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Preface 

Since the beginning of the seventies computer hardware is available to use 
programmable computers for various tasks. During the nineties the hardware 
has developed from the big main frames to personal workstations. Nowadays 
it is not only the hardware which is much more powerful, but workstations can 
do much more work than a main frame, compared to the seventies. In parallel 
we find a specialization in the software. Languages like COBOL for business­
orientated programming or Fortran for scientific computing only marked the 
beginning. The introduction of personal computers in the eighties gave new 
impulses for even further development, already at the beginning of the seven­
ties some special languages like SAS or SPSS were available for statisticians. 

Now that personal computers have become very popular the number of pro­
grams start to explode. Today we will find a wide variety of programs for 
almost any statistical purpose (Koch & Haag 1995). 

The past twenty years of software development have brought along a great 
improvement of statistical software as well. It is quite obvious that statisti­
cians have very specific requirements for their software. There are two de­
velopments in the recent years which I regard as very important. They are 
represented by two programs: 

• the idea of object orientation which is carried over from computer sci­
ence and realized in S-Plus 

• the idea of linking (objects) is present since the first interactive sta­
tistical program (PRIM-9). In programs like DataDesk, X-Lisp-Stat or 
Voyager this idea has reached its most advanced form. Interactivity has 
become an important tool in software (e.g. in teachware like CIT) and 
statistics. 

The aim of this thesis is to discuss and develop data structures which are 
necessary for an interface of statistics and computing. Naturally the final 
aim will be to build powerful tools so that statisticians are able to work 
efficiently, meaning a minimum use of computing time. 

Before the reader will read the details, I will use the opportunity to express 
my gratefulness to all the people who helped me and joined my way. At the 
first place is, Prof. Dr. W. HardIe. Since 1988 when I started to work as a 
student for him he guided me to the topic of my thesis. The development 
of XploRe 2.0, where I had only a small participation, and XploRe 3.0 to 
3.2 gave me a lot of insights in the problems of statistical computing. With 
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his help I got a grant from the European Community, which brought me to 
Louvain-Ia-Neuve and to my second Ph.D.-advisor, Prof. Dr. L. Simar. 

A lot of people from CORE have contributed to the accomplishment of my 
work. I would like to mention Heraclis Polemarchakis, Luc Bauwens and 
Sheila Verkaeren. I am very thankful to the staff of the "Institut de Statis­
tique" for their support and help, especially Leopold Simar, Alois Kneip, 
Irene Gijbels and Alexander Tsybakov. The atmosphere of Louvain-Ia-Neuve 
was very inspiring for my work. I have to mention the conference about "Sta­
tistical Computing" hold in Reisensburg because it gave me an insight in a 
lot of practical problems which have enriched my thesis. 

I have also to thank a lot offriends and colleagues for their help and company: 
Isabel Proenca, Margret Braun, Berwin Turlach, Sabine Dick, Janet Grass­
mann, Marco and Maria Bianchi, Dianne Cook, Horst and Irene Bertschek­
Entorf, Dirk and Kristine Tasche, Alain Desdoigt, Cinzia Rovesti, Chris­
tian Weiner, Christian Ritter, Jorg Polzehl, Swetlana Schmelzer, Michael 
Neumann, Stefan Sperlich, Hans-Joachim Mucha, Thomas Kotter, Christian 
Hafner, Peter Connard, Juan Rodriguez, Marlene Miiller and of course my 
family. 

I am very grateful for the financial support of the Deutsche Forschungs­
gemeinschaft (DFG) through the SFB 373 "Quantifikation und Simulation 
okonomischer Prozesse" at the Humboldt University of Berlin which makes 
the publication of my thesis possible. 
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1 
Introduction 

Summary 

This chapter first explains what data structures are and why they are impor­
tant for statistical software. Then we take a look at why we need interactive 
environments for our work and what the appropriate tools should be. We do 
not discuss the requirements for the graphical user interface (G UI) in detail. 
The last section will present the actual state of soft- and hardware and which 
future developments we expect. 

1.1 Motivation 

What are data structures ? 

The term "Data Structures" describes the way how data and their relation­
ships are handled by statistical software. Data does not only mean data in 
the common form like matrices, arrays etc, but also graphical data (displays, 
windows, dataparts) and the links between all these data. This also influences 
the appearance of a programming language and we have to analyze this to 
some extent too. 

Why examining data structures ? 

In statistical software we have to distinguish between two types of programs: 
programs which can be extended and programs which only allow what the 
programmer had intended. In order to extend the functionality of the pro­
grams of the first class we would need a programming language which can not 
be recognized by the user (e.g. visual programming languages). This is impor­
tant for statistical research, if we want to develop new computing methods 
for statistical problems. 

We have a lot of successful statistical software available, like SAS, BDMP, SPSS, 
GAUSS, S-Plus and many more. Mostly the data structure is developed ad 
hoc, and the developers have to make big efforts to integrate new develop­
ments from statistics and computer science. Examples are the inclusion of the 
Trellis display or the linking facilities in S-Plus or the interactive graphics 
in SAS. 
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Therefore it seems necessary to decompose the tools of a statistical program 
(graphics, methods, interface) and to see which needs statisticians have and 
to develop and implement structures which in some sense will be general for 
all statistical programs. 

Nevertheless some decisions are depending on the power of the underlying 
hardware. These will be revised as soon as the power of the hardware in­
creases. 

The programs of the second class can hide their structures. An analysis of 
these programs will be very difficult. We can only try to analyze the data 
structure by their abilities and their behaviour. 

What is my contribution? 

We first examine the needs in graphics, linking and data handling in extend­
able statistical software. The next step is to develop data structures that 
allow us to satisfy the needs as well as possible. Finally we describe our im­
plementation of the data structures. There was a discrepancy between our 
ideas and the implementation in XploRe 3.2, partly due to the fact that this 
implementation exists longer than my thesis, but we also had some techni­
cal limitations from the side of the hard- and software. For example, in the 
beginning we had a 640 KB-limit of the main memory and we did not use 
Windows 3.1 in XploRe 3.2. In XploRe 4.0, under UNIX, we will implement 
our ideas in a better way, but we are still at the beginning of the development. 

A extendable statistical software is composed of three components: 

• the graphical user interface (G UI) 
In the first chapter we discuss the GUI shortly regarding why we need 
interactive programmable environments. 

• the statistical graphic 
The graphics have to fulfill certain goals: there are statistical graphical 
methods and we need to represent the results of our analysises. So in 
chapter 2 we examine statistical graphics, in chapter 3 and 4 complete 
statistical methods (exploratory projection pursuit, cluster analysis) 
will be discussed. 

• the statistical methods 
The statistical methods are often difficult to separate from the graphics 
(e.g. grand tour, exploratory projection pursuit). However we can de­
compose graphical objects into a mathematical computation and into 
a visualization step. We show this in the beginning of chapter 5. An­
other aspect of statistical methods is the deepness of the programming 
language. The deepness for regression methods is discussed in detail in 
the last section of chapter 4. 
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Part of the programming language is also the handling of data objects. In 
chapter 5 we give two examples (local polynomial regression, exploratory 
projection pursuit) why matrices are not sufficient for data handling. The 
use of arrays has consequences for the commands and the operators in a 
programming language. The need for hierarchical objects to store different 
objects and metadata also has an impact on commands and operators. 

The question of linking data objects (data matrices, graphical objects etc.) 
is also part of chapter 5. The last chapter describes the implementation in 
the software XploRe. In XploRe 3.2, a program which runs under DOS, we 
have implemented the data structures of graphics and linking. In XploRe 4.0, 
which currently runs under UNIX and Motif, we have implemented arrays. 

Where are the difficulties ? 

The implementation phase of XploRe 3.2 lasted of course more than two years. 
The main problem at the beginning was that I did not have any idea which 
needs a statistician has. Nevertheless the decision about the data structures 
had to be made in an early phase of the implementation. Each missdecision 
I made had to be corrected later with an enormous amount of work. Some 
examples are: 

• the programming language 
When I developed the programming language my aim was to build a 
language which simplifies matrix manipulations, but I did not want to 
develop a whole language with loops, selections etc. So I chose to build 
an interpreter which makes the XploRe language slow. Especially loops 
which interpret each line again and again instead of interpreting it once 
by using a compact code are very slow. 

• the basic datatype 
For a matrix of numbers I chose the 4-byte float numbers as a basic 
datatype. Since in the beginning we had a technical limitation under 
DOS with max. 640 KB RAM, we wanted to store float numbers as 
short as possible. Since the compiled program already needs 400 KB 
memory we were only able to handle small datasets. Later I figured 
out that for some computations the precision was not high enough, so 
I changed to 8-byte float numbers. It took me some months to get the 
program to run properly afterwards. 

• linking and brushing 
The implementation of linking and brushing in XploRe allows only tran­
sient brushing. This is due to the data structure I chose. After recog­
nizing this I decided it was not worthwhile implementing a structure 
which allows nontransient brushing in XploRe 3.2. With an additional 
structure this would be possible, and we will correct this decision in 
XploRe 4.0. 
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The data structure I present in chapter 5 appeared only after I had thought 
about the needs. In fact it was a process of trying and learning. When Is­
abel Proenca implemented the teachware macros I saw that we needed pro­
grammable menus. So I implemented the command MEIU which works in a 
window. One problem is that the cursor was supposed to change from an 
arrow to a bar. But after printing a display with <Ctrl-p> the cursor again 
appeared as an arrow. Only after the next movement it would appear as bar 
again. Another problem appeared when printing the <F3>-box together with 
boxplots. The standard behaviour was that the box disappeared from the 
screen and reappeared after printing, but did not appear in the printout. It 
took me nearly a week to change this behaviour. 

Nevertheless I believe that I could build an efficient system. The development 
of most of the tools took me only one day or two. Of course the fine tuning 
like linking and everything appearing in the right time and the right place 
often took much more time. The wavelet regression macro is an example for 
this: the development was done in one day, but for the final form I needed 
more than a week. Additionally to the inclusion of the threshold method 
suggested by Michael Neumann I had to modify the commands handling the 
wavelet computations. 

The analysis of data structures in other programs is very difficult. Since most 
them are commercial products I have no access to the source codes. Only 
from the way how the user sees these programs I can try to guess which data 
structures are used. Dynamic graphics and linking seems to be a real problem 
in S-Plus (e.g. there is practically no possibility for printing the scatterplot 
matrix). New tools like the Trellis display or linking require a quite extended 
reprogramming of these languages. So I only give a short overview of the 
facilities of the different programs. 

Another problem was that I needed an overview about a lot of different 
statistical techniques, and I needed knowledge about the implementation of 
these techniques rather than the statistical and theoretical properties. 

Some interesting problem, e.g. the treatment of missings or the error han­
dling, could not be handled in a proper way because of a lack of time. 

1.2 The Need of Interactive Environments 

1.2.1 Why Interactivity ? 

As soon as interactive graphical terminals were available statisticians start 
to use them. In 1974, Fisherkeller, Friedman & Tukey (1988) developed a 
program called PRIM-9, which allowed analyzing a dataset of up to nine 
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dimensions interactively. They implemented the first form of linking, e.g. they 
allowed to mask out datapoints in one dimension such that all datapoints 
above or below a certain value would not be drawn. In a scatterplot which 
shows two different variables of the dataset the according datapoints would 
also not be drawn. They showed (with an artificial dataset) that this can lead 
to new insights about the dataset. 

The computational equipment which was used in the seventies to run PRIM-9 
was expensive. Nowadays computer power has improved and a lot of programs 
offer the facilities of PRIM-9. Nevertheless the idea of interactive environments 
needs time to become a standard tool in statistics. 

In batch programming as it was common during the sixties and seventies, 
a statistical analysis needed a lot of time. There were two possibilities to 
work: step by step, which consumes a lot of time, or to write big programs 
which compute everything. The programming environment SAS, a program 
available already for a long time, computes a lot of superfluous informations 
although we may be interested just in the regression coefficients. As an exam­
ple we show the regression of the variable FA (area of a flat in square meter) 
against FP (the price per flat in thousand DM) of the Berlin flat data; for a 
description of the dataset see section A. Figure 1.1 shows the SAS-output for 
a linear regression. 

Figure 1.2 is an indicator of the analysis on the run, which shows that the 
linear regression (y = az + b) is not appropriated for this dataset. Especially 
at the ends of the dataset we would expect another behaviour. For the left 
end we can see this from the coefficients (a'" 5, b "" -67), which tells us we 
would even get money for a flat with less than 13 m2 if we wanted to buy it. 
A typical behaviour is to use log( F P) instead of F P. So we can use, as in 
this example, the interactive graphics to control the analysis. If we are not 
satisfied with the analysis we have to interfere. Here we will have to choose a 
nonlinear or nonparametric model. Users also like to control an analysis since 
they do not trust computers too much. An example might be that different 
statistical programs will give slightly different answers although they perform 
the same task (rounding errors, different algorithms). 

Interactivity offers to cover "uncertainty" or nonmathematics. Uncertainty 
means that we do not know which (smoothing) parameter to choose for a task; 
see for example the smoothing parameter selection problem in exploratory 
projection pursuit. Often we can simply ask a user for the smoothing para­
meter, because he has a feeling for the right values for the parameter or can 
figure it (interactively) out. 

Sometimes it is difficult to represent a visual idea as a mathematical for­
mula. As example serves the selection of a clustering algorithm (hierarchical 
methods: the choice of the distance, the choice of the merging method). We 
have no general definition of a cluster, and as a consequence we have lot of 
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The SAS Systea 17:09 Monday, July 31, 1995 2 

Model: MODELl 
Dependent Variable: FP 

Analysis of Variance 

SUII of Mean 
Source DF Squares Square 

Model 1 61329361.148 61329361.148 
Error 1365 17861883.086 13085.628635 
C Total 1366 79191244.234 

Root MSE 114.39243 R-square 
Dep Mean 357.73167 Adj R-sq 
C.V. 31.97716 

Parameter Estiaates 

F Value 

4686.772 

0.7744 
0.7743 

Paraaeter 
Estiaate 

Standard T for HO: 
Variable DF 

INTERCEP 1 
FA 1 

-67.531740 
5.429284 

Error Parameter-O 

6.93971316 
0.07930592 

-9.731 
68.460 

Prob>F 

0.0001 

Prob > ITI 

0.0001 
0.0001 

FIGURE 1.1. Output of the linear regression of the variables FA and FP of the 
Berlin flat data. 

different possibilities to find clusters in the data. Interactivity allows us to 
give our expectations into the process of clustering. 

Another important advantage of inter activity is that we can "model" sequen­
tially: 

• In Figure 1.2 we made a linear regression. In fact we could try a lot of 
different regression models. One possibility would be to use nonpara­
metric models; our model might not satisfy the user. Figure 1.4 shows 
a robust locally weighted regression. This method tells us something 
different about the dataset . 

• If we compute the correlation coefficient rxy between the two variables 
FA and FP we see in Figure 1.1 that it is '" 0.77. Often programs make 
a test immediately afterwards if the coefficient is unequal zero. With 
such a large value of the correlation coefficient (n = 1366), no test 
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FIGURE 1.3. Same picture as Figure 1.2, but focussed in the left lower 
corner. 

will accept the hypothesis rlt:lI = O. This test only makes sense if the 
coefficient is near zero. 
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Interactivity also allows parallel modeling. For example we can make a linear 
and a nonlinear regression on our data, then we can analyze the residuals, 
the influence of observations on the fit etc parallel in both methods, e.g. via 
linking. 

. 
.,; 

.. 

.,; 

" " 

" .,; 

0.0 0.' D.' D.' 
Ar.. ,*10 2) 

.. 
I ••• ':: 

0.8 1.0 

FIGURE 1.4. Robust locally weighted regression of the variables FP 
(price in thousand DM) against FA (area of a flat in square meters). 
This estimate coincides better with the feeling that the price should be­
come constant or zero if the area decrease to zero. 

1.2.2 The Tools of Interactivity 

General 

In the last five years the basic operating systems have changed. With the 
graphical capabilities available now, the interface of computers have changed 
from text based systems (DOS, C-Shell, Korn-Shell, VMS, TSO etc) to graph­
ical interfaces. A lot of computers (MacIntosh, Atari) were developed which 
have only graphical interfaces, for other computers graphical interfaces were 
developed which sit on top or replace a text based interface (Windows 3.1, 
X-Windows, OS/2 2.11). Nowadays even operating systems are available in­
dependent of the underlying hardware (Windows NT, NextStep) and we see 
a development to unify even the hardware (PowerPC). 

The advantage of the window based operating systems is their easiness of 
use: instead of having to remember a lot of different commands, we have 
just to click the (right) buttons, the menu items and the windows. This is 
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a good choice for beginners. Nevertheless a graphical window system is not 
always the best choice. Take for example XploRe 2.0, a completely menu 
driven program. The data vectors are stored in workspaces. The addition of 
two vectors is a complicated task. We have first to click in the menu that 
we want to make an addition. Afterwards all possible workspaces are offered 
twice to figure out which vectors we want to add. It turns out that a lot of 
clicking and moving through menus is necessary, whereas a simple command 
like 

y = x [, 1] +x [, 2] 

is much easier just to be typed. 

The lesson we can learn from this example is that both is necessary: a graph­
ical and a text based interface. 

Many ofthe statistical programs overemphasize one ofthe components; Data­
Desk and XGobi are completely based on graphical interfaces whereas S-Plus, 
Mini tab, GAUSS and SAS emphasize too much the text based interface. 

The underlying concept of a window system is the one of an office. A desk is 
the basis where several folders are spread. Windows represent the different 
task we are working on. As a real desk can be overboarded with piles of 
papers and books, the window system can have opened too many windows 
so that we loose the overview. Especially if the programs do not close their 
windows by themselves when inactive the number of windows increases fast. 
The size of the screens has become larger and larger: some years ago a 14 
inch screen was standard, nowadays more and more computers start with 17 
inch screens. This only delays the problem. Another solution which computer 
experts offer is a virtual desktop so that we only see a part of the desktop 
on the screen. Via mouseclicking or scrolling we can change from one part to 
another. Nevertheless a program has to use use intelligent mechanism to pop 
up and down windows. 

Windows 

We need to have different kinds of windows: Windows that allow us to handle 
graphics (2D- and 3D-graphics) and windows that handle text(editors, help 
systems). It is useful to incorporate text in a picture. In fact in all window 
systems we have only graphical windows, but some behave like text windows. 
The windows themselves have to perform some basic operations. Stuetzle 
(1987) described a system called Plot Windows, which uses a graphical user 
interface and proposed some operations: 

• A window should to be moved easily to another location. 
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• A reshape of a window should be easy. 

• Stuetzle wanted to have the possibility of moving windows under a pile 
of windows. Today we can iconify a window, that means to close a 
window and to place it somewhere as an icon so that we remember 
that we have a window. A mouseclick reopens the window. 

Displays 

XPLORE TWREGEST 

:r­
y 

t.!o 1.0 2.S 
X(.1I,1III1(,11,MK[,lJ (.to 2] 

INnI.1) DIP(.11 

IIAIIWt'I'H H 5.15000 
~JJlC 0.fi5000 
CROSS-VALIIM.'I'IOII 12578.325" 

HLP$I.1] 

a.m .. UP • 
DICUUII • 
.. DIe 

CIJUOIl III*" • _. 
Of DIe 

CIJUOIl..... • _DIe 

iO i 
i x 

;._. · .• , .••.••.• ".111 .• 11 ...... 

FIGURE 1.5. Windows with several informations form a display for a 
certain statistical task (here: relationship between the kernel regression 
and the selection of the smoothing parameter). A Nadaraya-Watson es­
timator is used to model the relationship between the variables FA (area 
of a flat) and FP (price of a flat). 

From my point of view the concept of displays is important in statistics. In 
the windows of a display we can show several kinds of information that need 
to appear together. As an example see Figure 1.5, which shows a kernel re­
gression on the Berlin flat dataset. The left upper window shows the data 
and the fitted line (gray), the right upper window gives us a small help text 
that tells us which keys can be used to manipulate the smoothing parameter 
(the bandwidth). The lower left window gives us information about the ac­
tual value of the smoothing parameter, the value increment or decrement of 
the smoothing parameter and the crossvalidation value, which can be used 
to find the smoothing parameter which fits best to the dataset. The last win­
dow, the lower right, shows the crossvalidation function for all smoothing 
parameters we have used. The aim of this macro is to teach students about 
kernel regression and crossvalidation, the whole set of the availabe macros is 



Introduction 11 

described in Proenca (1994). 

All these windows belong to one statistical operation, and it hardly makes 
sense to show only a part of them. So a statistical programs can use this 
knowledge to perform automatic operations on a set of windows. A display 
will consist of a set of nonoverlapping windows, which belong to a certain 
statistical task. A display does not necessarily have to cover the whole screen 
as seen in Figure 1.5. 

1.2.3 Menus, Toolbars and Shortcuts 

Until now we have handled windows as static objects which do not change 
their contents. The example in Figure 1.5 needs some interaction from the 
user, mainly to change the bandwidth, the increase and the decrease of the 
bandwidth. In this example it is done through cursor keys, but in general 
menus are used for this. Normally menus appear at the upper border in the 
window and we can click on menu items to perform several tasks. Menus 
are diminishing the drawing area. On MacIntosh computers for example we 
have only one menu bar which is at the top of the window. The menu bar 
changes accordingly to the active window. One of the aims is to maximize 
the drawing area. A closer look to this solution shows that in the case of a 
big screen, this leads to long ways of the mouse, so it is reasonable to use 
pop up menus, which appear at the location of the mouse. This includes the 
possibility of fixing a menu on the screen if it will be used more often. In 
XGobi for example the "options" and the "print" menu are fixed menus and 
you have to dismiss them explicitly. 

Menus are supposed to serve as a tool to simplify our work, especially if we 
have to do the same task again and again, e.g. a special analysis. We might 
want to extend the menu for our purposes. The underlying programming 
language has to have access to the menu structure in such a way that we can 
manipulate the menu. In SPSS for example we can make a scatterplot, and we 
have menuitems so that we can plot different regressions (linear, quadratic, 
cubic) in the plot. Nevertheless we miss the extensibility. In the teachware 
system of Proenca (1994) we are able to make a nonparametric smooth in a 
scatterplot. But the original macro does not include smoothing with wavelets, 
so we extended the macro. This means to extend the menu and to include 
the new method. 

One drawback of the menus is that they require the choice of a language. 
All important statistical programs offer an "english" version, some are addi­
tionally extended to national languages since users prefer to communicate in 
their mother tongue. Although some efforts are made for the international­
ization in programs, the problem still remains to translate a huge number of 
texts into many different languages. One approach how to solve the problem 
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is the use of toolbars which means to use pictograms as menu items instead 
of words. Unfortunately we have no rules available how a pictogram for a 
certain task should look like. This leads to the problem that every software 
program which uses toolsbars will more or less use its own version of pic­
tograms. Sometimes they are very different although the same operations are 
behind them. Another problem is that pictograms are usually small and it 
follows that they need a careful design, otherwise the user might not connect 
the pictogram to a certain operation. 

Another drawback of the menus depend on the different type of users. Begin­
ners and unexperienced users will very much like the choice by menus since 
they offer an easy access. But as mentioned above if we have to make long 
ways with the mouse to select some item the experienced user will get impa­
tient. This results in the need of short-cuts, special key combinations, which 
will start the process behind a menu item as if we had clicked on the item. 
By frequent use of a program the users will learn the short cuts by heart 
and they can work very efficiently. Of course short-cuts are changing from 
program to program, e.g. Ctrl-y in Word, ALT-k in Brief, Ctrl-K in Emacs 
and so on to delete a line. This requires that the short-cuts are programmable 
too. 

Interactive dialog 
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o 
FIGURE 1.6. The automatic bandwidth choice for kernel regression leads 
to a completely missleading regression. 

Communication between the user and the program via menus or toolbars is 
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restricted to start a process. Sometimes it is required to give parameters to a 
routine. In the example of the kernel regression in Figure 1.6, a starting band­
width has to be chosen. This is done in an automatically and the bandwidth 
is chosen as five times the binwidth. The binwidth is defined as 

b· 'dth _ maxi Xi - mini Xi 
mWl - 100 . 

This choice is not always appropriate as Figure 1.6 shows. The problem arises 
that the bandwidth is far to small to cover the gap between both clusters of 
data. Of course if the bandwidth would be large enough it will oversmooth 
the data heavily. If the starting bandwidth could be chosen interactively, we 
would make a choice which would try to balance both effects. Dialog boxes 
which can be used to obtain a starting bandwidth appear all over in windows 
based systems, e.g. to read and write programs and data to the harddisk. In 
general, wherever parameter are required we can use dialogboxes. 

Sometimes we will need special boxes with pictures, e.g. if we have to choose 
a colour. S-Plus offers an number which indicates an entry into a colour 
palette. The palette itself can be manipulated via a dialog box which does 
not include a immediate view of the colours. Here the user can choose colours 
by name or by RGB-triplets with hexadecimal numbers. The first method 
requires knowledge about the available colours, which can be received by 
calling showrgb, the second method requires some experience to connect the 
RGB-triplets to the desired colours. In the S-Plus manuals they give the 
advise that the user should create a piechart which contains all possible 
colours so that we get an immediate impression what happens if we change 
the colour palette. 

To vary the bandwidth in XploRe the cursor keys are used. It would be better 
to use (log-linear) sliders as in DataDesk or XGobi. This will allow a fast and 
smooth change of the bandwidth. The last group of dialog tools are message 
boxes which give informations to the user like warnings, errors and so on. 

Interactive programs in general require short response times. The response 
time should not be longer than a few seconds (2 - 4). The exact time will 
often depend on the sample size, a user will not expect (maybe wish) that a 
regression with 30.000 cases will be as fast as a regression with 30 cases. A 
better acceptance of long response times is achieved by the use of a statusline 
indicating how much of a certain task is already done. The Windows 3.1 
system changes normally the form of the mouse cursor to show that it is 
occupied, but this will be not very helpful if the system is occupied for a 
longer time. 
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1.2.4 Why Environments if 

The aim of an environment is to simplify the task we have to do as much as 
possible. 

The first step of the analysis is to read the data into the program which can 
be a difficult task. An example is the read routine of SPSS where we have 
the possibility to read data from ASCII files. SPSS distinguishes between two 
formats, a ''fixed'' format and a "free" format. 

In both formats it is expected that each row contains one observation. In the 
fixed format it is additionally expected that the variables always start in a 
fixed row and stop in another row. If we see datafiles today we have mostly 
one or more spaces as delimiter between the variables in a row. But even if 
the data are in such a formatted state we have to give SPSS the rownumbers 
which means we simply have to count the lines of the datafile. 

One may think that the free format will be more helpful if the data are not in 
fixed format. Unfortunately the version of SPSS which I had available uses a 
comma for decimal numbers instead of a point, so we had to leave the menu 
driven environment and to modify the program. We had to add the command 

SET DECIMAL=DOT. 

and to execute the program. Unfortunately for me this special option is not 
documented in the online help so I needed the help from our computer center 
to read a simple ASCII datafile. In contrast to that we have routines like in 
S-Plus which by a "simple" command allow to read a dataset: 

x <- matrix(scan("bank2.dat"),byrow=T,ncol=6) 

To read data is a task that we have to do again and again. In general there 
will be a lot of tasks we have to repeat during statistical analysis. 

We are interested to make our analysis as fast as possible. If we have found 
our way to make some kind of standard analysis, we would like to fix this 
way so that it can be repeated easily. 

We need libraries which contain all the tools we need. It should be easy 
to make the tools we need from these libraries. The implementation of new 
statistical methods requires already well known statistical techniques which 
can be composed from these libraries. 

Again we need a programming language that allows us to compose our tools. 
A statistical software system should offer tools which are broad enough to do 
a specific task well, but it should not cover too much. 

If we have a good environment we can concentrate on the statistical analysis 
instead on reading the data. 
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1.2.5 The Tools of Environments 

Editors 

An important tool in a programmable statistical software is the editor. It will 
be the main tool to write the programs, to view and to manipulate the data. 

It has to be easy and comfortable to use. Some editors miss important features 
like a blockwise copy. The main problem with an editor is that we have to 
know which key combinations will execute a specific task. The standards are 
very different. Modern editors allow a redefinition of the key combination 
and already offer standard sets of key combinations (e.g. Word compatible, 
Emacs compatible etc). 

Especially an editor has to show data in an appropriate way. If we want to 
display a data matrix it will be a good idea to use a spreadsheet as editor. 
This kind of editor is widely used in statistical software. 

For a big number of cases or variables we need to regroup the variables and 
cases. However, the use of spreadsheets as editors for large datasets will causes 
difficulties. These difficulties will increase if we use multidimensional arrays. 

Help system 

Broad and complete help systems are necessary for the user. It is very helpful 
if the help systems are available online. For example it would be difficult to 
have the SiS-manuals always at hand. 

We need a clear description of the data and the methods. The statistical 
methods can be very complicated. Often a software package allows to make 
tests for a certain task. As long as we know the tests we can easily check 
the underlying assumptions. But if we do not know the tests and can not 
find them in standard literature we can not be sure if one of the underlying 
assumptions is not violated and that we interpret the test results wrongly. 

But the help system should offer more than just simple explanations. Modern 
software offers the possibility of topic orientated helps which means if we 
want to make regression it will inform us what kind of regression methods 
we have available in the software package. Such kind of hypertext systems 
can be found in statistical software, e.g. in GAUSS. The hypertext systems 
are developing independently from the statistical software as the help system 
under Windows 3.1 or the HTML language for the World-Wide-Web (WWW) 
shows. 

Of course we need some context-sensitive help which will give us an appro­
priate help depending on the actual context. For example if we are in an 
interactive graphic window we are interested to know how to manipulate the 
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graphic, but we are not interested to get the command overview. 

A good help system would not only offer specific informations to a topic but 
try to give some more general help. For example it would be worthwhile not 
only to get all possible routines for the regression but also some background 
information about the definition, the (small/finite sample) behaviour etc. The 
paper documentation of SAS is a good example. 

Programming language and libraries 

As pointed out earlier, we need a programming language and a menu driven 
environment. The menu driven environment allows us to do standard tasks 
in an easy way. 

A programming language is the basic method for the manipulation of the 
data (structures). We can build up menu driven environments and statistical 
tools to simplify our work. This is important for the scientific research. 

This also aims at the different user groups: 

• Researcher 
who needs full access to all possible methods and language elements. 
They will need to develop new methods and new techniques. 

• Consultants 
who need a variety of tools which allow them to make their analysis 
efficiently. Sometimes they will need to compose new tools from the 
existing ones. 

• Students 
who mainly need good and easy user-interface with a context-sensitive 
help system. They will prefer a clicking and drop-and-drag environment. 

For detailed overview about the programs being appropriate for each user 
group see section 5.4.l. 

Since we have different needs we have to implement a programming language: 
it has to allow that the user can do everything on a very basic level, e.g. matrix 
manipulations. But we need a macro language that allows us to build tools 
efficiently. These tools have to allow for different user groups to satisfy their 
needs. We need a multilevel programming language. We need the concept of 
loadable libraries and programs (macro). Similar tools can be put together in 
libraries so that we only have to load libraries to have a set of tools available 
to solve a task. 

When we talk about a programming language, we always mean a typed pro­
gramming language as in GAUSS or S-PI us. Graphical programming languages 
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are possible, but we do not believe that they are powerful enough to allowef­
ficient programming for a researcher. How detailed a programming language 
should be can be seen in section 3.3, where we discuss for the case of the 
regression methods whether a specific regression needs to be a command or 
a macro. 

We have some fundamental operations in a programming language: 

1. Flow control 
We need some flow control elements like loops and selections: 

(a) Unconditioned loop 
do ... endo 

(b) Enumeration loop 
for (i=O; i<n; i++) 

(c) Preconditioned loop 
while (i<n) ... endo 

(d) Postconditioned loop 
do .. while (i<n) 

(e) Selection by condition 
if (i<n) ... elseif (i<2n) ... endif 

(f) Selection by number 
switch (i) { case 0: ... default: ... } 

2. Operators 
Operators are mainly used for calculations. As we are used to write x 
+ y we have to provide such operators for user-friendlyness as well, but 
we could use procedures like sum(x,y) instead. We have two classes of 
operators: 

(a) Unary 
Unary operators have only one argument, e.g. unary minus, faculty 
etc. 

(b) Binary 
Binary operators have two arguments, e.g. plus, minus, multipli­
cation etc. 

3. Procedures 
The most powerful operations are procedures in programming lan­
guages. They provide us with some output parameter, a procedure name 
and some input parameters. 

From computer science we got new developments in the design of the pro­
gramming languages, e.g. object orientation. In fact S-Plus tries to follow 
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these ideas, but my impression is that not many people are really using this 
features in statistics. This might be due to the fact that we are used to the 
procedural languages. 

Important is the possibility to load functions and libraries from the disk. It 
allows us to build a collection of procedures and to put similar procedures 
together. Mathematica and XploRe are example for this. Sometimes libraries 
consist of precompiled objects which can be executed faster. 

1.3 110dern Computer Soft- and Hardware 

1.3.1 Hardware 

What do we already have? 

The speed of processors is still increasing. Table 1.1 compares the speed of 
common processors from the beginning of the eighties until 1995. The com­
parison has to be used with extreme care! The tests (Dhrystone/SPAC (= 
SPACSyncCalcFloatingPoint» are quite different and the comparison (Mo­
torola/Intel) is based on approximate values. Also different computers have 
been used and the environment, hard- and software, will have had some influ­
ence as well. The column O( n) represents the size of a dataset for a calculation 
which depends linear on the size, e.g. the mean; the column O(n2 ) represents 
the size of a dataset for a calculation which depends quadratic on the size, 
e.g. the direct N adaraya-Watson estimatorl. 

Both the improvement of the processor speed and the increase of memory and 
storage space provide the ability to compute big statistical models. Projection 
pursuit methods which mainly depend on the optimization, demonstrate this 
very well. Without the use of the power of workstations interactive programs 
like XGobi would be impossible. In the section about exploratory projection 
pursuit we mentioned that the treatment of discrete data has to be quite 
different from the treatment of continuous data. Today we have the power 
and the memory to handle this case, but we have to give up the interactivity. 

Interactive graphics and animation used in the scatterplot matrix, interac­
tive contouring or exploratory projection pursuit have proven their worth for 
statistics. With the use of graphical terminals we have left (for viewing) the 
area of black-and-white pictures and started to use colour. It can easily be 
demonstrated that the usual 16 colours of a VGA-card are not enough to get 

IFor the literature see Nachtmann, (1987a, 1987b), Earp & Rotermund (1987), 
Schnurer (1992), Meyer (1994) and Meyer & Siering (1994) 
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colours. 

One drawback of interactive graphics, animations and colours is that we are 
not able to reproduce them on the paper in a appropriate way. Although 
nowadays colour printers are available it is almost impossible to get publica­
tions with colour pictures in journals. This might change with new journals 
like the "Journal of Computational and Graphical Statistics". Nevertheless 
interactive graphics or animations with a big spectrum of colours on the 
screen can not be reproduced by paper journals. Electronical journals like 
InterStat in the WWW or a distribution on a CD-ROM might change this. 

Although the entertainment industry has greatly improved the quality of 
soundreproduction (compare a PC-loudspeaker to a modern soundcard) it 
is rarely used in statistics. The main drawback here is that the eye plays 
the most important role in human perception. Wilson (1982a, 1982b) has 
used sound for exploratory data analysis. Since human soundperception is 
logarithmic, e.g. doubling the volume means an increase by factor 10, it would 
allow to explore data of big ranges, e.g. from 1 to 107 (e.g. census of city 
population in the United States). 

Nonparametric estimation are often founded on asymptotic theory, see e.g. 
the problem of bandwidth choice in kernel estimation or multivariate esti­
mation. So we need many observations to get an estimation we would trust. 
New memory media like optical disks and CD-ROMs will allow the storage of 
huge datasets. Nevertheless we will have some areas of research, especially in 
economics, where the number of observations will be small (e.g. in deriving 
results in nationwide economics). 

What can we expect from the future ? 

Surely we will see a further increase of processor speed, which will render 
more complicated and computer intensive statistical modeling possible. The 
graphical techniques and the graphical representation of the results will en­
large much more. The graphic systems will become faster (grand tour, ani­
mation) and more powerful (more colours). 

In computer industry people work hard to make it possible to use the natural 
language for input and output. For modern soundcards it is not very diffi­
cult to produce output in natural language, still the input has big problems 
recognizing human language. The solution will need expert systems which 
can handle statistical problems in a proper way. Expert systems are available 
only for very limited statistical problems (e.g. GLIMPSE by NeIder) and we do 
not know any commercial package offering even a limited expert system. 

Nevertheless knowledge based expert systems will be able to support the 
statistical analysis we have to do. They will give us a partner for our thoughts 
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who speaks the same language and reduce our work to the barely statistical 
problem. 

Many existing statistical algorithms can easily be parallelized (see e.g. non­
parametric estimation etc.). As a consequence there will be a increasing need 
for multi-processor machines or a network-wide distribution of tasks. Espe­
cially the distribution of statistical tasks over a lot of machines in a network 
will increase the computational speed. One approach is done via the software 
MMM. The aim of the MMM-software, which is based on World Wide Web, is 
to collect informations about (statistical) methods. These methods can be 
implemented in different hardware platforms and programs. The program 
will convert the data from one format into another format. Moreover it will 
know where it can find special methods for the analysis. If these methods are 
freely available it can copy the methods and execute them on the user ma­
chine or alternatively execute them on the machine where the method can be 
found. For details see Oliver, Muller & Weigend (1995) or Krishnan, Muller 
& Schmidt (1995). 

Three dimensional devices for input (camera and software, tomographs) and 
output (laser) will give us the chance to see data in a more realistic and 
natural view. Although spinning is a good possibility to represent datapoints 
it still makes trouble to rotate thousands or tenthousands of datapoints. 
Only special software systems are capable to rotate shells which come from 
the density estimation of three dimensional data (in real time). 

We hope that these developments will result in more user-friendly computer 
systems and new statistical techniques. 

1.3.2 Software 

Advances in software technology have always had their impact in computa­
tional statistics. We have to distinguish between two groups of people: one 
which is using statistical software and another which is creating it. The big 
impact in statistical computation for the first group mainly comes from in­
creasing hardware facilities. Only the change from text based environments 
to graphical user interfaces (G UI) had been of some relevance. Together with 
GUIs we have multitasking possibilities and often some kind of hardware in­
dependence. S-Plus serves as an example: In the first version it was only 
possible to open one graphic window, then restart S-Plus and open another 
graphic window, but the communication between both graphic windows was 
difficult. S-Plus has also developed to a multi-platform program (UNIX, 
Windows), so we do not need to care about the platform we have. This has 
some disadvantages: the object format for compiled programs is standard­
ized under UNIX, but not under DOS/Windows. As a result we can program 
statistical tasks under UNIX in any programming language we want. Under 
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DOS/Windows only Watcom-compilers are supported which are rarely used. 

The other important impact from software technology is the introduction of 
object orientation. Most statistical programs are still working with lots of 
single data matrices (see e.g. XploRe 3.2). The user has to know the rela­
tionship between these matrices by heart. Here S-Plus offers the possibility 
to have (hierarchical) objects. 

Lets take as example the projection pursuit regression (PPR) in S-Plus. The 
minimal command would be 

ppr <- ppreg (x.y.termno) 

with x a multivariate variable and y the one dimensional response. termno 
gives the minimal number of terms which will be used. ppr itself would be 
an object which is a list of objects containing the subobjects 

ypred the residuals of the fitted model 

:82 the squared residuals divided by all corrected sums of squares 

alpha a matrix of projection directions used 

beta a matrix of the weights for every observation Yi 

z a matrix which contains aT X 

zhat a matrix which contains the smoothed values E;~lmno 9i(aT X) 

allalpha three dimensional array which contains the fitted alphas for every 
step 

allbeta three dimensional array which contains the fitted betas for every 
step 

esq contains the fraction of unexplained variance 

esqrsp contains the fraction of unexplained variance for every observation. 

The subobjects can be accessed via ppr$z. It is obvious that we do not have 
to handle a lot of single matrices, but the program will do it an easy way for 
us. 

Another important fact is the use of classes in S-Plus. It allows us to define 
a bunch of data matrices and the methods to handle it in one object. With 
the ppr object we are not directly able to achieve the results graphically. We 
would need a S-Plus program: 

ppr <- ppreg (x.y.termno) 
aatplot (ppr$z. ppr$zhat). 



Introduction 23 

If we would define an object orientated class "projection pursuit regression" , 
we could (re)define a function print, which exists for every S-Plus object, 
in such a way that we get a graphical result immediately. 

These objects can be used to hide nonimportant informations, this is called 
encapsulation. The normal user will not be too interested how we did the 
plot and what else we have incorporated in the data. inheritance ensures 
that derived objects will have all abilities of the original object, so we can 
include such a projection pursuit regression class in a broader context like a 
teachware tool for regression which might be a class by itself. 

Beside the statistical task to make our calculations we have to represent our 
results. Multimedia-documents are able to show different kinds of representa­
tion like text, tables, graphics and animation in parallel. Methods like object 
linking and embedding under Windows 3.1 will allow interactive working with 
documents. A change of a dataset in a WORD-document can call the statistical 
program to recompute the pictures for this new dataset. But we should keep 
in mind that we are here on the edge of the computational power. Meth­
ods as object linking and embedding are widely available today in operating 
systems, but often not used. 

Virtual reality means that we replace the whole input we get by human per­
ception by an artificial environment created by a computer. Today's research 
has been successful in replacing the information we get through our eyes. The 
hope is that we can represent (hierarchical) statistical objects by graphics. 
The virtual space of our objects should lead to an easier manipulation of the 
objects and an easier recognition of relations between the objects. 
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Summary 

The first step is to analyze the statistical graphics in use, so we examine the 
descriptive statistics. Next is the boxplot, the Q-Q plot, the histogram, the 
regressogram, the barchart, the dotchart, the piechart, the 2D-scatterplot, the 
2D-contour plot, the scatterplot matrix, the 3D-scatterplot, the 3D-contour 
plot, the Chernoff faces and the parallel coordinate plot. We use some of the 
tools of IploRe to examine the Berlin housing dataset which use the plots 
mentioned above. Finally we state that two kinds of windows are necessary, 
one which can draw points, lines and areas, another which can draw glyphs 
windows, i.e. the Chernoff faces, star diagrams and so on. 

2.1 Descriptive Statistics 

Some descriptive statistics. 

The first step of an analysis of a dataset can be the computation of some 
descriptive statistics of the variables ofthe dataset. Such descriptive statistics 
of each variable are 

Missings the number of missing values 

Discreteness the number of different values the variable take 

Mean the mean value 

Variance the variance 

Std Dev. the standard deviation 

Minimum the minimum 

Maximum the maximum 

Range the difference between maximum and minimum 

1. quartile the first quartile 

Median a more robust central value than the mean 
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3. quartile the third quartile 

Obviously we can compute more descriptive statistics, e.g. skewness and cur­
tosis. Nevertheless this is a first approach to get an overview about the vari­
ables. The Tables 2.1 and 2.2 show the descriptive statistics for the whole 
Berlin flat data. 

T FA FL FR FB FM FP FI FE 
Missings 0 0 0 0 0 0 0 0 0 
Discreteness 22 1437 42 18 2 2 1703 3967 2 
Mean 79.1 2.5 331 301.1 
Variance 1594.6 1.4 49438 39981.0 
Std Dev. 39.9 1.2 222 200.0 
Minimum 8907 20 1 0 0 38 38.0 0 
Maximum 9410 510 11 1 1 3200 2718.5 1 
Range 490 10 1 1 3162 2680.5 1 
1. quartile 9104 52 2 0 0 180 164.9 0 
Median 9210 69 2 1 0 269 244.3 0 
3. quartile 9401 97 3 1 0 420 380.7 0 

TABLE 2.1. Some descriptive statistics of the Berlin flat data for the 
variables T, FA, FL, FR, FB, FM, FP, FI and FE. 

In I)F rm Im: I5W I)s I5N I)B TI 
Missings 0 0 0 0 0 0 0 0 0 
Discreteness 59 58 34 19 19 28 27 24 22 
Mean 
Variance 
Std Dev. 
Minimum 8.5 0 0 6.0 0.3 2.6 25 3 5.4 
Maximum 138.9 26.6 8.7 23.7 8.2 11.1 101 27.5 9.2 
Range 130.5 26.6 8.7 17.7 8.0 8.5 76 24.5 3.7 
1. quartile 
Median 
3. quartile 

TABLE 2.2. Some descriptive statistics of the Berlin flat data for the 
variables DI, DF, DU, DR, DW, DS, DN, DB and TI. 

We used the macro DESKSTATfrom XploRe 3.2 to compute the Tables 2.1 and 
2.2 while the empty entries were done by hand. A statistical program would 
need informations about the variables to decide which descriptive statistics 
could be computed. It makes no sense to compute some descriptive statistics 
for different types of variables (nominal, ordinal, metric, time). For example 
SPSS makes an approach to store information about a variable, but this is 
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not enough to allow or permit different statistical operations. The program 
BDMP stores informations about the type of a variable and permits a statistical 
operation if it is appropriate. This may lead to some problems since sometimes 
the type of a variable is not completely clear. 

Missings. 

The treatment of missings is a problem in statistical software. We know the 
MAiET program (Unwin 1995) for exploratory statistics which gives a clear 
indication about missings to the user. In most statistical software those ob­
servations are excluded from statistical operations which contain missings. 
Nevertheless we have general methods available which are able to handle 
missings (Schwab 1991). For special statistical operations, e.g. linear regres­
sion, we have also modified algorithms available which can treat missings 
appropriately. At least statistical software should indicate that we have miss­
ing values. 

SPSS stores about a variable 

• the name, 

• the format, 

• the coding values and 

• the missing values. 

SPSS notifies different kinds of missings (system-defined and several user­
defined) reflecting the fact that missings might have different reasons. From 
my point of view it is not satisfying to produce an output line like in SPSS 
which tells us how many observations are included in a statistical operation, 
see Figure E.!. 

Fortunately the Tables 2.1 and 2.2 show that the Berlin flat data have no 
missings. 

Facts from the variables. 

Additionally we can see from the tables that the dataset is very discrete. 
Although we have 14968 observations, we have only three variables which 
have more than 1000 different values: FA, FP and FI. We see moreover that 
we have only 42 different districts. The variables which describe the district 
can have 42 x 22 = 924 different values, but in fact between 20 and 60 are 
taken. 

What can we learn from the single variable: 
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• It seems that the average size of a flat is between 69 (median) and 79 
square meters. We will see that the modus is at 60 square meter. But 
we also have a flat of 510 square meters. 

• The average room number is around 2. We expect that the big values 
in the size of a flat correspond to many rooms. 

• Most of the flats have a balcony (more than 50%), less than 25% are 
classified as maisonette flats. Less than 25% of the flats are in the east 
part of Berlin. A deeper analysis will show that we have only 248 out 
of 14968 offers in the east part, so models about the prices in the east 
part does not seem reasonable to me. 

• The descriptive statistics might be misleading, because some variables 
are depend on the time. 

Table E.2 shows the absolute frequencies of offers on time and district. 

2.2 Some Stratifications 

Stratification after location and time. From Table E.2 and Table E.3 
we see that the data for the east are sparse for all time periods. We can try 
to find a model for the west part and apply to the east part, but we have to 
be aware that the west and the east part are quite different. 

Stratification after time. Table E.4 and Table E.5 show how many obser­
vations are falling into each time period. The values of the variables describe 
the discreteness of the variable, that means how many different values are 
taken by the variable. It seems strange that the variable DU (unemployment 
rate) at most time periods only takes two values. Remarkable is that all dis­
trict variables for one time period can be regarded as an aggregation of the 
location variable FL in several directions. To model the price it might be 
enough to use the variable FL as nominal variable. The district variables can 
be used as an explanation why the model looks the way it does. 

Stratification after recreation area. As expected Table E.6 and Table E.7 
show that the size of the recreation area remains stable for most districts. We 
also see that we have a one-to-one relationship between the variables DR and 
DW (blue collar workers). Although the datapoints do not form a one-to-one 
relationship we are able to identify the value of the variable DW from the 
value of the variable DR for an observation and vice versa. The datapoints 
are jittered which means they are distributed around the true value in the 
center of a point cloud. The aim is to see how many datapoints are hidden 
behind one point in the plot. 
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Stratification after interest rate of the German Bundesbank. From 
Table E.8 and Table E.9 we can see that we have a one-to-one relationship 
between the variables TI (interest rate) and T (time of offer). Although the 
datapoints do not form a one-to-one relationship we are able to identify the 
value of the variable T from the value of the variable TI for an observation. 
The datapoints are jittered which means they are distributed around the true 
value in the center of a point cloud. The aim is to see how many datapoints 
are hidden behind one point in the plot. 

2.3 Boxplots 

Aim. 

The boxplot is an useful tool to analyze univariate data. It gives the statisti­
cian informations about locality, spread and skewness of a dataset. In some 
sense it is the graphical analogue to the five number summary (minimum, 1. 
quartile, median, 3. quartile, maximum) of a dataset. 
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FIGURE 2.1 nonstruction of a boxplot (variable FA). 

Construction. 

Tukey (1970) gave the construction of a boxplot as in Figure 2.1. Here q, is 
the f%-quantile of the dataset. 



30 Exploratory Statistical Techniques 

Datapoints left of I and right of r are called outside values which can be 
interpreted as outliers. It is obvious that not every outside value is an outlier, 
an example with nearly 50% outside values can easily be constructed. 

McGill, Tukey & Larsen (1978) added features to the boxplots like using the 
width as a measure for the sample size and including notches as indicators for 
the (rough) significance of differences between medians. Further modifications 
of the visual appearance of the boxplots have been suggested by Tukey (1990). 

FA FP 

* 
y 

t 

~-· .. ·· .......... ·--·l 
I I 

FIGURE 2.2. Linked boxplot ofthe variables FA and FP of the Berlin flat 
dataset (only offers from October 1994). The five upper outside values 
of FP are marked with different symbols. We can see that the flats with 
very high prices ( ...... 1.5 - 3 million DM) correspond to the flats with a 
large area. The datapoint marked with a star shows a flat of nearly 200 
m2 and a price of approximately 3.1 million DM. Since the order of the 
marked values is quite different this gives us some statistical evidence 
that the price is not completely determined by the area. 

Analyzing outside values. 

Since boxplots are used to identify outside values, it is of interest to compare 
the variables of a dataset. The question rises if the outside values of one 
variable correspond to the outside values of another variable. To analyze this 
we need linked boxplots, as an example see Figure 2.2. 
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FIGURE 2.3. Subgroup of the variable FP by the variable FE. We see 
that in general the prices for flats in the east part of Berlin are higher 
(right boxplot) than in the west part of Berlin (middle boxplot). But in 
the west part of Berlin we have a larger range of prices. The boxplot for 
the whole dataset (left boxplot) is nearly the same as for the west part 
of Berlin. This is due to the fact that we have only 248 observations for 
the east part out of 14968. 

Analyzing subgroups. 

Often it is possible to decompose a dataset into subgroups, so we are inter­
ested to know how the distribution and outside values will behave on the 
subgroups. An example can be seen in Figure 2.3. 

2.4 Quantile-Quantile Plot 

Quantile-quantile plots are used to compare the distribution of random vari­
ables. Two types of comparisons are used: 

1. to see if two random variables have the same distribution or 

2. to compare a random variable with a predefined distribution. 

For some statistical methods it is assumed that the distribution of the error 
has a special distribution. One of the most important coefficient to measure 
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FIGURE 2.4. The quantile-quantile plot compares the variable FA with 
a gaussian distribution (see Figure 1.2). Since the datapoints deviate 
seriously from the line, it is clear that the assumption is not fulfilled that 
the variable FA is gaussian distributed. 

the association between two continuous variables is the correlation coefficient: 

n 

~)Zi - i)(Yi - y) 
i=1 

r~, = ~==================== 
n n 

E(Zi - i)2 E(Yi - y)2 
;=1 i=1 

The correlation coefficient can be computed for each dataset of two continu­
ous variables, but we are also interested to test the coefficient at unequality 
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of zero. To use the standard test, we need that both X and Y are normally 
distributed as assumption. 

Here we can use the normal plot to explore if the distribution of X and Y is 
gaussian and to examine which datapoints are violating the normality. 

It is obvious that such a plot is an exploratory tool. A test should be used 
(Kolmogorov-Smirnow, X2 or others) to indicate that the distribution is not 
gaussian. 

2.5 Histograms, Regressograms and Charts 

2.5.1 Histogram 

Histograms are a graphical representation of the whole distribution of a 
dataset. In the time of text based terminals histograms were easily built 
up. The stem and leaf plot is a text based variation of a histogram, which 
allows to pick up some location parameters like quantiles, median etc. 

BOxplot Histogram 
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FIGURE 2.5. Boxplot and relative frequency histogram of 1000 data 
sampled from N(O,I) (binwidth = 0.1, origin = 0). 
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FIGURE 2.6. Histogram of the sixth variable of the Swiss banknote 
dataset. We see four histograms with a binwidth of 1.5, 1.0, 0.3 and 
0.065. The bimodal structure is hidden if the binwidth is too big (left 
upper picture). 

i· 

FIGURE 2.7. Histogram of the sixth variable of the Swiss banknote 
dataset. We see four histograms with a the same binwidth of 1.0, but 
the origin has different values 0.1, 0.35, 0.6 and 0.85. The bimodal stru,c­
ture is hidden in the right upper picture (origin is 0.6). 
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FIGURE 2.8. Averaged shifted histogram of the sixth variable of the 
Swiss banknote dataset. The histogram has the binwidth of 0.75 and is 
composed from 5 histograms with the origins 0.00, 0.15, 0.30, 0.45 and 
0.60. The bimodal structure is now clearly visible and we could give some 
speculation if the structure is even trimodal. 

A histogram provides more detailed informations than a boxplot as can be 
seen in Figure 2.5. It shows us how many data can be found at which loca­
tion. Histograms appear in different forms, e.g. absolute frequency histogram, 
relative frequency histograms and other forms. 

The construction of a histogram can be expressed as in HardIe (1991): 

• Divide the real line into bins 

Bj = [XO + (j - l)h, Xo + jh) j an integer 

with binwidth h and origin Xo. 

• Count how many data fall into each bin 

• Depending on the wanted type of histogram we have to multiply with 
a constant. If the histogram represents a density function we write the 
histogram as 

Computationally it will be done in the following way: 
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1. Bin the data Xi and get the bincenters iJi and the bincounts Ci: 

2. Ensure that for empty bins a 0 will be inserted 

3. Double your data: 

iJ" C" 
iJ" C" 

4. Add and subtract now the half of the binwidth 6: 

5. Plot this dataset 

iJ1 - 6/2 C1 

iJ1 + 6/2 C1 

iJ" - 6/2 C" 
iJ" + 6/2 C" 

Two problems arise in connection with the drawing of histograms: 

• Bow big should a bar (binwidth) of a histogram be? 

• Where should we put the origin of the histogram? 

To illustrate the problem see Figure 2.6 which shows the histogram for dif­
ferent bandwidths for a univariate dataset. In Figure 2.7 we can see what 
happens if we move the origin of the histogram. 

The problem of the origin in the case of density estimation can be solved 
with average shifted histograms suggested by Scott (1985). The idea is to use 
a smaller binwidth and to distribute a observation over more than one bin. 
One practical solution would be to calculate the histogram for the different 
origins and to take z the mean of the values of the histogram at every point 
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which is a specialized form given in Scott (1985). We can compare the Figure 
2.8 with the Figure 2.7 and see that the problem of the origin is solved, 
but the problem of the binwidth remains. In the beginning of computational 
statistics it was suggested that the number of bins is proportional to ..;n. 
In S-Plus the number of bins is proportional to log2(n). A calculation of 
the approximated mean integrated squared error (AMISE) of the histogram 
(HardIe 1991) leads to 

with lithe derivative of the unknown density function and II . II~ the squared 
L2-norm of the density function. A minimization of the AM ISE leads to an 
"optimal" bin width of 

In practice this choice is not very helpful since we would have to know the 
unknown density function, but we could plug in a reference density for the 
unknown density function. Silverman (1986) suggested the gaussian distribu­
tion. 

Another approach is to show a lot of different histograms and to change the 
bin width interactively with a slider. 

2.5.2 Regressogram 

In the regressogram we try to estimate the unknown regression function by 
a stepwise constant function. The algorithm is similar to the algorithm for 
density estimation. 

As an example see Figure 2.9 for a regressogram. Since the problems with 
them are mainly the same as for the histograms we will not go into details 
here. The regression estimator is very similar to the Nadaraya-Watson esti­
mator. 

2.5.3 Charts 

Some charts for the plotting of noncontinuous variables have to be mentioned 
too. Barcharts and piech arts are used to represent such variables (see Figure 
2.10 and Figure 2.11). Cleveland (1985) introduced dotcharts (see Figure 
2.12) as an alternative to the pie and the barcharts. 
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FIGURE 2.9. Regressogram of the variable LSTAT (percent lower sta­
tus) and MEDV (median value of owner-occupied homes in thousand of 
dollars) of the Boston housing dataset. The binwidth is 3 and the origin 
o. 

FIGURE 2.10. A barchart of the frequency of values of the variable 
exp(RAD) of the Boston housing dataset (accessibility to radial high­
ways). 
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FIGURE 2.11. A piech art of the frequency of values of the variable 
exp(RAD) of the Boston housing dataset (accessibility to radial high­
ways). 
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FIGURE 2.12. A dotchart of the frequency of values of the variable 
exp(RAD) of the Boston housing dataset (accessibility to radial high­
ways) . 
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2.6 Bivariate Plots 

2.6.1 Scatterplot 
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FIGURE 2.13. Scatterplot of the variables FA and FP of the whole Berlin 
flat data (n = 14968). 

Aim. 

One exploratory tool to analyze a two dimensional dataset is the scatterplot. 
Figure 2.13 tells us that we have a relationship between both variables. 

A problem which occurs in a scatterplot is the "overplotting". It appears 
generally if we have too many datapoints as can be seen in Figure 2.13. To 
avoid that we can focus on some parts of the plot as can be seen in Figure 
2.14. Here a rectangular brush was opened and we focus on the contents of 
the brush. What we need additionally is the possibility to jump back to a 
higher level of focussing and to move through the dataset and to zoom in 
again. 

Subsets. 

For further analysis of the data in Figure 2.13 we need the possibility to look 
at subsets of the data. Such a subset can be marked by different colours or by 
different forms. For this we need a brush which allows us to mark a datapoint 
or a subset of datapoints. The brush should be variable in size such that we 
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___ 1.11 

FIGURE 2.14. Scatterplot ofthe variables FA and FP ofthe whole Berlin 
flat data (n = 1(968) focussed to the lower left corner of Figure 2.13. 

LOO10(PA) 

__ 1.11 .. _­.. -..------...... 
... w ..... 

1IIDot_ ~ • 
...... .". .... t .. 
Loc.l"~. -.... 1_ .... 
• 1:_1110 

FIGURE 2.15. Scatterplot of the variables IOglO(F A) and loglO(F P) 
of the whole Berlin flat data (n = 14968) and linear regression 
IOglO(FP) = alog10(FA) + b. This model of regression makes more 
sense since a retransformation of the variables leads to the model 
F P = 10" F ACl which reflects our expectation that the regression curve 
should run through (0,0). 
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FIGURE 2.16. Scatterplot of the variables 10glO(F A) and 10glO(F P) of 
the whole Berlin fiat data (n = 14968) and linear regressions on each 
year. We get the impression that from 1989 to 1992 the prices increased, 
dropped in 1993 and remained on the same level also in 1994. 

can brush either one datapoint or a whole set of datapoints. Sometimes it 
might be useful to change the shape of the brush (see Figure 2.17), but 
it involves more complicated algorithms to figure out which datapoints are 
inside the brush. Even complicated areas can be marked easily if brush is 
changeable in size. For more details about brushing see section 2.7. 

Transforming variables. 

Sometimes we are not satisfied with the view we have on the data. From 
the modeling of the relationship in the Boston housing data (see Table A.l) 
we know that for example the variable LMV is the logarithm of the median 
price so we would like to transform the variables in our example. In fact 
Figure 2.15 shows a more interesting behaviour than Figure 2.13. 

Regression. 

We often have the problem to show datasets which are linked, e.g. a dataset 
and its regression function, so we need to put more than one dataset into a 
scatterplot (see for example Figure 2.15). The brushing of a subset and the 
representation of the corresponding regression lead to an interesting view to 
the data (see Figure 2.16). 
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FIGURE 2.17. Two dimensional projection of RANDU data in XGobi. 
A brush was used to mark one plane of data points. 

Control elements. 

As statisticians we need to control a lot of features in such a plot. If we 
use lines in the plot then the datapoints have to be connected by lines of 
different colour, thickness and type. Many texts have to be checked: The 
title of a window, text at the position of the datapoints etc, the plotting 
of (multiple) axes including scaling, tick marks, origin and text at the tick 
marks. For time series the text at the tick marks has another format than in 
a 2D-scatterplot, sometimes it is necessary to add datapoints, texts and lines. 
For example in a contour plot it would be nice to know at which contour he 
have cutted. These features point at the capabilities of drawing programs. 

The scaling of a plot means how to choose the sizes of the axes in the begin­
ning. In general we will choose the scale in a way that we can see the whole 
dataset. Later the user may zoom in and out of the dataset. In the case that 
we are plotting lines it is appropriate to choose the median of the slopes to 
be ±1 as suggested in Cleveland, McGill & McGill (1986). A fitting of the 
axes to the data might hide obvious features. 
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2.6.2 Sunflower Plot 

A problem mentioned earlier is the overplotting. If we distribute one dot of 
ink on a paper for every datapoint having to plot a lot of datapoints we get 
a big spot where we cannot see anything. One solution would be to reduce 
the size of the plotsymbol. But in the sunflower plot binning is used. We 
plot different symbols depending on how many datapoints fall into a bin (see 
Figure 2.18). Of course we can use colours (image plots), the brightness or 
sizes of the plot symbol. 
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FIGURE 2.18. Sunflower plot of the variables FA and FP of the whole 
Berlin flat data (n = 14968, Xbin = 10m2 , Ybin = 100.000DM). In 
contrast to Figure 2.13 we can see that most flats have less than 100 m2 

and are cheaper than 500.000 D M. 

2.6.3 Other Views 

Of course we also need other bivariate plots than scatterplots. For example 
it can be difficult to overview a density function depending on two random 
variables which can be plotted in a 3D-scatterplot. To get a better overview 
we can use contour plots as in Figure 2.19. The fixing of the contour lines 

!(X,Y)=Ci i=1,2, ... 

has to be done interactively if we do not have a special aim in mind, e.g. 
seeing the global maximum. Another possibility are image plots. Here the 
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...".rrs(,l) 

FIGURE 2.19. Scatterplot of the variables loglO(F A) and loglO(F P) of 
the whole Berlin flat data (n = 14968). A density estimate over the data 
was done with h., = hy = 0.01. A further investigation would show that 
the peeks we see in the contour plot represent a certain number of rooms. 
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FIGURE 2.20. Contour plot of a projection pursuit index function. The 
index is the Friedman-Tukey index (see chapter 3) with the triweight 
kernel and a bandwidth h = 0.05 on the RANDU data (see also Fig­
ure 2.17). 
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colour of a small rectangular area represents the actual coordinate in the z­
axis. In the case of the image plots the question of the choice of colours and 
therefore the question of the colour models used will appear. 

2.6.4 Trees 

Trees are used for visualization in several statistical techniques, 

• as dendrograms in hierarchical cluster analysis (see section 3.1) 

• in classification and regression trees. 

Dendrograms are used to decide how many clusters are available in the data. 
In classification and regression trees the spliting rules are visualized (Breiman, 
Friedman, Olshen & Stone 1984). 

2.7 Scatterplot Matrices 

The scatterplot matrix consists of a set of scatterplots. It is a tool to analyse 
a multivariate dataset. For each pair of variables of a multivariate dataset we 
produce exactly one scatterplot as shown in Figure 2.21. 

We can reduce the amount of scatterplots by excluding the upper right half 
of the scatterplots as it is just a mirrored view of the scatterplots in the left 
lower half. If we drop these pictures we get Figure 2.22. 

The real power of a scatterplot matrix will we get by brushing. Normally 
the brush is a rectangular area which gives a specific colour and form to all 
datapoints in the brush area which can be chosen by the user. It is assumed 
that if the i-th datapoint in one scatterplot changes its colour and/or form 
then the i-thdatapoint in all other scatterplots will change accordingly. 

The facilities of a brush (Fisherkeller et al. 1988) should be: 

• Deleting 
All datapoints in the brush are masked out. Often the colour of a dat­
apoint is set to the background colour. 

• Highlighting 
A datapoint gets another colour and/or form. The user can choose them 
interactively. 

• Transient/nontransient 
If a datapoint has changed the colour and/or the form and the brush is 
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FIGURE 2.21. Scatterplot matrix of the six dimensional Swiss banknote 
dataset (from SYSTAT). 

FIGURE 2.22. Scatterplot matrix of the six dimensional Swiss banknote 
dataset. The three clusters visible in the second window from the left in 
the last row are brushed with 3 different colours and symbols. 
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moved further, then we have two possibilities if the datapoint falls out 
of the brush. It either keeps the new colour and/or the new form or it 
returns to the colour and/or the form before brushing. 

• Brush shape 
The brush shape should be variable. Lasso functions will be useful to 
brush nonrectangular areas, but they will be difficult to implement. At 
least a brush should offer different sizes so that we are able to brush 
complicated areas. 

2.8 Three Dimensional Plots 

Z 1.2 

Y: LOGIO (FP) 

Z: DENSITY (*10 l 

FIGURE 2.23. 3D-plot of a bivariate density estimate of the variables 
loglO(F A) and IOglO(F P). As in Figure 2.19 we can see the peeks. 

Aim. 

As a scatterplot is a tool to analyze the relationship between two variables a 
3D-scatterplot is a tool to analyze the relationship between three variables. 
Since our output tool is still a screen we need additional techniques to give 
the eye the impression that we looking at something three dimensional. 



Exploratory Statistical Techniques 49 

2.50% 

FIGURE 2.24. 3D-plot of a trivariate kernel density estimate of the vari­
ables loglO(FA), loglO(FP) and FR (bandwidth h = (0.23,0.32,0.75». 
As expected we have a clear relationship between these variables. If they 
would be uncorrelated the density estimate would look more like unit 
balls. Instead of different colours we have used the gray scale representa­
tion of them. 

Spinning. 

The first attempt has been done with spinning which means we rotate the 
dataset parallel to one of the screen coordinate axes (see e.g. MacSpin). A lot 
of problems has risen in this context. The first one is the internal representa­
tion of a three dimensional dataset such that a rotation will appear to the eye 
as rotation and not as a set of blinking pictures. Models have been developed 
to represent the continuous data internally on an integer grid and to executed 
the rotation on this grid. Fortunately the numerical and graphical power of 
computers has improved so much that this is no longer a problem. 

Sizing. 

Another possibility to get a three dimensional effect is to draw the datapoints 
which are closer to the observer thicker than those being far away. If we rotate 
this dataset we need additional computational effort to compute the distance 
from the observer. We also loose the possibility to supply a datapoint with a 
form of arbitrary size. 



50 Exploratory Statistical Techniques 

Stereoplot. 

Another approach is to split a datapoint into two datapoints which have a 
small distance from each other. If we colour one datapoint red and the other 
one green and if we use red-green-glasses we will get a three dimensional 
picture of our dataset. The disadvantage is of course that we had to double 
the number of observations and that we always needed red-green-glasses. 

Rocking. 

A much more interesting technique seems to be the "rocking" of a dataset. 
If we look at a three dimensional scatterplot the picture does not stand still 
but moves between two position by rotation. Since datapoints being more 
distant will move by greater distances than closer observations we are able to 
recognize how far away the observations is compared to the other datapoints. 

The advantage is that we only have to compute two different positions for 
that moment when we stop the rotation. The computational effort is not too 
big and the routines for the rotation are already available. 

Surface. 

3D-scatterplots are not only used to show datapoints. They are also used to 
show different kinds of surfaces (see Figure 2.23 and Figure 2.24). 

For the trivariate kernel density estimate in Figure 2.24 an interactive choice 
is necessary of the levels cred, Cgreen and ~lue to plot the contours of 

Colour models. 

Since we are using colours we have to choose between different colour models. 
As each model uses a different basis to compose a colour, each has its own 
advantages and disadvantages: 

• RGB 
RGB (red-green-blue) is the most commomly used colour model. Our 
TV pictures on the screen use this model. Every colour is composed of 
a partition of red, green and blue. We have a lot of knowledge avail­
able about the eye's sensitivity to RGB-triplets. Every window system 
provides an RGB-triplet for composing a colour. A problem appears 
if someone has to compose a colour by himself as some experience is 
needed. 
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FIGURE 2.25. Representation of colour models 

• YIQ 
The YIQ model was designed for transmission efficiency in colour broad­
cast TV. It can be calculated from the RGB-model by 

• CMY 

0.30 
0.60 
0.21 

0.59 
-0.28 
-0.52 

0.11 
-0.32 
0.31 )( ~) 

The CMY (cyan-magenta-yellow) is widely used for colour printing de­
vices. It can be calculated easily from the RGB-model by 

( f) (E~) 
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• HSVjHLS 
The HSV- (hue-saturation-value) and the HLS-model (hue-lightness­
saturation) are designed for a user-friendly composition of colours. The 
hue distinguishes between different colours like red, yellow, green, cyan, 
blue and magenta. The saturation describes how little the colour is 
diluted with white, e.g. pink and red, sky blue and royal blue .... The 
lightness or value describes the intensity of a colour. Both systems can 
be represented by a single- or double-hexacone. 

• Munsell system 
None of the described models consider the sensitivity of the human eye. 
In computer systems the RGB model is composed by three integers 
which have a range of 255 (2563 = 16.7 Mio.). But can a human eye 
really distinguish the colour (0,0,0) from (1, 1, I)? So Munsell built up 
a scale such that we have equally perceived distances in colour space. 
This scale is subjective, but it is based upon the evaluation of many 
observers. 

The statistical importance of colour scale appears in contour plots in the three 
dimensional case (Scott 1992) and in image plots in the two dimensional case. 
The three most interesting colour-models, RGB, HSV and HLS can easily be 
implemented in statistical software. The Munsell system is based on huge 
tables so that an implementation is only done if necessary. 

A problem that often arises in (statistical) programs is how to transfer the 
background colour of the screen (mostly black) to the background colour 
of the printer (mostly white). An easy exchange of black and white is not 
possible, because if someone uses a gray scale starting with white and ending 
with black, e.g. in a contour plot or in an image plot, the exchange would 
destroy the whole palette. To solve such a problem the HLS system can be 
used. The RGB-colour will be translated to HLS-colour and the saturation s 
will be set to 1- s. That ensures that colour with s = 0.5 will not change the 
RGB-colour. Additionally the light colours which are a strong contrast to a 
dark background will become dark colours on the printer, which also will be 
a strong contrast on the paper. 

2.9 Higher Dimensional Plots 

2.9.1 Three Dimensional Scatterplots with Colour, Form and 
Size 

The simplest idea to show multidimensional data is to use a 3D-scatterplot 
and to use different colours, forms and sizes for the datapoints to indicate 
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additional dimensions. But the number of sizes and forms is limited (the 
number of colours sometimes too), so if a variable is continuous we are not 
able to see this continuity. This kind of plots can be used if the variable only 
has a small number of discrete values. 

2.9.2 Chernoff Faces 

000000000000@0@000~0 
00000G000~@@~0~~@@@ 
00@0000000~@0@~0~@@@ 
00@0~00000@@@0@@~0@@ 
o00@0000@0@@@0~0~~@@ 
@000000000@0@@@~@@~@ 
0~@0000~~0~@~@@0@~00 
00G00000000@@@@~~0~@ 
00000000000~@@@~0@00 
@@00000000@@000@@@~0 

FIGURE 2.26. Chernoff faces constructed with the algorithm of Chernoff. 
The observations of the Swiss banknote dataset are coded in face parts: 
variable 1 is the width of the mouth, variable 2 the curvature of the 
mouth, variable 3 the location of the mouth, variable 4 the shape of the 
face, variable 5 the length of the nose and variable 6 the area of the 
face. All 200 banknotes are displayed. We can easily see that we have 2 
different types of banknotes. 

Chernoff faces and other glyphs (star diagram, trees etc.) are also used to 
represent multivariate data. Chernoff (1973) introduced the faces in statistics. 
He has coded 15 variables in different faces parts (see Figure 2.26). Flury & 
Riedwyl (1981) were not satisfied with the look of the faces if the data have 
extreme values. They stated that the faces do not look anylonger like faces, 
and as a consequence an observer will be more attracted by these nonhuman 
looking faces than by the human-looking ones. Additionally they coded 36 
variables and developed a face that consists entirely of polygons (see Figure 
2.27). 
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FIGURE 2.27. Chernoff faces constructed with the algorithm of Flury 
and Riedwyl. The observations of the Swiss banknote dataset are coded 
in face parts: variable 1 is the nose line, variable 3 the curvature of the 
eyebrow, variable 4 the eye size and the size of the mouth and variable 6 
the density of the eyebrow, the face line and the darkness of the hair. We 
see that observation 70 of the dataset looks very different to the others. 
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FIGURE 2.28. Star diagrams constructed from the Swiss banknote 
dataset. We can see that stars on the right look fatter. 
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The problem with the Chernoff faces is that we do not perceive all face parts 
equally. For example the size of the pupil will not receive the same attention 
as the darkness of the hair. 

If we use the star diagram for all variables then they will be perceived equally. 
Since Chernoff faces overemphasize some variables we are able to see differ­
ences well. This is no longer the case with star diagrams. Here only extreme 
values will lead to a bigger attention (see Figure 2.28). 

In the case of Chernoff faces a tool offering such glyphs has to allow an easy 
reassociation with the variables of the face parts. It holds for all glyphs that 
it should be possible to sort the data for a certain variable. This will lead to 
faster recognition if a structure is connected to a certain variable. 

2.9.3 Parallel Coordinate Plot 

If we try to represent multivariate data we will have a loss of information. 
In the grand tour or Andrews curves orthogonal projections of the data are 
used. Inselberg (1985) and Wegman (1990) tried to go another way. He gave 
up the idea of orthogonality and put all coordinate axes parallel to all others. 
Each datapoint can be marked on the axes and we can draw lines which are 
connecting observations through axes (see Figure 2.29). 

This can be seen as a projective transformation. The hope is that the ge­
ometric information from standard euclidean space which carries statistical 
information is mapped in geometric structures in parallel coordinate space. 
One statistical information which carries over is the correlation between vari­
ables as can be seen in Figure 2.30. 

Another structure that carries over is the presence of clusters as can be seen 
in Figure 2.31. If the clusters are separable in one or more dimension this can 
be recognized in the parallel coordinate plot. 

A drawback of parallel coordinate plots is that we can not overview them if 
the dataset becomes large. A solution to this problem is to draw line densities 
f(z, q) on the lines parallel to the coordinate axes (q E [0,1]). An example 
can be seen in Figure 2.32. 
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FIGURE 2.29. Swiss banknote dataset in the original version of the par­
allel coordinate plot. All 200 observations are shown and the variables 
are rescaled on [0,1]. 
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FIGURE 2.30. Simulated dataset with different values for the corre­
lation between variables. corr(XJ,X2) '" -1, corr(X2,X3 ) '" -0.5, 
corr(X3 , X 4 ) '" 0, corr(X4 , Xs) '" 0.5, corr(Xs, X 6 ) '" 1. We can see 
that the lines become less wild as the absolute value of the correlation 
Increases. 



Exploratory Statistical Techniques 57 

VAR6 

VAR4 

FIGURE 2.31. Parallel coordinate plot of the fourth and the sixth vari­
able of the Swiss banknote dataset (see also Figure 2.21). 

X: p 
y, x 

Z: f 

1.0 

FIGURE 2.32. Parallel coordinate plot with line densities of the Swiss 
banknote data set. The plot deviates from a standard normal distribu­
tion. 
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1.0 

FIGURE 2.33. Parallel coordinate plot with line densities of the two 
gaussian random variables with mean zero and the covariance matrix 
being the unit matrix. 

If we know the density of two random variables it is possible to calculate the 
intermediate density !(z,p) from the formula 

V(p) = (1 - p)Xl + pX2 

for a two dimensional dataset. Especially if we have two gaussian distribu­
tions such that X = (X1 ,X2 ) with Xl '" N(l-'l,Ut), X2 '" N(1-'2,U2) and 
corr(Xl ,X2 ) = p the intermediate density !(z,p) will also be gaussian with 

(1 - P)I-'l + Pl-'2 

(1 - p)2u~ + p2u~ + 2p(1 - p)pUlU2' 

(2.1) 

(2.2) 

An example with III = 1-'2 = P = 0 and 0"1 = 0"2 = 1 can be seen in Figure 
2.33. Instead of 3D-surface plots contour plots and image plots can be used. 

2.10 Basic Properties for Graphical Windows 

In the preceeding sections we have examined a lot of graphics which are used 
in statistical computing. We can divide the graphics into two basic classes: 
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1. graphics which consist of drawing datapoints, lines and text and 

2. graphics required for much more complex objects. 

Piecharts, Chernoff faces and glyphs in general belong to the second class of 
graphics while all other graphics belong to the first class. 

For the implementation in a statistical software we need at least two kinds 
of graphical windows: one that will give us special graphics from the second 
class, and another for the specific demands of drawing graphics of the first 
class: 

• Datapoints in various colours, sizes and forms. Here forms also include 
strings and small rectangles. 

• Lines of various colours, types and thickness. 

• In future we might also need to draw complete areas, so the data struc­
tures for graphical objects would have to consider that. 

In the regression figure we have seen that the graphics need to be manipulated 
interactively or by command from a program. 



3 
Some Statistical Applications 

Summary 

Here some applications are discussed (cluster analysis, teachware, regression 
methods). The cluster analysis will serve as an example for the use of graph­
ics. Teachware needs to be highly interactive and we shortly discuss the ap­
proach of Proenca (1995). The section about regression methods shows how 
detailed a programming language should be. The trade-off between speed and 
understanding in a statistical routine still plays an important role. 

3.1 Cluster Analysis 

3.1.1 Introduction 

Cluster analysis algorithms are tools used frequently in ecology, biological 
science, marketing, chemistry, geology, social science, economics, archaelogy, 
ornithology etc. Cluster analysis attempts to detect structure in the data or 
at least provides to reduce the number of the observations. This technique 
divides a set of points into a subset in such a manner that similar points 
belong to the same cluster, whereas dissimilar ones are allocated into different 
clusters. 

The cluster analysis consists of two different kinds of methods 

• hierarchical methods and 

• partitioning methods. 

The partitioning methods require an initial classification. This means that 
the number of clusters is fixed. They try to exchange observations between 
the clusters to improve some criteria of goodness. The algorithms can be 
divided into two classes: the iterative ones and the noniterative ones. In the 
noniterative algorithms an observation can be classified only once and can 
not be exchanged afterwards to another cluster. The main advantage of these 
algorithms is that they reduce the amount of computing considerably. The 
iterative algorithms do allow a reclassification more than once. 



62 Some Statistical Applications 

The hierarchical methods do not need an initial classification, and the number 
of cluster needs not to be known previously. But these algorithms need the 
distances between the datapoints. The distance metric has been chosen by the 
user. Again the algorithms consist of two different methods. Agglomerative 
algorithms start with n clusters so that every datapoint is represented by 
one cluster. Now iteratively the algorithm will merge clusters together until 
the whole dataset consists of one cluster. The other method, the divisive 
algorithms, go exactly the other way. They start with one cluster and try to 
decompose the dataset into two sub clusters. The process is iterated on the 
sub clusters until each cluster consists of one datapoint. 

It is useful to combine both methods so that we first execute a hierarchical 
cluster analysis to choose the number of clusters and then a partitioning 
method to improve our result. 

In the following subsection we will restrict to one partitioning algorithm and 
one hierarchical algorithm. For further details on other algorithms see Mucha 
(1992a). 

3.1.2 The k-means Algorithm 

The k-means algorithm was developed by Hartigan (1975). As mentioned we 
need an initial classification. Possible choices are a random generated classi­
fication, prior knowledge or categorization of the first principal component. 
The k-means algorithm now tries to minimize the sum of the within cluster 
variances 

K n 

VK = L L bi,l:mid~(zi' XI:) 
1:=1i=1 

with K the number of clusters, n the number of observations, bi,1: an indicator 
function, which is 1 if the i-th point is in the k-th cluster and 0 if not, and 
mi a weight for the observation i. 

d~(z, y) = (z - yf Q(z - y) 

represents a weighted squared euclidean distance with a weight matrix Q. 
The weights normally describe the weight of variables, and classical choices 
are 

• the trivial weights Q = I or 
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• the standard weights Q = diag(ljsj,j) with 

SjJ = 

n 

E m;(z;,j - %j)2 
;=1 

;=1 
n 

"" m'z, . L..J 1 1,1 
;=1 

Obviously other distances can be used too, but the weighted squared eu­
clidean is the most common one. 

The algorithm has to incorporate an optimization algorithm on a stepwise 
function which appears to be a difficult task. 

An improvement for the partitioning algorithm can be done by the use of 
adaptive weights. We repeat the partitioning algorithm until the computed 
partition or the adaptive weights change no longer. In the first step we use 
the standard weights and in each following step we compute pooled standard 
deviations 

with 

n 

E O;,km;Z;,j 

Zkj = ..:..;=::.;l"::n----

EO;,km ; 
;=1 

The inverse of these pooled variances will be plugged in as weights for the 
variable in the next step. Following Mucha (1992b) and Mucha & Klinke 
(1993) it seems that these methods are a little more intelligent than the 
standard k-means algorithms. 
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3.1.3 The Agglomerative Algorithm 

All agglomerative methods follow the same scheme: 

1. Find the minimal distance d( i, j) between two clusters 

2. Merge the two clusters to a cluster k 

3. Compute the new distances of each cluster 

d(k, I) = cxid(i,l) + cxjd(j,l) + {3d(i,j) + "1 I d(i, I) - d(j,l) I 

For the value of the constants for the different methods see Table 3.1. 

4. Go to 1 until we have more than one cluster 

For the agglomerative methods a choice of the distance is important. First 
we have to distinguish between continuous and noncontinuous variables. For 
the continuous case we have a lot of distances available. If we assume that 
X = (ZiJ )i=1 •...• n;j=1 •...• p then we have the following distances 

• the euclidean distance: 

p 

d(i,j) = ~)Xi.lc - Xj.lc)2 

lc=1 

• the Manhattan distance: 

d(i,j) = L I Xi.lc - Xj.lc I 
lc=1 

• the maximum distance: 

d(i,j) = m:x I Xi.lc - Xj.A: I 

• the cosine distance: 

p 

2 LXi.IXj.1 

d( ) ~1 
i, j = 2 - --;======== 

p P 

Lxl.ILxJ.I 
1=1 1=1 
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• the X2 distance: 

d(i,j) = ~ -=t:--
1
-ZI-,j: (f~;" t~J"l 

1=1 /=1 1=1 

The choice of the distance depends on the problem we have, If we want to 
cluster airports with the aim of minimizing the traveling costs, we will use 
the euclidean distance since airplanes can go straight from one airport to 
another, But if we want to cluster supermarkets of a company to minimize 
transportation costs for goods, we will use the Manhattan distance, since 
streets often follow a rectangular mesh, 

In contrast to the measures for continuous variables we also have measures for 
noncontinuous variables, The distances given below are for binary variables, 
but for other input data we can categorize the variables by 

if Zi < v, 
otherwise, 

For discrete variables with more than 2 values the variable can be decomposed 
into several variables in the form of 

if Zi = j, 
otherwise. 

Thus it is sufficient to give distances for binary variables: 

• the Tanimoto distance: 

de ') 1 #11 + #00 
a,} = - #11 + #00 + 2(#10 + #01) 

• the Jaccard distance: 

d(' ') 1 #11 
a,} = - #11 + #01 + #10 

• the matching distance: 

d(i,j) = 1- #11 + #00 
p 
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Dendrogram for Ward's method 

" 
"L-~-----r------r-----~------~-----'--~ 

0.0 1.0 2.0 3.0 t.O 
.... of within clu.ter variance ,.10 2) 

5.0 

FIGURE 3.1. Dendrogram for the Swiss banknote data. On the x-axis 
we see how the sum of within cluster variance increases if we merge more 
and more clusters. On the y-axis we see the observations. A good choice 
for cluster would result in 2, 3 or 5 clusters. In fact in Figure 9.10 on page 
186 in Polzehl &; Klinke (1995) we can already see three distinguishable 
clusters. 
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I ... ... ... . .. . .. I I 
n .• 

"'1.1) _ ... 
. -

'l'Zl'1I.ll ---........ _ . 
FIGURE 3.2. Principal component plot of Swiss banknote dataset. With 
the Ward method and the euclidean distance we have chosen 2 clusters. 
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FIGURE 3.3. Principal component plot of Swiss banknote dataset. With 
the Ward method and the euclidean distance we have chosen 3 clusters. 
Notice that the clusters do not coincide with the clusters to be found by 
Eeploratory projection pursuit. To achieve the cluster structure found in 
exploratory projection pursuit more work has to be done. 

with #pq =number of variables which have the characteristics Zi,k = P and 
Zj,k = q. Again the choice of the distance depends on the problem. Other 
distances can be found in Jambu & Lebeaux (1983). 

We now have several methods in the agglomerative cluster analysis to merge 
two clusters. Each method has it own advantages and disadvantages: 

Single linkage was developed by Sneath (1957) in the context of taxon­
omy. The two clusters will be merged when the distance between the 
two closest neighbours gets minimal. As a result this method tends to 
produce long chains. 

Complete linkage merges two clusters, if the distance between the farthest 
points in the cluster is minimal. It will produce compact, hyperspherical 
clusters with highly similar objects. 

A verage linkage is a compromise of the two methods of Sokal & Michener 
(1958). Here we take the average of the distances between the farthest 
and the closest datapoint in the clusters. We will get spherical clusters. 

Centroid linkage merges the cluster with nearest distances between the 
gravity centers of the clusters. This method can be used to find clusters 
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FIGURE 3.4. Principal component plot of Swiss banknote dataset. With 
the Ward method and the euclidean distance we have chosen 5 clusters. 

with different numbers of observations. But large clusters can contain 
very heterogeneous objects. 

Wards method was designed to optimize an objective function, the mini­
mum variance within the clusters (Ward 1963). 

Lance- and Williams method is generalization of the preceding methods. 
By variation of the parameter {3 we achieve similar results as in the 
methods before. 

Method Cl:i Cl:i. {3 'Y 
Single linkage 0.5 0.5 0.0 -0.5 
Complete linkage 0.5 0.5 0.0 0.5 
Average linkage ~ ~ 0.0 0.0 

U.+Uj U.+Uj 

Centroid linkage ~ ~ Cl:iCl:j 0.0 
U.+Uj U.+Uj 

Ward udUI Ui+U1 -UI 0.0 
U.+Uj+UI Ui+Uj+UI Ui+Uj+UI 

Lance- and Williams ~ (l-.B)uj {3 0.0 
Ui+Uj Ui+Uj 

TABLE 3.1. Constants for computing the new distances for different a.g­
glomerative methods. The weights u, are weights for each cluster, in the 
simplest case this is the number of observations in each cluster. 
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Since we need some criteria to decide about the number of clusters we can 
generate a dendrogram as can be seen in Figure 3.1. The x-axis is the crite­
rion used for merging the clusters. It can be used to decide graphically how 
many clusters are in the data. No objective approach exists how to choose 
the number of clusters. One approach was made by Rand (1971) through a 
measure of correspondence. 

3.2 Teachware 

Today we have a class of programs that we can call teach ware. The main aim 
of teachware programs is to improve the quality of learning statistics for the 
students. One way to fulfill this aim is to make statistical methods available 
to the student by 

• an individual learning process, where the student determines the speed 
of learning and 

• to learn by playing with statistical techniques. 

These aims have a direct influence on the structure of a teachware program. 
From the second aim it follows that only graphical environments can be used. 
The program has to be interactive so that the student can get an immediate 
feedback. Since the student himself determines the speed of learning, he has 
to be independent from the teacher which means that the program should 
be very user-friendly. Obviously menu driven environments are necessary as 
well as good and easily accessible help systems. 

We have a lot of techniques in statistics and econometrics which are highly in­
teractive and need graphics (principal component analysis, projection pursuit 
techniques) . 

If these aims are fulfilled we can hope to increase the motivation of students 
to learn and use statistics, especially if they do not have a mathematical 
background. 

Teachers can expect from the teachware an easier and faster understanding 
of the statistical methods. For example an explanation how the stem and 
leaf plot is built up will be less informative than the graphical construction 
shown in CIT. Often it is said that one benefit of teachware is that teachers 
will save time which they can spend better on methodology. According to my 
experience this not true as the students have to handle the operating system. 
We could use teachware programs to test new statistical methods if they were 
really working well. It might also be a way to make people use new methods. 
Although the supersmoother is not distributed as a teachware program, the 
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success is connected to the success of S-Plus as a statistical programming 
language. 

As a result we have now a variety of teachware programs (Koch &:; Haag 
1995): 

CCI 2.7 which concentrates on the concept of confidence intervals and its 
connections to the sampling distribution, the standard error of an esti­
mate and hypothesis testing, 

CIT which shows some basic concepts and explains some graphical tech­
niques (stem and leaf plot, histogram), 

First Bayes 1.1 which is designed for teaching and learning elementary 
Bayesian statistics, 

P.C. Convolution which is a tool that helps the students to visualize the 
convolution and correlation operations, 

PRISTAT 1.0 which realizes the statistical procedures and methods of a 
textbook for introductory applied statistics (Kolev 1993), 

SchoolS tat 2.0.4 which allows the students to make basic statistics (corre­
lation, linear regression, contingency tables, nonparametric and para­
metric tests for two samples), 

Sila 1.0 which shows students how inferential statistics work and 

XploRe 3.2 which has a teachware module where students can see how 
some non parametric and some multivariate techniques work (Proenca 
1994). 

We will shortly describe the aims of teachware module of XploRe 3.2 which 
was developed by Proenca (1994). The basic assumptions are that 

• the learning process should be interactive, exploratory and directed by 
the student, 

• the system should be user-friendly and 

• some statistical techniques need graphics and interactivity. 

The module handles the visualization of five topics: the reasoning of the ordi­
nary least squares (OLS) rule in linear regression, the impact of influent ob­
servations on the OLS rule, principal component analysis, density estimation 
and non parametric regression. The program is menu driven and the opening 
screen is shown in Figure 3.5. We can now choose between the different topics 
which are all realized in independent macros. 
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1eIU$(.1) 
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FIGURE 3.5. The opening screen of the teachware library of XploRe 3.2. 

SUPERSMOOTHER 

". 

x j·10) 

...u$[,ll 

--­apliIM r-.rn", 
K-N-N r-;r_ •. 

000$[.11 

FIGURE 3.6. The screen for nonparametric regression in the teachware 
library of XploRe 3.2. The supersmoother was chosen for a regression on 
the motorcycle data set. 

Take for example the non parametric regression and you will get the screen in 
Figure 3.6. We can choose here between different nonparametric regresssion 
smoothers: 
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• the supersmoother, 

• the running median, 

• the spline smoother 

• the k-nearest-neighbour smoother, 

• the monotone regression smoother, 

• the Nadaraya-Watson smoother, 

• the locally weighted regreBBion smoother (LOWESS) and 

• the wavelet regression. 

The main advantage of this part of the teachware macro is that we can change 
the smoothing parameter to inspect visually what over- and undersmoothing 
means. Additionally we can load other datasets to see how the smoother will 
behave on them. With these pOBBibilities we might be able to demonstrate how 
different smoother will work and where the advantages and disadvantages of 
the smoothers are. 

But contrary to the basic aims given, the learning proceBB is neither self­
explaining nor can it be directed by the student. Without the knowledge 
how the estimators are defined (there is no help provided on the different 
estimators) students will be completely confused. 

Most of the teachware programs only try to visualize the techniques because 
a graphic is often much more helpful than an explanation. It is helpful for 
instructing statistical methods and teachers can use it in lectures. 

An approach to build up teachware where the student can really work inde­
pendently from the teachers is offered by programs like ToolBook for Win­
dows 3.1. The aim of this program is to create a multi-media document, 
which is composed by graphics, sound and text. A hypertext system makes 
it pOBBible to build up various levels of difficulty for one topic. 

3.3 Regression Methods 

3.3.1 Introduction 

If we develop a programming language for a statistical software we need to 
have an idea how differentiated a programming language should be. Obvi­
ously we need a lot of procedures in statistics that allow us to manipulate 
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is a command, and except for the wavelets no user has an insight to the 
details of a regression method. In XploRe most of the regression methods are 
procedures written in the XploRe macro language. 

The criteria for programming a macro or a command for a regression methods 
are: 

1. Does the regression method follow a fixed algorithm? Do we need any 
parameters which can not described by a parameter vector? 

2. If we choose the form of a macro, is it fast enough? Do we have enough 
memory to store all necessary data? 

3. If we choose the form of a command, can it be built up easily from the 
basic matrix commands? 

3.3.2 Commands versus Procedures 

Alternating conditional expectation (ACE). In ACE we try to fit an 
additive model of the form 

The measure 

p 

E[(J(y) - ~ q,1:(ZI:)]2 
e2 = 1:=1 

E[q,2(y)] 

of the unexplained variance is used to find optimal solutions for the functions 
9 and ¢I:. Breiman & Friedman (1985) who suggested ACE, showed that a 
nontrivial solution can be constructed by an iterative algorithm (here for the 
univariate case): 

q,(1)( z) = E[ylz] 
(J(1)(y) = E[q,(1)(z)lz] 
q,(2)(z) = E[(J(2)(y)lz] 
(J(2)(y) = E[q,(2)(z )Iz] 
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We need good estimators for the functions t/J(j) and (J(j). In S-Plus the su­
persmoother is used, but we can use any univariate regression method. So 
the ACE routine should be a macro. 

Additive and variance stabilizing transformation (AVAS). The AVAS 
method can be seen as a modification of ACE. It tries to stabilize the variance 

k 

Var((J(y)\ L: t/Ji(:l:i» = const. 
i=l 

Again we can use several univariate regression smoothers. We would like to 
have this regression method as a macro. 

Average derivative estimation (ADE). The aim of ADE is to fit the 
average slope of the unknown regression function: 

6 = E(Vm(:I:» 

with Vm(:I:) the partial derivatives of the unknown regression function m(:I:), 
especially if we assume that the unknown regression function can be written 
as 

m(:I:) = g(:l:T a) 

with 9 an unknown univariate function and a is a projection vector. It follows 
that 

which under suitable conditions leads to 

6 - E (_ V/(:I:») 
- y 1(:1:) . 

The problem that the density 1(:1:) becomes small at the borders can be 
solved via a weighted average derivative estimation (WADE). For estimating 
the unknown multivariate density and its derivatives several methods are 
possible, e.g. kernel density estimation or density estimation via orthogonal 
polynomials. 

An implementation can be found in Kotter & Turlach (1995). The imple­
mentation is easy and quick, and other density estimators can be used in 
principle. An implementation as a procedure is necessary. 

Generalized additive models, generalized linear models (GAM, GLIM). 
The model used in G LIM is 
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with a a projection vector and () a link function that has to be specified. The 
number of the link functions and the number of appropriate algorithms has 
been increased over the time. Although this model is completely parametric, 
the extensibility requires programming as a procedure. 

The model fitted in GAM is 

p 

()(y) = a + L ePk(Xk). 
k=1. 

Again the functions ()(y), ePk can be any univariate regression function. In 
Kotter & Turlach (1995) in Figure 11.2 -11.4 different regression methods 
(supersmoother, local linear and s-k-nearest-neighbour) are used on the same 
dataset. Again programming as a procedure is required. 

Isotonic regression. The isotonic regression on a set {Xi, Yi} is found by 
least squares minimization 

subject to the constraint Xi $ Xj -+ J(Xi) $ ~(Xj). The algorithm is 
described in HardIe (1990) and fixed. An implementation as a command is 
prefered. 

k-nearest-neighbour regression, running median. The k-nearest-neigh­
bour regression estimator can be defined as 

with weights Wki = njk, if i E JIl: and Wki = 0 otherwise. JIl: is defined as 
the set {: Xi is one of the k nearest observations to x}. 

A variation in the univariate case is the symmetric k-nearest-neighbour esti­
mator. For each datapoint Xi we have to take the same amount of datapoints 
on the left and right side of the datapoint. 

The running median takes the median of the observations YJ.,. 

All algorithms for estimation are fixed and we can implement them as com­
mands. 
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Least median of squares, minimum absolute residual (LMS, MAD). 
The LMS is a robust version of a least squares fit (Rousseeuw 1994). Instead 
of minimizing the average of the squared residuals 

in the model 

Y; = {Jo + xi {J 

we minimize 

• T' 2' T' 2 median{(Yl - {Jo - Xl (J) , .•. , (Yn - {Jo - Xn (J) } 

by optimizing /30 and /3. In MAD we optimize the model by the average 
absolute residuals 

1 ~ . T' 
- L.J I Y; - {Jo - Xi {J I . 
n i=l 

The smoothing procedures should be implemented as commands· as some 
optimization has to be done. 

Local polynomial regression. One of the drawbacks of the Nadaraya.­
Watson estimator (see below) is that the fit becomes less accurate at the 
boundary. This is due to the fact that we have fewer observation to average 
at the boundaries than in the interior of our data. One solution is the use of 
"boundary kernels" . 

But it is reasonable to use another class of estimators, the local polynomial 
estimator. Following Fan, Gasser, Gijbels, Brockmann & Engel (1993) it can 
be written as the minimization problem 

with K a kernel function and h a smoothing parameter, the bandwidth. Here 
we approximate the unknown regression function m locally by a polynomial of 
order p. The Nadaraya-Watson estimator can be regarded as a local constant 
fit. For a detailed description of the theory and the methodology of the local 
polynomial regression see Fan & Gijbels (1996). 
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The more important aspect for a statistical software system is to implement 
it in a efficient way. If we define 

we can calculate the coefficients bj(zo) by 

6(zo) = (XTWX)-l XTWY 

= S(zo)-lT(zo) 

= (SO~ZO) Sl(:ZO) ... Sp~zo») -1 ( To(:zo) ) 

Sp(Zo) Sl(ZO) S2p(ZO) Tp(zo) 

tK (Xi - zo) (Xi - zoP 
i=l h 

1j(Zo) ~K (Xi ~ zo) (Xi - zoPl-i. 

We can implement it quickly by 

1. Compute for all datapoints Xi the functions Sj(Xi) and 1j(Xi) 

2. Compute for all datapoints Xi the inverse of S(Xi) and multiply it with 
T(Xi) 

3. Since we approximate in each datapoint by a polynomial we only need 
mh(Xi) = bO(Xi) 
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An estimation of the l-th derivative can be computed by the use of b,(Xi). 
Seifert, Brockmann, Engel & Gasser (1994) have developed a fast and general 
algorithm which works in O( n) operations. 
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Regression of Motcyc data 
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FIGURE 3.7. Regression on the motorcycle data with Nadaraya-Watson 
estimator (gray) and local linear polynomial estimation (black). Both 
bandwidths are crossvalidated hNW = 2.4, hp = 5. 

The local polynomial regression should be implemented as a procedure since 
the kernel is not fixed. But the algorithm of Seifert et al. (1994) can only be 
implemented as a command since it is very complicated. 

Local regression, locally weighted regression and supersmoother, 
robust regression (LOESS, LOWESS, SUPSMO, M-estimator). All these 
methods are very specialized algorithms. It is preferred to implement them 
as commands rather than as a macro. 

Nadaraya-Watson estimator. The Nadaraya-Watson estimator can be 
seen as a generalization of the regressogram. 

n 

L Kh(Z - Xi)Yi 
mh(z) = .;.;i=;;;,::!:....-___ _ 

LKh(Z-Xi) 
i=l 

with (Xi, Yi) being data sampled from the model 



80 Some Statistical Applications 

.y = m(z) + error. 

The function Kh(Z) = K(z/h)/h is a kernel function and m the unknown 
regression function. The amount of smoothing is given by the bandwidth h. In 
Table 4.3 some kernel functions are given. For the multivariate case product 
kernels are also used 

with support [-1,1]11 instead of the unit ball as given in Table 4.3. 

The Nadaraya-Watson, and kernel estimators in general, are very popular 
under the (nonparametric) smoothing methods since they can easily be un­
derstood intuitively. They are easy to implement. Binning or the fast fourier 
transformation allows efficient implementations. 

To derive the mathematical properties for the Nadaraya-Watson estimator 
is a little bit tricky. Detailed explanations and references can be found in 
HardIe (1990). 

AB already seen in the part of exploratory projection pursuit, the choice of 
the smoothing parameter is a crucial task. Here an interactive environment 
can help. 

In Figure 3.8 the Nadaraya-Watson estimator is computed for the trivariate 
case. Here interactive contouring is required to get the shape of the function 

The implementation as a procedure is necessary as we have the choice of 
different kernels and as we can use binning methods. For example S-Plus 
supports only the univariate Nadaraya-Watson estimator and offers only 4 
different kernels. 

Projection pursuit regression (PPR). The general problem of estimating 
a response function 

E(YIX = z) = m(zlo ... ,z,,) 

with (X, Y) being a pair of random variables with X E IR! and Y E IR is the 
"curse of dimensionality". A direct approach with (nonparametric) methods 
will lead to a strong oversmoothing since the sparseness of the space will 
require to include a lot of space to do a local averaging. To estimate the 
response function mM(z) from the data HZl, Yl), ... , (zn, Yn)} the following 
idea seems to be much more attractive: 
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FIGURE 3.8. Trivariate regression with the Nadaraya-Watson estimator. 
The variable MEDV is regressed on the variables CRIM (crime rate), RM 
(mean rooms per house) and LSTAT (percentage of people in lower sta­
tus). In each variable the binwidth was chosen so that we have 25 bins, 
the bandwidth was chosen as 12x the binwidth and the quartic product 
kernel was used. The lower (dark gray) surface represents a median price 
of approximately 30.000 US$, the middle (light gray) surface approxi­
mately 21.000 US$ and the upper (black) surface approximately 13.000 
US$. 

1. Set r}O) = Yi. 

n 

~)r}j-1) - mj(&J Xi»2 

2. Minimize the error function Ej = 1- i-1 n by vary-

~)r}j-1»2 
i=l 

ing over the parameter &j E IRP and mj a univariate smooth function. 

3. Define r}j) = r}j-1) - mj(&Txi) and repeat step 2 until Ej becomes 
small. 

This algorithm leads to an estimation of the response function by 

M 

mM(x) = E mj(&J x). 
j=l 
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The advantages of estimating the response function in this way are: 

1. We can use univariate regression functions instead of their multivariate 
analogues and avoid the "curse of dimensionality" . 

2. Univariate regression are easy and quick to calculate. 

3. In contrast to generalized additive models (GAM) we are able to model 
interaction terms. 

4. Unlike local averaging methods, e.g. k-nearest-neighbour methods, we 
are able to ignore information poor variables. 

Of course we have some disadvantages with this model too: 

1. We have to examine a p dimensional parameter space to estimate Otj. 

2. We have to solve the problem of selecting a smoothing parameter if we 
use nonparametric smoothers for inj. 

3. The interpretation of a single term is not as easy as in GAM. 

With the assumption of standardized predictor and response variables, that 
is 

E(Xi) = 0, Var(Xi ) = I,E(Y) = 0, Var(Y) = 1 

and the error function Ej Friedman &; Stuetzle (1981b) constructed a special 
smoother for the unknown regression function inj. The method is very similar 
to the well known supersmoother. The smoothing algorithm is the following 
(h a smoothing parameter): 

FOR each Xi DO 

Zs = {Xj I Xi - h ~ Xj ~ Xi + h} 

Z!I = {Yj I Xi - h ~ Xj ~ Xi + h} 

(J = Linear - Regression( Zs , Z!I) 
Do a local linear regression to reduce the bias. 

(Ti = 1/#Zs Ez.,(Z!I - {JIZs - {Jo)2 

Ei = {(Ti I Xi - h ~ Xj ~ Xi + h} 

hi = mean(Ei) 
Choose a variable bandwidth to avoid spurious fits along existing 
directions 
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FIGURE 3.9. Four-term projection pursuit regression with the Boston 
housing data. The regression function used is the supersmoother. 

ENDO 

FOR each Xi DO 

Wi = median(Yi_l, Yi, Yi+d 
Do the running median to protect against isolated outliers. 

W~ = {Xj I Xi - hi ~ Xj ~ Xi + hi} without {Xi} 

Wy = {Yj I Xi - hi ~ Xj ~ Xi + hi} without {Yi} 

f3 = Linear - Regression(W~, Wy) 

Yi = f31X i + f30 

ENDO 

Moreover Friedman & Stuetzle (1981b) suggest to use backfitting to improve 
the quality of the estimate. Backfitting means here that a new fit will be done 
along the existing directions if we have determined a new direction. 

Again other univariate regression functions can be used. A theoretical result 
with PPR and the Nadaraya-Watson estimator is obtained by Hall (1989b). 

Since each univariate regression function can be used, an implementation as 
a procedure is required. The implementation in XploRe as a macro which will 
be interpreted, needs five minutes for each term of a fit, whereas in S-Plus 
the same fit including the backfitting only needs seconds as the command is 
written in Fortran. 

Smoothing splines. The smoothing spline tries to minimize 
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with a smoothing parameter ,\. The solution to this problem is a (smoothing) 
spline (piecewise polynomials) of order m + 1. This is also a very specialized 
algorithm and an implementation as a command is required. 

Regression partition trees (RPR). The idea is to estimate 

q 

¢(x) = LCjI(x E Nj) 
j=1 

so that the Nj are disjoint hyperrectangles which cover the whole IR!'. The 
coefficients can be estimated by 

Cj = ~ " Yj n. L...J 
J X,ENj 

with nj the number of observations which fall in Nj . The Nj are obtained 
by splitting along the coordinate axes such that the residual sum of squares 
is minimized with such a split. The chosen splittings can be visualized by a 
tree. For further details see Breiman et al. (1984). 

This algorithm also is very specialized and should be implemented as a com­
mand. 

Sliced inverse regression (SIR). SIR is a method proposed by Duan & Li 
(1991). It is based on the model 

y = ¢(ai X, ... , aJX) 

with an unknown function regression ¢, unknown parameter d and al, ... , ad 
unknown projection vectors. The idea is to use the inverse regressions function 
¢-l which consists of d univariate regression. Li (1991) showed that under 
certain conditions the inverse regression function is lying in a linear subspace 
of aI, ... , ad. It holds that the covariance of the inverse regression functions 
is degenerated in each direction orthogonal to al, ... , ad. So we can construct 
the following algorithm: 

1. Divide the range of y into slices. 

2. Compute the inverse regression function, e.g. take the mean of Xi. 

3. Compute the covariance of the inverse regression function 
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4. Decompose the covariance matrix by eigenvectors and eigenvalues 

5. Throwaway the eigenvectors with the smallest eigenvalue to obtain d 

We can identify the important subspace for the regression and get a dimension 
reduction. Now a multivariate regression method can be used to find the 
unknown regression function. A more complicated method, called SIRII, is 
suggested by Li (1992) which is looking at the conditional covariance Cov(X I 
y}. Another method for a multivariate y is proposed by Li, Aragon & Thomas­
Agnan (1995) which uses an alternating sliced inverse regression. 

The algorithms above are easy to program and work very fast, so an imple­
mentation as a procedure is recommended. 

Wavelet regression. The wavelet estimation relies on a special orthonormal 
function system. In the Fourier system the basis functions are periodic and 
can be located only once. We can only use the different frequencies for the 
estimation from the orthonormal function system. The wavelet basis functions 
have to be fixed in location and frequency. An estimate of an univariate 
regression function is 

2;0- 1 h 2; 

m(x} = I: ak<Pio,k(X} + I: I: bj ,k1/Ji,k(X} 
k=O i=io k=l 

where it holds <Pio,k (x) = 2io/2<p(2io x - k}, 1/Ji,k(X} = 2i /21/J(2i x - k} and <p(x} 
the father wavelet and 1/J(x} the mother wavelet. This pair of functions is 
sufficient to characterize a whole set of functions which forms a orthonormal 
basis of L2(m}. Different basis systems with compact support are possible: 

1. Baar basis, Daubechies-k 
compactly supported and highest number of vanishing moments for the 
mother wavelets compatible with their support width 

2. Symmlet-k 
compactly supported and least asymmetric 

3. Coiflet-k 
compactly supported and a high number of vanishing moments for the 
father and mother wavelets 

From the orthogonality we can estimate the constants from the data (Xi, Yi) 
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1 n 

= - L }'i<Pp,,(Xi) 
n i=l 

and 

To estimate the integrals accurately we need to have a equidistant design 
of the Xi. For further details see Hirdle, Kerkyachrian, Picard & Tsybakov 
(1995). 

The estimation itself will exactly reproduce the }'i's if we use all coefficients, 
and the resulting curve will not be smooth. Up to now the estimation is an 
interpolation algorithm. Since we expect that the true regression curve m(z) 
is overlayed with noise, the idea is to cut the smallest coefficients hi,". The 
standard techniques for this are called hard and soft thresholding. In the hard 
thresholding with a threshold t we replace the coefficients by 

and in the soft thresholding by 

The choice of t is the same crucial problem as the bandwidth selection in the 
kernel regression. 

From Donoho, Johnstone, Kerkyacharian & Picard (1995) and Neumann 
(1994) we have another suggestion for the regression case. They propose an 
individual threshold for each coefficient: 

ti," = )28;,,, log(#thresholded coefficients) 

with 8i," the variance ofthe coefficient hi,". 

The Figures 3.10 - 3.13 show a wavelet regression for the variables FA and 
FP with the Daubechies-4 wavelet as basis. Since equidistance is needed, we 
have used a I-nearest-neighbour smooth to fill up the gaps. This leads to 
the horizontal lines in the right of Figure 3.11. Figure 3.12 and 3.13 show 
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FIGURE 3.10. Father wavelet (left) and mother wavelet (right) of 
Daubechies-4. 
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FIGURE 3.11. Wavelet regression of FA against FP with Daubechies-4. 
Global hard threshold (t > 8). 

the original dataset whereas Figure 3.11 shows the smoothed dataset which 
is used for the estimation. We see that in Figure 3.11 and 3.12 neither the 
global nor the local hard threshold is able to exclude the outlier. The plot 
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FIGURE 3.12. Wavelet regression of FA against FP with Daubechies-4. 
Local hard threshold (t > 7). 

beyond the fit shows us the wavelet coefficients; red the ones included in the 
estimation, blue the ones not included. Finally we brushed the coefficients 
interactively to kill the peek, and this results in Figure 3.13 which shows a 
much nicer fit. 

A fast implementation of the computation of the wavelet regression can be 
done via the "cascade'" algorithm: 

bj,k L( _1)1+1- 2k h1+2k-Iaj+I,1 

I 

aj,k L h,-2k aj+1,I' 
I 

The coefficients hi are depended on the wavelet basis chosen and can be found 
in Daubechie (1992). In Daalhuis (1992) the last relation and the computation 
of the mother and father wavelet is described via an iterative algorithm: 

<PI (z) 
1 if 1 z 1< 0.5 
o otherwise 

00 

<Pr(z) = ..j2 L hk<Pr-I(2z - k) 
k=-oo 
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FIGURE 3.13. Wavelet regression of FA against FP with Daubechies-4. 
Global hard threshold (t > 10) and the waves caused by observation 1323 
killed interactively. 

00 

V2 L (-I)kh1_k<Pr(2Z - k) 
k=-oo 

As a consequence the algorithm can be decomposed into three parts: 

• Estimation of the coefficients 

• Thresholding 

• Estimation of the regression curve 

which can be done in procedures. 

Conclusion. As we have seen most of the univariate (nonparametric) meth­
ods can be implemented as commands. Nevertheless if we want to choose a 
smoothing parameter we will automatically run into trouble. 

The problem is that we want to avoid to make black-box-algorithms. Two 
examples: 

1. The spline algorithm in XploRe. We implemented the method of Silver­
man (1984) for automatic smoothing. Prof. Thomas-Agnan recognized 
that the automatic parameter choice does not work as described in 
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Silverman. Since the code was translated from Fortran to Pascal for 
XploRe 2.0 and later from Pascal to C for XploRe 3.0 we made some­
where a misstransfer. This was the reason to implement the smoothing 
spline as a macro in XploRe 3.2 (Buys 1995). 
If we make an error in the implementation a specialist will be able to 
correct this if the code is accessible. 

2. The PPR command in S-Plus. First we do not know how the algorithm 
really works internally. We only have the help for the PPR command 
where the user is referred to the original paper of Stuetzle and Fried­
man. We think that it would be a far better advise to direct the user 
to the paper of Friedman (1985) since the version in S-Plus supports 
multi-response-models. 

If we have a simple univariate smoothing method we can program it as a com­
mand, otherwise we need a macro. Nearly all multivariate regression meth­
ods need univariate regression methods, so they should be implemented as 
macros. 

Obviously we have to judge how fast a method works and how much storage 
will be needed. If it takes too much time or needs too much memory then 
we have to implement the method as a command. But we know that in the 
future the computers will be much faster than today. 
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Exploratory Projection Pursuit 

Summary 

In this chapter we will discuss in detail one statistical technique. We will cover 
possible extensions (multivariate projections, inclusion of discrete variables) 
and show which graphics are used for representing results. The danger in EPP 
is that we interpret a random structure as a real structure in the data. We 
describe tests for detecting a structure which is not a multivariate gaussian 
distribution. Pictures are presented from tools (macros in XploRe and XGobi) 
which are used to execute exploratory projection pursuit. At the end we 
will specify the requirements necessary for a tool to do EPP, but neiter my 
implementation nor XGobi can satisfy all of them. 

4.1 Motivation and History 

4.1.1 Introduction 

The analysis of multivariate data is a problem in statistics being both inter­
esting and difficult. The difficulties have several reasons: 

• structures which have a dimension larger than three cannot easily be 
visualized for human perception 

• parametric models which fix the structure can only tell us if the struc­
ture is in the data or not, but nothing else 

• nonparametric models which do not fix the structure in the data suffer 
from the "curse of dimensionality", which means we need too many 
observations to be sure that the estimate is correct 

How can we examine structure (here: the distribution) of the data and de­
scribe them? The answer is given to us by the theorem of Cramer-Wold 
(Mardia, Kent & Bibby 1979): 
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The distribution of a random p-vector X is completely determined 
by the set of all one dimensional distributions of linear combina- (4.1) 
tions o:T X, where 0: E JRJ' ranges through all fixed p-vectors. 

That implies that a multivariate distribution can be defined completely by 
specifying the distribution of all its projections. Of course if we fix the dis­
tribution in all two dimensional projections of a multivariate distribution, 
we determine the multivariate distribution too. Thus we have to look at all 
two dimensional projections, as it is done in the grand tour (Asimov 1985). 
But when the dimensions grow we need a long time to review a dense set of 
projections. 

In the next sections we describe some of the techniques which are related to 
EPP or selected direct predecessors. 

4.1.2 Principal Component Analysis 

Definition 

Principal component analysis tries to summarize multivariate data by prin­
cipal components. The method was originated by Pearson (1901). The idea 
is that the first principal component explains as much as possible of the total 
sample variance. The second principal component explains as much as possi­
ble from the unexplained total sample variance. This process can be iterated 
so that we get p principal components for a sample of a p dimensional ran­
dom variable X which would explain the total sample variance. Of course we 
would like to reduce the dimension of the sample to get only the important 
principal components. 

A detailed mathematical description of principal component analysis can 
be found in books for multivariate statistical analysis, e.g. in Mardia et al. 
(1979), Morrison (1976) or HardIe & Simar (1995). Since the principal com­
ponent analysis is a decomposition of the covariance matrix 

rT diag(A)r 
rT diag(A)-1/2r 

E- 1/ 2(X _I') 

with the eigenvectors r of E which are the principal components and the 
eigenvalues A. Yare the data transformed on the principal component axes. 
The variance explained by the i-th eigenvector given in percent is 
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In fact we are building equivalence classes of (sample) distributions by the 
covariance matrix. A representant of such an equivalent class would be a 
gaussian distribution with a covariance matrix E. Thus to understand how 
principal components work it will be enough to study gaussian distributions. 

How many components to choose? 

The main problem in principal component analysis is to choose how many 
components should be included so that enough variance is explained. In Mar­
dia et al. (1979) we find several criteria for this: 

• Elbow criterion 
The elbow criteria are visual criteria. We are looking in a scree plot (Fig­
ure 4.1) for an elbow. The scree plot contains the eigenvalues plotted 
according to size. Since the covariance matrix is semi-positive definite 
and symmetric we have only nonnegative eigenvalues. 

In Figure 4.1 the first three eigenvalues build up an elbow. For this 
reason we would include the first two components. 

• 90 percent criterion 
Include so many components that 90% of the total sample variance is 
explained. 

• Kaiser criterion 
Exclude those components whose eigenvalues are below the average. 

Testing components 

The advantage of the peA as a dimension reduction technique over the factor 
analysis is that we can make tests and compute confidence intervals for the 
eigenvalues. 

We can calculate a (1- a)% asymptotic confidence interval by 

Xi <A.< Xi 
1 + ZO.5aV2/(n - 1)r - ,- 1 - zO.5aV2/(n - 1)r 

with Ai the true eigenvalue, Xi the eigenvalue computed by the sample, r the 
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FIGURE 4.1. Scree plot for Swiss banknote dataset from SYSTAT. We see im­
mediately that one or two components are enough to explain the variance of the 
dataset. 

multiplicity of the eigenvalue, n the number of observations and Za the a% 
quantile of the standard normal distribution. 

Figure 4.1 suggests that the last four eigenvalues are almost similar. Anderson 
(1963) has examined the hypothesis: 

A likelihood-ratio criterion leads to the statistic 

9+r (1 9+r ) -en - 1) L log~i + (n -l)rlog - L ~i 
i=9+1 r i='1+1 

which is asymptotically X2 distributed with r( r + 1) /2 -1 degrees of freedom. 
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A tool for principal component analysis 

A tool which does the principal component analysis should offer the following 
possibilities: 

• a scree plot of the eigenvalues including confidence bands 

• a plot of the first principal components (as far as possible) 

• the sample variance explained by the components 

• the possibility to make the tests described above 

• to show the eigenvectors in a way that we can see which variables have 
the greatest influence upon the eigenvector and help us to interpret the 
components. 

4.1.3 Grand Tour 

The grand tour was developed by Asimov (1985). The representation of mul­
tivariate data is done by showing a sequence of bivariate projections of these 
data. The theorem of Cramer-Wold is the basis for this method. Asimov 
proposed the following important properties for the sequence of projections: 

• The sequence of projections should become dense in the space of all 
projections. G2,p ("Grassmannian manifold") stands for the space of 
all unoriented planes in the p dimensional space. 

• The sequence of projections should become dense rapidly in G2 ,p' 

• The sequence of projections should become dense uniformly in G2 ,p' 

• The sequence of projections should be continuous, which means that 
the planes before and after the actual projection should be close. 

• The sequence of projections should incorporate a degree of flexibility 
to optimize the goals mentioned above. 

• The sequence of projections should be to reconstruct easily . 

To fulfill these goals Asimov described three methods to choose a path through 
G2 ,p' 

Torus method 
A curve 



96 Exploratory Projection Pursuit 

a: IR - rm 
t - (al(t), .... , am(t» 
t - (Alt == 211", ••• , Amt == 211") 

has in the m dimensional torus rm a dense image if the coefficients 
AI, ... , Am are linearly independent over integers. The m-vector pro­
duced by a(t) can be used to construct a matrix which describes the 
rotation of the p dimensional coordinate system (m = p(p -1) /2). Thus 
each entry describes a rotation between two axes by 

1 0 0 0 

0 cos(ai:(t» sin(ai:(t» 0 

Ri:(t) = 
0 - sin(ai:(t» cos(ai:(t» 0 

0 0 0 1 

The final rotation matrix will be composed by 

R(t) = RI (t) ... Rp(p_I)/2(t) 

with Rl(t) the rotation between axis 1 and 2, R2(t) the rotation be­
tween axis 1 and 3, ... and Rp(p-I)/2(t) the rotation between axis 
p - 1 and p. The projections planes are produced by (R(t)el' R(t)e2). 
With the appropriate choices of Ai: (e.g. Ai: = v'k-th prime number or 
Ai: = exp(k) == 1) the sequence of projections becomes dense in G2 ,p. 

But the sequence of projections is not uniform distributed even if t is 
chosen as 1 x step. The step allows us to optimize between the goals 
of continuity and rapidity. If step is large we receive rapidity and if 
step is small we achieve continuity. Of course every projection is recon­
structable. 

At-random method 
Generate two random vectors and orthonormalize them with the Gram­
Schmidt method. This can be done in such a way that the sequence of 
projections is uniformly distributed in G2,p. The sequence of projection 
will become dense uniformly and rapidly, but will not be continuous. 
Since we are using random seeds to initialize the random generator we 
can also reconstruct a single projection. 

Buja, Asimov & Hurley (1989) have shown a way to obtain continuity. 
They constructed a subspace interpolation between two projections in 
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p-space. The idea is to construct a rotation between the two planes in 
a four dimensional space, given by the projection planes. 

This is the preferred method for implementing the grand tour in sta­
tistical software. 

At-random walk 
Asimov before proposed a mixture of these two methods as follows: 

• Choose a measure I' on all rotations of the p dimensional coordi­
nate system such that it generates a dense subset in the space of 
rotations. 

• Start with R(O) = Ip. 

• Generate a rotation 9, according to the law 1'. 

• Compute R(t) as 9,R(t - 1) and generate the projection plane as 
(R(t)el, R(t)e2)' 

He described two measures that fulfill these conditions. 

The problem of the grand tour is that we will have to review many planes 
for to find any structures. In Huber (1985) the RANDU dataset is used to 
show that a rotation by five degrees will hide the structure. The RANDU 
dataset was generated by a random generator proposed by IBM in the early 
seventies. As any linear congruential random number generator, it has the 
property that the data are lying on hyperplanes if we produce p dimensional 
data. But a bad choice of the involved constants for computing the random 
numbers had been made, as exactly 15 hyperplanes are generated for three 
dimensional data (see Figure 2.17). Obviously this is not a good random 
generator. 

Table 4.1 shows how many planes we have to examine if the distance between 
two planes is less equal five degrees. If we wanted to revise all planes for a six 
dimensional dataset to find a structure and we would watch every plane for 
just one second we would need already 23 days of uninterrupted watching of 
the screen. 

As a consequence we need other methods to pick out the interesting projec­
tions which lead to the exploratory projection pursuit. 

For a detailled overview about grand tours see Buja, Cook, Asimov & Hurley 
(1996). 
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Dimension No. of planes 
3 263 
4 51684 
5 ~ 9000000 
6 ~2000000000 

7 ~200000000000 

8 ~40000000000000 

9 ~6000000000000000 

10 ~800000000000000000 

12 ~20000000000000000000000 

14 ~400000000000000000000000000 

16 ~70000000000000000000000000000000 

20 ~3000000000000000000000000000000000000000 

TABLE 4.1. Number of planes we have to look at if the distance between 
two planes is less equal five degrees. 

4.1.4 Multidimensional Scaling 

The aim of multidimensional scaling (MDS) is to find a low dimensional 
(d = 1,2,3) space so that the distances dr. between the objects rand s in 
this space match as close as possible the original dissimilarities Or. of a higher 
dimensional configuration space. For an analysis see Cox & Cox (1994). 

Several MDS models will be examined: Classical (metric) scaling, least squares 
scaling, nonmetric scaling. 

In metric scaling the dissimilarities Or, are taken immediately as euclidean 
distances. An easy algorithm is given by 

1. Compute A = (ar,) = (-0.56~,) 
2. Compute B = (ar• - ar. - a .• + a..) with ar. the column sums, a .• the 

row sums and a .. the total sum of A 

3. Find the eigenvalues Ai and the eigenvectors Vi of B and normalize so 
that vi Vi = Ai 

4. Take the first eigenvectors corresponding to the largest eigenvalues and 
show them in a plot 

The algorithm shows one weakness: we have to choose the dimension of the 
projection. If the dissimilarities come from euclidean distances then B is a 
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FIGURE 4.2. Nonmetric multidimensional scaling on a subset of the 
Swiss banknote data (each fourth observation of the data is included). 

positive semidefinite matrix. If B is a positive semidefinite matrix it follows 
that the eigenvalues are positive or zero. Thus a first choice would be to take 
the number of the nonzero eigenvalues as dimension d . 

Since it holds that 

we can use the proportion of the variance as a measure, explained by using 
d dimensions 

i=l 

if B is positive semidefinite. If B is not positive semidefinite 
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FIGURE 4.3. Metric multidimensional scaling on the Swiss banknote 
data with euclidean distances. Table 4.2 shows that we recover the di­
mensionality of the dataset exactly. 

;=1 

then the standard methods of peA can be used to choose the number of 
dimensions. 

In least squares scaling a monotone (parametric) transformation f of the 
dissimilarities Dr. is added. To find a good low dimensional projection the 
(stress) functional 

is minimized (wr. being appropriate weights). 

N onmetric scaling assumes that the level of measurement is at the nominal 
or, at best, at the ordinal scale. The transformation function f is a monotone 



Exploratory Projection Pursuit 101 

i Ai 
1 597.061 
2 186.188 
3 48.439 
4 38.737 
5 16.957 
6 7.067 
7 4.743e-013 
8 5.247e-014 
9 4.105e-014 
10 3.710e-014 

200 -3.167e-013 

TABLE 4.2. We see the eigenvalues computed by MOS. The eigenvalues 
larger than six are zero, only rounding effects make then different from 
zero. We discover that the Swiss banknote dataset is six dimensional (as 
expected). 

function such that 
f(dr.) ~ f(dtu ) if Or. < Otu 

which means that the dissimilarity influences the stress function only indi­
rectly 

The stress function 82 and the minimization of it was proposed in Kruskal 
(1964a, 1964b). The algorithm is 

1. Choose an initial configuration X 

2. Normalize the configuration so that mean(X) = 0 and var(X) = 1 

3. Compute dr. 

4. Fit f(dr.), e.g. by monotonic least squares regression 

5. Compute a new configuration X by minimizing the stress function 

6. Go to 2. 
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4.2 The Basis of Exploratory Projection Pursuit 

Diaconis & Freedman (1984) gave theorems that show that under suitable 
conditions, most projections are approximately gaussian. This emphasizes the 
search for projections where the data are not distributed normally. Thus we 
put an index value on each projection , which describes the departure from 
nonnormality. If we try to maximize this index function, we will end up 
with some most nonnormal projections. This method is called exploratory 
projection pursuit. The term "projection" implies looking at projected data 
and the term "pursuit" finding a "good" projection for the purpose of the 
analysis. In fact this reduces the amount of the projections we have to go 
through. But we should not see EPP only as an extension of the grand tour. 
In practice the combination of both showed very fruitful results (Cook, Buja, 
Cabrera & Hurley 1995). 

The idea of exploratory projection pursuit was introduced by Kruskal (1969, 
1972). The approach was first successfully implemented for exploratory pur­
poses by Friedman & Tukey (1974). Alternative projection indices have been 
proposed among others by Jee (1985), Huber (1985), Jones & Sibson (1987), 
Friedman (1987), Hall (1989a), Cook & Cabrera (1992), Cook, Buja & Cabr­
era (1993) and Posse (1995a). The idea has been applied to regression anal­
ysis (Friedman & Stuetzle 1981b), density estimation (Friedman, Stuetzle & 
Schroeder 1984), classification (Friedman & Stuetzle 1981a) and discriminant 
analysis (Polzehl 1995). For projection pursuit regression the approximation 
of the regression function is characterized in Donoho & Johnstone (1989), 
convergence rates are obtained in Hall (1989b). Good references about pro­
jection pursuit are Jones & Sibson (1987) and Huber (1985). 

4.2.1 Projection Pursuit Indices 

We want to describe some common projection pursuit indices as they are 
implemented in XGobi for example. The first successful implementation of 
an index was done by Friedman & Tukey (1974). Their index was based on 
heuristic arguments. The index 

IFT(O:) = s(o:)d(o:) 

is composed of two parts, one s depending only on the covariance structure 
and one d which captures the "local clusters" of the data. The term scan 
be avoided if the p dimensional data X were standardized, i.e. E(X) = 0 
and Cov(X) = Ip. In Jones & Sibson (1987) d is expanded as kernel density 
estimate 
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. 1 ~ (y-Y·) fy(y) = - L....J K --' 
nh j=l h 

with Y = aT X, Yi = aT Xi and h a bandwidth. The E could be written as 

• 1 ~ ~ (Yi - yj) 
IFT(a) = n2h f;:~K -h- . 

It turns out that this index is an estimate of 

IFT(a) = fIR ff,(y)dy = Ey(fy(y)), 

which is minimized by a parabolic density if X is standardized. The parabolic 
density is close to a standard normal density, thus a departure of a parabolic 
density is also a departure from the standard normal density. Huber (1985) 
proposed an index based on the negative entropy, which is minimized by the 
standard normal density: 

IE(a) = fIR fy(y) log(fy(y))dy = Ey(log(fy(y))). 

Again an estimate is obtained by 

An extension to multivariate indices can easily be done by extending the 
kernel K to a multivariate kernel. Common kernels are given in Table 4.3. 

The estimates will change slightly to 

Here Yi denotes (Yil, ... , Yid) = (af Xi, ... , aaXi) the multivariate projection. 
We assume that the projection vectors a1, ... , ad are orthonormal. 



104 Exploratory Projection Pursuit 

Kd(Zl' ... , Zd) 
Kd(Zl, ... , Zd) 
Kd(Zl, ... , Zd) 
Kd(Zl, ... , Zd) 
Kd(Zl, ... , Zd) 
Kd(Zl' ... , Zd) 
Kd(Zl' ... , Zd) 

l/Cd I(r < 1) Uniform 
2/cd(1 - r) I(r < 1) Triangle 

1.5/cd(1 - r2) I(r < 1) Epanechnikov 
15/(8cd)(1 - r2)2 I(r < 1) Quartic 

30/(13cd)(1- r2)3 I(r < 1) Triweight 
1f/(2Cd)cos(1fr/2) I(r < 1) Cosine 

(21f)-d/2 exp( _r2 /2) Gaussian 

TABLE 4.3. Common kernels with r = '/L'~=l x~ and Cd the volume of 
the d dimensional unit sphere. 

Of course the negative entropy is not the only functional which minimizes the 
standard normal density. Jee (1985) proposed to use the Fisher information 
as index 

But this estimate does not involve only the evaluation of the density, but 
that of the derivative as well. This makes the index complicated to use. 

Cook & Cabrera (1992) build up two indices based on two estimations of 
d(X). Both indices show for the RANDU data a deep minimum for the pro­
jection in Figure 2.17. 

Posse (1995a) uses a tesselation of the m? plane in 48 bins (see Figure 4.24). 
The index is defined by 

with fy(y, 1]) the empirical density after a rotation of an angle 1] and esti­
mated by 

with 1]j = 1f j / (41) and Yi (1]j) being the rotated Xi in the projection plane. 
Huber claims that the X2 distances behave mostly like the human eye as to 
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pattern recognition (personal communication with Posse 1990). 

Yenjukov (1989) builds up an index from the weighted angles. He constructs 
an angular index from 

with TJ the angle. Since the harmonic moments of the uniform distribution 
are zero we get an estimate by 

with aj = l/n E~=1 sin(iTJi) and with bj = l/n E~=1 COS(iTJi). 

The drawback is that this index does not take the radial information in 
account. Thus he defined the coefficients 

aj = E(h(r)sin(iTJ» 
hj = E(h(r) cos(iTJ» 

with her) a transformation of the radial information, e.g. her) = rlJ, her) = 
rlJ / v'(DrlJ) or her) = rlJ /(c + drlJ). 

Jones & Sibson (1987) proposed an index based on moments, which approx­
imates the entropy index. Under certain conditions the entropy index can be 
written as 

fIR fy(y) log(Jy(y»dy ~ 0.5 fIR q,(y)e2(y)dy 

41C~ + IC~ 
~ 

48 
(4.2) 

with 1C3 = 1'3 and 1C4 = 1'4-3 the cumulants and 1'3 and 1'4 the (mixed) central 
moments. The first moments are known, since the data are standardized 
(1'1 = 0, 1'2 = 12). It is easy to obtain a bivariate index: 
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with /Cr. = I'r. for r + s = 3 and /C40 = 1'40 - 3, /C04 = 1'04 - 3, /C13 = 1'13, 

/C31 = 1'31 and 11:22 = 1'22 - 1. The index measures mainly departure from 
skewness and kurtosis. The advantage in the calculation is that the index 
does not depend upon the number of observations. 

All of the next three indices are based on orthonormal function expansion, and 
it is assumed that the data are standardized. The first index was developed 
by Friedman (1987). The idea of Friedman was to capture clusters in the 
data. He transformed the projected data by the standard normal cumulative 
distribution function 

z = 2~(y) -1, (4.3) 

such that Z is uniformly distributed if Y is standard normally distributed. 
The index is defined by 

1£(0:) = 111 (/z(z) - 0.5)2dz 

= 111 fi(z)dz - 0.25. 

A multivariate formula can be obtained by transforming each variable }j to 
Zj as in 4.3. Thus an estimate for the Legendre index is 

Following Cook et a1. (1993) this index can be rewritten as 

which shows clearly that the differences in the tails of the distribution are 
weighted much stronger than the differences in the center distribution. In 
practice this index is attracted by skewed distributions. Concerned about 
theoretical properties of the Legendre index Hall (1989a) developed a new 
index, the Hermite index, based on Hermite polynomials 

We get an estimate by 
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and we can estimate the integral by 

lSh+ ... +i"SJ 

h = (00 ... 0 - 1)2+ L ... L at .. i,,· 
il=O i,,=O 

Cook et al. (1993) developed a new index, the Natural-Hermite index, to 
come back to Friedman's original idea of upweighting the differences in the 
center of the distribution. They defined their index via 

The integral simplifies with the use of an orthonormal function system to 

INH(al, ... , ad) = fIR..{fy(y) - ¢(y))2¢(y)dy 

= h" (f: ... f: (ail ... i" - bil ... i,,) 
IR il=O i,,=O 

Heil (Yl) ... H ei• (Yd)) 2 dy 
00 00 00 00 

= L'" L L ... L (ail ... i. - bil .. .i.)(ail ... i. - hil ... i.) 
il=O i,,=Oil=O i,,=O 

fIR" Heil (yt} ... Hei,,(Yd)Heil (yt} ... Hej" (Yd)¢(y)dy 

00 00 

= "'" "'" (a· . - b. .)2 L.J ... L.J 'I···'" '1 ... 1" 
il=O i,,=O 

The coefficient akl ... k" can be estimated by 

whereas the coefficients bkl ... k" can be calculated analytically from Abramowitz 
& Stegun (1972) 
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b· . 
11 ••• 1" bi l •••bi" 

{ 0 if Ie is odd 
b1l: -1 "/a,;iii. if Ie is even 1I"(1I:/2}!2"+1 

Thus an estimate is given by 

4.2.2 Relation of Other Techniques to EPP 

After the introduction of several index functions we can easily establish a 
relation to the previously mentioned techniques: 

• Principal component analysis 
If we introduce an index function of the form 

d 

I(Ol, ... ,Od) = EVar(oTX) 
i=l 

and maximize it, we find the first d principal components. 

• Andrew's curves 
The main relationship is that we can see one special univariate projec­
tion of a multivariate dataset for each t. 

• Grand tour 
The grand tour can be regarded as an unguided EPP method, that 
means 

IGT(01o ... , Od) = o. 
No (multivariate) projection is preferred. 

• Multidimensional scaling 
In least squares scaling and nonmetric scaling the stress function 81 

and 82 will be minimized. If we define the stress index 

/1(010 ... ,Od) = -81 and 12(01, ... ,Od) = -82 

we get a projection pursuit index which has to be maximized. 



Exploratory Projection Pursuit 109 

4.2.3 The Index Functions in Practice 

For our explanations we will use two three dimensional artificial datasets. The 
first dataset (CYL-data) contains 100 random points located on the surface 
of a cylinder with both length and radius equal 1. 

The second dataset (TET-data) consists of 250 points located on the sup­
porting hyperplanes of a tetrahedron given by its facets. Three hyperplanes 
contain 50 normally distributed random points each while the fourth hyper­
plane accommodates 100 normally distributed random points. 

In case of the CYL-data we find a situation with one striking two dimensional 
projection while in case of the TET-data there are six interesting views de­
termined by the pairs of the supporting hyperplanes. The latter dataset will 
be used to demonstrate interesting effects concerning the choice of band­
widths and polynomial orders. The distinguished projections of the datasets 
are displayed in Figure (4.4) and Figure (4.5). The lower row of Figure (4.5) 
contains the projection determined by the intersection of the basis plane with 
one of the others. The upper row contains projections determined by pairs of 
the first three planes, i.e. the structure displayed contains 100 points in case 
of the upper row and 150 in case of the lower. 

For every two dimensional projection of a three dimensional data set, the 
projection plane can be identified uniquely by the normal vector. The normal 
vector can be expressed in terms of two angles If' and f). The interesting 
projections correspond to the following values of If' and f): 

If' = -1.27, f) = 0.55 
If' = -0.79, f) = -1.35 

If' = -1.2, f) = -0.13 
If' = 0.53, f) = -0.49 

If' = -0.56, f) = 0.22 
If' = 0.77, f) = 0.53 

The uniform kernel leads to noncontinuous piecewise constant indices while 
triangle and epanechnikov kernels provide continuity but no differentiability. 
Because of the maximization of the index function involved in the projection 
pursuit approach the uniform kernel is not helpful although being easy to 
compute, while triangle and epanechnikov kernels do not provide the wanted 
qualitative properties of the indices. 

We restricted ourselves to the triweight kernel which secures the existence of 
second derivatives of the indices and which is much easier to compute than 
the alternative gaussian kernel. The kernel has limited support, a circle with 
a radius equal to the selected bandwidth. 

The essential question in exploratory projection pursuit seems to select an 
appropriate bandwidth. For a small bandwidth we would expect the index 
function to have numerous local maxima corresponding to small clusters of 
observations in the projection plane. 
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FIGURE 4.5. Optimal projection of TET-data 

If the bandwidth increases the number of maxima will decrease as the local 
maxima will melt together. Further increase of the bandwidth will lead the 
index function to show just a few, maybe only one local maximum. 

Finding one global maximum is a complicated task in case of many local 
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maxima. In exploratory projection pursuit the aim usually is not to pick up 
the global maximum but to identify a set of distinct local maxima. Projections 
corresponding to a local maximum provide an "interesting" view to the data, 
too. 

Silverman (1986) gives the following formulas for an optimal bandwidth min­
imizing the asymptotic mean integrated squared error (AMISE). If the kernel 
is a radially symmetric probability density function and the unknown density 
is bounded and has continuous second derivatives, the AMISE for a given h 
results in 

~ }(2(t)dt 2 

AMISE = IRd nhd + ~h4 (fIRd t~}(t)dt») (f~ tr(V2/)2(t)dt) 

which leads to 

htf:,4 = dn- 1 (f ~ }(2(t)dt) (fIRd t~ }(t)dt») -2 (fIRd tr(\72 f)2(t)dt) -1 , 

(see Scott (1992),6.48) where d stands for the dimensionality of the projected 
data. Analog to the "rule-of-thumb" we can plug in the multivariate normal 
density instead of I, which simplifies the last term to 

f~ tr(V2¢)2(t)dt = (41r)d/2(d/2 + d2/4). 

Plugging-in the data of our example, the "rule-of-thumb" reference band­
width becomes: 

h~"tt4 = ~R(}() (fIRd t~}(t)dt) -2 (41r)-d/2 d(d~2)' (4.4) 

and plugging in the triweight kernel 

hrot = 3.12n- 1/ 6 

which leads to a "rule-of-thumb" bandwidth hrot ~ 1.45 in case of the CYL­
data and to hrot ~ 1.24 in case of the tetrahedron data. 

The polynomial based indices under consideration measure differences be­
tween the underlying density of the projected data and a standard normal 
density. In order to detect differences which are not caused by location and 
covariance structure the data should be standardized in a first step. 

Even small deviations from a standardized situation lead to strong changes of 
the index functions. The effect can be regarded as a mapping of information 
by location and covariance effects. 
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The problem of bandwidth selection for kernel indices relates with the prob­
lem of specification of an appropriate order J of the orthogonal series approx­
imations in case of the polynomial indices. Selection of a small order usually 
corresponds to a consideration of global effects, while a high order will allow 
a more local modeling of the structure contained in the data. The situation 
is similar to case of kernel indices in that sense that a high order J will cause 
numerous local maxima of the index function while a small J will correspond 
to only a few but dim maxima. 

A very unpleasant effect occurs when using the Legendre index which turns 
out to be not invariant with respect to rotation inside the projection plane. 
This effect is avoided by use of rotation symmetric kernels in case of kernel 
indices. 

Figures 4.6 - 4.10 illustrate the behaviour ofthe index functions for the CYt­
Data. The figures show contour plots of the index functions computed on a 
net of 53 x 53 points for ('P, 19). In case of the polynomial indices the maximum 
was used with respect to rotation inside the projection plane. The levels used 
correspond to the 0.5,0.67,0.8,0.9,0.95,0.975,0.99 and 1-quantiles of index 
values on the net. Figures 4.11 - 4.15 show analogous contour plots for the 
tetrahedron data. 

Figures 4.6 and 4.7 illustrate the expected behaviour of the kernel based 
indices. Small bandwidths h lead to a huge number of local maxima corre­
sponding to occasional clusters of observations in meaningless projections. 
Because of the outstanding structure most of the local maxima are small 
compared with the global maximum but nevertheless they cause tremendous 
problems in numerical maximization of the index functions. 

Bandwidths in the magnitude of the "rule-of-thumb" bandwidth behave well 
in this example while large bandwidths lead to oversmoothing effects blurring 
the structure for h = 1.6 and hiding the structure completely for h = 3.2. 

Figures 4.8, 4.9 and 4.10 show the corresponding plots for the polynomial 
based indices. The Legendre index and, to some extent, the Hermite index 
show evident problems when handling even this clear structure in case of a 
small order J. 

The Natural-Hermite index behaves much better in this situation as expected 
in Cook et al. (1993). Even for larger values of J the estimated criteria are 
sufficiently smooth providing only a small number of local minima. 

The situation is much more complicated for the second dataset. Figures 4.11 
and 4.12 show contourplots of the Friedman-Tukey and the entropy index. 
The projections shown in Figure 4.5 are marked by a star. In case of the 
smallest bandwidth h = 0.1 we get local maxima corresponding to all inter­
esting projections, although for this bandwidth there are 141 local maxima 
on the net in case of the Friedman-Tukey index and 93 local maxima in case 
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of the Entropy index. 

Increasing the bandwidth leads to smearing effects still presenting inter­
esting projections of the basis plane though melting together the maxima 
corresponding to the wanted projections. The "rule-of-thumb" bandwidth 
is clearly too large to show the underlying structure of a tetrahedron. The 
maxima corresponding to the projections in the upper row of Figure 4.5 
are smoothed away resulting in a local maximum without much information 
while the basis plane still can be identified. The larger bandwidths h = 1.6 
and h = 3.2 lead to strong oversmoothing effects hiding the structure com­
pletely. 

The corresponding results for the polynomial indices are displayed in Figure 
4.13, 4.14 and 4.15. In case of small order J ~ 3 all indices fail completely 
to find the structure. For J > 3 the basis plane is identified. In case of the 
Legendre index J = 10 gives sufficient information about the structure while 
the Hermite and Natural-Hermite index require a further increase of J. It can 
be observed that for a medium J a sufficient number of local maxima exists 
but global information considered in the polynomial approximation leads to 
a smoothing sufficient enough to hide the structure. A substantial increase 
of the order J of the approximation leads to longer computing times than 
needed as in case of the kernel based indices. 

The optimal bandwidth h or order of approximation J seems to depend 
strongly on the underlying structure of the data. We would suggest to use 
smaller bandwidths and larger values of J rather than "optimal" bandwidths 
or orders because of hiding effects in case of complicated structures. Using 
a small h or large J will lead to a considerable amount of local maxima 
especially in case of the kernel based indices. This will cause a lot of numer­
ical complications, requiring stochastic or deterministic search algorithms 
combined with a numerical maximization in order to improve accuracy. For 
simple structures it makes sense to follow an idea of Hall (1989a) to start 
with larger bandwidths or lower order of approximation in a initial step to 
identify the maxima and then to decrease the bandwidth or to increase the 
order for a numerical maximization step, although some interesting projec­
tions might be lost in case of complicated structures. Usually it is interesting 
to determine all local maxima exceeding a certain level of the criteria. The 
projections corresponding to these maxima have to be inspected visually to 
evaluate the information contained. This indicates that a stochastic search 
algorithm concentrating on areas of this high index values could be used. 

4.2.4 The "MSE-FT"-optimal Bandwidth 

As another choice for a reference bandwidth we can use a bandwidth which 
is computed from the minimization of the approximated mean integrated 
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FIGURE 4.13. TET-Data Legendre index for different order J 
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squared error. We will see that we can derive a smaller reference bandwidth. 

It holds for the Friedman-Tukey index 

M SE(iFT ) = ~~ + ~~ + C2 + C3h2 + O(h4, h4n- 1, h4n-2, ... ) 

with constants Co = 0(n- 2 ), C1 = 0(n- 2 ), C2 = 0(1) and C3 = 0(1) which 
can be found in Klinke & Cook (1995). To get an estimate for the "MSE­
FT"-optimal bandwidth we drop the 0(h4 )-term, and to find the minimum 
for the approximated MSE (AMSE) we compute the derivative 

dAM SE(iFT) _ -4Co -2C1 20 h - 0 
d h - h5 + h3 + 3-

and multiply with h5 

By replacing h2 by 9 we get a reduced polynomial of degree 3, which can 
be solved by the formula of Cardano (Gellert, Kiistner, Hellwich & Kastner 
1977). The discriminant is always positive and converges to zero (n -+ 00). 
The positive discriminant allows only one unique solution of the equation. 

We can compute a minimum by plugging in the triweight kernel and the 
standard normal gaussian density for the unknown density. As result we get 
Table 4.4. 

The reference bandwidth for the CYL-data is hm6e ~ 0.83 and for the TET­
data hm • e ~ 0.61. As we see in the Figures 4.6, 4.7, 4.11 and 4.12 the "MSE­
FT" -optimal bandwidth is still to large. 

In principle the same could be done with the entropy index. But the compara­
ble calculations would be much more complicated. We would have to replace 
the log-function by its Taylor-expansion. Obviously a linear approximation is 
not sufficient if n (or h) varies. This can be seen by the following inequality 



Exploratory Projection Pursuit 125 

n Bandwidth 
rule-of-thumb MSE-FT 

2 2.77960 2.716855 
5 2.38594 2.325666 

10 2.12563 1.877361 
20 1.89372 1.464121 
50 1.62552 1.059059 

100 1.44818 0.834545 
200 1.29018 0.659888 
500 1.10746 0.485088 

1000 0.98663 0.384715 
2000 0.87899 0.305229 
5000 0.75450 0.224842 

TABLE 4.4. Bandwidth computed by using the rule-of-thumb and the use of the 
MSE 

4.2.5 Computational Aspects 

Kernel based indices 

The projection pursuit indices are involving, as a main task, the estimation of 
a density. With the kernel based indices this will be done with kernel density 
estimates. 

One technique to improve the computational speed of kernel density estimates 
is binning. If the dimension of the data grows, however, this technique looses 
more and more of its advantage. 

Another idea is to replace float-operations in the density estimation by integer­
operations, which are faster. This can be seen in the comparison of Table 4.5 
and Table 4.6. 

Operation 
16 bit integer - addition 
16 bit integer - subtraction 
16 bit integer - multiplication 
16 bit integer - division 

Cycles 
7 
7 
12 - 25 
22 

TABLE 4.5. Execution time in cycles for different mathematical opera­
tions in the 80386 

The computational speed of the kernels in Table 4.3 differ a lot. For all the 
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Operation 
64 bit float - addition 
64 bit float - subtraction 
64 bit float - multiplication 
64 bit float - division 

Cycles 
29 - 37 
28 - 36 
32 - 57 
94 

TABLE 4.6. Execution time in cycles for different mathematical opera­
tions in the 80387 

following computations, the Zortech C++ 3.0 - compiler of Symantec Inc. on 
a PC 486 with 50 MHz was used. Table 4.7 shows the relative computational 
time for the evaluation of the bivariate kernels in relation to the uniform 
kernel. Just like many other compilers the Zortech compiler uses an integrated 
optimizer. In the right column we see the relative computing time when using 
the optimizer. So we see that, for example, the epanechnikov kernel needs 16% 
more time to evaluate the kernel values from the same data as the uniform 
kernel (the data were uniformly distributed in the right upper quarter of the 
unit circle). If we do not use the optimizer the uniform kernel takes more 
than 3 times longer to calculate the kernel values. 

Kernel Unopt. Opt. 
Uniform 3.36 1.00 
Epanechnikov 4.53 1.16 
Quartic 5.19 1.35 
Triweight 5.88 1.41 
Triangle 7.19 1.77 
Cosine 11.81 5.78 

TABLE 4.7. Relative computational time of bivariate kernels 

We can distinguish two classes of kernels independent from using unoptimized 
code (286-code, large memory model, no optimization) or optimized code 
(386-code, extender, fully time-optimized, using the coprocessor). On the 
one side we have the polynomial kernels (uniform, quartic, epanechnikov, 
triangle and triweight), on the other side the transcendental kernels (cosine). 
On the average the polynomial kernels are 5-7 times faster to calculate than 
the transcendental kernels. 

This also indicates that we should use the optimizer to speed up the programs, 
which was done for all programs. An optimizer program is able to do all 
simple optimizations, so that further speed improvements can only come 
from improvements of the technique being used. Such improvements will be 



Exploratory Projection Pursuit 127 

presented in the following. 

The first kind of optimization we can do for the calculation of the density at 
all points Xi is to use the symmetry of the kernel : 

The second optimization is, since we know we have to calculate K2(0) for 
every datapoint, to calculate this kernel value once. 

We now take advantage of the fact that the support of all kernels mentioned 
in Table 4.3 is the unit circle. We can now continue as described in Silverman 
(1986), but the closed interval [1, -1] has to be replaced by the compact 
unit circle. One reason to expel the gaussian kernel was the infinite support 
(lR?). If we sort the data by the first component, we only have to run from 
a datapoint with index idz/ow to an index idzhigh. The pictures in Figure 
4.16 show the relative computational time for using unsorted and sorted 
data for different kernels (uniform, quartic) and data sets (UNIFORM, LINE, 
CIRCLE). The data all lie in [0, 1]2, for a more detailed description see section 
AA. In Figure 4.16, as in all later figures of this type, the x-axis shows the 
common logarithm of the sample size. On the y-axis we see the common 
logarithm of the bandwidth. The graphic shows the ratio of the time for 
calculating the density with sorted data and unsorted data depending on the 
bandwidth and the sample size for different kernels and data sets. The thick 
line always indicates a ratio of 1, which means that both programs need 
the same time to calculate the density. The lines under the thick line are 
indicating ratios of 0.8, 0.6, ... , which means that the program with sorted 
data needs only 80%, 60%, ... of the time ofthe program with unsorted data 
to calculate the same density. 

In fact in the area above the thick line the maximum ratio is less than 1.1, 
which means that the program with sorted data needs only 10% more time 
to calculate the density than the program with unsorted data. The maximum 
ratio is lying in the upper left corner, which means the worst case happens 
if we have a small amount of datapoints and a big bandwidth. But the most 
interesting bandwidths for the datasets we investigated are found in the area 
between 0.01 and 1.0 (in the figure it is the range between -2 = loglO(O.Ol) 
and 0 = loglO(1.0)). If we reach the upper border, we are oversmoothingj if 
we reach the lower border, we are undersmoothing. 

So, as a consequence, we will assume for all following programs that the data 
are sorted. 
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FIGURE 4.17. Possible tesselations of the plane 

Binning 

The main advantage of binning is that it reduces the computational costs of 
density (and regression) estimates by loosing only very little accuracy. 

The binning first makes a "regular" tesselation of the real space IRP, if P is 
the dimension of the data X. Every part of the tesselation, also called bin or 
cell, has to be connected and disjoint. Additionally the bins will exhaust the 
IRP. One point, the bincenter is then taken to represent all the datapoints 
which are falling into such a bin. Usually the gravity center of each bin is 
taken. The set of bincenters S have the property, that for every bincenter the 
direct neighbours have the same distance. In the one dimensional case such 
tesselations are the equally spaced intervals. 

In the one dimensional case for density estimation we profit mainly from 
a decrease of datapoints, and we even get one further advantage: the dis­
tance between bincenters can be expressed as multiples of the binwidth 
6 = mio,l,P2ES;Pl;1!P2 I P2 - PI I. SO we have to calculate the kernel at the 
points i 6 with i = 0, 1,2, .... 

The extension of the tesselations in the two or multidimensional space raises 
some questions. Usually quadratic (or rectangular) bins are used in higher 
dimensions. But there are also other possibilities available as can be Seen in 
Figure 4.17. 

There are even possibilities with "nonregular" bins, as we see in the left 
picture (octogonal/square bins) of Figure 4.17. 

A hexagonal tesselation seems to be more appropriate in our case, because 
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we do not have to store as many zeros as when using a tesselation of squares. 
But with a hexagonal tesselation we have one problem: the binning algorithm 
and the density estimates become more complicated (see Appendix C). In this 
case it is possible to bin with the following precept: 

The datapoint falls into the bin which has the nearest (weighted) bincenter. 

To make life easier, we will restrict ourselves to squared bins. Another prob­
lem that arises in higher dimensions (p > 3) is that there are only two 
tesselations which have just one kind of symmetric polyhedron bin (like the 
archimedean bodies in Ilf). These are tesselations built up from hypercubes 
and hypertetrahedra. 

In the multidimensional case the advantage of reducing the sample size is lost. 
If we take a small grid with 50 bins in every variable, we will get 50 x 50 = 2500 
bins for a squared grid in the two dimensional case. If we have a dataset with 
1000 observations we will get, on an average, 20 observations per bin in the 
one dimensional case. In the two dimensional case we will get 0.4 observations 
per bin. 

To get an impression how fast the binning method works in two dimensions 
for different bandwidths and different sample sizes, I wrote a program, which 
calculates the densities directly, and another which uses binning (2500 bins). 
A comparison of computing times is shown in Figure 4.18. The thick line here 
always indicates that the ratio of computational time of the binned version 
and the unbinned version is 1. The thin lines above the thick line indicates a 
ratio of 0.75, 0.5, ... , which means that the binned program needs only 75%, 
50%, ... of the time to calculate the same density. Under the thick line we see 
the ratio of 1.25, 1.5, .... 

This has to be compared with Figure 3a in the appendix of Fan & Marron 
(1994), which for the one dimensional case shows a speed improvement offac­
tor 10 and more for binned density estimation over direct density estimation. 
That would mean that the ratio becomes less than 0.1. Nevertheless in the 
interesting area between -1.5 and 0.0 (the common logarithm ofthe band­
width) the ratio is on an average size of 0.75, and we gain some advantage 
using binning. 

In Figure 4.19 the accuracy of the binned version against the unbinned version 
for the average Friedman-Tukey index is shown (our main interest are the 
projection pursuit indices!). The relative error eFT is calculated by: 

An error of 1% means eFT = 0.01. As mentioned above we have taken the 
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FIGURE 4.18. Relative computational time for the Friedman-Tukey in­
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average over a lot of Friedman-Tukey indices. It was necessary because the 
computational time for the density for 100 datapoints was less than the min­
imal measuretime (1/18 sec.). So we did a lot of loops and divided by the 
number of loops afterwards. From the top to the bottom we see the 0.010/0-, 
0.1%-, 1%- and 5%-line. The 1% is marked with a thick line, and 5% is the 
dotted line. 

The replacment of the (continuous) kernel by a discret step function on a 
square will cause the value of the index function to vary if we rotate the 
data. As can be seen in Figure 4.20, the value of the density will change and 
so will the value of the index function, if a datapoint moves from one bin into 
another. 

FIGURE 4.20. Rotation moves the star marked with point into another 
bin. 

Assumed the datapoint marked with a star is rotated a little on the circle 
around the left cross to the second point marked with a star, then the bin­
centers of these two points are represented by the two right points marked 
with a cross. The Friedman-Tukey index for this dataset would change from 
2(K2(0) + K2(4)) to 2(K2(0) + K2(JI7)), which will be different. As long as 
the kernels are continuous, this will have only little effect, but if we use the 
uniform kernel the effect will be drastic. 

We can use linear binning which means replacing the kernel function by a 
stepwise linear function instead of a stepwise constant function. This would 
be done so that we distribute the datapoints on two (in the univariate case) 
or four bins (in the bivariate). From a dataset of 600 observations a colleague 



134 Exploratory Projection Pursuit 

of mine could produce a binned dataset of 900 observations, so we have to 
stick to constant binning. 

Reducing to integer operations 

We know that estimating the density with a kernel is a task of summing up 
kernels at different points. So we will have a look at the summation of two 
or more different kernel values. 

We will assume that the values ri with i = 1,2, ... at which the kernels will 
be evaluated are less than 1. Moreover we can separate the bivariate kernels 
in an index function I(r < 1) and the kernel function Ktern(r) so that: 

with kern E {uni, tri, epa, qua, triw, cos, 10gl, log2}. For all kernels we can 
find the following formulae: 

Uniform 

K2(rl) + K2(r2) = Kuni(rt} + Kuni(r2) 
1 1 

= -+-
7r 7r 

= 2Kuni(0) 
m 

E K2(ri) = mKuni(O) 
i=l 

Triangle 

K2(rt} + K2(r2) = Ktri(rl) + Ktri(r2) 
3 3 

= -(1 - rt) + -(1 - r2) 
7r 7r 

3 
= -(2 - rl - r2) 

7r 

3 3 
= - + -(1 - (rl + r2» 

7r 7r 

3 
= - + Ktri(rl + r2) 

7r 
m 

3(m-l) (f: ) E K2(rd + Ktri ri 
i=l 7r i=l 

Epanechnikov 

K2(rt} + K2(r2) = Kepa(rt} + Kepa(r2) 



Quartic 

Triweight 

K 2{rI) + K 2(r2) 

Cosine 
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~(1 - rD + ~(1 - r~) 
1r 1r 
2 2 2) -(2 - r1 - r2 
1r 

= ~ (m- tr;) 
1r i=1 

Kqua(rt} + K qua(r2) 

3 2)2 3( 2)2 = -(1 - r 1 + - 1 - r 2 1r 1r 

= !(2 - 2(r~ + r~) + (rf + ri» 
1r 

~ ( m - 2 (~r;) + (~rj ) ) 

Ktriw(rI) + Ktriw(r2) 

i(1 - ri)3 + i(1- r~)3 
1r 1r 

= i(2 - 6(r~ + r~) + 6(rf + ri) - (r~ + r~» 
1r 

= ~ (m-6 (t rr) +6 (trt) -(tr~)) 
.=1 .=1 .=1 

Kcos(rI) + KCOS(r2) 

1 (1rrl) 1 (1rr2) 
4(1- 2/1r) cos 2 + 4(1- 2/1r) cos 2 

4(1! 2/1r) cos (i(r1 + r2») cos (i(r1 - r2 ») 

( 2) (rl + r2) (rl - r2) 8 1 -;: Kcos -2- Kcos -2-

? 

The formula for transforming a sum of two cosines is: 

(n + (3) (n -(3) cos( n) + cos(f3) = 2 cos -2 - cos -2 - . 
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There is a formula to transform a product of 3 cosines into a sum of 4 
cosines: 

4 cos(a) cos(.8) cos(,) = cos(a + {3 -I) + cos({3 + ,- a) 

+ cos(a + ,- {3) + cos(a + {3 + I)' 

We have investigated these formulae and found that they come from 
an ably treatment of exponentials (cos(z) = O.5(exp(iz) + exp( -iz))). 
The deeper reason for having no summation formula is that there is no 
formula for a sum of exponentials. This was my main reason to exclude 
the gaussian kernel. 

In the following step we take into account that we are interested in calculating 
the kernel values at binned datapoints (bi,16/h,bi,26/h). We replace 6/h by 

T and take the radii ri = T b1,1 + b1,2' Now we first exclude the uniform 
kernel because there is nothing to do; second the cosine kernel because no 
summation is possible; third the triangle and cosine because we come to a 
summation of squareroots, which can not be simplified: 

Epanechnikov 

i=1 

Quartic 
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Triweight 

For the epanechnikov, the quartic and the triweight kernel the summation 
reduces to a polynomial in r2. The coefficient of the polynomial is a product 
of a real number and an integer. 

Before we come to the result for the computational time, we will mention 
one problem that arises. In the worst case, all datapoints are lying on a 
circle except one which is lying in the middle of the circle. So we obtain an 
upper bound of (n - 1) (~) 2m for the coefficients of r2m. When a dataset 
is selected, we can give an upper limit for the value of ;, which is equal to 
the maximum of the range of each variable divided by the binwidth. So if we 
select a binwidth of 0.02 and know that the data are lying in [0,1)2, it follows 
that; < 50. 

The maximum figure which can be represented by a I-bit integer figure (8 bit 
= 1 byte) is 2'. Thus to represent the upper border we need 

log, (n -1) G t) = log,(n -1) + 2m log, m 
bits. Unfortunately in a computer an integer will normally have 16 bits and/or 
32 bits. 

Figure 4.21 shows the sample size in the x-axis, the number of bits which 
are needed to represent the upper bound is shown in the y-axis. The dotted 
lines are for r2, the solid line for r4 for 625 (= 25 x 25), 2.500, 10.000 and 
40.000 bins. We see if we have more than 600 datapoints and 2.500 bins our 
summation will probably cause an overflow for the coefficients of r4. 
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FIGURE 4.21. The maximum sample size for the integer coefficients for 
r2m 

In pictures of Figure 4.22 we compare the relative computing time of the 
density estimation using these integer coefficients against the time needed by 
the program with the binned version. Again the thick line indicates a ratio of 
1.0. The thin solid lines are indicating ratios of 0.8, 0.6, ... , which means that 
the integer-coefficient version is faster than the binned version. The dotted 
line indicates a ratio of 1.2. 

As we see we gain in fact some computational time, especially if we have only 
few observations (n < 500). 

But we also have to look at the relative error for the estimated Friedman­
Tukey index, which is shown in Figure 4.23. The results for the uniform kernel 
are not shown because they are the same as in the binned version. As written 
above we run into trouble if we calculate the coefficients of r4. All pictures 
for the quartic kernel show a big relative error eFT if we have more than 600 
datapoints. 

In Figure 4.23 the thin solid line indicates a relative error of ... ,0.01%-,0.1%. 
The lines can not be distinguished. The thick line indicates an error of 1%. 
The dotted lines indicate an error of 10% and 100%. 

The result is disappointing both for computational time and accuracy. The 
reason for this disappointing result is that we were forced to use a long 
integer. The computation of calculations with long integers (4-byte) is faster 
than that with float-values, but slower than those using 2-byte integers. If we 
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FIGURE 4.23. Relative error for the Friedman-Tukey index using inte­
ger-operations for the quartic kernel. 

compare the inner loops for the density estimation with the quartic kernel, 
we would either have to carry out four float-operations or eleven long-integer 
operations. 

Here is more potential for further optimization; for the Friedman-Tukey index 
and the quartic kernel, we get: 

1 R (3 ( ( Ri ) ( Ri ) ) ) iFT(cx, (J) nh2 ~ ;: ni - 2 ~ rlJ + ~ rt,i 
.=1 J=1 J=1 

= n:21r ((t ni) - 2 (t rl,i) + (t rt,i)) , 
.=1 J=1 J=1 

where ni is the number of datapoints which have the distance riJ < h to the 
datapoint Xi. We did not optimize any further because we get even with the 
quartic kernel overflows for the density estimation, and summing up more 
distances rtJ would diminish the sample size where we could obtain correct 
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results. 

It seems that replacing Hoat-operations by integer-operations is not very suc­
cessful, except if the sample size is small (n < 250). First we have to ensure 
that we do not get a (long-) integer overHow. That means the sample size is 
restricted even with a moderate number of bins. The second point is that we 
have to restrict ourselves to some kernels. The infinite support and the lack of 
a summation formula expelled the gaussian kernel. The difficulties with the 
summation of different kernel values force us to expel the triangle kernel as 
well. For the XGobi-program, for example, the triweight kernel is used. The 
reason for this is that the partial derivatives of the projection vectors which 
are used to speed up the maximization process, should be smooth enough. 
But we have to expel this kernel too, because with the binwidth used (0.02) 
the sample size has to be less than 2, otherwise a long-integer overflow could 
happen (508 ::> 232). 

This result is not too bad for the quartic and epanechnikov kernel, although 
we are restricted as to the sample size. Even for small sample sizes the stan­
dard techniques like sorting and binning give some improvements in terms of 
computational time. 

For small sample sizes (n < 500) the binning time also plays an important 
role. We replaced the binning algorithm by a simple truncation and we lost 
the advantage that more than one datapoint falls into one generated bin. 
But for these sample sizes we do not expect that we have a lot of bins with 
more than one observation. In Table 4.8 we give the number of nonempty 
bins (on the average) for all the datasets. Especially when we have only few 
observations we can see a further improvement of computational speed. 

Observations Uniform Normal Line Two mass Circle 
100 98.0 93.3 94.6 94.6 96.8 
200 191.9 172.6 179.0 178.1 186.2 
500 451.5 353.7 382.4 375.5 416.2 
1000 820.6 552.4 612.4 605.2 705.0 
2000 1367.5 774.0 859.5 866.0 1061.0 
5000 2138.0 1072.0 1117.0 1211.0 1457.0 

TABLE 4.8. Number of nonempty bins (total number of bins: 2500) 

Polynomial based indices 

Compared to the kernel based indices the polynomial based indices are quite 
fast. 
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The orthogonal polynomials f n (x) applied in the approximation of the indices 
are defined by 

n =f; m 
n=m 

with n,m ~ O. 

See Table 4.9 for a, b, and hn . 

a b w(x) hn 

Legendre polynomials Pn -1 1 1 
2 

2n+ 1 
Hermite polynomials H n -00 00 e-z2 y'i2n n! 
Natural-Hermite polynomials He .. -00 00 e-z2 / 2 J21rn! 

TABLE 4.9. Creating values a, b, and hn for orthonormal polynomials. 

Legendre polynomial 

Hermite polynomial 
N atural-Hermite polynomial 

TABLE 4.10. Recursive relationship for the polynomials used in the poly­
nomial based indices. 

The underlying recursive relationship of the orthogonal polynomials 

allows a fast computation of individual values fn(Y;)' For the polynomials 
used in the indices the recursive relationship is given in Table 4.10. The 
constants an, bn and en can be calculated by the appropriated scalarproduct 
given by the formula 4.2.5 

A detailed example can be found in the section 4.4. 
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FIGURE 4.24. Left picture: Binning of the m.2 plane as in Posse (1995a) 
so that all 48 bins have approximately the same weight under the stan­
dard normal distribution. The radius of the outer circle is equal to 
R = V210g(6), the radii of the inner circles are equal to R/5, ... , 4R/5. 
Right picture: Binning of m.2 plane for the XploRe-macro PPIlfTER used 
to construct a X2-test. 

4.2.6 Limits 

Of course we can run in serious problems in EPP. We always have to answer 
the question if the "best" projection we have found is a real structure or just 
caused by random effects. The projections we get in the next section are very 
clear and we do not need to test them. But in general it is good idea to test 
the resulting projection for normality. In both papers of Posse (1995a, 1995b) 
about a new index, tests are used to indicate that the structure found is real. 

Tests on multivariate normality are well known. In our case we have to exclude 
tests which use the first or second moments since our data are sphered. 

The simplest test is a x2-test: we tesselate the plane as in Figure 4.24 and 
examine the the number of observations in each bin and compare it to the 
expected number of observations. A practical assumption of the x2-test is 
that we have at least five observations per bin. In our implementation we use 
only eight bins and it holds: 

8 

8/n ~)obs. in bin i - n/8)2 '" x~. 
;=1 

Other tests for a multivariate normal distribution rely on the third and fourth 
moments, e.g. 

1. the (asymptotic) Mardia test on skewness (Mardia 1980) 
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2. the (asymptotic) Mardia test on kurtosis 

~ t (Z1.1 + Z1.2) 2 .-.; N(8,64/n) 
i=1 

3. and the (asymptotic) tests on skewness and kurtosis (Liitkepohl 1990) 

A, = 6: ( (t,.~,)' + (t,.~,,) ') 
A, = 2!n ( (t,<.t" -3») , + (t,<.t" -3») ') 

..\1 +..\2 

The test of Baringhaus & Henze (1989) rely on the comparison of the empir­
ical characteristic function with the characteristic function of the standard 
normal distribution 

which leads to a test statistic 

~ t exp( -0.5«Zi.l-Z;.1)2+(Zi.2-Z;.2)2)-t exp( -0.25(z1.1 +z1.2»+n/3. 
;.1:=1 ;=1 

Although the asymptotic distribution is rather complicated, the values for 
the quantiles can be found in Theilen (1990) calculated via simulations. 

In general each test on normality or nonnormality can be used to build an 
index for exploratory projection pursuit. 
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4.3 Application to the Swiss Banknote Dataset 
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FIGURE 4.25. Basic screen of the PPEXPL macro. Swiss banknote data 
projected on the first two principal components. Crosses indicate genuine 
banknotes and stars indicate the forged bank notes 

The dataset we use here is the Swiss banknote dataset. The dataset consists 
of 200 observations: 100 genuine and 100 forged banknotes. The six variables 
are measurements of the size of the banknotes (see Table A.4). Figure 4.25 
shows a principal component plot of the first two principal components of the 
dataset. We can clearly distinguish the forged and genuine banknotes. If we 
use the Hermite index with order 7, we get the picture in Figure 4.26. This 
picture clearly shows three clusters: the upper one consists mostly of forged 
bank notes and only one genuine bank note (observation 70). 

The other clusters contain forged or genuine banknotes. An easy interpreta­
tion would be that at least two gangs of forgers were falsifying Swiss ban­
knotes. It seems that one of the genuine banknotes has been classified wrongly. 

The projection and loading vectors from the exploratory projection pursuit 
step are 

0.896562 0.381411 -0.1643288 0.0958421 
-0.087805 0.632784 -0.4423175 0.3462294 
-0.248246 0.423262 

1= 
0.0023849 0.6045508 

p= -0.349619 0.510308 0.7167979 -0.6467759 
-0.044133 0.113526 0.6894302 -0.5717335 

0.051564 0.040710 0.2225492 -1.2337853 
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FIGURE 4.26. Projection with Hermite index (J=7). The right upper 
window shows the loadings with respect to X j the right lower window 
shows a graphical representation of the loadings. The left lower window 
shows how the index function has increased. 

The projection vectors p could be interpreted as factor loadings with respect 
to the standardized variables Y; and the loading vectors I as factor load­
ings with respect to the original variables X. The first projection turns out 
to depend mainly on the first component of Y while the second reflects a 
mean of the second, third and fourth components of Y. An interpretation of 
Ot.TE-1/2, E = Cov(X) = (Ui;), and aT E-1/ 2diag(uii)-1/2 as factor loadings 
with respect to the unsphered variables as in peA based on covariance or 
correlation structure may be of interest. 

Exploratory projection pursuit is a technique that allows us to use interactive 
graphics for interpretation. We can link the "best" projection with each of the 
variables (strips of data in lower plot in Figures 4.27 - 4.29). By simple linking 
we can visualize the relationship between the projection and the original vari­
ables. In the upper plot we see the projection found for the Swiss banknotes. 
The lower plot shows jittered dotplots of each of the six variables. The vari­
ables are rescaled on [0,1] via zr; = (z; - min; (z;»j(ma.x; (z; ) - min; (z;». 
The text window on the right shows the projection vector for X and Y found 
by exploratory projection pursuit. 

We mark the three clusters, and they appear in univariate projections into 
the coordinate (variable) axes in order to assist interpretation based on dif­
ferences of banknote sizes. Figure 4.27 shows clearly that all the points in 
the first cluster have low values in the variable 6 (inner box diagonal mea-
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FIGURE 4.27. First cluster (forged banknotes) linked to original vari­
ables. 
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FIGURE 4.28. Second cluster (forged banknotes) linked to original vari­
ables. 

surement of bank note). The second cluster seems to be linked to the high 
values of the sixth variable and the low variables of the fourth variable. The 
third cluster is linked to the low values of the sixth and the high values of 
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FIGURE 4.29. Third cluster (genuine banknotes) linked to original vari­
ables. 

the fourth variable. 

A possible next step would be to mark each variable to see how it behaves 
in the projection. However, we will not find anything interesting with this 
dataset. 

4.4 Multivariate Exploratory Projection Pursuit 

4.4.1 Why Multivariate Indices? 

A new set of indices will be proposed here. As univariate indices will mainly 
find univariate structures and bivariate indices will mainly find bivariate 
structures, a structure as in Figure 4.26 can not be found easily by a univari­
ate index. 

The same is, of course, true for three dimensional structures and for bi­
or univariate indices. To find a d dimensional structure in a p dimensional 
dataset we need indices that are based on d dimensional projections. 

It is clear that is not necessary to develop indices for dimensions bigger than 
'" 6. If the dimension of the projection becomes too big we can not visual­
ize the result easily, and furthermore the dataset has to be highdimensional. 
Otherwise we can not speak any longer of using "low dimensional" projec-
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tions. 

We can try to extend the kernel based indices, which is easily done by the 
multivariate kernels in Table 4.3. But here we run into serious problems 
known as the "curse of dimensionality". As Silverman (1986) pointed out the 
density estimation in the tails of the distribution needs a lot of observations. 
Silverman gave Table 4.11 to show how many observations are necessary to 
estimate 4>(0) via kernel density estimation with a relative mean squared 
error less than 0.1. Note here that 4>(0) is in the center of the distribution, 
and to estimate the tails of the distribution correctly a much larger sample 
would be needed. 

Dimension Required sample size 
1 4 
2 19 
3 67 
4 223 
5 768 
6 2790 
7 10700 
8 43700 
9 187000 
10 842000 

TABLE 4.11. Required sample size to estimate if1(0) correctly 

So, although the kernel based indices have the advantage of easy implemen­
tation and can compete in terms of computational speed with polynomial 
based indices, they are not useful for higher dimensional indices. 

But if we look at the empirical form of the polynomial based indices we see 
easily that they have a complicated form. See for example the appendix of 
Polzehl & Klinke (1994) for the implementation of the empirical form and 
compare the polynomial based indices with kernel based. 

Another disadvantage is that the computational costs for extending these 
indices increase polynomial. The number of coefficients that need to be cal­
culated for an fixed order J is ~ Jd /2, where d is the dimension of the 
projection. We also have to avoid to estimate more parameters than data. In 
the case of J = 10 and d = 3 we have already 500 parameters to estimate. 
Thus we would need more than 500 observations to make such an estimate 
reliable. 

As a consequence none of these indices seemed to be appropriate for an 
extension in higher dimensions. 
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4.4.2 A Class of Multivariate Indices 

In general all of the indices are coding a d dimensional projection into a 
figure which describes the amount of structure. The amount of structure is 
described by a wide departure from the normal distribution. 

The requirement of the rotation invariance of the indices can be expressed 
easily by using polar coordinates. Rotation invariance means that the dis­
tance between 0 and the datapoints (the radius) and the angels between the 
datapoints are constant under a rotation, so when we base the new indices on 
the radii the condition of rotation invariance is fulfilled. How would a normal 
distribution behave if we would look just at the radii? 

We know that when the random variables Xi are independent and standard 
normally distributed the distribution of 

is a x-square distribution with d degrees of freedom. The underlying density 
is given by 

x>o 
x~O 

New indices can be developed by finding functionals that minimize this uni­
variate distribution just like the entropy index for the standard normal dis­
tribution. In fact we would like to develop the new indices analog to the 
polynomial based indices 

with a weight function g( r). 

We can transform I into 

I 100 
(f(r) - Wd(r))2g(r)dr 

100 (p(r)g(r) - 2f(r)g(r)Wd(r) + w3(r)g(r))dr 

= 100 f(r)g(r)f(r)dr - 2100 wd(r)g(r)f(r) + 100 w3(r)g(r)dr. 
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If the integral of the last term exists, it is a constant and can be neglected, 
since we later will be interested in maximization of these indices. Thus we 
get 

I loo f(r)g(r) f(r)dr - 2loo wd(r)g(r) f(r)dr + C1 

= E(f(r)g(r» - 2E(wd(r)g(r» + C1 (4.5) 

and we can replace the expectation by the appropriate sample mean 

We now have to estimate the unknown density f by an estimator j to get a 
estimate j for I. Here we could use a kernel estimate, but we should keep in 
mind that the support of the density is limited by the left border O. Another 
possibility would be boundary kernels as described in Scott (1992), but one of 
the aims we have is easy computation. Therefore it seems more appropriate 
to expand 

00 

f(r) = E aiPi(r) 
i=O 

with an orthonormal function system Pi, and we will get an estimator of 
order J 

Estimation of the coefficients aA; can be done via 

E(PA;(r» = loo f(r)PA;(r)dr 

= loo (~aiPi(r)pA;(r») dr 

= ~ai (lOO Pi (r)PA;(r)dr ) 

= aA; 
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and the estimate will be 

The final estimate results in 

(4.6) 

The calculation of the function H:(r) can simply be derived from the fact 
that 

100 P; (r)Pj (r)dr = 6;j, 

thus if we define 

P;(r) = Pi(r)y'wd(r) 

with Pi(r) a polynomial in r we get 

We interpret this as a special scalarproduct 

(f,g) = 100 f(r)g(r)Wd(r)dr 

and define a fitting norm by 

IIf(r)1I = y'(f(r) , f(r)). 

Now we can calculate the functions p;(r) via the orthogonalization method 
of Erhardt-Schmidt: 

i-1 

ri _ ~)ri,pj(r))pj(r) 
j=O 

Pi(r) = . 1 
1-

IIri - ~)ri ,pj(r))pj(r)1I 
j=O 
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If follows that 

with 

A recursive relationship can be derived too. It follows from 

via calculating of the scalarproducts 

1 (Pi(r),Pi(r») 

= (Pi (r), (air + hi)Pi-l(r) + CiPi-2(r») 
= ai(Pi(r), rpi-l(r») + hi(Pi(r),Pi-l(r») + Ci(Pi(r),Pi-2(r») 
= ai{Pi(r), rpi-l(r»), 

o (Pi-l(r),Pi(r») 

ai(Pi-l(r), rpi-l (r») + hi 

o = (Pi-2(r),Pi(r») 

= ai(Pi-2(r), rpi-l(r») + Ci. 

We get the following formula for ai, hi and Ci 

1 
ai = 

y'(2i)(d + 2i - 2) 

hi 
d+4i -4 

= 
y'(2i)(d + 2i - 2) 
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(i - l)(d + 2i - 4) 
i(d+2i-2) 

The Mathematica program in Appendix D.2.1 calculates quantities Pi(r), ai, 
bi and Ci; the recursive formula can be evaluated to 

Pi(r) = (r - (d + 4i - 4»Pi_l(r) - ..)(2i - 2)(d + 2i - 4)Pi-2(r) . 
..)(2i)(d + 2i - 2) 

4.4.3 Special Indices 

Before developing special indices using different kind of weight functions, let 
us have a look at the behaviour. Assumed the random variable Xi has a 
density fi(Z) we can assume that the density fi(Z) is bounded in IR and 
liml~l_oo f(z) = 0 as we have finite data samples. We can calculate the 
density of xl by 

and the density of the variable Zi = xl will be 

If we look at the univariate projections (d = 1) our index will be 
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Under the above assumption the squared term describes a finite difference, 
which goes to 0 if r -> 00. The problem arises for r ~ O. The term l/r weights 
the differences near 0 much stronger than near r = 1. As a consequence 
the index will be attracted by a "central mass" distribution. We can avoid 
this by including an r in the weight function g(r). In the multivariate case 
the development is much more difficult. Let us assume that the Xi will be 
independent and their density has a polynomial expansion 

00 

h(:c) = E am,j(:C - :co)m. 
m=O 

For simplicity we assume that :Co = 0 and get the density gi(:C) of xl as 

The density hd(:C) of R = xl + ... + XJ can be developed by 

For d = 1 we get 

00 

hd(:C) = :cd/2- 1 E Pd,m:cm. 
m=O 

It ( Vi) + It ( -Vi) 
2Vi 

00 

= :c-1/2 E a~,l :cm/2 (1 + (_l)m) 
m=O 

00 

:c-1/2 " P :cm L..J 1,m , 
m=O 

with P1,m = em,l = am,l(1 + (-1)m)/2. Assume now that 

and it follows 

00 

hd-l(:c) = :cd/2-1.5 EPi,d-1:ci 

i=O 
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hd(Z) foc hd-1(Z)gd(Z - z)dz 

= r ('tPi,d_1Zi+d/2-l.S) 
Jo .=0 

= f fpi,d-1Ci,d l c Zi+d/2-1.5(Z - zy-o,sdz 
i=O i=o 0 

= ~ ~ d/2-1 i+i r«d - 1)/2 + i)r(I/2 + j) 
~~Pi,d-1Ci,1Z Z r(d/2+i+ .) 
.=0 )=0 J 

= d/2-1 ~ m ~ r«d -1)/2 + l)r(I/2 + m -I) 
Z L.J Z L.JP',d-1Cm-',d r(d/2 + m) . 

m=O '=0 , ~ ... 
fl ..... 

If we now compare the indices we get 

We have some theoretical evidence that the index will be attracted by a 
"central" distribution for the univariate projection and attracted by skewed 
distributions for three- or higher dimensional projections. This behaviour can 
also be observed in practice. We can compensate this by choosing the weight 
function as shown in Table 4.12. 

We will restrict ourselves to the three indices as the polynomial based indices, 
the 

• x3-Legendre index 

• x3-Hermite index 

• x3-Natural-Hermite index 

In the Legendre index of Friedman (1987) we have as weight function 



Exploratory Projection Pursuit 157 

d 9 r) 
1 r 
2 1 
3 l/r 
4 1/r2 

5 1/r3 

6 1/r4 

TABLE 4.12. Weight function to correct the index for a d dimensional projection 

1 
g(y) = 2tP(y) 

and we choose the weight function for the x3-Legendre index as 

1 
g(r) = 2wd(r). 

The estimate (4.6) simplifies to 

and neglecting the term -1 leads to 

The Hermite index of Hall (1989a) has as weight function 

g(y) = 1 

and the weight function for the x3-Hermite index is 

g(r) = 1, 
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which leads to a simplified form of (4.6) 

In the case of the Natural-Hermite index of Cook et al. (1993) we have as 
weight function 

g(y) = </J(y) 

and we take the weight function for the x3-Natural-Hermite index as 

The estimate (4.6) simplifies to 

Since the functional we have to calculate is complicated, we can improve the 
speed of the computation by binning. That means we replace 

ri = int(ri/cS), 

with int( z) giving the largest integer smaller than z and cS being a binwidth. 
We can tabulate the functions Pj(icS) and wJ(icS) . 

..{. . ..{. . ..{. Application to the Swiss Banknote Data 

We apply the technique again to the Swiss banknote dataset. We know from 
the previous EPP that we can find at least 3 clusters in the data. 
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FIGURE 4.30. Projection based on the first (two) principal compo­
nents. We can clearly distinguish two clusters. The chosen index is 
x2-Natural-Hermite index with order 15. 

To visualize the results we use a modified parallel coordinate plot. We know 
that the most uninteresting density in the projection is the standard normal 
density, and we are able to say how the line densities will look like if we 
have a standard normal gaussian density. We compute the line densities and 
then subtract the normal densities. So the dark areas are those where the 
projected density is larger than the normal density, and the light areas are 
those where the projected density is smaller than the normal density. 

We used a simulated annealing algorithm for finding the best projection. The 
program examines at least 1 million projections if does not stop before. Some 
pictures run up to 6 million projections. This is far more than the number of 
projections given in Table 4.1. 

On most of the Figures 4.30-4.35 we are able to see two clusters. The left 
picture of Figure 4.30 and the right picture of Figure 4.34 might reveal three 
clusters. 

The fact that in general we cannot find at least three clusters is due to the 
basic problem of these indices. 
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FIGURE 4.31. Result of optimizing the x2-Natural-Hermite index with 
order 10 (left picture) and x2-Hermite index with order 10 (right picture) 
for a univariate projection. 

FIGURE 4.32. Result of optimizing the x2-Natural-Hermite index with 
order 5 (left picture) and x2-Hermite index with order 10 (right picture) 
for a bivariate projection. 

FIGURE 4.33. Result of optimizing the x2-Natural-Hermite index with 
order 5 (left picture) and x2-Legendre index with order 15 (right picture) 
for a trivariate projection. 
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FIGURE 4.34. Result of optimizing the x2-Natural-Hermite index with 
order 15 for a trivariate projection (left picture) and x2-Hermite index 
with order 5 for a 4D-projection (right picture) . 

FIGURE 4.35. Result of optimizing the x2-Legendre index with order 15 
(left picture) and order 10 (right picture) for a 4D-projection. 

4.4.5 Overcoming the Problem 

The fact of using the distance to 0 as a measure for the amount of structure 
in the projection ensures us that our indices will be rotation invariant. But 
if the angles between the datapoints vary the index will not notify this. So 
our indices will have difficulties to recognize a structure which is distributed 
symmetrically around 0, e.g. to distinguish three clusters from four clusters, 
where the radius of observation i is equal in both datasets. 

One possible solution, following the idea of Yenjukov (1989), is to include an 
angle. We can compute the angle 0 to a fixed location, e.g. el. Since the angle 
and the radius are independent we can compute an index of the form 

I (femp(r, 0) - /gauuian(r, 0))2drdO. 
J[O,OO)X[O,2lr) 
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FIGURE 4.36. Data distributed in 3 cluster (marked with '0') and 4 
clusters (marked with '+'). 

4.5 Discrete Exploratory Projection Pursuit 

In the practical work with datasets, especially in economics, it appears that 
we often have a mixture of continuous and noncontinuous (binary) variables. 
The theory developed so far has only handled continuous variables. 

In the continuous case we have tried to find a projection with the largest 
deviation from the gaussian distribution. We have regarded the gaussian dis­
tribution as the most uninteresting. But what will be the most interesting or 
uninteresting distribution in the discrete case? 

One possible answer would be not to take the discrete variables into account 
and still search the most nonnormal projection. But, as can be seen in Figures 
4.38 and 4.40, a two-point distribution is a very strong nonnormal projection, 
which will be picked up by any of the indices. Of course the kernel based 
indices will pick it up very easily (see Figure 4.38). 

Of course a two point distribution can not be approximated well by polyno­
mials of low order (J = 0,1,2,3). To approximate a two point distribution 
well we need at least a polynomial of order 4. Thus one might be tempted to 
use only low order polynomials, but this will not lead to pick up finer details 
of the underlying data structures as in the case of the tetrahedron dataset. 
Maybe we have to use mixed approximations. 

Another answer could be that the uniform distribution can be regarded as 
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FIGURE 4.37. Kernel density estimates with rule of thumb of the 
datasets in Figure 4.36 (thin lines) and density of standard normal dis­
tribution (thick line). 
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FIGURE 4.38. Friedman-Tukey index (h is the AMISE-optimal band­
width) for the Swiss banknote dataset with a seventh variable which 
contains a 1 if the banknote is genuine and a 0 if the banknote is forged. 
We can see clearly that the two point distribution is the global maximum, 
but that another projection, which represents a local maximum, occurs 
more frequently. 

the most uninteresting. In fact this will be a subjective choice which is not 
justified as in the case of the gaussian distribution. 

In the case of exploratory projection pursuit the uninteresting normal distri-
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FIGURE 4.39. Natural-Hermite index (J = 1) for the Swiss banknote 
dataset with a seventh variable which contains a 1 if the banknote is 
genuine and a 0 if the banknote is forged. We can see clearly that the 
two point distribution is not the global maximum but another projection. 
This is due to the fact that we can not approximate the two peaks by a 
low order polynomial. 

FIGURE 4.40. Natural-Hermite index (J = 10) for the Swiss banknote 
dataset with a seventh variable which contains a 1 if the banknote is 
genuine and a 0 if the banknote is forged. In contrast to Figure 4.39 the 
two point distribution now is the global maximum. 

but ion also represents the independence of variables since the multivariate 
normal distribution is the product of univariate normal distributions. In some 
sense a departure from the normal distribution can also mean a departure 
from independence. For including the discrete variables we have to find the 
projection which has the furthest departure from an independent distribu­
tion. Thus we would suggest the following algorithm 

• Compute for each projection the density function f from the data 
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FIGURE 4.41. Natural-Hermite index (J = 10) for the Swiss banknote 
dataset with a seventh variable which contains a 1 if the banknote is 
genuine and a 0 if the banknote is forged. As in the case of the Fried­
man-Tukey index we have another projection, which represents a local 
maximum, and occurs more frequently. 

• Compute for each projection a density function 9 : 

g(y) = [ G(y)dYd+1 ... dyp 
JIRP-" 

with G(y) = H(Rz) the joint density of Xi and R a rotation matrix so 
that r = (Rel, ... , Red) are the projection vectors. 

• Use an index function ofthe form 

fIR" (f(y) - g(y»2 w(y)dy 

with d the dimension of the projection, f a non parametric estimate 
based on rT Xi, 9 the density function under the assumption of inde­
pendence and w as weight function (for simplicity we assume w(y) = 1) 
if necessary 

• Maximize over all projections 

With this method we will get the projection with the largest deviation from 
independence. An expansion of the unknown densities f and 9 with an or­
thonormal function xsystem Pi(y) leads for 9 to 
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We can now include independence by decomposing H(z) = hl(zd ... hp(zp): 

00 

00 

~ c· . 
L- '1·"'. 

il+ ... +i.=O 

fIR hl(zdz~ldzl'" fIR hp(zp)z~.dzp 
00 

L Cil ... i.E(z~l ) ... E(z~.) 
il + ... +i.=O 

The estimation of the coefficients for 9 turns out to be computationally in­
tensive (d = 2, J = 4 needs more than five minutes on a PC 486DX4-100). 
The estimation process can not be used for interactive programs. 

4.6 Requirements for a Tool Doing Exploratory 
Projection Pursuit 

Since exploratory projection pursuit is an exploratory tool it is obvious that 
interactivity is needed. A tool should offer the following possibilities 

• a set of index functions with the possibility to include user developed 
index functions 

• a plot of the actual bi/multivariate projection 

• a plot of the behaviour of the chosen index function in case of opti­
mization or in case of random movement (grand tour), see Cook et aI. 
(1995) 

• recall of earlier projections 
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• to plot index functions on three or four dimensional subspaces, and by 
clicking into the function we should also get the corresponding projec­
tion 

• to allow an interpretation of the found projection by linking with the 
variables. 



5 
Data Structures 

Summary 

In the first section we will show that graphical objects can be generated in 
three steps. Then we will develop a hierarchy for the graphical data struc­
tures (datapart, windows, displays). In the next section we will give reasons 
why matrices are no sufficient structure to store statistical data, so we need 
multidimensional arrays. Then we will discuss their impact on mathematical 
and statistical operations. The second section will close with a description 
why we need hierarchical objects. In the third section several forms of linking 
will be discussed. First we will give examples of linking plots in the thesis, 
then we will show further examples of linking, i.e. asking data themselves 
or linked data, the link of events with subroutines and at last the linking 
between different datasets. The fourth section will describe in short some 
statistical packages and indicate which features concerning data structures 
are available in these programs. 

5.1 For Graphical Objects 

5.1.1 Generating Graphical Objects 

We have seen in section 2 that we have to distinguish between two kinds of 
graphical objects: 

• points, curves and surfaces 

• glyphs 

In the first class we have boxplots, quantile-quantile plots, histograms, regres­
sograms, scatterplots, 3D-scatterplots, sunflower plots, scatterplot matrices, 
parallel coordinate plots, Andrews curves and dendrograms. The second class 
consists of piecharts, star diagrams, Chernoff faces and so on. 
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The graphical tools of the first class can be decomposed into three steps 

1. do the mathematical computation, 

2. create graphical objects 

3. show the graphical objects in a plot to the user. 

The advantage of this method is not only that we can offer the standard 
tools, but we are also open for new graphical methods. The above mentioned 
graphics can be decomposed as follows: 

Boxplot 

1. Compute the 3 quartiles, the mean and the ranges. 

2. Create the graphical objects like boxes, lines and the datapoints 
which are outside values. 

3. Show the graphical objects in a plot. If we want to show several 
boxplots we can shift the graphical objects by an addition of a 
point. 

Quantile-Quantile Plot 

1. Compute the theoretical quantiles for one or two distributions. 

2. Do nothing. 

3. Show the true values and the theoretical quantiles in a plot. 

Histogram, regressograms 

1. Bin the data 

2. Create the graphical objects (lines or outlined boxes) 

3. Show the graphical objects in a plot 

Scatterplot, 3D-scatterplot 

1. Do nothing 

2. Do nothing 

3. Show the dataset in the plot and, if necessary, draw lines 

Andrews curve 

1. Compute a curve for every observation 

2. Do nothing 

3. Show the curves in a plot 
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Parallel coordinate plot 

Tree 

1. Compute a density for all axes and within axes lines 

2. Do nothing 

3. Show the dataset in the standard plot and combine the datapoints 
to curves 

1. Compute a tree of merging clusters depending on the sum of the 
within cluster variance 

2. Transform the tree into the graphical object 

3. Show the dataset in the standard plot and combine the datapoints 
to a dendrogram 

Apart from some special commands to produce the appropriate datasets, we 
need one type of standard plots, which basically is a 2D- or 3D-scatterplot. 

5.1.2 Dataparts 

In the scatterplot we want to show different datasets (e.g. in the case of 
the regression). This leads to the concept of dataparts which contain exactly 
one dataset with all the necessary attributes to plot it. The structure of the 
datapart will be 

• data about observations 

- location of the observation 

- colour of the observation 

- size of the observation 

- form of the observation, the form can be a string 

• data about lines between observations 

- which observations form one line 

- type of the line 

- colour of the line 

- thickness of the line 

The structure can easily be extended to incorporate areas built up from 
datapoints. The shells in the cover of the book of Scott (1992) could be 
produced in this way. 
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5.1.3 Graphical Windows 

A window can be composed from several dataparts. Additionally we need 
some parameters which are global for the window. This includes the following 
objects: 

• the location and size of a window 

• the appearance of the cursor (brush, arrow) 

• the position of the cursor 

• the name of the window 

• the title in the window 

• the projection of the data 

• how many axes appear 
a 2D-scatterplot needs 2 axes, mostly with an enclosing box around, 
for a 3D-scatterplot or projection of higher-dimensional data we need 
no box, but we have to plot the axis into the data 

• how the axes are scaled 
which is the minimum value, which is the maximum value, how many 
tickmarks, which is the output format of tickmark values 

• how does an axis appear 
as a tripod in the right upper vertex of the window, as a tripod in the 
data with or without tickmarks, text, etc. 

5.1.4 Glyph Windows 

To incorporate glyphs is a difficult task. Glyph objects are piecharts, star 
diagrams and Chernoff faces. In du Toit, Steyn & Stumpf (1986) a lot of 
other glyphs like tree-diagrams are shown. We have two choices to put them 
into a standard 2D-window: we either use the form-parameter for a datapoint 
and allow a special language to produce the desired glyph, or we create an own 
window for this type of graphics. If we compare for example star-diagrams and 
Chernoff faces we see that all necessary operations like sorting, reordering etc. 
are the same, only the appearance changes. One disadvantage of incorporating 
Chernoff faces into the standard window is that the computation as given by 
Flury & Riedwyl (1981) is very intensive and will produce big datasets which 
have to be transmitted to the window. It seems reasonable to program a 
special window which has a parameter which tells us what the appearance 
will be like. 
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5.1.5 Displays 

As mentioned in section 1.2.2 the flood of windows is a real problem during 
working. It is pointed out that we need different windows to display informa­
tions about the same task. Examples can be seen in a lot of pictures in this 
thesis. 

So creating a display means the creation of a group of (maybe) different 
types of windows. Operations in one window will affect all other windows of 
a display. 

While there is only one display visible in XploRe 3.2, window systems offer 
several displays simultaneously. The implementation in XploRe 4.0 will allow 
one display in one window, but several displays can overlap each other. 

5.1.6 Updating of Windows 

Since interactivity is necessary in statistical tasks we have to have the oppor­
tunity to influence every component of a window. The same has to be true as 
to the content and appearance of a window from outside. In a programming 
language we need a command that will allow such updates. As an example 
we can again use the teachware for the regression smoothing. Most of the 
methods incorporate a smoothing parameter which should be chosen by the 
user himself to see the effect of over- and undersmoothing. A change of the 
smoothing parameter will effect the regression line. We have to recompute 
the line and to plot it into the window. 

5.2 For Data Objects 

5.2.1 Representation of Data as Multidimensional Arrays 

Statistical data come in two different forms to a statistician: 

• as variables and 

• as observations. 

Statisticians have to handle both forms appropriately. In form of variables 
we compute a lot of statistical measurements like mean, quantiles, median, 
boxplots, scatterplots etc. This can lead to a storage of the data in forms of 
vectors such that every vector represents one variable. But for other statis­
tical tasks we need access to the data as observations. The Chernoff faces, 
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Andrews curves and other techniques need an observation as their basis ele­
ment. We must have access to the variables and the observations in the same 
manner. The solution of the problem is to represent the data in data matri­
ces. Almost all statistical programs do it like this. The general assumption 
behind this representation form is that rowvectors represent observations and 
columnvectors represent a variable. 

A[.,.,4] 

A[.,.,3] 

FIGURE 5.1. A three dimensional array to store for example the third 
moments of a multivariate dataset. 

For a lot of problems this might be sufficient. But if we want to solve statistical 
tasks we need more than matrices. 

In the section about exploratory projection pursuit we mentioned the index 
proposed by Jones & Sibson (1987) which is based on the third and fourth 
moments (see equation 4.2). 

One way to implement the index could be to calculate the third and fourth 
moments separately for every projected dataset. Since we are looking at pro­
jections of our dataset we can establish a (simple) relationship (independent 
of n) between the third and fourth moment of the multivariate dataset and 
the third and fourth moments of the projected dataset. The third moment 
needs p3, the fourth moment p4 entries in a matrix. We can store the moments 
as vectors, but this would make the access to a special moment very difficult. 
A better solution is to create three and four dimensional arrays which con­
tain the entries, so we need an array (for the third moment) which consists 
of rows, columns and layers (see Figure 5.1). This can be extended easily to 
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four or more dimensional arrays. 

Another example is local polynomial regression. As described by Fan et al. 
(1993) and in section 3.3.2 we have to compute for every datapoint Xo: 

b(xo) (XT WX)-lXT WY 

S~l(xo)Tn(xo) 

with 

( 1 (Xl - xO) (Xl - xO)P ) X 

1 (Xn - xO) (Xn - xO)P 

( Y1 

) Y 

Yn 

W = diag ( K ( Xi ,: XO) ) 

The implementation as software for a set of k datapoints Xl, ... , XIc involves 
the inversion of k matrices Sn(Xl). Since we want to avoid looping as much 
as possible we would like to store all matrices Sn(Xl) in data structures. 

This can be done in form of a two dimensional matrix 

With a modified routine for the matrix inversion we can compute the inverse 
of the submatrices. Then we have to decompose the matrix Sn to make the 
necessary multiplications to compute the coefficients. Again it would be much 
easier to store the matrices Sn(Xl) in a three-dimensional array Sn and then 
use the standard matrix inversion operation without having to give optional 
parameters. 

As a consequence we need multi-dimensional arrays for to represent our data 
and for efficient computations. Of course we have to be aware that the use 
of arrays will have some administrative overhead such that array operations 
are slightly slower than true matrix operations. 
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5.2.2 Extending Mathematical Operations 

It is obvious that the mathematical operations have to be extended for mul­
tidimensional operations. The following extensions are suggested: 

INV 

INV(A[.,.,4]) 

INV(A[.,.,3]) 

INV(A[.,.,2]) 

INV(A[.,.,l ]) 

FIGURE 5.2. How the inverse matrix operation will work on a three 
dimensional array. 

Unary mathematical functions. 

Unary mathematical functions are mainly scientific functions like cosine, sine, 
exponential and logarithm, but also cumulative distribution functions and 
their inverses etc. Since these functions have only one argument and one 
result the extension is that we produce a multi-dimensional array of the 
same size as the input array, and the function is applied to each element. 

Unary mathematical operators. 

Unary mathematical operations are the unary minus, the logical not, the 
faculty and so on. These operators will also effect each element of the array 
and can be treated in the same way as the unary mathematical functions. 

Vector operations. 

We also have vector operations which are mainly operations on a variable. 
Typical operations are the mean, the median, the variance, the summing etc. 
Often it is of interest just to look at the conditional means, the conditional 
medians, the conditional variances, the conditional sums etc. The result will 
be a multi-dimensional array that in the working dimension only has one 
element (or k if we have k classes we condition on). 
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Matrix operations. 

Operations which are specific for matrices are the multiplication of matri­
ces, the inversion of matrices, the transposition of matrices, the calculation 
of moment matrices etc. Since the general assumption is that the rows rep­
resent the observations and the columns represent the variables, the matrix 
operation will work on those columns and the rows which contain one data 
matrix. The parallel matrices will be seen as layers so that the operation will 
be executed on each layer (see Figure 5.2). Optional parameters will allow to 
execute the operation on other layers apart from rows and columns. 

Binary mathematical operators. 

Binary mathematical operators are the elementwise plus, the elementwise 
minus and the elementwise logical comparisons. We have to take into ac­
count that we already have some kind of extension in the standard statistical 
languages. In EPP we need to center the data matrix by 

y = X - mean(X) 

One the left side of the minus we have a n x p matrix, on the right side 
a 1 x p vector. Thus for an elementwise operation these matrices are not 
compatible. Nevertheless this operation is allowed since the meaning is that 
we want to subtract the mean of X for each observation. As Table 5.1 shows, 
the programming languages do allow the elementwise operations for special 
SlZes. 

A possible generalization for a multi-dimensional array is to allowelementwise 
operation only if the size is the same or equal to 1 in each dimension. For 
two d-dimensional arrays this results in 22d valid possibilities to apply an 
elementwise operation. 

In section 2.5.1 it is described how a histogram can be computed. In the 
fourth step we need to add a matrix of the form 

( -0/2 0) 
+0/2 0 

to each block of 2 x 2 matrices. This possibility can be included if we redefine 
the result size of an elementwise operation on two arrays. We define the size 
in the i-th dimension as the maximum of the sizes in the i-the dimension 
of the operands. With this definition we still have the possibilities given by 
Table 5.1, and we would be able to add blocks to the matrices as needed 
for the plotting of histograms. This way of dimensioning the result matrix 
will confuse the unexperienced user, so the first method is better as a stan-
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left argument right argument result 
nxp nxp nxp 
nxp nxl nxp 
nxp lxp nxp 
nxp 1 x 1 nxp 
nxl nxp nxp 
nxl nxl nxl 
nxl lxp nxp 
nxl 1 xl n xl 
lxp nxp nxp 
lxp n xl nxp 
lxp lxp lxp 
lxp 1 x 1 lxp 
1 x 1 nxp nxl 
1 x 1 n xl nxl 
1 x 1 lxp lxp 
1 x 1 1 x 1 1 x 1 

TABLE 5.1. Sizes of matrices which can be used in elementwise binary 
operators. 

dard operation. For the experienced user the second method simplifies the 
programing task. 

Binary or n-nary mathematical functions. 

Binary or n-array functions are functions like cumulative X2-distribution with 
d degrees of freedom, the normal random generator, univariate regression 
smoothers etc. Often we already have relationships between the parameters of 
a function given from the definition. A general rule to extend the parameters 
can not be given, but great care should be taken to find an appropriate 
solution of the problem. Let us take two examples: 

• the normal random generator 
The form might be 

y = normgen(n, 1', E) 

where I' is a 1 x p X ql ... X qlc array and E is a p x p x rl ... x Tic array. In 
this case we can regard everything above the second dimension of the 
array as layers. The resulting array y would be a n xpx max(ql' rl) ... x 
max(qlc, ric), which means we have generated in one step max(ql' rl) x 
... x max(qlc' ric) normally distributed random samples. Since it will be 
a condition that q, = r, or one of both have to be 1, we are able to 
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compute a lot of different random samples in one step. Especially for 
simulations this will be very helpful. 

• the Nadaraya-Watson estimator 
The standard form of the call to compute a N adaraya-Watson estimator 
will be 

with 

(zr, yr) = regest(z, y, bandwidth) 

y 

bandwidth 

n x 1 x ... array 

n x m x .,. array 

1 x 1 x ... array 

The result matrices will be a 

zr k x 1 x maz( ... ) array 

yr k x m x maz( ... ) array 

With this definition we can compute a lot of tasks: 

- a univariate Nadaraya-Watson estimator, 

- a set of univariate Nadaraya-Watson estimators for different sets 
of y, e.g. to calculate confidence intervals and 

- a set of univariate Nadaraya-Watson estimators for different sets 
of bandwidths, e.g. to calculate the crossvalidation function. 

It is easy to build a multivariate form 

(zr, yr) = regestp( z, y, bandwidth) 

y 

bandwidth 

zr 

yr 

n x p x ... array 

n x m x ... array 

1 x 1 x ... array 

k x p x maz( ... ) array 

k x p x maz( ... ) array 
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Further modifications can be done via including different kernels or a 
matrix of binwidths, e.g. 

(zr, yr) = regestpkd(z, y, bandwidth, kernel, binwidth) 

The aim of the two examples is to compute as much as possible in one step. 
We should keep in mind that this is just an offer to the user, we still could 
use loops for doing it. 

5.2.9 Error Handling 

It will happen very often that an error occurs in the calculation. We have 
to take care that the algorithm is robust against error. A stop of the whole 
program might not be the appropriate way to announce an error to the user. 
A typical example is the local polynomial regression. Assume we want to 
make a local polynomial regression of order 3 and the bandwidth h is chosen 
so small that we have at a gridpoint z less than four observations in the 
interval [z - h, z + h). Obviously the matrix Sn(z) will become singular and 
an inversion of the matrix will be impossible. The program needs mechanisms 
that first try to show the error to the user and, if the user does not care 
about the error, will stop the execution of the program. In the case of the 
local polynomial regression we might set the value for m(zo) to a missing 
value. 

5.2'4 Hierarchical Objects 

We have shown why we need multidimensional arrays in statistics and which 
the implications are if we use them. Behind all the thoughts the idea is that 
a multi-dimensional array consists of one single type of data: either float 
numbers or strings or integer numbers. This is not the typical statistical 
object. We would like to store different kinds of objects, e.g. in economics we 
find a lot of datasets that consist of continuous and noncontinuous variables. 
We want to have names for the observations and the variables. 

Another possibility is that we want to store the results of some computations 
with our data. The results can get lost if we store them far away from our 
data. The best solution is to put the result as a subobject to our data object. 

We need to build up a hierarchy of objects. 

Objects can consist as well of data as of programs. This leads to the concept 
of object orientation. It would be very helpful if we built statistical tools as 
in PPR etc. 

Another advantage of hierarchical objects is that they allow to give back 
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complex structures to the user as result of a macro. Here the computation 
of eigenvectors and eigenvalues, e.g. in PCA or Multidimensional Scaling can 
serve as examples. Another example is the result of PPR in S-Plus as shown 
in section 1.3.2. 

5.3 For Linking 

5.3.1 Linking Plots 
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FIGURE 5.3. Different linked plots of the Berlin housing dataset (only 
offers from October 1994). The left upper scatterplot shows FA against 
FP, the central upper plot shows the variables FB against FM. Since 
the variables FB and FM are binary they are jittered. The lower central 
plot shows DU against DW so we get an impression about relationship 
between unemployment rate and blue-collar workers. The lower right plot 
shows DR against DS and will tell us something about the ecological 
environment. The 3D-scatterplot shows the variables DF, DU and DN. 
In projection pursuit regression we can interpret the first projection as 
an indicator of social-ecological environment, so it makes sense to have 
a look at these variables. The boxplot shows the variable FRj the offers 
with more than 5.5 rooms (6, 6.5, 7, 7.5,8) are marked in different colours 
(here: gray scales). 

As mentioned on page 5 the first interactive program PRIM-9 offers some kind 
of linking between plots. In PRIM-9 it is possible to make two views of one 
dataset (e.g. plotting Xl against X2 and X3 against X4) and to mask out 
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some datapoints. In all plots the corresponding observations are masked out 
too. 

This technique has been extended nowadays for all kinds of plots. We define 
a point-colour and a point-style for each observation. In all plots we use the 
observations will appear in this point-colour and this point-style. This allows 
us to easily identify the selected datapoints in all plots. 

With the possibility of brushing (transient or nontransient) we are able to 
explore multivariate structures. We have already seen a lot of pictures where 
the linking is used: 

• The linked boxplots ofthe variables FA and FP (Figure 2.2 on page 30) 

• The subgroup analysis in the boxplots of the variable FP by FE (Fig­
ure 2.3 on page 31) 

• The subgroup and regression analysis in the scatterplot of the variable 
FA and FP by T (Figure 2.16 on page 42) 

• The brushed datapoints in a scatterplot matrix (Figure 2.22 on page 47) 

Although the scatterplot matrices are well known exploratory tools, the de­
signers of the big statistical packages now begin to integrate such tools into 
their programs. This is partially due to the processor speed as an interactive 
manipulation requires short answer times. 

In all examples mentioned we always had the same type of plots available in 
a display. Obviously we are able to show different types of plots in a display 
and link them in a way that we get different views of a dataset simultaneously 
as in Figure 5.3. 

We can learn from the Figure 5.3 that all the flats with a large number of 
rooms have, as expected, a large size and a high price. Because of the large 
size we do not expect that they are maisonette flats, but most of them have a 
balcony. It seems moreover that all the offers can not be found in more then 
4 districts. This hypothesis can be checked by Table 5.2. 

5.3.2 Linking Data 

An important feature of a statistical plot is that we are able to ask data 
interactively about themselves. Sometimes we would like to know more about 
the data we see in plot. In Figure 5.4 we can move through the window and 
see to which dataset the observation belongs, the number of observations in 
the dataset and the price. 

If we are able to link arbitrary informations with the data we can get many 
more informations about a datapoint. As an example see Figure 5.5. We have 
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No. FA FL FR FB FM FP DF DU DR DW DN 
1102 243 16 7 1 0 1450 17.5 5.5 18.6 2.3 57 
1067 243 16 7 0 0 1400 17.5 5.5 18.6 2.3 57 
1072 217 16 6 1 0 920 17.5 5.5 18.6 2.3 57 
1071 273 16 7 1 0 1500 17.5 5.5 18.6 2.3 57 
748 162 16 6 0 0 700 17.5 5.5 18.6 2.3 57 

1309 235 16 6 1 1 1300 17.5 5.5 18.6 2.3 57 
1232 215 16 6 1 0 1350 17.5 5.5 18.6 2.3 57 
1168 172 16 6 1 0 798 17.5 5.5 18.6 2.3 57 
1122 170 16 6 1 0 795 17.5 5.5 18.6 2.3 57 
1125 163 16 6 0 0 895 17.5 5.5 18.6 2.3 57 
1152 200 16 7 0 0 1400 17.5 5.5 18.6 2.3 57 
1259 195 23 6 0 0 1000 11.8 3.6 6.5 2.2 44 
1179 178 23 6 0 0 720 11.8 3.6 6.5 2.2 44 
1250 186 23 6.5 1 0 798 11.8 3.6 6.5 2.2 44 
1228 245 23 6 0 0 1600 11.8 3.6 6.5 2.2 44 
1098 195 23 6 0 0 1000 11.8 3.6 6.5 2.2 44 
1206 263 23 7.5 1 0 1400 11.8 3.6 6.5 2.2 44 
1118 200 24 6 1 0 810 26.6 8.6 ·9.0 8.2 47 
1187 280 30 8 1 0 1480 8.7 3.5 11.4 2.7 46 
1147 202 30 6 0 0 890 8.7 3.5 11.4 2.7 46 

TABLE 5.2. Data excerpt of the Berlin flat data. We see the offers from 
October 1994 with more then 5.5 rooms sorted after district numbers. 
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FIGURE 5.4. Boxplot of Berlin flat data (only offers from October 1994). 
Prices (FP) grouped by rooms (FR) plotted as boxplots. In the center of 
the picture we are asking a datapoint about its coordinates. We get the 
index and the price. The different colours are represented as gray scale. 
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FIGURE 5.5. Boxplot of Berlin flat data (only offers from October 1994). 
Prices (FP) grouped by the rooms (FR) plotted as boxplots. In the 
center of the picture we are asking a datapoint about its coordinates. 
The dataset is linked to another matrix which contains more information 
about the flat. The different colours are represented as gray scale. 

~ 

o 
~ 

o 0 

o 

" 

o 

~.: 

.,,':' 
:. "t': 

I~' 11:U 
-21n. ,,113'1031 

o ~ ____ -. ______ -. ______ -. ______ -. ______ -. ____ ~ 

0.5 1.0 1.5 2.0 2.5 
FA (*10 2 ) 

FIGURE 5.6. Linear regression of the variables FA and FP of the Berlin 
flat data (only offers from October 1994). The box shows the residual for 
one datapoint. 
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linked a matrix to the data with the informations about this flat. We can see 
the variables FA, ... , FP. We can see that the most expensive flat in October 
1994 had 197 m 2 , lay in Grunewald, an expensive area of Berlin, had 4 rooms 
and a balcony being a maisonette flat. 

Another example can be found in the regression analysis. We can see the 
value of a residual in Figure 5.6. If we move through the dataset we can 
inspect all residuals. 

5.3.3 Linking Events 

Modern operating systems (Windows 3.1, Windows 95, OS/2, Unix) are mul~ 
tit asking systems. Therefore the programs have to share all the resources. S~ 
quential programming is no longer possible. Instead of this the programs react 
to different events. An event can be a movement of a mouse, a mouseclick, a 
keypress or user~defined event. 

An example can be found in Figure 2.16. Here we first brush the year of 
the offer and then we have to leave the picture. For each year we get one 
linear regression line, so from a keypress we get new informations in another 
window. 

Another example can be found in DataDesk.1f we compute a linear regression 
for a bivariate dataset we get a table of coefficients as in Figure 5.7 (here: 
output from SPSS). If we now move one datapoint, e.g. the observation 1323, 
the outlier in Figure 5.6, more to the center then the values for the linear 
regression will change (see the new values in Figure 5.8. 

In the teachware macros of XploRe the same technique is used to show to the 
students how an outlier will influence the behaviour of the linear regression 
whether the L2-error criterion or the Ll ~error criterion is used. 

5.3.4 Linking Datasets 

The Berlin flat dataset already described consists of 14968 observations and 
for each observation we have all informations. But in fact the informations 
about the district are very often repeated. This will lead to some problems in 
the statistical analysis which concentrates more on the district, e.g. which is 
the best district to live. Even the simplest descriptive statistic, e.g. the mean 
of the NOz-concentration for one time period, will produce wrong results if 
we use the dataset as it is. 

It is clear that the collectors had the district informations available, a r~ 
construction for NOz can be found in the Table E.10 revealing a strange 
behaviour of the data. The data are collected in a way that they are not 
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Multiple R 
R Square 
Adjusted R Square 
Standard Error 

.88003 

.77445 

.77428 
114.39243 

Analysis of Variance 
DF 

Regression 
Residual 

1 
1365 

Sum of Squares 
61329361.14789 
17861883.08628 

F = 4686.77225 Signif F = .0000 

Mean Square 
61329361.14789 

13085.62863 

---------------- Variables in the Equation ----------------

Variable B SE B Beta T Sig T 

FA 5.429284 .079306 .880026 68.460 .0000 
(Constant) -67.531740 6.939713 -9.731 .0000 

FIGURE 5.7. Linear regression of the variables FA and FP of the Berlin 
flat data (only offers from October 1994). The observation 1323 is un­

changed. 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 

.90467 

.81843 

.81830 
97.74014 

Analysis of Variance 
DF 

Regression 
Residual 

1 
1365 

Sum of Squares 
58779214.57938 
13040030.20491 

F = 6152.87132 Signif F = .0000 

Mean Square 
58779214.57938 

9553.13568 

---------------- Variables in the Equation ----------------

Variable B SE B Beta T Sig T 

FA 5.315207 .067761 .904673 78.440 .0000 
(Constant) -60.059451 5.929488 -10.129 .0000 

FIGURE 5.8. Linear regression of the variables FA and FP of the Berlin 
flat data (only offers from October 1994). It is assumed that a miss typing 
occurred at the observation 1323. Now a corrected price of 1200 is used 
in the regression. 
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easy reusable for other statistical purposes. In case that we want to make an 
analysis about the changes in the districts over the time, we have to reduce 
the data. 

It would be better, if the datasets were decomposed into several linked 
datasets, e.g. one dataset about the fiats, one dataset about the districts 
(which can be decomposed further since some data are only collected yearly) 
and one time-dependend dataset. It is not clear how these single datasets 
could be linked together automatically. 

The advantage of linked data would be more compact datasets, less storage, 
but it would mean a higher programming effort. The additional programming 
effort is due to the fact that routines like the mean woulld have to react 
somehow on these links. 

The Berlin fiat dataset consists of three groups of variables, so is reason­
able to build a hierarchical object which consists ofthree (or more) datasets, 
one time-dependend dataset, the fiat dataset and the district dataset. Addi­
tionally we need an object which by linking combines theSe datasets to one 
dataset. So each observation consists of three links to the three datasets. 

In principle this is already done implicitly by the variables T and FL, which 
fix the time of the offer and the location of the fiat. 

5.4 Existing Computational Environments 

5 . ../.1 Classification of Software 

As already mentioned in the beginning we nowadays have a lot of statistical 
software available. To get an overview it will be necessary to classify statistical 
software. The basic classification scheme is based on the aims of the software 
(see Table 5.3). 

But not only the aims are important, but also how many aims are satisfied. 

This leads to a classification as it is used by Koch & Haag (1995) in their 
yearly overview of statistical software: 

• Statistical software systems 
which try to satisfy a lot of aims simultaneously. Examples for these 
programs are S-Plus, SAS, GAUSS and XploRe 3.2. 

• Special purpose programs 
which want to do just one task very well. Examples are XGobi and 
XploRe 2.0. 
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Aim 
online analysis 
interactivity 

dynamic graphics 

linking 
completeness 
extensibility 
special topic 

Software 
DataDesk, XGobi, XploRe 3.2 
DataDesk,XGobi,X-Lisp-Stat, 
XploRe 3.2 
DataDesk, XGobi, X-Lisp-Stat, 
XploRe 3.2 
DataDesk, X-Lisp-Stat, XploRe 3.2 
SAS, S-Plus 
GAUSS, SAS, S-Plus, X-Lisp-Stat 
Hathematica,Haple V, XGobi, 
XploRe 2.0 

teachware capabilities 
speed 

XGobi, XploRe 3.2 
GAUSS, X-Lisp-Stat 
SPSS (student version) low price 

standardization 
modern software engineering 
easy interface 

GAUSS, S-Plus, XploRe 3.2 
S-Plus, XploRe 4.0 
SPSS, SYSUT 

TABLE 5.3. Examples for general aims which statistical software tries to 
satisfy. 

• Subroutine libraries 
which can be used in other programs. 

• Teachware 
which are special programs to teach statistics. 

Another classification is given by user groups: Students, consultants and re­
searches. Each has its own needs: 

• Students 
Important: 
Unimportant: 
Programs: 

• Consultants 
Important: 
Unimportant: 

Programs: 

• Researchers 

Low price, easy interface 
Extensibility, speed 
SPSS, SYSTAT, XGobi, XploRe 2.0 

Online analysis, special topic, completeness, speed 
Extensibility, modern software engineering 
teach ware capabilities, 
DataDesk, SAS, 



Important: 

Unimportant: 
Programs: 
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Extensibility, modern software engineering, 
standardization, linking, dynamic graphic 
Easy interface, speed, low price, special topic 
GAUSS, S-Plus, XploRe 3.2, X-Lisp-Stat 

As more aims a program wants to fulfill, as more work is necessary to do all 
the tasks. One of the big advantages of S-Plus is that a lot of people write 
additional software (see for e.g. XGobi) for it. 

5.4.2 DataDesk 

DataDesk is a software developed for Macintosh computers. The main aim 
is to visualize relationships between variables. Here relationship is meant 
in the sense of an exploratory data analysis. DataDesk is only available for 
Macintosh computers. 

The data in DataDesk are stored as variables (vectors). A dataset consists of 
a set of variables. But DataDesk is only able to handle one dataset at a time. 
If we want to handle two datasets we have to merge the two datasets into 
one. 

The data are linked by their index number. DataDesk allows linking between 
all graphical objects and supports subgroup analysis (brushing). It offers all 
graphical tools of statistics, like boxplots, scatterplots, 3D-scatterplots. But 
the linking is extended over the graphics. In the linear regression analysis of 
DataDesk we can make a multiple linear regression and we get the result of 
the linear regression as in the Figures 5.7 and 5.8 in an output window. If we 
now drop one of the variables in the linear regression, we will immediately 
get the recomputed values of the linear regression in our output window. 

DataDesk offered up to version 4 no programming language, so as a conse­
quence we can neither extend it to new algorithms nor can we see the data 
structure The new version 5 has now also a programming language (Theus 
1996). 

The help system is integrated into the help system of the MacIntosh. As the 
MacIntosh computers still offer a good user interface, DataDesk can be easily 
used. 

Missing values are handled in the "standard" way, an observation is deleted 
if a missing in one variable appears. This leads to the effect that we can have 
a different number of points in the scatterplots when we show scatterplots of 
three variables. 
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5.4.3 GAUSS 

GAUSS is a matrix-oriented programming language. It has mutated from a 
DOS program to a UNIX- and a DOS-program. Since GAUSS was mainly 
written in assembler which makes it very fast, the extension to UNIX took 
plenty of time. A lot of routines are now written in C. Nevertheless there 
is no perfect compatibility between DOS and UNIX. One example are the 
random generators. They do not give the same results on DOS and UNIX 
even when the same seed is used for initialization. But the UNIX-GAUSS offers 
a possibility to make the random generator to work like in DOS. 

The basic data object in GAUSS is a matrix. The graphic possibilities of GAUSS 
in terms of interactivity are rather poor, it only offers static graphics. Since 
we have no dynamic graphics we have no possibility of brushing or linking. 

Although GAUSS is a programming language it does not support any pro­
grammable menu driven environment. Nevertheless we have programs on top 
of GAUSS, e.g. MULTI, which is menu driven. 

GAUSS allows a user defined error handling and supports the user by a help 
system. But some help, e.g. if we want to know the parameters of a command, 
are not easily accessible. 

Mathematica and Maple V 

Mathelllatica and Maple V are doing almost the same. They are no statis­
tical programs, their emphasis is more on general mathematics. The main 
advantage for statisticians is the possibility of symbolic computation which 
allows to handle formulas. 

It seems that Math8lllatica is slightly better in handling symbolic computa­
tions whereas Maple V gives better numerical results. Mathelllatica does not 
provide interactive or statistical graphics. Only the basic statistical functions 
are implemented (Wolfram 1991) in six standard packages: 

• Descriptive statistics 

• Continuous distributions 

• Discrete distributions 

• Hypothesis tests 

• Confidence intervals 

• Linear regression 
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Both, Mathematica and Maple V, run under different platforms. They use 
lists and arrays to handle objects. It is possible to build up larger units like 
matrices and multi-dimensional arrays. 

Neither of them supports dynamic graphics, therefore we have no linking or 
brushing. They do not offer statistical graphics at all. 

The programming language of the programs is very large, but more directed 
to symbolic computations. Nevertheless the handling of the programming 
language can be complicated. When I tried to compute the mean squared 
error of a kernel estimator one of the tasks was to replace a function f by its 
Taylor-expansion of order J. Only with some tricky handling of Mathematica 
commands I was able to achieve this. 

Since both program run under a GU! all possibilities of a good help system 
are offered. But at least Mathematica has a very short help system. Maple V 
offers a topic oriented help in a way that we can click on the topics and get 
to see the subtopics or the appropriated command. 

5.4.4 S-Plus 

S-Plus is one of the latest statistical packages which runs on different plat­
forms (UNIX, PC). 

It offers a modern object orientated programming language. The object ori­
entation supports hierarchical objects (see PPR). 

Since a lot of people use it, we have a lot of routines available. The integration 
in a GU! environment allows good graphics although the handling could be 
improved. Linking and brushing are available in a limited form (scatterplot 
matrix), but a programmable environment for this will come soon. 

The help system is not very convincing, but we have lot of literature about 
S-Plus available. 

5.4.5 SAS 

SAS is a old batch-orientated programming language. Nowadays it runs on 
a lot of different platforms. During the time SAS has grown to an allround 
program which means you will find an appropriate SAS function for a lot of 
statistical (standard) problems. 

The data objects in SAS are variables (vectors). They can be built up to 
datasets (matrices). A special DATA step is used to declare these objects. 

Although SAS now offers dynamic graphics we have only poor possibilities 
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for brushing and linking. The programming language allows to build modules 
which encapsulate the whole SAS code so that the unexperienced user will 
only see a module where he could use a menu. 

The help system is part of the GUI help system. The paper documentation 
of SAS is excellent, it does not only offer a description of the commands but 
introduces them in the topic as well. 

5.4.6 SYSTAT and SPSS 

SYSTAT and SPSS are menu driven programs. SYSTAT runs on MacIntosh 
computers and under Windows, SPSS only under Windows. We can do the 
standard routines under both programs. 

Both programs use spreadsheets for the data input, which indicates that a 
matrix structure is used to store the data. But as in DataDesk both programs 
can only handle one dataset. 

They offer mainly static graphic and some dynamic graphics (e.g. 3D-scatter­
plot, smoothing in scatterplots). But linking and brushing is only possible in 
a very limited form, e.g. SYSTAT refuses to brush more than 50 datapoints. 

Although both programs have a programming language, the language is hid­
den. It seems to be difficult to introduce new algorithms to both program 
packages. A new- or redefinition of menuitems is impossible. 

The help system is again integrated in the GUI help system. Nevertheless the 
help system is quite short. SPSS tries to introduce the user to the topic, but 
often the information is too sparse. Especially some of the tests used are not 
described sufficiently. 

Missing values are again handled in the "standard" way, but at least SPSS 
remarks how many observations are used in the specific analysis. Yet some 
of the outputs are very huge (see cluster analysis) and this information can 
easily be overviewed. 

5.4.7 X-Lisp Stat 

X-lisp-Stat is a programming language which runs on top of X-Lisp. X­
Lisp itself is running on a lot of platforms. Lisp supports mainly list-like 
environments, and so it is possible to build up each kind of data structure 
we might need. 

It offers all graphical possibilities of a statistical program. This includes link­
ing, brushing and dynamic graphics. Since linking is done through Lisp it 
should be possible to link different datasets and to handle them appropri-
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ately. 

Most of the routines are available in Lisp and we can have a look at them. 
The programming language allows us to build up completely menu driven 
environments. The help system is integrated in the GUI help system. 

The main drawback from my point of view is that the programming language 
is based on X-Lisp. It is very difficult to change from procedural languages 
like Pascal, C or Fortran to Lisp which is based on the manipulation of lists. 

When I tried to install X-Lisp-Stat for Windows I had a lot of problems 
which I could solve, still I was very disappointed what is being delivered 
together with the system. The documentation was not too good. 

5.4.8 XGobi and XploRe 2.0 

XGobi and XploRe 2.0 are examples of highly specialized software. XGobi runs 
only under UNIX and the main aim is to visualize multivariate data.. XploRe 
2.0 runs under DOS and is specialized in nonparametric smoothing methods. 
Both programs are menu driven. 

The used data. objects are matrices. In XploRe 2.0 these matrices are called 
"workspaces". Whereas XploRe 2.0 can handle several datasets (matrices), 
XGobi can handle only one dataset. But it is possible to start several XGobi's 
which communicate with each other. 

Both programs are offering dynamic and interactive graphics with the pos­
sibility of linking and brushing. It is not possible to link different graphics. 
In principle XGobi and XploRe 2.0 offer the possibility to extend the system 
which nevertheless turned out to be quite difficult. For example Prof. Schimek 
and his group tried to use the programming interface to extend XploRe 2.0, 
but he admitted that they had a lot of problems. I tried to include some 
faster EPP-indices in XGobi by myself, but I found it quite difficult. Finally 
one of the authors of XGobi, Dianne Cook, did it for me so that I only had 
to deliver the routines. 

5.4.9 XploRe 3.2 

XploRe 3.2 is an extension of XploRe 2.0 and runs only under DOS. It has 
a programming language which allows to create and use menus, though we 
still have a concentration on smoothing methods. 

The standard data object is a matrix. In some sense it is possible to build 
hierarchical objects. The program offers interactive and dynamic graphics 
including linking and brushing. In some aspects the linking is not as good as 
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X-Lisp-Stat or DataDesk. Since the basis is a programming language it is 
more difficult to handle this program than DataDesk. Like X-Lisp-Stat it 
offers programmable links, but the handling is much easier. The help system 
is topic orientated and context-sensitive. 
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6 
Implementation in XploRe 

Summary 

Here we will show the implementation of the data structures developed in 
the chapter before in XploRe. Nevertheless not everything which is explained 
before will be part of XploRe 3.2. First we will describe how graphical data 
structures are implemented in XploRe 3.2 and how they can be used interac­
tively. Then we will show the data structures for the data being implemented 
in XploRe 3.2. The basic data structure is a matrix and no hierarchical lists 
are possible. Then we describe which possibilities of linking are offered in 
XploRe 3.2. Then we will describe some selected commands in Xplore 3.2 
for producing interactivity, for reading and writing data, "reading and stor­
ing macros, libraries and for binned kernel estimators. These commands will 
show solutions to some problems we mentioned before or which will be used 
to show extensions based on the extension from matrices to multivariate ar­
rays. The third section will describe how some selected tools work (random 
number generator, PCA, grand tour, multidimensional scaling, clustering, 
multivariate kernel regression, PPR, wavelet regression, interactive contour­
ing). It will show that we are able to implement a variety of (interactive) 
tools efficiently with the proposed data structures. The fourth section will 
describe the implementation of arrays in XploRe 4.0, and the fifth will show 
how the commands BIBDATA and con are extended for the use with arrays. 

6.1 Data Structures in XploRe 3.2 

6.1.1 Graphical Objects 

Displays 

Creating displays. As described in section 1.2.2 a display is the largest 
graphical object. A display in XploRe is a set of nonoverlapping windows 
covering the whole screen. We can have several displays in XploRe, but only 
one display being active and visible. The option of various overlapping dis­
plays would have generated a lot of additional programming for a windows 
system. 
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A display can be created by the command: 
CREATEDISPLAY (displayname. xwin ywin. type_1 ... ) 

The parameter displayname is the identifier for a certain display. xwin fixes 
the number of the windows in the display. If xwin is equal to 5 the command 
would create a display with 6 = 3 x 2 windows since 5 x 1 window would result 
in five small windows. With 6 windows we have approximately the same size 
in the x- and y-direction. Obviously one window is not used. The second 
optional parameter ywin allows us to fix the number of windows in the x­
and y-direction, e.g. xwin= 5 and ywin= 5 would produce a display with four 
windows, two in each direction (see Figure 2.22). If we use negative integer 
values in xwin or ywin, we will get displays with asymmetric sizes of windows. 
For example the display in Figure 2.16 can be created with xwin= -2 and 
ywin= -2. The true sizes of the windows are fixed such that in x-direction 
the right window will be large enough to show one value of one vector without 
cutting decimals. 

The last parameter type_1 '" fixes the type of the window (see below). If 
the sequence of types can be repeated it is only necessary to give the repeating 
sequence once. We do not have the freedom to give names to the windows 
as they will be named automatically. So if we have three two dimensional 
windows and one text window as in Figure 2.16, the names will be s2d1, 
s2d2, s2d3 and text1. 

Standard displays 

We have several standard displays with one window in XploRe corresponding 
to the possible window type: 

• A help display which is used for displaying a helptext, 

• a text display which is used for displaying various texts, 

• a static2d display for showing 2D-scatterplots, 

• a dynamic3d display for showing 3D-scatterplots, 

• a face display for showing Chernoff faces and 

• a boxplot display for showing boxplots. 

In contrast to the window types above the histogram of the three-step model 
will follow as described in section 5.1.1, using the static2d display. 

Changing and killing displays. To change from one display to the other 
we have the command 

DISPLAY (displayname). 

Since displays are global objects in XploRe it is necessary to kill them explic­
itly with the FREE command. 
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Printing displays. A display can be printed when we are in the active win­
dow by the key combination <Alt-p> or by the command PRIIT. In XploRe 
it is impossible to print one window only. 

Internal structure. The internal structure of a display is: 

struct display 
{ struct window *firstwindow, *workwindow; 

int freewind, fullwind; 
}; 

We have pointers to two windows: the first window of the display and the 
active window. The active window is the one where the cursor is located. The 
variables freewind and full wind give us the number of windows used and 
not used in the display. The structure of the window will produce the queue 
of all windows in a display. For easier access we have a pointer to the active 
window. 

Windows 

Window types. As mentioned before we have five different types of win­
dows: 

• text windows 

• 2D-scatterplot windows 

• 3D-scatterplot windows 

• Boxplot windows 

• Chernoff face windows 

Windows are filled with data by the command 
SHOW (data_1 ... data~ window) 

Only in the case of the Chernoff face window there is a deviation; the com­
mand then is 

SHOW (data xface yface index type). 

Text. The text windows are used to display and manipulate text. The editor 
of XploRe uses such windows for editing data, text and programs, the com­
mand is EDIT. The command MENU allows linewise selection with the cursor. 

2D-scatterplot. For displaying two dimensional data the 2D-scatterplot 
window is used. A dataset data_1 can contain more than two vectors. In 
this case we will see the first vector plotted against the second, the third 
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against the fourth and so on. We can enter several datasets (data..2 ... ), and 
each dataset will get a different colour, see Table 6.1. The true colour on the 
screen is depending on the manipulation of the internal colour palette by the 
command PALETTE. 

Dataset no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Colour 
White 
Yellow 
Light magenta 
Light red 
Light cyan 
Light green 
Light blue 
Dark gray 
Light gray 
Brown 
Magenta 
Red 
Cyan 
Green 
Blue 
Black 

TABLE 6.1. Colours of datapoints in the i-th dataset. The coding of the 
colours follows the standard scheme given by DOS. With the command 
PALETTE a complete recoding of the colours is possible, since e.g. yellow 
is not always a good colour for plotting. 

Since we want to have interactive graphics which means we want to modify 
the appearance of the graphic we have an icon bar for the active window in 
the right upper corner of the screen. It can be accessed via the cursor and 
<Enter> or the function keys «Fl> - <FlO». The icons, each of them hiding 
a menu, have the following meaning: 

Fl Help 

F3 Go into link modus (details see Section 6.1.3) 

F4 Change window attributes 

Fl Help 

F2 Headline on/off 

F3 Axis on/off 

F4 Edit headline and axis text 
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F5 Exit axis borders (minimum, maximum, tickwidth) 

FlO Return to main icon bar 

F 5 Brushing operation 

FI Help 

F2 Zoom in brush area (focussing) 

F3 Zoom out brush area 

F4 Change brush size 

F5 Brush on/off. 

F6 Select colour for brushing 

F7 Select point-style for brushing 

FlO Return to main icon bar 

F8 Activate the following window in the display 

F9 Activate the preceding window in the display 

FlO Change datastyles 

FI Help 

F2 Change the colour of the active dataset 

F3 Change the point-style of the active dataset 

F4 Lines on/off. 

F5 Change the line style 

F6 Change the line thickness 

F7 Select the data for linking (details see Section 6.1.3 

Enter Select the active dataset 

Esc Return to main icon bar 

Here we notice an inconsistency in the selection of colours and point-styles for 
brushing and changing datastyles. In general we should use the same hotkeys 
for the same tasks. 

Two subicon bars will need a more detailed explanation: brushing operations 
and changing datastyles. 

If we press <F6> the cursor will change from a small arrow to a rectangular 
box. The starting size is depending on the windowsize. In contrast to the 
brushing modes described, XploRe has only the transient brushing mode. We 
just need to toggle the brushing on and off. with <F6>. Additionally we have 
the possibility of focussing (see Figure 2.13 and 2.14). 
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If we press <F10> a box is opened which contains all datasets from data1 
to datap as given in the SHOW command. We can change the appearance 
separately for each datapart. We just have to move the cursor on the line 
where we find datak and press <Enter>. Now this datapart is activated and 
the actual parameters (colour, point-style etc.) are shown in the icon bar, 
and we can manipulate the datapart by pressing the function keys. 

3D-scatterplot. The 3D-scatterplot is very similar to the 2D-scatterplot, 
just the appearance of the axes is different. Again a dataset can have more 
than three vectors. So the first, second, third and the fourth, fifth and sixth 
etc are plotted together. But this structure has a deeper meaning. Sometimes 
we need to plot a surface in 3D-space, so a dataset with 3 x m vectors is 
interpreted as a grid (Zi' Yj, Zij). If we draw lines instead of datapoints we 
will get a grid in the space instead of wildly connected datapoints. The SPLIT 
command allows easily to split a dataset with three vectors into a dataset 
with 3 x m vectors. 

Obviously we need more features for the 3D-scatterplot. The icon bar offers 
additionally: 

F4 Change window attributes 

F6 Edit rotation origin 

F6 Rotation 

FI Help 

F2 Go into rotating mode (cursor left, right, up and down and cursor 
control left and control right rotate the data) 

F3 Move closer to or further from the data 

F4 Change view direction (standard view is to the "center" of the data) 

F5 Scale axis 

F6 Select projection 1 

F7 Select projection 2 

F8 Select projection 3 

F9 Select projection 4 

FlO Return to main icon bar 

F7 Reset to start projection 

Boxplot 

The boxplot window displays each vector of a dataset as a boxplot. Here we 
have one optional parameter which fixes the colour and the point-style of the 
boxplots: 
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SHOW (data boxes type). 

Chernoff faces 

The Chernoff face window displays each observation of a multivariate dataset 
as a Chernoff face (the Flury-Riedwyl algorithm is used). The command 
differs from the standard show command: 

SHOW (data xface yface index type). 

The parameters dace and yface fix how many faces will be shown in the 
x- and y-direction. The index fixes which vector in the dataset is represented 
by which face part. The maximum number of face parts is limited to 36: 

1 Right eye size, 
2 right pupil size, 
3 position of right pupil, 
4 right eye slant, 
5 horizontal position of right eye, 
6 vertical position of right eye, 
7 curvature of right eyebrow, 
8 density of right eyebrow, 
9 horizontal position of right eye brow, 

10 vertical position ofright eye brow, 
11 right upper hair line, 
12 right lower hair line, 
13 right face line, 
14 darkness of right hair, 
15 right hair slant, 
16 right nose line, 
17 right size of mouth, 
18 right curvature of mouth, 

19-36 the same as 1-18 but for the left part of the face 

For example if index [2. 1] = 5 then the fifth vector in data is used to deter­
mine the right pupil size. If the index vector can only have 18 entries, it is 
assumed then that the faces are symmetrical. 

Manipulating windows 

In XploRe we have two possibilities to manipulate windows. The first possi­
bility allows us to insert keystrokes via WRlTECOI into the keybuffer. These 
inserts appear in the window when the a user has pressed them. An example 
often used in XploRe macros is: 

WRlTECOI(27) 
SHOW(x S2D) 
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We insert <Esc> (= ASCII 27) into the keybuffer. Normally we will stay in 
the S2D-window when SHOW is executed. But the program will find <Esc> in 
the keybuffer and exit from the window immediately. If a user would like to 
leave the window he would have to press <Esc> too. A whole sequence of 
keypresses can be entered in the keybuffer, e.g. see the macro CONT3D. 

The other possibility offers the UPDATE command. The parameters are 
z = UPDATE (x {n {s1 {s2 { ... }}}}). 

The first parameter is a dataset which can be appended to the existing 
datasets or which can replace an existing dataset. The second parameter fixes 
the number of dataparts. If in the SHOW command two datasets were given 
and n is equal to two then the dataset x will replace the second datapart. If 
the number is larger than the number of existing dataparts, the dataset will 
be appended. To find out which is the number (position) of the new datapart 
UPDATE returns z. All other parameters s1, s2, ... are used to manipulate 
the attributes of a datapart or the attributes of the window. Some of the 
parameters are only keywords which need additional parameters: 

• S2Di, D3Di, ... will activate another window of a display 

• LIIE, POIlT draw the specified dataset as lines or points 

• SOLID, DOTTED, CENTER, DASHED fix the line style 

• THICK, IORM fix the thickness of the line 

• TITLE "string" or string matrix which changes the title of the active 
window 

• XAIIS "string" or string matrix which changes the x-axis text of the 
active window 

• YAXIS "string" or string matrix which changes the y-axis text of the 
active window 

• ZAXIS "string" or string matrix which changes the z-axis text of the 
active window 

• OLDPROJ keeps the actual projection even if new data are inserted into 
the window 

• IEWPROJ computes a new projection from all data 

Internal structure 

The internal structure is quite complicated. The window has to know a lot 
of data about itself: 
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struct window 
{ int :min, ymin, :max, ymax, bwidth, bheight, 

gxmin, gymin, g:max. gymax, 

}; 

tree, type, tlags, new, cursorx, cursory, 
movex, movey, limitx, limity, 
taceno; 

char *winname, *namexaxis, *nameyaxis, *namezaxis, *namehead, 
bmode, axistextmode; 

struct datapart *tirstdata; 
struct window *nextwin, *lastwin; 
projection *proj; 
double extrema[12], middle[3], windstyle[HAXWIIDOWSTYLE]; 

The parameters have the following meaning: 

• :min, ymin, :max and ymax 
Position of the window in the display in screen coordinates 

• bwidth, bheight 
Height and width of the brush 

• bmode 
The colour and the style a datapoint gets if <F6> is pressed in the 
brushing icon bar 

• gxmin,gymin,g:max,gymax 
Position of the drawing area 

• tree 
Is the window used or not 

• type 
Type of the window (2D-scatterplot, 3D-scatterplot, ... ) 

• tlags 
Flags to indicate if a frame is to be drawn etc. 

• new 
Distinguishes between the three window drawing modes 

• cursorx, cursory 
Position of the cursor 

• movex,movey 
Pixels to move if the next left, right, up or down key is pressed 



206 Implementation in XpioRe 

• limitx,limity 
Limits of the cursor movement 

• faceno 
First observations which will be drawn in the upper left corner 

• vinname 
Name of the window (e.g. S2Dl) 

• namexaxis,nameyaxis,namezaxis 
Axes text 

• namehead 
Headline text 

• axistextmode 
Axes mode; if the window gets too small it does not make sense to draw 
axes, tickmarks and axes texts 

• firstdata 
Pointer to the first datapart 

• nextvin, lastvin 
Pointers to the preceding and the following window in the display 

• proj 
Projection matrix 

• extrema[12] 
Extremal values in all three directions 

• middle[3] 
Central coordinates, e.g. for rotating 

• vindstyle[MAXWIIDOWSTYLE] 
Flags for the appearance of the window (Headline on/off, Axes on/off 
etc.) 

Datapart 

A datapart is each dataset given to a window through a SHOW or UPDATE 
command. The number of dataparts is not limited in XploRe. The internal 
structure is given by 

struct datapart 
{ char *firstmatrix; 

char *linkmatrix; 
int *screenx. *screeny. screendim. screenlen; 



}j 

char *screentextj 
double datastyle[HAXDATASTYLE]j 
struct datapart *nextdataj 
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and the meaning of the parameters is 

• firstmatrix 
The name of the data matrix 

• linkmatrix 
The name of the linked matrix or the linked datapart 

• screenx, screeny 
The screen coordinates for each datapoint 

• screendim, screenlen 
The dimension and the length of the data matrix 

• screentext 
The text which should be plotted instead of a point 

• datastyle[HAXDATASTYLE] 
Information how the dataset should be plotted 

• nextdata 
Pointer to the next datapart in the queue 

For fast redrawing the screen coordinates are kept in vectors, e.g. if we call 
DISPLAY. For the matrix and the link object we only keep the names but no 
copies of the matrices themselves. This causes problems if we use temporary 
objects, but we can exchange a data matrix, and it only requires a simple 
redraw to show the new data. 

6.1.2 Data Objects 

Vectors. The smallest data objects are vectors in XploRe 3.2. This has partly 
historical reasons, because XploRe 2.0 has used vectors, but it allows us to 
handle vectors for different types. From vectors of different types we build 
up matrices. All vectors in a matrix have to have the same length. 

In XploRe has the following vector types: 

• Float 
The vector type is used to store 8-byte float numbers 
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• Text 
The vector type is used to store strings 

• Mask 
The vector type is used to store point-colours and point-styles 

• List 
The vector type is used to store lists of matrices 

The list vectors are mainly used internally, e.g. a function call like 
(xb yb) = BIIDATA(x binvidth origin y) 

will build up a list vector which contains the elements x, binvidth, origin 
and y, so each command in XploRe has (internally) only one input parameter. 
The same happens with the return parameter of BUDATA. We get back a list 
vector with the two elements xb and yb. 

Internal structure. As consequence the internal structures looks like: 

struct matrix 
{ int dim. len; 

struct vector *firstvec; 
}; 

The parameter dim and len describe the size of the matrix. firstvec is the 
address of the first vector. 

struct vector 
{ int bufsize; 

int noofmiss; 
double min.mu; 
char type; 

}; 

char *name; 
struct vector *nextvec; 
void *buffer; 

The vector structure is larger. type fixes the type of the vector, nextvec 
points to the next vector of the matrix. name contains the name of the vector, 
in general matrixname{, i}. We store additionally the number of missing values, 
the minimum and the maximum value in min and mu. buffer is the address 
where the data are really stored in the memory, bufsize indicates how much 
memory in bytes is used. 
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The object list 

struct object 
{ char *name, *origin; 

int type, depth; 
void *ptr; 

}; 

struct object *next; 
struct object *preobj; 

The object list which holds all objects (matrices, macros, displays) in XploRe 
is a doubled linked list. The parameter have the meaning: 

• name 
Name of the object, e.g. matrixname, procedurename, displayname 

• origin 
If an object is a macro then the filename is stored so that the macro 
can be easily loaded 

• type 
Type of the object 

• depth 
The depth of the object. It tells where the object was generated: 0 -
from the commandline, 1 - from a macro called from the command­
line, 2 - from a macro called from a macro which was called from the 
commandline and so on 

• ptr 
Address of the content of the object 

• next,preobj 
Addresses of the following and preceding object in the object list 

Although we have a flat list structure for the object list we are able (in 
general) to build hierarchical objects by the use of list vectors. 

6.1.3 Linking Objects 

Interactive linking. In XploRe we have several possibilities to create links 
between a datapart in a window and other dataparts or matrices. 

As mentioned on page 201 we can press <Fi0> in a graphical window. We 
then get a box with all dataparts. If we now press <F7> we get another box 
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with all matrices which have a length conforming to the datapart. Now we 
can link a matrix or a datapart to this datapart. 

When we are back in the graphical window we can toggle to the link modus 
«F3». A box appears with the coordinates ofthe datapoint, if we have not 
linked a matrix to the datapart. If we have linked a matrix to the datapart 
then the corresponding (through the number ofthe datapoint) values ofthe 
matrix will be shown. So it is possible to plot a dataset, a regression line and 
to ask the data about the residuals as in Figure 5.6. 

Linking by command 

In XploRe there is the LIIK command. It allows to link dataparts with other 
dataparts or matrices. The syntax is: 

LIIK (namel name2). 

The parameter name1 is the name of a datapart of a window in the active 
display, e.g. s2dldata...1. name2 can be a datapartname or a matrixname (e.g. 
x). It is not possible to link between dataparts of various displays, since we 
can only show one display on the screen which will change in XploRe 4.0. If 
we link a matrix to a datapart this is of any influence only if we press <F3> in 
a graphical window. If we link another datapart the brushing influences it. If 
we brush datapoints of a datapart the corresponding datapoints in the linked 
datapart we will get the same point-colour and point-style. The scatterplot 
matrix is a good example in XploRe (see Figure 2.22). 

6.2 Selected Commands in XploRe 3.2 

6.2.1 Interactivity 

Interactivity is necessary in a lot of statistical applications. We have already 
described the interactive graphics in XploRe. Nevertheless we need more than 
just linking pictures and changing graphics. The system has to react on user 
input. 

The input commands are REIDCDI, REIDVlL, READSTR and HEIU: 

z = REIDCDI (x {filter}) 
z = READVAL (x {def}) 
z = READSTR (x) 
pos = MEIU (x {window}) 

REIDCDI reads the next keypress from the internal keybuffer. The optional 
parameter filter allows to filter characters as all characters will be ig­
nored which are not in the filter. The concept of a X pI oRe-internal key-
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buffer allows automatization of keypresses. With the command VRITECOI we 
can insert keypresses in the internal keybuffer. This leads to sequences of 
VRITECOI's, e.g. in the interactive contouring. 

READVAL asks for a number via a messagebox from the user. The parameter 
x is a message to the user and the optional parameter def a default value, 
if the user leaves the box without typing a number. READSTR reads a string 
from the user. 

MEIU shows a menu in a text-window of the active display and allows the 
user to choose. The parameter x contains the text of the menu. The output­
parameter pos contains the number of the selected line and the line itself. 

6.2.2 Reading and Writing Data 

As mentioned earlier the reading and writing of data can be a painful task. 
Here the reading and writing of data is based on ASCII-files. The command 

x = READ (lbank2") 

will read the Swiss banknote dataset into the matrix x. Since in each line of 
bank2 . dat we have exactly 6 numbers and 200 lines, it follows that x has the 
dimension 200 x 6. The writing is as easy as reading: 

VRITE (x Ibank2") 

and we write our data to the file bank2.dat (and overwrite the file). 

If we have multidimensional arrays as in IploRe 4.0 instead of matrices, 
we can not keep the dimensions larger than 2. An array of the dimension 
n1 x n2 x n3 X ... X np will be written in n1 x n3 x ... x np lines and n2 
columns. If we read these data with READ it will result in the appropriate 
matrix. With the help of the RESHAPE command in XploRe 4.0 we can easily 
reconstruct the original array, if we know the dimensions. 

Sometimes we want to store the dimensions too. XploRe has a X-format, 
an internal format to store matrices. The reason for the introduction of the 
X-format in XploRe 3.2 was that large datasets need a lot of time to be 
loaded. In the X-format reading is much faster as the internal structures can 
be stored directly. The READ command recognizes automatically if a dataset 
is in ASCII-format or in X-format. Only the VRITE command needs a special 
format parameter to store datasets in X-format: 

VRITE(x Ixbank2" "1") with compression 

or 
VRITE(x Ixbank2" lIyll) without compression. 
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6.2.3 Random Generators 

IploRe 3.2 provides two commands for the random generators: 

• UJIFORM which fills an n x p matrix with uniform random numbers in 
[0,1] and 

• IORMAL which fills an nxp matrix with normal random numbers N(O, 1). 

The normal random generator is built via the Box-Muller algorithm from 
the uniform random generator; see Press, Flannery, Teukolsky & Vetter ling 
(1988). 

The uniform random generator is a linear congruential random generator. 
The value ri will be computed from ri-l via 

. (27132. ri-l + 7.0) == 62748517 
~= 62748517 . 

6.2.4 FUNC and LIBRARY 

IploRe offers two possibilities to load functions. The command FUlC loads a 
single macro from a file: 

FUlC (filename). 

It is expected, but not necessary, that the macro has the same name as the 
file. The method is mainly used during the development of a macro for a 
library or in library macros to load additional macros. 

The command LIBRARY loads a whole set of macros from a file: 
LIBRARY (filename). 

Each line of the file contains the names of the macros. An example is the 
BIGBDIM-library: 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
••••••••• the IploRe BIGBDIM library •••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
•••••••••••• date : 960726 ••••••••••••••••••••••••••••••••• 
•••••••••••• author: Sigbert Klinke ••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DRAFTMAI 

DRAFT4 
DRAFT6 
DRAFT6 

Draftman plot 
for 4D-data 
for 6D-data 
for 6D-data 



DRAFT7 
DRAFTIIF 

DOFACE 
SIMDEP 
TOUR 
SUI FLOW 
DEIS3PLT 
AlDREW 
JITTER 
COITOUR 
MULTDRAW 
PCPLOT 
CLUSTER 
HOPCA 
BOXCOMP 
BOXSUB 
VARCOMP 
SCATTER2 
DESKSTAT 
DOMDS 
MDS 
IMDS 

for 7D-data 
for >7D-data 

Flury faces plot 
Simplicial depth 
Grand tour 
Sunflower plot 
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Density estimation for 3D-dataset 
Andrews curve 
Jittering of data 
Contouring of 3 or 4 dimensional data 
Shows movements of datapoints in 2/3-space 
Parallel coordinates plots 
Explorative cluster analysis 
Principal component analysis 
Linked boxplots 
Subgrouped boxplots 
Univariate analogue to draftman plot 
Analysis of scatterplot 
Descriptive statistics 
Show MDS results 
Makes metric multidimensional scaling 
Makes nonmetric multidimensional scaling 

Since the directory structure of XploRe is fixed, we know where to find the 
macros. 

The HIGHDIM library contains techniques which are related to the analysis of 
multidimensional datasets. 

6.2.5 BINDATA and CONY 

The important commands for every method connected to kernels are the 
commands BIIDATA and COIV. The following macros of XploRe use these 
commands: 

• ASH.XPL, ASHK.XPL,HISTOGRM.XPL,SUIFLOW.XPL 
Average shifted histograms, histograms, sunflower plots 

• BWSEL.XPL,HSJMBII.XPL 
Bandwidth selection methods for kernel density estimation 

• DEIAUTO.XPL,DEIEST.XPL,DEIEST2.XPL,DEIGAU.XPL,TWDEIES1.XPL, 
TWDEIES2.XPL 
Kernel density estimators 
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• DEIS3PLT.XPL 
Interactive plotting of marginal densities of a 3D-dataset 

• COIT2.XPL,COIT3.XPL 
Interactive contouring routine for 3D- and 4D-datasets 

• LPD1EST.XPL, LPDEREST.XPL, LPREGEST.XPL 
Local polynomial estimation 

• REGAUTO.XPL,REGEST.XPL,REGLIBC.XPL,REGMHFH.XPL,TWKERLIK.XPL, 
TWKERREG.XPL,TWLSCRVL.XPL,TWRECRVL.XPL,TWREGEST.XPL 
Kernel regression 

• TWWVLET.XPL, WAVEREG.XPL 
Wavelet regression 

• COITIIG.XPL,PPIITER.XPL,SCATTER2.XPL 
Different algorithms in cluster analysis, exploratory projection pursuit 
and 2D-dataset analysis 

The syntax of the BIIDATA command is 
(xb yb)=bindata(x d 0 y). 

The parameter x is a multivariate dataset, d is the binwidth, 0 the origin of 
the bin 0 and y the (optional) y-values to x. The result xb will contain the 
bin position of the nonempty bins as integers. yb contains in the first columns 
the number of observations which have fallen into the bin. The second and 
more columns contain the sum of the y's which have fallen into the bin. 

The real power concerning kernel estimation comes from the interplay with 
con. The call is 

(xc YC or)=COIV(xb yb wx wy sym). 

COIV computes for each gridpoint (Xi l ,1, ... , Xip,p) in the grid min(xb[, 1]) ~ 
i l ~ max(xb[, 1]), ... , min(xb[' p]) ~ ip ~ max(xb[' p]) the function 

n 

Lyb[i,] * wy[abs(i1 - xb[i, 1]), ... ,abs(ip - xb[i,p])]. 
i=1 

Assume we generate 10 uniform values 

x = (l.l1e - 007,0.0030,0.12,0.42,0.0035,0.23,0.42,0.60,0.61,0.26) 

and bin them with d = 0.2 and 0 = 0 and we get 



Implementation in XpioRe 215 

xb = (0,2, 1,3) 

yb (4,2,2,2). 

To estimate the kernel density with the triangle kernel and a bandwidth of 
0.4 we can create a binned version of the kernel (with d = 0.2 and 0 = 0) and 
we get 

wx (-2,-1,0,1,2) 

wy (0,1/4,1/2,1/4,0). 

Since the kernels are always symmetrical, for computational efficiency we 
only store the positive part and omit the zeros. We will have 

wx (0,1) 

wy = (1/2,1/4). 

These are the parameters which COIY needs to work: 
(xc yc or) = COIY (xb yb wx wy). 

Now the kernel estimation sets the kernel at each position Xi and sums up. 
Since we have in xb four observations, COIV needs exactly four steps. First 
we generate xc from min(xb) to max(xb) and fill yc with zeros and then we 
move the kernel step by step over the data; see Table 6.2 as an example. 

step 
xb 
yb 

xc yc 
0 0.0 
1 0.0 
2 0.0 
3 0.0 

wy 
1/2 
1/4 
0 
0 

1 
o 
4 

yc wy 
2.0 0 
1.0 1/4 
0.0 1/2 
0.0 1/4 

2 
2 
2 

yc 
2.0 
1.5 
1.0 
0.5 

wy 
1/4 
1/2 
1/4 
0 

3 
1 
2 

yc 
2.5 
2.5 
1.5 
0.5 

wy 
0 
0 

1/4 
1/2 

TABLE 6.2. How CONY works for a function. 

4 
3 
2 

yc 
2.5 
2.5 
2.0 
1.5 

The same technique can be used for the multivariate case. Sometimes it is 
interesting to compute the derivative of the kernel. This can be done by using 
the derivative of the kernel in the density estimation. The symmetry of the 
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kernel K( -z) = K(z) changes to K'( -z) = -K'(z). The optional parameter 
sym allows putting in such origin symmetric kernels by setting sym to one. 

In the trivariate case we calculate the partial derivatives {JI/{JZi=l,2,3 by 
composing sym as 

sym = 1 = 1 * 2° + 0 * 21 + 0 * 22 
sym = 2 = 0 * 2° + 1 * 21 + 0 * 22 
sym = 4 = 0 * 2° + 0 * 21 + 1 * 22 

for {JI/{JZ1 

for {J I / {JZ2 

for (JI/{JZ3. 

We tell con by sym which kind of asymmetry we need. For the univariate 
derivative we have 

The call is 

wz = (0,1) 

wy = (0,-1). 

(xc yc or)=coDv(xb yb _x _y 1) 

and the work of con is shown in Table 6.3. 

step 
xb 
yb 

xc yc 
0 0.0 
1 0.0 
2 0.0 
3 0.0 

wy 
0 
-1 
0 
0 

1 
o 
4 

yc 
0 
-4 
0 
0 

-y 
0 
1 
0 
-1 

2 
2 
2 

yc 
0 
-2 
0 
-2 

-y 
1 
0 
-1 
0 

3 
1 
2 

yc 
2 
-2 
2 
-2 

-y 
0 
0 
1 
0 

4 
3 
2 

yc 
-2 
2 
0 

-2 

TABLE 6.3. How COIV works for a derivative of a function. 

Obviously we can compute the second partial derivatives in the same way, 
e.g. {J2 / {JZ1 (JZ2 by choosing sym = 3 = 1 * 2° + 1 * 21 + 0 * 22. 

In the example the parameter or will be (1,1,1,1) as all bins are present in 
xb. It can happen that we have a nonempty bin which would not appear in 
xb since no observation falls into this bin. con will generate all bins from 
min(xb) to max(xb). If we now compute the kernel density estimate we get 
an estimation for all bins. This is important for graphical purposes. But if we 
are only interested in the estimation at Xi as in EPP we need a possibility 
to identify the original Xi in xc. or contains a one if XCi is in xb or else a 
zero. 
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The command PAF will kill all columns which do not come from the original 
Xi. 

6.3 Selected Tools in XploRe 3.2 

6.3.1 Multivariate Normal Random Generator 

A multivariate normal random generator can be computed by the macro 
IORMGEI. The syntax is 

x = IORMGEl(n mu sigma) 

with n a scalar giving the number of observations, mu a p x 1 matrix for the 
mean and sigma a p x p matrix for the covariance matrix. 

It will be computed by 

mu + sigma-1/ 210RMAL(np). 

We can compute only one multivariate normal dataset with this command. 

6.3.2 Principal Component Analysis 

In XploRe we have two macros for principal component analysis: PCA and 
BDPCA. We will concentrate on the macro BDPCA. In Figure 6.1 we see the 
principal component analysis of the Swiss banknote dataset. The display 
consists of four windows: 

• The two windows in the upper rows which show a plot of the first 
and the second principal component (left) and a plot of the third and 
the fourth principal component (right). Both plots are linked and we 
can use the brush to mark the datapoints. If the datapoints have a 
prespecified colour, e.g. the three clusters marked by the result of EPP, 
these colours will be used in the plot. 

• The left lower window shows the eigenvectors for the principal compo­
nents. We can see which variables influence a component most. It is 
possible to scroll through the text to see the hidden components. 

• The last window contains the scree plot. The plot shows the explained 
total variance for each component. The vertical lines tell us how many 
components will be included by the various criteria (left: elbow, mid­
dle: Kaiser, right: 90%). The crosses above and below the stars are the 
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confidence intervals for Q = 0.05. Additionally it is tested if the eigen­
values are equal from the last to the first (Q = 0.05). In this case the 
corresponding stars will appear in red instead of blue . 
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FIGURE 6.1. Principal component analysis of the Swiss banknote 
dataset. 

The syntax of the PeA-macro is 
y = BDPCA (x) 

with x our data and y the principal components with the maskvector which 
could be changed via brushing. 

6.3.3 Grand Tour 

The syntax of the grand tour macro is 
Dl = TOUR (x) 

with x our multivariate data and Dl a mask vector which could be changed 
via brushing. 

The grand tour macro shows the actual projection (see Figure 6.2). The 
datapoints are coloured before the call of the grand tour so that the genuine 
banknotes are marked with blue stars and the forged banknotes with red 
crosses. In the right window we see the actual projection vectors. We use 
the subspace interpolation algorithm. Whenever it looks as if the sequence of 
projections is interrupted, we have reached an endpoint, and a new random 
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FIGURE 6.2. Grand tour of the Swiss banknote dataset. The picture of 
the data is manually focussed. 

projection will be generated. The same behaviour can be observed in XGobi 
if the number of datapoints becomes large. 

The last figure makes the whole projection reconstructable. It is the one 
which is used for the random seed: 

randomize(i*pi). 

The grand tour offers the keypresses 

< + > that i for each projection is increased by one 

< - > that i for each projection is decreased by one (reversion of the direc­
tion) 

<Ins> toggles the size of the output. As a standard the picture will be scaled 
on [-1,1]2 and will not fit to the data. 

<Enter> toggles the moving mode. The standard is not to wait in the pic­
ture, but to compute immediately the next projection. If the mode is 
toggled the program will wait in the picture and we the possibility to 
brush parts (see for example in Hardie & Simar (1995) Figures 16.3 and 
16.4). 
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6.3.4 Multidimensional Scaling 

We have two versions of multidimensional scaling available: 

• MDS 
which expects a matrix of distances and performs a metric scaling. The 
call is 

(e v) = HOS (x) 

with x a distance matrix and v the proportion of variance explained by 
several dimensions. If we consider d dimensions to be sufficient we have 
to take the first d columns of e to get an approximate picture of the 
distribution of the datapoints belonging to this distance matrix . 

• IHOS 
which expects a vector of distances and performs a nonmetric scaling 
with the stress function S2. 

6.3.5 Exploratory Projection Pursuit 

The macros for exploratory projection pursuit are part of the ADDMOD library. 
The following sequence in XploRe 

x = read ( tlbank2") 
library ("addmod") 
ch = 0 
P = ppexpl (x ch) 

will load the Swiss banknote dataset and call the macro for exploratory pro­
jection pursuit. The data will automatically be centered and sphered. The 
screen is divided into four windows. The dataset is projected along the first 
two principal components. On the right side a menu appears. 

At first we will be asked whether the output should be coloured or in gray 
scale. This is only important if we want to plot index functions; see Figures 4.6 
- 4.15. The next menu consists of two parts. The SEARCH PROJ part tries 
to find an optimal projection according to the selected index function. The 
actual best projection is displayed in the 2D-window. The left lower text­
window gives informations about the selected index function, the smoothing 
parameter for the density estimation, the value of the index function for the 
actual projection, and a step parameter. The Reset selection allows us to reset 
the projection to the initial projection based on principal component analysis. 
The Reinit selection selects a random projection as initial projection. The 
lIDEX FUICTIOI makes a contour plot of the index function. 
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The additional parameter ch tells the macro that the whole process is in­
teractive if it contains only a zero. If you put in a float vector as ch, the 
macro can run completely noninteractive. The float vector ch should have 
the following entries: 

ch[1,1] = 

ch[i,1] = 

ch[i + 1, 1J 

ch[i,1] 

ch[i + 1,1] 
ch[i + 2, 1J 

ch[i,1] 

{ 4
3 Use colour 

_ Use gray scale 

1
5 Find best projection with Friedman-Tukey index 
6 Find best projection with entropy index 
7 Find best projection with Legendre index 
8 Find best projection with Hermite index 
9 Find best projection with Natural-Hermite index 

Bandwidth or order 

1
16 Index function with Friedman-Tukey index 
17 Index function with entropy index 
18 Index function with Legendre index 
19 Index function with Hermite index 
20 Index function with Natural-Hermite index 

Bandwidth or order 
Number of gridpoints 

{ ~ ~~~: 
11 Reset 
12 Reinit 

The numbers presented here may change as the macro is still under devel­
opment. The correct numbers can be found by counting on which line of the 
menu the appropriate entry appears. 

Any other value of ch[i, 1] will have no effect. In the noninteractive mode, 
the program will give the result to a specified device such as a printer. 

For example, the following program 

proc () =main () 
x = read ("banlt2") 
x = x[,4:6] 
library ("addmod") 
ppexpl (x #(3 20 6 60 0» 

endp 

will draw coloured contour lines of the index function for the Natural-Hermite 
index with order 5 for the last three variables of the Swiss banknote dataset 
based on a grid with 50 x 50 = 2500 projections. The 0 quits the PPEXPL 
macro. 
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EPP is a technique that allows us to use interactive graphics for interpreta­
tion. The macro 

ppinter (x p) 

links the projected dataset of the EPP to each of the variables (strips of 
data in lower plot, see also Figures 4.27 - 4.29). By simple linking we can 
visualize the relationship between the projection and the original variables. 
In the upper plot, we see the best projection found with PPEXPL. The lower 
plot shows jittered dotplots of each of the variables. The variables are rescaled 
on [0, 1] via zrj = (zj-minj(zj ))/(maxj (Zj )-minj(xj)). The text window on 
the right shows the projection vector for X and Y found by EPP. Additionally 
you can see the result of the x2-test described. 

We can brush now in the upper plot and study how the brushed datapoints 
will appear in the coordinate (variable) axes to assist interpretation. 

Another possibility would be to mark each variable to see how it behaves in 
the projection. 

6.3.6 Interactive Clustering 

Since the computational power has increased we are now able to do clustering 
interactively. 

As usual it is difficult to represent multivariate data. Some preprocessing 
like principal component analysis or factor analysis will have to be done . 
We have chosen to show the plot of the first three principal components (see 
Figure 3.2). Another possibility would be to use trivariate MDS. It might 
be helpful to represent the results of the cluster analysis with a weighted 
principal component plot. 

The interactive clustering menu offers the following possibilities: 

Picture allows to enter into the 3D-scatterplot. All possibilities of 3D-­
scatterplot are available (rotating, masking, etc.). 

k-means the k-means algorithm. 

Adaptive an adaptive k-means algorithm described in Mucha & Klinke 
(1993). 

Ward the Ward algorithm (only euclidean distance). 

Single the single linkage algorithm. 

Mean link the mean link algorithm. 
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Median link the median link algorithm (only euclidean distance). 

Average the average linkage algorithm. 

Centroid the centroid linkage algorithm (only euclidean distance). 

Lance the flexible method of Lance and Williams. 

Redo repeats the last method, but we are able to use another number of 
clusters 

The distances which are offered for the agglomerative methods are the eu­
clidean distance, the L1 distance, the Loo distance, the cosine distance and 
the X2 distance. For some methods the choice of distances is limited to specific 
ones. The macro is only developed for the use of continuous variables. 

The screen is divided into four pictures: the main picture shows the 3D­
scatterplot of the first three principal components. The lower left picture 
contains the dendrogram and the lower right shows the selected method and 
the parameters of the method. 

Sometimes is it useful to classify on variables instead on observations. This 
can easily be achieved by transposing the data matrix and then using the 
cluster algorithm. 

6.3.7 Kernel Regression 

Macro 
Ull 
TRIAl 
EPA 
QUA 
TRl 
GAU 
COS I 
RUIl 
RTRIAI 
REP! 
RQUA 
RTRl 

Kernel 
Uniform product kernel 
Triangle product kernel 
Epanechnikov product kernel 
Quartic product kernel 
Triweight product kernel 
Gaussian kernel 
Cosine product kernel 
Radial symmetrical uniform kernel 
Radial symmetrical triangle kernel 
Radial symmetrical epanechnikov kernel 
Radial symmetrical quartic kernel 
Radial symmetrical triweight kernel 

TABLE 6.4. Kernels implemented as macros in XploRe 

We have various macros available for kernel regression: 
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• SKERREG 
computes the multivariate Nadaraya-Watson estimator without bin­
ning. Only the quartic kernel is available. The command SKER is the 
basis of this macro: 

(r f) = SKER (x y h xest). 

It computes the denominator for xest and the counter separately. The 
macro only computes r If. 

• REGEST 
computes an univariate N adaraya-Watson estimator with binning. It 
uses mainly the commands BIIDATA and COIV. With BIIDATA we bin 
the data and with the macro SYMWEIGH we produce a binned version 
of the kernel, here the quartic is taken, but we could also take any 
other kernel from Table 6.4 or program it by ourselves. The result of 
SYMWEIGH is that the binned lly-values add up to one. 

Then COIV is used to compute the denominator and the counter sepa­
rately, and a simple division computes the final estimator. 

• REGAUTO 
Works like REGEST, but the bandwidth is chosen as 0.1 * (max(z) -
min(z». 

• REGESTP 
Works like REGEST, but computes a multivariate Nadaraya-Watson es­
timator. 

Although the binned estimator should be faster than the direct estimator the 
inverse is true. The direct estimator is completely written in C, whereas the 
binned estimator runs in the macro language which is much slower. 

6.3.8 Projection Pursuit Regression 

The PPR is part of the !DDMOD-library of XploRe 3.2 (additive modeling). 
We have two macros available, PPR does the projection pursuit regression, 
PPRIITER helps to analyze the found projections and fits. The calls are 

(xs ys vs fs) = PPR (x cmd) 
PPRIITER(x vs fs) 

The PPR-macro allows an interactive fitting of a PPR model with different 
smoothers. The macro call is: 

LIBRARY("addmod") Load the addmod library 



x = READ(ldjppr") 

(xs ys vs fs) = PPR(x) 
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Read the dataset generated from 
Donoho and Johnstone (1989) 
Do the PPR 

The macro input is a dataset x. It is expected that the last column of x 
contains the regressor. The macro output are the standardized data, so xs 
has the property E(Xi) = 0 and Var(Xi) = 1. The same holds for ys. 
vs contains the projection vectors found by a m-term fit and fs the fitted 
function values. 

If you enter the macro you will get a menu where you can choose between 
different items. Since each fit of a m-term model is saved automatically in a 
PostScriptfile the first item allows you to change the names of the PostScript­
files. The standardname is TERM1.PS, TERM2.PS, TERM3.PS and so on. 
If you change the name to SUPSMO the name of the outputfiles will be 
SUPSM01.PS, SUPSM02.PS, SUPSM03.PS and so on. 

The second item Cycle Proj allows to look at random projections (aT Xi,"Yi) 
of our data to get an impression. All other choices start the PPR with different 
smoothers. You will always be asked how many terms you want to fit. The 
next question asks for the smoothing parameter except in the case of the 
supersmoother. 

You will get a sequence of pictures. In the big window you see the actual fit 
and the data which are fitted. The window under the big window shows how 
the error function will increase by changing the projection vector. The dotted 
line shows the value of the interpretability index of Morton (1989). The right 
lower window shows how the error in each term decreases while the upper 
window shows the actual projection. 

The second macro PPRIITER will help the user to interpret the result. The first 
item Enter Pic allows us to enter the picture ofthe projections ("Yi, "Yi-Yi,m) 
and to use the facilities of the plot. The title tells us how large m is at the 
moment and how many terms are available (M) at all. The lower right value 
shows the R2 value. The second item Circle Term cycles from m = 1, ... , M 
computed by PPR. The third term Set term allows to choose a fixed m. The 
fourth and fifth item allow to see the loadings and the squared loadings to 
analyze which term has most influence to a projection. 

In contrast to S-Plus XploRe allows the user to have a look at the algorithms 
used since everything is written in macro language. The disadvantage is that 
XploRe needs 15 minutes to fit one term for the Boston Housing Data on a 
486DX4-100 PC. To avoid getting bored XploRe offers the possibility to work 
interactively or to start a batch job. A second optional parameter in the call 
of PPR (x cmd) allows the user to give a list of numbers to the macro which 
encode the different options (see Table 6.5). 
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cmd[i,l] =0 Quit macro 
cmd[i,l] =1 Change print name to an integer 

cmd[i+l,l] New name 
cmd[i,l] =2 Cycle through random projection 

(endless loop!) 
cmd[i,l] =4 Use polynomial fitting 

cmd[i+l,l] Number ofterms to fit 
cmd[i+2,1] Order of polynomial 

cmd[i,l] =5 Use running median fitting 
cmd[i+l,l] Number of terms to fit 
cmd[i+2,1] Number of included neighbours 

cmd[i,l] =6 Use symmetrized k-nearest-neighbour fitting 
cmd[i+l,l] Number of terms to fit 
cmd[i+2,1] Number of included neighbours 

cmd[i,l] =7 Use the supersmoother 
cmd[i+l,l] Number of terms to fit 

cmd[i,l] =8 Use the Nadaraya-Watson estimator 
cmd[i+l,l] Number of terms to fit 
cmd[i+2,1] Bandwidth 

cmd[i,l] =9 Use the smoothing spline 
cmd[i+l,l] Number ofterms to fit 
cmd[i+2,1] Lambda 

cmd[i,l] = 10 Use a haar wavelet estimator 
cmd[i+l,l] Number of terms to fit 
cmd[i+2,1] Coefficients used for hard threshold 

cmd[i,l] =11 Use a local polynomial estimator of order 3 
cmd[i+l,l] Number of terms to fit 
cmd[i+2,1] Bandwidth 

TABLE 6.5. Command options for a batch job for PPR in IploRe 

With the PPR-algorithm of XploRe and S-Plus we get different results for the 
projection vectors. We do not believe that this due to the missing backfitting 
in XploRe. Since the computed R2 for the Boston Housing data are practically 
identical we believe that the error function in dependence of the projection 
has more than one maximum which seems to have almost the same height. 
Different choices for the projection vector in early terms lead to different 
projections fits in later terms. 

If we see PPR as a dimension reduction technique we have to base our decision 
on the corresponding projection of the standardized variables. 
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TABLE 6.6. Projection vectors from PPR and the linear regression for the 
Boston Housing Data. The coefficients of the linear regression (first line) 
are rescaled so that the euclidean norm is 1. Then we see the projections 
of 8-term-PPR-fit in XploRe and the projection of a 4-term- and 8-term-fit 
in S-PluB. 
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6.3.9 Wavelet Regression 

For the wavelet estimation we have several commands available: 

• VAVEGEI 
which allows to generate the father and mother wavelet from the wavelet 
constants hI; and some other parameters. The wavelets constants are 
available for the Oaubechies wavelets (Baar/02, 04, 06, ... ,020), the 
Symmlets (S4, S5, ... , SlO) and the Coiftets (Cl, C2, ... , C5), and they 
are stored in the file DATA\XVAVELET .DAT. 

• VAVEEST 
estimates the coefficients for the father and the mother wavelets. The 
procedure has an optional parameter y if a regression is to be performed, 
otherwise a wavelet density estimation is performed. 

• VAVESMO 
constructs the estimation curve from the possibly thresholded coeffi­
cients. 

• FVT and I1VFVT 
are contributed by Prof. Golubev, Moscow. This algorithm assumes 
periodic wavelets and uses the cascade algorithm. 

Since the function VAVEEST does not use the cascade algorithm we can com­
pute local thresholds based on: 

tjl; = CJ2(TJI; log(# thresholded constants) 

with 

~2 _ lEn 2 (X) (v ¥i-I + ¥i+l)2 (T'I; - - CP'I; iIi - ......;...-"--::--...;...:..~ 
1 n 1 2 

i=l 

The macro VAVELET1 is built upon the three first commands. The syntax is 
VAVELET1(x) 

with x a two dimensional nonequidistant data matrix. The first step is to bin 
in a way that we get an equidistant design. Then a regression estimation is 
computed for the Baar wavelets with setting all coefficients for the mother 
wavelets to zero. The result is displayed. The display used consists of four 
windows. The upper left is used to display the data and the fit, in the upper 
right the menu appears. The lower left contains the coefficient of the mother 
wavelets, all coefficients not used appear in blue. If a coefficient is used in 
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an estimate it will appear in red. We see the coefficient close to the place 
where it will have influence (locality of the wavelet) on the estimate. Each 
row represents a layer. 

We have now the possibility to brush the coefficients with red and blue. If we 
leave the macro with <Esc> the program will compute the new fit accordingly 
to the brushed coefficients. With <F3> we ask for the true values and variances 
of a specific coefficient. 

If we do not brush any coefficient we enter the menu with the following items: 

• Choose basis 
allows us to choose another basis than the Haar wavelets 

• Choose n 
allows us to choose more datapoints for binning 

• Choose level 
allows us to choose other layers for estimating, the default is lowest 
layer'" log2(n)/5 and highest layer'" log2(n/ log(n)) 

• Toggle data 
shows the binned data in the plot instead of the true data 

• Bard global 
applies a hard threshold t to the mother wavelet coefficients. The ab­
solute value of the coefficients will be shown in the right lower window 

• Soft global 
applies a soft threshold t to the mother wavelet coefficients. The abso­
lute value of the coefficients will be shown in the right lower window 

• Bard local 
applies a hard threshold tjlc to the mother wavelet coefficients. A trans­
formation of the coefficients divided by the estimated variances will be 
shown in the right lower window 

• Soft local 
applies a soft threshold tjlc to the mother wavelet coefficients. A trans­
formation of the coefficients divided by the estimated variances will be 
shown in the right lower window 

• And 
applies the following brushing- or threshold operations only to the co-
efficients actually used 

• Copy 
applies the following brushing- or threshold operations to all coefficients 
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6.3.10 Interactive Contouring 

As already shortly described XploRe is able to generate contour plots. The 
macro contour of the HIGHDIM library provides an easy tool for interactive 
contouring for 2D- and 3D-surfaces. The only assumption which is needed 
is that the data are provided in a special form. The data have to be on the 
vertices of a rectangular mesh. So our dataset has the form 

(xi,Yj,fij) or (Xi,Yj,Zk,fijk) 

with i = 1, ... , ni,j = 1, ... , nj, k = 1, ... , nk. Let us as an example compute 
the density of three variables of the Swiss banknote data: the width of the 
banknote, the height of the left side, and the diagonal of the inner box. First 
we load the libraries HIGHDIM and SMOOTHER, then we construct our dataset: 

library ("highdim", "smoother") 
x = read ("banlt2") 
x = xE, 1]-xE,2] -xE,6] 

Since we want to make a kernel density estimate at the grid points we compute 
the minima and the grid width in each variable: 

xO = min(x) 
gw = (max(x)-min(x»./15 

Then we generate a grid. For the kernel estimate we need additionally a 
bandwidth h, then we can easily compute a kernel density estimate for each 
gridpoint (15 + 1 = 16). 

nh = 5 
h = nh.*gw 
(xb yb) = bindata (x gw) 
wx = matrix(cols(x) 1 0) 
wy = symweigh (wx 1./nh nh tqua) 
wx = grid(wx 1 nh) 
(xc yc or) = cony (xb yb wx wy) 
xs = (xc.*trn(gw»-(yc./(rows(x).*prod(h») 
xs 

xs now contains the grid points and a density estimate. Looking at xs you will 
see how the order of the gridpoints should be like in order to pass them di­
rectly into the contour macro. To generate a 2D-surface for a two dimensional 
dataset we simply have to generate an x with two columns. For a 2D-surface 
we may increase the number of gridpoints from 16 to 50. Please keep in mind 
that for a 3D-surface we have generated 163 = 2048 gridpoints and for a 
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2D-surface we would have 502 = 2500 gridpoints. To choose 50 grid points 
for each variable for a 3D-surface would result in 503 = 125000 gridpoints. 
Depending on our installation this may cause a fatal error in IploRe because 
of memory problems; and surely the execution of the program would take a 
long time. 

Now we call the contouring macro with our dataset xs. Since we may want 
to store some contour plots in files we use the capture command. With the 
parameter on, we force IploRe to ask us before printing in which file we want 
the picture to be saved. If we would use another parameter here, mycont. ps 
for example, the parameter would be used as a name for the graphic file. But 
if we want to store more than one picture the second picture will overwrite 
the first, the third the second and so on. 

capture (nonn) 
contour (n) 

11:0 ('11.11.e31.1J,C31.11 
Y, cll.:n,c:u •. :n.cll.:21 
I. ('1.J ('2 1 Cl 1 

10.00% 

FIGURE 6.3. Kernel density estimate of three variables of the Swiss 
banknote dataset; automatic chosen contours. 

The result of these commands is shown in Figure 6.3. The right window of the 
plot shows us some informations about our contour lines and our densities. 
We have computed a density estimate lij k for each gridpoint (Zi, Yj, Zk); it 
is an easy task to rescale the lij k so that 

; lijk - miniJ,k lijk 
lijk = ., . 

m8.Xi,j,k lijk - mlDi,j,A: lijk 
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It holds that hill E [0,1]. Which contours are now plotted? You see a blue, 
green, and red line in the right window which corresponds to values near 0.0, 
0.05, and 0.25. So we have plotted the contours for 

i(z, y, z) '" 0.00 blue, outer 

'" 0.05 green, middle 

'" 0.25 red, inner. 

~he white (in the graphic black) line gives us informations on how many 
Iii II we have at a specific contouring level. Although we have chosen a big 
bandwidth we can see that most of the generated gridpoints have a density 
of 0, which is the smallest value we can get. The "curse of dimensionality" is 
present here! 

Before we start to change the contour levels, let us have a look how IploRe 
chooses the contour levels. IploRe takes the 20%, the 50%, and the 80% 
quantile of the hi II. The blue line represents the 20% quantile, the green 
line the median, and the red line the 80% quantile. It may happen that they 
coincide, so, as an example, make the bandwidth smaller (nh = 2), and you 
will miss one line, but IploRe will always compute three contour levels. 

Now use the keys <j> and <!> to change the contour level of the blue line. 
This is the active line and it is plotted as a thick solid line, whereas the 
others are plotted as thin dashed lines. With <_> and <-+> we can change 
how much <1> and <!> will increase our active level. The current value is 
plotted in the right window at the top, it is 10%. 

The keys <Pg Up> and <Pg On> activate one of the other lines. Another pic­
ture which you can obtain by changing the contour levels is shown in Fig­
ure 6.4. 

Maybe you will not be satisfied with the actual perspective you have from 
the contour plot. Use <BITER> to enter the contour plot. Since this a normal 
3D-window of IploRe, you can use all facilities of a 3D-picture, like rotating, 
brushing, and zooming. Leave the plot with <ESC> and the contouring macro 
with another <ESC>. 
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5.00% 

FIGURE 6.4. Kernel density estimate of three variables of the Swiss 
banknote dataset; user chosen contours. 

6.4 Data Structure in XploRe 4.0 

6.4.1 Numerical Arrays 

As explained in section 5.2.1 we need multidimensional arrays to store our 
data. In XploRe 3.2 we only have matrices like in many other statistical 
programs. 

The basic object in XploRe 4.0 is a eight dimensional array. We only need 
to change the value of the constant MAX..xARRAY from 8 to another figure to 
decrease or to increase the dimensionality of the arrays. The programming of 
the arrays in C++ allows us to build up a hierarchy of classes and to reduce 
the amount of programming. 

Class hierarchy is: 

• XplArray 

- Xplllumber 

* XplInteger 
. XplShort 

XplUshort 

. XplInt 

basis array 

basic number 

basic integer 
short 
short 

int 
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XplUnsigned 
XplLong 
XplUlong 

* XplReal 
XplFloat 
XplDouble 
XplLdouble 

unsigned 
long 

unsigned long 

basic float number 
4-byte float 
8-byte float 

lO-byte float 

The basis class XplArray contains operations which are the same for all 
necessary datatypes like 

• Construction and destruction of arrays 

• Creating of subarrays 

• Indexing of arrays 

• Concatenation of arrays 

• Filling of arrays 

• Reshaping of arrays 

• Assignment of arrays 

• Sorting of arrays 

• Sizes of arrays 

• Test if matrices are conformable 

• Casting 

• Reading and writing of arrays (screen/files) in ASCII or X-format 

• Layer, matrix and vector dummy procedures 

Step by step we are specializing the classes. Xpllumber contains all basic 
operations which can be done on numbers (here float numbers and integers) 
like 

• Elementwise unary mathematical operations (unary plus, unary minus) 

• Elementwise binary mathematical operations (addition, subtraction, 
multiplication, division, exponentiation) 

• Assignment 
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• Transposing of matrices 

• Multiplication of matrices (X * Y, XT * Y) 

• Multivariate k-nearest-neighbour 

• Binning 

• Convolution 

• Constructing grids 

• Conditional sums 

• Conditional products 

• Conditional minima 

• Conditional maxima 

• Conditional cumulative sums 

• Conditional cumulative products. 

Now we split them into two classes: one for float numbers (XplReal) and 
one for integers (XplInteger). The XplReal class incorporates the following 
operations 

• Elementwise mathematical functions (e.g. cosine, sine, etc.) 

• Computing the inverse of a matrix 

• Random generators 

• Fast fourier transform 

• Eigenvector and eigenvalue calculation for symmetric matrices. 

• Conditional means 

• Conditional variances. 

A finer class is obtained by deriving classes for different levels of precision 
of computing: XplLdouble for lO-byte float numbers, XplDouble for 8-byte 
float numbers and XplFloat for 4-byte float numbers. 

As mentioned earlier the amount of programming code is reduced by using 
derived classes which is possible by the ability of inheritance (defining an 
operation in Xpllumber), with the result that we have the operation available 
in all derived classes (XplReal, XplFloat, ... ). 
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Obviously we need another feature of C++ called Template, which means we 
do not fix the datatype (e.g. float, double, .... ). 

The XplInteger class supports 

• Elementwise logical operations (AND, OR). 

Special classes are also derived for different type of integers: signed integer 
(the size, 4- or 2-byte, machine dependend), unsigned integer, signed long 
(4-byte integer) and unsigned long. 

6.4.2 String Arrays 

Another class of arrays has to handle strings. A problem that frequently 
occurs with data is that we have nominal variables which are represented as 
text. In XploRe 3.2 we were forced to change the READ command as we can 
handle 16384 strings at maximum. So if we read a big dataset like the Berlin 
Housing Data where we have 3 yes/no variables (FM, FB, FE) we would have 
45000 strings to store. This is the reason to create a class XStringDatabase 
as a skip list (Schneider 1994) such that the same string is only stored once, 
but referenced more often. In the case of the Berlin flat data this would result 
in 45000 references and only two entries in the skip list: "yes" and "no". 

• XStringDatabase 

• xstring 

• XplArray 

- XplChar 

database for strings 

handling of strings 

basis array 

basic text 

The class xstring offers the standard string operations and the class XplChar 
handles arrays of strings. 

6.4.3 Other Arrays and their Implementation 

We need some additional classes of arrays, e.g. XplColour derived from 
XplArray to handle arrays of colours. 

The class XplIndex handles the multidimensional indexing of the arrays. 

This represents the actual state, since XploRe 4.0 is still under development. 
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6.5 Commands and Macros in XploRe 4.0 

6.5.1 BINDATA and CONV 

The syntax for BUDATA and COIlV is almost the same as in XploRe 3.2: 
(xb, yb) = BIIDATA(x, binwidth, origin, y) 

(xc, yc, or)=COIlV(xb, yb, wx, wy, 8ym). 

What has changed is that we have the possibility to write 
bdata = BIIDATA(x, binwidth, origin, y) 

cdata = COIlV(xb, yb, wx, wy, 8ym) 

so that bdata has subobjects which can be accessed via bdata. xb, bdata. yb 
and in the case of COIlV via cdata. xc, cdata. yc and cdata. or. 

As mentioned earlier we have multidimensional arrays as input and output. 
The sizes are given in Table 6.7 for BUDATA and in Table 6.8 for COIlV. 

Parameter 
x 
binwidth 
origin 
y 
xb 
yb 

Size 
n x p x ql X ... X q" 
P x 1 x rl x ... x r" 
p x 1 X 81 X ... X 8" 

n x m x tl x ... X t" 
n x p x VI X ... X V" 

n x m x VI x ... X V" 

with VI = max(q" r" 81, t,) 

TABLE 6.7. Sizes of the input and the output parameters of BINDATA. 
For each I only one the parameters ql, rl, ~I and tl can be different from 
1. 

We note that BUDATA does no longer shorten the output array xb and yb 
in the size as in XploRe 3.2. This due to the fact that we allow different 
binwidths and origins in the higher dimensions. If we do so the number of 
nonempty bins may vary, but we are sure it can be larger than n. Thus we 
summarize up as in xb and yb, but we put also the nonempty bins in. The 
entry in yb is simply a zero, in xb we will get the binnumber of the appropriate 
observation. We have two possibilities to proceed, we can kill the nonempty 
bins layerwise or we can compose xb with the original y to continue with other 
computations. Since the interplay between COIlV and BUDATA is important 
COllY will be able to react to these results. 

The resultsize of COIV changes too. If we have different xb, yb and wx, wy 
we will have different grids for the resulting computation, so we compute the 
largest grid and center the other grids if necessary. We do the computation 
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Parameter 
xb 
yb 
wx 
wy 
sym 

xb 
yb 
or 

Size 
n x p x ql X ••. x qk 
n x m x rl x ... x rk 
h x p X 81 X ... X 8k 

h x 1 X tl X ... X tk 
1 x 1 X Ul X ... X Uk 

9 x P X VI X ... X Vk 

9 x m x VI x ... X Vk 

9 x 1 X Vl X ... X Vk 

with VI = max(q" r" 81, t,) 

TABLE 6.8. Sizes of the input and the output parameters of CONV. For 
each I only one the parameters ql, rl, 81 and tl can be different from 1. 

on this large grid. 

The size of sym is 1 x 1 X Ul X .... We could have started already in the 
first dimension with a size larger than one. This is not done because of the 
compatibility to XploRe 3.2. 

6.5.2 Random Generators 

The command for the random generator in XploRe 4.0 is 
x = RAIDOH(type. size) 

with type a parameter which distinguishes between different generators, and 
size a 8 x 1 vector which gives the number of the entries in each dimension. 



7 
Conclusion 

We have presented two versions of the software XploRe which implement our 
ideas about data structures in statistical software. The data structures for 
graphics and linking are implemented in XploRe 3.2 while the data struc­
tures for statistical data are implemented in XploRe 4.0. But we have not 
implemented all ideas. 

In the chapter 2 we have concluded that we mainly need two types of windows. 
Some graphics, e.g. the histogram, the contour plot, the Andrews curves and 
the trees are implemented in XploRe 3.2 in the three-step-method as described 
in the beginning of chapter 5. Other graphics like the Chernoff faces and the 
boxplot have their own window in XploRe 3.2 as proposed at the end of 
chapter 2 and in chapter 6. The hierarchical graphical structure (datapart, 
window, display) developed in chapter 5 is implemented in both versions of 
XploRe. A detailed description can be found in the beginning of chapter 6. 

Although we have developed different kinds of linkings and have shown the 
usefulness in chapter 5 (links of plots, of scales and of different data), we 
have only implemented linking from dataparts to other dataparts or external 
matrices in XploRe 3.2. This already allows to make a lot of interesting and 
informative links, e.g. for asking datapoints, linking between different plots 
and so on. 

The data structure required for statistical data developed in chapter 5 is only 
implemented in XploRe 4.0. The examples (exploratory projection pursuit, 
local polynomial regression) for the need of multidimensional arrays can not 
be described at the end of chapter 6 as we are still implementing the ba­
sic graphical data structures and the programming language. So we have re­
stricted ourselves to showing how two commands differ depending on whether 
we use matrices or arrays. The implementation of hierarchical objects is not 
easy, and even simple routines like reading and writing the objects produce 
difficult problems. Some routines can be extended easily, e.g. unary or binary 
operations, but commands require a rethinking of the whole parameter list. 

Further research and work. Although we believe that a statistical software 
program is composed of three elements, we have only concentrated shortly 
on the GUI. This is partly due to the fact that XploRe 3.2 runs under DOS 
which has no graphical user interface available from the operating system. 
This makes necessary an immense amount of additional programming, but 
this gives us the freedom to develop independently from such systems. This 
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is one of the main reasons which lead to the idea of displays, so GUIs would 
limit our needs as they do not offer them. Nevertheless for a (economically) 
successful statistical environment it is necessary to run under a GUI. Even 
XploRe 4.0 now runs under Motif and it is going to run under Windows as 
well. 

With XploRe 3.2 we are even able to implement many tools which to me seem 
to be superior to tools offered by other programs. We provide an interface for 
linking, interactively and by a command, which can be extended for linking 
events. Nevertheless I am aware of the fact that the question of linking has 
not been solved until now. Linking of datasets is only done in DataDesk, but 
it is easy to handle for the user. 

Further research for data structures for graphics. In my opinion the 
research concerning graphical data structures has finished the hierarchy of 
displays, windows and dataparts. Of course still some detailed work is left 
concerning the communication between user and graphics (via slider, menus, 
dialogboxes etc). New developments like window systems and parallelization 
require very detailed and careful research. Since IploRe runs as run-alone 
program under DOS such considerations have no influence for the develop­
ment of IploRe 3.2. But already the implementation of user-programmable 
menus in XploRe 4.0 causes some serious problems. 

Further research for data structures for data. With the introduction of 
arrays in statistical software the importance of the basic data types decreased. 
A lot of work has to be done to make arrays behave in a proper way so that 
functions react to the data, e.g. how will the deletion of an element affect 
a multidimensional array? The research about hierarchical data objects also 
needs to be extended. Linking of different data objects still causes serious 
problems. 

Further research for data structures for linking. Up to now linking is 
always hidden in the programs, e.g. DataDesk, only XploRe and X-Lisp-Stat 
make it available to the user to some extent. In IploRe the linking is con­
nected to the dataparts of a graphic. A first step would be to extend linking 
on other objects such as the scale of a plot. Linking between different data 
objects is another problem. The (graphical) visualization of links and hierar­
chical objects has to be developed as well, but at least we have some ideas 
how to do it. 

Final remark. We hope that this thesis can be a basis for further software 
development and research in statistical computing and that it will help to 
simplify the work of software developers. Quite certainly there is a further 
need for people with a view for both statistics and computer science. 



A 
The Datasets 

A.I Boston Housing Data 

Harrison & Rubinfeld (1978) collected 14 variables (see Table A.l) for 506 
districts in the Boston standard metropolitan statistic area at a fixed point 
of time. 

Symbol 
LMV 
CRIM 
ZN 

INDUS 
CHAS 

NOXSQ 

RM 
AGE 
DIS 

RAD 
TAX 
PTRATIO 
B 

LSTAT 

Definition 
logarithm of the median value of owner-occupied homes 
per capita rate by town 
proportion of a town's residential land zoned for lots greater 
than 25000 square feet 
proportion of nonretail business acres per town 
Charles river dummy variable with value 1 if tract bounds 
on the Charles river 
nitrogen oxide concentration (parts per hundred millions) 
squared 
average number of rooms squared 
proportion of owner-occupied units built prior to 1940 
logarithm of the weighted distances to five employment 
centers in the Boston region 
logarithm of index of accessibility to radial highways 
full-value property-tax rate (per 10000 US-$) 
pupil-teacher ratio 
(Bk - 0.63)2 where Bk is the proportion of blacks in 
the population 
logarithm of the proportion of the population of lower status 

TABLE A.I. Variables of the Boston housing dataset 

They made a linear regression to estimate the relationship to between LMV 
and the other variables: 

LMV 130 + f31CRIM + f32ZN + 133 IN DUS + f34CH AS 

+f3sNOXSQ + f36RM + f37AGE + f3sDIS + f39RAD 
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and obtained the coefficients in Table A.2. The R2-value is 0.806. 

Variable 
o CONST 
1 CRIM 
2 ZN 
3 INDUS 
4 CHAS 
5 NOXSQ 
6 RM 
7 AGE 
8 DIS 
9 RAD 

10 TAX 
11 PTRATIO 
12 B 
13 LSTAT 

f3i 
+9.76E+0 

-1.19E-2 
+7.94E-5 
+2.36E-4 
+9.14E-2 
-6.39E-3 

+6.33E-3 
+8.86E-4 
-1.91E-1 

+9.57E-2 
-4.20E-4 
-3.11E-2 

+3.64E-1 
-3.71E-1 

Standard error 
1.50E-1 
1.24E-3 
5.06E-4 
2.36E-3 
3.32E-2 
1. 13E-3 
1.31E-3 
5.26E-4 
3.34E-2 
1.91E-2 
1.23E-4 
5.01E-3 
1.03E-1 
2.50E-2 

t-statistics 
65.23 
-9.53 
0.16 
0.10 
2.75 

-5.64 
4.82 
0.17 

-5.73 
5.00 

-3.42 
-6.21 
3.53 

-14.83 

TABLE A.2. The fitted coefficients of the linear regression. Taken from Belsley, 
Kuh & Welsch (1980). 

A.2 Berlin Housing Data and Berlin Flat Data 

The data are collected by Germer & Neudeck (1994) in their master thesis. 
The dataset consists of two different kinds of data: 

• data about offers of houses and 

• data about offers of flats (n = 14968) (Berlin flat data). 

We will restrict ourselves to the last dataset. Table A.3 gives an overview 
about the collected variables. 

We can see from the Table A.3 that we have 3 groups of variables : 

• time-dependend: 
The variables T and TI are depended from the time of the offer. 



No. Abbreviation 
1 T 
2 FA 
3 FL 
4 FR 
5 FB 
6 FM 
7 FP 
8 FI 
9 FE 
10 DI 
11 DF 
12 DU 
13 DR 
14 DW 
15 DS 
16 DN 
17 DB 
18 TI 
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Meaning 
Time of offer 
Area of the flat (in m2) 

Location of the flat (coding see Table E.l) 
Number of rooms 
Existence of a balcony (l=yes, O=no) 
Maisonette (l=yes, O=no) 
Price in offer (in 1000 DM) 
Corrected Price in offer (in 1000 DM) 
Is in the west (l=yes, O=no) 
Inhabitant in the district (per ha) 
Rate offoreigners (in %) 
Rate of unemployed (in %) 
Recreation areas, e.g. parks (in %) 
Blue-collar worker (per ha) 
Length of public streets (in km per square km) 
NOz; concentration (in Jlgram per m3 ) 

Distance to the Breitscheidplatz (in km) 
Interest rate of the German Bundesbank (in %) 

TABLE A.3. Variables of Berlin flat data . 

• flat-dependend: 
The variables FA, FL, FR, FB, FM, FP, FI and FE are describing 
properties of the flat . 

• location-dependend: 
The variables DI, DF, DU, DR, DW, DS, DN and DB are describing 
properties of the location of the flat. 

We have a principal problem to analyze the dataset with the aim to model 
the price of a flat in dependence of the variables. If we only have offers then 
we do not know for which price a flat has changed its owner. Another problem 
is that the same flat might have been offered twice at the same or another 
price. It is impossible to distinguish between a flat which is offered twice and 
a similar flat on another floor of the same building. 

Let us have a closer look at some of the variables: 

T The offers are collected from the newspaper "Berliner Morgenpost" which 
is the most important one to find a flat or a house for renting or buying. 
Every three months (January, April, July and October) from July 1989 until 
October 1994 the offers of the first weekend issue are taken. 
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TI The interest rate of the German Bundesbank is the percentage which other 
banks have to pay if they borrow money from the German Bundesbank. This 
influences the percentage someone has to pay if he borrows money from a 
bank for buying a flat. We will see soon that we have a one-to-one relationship 
to the variable T. 

FL Although the coding of the variable from Table E.1 seems to be clear, we 
have some problem with it. As the authors of the master thesis remarked by 
themselves they had offers with inexact locations, like "city" or "at a central 
place". These offers are coded as number 16 which is the coding number of 
Charlottenburg, a central district in the west part of Berlin. Contrary offers 
like "in the north of Berlin" or "in the east part" are dropped from the data. 

For example the districts 16 and 30 are very heterogeneous in the prices for 
offers. Both contain very expensive areas, e.g. like KaDeWe, Kurfiirstendamm 
or Dahlem, and areas of much lower prices, e.g. like Siemensstadt or Lichter­
felde. 

In their master thesis the authors show a map with a table which connects 
the coding number to a specific area in Berlin. But on page 47/48 a table is 
found which also gives a coding number for selected districts and streets. We 
have to state some contradictions between the map and the table. 

FR The number of rooms is not given exactly. We will see later that we 
have many offers with an integer number of rooms and some offers of half 
rooms. The number of the latter is much smaller than the other. The authors 
themselves state that they also have a lot of offers of small flats where no 
number of rooms is given. 

FB The nonexistence of a balcony is questionable. It could be that a balcony 
is simply not mentioned. 

FM Maisonette flats are penthouses, flats in the loft etc. It is expected that 
higher prices are obtained for that kind of flats. 

FI The price of the offer is divided by an index ("Lebenshaltungsindex 1985") 
which describes the increase of general living costs in the west part of Berlin. 
This index also includes expenses for clothes, food, public transportation etc. 
We believe that this index is not appropriate to construct a comparable price 
over time. The graphics on page 89 in the master thesis show the 25%, 50%, 
75% quantiles, the mean value of the prices and the corrected prices over 
time. We do not see a big difference in the behaviour of these four curves. 

A general problem occurs with the variables describing the districts. We will 
see later that we have only very few different values although we have 44 
districts (some of them are even subdivided in two subdistricts; one in the 
west part and one in the east part). 
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For the following explanations and examinations we will use the whole dataset 
or the subset of the offers from October 1994. October 1994 was chosen, 
because in the newspaper "Der Tagesspiegel" of Marchi April 1995 we find 
some data about the living quality in the districts of Berlin. For a discussion 
of linked matrices see section 5.3.4. 

A.3 Swiss Banknote Data 

The Swiss banknote data can be found in Flury & Riedwyl (1981). The 
dataset consists of six continuous variables; see Table A.4. It contains 100 
genuine and 100 forged bank notes. The authors believe that they can find 
five different clusters in the dataset. 

L Length of the bill 
HL Height of the bill on the left 
HR Height of the bill on the right 
FL Distance from the inner frame to the lower bound 
FU Distance from the inner frame to the upper bound 
D Length of the diagonal of the inner frame 

TABLE AA. Variables of the Swiss banknote dataset. 

AA Other Data 

The following other datasets have been used: 

Motorcyle The x-values denote time in milliseconds after a simulated im­
pact with motorcycles. The response variable y is the head acceleration 
in 9 of a post mortem human test object (Schmidt, Mattern & F. 1981). 

RANDU is a 3-dimensional dataset generated from a linear congruential 
random generator. 

TET is a 3-dimensional dataset where the data are distributed on the facettes 
of a tetrahedron. 

CYL is a 3-dimensional dataset where the data are distributed on the surface 
of a cylinder. 

Uniform is an uniform distribution on [0, IF. 
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Normal is a standard normal distributed dataset. 

Line is a dataset distributed around a line from (0,0) to (1,1) with constant 
variance. 

Two mass is a mixture of two standard normal distributions. 

Circle is a dataset distributed with a constant variance around a circle. 



B 
Mean Squared Error of the 
Friedman-Tukey Index 

Under the assumption that Xi is independent and identical distributed (i.i.d), 
that the unknown density is sufficiently often differentiable and the following 
definitions 

we can start to calculate the MSE of the Friedman-Tukey index. First we 
transform the Friedman-Tukey index by 

ih = _1 "~K(X;-Xi) 
n 2 h2 L....J L....J h 

;=1 i=l 

= n21h2 (nK(O,O) + 2;~ K (X, ~ Xi)) , 
'<J 

which simplifies our calculations. 

We can rewrite the MSE 

MSE(ih) = E «fh - 1)2) 

= E(fh - 1)2 + Var(fh - I) 

= Bias(fh)2 + Var(fh) 



248 Mean Squared Error of the Friedman-Tukey Index 

and the Bias 

Bia8(ih ) = E(ih - I) 

= E(ih ) - I. 

The expectation of the estimator is 

E(f.) = E ( n'~' (nK(O'O) +2,~ K. (X, ~ Xj)) ) 
= n 21h2 (nK(O,O) +2 n(n 2- 1) E (K (X ~ Y))) 

= n 21h2 (nK(O,O) + n(n - 1) fIR~ I(X1,X2) 

( f (Xl - Y1 X2 - f/2) )) JIR~ K -h-' -h- I(Y1,f/2)dy dx 

= n;h2 (nK(O, 0) + n(n - 1) fIR~ I(X1, X2) 

(h2 fIR~ K(81,82)/(X1 + h 81,X2 + h82)d8) dX) 

K(O,O) n - 11 I( ) = -h2 +-- X1,X2 
n n IR~ 

(fIR~ K(81, 82) (I(X1, X2) - h8d"1 (Xl, X2) - h82/s~(X1' X2) 

h2 h2 
+T8US1Sl (Xl, X2) + 2T8182/s1S~(X1,X2) 

h2 h 3 

+T8~/s~s~(X1,X2) - 68UZ1Z1Zl(X1,X2) 

h3 2 h3 2 
-368182/s1S1Z~(X1' X2) - 368182/z1Z~Z~(X1' X2) 

h3 3 h4 4 
-682/z~"~S~(X1,X2) + 2481/s1S1S1S1(X1,X2) 

h4 3 h4 2 2 () 
+4 24 8182/s1S1S1S~(X1,X2) +6248182/s1S1S~S~ X1,X2 

h4 3 h4 4 
+4248182/s1S~S~S~(X1,X2) + 2482/s~s~s~S~(X1,X2) 
~ 5 ~ 4 

- 12081 IS1S1S1S1Sl (Xl, X2) - 5120 8182/s1S1S1S1S~ (Xl, X2) 

h5 3 2 h5 2 3 () -101208182/s1S1S1Z~S~(X1,X2) -101208182/z1s1s~s~",,~ Xl,X2 
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~ 4 ~ 5 
-5120 SlS2!:Z;1:Z;~:Z;2:Z;~:Z;~ (Xl, X2) - 120 S2!:Z;1:Z;2:Z;2:Z;2:Z;~ (Xl, X2) 

+O(h6)) ds) dx 

= K(Oh'20) + n -1 [ !(Xl,X2) (!(Xl,X2) [ K(sl,s2)ds 
n n 1IR~ 1IR2 

, v I 

=Kt~=l 

terms which equals to zero are omitted 

= 

= 
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and the bias will be 

It follows that the estimator is asymptotically unbiased (n --t 00, h --t 0). 
The squared bias is 

and the variance of the estimator is 
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__ 4_ n2(n - 1)2 E (K (X _ y))2 
n4h4 2 h 

= _4_ (n(n - 1) E (K (X _ y)2) 
n4h4 2 h 

+2 n(n - 1)(n - 2) E (Kh(X _ Y)Kh(X - Z)) 
3 

+ (n2(n - 1)2 _ 2n(n -1)(n - 2) _ n(n - 1)) 
4 3 2 

E (Kh(X - Y)Kh(W - Z))) - 2(:2~41)2 E (Kh(X - Y)? 

= 2(n - 1) E (Kh(X _ Y)2) 
n3 h 4 

8(n - l)(n - 2) 
+ 3n3 h4 

(n - l)(n - 2)(3n - 5) 
+ 3n3 h4 

2(n - 1)2 
n 2 h4 

= 2(n - 1) 
n3 h4 

8(n - 1)(n - 2) 
+ 3n3 h4 

(n - 1) 3n2 + 5n + 10 
- n2 h4 3n 

E (Kh(X _ y)2) 

E (Kh(X - Y)Kh(X - Z)) 

E (Kh(X _ y))2 . 

Now we calculate the expectations separately starting with E(Kh (X _ y)2) 
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= fIR~ I(Xl,X2) fIR2 K (Xl ~ Yl, X2 ~ Y2 r I(Yl,Y2)dydx 

= h2 r I(Xl,X2) r K(Sl,S2)2/(Xl-hs l ,X2- hs2)dsdx 
JIR~ JIR~ 

= h2 r I(Xl,X2) (/(Xl,X2)KJ2J 
JIR~ , 

h2 (2) h2 (2) 
+TI"'I"'I(Xl,X2)K2,o + TI"'I"'I(Xl,Z2)Ko,2 

h4 (2) h4 (2) 
+ 24/"'1"'1"'1"'1 (Xl, x2)K4 ,o + 24 1"'2"'2"'~"'2 (Xl, x2)Ko,4 

+ ~4 l"'I"'I"'~"'~(Xl,X2)KJ~J +O(h6 )) dx 

= h2 K(2) [(1) + h4 K(2) [(1) + h6 (K(2) [(1) + 6K(2) J) + O(h8) 
0,0 0 2 2,0 2 24 4,0 4 2,2 

= h2 K(2) 1(1) + h4 K(2) [(1) + h6 M + O(h8) 
0,0 0 2 2,0 2 24 2 , 

then the expectation of E(Kh(X - Y)) 

= fIR~ I(Xl,X2) fIR~ K (Xl ~ Yl, X2 ~ Y2) I(Yl,Y2)dydx 

= h2 r I(Xl,X2) r K(Sl,S2)/(Xl -hsl ,X2 -hs2)dsdx 
JIR~ JIR~ 

= h2 r I(xl, X2) (f(Xl, X2) 
JIR~ 

h2 (1) h2 (1) 
+T1"'1"'I(Xl,X2)K2,o + T 1"'1"'I(Xl,X2)Ko,2 

h4 (1) h4 (1) 
+ 24 / "'1"'1"'1"'1 (Xl,X2)K4,o + 24 1"'2",~",~",~(Xl,X2)Ko,4 

~4 1"'1"'1"'~"'~(Xl,X2)KJ~J + +O(h6 )) dx 

= h2 [(1) + h4 K(l) [(1) + h6 (K(l) [(1) + 6K(1) J) + O(h8) 
o 2 2,0 2 24 4,0 4 2,2 

= h21(1) + h4 K(l) /(1) + h6 M + O(h8) 
o 2 2,0 2 24 1 

and last the expectation of E(Kh(X - Y)Kh(X - Z)) 
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f (Xl - Zl X2 - Z2) 1IR~ K -h-' -h- !(Zl,Z2)dzdydx 

f f (Xl - Yl X2 - Y2) = 1IR' 1IR' !(Xl,X2)!(Yl,Y2)K -h-' -h-

h2 (!(Xl' X2) + ~2 K~~J(fzlzl (Xl, X2) + !z,z,(Xl, X2» 

+O(h4») dydx 

= h4 fIR' !(Xl,X2) (!(Xl,X2) + h; K~~J(fZ1S'1 (Xl,X2) + !z,z,(Xl,X2» 

+O(h4»)2 dx 

= h4 f !(Xl'X2)(!(Xl'X2)2+h2K~lJ(!ZlZl(Xl'X2)+!S"S"(Xl'X2» 1IR' , 
+O(h4») dx 

= h41(2) + h6 K(l) 1(2) + O(h6) o 2,0 2 • 

Now we put all expectations together and it follows 
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h2 (M2 8(n - l)(n - 2) K(l) 1(2) 
+ 24 + 3n3 2,0 2 

_ (n - 1)(3n2 + 5n + 10) K(l) 1(1) 1(1)) + O(h4) 
3n3 2,0 2 0 

With n ---+ 00, h ---+ 0 and nh ---+ 00 the variance converges to I~l) 2. The 
mean squared error of the Friedman-Tukey index will be 

MSE(iFT ) = Bias2 (iFT ) + Var(iFT ) 

= h -4 K(0,0)2 
n 2 

+h-2 (_ 2K(0,0)IJl) + 2(n -1) K(2) 1(1») 
n2 n3 0,0 0 

K(O O)K(I) /(I)(n - 1) /(1)2 + ' 2,0 2 + _0_ 
n2 n2 

+ 2(n - 1) K(2) 1(1) + 8(n - l)(n - 2) /(2) 
n3 2,0 2 3n3 0 

_1(1}2 (n - 1)(3n2 + 5n + 10) 
o 3n3 

+h2 '4,0 4 _ 0 2,0 2 ( 
K(O O)K(I) 1(1) (n - 1) /(1) K(I) 1(1) (n - 1) 

12n2 n2 

K(O,O)KJ~JJ(n - 1) M2 8(n -l)(n - 2) (1) (2) 
+ 2n2 + 24 + 3n3 K 2,0 12 

_ (n - 1)(3n2 + 5n + 10) K(1) /(1) /(1») + O(h4) 
3n3 2~ 2 0 

Co C1 2 (4 4 -1 4 -2 ) = h4 + h2 + C2 + C3h + 0 h ,h n ,h n , ... 

with 

Co = 
n2 

C1 = _ 2K(0,0)IJl) + 2(n - 1) K(2) /(1) 
n2 n3 0,0 0 

K(O O)K(I) 1{l)(n - 1) [(1}2 
, 2,0 2 + _0_ 

n 2 n 2 

+ 2(n - 1) K(2) /(1) + 8(n - l)(n - 2) [(2) 
n3 2,0 2 3n3 0 

_/(1)2 (n - 1)(3n2 + 5n + 10) 
o 3n3 
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= 
K(O O)K(I) 1(1)(n - 1) /(1) K(l) /(1)(n - 1) 

, 4,0 4 0 2,0 2 

12n2 n 2 

K(O,O)KJ~JJ(n -1) M2 8(n -l)(n - 2) (1) (2) 
+ 2n2 + 24 + 3n3 K 2,o 12 

_ (n - 1)(3n2 + 5n + 10) K(1) /(1) /(1) 
3n3 2~ 2 0 

If we plug in the triweight kernel and the bivariate standard gaussian distri­
bution we get for the constants: 

K(O,O) = 1.27324 
K(2) 

0,0 0.727565 

K(l) 
2,0 = 0.1 

K(l) 
4,0 = 0.025 

K(2) 
4,0 = 0.0757889 

K(l) 
2,2 = 0.00833333 

K(2) 
2,2 = 0.00252627 

/(1) 
0 = 0.0503026 

/(1) 
2 = -0.0795775 

1(1) 
4 = 0.185235 

/(2) 
2 = -0.0106299 

J = 0.0308725 



c 
Density Estimation on Hexagonal 
Bins 

As pointed out, e.g. in Klinke (1994), other forms than squares are possible 
for bins. We can even use tesselations of the plane which consist of different 
bin types. The most reasonable form of a bin, in connection with bivariate 
kernel estimation with a circle as support, is the hexagonal bin. In fact the 
binning algorithm and estimation algorithm become more complicated. 

FIGURE C.l. Hexagonal binning with bins built up from triangular bins. 

For binning we need to introduce triangular coordinates (r, s, t). So our data 
(Xi, Yi)i=l, ... ,n will be transformed into 
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· (Xi) ri lOt 8" 
· (COS( 71"/3) Xi + sin( 7I"/3)Yi) 

~ lOt 6 

· (COS(27r/3)Xi +sin(27r/3)Yi) 
4 lOt 6 

In the moment the choice of the triangular coordinate axis r parallel to the 
euclidean axis X seems to be arbitrary. We will see later that this choice is 
necessary. Let us take the hexagonal bin, which contains the triangular bin 
(0,0,0), the triangular bin in s-direction from the cross-over of the 3 axes. 
We see that the bins (0,0,0), (0,0, -1), (0, -1, -1), (-1, -1, -1), (-1, -1, 0) 
and (-1, 0, 0) form our hexagonal bin {O, O}. A shift in direction of r results 
in an addition of (2,1, -1) to these bins to get the triangular bins of the 
hexagonal bin {I, O}. To get the hexagonal bin {O, I} we have to add (1, 2, 1) 
to the triangular bins of {O, O}. Now we can easily calculate the triangular 
bins which belong to the hexagonal bin {I, m} by adding (21 +m, 1 +m, -I +m) 
to the triangular bins of the hexagon {O, O}. As a consequence we can derive 
that 

But we are interested in the other way, that means which datapoint belongs 
to which hexagonal bin. The equations we have to solve are: 

h, Si, ti) -/(2,1, -1) - m(l, 2,1) = 

(0,0,0) 
(0,0,-1) 

(0, -1, -1) 
(-1, -1, -1) 
(-1,-1,0) 
(-1,0,0) 

With the relationship for ri - Si + t; and the knowledge that 1 and mare 
integer the following algorithm gives the solution: 

if (ti-si+ri) 
{ p = 2+2*ri-si; 

q = -1-ri+2*si; 
if ((p%3) I I (q%3» 
{ p = 1+2*ri-si; 

II ti-si+ri = -1 
II check (-1,0,0) 

II check (-1,-1,0) 



Density Estimation on Hexagonal Bins 259 

FIGURE C.2. Hexagonal binning with bins built up from triangular bins. 

} 
} 

q = 1-ri+2*sij 
if «p%3) I I (q%3» 
{ p = 2*ri-sij 

q = -ri+2*sij 
} 

else 
{ p = 2*ri-sij 

q = -ri+2*sij 
if «p%3) I I (q%3» 
{ p = 1+2*ri-sij 

} 

q = 1-ri+2*sij 
if «p%3) I I (q%3» 
{ p = -1+2*ri-sij 

q = 2-ri+2*sij 
} 

II check (0,0,-1) 

II ti-si+ri = 0 
II check (0,0,0) 

II check (-1,-1,0) 

II check (0,-1,-1) 



260 Density Estimation on Hexagonal Bins 

} 

li = p/3; 
mi = q/3; 

We have now expressed each datapoint (Xi, Yi) in coordinates of the hexag­
onal bins {Ii, Tn;}. If we want to calculate e.g. the Friedman-Tukey index on 
hexagonal bins, we have mainly to calculate kernel of distances. As in the 
case of squared bins we store the values of the kernel K {126, m26}. But I 
and m will not run from 0 up to ceil(h/6). Similar to squared bins, where 
we restrict ourselves to the upper quarter (I ~ 0, m ~ 0), we can here re­
strict ourselves to the hexagons enclosed by the r and s axis. So we calculate 
K{120,m26} with b = ceil(h/(20cos(1I"/6))) 0 ~ I,m ~ b with the constraint 
that 1 + m ~ b: 

int i, j, b. kO; 
double *k; 
b = ceil (bandwidth I (2.0 * binwidth * cos(pi/6.0»); 
f = 2.0 * binwidth * cos(pi/6.0) I bandwidth 
k = malloc (b*b*sizeof(double»; 
for (1=0; i<b; i++) 
{ for (m=O; j<b; j++) 

if (l+m<b) 

} 

*(k+l*b+m) = kern (f * (1 + m * cos(pi/6». 
f * 1 * sin(pi/6»; 

else 
*(k+l*b+m) = 0.0 

The subroutine kern has to give back the values of K(x, y). Some simplifica­
tions can be made for the case that the kernel is known. One of the easiest 
methods to accelerate the speed of the kernel indices in the case of squared 
bins is the use of the symmetry of the kernel and to sort the data after the 
first component. An efficient program would be 

double index; 
int i. j. start; 
index = 0.0; 
start = 0; 
for (i=O; i<n; i++) 
{ for (j=start; j<i; j++) 

{ dx = *(l+i) - *(l+j); II always greater equal zero 
if (dx<b) 
{ dy = abs(*(m+i) - *(m+j»; 

if (dy<b) index += *(k+dx*b+dy); 
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} 
} 

} 

else 
start++; 

index = (*k + 2.0 * index) / (n*bandwidth*bandwidth) 

In general we can use the same technique for the hexagonal bins, but the 
mapping from the other quarters to the left upper quarter in the case of 
squared bins is much easier. Since the data are sorted through the first vari­
able Xi we know that for every Xi the Xj j == 1, ... , i-I has to be left of it. The 
symmetry of the kernel ensures that we can use the distance Xi - Xj instead 
of Xj - Xi, so we only need to make mappings for l, m with 1 2: 0, m arbitrary 
and 1 ~ 0, m 2: -l. This results in four parts, where one is exactly the area 
for which we calculated the kernel. The other areas have to be mapped by 

1 ~ 0, -l < m < 0 
1 2: 0, m>O 
1 2: 0, -l < m < 0 
1 2: 0, m< -l 

The following program realizes it: 

double index; 
int i, j, mx,my; 
index = 0.0; 
for (i=O; i<n; i++) 
{ for (j=l; j<i; j++) 

{ dx = *(l+i) - *(l+j); 
dy = *(m+i) - *(m+j); 
if (dx<O) 
{ mx = -dx; my = dx+dy; } 
else if (dy>=O) 
{ mx = dx; my = dy} 
else if (dy>=-dx} 
{ mx = dx+dy; my = -dy; } 
else 
{ mx = dx; my = -dx-dy; } 

-t 
-t 
-t 
-t 

{-l,l+m} 
{l,m} 
{l+m,-m} 
{l,-m-l} 

if ((mx<b) ~~ (my<b» index += *(k+mx*b+my); 
} 

} 

index = (n * *k + 2.0 * index) / (n*bandwidth*bandwidth) 

Although this is short, it will need more time than the program for squared 
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bins: 

1. We can not use a window running over the data as in the case of squared 
bins 

2. We have to do the mapping by a if sequence being of intensive comput­
ing time, but in the case of squared bins we could use the abs function 
which is less time intensive 

The conclusion is that it is possible to bin and to estimate on hexagonal 
bins, which obviously leads to a more accurate estimate, but in terms of 
computational time it is worse. 



D 
Programs 

D.l XploRe Programs 

Most of the pictures were done with the help of XploRe programs which are 
available via WWW: 

http://www.wiwi.hu-berlin.de/~sigbert/thprog.html 

• ANDREW/ 

- ANDREW/ANDREW.XPL 

• BOXPLOT/ 

- BOXPLOT/BOXCOMP.XPL 

- BOXPLOT/BOXSUB.XPL 

• CLUSTER/ 

- CLUSTER/CLDIST.MRU 

- CLUSTER/CLUSREST.XPL 

- CLUSTER/CLUSTER.MRU 

- CLUSTER/CLUSTER.XPL 

- CLUSTER/CLWEIGHT.MRU 

• DATA/ 

- DATA/BANK2.DAT 

Andrews curves 

Boxplots 

Comparing boxplots 

Subgroup analysis 

Cluster analysis 

Menu for distances 

Routines for clustering 

Main menu 

Interface routine 

Menu for weights 

Data 

Swiss banknote dataset 

- DATA/FLATl094.DAT Berlin flat data (offers 10/94) 

- DATA/FLAT8994.EXE 
Self extracting archive with the Berlin flat data (all offers) 

- DATA/OBOST. DAT Boston housing data 

- DATA/XWAVELET .DAT Constants for generating wavelets (X-format) 

• DRAFTMAR/ Scatterplotmatrix (Splom) 

- DRAFTMAR/DRAFT4.XPL Splom for 4D-data 

- DRAFTMAR/DRAFT5. XPL Splom for 5D-data 

- DRAFTMAR/DRAFT6. XPL Splom for 6D-data 

- DRAFTMAR/DRAFT7. XPL Splom for 7D-data 

- DRAFTMAR/DRAFTINF. XPL Splom > 7D-data 
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- DRAFTMAN/DRAFTKAN.XPL 

• EPP/ 

- EPP/PPE.XPL 

EPP/PPEXPL.XPL 

EPP/PPGRAY.MNU 

EPP/PPINTER.XPL 

EPP /PPMAIN. MNU 

EPP/PPNORM.MNU 

• FACE/ 

- FACE/ASSOCIAT.XPL 

- FACE/ASYMFACE.MNU 

FACE/DOFACE.XPL 

FACE/SYMFACE.MNU 

• GENERATE/ 

Interface routine 

Exploratory projection pursuit 

Routine for EPP 

Interface routine 

Menu for colorselection 

Interpretation of EPP 

Main menu for EPP 

Menu for centering/sphering 

Flury faces 

Association between face part and variables 

Selection for asymmetric faces 

Drawing faces 

Selection for symmetric faces 

Random generator 

- GENERATE/NORMGEN.XPL 

• HISTOGRM/ 

HISTOGRM/ASH.XPL 

Histograms 

Average shifted histogram with uniform kernel 

ASH with arbitratry kernel - HISTOGRM/ASHK.XPL 

HISTOGRM/HISTCOMP.XPL 

- HISTOGRM/HISTOGRM.XPL 

• KERDENS/ 

KERDENS/DENEST.XPL 

KERDENS/DENESTP.XPL 

KERDENS/DENS3PLT.XPL 

KERDENS/SKERDENS.XPL 

KERDENS/SYMWEIGH.XPL 

• KERNEL/ 

KERNEL/GAU.XPL 

- KERNEL/QUA.XPL 

- KERNEL/REPA.XPL 

KERNEL/RQUA.XPL 

- KERNEL/RTRI.XPL 

KERNEL/RTRIAN.XPL 

- KERNEL/RUNI.XPL 

KERNEL/TRI.XPL 

Comparing histograms 

Generating histograms 

Kernel Density 

Univariate kernel density (binned) 

Multivariate kernel density (binned) 

Plotting of marginal densities 

Multivariate kernel density (unbinned) 

Rescaling of kernels 

Kernel 

Gaussian kernel 

Quartic product kernel 

Radial epanechnikov kernel 

Radial quartic kernel 

Radial triweight kernel 

Radial triangle kernel 

Radial uniform kernel 

Triweight kernel 



• KERREG/ 

- KERREG/REGESTP.XPL 

- KERREG/SKERREG.XPL 

- KERREG/SYMWEIGH.XPL 

• MDS/ 

- MDS/DOMDS.XPL 

- MDS/MDS.XPL 

- MDS/NMDS.XPL 

• PCA/ 

- PCA/HDPCA.XPL 

• PCP/ 

- PCP/PCPLOT.XPL 

• PPR/ 

- PPR/PPR.XPL 

- PPR/PPRINTER.MNU 

- PPR/PPRINTER.XPL 

- PPR/PPRMAIN.MNU 

- PPR/PPRREST.XPL 

• PROG/ 

- PROG/DESKSTAT.TXT 

- PROG/DESKSTAT.XPL 

- PROG/FIVENUM.XPL 

- PROG/JITTER.XPL 

- PROG/LINREG.XPL 

- PROG/LOCREG.XPL 

- PROG/SUNFLOW.XPL 

- PROG/VARCOMP.XPL 

• SAS/ 

- SAS/LINREG.SAS 

• SCATTER/ 

- SCATTER/S2MAIN.MNU 

- SCATTER/S2REGR.MNU 

- SCATTER/S2REST.XPL 

- SCATTER/S2TRF.MNU 
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Kernel regression 

Multivariate kernel regression (binned) 

Multivariate kernel regression (unbinned) 

Rescaling of kernels 

Multidimensional Scaling 

Plotting of metric scaling 

Metric scaling 

Nonrnetric scaling 

Principal component analysis 

Parallel coordinate plot 

Projection pursuit regression 

Interface routine 

Menu for interpreting 

Routine for interpreting 

Main menu for PPR 

Routines for PPR 

Several programs 

Text for desc. statistics 

Computing descriptive statistics 

Five number summary 

Jittering of data 

Linear regression 

Local regression 

Sunflower plot 

Comparing variables 

SAS program 

Scatterplot 

Main menu 

Menu for regression 

Routines for scatterplot 

Menu for variable transformation 
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- SCATTER/S2VIEW.MRU 

- SCATTER/SCATTER2.XPL 

• TEACHWAR/ 

• TOUR/ 

- TOUR/TOUR. XPL 

- TOUR/TOURADD.XPL 

• WAVELET/ 

- WAVELET/THRESDEH.MRU 

- WAVELET/THRESREG.MRU 

- WAVELET/WAVEDEHS.XPL 

Menu for views 

Interface routine 

Teachware 

Grand tour 

Interface routine 

Routine for grand tour 

Wavelet estimation 

Menu for threshold in density est. 

Menu for threshold in regression est. 

Wavelet density estimation 

- WAVELET/WAVELET. MHO Menu for wavelet regression (local) 

- WAVELET/WAVELET1.XPL Interface routine for wavelet regression (local) 

- WAVELET/WAVELET2.XPL Routine for wavelet regression (local) 

- WAVELET/WAVEREG.XPL Wavelet regession estimation 

Main menu for wavelet regession est. - WAVELET/WAVEREGM.MRU 

- WAVELET/WGEH.XPL Generation of father and mother wavelet 

D.2 Mathematica Program 

D.2.1 Calculation of Pi(r), ai, bj and Cj 

The following Mathemat ica program calculates the quantities Pi (r), ai, bi 
and Ci. The polynomials Pi are represented as a list of coefficients. The list 
element 1 [i] is the coefficient before ri+l. The following translations has to 
be done: 

max-l 
x[i] 
h[i] 

s [f .g] 
intres[i] 
a[i] 
b[i] 
c[i] 

highest Pi that can be calculated 
coefficient list of r i 
Pi(r) 
scalarproduct Jooo f(r)g(r)w(r)dr 
1000 riw(r)dr 
ai 

bi 
Ci 

This algorithm can be used to calculate a orthogonal function system based 
on polynomials and specialized scalarproducts. We have only to replace the 
result of intres. 



max = 15 
x[i_] := x[i] = Table[If[k=-i, 1, 0], {k, 0, max-1}] 
h[O] = x[O] 
g[i_] := g[i] = Factor[x[i] - Sum[Simplify[s[x[i], 

h [k]] h[k]] , {k, 0, i -1} ] ] 
s[f_, g_] := s[m [f, g]] 
s[f_] := f . intvec 
intvec = Table [intres[i], ii, 0, max-1}] 
intres [0] = 1 
intres [1] = p 
intres[i_] := intres[i-l] (p+2 i-2) 
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m[f_,g_] := adjust[CoefficientList[Expand[poly[f] poly [g]], x]] 
adjust[f_] := If [Length[f]>=max, Take[f, {1, max}], 

gl = f; While [Length [gl] <max, gl = Append[gl, 0]]; gl] 
poly[f_] := f . px 
px = Table[x~i, ii, 0, max-l}] 
const[i_] := const[i] = norm[g[i]] 
norm [f_] := PoverExpand[Sqrt[Factor[s[f,f]]]] 
h[i_] := g[i]/norm[g[i]] 
a[L] := Cancel[l/s[h[i], m[x[l], h[i-l]]]] 
b[i_] := -Factor[Cancel[a[i] s[h[i-1], m[x[1], h[i-1]]]]] 
c[i_] := -Factor[Cancel[a[i] s[h[i-2], m[x[l] , h[i-1]]]]] 



E 
Tables 

Number 
1 
2 
3 
4 
5 

6.1 
6.2 
7 
8 
9 
10 
11 
11.1 
12 
13 
14 
15 

16 

17.1 
17.2 
18 
19 
20 
21 
22 
23 

24 
25.1 
25.2 
26 
27 
28 
29 
30 

31 
32.1 
32.2 
33 
34 

35 
36 
37 
38 
39 
40.1 
40.2 
41 
42 
43 
44 

Fl'ohll&U 
Schilelow 
Buch 
Heililen.ee 
Berlin 28, Bor.iswalde, Herm.dort, Reinickenciorf, WaidmanD.lud, 
WiUeD.&u 
Mirki.chu Viertel, Labar. 
BlankeDfelde, Niedenchonhau.en, Pankow, Ro.enth.l, Wilhelllllruh 
BlankeDbur., Buchhols, Karow, WarteDberl, Wei .. ellu~e 
Spandau 
Berlin 20, Hake.felcle, Konrad.hohe, Spandau 
Schiler.ee, Tel'el 
Berlin 65 
WeddiDI 
HoheD.chaDh.uU~D, Malchow 
Ahren.felde, Bernau 
Falken.ee, St •• ken 
Corbu.ier-Haul, Halelhord, Olym.pia.t.dioD, Pichel.dorf, 
Pichel •• ee, Scharfe Lanke, StoBen.ee 
Berlin 21, Charlottenburg, City, KaOeWe, Kai.er.Friedrich-Strde, 
Kurf6nt.endamm, LidseD.ee, Moabit, Mom.endr ... e, Oliv .... Plats, 
5iomenld.clt, Uhlanddr ... e, We.tend 
Tier,arten 
Mitte 
Friedrichlfelde, Friedrichlh.in, Licht.enberl, Preasl.uer Berl 
Bie.dorf, Hellerldon, K.ulldorf, M.hlldon, M.r •• hn 
O.hlwit.s-Hoppelarten, St.r.ulberl 
G.t.ow 
Berlin 33, Grunew.ld, Roaeneck 
Bayeriachel Viertel, Frieden.u, H.lenlee, Hohensollerd.mm, 
Prin.relent.enlt.ralle, Schmarlendorf, Viktori ... Luile ... Plats, 
Wexlt.r.aae, Wilmerldorf 
Berlin 30, Berlin 62, Haleaheide, Kreu..bers, Rixdorf, Schouebers 
Neukilll .. 
Baumlchulenwel, Karllhorat. 
Trept.ow 
Hellerldod 
Grol .. Qlienicke, Havell.ad .. Kladow, Kladow, Schwaneawerder 
Nikolallee, Schlachtenaee, Zehlendorf 
Berlin 41, Oahlem, Lichterfelde, SehloSatra .. e, Stellits, 
Vikt.oriapark, Viktoriapl.ts 
B.yernrinl, L.nkwits, Marendod, Tempelhof 
Brits, Bundelsarten,ch.u 
Joh.nnilthal, Niederachoneweide, Oberachaaeweide, 'ITeptow 
Adler.hof, O.mmvor .... dt, Spindlerafelde 
Friedrichlhasen, Heaaenwinkel, Kopenick, Musselaee, R.ha.dorf, 
Wilhelmahalen 
Erkaer 
Wahnaee 
Kleiamachnow 
Teltow 
Lichtenrade, Marieadorf 
Buckow, Gropiua-St.adt, Rudow 
Alt.llienicke 
Falkeahorlt., Grunau, Karolinenhof 
Millselheim 
GOlen 
Schmockwits 

TABLE E.l. Coding of the location of the Berlin housing data 
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Time 1989 1990 1991 
Di.trid 7 10 4 7 10 4 7 10 
1 8 9 8 3 3 11 13 12 
4 3 1 1 3 3 3 1 3 
5 38 30 13 33 30 37 30 43 29 39 
6.1 1 1 1 1 1 
8 
9 33 33 31 38 45 33 62 36 37 
10 11 30 14 4 1 1 1 3 3 6 
11.1 11 3 33 18 31 33 16 30 15 
14 3 2 1 1 1 3 1 
15 31 42 9 36 12 1 9 11 1 15 
16 135 157 100 85 11 91 10 118 16 98 
17.1 12 3 13 23 11 38 30 5 
21 1 1 2 
23 32 35 15 22 13 4 8 17 10 16 
23 65 86 69 59 61 58 44 74 58 51 
24 50 70 28 37 38 32 30 51 31 34 
25.1 II 3 2 15 8 9 18 25 10 24 
28 2 1 1 
29 14 18 12 11 21 16 26 33 6 6 
30 86 90 40 47 59 51 66 75 66 46 
31 20 29 34 34 31 43 44 59 40 39 
32.1 10 4 9 6 5 5 4 30 11 13 
36 13 8 3 7 5 3 
37 
88 
39 16 16 20 9 20 19 30 24 28 31 
40.1 13 21 12 34 33 39 18 19 25 33 

2 
3 
8.2 
7 2 
11.3 
13 
13 
17.2 3 
18 
19 
20 
25.3 
38 
27 
33.2 
33 
34 
35 
40.2 
41 
42 
43 
44 

TABLE E.2. Absolute frequencies separated by time and location. The 
table is splitted up vertically in west/east part and then from west to 
east. 
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Time 1992 1993 1994 
District 4 7 10 4 7 10 4 7 10 
1 12 14 17 26 11 16 21 10 9 15 13 
4 4 1 1 5 2 3 
5 30 47 42 54 32 49 53 52 30 53 77 74 
6.1 3 
8 
9 22 64 53 70 32 63 60 54 47 58 127 113 
10 1 4 6 6 4 4 9 11 3 5 9 10 
11.1 10 33 34 37 16 31 27 33 22 32 53 55 
14 1 2 1 2 1 1 2 5 1 
15 12 15 19 3 9 3 19 22 40 
16 60 120 149 181 82 163 138 161 65 86 182 218 
17.1 33 38 26 39 22 24 37 35 17 14 47 42 
21 3 1 3 1 2 1 1 
22 6 12 20 3 18 17 12 12 13 20 26 
23 58 82 104 139 61 118 85 88 .. 78 147 176 
24 28 50 68 90 38 67 81 83 42 37 94 122 
25.1 12 29 24 38 21 36 36 21 14 17 43 46 
28 2 1 2 1 1 9 5 
29 7 12 28 32 8 23 34 25 15 22 31 39 
30 37 69 82 108 39 89 91 79 31 62 126 140 
31 41 48 48 90 39 74 74 66 27 45 116 92 
32.1 9 14 19 16 10 18 15 16 11 14 21 23 
36 5 8 6 2 3 2 18 12 
37 1 
38 
39 11 23 13 26 8 28 32 33 13 12 49 32 
40.1 22 14 12 29 12 27 37 20 12 17 31 31 
2 
3 
6.2 7 3 5 10 18 21 
7 1 6 12 9 
11.2 
12 
13 3 
17.2 2 2 
18 2 12 13 7 
19 2 2 4 5 
20 
25.2 6 
26 
27 
32.2 
33 
34 2 3 
35 
40.2 1 2 
41 6 2 
42 
43 
44 3 

TABLE E.3. Absolute frequencies separated by time and location. The 
table is split ted up vertically in west/east part and then from west to 
east. 
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Value of T D T FA FL FR FB FM FP FI FE 
8907 590 198 22 13 2 279 279 
8910 6&0 1'7 1. 14 2 2 299 2.7 
9001 .. 3 168 20 12 2 2 236 235 
9004 450 16. 21 14 2 2 242 212 
9007 .78 158 22 12 2 230 229 
9010 518 162 20 12 2 219 217 1 
9101 117 149 II 12 2 222 221 2 
9104 697 179 2. 14 2 278 278 2 
9107 19. 157 '3 11 2 2 "7 226 2 
9110 537 171 26 12 2 2 269 268 2 
9201 1>0 141 n 12 2 2 212 211 
9204 702 197 26 13 2 2 '92 290 
9207 775 241 25 15 2 , 328 328 2 
9210 1029 270 2. 14 2 2 388 386 2 
9301 433 126 1. 12 2 220 219 
9304 870 140 28 14 336 334 2 
9307 862 230 28 14 2 351 350 2 
9310 855 '45 32 13 2 348 344 2 
9401 436 170 ,. 12 2 2 238 n8 2 
940<1 .37 '18 29 13 2 2 3" 324 
'407 1308 329 32 13 2 2 464 4.7 
9410 1367 366 32 15 2 2 187 476 2 

TABLE E.4. Stratification after time of the Berlin flat data. 

Value of T 01 OF ou DR ow os ON OB TI 
8907 590 10 10 9 10 10 10 11 15 
8910 650 8 8 8 8 8 9 13 
9001 113 9 9 1 9 9 10 11 
9004 450 10 10 1 10 10 10 11 14 
9007 478 11 11 2 11 11 11 11 1. 
9010 518 10 10 1 10 10 10 10 11 
9101 447 12 12 2 12 12 12 11 16 
9104 6.7 11 11 , 11 11 11 12 16 
9107 4.4 12 12 2 12 12 12 11 16 
9110 537 13 13 13 13 13 13 16 
9201 420 11 11 11 11 11 11 16 
9204 70' 14 14 14 14 14 14 17 
9207 775 14 14 11 14 14 15 16 
9110 102. 15 15 15 15 15 15 17 
9301 433 10 10 10 10 10 13 15 
9304 870 15 15 15 1. 1. 15 I. 
9307 862 13 13 13 13 13 15 18 
9310 855 16 16 16 16 16 16 18 
9401 436 18 16 16 16 16 16 10 I. 
940<1 637 16 16 16 16 1. 16 16 17 
9407 1308 17 17 17 17 17 17 16 18 
9410 1367 17 17 17 17 17 17 16 17 

TABLE E.5. Stratification after time of the Berlin flat data. 
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Value of DR T FA FL FR FB FM FP FI FE 
5.98 28 7 24 3 • 2 2 27 27 
6.54 2130 22 340 2 16 2 2 533 1434 
7.02 544 22 162 2 13 2 2 221 454 
8.0:01 1304 22 274 II 2 2 46. 944 
8.90 1483 22 253 12 2 2 433 1000 
8.96 1181 22 260 14 2 2 383 8 •• 

10.29 12 7 12 4 2 2 12 12 
10.50 7 7 • 2 1 7 7 
10.57 36 29 2 2 32 36 
11.39 2718 22 404 3 14 2 2 636 1594 
11.56 1 1 1 1 1 1 
13.04 70 9 57 58 68 
1"'.73 38 10 26 5 2 3. 36 
14.87 1721 22 301 10 2 540 ll74 
15.23 38 II 31 2 34 38 
17.26 19 7 19 3 2 18 I" 
18.63 2612 22 403 16 2 614 1632 
19.13 53" 21 136 8 2 247 427 
23.71 487 20 140 12 2 245 407 

TABLE E.6. Stratification after recreation area of the Berlin flat data. 

Value of DR DI DF OU DR OW OS ON DB TI 
5.98 28 2 3 3 7 
6.54 2130 7 1 2 22 
7.0:01 544 4 7 2 • 2 22 
8.02 1304 3 8 1 7 22 
8.90 1483 4 4 7 2 22 
8.96 ll81 4 4 6 3 22 

10.29 12 3 3 3 2 2 7 
10.50 7 2 2 3 2 5 
10.57 36 2 2 3 1 2 6 
11.39 2718 7 1 4 22 
11.56 1 1 1 
13.04 70 3 1 
14.73 38 3 2 10 
1".87 1721 2 3 22 
15.23 38 3 3 2 11 
17.26 19 2 2 1 7 
18.63 2612 4 4 6 1 2 1 22 
19.13 53" 4 3 6 2 2 21 
23.71 487 6 1 2 20 

TABLE E.7. Stratification after recreation area of the Berlin flat data. 
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*************************** PROXIMITIES *************************** 
>Warning # 14783 
>Due to missing data, some cases have been excluded from computations. 

Data Information 
118 unveighted cases accepted. 

51 cases rejected because of missing value. 
Squared Euclidean measure used. 

******************* HIERARCHICAL CLUSTER ANALYSIS ******************* 

Agglomeration Schedule using Ward Method 

Clusters Combined Stage Cluster 1st Appears Next 
Stage Cluster 1 Cluster 2 Coeff. Cluster 1 Cluster 2 Stage 

1 82 107 2,0 0 0 38 
2 80 104 7,5 0 0 7 
3 32 108 14,0 0 0 15 
4 65 106 21,5 0 0 34 
5 67 110 33,5 0 0 17 
6 22 109 46,0 0 0 20 
7 80 111 60,5 2 0 70 
8 30 64 78,5 0 0 66 
9 76 116 97,0 0 0 41 

10 37 98 115,5 0 0 42 
11 89 101 136,5 0 0 49 
12 83 93 157,5 0 0 104 
13 18 88 178,5 0 0 61 
14 29 42 201,5 0 0 86 
15 2 32 225,0 0 3 33 
16 41 56 250,5 0 0 67 

5 pages further 

Case 20 1 -+ 
Ca1920 66 -+-+ +-------------------------------------+ 
Ca2180 74 -+ I I 
Case 859 31 -+ I I 
Ca1739 59 -+ +-------+ 
Case 620 26 -+ I 
Ca1347 48 -+ I 
Case 146 7 -+-+ 
Ca2727 86 -+ 
Ca1819 62 -+ 
Case 171 8 -+ 
Case 336 17 -+ 
Ca2413 79 -+ 

FIGURE E.1. Cluster analysis of the women labour. One variable contains some 
missings. Since we have produced a lot of output the information that - 30% of 
the cases are not used can be easily overviewed. 
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Value 01 Ifl D 'i' FA FL FR PI'! FM f'1! PI FE 
5.45 436 170 29 12 2 2 238 238 2 
5.94 855 245 32 13 2 2 348 344 2 
6.20 637 218 29 13 2 2 325 324 2 
6.55 862 230 28 14 2 2 354 350 2 
6.60 870 140 28 14 2 2 336 334 2 
6.80 590 198 22 13 2 2 279 279 1 
6.90 1308 329 32 13 2 2 464 457 2 
7.11 433 126 19 12 2 2 220 219 1 
7.18 650 197 19 14 2 2 299 297 1 
7.55 1367 366 32 15 2 2 487 476 2 
7.60 1029 270 29 14 2 2 388 386 2 
7.65 413 168 20 12 2 2 236 235 1 
8.24 775 241 25 15 2 2 328 328 2 
8.28 702 197 26 13 2 2 292 290 2 
8.35 420 141 23 12 2 2 212 211 2 
8.50 697 179 24 14 2 2 278 278 2 
8.60 537 171 26 12 2 2 269 268 2 
8.72 494 157 23 11 2 2 227 226 2 
8.75 450 169 21 14 2 2 242 242 1 
8.80 478 158 22 12 2 2 230 229 2 
9.10 447 149 21 12 2 2 222 221 2 
9.17 518 162 20 12 2 2 249 247 1 

TABLE E.8. Stratification after interest rate of the German Bundesbank 
of the Berlin fiat data. 

Value of TI 01 OF OU OR OW OS ON OB TI 
5.45 436 16 16 16 16 16 16 15 19 
5.94 855 16 16 2 16 16 16 16 18 
6.20 637 16 16 16 16 16 16 16 17 
6.55 862 13 13 2 13 13 13 15 18 
6.60 870 15 15 2 15 15 15 15 19 
6.80 590 10 10 9 10 10 10 11 15 
6.90 1308 17 17 17 17 17 17 16 18 
7.11 433 10 10 1 10 10 10 13 15 
7.18 650 8 8 8 8 8 8 9 13 
7.55 1367 17 17 17 17 17 17 16 17 
7.60 1029 15 15 2 15 15 15 15 17 
7.65 413 9 9 1 9 9 9 10 14 
8.24 775 14 14 2 14 14 14 15 16 
8.28 702 14 14 2 14 14 14 14 17 
8.35 420 11 11 2 11 11 11 14 16 
8.50 697 11 11 2 11 11 11 12 16 
8.60 537 13 13 2 13 13 13 13 16 
8.72 494 12 12 2 12 12 12 11 16 
8.75 450 10 10 1 10 10 10 11 14 
8.80 478 11 11 2 11 11 11 11 15 
9.10 447 12 12 2 12 12 12 11 16 
9.17 518 10 10 1 10 10 10 10 14 

TABLE E.9. Stratification after interest rate of the German Bundesbank 
of the Berlin fiat data. 
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