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Preface

Since the beginning of the seventies computer hardware is available to use
programmable computers for various tasks. During the nineties the hardware
has developed from the big main frames to personal workstations. Nowadays
it is not only the hardware which is much more powerful, but workstations can
do much more work than a main frame, compared to the seventies. In parallel
we find a specialization in the software. Languages like COBOL for business-
orientated programming or Fortran for scientific computing only marked the
beginning. The introduction of personal computers in the eighties gave new
impulses for even further development, already at the beginning of the seven-
ties some special languages like SAS or SPSS were available for statisticians.

Now that personal computers have become very popular the number of pro-
grams start to explode. Today we will find a wide variety of programs for
almost any statistical purpose (Koch & Haag 1995).

The past twenty years of software development have brought along a great
improvement of statistical software as well. It is quite obvious that statisti-
cians have very specific requirements for their software. There are two de-
velopments in the recent years which I regard as very important. They are
represented by two programs:

o the idea of object orientation which is carried over from computer sci-
ence and realized in S-Plus

o the idea of linking (objects) is present since the first interactive sta-
tistical program (PRIM-9). In programs like DataDesk, X-Lisp-Stat or
Voyager this idea has reached its most advanced form. Interactivity has
become an important tool in software (e.g. in teachware like CIT) and
statistics.

The aim of this thesis is to discuss and develop data structures which are
necessary for an interface of statistics and computing. Naturally the final
aim will be to build powerful tools so that statisticians are able to work
efficiently, meaning a minimum use of computing time.

Before the reader will read the details, I will use the opportunity to express
my gratefulness to all the people who helped me and joined my way. At the
first place is, Prof. Dr. W. Hardle. Since 1988 when I started to work as a
student for him he guided me to the topic of my thesis. The development
of XploRe 2.0, where I had only a small participation, and XploRe 3.0 to
3.2 gave me a lot of insights in the problems of statistical computing. With
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his help I got a grant from the European Community, which brought me to
Louvain-la-Neuve and to my second Ph.D.-advisor, Prof. Dr. L. Simar.

A lot of people from CORE have contributed to the accomplishment of my
work. I would like to mention Heraclis Polemarchakis, Luc Bauwens and
Sheila Verkaeren. I am very thankful to the staff of the “Institut de Statis-
tique” for their support and help, especially Leopold Simar, Alois Kneip,
Irene Gijbels and Alexander Tsybakov. The atmosphere of Louvain-la-Neuve
was very inspiring for my work. I have to mention the conference about “Sta-
tistical Computing” hold in Reisensburg because it gave me an insight in a
lot of practical problems which have enriched my thesis.

I have also to thank a lot of friends and colleagues for their help and company:
Isabel Proenca, Margret Braun, Berwin Turlach, Sabine Dick, Janet Grass-
mann, Marco and Maria Bianchi, Dianne Cook, Horst and Irene Bertschek-
Entorf, Dirk and Kristine Tasche, Alain Desdoigt, Cinzia Rovesti, Chris-
tian Weiner, Christian Ritter, Jorg Polzehl, Swetlana Schmelzer, Michael
Neumann, Stefan Sperlich, Hans-Joachim Mucha, Thomas Kotter, Christian
Hafner, Peter Connard, Juan Rodriguez, Marlene Miiller and of course my
family.

I am very grateful for the financial support of the Deutsche Forschungs-
gemeinschaft (DFG) through the SFB 373 “Quantifikation und Simulation
okonomischer Prozesse” at the Humboldt University of Berlin which makes
the publication of my thesis possible.
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Introduction

Summary

This chapter first explains what data structures are and why they are impor-
tant for statistical software. Then we take a look at why we need interactive
environments for our work and what the appropriate tools should be. We do
not discuss the requirements for the graphical user interface (GUI) in detail.
The last section will present the actual state of soft- and hardware and which
future developments we expect.

1.1 Motivation

What are data structures ?

The term “Data Structures” describes the way how data and their relation-
ships are handled by statistical software. Data does not only mean data in
the common form like matrices, arrays etc, but also graphical data (displays,
windows, dataparts) and the links between all these data. This also influences
the appearance of a programming language and we have to analyze this to
some extent too.

Why examining data structures ?

In statistical software we have to distinguish between two types of programs:
programs which can be extended and programs which only allow what the
programmer had intended. In order to extend the functionality of the pro-
grams of the first class we would need a programming language which can not
be recognized by the user (e.g. visual programming languages). This is impor-
tant for statistical research, if we want to develop new computing methods
for statistical problems.

We have a lot of successful statistical software available, like SAS, BDMP, SPSS,
GAUSS, S-Plus and many more. Mostly the data structure is developed ad
hoc, and the developers have to make big efforts to integrate new develop-
ments from statistics and computer science. Examples are the inclusion of the
Trellis display or the linking facilities in S-Plus or the interactive graphics
in SAS.
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Therefore it seems necessary to decompose the tools of a statistical program
(graphics, methods, interface) and to see which needs statisticians have and
to develop and implement structures which in some sense will be general for
all statistical programs.

Nevertheless some decisions are depending on the power of the underlying
hardware. These will be revised as soon as the power of the hardware in-
creases.

The programs of the second class can hide their structures. An analysis of
these programs will be very difficult. We can only try to analyze the data
structure by their abilities and their behaviour.

What is my contribution?

We first examine the needs in graphics, linking and data handling in extend-
able statistical software. The next step is to develop data structures that
allow us to satisfy the needs as well as possible. Finally we describe our im-
plementation of the data structures. There was a discrepancy between our
ideas and the implementation in XploRe 3.2, partly due to the fact that this
implementation exists longer than my thesis, but we also had some techni-
cal limitations from the side of the hard- and software. For example, in the
beginning we had a 640 KB-limit of the main memory and we did not use
Windows 3.1 in XploRe 3.2. In XploRe 4.0, under UNIX, we will implement
our ideas in a better way, but we are still at the beginning of the development.

A extendable statistical software is composed of three components:

e the graphical user interface (GUI)
In the first chapter we discuss the GUI shortly regarding why we need
interactive programmable environments.

o the statistical graphic
The graphics have to fulfill certain goals: there are statistical graphical
methods and we need to represent the results of our analysises. So in
chapter 2 we examine statistical graphics, in chapter 3 and 4 complete
statistical methods (exploratory projection pursuit, cluster analysis)
will be discussed.

e the statistical methods

The statistical methods are often difficult to separate from the graphics
(e.g. grand tour, exploratory projection pursuit). However we can de-
compose graphical objects into a mathematical computation and into
a visualization step. We show this in the beginning of chapter 5. An-
other aspect of statistical methods is the deepness of the programming
language. The deepness for regression methods is discussed in detail in
the last section of chapter 4.
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Part of the programming language is also the handling of data objects. In
chapter 5 we give two examples (local polynomial regression, exploratory
projection pursuit) why matrices are not sufficient for data handling. The
use of arrays has consequences for the commands and the operators in a
programming language. The need for hierarchical objects to store different
objects and metadata also has an impact on commands and operators.

The question of linking data objects (data matrices, graphical objects etc.)
is also part of chapter 5. The last chapter describes the implementation in
the software XploRe. In XploRe 3.2, a program which runs under DOS, we
have implemented the data structures of graphics and linking. In XploRe 4.0,
which currently runs under UNIX and Motif, we have implemented arrays.

Where are the difficulties ?

The implementation phase of XploRe 3.2 lasted of course more than two years.
The main problem at the beginning was that I did not have any idea which
needs a statistician has. Nevertheless the decision about the data structures
had to be made in an early phase of the implementation. Each missdecision
I made had to be corrected later with an enormous amount of work. Some
examples are:

e the programming language
When I developed the programming language my aim was to build a
language which simplifies matrix manipulations, but I did not want to
develop a whole language with loops, selections etc. So I chose to build
an interpreter which makes the XploRe language slow. Especially loops
which interpret each line again and again instead of interpreting it once
by using a compact code are very slow.

¢ the basic datatype

For a matrix of numbers I chose the 4-byte float numbers as a basic
datatype. Since in the beginning we had a technical limitation under
DOS with max. 640 KB RAM, we wanted to store float numbers as
short as possible. Since the compiled program already needs 400 KB
memory we were only able to handle small datasets. Later I figured
out that for some computations the precision was not high enough, so
I changed to 8-byte float numbers. It took me some months to get the
program to run properly afterwards.

¢ linking and brushing
The implementation of linking and brushing in XploRe allows only tran-
sient brushing. This is due to the data structure I chose. After recog-
nizing this I decided it was not worthwhile implementing a structure
which allows nontransient brushing in XploRe 3.2. With an additional
structure this would be possible, and we will correct this decision in
XploRe 4.0.
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The data structure I present in chapter 5 appeared only after I had thought
about the needs. In fact it was a process of trying and learning. When Is-
abel Proenca implemented the teachware macros I saw that we needed pro-
grammable menus. So I implemented the command MENU which works in a
window. One problem is that the cursor was supposed to change from an
arrow to a bar. But after printing a display with <Ctrl-p> the cursor again
appeared as an arrow. Only after the next movement it would appear as bar
again. Another problem appeared when printing the <F3>-box together with
boxplots. The standard behaviour was that the box disappeared from the
screen and reappeared after printing, but did not appear in the printout. It
took me nearly a week to change this behaviour.

Nevertheless I believe that I could build an efficient system. The development
of most of the tools took me only one day or two. Of course the fine tuning
like linking and everything appearing in the right time and the right place
often took much more time. The wavelet regression macro is an example for
this: the development was done in one day, but for the final form I needed
more than a week. Additionally to the inclusion of the threshold method
suggested by Michael Neumann I had to modify the commands handling the
wavelet computations.

The analysis of data structures in other programs is very difficult. Since most
them are commercial products I have no access to the source codes. Only
from the way how the user sees these programs I can try to guess which data
structures are used. Dynamic graphics and linking seems to be a real problem
in S-Plus (e.g. there is practically no possibility for printing the scatterplot
matrix). New tools like the Trellis display or linking require a quite extended
reprogramming of these languages. So I only give a short overview of the
facilities of the different programs.

Another problem was that I needed an overview about a lot of different
statistical techniques, and I needed knowledge about the implementation of
these techniques rather than the statistical and theoretical properties.

Some interesting problem, e.g. the treatment of missings or the error han-
dling, could not be handled in a proper way because of a lack of time.

1.2 The Need of Interactive Environments

1.2.1 Why Interactivity ?

As soon as interactive graphical terminals were available statisticians start
to use them. In 1974, Fisherkeller, Friedman & Tukey (1988) developed a
program called PRIM-9, which allowed analyzing a dataset of up to nine
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dimensions interactively. They implemented the first form of linking, e.g. they
allowed to mask out datapoints in one dimension such that all datapoints
above or below a certain value would not be drawn. In a scatterplot which
shows two different variables of the dataset the according datapoints would
also not be drawn. They showed (with an artificial dataset) that this can lead
to new insights about the dataset.

The computational equipment which was used in the seventies to run PRIM-9
was expensive. Nowadays computer power has improved and a lot of programs
offer the facilities of PRIM-9. Nevertheless the idea of interactive environments
needs time to become a standard tool in statistics.

In batch programming as it was common during the sixties and seventies,
a statistical analysis needed a lot of time. There were two possibilities to
work: step by step, which consumes a lot of time, or to write big programs
which compute everything. The programming environment SAS, a program
available already for a long time, computes a lot of superfluous informations
although we may be interested just in the regression coefficients. As an exam-
ple we show the regression of the variable FA (area of a flat in square meter)
against FP (the price per flat in thousand DM) of the Berlin flat data; for a
description of the dataset see section A. Figure 1.1 shows the SAS-output for
a linear regression.

Figure 1.2 is an indicator of the analysis on the run, which shows that the
linear regression (y = az + b) is not appropriated for this dataset. Especially
at the ends of the dataset we would expect another behaviour. For the left
end we can see this from the coefficients (a ~ 5,5 ~ —67), which tells us we
would even get money for a flat with less than 13 m? if we wanted to buy it.
A typical behaviour is to use log(F P) instead of FP. So we can use, as in
this example, the interactive graphics to control the analysis. If we are not
satisfied with the analysis we have to interfere. Here we will have to choose a
nonlinear or nonparametric model. Users also like to control an analysis since
they do not trust computers too much. An example might be that different
statistical programs will give slightly different answers although they perform
the same task (rounding errors, different algorithms).

Interactivity offers to cover “uncertainty” or nonmathematics. Uncertainty
means that we do not know which (smoothing) parameter to choose for a task;
see for example the smoothing parameter selection problem in exploratory
projection pursuit. Often we can simply ask a user for the smoothing para-
meter, because he has a feeling for the right values for the parameter or can
figure it (interactively) out.

Sometimes it is difficult to represent a visual idea as a mathematical for-
mula. As example serves the selection of a clustering algorithm (hierarchical
methods: the choice of the distance, the choice of the merging method). We
have no general definition of a cluster, and as a consequence we have lot of
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The SAS System 17:09 Monday, July 31, 1995 2

Model: MODEL1
Dependent Variable: FP

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 61329361.148 61329361.148 4686.772 0.0001
Error 1365 17861883.086 13085.628635
C Total 1366 79191244.234
Root MSE 114.39243 R-square 0.7744
Dep Mean 357.73167 Adj R-sq 0.7743
C.V. 31.97716
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |TI|
INTERCEP 1 -67.531740 6.93971316 -9.731 0.0001
FA 1 5.429284 0.07930592 68.460 0.0001

FIGURE 1.1. Output of the linear regression of the variables FA and FP of the
Berlin flat data.

different possibilities to find clusters in the data. Interactivity allows us to
give our expectations into the process of clustering.

Another important advantage of interactivity is that we can “model” sequen-
tially:

¢ In Figure 1.2 we made a linear regression. In fact we could try a lot of

different regression models. One possibility would be to use nonpara-
metric models; our model might not satisfy the user. Figure 1.4 shows
a robust locally weighted regression. This method tells us something
different about the dataset.

If we compute the correlation coefficient r;, between the two variables
FA and FP we see in Figure 1.1 that it is ~ 0.77. Often programs make
a test immediately afterwards if the coefficient is unequal zero. With
such a large value of the correlation coefficient (n = 1366), no test
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3
X

Index: 1346
197.0000000000
3200.0000000000

.5
Area

(*103)

FIGURE 1.2. Output of the linear regression of the variable FA (area of
flat) and FP (price of flat) of the Berlin flat data (only offers Oct. 1994).

FIGURE 1.3. Same picture as Figure 1.2, but focussed in the left lower

corner.

7

will accept the hypothesis r;, = 0. This test only makes sense if the

coefficient is near zero.
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Interactivity also allows parallel modeling. For example we can make a linear
and a nonlinear regression on our data, then we can analyze the residuals,
the influence of observations on the fit etc parallel in both methods, e.g. via
linking.

0.8
1
T

0.6
1
T

Price (*103)
o

FIGURE 1.4. Robust locally weighted regression of the variables FP
(price in thousand DM) against FA (area of a flat in square meters).
This estimate coincides better with the feeling that the price should be-
come constant or zero if the area decrease to zero.

1.2.2 The Tools of Interactivity
General

In the last five years the basic operating systems have changed. With the
graphical capabilities available now, the interface of computers have changed
from text based systems (DOS, C-Shell, Korn-Shell, VMS, TSO etc) to graph-
ical interfaces. A lot of computers (MacIntosh, Atari) were developed which
have only graphical interfaces, for other computers graphical interfaces were
developed which sit on top or replace a text based interface (Windows 3.1,
X-Windows, OS/2 2.11). Nowadays even operating systems are available in-
dependent of the underlying hardware (Windows NT, NextStep) and we see
a development to unify even the hardware (PowerPC).

The advantage of the window based operating systems is their easiness of
use: instead of having to remember a lot of different commands, we have
Jjust to click the (right) buttons, the menu items and the windows. This is



Introduction 9

a good choice for beginners. Nevertheless a graphical window system is not
always the best choice. Take for example XploRe 2.0, a completely menu
driven program. The data vectors are stored in workspaces. The addition of
two vectors is a complicated task. We have first to click in the menu that
we want to make an addition. Afterwards all possible workspaces are offered
twice to figure out which vectors we want to add. It turns out that a lot of

clicking and moving through menus is necessary, whereas a simple command
like

y = x[,1]1+x[,2]

is much easier just to be typed.

The lesson we can learn from this example is that both is necessary: a graph-
ical and a text based interface.

Many of the statistical programs overemphasize one of the components; Data-
Desk and XGobi are completely based on graphical interfaces whereas S-Plus,
Minitab, GAUSS and SAS emphasize too much the text based interface.

The underlying concept of a window system is the one of an office. A desk is
the basis where several folders are spread. Windows represent the different
task we are working on. As a real desk can be overboarded with piles of
papers and books, the window system can have opened too many windows
so that we loose the overview. Especially if the programs do not close their
windows by themselves when inactive the number of windows increases fast.
The size of the screens has become larger and larger: some years ago a 14
inch screen was standard, nowadays more and more computers start with 17
inch screens. This only delays the problem. Another solution which computer
experts offer is a virtual desktop so that we only see a part of the desktop
on the screen. Via mouseclicking or scrolling we can change from one part to
another. Nevertheless a program has to use use intelligent mechanism to pop
up and down windows.

Windows

We need to have different kinds of windows: Windows that allow us to handle
graphics (2D- and 3D-graphics) and windows that handle text. (editors, help
systems). It is useful to incorporate text in a picture. In fact in all window
systems we have only graphical windows, but some behave like text windows.
The windows themselves have to perform some basic operations. Stuetzle
(1987) described a system called Plot Windows, which uses a graphical user
interface and proposed some operations:

e A window should to be moved easily to another location.
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o A reshape of a window should be easy.

o Stuetzle wanted to have the possibility of moving windows under a pile
of windows. Today we can iconify a window, that means to close a
window and to place it somewhere as an icon so that we remember
that we have a window. A mouseclick reopens the window.

Displays

XPLORE TWREGEST HLP§(,1)

1 i i . —

3.0
i
2

=

X
2
¥

2,0
i

1.5

X(,21,0I(,20,M1.21  (*10%)

1.0

—i.

T Y T T
0.5 1.0 1.5 2.0
XC AL ML AL HHL ) (*102)

mrs(.1) mri,1)

BANIWITH H - 5.85000
INCREMENT INC - 0.65000
CROSS-VALIDATION = 12578.32506

FIGURE 1.5. Windows with several informations form a display for a
certain statistical task (here: relationship between the kernel regression
and the selection of the smoothing parameter). A Nadaraya-Watson es-
timator is used to model the relationship between the variables FA (area
of a flat) and FP (price of a flat).

From my point of view the concept of displays is important in statistics. In
the windows of a display we can show several kinds of information that need
to appear together. As an example see Figure 1.5, which shows a kernel re-
gression on the Berlin flat dataset. The left upper window shows the data
and the fitted line (gray), the right upper window gives us a small help text
that tells us which keys can be used to manipulate the smoothing parameter
(the bandwidth). The lower left window gives us information about the ac-
tual value of the smoothing parameter, the value increment or decrement of
the smoothing parameter and the crossvalidation value, which can be used
to find the smoothing parameter which fits best to the dataset. The last win-
dow, the lower right, shows the crossvalidation function for all smoothing
parameters we have used. The aim of this macro is to teach students about
kernel regression and crossvalidation, the whole set of the availabe macros is
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described in Proenca (1994).

All these windows belong to one statistical operation, and it hardly makes
sense to show only a part of them. So a statistical programs can use this
knowledge to perform automatic operations on a set of windows. A display
will consist of a set of nonoverlapping windows, which belong to a certain
statistical task. A display does not necessarily have to cover the whole screen
as seen in Figure 1.5.

1.2.3 Menus, Toolbars and Shortcuts

Until now we have handled windows as static objects which do not change
their contents. The example in Figure 1.5 needs some interaction from the
user, mainly to change the bandwidth, the increase and the decrease of the
bandwidth. In this example it is done through cursor keys, but in general
menus are used for this. Normally menus appear at the upper border in the
window and we can click on menu items to perform several tasks. Menus
are diminishing the drawing area. On MacIntosh computers for example we
have only one menu bar which is at the top of the window. The menu bar
changes accordingly to the active window. One of the aims is to maximize
the drawing area. A closer look to this solution shows that in the case of a
big screen, this leads to long ways of the mouse, so it is reasonable to use
pop up menus, which appear at the location of the mouse. This includes the
possibility of fixing a menu on the screen if it will be used more often. In
XGobi for example the “options” and the “print” menu are fixed menus and
you have to dismiss them explicitly.

Menus are supposed to serve as a tool to simplify our work, especially if we
have to do the same task again and again, e.g. a special analysis. We might
want to extend the menu for our purposes. The underlying programming
language has to have access to the menu structure in such a way that we can
manipulate the menu. In SPSS for example we can make a scatterplot, and we
have menuitems so that we can plot different regressions (linear, quadratic,
cubic) in the plot. Nevertheless we miss the extensibility. In the teachware
system of Proenca (1994) we are able to make a nonparametric smooth in a
scatterplot. But the original macro does not include smoothing with wavelets,
so we extended the macro. This means to extend the menu and to include
the new method.

One drawback of the menus is that they require the choice of a language.
All important statistical programs offer an “english” version, some are addi-
tionally extended to national languages since users prefer to communicate in
their mother tongue. Although some efforts are made for the international-
ization in programs, the problem still remains to translate a huge number of
texts into many different languages. One approach how to solve the problem
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is the use of toolbars which means to use pictograms as menu items instead
of words. Unfortunately we have no rules available how a pictogram for a
certain task should look like. This leads to the problem that every software
program which uses toolsbars will more or less use its own version of pic-
tograms. Sometimes they are very different although the same operations are
behind them. Another problem is that pictograms are usually small and it
follows that they need a careful design, otherwise the user might not connect
the pictogram to a certain operation.

Another drawback of the menus depend on the different type of users. Begin-
ners and unexperienced users will very much like the choice by menus since
they offer an easy access. But as mentioned above if we have to make long
ways with the mouse to select some item the experienced user will get impa-
tient. This results in the need of short-cuts, special key combinations, which
will start the process behind a menu item as if we had clicked on the item.
By frequent use of a program the users will learn the short cuts by heart
and they can work very efficiently. Of course short-cuts are changing from
program to program, e.g. Ctrl-y in Word, ALT-k in Brief, Ctrl-K in Emacs
and so on to delete a line. This requires that the short-cuts are programmable
too.

Interactive dialog

XPLORE TWREGEST HLPS[,1]

X[.2),MIL2]1 (410}

u T
1. 1.5 2.0 2.5
XI.11,MHIL, 1) {*18)

mrs(.1) mrl.1)

BANDWITH H = 0.726249250
INCHIBENY INC = 0.290499700
CROSS-VALIDATION = 1.067678568

FIGURE 1.6. The automatic bandwidth choice for kernel regression leads
to a completely missleading regression.

Communication between the user and the program via menus or toolbars is
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restricted to start a process. Sometimes it is required to give parameters to a
routine. In the example of the kernel regression in Figure 1.6, a starting band-
width has to be chosen. This is done in an automatically and the bandwidth
is chosen as five times the binwidth. The binwidth is defined as

max; X,' - min,- X,'

binwidth = 100

This choice is not always appropriate as Figure 1.6 shows. The problem arises
that the bandwidth is far to small to cover the gap between both clusters of
data. Of course if the bandwidth would be large enough it will oversmooth
the data heavily. If the starting bandwidth could be chosen interactively, we
would make a choice which would try to balance both effects. Dialog boxes
which can be used to obtain a starting bandwidth appear all over in windows
based systems, e.g. to read and write programs and data to the harddisk. In
general, wherever parameter are required we can use dialogboxes.

Sometimes we will need special boxes with pictures, e.g. if we have to choose
a colour. S-Plus offers an number which indicates an entry into a colour
palette. The palette itself can be manipulated via a dialog box which does
not include a immediate view of the colours. Here the user can choose colours
by name or by RGB-triplets with hexadecimal numbers. The first method
requires knowledge about the available colours, which can be received by
calling showrgb, the second method requires some experience to connect the
RGB-triplets to the desired colours. In the S-Plus manuals they give the
advise that the user should create a piechart which contains all possible
colours so that we get an immediate impression what happens if we change
the colour palette.

To vary the bandwidth in XploRe the cursor keys are used. It would be better
to use (log-linear) sliders as in DataDesk or XGobi. This will allow a fast and
smooth change of the bandwidth. The last group of dialog tools are message
boxes which give informations to the user like warnings, errors and so on.

Interactive programs in general require short response times. The response
time should not be longer than a few seconds (2 — 4). The exact time will
often depend on the sample size, a user will not expect (maybe wish) that a
regression with 30.000 cases will be as fast as a regression with 30 cases. A
better acceptance of long response times is achieved by the use of a statusline
indicating how much of a certain task is already done. The Windows 3.1
system changes normally the form of the mouse cursor to show that it is
occupied, but this will be not very helpful if the system is occupied for a
longer time.
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1.2.4 Why Environments ¢

The aim of an environment is to simplify the task we have to do as much as
possible.

The first step of the analysis is to read the data into the program which can
be a difficult task. An example is the read routine of SPSS where we have
the possibility to read data from ASCII files. SPSS distinguishes between two
formats, a “fixed” format and a “free” format.

In both formats it is expected that each row contains one observation. In the
fixed format it is additionally expected that the variables always start in a
fixed row and stop in another row. If we see datafiles today we have mostly
one or more spaces as delimiter between the variables in a row. But even if
the data are in such a formatted state we have to give SPSS the rownumbers
which means we simply have to count the lines of the datafile.

One may think that the free format will be more helpful if the data are not in

fixed format. Unfortunately the version of SPSS which I had available uses a

comma for decimal numbers instead of a point, so we had to leave the menu

driven environment and to modify the program. We had to add the command
SET DECIMAL=DOT.

and to execute the program. Unfortunately for me this special option is not
documented in the online help so I needed the help from our computer center
to read a simple ASCII datafile. In contrast to that we have routines like in
S-Plus which by a “simple” command allow to read a dataset:

x <- matrix(scan("bank2.dat"),byrow=T,ncol=6)

To read data is a task that we have to do again and again. In general there
will be a lot of tasks we have to repeat during statistical analysis.

We are interested to make our analysis as fast as possible. If we have found
our way to make some kind of standard analysis, we would like to fix this
way so that it can be repeated easily.

We need libraries which contain all the tools we need. It should be easy
to make the tools we need from these libraries. The implementation of new
statistical methods requires already well known statistical techniques which
can be composed from these libraries.

Again we need a programming language that allows us to compose our tools.
A statistical software system should offer tools which are broad enough to do
a specific task well, but it should not cover too much.

If we have a good environment we can concentrate on the statistical analysis
instead on reading the data.
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1.2.5 The Tools of Environments
Editors

An important tool in a programmable statistical software is the editor. It will
be the main tool to write the programs, to view and to manipulate the data.

It has to be easy and comfortable to use. Some editors miss important features
like a blockwise copy. The main problem with an editor is that we have to
know which key combinations will execute a specific task. The standards are
very different. Modern editors allow a redefinition of the key combination
and already offer standard sets of key combinations (e.g. Word compatible,
Emacs compatible etc).

Especially an editor has to show data in an appropriate way. If we want to
display a data matrix it will be a good idea to use a spreadsheet as editor.
This kind of editor is widely used in statistical software.

For a big number of cases or variables we need to regroup the variables and
cases. However, the use of spreadsheets as editors for large datasets will causes
difficulties. These difficulties will increase if we use multidimensional arrays.

Help system

Broad and complete help systems are necessary for the user. It is very helpful
if the help systems are available online. For example it would be difficult to
have the SAS-manuals always at hand.

We need a clear description of the data and the methods. The statistical
methods can be very complicated. Often a software package allows to make
tests for a certain task. As long as we know the tests we can easily check
the underlying assumptions. But if we do not know the tests and can not
find them in standard literature we can not be sure if one of the underlying
assumptions is not violated and that we interpret the test results wrongly.

But the help system should offer more than just simple explanations. Modern
software offers the possibility of topic orientated helps which means if we
want to make regression it will inform us what kind of regression methods
we have available in the software package. Such kind of hypertext systems
can be found in statistical software, e.g. in GAUSS. The hypertext systems
are developing independently from the statistical software as the help system
under Windows 3.1 or the HTML language for the World-Wide-Web (WWW)
shows.

Of course we need some context-sensitive help which will give us an appro-
priate help depending on the actual context. For example if we are in an
interactive graphic window we are interested to know how to manipulate the
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graphic, but we are not interested to get the command overview.

A good help system would not only offer specific informations to a topic but
try to give some more general help. For example it would be worthwhile not
only to get all possible routines for the regression but also some background
information about the definition, the (small/finite sample) behaviour etc. The
paper documentation of SAS is a good example.

Programming language and libraries

As pointed out earlier, we need a programming language and a menu driven
environment. The menu driven environment allows us to do standard tasks
in an easy way.

A programming language is the basic method for the manipulation of the
data (structures). We can build up menu driven environments and statistical
tools to simplify our work. This is important for the scientific research.

This also aims at the different user groups:

e Researcher
who needs full access to all possible methods and language elements.
They will need to develop new methods and new techniques.

¢ Consultants
who need a variety of tools which allow them to make their analysis
efficiently. Sometimes they will need to compose new tools from the
existing ones.

e Students
who mainly need good and easy user-interface with a context-sensitive
help system. They will prefer a clicking and drop-and-drag environment.

For detailed overview about the programs being appropriate for each user
group see section 5.4.1.

Since we have different needs we have to implement a programming language:
it has to allow that the user can do everything on a very basic level, e.g. matrix
manipulations. But we need a macro language that allows us to build tools
efficiently. These tools have to allow for different user groups to satisfy their
needs. We need a multilevel programming language. We need the concept of
loadable libraries and programs (macro). Similar tools can be put together in
libraries so that we only have to load libraries to have a set of tools available
to solve a task.

When we talk about a programming language, we always mean a typed pro-
gramming language as in GAUSS or S-P1us. Graphical programming languages
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are possible, but we do not believe that they are powerful enough to allow ef-
ficient programming for a researcher. How detailed a programming language
should be can be seen in section 3.3, where we discuss for the case of the
regression methods whether a specific regression needs to be a command or
a macro.

We have some fundamental operations in a programming language:

1. Flow control
We need some flow control elements like loops and selections:

(a) Unconditioned loop
do ... endo

(b) Enumeration loop
for (i=0; i<n; i++)
(c) Preconditioned loop
while (i<n) ... endo

(d) Postconditioned loop
do .. while (i<n)

(e) Selection by condition
if (i<n) ... elseif (i<2n) ... endif

(f) Selection by number
switch (i) { case 0: ... default: ...}

2. Operators
Operators are mainly used for calculations. As we are used to write x
+ y we have to provide such operators for user-friendlyness as well, but
we could use procedures like sum(x,y) instead. We have two classes of
operators:

(a) Unary
Unary operators have only one argument, e:g. unary minus, faculty
etc.

(b) Binary
Binary operators have two arguments, e.g. plus, minus, multipli-
cation etc.

3. Procedures
The most powerful operations are procedures in programming lan-
guages. They provide us with some output parameter, a procedure name
and some input parameters.

From computer science we got new developments in the design of the pro-
gramming languages, e.g. object orientation. In fact S-Plus tries to follow
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these ideas, but my impression is that not many people are really using this
features in statistics. This might be due to the fact that we are used to the
procedural languages.

Important is the possibility to load functions and libraries from the disk. It
allows us to build a collection of procedures and to put similar procedures
together. Mathematica and XploRe are example for this. Sometimes libraries
consist of precompiled objects which can be executed faster.

1.3 Modern Computer Soft- and Hardware

1.3.1 Hardware
What do we already have?

The speed of processors is still increasing. Table 1.1 compares the speed of
common processors from the beginning of the eighties until 1995. The com-
parison has to be used with extreme care! The tests (Dhrystone/SPAC (=
SPACSyncCalcFloatingPoint)) are quite different and the comparison (Mo-
torola/Intel) is based on approximate values. Also different computers have
been used and the environment, hard- and software, will have had some influ-
ence as well. The column O(n) represents the size of a dataset for a calculation
which depends linear on the size, e.g. the mean; the column O(n?) represents
the size of a dataset for a calculation which depends quadratic on the size,
e.g. the direct Nadaraya-Watson estimator!.

Both the improvement of the processor speed and the increase of memory and
storage space provide the ability to compute big statistical models. Projection
pursuit methods which mainly depend on the optimization, demonstrate this
very well. Without the use of the power of workstations interactive programs
like XGobi would be impossible. In the section about exploratory projection
pursuit we mentioned that the treatment of discrete data has to be quite
different from the treatment of continuous data. Today we have the power
and the memory to handle this case, but we have to give up the interactivity.

Interactive graphics and animation used in the scatterplot matrix, interac-
tive contouring or exploratory projection pursuit have proven their worth for
statistics. With the use of graphical terminals we have left (for viewing) the
area of black-and-white pictures and started to use colour. It can easily be
demonstrated that the usual 16 colours of a VGA-card are not enough to get

!For the literature see Nachtmann, (1987a, 1987b), Earp & Rotermund (1987),
Schnurer (1992), Meyer (1994) and Meyer & Siering (1994)
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TABLE 1.1. Numerical power of processors.

a smooth gradation from (dark) blue to (light) red. In image plots we might
want to use a blue to show the areas where the minima occur and a red for
the areas where the maxima occur. One attempt to show four dimensional

data is to code the fourth variable as colour, but if we have only 16 colours

we are restricted to discrete variables. A continuous variable will loose a lot

of structure if we represent their values with 16 or less colours. Nowadays
producers of graphic cards allow a choice of 2562 = 16.7 million different
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colours.

One drawback of interactive graphics, animations and colours is that we are
not able to reproduce them on the paper in a appropriate way. Although
nowadays colour printers are available it is almost impossible to get publica-
tions with colour pictures in journals. This might change with new journals
like the “Journal of Computational and Graphical Statistics”. Nevertheless
interactive graphics or animations with a big spectrum of colours on the
screen can not be reproduced by paper journals. Electronical journals like
InterStat in the WWW or a distribution on a CD-ROM might change this.

Although the entertainment industry has greatly improved the quality of
soundreproduction (compare a PC-loudspeaker to a modern soundcard) it
is rarely used in statistics. The main drawback here is that the eye plays
the most important role in human perception. Wilson (1982a, 1982b) has
used sound for exploratory data analysis. Since human soundperception is
logarithmic, e.g. doubling the volume means an increase by factor 10, it would
allow to explore data of big ranges, e.g. from 1 to 107 (e.g. census of city
population in the United States).

Nonparametric estimation are often founded on asymptotic theory, see e.g.
the problem of bandwidth choice in kernel estimation or multivariate esti-
mation. So we need many observations to get an estimation we would trust.
New memory media like optical disks and CD-ROMs will allow the storage of
huge datasets. Nevertheless we will have some areas of research, especially in
economics, where the number of observations will be small (e.g. in deriving
results in nationwide economics).

What can we expect from the future ?

Surely we will see a further increase of processor speed, which will render
more complicated and computer intensive statistical modeling possible. The
graphical techniques and the graphical representation of the results will en-
large much more. The graphic systems will become faster (grand tour, ani-
mation) and more powerful (more colours).

In computer industry people work hard to make it possible to use the natural
language for input and output. For modern soundcards it is not very diffi-
cult to produce output in natural language, still the input has big problems
recognizing human language. The solution will need expert systems which
can handle statistical problems in a proper way. Expert systems are available
only for very limited statistical problems (e.g. GLIMPSE by Nelder) and we do
not know any commercial package offering even a limited expert system.

Nevertheless knowledge based expert systems will be able to support the
statistical analysis we have to do. They will give us a partner for our thoughts
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who speaks the same language and reduce our work to the barely statistical
problem.

Many existing statistical algorithms can easily be parallelized (see e.g. non-
parametric estimation etc.). As a consequence there will be a increasing need
for multi-processor machines or a network-wide distribution of tasks. Espe-
cially the distribution of statistical tasks over a lot of machines in a network
will increase the computational speed. One approach is done via the software
MMM. The aim of the MMM-software, which is based on World Wide Web, is
to collect informations about (statistical) methods. These methods can be
implemented in different hardware platforms and programs. The program
will convert the data from one format into another format. Moreover it will
know where it can find special methods for the analysis. If these methods are
freely available it can copy the methods and execute them on the user ma-
chine or alternatively execute them on the machine where the method can be
found. For details see Oliver, Miiller & Weigend (1995) or Krishnan, Miiller
& Schmidt (1995).

Three dimensional devices for input (camera and software, tomographs) and
output (laser) will give us the chance to see data in a more realistic and
natural view. Although spinning is a good possibility to represent datapoints
it still makes trouble to rotate thousands or tenthousands of datapoints.
Only special software systems are capable to rotate shells which come from
the density estimation of three dimensional data (in real time).

We hope that these developments will result in more user-friendly computer
systems and new statistical techniques.

1.3.2 Software

Advances in software technology have always had their impact in computa-
tional statistics. We have to distinguish between two groups of people: one
which is using statistical software and another which is creating it. The big
impact in statistical computation for the first group mainly comes from in-
creasing hardware facilities. Only the change from text based environments
to graphical user interfaces (GUI) had been of some relevance. Together with
GUIs we have multitasking possibilities and often some kind of hardware in-
dependence. S-Plus serves as an example: In the first version it was only
possible to open one graphic window, then restart S-Plus and open another
graphic window, but the communication between both graphic windows was
difficult. S~-Plus has also developed to a multi-platform program (UNIX,
Windows), so we do not need to care about the platform we have. This has
some disadvantages: the object format for compiled programs is standard-
ized under UNIX, but not under DOS/Windows. As a result we can program
statistical tasks under UNIX in any programming language we want. Under



22 Introduction

DOS/Windows only Watcom-compilers are supported which are rarely used.

The other important impact from software technology is the introduction of
object orientation. Most statistical programs are still working with lots of
single data matrices (see e.g. XploRe 3.2). The user has to know the rela-
tionship between these matrices by heart. Here S-Plus offers the possibility
to have (hierarchical) objects.

Lets take as example the projection pursuit regression (PPR) in S-Plus. The
minimal command would be
ppr <- ppreg (x,y,termno)

with x a multivariate variable and y the one dimensional response. termno
gives the minimal number of terms which will be used. ppr itself would be
an object which is a list of objects containing the subobjects

ypred the residuals of the fitted model

fi2 the squared residuals divided by all corrected sums of squares

alpha a matrix of projection directions used

beta a matrix of the weights for every observation y;

z a matrix which contains o X

zhat a matrix which contains the smoothed values 3_;7™"° g;(a7 X)

allalpha three dimensional array which contains the fitted alphas for every
step

allbeta three dimensional array which contains the fitted betas for every
step

esq contains the fraction of unexplained variance

esqrsp contains the fraction of unexplained variance for every observation.

The subobjects can be accessed via ppr$z. It is obvious that we do not have
to handle a lot of single matrices, but the program will do it an easy way for
us.

Another important fact is the use of classes in S-Plus. It allows us to define
a bunch of data matrices and the methods to handle it in one object. With
the ppr object we are not directly able to achieve the results graphically. We
would need a S-Plus program:

PpPr <- ppreg (x,y,termno)
matplot (ppr$z, ppr$zhat).
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If we would define an object orientated class “projection pursuit regression”,
we could (re)define a function print, which exists for every S-Plus object,
in such a way that we get a graphical result immediately.

These objects can be used to hide nonimportant informations, this is called
encapsulation. The normal user will not be too interested how we did the
plot and what else we have incorporated in the data. inheritance ensures
that derived objects will have all abilities of the original object, so we can
include such a projection pursuit regression class in a broader context like a
teachware tool for regression which might be a class by itself.

Beside the statistical task to make our calculations we have to represent our
results. Multimedia-documents are able to show different kinds of representa-
tion like text, tables, graphics and animation in parallel. Methods like object
linking and embedding under Windows 3.1 will allow interactive working with
documents. A change of a dataset in a WORD-document can call the statistical
program to recompute the pictures for this new dataset. But we should keep
in mind that we are here on the edge of the computational power. Meth-
ods as object linking and embedding are widely available today in operating
systems, but often not used.

Virtual reality means that we replace the whole input we get by human per-
ception by an artificial environment created by a computer. Today’s research
has been successful in replacing the information we get through our eyes. The
hope is that we can represent (hierarchical) statistical objects by graphics.
The virtual space of our objects should lead to an easier manipulation of the
objects and an easier recognition of relations between the objects.
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Exploratory Statistical Techniques

Summary

The first step is to analyze the statistical graphics in use, so we examine the
descriptive statistics. Next is the boxplot, the Q-Q plot, the histogram, the
regressogram, the barchart, the dotchart, the piechart, the 2D-scatterplot, the
2D-contour plot, the scatterplot matrix, the 3D-scatterplot, the 3D-contour
plot, the Chernoff faces and the parallel coordinate plot. We use some of the
tools of XploRe to examine the Berlin housing dataset which use the plots
mentioned above. Finally we state that two kinds of windows are necessary,
one which can draw points, lines and areas, another which can draw glyphs
windows, i.e. the Chernoff faces, star diagrams and so on.

2.1 Descriptive Statistics

Some descriptive statistics.

The first step of an analysis of a dataset can be the computation of some
descriptive statistics of the variables of the dataset. Such descriptive statistics
of each variable are

Missings the number of missing values

Discreteness the number of different values the variable take

Mean the mean value

Variance the variance

Std Dev. the standard deviation

Minimum the minimum

Maximum the maximum

Range the difference between maximum and minimum

1. quartile the first quartile

Median a more robust central value than the mean
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3. quartile the third quartile

Obviously we can compute more descriptive statistics, e.g. skewness and cur-
tosis. Nevertheless this is a first approach to get an overview about the vari-
ables. The Tables 2.1 and 2.2 show the descriptive statistics for the whole
Berlin flat data.

T FA FL FR FB FM FP FI FE
Missings 0 0 0 0 0 0 0 0 0
Discreteness 22 1437 42 18 2 2 1703 3967 2
Mean 79.1 2.5 331 301.1
Variance 1594.6 1.4 49438 39981.0
Std Dev. 39.9 1.2 222 200.0
Minimum 8907 20 1 0 0 38 38.0 0
Maximum 9410 510 11 1 1 3200 2718.5 1
Range 490 10 1 1 3162 2680.5 1
1. quartile 9104 52 2 0 0 180 164.9 0
Median 9210 69 2 1 0 269 244.3 0
3. quartile 9401 97 3 1 0 420 380.7 0

TABLE 2.1. Some descriptive statistics of the Berlin flat data for the
variables T, FA, FL, FR, FB, FM, FP, FI and FE.

DI DF DU DR DW DS DN DB TI

Missings 0 0 0 0 0 0 0 0 0
Discreteness 59 58 34 19 19 28 27 24 22
Mean

Variance

Std Dev.

Minimum 8.5 0 0 6.0 0.3 2.6 25 3 54
Maximum 1389 26.6 8.7 23.7 8.2 11.1 101 275 9.2
Range 130.5 266 87 177 80 85 76 245 3.7
1. quartile

Median

3. quartile

TABLE 2.2. Some descriptive statistics of the Berlin flat data for the
variables DI, DF, DU, DR, DW, DS, DN, DB and TI.

We used the macro DESKSTAT from XploRe 3.2 to compute the Tables 2.1 and
2.2 while the empty entries were done by hand. A statistical program would
need informations about the variables to decide which descriptive statistics
could be computed. It makes no sense to compute some descriptive statistics
for different types of variables (nominal, ordinal, metric, time). For example
SPSS makes an approach to store information about a variable, but this is
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not enough to allow or permit different statistical operations. The program
BDMP stores informations about the type of a variable and permits a statistical
operation if it is appropriate. This may lead to some problems since sometimes
the type of a variable is not completely clear.

Missings.

The treatment of missings is a problem in statistical software. We know the
MANET program (Unwin 1995) for exploratory statistics which gives a clear
indication about missings to the user. In most statistical software those ob-
servations are excluded from statistical operations which contain missings.
Nevertheless we have general methods available which are able to handle
missings (Schwab 1991). For special statistical operations, e.g. linear regres-
sion, we have also modified algorithms available which can treat missings
appropriately. At least statistical software should indicate that we have miss-
ing values.

SPSS stores about a variable

e the name,
o the format,
o the coding values and

o the missing values.

SPSS notifies different kinds of missings (system-defined and several user-
defined) reflecting the fact that missings might have different reasons. From
my point of view it is not satisfying to produce an output line like in SPSS
which tells us how many observations are included in a statistical operation,
see Figure E.1.

Fortunately the Tables 2.1 and 2.2 show that the Berlin flat data have no
missings.

Facts from the variables.

Additionally we can see from the tables that the dataset is very discrete.
Although we have 14968 observations, we have only three variables which
have more than 1000 different values: FA, FP and FI. We see moreover that
we have only 42 different districts. The variables which describe the district
can have 42 x 22 = 924 different values, but in fact between 20 and 60 are
taken.

What can we learn from the single variable:
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o It seems that the average size of a flat is between 69 (median) and 79
square meters. We will see that the modus is at 60 square meter. But
we also have a flat of 510 square meters.

o The average room number is around 2. We expect that the big values
in the size of a flat correspond to many rooms.

e Most of the flats have a balcony (more than 50%), less than 25% are
classified as maisonette flats. Less than 25% of the flats are in the east
part of Berlin. A deeper analysis will show that we have only 248 out
of 14968 offers in the east part, so models about the prices in the east
part does not seem reasonable to me.

o The descriptive statistics might be misleading, because some variables
are depend on the time.

Table E.2 shows the absolute frequencies of offers on time and district.

2.2 Some Stratifications

Stratification after location and time. From Table E.2 and Table E.3
we see that the data for the east are sparse for all time periods. We can try
to find a model for the west part and apply to the east part, but we have to
be aware that the west and the east part are quite different.

Stratification after time. Table E.4 and Table E.5 show how many obser-
vations are falling into each time period. The values of the variables describe
the discreteness of the variable, that means how many different values are
taken by the variable. It seems strange that the variable DU (unemployment
rate) at most time periods only takes two values. Remarkable is that all dis-
trict variables for one time period can be regarded as an aggregation of the
location variable FL in several directions. To model the price it might be
enough to use the variable FL as nominal variable. The district variables can
be used as an explanation why the model looks the way it does.

Stratification after recreation area. As expected Table E.6 and Table E.7
show that the size of the recreation area remains stable for most districts. We
also see that we have a one-to-one relationship between the variables DR and
DW (blue collar workers). Although the datapoints do not form a one-to-one
relationship we are able to identify the value of the variable DW from the
value of the variable DR for an observation and vice versa. The datapoints
are jittered which means they are distributed around the true value in the
center of a point cloud. The aim is to see how many datapoints are hidden
behind one point in the plot.
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Stratification after interest rate of the German Bundesbank. From
Table E.8 and Table E.9 we can see that we have a one-to-one relationship
between the variables TI (interest rate) and T (time of offer). Although the
datapoints do not form a one-to-one relationship we are able to identify the
value of the variable T from the value of the variable TI for an observation.
The datapoints are jittered which means they are distributed around the true
value in the center of a point cloud. The aim is to see how many datapoints
are hidden behind one point in the plot.

2.3 Boxplots

Aim.

The boxplot is an useful tool to analyze univariate data. It gives the statisti-
cian informations about locality, spread and skewness of a dataset. In some
sense it is the graphical analogue to the five number summary (minimum, 1.
quartile, median, 3. quartile, maximum) of a dataset.
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FIGURE 2.1 Construction of a boxplot (variable FA).

Construction.

Tukey (1970) gave the construction of a boxplot as in Figure 2.1. Here ¢y is
the f%-quantile of the dataset.
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Datapoints left of | and right of r are called outside values which can be
interpreted as outliers. It is obvious that not every outside value is an outlier,
an example with nearly 50% outside values can easily be constructed.

McGill, Tukey & Larsen (1978) added features to the boxplots like using the
width as a measure for the sample size and including notches as indicators for
the (rough) significance of differences between medians. Further modifications
of the visual appearance of the boxplots have been suggested by Tukey (1990).

FA FP

[ S

»*

In

FIGURE 2.2. Linked boxplot of the variables FA and FP of the Berlin flat
dataset (only offers from October 1994). The five upper outside values
of FP are marked with different symbols. We can see that the flats with
very high prices (~ 1.5 — 3 million DM) correspond to the flats with a
large area. The datapoint marked with a star shows a flat of nearly 200
m? and a price of approximately 3.1 million DM. Since the order of the
marked values is quite different this gives us some statistical evidence
that the price is not completely determined by the area.

Analyzing outside values.

Since boxplots are used to identify outside values, it is of interest to compare
the variables of a dataset. The question rises if the outside values of one
variable correspond to the outside values of another variable. To analyze this
we need linked boxplots, as an example see Figure 2.2.
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FIGURE 2.3. Subgroup of the variable FP by the variable FE. We see
that in general the prices for flats in the east part of Berlin are higher
(right boxplot) than in the west part of Berlin (middle boxplot). But in
the west part of Berlin we have a larger range of prices. The boxplot for
the whole dataset (left boxplot) is nearly the same as for the west part
of Berlin. This is due to the fact that we have only 248 observations for
the east part out of 14968.

Analyzing subgroups.
Often it is possible to decompose a dataset into subgroups, so we are inter-

ested to know how the distribution and outside values will behave on the
subgroups. An example can be seen in Figure 2.3.

2.4 Quantile-Quantile Plot

Quantile-quantile plots are used to compare the distribution of random vari-
ables. Two types of comparisons are used:

1. to see if two random variables have the same distribution or

2. to compare a random variable with a predefined distribution.

For some statistical methods it is assumed that the distribution of the error
has a special distribution. One of the most important coefficient to measure
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FIGURE 2.4. The quantile-quantile plot compares the variable FA with
a gaussian distribution (see Figure 1.2). Since the datapoints deviate
seriously from the line, it is clear that the assumption is not fulfilled that
the variable FA is gaussian distributed.

the association between two continuous variables is the correlation coefficient:

Y (@i - 2%~ 9)

i=1

3o - 223w - 9)?

i=1 i=1

Toy =

The correlation coefficient can be computed for each dataset of two continu-
ous variables, but we are also interested to test the coefficient at unequality
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of zero. To use the standard test, we need that both X and Y are normally
distributed as assumption.

Here we can use the normal plot to explore if the distribution of X and Y is
gaussian and to examine which datapoints are violating the normality.

It is obvious that such a plot is an exploratory tool. A test should be used

(Kolmogorov-Smirnow, x2 or others) to indicate that the distribution is not
gaussian.

2.5 Histograms, Regressograms and Charts

2.5.1 Histogram

Histograms are a graphical representation of the whole distribution of a
dataset. In the time of text based terminals histograms were easily built
up. The stem and leaf plot is a text based variation of a histogram, which
allows to pick up some location parameters like quantiles, median etc.

Boxplot Histogram

.

Relacive Frequency  (°10 -3}
3.0 w0

+ "

FIGURE 2.5. Boxplot and relative frequency histogram of 1000 data
sampled from N(0,1) (binwidth = 0.1, origin = 0).
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FIGURE 2.6. Histogram of the sixth variable of the Swiss banknote
dataset. We see four histograms with a binwidth of 1.5, 1.0, 0.3 and
0.065. The bimodal structure is hidden if the binwidth is too big (left
upper picture).
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FIGURE 2.7. Histogram of the sixth variable of the Swiss banknote
dataset. We see four histograms with a the same binwidth of 1.0, but
the origin has different values 0.1, 0.35, 0.6 and 0.85. The bimodal struc-
ture is hidden in the right upper picture (origin is 0.6).
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FIGURE 2.8. Averaged shifted histogram of the sixth variable of the
Swiss banknote dataset. The histogram has the binwidth of 0.75 and is
composed from 5 histograms with the origins 0.00, 0.15, 0.30, 0.45 and
0.60. The bimodal structure is now clearly visible and we could give some
speculation if the structure is even trimodal.

A histogram provides more detailed informations than a boxplot as can be
seen in Figure 2.5. It shows us how many data can be found at which loca-
tion. Histograms appear in different forms, e.g. absolute frequency histogram,
relative frequency histograms and other forms.

The construction of a histogram can be expressed as in Hardle (1991):

o Divide the real line into bins
B; =[zo+ (j — 1)h,z0+ jh) j an integer
with binwidth A and origin z,.
e Count how many data fall into each bin

o Depending on the wanted type of histogram we have to multiply with
a constant. If the histogram represents a density function we write the
histogram as

Free(@) = = 3 S I(X; € By)I(= € By)

i=1 j

Computationally it will be done in the following way:
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1. Bin the data X; and get the bincenters B; and the bincounts C;:
B G
By Ci
2. Ensure that for empty bins a 0 will be inserted
3. Double your data: R
B, C;
B, C;
By Ci
B C:
4. Add and subtract now the half of the binwidth é:
B -6/12 C
By + 6 / 2
By -6/2 Ci
B + 6 / 2 Ci

5. Plot this dataset
Two problems arise in connection with the drawing of histograms:

¢ How big should a bar (binwidth) of a histogram be?
e Where should we put the origin of the histogram?

To illustrate the problem see Figure 2.6 which shows the histogram for dif-
ferent bandwidths for a univariate dataset. In Figure 2.7 we can see what
happens if we move the origin of the histogram.

The problem of the origin in the case of density estimation can be solved
with average shifted histograms suggested by Scott (1985). The idea is to use
a smaller binwidth and to distribute a observation over more than one bin.
One practical solution would be to calculate the histogram for the different
origins and to take z the mean of the values of the histogram at every point

K

R 1 .

fn(2) = 4 D Fagorin/k (),
i=1
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which is a specialized form given in Scott (1985). We can compare the Figure
2.8 with the Figure 2.7 and see that the problem of the origin is solved,
but the problem of the binwidth remains. In the beginning of computational
statistics it was suggested that the number of bins is proportional to \/n.
In s-Plus the number of bins is proportional to log,(n). A calculation of
the approximated mean integrated squared error (AMISE) of the histogram
(Hardle 1991) leads to

3 1 h? ! 12
AMISE(fony) = =+ 3= 11 /'3
with f’ the derivative of the unknown density function and || . |3 the squared

La-norm of the density function. A minimization of the AMISE leads to an
“optimal” binwidth of

hmin ~ n—1/3'
In practice this choice is not very helpful since we would have to know the
unknown density function, but we could plug in a reference density for the

unknown density function. Silverman (1986) suggested the gaussian distribu-
tion.

Another approach is to show a lot of different histograms and to change the
binwidth interactively with a slider.

2.5.2 Regressogram

In the regressogram we try to estimate the unknown regression function by
a stepwise constant function. The algorithm is similar to the algorithm for
density estimation.

As an example see Figure 2.9 for a regressogram. Since the problems with
them are mainly the same as for the histograms we will not go into details
here. The regression estimator is very similar to the Nadaraya-Watson esti-
mator.

2.5.3 Charts

Some charts for the plotting of noncontinuous variables have to be mentioned
too. Barcharts and piecharts are used to represent such variables (see Figure
2.10 and Figure 2.11). Cleveland (1985) introduced dotcharts (see Figure
2.12) as an alternative to the pie and the barcharts.
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FIGURE 2.9. Regressogram of the variable LSTAT (percent lower sta-
tus) and MEDV (median value of owner-occupied homes in thousand of

dollars) of the Boston housing dataset. The binwidth is 3 and the origin
0.

FIGURE 2.10. A barchart of the frequency of values of the variable
exp(RAD) of the Boston housing dataset (accessibility to radial high-
ways).
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FIGURE 2.11. A piechart of the frequency of values of the variable
exp(RAD) of the Boston housing dataset (accessibility to radial high-
ways).
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FIGURE 2.12. A dotchart of the frequency of values of the variable
exp(RAD) of the Boston housing dataset (accessibility to radial high-
ways).
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2.6 Bivariate Plots

2.6.1 Scatterplot
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FIGURE 2.13. Scatterplot of the variables FA and FP of the whole Berlin
flat data (n = 14968).

Aim.

One exploratory tool to analyze a two dimensional dataset is the scatterplot.
Figure 2.13 tells us that we have a relationship between both variables.

A problem which occurs in a scatterplot is the “overplotting”. It appears
generally if we have too many datapoints as can be seen in Figure 2.13. To
avoid that we can focus on some parts of the plot as can be seen in Figure
2.14. Here a rectangular brush was opened and we focus on the contents of
the brush. What we need additionally is the possibility to jump back to a
higher level of focussing and to move through the dataset and to zoom in
again.

Subsets.

For further analysis of the data in Figure 2.13 we need the possibility to look
at subsets of the data. Such a subset can be marked by different colours or by
different forms. For this we need a brush which allows us to mark a datapoint
or a subset of datapoints. The brush should be variable in size such that we
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FIGURE 2.14. Scatterplot of the variables FA and FP of the whole Berlin
flat data (n = 14968) focussed to the lower left corner of Figure 2.13.
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FIGURE 2.15. Scatterplot of the variables log,,(FA) and log,,(FP)
of the whole Berlin flat data (n = 14968) and linear regression
log,o(FP) = alog,o(FA) + b. This model of regression makes more
sense since a retransformation of the variables leads to the model
FP = 10°F A® which reflects our expectation that the regression curve
should run through (0, 0).
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FIGURE 2.16. Scatterplot of the variables log,,(F A) and log,o(FP) of
the whole Berlin flat data (n = 14968) and linear regressions on each
year. We get the impression that from 1989 to 1992 the prices increased,
dropped in 1993 and remained on the same level also in 1994.

can brush either one datapoint or a whole set of datapoints. Sometimes it
might be useful to change the shape of the brush (see Figure 2.17), but
it involves more complicated algorithms to figure out which datapoints are
inside the brush. Even complicated areas can be marked easily if brush is
changeable in size. For more details about brushing see section 2.7.

Transforming variables.

Sometimes we are not satisfied with the view we have on the data. From
the modeling of the relationship in the Boston housing data (see Table A.1)
we know that for example the variable LMV is the logarithm of the median
price so we would like to transform the variables in our example. In fact
Figure 2.15 shows a more interesting behaviour than Figure 2.13.

Regression.

We often have the problem to show datasets which are linked, e.g. a dataset
and its regression function, so we need to put more than one dataset into a
scatterplot (see for example Figure 2.15). The brushing of a subset and the
representation of the corresponding regression lead to an interesting view to
the data (see Figure 2.16).
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FIGURE 2.17. Two dimensional projection of RANDU data in XGobi.
A brush was used to mark one plane of data points.

Control elements.

As statisticians we need to control a lot of features in such a plot. If we
use lines in the plot then the datapoints have to be connected by lines of
different colour, thickness and type. Many texts have to be checked: The
title of a window, text at the position of the datapoints etc, the plotting
of (multiple) axes including scaling, tick marks, origin and text at the tick
marks. For time series the text at the tick marks has another format than in
a 2D-scatterplot, sometimes it is necessary to add datapoints, texts and lines.
For example in a contour plot it would be nice to know at which contour he
have cutted. These features point at the capabilities of drawing programs.

The scaling of a plot means how to choose the sizes of the axes in the begin-
ning. In general we will choose the scale in a way that we can see the whole
dataset. Later the user may zoom in and out of the dataset. In the case that
we are plotting lines it is appropriate to choose the median of the slopes to
be +1 as suggested in Cleveland, McGill & McGill (1986). A fitting of the
axes to the data might hide obvious features.
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2.6.2 Sunflower Plot

A problem mentioned earlier is the overplotting. If we distribute one dot of
ink on a paper for every datapoint having to plot a lot of datapoints we get
a big spot where we cannot see anything. One solution would be to reduce
the size of the plotsymbol. But in the sunflower plot binning is used. We
plot different symbols depending on how many datapoints fall into a bin (see
Figure 2.18). Of course we can use colours (image plots), the brightness or
sizes of the plot symbol.

Ve[, 1)

Density
< . - Eater Pic

FIGURE 2.18. Sunflower plot of the variables FA and FP of the whole
Berlin flat data (n = 14968, Xpin = 10m?, Yiin = 100.000 DM). In
contrast to Figure 2.13 we can see that most flats have less than 100 m?
and are cheaper than 500.000 DM.

2.6.3 Other Views

Of course we also need other bivariate plots than scatterplots. For example
it can be difficult to overview a density function depending on two random
variables which can be plotted in a 3D-scatterplot. To get a better overview
we can use contour plots as in Figure 2.19. The fixing of the contour lines

f,y)=a i=12,..

has to be done interactively if we do not have a special aim in mind, e.g.
seeing the global maximum. Another possibility are image plots. Here the
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FIGURE 2.19. Scatterplot of the variables log,,(F A) and log,,(F P) of
the whole Berlin flat data (n = 14968). A density estimate over the data
was done with h; = khy = 0.01. A further investigation would show that
the peeks we see in the contour plot represent a certain number of rooms.
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FIGURE 2.20. Contour plot of a projection pursuit index function. The
index is the Friedman-Tukey index (see chapter 3) with the triweight
kernel and a bandwidth 2 = 0.05 on the RANDU data (see also Fig-
ure 2.17).
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colour of a small rectangular area represents the actual coordinate in the z-
axis. In the case of the image plots the question of the choice of colours and
therefore the question of the colour models used will appear.

2.6.4 Trees

Trees are used for visualization in several statistical techniques,

o as dendrograms in hierarchical cluster analysis (see section 3.1)

¢ in classification and regression trees.

Dendrograms are used to decide how many clusters are available in the data.
In classification and regression trees the spliting rules are visualized (Breiman,
Friedman, Olshen & Stone 1984).

2.7 Scatterplot Matrices

The scatterplot matrix consists of a set of scatterplots. It is a tool to analyse
a multivariate dataset. For each pair of variables of a multivariate dataset we
produce exactly one scatterplot as shown in Figure 2.21.

We can reduce the amount of scatterplots by excluding the upper right half
of the scatterplots as it is just a mirrored view of the scatterplots in the left
lower half. If we drop these pictures we get Figure 2.22.

The real power of a scatterplot matrix will we get by brushing. Normally
the brush is a rectangular area which gives a specific colour and form to all
datapoints in the brush area which can be chosen by the user. It is assumed
that if the i-th datapoint in one scatterplot changes its colour and/or form
then the i-th datapoint in all other scatterplots will change accordingly.

The facilities of a brush (Fisherkeller et al. 1988) should be:

e Deleting
All datapoints in the brush are masked out. Often the colour of a dat-
apoint is set to the background colour.

o Highlighting
A datapoint gets another colour and/or form. The user can choose them
interactively.

o Transient/nontransient
If a datapoint has changed the colour and/or the form and the brush is
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FIGURE 2.21. Scatterplot matrix of the six dimensional Swiss banknote
dataset (from SYSTAT).
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FIGURE 2.22. Scatterplot matrix of the six dimensional Swiss banknote
dataset. The three clusters visible in the second window from the left in
the last row are brushed with 3 different colours and symbols.
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moved further, then we have two possibilities if the datapoint falls out
of the brush. It either keeps the new colour and/or the new form or it
returns to the colour and/or the form before brushing.

o Brush shape
The brush shape should be variable. Lasso functions will be useful to
brush nonrectangular areas, but they will be difficult to implement. At
least a brush should offer different sizes so that we are able to brush
complicated areas.

2.8 Three Dimensional Plots

X: LOG1O({FA)
¥: LOG10 (FP) 1.5
Z: DENSITY (*10 )

FIGURE 2.23. 3D-plot of a bivariate density estimate of the variables
log,(FA) and logo(FP). As in Figure 2.19 we can see the peeks.

Aim.

As a scatterplot is a tool to analyze the relationship between two variables a
3D-scatterplot is a tool to analyze the relationship between three variables.
Since our output tool is still a screen we need additional techniques to give
the eye the impression that we looking at something three dimensional.
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FIGURE 2.24. 3D-plot of a trivariate kernel density estimate of the vari-
ables log,o(FA), log,o(FP) and FR (bandwidth & = (0.23,0.32,0.75)).
As expected we have a clear relationship between these variables. If they
would be uncorrelated the density estimate would look more like unit
balls. Instead of different colours we have used the gray scale representa-
tion of them.

Spinning.

The first attempt has been done with spinning which means we rotate the
dataset parallel to one of the screen coordinate axes (see e.g. MacSpin). A lot
of problems has risen in this context. The first one is the internal representa-
tion of a three dimensional dataset such that a rotation will appear to the eye
as rotation and not as a set of blinking pictures. Models have been developed
to represent the continuous data internally on an integer grid and to executed
the rotation on this grid. Fortunately the numerical and graphical power of
computers has improved so much that this is no longer a problem.

Sizing.

Another possibility to get a three dimensional effect is to draw the datapoints
which are closer to the observer thicker than those being far away. If we rotate
this dataset we need additional computational effort to compute the distance
from the observer. We also loose the possibility to supply a datapoint with a
form of arbitrary size.
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Stereoplot.

Another approach is to split a datapoint into two datapoints which have a
small distance from each other. If we colour one datapoint red and the other
one green and if we use red-green-glasses we will get a three dimensional
picture of our dataset. The disadvantage is of course that we had to double
the number of observations and that we always needed red-green-glasses.

Rocking.

A much more interesting technique seems to be the “rocking” of a dataset.
If we look at a three dimensional scatterplot the picture does not stand still
but moves between two position by rotation. Since datapoints being more
distant will move by greater distances than closer observations we are able to
recognize how far away the observations is compared to the other datapoints.

The advantage is that we only have to compute two different positions for
that moment when we stop the rotation. The computational effort is not too
big and the routines for the rotation are already available.

Surface.

3D-scatterplots are not only used to show datapoints. They are also used to
show different kinds of surfaces (see Figure 2.23 and Figure 2.24).

For the trivariate kernel density estimate in Figure 2.24 an interactive choice
is necessary of the levels ¢4, cgreen and cp)ye to plot the contours of

f(=zi, 55 2x) = Ceolour-

Colour models.

Since we are using colours we have to choose between different colour models.
As each model uses a different basis to compose a colour, each has its own
advantages and disadvantages:

¢ RGB

RGB (red-green-blue) is the most commomly used colour model. Our
TV pictures on the screen use this model. Every colour is composed of
a partition of red, green and blue. We have a lot of knowledge avail-
able about the eye’s sensitivity to RGB-triplets. Every window system
provides an RGB-triplet for composing a colour. A problem appears
if someone has to compose a colour by himself as some experience is
needed.
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Color models
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FIGURE 2.25. Representation of colour models

o YIQ
The YIQ model was designed for transmission efficiency in colour broad-
cast TV. It can be calculated from the RGB-model by

Y 0.30 0.59 0.11 R

I |=1] 060 —-0.28 -0.32 G

Q 0.21 -0.52 0.31 B
¢ CMY

The CMY (cyan-magenta-yellow) is widely used for colour printing de-
vices. It can be calculated easily from the RGB-model by

(3)-(+¢)
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e HSV/HLS

The HSV- (hue-saturation-value) and the HLS-model (hue-lightness-
saturation) are designed for a user-friendly composition of colours. The
hue distinguishes between different colours like red, yellow, green, cyan,
blue and magenta. The saturation describes how little the colour is
diluted with white, e.g. pink and red, sky blue and royal blue.... The
lightness or value describes the intensity of a colour. Both systems can
be represented by a single- or double-hexacone.

e Munsell system

None of the described models consider the sensitivity of the human eye.
In computer systems the RGB model is composed by three integers
which have a range of 255 (2562 = 16.7 Mio.). But can a human eye
really distinguish the colour (0, 0, 0) from (1,1, 1)? So Munsell built up
a scale such that we have equally perceived distances in colour space.
This scale is subjective, but it is based upon the evaluation of many
observers.

The statistical importance of colour scale appears in contour plots in the three
dimensional case (Scott 1992) and in image plots in the two dimensional case.
The three most interesting colour-models, RGB, HSV and HLS can easily be
implemented in statistical software. The Munsell system is based on huge
tables so that an implementation is only done if necessary.

A problem that often arises in (statistical) programs is how to transfer the
background colour of the screen (mostly black) to the background colour
of the printer (mostly white). An easy exchange of black and white is not
possible, because if someone uses a gray scale starting with white and ending
with black, e.g. in a contour plot or in an image plot, the exchange would
destroy the whole palette. To solve such a problem the HLS system can be
used. The RGB-colour will be translated to HLS-colour and the saturation s
will be set to 1 — s. That ensures that colour with s = 0.5 will not change the
RGB-colour. Additionally the light colours which are a strong contrast to a
dark background will become dark colours on the printer, which also will be
a strong contrast on the paper.

2.9 Higher Dimensional Plots

2.9.1 Three Dimensional Scatterplots with Colour, Form and
Size

The simplest idea to show multidimensional data is to use a 3D-scatterplot
and to use different colours, forms and sizes for the datapoints to indicate
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additional dimensions. But the number of sizes and forms is limited (the
number of colours sometimes too), so if a variable is continuous we are not
able to see this continuity. This kind of plots can be used if the variable only
has a small number of discrete values.

2.9.2 Chernoff Faces

O000000000000000 000
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tlolslolelalolulolvlelelolololtalolole
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0000000000000 000000
O00O0000000000o000®

0000000000000 0020

FIGURE 2.26. Chernoff faces constructed with the algorithm of Chernoff.
The observations of the Swiss banknote dataset are coded in face parts:
variable 1 is the width of the mouth, variable 2 the curvature of the
mouth, variable 3 the location of the mouth, variable 4 the shape of the
face, variable 5 the length of the nose and variable 6 the area of the
face. All 200 banknotes are displayed. We can easily see that we have 2
different types of banknotes.

Chernoff faces and other glyphs (star diagram, trees etc.) are also used to
represent multivariate data. Chernoff (1973) introduced the faces in statistics.
He has coded 15 variables in different faces parts (see Figure 2.26). Flury &
Riedwyl (1981) were not satisfied with the look of the faces if the data have
extreme values. They stated that the faces do not look anylonger like faces,
and as a consequence an observer will be more attracted by these nonhuman
looking faces than by the human-looking ones. Additionally they coded 36
variables and developed a face that consists entirely of polygons (see Figure
2.27).
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FIGURE 2.27. Chernoff faces constructed with the algorithm of Flury
and Riedwyl. The observations of the Swiss banknote dataset are coded
in face parts: variable 1 is the nose line, variable 3 the curvature of the
eyebrow, variable 4 the eye size and the size of the mouth and variable 6
the density of the eyebrow, the face line and the darkness of the hair. We
see that observation 70 of the dataset looks very different to the others.
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FIGURE 2.28. Star diagrams constructed from the Swiss banknote
dataset. We can see that stars on the right look fatter.
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The problem with the Chernoff faces is that we do not perceive all face parts
equally. For example the size of the pupil will not receive the same attention
as the darkness of the hair.

If we use the star diagram for all variables then they will be perceived equally.
Since Chernoff faces overemphasize some variables we are able to see differ-
ences well. This is no longer the case with star diagrams. Here only extreme
values will lead to a bigger attention (see Figure 2.28).

In the case of Chernoff faces a tool offering such glyphs has to allow an easy
reassociation with the variables of the face parts. It holds for all glyphs that
it should be possible to sort the data for a certain variable. This will lead to
faster recognition if a structure is connected to a certain variable.

2.9.3 Parallel Coordinate Plot

If we try to represent multivariate data we will have a loss of information.
In the grand tour or Andrews curves orthogonal projections of the data are
used. Inselberg (1985) and Wegman (1990) tried to go another way. He gave
up the idea of orthogonality and put all coordinate axes parallel to all others.
Each datapoint can be marked on the axes and we can draw lines which are
connecting observations through axes (see Figure 2.29).

This can be seen as a projective transformation. The hope is that the ge-
ometric information from standard euclidean space which carries statistical
information is mapped in geometric structures in parallel coordinate space.
One statistical information which carries over is the correlation between vari-
ables as can be seen in Figure 2.30.

Another structure that carries over is the presence of clusters as can be seen
in Figure 2.31. If the clusters are separable in one or more dimension this can
be recognized in the parallel coordinate plot.

A drawback of parallel coordinate plots is that we can not overview them if
the dataset becomes large. A solution to this problem is to draw line densities
f(z,q) on the lines parallel to the coordinate axes (¢ € [0,1]). An example
can be seen in Figure 2.32.
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FIGURE 2.29. Swiss banknote dataset in the original version of the par-
allel coordinate plot. All 200 observations are shown and the variables
are rescaled on [0,1].
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FIGURE 2.30. Simulated dataset with different values for the corre-
lation between variables. corr(X1,X2) ~ —1, corr(X2, Xs) ~ —0.5,
corr(Xs, X4) ~ 0, corr(Xas, X5) ~ 0.5, corr(Xs,Xs) ~ 1. We can see
that the lines become less wild as the absolute value of the correlation
increases.
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FIGURE 2.31. Parallel coordinate plot of the fourth and the sixth vari-
able of the Swiss banknote dataset (see also Figure 2.21).
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FIGURE 2.32. Parallel coordinate plot with line densities of the Swiss
banknote data set. The plot deviates from a standard normal distribu-
tion.
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FIGURE 2.33. Parallel coordinate plot with line densities of the two
gaussian random variables with mean zero and the covariance matrix
being the unit matrix.

If we know the density of two random variables it is possible to calculate the
intermediate density f(z,p) from the formula

V(p) = (1-p)X1 +pX:

for a two dimensional dataset. Especially if we have two gaussian distribu-
tions such that X = (X, X;) with X; ~ N(u1,01), X2 ~ N(pz2,02) and
corr(X1, X2) = p the intermediate density f(z,p) will also be gaussian with

By (1 —=p)p1 + ppe (2.1)
2

op = (1-p)®0l +p%} + 2p(1 - p)porca. (2.2)

An example with g3 = u; = p = 0 and ¢; = o2 = 1 can be seen in Figure
2.33. Instead of 3D-surface plots contour plots and image plots can be used.

2.10 Basic Properties for Graphical Windows

In the preceeding sections we have examined a lot of graphics which are used
in statistical computing. We can divide the graphics into two basic classes:
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1. graphics which consist of drawing datapoints, lines and text and

2. graphics required for much more complex objects.

Piecharts, Chernoff faces and glyphs in general belong to the second class of
graphics while all other graphics belong to the first class.

For the implementation in a statistical software we need at least two kinds
of graphical windows: one that will give us special graphics from the second
class, and another for the specific demands of drawing graphics of the first
class:

o Datapoints in various colours, sizes and forms. Here forms also include
strings and small rectangles.

o Lines of various colours, types and thickness.

¢ In future we might also need to draw complete areas, so the data struc-

tures for graphical objects would have to consider that.

In the regression figure we have seen that the graphics need to be manipulated
interactively or by command from a program.
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Some Statistical Applications

Summary

Here some applications are discussed (cluster analysis, teachware, regression
methods). The cluster analysis will serve as an example for the use of graph-
ics. Teachware needs to be highly interactive and we shortly discuss the ap-
proach of Proenca (1995). The section about regression methods shows how
detailed a programming language should be. The trade-off between speed and
understanding in a statistical routine still plays an important role.

3.1 Cluster Analysis

3.1.1 Introduction

Cluster analysis algorithms are tools used frequently in ecology, biological
science, marketing, chemistry, geology, social science, economics, archaelogy,
ornithology etc. Cluster analysis attempts to detect structure in the data or
at least provides to reduce the number of the observations. This technique
divides a set of points into a subset in such a manner that similar points
belong to the same cluster, whereas dissimilar ones are allocated into different
clusters.

The cluster analysis consists of two different kinds of methods

¢ hierarchical methods and

e partitioning methods.

The partitioning methods require an initial classification. This means that
the number of clusters is fixed. They try to exchange observations between
the clusters to improve some criteria of goodness. The algorithms can be
divided into two classes: the iterative ones and the noniterative ones. In the
noniterative algorithms an observation can be classified only once and can
not be exchanged afterwards to another cluster. The main advantage of these
algorithms is that they reduce the amount of computing considerably. The
iterative algorithms do allow a reclassification more than once.
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The hierarchical methods do not need an initial classification, and the number
of cluster needs not to be known previously. But these algorithms need the
distances between the datapoints. The distance metric has been chosen by the
user. Again the algorithms consist of two different methods. Agglomerative
algorithms start with n clusters so that every datapoint is represented by
one cluster. Now iteratively the algorithm will merge clusters together until
the whole dataset consists of one cluster. The other method, the divisive
algorithms, go exactly the other way. They start with one cluster and try to
decompose the dataset into two subclusters. The process is iterated on the
subclusters until each cluster consists of one datapoint.

It is useful to combine both methods so that we first execute a hierarchical
cluster analysis to choose the number of clusters and then a partitioning
method to improve our result.

In the following subsection we will restrict to one partitioning algorithm and
one hierarchical algorithm. For further details on other algorithms see Mucha

(1992a).

3.1.2 The k-means Algorithm

The k-means algorithm was developed by Hartigan (1975). As mentioned we
need an initial classification. Possible choices are a random generated classi-
fication, prior knowledge or categorization of the first principal component.
The k-means algorithm now tries to minimize the sum of the within cluster
variances

K n
Vk =)D Siamidg(ei, 2)

k=11i=1

with K the number of clusters, n the number of observations, §; x an indicator
function, which is 1 if the i-th point is in the k-th cluster and 0 if not, and
m; a weight for the observation .

dj(z,9) = (z - y)"Q(z ~ )
represents a weighted squared euclidean distance with a weight matrix Q.

The weights normally describe the weight of variables, and classical choices
are

o the trivial weights @ = I or
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e the standard weights Q = diag(1/s; ;) with

Y mi(wi; - )’
i=1

84 = n
> m:
i=1
n
> mizi,
~. . i=1
IJ =

n
> m
i=1

Obviously other distances can be used too, but the weighted squared eu-
clidean is the most common one.

The algorithm has to incorporate an optimization algorithm on a stepwise
function which appears to be a difficult task.

An improvement for the partitioning algorithm can be done by the use of
adaptive weights. We repeat the partitioning algorithm until the computed
partition or the adaptive weights change no longer. In the first step we use
the standard weights and in each following step we compute pooled standard
deviations

n

K
SN siemiaij — #,)°

k=1i=1

E nm;
i=1

SPJ =

with

n
Db pmizi

= i=1
Tpj = —————.

- n
> biem
i=1

The inverse of these pooled variances will be plugged in as weights for the
variable in the next step. Following Mucha (1992b) and Mucha & Klinke
(1993) it seems that these methods are a little more intelligent than the
standard k-means algorithms.
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3.1.83 The Agglomerative Algorithm

All agglomerative methods follow the same scheme:

1. Find the minimal distance d(i, j) between two clusters

2. Merge the two clusters to a cluster k

3. Compute the new distances of each cluster

d(k, 1) = a;d(i,1) + o;d(j,1) + Bd(i, ) + 7 | d(i, 1) — (4, 1) |
For the value of the constants for the different methods see Table 3.1.

4. Go to 1 until we have more than one cluster
For the agglomerative methods a choice of the distance is important. First
we have to distinguish between continuous and noncontinuous variables. For

the continuous case we have a lot of distances available. If we assume that
X = (zij)i=1,.,n;j=1,...p then we have the following distances

o the euclidean distance:

14
d(i,j) = \lz(%k - zj)?

k=1
o the Manhattan distance:
d(i,5) =Y | zik — Tjk
k=1
e the maximum distance:
d(i,j) = max Tik — Tjk

e the cosine distance:

) 4
2 E i 1%,
=1

di,5) = |2-
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o the x2 distance:

P
Zik Zj.k
d(i, j) = Z : >

)4
Z Zie qu Dz
=1 =1 =1

The choice of the distance depends on the problem we have. If we want to
cluster airports with the aim of minimizing the traveling costs, we will use
the euclidean distance since airplanes can go straight from one airport to
another. But if we want to cluster supermarkets of a company to minimize
transportation costs for goods, we will use the Manhattan distance, since
streets often follow a rectangular mesh.

In contrast to the measures for continuous variables we also have measures for
noncontinuous variables. The distances given below are for binary variables,
but for other input data we can categorize the variables by

N 0 if z; < v,
caty(z;) = { 1 otherwise.

For discrete variables with more than 2 values the variable can be decomposed
into several variables in the form of

n_J 1 ifzi=j,
decj(z) = { 0 otherwise.

Thus it is sufficient to give distances for binary variables:

o the Tanimoto distance:

o #11 + #00
di0)=1- gz 1 2(#10 + #01)
o the Jaccard distance:
C #11
d(i, ) = 1= o T 10

o the matching distance:

di,j) =1 - ELEED
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Dendrogram for Ward’s method
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FIGURE 3.1. Dendrogram for the Swiss banknote data. On the x-axis
we see how the sum of within cluster variance increases if we merge more
and more clusters. On the y-axis we see the observations. A good choice
for cluster would result in 2, 3 or 5 clusters. In fact in Figure 9.10 on page
186 in Polzehl & Klinke (1995) we can already see three distinguishable

clusters.
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FIGURE 3.2. Principal component plot of Swiss banknote dataset. With
the Ward method and the euclidean distance we have chosen 2 clusters.
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FIGURE 3.3. Principal component plot of Swiss banknote dataset. With
the Ward method and the euclidean distance we have chosen 3 clusters.
Notice that the clusters do not coincide with the clusters to be found by
Eeploratory projection pursuit. To achieve the cluster structure found in
exploratory projection pursuit more work has to be done.

with #pg =number of variables which have the characteristics z; x = p and
zjr = ¢. Again the choice of the distance depends on the problem. Other
distances can be found in Jambu & Lebeaux (1983).

We now have several methods in the agglomerative cluster analysis to merge
two clusters. Each method has it own advantages and disadvantages:

Single linkage was developed by Sneath (1957) in the context of taxon-
omy. The two clusters will be merged when the distance between the
two closest neighbours gets minimal. As a result this method tends to
produce long chains.

Complete linkage merges two clusters, if the distance between the farthest
points in the cluster is minimal. It will produce compact, hyperspherical
clusters with highly similar objects.

Average linkage is a compromise of the two methods of Sokal & Michener
(1958). Here we take the average of the distances between the farthest
and the closest datapoint in the clusters. We will get spherical clusters.

Centroid linkage merges the cluster with nearest distances between the
gravity centers of the clusters. This method can be used to find clusters
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FIGURE 3.4. Principal component plot of Swiss banknote dataset. With
the Ward method and the euclidean distance we have chosen 5 clusters.

with different numbers of observations. But large clusters can contain
very heterogeneous objects.

Wards method was designed to optimize an objective function, the mini-
mum variance within the clusters (Ward 1963).

Lance- and Williams method is generalization of the preceding methods.
By variation of the parameter § we achieve similar results as in the
methods before.

Method a; a; B Y
Single linkage 0.5 0.5 0.0 -0.5
Complete linkage 0.5 0.5 0.0 0.5
Average linkage oy u;'-‘:u,- 0.0 00
Centroid linkage o Y aja; 0.0
Ward u;::z% u.'%i:;t:m u.'+_u‘;L+ul 0.0
Lance- and Williams %T—_E):—‘ :: +u:‘ 8 0.0

TABLE 3.1. Constants for computing the new distances for different ag-
glomerative methods. The weights u; are weights for each cluster, in the
simplest case this is the number of observations in each cluster.
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Since we need some criteria to decide about the number of clusters we can
generate a dendrogram as can be seen in Figure 3.1. The z-axis is the crite-
rion used for merging the clusters. It can be used to decide graphically how
many clusters are in the data. No objective approach exists how to choose
the number of clusters. One approach was made by Rand (1971) through a
measure of correspondence.

3.2 Teachware

Today we have a class of programs that we can call teachware. The main aim
of teachware programs is to improve the quality of learning statistics for the
students. One way to fulfill this aim is to make statistical methods available
to the student by

¢ an individual learning process, where the student determines the speed
of learning and

o to learn by playing with statistical techniques.

These aims have a direct influence on the structure of a teachware program.
From the second aim it follows that only graphical environments can be used.
The program has to be interactive so that the student can get an immediate
feedback. Since the student himself determines the speed of learning, he has
to be independent from the teacher which means that the program should
be very user-friendly. Obviously menu driven environments are necessary as
well as good and easily accessible help systems.

We have a lot of techniques in statistics and econometrics which are highly in-
teractive and need graphics (principal component analysis, projection pursuit
techniques).

If these aims are fulfilled we can hope to increase the motivation of students
to learn and use statistics, especially if they do not have a mathematical
background.

Teachers can expect from the teachware an easier and faster understanding
of the statistical methods. For example an explanation how the stem and
leaf plot is built up will be less informative than the graphical construction
shown in CIT. Often it is said that one benefit of teachware is that teachers
will save time which they can spend better on methodology. According to my
experience this not true as the students have to handle the operating system.
We could use teachware programs to test new statistical methods if they were
really working well. It might also be a way to make people use new methods.
Although the supersmoother is not distributed as a teachware program, the
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success 1s connected to the success of S-Plus as a statistical programming
language.

As a result we have now a variety of teachware programs (Koch & Haag

1995):

CCI 2.7 which concentrates on the concept of confidence intervals and its
connections to the sampling distribution, the standard error of an esti-
mate and hypothesis testing,

CIT which shows some basic concepts and explains some graphical tech-
niques (stem and leaf plot, histogram),

First Bayes 1.1 which <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>