

These “Little Books” have
rescued lots of grades and
more!

(a sample of the hundreds of letters REA receives each year)

“ I can’t tell you how much that little book helped me. It
saved my GPA and quite possibly my sanity.”

Student, Winchester, IN

“ Your book has really helped me sharpen my skills and
improve my weak areas. Definitely will buy more. ”

Student, Buffalo, NY

“ I think it’s the greatest study guide I have ever used! ”

Student, Anchorage, AK

“ I wish to congratulate you on publishing such excellent
books. ”

Instructor, Big Rapids, MI

2

“ I found your Essentials book very helpful. Now tattered and
covered with notes, I take it to class daily. ”

Student, Huntington Beach, CA

“ I bought The Essentials of Electric Circuits and was very
impressed. Congratulations on such a well thought out
summary. ”

Engineer, Colorado Springs, CO

3

4

THE ESSENTIALS®

OF DATA STRUCTURES I

Copyright © 2001, 1996, 1990 by Research & Education
Association. All rights reserved.

No part of this book may be reproduced in any form without
permission of the publisher.

Printed in the United States of America

Library of Congress Control Number 00-132041

9780738671499

5

ESSENTIALS is a registered trademark of
Research & Education Association, Piscataway, New Jersey
08854

6

WHAT “THE
ESSENTIALS” WILL DO
FOR YOU

This book is a review and study guide. It is comprehensive
and it is concise.

It helps in preparing for exams and in doing homework, and
remains a handy reference source at all times.

It condenses the vast amount of detail characteristic of the
subject matter and summarizes the essentials of the field.

It will thus save hours of research and preparation time.

The book provides quick access to the important facts,
principles, procedures, and techniques in the field.

Materials needed for exams can be reviewed in summary
form — eliminating the need to read and re-read many pages
of textbook and class notes. The summaries will even tend to
bring detail to mind that had been previously read or noted.

7

This “ESSENTIALS” book has been prepared by experts in
the field, and has been carefully reviewed to ensure its
accuracy and maximum usefulness.

Dr. Max Fogiel
Program Director

8

Table of Contents

These “Little Books” have rescued lots of grades and more!
Title Page
Copyright Page
WHAT “THE ESSENTIALS” WILL DO FOR YOU
CHAPTER 1 - INTRODUCTION
CHAPTER 2 - SCALAR VARIABLES
CHAPTER 3 - ARRAYS AND RECORDS
CHAPTER 4 - ELEMENTARY SORTING
CHAPTER 5 - SEARCHING
CHAPTER 6 - LINKED LISTS
CHAPTER 7 - STACKS
CHAPTER 8 - QUEUES
APPENDIX A - BINARY NOTATION
APPENDIX B - SUBPROGRAM PARAMETER
PASSING
INDEX
These “Little Books” have rescued lots of grades and more!

9

CHAPTER 1

INTRODUCTION

1.1 DATA AND PROGRAMS

All computer programs involve information or data. A
program is of little use if there is no information produced at
the end of its execution. Some programs merely generate
data, such as a program to generate prime numbers. These
types of programs usually do not require any input data, but
merely create the information desired by the programmer.
Other programs process input data and create more data as a
result, such as bookkeeping and billing programs that
examine files of charges and then generate bills to be mailed
to customers. Whether a program needs input data or not, it
nonetheless needs to store some data, which is then used to
generate other data desired by the programmer.

The study of data structures is a study of the possible ways of
organizing and storing information; that is, a study of the
various ways to structure data, and a study of the way that
some data is related to other data. Depending on the way data
is arranged (“structured”), computer operations involving that
data may become less or more efficient, or less or more
complex operations such as information retrieval and
modification.

10

A study of data structures usually involves examining the
operations, programs or algorithms associated with the
various structures, although a detailed analysis of these
algorithms is normally part of a separate field of study,
usually called the Theory of Algorithms. In general, good
algorithms lead to good programs. But the efficiency of
programs can be improved by an intelligent and prudent
choice of the data structures used to store the needed
information.

1.2 ABSTRACT DATA TYPES

Certain data structures (e.g., scalar data — Chapter 2, and
arrays — Chapter 3) are built into every computer language.
However, not every language has the full range of the more
complex structures (e.g., pointer variables frequently used in
linked lists — Chapter 6). To overcome some of the difficulty
encountered when converting from one language to another
and also to allow for improvement in the internal
implementation of more complex structures in various
versions of a program, certain data structures are now
commonly termed Abstract Data Types.

An Abstract Data Type (abbreviated as ADT) is any unit of
data (usually complex) not built into a specific programming
language. For example, the structure stack (see Chapter 7)
can be called an ADT since most languages do not contain
“stack” as an elementary data type or structure. In a data-base
management program, the database might be considered an
ADT.

11

Once an ADT has been identified, operations can be
associated with the ADT (such as insertion, deletion,
searching, testing whether empty, etc.), and specifications can
be drawn up detailing what the ADT contains, and what each
operation does.

In many computer languages, a given ADT (such as a stack)
may be implemented in several different ways, using different
possible fundamental data types and structures. In some
languages (such as Modula-2 and Ada), it may even be
impossible for someone to know how such an ADT is actually
implemented, particularly if the program segment containing
the definition of the ADT and its operations was written by
another programmer.

ADTs provide a beneficial distinction between external
representation of data structures along with their related
operations, and the actual internal implementation. This
distinction becomes particularly useful in larger programs. If
the modifications of ADTs are done only by using carefully
written operations, then fewer errors usually occur. If a more
efficient method to implement an ADT is developed, in a
carefully written program the sections defining the ADT and
its operations can be replaced by the newer code without
affecting the other segments of the program. A programming
team can determine which ADTs will be used, how the
related operations are to work, and what the external
specifications should be, thus leaving the actual internal
implementation to someone else. As long as users follow the

12

external specifications, they should not need to know
anything about the internal implementation. The ADT can
form a protective fence around the internal implementation
both to guard the data structure and also to allow it to be
improved without disturbing the rest of the program.

Some of the more complex data structures are frequently
described as ADTs. Sometimes several implementations are
discussed in detail (as in the case of stacks). Other times,
implementations are not discussed at all or only one brief
example is given (as in the case of trees). However,
programming with ADTs has become a more and more
important part of the contemporary study of Data Structures,
even though they are not always explicitly mentioned.

1.3 COMMENTS ON TOPICS

The topics covered in this booklet are primarily those
recommended for a second course in Computer Science for
Computer Science majors, topics listed in the most recent
Association for Computing Machinery (ACM) curriculum
guidelines for course CS2 (as revised in 1984). Some topics,
however, may be covered in other courses. For example,
topics in Chapters 1 through 6 may sometimes be covered in a
first course in Computer Science (ACM course CS1), topics
in Chapter 2 sometimes in a course in computer organization
(ACM course CS4), and topics in Chapters 11 through 14
(found in The Essentials of Data Structures II) sometimes in
an intermediate course in data structures (AM course CS7).

13

In addition, several appendices contain information that,
although not intrinsically part of the subject of data structures,
are frequently included in data structures texts or are taught in
prerequisite courses. This information has been placed in the
appendices as a handy reference.

14

CHAPTER 2

SCALAR VARIABLES

2.1 COMPUTER MEMORY

Computer memory can be envisioned as a huge collection of
locations that can store information or data, similar to the
banks of post office boxes in a post office. Each individual
memory location consists of a number of two-valued (i.e.,
binary) information storage units. Each of these two-valued
storage units is usually called a bit (for “binary digit”), and
stores a value of 0 or 1 (or “off” or “on”). Each memory
location has a unique address so information can be stored
and retrieved easily, and the addresses are usually numbered
sequentially (often starting at 0). Thus if a small computer has
256,000 memory locations, they are sequentially numbered
from 0 to 255,999.

A standard memory location on a mainframe computer is
traditionally called a word and typically consists of 8, 16, 32,
36, 40, or 60 bits. An (addressable) subsection of a word is
called a byte and is commonly used to represent an encoded
character. A byte usually consists of 8 bits, even though only
7 may be used to represent a character in code. On occasion, a
half of a byte is called a nibble.

15

Larger computers (i.e., “mainframes”) usually have a longer
word size, and these words can sometimes be subdivided. In
most personal computers, memory is usually arranged in
bytes, which are joined together if needed for larger data.

2.2 DATA TYPES

In most contemporary programming languages, there are at
least four standard types:

INTEGER (i.e., whole numbers such as 2, 34, –
234),

REAL (i.e., numbers that can contain a
decimal point),

CHARACTER (i.e., letters, symbols, and numbers
stored as characters),

BOOLEAN (i.e., values related to two-valued logic,
sometimes called LOGICAL).

Any unit of information that is used in a program must be
classified according to one of the allowable types and in most
languages this classification cannot be changed during the
course of the program’s execution.

Information stored in memory is also classified as to whether
it remains constant throughout the program (such as
3.1415926) or whether the contents of that memory location
are allowed to be changed. Memory locations that contain

16

unchangeable data are called constants. Memory locations
that contain changeable data are called variables.

Since computer memory can only store binary information,
all information, numeric or non-numeric, has to be translated
into some sort of binary code before storage. The code must
be unique as to type and easy to use in operations. In addition,
there should be some way of determining what type of
information is stored in which memory location, so that the
information can be interpreted correctly.

To aid the computer in determining what type of information
is stored where, when a program is compiled, a symbol table
is created in which each variable is listed along with its type.
Normally, other information is also stored in a symbol table,
especially the variable’s memory location, and any initial
value.

A constant or variable is called scalar.(or simple) if it is
associated with one memory location.

2.3 ENCODING DATA

2.3.1 INTEGERS

In the binary representation of integers, the left-most bit is
interpreted as a sign bit, which is 0 for positive numbers and
1 for negative numbers. The other bits store the magnitude of
the number (sometimes called the mantissa). This magnitude
is interpreted in different ways depending on whether the

17

number is positive or negative and depending on which
method is used by the computer for representing signed
integers.

There are three common schemes used to store signed
integers. The actual method employed depends on the
computer being used and each computer employs only one
scheme.

Positive integers are encoded in direct binary notation no
matter which of the three schemes is used, e.g.,

Negative integers are encoded differently according to the
rules of the scheme being used.

a) Sign Magnitude — The first bit indicates the sign, and
the other bits indicate the number in standard (i.e.,
positive = “magnitude”) form. E.g.,

PROBLEMS

In this scheme, there exists one representation for +0 (=
00...000) and a different one for - 0 (= 10...000). Arithmetic
(with positive and negative numbers) is difficult, since it must
first be determined whether both numbers are of the same or
of different signs, and then the appropriate algorithm used.

18

b) One’s Complement — The first bit indicates the sign,
but all other bits are (one’s) complements of the positive
number representation. In other words, a 1 bit turns into
a 0 bit and a 0 bit turns into a 1. E.g.,

PROBLEM

In this scheme, there (also) exist two different representations
for +0 (= 00...000) and — 0 (=11 ...111). However, here the
arithmetic is easy. The same algorithm is used no matter what
the signs of the two numbers are.

c) Two’s Complement — First bit (also) indicates the
sign, but the other bits are derived by first
complementing the positive number representation and
then adding 1 (i.e., adding 1 to the 1’s complement
representation). E.g.,

Note: in this scheme, there is only one representation for 0,
and the arithmetic is also fairly easy.

Comment: Technically, the three schemes of sign-magnitude,
one’s complement and two’s complement are applicable to all
signed integers, both positive and negative. However, there is
no difference in the resulting coded number for positive
numbers. Only when encoding and decoding negative

19

numbers must the scheme be known in order to perform the
coding correctly.

2.3.2 REAL NUMBERS

Real numbers are stored in two sections in one word using a
format related to the so-called “scientific notation.” A real
number expressed in scientific notation is written with a
section containing the decimal point (usually called the
mantissa or the significant digits), multiplied by 10 raised to
some power (called the exponent). For example, one million
(1,000,000) can be written as 1.0 × 106 or as 100.0 × 104.
When real numbers are stored in a computer, the mantissa is
normalized (i.e., usually there are no digits to the left of the
decimal point and no leading zeroes to the right of the
decimal point). E.g.,

Whether the “binary” point is assumed before or after the
digits of the mantissa varies with the system. The point itself
is never stored.

Thus, for any real number, a total of four units of information
must be stored in a word: the binary version of the mantissa,
the sign of the mantissa, the binary version of the exponent,
and the sign of the exponent. Note that as seen in the example
above, the sign of the exponent can be negative while the sign
of the mantissa can be positive!

20

For purpose of example, assume that a computer has a 40 bit
word. One possible way in which the bits of a word are used
for storing a real number might be the following:

It should be noted that real number arithmetic is more
difficult than integer arithmetic. A simple arithmetic example
will illustrate the problem and sketch the steps a computer
takes.

EXAMPLE

How are the following numbers added: 0.25E—2 and
0.30E+4? (One cannot merely add the mantissas and the
exponents!)

1st: shift the decimal (or binary) point of one number
(adjusting both the mantissa and exponent) until the
exponents of both numbers are equal. E.g.,

.25E—2 ⇒.00000025E+4

2nd: add the mantissas only. Note that on computers, the
limited machine accuracy means that one number may not
change the other number, i.e., the sum may actually equal one

21

of the two addends! In our example, the sum would be
0.30000025E+4.

3rd: normalize the computed sum (if necessary). On a
computer, after normalization, the number from the
computational register is stored in memory, truncating low
order bits if necessary. If only six decimal digits can be
stored, the stored sum would be the same as one of the two
original numbers, i.e., 0.300000E+4.

2.3.3 CHARACTERS

Characters are stored via a coding scheme. Each character,
whether it is a letter of the alphabet (upper case or lower
case), a digit, or a special symbol (printable or non-printing),
is assigned a number in the coding scheme, often called the
collating sequence (especially when the characters are listed
in the numerical order of the code numbers). There are two
major schemes in use.

EBCDIC (pronounced “eb-see-dick”) is a scheme produced
by IBM. It is an acronym for Extended Binary Coded
Decimal Information Code, and is still used in some IBM
mainframes. This coding is such that the small letters come
before the capital letters, which come before the numbers in
the collating sequence.

ASCII (pronounced “as-key”) is an acronym for American
Standard Code for Information Interchange. This is a national
standard, in use on most mainframes other than IBM and on

22

most personal computers (including IBM). This coding is
such that numbers come before capital letters, which come
before small letters in the collating sequence.

2.4 COMMENTS ON VARIABLE TYPES

Programs and computers need to store data correctly in order
to use it properly. A program cannot use characters as if they
were integers. A computer cannot add reals as it adds
integers. The same sequence of bits can mean one thing as a
code for a character, something else if it were an integer, and
something else if it were a real number. Thus, for most
languages it is necessary for the compiler to produce a symbol
table, and to distinguish between the various types of simple
data stored.

When a unit of data is changed from one type to another, the
process is usually called type conversion. Even the evaluation
of a simple arithmetic expression may involve significant data
type conversion that is unknown and invisible to most users.
Most languages provide for automatic type conversion
between integers and reals when both types of data are
involved in a single expression. Since reals cannot be added
as if they were integers and vice versa, if both occur in an
arithmetic expression, usually the integers are copied to
temporary storage locations and converted to reals. Only then
is the expression evaluated using real arithmetic alone.
FORTRAN includes explicit library functions that enable a
user to control conversion between the various numeric data
types (i.e., integer, real, double precision, and complex). Real
numbers are usually converted to integers by means of an

23

explicit function that either truncates the fractional part of a
number or rounds it to the closest integer.

2.5 DECLARING SCALAR VARIABLES

In some languages (e.g, BASIC, FORTRAN, LISP), scalar
variables need not be declared. However, undeclared
variables can lead to problems.

In FORTRAN, if variables are not declared, they are given a
default type based on the first letter: if the initial letter is
between I and N (inclusive), the variable is assumed to be of
type integer. Otherwise, it is of type real. To change the
default typing (and as good standard programming practice),
one uses a type declaration statement.

In other languages (e.g. Pascal, Ada, C, Modula-2), all
variables must be declared and given a type before use. This
is usually done in the variable declaration section before the
body of the program code.

24

CHAPTER 3

ARRAYS AND RECORDS

3.1 AGGREGATE STRUCTURES

Scalar variables do not fill all needs. There are many
situations that demand that many scalar variables be
associated together. A structure of several memory locations
that together form one data structure is often termed an
aggregate structure. The structure usually is given only one
variable name, even though composed of many memory
locations. Two of the simplest aggregate structures are arrays
and records.

3.2 ONE-DIMENSION ARRAYS

In general, an array is homogeneous data structure with
multiple dimensions. In this context, homogeneous means
that all the elements of the array are of the same data type.
Each dimension can be arbitrary in size, but once the sizes of
the various dimensions of an array have been determined, in
most languages they are fixed for the duration of the program.
The memory locations in an array are sequential and
consecutive, like items (e.g., songs) on a magnetic tape
cassette. Every array has one name by which it is identified,
but the individual elements in an array are accessed by means
of one or more subscripts (like the components of a

25

mathematical vector or matrix). For example, vector a of
dimension 4 has components ai where i ranges from 1 to 4.

A one-dimension array is the simplest non-scalar data
structure, and its structure and use is similar to that of a
mathematical vector.

In computer languages, array subscripts are indicated by
being enclosed in a pair of parentheses or a pair of square
brackets, depending on the rules of the language. For
example, then ithelement in the array A would be indicated as
A[i] in Pascal and A(I) in FORTRAN.

Information in an array is accessed directly and randomly.
Thus, an array is sometimes termed a random access
structure. Some of the items in the structure do not have to be
accessed first in order to get to others.

3.3 STORAGE OF ARRAYS

Besides the data stored in the elements of an array, each array
also has associated information stored. For each array, a base
location is stored and, frequently, other information
(depending on the language and compiler) such as the number
of subscripts (i.e., dimensions), and the maximum/minimum
values of each subscript. The base location indicates the
memory location of the base, i.e., the first element of the
array.

26

The locations of the elements of an array are never all stored.
The memory location of any element is computed when
needed using the base location and the element’s subscript(s),
as seen in this example.

Under the assumption that array elements are stored
consecutively, A(2) is located in the first (=2—1) place after
A(1). Similarly, A(5) is the fourth (=5—1) element after A(1).

In general,

location (A(N)) = base (A) + N - 1.

For some languages and in some implementations, the
relevant information for arrays is stored in memory before the
data contained in the array, and only the base location is
stored in a symbol table. This collection of array information
is commonly called the dope vector (or dummy vector).
When used, the base location found in the symbol table
sometimes gives the address of the first element of the dope
vector rather than the first element in the array. The dope
vector in these cases contains the location of the first element
of the data.

27

3.4 TWO- AND HIGHER-DIMENSION
ARRAYS

For many problems, one-dimension arrays do not suffice and
so two- or higher-dimension arrays must be used. Two-
dimension arrays are frequently thought of as representing a
table (with rows and columns), and three-dimension arrays as
a box with multiple storage compartments (with levels, rows,
and columns). The individual storage cells are accessed as in
the one-dimension case, via subscripts. With two-dimension
arrays, the same convention is followed as with mathematical
matrices, in that the first subscript indicates the row, and the
second the column. There is no universal agreement on the
interpretation of the different subscripts for three- or higher-
dimensions.

Any array of any dimension is a data structure with one name
for many memory locations. The number of total cells in the
array can be calculated by examining the maximum number
of each dimension. For example, a two-dimension array A
with first element A(1,1) and last element A(3,5) has 3 × 5 =
15 total cells for storage. Similarly, a three-dimension array B
with first element B(1,1,1) and last element B(3,2,4) has 3 × 2
× 4 = 24 total cells for storage.

As mentioned above, computer memory is numbered
sequentially (i.e., linearly), like the inch counter on a tape
recorder. Given this fact, the question of how to store a two-
or higher-dimension array in a linear computer memory must
be discussed.

28

Storage of a multi-dimension array is done by decomposing
the array into subsections, each of which is in some sense
linear, and then storing all the subsections in some sort of
order. For two-dimension arrays (i.e., matrices or tables),
there are two choices for the decomposition:

— by rows (called “row-major order”)
— by columns (called “column-major order”).

In other words, one can imagine taking a (two-dimension)
table or matrix printed on a piece of paper and cutting it into
strips by rows or by columns. These paper strips can then be
fastened together in some order (the first row or column
followed by the second, followed by the third and so on) to
form one long linear list of data from something that was
originally a two-dimension structure.

Knowledge of the storage order is necessary in order to
determine which memory location contains which array cell,
and different computer languages use different schemes. For
example, FORTRAN stores its two dimension arrays by
columns, and Pascal stores them by rows.

To determine where a particular element of a two-dimension
array is in memory, both the base location and at least one
dimension (either row or column depending on the storage
scheme of the language) must be known.

29

To derive a formula associated with a language that uses the
column-major order, like FORTRAN, how many elements are
in each column (i.e., the number of rows) must be known.
This information is available to the compiler since it can be
derived from the first subscript in the array declaration
statement.

Suppose a real array A with three rows and five columns is
given. In other words, A has been declared as A(3,5) in
FORTRAN. Suppose base(A) is 130, in other words, suppose
A(1,1) is stored in memory location 130. Where is A(2,3)
stored?

Before answering this question, a couple of other questions
should be considered first.

Assuming a language that uses column-major order, and
given that A(1,1) is stored in 130, what element of the array is
stored in memory location 131 (i.e., what is stored right after
A(1,1))? The answer to this question is A(2,1). This element is
the second element in the first column of the two-dimension
array, and thus is stored next to A(1,1).

Where is A(1,2) stored? This is the first element of the second
column and it should be stored right after the last element of
the first column, i.e., right after A(3,1). A(3,1) is stored in
base(A) + 3 (the number of elements per column) — 1
(correction factor because base(A) contains the first element)

30

= 130 + 3 - 1 = 132. Therefore, the answer is that A(1,2) is in
the next location after A(3,1), 130 + 3 - 1 + = 133.

For this array, the following standard two-dimension
visualization can be used:

An arbitrary element A(I, J) is stored in base(A) + 3 *(J -1) +
I -1 (where 3 is the length of the column).

Another rule is often used to determine a storage location. It
is based on the fact that with column-major storage, if the
elements of the array are listed in the order in which they are
stored in memory, then the first subscript varies the fastest.
This rule holds also for three- and higher-dimension arrays as
well. In the example given above, the elements are stored in
the following order (subscripts only): 1,1; 2,1; 3,1; 1,2; 2,2;
3,2; 1,3; 2,3; 3,3; 1,4; 2,4; 3,4; 1,5; 2,5; 3,5. Notice that the
first subscript is always changing.

In a language that uses row-major storage (like Pascal) the
basic theory for deriving a formula to determine the storage
location of an element in the array is the same as above,

31

except that in this case, the number of elements in each row
needs to be known.

Similarly, there is an easy to remember rule to determine
storage locations for arrays stored in row-major order. If the
elements of the array are listed in the order in which they are
stored in memory, the last subscript varies the fastest.

3.5 DECLARING ARRAYS

In general, arrays must be declared before use. They are
declared along with their dimensions and the sizes of each
dimension. In some languages that allow the definition of new
types (e.g., Pascal), rules of style suggest that arrays of a
given dimension and size be defined as a new type and given
a unique name, and then variables of that new array type can
be declared in the variable section. Some languages permit
the use of characters as subscripts and some languages permit
the initial subscript to be something other than 1 (as in
BASIC) or 0 (as in C).

3.6 RECORDS

A two-dimension array is sometimes used to store associated
units of information. For example, one row may all refer to
information associated with a single person, and each column
may refer to a specific category of information for each
person, e.g., the first column may always indicate bank
balance, the second the account number, etc.

32

If an array is arranged in this way, each row is called a
record, i.e., a number of discrete units of information all
associated together. Each subsection of a record is called a
field.

The problem with using an array to store records of
information is that an array is a homogeneous structure, i.e.,
all the units of information in an array must be of the same
type (e.g., all integers, all reals, all characters, etc.).
Therefore, one cannot store a name (an array of characters)
with an integer account number, with a balance (a real
number).

In some languages (such as C or Pascal), a new record type of
variable can be defined, and individual variables and arrays
can then be declared to be of this new (user-defined) type. (In
C, these are called structures.) Each of the fields in a record
can be of its own type without any restrictions. Thus a record
is a heterogeneous aggregate of data structure. It is of fixed-
sized, however, once a specific record type has been defined.

For example, in Pascal a new record type can be defined for
use in storing information for an address label and this new
type can be given the name “addressline.” After defining the
type “addressline,” scalar variables and arrays can be declared
to be of this type.

33

In most languages, both the record variable name and also the
specific field are indicated together to specify a particular
cell. Pascal uses a period to unite these two identifiers. For
example, line.zip indicates the zip field of the record variable
line. Also, students[24].name[1] indicates the first character
of the name field of the 24th element in the array students
(each element of which is a record variable). students[5]
would indicate the fifth variable in the students array, each of
which is a complete record variable. Thus, students[5] would
indicate all five fields together.

As with arrays, all the data associated with a record variable
are stored in adjacent memory locations. Thus, in the example
given above, the name field is stored next to the street field
and so on. In each field, the normal rules for storage apply.
Thus, in the array students given above, the name field of
students[1] is separated from the name field of students[2],
but is adjacent to the street field of student[1].

It should also be noted that the declaration used above can
hide the true size of a variable that contains records. students
is an array of 100 elements, but since each element is a record
variable of type addressline, it contains several parts, most of
which are arrays. Each individual variable of type addressline

34

consists of 93 independent memory locations (assuming one
memory location for each character and integer variable).
Thus the array students uses 9300 memory locations.

35

CHAPTER 4

ELEMENTARY SORTING

4.1 SORTING ALGORITHMS

One common operation performed on arrays is sorting the
array elements, i.e., putting them in some kind of order.

There are a number of different approaches to sorting. The
usual problems associated with any algorithm affect these
various approaches. The less complicated (and easier to
understand) methods are also less efficient, while the more
efficient methods are usually more complicated (and difficult
to understand).

This chapter will examine two straightforward sorting
algorithms that can be used with one-dimension arrays. They
are also inefficient. However, more efficient methods appear
later (in Chapter 11) after the discussion of more complex
data structures.

There are two major elementary approaches to sorting:

36

a. Exchange Sorts: These methods exchange adjacent
items in an array. The best known exchange sort is
bubble sort.

b. Selection Sorts: These methods search for the next
desired item, select it, and put it in its proper place in the
array.

4.2 BUBBLE SORT

The most common example of an exchange sort is the
algorithm known as bubble sort. This name is derived from
comparing the operation of the algorithm to air bubbles going
up slowly in a glass of carbonated water. The bubbles move
up bumping other bubbles that get bigger and go up faster.
Thus, the lightest bubbles get to the top faster than the others.

The basic principle underlying this algorithm is simple:
— examine adjacent items in an array pair by pair;
— if they are out of order, exchange them.

The algorithm consists of repeatingly performing passes on
the array, each time applying the basic principle until the
array is sorted.

Analyzing the action of the algorithm shows that it divides the
array into a sorted section and an un-sorted section. Each pass
adds at least one more item to the sorted section. Thus, at
maximum, n - 1 passes are needed to sort any array of length
n (n passes are not needed since after n - 1 items are
arranged in order, the last item must also be in its proper

37

place). The action of the algorithm indicates that the
algorithm should stop when

a. the number of passes equals n - 1 where n is the number
of items in the array, or

b. no exchanges have been made in a pass (since that
indicates that no items were out of order, i.e., that the
array is all sorted).

When implemented, many algorithms actually do a “bubble-
down” sorting, in which the “heaviest” (largest) item moves
to the end the fastest.

The following is an example of the algorithm’s operation:

Note that the greatest item is in its proper place at the last
place in the array.

The same procedure of checking and exchanging (if
necessary) is followed for each pass. The details are omitted.
The results after the next two passes are:

38

Note that now the two largest items are in their proper places
and order in the last two places in the array.

There are several ways to implement bubble sort. Note that
after j passes, the last j elements are sorted and need never be
looked at again. Thus most versions only check the first n - j
elements on pass j + 1. Also, the various versions differ as to
which condition is used to determine when the algorithm
should stop. The most inefficient method is to write the code
so that all n - 1 passes are always performed (i.e., stopping
condition (a)). A better way is to use a boolean variable
(usually called a flag) to determine whether an exchange has
taken place and stop if no exchanges have taken place in a
particular pass (i.e., stopping condition (b)). Such a code is
sometimes called a flagged bubble sort, and an example of it
follows in Pascal.

39

The following code shows how the bubblesort procedure
would be used.

In order to evaluate algorithms used with data structures, it is
helpful to get some idea of how long they take to complete
their task. A detailed analysis can be found elsewhere, but an
overview is given here. Note that in pass j, the number of
comparisons is n - j, and in the worst case, the number of
passes is n - 1. Adding the number of comparisons together
for each pass gives us n(n - 1)/2 comparisons in the worst
case. Since the dominant term in this expression is a multiple

40

of n2, this algorithm is said to be “of order n2” for the number
of comparisons and this is written as O(n2). In the worst case,
one exchange is performed for each comparison. Therefore,
the number of exchanges equals n(n - 1)/2 = O(n2) for the
worst case.

This formula is useful since it gives some indication of the
speed of the algorithm relative to the size of the input. In
particular, since (2n)2 equals 4n2, if the size of the input is
doubled, this indicates that it would take about four times
longer to sort an array using bubble sort!

4.3 STRAIGHT SELECTION SORT

The most common example of a selection sort is the
algorithm known as straight selection (or jump down sort)

The basic principle underlying this algorithm is this:
— examine all the items in the unsorted subsection of the

array and select the smallest [largest];
— place the selected item in the first [last] place of the

subsection being examined, reduce the size of the
subsection.

As with the bubble sort, the algorithm consists of repeatingly
performing passes on the array, each time applying the basic
principle until the array is sorted. As with bubble sort, this
algorithm also stops after n - 1 passes.

The following is an example of the algorithm’s operation:

41

There are variations on the code for straight selection sort, but
fewer than with bubble sort. There can be no “flagged”
version of this sort, but there are fewer exchanges. The
following is a version of it in Pascal.

In order to evaluate this algorithm, note that in pass j, the
number of comparisons is n - j and the number of passes is
always n - 1. Adding the number of comparisons together for
each pass again gives n(n - 1)/2 comparisons, written as

42

O(n2). However, in this algorithm, there is only one exchange
per pass. Thus, the total number of exchanges is n - 1 or O(n).

Although this algorithm has significantly fewer exchanges
than bubble sort, it still is slow because of the number of
comparisons performed.

4.4 STABLE SORTS

Suppose an array of records with several fields is given, and
suppose one field is called the key field. Let i and j be the
indices of two records in this array and suppose key[i] = key
[j]. In other words, suppose two records had the same ZIP
code that is stored in the key field. Let us also suppose that, in
the array, the ith record precedes the jth record. In other
words, suppose the ith record corresponds to Mr. Brown’s
information and the jth record corresponds to Mrs. Smith’s
and the records are in alphabetical order.

A sort is called stable if, after sorting based on the key field,
the record formerly associated with i still precedes the record
formerly associated with j. In other words, a stable sort will
not “undo” existing orders based on other keys, when sorting
based on a different key and then examining items with equal
key values.

The stability or non-stability of a sorting scheme can be an
important consideration when several sorts are successively
done on the same file. For example, suppose one wishes to
alphabetize a list and then sort by ZIP code, hoping that the

43

resulting list will show everyone who lives in the same ZIP
code in alphabetical order. To ensure this, the second sort
used must be stable.

Of the two elementary sorting schemes, bubble sort is stable,
but straight selection sort is not. Thus, even though bubble
sort makes more exchanges than straight selection sort, for
certain applications it may actually be a preferred sorting
scheme.

44

CHAPTER 5

SEARCHING

5.1 SEARCHING ALGORITHMS

It is often necessary to locate certain information stored in a
data structure. To do this, consideration must be given to
various possible ways of traversing the data structure in
question. If a way can be found to traverse a data structure so
that every cell can be accessed, then this method can also be
used to search that structure for stored information. In this
chapter, algorithms to search arrays will be examined.
Traversals and searching algorithms for other data structures
will also be considered in later chapters.

Frequently an array of records is searched according to one
field to locate a specific record and be able to access and even
modify other fields. Typical examples would include
searching through a list of names to find (and retrieve) a
telephone number, or searching a list of account numbers to
modify a bank balance (or other related information).

The items actually searched are called keys. Usually a key is
left unchanged, but another piece of information associated
with the key is copied. Often this other piece of information is
the index of the array element in which the desired item is

45

stored. The index is then used to find what is really wanted,
e.g., another field in the record of data. Frequently one field
of a record is used as a key (e.g., the name field or the
account number field), and other fields associated with the
key (e.g., the telephone number or bank balance) are operated
on (i.e., retrieved or modified).

There are two major search techniques associated with arrays:
Linear (Sequential) search and Binary search.

Linear search can always be used. The underlying principle
is to examine each element of an array in order, starting at the
first one, until the desired key is found. This method is
particularly suited for an unsorted array, and can be
considered similar to the procedure often used for searching a
shuffled deck of cards for a given card.

Binary search can be used only with a sorted array. It is a
stylized version of what someone does when searching a
telephone book for a number. In general, one starts in the
middle, and keeps eliminating part of the book until the
desired name is found. (Note again for the sake of emphasis,
that when the name is found in the book, it is not copied since
it is already known, but rather, the associated information of
the phone number is copied and used.)

5.2 LINEAR SEARCH

Linear search (sometimes called sequential search) is a
straightforward algorithm that starts with examining the first

46

key in the array and continues until it finds the desired item or
it reaches the end of the array (without finding it). When the
algorithm finds the item, it returns the array index of the item
in the parameter place. If the desired item is not found, the
final value of place is zero. If two or more records in the array
have the same key, only the first one is located. This
algorithm can be used with either sorted or unsorted arrays.
The following is a version of the algorithm in Pascal.

The following segment gives an example of how to use this
code in a program.

A brief analysis of the efficiency of linear search is
appropriate. In the worst case, the sought-after item is not in
the array, but every element in the array will have been
examined in the attempt to find it. If there are n items, then

47

the number of comparisons is n. Therefore, for the number of
comparisons, linear search is O(n) in the worst case.

5.3 BINARY SEARCH

To understand how binary search works, its operation is
demonstrated by the following example.

The location of account number 350 in the following array of
account numbers is sought.

(The digits “1” above the letters F, M, and L indicate the first
values of these variables that point to elements in the array.)
Initially, the entire array is examined. Thus First initially
points to the item 1 and Last points to item 8. The “Middle”
item is computed by the formula:

M= (F + L) div 2.

The div operator gives an integer result, e.g., 5 div 2 is 2 and
not 2.50.)

With F being 1 and L being 8, M is 4, as shown above.

48

Next, what is sought (i.e., 350) is compared to what is in the
4th element of the array (i.e., 210). Since what is sought (350)
is greater than the “middle” item, the middle element and the
first half of the list are ignored. This “ignoring” of the first
half is accomplished by resetting F to be one past the middle
item, i.e., F = M + 1. F is now 5, and the procedure is started
again (and the fact that there ever was a first half of the array
is ignored). Thus the following situation now exists:

Since M = 6 is not the correct array location, F is recomputed
: F = M + 1 = 6 + 1 = 7, resulting in:

The code of the algorithm which follows merely translates
this procedure.

49

A brief analysis of the efficiency of binary search is also
appropriate. The worst case is related to how many times the
array size can be subdivided in half and still be an integer.
The calculations are easier if the size of the array, n, is
assumed to be a power of 2, e.g., n = 2i for some i. A careful
analysis shows that in this case, the maximum number of
times that the array can be divided by 2 is i.

But log2n = log2(2i) = i.

Therefore, at worst, there are i = log2n subdivisions and, for
each subdivision there are at most two comparisons in the
loop of the code given above. In other words, in the worst
case, the number of comparisons is O(log2n).

50

To compare linear search with binary search, if n = 1024, the
linear search worst case = 1024 comparisons, and the binary
search worst case = 2 × log21024 = 2 × log2210 = 20
comparisons.

5.4 HASHING

5.4.1 PRELIMINARIES

There are situations that arise in which information needs to
be retrieved from a data structure quickly, but even the use of
binary search with arrays is too slow. Binary search would
also be difficult to use if the array were constantly being
updated by insertions and deletions, since using binary search
would demand that an array be adjusted so it remains sorted
after each insertion or deletion, a process that could slow
down the procedure even more. (Linear search would be even
slower, although there would be no need to sort after
insertions.) An alternative is to dispense with any ordering
and instead use a hash function.

A hash function, h, is a function that maps a key (i.e., one
field in a record) into an address (i.e., array subscript) that is
then used to store the associated record (in that array). If the
symbol S designates some key (e.g., a number or character),
then h(S) is its hash address or hash number. Hashing refers
to the use of hash functions for data storage and retrieval.

For a specific set of keys, an ideal hash function is bijective
(i.e., 1 - 1, unique). In other words, the ideal function is one
that makes two different keys correspond to two different

51

addresses, yet is easy to compute. However, such a function is
rarely, if ever, obtained.

When two symbols S1 and S2 are used as keys and when
h(S1) equals h(S2) for the hash function h, then a hash
collision or hash clash is said to have occurred. Good hash
functions are those that lead to few such collisions, but since
collisions regularly occur, procedures exist to resolve the
resulting difficulties.

The general procedure for using a hash function to store
and retrieve information is as follows:

1. Given the key symbol S, compute its hash value, h(S);
2. Access the record in the data storage structure (normally

an array) corresponding to h(S);
3. If a collision occurs, resolve any ambiguities.

5.4.2 HASH FUNCTIONS

There are different possibilities for hash functions, and no one
function is ideal for all purposes. The major types of
functions are now briefly mentioned.

5.4.2.1 DIVISION

This is the earliest type of hash functions. It is very widely
used and is one of the easiest functions to calculate. It
presupposes a range in which the output of the function lies,
e.g., the permitted values for the array subscript. If the
elements are to be stored in an array of size m, the hash
function would be

52

The modulus m is usually chosen to be a prime number
slightly larger than the number of elements to be stored. As an
example, with m = 11, h(35) = (35 mod 11) + 1 = 2 + 1 = 3. It
has been suggested that a prime of the form 4k + 3 for some
integer k is particularly effective as a modulus.

The major problem with this type of hash function is that it is
very easy to get clashes. For example, if m is 101,

5.4.2.2 MIDSQUARE

This method attempts to introduce a certain randomness into
the computation of the hash number, and can be viewed as a
specific version of a more general approach of computing a
hash number by means of a (repeatable) random number
generator. In other words, given two different keys, the hash
function should produce two different numbers with little or
no relationship to the keys or to each other, except that the
same function will produce the same hash numbers given the
same input anytime it is used.

The name “mid-square” is derived from the steps taken by the
hash function to produce a result: taking the middle of the
square of the input number. In other words, given x, one first
squares it, and then removes the center few digits to use as the

53

hash number. This method is sometimes used as a random
number generator. It can be formulated as:

h(x) = (x2 div n) mod n

where n = 10i or 2i for some i. For example, if x equals
123456

5.4.2.3 FOLDING

This method is sometimes called bit or digit compression.
The general strategy is: (1) subdivide the key x into groups
of n-digits (bits) (the leading or last group can have fewer
than n-digits or bits); (2) combine the different groups
together by an operation such as sum, exclusive-or, or or; (3)
extract the last n digits (bits) of the resulting number as the
hash number (i.e., mod the number by 10 if it has more than
n digits). For example, with n being 3,

5.4.2.4 DIGIT ANALYSIS

This is sometimes called digit or character or bit extraction.
The general strategy is: (1) select certain digits (bits) of the
key x; (2) transform or re-arrange them as the hash number.

54

The following procedure may be taken as a simple example of
this approach:

(1) Take the digits in positions 3 - 6,

and

(2) Reverse them.

Thus, h(75:4612:3) = 2164

This approach is less desirable than others since, in general, it
is better to use a method that makes use of all the input
information, i.e., all bits or digits. However, in some
situations, some of the input information is biased and can
skew the computation of a hash number. For example, the
majority of social security numbers begin with either the digit
5 or the digit 3. It would be better to ignore the first digit and
use the other digits, perhaps transforming them by one of the
other types of hash functions.

5.4.2.5 MULTIPLICATION

This method derives its name from the two multiplications
involved in obtaining the hash number. The combination of
multiplication and other arithmetic operations suggests that
the resulting hash numbers will be more evenly distributed
throughout the storage array. It can be formulated as:

55

h(x) = trunc(m * fraction(x * z))

where m is the size of the storage array, z is a number
between 0 and 1, trunc is the truncation function (that
eliminates the fractional part of a number) and fraction
eliminates the integral part of a number. The resulting number
will be an integer between 0 and m and could possibly be 0.
Some studies indicate that the best choice of z is (√5 - 1) / 2or
1 - (√5 - 1) / 2 .

EXAMPLE

Suppose the following records are to be stored via a hashing
scheme:

ID # (key) Name Other Information

2651 Smith ...

3412 Jones ...

1183 Brown ...

9356 Kelly ...

(1) Using Digit Analysis, by taking digits 2 and 4 and adding
them, the following hash numbers are obtained:

56

ID # (key) Hash Numbers

2651 6 + 1 = 7

3412 4 + 2 = 6

1183 1 + 3 = 4

9356 3 + 6 = 9

Therefore, the storage array would look like:

(2) Using a Division method, with m = 10 (including the shift
by 1), the following are obtained:

ID # (key) Hash Numbers

2651 2

3412 3

1183 4

9356 7

Therefore, the storage array would look like:

57

58

CHAPTER 6

LINKED LISTS

6.1 BASIC DEFINITIONS

6.1.1 LISTS AND NODES

A linked list is an ADT (abstract data type) consisting of a
collection of items called nodes. Each node is a record
containing at least two fields, an Information field (usually
abbreviated to info) and a next address field (sometimes
called a link field). The simplest type of linked list has only
one address field and is called a singly linked list. However,
there may be multiple information fields in each node. The
address field contains the address of the next node on the list,
i.e., the memory location that begins the next node.

The address of a node is frequently called a pointer to a node.

The first node in a list (to which no other node points) is
called the head of the list. The last node in a list (which does
not point to any other node) is called the tail.

59

The “dummy” address that points nowhere is called the nil
pointer or null pointer or simply nil (or null). It is used as an
address in the next field of a tail node to indicate the end of a
list and is often depicted with a slash bar (/) through the next
field of a node.

A list with no nodes is called the empty list or the nll list.

6.1.2 POINTERS

As mentioned above, a pointer is merely an address to a node,
i.e., to a memory location. The pointer variable that points to
the head node is commonly also used to designate the entire
list.

Specific programming languages have various ways to
implement linked lists. Many languages (such as Pascal, C,
Ada, Modula-2) include pointer variables, and these are
commonly used to implement linked lists as will be explained
below. Because Pascal is so widely used, many authors use
the Pascal pointer notation when referring to linked lists,
though other notations exist to reference nodes of linked lists
and their components. Pascal uses an uparrow (caret) after a
pointer variable to indicate the “node to which a pointer
points.” For example, if p is a pointer variable, then p^ is the
“node to which the pointer variable p points.”

The distinction between a pointer (pointer variable) and the
item pointed to can be confusing, and this confusion can be a
source of programming errors. It is necessary to be clear

60

about the distinction. Thus, the following example, taken
from a non-computer environment, may help clarify the
difference.

Suppose a town has a hospital named Mercy whose address is
1400 West Park. Suppose several blocks away (at Sixth and
White Streets) there is a sign that points to Mercy Hospital
and suppose someone named the sign “Sam.” Sam is not
Mercy Hospital. Sam is merely a street sign, but Sam points
to Mercy Hospital. To use Pascal notation, Sam is a street
sign at Sixth and White, the value of Sam is 1400 West Park,
and Sam^ is Mercy Hospital. The address of Mercy Hospital
(1400 West Park) is different than the address of Sam (Sixth
and White). The two are interrelated yet distinctively
different. In a similar way, p is not a node, but merely points
to (gives the address of) a node. p and p^ are located in two
different places in computer memory, but are interrelated.

6.1.3 DIAGRAMMING LISTS AND
EXAMPLES

The ADT of a linked list is normally depicted by using
divided boxes to indicate nodes and arrows to indicate
pointers to nodes as in the following diagram:

This list has four nodes that can be labeled N1, N2, N3, and
N4. (In most programs, such labels of individual nodes in a
linked list are never used.) The head node is N1 and the tail

61

node is N4. Node N4 has a nil pointer depicted in its next
section. p is the name of the pointer to node N1, but since N1
is the head node, p is also considered the pointer to the entire
list.

The pointer between node N2 and node N3 is also labeled q
for purposes of example. Using Pascal notation, node N1 is
usually designated as p^and node N3 as q^. Thus, p^.info is 5
and p^.next is a pointer variable pointing to the node N2. So,
p^.next^.info is 3. Similarly, q^.next^.info is 2 and
q^.next^.next is NIL.

A second related diagram may help clarify the difference
between pointers and nodes pointed to. Nodes are
combinations of two or more memory locations, one used to
store information, one used to store the address of the next
node. These two memory locations can be assumed to be
adjacent. As was emphasized earlier, in memory a computer
stores only numbers — it cannot store the arrows used in
diagrams. The following diagram emphasizes this by using
numbers in place of arrows.

62

The numbers contained in the next fields of the nodes
depicted in this second diagram did not appear in the original
diagram since the arrows took their places. The numbers have
replaced the arrows since arrows cannot exist in computer
memory. Even though the two diagrams are significantly
different, they nevertheless contain the same information.
Note also that the second diagram emphasizes the difference
between a pointer variable and what it points to. p is at
memory location 2501, but p points to memory location 2813
which is where node N1 is located.

6.1.4 LISTS AND ARRAYS

Lists have several advantages over arrays in certain situations.
A major advantage is the dynamic allocation of nodes in a
list as opposed to the unchanging static allocation of arrays.
In other words, a program can request more space for lists
when needed at run time, rather than pre-determining all the
space at compile time as with arrays.

Another advantage involves inserting items into and
removing items from the data structure. It is difficult to insert
a new item into a sorted array in the correct location. Many
items need to be shifted and there may be no room for more
information. Similarly, deleting an item from an array means
that many other items must be moved to fill in the gap. Such
operations are relatively trivial with linked lists since only
one or two pointers need to be shifted and none of the other
items in the list need to be shifted. For example, suppose an
item needs to be added to a list in a specific place, say right
after node p^. First a new node, say q^, is created, then
q^.next is set to point to p^.next, and the p^.next is reset to q.

63

(See the diagram in section 6.4.2.) None of the other elements
in the list needs to be shifted.

There can be disadvantages associated with lists as well. A
list is a sequential access structure (rather than a random
access structure as with an array). To access any item in a list,
one must start at the head of the list and move through the list,
one node at a time, until the desired node is reached. Another
disadvantage concerns computer memory. For each node, not
only is room to store the information needed, but also an extra
memory location to store the address of the next node. This
illustrates the trade off that occurs many times in computer
science: to gain some advantages, one endures a loss of some
available memory.

Up to this point, linked lists have been discussed as ADTs
without referring to implementation. The various operations
on lists could also be described in detail solely by using box
and arrow diagrams. Actual implementation techniques will
be discussed next. As mentioned in Chapter 1,
implementation of ADTs should be done in such a way that
the implementation can be changed or improved without
significant change to the program that uses the ADT.

6.1.5 IMPLEMENTING LISTS

There are two major ways of implementing a linked list:
1. explicitly using an array of available list nodes (called

the linear implementation of linked lists);
2. implicitly using the special features of a given language,

such as pointer variables and records (called the pointer

64

implementation of linked lists). Languages that have
pointer variables as a built-in data type hide most of the
messy bookkeeping necessary to keep the pointers
straight.

6.2 LINEAR IMPLEMENTATION

6.2.1 UNDERLYING DATA STRUCTURE

The ADT of a linked list can be implemented by using an
array of records, such that each array element is a node. This
implementation may be necessary if the language being used
does not have pointer variables.

Initially an array of nodes is explicitly declared and made
large enough so that the program would never run out of
nodes for linked lists. For example (using Pascal),

6.2.2 PRESUPPOSITIONS

Certain presuppositions regarding our data structure and how
it will be used need to be determined.

The array nodesupply will be used as the supply of all
available nodes and nodes will be “obtained from it” as well

65

as “returned to it” when no longer needed. In reality, the
nodes themselves always remain in the array, and “active”
nodes (that are part of one or more active linked lists) may be
intermingled with “inactive” nodes (that are available for
use). The inactive nodes and the various lists of active nodes
are kept separate by the way they are linked together through
the next fields.

The “pointer” that will be stored in the next field of each node
will be the index of the array nodesupply where the next node
is located.

To simplify the code, the array of nodes, nodesupply, the total
number of nodes, numbernodes, and the pointer to the next
available node, avail, are assumed to be global variables.

6.2.3 INITIALIZATION

The array nodesupply needs to be initialized so that the next
available node can always be found. This is done by setting
the pointers so that nodesupply[i] links to nodesupply[i + 1]
resulting in a linked list of available nodes that will be
referred to as the “available list.” Without this initialization
and linkage, there would be no easy way to distinguish which
nodes are available and which are part of active lists. The
initialization is done via the following procedure.

66

This code makes nodesupply[i] point to nodesupply[i + 1]
and the last node point to 0, which is the signal for a nil
pointer. It ends by setting avail equal to 1, indicating that the
first element in the nodesupply array is the first available
node for use by a list.

6.2.4 OBTAINING AND RELEASING
NODES

When a node is needed, it is taken from the head of the
available list. When a node from an active list is disposed of,
it is tacked onto the head of this available list. Thus, it may be
that at some point of a running program, the head of the
available list may be nodesupply[23] which links to
nodesupply[12] which links to nodesupply[50] which links to
nodesupply[51], etc. This fact helps explain the code of the
next section.

6.2.5 OBTAINING A NODE FROM THE
AVAILABLE LIST

The following procedure takes a node from the available list
for use by a list. The available list is properly altered.

67

The initialization procedure set nodesupply[i].next equal to i
+ 1. But note that avail is not merely incremented by 1, since,
as mentioned above, after getting nodes for lists and freeing
nodes, it may be that the original “natural” link order is totally
re-arranged. Instead, it has been set to what the next field says
the next available node is.

6.2.6 RETURNING (FREEING) A NODE TO
THE AVAILABLE LIST

A program may need so many nodes that all the nodes created
in the nodesupply array may be used up. However, not all
nodes may be actively part of any list at any one moment of
the program. By somehow returning inactive nodes to the
available list, an “overflow” (i.e., running out of available
nodes) can be avoided. This is the purpose of the following
procedure. In addition, if one does not de-allocate (i.e., free
up) the node space at an appropriate point of a program, one
may lose a pointer to the node and not be able to use it or
dispose of it later.

When a node is freed up and returned to the available list, it is
placed at the head. The next section of this freed node is set
to point to the old head of the available list, and the pointer to
the first available node (avail) is adjusted to point to this last
node freed.

68

EXAMPLES

Example A — Creating a List.

To create an ADT of a linked list (regardless of how it is
implemented) the following steps are needed:

1. create a new node;
2. give a value to the info section of the node;
3. link up the next section to another node.

The following code recursively generates a list of length n by
getting a node and then generating a list of length n - 1 which
it points to. The information section of each node is filled
with the number of its reverse order in the list, i.e., the head
node contains n, etc. Code such as this is purely for
demonstration purposes and would never be used in a major
program.

Example B — Printing a List

69

6.3 POINTER IMPLEMENTATION

6.3.1 DEFINING POINTER TYPES AND
DECLARING POINTER VARIABLES

To implement the ADT of a linked list using pointer variables
in those languages that possess them (e.g., C, Pascal,
Modula-2, Ada), normally two new types are defined: one is a
pointer variable type, the other a node type. In Pascal, for
example, one could write:

(Note that in Pascal, in the TYPE definition, the uparrow [or
caret] comes before the type identifier of what it points to.
This is the only case in Pascal where an identifier [e.g.,
“node”] can be used without being first declared.)

After the definition of the new types, variables of the type ptr
are merely declared. For example,

70

Note that the pointer variables p, q, and list exist, but they are
places to keep addresses only. As yet, no nodes have been
created!

6.3.2 OBTAINING NODES — THE PASCAL
NEW PROCEDURE

In Pascal, nodes are created using the standard Pascal
procedure New that takes a pointer variable as an argument.
For example, the following code segment takes a declared
pointer variable p, and then allocates space for a node of the
type that p points to. After this “new” space has been
allocated, the fields of the node are given values.

New allows a programmer to dynamically create as many
nodes as needed, when they are needed. New does for pointer
variables what Getnode in Section 6.2.5 did for the linear
implementation.

6.3.3 RELEASING NODES — THE PASCAL
DISPOSE PROCEDURE

Pascal allows a programmer to dispose of unneeded nodes by
using the library procedure Dispose, which also takes a
pointer variable as an argument. The node pointed to then
becomes part of the available space for use. Thus dispose
functions like the procedure ReturnNode in Section 6.2.6
above. In a Pascal program, one simply writes

71

After this procedure call, p no longer points to any valid node,
and if one tries to use p^ (without first obtaining a node by
using New(p)), one normally gets an error.

EXAMPLES

Example A — Creating a List

Much of the code that follows is very similar to the code
presented in Section 6.2.7 that used the linear (array)
implementation of lists. The logic underlying each of the
functions is unchanged — only the actual implementation of
the ADT of a linked list has changed, and thus, the only
changes in the code of the various procedures and functions
are those that are necessary for the new implementation.

6.4 COMMON OPERATIONS

72

6.4.1 TYPES OF OPERATIONS

Operations for the ADT of a linked list can be determined
without knowing anything about a particular implementation.
For example, some or all of the following might be desired:

Not all of the operations listed above will be shown below.
Enough samples are given to enable other routines to be
written.

For now, it is presupposed that the “position pointer” p used
as a parameter actually points to the node one suspects it
points to. There are other alternatives possible, and one will
be mentioned below in Section 6.5.1. Choosing different
presuppositions or variations on the basic linked list structure
(see Section 6.5 below) may lead to a different set of basic
operations or an easier implementation of those chosen.

6.4.2 INSERTION

First, a consideration of what any insertion routine must do
for a list as an ADT is presented before any code for specific
implementations of lists is seen. A new node needs to be
inserted after the node to which p points, and then
information x is placed into the info section of that node. To

73

do this, first a new node is obtained, then its next pointer is
assigned to the node to which p^.next points, and then
p^.next is re-assigned to point to the new node. This process
can be envisioned by using a diagram of the ADT of a linked
list as follows.

Notice that existing information in the list is not re-arranged.
This property of linked lists makes them a preferred data
structure when many insertions (and/or deletions) take place.

The following two sections of code present the procedure
InsAfter (for “Insert After”) based on the two different
implementations discussed above.

A. ARRAY IMPLEMENTATION

B. POINTER IMPLEMENTATION

74

Sometimes a special procedure is desirable for tacking on
new nodes to the end of existing lists. The following
procedure InsEnd (for “Insert at End”) performs that task,
given the pointer to the list (rather than to a node as in the
previous code). The procedure first creates the new tail node,
and then uses the pointer q to locate the old tail node and then
connects it to the new node.

6.4.3 DELETION

First, a consideration of what any deletion routine must do for
a list as an ADT is presented before code for specific

75

implementations of lists is seen. A procedure “DelAfter” that
deletes the node after the node pointed to by p and returns the
value of its info section in the variable x is to be created. It
must check whether the proposed deletion is valid by
checking to see if the list has more than one node. It deletes a
node by re-directing the pointer of the previous node to point
to the following node. This process can again be envisioned
by using a diagram of the ADT of a linked list as follows.

The following two sections of code present the procedure
DelAfter based on the two different implementations
discussed above.

A. ARRAY IMPLEMENTATION

76

6.4.4 SEARCHING

This next function is basically a “linear search” scheme for
linked lists (rather than arrays). The list list is searched for x
and the function Search returns the pointer to the first node
containing x.

This Search function may not be useful in certain situations,
as when the node containing x needs to be deleted. In this
case, the pointer to the previous node is needed rather than to
the node containing x. Search can be easily modified to
return two pointers, and the interior code expanded to retain
the previous value of p.

The efficiency of this search is the same as for the linear
search for arrays, i.e., it is O(n)for a list of n nodes. Since lists
are sequential access structures (as mentioned above in

77

Section 6.1.4), it is impossible to develop a routine for lists
comparable to binary search for arrays with the same
efficiency.

6.5 VARIATIONS

6.5.1 HEADER NODES

It is occasionally desirable to keep some bookkeeping
information about a list, e.g., the number of nodes in the list,
the use of the list, etc. Depending on the conventions decided
upon when coding a procedure or function, it may even be
desirable to have a “dummy” node in which no information is
stored.

To store the bookkeeping information, one can use another
node, called the header node, which itself points to the first
(active and regular) node of the list. In this arrangement, even
the “empty” list has one node, its header node.

The use of a header node means that most of the list routines
need minor modifications. However, with a header node,
certain applications may be simplified.

For example, if a “dummy” header node is used, the notion of
a position pointer to a node (i.e., the pointer used as a
parameter in routines) could be re-defined. The coded pointer
could be implemented as the actual pointer to the previous
node. Using this implementation, for a delete routine, only the
“pointer” to the node to be deleted is needed (since it is

78

actually the pointer to the previous node) (see discussion
above in Section 6.4.1 and 6.4.4).

This brief example again shows some of the trade-offs
involved in working with data structures and related
algorithms. We sometimes choose to make a data structure
slightly more complicated (e.g., by including a header node)
and to modify our meaning of a “pointer to a node.” One
result is that the code for our routines will need to be
developed with more care (to avoid any errors due to the new
meaning of “pointer”). However, the end result is a set of
routines that will be easier to use in programs that need them.

6.5.2 CIRCULAR LISTS

It is often convenient to have the next field of the end node of
a list not be NIL, but rather point back to the head of the list.
This convention makes the list circular.

In some situations, a circular list can be a better data structure
than a non-circular list. For example, it is always possible to

79

reach any node from any other node since by going forward,
eventually one reaches the head of the list. Examples of the
use of circular lists will be seen in subsequent chapters when
various implementations of ADTs are discussed.

6.5.3 DOUBLY LINKED LISTS

A major problem with linked lists is the in-ability to back up.
This problem can be eliminated by using both a forward
(right link) and also a backward (left link) pointer, which
results in a new ADT of a “Doubly-Linked List.” It is also
impossible with regular linked lists to delete a node of a
linked list, given just the actual pointer to the node (unless the
technique mentioned in Section 6.5.1 is used). This problem
can also be eliminated by using a doubly-linked list. The
drawback of this ADT is that one must use an additional
memory location for each node. The standard trade-off in
computer science once again appears — ease of use and some
efficiency is gained at the expense of memory.

The node type for a doubly-linked list can be defined as
follows:

When using a doubly linked list, the leftlink of the head node
is set to NIL as well as the rightlink of the tail node. It is also
possible to have a header node with a doubly linked list and to
make it circular.

80

81

CHAPTER 7

STACKS

7.1 STACK STRUCTURE AND
OPERATIONS

A stack is an ADT (abstract data structure) used for
information storage in which data is inserted or removed from
one “end,” called the “top of the stack.” A common (physical)
example of the data structure stack is a stack of dishes in a
cafeteria counter dish storage receptacle.

There are three common primitive stack operations.
1. Push(x,s) — inserts item x onto stacks (making x the

new element at the top of the stack). (This operation is
usually coded as a procedure.

2. Pop(s) — removes the item at the top of the stack from
stack s. (This operation is usually coded as a function
and so the item removed from the stack is returned as the
function value.)

3. Peek(s) — copies the value of the top of the stack but
does not remove it from the stack s. (This operation is
also usually coded as a function and so the item copied
is returned as the function value.) This function is
sometimes called Visit(s) or Stacktop(s).

82

To guarantee against errors, a fourth operation is commonly
implemented:

4) Empty(s) — checks to see if there are any elements in
stack s. (This operation is also usually coded as a
function returning the boolean value of true if s is empty
and false if there are elements in s.

NOTES ON STACK OPERATIONS:
a. Normally Pop or Peek cannot be performed on an empty

stack, so the stack should be checked somehow before
using either function. This can be done internally in Pop
and Peek or it can be done before calling these functions
if Empty is available.

b. Trying to Pop an empty stack induces an “underflow”
error.

c. Trying to Push onto a “full” stack (if it does have any
implementation-dependent limit) is called an “overflow”
error.

d. Since Push and Pop both abbreviate to P,often Stack is
used for Push (abbreviated S) and Unstack is used for
Pop (abbreviated U).

7.2 USING STACKS

A stack can be most useful when it is necessary to remember
the “last” unit of information stored. It is sometimes referred
to as a LIFO structure (Last In, First Out), a title that
emphasizes the order in which the structure “remembers”
items in it. The following examples will illustrate this. In all
examples involving stacks, the assumption is that once an
element has been popped off the stack, it cannot be pushed a
second time back onto the stack.

83

(1) Given the input stream

A B C D E

and given the following sequence of stack operations (where
S stands for Push [Stack], and U for Pop [Unstack})

S S U S S U S U U U

what is the output stream?

The operation of the stack will be given in detail for this first
example:

Thus the output stream is B D E C A.

(2) Given the input stream

84

A B C D E

and given the following OUTPUT streams, what is the
command sequence that generated it?

Example 2b shows that even stacks have limitations.
Although significant rearrangement of elements can take
place, there are certain output combinations that are not
possible, no matter how one arranges the order of pushes and
pops. The problem arises in example 2b with item A. For E to
be the first item out of the stack, it must have been the last
one in, which implies that A is at the bottom of the stack.
Thus, A must be the last element out.

Depending on the order of pushes and pops, one can change
or even reverse the input order of data. Assume the input
stream for both of the following examples is again:

A B C D E.

(3) Assume the command stream is:

85

S U S U S U S U S U.

The corresponding output would be

A B C D E.

(4) Assume the command stream is:

S S S S S U U U U U.

The corresponding output would be

E D C B A.

Because of these order properties, stacks can be useful in
developing an algorithm to store information and then recall it
in a certain order!

7.3 SAMPLE IMPLEMENTATION

7.3.1 ARRAY IMPLEMENTATION

Up to this point a stack has been presented merely as an ADT,
without any consideration about how it is implemented in a
given language or the many different ways it might be

86

implemented. This section now addresses these
implementation questions.

One way to implement a stack is to use the underlying data
structure of an array. However, the same problems arise using
arrays to implement a stack as occur when arrays are used to
implement a linked list. The size of a stack is constantly
changing, which makes it difficult to implement a stack
exactly using an array, since arrays are static structures with
pre-determined sizes.

Nevertheless, as was done with linked lists, an array can be
declared of a size large enough to hold all the elements that
would even be in a stack at one time. For each stack, a top-of-
stack pointer is also needed that will serve as the (array) index
to the top-of-stack element.

The following code implements a stack as a record, with one
field being the array of elements, and the other being the top-
of-stack pointer.

87

7.3.2 CODING THE OPERATIONS

There are several ways of implementing stacks as arrays
depending on whether one chooses to have the top-of-stack
pointer point to the last used space or to the next available
space, and whether the first used space has the subscript of
one or the subscript of maxstack. The code below assumes
(1) that the top-of-stack pointer points to the last used space
and (2) that the first used space has the subscript of one.

The following code can easily be misused by combining
operations together, thereby making the revised code much
more difficult to read and reducing the analogy between the
abstract data type (and its operations) and the implemented
data structure. Newer languages such as Modula-2 and Ada
allow data encapsulation so that the code is safe from such
interference, but that does not prevent a programmer from
writing the original code poorly.

Before using any stack s, it must be initialized by setting s.top
equal to zero.

EMPTY

88

PUSH

POP

PEEK

Notice that the only difference between Pop and Stacktop is
that the top-of-stack pointer is changed in Pop.

7.3.3 POINTER IMPLEMENTATION

Stacks can be very simply implemented as linked lists. The
top of the stack is merely the head node of the list. If the list is
nil, the stack is empty. Elements are inserted and deleted from
the head of the list. Using linked lists, a stack overflow will
not normally occur since there is no array limit to worry

89

about. However, when popping elements from the stack, care
should be taken to dispose of unneeded nodes properly.

7.3.4 CODING SOME OPERATIONS

To show the similarity in the operations, even with using a
different underlying data structure, the following examples
are given.

DECLARATIONS OF DATA STRUCTURE

PUSH

POP

90

7.4 APPLICATIONS

Stacks are used in many ways, particularly when it is
necessary to store information temporarily and then retrieve it
in a reverse order. Two primary examples of this type of
applications are (1) the evaluation of arithmetic expressions
and (2) the analysis and removal of recursion. Since these
topics deal with algorithms and applications, they are dealt
with in Appendices C and D. The connection between stacks,
arithmetic expressions and recursion will be merely sketched
here.

Some hand calculators require that operators be entered last,
after the operands. These are called “stack” or “RPN” (for
Reverse Polish Notation) calculators. In other words, to add 3
and 5, first the 3 is entered, then the 5 and finally the + sign is
pressed. In other words, 3 + 5 is equivalent to 3,5+ in RPN. A
more complicated conversion is 3 + 4 × 5 which converts to
3, 4, 5, ×, +. Notice that in this second example, the order of
the operators (+ and ×) are reversed. However, in a similar
expression using parentheses, (3 + 4) × 5, the RPN expression
keeps the operators in the original order, 3, 4, +, 5, ×. A
program to convert between the standard arithmetic notation

91

and RPN involves the use of a stack to store the operators.
(Also see Appendix D.)

When a subprogram recursively calls itself, the computer
does not duplicate the code. Rather, the values of all variables
along with a return address are stored on stacks. During any
use of the subprogram at any level of call, only the values that
appear at the top of the stack on the various variable stacks
are used. In this way, the subprogram “remembers” all the
previous values of the variables it needs at any level. When it
is desirable to eliminate recursion, a stack needs to be
explicitly coded to keep track of the various values.

92

CHAPTER 8

QUEUES

8.1 QUEUE STRUCTURE AND
OPERATIONS

A queue is a waiting line. This is a standard dictionary
definition and the word is commonly used in British countries
to designate any waiting line, not merely a computer science
concept.

In computer science, a queue is an ADT (abstract data type)
in which new data is inserted at one “end,” called the rear,
and stored data is removed from the other “end,” called the
front. Thus, in action it is identical to a waiting line that
people experience while waiting for food in a cafeteria or for
transportation at a terminal.

Since intermediate information in a queue cannot be reached,
in action a queue is somewhat similar to a stack. However,
whereas a queue is a FIFO (first in, first out) a stack is a
LIFO (last in, first out) structure. Thus, unlike a stack, a
queue does not (and cannot) change the order in which the
elements are removed, relative to the order of their insertion.

93

There are two common primitive queue operations.
1. Enqueue(x,q) (often written Enq(x,q)) — inserts item x

onto a queue q at its rear. (This operation is usually
coded as a procedure.)

2. Dequeue(q) (often written Deq(q)) — removes the item
at the front of queue (q). (This operation is usually coded
as a function and so the item removed from the queue is
returned as the function value.)

To guarantee against errors, a third operation is commonly
implemented.

3) Empty(q) — checks to see if there are any elements in
queue q. (This operation is also usually coded as a
function returning the boolean value of true if q is
empty and false if there are elements in q.)

Sometimes a fourth operation is found that is similar to the
Peek operation on stacks. This function copies the value of
the element at the front of the queue but does not remove it
from the queue.

8.2 IMPLEMENTING QUEUES USING
ARRAYS

8.2.1 THE UNDERLYING DATA
STRUCTURE

Implementing the ADT of queues using the underlying data
structure of an array involves the same problems as occurred
with implementing stacks as arrays. Queues are dynamically
changing in size, while arrays are static. But, similar to what
was done with stacks, an array can be declared that is large

94

enough to hold all items expected to be in the queue at any
one time.

A queue needs two pointers: one indicating the index of the
front and the other the index of the rear.

The following code implements a queue similar to the way a
stack was implemented, i.e., via a record consisting of the
storage array and two pointers.

8.2.2 PRESUPPOSITIONS

As with linked lists, certain presuppositions regarding the
data structure and how it will be used need to be determined
before coding the operations. In general, issues regarding the
coding of queue operations require more thought and
preliminary planning than did those regarding stack
operations. As a result, a study of these issues provides an
excellent example of some of the numerous (and frequently
unexpected) problems that arise when dealing with more
complicated data structures in applications programs.

There are three main issues for discussion:

95

Issue 1 — How should items be stored in the queue?

Issue 2 — What happens when the last space (i.e., the space
with the greatest subscript value) in the underlying array has
been filled?

Issue 3 — How is the test for an empty queue performed?

8.2.3 ISSUE 1: STORAGE OF ITEMS IN A
QUEUE

There are two major options for storing items in a queue
when the underlying data structure is an array.

a. They can be always butted up to the front, so that the
next items to be removed always is in array location 1.
However, this option requires that all items in the queue
be moved after each deletion, which can be highly time-
consuming if there are numerous items and, thus,
inefficient. However, this option would lead to a certain
simplicity in coding the Dequeue function and in
keeping track of the items in the queue.

b. They can be left wherever they happen to be when
inserted. This option complicates the computation of the
front and rear pointers, but eliminates the time-
consuming process of moving queue elements around.
This option also makes it likely that after the queue has
been used, an item will be inserted into the queue so that
it is located in the last space of the underlying array,
which leads to a discussion of the second issue.

96

8.2.4 ISSUE 2: FILLING THE
UNDERLYING ARRAY

Even when a large array is used for the underlying data
structure, after some use it is likely that a new element will be
stored in the last space (i.e., the space with the largest
subscript) in the array, but only a few elements will be
“active” in the queue. To avoid wasting space and to be able
to re-use the beginning of the array again, normally the array
is thought of as “circular,” in that after using the last space,
the first space is then re-used (or “re-cycled”). However, this
convention complicates the calculation of the pointers rear
and front.

The choice of a circular array assumes the choice of the
second option in resolving the first issue: namely that an item
is not moved in the array after its insertion in the queue.
However, these conventions may lead to the situation where
rear<front. Thus, the code of the queue operations must take
this into account. A circular array will be assumed in the
discussion that follows, and it will also be assumed that when
a Dequeue is performed, the front pointer is incremented by
one and when an Enqueue is performed the rear pointer is
incremented by one.

8.2.5 ISSUE 3: TESTING FOR AN EMPTY
QUEUE

This issue actually leads to two new, but related, issues: (4)
Can the array ever be completely filled with queue elements?
and (5) Where should the front pointer actually point to?
These new issues may seem ludicrous, but their importance

97

will be seen in the discussion that follows. For now, assume
that front and rear are the actual array indices of the first and
last items stored in the queue, and that the array can be filled
to capacity. There are several possible conditions for a queue
to be empty that should be examined.

1. The condition front = rear would be an appropriate test
for whether there is one element in the queue, but not
whether the queue is empty.

2. The condition front > rear would work if the array was
not considered to be circular. With a circular array, there
could be many elements in the array with the first
element stored near the end of the array and the last
element stored near the beginning, leading to front >
rear.

Case 1: Natural Order — front < rear when non-empty.

Case 2: Wrap-around Order — front > rear when non-empty.

3) The condition front = (rear MOD maxqueue) + 1 would
work if not for the fact that the array is circular and

98

could be filled to the limit. Because of the circularity of
the array, this same condition is true when the array is
full (if every space is permitted to be used)!

Case 1: Almost empty queue.

BEFORE DELETION

AFTER DELETION (front is increased by 1 and front =
rear+ 1)

Case 2: Almost full queue.

BEFORE INSERTION

AFTER INSERTION (rear is increased by 1 and front = rear
+ 1)

99

The dilemma raised by the third issue is usually resolved by
making choices based on the two related issues mentioned:
(4) Can the array ever be completely filled with queue
elements? and (5) where should the front pointer actually
point to?

In answer to (4), most implementations are coded so that one
space is left “wasted” in the array. Thus, in an array of length
maxqueue only maxqueue - 1 elements can be stored. This
eliminates the double meaning of the third possible condition.

Thus, the following conditions have these meanings:

CONDITION MEANING

1. front = rear One item in
queue

2. (rear MOD maxqueue)+1 = front Empty queue

3. (rear MOD maxqueue)+2 = front Full queue

In answer to (5), because the conditions just listed seem non-
intuitive, some implementations prefer to use the convention
that front actually points to the “wasted” space in the array

100

that is immediately before the first element. If this convention
is chosen, the following conditions have these meanings.

CONDITION MEANING

1. (front MOD maxqueue)+1 = rear One item in
queue

2. rear = front Empty queue

3. (rear MOD maxqueue)+1 = front Full queue

The last condition can be implemented so that when trying to
Enqueue an item, rear is incremented first and then tested to
see if it equals front. If it does, then overflow has occurred.

Some feel that keeping the pointers pointing to their
“intuitive” elements is to be preferred even though the
resulting conditions may not be clear. Others feel that keeping
the conditions less complicated is to be preferred, even if the
meaning of the front pointer is not exact. The choice can
depend on the environment in which a queue is used. In either
case, the questions raised by this (relatively simple)
implementation provide excellent examples of the many
issues that often need to be considered before coding
operations related to data structures.

8.2.6 CODE FOR THE OPERATIONS

Based on the discussion above, the following conventions
have been chosen for the code that follows:

101

1. Once inserted, an item is not moved in a queue.
2. The array is thought of as circular, i.e., after

q.item[maxqueue]comes q.item[1].Therefore, front (and
rear)can also be increased to the next legal number by
using the formula front :=front MOD maxqueue + 1.

3. q.front is the index of the array element immediately
preceding the first element in the queue. Therefore, if
q.front equals q.rear, the queue is empty or overflow has
occurred.

4. To enable a test for emptiness (and overflow), one
element of the array is sacrificed as a queue element and
used instead as a “dummy” element.

Before using any queue q, it must be initialized by setting
q.front and q.rear both equal to zero.

EMPTY

A longer way to code this function is to use the structure of
the function Empty found in Section 7.3.2 and the condition
(q.front = q.rear). However, the code above provides an
alternate example, and shows the compactness that results by
using a logical expression in an assignment statement.

ENQUEUE

102

DEQUEUE

8.3 IMPLEMENTING QUEUES USING
LINKED LISTS

Queues can also be implemented as linear linked lists. Often
the choice is made that the head of the list is the front of the
queue and the tail is the rear. Implementation is simplified if a
second pointer to the rear of the list is also used, since
insertions will constantly be made there, and it is more
efficient to have a pointer always available to that part of the
list. The head of the list is the “front” of the queue and is the
point where elements are dequeued.

Certain implementation problems are also eliminated if the
list has a header node, since otherwise coding is complicated
when the queue is empty and when an item is inserted into an
empty queue. However, this demands a function Createqueue
that creates a new queue with merely a header node. The

103

following diagram depicts a queue as a linked list with a
header node.

The following definitions show how a queue can be
implemented in Pascal using the underlying data structure of
a linked list.

Given the data structure definition, code for the various
operations can now be written. Only one sample subprogram
code is given, a linked list (pointer) version of the function
Dequeue. Since linked lists are used, care must be taken with
disposing of the formerly used node (as was done in the
function Pop in Section 7.3.4), so the node space (no longer
needed by the queue) can be re-used by the program.

104

8.4 IMPLEMENTING QUEUES USING
CIRCULAR LINKED LISTS

If a queue is implemented using a circular list, certain
implementation details can be simplified further. Only one
pointer is needed which can be used for both the enqueuing
and dequeuing operations. This queue pointer points to the
rear of the queue, but this rear (tail) node points to the head
of the queue, since the list is circular. Thus, if q is a pointer to
this queue structure, to enqueue an item the InsAfter
procedure of Section 6.4.2 can be used and applied to q. To
dequeue an item the DelAfter procedure of Section 6.4.3 can
be used and applied to q^.next.

8.5 DEQUES

A deque (pronounced ‘deck’ as in a ‘deck’ of cards) is a
Double Ended Queue. It is an ADT (abstract data type) in
which insertions and deletions can be performed at either of
two ends, usually called the right and the left.

Because of its configuration, a deque can function both as a
stack (if insertions and deletions are done only at one end), or
as a regular queue (by restricting insertions to one end and
deletions to the other). If it functions as a queue, it can also
act as a queue in either direction!

Deque operations are usually labeled as Right-Insert, Right-
Delete, Left-Insert, Left-Delete, and Empty. They are
modeled after the operations defined in stacks and queues.
Implementation can be done via an array (as with a queue) or

105

with a doubly-linked list. The coding of the various
operations is similar to the codes given for the various
implementations of other ADTs.

8.6 EVALUATION

The following is a brief comparison and evaluation of some
of the many data structures seen thus far.

ARRAYS: Random access to any information cell.

If information is ordered, insertion (retaining the order)
means shifting a lot of information.

STACKS: Sequential access.

One must pop the top-most cells of information off the stack
to get to the desired cell. In many implementations, it is hard
to “save” the popped information for re-use.

Cannot insert in the middle.

QUEUE: Sequential access.

One must dequeue to get to the desired cell of information.
However, one can immediately enqueue the unneeded
information to avoid loss.

Cannot insert in the middle immediately, without dequeuing
and enqueueing in the correct order.

106

APPENDIX A

BINARY NOTATION
Binary notation, like decimal notation, is positional. Only two
digits (bits) are possible in each place, 0 or 1. The place to the
left of the binary point is called the ones place (as in decimal
notation), but in binary notation it can also be indicated as the
20 place. The next position to the left is the twos (or 21) place.
Next comes the fours place, then the eights, then the sixteens,
etc., all labeled in successive powers of two.

Similarly, the places to the right of the binary point are
labeled as negative powers of 2. The first place to the right of
the binary point is the halves place, followed by the quarters
place, followed by the eighths place, etc.

To translate from binary into decimal, a binary number should
be expanded according to the appropriate (positional) power
of two, and re-written in decimal notation. As an example,
take 11010.101.

107

To translate an integer from decimal into binary, the number
should be repeatedly divided by 2 and the bits that form the
remainders saved. This procedure stops when zero is reached
as a quotient. These remainder bits, when read from last to
first, form the binary equivalent. As examples, take 5 and 4.

To translate a fraction from decimal to binary, the number
should be repeatedly multiplied by 2 and the bits that form
the overflow (into the integer section left of the decimal point)
saved. Once saved, the overflow bit is removed from the
number as far as further calculations are concerned. This
procedure stops when zero is reached as a product, or when it
is obvious that the number is a repeating binary fraction, or
when enough bits accurately have been achieved. These
overflow bits, when read from first to last, form the binary
equivalent. As examples, take 0.25 and 0.75.

108

APPENDIX B

SUBPROGRAM
PARAMETER PASSING
When the major computer languages are analyzed, four
principal methods can be identified that are used to
communicate via (i.e., to “pass”) parameters between a
calling program and a subprogram. The standard names for
these methods are:

In some languages (e.g., Pascal, Ada), the programmer has
the choice of determining the passing scheme for each
parameter.

In other languages (e.g., FORTRAN, C), the user has no
choice. The passing scheme is predetermined, but sometimes
it is different for arrays than for scalars.

In Pascal,to use call-by-reference, the reserved word VAR is
included before the parameter in the procedure or function

109

parameter definition. If VAR is omitted, then the parameters
are call-by-value. Call-by-value-result and call-by-name are
not used.

In FORTRAN, there is no choice. The FORTRAN-77
definition seems to prescribe that all variables are passed as
call-by-reference. However, in older versions of FORTRAN
(e.g., FORTRAN IV, also called FORTRAN-66), scalar
variables were usually passed as call-by-value-result and
arrays were always call-by-reference. It is possible that this
may still be true on some systems, at least when one specifies
an older (e.g., FORTRAN-66) style of FORTRAN
interpretation.

The four methods differ as follows:

In Call by Value, new (independent) memory locations are
allocated in the subprogram and are initialized with values
passed from the calling segment. Since the subprogram uses
independent memory locations, the copied values may be
changed without affecting the variables originally associated
with them in the calling program. When the subprogram ends,
the corresponding (actual) parameters in the calling segment
are left un-changed.

In Call by Reference (Address), no new memory locations
are allocated. Instead, a link is set up so that whenever a
subprogram variable is referenced, the corresponding variable

110

in the calling program is accessed and changed. Thus, both
the calling segment and the subprogram share the same
memory location. Often there may be two or more names for
the same memory location, a phenomenon sometimes called
“aliasing.” Since both segments use the same memory
location, it initially contains its value from the calling
segment, and retains any changes introduced by the
subprogram. What it passes is an address (i.e., a pointer), and
not the value per se.

In Call by Value-Result,new memory locations are allocated
in the subprogram and are initialized with values passed from
the calling segment (so far, everything is the same as with
call-by-value). Because it has independent memory locations,
these values may be changed independently of the variables
originally associated with them. However, when the
subprogram ends, the corresponding actual parameters in the
calling segment are changed!

In Call by Name (Expression),the actual parameter is
considered to be a character string, and a text replacement is
performed in the subprogram for the formal parameter,
wherever it occurs. As a result, an actual parameter may clash
with a local variable because both are composed of the same
characters and are considered to be one and the same. This
method was once used in Algol-68 but is not in common use
in major languages now.

EXAMPLE: CONFUSION

111

It can make a lot of difference in certain special cases how
parameters are passed. The rules for the different passing
schemes must be followed brutally by a human programmer
when testing code by hand or else unconscious errors will
occur resulting in answers that will differ from computer
results. To show that problems may occur if a programmer is
unclear as to which parameter passing scheme is used, and
thus, unclear as to exactly what is happening between the
calling segment and the subprogram, the following example is
offered, written in a pseudo-language.

Depending on the type of calling method used, three different
answers are possible:

CALL BY VALUE = 30

CALL BY ADDRESS/REFERENCE = 80

CALL BY VALUE-RESULT = 35

112

In the Value and Value-Result methods, separate memory
locations are allocated for each of icrazy’s variables, i, j, and
k. Each variable ends with a value of 10 and the value of the
function is 25. However, when Value is used, n in the main
program is unchanged after the invocation of icrazy and
remains 5. When Value-Result is used, n is changed to 10.
Thus the output answers are 30 (call by value) and 35 (call by
value result).

When call by Address is used, there is only one memory
location between the main program parameter and the
corresponding parameter in the procedure. Here, however,
each parameter corresponds to the same variable in the main
program, and so the same memory location has four different
names (i.e., “aliases”), i, j, k, and n. When one variable’s
value changes, they all change values. Thus, at the first
assignment statement in the function, i receives the value of
10 (and so do j and k).Then, at the second assignment
statement, j receives the value of 20 (and so do i and k).Thus,
icrazy receives the value of 60, and when the function is
completed, n retains its changed value of 20. The final result
is thus 80.

In this situation, call by name would yield the same results as
call by address.

COMMENT

113

In the context of data structures, it can be important to know
how a language passes parameters, because undesirable side
effects can occur if one is unclear how the data is stored, how
many copies exist, and when it changes. For example, type
conversion can take place in FORTRAN if the actual
parameters (in the calling segment) do not correspond in type
with the formal parameters (declared in the subprogram
header). This can lead to unexpected errors, such as
truncation or even completely unrelated answers (depending
on how the local compiler handles mis-matched parameter
types).

In Pascal, if parameter arrays are not declared VAR, new
memory is allocated whenever a subprogram is involved that
can (needlessly) use up large amounts of memory. In extreme
cases, in recursive routines, a run-time error may occur
because of no more available memory.

In C, one has to “fool” the language in order to achieve a call-
by-address, since it only uses call by value. This is normally
done by passing a copy of the address of (i.e., pointer to) a
variable, and then accessing (and changing) the variable’s
actual value through its pointer. Even though there are two
pointers to the same memory location, when one changes the
memory location pointed to, it remains changed, even though
its pointer cannot be changed.

114

INDEX

Abstract Data Type
Address, Call-By B
ADT
Aggregate Structures
Array Implementation of List
Array Storage
Arrays (1-Dimension)
Arrays (2 and Higher Dimension)
ASCII

Binary Notation A
Binary Search
Bit
Bubble Sort
Byte

Call By Address B
Call By Name B
Call By Reference B
Call By Value B
Call By Value-Result B
Character
Circular Lists
Column-Major Order
Compression, Bit/Digit (Hash Function)
Constant
Conversion Type

Declaring Arrays
Declaring Variables

115

Deleting From Lists
Deque
Dequeue
Digit Analysis (Hash Function)
Disposing of Nodes
Division (Hash Function)
Dope Vector
Doubly-Linked Lists
Dummy Vector

EBCDIC
Empty (Queue)
Empty (Stack)
Empty List
Encodings
Enqueue
Exchange Sort
Exponent (Real Number)

Fields (of a Record)
Folding (Hash Function)

Hash Clash
Hash Collision
Hashing
Head Node
Header Nodes
Homogeneous Data
Structures

Implementation, internal
Inserting Into Lists
Integer

Jump Down Sort

Linear Implementation of List

116

Linear Search
Link
Linked Lists
List, Array Implementation
List, Linear Implementation

Mantissa
Mantissa (Real Number)
Matrix
Midsquare (Hash Function)
Multiplication (Hash Function)

Name, Call By B
Negative Integers
Nibble
Nil List
Normalized (Real Number)

One’s Complement

Parameters, Passing B
Passing Parameters B
Peek
Pointer
Pop
Positive Integers
Push

Queue
Queues And Linked Lists

Random Access
Real Numbers
Records

Reference, Call By B
Representation, External

117

Proudly sourced and uploaded by [StormRG]

Row-Major Order

Scalar Variables
Searching
Searching Lists
Selection Sort
Sign Bit
Sign Magnitude
Simple Variables
Stable Sort
Stacks
Stacks and Linked Lists
Storage of 1-Dimensional Arrays
Storage of 2-Dimensional Arrays
Straight Selection Sort
Structures
Symbol Table

Tail Node
Two’s Complement
Type Conversion
Type, Data

Value, Call By B
Value-Result, Call By B
Variable
Variables, Character
Variables, Integer
Variables, Real
Variables, Scalar
Variables, Simple

Vector
Visit

Word

118

119

120

121

These “Little Books” have
rescued lots of grades and
more!

(a sample of the hundreds of letters REA receives each year)

“ Your Essentials books are great! They are very helpful, and
have upped my grade in every class. Thank you for such a
great product. ”

Student, Seattle, WA

“ I recently purchased six titles from your history Essentials
series and I find them to be excellent. ”

Student, Dublin, Ireland

“ Thank you for volumes I & II of The Essentials of Statistics.
I am very pleased with these two little booklets. ”

Student, Portland, OR

122

“ The Essentials book always comes to the rescue. ”

Student, Norwood, MA

“ I’ve had the pleasure of using your Essentials of Physics
study guide books, and have found them to be very helpful. ”

Student, Minneapolis, MN

123

	These “Little Books” have rescued lots of grades and more!
	Title Page
	Copyright Page
	WHAT “THE ESSENTIALS” WILL DO FOR YOU
	Table of Contents
	CHAPTER 1 - INTRODUCTION
	1.1 DATA AND PROGRAMS
	1.2 ABSTRACT DATA TYPES
	1.3 COMMENTS ON TOPICS

	CHAPTER 2 - SCALAR VARIABLES
	2.1 COMPUTER MEMORY
	2.2 DATA TYPES
	2.3 ENCODING DATA
	2.4 COMMENTS ON VARIABLE TYPES
	2.5 DECLARING SCALAR VARIABLES

	CHAPTER 3 - ARRAYS AND RECORDS
	3.1 AGGREGATE STRUCTURES
	3.2 ONE-DIMENSION ARRAYS
	3.3 STORAGE OF ARRAYS
	3.4 TWO- AND HIGHER-DIMENSION ARRAYS
	3.5 DECLARING ARRAYS
	3.6 RECORDS

	CHAPTER 4 - ELEMENTARY SORTING
	4.1 SORTING ALGORITHMS
	4.2 BUBBLE SORT
	4.3 STRAIGHT SELECTION SORT
	4.4 STABLE SORTS

	CHAPTER 5 - SEARCHING
	5.1 SEARCHING ALGORITHMS
	5.2 LINEAR SEARCH
	5.3 BINARY SEARCH
	5.4 HASHING

	CHAPTER 6 - LINKED LISTS
	6.1 BASIC DEFINITIONS
	6.2 LINEAR IMPLEMENTATION
	6.3 POINTER IMPLEMENTATION
	6.4 COMMON OPERATIONS
	6.5 VARIATIONS

	CHAPTER 7 - STACKS
	7.1 STACK STRUCTURE AND OPERATIONS
	7.2 USING STACKS
	7.3 SAMPLE IMPLEMENTATION
	7.4 APPLICATIONS

	CHAPTER 8 - QUEUES
	8.1 QUEUE STRUCTURE AND OPERATIONS
	8.2 IMPLEMENTING QUEUES USING ARRAYS
	8.3 IMPLEMENTING QUEUES USING LINKED LISTS
	8.4 IMPLEMENTING QUEUES USING CIRCULAR LINKED LISTS
	8.5 DEQUES
	8.6 EVALUATION

	APPENDIX A - BINARY NOTATION
	APPENDIX B - SUBPROGRAM PARAMETER PASSING
	INDEX
	These “Little Books” have rescued lots of grades and more!

