_J E:::——1__I——ﬂ——14——J1r_“1__EEEEEE___—I___I_L_Jm_J_l_r_

direction =
g_currentmap->GetClosestDirection(g_peoplearrayl[i],
g_currentplayer);

This code segment determines which direction the Al needs to move to get closer
to the player.

dist = Distance(g_peoplearray[il, g_currentplayer);
Then the function calculates the distance from the Al to the player.

if(dist > 1.0f && dist <= 6.0f &&
p_time - g_peoplearray[i]l->GetMoveTime() > MOVETIME)

g_peoplearray[i]->SetMoveTime(p_time);

g_peoplearray[i]->SetDirection(direction);

g_currentmap->Move(g_peoplearray[i], direction);
}

If the distance is less than 6 tiles and greater than 1 tile, then the Al needs to move
closer to the player. Also, the function checks to see if the right amount of time has
passed since the Al has last moved. If so, then the Al is okay to move. The move
time of the Al is reset to the current time, the direction the Al is facing is changed
to face the direction he is moving, and finally, the Al is actually moved.

if(dist <= 1.0f)

{
g_peoplearray[i]->SetDirection(direction);
Attack(g_peoplearray[i]l);

}

If the distance is less than or equal to 1, then the Al is in range to attack the player,
so the Al turns toward the player and attacks.

The Attack Function
This is the function that is called in the game whenever a person initiates an attack.

void Attack(Person* p_person)

{
int time;
int difference;

Team LRN

306 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

int cell;
[tem* weapon;
Person* person;

The person that is passed in is the person that is attacking. The function will deter-
mine what he is attacking later.

time = SDL_GetTicks();
difference = time - p_person->GetAttackTime();
weapon = p_person->GetCurrentWeapon();

The current time and the amount of time since the person last attacked are calcu-
lated. Then the weapon of the person is retrieved.

if(difference >= weapon->GetSpeed())
{
cell = g_currentmap->GetCel1Number(p_person->GetCell(),
p_person->GetDirection());
person = g_currentmap->GetPerson(cell);

If the time between the last attack and the current time is more than or equal to
the speed of the weapon, then the person can attack. So the cell that the person is
facing is retrieved, and the function then tries to get a pointer to the person in that
cell.

if(person !=0)

{
p_person->Attack(person);
p_person->SetAttackTime(time);

}

If there was a person in that cell, then the first person attacks him, and his attack
time is reset. If there wasn’t, nothing happens.

The Pickup Function

This function is called whenever a person wants to pick up something from
the floor.

void PickUp(Person* p_person)

{
Item* i = g_currentmap->GetItem(p_person->GetCell());
if(i 1=0)

Team LRN

Making a Game 307

N — r—= L= —Lr"]_

p_person->PickUp(i);
g_currentmap->SetItem(p_person->GetCell(), 0);

}

The function gets a pointer to the item in the cell that the person is in, and if an
item exists, then the person picks it up, and the pointer in the cell is cleared.

The CheckForDeadPeople Function

Finally, this is the last independent function in the game logic. This function goes
through all of the people in the person array and checks to see if any of them are
dead. If so, then they are removed from the game.

void CheckForDeadPeople()
{
int i;
Person* p;
for(i = 0; i < g_peoplecount; i+t)
{
if(g_peoplearray[i]->IsDead())
{

The function scans through and looks for any people that are dead.

if(g_peoplearray[i]l == g_currentplayer)
{

g_dead = true;

return;
}

If the person who died is the current player, then the game is over, so the g_dead
flag is set, and the function returns.

p = g_peoplearray[il;

g_peoplearray[i] = g_peoplearray[g_peoplecount - 11;
g_peoplecount-;

i

g_currentmap->SetPerson(p->GetCell(), 0);

delete p;

Team LRN

308 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

If the dead person isn’t the current player, then an Al was killed. The function
saves a pointer to the dead person and then uses the fast remove algorithm from
Chapter 3, “Arrays,” to move the last person down into the index of the dead per-
son. The function then sets the person pointer in the cell he was in to zero and
deletes the person.

The Game Loop

And at long last, here is the game loop. There is a lot more code to this section
than I will paste here; however, a lot of it doesn’t really have much to do with the
overall structure of the game. And it’s messy too. Most of the ugly code will be com-
mented out in the next listing:

Init();
while(1)
{
// if user presses '[', move to the previous weapon
g_currentplayer->PreviousWeapon();
// if the user presses ']', move to the next weapon
g_currentplayer->NextWeapon();
// if the user presses 'ENTER', try to pick up an item
PickUp(g_currentplayer);
// if the user presses 'SPACE', try to attack a person
Attack(g_currentplayer);
// if the user presses 'C', toggle the cheat mode
g_cheat = !g_cheat;

After all of that code, the main loop tries to figure out if you’re moving in a
direction:

int direction = -1;

// if the user pressed 'UP'
direction = 0;

// if the user pressed 'DOWN'
direction = 2;

// if the user pressed 'LEFT'
direction = 3;

// if the user pressed 'RIGHT'
direction = 1;

By this point, if the user pressed one of the four direction keys, direction will be a
value from 0 through 3. If not, then it will be —1.

Team LRN

Making a Game 309

N — r—= L= —Lr"]_

if(direction != -1)
{
g_currentplayer->SetDirection(direction);

g_currentmap->Move(g_currentplayer, direction);
}

This checks to see if the user wants to move, so it sets the direction of the player
and then moves him in the right direction.

if(g_dead == false)
{
PerformAI(SDL_GetTicks());
CheckForDeadPeople();
if(g_cheat == true)
g_currentplayer->SetAttackTime(0);
if(g_currentmap != 0)
g_currentmap->Draw(g_window, WIDTH/2, HEIGHT/2);
DrawStatus();
}

At this point in time, the loop checks to see if the user is dead or not. If he’s not
dead, then it performs the Al calculations at the current time. After the Al is per-
formed, the loop checks for dead people.

The next section checks to see if the player is cheating. The cheat mode in this
game lets you attack instantaneously, so it sets the attack time of the player down to
0, which makes the computer think that you’ve never attacked.

If the current map exists, then it is drawn on the screen, and finally, the status bar
is drawn as well.

else
{
SDLB1it(g_youlose, g_window, 0, 0);
}

If the player is dead, then nothing happens except that a screen appears that says
“You lose.” That’s all there is to the game!

Playing the Game

It took quite a bit of code to actually get to this point, so now you should enjoy it:
Sit back, relax, and play the delightfully simple game.

Team LRN

310 9. Tying It Together: The Basics SERNS

There are a few commands in this game. First, to move around, you must use the
four arrow keys on your keyboard. Whenever you are on top of an item, you can
press the Enter key to pick it up.

When you are facing an enemy and want to attack him, press the spacebar. Your
attack meter on the right of the screen will reset to zero and slowly go up to full
again when you can attack again. If you want to switch what weapon you are cur-
rently using, press either the left square bracket ([) or the right square bracket (])
on your keyboard.

Escape exits the game.

Figure 9.21 shows a screenshot of the game in action.

Figure 9.21

Here is a screenshot
from the game.

Armour

Unfortunately, due to my slim deadlines, I was unable to obtain animated direc-
tional sprites for all three characters in the game, so only the main player will have
full sprite animations. The other characters will have a large arrow pasted on them
to indicate which direction they are facing, as you can see in the figure.

Game 2—The Map Editor

Now, you must be tired after reading that huge section about designing the game.
Luckily, the map editor is much easier to program (you can take a sigh of relief now).

Team LRN

Making a Game 31

N — r—= L= —Lr"]_

The map editor is Game Demonstration 9-2, which is on the CD in the directory
\demonstrations\chO9N\Game02 - Map Editor\. Because the map editor’s primary
purpose is to load, edit, and store maps, I focus primarily on these areas. The edi-
tor has some extra graphics features (such as the mini-map and current-tile high-
lighting), but those are included only as a bonus. If you are interested in them, you
can view the source on the CD, which is all commented, of course.

The Map

Earlier, I showed you how the data is stored on disk. It is stored in a 3D array with
dimensions of 64 X 64 X 4, with each layer stored as shown in Figure 9.17.

The bottom two layers are the tiles, the third layer stores the items, and the fourth
layer stores the people on the map. Here is the 3D array that stores the map infor-
mation:

Array3D<int> g_map(64, 64, 4);

The map editor is like a drawing application; you select a tile to draw, and wherever
your mouse is, if the button is down, a tile is drawn. So that you can do this, the
entire map will be displayed on the screen all the time.

The Drawing Information

There are a few variables needed to store information about which tile is being
drawn:

int g_currenttile = -1;
int g_currentlayer = 1;

These two variables determine which tile should be drawn and which layer it
should be drawn on. The variables are set to start off by clearing tiles on layer 1
because -1 is the clear tile value. Layer 0 is the bottom tile layer, 1 is the overlay tile
layer, 2 is the item layer, and 3 is the person layer.

There is one other important variable:
bool g_mousedown = false;

This remembers whether the mouse button is down or not. Whenever it is down
and the mouse moves, you want to draw a tile on the map.

Team LRN

312 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Tile Drawing

As I have said before, whenever the mouse is moved around, a tile is drawn on the
map:

SDL_GetMouseState(&x, &y);

x=x/ 8;

y=y/ 8;

if(x < g_map.Width() && y < g_map.Height()
&& g_mousedown == true)

g_map.Get(x, y, g_currentlayer) = g_currenttile;
}

The mouse coordinates are retrieved into x and y. Because the entire map is drawn
on the screen at once, the tiles have been shrunken down to 8 X 8 tiles, so you just
divide the coordinates by 8 to get the coordinates of the tile in the map.

After that, it checks to see if the tile coordinates are valid and if the mouse button
is down. If so, then the tile at those coordinates and the current layer is set to the
tile that is being drawn. It’s as simple as that.

Saving the Map

Saving the map is an amazingly simple process using the C-standard library file 10
functions (see Chapter 3 and Appendix A):

void Save()
{
FILE* f = fopen(g_filename, "wb");
if(f=20)
return;
fwrite(g_map.m_array,
g_map.Depth() * g_map.Height() * g_map.Width(),
sizeof(int),
f);
fclose(f);
}

The function opens up a file using the global g_filename string and returns if the file
could not be opened. Then, the contents of the file are read into the array of g_map.

The data stored on disk is in integer form (4 bytes), and there are 64 X 64 X 4 cells.
This means that the file will take up 65,336 bytes on disk, or exactly 64 kilobytes.

Team LRN

Making a Game 313

Loading the Map

Loading the map is just as easy as saving the map.

void Load()

{
FILE* f = fopen(g_filename, "rb");
if(f==20)
return;
fread(g_map.m_array,
g_map.Depth() * g_map.Height() * g_map.Width(),
sizeof(int),
f)
fclose(f);
}

The file is opened and then read into the array so that you can edit it.

Using the Editor

The editor is pretty simple to use. I've included a small tileset to be used with the edi-
tor, and it includes grass, snow, and stone base tiles, as well as two sets of snow overlay
tiles and walls, items, and players. Figure 9.22 shows a screenshot of the editor

Figure 9.22

Here is a screenshot

from the map editor.
Snowa
Snow3
Wall

el tikis

dal dam

del player

Higghligght Current

dafaull. map

On the upper-left side of the screen is the entire map. Each tile is represented as
an 8 X 8 square, so the entire thing can fit.

Team LRN

3149 9. Tying It Together: The Basics

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Below the map is the palette of tiles. Only eight tiles can be displayed at a time, so
the tiles you can draw are arranged in groups. You can select which group of tiles
you want to draw from by using the buttons on the right-hand side of the map.

After you select the group you want to draw from, a new palette appears on the bot-
tom. Click on one of the tiles in that palette to choose it as the current tile. A red
outline will appear around the tile, and now you can move the mouse over the map
and start drawing!

You can type the name of a file to load in the box on the bottom of the screen
and then either load that file into the current map or save the current map to
that filename.

The final feature is the check box on the right side of the screen. If you click that,
then every tile that is the same as your selected tile is drawn in blue on the map.
This allows you to easily see where items are on the map.

Play around with it; I've included a map file called default.map.

Conclusion

This was one huge chapter, wasn’t it? That is because games are a huge topic. Just
that simple little game demo took 80 percent of this chapter to explain, and it is
nowhere near as complex as some games in the stores!

Hopefully, this chapter has taught you how to design your classes better so that you
can make your games much more flexible than you could before.

You need to keep your eyes open for places where you should use classes and
inheritance. These can be the most important tools you have. Don’t worry if you
don’t get the hang of them right now; using inheritance is quite complex, and it
took me a while to understand it, too. If you feel that you need to know more
about inheritance and other complex object-oriented subjects, tons of books out
there cover these subjects.

One more thing you should notice is the lack of any RTTI in the game demos in
this chapter. There wasn’t any need for them, which usually tells you that your
design is pretty good. Remember: Don’t use RTTI unless it is absolutely necessary.

This chapter was large because it covered material about how to design classes to
store your game. The chapters that expand upon the demos from this chapter
(Chapters 16, 19, and 24) will be shorter because the base is now complete, and
these chapters will be adding features relating to the structures in the sections of
the book they were in.

Team LRN

PART THREE

<ECURSION
AND T REES

—f'—'_‘—_|_,_l—|]_,1_r,—.'_z'. : g S o T e R I e
L M e e e e

10

12

13

1<

15

16

Recursion

Trees

Binary Trees

Binary Search Trees

Priority Queues and Heaps
Game Trees and Minimax Trees

Tying It Together: Trees

e ¢W“:

Team LRN

‘—‘JLLJ-—‘_‘[—' ==L — M= —] l"J‘zﬁ—’lﬂi

CHAPTER 10

NECURSI1ON

318 10. Recursion

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

p until now, you’ve only learned about the simple linear data structures.

While they are the most common structures out there, they can be limiting
sometimes. With this part of the book, I introduce you to some new concepts in
data structures: recursive data structures. I have no doubt that the mention of that
word has caused some of you to cringe in fear; recursion is a difficult concept to
learn for some people.

Recursion is not some evil thing invented by CS professors to punish you; it’s a
really powerful tool that you can use to solve some problems.

In this chapter, you will learn

= What recursion is
= What the Towers of Hanoi Puzzle is
= How to solve the Towers of Hanoi Puzzle using recursion

= How to think recursively

What Is Recursion™*®

Recursion is a very difficult concept for some people to understand. I'll just throw
the basic definition of recursion out to you right now: Recursion is the ability of a
function to call itself.

Now, that doesn’t seem so difficult, does it? Years ago, in the bad old days, com-
puter languages didn’t support recursion. See the section called “The Stack” in
Appendix B, “The Memory Layout of a Computer Program,” to find out why.

The reason most people don’t understand recursion is not because it is difficult to
understand, but that it is difficult to apply. To properly understand recursion, you
have to understand why you should use it, not how it is used.

The problem is that there really aren’t any simple problems that demonstrate how
recursion can be used. I see a lot of books that use recursion to calculate things
like the Fibbionacci series (it’s basically a sequence that looks like this: 1, 1, 2, 3, 5, 8,
13,... you add the previous two numbers to arrive at the next in the sequence) or
to calculate a power, x'. The truth of the matter is that both of these common

Team LRN

What Is Recursion? 319

N — r—= L= —Lr"]_

examples can be solved easier, faster, and more cleanly using iteration. Iteration is
just a fancy way of describing a for-loop.

So what kinds of problems are better solved using recursion? As you’ll see in
Chapter 20, “Sorting Data,” the fastest sorting algorithm known to us is recursive.
You’ll also see countless examples throughout Part III of the book, because every
structure used in this part is recursive. You’ll even see recursion in action in

Chapter 17, “Graphs.”

You cannot escape recursion. Sure, you can ignore it and pretend that you don’t
need to know it, but you’re missing out on a huge tool in game programming.
Most Artificial Intelligence (AI') algorithms are recursive, and Al is one of the most
popular fields in game programming these days.

A Simple Example: Powers

As I stated previously, you can use recursion to calculate the answer to the mathe-
matical formula: x’. The very first thing you need to do is try to find out how the
function can be represented in terms of itself. Here is a simple example: the first
few powers of 2, 3, and 4. They are listed in Table 10.1.

10.1 The Powers of 2,3, and 4

Power (y) 2’ 3 4
0 I I I
I 2 3 4
2 4 9 16
3 8 27 64

Look at the row where yis 0. Note how every entry is 1. This will be the base case of
the recursive function. Whenever the function detects that yis 0, it will return 1.

This is the function so far:

int Power(int x, int y)
{
if(y=20)

Team LRN

320 10. Recursion

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

return 1;

}

This version of the function isn’t really functional at this point; it only works with a
power of 0.

Now you want to look at the function and see how it can be represented in terms of
itself. Look at the second row in Table 10.1, and see if you can come up with a rela-
tion with the first row.

If you think about the function in terms of itself, you can see that the power of 1 is
the same as x * Power(x, 0), whichis x* 1. S0, 2'is2 * 1,and 8'is 3 * 1, and so
forth.

For further proof, go down one more level, and look at the third row. You can just
as easily represent the value of x* like this: x * Power(x, 1), which expands to x *
(x * Power(x, 0)).Because you know that Power(x, 0) is equal to 1, you can
see that the entire thing compresses down to x * x * 1, or just x * x, which is the
same thing as x°.

LT L
So, when yis not equal to 0, then the
value of the function is x * Power(x, y
- 1). Here is a listing of the final func-
tion:
int Power(int x, int y)
{
if(y ==0)
return 1;
else
return x * Power(x, y - 1);
J 1 1

The Towers of Hanoi

I will demonstrate more advanced recursion to you by using the most classic exam-
ple. If there is a book that discusses recursion without showing you the Towers of
Hanoi problem, then it is incomplete in my opinion.

The Towers of Hanoi was a popular children’s puzzle, invented over 100 years ago
by a mathematician by the name of Edouard Lucas. In the game, there are three
pillars, and any number of discs is placed on the leftmost pillar. Figure 10.1 shows
an arrangement with three discs. Note that all the discs are a different size. The

Team LRN

_'=.'_LU—|J—I—|—'F

The Towers of Hanoi 321

=T 1

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

pillars are assigned the numbers 1, 2, and 3, and the discs are assigned the letters a,

b, and c.

— — Figure 10.1

This is a simple
Towers of Hanoi
setup with three discs
on the first pole.

The Rules

The goal is to move the discs around so that the tower on Pillar 1 is moved to Pillar

3. There are two rules:

® A larger disc can never be placed on top of a smaller disc.

® You can only move one disc at a time.

Solving the Puzzile

So how would you go about solving the game in Figure 10.1? It turns out that this
particular game needs seven moves to be solved. Here they are:

1.

& Stk 0N

7.

Move a to 3.
Move b to 2.
Move a to 2.
Move ¢ to 3.
Move ato 1.
Move b to 3.

Move a to 3.

Figure 10.2 shows the first three steps of the process. Essentially, they move the top

two discs onto Pillar 2.

Team LRN

322 10. Recursion

Figure 10.2

step 1
This figure shows
steps 1, 2, and 3.

step 3

==
1
="
1
1
1
1
1
_
1
.
[

Now take a look at Figure 10.3, which shows Step 4.

step 4 Figure 10.3

This figure shows
[]] step 4.

1 2 3

Finally, take a look at Figure 10.4, which shows the last three steps: 5, 6, and 7.

step 7 Figure 10.4

This figure shows
]] steps 5, 6,and 7.
step 5 step 6 v

Team LRN

The Towers of Hanoi 323

N — r—= L= —Lr"]_

Well, that wasn’t so difficult, was it? What happens when you add a fourth disc to
the puzzle, though? Four discs require 15 moves to solve, and it’s more difficult if
you don’t know the trick to solving it.

Now that you know how the basic puzzle works, though, you can move on to trying
to solve it with an algorithm.

Solving the Puzzle with a
Computer

I want you to sit down (if you’re not already doing so...) and think about this prob-
lem for a few minutes. I want you to think about how you would create an algo-
rithm to solve The Towers of Hanoi. If you already know the answer, you can skip
the rest of the chapter.

Keep thinking; I'll wait right here until you come back.

Okay, time’s up! Have you got an answer for me? Probably not. That’s because mak-
ing an iterative solution to this puzzle is a very difficult thing to do.

Instead of iteration, you need to use recursion to solve the puzzle. Take a look back
at Figures 10.2, 10.3, and 10.4. I split the figures up that way for a reason. What
happens if, instead of looking at the movements as seven commands, you look at
them as if they were three commands?

1. Move Discs @ and b onto Pillar 2 (Figure 10.2).

2. Move Disc ¢ onto Pillar 3 (Figure 10.3).

3. Move Discs a and b onto Pillar 3 (Figure 10.4).
An iterative solution to the problem involves itself at the lowest level; it will look at

the positions of every disc and figure out which disc to move and where to move it.
That is very difficult to do.

What I've done is split the three-disc problem into three different parts instead of
seven. This is a recursive problem, where you condense the problem into this one
small algorithm:

If you want to move n discs:

1. Move the top n-1 discs to Pillar 2.
2. Move the n* disc to Pillar 3.
3. Move the n-I discs from Pillar 2 to 3.

Team LRN

324 10. Recursion

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Well, that’s easy to say, but the rules say you can only move one disc at a time,
right? You can think of moving the top n-I discs to Pillar 2 as the same problem, just
with one less disc!

1. Move the top n-2 discs to Pillar 3.

2. Move the n-1 disk to Pillar 2.

3. Move the n-2 discs from Pillar 3 to 2.

Wait a moment for that to sink in...

Remember in The Matrix when Neo said, “Whoa...”? That was my exact reaction
when I first understood this. This is a very cool solution.

Let me expand this to four discs now. How would I solve four discs? I would move
the top three discs to Pillar 2, move the bottom disc to Pillar 3, and then move the
top three discs to Pillar 3. Figure 10.5 shows this process.

step 1 Figure 10.5

Solving for four discs

involves moving the
top three discs to
Pillar 2, the bottom
disc to Pillar 3, and
the top three discs to
Pillar 3.

step 2

In Figure 10.5, the top three discs are in a box. The algorithm doesn’t care how
many discs are in the box, it just moves them all to Pillar 2. The algorithm then
moves the bottom disc to Pillar 3 and then moves the contents of the box onto
Pillar 3.

Take a look at the psuedocode algorithm:

Hanoi(int n, int start, int destination, int open)
Hanoi(n - 1, start, open, destination)
Move(n, start, destination)
Hanoi(n - 1, open, destination, start)

The algorithm takes four parameters: the number of discs to move, the number of
the starting pillar, the number of the destination pillar, and the number of the
open pillar.

Team LRN

The Towers of Hanoi 325

N — r—= L= —Lr"]_

The algorithm recursively moves the top n-I discs from the starting pillar onto the
open pillar, moves the bottom disc from the starting pillar onto the destination pillar,
and then moves the top n-I discs from the open pillar onto the destination pillar.

Terminating Conditions

The algorithm is missing one thing, though: It doesn’t end. This algorithm, as it is
now, will keep calling itself over and over again. This is a very bad thing because
every time the function is called, it pushes more data onto the stack. (See
Appendix B.) Eventually, the stack will run out of room, and the program will
crash. This is called a stack overflow.

So you need to add a terminating condition, which tells the function that it is done
and shouldn’t call itself anymore. The easiest way you can do this is to check to see
if nis 0. Obviously, if nis 0, then the function isn’t supposed to move any discs and
should exit out. The improved function looks like this:

Hanoi(int n, int start, int destination, int open)
if(n I=0) then
Hanoi(n - 1, start, open, destination)
Move(n, start, destination)
Hanoi(n - 1, open, destination, start)

Example 10-1: Coding the Algorithm
for Real

This is Example 10-1, and can be found on the CD in the directory
\examples\ch10\01 - Towers of Hanoi\.

Now, you’ve reached the point where you should (hopefully) understand the solu-
tion. That huge complicated puzzle is reduced to only nine lines of code! Isn’t that
neat?

void Hanoi(int n, int s, int d, int o)
{
ifCn>0)
{
Hanoi(n-1, s, o, d);
cout << "Moving " << n K" from " KK s KK " to " KK d <K endl;
Hanoi(n-1, o, d, s);

Team LRN

326 10. Recursion

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Instead of actually storing the discs in a
data structure somewhere and moving LT LT

them around, this algorithm just prints CAUTION
out the moves that are made.

Do not run this example with more
Here is how you would call the function: than 16 discs unless you want to wait
a very long time for it to complete.
This is because the number of

This says: Move four discs from Pillar 1 moves made in the Towers of Hanoi
onto Pillar 3, where Pillar 2 is empty. problem is 2"-1. If n is 16, it will move
the discs 65,535 times. It needs twice
as many, 131,071 moves, to solve the
problem for 17 discs!

Hanoi(3, 1, 3, 2);

Example 10-1 asks you to enter the
number of discs you want to solve for
and then runs the Hanoi function until
it is solved. 1 1

Figure 10.6 shows a screenshot from the example. The screenshot shows the moves
needed to solve for four discs. If you’re up to it, you can draw it on paper to verify it.

B C:\Documents and SettingsVAll Users\Documents\Data Structures\CD\examples... _ [_J x Flgure 10.6

Enter number of : | Here is a screenshot
from 1
from
from
from
from
from
from
from
from
from
from
from
from
Houing 2 from
Moving 1 from
Press Enter

—

from the Towers of
Hanoi example.

1
1
1
m
1
2
1

M = W

[¥
W Gl B G o o L) G PO RO = RO W PO

B =i =i P L RN = = L) G = B =

Team LRN

Graphical Demonstration: Towers of Hanoi 327

N — r—= L= —Lr"]_

Graphical Demonstration:
Towers of Hanoi

Just for fun, I've included a little graphical demonstration of the Towers of Hanoi.
If you're interested, it can be found on the CD in the directory
\demonstrations\ch10\demoO1 - towers of hanoi\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

If you browse the source, notice how I use queues to store the moves of the discs
and stacks to store the discs on the pillars. That is a nice application of some of the
structures you’ve learned about already.

Figure 10.7 shows a screenshot from the demo.

__ Towsers of Hanol Graphical Demansiration - h Figu re 10.7

Reset :Zscs ' Here is a screenshot
Sel Delay Delay (ms). from the Towers of
ﬁ nee Hanoi demo.
Solve

L

Team LRN

328 10. Recursion

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Table 10.2 shows the commands in the demo.

Table 10.2 Towers of Hanoi Commands

Button Function

Reset This resets the game and moves all the discs back to Pillar |.

Set Delay This sets the number of milliseconds that will pass between disc
movements.

Solve This causes the demo to solve the puzzle for you.

The demo can solve any number of discs from 1-10.

Conclusion

I hope this was a useful introduction to recursion for you. I have by no means cov-
ered every detail about recursion, but I've given you a first glimpse, which should
serve for now. As I progress through the book, I will show you more recursion
examples, and you should begin to get a grasp of why it is important.

The main thing I want you to get from this chapter is how to think recursively.
Essentially, you should try to see different problems in computer science in differ-
ent ways. The Towers of Hanoi is an interesting example because it is very difficult
to solve iteratively, but very simple to solve recursively.

Recursion is a simple concept. It tries to break down a problem into smaller parts,
essentially defining the problem as a larger problem that can be solved in terms
of itself.

Team LRN

TREES

CHAPTER I

5

330 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

y now, you should have a solid understanding of the basic data structures,

especially linked lists. You should also be fairly comfortable with the concept
of recursion. If you're not entirely confident of these two areas, go back and read
Chapter 6, “Linked Lists,” and Chapter 10, “Recursion,” because much of what I
show you in this chapter builds upon the concepts in those chapters.

You will probably not find any of the structures discussed from this point on in a
professional container library, such as STL. The reason is that these structures are
now becoming very specific; they are meant for a special purpose and cannot easily
be applied to general problems.

This chapter is about trees in the most general sense. Sometimes they are called gen-
eral trees, but I just refer to them as trees.

In this chapter, you will learn

® What a tree is

® How trees are recursive

® How to build a tree

® How to move around a tree

® How to build a tree class

® How to build a tree iterator class

= How to traverse a tree using a recursive function

= How to use trees to store plotline information in games

What Is a Tree?

Go outside and look at a tree. In case that is not possible, I provide you with a nice
diagram of a tree in Figure 11.1.

Figure 11.1

This is a tree.

Team LRN

What Is a Tree? 331

N — r—= L= —Lr"]_

The tree has several major components. The largest is the trunk, or ro0t, at the bot-
tom. Branches come off of the trunk, and they spread out into twigs, which have
leaves. The general structure of the tree spreads out from the root.

If you think about it, a branch is really nothing but a smaller root, right? So a twig
is nothing but a smaller branch as well. By looking at a tree in this manner, it is
easy to see how it is considered a recursive structure. Essentially, each level is a
smaller version of the level before it (except for the leaves).

Figure 11.2 shows how a tree container class looks. Instead of being drawn with the
root at the bottom, though, it is drawn with the root on top. It usually makes more
sense to draw them this way. Before I go any further, I'll introduce some terminology.
Table 11.1 shows the common names for nodes in a tree; it refers to Figure 11.2.

Figure 11.2
This is a tree when
it’s represented inside
a computer.
Table | 1.1 Tree Terminology
Term Description Example (Figure 11.2)
Root Topmost node in a tree Node a is the root.
Child A node below another in a branch b is a child of a.
Parent A node above another in a branch b is the parent of c.

Sibling A node on the same level as another c is a sibling of d.
Leaf A node with no children c and d are leaves.

Level Describes the height of a node ais at level 0, b is at level |,and c
and d are at level 2.

Subtree A tree contained within another tree b is the root of a subtree of a.

Team LRN

332 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Now that you know the terminology of a
tree, I can go into a little more detail. A
tree, like a linked list, is a node-based
structure. The nodes point to the next
node in the structure. However, a linked
list points to only one node, whereas a
tree node can point to any number of
children.

The Recursive Nature of Trees

Trees are considered a recursive data structure because trees are said to contain
themselves. The last entry in Table 11.1 gives you a brief glimpse into this nature:
Every child of a tree is a tree on its own. Figure 11.3 shows an example.

Figure 11.3

Here is a tree that
demonstrates the
recursiveness of
trees; nodes b and c
are trees themselves.

There are 3 nodes labeled in this tree: a, b, and ¢. Node a is the root of the entire
tree. However, if you look a little lower, you can see that node b is the root of a
smaller tree, and so is node c.

So you can easily say that a tree is a structure that holds trees!

Common Structure of Trees

The tree structure is very similar to a linked list, as I’ve said before. A tree is node-
based, so each node needs a way to point to its children. In a general tree, each
node can have any number of children.

Team LRN

Graphical Demonstration: Trees 333

N — r—= L= —Lr"]_

So what data structure that you know of can easily be expanded to hold any num-
ber of items? That’s right, linked lists!

So each node will have a linked list where each node in the list points to another
tree node. Whew, what a mouthful! Figure 11.4 can better illustrate what is going
on in a tree node.

Figure 11.4

tree . .
node This is the internal
representation of a
tree node.The

structure in the box

is a linked list, where
each node points to

a tree node.

tree tree tree tree
node node node node

The figure shows a tree node that has four children. The top node has a linked list,
which is shown inside the box. The linked list has four nodes, each of which holds
a tree node pointer.

T I

TIP

As you can see, the tree structure is built using linked list concepts, and it actu-
ally uses a linked list inside. The rest of the data structures in this book are pri-
marily built upon the data structures that | cover in Part . Therefore, it is very
important that you understand everything in Part | before you continue.

1 1

Graphical Demonstration:
Trees

This is Graphical Demonstration 11-1, which you can find on the CD in the direc-
tory \demonstrations\ch NDemo0O1 - Trees\.

Team LRN

334 1. Trees

—Jl_rl—l_l_'Eru—”_l_'_'_'_l—l——ll_l'—lJ

'ﬁl_'_nl_u_,—.:_

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,

“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-

tory or create your own project using the settings described in

Appendix B. If you create your own project, all of the files you need to

include are in the directory.

This is the most complex demonstration in the book so far, so I need to do a lot of
explaining before you can just jump into the demo and start playing around.

Figure 11.5 shows a screenshot of the demo.

",

[Tres Graphical Demonstration -=_ E":
r r [v] r [F o— o
| Insert Befnr% Remove Chilc! Goto Root Child Stad] Up 1 Child End
r‘ 5 [g ’ r \ ("- ™
Insert N'terw Randamlze] Back] Down 1 Forth

Figure 11.5

Here is a screenshot
from Graphical
Demonstration | I-1.

The first thing you should notice is that there are more buttons than there were in
previous demos. This is because trees are the most complex structures in the book

so far.

Team LRN

Graphical Demonstration: Trees 335

_'=.'_LU—|J—I—|—'F

=T 1

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

One thing that you won’t see in the screenshot is that two of the nodes are colored
differently. If you start up the demo, the root node will be colored red (node 29 in
Figure 11.5), and the root’s first child will be colored blue (node 1 in Figure 11.5).

When you iterate through a tree, you really need two iterators. If you are unfamil-
iar with what an iterator is, please read Chapter 6.

The first iterator, which is represented in red in the demo, keeps track of the cur-
rent tree node. The second iterator, which is blue in the demo, keeps track of the
current child of the current node.

Because the children in a tree are stored in a linked list, the blue iterator is just a
normal DListIterator. Table 11.2 shows a listing of the commands in the demo and
their functions.

Table 11.2 Graphical Demonstration |1-1
Commands

Command Function

Insert Before Inserts a new node to the left of the blue node
Insert After Inserts a new node to the right of the blue node

Remove Child Removes the blue node from the tree

Randomize Creates a new random tree

Goto Root Moves the red iterator to the root of the tree

Child Start Moves the blue iterator to the first child of the red node

Back Moves the blue iterator to the previous child of the red node
Up Moves the red iterator to the parent of the current red iterator
Down Moves the red iterator to the current child node (blue)

Child End Moves the blue iterator to the last child of the red node

Forth Moves the blue iterator to the next child of the red node

Team LRN

336 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

There are a lot of commands, and it’s okay if you don’t understand how they work
just yet. I'm going to take you through a little tutorial with the demo.

TIP

If you want to see a cool application of recursion when dealing with trees, take a
look at the source code for this demo.The DrawSubTree algorithm is recursive,
and it is very simple, too. Essentially, the function draws a node and then calls
itself to draw every child node.

1 1

Tutorial

First, run the program. You should end up with a random tree like the one in
Figure 11.5. Now, click the Remove Child button. This should remove the blue
node from the tree. Click that button until there is only one node left in the tree.
You should only need to click it two or three times.

Now that you have an empty tree, here’s how to build one.

Step 1: Build a Basic Tree

In this step, I want you to add three children to the root node. To do so, you must
complete these commands:

1. Goto Root.

2. Click Insert After three times.

After you do this, you should have a tree that looks like Figure 11.6. The numbers
in your nodes will be different, but just pay attention to the structure for now.

Figure 11.6

41 Here is the tree after

Step |.

Team LRN

Graphical Demonstration: Trees 337

N — r—= L= —Lr"]_

Step 2: Traverse the Tree

Now that you have built a basic tree, I want you to traverse the tree by using the
buttons on the right side of the screen.

1. Click Child Start.
Click Forth.
Click Back.

Click Child End.
Click Back.

6. Click Down.

Uk I

Your red node should now be the middle node on the second level of the tree.
During Steps 1-5, you should have seen the blue node moving back and forth, as if
you were traversing a doubly linked list.

Step 3: Build a More Complex Tree
Now I want you to build a more complex tree. Your red node should still be on the
middle node in the second level.
1. Click Insert After twice.
Click Child Start.
Click Down.
Click Insert After twice.
Click Up.
Click Forth.
7. Repeat Steps 3, 4, and 5.

& Stk 0N

After Step 7, you should have a tree that looks similar to Figure 11.7.

Team LRN

338 1. Trees

L= = e

(69) 40

/

Figure 11.7

This is the tree after
Step 3.

Step <4: Play Around

Now that you’ve created a neat-looking
tree, I want you to play around with the
commands—see what you can come up
with. The program doesn’t have any lim-
its on the number of nodes you can
add, but adding too many might make
the program run slowly.

I want you to get acquainted with the
manner in which you build and manip-
ulate trees.

s

g

Building the Tree Class

The file containing all the tree classes can be found on the CD in the \structures\

directory. It’s named Tree.h.

Now you should have some idea of how trees are structured. Although the actual
structures themselves are not very complicated, working with the trees can get

difficult.

I'll be perfectly honest with you: The classes that you are about to see are on their
third major revision. When I first started working on the source code, I wanted to

Team LRN

Building the Tree Class 339

N — r—= L= —Lr"]_

build the tree so that it was nicely contained within a single class and easy to work
with, like all of the classes I've used previously in the book. This method ended up
being more work than it was worth, and it was more complicated to use!

So I decided to use an ultra-simplistic approach and create just the node class with
very few functions. This approach didn’t work, either. When I was writing Graphical
Demonstration 11-1, I realized that I would end up re-writing all of the iterator
functions if I ever wanted to use the tree class in another program.

My third and final revision of the class uses a mixture of these two approaches, as
you’ll see in this section. I ended up creating an iterator class so that you don’t
have to constantly rewrite the most-used functions.

The Structure

I already explained how general trees are structured, so I’ll just post the code to
show you how it looks.

1: template<class DataType>

2: class Tree

3: {

4: public:

5: typedef Tree<DataType> Node;

6 DataType m_data;

7 Node* m_parent;

8 DLinkedList<Node*> m_children;
9: };

As usual, I'm using a templated class so that you can store any type of data you
want into the tree.

The first thing to note is on line 5. On that line, I used a typedef so that using the
tree class is easier to do. Now, instead of saying Tree<DataType> whenever you want
to use a node, you can just type Node instead. Typedefs make life so much easier.

On line 6, I define the holder for the data, just like the linked list classes.

On line 7, I put a pointer to the parent node. I like having a parent pointer in my
trees because it allows me to easily backtrack, but having a pointer to the parent
node is not necessary.

On line 8, I define the linked list of nodes that will store the pointers to the node’s
children.

All in all, this is not a difficult structure to visualize on a node-per-node basis.

Team LRN

340 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Constructor

Here is the code for the constructor:

Tree()
{

m_parent = 0;
}

I want you to pay attention to the fact that the parent is cleared to 0. Whenever I
deal with tree nodes, the node is considered a root node if the parent pointer is 0.

Also, note the other cool thing: Because the DLinkedList class already has a con-
structor, the m_children list is automatically initialized and holds 0 nodes.

The Destructor

Whenever a tree node is deleted, you need to make sure that it is properly cleared
from memory. However, this process is not like deleting a linked list node. For
example, take a look at Figure 11.8.

Figure 11.8

This is a tree that is
used in the
destruction example.

You determine that you no longer want node b in the tree in Figure 11.8. How do
you go about removing the node from the tree?

Perhaps the easiest thing to do would be to take nodes ¢ and d and add them as
children to node a. Or maybe you want to make some other arrangement, and you
can move ¢ and d around to different places in the tree.

But how do you determine where those nodes go? You really can’t do that with a
general-purpose tree. The previous method is usually only used in specific tree

Team LRN

Building the Tree Class 341

N — r—= L= —Lr"]_

types, such as the binary search tree (see Chapter 13, “Binary Search Trees”) and
heaps (see Chapter 14, “Priority Queues and Heaps”).

However, most of the time, you will find that the children of any given node are
directly related to its parent. If you remove the parent node, you should also remove
the children nodes as well as all of their children, and so on. So if you want to
remove node b, you need to remove node ¢ and d as well. If ¢ or d had any children,
you should remove them, continuing this way down to the bottom of the tree. To
do this, you call the trees’ Destroy function:

// destructor
~Tree()
{

Destroy();

The Destroy Function

The Destroy function is called whenever a node is destructed or whenever you want
to delete all of a tree’s children. Note that it uses recursion; if you aren’t familiar
with recursion yet, please go back and read Chapter 10. The function is very simple
if you think about it recursively:

1: void Destroy()

2: |

3: DListIterator<Node*> itr = m_children.GetlIterator();
4. Node* node = 0;

5 itr.Start();

6 while(itr.Valid())

7 {

8 node = itr.Item();

9: m_children.Remove(itr);
10: delete node;

11: }

12: }

The function starts off by creating an iterator to the list of children. Then, for each
child in the list, the function removes the pointer from the child list (line 9) and
then deletes the node (line 10).

So how is this function recursive? Well, the destructor of each child node is called
whenever a node is deleted, and the destructor calls the Destroy function. So, in
effect, the function is recursive.

Team LRN

342 1. Trees

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

LT L

E::r__EEEI_J_____JﬂLUJ——1EL__

Look back to Figure 11.8. If you were to delete node b from that tree, this function
would first loop through and remove ¢ and d from its child list and then delete ¢
and d. But the act of deleting ¢ and d calls their destructors, which in turn calls
Destroy again! If those nodes had any children, they would be deleted, too! This
function is one large chain reaction that deletes every single node in a subtree.

Isn’t recursion neat?

The Count Function

The Tree class has one more function: Count. This function counts the number of

nodes in a subtree and returns the result.

int Count()
{
int ¢ = 1;

DListIterator<Node*> itr = m_children.GetIterator();

for(itr.Start(); itr.Valid(); itr.Forth())
¢ += itr.Item()->Count();
return c;
}

Note that this function is also recursive. (Are you noticing a trend?) The function
creates an integer variable, ¢, and sets it to 1. That 1 represents the current node.

Then, an iterator to the child list is retrieved, and the function loops through every

child and adds the count of the child to c. Finally, c is returned.

In effect, this algorithm says: The count of any subtree is equal to 1 plus the count

of each child.

The Tree Iterator

I mentioned before that this class has undergone several variations. The first
method I tried used an iterator, and the second didn’t use any at all. This is the
third version, in which I made the iterator into one class that is easily managed.
This way, you won’t have to rewrite every iterator function on your own when work-

ing with trees.

Team LRN

e =i The Tree Iterator 343

The Structure

The Treelterator structure is simple; it only has two variables:

template<class DataType>
class Treelterator
{
pubTic:
Node* m_node;
DListIterator<Node*> m_childitr;
s

The first variable is a pointer to the current node, and the second is a
DListIterator, which points to the current child in the current node. If you don’t
understand why there are two iterators, please go back and play around with
Graphical Demonstration 11-1. That demo gives you a good idea of why two itera-
tors are needed.

This iterator class neatly encapsulates both iterators into one class so that they are
easier to use.

The Basic Iterator Functions

These are the basic iterator functions, which allow you to create an iterator and set
it up to point to a node.

The Constructor

The tree iterator is different from the linked list iterators you’ve used before.
Instead of getting an iterator from a general list object, you pass a tree node into
the iterator’s constructor.

// constructor
Treelterator(Node* p_node = 0)

{
*this = p_node; NOTE
} If you do not pass a node into the
constructor, this function still works.
This function calls the assignment oper- The = 0 in the parameter list says,
ator, which I go over next. Before that, “If the user didn’t pass anything in as
however, I want to clarify how an itera- a parameter, then use the value 0

tor is used. instead.”

Team LRN

344 1. Trees

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Say you have a tree node that you want to get an iterator for, like this:
Tree<int>* node = new Tree<int>;

This node is just a plain integer tree node with no children and no parents. It does-
n’t really matter, though; this same method works with any tree node pointer. Now
you want to get an iterator to that node, which you can do in one of two ways:

Treelterator<int> itr(node);
itr = node;

The first line of code uses the constructor to make the iterator point to the node.
The second method uses the assignment operator to do the same thing.

The Assignment Operator

The assignment operator for the iterator class is somewhat confusing at first, but
you’ll understand it after you work with trees a little more.

void operator= (Node* p_node)
{
m_node = p_node;
ResetIterator();
}

The first strange thing is that the operator takes a tree node pointer as a parame-
ter, which is something you don’t usually see when dealing with assignment opera-
tors. However, when you're working with nodes, you usually are dealing with node
pointers, right? The function takes pointers as a parameter so it is easier to work
with.

So the function takes a node pointer as a parameter. It then sets the m_node pointer
to point to the tree node. After that, the function calls the ResetIterator helper
function, which makes the m_childitr iterator point to the first child of p_node. That
particular sequence of code is called often in the iterator, and rather than copying
the code 20 times, I placed it into a function of its own.

The Resetlterator Function

This resets the child iterator, and it is meant to be called whenever the m_node
pointer is changed. It is really just a helper function and is not meant to be called
outside of the iterator class.

Team LRN

The Tree Iterator 345

void ResetlIterator()
{

if(m_node != 0)
{
m_childitr = m_node->m_children.GetIterator();

}
else

{

m_childitr.m_1ist = 0;
m_childitr.m_node

}

The first part checks to see whether the node is 0. If not, then it resets m_childitr
to point to the child list of m_node. If the node is 0, then it is invalid, so you need to
make the child iterator invalid, too. If not, then the child iterator might be point-
ing to the child list of a different node.

The Vertical Iterator Functions

The following functions are the so-called vertical iterator functions because they
deal with moving the iterator up and down through the tree.

The Root Function

This simple function moves the iterator NOTE
to the root of the tree. Notice how this
function would not be possible if the
tree node class didn’t point to its parent.

Note that if you invalidate the itera-
tor somehow, you can’t call this func-
tion to move back to the root

because the iterator has no idea of
where the root node actually is.You
need to manually reset the iterator
using the assignment operator.

The code is pretty simple, so I'm not
going to bother pasting it here. The
basic premise is this: While the current
node’s parent is not 0, move the iterator
up one level.

The Up Function

The Up function is very similar to the Root function, except that it moves the itera-
tor up only one level, and it might actually go past the root node. Because of that,
this function could possibly invalidate the iterator if you make it go past the root.

Team LRN

346 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

void Up()
{
if(m_node != 0)
{
m_node = m_node->m_parent;
}
ResetIterator();
}

This function makes sure that the node is valid before it does anything. If so, then
it moves the iterator up to the previous node.

The Down Function

This function is the opposite of Up; it moves the iterator downward to the current
child iterator. However, if the child iterator isn’t valid, this function doesn’t do any-
thing.

void Down()
{
if(m_childitr.Valid())
{
m_node = m_childitr.Item();
ResetIterator();

The Horizontal Iterator Functions

The horizontal functions of a tree iterator are called so because they allow you to
move the current child iterator back and forth, like a linked list iterator. They are
ChildForth, ChildBack, ChildStart, and ChildEnd.

However, there really is no point in pasting the code here; these functions are all
one line long and directly call the DListIterator version of the same function.

The Other Functions

The iterator class has several other functions that make it easier to add and remove
nodes to the tree and to access their contents.

Team LRN

Traversing a Tree 347

N — r—= L= —Lr"]_

The functions are AppendChild, PrependChild, InsertChildBefore, InsertChildAfter,
RemoveChild, ChildValid, and ChildItem. Notice something about all of these? These
functions all correspond to functions within the linked list classes!

Because all of these functions directly call linked list iterator functions, there is no
need for me to paste them here, either.

Building a Tree

There are two common methods of building trees: top-down and bottom-up. They
are used in different situations, depending on what you want a tree to do.

Top Down

I've already shown you how to build a tree one way, which is called top-down con-
struction. I used this method in Graphical Demonstration 11-1. In this method you
create the root node of the tree first, and then add children from there.

Bottom Up

There is another way to build trees, however, and it is very different from top-down.
This method is called bottom-up construction, mainly because the tree is built with
the bottom nodes first (the leaves) and then expanded upward. This method of
tree construction is not used as often as top-down, but there are several uses for it.
For example, when building Huffman trees, bottom-up construction is used. You'll
see what Huffman trees are in Chapter 21, “Data Compression,” when I show you
different methods of compressing data.

Traversing a Tree

You can traverse the nodes in a tree in many ways. Using the tree iterator is one of
them, but that method is sometimes too difficult to use if you just want to perform
a function on every single node in the tree.

You can use two different simple methods when you want to traverse a tree, and
they are both recursive.

Team LRN

348 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Preorder Traversal

The first method I show you is the preorder traversal. You’ll see why it is called so
when you look at the pseudo-code:

Preorder(node)
Process(node)
For each child
Preorder(child)
end For
end Preorder

This algorithm accepts a node as a parameter and uses a function named Process.
You shouldn’t care what Process does; it is just a function that does something to
the node.

The function first processes the node that is passed into the function. It then loops
through each child and calls Preorder on each child node.

Let me show you how this is run through on a simple tree. Figure 11.9 shows
the tree.

Figure 11.9

This is the sample
tree that is used in
the traversal
examples.

Now, you call Preorder on the root node, so that gets processed first. The root has
three children, so the function calls Preorder on each child. The function calls
Preorder on the leftmost child first, which means that the leftmost child gets
processed second. Now the function loops through all of the children of the left-
most child of the root, so the three children are processed third, fourth, and fifth.
Now the function jumps back up to the second child of the root and repeats the
process.

Team LRN

Traversing a Tree 349

N — r—= L= —Lr"]_

The order in which the nodes are processed is shown in Figure 11.10.

Figure 11.10
° This is the order in

which nodes are

processed with

e © 5) | e

In a preorder traversal, each subtree is processed before the next subtree is
processed. You can see why it is called a preorder search from the algorithm; the
current node is processed before the children.

Coding the Preorder Function

Now you need to actually put the algorithm into code. The method I used for the
Preorder function is very flexible, and the code looks very ugly because of it.

The Preorder function takes a function pointer as a parameter. You’ve seen func-
tion pointers before in Chapter 8, “Hash Tables,” but in case you aren’t familiar
with them, you can read more about them in Appendix A, “A C++ Primer.”

1: template <class DataType>

2: void Preorder(Tree<DataType>* p_node, void (*p_process)(Tree<DataType>*))
3:

4 p_process(p_node);

5: DListIterator<Tree<DataType>*> itr = p_node->m_children.GetIterator();
6 for(itr.Start(); itr.Valid(); itr.Forth())

7 Preorder(itr.Item(), p_process);

8: }

First off, the function is a template function. This allows Preorder to work on any
type of tree easily.

On line 2, the function takes a node pointer and a function pointer as parameters.
The function that is passed into Preorder is a simple function, which takes a Tree
pointer as a parameter and doesn’t return anything. I show you how to use this
shortly.

Team LRN

350 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

On line 4, the p_process function pointer is called on the node.

On line 5, an iterator to the child list of the node is retrieved, and the function
uses this iterator to loop through each child node and call Preorder on them in
lines 6 and 7.

Using the Function Pointer

Say you have a tree of integers already built, and its name is g_tree. Now, you want
to add together every number in the tree, but you don’t want to bother using an
iterator to do this.

So, you create a function called sum, which sums together the contents of tree
nodes and puts them into a global integer named g_sum:

void sum(Tree<int>* p_node)
{

g_sum += p_node->m_data;
}

Now, all you need to do to sum together the values of all the nodes in g_tree is to
call these two lines of code:

g_sum = 0;
Preorder(g_tree, sum);

The first line clears the sum, and the second line traverses the tree, calling sum on
each node.

The Postorder Traversal

The other major traversal type for trees is called the postorder traversal. If the pre-
order traversal was called pre order because it processed the current node before the
child nodes, what do you think the post order traversal does?

That’s right—it processes the current node affer the child nodes.

Postorder(node)
For each child
Postorder(child)
end For
Process(node)
end Postorder

Team LRN

Traversing a Tree 351

N — r—= L= —Lr"]_

If you were to postorder traverse the tree from Figure 11.9, the nodes would be
processed in the order shown in Figure 11.11.

Q Figure 11.11
This is the order in

which the nodes are

processed using the

° e @ postorder traversal.

This time, Postorder is called on the first child of the root, then the first child of
that node, so that the first node to be processed is a leaf node. You can see from
the figure that every child node is processed before its parent node.

I won’t bother to paste the code for the actual Postorder function because it is so
similar to the Preorder function. If you want to see it, it is in the tree.h file in the
\structures\ directory on the CD.

Graphical Demonstration: Tree

Traversals

This is Graphical Demonstration 11-2, which can be found on the CD in the direc-
tory \demonstrations\ch11\Demo02 - Tree Traversal\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

352 1. Trees

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

LT L

'ﬁl_'_nl_u_,—.:_

This demonstration is very simple; it only has three buttons, as shown in Figure 11.12.

__Tree Traversal Graphical Demonstration
= [3
Preorder | Random Tred

Postorder

56 6 S6b

X

Figure 11.12

Here is a screenshot
from Graphical
Demonstration | [-2.

The Random Tree button generates a new random tree, as in the previous demo.

The other two buttons, Preorder and Postorder, make the demo go into an anima-
tion. The demo highlights the nodes using the preorder or postorder algorithms at
750 millisecond intervals. If you clicked Preorder, for example, Node 58 would be
highlighted first, and then 63, and then 38, and then 98, and so on.

Game Demo 11-1: Plotlines

This is Game Demonstration 11-1. It is on the CD in the directory \demonstra-
tions\chl1 N\GameO1 - Plotlines\.

Compiling the Demo

This demonstration uses the SDLHelpers library that | have developed
for the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-

tory or create your own project using the settings described in

Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

Game Demo 11-1: Plotlines 353

N — r—= L= —Lr"]_

For years and years, games have been linear with their stories and plots. What does
this mean? You start the game and you play around, progressing from level to level,
until you beat the game. Figure 11.13 shows how the levels progress throughout the
game. Notice that it is a straight line, which is where the term linear comes from.

level 1 Figure 11.13
This is a linear level
progression. Each level
leads to the next.

level 2

level 3

level 4

level 5

Well, these types of games can be fun the first time through, but they tend to get
boring. If you play the same levels over and over again, the game could get boring
really quickly.

Now, imagine a game where the actions you take in the game directly affect the
plot of the game. Say that at one point in the game, you are required to make a
choice that will cause the game to branch out, and everything that happens during
the rest of the game happens as a result from your choice.

For example, at level 2, you’re required to make a choice; from that point, the
game is different, depending on the choice you made. Figure 11.14 shows this.

Team LRN

354 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

level 1 Figure 11.14
This is a branching
level progression. You
can choose which path
level 2 to take at level 2.
level 3a level 3b
level 4a level 4b
level 5a level 5b

Now, whenever you play through the game, you can go with branch a the first time
and branch b the second time!

It turns out that trees are the ideal structure to store game data like this. You can
see how the level progression from Figure 11.14 looks like a tree, albeit a basic one.

Using Trees to Store Plotlines

Obviously, creating a branching plotline takes a lot of work, and because the pur-
pose of the demo is to show you how the data structure works, this demo doesn’t
really have a plot. Instead, I'll call the different story branches a, 4, ¢, and so on. If
you want, you can make up a plotline for yourself in your head—just don’t make it
too bad; I hate games with bad plots!

The first thing you need to do is create a storyline. In this little demo, the storyline
will look like Figure 11.15.

Team LRN

Game Demo 11-1: Plotlines 355

Figure 11.15
@ Here is the branching

plotline for the demo.

Declaring the Tree

The premise of the demo is simple; when a level is completed, the player has a
choice of which level to go to next. This information is stored in a tree:

Tree<int>* g_tree;
Treelterator<int> g_itr;

The g_tree pointer will always point to the root of the tree, and the g_itr pointer
will point to the current level in the tree.

The tree only stores integers, which represent which tile the level is made up of.
Each level in the game demo has a different tile.

Initializing the Tree

The root of the tree is then initialized:

g_tree = new Tree<int>;
g_tree->m_data = 0;
g_itr = g_tree;

The root node is created with the value 0, which means that the player starts out on
level 0. On line 3, the global iterator is assigned to point to the root node, which
means that the player starts out on the root level.

After the root is initialized, a temporary iterator named itr is created so that I can
build the tree with it. Using this iterator, I build the tree using the iterator functions:

Treelterator<int> itr;
Tree<int>* node;

itr = g_tree;

// add the '2a' branch

Team LRN

356 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

node = new Tree<int>;
node->m_data = 1;
itr.AppendChild(node);

This code shows the addition of level 2a to the tree. The other seven levels of the
tree are added in the same fashion; the iterator is moved around and child nodes
are appended to the tree to give you the tree in Figure 11.15.

Changing Levels

Whenever the player “wins” a level in the demo, the demo switches to a state where
it selects the next level.

The screen that draws the levels that are available for choosing uses the child itera-
tor of g_itr to loop through each child and draw it.

for(g_itr.ChildStart(); g_itr.ChildValid(); g_itr.ChildForth())
{
// draw the Tevel that the current child contains

}

When the user selects a level, the child iterator is moved to the correct level. The
integer x will contain the number of the child which the player selected.

g_itr.ChildStart();
while(x > 0)
{
g_itr.ChildForth();
X3
}
g_itr.Down();

When the child iterator is in the correct place, the Down function is called, moving
the iterator to the next level.

Playing the Game

The game starts off with a little dude standing on some weird alien world at the top
left corner of the screen. Your mission? You are to use the arrow keys on the key-
board to successfully walk him off the edge of the screen to the right. It might be
difficult and you might not succeed, but you’ll make me proud by trying!

Okay, you really can’t lose. There are no enemies or obstacles. Figure 11.16 shows
the opening screen.

Team LRN

Game Demo 11-1: Plotlines 357

Figure 11.16

This is a screenshot
of Level 0.

After you have successfully moved your little dude across the screen to the right,
the level selection screen appears, as shown in Figure 11.17.

.: Game Demo 11-01: Plotline Demo -,_-__ | E’d Figure .17
This is the level
Choose Next Level selection screen.

N

Team LRN

358 1. Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

You use the mouse to click on one of the tiles to select the next level. That’s pretty
much all there is to the demo.

Conclusion

One thing you should realize about trees is that they are complex structures. They
are obviously not suitable for storing any types of data, like arrays and linked lists
are, so that makes trees a more specialized structure.

Only certain types of data can be stored in trees, but which kind? It turns out that
hierarchical data fits nicely into trees, but that’s not all. I only went into one use of
trees; there are many.

For example, you could store Al decision paths into a tree. Imagine the Al process
of a character within a shoot-’em-up game, as shown in Figure 11.18.

Is he friend or foe?

Figure 11.18

This is an Al
decision tree

friend

Does he need help?

showing the
thought
process of a

Health Status?

character
when he sees
another
character in

the game.

So, as you can see, there are tons of uses for trees. The main purpose of this chap-
ter was to introduce you to the concepts of trees and practice your recursion skills.

The next few chapters go over some more specialized trees and their uses.

Team LRN

s Wy B e e ' W
_‘J.L'n_r"—""_‘[—- l_—,'—q —L MLHJ —— e l‘LFsIJ_I—’JLL_r

CHAPTER 12

EINARY
TREES

360 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

In the previous chapter, you learned about general trees, which are trees that can
have any number of branches per node. Now I’'m going to show you the most
popular variant of the tree structure: the binary tree.

In this chapter, you will learn

® What a binary tree is

® Some common traits of binary trees

= Two common implementations of binary trees

= How to program a linked binary tree

= How to perform the two tree traversals on a binary tree

= How to perform a new traversal specific to the binary tree structure

= How to build a simple arithmetic expression parser using binary trees

What Is a Binary Tree?

A binary tree is a very simple variant of the general tree structure, and it is often
used in game programming. In fact, almost every tree-based structure in this book
uses a binary tree as its base.

Simply put, a binary tree is a tree that can have up to two children. These two chil-
dren are usually called the left and the right children of the tree. Figure 12.1 shows
a binary tree node.

parent Figure 12.1

This is a binary tree
node.

left child right child

Team LRN

What Is a Binary Tree? 361

N — r—= L= —Lr"]_

As you can see, there really isn’t much to learn about plain binary trees because
they are the simplest of all tree structures. A binary tree can have several traits that
general trees cannot have, though.

Fullness

A binary tree can be full. Because each node can have a maximum of two child
nodes, you can fill up a tree so that you cannot insert any more nodes without mak-
ing the tree go down a level.

Figure 12.2 shows a full four-level binary tree.

Figure 12.2

Here is a full binary
tree.You cannot add
more nodes to this
tree without making
it increase in size by
another level.

In a full binary tree, every leaf node must be on the same level, and every non-leaf
node must have two children.

Denseness

Another property of binary trees is called denseness. Sometimes this is also called
completeness or leftness. A dense binary tree is similar to a full tree, except that in the
bottom level of a tree, every node is packed to the left side of the tree.

Figure 12.3 shows a dense binary tree.

Team LRN

362 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 12.3

Here is a dense
binary tree. Every
level is full, except
the last level, where
the nodes are all
packed to the left of
the tree.

Denseness is an important trait with some variants of binary trees, as you’ll see later
on in this chapter and when I teach you about heaps in Chapter 14, “Priority
Queues and Heaps.”

Balance

Even though I don’t really use this trait in this book, I feel it is important enough
to mention. A balanced tree is a tree in which every node in the tree has approxi-
mately as many children in the left side as the right side. This property becomes
important when using some of the binary search tree (BST) variants, such as AVL
trees and red-black trees (RBT). I discuss BSTs in Chapter 13, “Binary Search Trees,”
but not AVL trees or RBTs. They are fairly complex and used to solve specific prob-
lems that don’t occur in most game programming situations; we will skip them
because this is a game programming book.

Structure of Binary Trees

You can store a binary tree in two ways. The first method is the most common, and
it’s very similar to the Tree class. The second method is not as common, but it has
its uses.

Linked Binary Trees

A linked binary tree is just like the regular tree structure and therefore is node-
based. Instead of using a linked list of child pointers, though, the linked binary

Team LRN

Structure of Binary Trees 363

tree node has two fixed pointers. The fixed pointers either point to the left or right
child nodes or contain 0 if the node doesn’t have a child. The structure for these
kinds of nodes is shown in Figure 12.4

Figure 12.4

This is a linked
binary tree node.

Left Data | Parent | Right

The three boxes with arrows coming out of them are all pointers that point to
another node structure. Note that I included a parent pointer in the node; even
though it is not necessary, I feel that it saves a lot of trouble when working with
binary trees.

This method of structuring nodes is great because it allows for an effectively limit-
less tree size due to the linked nature of the tree.

Arragyed Binary Trees

There is another method of storing binary trees, however. You’ve seen how a binary
tree can be full because the number of children in a binary tree is fixed at two.

Because you know that a binary tree can only have a certain number of nodes
depending on the height of the tree, you can make certain assumptions. For exam-
ple, imagine what would happen if you turned every node from the full binary tree
in Figure 12.2 into an array cell. Figure 12.5 shows what I mean by this.

Team LRN

364 12. Binary Trees

L= = e

Figure 12.5

This is a full binary
tree where the nodes

have been turned
2 3

SN N
ANy ANANYA

11 12 13 14 15
Pay particular attention to the order in which I numbered the cells. The root starts
at index 1 and the numbering goes from left to right all the way down to the last
node on the right, 15. Now, imagine if you concatenated all of the cells into an
array of cells, like Figure 12.6 shows.

into array cells.

1

1 2 4 8 Figure 12.6
1l2|3|a|5|6|7]|8|9|10|11]|12|13]14]15 This is how you
would represent a

binary tree as an
array.

The array is separated into four different segments, each with a number on top.
The segments represent the levels of the tree. The first segment is only one cell in
size because there is only one root node. The second segment contains two cells
because there are two nodes on the second level of a binary tree. Likewise, the
third segment has four cells, and the fourth segment has eight cells.

Size of Arrayed Binary Trees

The number of nodes on a level of a full binary tree doubles with each new level,
and follows this formula: nodes for level n = 2*'. Therefore, the number of nodes
required for level 5 would be 2, or 16.

Team LRN

Structure of Binary Trees 365

N — r—= L= —Lr"]_

The total number of cells in a binary tree of a particular depth follows this formula:
cells for depth n = 2"-1. For example, in the fourlevel tree in Figure 12.5, there are
2' — 1 nodes, or 15. A binary tree with five levels requires 31 nodes.

Traversing Arrayed Binary Trees

You don’t need iterators to traverse arrayed binary trees. A few easy algorithms
allow you to determine the index of the left, right, and parent nodes of a binary
tree cell.

Take a look back at Figure 12.5 and see if you can find a relationship between the
index of any node and its left child. It is easy to see that the index of the left child
of any node is twice the index of its parent. By using this knowledge, you can create
a function that determines the left child of any cell in the tree:

left = index * 2;

That was easy enough, wasn’t it? Now, see if you can figure out how to calculate the
index of the right child of any cell. Because the right child of any node is only one
index higher than the left child, you can use that formula to create the formula for
finding the right child:

right = index * 2 + 1;

The last thing you need to figure out is how to get to the parent node from any
node in the tree. If you look at the formula for finding the left node and reverse it,
you get this:

parent = index / 2;

That works for left children, because the left children are all even numbers and are
divisible by 2, but what about right children? What happens when you divide 3 in
half? Although 3/2 is 1.5, the extra 0.5 is cut off because these algorithms are using
integers, giving 1 as the result. So the parent algorithm works on any node.

Size Efficiency

I've said before that arrayed binary trees are not as common as linked trees. This is
due to several reasons, but first, look at Figure 12.7.

Team LRN

366 12. Binary Trees

Figure 12.7

Here is another
binary tree, where a
) lot of space is

) wasted.

4/ \5
ava

11
The tree in Figure 12.7 is the same as the tree in Figure 12.5, but the entire subtree
starting with index 3 has been removed. Imagine how this tree looks when stored
into an array, though. Figure 12.8 shows this.

Figure 12.8
]2 B ¢ |0 KRB e | o |0 RRERRERERS
This is the tree from

Figure 12.7 stored in

8 1

an array.

The tree from Figure 12.7 has 8 nodes, but the array has 15 cells, which means that
7 cells are empty! That’s almost half of the array!

Granted, the last 4 cells are unused, so you could chop them off the array, but what
happens if you insert a left child onto node 8? Then the child would need to be
stored into cell 16, requiring you to resize the array.

This example shows that using arrays to store binary trees is very inefficient if your
trees aren’t full or dense.

Graphical Demonstration:
Binary Trees

This is Graphical Demonstration 12-1, which you can find on the CD in the direc-
tory \demonstrations\ch12\DemoO1 — Binary Trees\.

Team LRN

L= = e

Graphical Demonstration: Binary Trees

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for

the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in

367

N — r—= L= —Lr"]_

Appendix B. If you create your own project, all of the files you need to

include are in the directory.

Figure 12.9 shows a screenshot from this demonstration. The demo has eight dif-

ferent buttons, and Table 12.1 has a listing of what they do.

[
F::

__ Binary Tree Graphical Demenstration

s

[”
Insert Lef] Insert Flil_[;hl} Randomise | Goto Fl::nl]

-

(i 3
Go Left] Go Right] Remove Go Up

Pl \ \
A A\

©®® 066 66 6

Team LRN

Figure 12.9

Here is a screenshot
from the binary tree
demonstration.

368 12. Binary Trees

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Table 12.1 Binary Tree Demonstration Commands

Command Action

Insert Left Inserts a new node to the left of the current node if there is none

Insert Right Inserts a new node to the right of the current node if there is
none

Go Left Moves the current node to the left child node

Go Right Moves the current node to the right child node

Randomize Randomizes the tree

Remove Removes the current node, unless it is the root

Goto Root Moves the current node iterator to the root of the tree

Go Up Moves the current node iterator up one level

As in the Tree graphical demonstration, the current node is highlighted in red.
Play around with the demo to familiarize yourself with binary trees a bit more.

Coding a Binary Tree

All of the code for the Binary Tree structure and algorithms is located on the CD in
the file \structures\BinaryTIree.h.

Lucky for you, coding a binary tree isn’t nearly as difficult as coding a general tree.
In fact, you don’t even need an iterator class with a binary tree; you can just as eas-
ily use a pointer to a node as the iterator.

Note that I'm not including an Arrayed Binary Tree class. Because an arrayed
binary tree is essentially an array, there is no need to include one.

The Structure

As I stated before, the binary tree class has four variables:

template<class DataType>
class BinaryTree
{

Team LRN

Coding a Binary Tree 369

pubTic:
DataType m_data;
Node* m_parent;
Node* m_left;
Node* m_right;

s

They are the data, a pointer to the parent, and a pointer to the left and right
children.

The Constructor

The constructor exists to clear the pointers so that they aren’t filled with garbage
data when a node is created.

BinaryTree()

{
m_parent = 0;
m_left = 0;
m_right = 0;

The Destructor and the Destroy
Function

The destructor of the BinaryTree class just calls the Destroy function, like the Tree
class did, so there is no need to paste the code here.

However, the Destroy function is slightly different than before:

void Destroy()
{
if(m_left)
delete m_left;
m_left = 0;
if(m_right)
delete m_right;
m_right = 0;
}

This function determines if the node has a left child and deletes it if it does, and
then it determines if it has a right child and deletes it if it does. As before, the func-
tion is recursive because the destructor of each child node calls Destroy.

Team LRN

370 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Count Function

The Count function is only slightly modified from the Tree version; instead of loop-
ing through the child list, it calls the Count function on each child of the node.

int Count()
{
int ¢ = 1;
if(m_left)
c += m_left->Count();
if(m_right)
¢ += m_right->Count();
return c;
}

Note that it checks to see if each child node exists before calling the Count function
on it.

Using the Binarylree (Class

This is Example 12-1, which can be found on the CD in the directory
\examples\ch12\01 — Binary Tree\.

This example takes you through the process of building a simple three-level full
binary tree.

The first step is to declare the tree root and an iterator:

BinaryTree<int>* root = 0;
BinaryTree<int>* itr = 0;

After that, you need to initialize the root of the tree:

root = new BinaryTree<int>;
root->m_data = 1;

Then you create the left and right child nodes of the root node:

root->m_left = new BinaryTree<int);
root->m_left->m_data = 2;
root->m_left->m_parent = root;

root->m_right = new BinaryTree<int>;

root->m_right->m_data = 3;
root->m_right->m_parent = root;

Team LRN

Traversing the Binary Tree 371

N — r—= L= —Lr"]_

Now, the iterator is put to work to create the nodes lower down in the tree:

itr = root;

itr = itr->m_left;

itr->m_left = new BinaryTree<int>;
itr->m_left->m_data = 4;
itr->m_left->m_parent = itr;

itr->m_right = new BinaryTree<int>;
itr->m_right->m_data = 5;
itr->m_right->m_parent = itr;

The iterator is first pointed at the root node and then is moved down to the left
node of the root. After that, node 4 is inserted at the left of node 2, and node 5 is
inserted at the right.

Now you want to go back up one level:
itr = itr->m_parent;

And now go back down to the right and do the same thing:
itr = itr->m_right;
itr->m_left = new BinaryTree<int>;

itr->m_left->m_data = 6;
itr->m_left->m_parent = itr;

itr->m_right = new BinaryTree<int>;
itr->m_right->m_data = 7;
itr->m_right->m_parent = itr;

As you can see, iterating through a binary tree is simple because you know there
are only two children per node.

Traversing the Binary Tree

If you remember, the general tree structure had two simple traversal methods: the
preorder and the postorder. The binary tree structure allows for another type of
traversal, called the inorder traversal, as well.

I'll show you how to accomplish all three. The actual C++ code for these functions is
in the BinaryTree.h file and is almost identical to the code for the general tree tra-
versal functions, so I won’t include it here. If you need clarification, the “Traversing
a Tree” section in Chapter 11, “Trees,” describes how the traversal functions work.

Team LRN

372 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Preorder Traversal

The preorder traversal for a binary tree is simple, and it is almost identical to the
algorithm used for general trees:

Preorder(node)
process(node)
Preorder(node.left)
Preorder(node.right)
End Preorder

It is important to note that the left node is processed before the right node; that is
the general convention used by all binary trees.

The Postorder Traversal

Just like last time, the postorder traversal processes the current node after the child
nodes:

Postorder(node)
Postorder(node.left)
Postorder(node.right)
process(node)

End Postorder

The Inorder Traversal

So, if the preorder traversal processes the current node before the children, and the
postorder traversal processes the current node after the children, what do you think
the inorder traversal does?

That’s right, it processes the current node in between the children nodes:

Inorder(node)
Inorder(node.left)
process(node)
Inorder(node.right)
End Inorder

This traversal assures that the entire left subtree of every node is processed before
the current node and the right subtree. Remember this traversal; you'll be using it
for a neat trick in Chapter 20, “Sorting Data.”

Figure 12.10 shows the order in which nodes are processed in a binary tree using the
inorder traversal. Note the general trend of processing the nodes from left to right.

Team LRN

Traversing the Binary Tree 373

Figure 12.10
This is the order of
nodes processed
using the inorder
traversal.

Graphical Demonstration: Binary

Tree Traversals

This is Graphical Demonstration 12-2, which is located on the CD in the directory
\demonstrations\ch12\Demo02 - Binary Tree Traversals\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

This demonstration is almost the same as Graphical Demonstration 11-2, except
that it has an extra button to execute the inorder traversal. Figure 12.11 shows a
screenshot of the demo in action.

Team LRN

374 12. Binary Trees

_J_l_"l_l_'_'Eru—”_'_‘—'_'_l_l——'

[Binary Tree Traversal Graphical Demenstration

I [Y

Preorder W Random T:eri

Inorder
Postorder T

A
\

o

D

/ \

© b3 b

'ﬁl_'_nl_u_,—.:_

Figure 12.11

Here is a screenshot
from the traversal
demo.

As before, the nodes will be highlighted for 700 milliseconds while they are being
processed to show you the order in which they are visited by the algorithms.

Application: Parsing

This next topic, although it’s a little advanced, is a really neat application of binary

trees. The code for this section is on the CD in the directory

\demonstrations\ch12\GameO1 - Parsing\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-

tory or create your own project using the settings described in

Appendix B. If you create your own project, all of the files you need to

include are in the directory.

Team LRN

Application: Parsing 375

N — r—= L= —Lr"]_

Parsing is the act of breaking up a sentence into easy-to-understand segments. For
example, when you read a sentence, your mind mentally parses it into a form that
makes sense to you.

Take the following sentence, for example: “Bob runs up the hill.” Your mind recog-
nizes that sentence, and it has parsed it into several segments. I don’t want to turn

this into an English lecture, but a lot of computer language theory is based in con-
cepts that English linguists invented.

The sentence can be broken up into these fragments: verb phrase, preposition,
noun phrase. Bob runs, up, the hill. The two phrases can then be broken down fur-
ther; the verb phrase is a combination of a noun and a verb, and the noun phrase
is a combination of an article and a noun. Figure 12.12 shows the tree that is cre-
ated when your mind parses the sentence.

Figure 12.12

This is a parse tree

Sentence

Y

for an English

sentence.

Verb Phrase

Now, don’t be put off if you didn’t understand that; this is a complex topic in
English, after all. I showed that to you so that you can begin to understand how
computers parse the code that you send into your C++ compiler.

“Okay,” you say, “parsing is important when you’re making compilers, but what the
heck does it have to do with game programming?”

I'm sure you’ve played Quake before. If you have made custom maps for Quake,
you know that Quake has a scripting system known as QuakeC. This system allows you
to add little bits of C code to Quake maps so that code is executed when the player
or monsters do something on the map.

Team LRN

376 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

A scripting system essentially allows you to make very customizable maps for a
game. I'm sure you've played some of the Quake modules (mods) before. One of my
favorites is Team Fortress Classic (TFC). These mods allow you to drastically change
the way the game operates, expanding upon the original game’s capabilities.

One of the reasons games like Quake are so popular is because they are so
modifiable.

This section introduces you to basic arithmetic parsing, which is the first step
toward creating your very own scripting system.

Arithmetic Expressions

Don’t be confused by that big name; arithmetic expressions are really just mathemati-
cal formulas involving numbers and variables. x = 24 + y is an arithmetic expression.

The standard four operators in math are addition, subtraction, multiplication, and
division. All four of these operators are binary operators, which means that they
operate on two numbers.

Parsing an Arithmetic Expression

Look at this expression for a moment: 2 * (y / z). There are two operators in this
expression: multiplication and division. Each operator has a ferm on the left and the
right sides of itself. Does that remind you of anything—possibly something in this
chapter? That’s right—binary tree nodes have left and right children!

So you can treat the operator as a node and put the terms into the left and right
nodes of a binary tree. For example, the term inside the parentheses can be viewed
like the first tree in Figure 12.13. Then, if you create a node with the multiplication
symbol in it and put 2 as the left child node and the subtree created inside the
parentheses as the right child node, you get the second tree in Figure 12.13.

Figure 12.13

a This is the parse tree
for the arithmetic
expression 2 * (y | z).

Team LRN

Application: Parsing 377

N — r—= L= —Lr"]_

Well, now you’ve got a tree; what do you do with it? You can perform a postorder
traversal on the tree to calculate its value!

For example, you start at the root node and tell it to return the value of the left
node first. The left node just returns 2. Then, you tell the right node to return its
value. Because the right node is another operator, the postorder algorithm is called
again. The division node asks its left node for its value, which is y, and then asks the
right node for its value, which is z. Now that both child nodes have returned their
values, the division node can divide y by z and return the result back up to the mul-
tiplication node. Now that the multiplication node has the values of both of its chil-
dren, it multiplies both of them together and returns that result! Whoa, that’s cool.

Recursive Descent Parsing

I'm going to show you an amazingly simple demonstration of what is called recursive
descent parsing, which you can use to parse a simple arithmetic expression and turn
it into a tree that your program can then use as a simple script.

Tokens

The first thing you need to do is turn the actual arithmetic expression into a list of
tokens. A token is basically a structure that says, “This is a number,” “This is an oper-
ator,” or “This is a variable.”

I'll first create an enumerated type, which will help you determine the type of a
token:

enum TOKEN

{
NUMBER,
VARIABLE,
OPERATOR,
LPAREN,
RPAREN

s

After that, I create the actual Token class:

class Token

{
TOKEN m_type;
float m_number;

Team LRN

378 12. Binary Trees

int m_variable;

int m_operator; NOTE
b
More-complex implementations of a
This class has a type variable that deter- token class would use the C++ union

mines which of the following three vari- directive and have a different class

ables is valid. structure for each kind of token type.

If you don’t know what a union is,

don’t worry; ’'m not using them in this _
demo because this demo is simple.

If the type of the token is NUMBER, then
m_number will hold the number. If the
type of the token is VARIABLE, then
m_variable will hold the number of the
variable (you’ll see how this works in a bit). If the token is OPERATOR, then m_operator
has a number from 0-3, where 0 is addition, 1 is subtraction, 2 is multiplication,
and 3 is division.

e

Variables

This very simple demo only has four variables for now, so the only valid values of
m_value are 0-3. More-complex systems might have more variables than this. The
most complex systems don’t use this method at all; instead, they store information
about whether the variable is global or local and the memory offset and datatype of
the variable. It gets very complex.

For this system, the only valid variables are c, s, t, and 1, which stand for cosine,
sine, time, and 1ife. The cosine and the sine variables keep track of the cosine and
sine of the current game time. The time variable keeps track of the current time of
the system, and the 11ife variable keeps track of the amount of life that the player
has left.

Scanning

The process of converting the text string into a stream of tokens is called scanning,
or tokenizing. The scanner will read each part of an expression into a string and
then determine if it is an operator, variable, number, or parenthesis.

The code for this process isn’t very complex, but it is long, bulky, and boring.
The scanning process for a simple system works like this:

1. Read in a character.
2. If the character is one of the four variables, create a variable token.

3. If the character is one of the four operators, create an operator token.

Team LRN

Application: Parsing 379

4. If the character is a number, read in the rest of the number and create a
number token.

5. Place the token into a queue.

6. Repeat.

You can find the code in the g12-01.cpp file on the CD if you're really interested
(the Scan function); I have decided not to include it here because it doesn’t have
anything to do with trees. The scanner just provides an easy way of turning a string
of characters into a queue of items that the parser recognizes.

Parsing

There are basically two different forms for an arithmetic expression term:
1. It can be a single constant or variable.
2. It can be two constants or variables with an operator in between.

I established previously that the operators in this demo are all binary; they operate
on two numbers. In languages like C++, you can chain operators together, like this:

c+s+t

For simplicity, the parser doesn’t support statements like that. Instead, parentheses
must surround two of the variables. Either of these corrections is acceptable:

c+ (s+1t)
(c+s)+t

So the parser’s job is to view the queue of tokens and turn it into a binary tree. The
p J q Y
parser is a recursive function, which makes your life much easier.

I'm going to show you the pseudocode algorithm in a few sections so you can
understand what is going on.

The parse algorithm takes a queue of tokens and returns a tree. The algorithm also
creates three tree nodes as local variables:

Tree Parse(Queue)
Tree left, center, right

Now, the first thing to do is to check the first token.

if Queue.First == LPAREN
Queue.Dequeue
left = Parse(Queue)

Team LRN

3380 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Queue.Dequeue
else if Queue.First == VARIABLE or NUMBER
left = VARIABLE or NUMBER
Queue.Dequeue

There are three valid token types for the = —

first token of the queue. If the first token CAUTION

is a left parenthesis, then the parenthesis :| Real parsers would check to see if |:
is taken off the queue and the rest of the the queue actually contained a right
queue is passed into the parse algorithm parenthesis after the parse algo-

again. The result of the recursively called rithm returns. If it isn’t a right

parse algorithm is placed into the left parenthesis, the string that is being

tree node. Theoretically, the parse algo- parsed is illegal. For the purposes of
rithm should have removed everything the demo, | left error checking out,
after the first left parenthesis up to a but you should be aware that a clean
matching right parenthesis, so there 1 system would use error ct\ecki.ng. I i
should be a right parenthesis at the front recommend using exceptions if you

of the queue. That is also removed from know how to use them.

the queue. 1 1

If the first token was a variable or a constant number instead, then the left tree node
is made into a leaf node that contains information about the variable or constant.

Finally, the token is removed from the queue. After the first token is processed, the
algorithm decides if the term is just a single variable or number or if it is two vari-
ables or numbers separated by an operator.

If the current term is just a single variable or number, then that token has already
been processed and the queue will either be empty or have a right parenthesis at
the front.

if Queue.Empty or Queue.Front == RPAREN
return Teft

The function returns the left node at this point because it contains the single term.
If it isn’t a single term, then the queue must contain an operator:

if Queue.Front == OPERATOR
center = QPERATOR
Queue.Dequeue

If the queue doesn’t contain an operator at the front, then the string is invalid, and
the parser should handle the error by informing the user. For simplicity, this demo
doesn’t have that kind of error checking.

Team LRN

Application: Parsing 381

N — r—= L= —Lr"]_

Now that you’ve gotten to this point, there is only one more token to process for
the term. Like the first token, the only valid types it can be are variables, numbers,
or left parentheses:

if Queue.First == LPAREN
Queue.Dequeue
right = Parse(Queue)
Queue.Dequeue
else if Queue.First == VARIABLE or NUMBER
right = VARIABLE or NUMBER
Queue.Dequeue

And finally, attach the left and right children to the center and return it:

center.left = Teft
center.right = right
return center

If you can think recursively, this algorithm will appear amazingly simple for the task
it does. If you don’t quite understand recursion yet, I’ll show you a few examples
on how this algorithm works.

Using the Algorithm
First, I’ll start off with the simplest example:

t

This is a single-variable term. Naturally, you should expect the parser to return a
tree with one node: t at the root. The algorithm looks at the token, sees thatitis a
variable, and then sets the left node so that it is a variable node.

Now the function checks the queue and sees that it is empty, so it returns the left
node, giving us a simple one-node tree with t in it.

Now I'll move on to a more complicated example:
t+(5%*c)

The first step is the same; the left node is turned into a variable node. The second
step is different, however. Last time, the queue was empty; this time, an operator
token is in it.

So now the algorithm creates the center node and turns it into a +.

Now it looks at the next token, which is a left parenthesis. So it strips off the
parenthesis and passes the queue (which contains 5 * ¢) now) into the parse
algorithm again.

Team LRN

3382 12. Binary Trees

—Jl_rl—l_l_'Eru—”_l_'_'_'_l—l——ll_l'—h

E::r__EEEI_J_____JﬂLUJ——1EL__

This time, the second parse algorithm strips off the 5 and makes the left node a
constant number node. It strips off the star and turns the center node into a multi-
plication operator node. Finally, it strips off the ¢ and turns the right node into a
constant node. The second parse algorithm then returns the center node up to the
first parse algorithm.

Now the result of the second parse algorithm is placed in the right node and the
first center node is returned, resulting in the tree in Figure 12.14.

Figure 12.14
o The parse tree for a

simple expression.

Now you can see how recursion is your friend here: It takes care of those nasty nested
parentheses automatically so you don’t have to mess around with them much.

Source Listing

Here is the source code listing for the ParseArithmetic function used in the demo.
Pay attention to where the comments are; they alert you as to where proper error
checking should be inserted.

BinaryTree<Token>* ParseArithmetic(LQueue<Token>& p_queue)
{

BinaryTree<Token>* Teft = 0;

BinaryTree<Token>* center = 0;

BinaryTree<Token>* right = 0;

// make sure the queue has something in it.

if(p_queue.Count() == 0)

return 0;

// take off the first token and determine what it is

switch(p_queue.Front().m_type)

{

case LPAREN:

Team LRN

Application: Parsing 383

N — r—= L= —Lr"]_

p_queue.Dequeue();
left = ParseArithmetic(p_queue);
// if(p_queue.Front().m_type != RPAREN)
// this is where you would throw an error;
// the string is unparsable with our Tanguage.
p_queue.Dequeue();
break;
case VARIABLE:
case NUMBER:
left = new BinaryTree<Token>;
left->m_data = p_queue.Front();
p_queue.Dequeue();
break;
// case OPERATOR:
// this is where you would throw an error;
// the string is unparsable with our Tanguage.
}
if(p_queue.Count() == 0)
return Tleft;
if(p_queue.Front().m_type == RPAREN)
return left;
// if(p_queue.Front().m_type != OPERATOR)
// this is where you would throw an error;
// the string is unparsable with our Tanguage.
center = new BinaryTree<Token>;
center->m_data = p_queue.Front();
p_queue.Dequeue();
// make sure the queue has something in it.
if(p_queue.Count() == 0)
return 0;
// take off the third token and determine what it is
switch(p_queue.Front().m_type)
{
case LPAREN:
p_queue.Dequeue();
right = ParseArithmetic(p_queue);
// if(p_queue.Front().m_type != RPAREN)
// this is where you would throw an error;
// the string is unparsable with our Tanguage.
p_queue.Dequeue();
break;

Team LRN

384 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

case VARIABLE:

case NUMBER:
right = new BinaryTree<Token>;
right->m_data = p_queue.Front();
p_queue.Dequeue();
break;

// case OPERATOR:
// this is where you would throw an error;
// the string is unparsable with our Tanguage.

}

center->m_left = left;

center->m_right = right;

return center;

}

You can probably see why I didn’t just paste the code right away; pseudo-code is
almost always easier to understand.

Executing the Tree

Now that the parser has built the parse tree, you need to be able to evaluate it
somehow. I mentioned before that you can use a simple postorder traversal to eval-
uate the tree, which is what I will show you now.

The Evaluate function is also (take a guess!) recursive! Gee, that was surprising,
wasn’t it? I hope you’re beginning to see a trend when using trees. Recursion really
makes some things easy.

The function will evaluate a tree node, returning a float value. There are three
types of nodes, so I'll split the code up into five parts: the beginning, the three
node types, and the end.

Here is the beginning:

float Evaluate(BinaryTree<Token>* p_tree)
{
if(p_tree ==)
return 0.0f;

float left = 0.0f;
float right = 0.0f;

This sets everything up first. If the node passed into the algorithm is 0, then 0 is
returned. If not, then the left and right variables are set to 0.

Team LRN

Application: Parsing 385

N — r—= L= —Lr"]_

Now, the algorithm uses a switch statement to determine which of the three node
types it is:
switch(p_tree->m_data.m_type)
{
case VARIABLE:
return g_vars[p_tree->m_data.m_variablel;
break;

The first node type is a variable. Because the demo has four valid variables, all four
variables are stored in an array, g_vars. The m_variable member of the Token class
will contain a number from 0 to 3, so the function gets that number and returns
the correct value from the variable table.

case NUMBER:
return p_tree->m_data.m_number;
break;

The second node type is a constant number. This case is easy; it just returns the
number stored within the token.

case OPERATOR:
left = Evaluate(p_tree->m_left);
right = Evaluate(p_tree->m_right);
switch(p_tree->m_data.m_operator)
{
case 0:
return left + right;
break;
case 1:
return left - right;
break;
case 2:
return left * right;
break;
case 3:
return left / right;
break;

}

The third node type is the most interesting: the operator. If the node is an opera-
tor, then it recursively calls the Evaluate function on its left and right children,
determines which operation to execute on the two values, and returns the result.

Team LRN

386 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

return 0.0f;
}

Last, in case something messed up, 0 is returned at the end. Hopefully nothing did,
but it is always safe to do so anyway.

Playing the Demo

This is the most complex demo in the book so far, so it needs a fair amount of
explanation. Figure 12.15 shows a screenshot from the demo in action.

| 5ame Demo 12-01: Parsing Damo ™ w F'gure 12.15
n v Here is a screenshot
from the demo.
Y # B
.

A00 000000 * 300 000000

8 100 000000 c 10000000

@

L. = 100 r
T = 9194000 sl
X = 400 + (s *100) \
< Parse
Y =000+(c"100)) W Show Parse Trees

At the bottom are four text boxes. They represent the life of the player, the current
time, and the x and y formulas for the player. You’ll be using the bottom boxes to
control the position of the player on-screen.

To start off, try entering these two lines into the x and y boxes:

t * 100
0

Now check the check box on the right of the screen so that it will display the parse
trees. After that, click the Parse button; you should see two trees drawn on the

Team LRN

Application: Parsing 387

screen now. The x tree is on the left and the y tree is on the right. This way, you can
visually see how your expression was parsed by the system.

Next, you want to set up your life variable. You can click on the L box and enter a
life value.

You cannot modify the T value, though.
The Execute button is a toggle that NOTE

resets the time to 0 when you click it A lot of the formulas in Table 12.2
and then starts the demonstration. use the ¢ and s variables, which are

Now that you've entered your formula, the sine and cosine of the time. If

click the Execute button. A UFO should A LY tngonon?etry, thefithg
effect of these variables should be
appear on the screen at the upper left, . . N
; . obvious to you.This book doesn’t
and it should move to the right at 100 . R S
. . teach trigonometry, but trig isn’t a
pixels per second. It will take 8 seconds

to travel off the screen, and you need to

requirement for the book, so the
best | can do is tell you to sit back

reset it when it’s done. Clicking the and enjoy the pretty effects that
Execute button again will stop the demo they produce. If you don’t know
from running. trigonometry, though, you’re missing

out on a lot.Trig is one of the most
important math subjects you can
use when programming games.

I urge you to play around with different
formulas to see what you can accom-
plish. Table 12.2 holds some of the cool
ones that I've discovered.

Table 12.2 Cool Formulas

X y Effect

400 + (c*100) 300 + (s *100) Makes the ship fly around in circles

t* 100 300 + (s * 100) Makes the ship fly in a sine wave
pattern

400 + (¢ *200) 300 Makes the ship fly back and forth
rapidly

(t*t)*10 300 Makes the ship slowly accelerate off
the screen

400+ (c*(t*10)) 300+ (s*(t*10)) Makes the ship slowly circle out of
control

Team LRN

388 12. Binary Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

I made these formulas after playing around for a minute; I’'m sure you can come up
with some even neater ones. For example, you could make the speed of the space-
ship depend on the amount of health you have left. The possibilities are endless.

Conclusion

This chapter turned out to be a lot longer than I expected, mainly due to the
extensive parsing section I included. I hope you understood it, because parsing is a
very neat area of game developing. Nothing beats a game that is 100 percent
extendible and modifiable.

If anything, this chapter should have reinforced the idea that recursion is a very
important area of programming. Some people may say that recursion is too slow
for game programming, and they are sometimes right. The key is knowing when
recursion is used best.

Binary trees aren’t very exciting on their own, but I included them here to lead up
to the next few chapters. BSTs (see Chapter 13), heaps (see Chapter 14), and
Huffman trees (see Chapter 21, “Data Compression”) all use binary trees as their
base. In addition, a lot of trees that aren’t covered in this book are based on binary
trees, such as AVL trees and red-black trees, as I mentioned before.

Team LRN

CHAPTER I3
E1INARY
SEARCH
TREES
\
B

Team LRN

390 13. Binary Search Trees

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Previously, you learned about recursion, general trees, and binary trees. This
chapter deals with a variant of the binary tree called a Binary Search Tree (BST).
The BST is a structure where recursion is more important in determining how the
data is stored rather than how the data is accessed. You'll see what I mean by this
later in the chapter.

In this chapter, you will learn

® What a BST is

= How to insert data into a BST
= How to find data in a BST

® How to code a BST class

= How to use a BST to search for resources in a game

What Is a BST?

Imagine that you have to sort a group of people by height so that you can easily
search for someone by their height later on. How would you go about doing this?

Figure 13.1 shows six people that you need to sort.

ML

The easiest way to sort them is to find the shortest person and put him/her first,
and then find and place the next shortest, and so on. This method of sorting on
a computer is slow, though. You can stand back and immediately see the shorter

Figure 13.1

Don’t hate them
because theyre
beautiful.

Team LRN

What Is a BST? 391

N — r—= L= —Lr"]_

people in the line of people waiting to be sorted; the computer can’t do that. The
computer would need to look at every person in line to find out who is the shortest.

Instead, why don’t you do something clever? Pick a midpoint (say, 5 feet, 6 inches)
and look at the first person in line. If he/she is below that height, you move
him/her to the left. If he/she is above that height, you move him/her to the right.
Now, whenever you want to search for someone of a particular height, all you need
to do is determine which half of the line that height would be in and search only
that half of the line!

For example, if you wanted to find someone with a height of 6 feet, you would look
in the right half of the line because no one who is 6 feet tall would be in the left half.

Figure 13.2 shows the group of people partitioned in half.

Figure 13.2

The perfume models
are now partitioned
into two groups, the
tallest on one side,
and the shortest on
the other.

partition

This sorting method is employed by the Binary Search Tree data structure. It
attempts to split data in half to make searching easier.

Inserting Data into a BST

Say you have a queue of data that you want to search through. You take the first
item off the queue and put it as the root of the tree. Then, you take the next item
off the queue and compare it with the root. If it is less than the root, then you
make it the left child of the root. If it is more than the root, then you make it the
right child of the root.

Now, repeat the process. Take another item off the queue and do the same thing. If
a node already exists on the left or the right children, then you go down another
level and compare the items again.

Team LRN

392 13. Binary Search Trees

L= = e

For example, say you have a queue containing this data: 4, 2, 6, 5, 1, 3, 7. The first
step is to take off the 4 and insert it as the root node in a BST. Then you take off
the 2 and compare it with the 4. Because 2 is less than 4, you insert 2 as the left
child of the root. Then you take off 6, which is placed as the right child of the root
because it is more than 4. Figure 13.3 shows the first three steps.

Queue: Figure 13.3

This is how you insert

4 1 2|6 |5|1|3]|7
the first three nodes

X} into the BST.

After you have completed that step, you want to insert 5 into the tree. First, you
compare it with 4 at the root, and because it is larger than 4, you try to insert it to
the right. However, there is already a node to the right! So you compare the 5 with
the 6 in the right node; because 5 is less than 6, you insert the 5 as the left child of

Team LRN

What Is a BST? 393

the 6. Likewise, the 1 is compared to the 4 and then the 2 and then inserted as the
left child of the 2. Figure 13.4 shows these two steps.

Queue: Figure 13.4
511 3]|7 This is how you insert

| the next two nodes.

See if you can figure out where the 3 and the 7 go. Figure 13.5 shows where they
are inserted if you’re stumped.

Figure 13.5

317
Finally, this is how
| you insert the last

two nodes.

Team LRN

394 13. Binary Search Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

So, now that you have the final BST in Figure 13.5, see if you can figure out why
I've partitioned the data like this.

Finding Data in a BST

Now that the data has been inserted into the tree, how do you search for the data
quickly? By using the same algorithm, of course! If you want to search for 3, you
compare it with 4, go left, compare it with 2, and go right, and you’ve found it!
That was nice and easy, wasn’t it? In fact, the most comparisons you can make when
searching for something within this tree is 3, and there are 7 items within the tree.
If the tree was one level larger, it could hold 15 items, but the most comparisons
you could make would be 4!

In Chapter 1, “Basic Algorithm Analysis,” I introduced you to the logarithm func-
tion. The base-2 logarithm of 8 is 3 (because 2° = 8 and the logarithm is the inverse
of the power function), and the base-2 logarithm of 16 is 4 (2' = 16). You can see
that the BST search algorithm is roughly O(log,n). However, this is the best-case
scenario; you will see why in a bit.

Removing Data from a BST

There is a BST node removal algorithm, but I don’t cover it here. The algorithm is
long and messy, and because I consider BSTs to be of only marginal importance to
general game programming, I refer you to an article I've included on the CD in
the \goodies\articles\ directory entitled Trees Part II: Binary Trees. It has the complete
algorithm for removing nodes from a BST.

The BST Rules

You must always follow two rules for every node in a BST:

1. Every node in the left subtree must be less than the current node.

2. Every node in the right subtree must be greater than the current node.

You can see that this is a recursive definition; it applies to every node in the tree.
You can also see that these rules effectively (in an optimal tree) split the amount of
data you need to search through by half for every level you search in the tree.

Team LRN

Graphical Demonstration: BSTs 395

N — r—= L= —Lr"]_

Sub-0Optimal Trees

I admit it: The first BST example I gave you was doctored. I fixed the data so that
the tree ends up being full. However, data is usually not organized like that, and it
usually produces BSTs that are not optimal.

First, let me show you the absolute worst case for inserting data into a BST. Say you
have a queue of this data: 1, 2, 3, 4, 5. Inserting this data into a BST creates the
tree shown in Figure 13.6.

Figure 13.6

This is a worst-case
BST; it looks just like
a linked list.

The 1 is inserted as the root, the 2 as the right child of 1, the 3 as the right child of
2, and so on. What does this resulting tree look like? A linked list, of course. There
is no branching done at all in this tree, and if you want to search for data within it,
you're stuck doing a linear search, O(n), which is considerably slower than

O (log,n). This is rather unfortunate, and there are ways around this, but they are
beyond the scope of the book. AVL trees, splay trees, and red-black trees are all special
forms of BSTs that perform rotations on the nodes when they are inserted so that
the tree ends up more balanced.

As long as the data you are inserting is somewhat random, you will end up with
decent trees. However, if data is sorted already or has some statistical correlation,
you might end up with less than optimal trees.

Graphical Demonstration:
BST1s

This is Graphical Demonstration 13-1, which you can find on the CD in the direc-
tory \demonstrations\ch13\Demo0O1 - BSTs\.

Team LRN

396 13. Binary Search Trees

—Jl_rl—l_l_'Eru—”_l_'_'_'_l—l——ll_l'—lJ

'ﬁl_'_nl_u_,—.:_

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,

“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-

tory or create your own project using the settings described in

Appendix B. If you create your own project, all of the files you need to

include are in the directory.

This demonstration is fairly simple because the BST structure is fairly simple to use.

Figure 13.7 shows a screenshot from the demo in action.

I-'__, Binary Ssarch Tres Graphical Demonstration - m

s —— Trisa

'Q®Qooo®
OO ® O0®.

49

Figure 13.7

Here is a screenshot
from the BST demo.

As you can see from the screenshot, the demo has three buttons and a text box.
You can type any number from 0-99 in the text box, or you can click the Random

button to insert a random number into the text box.

After you have a number in the text box, you can do two things with it: You can
either insert that number into the BST or search for that number in the BST.

Team LRN

Coding a BST 397

N — r—= L= —Lr"]_

Clicking either button makes the demo follow a path down the tree, either trying
to insert a node or just finding a node.

Play around with it and get to know how BSTs work a little better.

Coding a BST

The code for the Binary Search Tree is located on the CD in the file
\structures\BinarySearchTree.h.

The Structure

The binary search tree uses a binary tree as its underlying structure, but the actual
class is just a container; it has a pointer to the root node and a comparison func-
tion.

template <class DataType>
class BinarySearchTree
{
pubTic:
typedef BinaryTree<DataType> Node;
Node* m_root;
int (*m_compare)(DataType, DataType);
}s

Comparison Functions

You’ve seen function pointers a few times already in this book; the hash functions
for hash tables (see Chapter 8, “Hash Tables”) and the process functions for the
tree traversals (see Chapters 11, “Trees,” and 12, “Binary Trees”) come to mind.
This time, I introduce you to the idea of comparison functions.

The idea here is that you are probably going to be storing complex structures in
the BST, right? So how, exactly, does one determine if one class is “larger” or
“smaller” than another? Sure, it’s easy with integers, but what about other classes,
say, a complex game player class?

Using a custom comparison function allows you to customize how data is stored in
the BST. For example, you may want to store characters in a BST based on how
much life they have left and search based on that. Then, sometime down the road,
you might want to make a different BST that stores characters, but this time you

Team LRN

398 13. Binary Search Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

want to search based on another attribute—perhaps how strong the character is. By
using a comparison function, this change is easy; you can make a new function that
compares the strength of two characters instead of the health.

The definition of the comparison function is simple: It takes two parameters of
type DataType and returns an integer. The integer return value can have three
meanings. If the number is negative, then the left parameter is less than the right.
If the number is 0, then the two parameters are equal. If the number is positive,
then the left parameter is more than the right.

For example, you can create a simple comparison function for integers, like this:

int Comparelnts(int left, int right)
{

return left - right;
}

If the Teft is less than the right, then the result is negative. If they are equal, then
the result is 0. If Teft is larger than right, then the result is positive.

The Constructor

The constructor function basically takes
a comparison function as a parameter
and sets the root to null.

BinarySearchTree(int
(*p_compare)(DataType, DataType))
{

m_root = 0;

m_compare = p_compare;

)

The Destructor

The destructor should simply delete the root node. Remember from Chapter 12
that the BinaryTree destructor recursively destroys every node in the tree. That
makes this function really simple:

~BinarySearchTree()
{
if(m_root !=0)
delete m_root;

Team LRN

Coding a BST 399

N — r—= L= —Lr"]_

The Insert Function

Now comes the Insert function. There are two ways you can insert the node into
the binary tree; one is recursive, and the other is iterative. The recursive function
in this case is pointless because this isn’t really a recursive algorithm. So instead of
recursion, I use the iterative algorithm. I split this up into a few segments so that it
is easier to understand.

void Insert(DataType p_data)
{
Node* current = m_root;
if(m_root == 0)
m_root = new Node(p_data);

This first segment takes a piece of data as a parameter and creates an iterator
named current, which points to the root of the tree. If the root is empty, the func-
tion creates a new root node.

If not, the function continues:

else

{
while(current != 0)
{

This segment starts the while loop. The function travels down the tree while the
iterator is valid, and as soon as the function inserts a node into the tree, it sets the
iterator to 0 so that the loop will exit.

if(m_compare(p_data, current->m_data) < 0)
{
if(current->m_left == 0)
{
current->m_left = new Node(p_data);
current->m_left->m_parent = current;
current = 0;

}
else
current = current->m_left;

}

The previous segment of code does a few things. It first compares the data in the
current node with the data that you want to insert into the tree. If the result of the
m_compare function is less than 0, you want to insert it into the left child. The next

Team LRN

400 13. Binary Search Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

step is to check if the left child exists. If not, create a new left child and set current
to 0. If it does, then move the current pointer to the left.

This next code segment does the same thing, but to the right this time:

else
{
if(current->m_right == 0)
{
current->m_right = new Node(p_data);
current->m_right->m_parent = current;
current = 0;
}
else
current = current->m_right;

LT LT
}
} CAUTION
} :| This function does not check for |:

duplicated data.Typically, BSTs do
not allow for duplicated data to be
entered into the tree, but some-

ThE Find times they do. Because this BST

class doesn’t support node removal,

And that’s the function.

Function you’re just wasting space if you
This function is almost the same as the insert duplicated data into the
Insert function except that it just tree—the Find function will never
returns a pointer to the node if it finds find it.

the data in the tree. ™ ™

Node* Find(DataType p_data)
{
Node* current = m_root;
int temp;
while(current I= 0)
{
temp = m_compare(p_data, current->m_data);
if(temp == 0)
return current;
if(temp < 0)
current = current->m_left;
else

Team LRN

__j:__LUjj_____L_IE;;__Fzz

}

Coding a BST 401

=T 1

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

current = current->m_right;

}
return 0;

If the data isn’t found in the tree, this function returns 0.

Example 13-1: Using the BST Class

This is Example 13-1, which demonstrates how to use the BinarySearchTree class
with integers. The source code for this example is on the CD in the directory
\examples\ch13\01 - Binary Search Trees\.

The example uses the CompareInts function I showed you earlier to store integers in
a BST:

void main()

{

BinarySearchTree<int> tree(Comparelnts);
BinaryTree<int>* node;

// insert data
tree.Insert(8);
tree.Insert(
tree.Insert(
tree.Insert(2);
tree.Insert(
tree.Insert(10);
tree.Insert(14);
// these searches

node = tree.Find(
node = tree.Find(
node = tree.Find(
node = tree.Find(
// these searches
node = tree.Find(
node = tree.Find(
node = tree.Find(
node = tree.Find(

are successful
8);

2);

14);

10);

return 0

1)

3);
5);
7);

Team LRN

402 13. Binary Search Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Application: Storing
Resources, Revisited

This is Game Demonstration 13-1, and you can locate it on the CD in the directory
\demonstrations\ch13\GameOl - Resources Revisited\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

When you think about them, binary search trees are nothing more than a different
version of the hash tables from Chapter 8. They are designed for storing data so
that you can retrieve it again quickly by using a key.

Because of this, I want to go back to Game Demonstration 8-1 and rewrite it so that
it uses Binary Search Trees instead.

The Resource Class

You may have noticed that using a BST is slightly different than using a hash table;
whereas a hash table used a key/value pair to store and retrieve data, my BST class
doesn’t do that. Instead, it just stores the data right in the tree. This particular
quirk of my implementation causes me to code the demo a little differently.

First of all, I create a Resource class, which will have two things, a string and an
SDL_Surface pointer:

class Resource

{

pubTic:
char m_string[64];
SDL_Surface* m_surface;

Team LRN

Application: Storing Resources, Revisited 403

N — r—= L= —Lr"]_

The Comparison Function

The next thing that I need to do is to create the comparison function. Because you
want to search the tree for string matches, you’ll use the standard C strcmp func-
tion to compare the strings.

int ResourceCompare(Resource p_left, Resource p_right)
{

return strcemp(p_left.m_string, p_right.m_string);
}

Luckily, the strcmp function returns a negative number if the left string is less than
the right string, 0 if they are equal, and a positive number if the left is greater than
the right!

So this function compares resources based on name only, not based on the actual
bitmap that the Resource class contains. This is important when you search for
something in the tree.

Inserting Resources

Inserting resources into the tree is similar to inserting them into a hash table
except that instead of inserting a string/surface pair into the tree, you create a
resource structure first.

Resource res;

res.m_surface = SDL_LoadBMP("sky.bmp");
strcepy(res.m_string, "sky");
g_tree.Insert(res);

The strcpy function copies the string into the resource’s name. This step is
repeated for every resource in the demo.

Finding Resources

To search for a resource, you need to set up a dummy resource, which doesn’t con-
tain a surface, but only a string:

Resource res;
strcpy(res.m_string, g_name);

The g_name variable is a string that contains the name of the resource you are
searching for. The m_surface variable of res is left blank.

Team LRN

404 13. Binary Search Tree',s,,l_::.__;

_J_l_"l_l_'_'Er”—”_'_‘—'_'_l_l——'

After that, you declare a binary tree node pointer, which will hold the node that is
returned from the BST’s Find function:

BinaryTree<Resource>* node = 0;

node = g_tree.Find(res);

Now the BST will compare the dummy resource’s name with the name of the
resources in the BST, and if it finds a match, it will return the node that contains
the resource. When the node is returned, all you need to do is determine whether

it is valid and then use it:

if(node !=10)

g_resource = node->m_data.m_surface;

else
g_resource = 0;

Playing the Demo

The demo plays exactly like Game Demo 8-1. Figure 13.8 shows a screenshot of the

program in action.

[Game Dameo 13-01: Resource Dameo Revisited

ire |

Team LRN

Figure 13.8

Here is a screenshot
from the demo.

Conclusion 405

As before, you enter the name of the resource you want to load into the text box,
and it loads the resource for you automatically. The valid resource names are sky,
water, water2, snow, fire, vortex, and stone.

Conclusion

I'm going to be honest with you: Binary Search Trees don’t really do much that a
hash table doesn’t do better. Whereas a hash table’s search time runs close to O(c),
the best-case search time for a BST is still higher than that, at O (log,n). So why did
I even bother to teach you BSTs?

Well, BSTs introduce you to the concept of recursively storing data. This concept
becomes very important when you get into the more advanced trees used in game
programming, such as Binary Space Partition (BSP) trees. BSPs are a really neat form
of tree that splits polygons in a 3D (or even 2D—John Carmack used them in
DOOM) world so that you can easily determine which polygons in a scene are visi-
ble. The concepts used in BSP trees are remarkably similar to the concepts of BSTs.

All in all, I hope you're getting a feel of how recursive tricks are used to split up
large amounts of work into smaller problems.

Team LRN

This page intentionally left blank

Team LRN

_Iﬂ_l—|_|-____u_“‘_,_[r___.—__ e [! W

] I o R M= —] 2N

CHAPTER 14

FPR1ORITY
COQuEUES AND
HERAFrPS

408 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The subjects I introduce you to in this chapter build off of two previous subjects
in this book: queues from Chapter 7, “Stacks and Queues,” and binary trees
from Chapter 12, “Binary Trees.” The structures in this chapter are used quite
often in game programming, but not directly. More often, priority queues and heaps
are helper structures, which help you solve a problem. You’ll see them used again
several times in this book, so this is an important chapter to read.

In this chapter, you will learn

= What a priority queue is

= What a heap is

= How a heap is structured

= How to use a heap as a priority queue
= How to create a heap using an array

= How to use a heap in a game to implement a simple Al

What Is a Priority Queue?

You should already know what a queue is by now: The line down at your local
supermarket is one example. The first person who gets in line gets checked out
first, and the last person gets checked out last. Pretty much everything in life where
you stand in line is a queue: the tollbooth to go over a bridge, the line at the
Department of Motor Vehicles (yuck), and even the line at a nightclub.

If you’ve ever seen nightclub lines at the movies, you can see that they are different
kinds of queues than a normal queue. Very Important People (VIPs) always seem to
go right up to the bouncer and get let into the club without waiting in line! That’s
not a queue—it’s a priority queue.

In a priority queue, data is associated with a priority value, and that value determines
how it is placed in the queue. For example, if you placed this data into a normal
queue in this order—4, 2, 5, 3, I—you would end up with the queue in Figure 14.1.

Team LRN

What Is a Priority Queue? 409

N — r—= L= —Lr"]_

front Figure 14.1

This is a normal

queue.

The data would be processed in the order that it was inserted into the queue: first
4, then 2, then 5, and so on.

Now, pretend that the number that is being inserted into the queue is its priority
value: the higher the number, the higher the priority. Insert the five numbers into
a priority queue in the same order, and you get the queue in Figure 14.2.

insert: front Figure 14.2
This is a priority
queue, having five

4 4
items inserted into it.

2 4 2

5 5 4 2

3 5 4 3 2

1 5 4 3 2 1

You can see that as items are inserted into the priority queue, they aren’t just added
to the back of the queue. Instead, they are placed in order into the queue. For
example, because the queue is empty when 4 is inserted, it is the only item in the
queue. Then, 2 is inserted. Because 2 is less than 4, it goes behind 4. Then 5 is
inserted, which is larger than 4, so it is placed at the front of the queue. 3 is placed
between 4 and 2, and 1 is placed at the end of the queue.

Team LRN

410 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The more important items are placed closer to the front. That’s pretty much all
there is to the priority queue concept. Removing items from the priority queue is
the same as before; the front item is removed first.

There are several ways to implement priority queues. The easiest way is to have a
linked list for the queue. Whenever you insert an item, search through the list until
you find the right place to insert the item. Although this method is straightforward
and easy to understand, it is slow. In fact, almost no one really makes a priority
queue like that.

Instead, there is a much faster and more efficient method of making a priority
queue using special binary trees called heaps.

What Is a Heap*

A heap is a special kind of binary tree in which every node is greater than all of its
children. This definition is somewhat similar to the BST definition from Chapter
13, “Binary Search Trees,” which says that for a tree to be a heap, every node in the
tree must have the heap property.

For example, Figure 14.3 shows a sample heap.

Figure 14.3

A heap is a binary
tree where every
node is greater than
all of the nodes in its
subtrees.

The root node in this tree holds the highest value, 93. Every single child node of
the root holds a smaller value. Because every node in the tree is larger than all of
its children, you know that the second highest value in the tree is one of the root’s
children. You can’t immediately determine where the third highest value in the

Team LRN

What Is a Heap™ a4

N — r—= L= —Lr"]_

tree is, though, because it might be the other child of the root or it might be some-
where on the third level of the tree.

Why Can a Heap Be a Priority
OQueuer?

Because the highest value in a heap is always at the root node, the heap can easily
be used as a priority queue. To access the front value in the priority queue, all you
need to do is look at the root.

Adding and removing the items from the heap is a little bit difficult to understand
at first, so let me show you what kind of heaps are used for making a priority queue.

Needed Heap Attributes

In Chapter 12, I introduced to you the binary tree property called denseness. To
build a quick priority queue, the heap needs to be dense. I show you why when I go
over the algorithm used to insert items into the heap.

Also, heaps are usually implemented as arrayed binary trees instead of linked. This is
due to the need for the heap to be dense; determining if a linked tree is dense is a
much more complicated task than determining if an arrayed tree is dense.

Inserting an Item into a Heap

Inserting an item into a heap is an interesting problem. How would you maintain
the heap property for every node in the tree?

You could try to start at the root and swap nodes around until every node is in the
right place, but that is a complex and time-consuming algorithm. You also end up
with the problem of having a non-dense and unbalanced tree, which is bad because
you want to keep the tree as balanced as possible (this will become clear in a bit).

The easiest way to insert a node into a heap is to use an algorithm called the walk
up algorithm. The basic theory is this: Insert the new item at the bottom of the tree
and then make it walk up the tree until it is above every node that is less than it and
below a node that is larger than it.

For example, take the heap in Figure 14.4. There are four levels in the tree; the
first three are totally full. Because the only node on the fourth level is all the way to
the left, this heap is also dense.

Team LRN

412 14. Priority Queues and Heaps

Figure 14.4

This is a four-level
heap.

The algorithm for inserting an item into the heap is actually quite easy when you
understand how it works. Say you want to insert the number 85 into the heap from
Figure 14.4. To keep the heap dense, you are going to place it in the first open
node on the lowest level, which is the right child of 60. This produces the tree
shown in Figure 14.5.

Figure 14.5

Step | is to insert a
new item at the
bottom.

Now the tree is still dense, but it is no longer a heap. Node 60 and node 80 are
both invalid, because 85 is larger than them both, but below them in the tree. Now
you need to walk 85 up the tree into the correct place. The first step is to compare
85 with its parent, 60. Since 85 is more than 60, they need to be swapped. Figure
14.6 shows the resulting tree from the first swap.

Team LRN

What Is a Heap™

Figure 14.6

Then you swap 60
and 85 to make it
more like a heap.

After the swap, one node is still invalid in the tree: node 80. You need to compare
85 with its parent again and swap them if it is larger. Figure 14.7 shows the tree
after the second swap.

Figure 14.7

Then swap 85 and
80 to turn the tree
into a heap.

After the second swap is made, one more comparison is done: 85 is compared with
the root node, 90. Because 90 is larger than 85, the algorithm is complete, and the
tree is a heap again. If you were inserting 95 into the heap, it would have been
swapped into the root node.

Using this method, the next item to be inserted into the heap would be placed as
the left child of node 50; that keeps the tree dense. Then the same walk-up algo-
rithm would be executed on the new item until the tree is a heap again.

Team LRN

413

4149 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Because a heap is always dense, it is easy to figure out how long inserting an item
takes. On a four-level tree, you make at most three comparisons on an insertion.
On a five-level tree, you make at most four comparisons, and so on. Because the
number of items in the tree doubles with each new level, yet the number of com-
parisons required to insert an item only increases by one for each new level, you
can see that this is an O(log,n) algorithm.

If you implemented a priority queue using the linked list method I described ear-
lier, you would potentially have to look at every item in the list to find out where to
insert the item, making it an O(n) algorithm. If you remember back to Chapter 1,
“Basic Algorithm Analysis,” O (log,n) is significantly faster than O(n) for large
datasets, so you can see how the heap is considerably faster than a linked list for
priority queue insertion.

Removing an Item from a Heap

Because you’re using the heap as a priority queue, the only item you are interested
in removing is the root of the tree, but this algorithm works for any item in the
heap anyway.

So you want to remove the root node from Figure 14.4. Great, you removed the

root node, but what happens next? How do you move data up the tree so that it
remains a heap?

The easiest way is to take the lowest node in the tree and move it into the root
node, which will give you Figure 14.8.

Figure 14.8

The first step of
removing the root is
to replace the root
with the bottommost
item.

Now the tree is no longer a heap because the root node is less than its children, so
you need to do something to the tree to make it a heap again. This time, instead of
walking the node up the tree, you’ll walk the node down the tree. However, walking

Team LRN

What Is a Heap™ 415

N — r—= L= —Lr"]_

a node down the tree is a little more difficult because you have two choices of
where to move the node now instead of just one. The choice is an easy one, how-
ever. To keep the tree a heap, just move the larger of the two children up. In the
example, the 20 at the root is swapped with 80 because 80 is the largest child. The
result is shown in Figure 14.9.

Figure 14.9

This is the first swap.

After you do that swap, you need to check to see if you need to swap the node
again. If either one of the children is larger than the current node, then swap
them. In the example, you would swap 20 with 60 because 60 is the largest child
node. The resulting tree is shown in Figure 14.10.

Figure 14.10

This is the second
swap.

After this swap, you’ve reached the bottom of the tree, and it is now a heap again!
For reference, if you were to remove 80 from this tree, 30 would be moved up into
the root and walked down because 30 is the bottom-most and right-most node.

Remember, the idea is to keep the tree dense because dense trees are the most
efficient.

Team LRN

416 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

| p—| 1

Because this algorithm always moves the bottommost node, the tree always remains
dense, so this algorithm is O (log,n) as well. However, because the walk-down algo-
rithm performs two comparisons at every level, it takes about twice as long as the
walk-up algorithm.

You might note one disadvantage of this algorithm, though. The linked-list priority
queue can remove items instantly, using an O(¢) algorithm, because all it needs to
do is remove the front node (remember, the Linked List RemoveHead algorithm is

0(0)).

So this means that the heap removal algorithm is much slower than the process of
removing the top node of a linked-list priority queue.

Heap Efficiency

Even though heap removal is slower than list removal, it is proven that heaps are
still the most efficient implementation of priority queues. Tables 14.1 and 14.2
show an example of the number of comparisons needed for the two different prior-
ity queue implementations.

Table 14.1 Comparisons Made When Inserting and
Removing from a Linked-List Priority Queue

Data Size List-Insertion List-Removal List-Total
7 7 0 7

15 15 0 15

31 31 0 31

63 63 0 63

127 127 0 127

Team LRN

Graphical Demonstration: Heaps 417

N — r—= L= —Lr"]_

Table 14.2 Comparisons Made When Inserting and
Removing from a Heap

Data Size Heap-Insertion Heap-RemovaI* Heap-Total

7 3 6 9
15 4 8 12
31 5 10 15
63 6 12 18
127 7 14 21

*Remember: The walk-down algorithm performs two comparisons at every level.

In a seven-item priority queue, the linked queue clearly wins out because inserting
another item and then removing the front takes at most seven comparisons, but the
heap requires at most nine. When you get past seven nodes, though, the heap
clearly shows its superiority, especially at larger datasets, such as 127 items. Inserting
another item into a linked priority queue with 127 items in it requires at most 127
comparisons, but the heap requires at most 21!

Graphical Demonstration:
Heaps

This is Graphical Demonstration 14-1, which you can find on the CD in the direc-
tory \demonstrations\ch1A\Demo0O1 — Heaps\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,“The
Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the directory
or create your own project using the settings described in Appendix B. If
you create your own project, all of the files you need to include are in
the directory.

Team LRN

418 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

This demonstration is fairly simple; there are only three commands. You can
enqueue a number into the heap, dequeue the top of the heap, and place a ran-
dom number into the text box. Figure 14.11 shows a screenshot from the demo.

__Heap Graphical Demonstration =JOES Figure 14.11
r ’ .
Enqueue W"'U | @ = Here is a screenshot

— _ - e @ from the heap demo.

@ @ @ @ O @ 0 o
@@@@0@@@@@@@@¢@©

When you insert a node into the heap, it is placed at the bottom of the heap and
colored red. The demo then moves the node up in the tree using the walk-up algo-
rithm, following the progress with the red node.

The same thing occurs when removing a node from the heap; the bottom node is
moved into the root, and the new root is walked down the tree, highlighted in red.

Play around with the demo so that you understand how a heap works before going
on to the next section.

Coding a Heap (Class
All of the code for heaps can be found on the CD in the file \structures\heap.h.

I mentioned earlier that heaps are best coded using an arrayed binary tree. I also
said in Chapter 12 that there really is no point in creating a specific arrayed binary
tree class because using an arrayed binary tree is just as simple as using an array.

Team LRN

Coding a Heap Class 419

Because of this, the Heap class will inherit directly from the Array class so that you
can use all of the nifty features of an array within the Heap.

The Structure

The only two things needed in addition to the array variables that are inherited are
a variable to keep track of how many items are actually within the heap and a func-
tion pointer that points to a comparison function.

I introduced you to comparison functions in Chapter 13 when I showed you binary
search trees. The concept is exactly the same in this chapter; you pass in a compari-
son function to the heap so that it knows if an object is larger than another or not.

template <class DataType>
class Heap : public Array<DataType>
{
pubTic:
int m_count;
int (*m_compare)(DataType, DataType);
1

The Constructor

Because the Array constructor requires a size parameter and the Heap is an array,
the Heap constructor also takes a size parameter. It also takes a function pointer to
the comparison function.

Heap(int p_size, int (*p_compare)(DataType, DataType))
Array<DataType>(p_size + 1)

m_count = 0;

m_compare = p_compare;
} NOTE
The second line of code calls the Array You can modify this so that you
constructor and creates an array one don’t waste space and subtract |
cell larger than the requested heap size. from every index you access in the
Remember back to Chapter 12: Arrayed Heap class, but I chose not to use this
binary trees need to have the root at method because the code looks ugly

and | want to show you how the
class works more than how to opti-
mize it.

index 1 to work correctly, so the array is
created one cell larger because index 0
is going to be unused.

Team LRN

420 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Enqueue Function

This is the function that is called whenever an item is inserted into the heap:

void Enqueue(DataType p_data)
{
m_count++;
if(m_count >= m_size)
Resize(m_size * 2);
m_array[m_count] = p_data;
WalkUp(m_count);
}

The function takes the data you want to insert as a parameter and increases the
count of the heap.

Because you’re using an array for the implementation, you need to check to see if
you’re overflowing the array. The function checks to see if the array is full, and if
so, doubles its size.

After that, it places the new item into the last open index in the array and calls the
WalkUp function on the new data.

The WalkUp Function

This function does most of the work when inserting a new node into the heap. It is
designed to move a piece of data through the tree until the tree has become a valid
heap again.

1: void WalkUp(int p_index)

2: |

3: int parent = p_index / 2;

4: int child = p_index;

5 DataType temp = m_array[child]l;

6 while(parent > 0)

7 {

8: if(m_compare(temp, m_array[parent]) > 0)
9: {

10: m_array[child] = m_array[parent];
11: child = parent;

12: parent /= 2;

13: }

14 else

15: break;

Team LRN

Coding a Heap Class 421

N — r—= L= —Lr"]_

16: }
17: m_array[child] = temp;
18: }

The WalkUp function takes an index as a parameter, allowing you to call the func-
tion on any cell within the tree.

The function then creates two index variables on lines 3 and 4. These variables rep-
resent the current child and parent indexes as it walks up the tree.

On line 5, the function creates a temporary local variable, temp, which stores the
data that is being walked up the tree. This is just a little optimization, which is
demonstrated by Figure 14.12.

Figure 14.12

This is an invalid
heap.

Now, it is obvious that node 11 is in the wrong place in this tree and should be
moved up to the root node. The walk-up algorithm I demonstrated before would
swap 9 and 11 and then swap 10 and 11. This process is a waste, however, because
you know that 11 will eventually be placed at the root.

Instead, this optimized function places 11 in a temporary variable, moves 9 to
replace 11, moves 10 to replace 9, and moves 11 into the root. Figure 14.13 shows
this sequence of events.

Figure 14.13

This shows the
optimized WalkUp
function.

Team LRN

422 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Instead of moving 11 into where node 9 was, you skip that step and move it directly
to the root. Although this example had only trivial savings, much larger trees will
be faster.

Now, back to the function! On line 6, the function starts a loop that will continue
until the parent index is 0, which means that the child index will point to 1, the
root of the tree.

On line 8, the function determines if the node you are walking up is in the correct
place or not by checking the value of the parent node. If the parent node is greater
than the node that is being walked up, the function uses the break keyword on line
15 to break out of the while-loop because the node can’t be moved up anymore.

If the parent node is less than the node, then the node is moved down into the
child node on line 10 and both the parent and child pointers are divided by 2,
moving them up one level.

Finally, on line 17, the data that was to be moved up is moved into the cell that
child points to, which is the same as step 4 in Figure 14.13.

The Dequeue Function

The Dequeue function performs the setup for removing the root node of the heap.

void Dequeue()
{
if(m_count >=1)
{
m_array[1] = m_array[lm_count];
WalkDown(1);
m_count--;

}

If the heap isn’t empty, then the function moves the item at the bottom of the
heap to the root (overwriting the top node) and then calls the WalkDown function
on the root.

The WalkDown Function

This function is very similar to the WalkUp function, except that it is a little more dif-
ficult to detect the bottom of the heap than the top and you need to choose which
indexes to swap.

Team LRN

Coding a Heap Class 423

N — r—= L= —Lr"]_

This function will use the same optimization used with the WalkUp function; it stores
the data that it is walking down in a temporary variable while nodes are moved up
the tree.

1: void WalkDown(int p_index)

2: {

3: int parent = p_index;

4: int child = p_index * 2;

5 DataType temp = m_array[parent];
6 while(child < m_count)

7 {

8: if(child < m_count - 1)
9: {

10: if(m_compare(m_array[child], m_array[child + 1]) < 0)
11: {

12: child++;

13: }

14: }

15: if(m_compare(temp, m_array[child]l) < 0)
16: {

17: m_array[parent] = m_array[child];

18: parent = child;

19: child *= 2;

20: }

21: else

22: break;

23: }

24: m_array[parent] = temp;

25:}

The function starts out with the same variables that the WalkUp function did: a par-
ent and child index and a temporary variable. The item that is being walked down
the tree is placed in temp.

Then, on line 6, a while-loop is started, which loops through the tree until the
child index is larger than the size of the tree.

Line 8 is important because it starts the block of code that detects which child
node of the current parent is larger. For example, look at the tree in Figure 14.14.

Team LRN

4249 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 14.14

The function must
check whether p has
only one child.

The parent index is pointing to node p, and the child index is pointing to node .
The code on line 8 determines if the right child of p exists. In this example, it
doesn’t, so ¢is automatically assumed to be the larger child of p. If p had two chil-
dren, then the code on lines 10-13 detects this and finds out which child is larger.
If the right child is larger than the left, then the child index is incremented
because the index of the right child of any node is one larger than the index of the
left child.

Now that the function knows which child node it wants to move upward, it deter-
mines whether the child node needs to be moved upward by comparing it to the
temp node on line 15. If no swap needs to be made, the function exits out of the
while-loop on line 22. If a swap needs to be made, the function moves the parent
node into the correct child node and then moves both the parent and child
indexes down a level on lines 18 and 19.

Finally, the value in temp is placed into the correct index on line 24 when the loop
is finished executing.

Application: Building OQueues

This is Game Demo 14-01, which you can find on the CD in the directory \demon-
strations\ch1 A\GameO1 - Building Queues\.

Team LRN

Application: Building Queues 475

N — r—= L= —Lr"]_

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

I'm sure you’ve played a Real-Time Strategy (RTS) game before—there are many
famous ones, including Warcraft, Starcraft, and Command & Conguer. In these games,
you usually have some sort of building or factory that allows you to produce your
units in the game.

For example, in Starcraft, you can build a factory that lets you make tanks and
mechs.

These systems use simple queues for building units; when you tell a factory to build
a unit, it places the unit in the queue. Although priority queues aren’t used much
in these situations, you can use them for a very simple Artificial Intelligence (Al).

For example, say you have an RTS game that has three units: a worker, an attacker,
and a defender. A very simple Al would assign an importance to each of the units:

® Defenders are the most important; you need them to defend your base.

® Workers are moderately important; you need them to build and repair your
base.

® Attackers are the least important; you only need to consider attacking after
your base is well defended.

Now, whenever the Al wants to create a new unit, it places the units into a priority
queue. Using this system, defenders will always end up at the front of the queue,
workers after them, and attackers at the end of the queue.

The little system I've created works like this: You have four factories, each of which
can be turned on or off. You also have a priority queue of units that you want to
build. Whenever a factory is available to manufacture a unit, the factory starts mak-
ing the item at the front of the priority queue.

Team LRN

426 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The Units

As I stated before, the game has three unit types, which are stored in an enumer-
ated type:

enum UNIT

{
ATTACKER,
WORKER,
DEFENDER

Creating a Factory

The Factory class is simple—it has only four variables:

class Factory
{
public:
UNIT m_currentUnit;
int m_startTime;
bool m_working;
bool m_functioning;
}s
The factory knows what kind of unit it is currently producing, so it has a UNIT vari-

able, called m_currentUnit.

After that, the factory keeps track of when it started making the unit. Each unit
takes 10 seconds to complete, so when the current time is 10 seconds more than
this value, the factory outputs the new unit into the game world.

The next two variables are Booleans. The first Boolean, m_working, keeps track of
whether or not the factory is working on a unit or not. Sometimes the factory can
be idle, and if so, this Boolean would be false.

The other Boolean determines if the factory is functioning. This has many mean-
ings in a game. For example, the factory could be damaged badly or have no
power, and so on. Whenever this Boolean is false, the factory cannot start working
on a new unit.

There are four factories in this game, and they are placed in a global static array:

Factory g_factories[4];

Team LRN

Application: Building Queues

=T 1

427

-——|_|—-—|_.—l‘”_”‘|5l—l—|__p—l—|_'_

__j:__LUjj_____L_IE;;__Fzz

The Heap

Because the Heap class is the only (and most efficient) implementation of a priority
queue that I've shown you, you have to use a heap in the game as a priority queue.

Heap<UNIT> g_heap(64, CompareUnits);

The heap holds UNITs, and it starts off being able to hold 64 of them. Because the
Heap class automatically resizes itself when needed, you can enqueue as many units
as you want. Flexibility is a really neat feature.

The heap also uses a function called CompareUnits as its comparison function. Here
is what the function looks like:

int CompareUnits(UNIT p_left, UNIT p_right)

{
return p_left - p_right;
}

The p_left and p_right variables are
both UNITs and not integers, so how will
you determine which one is greater
than the other? If you remember how
C++’s enumerations work, each enumer-
ation is really just an integer. In the UNIT
enumeration, ATTACKER has a value of 0,
WORKER has a value of 1, and DEFENDER has
a value of 2. So the function subtracts
the right from the left, just like you did
with the integer comparison function I
showed you earlier.

Enqueuing a Unit

L L

CAUTION

Treating enumerations like integers
works on most compilers, but some
compilers don’t like it. Truly picky
compilers might say, “You cannot
subtract enums—they aren’t real
numbers!” But you can fool them by
performing an explicit cast on the
enums. To cast an enum to an inte-
ger, all you need to do is this:
(int)(p_left).Then, p_left is con-
verted into its integer equivalent.

1 1

L

L

Enqueuing a unit onto the heap is a very simple task; all you need to do is

type this:

g_heap.Enqueue(ATTACKER);
g_heap.Enqueue(WORKER);
g_heap.Enqueue(DEFENDER);

These three lines enqueue an Attacker, a Worker, and a Defender on the queue. Of
course, given their priorities, the Defender will be moved up to the front of the
queue because it has the highest priority of them all.

Team LRN

4238 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Starting Construction

In the demo, you need to loop through the factories to see if any of them are able
to start construction of a new unit.

1: for(x = 0; x < 4; x++)

2: |

3 if(g_factories[x].m_working == false &&

4. g_factories[x].m_functioning == true &&

5 g_heap.m_count > 0)

6 {

7 g_factories[x].m_currentUnit = g_heap.Item();
8: g_factories[x].m_working = true;

9: g_factories[x].m_startTime = SDL_GetTicks();
10: g_heap.Dequeue();

11: }

12:}

The loop goes through each factory and checks three things. First, it makes sure
that the factory isn’t already making something (line 3). If it is, then m_working
would be true. Second, it makes sure that the factory is functioning (line 4).
Finally, it makes sure that a new unit is waiting to be produced on the queue. If
there is, then the count of the heap will be more than 0 (line 5).

If all three of these conditions are met, then the current factory will start construc-
tion. First, the current unit of the factory is set to whatever unit is at the front of
the queue (line 7). Then, the factory is told to start working (line 8), and the time
that construction started is recorded using the SDL_GetTicks function (line 9). After
the factory has been set up to construct a new unit, the new unit is removed from
the heap (line 10).

Completing Construction

Now you need a way to determine when construction is completed. This is also
done with a loop:

1: for(x = 0; x < 4; x++)

2: |

3 if(g_factories[x].m_working == true)

4. {

5 if(SDL_GetTicks() - g_factories[x].m_startTime > 10000)
6 {

7 g_factories[x].m_working = 0;

Team LRN

Application: Building Queues 429

N — r—= L= —Lr"]_

8: }
9: }
10:}

The loop goes through all four factories again, this time just checking to see if they
are currently producing a unit (line 3). If they are, then it checks to see how long
they have been working on the current unit (line 5). This line of code subtracts the
time that the factory started working from the current time. SDL_GetTicks returns a
number in milliseconds. There are 1,000 numbers per second and, therefore,
10,000 in 10 seconds. The if statement on line b checks to see if more than 10,000
milliseconds have passed, and if so, then the unit has been completed.

On line 7, the factory is stopped. Because this simple demo doesn’t actually do any-
thing with the units that are created, this is where you would add code to physically
place the unit into the game so that the player can actually use it.

Playing the Demo

Figure 14.15 shows the game demo in action.

[-: Building Queue Demonstration I.L E Flgure 14.15
Build: Here is a screenshot
from the demo.
Attack
_ acket Defender
—
Worker [=—
oy il
——
Defender
Defender
e ————————————————
MNext: Attacker
Attacker .
Worker
L

On the left side of the screen, there are three buttons. Clicking any one of these
buttons adds a new unit onto the queue. Below the buttons, the next unit in the
queue is displayed.

Team LRN

430 14. Priority Queues and Heaps

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

On the right are four factories, each with a progress bar and a text field saying
which unit they are currently building. By clicking on the factory boxes to the left
of the progress bars, you can turn the factories on or off. When a factory is turned
off, the box will turn red, signifying that it is not functioning.

You'll notice the priority queue at work as soon as all the factories are busy. For
example, start building four Attackers, and when they are building, add a few more
Attackers to the queue. After you have done that, quickly add a Worker or
Defender to the queue; it will immediately be placed above the Attackers that are
already on the queue.

So the Al ends up creating the more important units before the least important
units unless they have already started construction. This is a very simple way of
implementing an Al for an RTS game.

Conclusion

The priority queue isn’t something you will use as much as a linked list or an array
in a game; nevertheless, it’s a useful data structure. Instead of being used directly in
applications, though, you’ll find that priority queues are used far more often in
conjunction with complex algorithms or other data structures. You’ll see them used
a few more times in this book, in Chapters 21, “Data Compression,” 23,
“Pathfinding,” 24, “Tying It Together: Algorithms,” and Appendix D, “Introduction
to the Standard Template Library.”

The main thing I wanted to emphasize, however, was how much time you save by
storing data recursively in a tree. You’ve seen two examples now, the binary search
tree and the heap, each of which stores data in a different way, but stores the data
so that you don’t have to do much work on it. The key to making fast programs is
to find ways to do less work.

Team LRN

_Iﬂ_l—|_|-____u_“‘_,_[r___.—__ e [! W

] I o R M= —] 2N

CHAPTER I5

GHAME TREES
AND IYITNIMAX
TREES

432 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

l lntil this point in the book, I have shown you data structures that can be used

for any type of game. None of the structures was specific to a certain genre.
This chapter introduces you to a data structure that departs from this non-specific
nature.

Almost all of the game demos and examples in the book so far mimic real-time
games, or games which run continuously in time. I have overlooked discrete games—
games where the players take turns playing. Some of the oldest discrete games, such
as checkers, chess, and tic-tac-toe, were around long before computers were. The
structures introduced in this chapter are designed to map out the progress of these
types of games and aid the computer in figuring out how to beat you in them.

In this chapter, you will learn

= What a game tree is

= What a minimax tree is

= How to generate game trees and minimax trees for a simple game
= How to store game states

= How to program a simple game using minimax trees

= How to prevent infinite recursion in more complex games

= How to limit the minimax algorithm by using limited depth searching

What Is a Game Tree?

A game treeisn’t a special new data structure—it’s a name for any regular tree that
maps how a discrete game is played.

I'll start with a simple example, Rocks. In this game, you have different piles of
rocks, with one or more rocks in each pile. The game has two players, who take
turns taking one or more rocks from a single pile until one pile is left. When one
pile is left, your goal is to force your opponent to remove the last rock. The person
who removes the last rock loses.

Figure 15.1 shows a simple setup for a game of Rocks.

Team LRN

What Is a Game Tree? 433

N — r—= L= —Lr"]_

Figure 15.1

This is a simple
game of Rocks with
. two piles. The first
‘ ‘ pile has two rocks,
and the second pile

has one.

In the figure, there are two piles. The first pile has two rocks, and the second pile
has only one rock. If you are the first player, you have three choices:

= Remove one rock from pile 1.

= Remove two rocks from pile 1.

= Remove one rock from pile 2.

You can start the game off with one of those three moves. You can create a simple
game tree to represent these moves, as shown in Figure 15.2.

Figure 15.2
Player 1’s Turn: - -

Here are the first

two levels of a game
tree, demonstrating

the three possible
Player 2’s Turn: a - - moves.

After Player 1 has moved, it is now Player 2’s turn. His choice of a move is limited
to the current state of the game, however. In the leftmost state of Figure 15.2,
Player 2 has two choices: He can remove one rock from pile 1 or one rock from

pile 2.

His choice for the middle state is even less useful He can only remove one rock
from pile 2. Of course, because this is the last rock, Player 2 has lost the game.

On the right state, Player 2 has two options again: He can remove one or two rocks
from pile 2.

Figure 15.3 shows the game tree for all five of these moves and goes down one
more level to show you the complete game tree.

Team LRN

434 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 15.3
, -
Player 1’s Turn: | a L.
This is the complete
game tree,
demonstrating every
Player 2sTurn:| * | - - - possible move in the
/ \ \ game.
Player 1's Turn: - -
: - Player 2 Lost Player 2 Lost
Player 1 Lost| | Player 1 Lost Player 1 Lost

The game is entirely complete by the time the fourth level is reached—the game
can have up to three moves because there were only three rocks. You can also tell
from the tree that there are five total outcomes from the game because there are
five leaf nodes. The game always ends on a leaf node because there are no more

moves that can be made.

So what can you tell about the game tree that you couldn’t easily tell about the ini-
tial game setup?

If you are Player 1, the obvious first move is the second one, removing the two
stones from pile 1. By doing that, you are forcing Player 2 to lose, because he has
no other option and cannot possibly win.

Another thing you would notice if you were Player 1 is that the leftmost move,
removing one rock from pile 1, is a death sentence. If you make that move, then
you have given Player 2 a free win, because no matter what move he makes, there is
no chance for you to win in that branch.

If you take the third route on the opening move, then Player 2 decides the outcome
of the game. If Player 2 removes both rocks in pile 1 (a very stupid move), he loses. If
he only removes one rock, then he forces you to remove the last one, and you lose.

What Is a Minimax Tree?

A minimax tree is the same as a game tree. In fact, it’s not even a tree; it’s actually
an algorithm that is used on a game tree. Everyone calls it a minimax tree, though,
so I will, too.

Team LRN

What Is a Minimax Tree? 435

The minimax algorithm is a really neat way of transforming a game tree into data
that a computer can analyze so it can make an intelligent choice about which move
is the best at the moment.

The minimax algorithm is designed for two
players: Min and Max. The algorithm
works like this: Max starts, so he has the

dominant position and he will be the NOTE

aggressor in the game. Every time he Max moves first, so why don’t they
moves, he chooses the best move for call them maxmin trees? | have no
himself. Min is on the defensive, and idea. | guess minimax sounds better.

every time she moves, she will try to put
Max in the worst position possible.

To make a minimax tree, you need to use an algorithm called a heuristic algorithm.
A heuristic is really just a fancy word that means general rule of thumb. Different Als
for different games have different heuristic functions for different purposes. The
job of a heuristic function is to look at a move in a game and evaluate if it is a good
move or a bad move.

The minimax algorithm works like this: It goes down to every leaf node and ana-
lyzes the state of the game at that point. It then uses the heuristic algorithm to pro-
duce a number. A high number means that the state is good for Max and bad for
Min, and a low number means that the state is bad for Max and good for Min.

For example, look at the game in Figure 15.3 again. I'm going to use a very simple
heuristic algorithm that returns 1 if Max wins and 0 if Max loses.

The first step of this process is shown in Figure 15.4.

Figure 15.4
Max
The first step of the

minimax algorithm is
Min to give an initial
value to the end
states of the game.
When Max wins, a |
Max is placed in the node.
When Min wins, a 0

is placed in the node.
Min

Team LRN

436 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

The algorithm analyzes all five leaf nodes of the game tree from Figure 15.3. The
states where Player 1 (Max) lost are made into a 0, and the states where Player 2
(Min) lost are made into a 1.

After that has been completed, the minimax algorithm backtracks through the
tree. Whenever it is Min’s turn, she selects the move that has the lowest score.
Whenever is it Max’s turn, he selects the move that has the highest score.

Figure 15.5 shows the backtracking.

Figure 15.5
Max ° This is a full minimax

tree that has been
backtracked through.

Min ° ° a The path that is

taken by the
minimax algorithm is
in bold.

vax (0) © O © O
win - (0) () O

Look at the lowest node on the left side and its parent node. The parent node is on
Max’s turn, so Max takes the highest child node. Unfortunately for Max, there is
only one child node, and it contains 0, so a 0 is placed in the parent node. The
same goes with the next node over to the right on Max’s turn—the only choice is a
loss for Max. There is one other branch on Max’s turn if you traverse the tree
going right and then left from the root. This node also becomes a 0 because it only
has one child.

Now take a look at all the nodes on Min’s first move. Min has two choices on the
leftmost move, both of which end in 0. Because Min is looking for the lowest score
possible, this situation is good, because two 0s mean that Max can’t win. The next
node over is bad for Min; it only has one child, and it contains 1. Min has no
choice, however, so Min must take that value. The third child of the root finally
offers a choice for Min; its two children contain a 0 and a 1. Because it is Min’s
turn, she selects the 0. If it were Max’s turn, he would have selected the 1.

Team LRN

Graphical Demonstration: Minimax Trees 437

N — r—= L= —Lr"]_

Finally, the root node is evaluated. It has three children, and Max needs to choose
the node with the largest value. Because two of the nodes are 0 and only one is 1,
Max chooses the node with the 1 in it.

What does all this mean? How do you use this information to determine which
move Max will make? Because Max chose the node with the 1 in it, his next move
will be to take the middle path and remove the two rocks from pile 1. After that
move, Min has no choice and will lose.

Say, for example, Max was an inferior player, perhaps a human, who took the third
path instead of the second path and removed the one rock from pile 2. Now it is
Min’s turn, and she has two choices. The minimax algorithm has decided that she
will follow the left path, because it is 0, and this eventually leads to Max losing.

One more thing needs explanation, however. What if there are two options with
the same Min or Max value? What path should the Al take? You can see that this sit-
uation occurs in the left child of the root node in the example tree. It is Min’s

turn, and both moves are 0, so which one should she take? The heuristic algorithm
you used to generate the score values treats both paths of the tree equally because
they have the same value, so you can take either path. A random number can be
used to make the computer Al seem more lifelike, or you could just take the first
lowest path you find. The choice is up to you.

Graphical Demonstration:
Minimax Trees

This is Graphical Demonstration 15-1, which can be found on the CD in the direc-
tory \demonstrations\ch15\Demo01 - Minimax trees\.

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B,
“The Memory Layout of a Computer Program.”

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Team LRN

438 15.

Game Trees and Minimax Trees

_J_l—q_rl—lEﬂ'_”'I—l_,—ﬁ_l——-

LT L

'ﬁl_'_nl_u_,—.:_

This is just a simple graphical demonstration that shows you how a few different
minimax trees are generated. The demo uses the same game that I showed you pre-
viously—the rock pile game. Figure 15.6 shows a screenshot from the demo.

[Minimax Tree Graphical Demenstration

- -

Game: = = =

¥

&

=J O3
e
Minimax

O-

Figure 15.6

Here is a screenshot
from the demo.

Notice the three little boxes at the top. Those boxes represent your rock piles. The
demo allows up to three piles. You can use the arrows above and below the piles to
increase or decrease the number of rocks in a given pile. I decided to limit the
number of total rocks in the demo to 4, though, because any more than that will

cause everything to look very messy.

The screenshot shows a configuration you should be familiar with; it is the same
rock pile configuration I showed you earlier.

Every time you add or remove a rock from a pile, the game tree is automatically
updated on the screen. Even though the game tree doesn’t show you which states
each nodes represent, it is fairly easy to figure out. The algorithm I used to figure
out the next gamestate from each node works like this: Try to subtract one rock
from pile 1, two rocks from pile 1, three rocks from pile 1, and four rocks from pile
1, and then switch to pile 2 and repeat.

So in the figure, the leftmost subtree from the root represents the game if you
removed one rock from the first pile, the middle subtree represents the game if
you removed two rocks from the first pile, and the right subtree represents the
game if you removed one rock from the second pile.

After you have set up the desired rockpile configuration, all you need to do is click the
Minimax button and the program will generate the minimax values for each node.

Team LRN

Game States 439

NOTE

Note the order in which the program generates the minimax values. Recognize
it? It is our old friend, the postorder traversal! You first saw the postorder tra-
versal in Chapter | 1,“Trees.” The postorder traversal works like this: For each
node, it figures out the minimax values for all of its children, picks the min or
max value depending on whose turn it is, and then returns up the tree.

Figure 15.7 shows a screenshot from a different game setup after it has been
calculated.

_ Minimax Trea Graphical Damonstration SJOES Figure 15.7

Miriar This is a screenshot

: of a more complex

game, solved by the

0 minimax algorithm.

® © O
OOOD © OO
@

If Max is smart, he can win the game on the first move by removing one rock from
pile 1. Every path after that move leads to a win on his part. If not, he removes
both rocks from pile 1 and forces himself to lose.

Game States

Normally, this is where I would jump into the code for the data structure described
in this chapter. However, the code for the minimax tree already exists; it’s just a
plain tree. Instead of coding a minimax tree, I want to instead go over more con-
cepts involved with minimax trees. The first concept is a game state.

Team LRN

440 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

A discrete game will have a certain state L L
at any given time. The state of a rock
pile game stores how many rocks are in
each pile. The state of a tic-tac-toe game :I I:
stores which boxes are empty, have Xs,
or have Os. The state of a chess or
checkers game stores the locations of
each of the markers on the game board.

To use a minimax tree, you need to be
able to store this state somehow. Not
only that, but you must also do so effi-
ciently.

So now you need to figure out a good
way to store a game state. In Graphical

Demonstration 15-1, I used a three-cell :I I:
array to store the number of rocks in
each pile. This example was easy to fig-

ure out, though. [1 [1
How about a game like tic-tac-toe? LT Lo
In tic-tac-toe, you have a 3x3 grid in TIP

which each cell can have one of
three different values: it can be
empty, it can have an X, or it can
have an O. Figure 15.8 shows a

Because games like tic-tac-toe can have
up to 900,000 total nodes in their game
trees, storing game trees can take huge
amounts of memory. Making your game
sample tic-tac-toe board. states take as little memory as possible
is important.

1 1

Figure 15.8

X X This is a sample tic-
tac-toe game board.

Team LRN

Game States 441

If you don’t already know, the object of the game is to get three of your symbols in
a row, either horizontally, vertically, or diagonally.

The game has nine squares, each of which can contain one of three different
things. If you had two squares, there would be a total of nine different states, as
shown in Figure 15.9.

Figure 15.9
X O These are the
possible two-celled

combinations; each

line represents a pair
of cells.There are

nine lines.

X110

If you count all the lines, you’ll see that there are nine of them. Likewise, if you
add another cell, you’ll need to multiply 9 by 3, to get 27 different combinations.
One cell is 3', two cells is 3%, and three cells is 3°, so 9 cells is 3°, or 19,683 different
gamestate combinations.

The easiest way to store a tic-tac-toe game state would be to use a nine-celled array
of chars where each cell contains 0, 1, or 2 (empty, X, or O).

NOTE

If you know how to represent numbers in different bases, such as base 2 (bina-
ry), base 3 (trinary), base 8 (octal), or base 16 (hexadecimal), just to name a few,
you might have seen that you can store the game state as a single nine-digit
base-3 number. Because each digit in a base-3 number can be 0, I, or 2, this fits
nicely. For example, the base-10 number 19,682 (one less than the maximum

number of states) expands to the base 3 number 222,222,222, Because the max-
imum number of states is 19,683, you can store the state of a tic-tac-toe game
in a 16-bit integer (2 bytes), which has a maximum value of 65,535 (or a total of
65,536 values, including 0). Compare this with the 9 bytes required for a char
array and you can see how much better this method is. The only downside, of
course, is the extra processing power required to convert a base-10 number into
a base-3 game state. As always, the memory versus speed tradeoff exists.

Team LRN

442 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

1 1

More Complex Games

How about a game like checkers or chess? How would you go about storing the
gamestate of those games?

Both of them operate on an 8 X 8 grid, so you have 64 cells right there. A full
game of checkers only uses half of those squares, though, because your pieces stay
on the black squares, so you can cut that down to 32 cells.

Checkers also only uses two units, a normal piece and a king, so each cell can have
up to b different values: empty, red piece, black piece, red king, black king. You
could use a large 32-cell array of chars (32 bytes). There are at most 24 pieces on
the field at one time, so you could also have a 24-cell array of bytes keeping track of
the location and the type of each unit (24 bytes). It only takes three bits to keep
track of each coordinate (2° = 8), and you’ll have an extra two bits to keep track of
what kind of unit each piece is (2° = 4, which is how many different units there are).

Chess uses all 64 cells, though, and has many more units than checkers does. There
are six units per team (king, queen, bishop, knight, rook, pawn), so each cell can
have 13 different values. Using an array of 64 cells would take 64 bytes for each
game state, but with chess it’s probably a better idea to keep track of each player
individually. There is a maximum of 32 pieces on the board at any time in a chess
game, so that splits the game state size in half. Again, you’d use three bits per coor-
dinate, using just six bits of a char. However, this time, each index in the array
defines what a unit is. For example, index 0 would mean “white’s king”, and 16
would mean “black’s king”, and so on.

Application: Rock Piles

This is Game Demonstration 15-1, which is located on the CD in the directory
\demonstrations\ch15\GameO1 - Rock Piles\.

Team LRN

Application: Rock Piles 443

N — r—= L= —Lr"]_

Compiling the Demo

This demonstration uses the SDLGUI library that | have developed for
the book. For more information about this library, see Appendix B.

To compile this demo, either open up the workspace file in the direc-
tory or create your own project using the settings described in
Appendix B. If you create your own project, all of the files you need to
include are in the directory.

Now the time has come to implement a game using a minimax tree. This section
shows you how to actually code the rock pile game.

The Game State

First of all, you need to be able to store a rock pile game state. I call this class the
RockState class. I separate the data in the class into two areas.

First, there is the actual game state data:
int m_rocks[PILES];

This is just a simple array. The PILES constant is defined at the top of the program;
in this particular program, PILES is 5. The array contains simple integers; each pile
has a certain number of rocks in it. Obviously, the number is positive, because
there shouldn’t ever be a negative number of rocks in a pile.

Second, to make things simpler, I have included more data in the RockState class:

int m_minimaxValue;
Tree<RockState>* m_nextState;

The first variable, m_minimaxValue, holds the minimax value of the game state.
Because the game states will be stored in a game tree and a minimax tree will have
the same structure, why not combine them into one structure? So the program, when
it creates the minimax tree, will go through the game tree (in which every node will
hold a RockState) and automatically fill in the minimax value for each state.

The next variable is a tree node pointer. The same algorithm that fills in the mini-
max values also fills in the pointer in each game state. Each game state will point to
the next node in the game tree, or the choice that the computer would make at
any point in the game. Look at Figure 15.10 for an example.

Team LRN

444 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Figure 15.10

° The node pointers

point to the game
state that the Al
o ° o should move to next.
They are represented
by the bold lines.

When the minimax algorithm for this game demo goes through the tree and calcu-
lates the minimum and maximum values for each node, it also keeps track of the
child node that has the min or max value. For example, in the root node from
Figure 15.10, the minimax algorithm detects that the middle child has the max
value of all of its children. Therefore, the algorithm sets the m_minimaxValue variable
to 1 and sets the m_nextState pointer to point to the middle child node. In Figure
15.10, every node’s m_nextState pointer is shown in bold.

The Constructor

The constructor of the RockState is meant to clear all the variables so that you can
tell whether a state has been initialized.

RockState()

{
int x;
for(x = 0; x < PILES; x++)

m_rocks[x] = 0;

m_minimaxValue = -1;
m_nextState = 0;

}

The function goes through each pile and sets the rocks to 0. Then it sets the mini-
max value to —1. Because the only valid minimax values are 0 and 1, you can tell
right away if the minimax algorithm has processed this state.

Finally, it sets the next state pointer to 0 so that it doesn’t point to something ran-
dom in memory.

Team LRN

Application: Rock Piles 44945

__j:__LUjj_____L_IE;;__Fzz

= E:::———L__J———ﬂ——ﬂ_J———r”__”1___EEEEEE5““7————f_1__J1——r1__r_

The Equivalence Operator

The next function is used to determine if two states are equal to each other.

bool operator== (RockState& p_rock)
{

int x;

for(x = 0; x < PILES; x++)

{

if(m_rocks[x] != p_rock.m_rocks[x])
return false;

}

return true;

}

This function compares the number of rocks in all of the piles in each state, and if
any pile is different from another, it immediately returns false. If the loop ends and
it hasn’t exited the function yet, then all of the piles are the same, and the function
should return true.

The Empty Function

This function checks to see if a rock pile is empty; this is important because the
game ends when all piles are empty.

bool Empty()
{
int x;
for(x
{

=0; x

< PILES; x++)

if(m_rocks[x] !=0)
return false;

}
return true;
}

This function loops through each pile and checks if any of them are not empty. If

any aren’t empty,

then the function immediately returns false. If they are all empty,

then it returns true.

The Global Variables

There are many global variables used in this game, and each one is used for a dif-

ferent purpose.

Team LRN

446 15. Game Trees and Minimax Trees

Tree<RockState>* g_tree;
RockState g_startingState;
Tree<RockState>* g_current = 0;
bool g_playing = false;

bool g_hint = false;

bool g_yourturn = true;

bool g_gameOver = false;

The variables for the most part should be self-explanatory by their names, but let
me go over them just in case.

The g_tree variable is a pointer to the game tree. Each node holds RockStates.

The g_startingState variable holds the initial state of the game. The game demo
will allow you to customize this when you first start the program.

The g_current pointer points to the node in the game tree that contains the cur-
rent game state. For example, when the game just starts out, it will point to the root
of the game tree.

The g_playing boolean determines if the game is being played yet. There are basi-
cally two states in the game: creating the rock piles and actually playing the game.
If this is false, then you’re still setting up the rock piles.

The g_hint boolean determines if the game should show you a hint on what move
you should make next. This feature works by analyzing the minimax tree and see-
ing what move the computer would make if it were playing. Isn’t that cool?

The g_yourturn boolean determines whose turn it is. If true, then it’s your turn, if
false, then it is the computer’s turn.

Last, there is the g_gameOver variable, which determines if the game is over or not.
Basically all this does is tell the game that nothing can be done but exit.

Generating the Game Tree

Now that you have the game state class and the tree variable defined, you need to
make a function that will generate a game tree for you.

Luckily for you, this can be done very simply by using recursion (there’s that word
again!). All you need to do is pass in a game state to the function, and it will figure
out every possible state that can be reached from the current state. It will then
recursively call the function on all of those new states. The function then returns a
game tree, starting at the state that it was given.

Team LRN

Application: Rock Piles 447

N — r—= L= —Lr"]_

1: Tree<RockState>* CalculateTree(RockState p_state)
2: |

3: int 1;

4: int rocks;

5 Tree<RockState>* tree = new Tree<RockState>;
6 Tree<RockState>* child = 0;

7 RockState state;

8: Treelterator<RockState> itr = tree;

9: tree->m_data = p_state;

10: for(i = 0; i < PILES; i++)

11: {

12: for(rocks = 1; rocks <= p_state.m_rocks[i]; rocks++)
13: {

14: state = p_state;

15: state.m_rocks[i] -= rocks;

16: child = CalculateTree(state);

17: itr.AppendChild(child);

18: }

19: }

20: return tree;

21:}

The function is meant to take a RockState as a parameter and return a game tree
starting at that state.

It starts out by creating two integers: i and rocks. These two integers will be used to
loop through the current state and generate a new state. I show you how this is
done in a little bit.

On lines 5 and 6, two tree node pointers are created. The first one is called tree,
and it is initialized to point to a new tree node, which will be the tree node that
this function generates. The second pointer, child, will be used to hold temporary
tree pointers and is initialized to 0.

On line 7, a temporary RockState variable is declared. This variable will hold the
modified states that can be reached from the current state.

On line 8, a Treelterator is declared and made to point to the tree. This iterator
will be used to insert child nodes into the tree.

On line 9, the game state that was passed into the function is placed inside the
tree node.

Team LRN

448 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'EF”—IJ"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

Now, the function starts generating all the possible states that can be reached from
the current state. This is accomplished by using a simple algorithm. Figure 15.11
shows the four states that are generated on a sample state.

Figure 15.11

These are the four
states that can be
reached from the
current state.

First, the algorithm tries to subtract one rock from the first pile, producing the
child state on the left of Figure 15.11. Then it tries to subtract two rocks from the
first pile, and then three, and it continues until there are no more rocks to subtract
from that pile. Then it moves to the next pile and repeats the process.

For each newly generated state, the
function recursively calls itself to gener-
ate a new game tree based on that new
state. This happens on line 16, and the
result is placed in the child node
pointer.

| S LT

Using the tree iterator, the child is then
added as a child to the tree node.

When the loop is complete, the function
returns the tree node that was generated. I hope you can see how recursion made
your job really easy in this function by splitting the problem up into little pieces.

Team LRN

~ Application: Rack Piles 449

Generating the MiniMax Tree

Now you need a function that will traverse the game tree and fill in the minimax
values. I start by showing you the recursive postorder function that calls the mini-
max calculation algorithm.

void MiniMax(Tree<RockState>* p_tree, bool p_max)
{
Treelterator<RockState> itr = p_tree;
for(itr.ChildStart(); itr.ChildValid(); itr.ChildForth())
{
MiniMax(itr.m_childitr.Item(), !p_max);
}
CalculateMiniMaxValue(p_tree, p_max);
}

This function is very simple. You send it a tree node to calculate the minimax value
of, as well as a boolean named p_max. This boolean is meant to determine whose
turn it is. If it is true, then it is currently Max’s turn. If it is false, then it is currently
Min’s turn.

The function first creates a tree iterator that points to the tree node passed into
the function. Then it loops through each child and recursively calls the MiniMax
function on each child. Note that the
p_max boolean is flipped using the !
operator. This is because on the current 8 Yoy o 5
level, if it is Max’s turn, the next level
down will be Min’s turn, and vice versa.

Note that this algorithm is essential-
ly the same as a postorder traversal

Finally, the CalculateMiniMaxValue func- because it processes all the children
tion is called on the current node. This first and then processes the current
function does exactly what its name T
implies—it calculates the minimax value
of the node.

The Heuristic Function

Next, you need to create a heuristic function, a function that generates a value that
determines how “good” a given state is for a player. In the minimax algorithm, it is
assumed that the heuristic function will generate high numbers if the state is good
for Max and low numbers if the state is good for Min.

Team LRN

450 15. Game Trees and Minimax Trees

IJ'—’I_|_‘—'E“'—[I"—'—'—*I_I——'|_.*|_I ﬁl_l—rﬁ_u_l_‘.:_

In this simple game, the only states that are evaluated are the ending states of the
game, and there can only be two outcomes for those states: Max won or Min won.
Therefore, the heuristic function you will be using only generates two different val-
ues: 0 or 1. A 0 means that Min has won the game, and a 1 means that Max has
won the game.

int Heuristic(RockState p_state, bool p_max)
{

return p_max;

}

The function takes in a state and a

boolean. The boolean is used to deter-

mine whose turn it is when this state is

reached. The only time this function is

called on a state is when the rock piles

in the state are totally empty, so in this

demo, the p_state parameter is ignored. 1 1

So the only thing this function does is evaluate whose turn it is when the game
ends. If it is Max’s turn when there are no more rocks, that means that it was Min
who removed the last rock. Therefore, this state should return a 1, because Max
has won this game. Because p_max is 1 if it is Max’s turn, the function simply returns
the value of the boolean. Likewise, if it is Min’s turn when the game ends, it just
returns 0.

The MiniMax Calculation Function

This is the function that the MiniMax function shown previously calls to generate the
minimax value of each node in the tree. It is quite long and complex, so allow me
to separate it into different sections so you can better understand how it works.

First of all, the function takes a game state node and a boolean as parameters.
These function exactly as they did with the MiniMax function.

void CalculateMiniMaxValue(Tree<RockState>* p_tree, bool p_max)

After that, the first thing the function does is check to see if the node has any chil-
dren. If it has no children, that means that the node is an ending state of the game,
so the heuristic function should be called on that state to determine its value.

{
if(p_tree->m_children.m_count ==)
{

Team LRN

Application: Rock Piles 451

N — r—= L= —Lr"]_

p_tree->m_data.m_minimaxValue = Heuristic(p_tree->m_data, p_max);
return;
}

After the node has been set with its heuristic value, the function just returns. There
is no need to do anything else.

If the node has children, you need to apply the minimax algorithm to the node.
This involves a few things. You need an integer that will keep track of the current
lowest or highest value that has been found so far. You must also use a tree iterator
to loop through each child.

int minmax;

Treelterator<RockState> itr = p_tree;

itr.ChildStart();

minmax = itr.ChildItem().m_minimaxValue;
p_tree->m_data.m_nextState = itr.m_childitr.m_node->m_data;
itr.ChildForth();

After the two variables are declared, they are init