Data Structure
Practice

for Collegiate Programming
Contests and Education

Yonghui Wu and Jiande Wang

CRC Press

Taylor & Francis Group




Data Structure
Practice

for Collegiate Programming
Contests and Education






Data Structure
Practice

for Collegiate Programming
Contests and Education

Yonghui Wu and Jiande Wang

oooooooooooooooooooooo

CRC Press
Taylor & Franc is Group
CRC Press
Taylor & ,




Published with arrangement with the original publisher, Beijing Huazhang Graphics and Information Company.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20160126

International Standard Book Number-13: 978-1-4822-1540-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Contents

PrEfACE ...ttt ettt et e e e ee e e taeeeteeeeaeeereeereens xiii

AUTROLS ..ottt ettt e e e e e et e e ete e et e e ete e e e e eetaeeeteeereeeneeeareenns XV
SECTION I FUNDAMENTAL PROGRAMMING SKILLS

T Practice for Simple ComPUting.......coceueuiririreririsisisrisisiiisisisissssesissssssssssssssssssssssses 3

1.1 Improving Programming Style .......cccocoveiiriiniennininininicencecceee e 3

1.1.1  Financial Management ........cccecerueeereniererinieinieneeenineeeereneeeeneseeeeseseeneenes 4

1.2 Multiple Test Cases .....coveeruirieirienieiniinieteientetertsteeetesteeert ettt saeeene e 5

|0 B B T 101 o3 [ TSR 5

1.2.2  Sum of Consecutive Prime Numbers ...........ccccovvvieiiiniiiiiiccieciecce e, 7

1.3 Precision of Real NUMDEISs .....c..cooviiiiiiiiiiiciiiceccecee e 9

1.3.1 1Think I Need a HOUSEDOAL «...ccvvieeveiereiericeieeeee ettt 9

1.4  Improving Time Complexity by Dichotomy ........cccooveciniicinnccnniicnineeeen 11

141 HanGOVET .eoriiieiiieicirieieieec ettt 12

L1.4.2  HUMIAEX..tiiiiiiieiiieeeeeeee ettt eate et e e reeeeaeeenreeenreean 14

L T 100 5) 1 s TSRS 17

L.5.1  SUINL cotieee ettt e e e et e e e e e e aba e e e e e eeeabbaaaeeeeenatraeeeeeeennnnnes 17

1.5.2  Specialized Four-Digit NUmDers......cccoeeeriernierirnciiniccenecneeeceenenes 17

1.5.3  QUICKSUML .etiuiitiieieee ettt 18

1.5.4 A Contesting Decision .........cceverueirenierinineiniceceneneeseeeeseeee e 19

1.5.5 Dirichlet’s Theorem on Arithmetic Progressions ........c.cocvvevevrreennvccnennnes 21

1.5.6 The Circumference of the Circle .......coccvvvvviiiiiiiiiiiiiiieeeeeeeceeee e 22

1.5.7  Vertical HiStogram........ccoccoiiniiiiiniiininiiiiiinccceees 26

1.5.8  Ugly Numbers .......ccoeuiiiniiiiiiiiiiiicicccs 27

1.5.9  Number SEqUENCe.....coucovvirieriririciritcrec ettt 28

2 Simple SIMUIAtION cuviuiiiriiririririiiiitsiiiisssasass s bsas s sas s 29

2.1 Simulation of Direct StAtEMENE .......coveeeviereerieereeeteereeee et eereeereeeeereeereeereeseenseeseas 29

2. 1.1 Speed LIMitu.ceeioieeirinieinieicinieccneteesreee ettt ettt sreeene 29

2.1.2 Ride t0 SChOOl oo 31

2.2 Simulation by Sieve Method.......coccciviiiiiniiiiciniiiiiinccccneeees 33

2.2. 1 Self-NUMIDELS ..ottt ettt eeaeeenaee s 33

2.3 Construction SImMUIAtion .......ccvieeriiieieeetieere ettt e eeteeeereeereeereeere e 35

G 0 N TS UUR P PPURRRRN 35

<



vi m Contents

2.4 PrODBIEMIS.ccuviiiciiie et ettt et ate e eareas 37
2.4.1 GOl COINS ittt et e et e e erae e e e e enee 37

242 The 30 + 1 Problemi.. i ittt 38

2.4.3  Pascal Library ..o 39

244 Calendar....ccoueiieieeeieee e n 41

2,45 MAaNaer....c.ciiiiiiiiiiicc s 42

3 Simple RECUISION..civiitiriririiiiinisisisiiiiiisesissississssssssassssssssssssssssssssssssssssssaes 45
3.1 Calculation of Recursive FUNCHIONS .....ccveivviiieiiiiieiiecciieeeeeeeeeeeeee e s 46
3.2 Solving Problems by Recursive Algorithms......cccoevverueininiccninicininccnecneceen 47
3.2.1  Red and Black.....oouiiiiiiiiiiiiiiceeii et 48

3.3 Solving Recursive Datum .......ccociviiiiiniiiiiniiiiiiiiccccececcees 51
3.3.1  Symmetric Order ....ooeuiviiiiiiiiiiiiciicirce s 51

3.4 ProODlEmS..c.vei it et e e eeteeereeereeeaneenns 54
341 Fractal.eecocee oot ana s 54

34,2 SHCKS coveeeee ettt et eete e e e e e eaneeaeean 56

SUMMARY OF SECTION |

SECTION Il  EXPERIMENTS FOR LINEAR LISTS

4  Linear Lists Accessed Directly ......ccecvvevervnseneinsennsnssesnssesssnssesssnsssssssssssssssssssssssssssssnes 65
4.1  Application of Arrays 1: Calculation of Dates.......cccoveeeereereeererecneecneienereenens 65
411 Calendar ..o 66

4.1.2 What Day Is Te..cceiieeeeeee ettt 68

4.2 Application of Arrays 2: Calculation of High-Precision Numbers .......cccoeeeneeeee. 72
4.2.1 Adding Reversed Numbers .....c.cccoeervieinineinneinencncceeccneecneeneees 74

422 Very Basyl oottt 77

4.3  Application of Arrays 3: Representation and Computation of Polynomials............ 80
4.3.1  Polynomial Showdown..........ccciuiuiiiiiiiiiniiiiiiicce 81

4.3.2  Modular Multiplication of Polynomials.......c.ccceeuevreenneenneinnccnenen 83

4.4 Application of Arrays 4: Calculation of Numerical Matrices ........c.coceeerrveeneenene. 86
4.4.1  Error COITECTON «.cviveuirtiieietinicteientetett ettt ettt bt neeneenes 87

4.42  Matrix Chain Multiplication ...........ccceeeeininiciniinniicicececees 89

4.5  Character Strings 1: Storage Structure of Character Strings ........ccoceveivveinennene. 93
4.5.1  TEX QUOLES c.veuveueriiieiiniiieteiintetstestetei sttt sb sttt sb et naeneenes 93

4.6 Character Strings 2: Pattern Matching of Character Strings........cccccceeevvvccnennene. 94
4.6.1  BlUE JEANS c.viiiieiiieeiieiicciteteete ettt ettt ettt beeaaean 95

4.6.2 OULPO cvvieicietcrec et 99

4.7 PrODIEMS..c.cveviirieiiieicieeictrec ettt 101
4.7.1  MOSCOW TIMIC vttt 101

4.7.2  Double TIme...cceoteuirieiirieieieiee ettt 104

4.7.3  Maya Calendar.....c.coeevirieinncciniicinecneeeee s 105

474 TIME ZONES...ctruerierieriririeiintnieetrteiestntetesesaesetsse st saese st saesesesbestseesesesaesenes 107

4.7.5 Polynomial REMains .....coecerurueiririeinieiiinieiciniciccnieenereciceeee e 109

4.7.6  Factoring a Polynomial ..........ccccccccoeiiiiiiiniiiiiiiiccs 111

4.7.7  What's Cryptanalysis?......c.coceeoerrieinieiennieieninieiecneense et 112



Contents W vii

4.7.8  Run-Length Encoding..........cccccociiiiininininiiiiiiiiiiicccccccns 113

4.7.9  ZIPPOI ettt s 114
4.7.10 Anagram GIOUPS .....cccevuvueirieiiiiiiiiiiecniee e 115
4.7.11 English Number Translator ...........cccoccveeiniinniinninnciicnecceees 117
4.7.12 Message DecOWINg ........ccovueuiiriiiinieiinieiiicceeneeeeee s 118
4.7.13 Common Permutation .......c.ccccveeerenerinenerinenieeneneeeesteeereseee e 119
4.7.14 Human Gene FUnctions ......c..coeceeenievninieinenicnnenecneneecneneecseneenens 120
4.7.15 Palindrome ....coeeeeerieiriinieiiicree e 122
4.7.16 POWeEr StHNGS ....cviiiiiiiiiiiiciii s 123
4.7.17 Period...ccueueriiieiiiiiieieiere ettt 123
4.7.18 Seek the Name, Seek the Fame .....cooovviiiiiiiiiiiiieieceeeeeeeeeee e 124
4.7.19 EXCUSES; EXCUSES! -neeeeteeeeeeeeee e e ee et e e e e e e e e e e e e e aeeeeseesseeeeeaaan 125
4.7.20 PrOQUCT c.veveuieiiieieiiie ettt ettt ettt b et be e 128
4.7.21 Expression Evaluator..........cccccociiiiiiininiiiiicccec 128
4.7.22 Integer INQUIry....ccoeiiiiiiiniiiiiiic 129
4.7.23 Super-Long SUmS......cccoiiviiiiininiiiiiiii s 130
4.7.24 EXPONENUATION ..ceeevirveuiruirieieiinieieienteteienteeereseeeere st sseneeresseeeneseenene 131
4.7.25 Number Base CONVErSion .......coccceirueeererierenenieenineeneneeeereseeesneneenene 132
4.7.26 Super-Long SUMS......ccooviiviiiiiiiiiicciceee s 134
4.7.27 Simple ATithmeEtiCs ...eveververirinieirincinee ettt 134
4728 @0 — Dot re et re s 136
4.7.29 Fibonacci NUMDET ..c..cceuiiieiiirieieiiieeiee ettt 137
4.7.30 How Many Fibs ...c.ccecerirueineiinieieiniciceniecnccneeietneeieeseereeseev e saenenes 138
4.7.31 HEIAGE .ottt sttt 138

5 Applications of Linear Lists for Sequential AcCess......ccocererurrenrirunsenesunsesesensessesssaes 141
5.1  Application of SeqUENCE LiSts ..c.coerueveririeiriirieiniirieenentctreneeesieseeesreeee e 142
5.1.1  Children coceeeeeeiiiiicinicec et 142

5.1.2  The Dole QUEUE.....cceeiriirieiriiieirierctseetee et 143

5.2 Application 0f Stacks ....coveveruirieiririeiiie e 145
5.2.1  RalSueiiiiiieiiee et 145

5.2.2  Boolean EXpressions......coeoveeeireerinieeenerinineeenreneesneeesresseeneneseenene 151

5.3 Application of QUEUES ......cceerreuiririeuiirieiiinteeentete ettt neseeen 154
5.3.1 A Stack 0or 2 QUEUE? ....cueieuiriiieiieieieteiee et 154

5.3.2  Team QUEUE ..coueriirieriiriieiieiietetete ettt st et s 156

5.3.3  Printer QUEUE c..cocueriiriiiieieeenteseeteee ettt re e 161

5.4 PrODIEMIS . ouciuiieieiiie ettt 163
5.4.1  Roman Roulette......ccooiiirieiriiieieieieeieeeese et 163

5.4.2  MYARS H oottt 164

5.4.3  JOSEPH weviuiiiiiiic et 165

5.4.4  City SKYIINE c.vooveeiriiiciriicicc et 166

5.4.5 Anagrams by Stack ..o 168

6 Generalized List Using INdexes.....cccveeuererenrnrerennicsnsisesessesesssesesssscssssssesesssscsssseseses 171
6.1  Solving Problems Using Dictionaries........c.covveerereernieiniererenereeneereereereeneenenes 171
6. 1.1 RELErENCES .uvuitiienietiieiete ettt sttt 172

6.1.2 Babelfish ..eooiieieieeeieeeeee et ae e 176



viii ®m  Contents

6.2 Solving Problems Using a Hash Table and the Hash Method............cccocci 179
LC3 2 S U 0 s 10 TR 179

L3 TN £ 001 o 1< oo TR 185
6.3.1  Spell Checker....ccuouiiiiiiiiiciiiiiicccc e 185

6.3.2 Snowflake Snow SnowHakes ..........ccovevvieeiiiiiiiiiieeeeceeee e 188

6.3.3  EqQUAtiONS.....ccoiuiiiiiiiiiiiiiciicc s 188

7 SOIt Of LiNEAr LiSES..eeerreeereerreeesseeesseesssessanecssessssessasessanesssssssssssssssssssssassssassssassssessass 191
7.1 Using Sort Function in STL.....ccccccoiiiiiiiiiiccceceeeeeeeee 191
7.1.1  Hardwood SPECIEs .....eveuervereinierieinieiiinieiienieiesenrerteereresesreeeereveseenenennen 191

7.1.2  Who's in the Middle?......cc.oooviiieiiiiiieiieeeeetee e 194

7.1.3  ACM Rank Table.......ooviiuiiiiiiiiiccieceeeeee et 195

7.2 Using Sort Algorithms.........ccccociiiiiiiiiiiiiiiis 197
721 FLP SOIteiiiiiiiiiiiiiiic s 197

7.2.2 Ultra-QUICKSOIT c.veueeviieiieiiieieiesieeeteste ettt 199

% T 0o o3 1T s RO 201
7.3.1  ANaNagrams......cccciiiiiiiiiniiiiiiii s 201

7.3.2  Grandpa Is FAMOUS...coooveoivinieiiiicicicccescte e 202

7.3.3  Word Amalgamation ..........cccceuviiiiiiiiiiiiiii 203

7.3.4  Questions and ANSWELS......cceecteierierieriereeieteeeieientestestesteeseeneensensessenes 205

7.3.5  Find the ClOnEs.....ccueevuiiiiriieeieeeeeetee ettt e et ere e et enes 206

T30 A8BT-3279 oottt et enees 207

7.3.7  Holiday Hotel ....cooeiviriiiiiiciieicieceereeereeeee s 209

7.3.8  Train SWappPing......cccoceiiirieiiiinieireeeeeeeeee s 210

2 8 B O 15 R 211
7.3.10 Children’s Gami€ ........ocviieuvieeeeiiiecieceee et eetee et eaee e 213
7.3.11 DINA SOLTILE cvveverevieeriiiniereintertenteteesseseesresesessesteeseseseesesessesesesaesenenen 214
7.3.12 EXACE SUMutiiiiiiiiiiiiiee ettt ettt e e et e e e e e e traae e e e eeaabaeeeeeenns 215
8 T N 31511 oY o RO 216
7.3.14 Tell Me the Frequencies! ........c.ceeeerueuernierinnieennieinenieenenieeneereeseeveenees 219
7.3.15 Anagrams (II) .c.cocceiniiininiciiicnecec et 219
% T8 L 31 1o Yo e [T L TSRO 221
7.3.17 FOOtDall SOIt..uuiiiiiiiiiiiiii it 222
7318 TTEES coeeeuteeeeee e et eeee e e e e et e e e e et a e e e e et e e e e eenaaaaeaeeeann 225

SUMMARY OF SECTION 11

SECTION Ill'  EXPERIMENTS FOR TREES

8 Programming by Tree StruCtUre ..ceueucreeriserensiesiesisesnssisissssesessssesessesessssssesssscssnsaens 231
8.1  Solving Hierarchical Problems by Tree Traversal........cccocveciveeecennccneicnnncnnes 231
8.1.1 Nearest CoOmMMON ANCESTOT ... .uuuvieeeeiiirrireeeeeeiireeeeeeeiirreeeeeesacsreeeeesssssnns 232

8.1.2  Hire and Fire .ooouiiveiiieiieiee ettt 236

8.2 Union—Find Sets Supported by Tree Structure....c.covvvevererveeireereernieiniereeninieeneen 241
8.2.1 Find Them, Catch TRem coeeeeeeeeeeeeeeeeeeeeeee e e e e e e e eeeeeas 243

8.2.2  Cube Stacking.....cocevevirirueuinirieirieieinieieeriettesie ettt 246

8.3  Calculation of Sum of Weights of Subtrees by Binary Indexed Trees................... 248

8.3.1  APPIE TTCC. ..ottt 250



Contents W ix

8.4 ProbIemis...c.eouieiiiiiiieie et 254
841 FrIends .ccuceuiiiiiiieieeieeeee et 254

8.4.2  Wireless NEtWOrK......ccveuirueiririeieierieieiesietete sttt ese e eenas 255

843 WA ittt be st sttt et et ten 257

8.4.4 Ubiquitous Religions ........cccceeviriiiiiinieiciniiiinicieinccseeseees 259

8.4.5 Network COonnections.......ccvvevueeruerieireniertrentetsienteesieseeesieseeeeseneenene 260

8.4.6  Building Bridges ......ccecevveverireeriiriiiirieiinecereeee e 261

8.4.7  Family TTee..ccooueiirieiieiciiecireeccre et 264

8.4.8  Directory LiStNG c.c..cecerveveinieriirieieineeeenreetrneeenreee e 267

8.4.9  Closest COmMMON ANCESTOLS c..cuveuerverieuirrenteneriententstentenestessesesiensesessessenene 268
8.4.10 Who's the BOSS? ..cveieuiriiieiriiieiriee ettt 269
8411 DIiSK TrEE ceueviieiirieieeetee ettt e 272
8.4.12 Marbles 0N @ TTEE ..cveuerueieuiriiieiieieeietee ettt 273
8.4.13 This Sentence Is False......ccccvririeirinieiiniieeeeeee e 275

9 Applications of Binary Trees ....ceoeveeurssseensnssssssesssnsessssssssssssssssssssssssssssssssssssnssasssssss 281
9.1  Converting Ordered Trees to Binary Trees......covevevirvecinenecninccineerecenenenes 281
9.1.1  Tree Grafting....ccoveirirreireeieireeireceenreeese et senes 282

9.2 Paths of BINary Trees.....cceirueriririeirinieirieeeet ettt 285
9.2.1  BINary TTee .co.coviuiiiiiiiiiicieceeee e 285

9.3 Traversal of BInary TIees c.c.eecereueciniereeinieiiiniceeneceneeeenee et 287
9.3.1  Tree RECOVEIY ...ovuiiiuiiiiciieeceeerceee ettt 288

9.4 PrODBlemIS..ccuieeiieiiieiete ettt eaas 291
9.4.1  Tree SUMMING ..cooviviiiiiiiiiiiiii e 291

9.4.2  Trees Made to Order......ooueiiirieiriirieirienie ettt 292

10  Applications of Classical TIees.....cocumuirirereresesussnesesisisissssssssssesesisssssssssssssscsessssssses 295
10.1  Binary Search TTEEs.....coecererieiriinieinierieierterte sttt 295
LO. LT B T ettt ettt sttt et ae et et ene 296

10.1.2 Falling Leaves ...c.eecerereiriereiniereinieieineeieenteieeneereesieseeseeneesaeneesaenenes 297

10.2 Binary Heaps.....ooooiiiiiiiiiiiiiiiiiici s 301
10.2.1 Windows Message QUEUE .......ceruerueirinieeninieieienieeeesieeenesreeeesaeaenens 303
10.2.2 Binary Search Heap Construction ..........cccccouvuviiiiiciiiiiinininininicccccne, 306

10.2.3 Decode the Tree...ioeoieirieieiiieeieee ettt 309

10.3  HUFMAN TTEES -evtuveuitiieiiriiieitstesieieete ettt ettt sttt sttt ettt ae e esesseneens 311
10.3.1 Fence Repair......ccccoiviiiiiiiiiiiiiiiiiiiiiiciii e 312

10,4 PrODBIEmS..c.veuiiieeieieeiieieete ettt ettt ettt st ettt 314
10.4.1 Cartesian TTee. ..oiveeririeriririeieieneeeerce ettt 314

L04.2 ALUS cetiieiiiicieeietrecte ettt 316

10.4.3 Black BoX..couivueiriirieirienieieectenee et 317

L1044 HEAP weviieiitiicee ettt 319

10.4.5 How Many Trees? ...cceerueirinieninienieieirieteiestetei ettt seenens 320

10.4.6 The Number of the Same BST ....couioiiiiiiiiiiniiiiniecceeee 322
10.4.7 The Kth BST ..ottt 325

10.4.8 The Prufer Code .ooueiriniiniriinieiiirieieerieeeee et 330
10.4.9 Code the TTEE ...cviveuiiuiieieiirieiei ettt ettt ettt 331

SUMMARY OF SECTION 11l



x ® Contents

SECTION IV EXPERIMENTS FOR GRAPHS

11

12

13

Applications of Graph Traversal........coccevineiricsisensnicseisensensennsensecsnesessseeseeeene 337
11.1 BES AlGOIIthim c.ccviiiiciciiciiiiccccecte ettt 337
I1.1.1  Prime Pathu..ccciiciiicicccce et 338
11.2 DES AlGOIItRIm..cveiiiiiiieicinieiiieetretenreeere ettt 342
11.2.1  House of Santa Claus .......c.covveueeriereineeinereineeeeneeeneeneeseeneeseenenes 342
11.3  Topological SOt ..o 344
11.3.1  Following Orders........ccoeeirinirirueueueuiirinininieieieieieietrtseseeeeseseseseeeseseeeenes 345
11.3.2  Sorting Tt All OUt.....cucuiuiiiiiiiiiiiiiii s 348
11.4 Connectivity of Undirected Graphs..........ccccocoiviviiiiiiiiiiiiiiiiiiicccccene 352
11.4.1 Knights of the Round Table ......cccoeevneininieininicininiccnccneeccneeeee 356
11,5 Problems.....cucceieueirieieinieiceniet ettt ettt ettt sttt 362
11.5.1  Ordering Tasks.......cccoceiiiiiniiiniiiiiiiiiiicccccce s 362
11.5.2  Spreadsheet......cccciniiiiiiiiiiniiiiicic e 363
11.5.3  Genealogical Tree......ccccovuiiiiiriiiiiniiiciiciccc e 365
11.5:4  Rare Order ..ottt 366
11.5.5 Pushing BOXes ....ccccveuiiriiiiciiiiiicineieectee e 367
11.5.6  Basic Wall Maze...cccoueuiivieiiinieiiinicciretecneteeee et 373
11.5.7  FIFEtrUCK. .ioveveiieicinieicireecrec ettt 375
11.5.8  Dungeon Master .......cocevuiiiiiiiiiiniiiiiiicecc s 377
11.5.9 A Knight's JOUINEY .coveviivieiiirieiincciretneccteeeeeeeeeere e 379
11.5.10 Children of the Candy Corn ......coevueirienieeninicineiecreneeseeeseeeee 381
11.5.11 Curling 2.0 ..o 383
11.5.12 Shredding Company ........cccccveuecerererinierereriereeneereeriereseneenesesseseessesenes 387
11.5.13 Be Wary of ROSES ..c.ceuerueiriirieieiinieieiesieteesteei ettt 390
11.5.14 Monitoring the AMazon......ccoeeverveuirineininieininieinesceneceseereeseeeeeeen 393
11.5.15 Graph Connectivity.....cccoeveeeruererenieieninieieeriereineereserieseseseesesesiesenessesenes 394
11.5.160 ThEe INEE ceuteuiieiietiietetee ettt ettt sttt sttt et ettt e et ebe e 395
11.5.17 The Warehouse ......ecveuerieieiieieeeieieese ettt 397
Algorithms of Minimum Spanning Trees ......ccocevvienerunsenesinsesesnnsessesnnessesnsessenes 405
12.1 Kruskal Algorithm ..o, 405
12.1.1  Constructing Roads.........ccccoovriiininiinniiniiiiicceceee, 406
12.2 Prim Algorithm ..o 408
12.2.1 0 AGIANEC ettt 409
12.3 Problems.....c.cevieueirieiciieicrecec et 412
12.3.1  NEWOIK 1ottt 412
12.3.2 Truck HiStory..ooooecerenieieeiceeteeee et 413
12.3.3  SHM SPan ... 414
12.3.4  The Unique MST .ottt 419
12.3.5  HIZBWAYS wovveveiiieieiiecieicereeeene ettt 420
Algorithms of Best Paths........uceiienieniiiniiiiniciniicinncisiscnsesessssessessenes 423
13.1 Warshall Algorithm and Floyd—Warshall Algorithm ..........ccccocooniiiiinnn. 423
13,11 FrOGEEL cvcuiiiiiiiiiciiiicc e s 424

13.1.2 ArDItrage c.ooveveeiiiiciieiciecte s 427



Contents W xi

13.2 Dijkstra’s Algorithm .........ccciiiiiiiiiiiiice s 430
|35 R ') | RO 431

13.3  Bellman—Ford Algorithm .........cccccoeciniiiiniiiiiiiicces 434
13.3.1  Minimum Transport Cost.....c.cecererurerenerineneeinienieeneneeeneneeesseneeene 435

13.4  Shortest Path Faster Algorithm (SPFA Algorithm).......ccoceovviniinniiinniinncin, 439
13.4.1  Longest Paths .....cccoviviiiniiicciniiiicecceereeee s 440

13.5  ProblemS...ccuiiiiiciiceiieeiecieeeee ettt et e be et enaeeees 443
13.5.1  Knight MOVeSs.....ccoiuiiiiiiiiiiiiiiccccc s 443
13.5.2  Big Christmas TTee......ccevvereirmereinrereireeieeneereineereernereeseesee e nenes 444
13.5.3  Stockbroker Grapevine.......cccoececeveerecinereinierecineereenereeneeneenneneeneenenes 446
13.5.4 Domino Effect....cuciuiiiiiiiiiciiciececeeeeee e 448
13.5.5 106 miles t0 ChiCaZO...ccvuevererieviinieriinieiierieictneteereeere et 452
13.5.6  ANGFIOYd .oovviiiieiciecccreccc ettt 454

14 Algorithms of Bipartite Graphs and Flow Networks.......ccocvcrcreeesnsussresecrcscsesnsasanaes 457
14.1 Maximum Matching in Bipartite Graphs........ccccveecineccnninnccnncineceen, 457
14.1.1  CONFEIENCE ...vevieuiieeiieiiieteecteete ettt et ettt eteer e s ae e beeabeeabeeraensen 458

14.2  FloW NEtWOIKS ..uviiviiiieiicieceecte ettt ettt et ettt v e te e be v ees 460
14.2.1  Power NEetWOrK......couieiieiieiieiicieetiectt ettt ettt ebe et e aaeeen 461
14.2.2  Trash oottt ettt 467

14.3  PrODIEmMIS...ccviiviceiieeiecteeete ettt ettt ettt et et et e et et et e et e eaaeeae e teebeeateenas 470
14.3.1 A Plug for UNIX .c.ooiiiimieiiirieiiinieieirietenieientseetresieveseeeeseseereseseeseseneen 470
14.3.2 Machine Schedule ............ooveiiiiiiiiiiiiiieeceeeeeeee et 471
14.3.3  Selecting Courses ........covuiuiiniimiiiniiiiiiiicee e 473
14.3.4  Software AllOCAtION .......c.ecovieevieiecieeteeeteecee ettt ere e eaeen 474
14.3.5  Crime WaVe....cooueeeeeeeiieeerieeeteeeieeeeteeeeeeeteeeeteeeeveeeereeetveeeaveeeaeeeereeereeennes 475
T4.3.6  PigS.eciciiiciiiiiiicictce s 477
14.3.7  Drainage Ditches.........ccccooiiiiiiniiiiiiiiiicccccc 479
14.3.8  Mysterious MOUNTAIN .c..cveverieiriiriiieenieteertetei ettt 480

SUMMARY OF SECTION IV
Bibliographiy......c.coueeiueiiiinieniiinniinininiceeeeeeeee et ss s s s b s ens 489






Preface

Since the 1990s, the ACM International Collegiate Programming Contest (ACM-ICPC) has
become a worldwide programming contest. Every year, more than 10,000 students and more than
1,000 universities participate in local contests, preliminary contests, and regional contests all over
the world. In the meantime, programming contests’ problems from all over the world can be got-
ten, analyzed, and solved by us. These contest problems can be used not only for programming
contest training, but also for education.

In our opinion, not only a programming contestant’s ability, but also a computer student’s
ability is based on his or her programming knowledge system and programming strategies for
solving problems. The programming knowledge system can be summarized as a famous formula:
algorithms + data structures = programs. It is also the foundation for the knowledge system of
computer science and engineering. Strategies solving problems are strategies for data modeling and
algorithm design. When data models and algorithms for problems are not standard, what strate-
gies we should take to solve these problems?

Based on the ACM-ICPC, we published a series of books, not only for systematic program-
ming contest training, but also for better polishing computer students’ programming skill, using
programming contests problems: “Data Structure Experiment: For Collegiate Programming
Contest and Education,” “Algorithm Design Experiment: For Collegiate Programming Contest
and Education,” and “Programming Strategies Solving Problems” in Mainland China. And the
traditional Chinese versions for “Data Structure Experiment: For Collegiate Programming Contest
and Education” and “Programming Strategies Solving Problems” were also published in Taiwan.

“Data Structure Practice: For Collegiate Programming Contests and Education” is the English
version for “Data Structure Experiment: For Collegiate Programming Contest and Education.”
There are 4 sections, 14 chapters, and 200 programming contest problems in this book. Section 1,
“Fundamental Programming Skills,” focuses on experiments and practices for simple comput-
ing, simple simulation, and simple recursion, for students just learning programming languages.
Section II, “Experiments for Linear Lists,” Section III, “Experiments for Trees,” and Section IV,
“Experiments for Graphs,” focus on experiments and practices for data structure.

Characteristics of the book are as follows:

1. The book’s outlines are based on the outlines of data structures. Programming contest prob-
lems and their analyses and solutions are used as experiments. For each chapter, there is a
“Problems” section to let students solve programming contests’ problems, and hints for these
problems are also shown.

2. Problems in the book are all selected from the ACM-ICPC regional and world finals pro-

gramming contests, universities’ local contests, and online contests, and from 1990 to now.



xiv B Preface

3. Not only analyses and solutions or hints to problems are shown, but also test data for most of
problems are provided. Sources and IDs for online judges for these problems are also given.
They can help readers better and more easily polish their programming skills.

Therefore, the book can be used not only as an experiment book, but also for systematic pro-
gramming contests’ training.

We appreciate Professors Steven Skiena, Rezaul Chowdhury, C. Jinshong Hwang, Ziliang
Zong, Hongchi Shi, and Rudolf Fleischer. They provided us platforms in which English is the
native language that improved our manuscript.

We appreciate our students Julaiti Alafate, Zheyun Yao, and Hao Zhang. They finished pro-
grams in the book.

The work is supported by the China Scholarship Council.

Online judge systems for problems in this book are as follows:

Online Judge Systems Abbreviations Website

Peking University Online Judge POJ http://poj.org/
System

Zhejiang University Online Judge ZO) http://acm.zju.edu.cn/onlinejudge/
System

UVA Online Judge System UVA http://uva.onlinejudge.org/

http:/livearchive.onlinejudge.org/

Ural Online Judge System Ural http://acm.timus.ru/

SGU Online Judge System SGU http://acm.sgu.ru/

If you discover anything you believe to be an error, please contact us through Yonghui Wu’s
email: yhwu@fudan.edu.cn. Your help is appreciated.

Yonghui Wu
Jiande Wang



Authors

Yonghui Wu is associate professor at Fudan University. He acted as the coach of Fudan University
Programming Contest teams from 2001 to 2011. Under his guidance, Fudan University quali-
fied for Association for Computing Machinery International Collegiate Programming Contest
(ACM-ICPC) World Finals every year and won three medals (bronze medal in 2002, silver medal
in 2005, and bronze medal in 2010). Since 2012, he has published a series of books for program-
ming contests and education. Since 2013, he has given lectures in Oman, Taiwan, and the United
States for programming contest training. He is the chair of the ICPC Asia Programming Contest
1st Training Committee now.

Jiande Wang is a senior high school teacher and a famous coach for the Olympiad in Informatics
in China. He has published 24 books for programming contests since the 1990s. Under his guid-
ance, his students have won seven gold medals, three silver medals, and two bronze medals in the
International Olympiad in Informatics for China.






FUNDAMENTAL
PROGRAMMING SKILLS

Programming language is an introductory course of data structures and algorithms. This course
enables students to program by programming languages. Programming languages, data struc-
tures, and algorithm designs are skills that computer students must polish. Therefore, polishing
fundamental programming skills is the first section for this book. There are three chapters in

Section I covering

1. Computing
2. Simulation
3. Recursion

These three chapters are not only a review of programming languages, but also an introductory
course on data structure.






Chapter 1

Practice for Simple Computing

The pattern of a programming contest problem is input—process—output. A problem for simple
computing is a problem whose process is simple. For such a problem, we should only consider
optimizing the process and dealing with input and output correctly. The goals of Chapter 1 are
as follows:

1. Students master C/C++ or Java programming language.

2. Students become familiar with online judge systems and programming environments.

3. Students begin to learn how to transfer a practical problem into a computing process, imple-
ment the computing process by a program, and debug the program to pass all test cases.

“God is in the details.” In Chapter 1, problems are relatively simple. We should notice formats
of input and output, precision, and time complexity. Therefore, the following topics will be dis-
cussed in this chapter:

1. Programming style

2. Multiple test cases

3. Precision of real numbers

4. Improving time complexity by dichotomy

Normally, a complex problem consists of several subproblems for simple computing. “Even the
longest journey begins with a single step.” Polishing programming skills should begin with solving
simple computing problems.

1.1 Improving Programming Style

A program’s writing style is not only for its visual sense, but also for examining the program and
debugging its errors. A program’s style also shows whether its programming idea is clear. It is hard
to say which kind of programming style is good, but there are some rules for programing style.
They are discussed in the following experiments.

w



4 m Data Structure Practice: For Collegiate Programming Contests and Education

1.1.1 Financial Management

Larry graduated this year and finally has a job. He’s making a lot of money, but somehow never
seems to have enough. Larry has decided that he needs to get a hold of his financial portfolio and
solve his financial problems. The first step is to figure out what’s been going on with his money.
Larry has his bank account statements and wants to see how much money he has. Help Larry by
writing a program to take his closing balance from each of the past 12 months and calculate his
average account balance.

Input

The input will be 12 lines. Each line will contain the closing balance of his bank account for a
particular month. Each number will be positive and displayed to the penny. No dollar sign will

be included.
Output

The output will be a single number, the average (mean) of the closing balances for the 12 months.
It will be rounded to the nearest penny, preceded immediately by a dollar sign, and followed by
the end of the line. There will be no other spaces or characters in the output.

Sample Input Sample Output

100.00 $1581.42
489.12
12454.12
1234.10
823.05
109.20
5.27
1542.25
839.18
83.99

1295.01

1.75

Source: ACM Mid-Atlantic United States 2001.
IDs for online judges: POJ 1004, ZOJ 1048, UVA 2362.

Analysis
The problem’s pattern, input—process—output, is very simple: First, the income of 12 months
al0 .. 11] is input by a for statement for(i = 0; i < 12; i++), and the total income



Practice for Simple Computing ®m 5

sum = alz]
i=0

is calculated. Then the average monthly income avg = sum/12 is calculated. Finally, avg is output
in accordance with the problem’s output format.

Program
#include<iostream> // Preprocessor Directive
using namespace std; // Using C++ Standard Library
int mainQ) // Main function
double avg, sum=0.0, a[12]={0}; // Real variable avg and sum,
and real array a
int i; // Integer variable i
for(i=0;i<12;i++){ // Input the income of 12 months a[0..11]

and summation
cin>>a[i];

sum+=a[i];
}

avg=sum/12; // Calculate the average monthly
income

printf("$%.2F",avg); // Output the average monthly
income

return O;

}

From the above program, we can get the following:

First, the input and output of the program must meet formats for input and output. In this
problem, each input number will be positive and displayed to the penny, and the output will be
rounded to the nearest penny, preceded immediately by a dollar sign and followed by an end of
the line. If the program doesn’t meet formats for input and output, it will be judged as the wrong
answer.

Second, a program should be readable. The style of a program should be serration based on a
logical level.

Finally, program annotations should be given.

1.2 Multiple Test Cases

The financial management problem (Section 1.1.1) has only one test case. In order to guarantee the
correctness of a program, for most problems there are multiple test cases. In some circumstances,
the number of test cases is given; in other circumstances, the number of test cases isn’t given, but
the mark of the input end is given.

1.2.1 Doubles

As part of an arithmetic competency program, your students will be given randomly generated
lists of 2—15 unique positive integers and asked to determine how many items in each list are twice



6 m Data Structure Practice: For Collegiate Programming Contests and Education

some other item in the same list. You will need a program to help you with the grading. This
program should be able to scan the lists and output the correct answer for each one. For example,
given the list

14329 71822

your program should answer 3, as 2 is twice 1, 4 is twice 2, and 18 is twice 9.
Input

The input file will consist of one or more lists of numbers. There will be one list of numbers per
line. Each list will contain from 2 to 15 unique positive integers. No integer will be larger than 99.
Each line will be terminated with the integer 0, which is not considered part of the list. A line with
the single number —1 will mark the end of the file. The example input below shows three separate
lists. Some lists may not contain any doubles.

Output

The output will consist of one line per input list, containing a count of the items that are double
some other item.

Sample Input Sample Output
14329718220 3

248 10 0 2
751113130 0

1

Source: ACM Mid-Central United States 2003.
IDs for online judges: POJ 1552, Z0) 1760, UVA 2787.

Analysis

There are multiple test cases for the problem. Therefore, a loop statement is used to deal with mul-
tiple test cases. The loop enumerates every test case. —1 marks the end of the input. Therefore, —1
is the end condition of the loop. In the loop statement, there are two steps:

1. A loop inputs a test case into array « and accumulates the number of elements 7 in the test
case. 0 marks the end of the test case.
2. A double loop enumerates all pairs of a[7] and alfl 0<=i<n-1,i+1<=j<n)in the test

case and determines whether (2[1]*2 == 4[j] || 4[j]*2 == al]) holds.
Program
#include <iostream> // Preprocessor Directive
using namespace std; // Using C++ standard library
int mainQ //Main function
{
int i, j, n, count, a[20]; // Integer variables i,

j, n, count and array a



Practice for Simple Computing ®m 7

cin>>a[0]; // Input the first element
while(a[0]!=-1) // If it is not the end of input,
input a new test case
{ n=1; // Input array a
for( ; ; n++)
{

cin>>a[n];
if (a[n]==0) break;

¥

count=0; // Determine how many items in each list are
twice some other item

for (i=0; i<n-1; i++) // Enumerate all pairs

{

for (g=i+l; j<n; j++)

it @fil*2==alj] |l alb1*2==a[il) // Accumulation

count++;
}
b
cout<<count<<endl; // Output the result
cin>>a[0]; // Input the first element of
next test case
s
return 0O;

}

In this problem, the number of test cases and the size of a test case are unknown. Normally, a
double-loop statement is used for the program structure: the outer loop is used to enumerate every
test case, and the inner loop is used to deal with a test case.

In some problems, if the size of the test data is larger, all the test cases are dealt with by the
same method, and the result area is known, its time complexity can be improved by an offline
method. First, all solutions within the specified range are calculated and stored in a constant array.
Then the program deals with the constant array directly for each test case. It can avoid duplication
of computing.

1.2.2 Sum of Consecutive Prime Numbers

Some positive integers can be represented by a sum of one or more consecutive prime numbers.
How many such representations does a given positive integer have? For example, the integer 53
has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations:
2+3+5+7+11+13,11 + 13 + 17, and 41. The integer 3 has only one representation, which is
3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. Your
mission is to write a program that reports the number of representations for the given positive
integer.

Input

The input is a sequence of positive integers, each in a separate line. The integers are between 2 and
10,000, inclusive. The end of the input is indicated by a zero.



8 m Data Structure Practice: For Collegiate Programming Contests and Education

Output

The output should be composed of lines each corresponding to an input line, except the last zero.
An output line includes the number of representations for the input integer as the sum of one or
more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input Sample Output
2 1

3 1

17 2

41 3

20 0

666 0

12 1

53 2

0

Source: ACM Japan 2005.
IDs for online judges: POJ 2739, UVA 3399.

Analysis
Because the program needs to deal with consecutive prime numbers for each test case, and the
upper limit of prime numbers is 10,000, the offline method can be used to solve the problem.

First, all prime numbers less than 10,001 are obtained and stored in array primell .. total] in
ascending order.

Then we deal with the test cases one by one:

Suppose the input number is 7; the sum of consecutive prime numbers is cz#; the number of
representations for cnt == 7 is ans.

A double loop is used to get the number of representations for 7:

B The outer loop z for(int i = 0; n >= primeli]; i++) enumerates all possible minimum
primeli].

B The inner loop j: for(int j = i j < total && cnt < n; j++), cnt += primelj], is to calculate the
sum of consecutive prime numbers. If ¢t > 7, then the loop ends, and if cnr == #, then the
number of representations is ans++.

When the outer loop ends, ans is the solution to the test case.

Program

#include <iostream>

using namespace std;

const int maxp = 2000, n = 10000;
the upper limit of prime numbers
int prime[maxp], total = O;

// Preprocessor Directive
// Using C++ Standard Library
// Set the size of prime array and

// Initialization



Practice for Simple Computing ®m 9

bool isprime(int k) // Determine whether k is a
prime number or not
{

for (int i = 0; i < total; i++)
if (k % prime[i] == 0)
return false;
return true;

}

int main(void) // Main Function

{
for (int i = 2; 1 <= n; i++) // get all prime numbers
less than 10001
if (isprime(i))
prime[total++] = 1i;
prime[total] = n + 1;

int m;
cin >> m; // Input the first positive integer
while (m) {

int ans = 0; // Initialization

for (int i = 0; m >= prime[i]; i++) { // Enumerate the least
prime number
int cnt = 0; // Calculate the sum of
consecutive prime numbers
for (int j = i; J < total && cnt < m; j++)
cnt += prime[j];

if (cnt == m) // if cnt==n, then ++ans
++ans;
}
cout << ans << endl; // Output the result
cin >> m; // Input the next positive integer
}
return O;

1.3 Precision of Real Numbers

In some cases, we need to deal with real numbers and real arithmetics to solve problems, such as
judging whether two real numbers are equal, and so on. For a programming language, precision of
real numbers is limited. And sometime programs are required to meet requirements for accuracy
errors of real numbers. If the program can’t deal with such details well, it will lead to the wrong
answer even though its algorithm is correct.

1.3.1 I Think I Need a Houseboat

Fred Mapper is considering purchasing some land in Louisiana to build his house on. In the
process of investigating the land, he learned that the state of Louisiana is actually shrinking by
50 square miles each year, due to erosion caused by the Mississippi River. Since Fred is hoping to
live in this house for the rest of his life, he needs to know if his land is going to be lost to erosion.

After doing more research, Fred has learned that the land that is being lost forms a semicircle.
This semicircle is part of a circle centered at (0, 0), with the line that bisects the circle being the X



10 ®m Data Structure Practice: For Collegiate Programming Contests and Education

y

A

(0,0)

Figure 1.1 The land that is being lost forms a semicircle.

axis. Locations below the X axis are in the water. The semicircle has an area of 0 at the beginning
of year 1. (The semicircle is illustrated in Figure 1.1.).

Input

The first line of input will be a positive integer indicating how many data sets will be included (V).

Each of the next /V lines will contain the X and Y Cartesian coordinates of the land Fred is
considering. These will be floating-point numbers measured in miles. The ¥ coordinate will be
nonnegative. (0, 0) will not be given.

Output
For each data set, a single line of output should appear. This line should take the form of
Property V: This property will begin eroding in year Z.

where Vis the data set (counting from 1) and Zis the first year (start from 1) this property will be
within the semicircle AT THE END OF YEAR Z. Z must be an integer. After the last data set,
this should print out “END OF OUTPUT.”

Sample Input Sample Output

2 Property 1: This property will begin eroding in year 1.
1.01.0 Property 2: This property will begin eroding in year 20.
25.00.0 END OF OUTPUT.

Source: ACM Mid-Atlantic United States 2001.

Note: No property will appear exactly on the semicircle boundary: it will be
either inside or outside. This problem will be judged automatically. Your
answer must match exactly, including the capitalization, punctuation,
and white space. This includes the periods at the ends of the lines. All
locations are given in miles.

IDs for online judges: POJ 1005, ZOJ 1049, UVA 2363.

Analysis

The number of test cases 7 is given. Therefore, a for repetition statement is used to deal with all test
cases. Each test case contains only Xand ¥ Cartesian coordinates. The ith test case (X, ¥) and the
center of the circle (0, 0) constitute the semicircle that will be eroded. Each year 50 square miles



Practice for Simple Computing ®m 11

of land is eroded. And the number of years is an integer. When (X, Y) is in water, the number of
years must be the least integer that is greater than

Area of the semicircle
50

and function ceil(x) is used to round up the fare.

Program

#include <stdio.h> // Preprocessor Directive
#include <math.h>
#define M_P1 3.14159265

int num_props; // The number of test cases
float x, y; // X and Y Cartesian coordinates
int i;
double calc; // The area of the semicircle/50
int years; // The number of years
int main( ) // Main function
{

scanf("'%d", &num_props); // Input the number of test cases

for (i = 1; 1 <= num_props; i++)

{

scanf("%F %f", &x, &y); // Input the i-th test case

calc = (xX*x + y*y)* M_Pl /7 2 / 50; // Calculate the area of the
semi-circle/50

years = ceil(calc);

printf(""Property %d: This property will begin eroding in year %d.n",
i, years); //0utput

3
printf(""END OF OUTPUT.n");

}

In real arithmetic, sometimes we need to determine whether real number x and real number y
are equal. Using y —x == 0 as the condition may result in error of precision. The method avoiding
error of precision is to set a constant of precision delta. If |y — x| < delta, then we can judge x and
y are equal. The hangover problem (Section 1.4.1) shows such an example.

1.4 Improving Time Complexity by Dichotomy

In some cases, the data area of a problem is an ordered interval. Dichotomy is used to divide the
interval into two subintervals and then determine if the process of computation is in the left sub-
interval or the right subinterval. If the solution isn’t obtained, then repeat the above steps. For a
problem whose time complexity is O(n), if dichotomy can be used to solve it, its time complexity
can be improved to O(log,(»)).

Dichotomy is used in many algorithms, such as binary search, recursive halving method, quick
sort, merge sort, binary search tree, and segment tree. Among these methods, binary search and
recursive halving method are relatively simple algorithms.

The idea for binary search is as follows: Suppose the data area is an interval in ascending order.
The search begins by comparing x with the number in the middle of the interval. If x equals this



12 ®m  Data Structure Practice: For Collegiate Programming Contests and Education

number, the search terminates. If x is smaller than the number, then we need only search in the
left half; if x is greater than the number, then we need only search in the right half. We repeat the
above steps until the search ends.

1.4.1 Hangover

How far can you make a stack of cards overhang a table? If you have one card, you can create a
maximum overhang of half a card length. (We're assuming that the cards must be perpendicu-
lar to the table.) With two cards, you can make the top card overhang the bottom one by half a
card length, and the bottom one overhang the table by a third of a card length, for a total maxi-
mum ovethang of 1/2 + 1/3 = 5/6 card lengths. In general, you can make 7 cards overhang by
1/2+1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the
second overhangs the third by 1/3, the third overhangs the fourth by 1/4, and so on, and the bot-
tom card overhangs the table by 1/(z + 1). This is illustrated in Figure 1.2.

Input

The input consists of one or more test cases, followed by a line containing the number 0.00 that
signals the end of the input. Each test case is a single line containing a positive floating-point num-
ber ¢ whose value is at least 0.01 and at most 5.20; ¢ will contain exactly three digits.

Output

For each test case, output the minimum number of cards necessary to achieve an overhang of at
least ¢ card lengths. Use the exact output format shown in the examples.

Sample Input Sample Output
1.00 3 card(s)

3.71 61 card(s)

0.04 1 card(s)

5.19 273 card(s)

0.00

Source: ACM Mid-Central United States 2001.
IDs for online judges: POJ 1003, UVA 2294.
Analysis

The problem’s data area is lictle. Therefore, first lengths that cards achieve are calculated, and the
length is at most 5.20 card lengths. Suppose the zoza/is the number of cards and /en[i] is the length

Figure 1.2 A stack of cards overhangs a table.



Practice for Simple Computing ®m 13

that i cards achieve. That is, len[i] = len[i — 1] + 1/(i + 1), where i > 1 and /en[0] = 0. Obviously,
array len is in ascending order.

Because elements of /enz and x are real numbers, the accuracy error must be controlled. Suppose
delta = 1e — 8, and function zero(x) marks x is a positive real number, a negative real number, or a
zero. Function zero(x) is defined as follows:

1 x > delta
zero(x) =4 —1 x < —delta
0 otherwise

Initially /en[0] = 0. Array len can be obtained through the following loop:

for (total=1; zero(len[total-1]-5.20)<0; total++)
len[total]=len[total-1]+1.0/double(total+1);

After array len is obtained, the program inputs the first test data x and enters the loop of
while(zero(x)). In each loop, dichotomy is used to get the minimum number of cards necessary
to achieve an overhang of at least x card lengths, and then the next test data x is input. The loop
terminates when x = 0.00.

The procedure of dichotomy is as follows:

The initial interval [/, 7] = [1, total] and mid = [([ + 7)/2]. If zero(len[mid] — x) < 0, then search
the right half (/ = mid); otherwise, search the left half (» = mid). Repeat the above steps in interval
[/, 7] until /+ 1 > 7. 7 is the minimum number of cards.

Program

#include <iostream> // Preprocessor Directive

using namespace std; // Using C++ Standard Library

const int maxn = 300; // Size of array len

const double delta = le-8; // Set the accuracy error

int zero(double x) // In the area of accuracy error delta, if x

is a negative real number less than 0, then return -1; if X is a positive
real number larger than 0, then return 1; and if x is 0, then return O.

if (x < -delta)
return -1;
return x > delta;

¥
int main(void) // Main Function
{
double len[maxn]; // Define array len and the length of len
int total;
len[0] = 0.0; // Calculate array len, and len[i] is the length

that i cards achieve
for (total = 1; zero(len[total - 1] - 5.20) < 0; total++)
len[total] = len[total - 1] + 1.0 / double(total + 1);

double x;
cin >> X; // Input the first test case X
while (zero(x)) { // Using dichotomy to get the minimum number

of cards necessary to achieve an overhang of at least x card lengths.



14 ®m Data Structure Practice: For Collegiate Programming Contests and Education

int I, r;
1 =0;
the interval
r = total;
while (1 + 1 <r) {
intmid =1 +r) 7/ 2;

// Set left pointer | and right pointer r for

if (zero(len[mid] - x) < 0) // 1f the middle value is
less than x, then search the right half, else search the left half.
1 = mid;
else
r = mid;
}
cout << r << " card(s)" << endl; // Output the minimum number
of cards
cin >> Xx; //1Input the next test case
}
return O;

Dichotomy can be used not only in a data search, but also in function calculation. Suppose
there are variables x;, x,, and x; and function x; = f{x,, x3) holds. The recursive halving method
can be used to calculate x; when x, and x, are known. The method is as follows:

Halving is to halve the data area of a problem (such as the data area of x;), and the property of the
problem (such as x, = flx,, x3)) is not changed. Suppose the size of data area for the problem is . We
can first make use of some methods to change the original problem into ¢ subproblems with half of the
data area (¢ is a constant, is related to the problem, and is not related to the data area), and then solve
the problem by solving subproblems whose size of data area is 7/2. Properties for these subproblems are
the same as those for the original problem, but the size of the data area for these subproblems is smaller.

Recursion is to repeat the above halving steps. A problem whose size of data area is 7/2 is
changed into ¢ subproblems whose size is #/4, and so on. Repeat the above steps until the subprob-
lems can be solved easily.

1.4.2 Humidex

The humidex is a measurement used by Canadian meteorologists to reflect the combined effect
of heat and humidity. It differs from the heat index used in the United States in using dew point
rather than relative humidity.

When the temperature is 30°C (86°F) and the dew point is 15°C (59°F), the humidex is 34
(note that humidex is a dimensionless number, but the number indicates an approximate tem-
perature in Celsius). If the temperature remains 30°C and the dew point rises to 25°C (77°F), the
humidex rises to 42.3.

The humidex tends to be higher than the U.S. heat index at equal temperature and relative
humidity.

The current formula for determining the humidex was developed by J.M. Masterton and F.A.
Richardson of Canada’s Atmospheric Environment Service in 1979.

According to the Meteorological Service of Canada, a humidex of at least 40 causes “great
discomfort” and above 45 is “dangerous.” When the humidex hits 54, heat stroke is imminent.

The record humidex in Canada occurred on June 20, 1953, when Windsor, Ontario, hit 52.1.
(The residents of Windsor would not have known this at the time, since the humidex had yet



Practice for Simple Computing ®m 15

to be invented.) More recently, the humidex reached 50 on July 14, 1995, in both Windsor and
Toronto.
The humidex formula is as follows:

humidex = temperature + 4
h = (0.5555)*(¢ — 10.0)
e = 6.11%xp [5417.7530%((1/273.16) — (1/(dewpoint + 273.16)))]

where exp(x) is 2.718281828 raised to the exponent x.

While humidex is just a number, radio announcers often announce it as if it were the tempera-
ture, for example, “It’s 47° out there ... with the humidex.” Sometimes weather reports give the
temperature and dew point, or the temperature and humidex, but rarely do they report all three
measurements. Write a program that, given any two of the measurements, will calculate the third.

You may assume that for all inputs, the temperature, dew point, and humidex are all between
—-100°C and 100°C.

Input

Input will consist of a number of lines. Each line except the last will consist of four items separated
by spaces: a letter, a number, a second letter, and a second number. Each letter specifies the mean-
ing of the number that follows it and will be either T, indicating temperature; D, indicating dew
point; or H, indicating humidex. The last line of input will consist of the single letter E.

Output

For each line of input except the last, produce one line of output. Each line of output should have
the form:

T number D number H number

where the three numbers are replaced with the temperature, dew point, and humidex. Each value
should be expressed rounded to the nearest tenth of a degree, with exactly one digit after the deci-
mal point. All temperatures are in degrees Celsius.

Sample Input Sample Output
T30D 15 T30.0D 15.0 H 34.0
T30.0D 25.0 T30.0D25.0H42.3
E

Source: Waterloo Local Contest, July 14, 2007.
ID for online judge: POJ 3299.

Analysis
Based on the humidex formula humidex = temperature + h, b is proportional to the dew point. If
the dew point and temperature (or humidex) are known, the value of / can be inferred, and the
humidex or temperature can be calculated by the humidex formula. If temperature and humidex
are known, the recursive halving method can be used to calculate the dew point.

The program sets an initial value 0 to the dew point and enters a loop: the initial value of the
increment for dew point is 100; halve the increment value each time as the loop is performed. If
the humidex obtained from the formula is larger than the announced humidex, then the value of



16 ® Data Structure Practice: For Collegiate Programming Contests and Education

the dew point decreases an increment (i.e., #\; decrease the humidex to be close to the announced
humidex); otherwise, the value of the dew point increases an increment (i.e., 4,/; increase the
humidex to be close to the announced humidex). The repetition condition is the increment value
greater than 0.0001. When the loop ends, the dew point is the answer.

Program

#include <stdio.h> // Preprocessor Directive
#include <math.h>
#include <assert.h>
char a,b; //Two characters for Test Mark
double A,B,temp,hum,dew;
double dohum(double tt, double dd){ // Calculate humidex based on
temperature tt and dew point dd
double e = 6.11 * exp (5417.7530 * ((1/273.16) - (1/(dd+273.16))));
double h = (0.5555)*(e - 10.0);
return tt + h; // Return humidex
}
double dotemp( ){ // Calculate temperature based on dew point dew
and humidex hum
double e = 6.11 * exp (5417.7530 * ((1/273.16) - (1/(dew+273.16))));

double h = (0.5555)*(e - 10.0);

return hum - h; // Return temperature
double dodew( ){ //Calculate dew point based on
temperature temp and humidex hum

double x = 0; // Initialization of dew point and
increment

double delta=100;
//Loop; Halve the increment value each time the loop is performed. If
humidex gotten from the formula is larger than the announced humidex,
then the value of dew point decrease an increment; otherwise the value of
dew point increase an increment. Repeat the procedure until the increment
value delta<=0.0001.
for (delta=100; delta>.00001; delta *=.5) {
if (dohum(temp, x)>hum) x -= delta;
else x += delta;

}

return Xx; //Return dew point X

nt main( ) // main function
//Loop: each loop inputs two measurements and loop-end condition
s "E".

- -

while (4 == scanf(" %c %If %c %lf",&a,&A,&b,&B) && a 1= "E"){
temp = hum = dew = -99999; // Initialization of temperature,
humidex and dew point

if (a == "T") temp = A; // The Tirst measurement is temperate.
if (a == "H") hum = A; // The first measurement is humidex.
if (a == "D") dew = A; // The first measurement is dew point.
if (b =="T") temp = B; // The second measurement is temperate.
if (b == "H") hum = B; // The second measurement is humidex.
if (b == "D") dew = B; // The second measurement is dew point.



Practice for Simple Computing ®m 17

if (hum == -99999) hum = dohum(temp, dew);// Calculate humidex
based on temperate and dew point.

if (dew == -99999) dew=dodew( ); // Calculate dew point based on
temperate and humidex.

if (temp == -99999) temp = dotemp( ); // Calculate temperate
based on humidex and dew point.

printf(C"'T %0.11F D %0.11F H %0.11fn",temp, dew,hum); //Output
temperate, dew point and humidex.

}

assert(a == "E"); // Loop-end condition is "E".

}

1.5 Problems
1.5.1 Sum

Your task is to find the sum of all integer numbers lying between 1 and /V inclusive.
Input

The input consists of a single integer NV that is not greater than 10,000 by its absolute value.

Output

Werite a single integer number that is the sum of all integer numbers lying between 1 and N inclusive.
Sample Input Sample Output
-3 -5

Source: ACM 2000, Northeastern European
Regional Programming Contest (test
tour).

ID for online judge: Ural 1068.

Hint
Based on the summation formula of arithmetic progression s = 1 + 2 + ... [V, if V is an integer
larger than 0, then s = [(1 + N)/2]*N; otherwise, s = [(1 — N)/2]*N + 1.

1.5.2 Specialized Four-Digit Numbers

Find and list all four-digit numbers in decimal notation that have the property that the sum of
their four digits equals the sum of their digits when represented in hexadecimal (base 16) notation
and also equals the sum of their digits when represented in duodecimal (base 12) notation.

For example, the number 2991 has the sum of (decimal) digits 2 + 9 + 9 + 1 = 21. Since 299
1 = 1*1728 + 8*144 + 9*12 + 3, its duodecimal representation is 1893,,, and these digits also sum
up to 21. But in hexadecimal, 2991 is BAF;, and 11 + 10 + 15 = 36, so 2991 should be rejected
by your program.

The next number (2992), however, has digits that sum to 22 in all three representations (includ-
ing BBO,4), so 2992 should be on the listed output. (We don’t want decimal numbers with fewer
than four digits—excluding leading zeros—so that 2992 is the first correct answer.)



18 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Input
There is no input for this problem.
Output

Your output is to be 2992 and all larger four-digit numbers that satisfy the requirements (in strictly
increasing order), each on a separate line, with no leading or trailing blanks, ending with a new-line
character. There are to be no blank lines in the output. The first few lines of the output are shown
below:

Sample Input Sample Output

2992

2993

2994

2995

2996

2997

2998

2999

Source: ACM Pacific Northwest 2004.

IDs for online judges: POJ 2196, ZOJ 2405, UVA
3199.

Hint

First, function calc(k, b) is designed to calculate and return the sum of digits of number 4 repre-
sented in base 4. Then every number 7 in [2992 ... 9999] is enumerated: if calc(i, 10) == calc(i,
12) == calc(i, 16), then output 7.

1.5.3 Quicksum

A checksum is an algorithm that scans a packet of data and returns a single number. The idea
is that if the packet is changed, the checksum will also change, so checksums are often used for
detecting transmission errors, validating document contents, and in many other situations where
it is necessary to detect undesirable changes in data.

For this problem, you will implement a checksum algorithm called quicksum. A quicksum
packet allows only uppercase letters and spaces. It always begins and ends with an uppercase letter.
Otherwise, spaces and letters can occur in any combination, including consecutive spaces.

A quicksum is the sum of the products of each character’s position in the packet times the
character’s value. A space has a value of zero, while letters have a value equal to their position in the
alphabet. So, A =1, B =2, and so on, through Z = 26. Here are example quicksum calculations
for the packets “ACM” and “MID CENTRAL”



Practice for Simple Computing ®m 19

ACM: 1*1 + 2*3 + 3*13 = 46
MID CENTRAL: 1*13 + 2*9 + 3*4 + 4*0 + 5*3 + 6*5 + 7*14 + 8*20 + 9*18 + 10*1 + 11*12
=650

Input

The input consists of one or more packets followed by a line containing only # that signals the end
of the input. Each packet is on a line by itself, does not begin or end with a space, and contains
from 1 to 255 characters.

Output

For each packet, output its quicksum on a separate line in the output.

Sample Input Sample Output
ACM 46

MID CENTRAL 650

REGIONAL PROGRAMMING 4690

CONTEST 49

ACN 75

ACM 14

ABC 15

BBC

#

Source: ACM Mid-Central United States 2006.
IDs for online judges: POJ 3094, ZOJ 2812, UVA 35%4.

Hint
Function value(c) is implemented as follows: if character c =="_), then return 0; otherwise, return
the corresponding value of ¢: ¢ —'A' + 1.

The process is a loop. Each loop inputs a test case and calculates its Quicksum.

First, the location of character ¢ and Quicksum are initialized 0, and string s is initialized NULL.
Repeatedly input character ¢ and add ¢ into s until ¢ is EOF or "\n' If s is “4,” the program ends.

s.size—1
Quicksum = 2 (7 +1)* value(s[7])
i=0

1.5.4 A Contesting Decision

Judging a programming contest is hard work, with demanding contestants, tedious decisions,
and monotonous work—not to mention the nutritional problems of spending 12 hours with only
donuts, pizza, and soda for food. Still, it can be a lot of fun.



20 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Software that automates the judging process is a great help, but the notorious unreliability of
some contest software makes people wish that something better were available. You are part of a
group trying to develop better, open-source, contest management software, based on the principle
of modular design.

Your component is to be used for calculating the scores of programming contest teams and deter-
mining a winner. You will be given the results from several teams and must determine the winner.

Scoring

There are two components to a team’s score. The first is the number of problems solved. The second
is penalty points, which reflect the amount of time and incorrect submissions made before the
problem is solved. For each problem solved correctly, penalty points are charged equal to the time
at which the problem was solved plus 20 minutes for each incorrect submission. No penalty points
are added for problems that are never solved.

So if a team solved problem 1 on their second submission at 20 minutes, they are charged
40 penalty points. If they submit problem 2 three times, but do not solve it, they are charged no
penalty points. If they submit problem 3 once and solve it at 120 minutes, they are charged 120
penalty points. Their total score is two problems solved with 160 penalty points.

The winner is the team that solves the most problems. If teams tie for solving the most prob-
lems, then the winner is the team with the fewest penalty points.

Input

For the programming contest your program is judging, there are four problems. You are guaran-
teed that the input will not result in a tie between teams after counting penalty points.

Line 1: < nTeams >
Line 2: n+l < Name > < plSub > < plTime > < p2Sub > < p2Time > ...
< p4Time >

The first element on the line is the team name, which contains no white space. Following that,
for each of the four problems, is the number of times the team submitted a run for that problem
and the time at which it was solved correctly (both integers). If a team did not solve a problem,
the time will be zero. The number of submissions will be at least one if the problem was solved.

Output

The output consists of a single line listing the name of the team that won, the number of problems
they solved, and their penalty points.

Sample Input Sample Output
4 Penguins 3 475
Stars 220504190 3 220
Rockets 518010203 100
Penguins 115312013004 0
Marsupials 9 0 3 100 2 220 3 80
Source: ACM Mid-Atlantic 2003.

IDs for online judges: PO) 1581, ZOJ 1764, UVA 2832.



Practice for Simple Computing ®m 21

Hint
Suppose the name of the winner is wname, the number of problems that winner solved is wsol,
and the winner’s penalty points is wp#; the name of the current team is name, the number of
problems that the current team solved is so/, and the current team’s penalty points is pz. The
submission number of the current problem is s#b, and the time at which of the current problem
is solved is time.

If the problem is solved (time > 0), then we accumulate the number of problems the current
team solved (++s0/) and compute the current team’s penalty points pr (pt += (sub — 1)*20 + time).

After we deal with a team’s case, if the number of problems the current team solved is the most,
or the current team and other teams all solved the most number of problems, and the current team
is with the fewest penalty points, that is, (so/ > wsol || (so/ == wsol &8& wpt > pt)) holds, then the
current team is set as winner, and its team name, the number of solved problems, and its penalty
points are recorded, that is, wname = name, wsol = sol, wpt = pr.

Obviously, after we deal with all teams’ cases, wname, wsol, and wpr are solutions to the problem.

1.5.5 Dirichlet’s Theorem on Arithmetic Progressions

If 2 and 4 are relatively prime positive integers, the arithmetic sequence beginning with # and
increasing by 4, that is, @, a + d, a + 2d, a + 3d, a + 4d, ..., contains infinitely many prime
numbers. This fact is known as Dirichle’s theorem on arithmetic progressions, which had been
conjectured by Johann Carl Friedrich Gauss (1777-1855) and was proved by Johann Peter Gustav
Lejeune Dirichlet (1805-1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, that is,

2,5,8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80,
83, 86, 89, 92,95, 98, ....

contains infinitely many prime numbers:
2,5,11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ...

Your mission, should you choose to accept it, is to write a program to find the #th prime num-
ber in this arithmetic sequence for given positive integers 4, 4, and 7.

Input

The input is a sequence of data sets. A data set is a line containing three positive integers 4, 4,
and 7 separated by a space. 2 and d are relatively prime. You may assume @ < 9307, 4 < 346, and
n < 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not
a data set.

Output

The output should be composed of as many lines as the number of the input data sets. Each line
should contain a single integer and should never contain extra characters.

The output integer corresponding to a data set @, d, 7 should be the 7th prime number among
those contained in the arithmetic sequence beginning with # and increasing by 4.

For your information, it is known that the result is always less than 10¢ (1 million) under this
input condition.



22 m  Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output
367 186 151 92809
17910 203 6709
27137 39 12037
103 230 1 103

27 104 185 93523
253 50 85 14503
111 2

9075 337 210 899429
30724 79 5107
331221 177 412717
259170 40 22699
269 58 102 25673
000

Source: ACM Japan 2006, Domestic.
ID for online judge: POJ 3006.

Hint

A test case consists of integers 4, 4, and 7 in an arithmetic sequence, and the end of the input is
indicated by a line containing 0 0 0. Therefore, a while repetition statement is used for test cases.
After the first @, 4, and 7 are input, the program enters the while(a || 4 || n) loop. In the loop body,
the steps are as follows:

1. Initialize the number of prime numbers cnz 0.

2. Construct an arithmetic sequence with » prime numbers through the loop statement
Jor(m = a; cnt < n; m += d). The control variable m is initialized with 4, and the loop-
continuation condition is ¢zt < 7. In each loop, if m is a prime number, then cns++, and d is
added to control variable 7.

3. Output the nth prime number 7 — d. (Because of the for loop, output m — d.)

4. Input 4, 4, and 7 for the next arithmetic sequence.

1.5.6 The Circumference of the Circle

To calculate the circumference of a circle seems to be an easy task—provided you know its diam-
eter. But what if you don’t?

You are given the Cartesian coordinates of three noncollinear points in the plane.

Your job is to calculate the circumference of the unique circle that intersects all three
points.



Practice for Simple Computing ® 23

Input

The input file will contain one or more test cases. Each test case consists of one line containing six real
numbers, x,, J;, X,, J,, X3, J3, representing the coordinates of the three points. The diameter of the circle
determined by the three points will never exceed 1 million. Input is terminated by the end of the file.

Output

For each test case, print one line containing one real number telling the circumference of the circle
determined by the three points. The circumference is to be printed accurately rounded to two
decimals. The value of 7 is approximately 3.141592653589793.

Sample Input Sample Output
0.0-0.50.50.00.00.5 3.14

0.00.0 0.01.01.01.0 4.44

5.05.0 5.07.04.06.0 6.28

0.00.0 -1.07.07.07.0 31.42

50.0 50.0 50.070.0 40.0 60.0 62.83

0.00.0 10.00.020.01.0 632.24

0.0 -500000.0 500000.0 0.0 0.0 3141592.65
500000.0

Source: Ulm Local Contest 1996.

IDs for online judges: POJ 2242, ZOJ 1090.

Hint

The key to the problem is to find the center of a circle that intersects all three points. Suppose the

Cartesian coordinates of three points are (xg, y), (x, y1), and (x,, y,), and the Cartesian coordi-
nates of the center of the circle are (x,,, y,,). There are two solutions.

Determinant

Calculate the Cartesian coordinates of the center of the circle that intersects all three points:

X2 —Xo X2 —Xo

N —Jo T N —Jo T

X1+ X Yoo % n+n X0 =X %
K="+ —n)* s Im= +(x —x)*

2 =N N—Nn 2 =N N—Nn

Xo — X1 Xy — X1 Xo — X1 Xy — X1

Based on this, the radius of the unique circle

r =& = %) + (9 — 0)°



24 m  Data Structure Practice: For Collegiate Programming Contests and Education

and 27 is the circumference of the unique circle that intersects all three points: (x, y,), (x, 1),
and (x,, y,).

Theorem 1.1

The Cartesian coordinates of the center of the unique circle that intersects all three points (xy, 7,),
(> 31)> and (x5, 3,) are (x,,, 3,

Proof

Suppose the Cartesian coordinate of the center of a circle is P = (x,,, y,,); the perpendicular bisec-
tors from Pto AB and BC are PN and PM, respectively. The point of intersection of PN and
AB is N, and the point of intersection of PM and BC is M. Obviously, the Cartesian coordi-
nates of M are [(x, + x,)/2, (y; + ¥,)/2]), and point (y,—y,, x,—x;) is on PM (Figure 1.3).

Because PM | BC,

_ntxn
2 «TN_

_x1+x2 Xy — X

m

X
2

Suppose

_ )/1 + )/2 _ X1 + X2

k= 2 - 2

Xy — X1 Y2 =N

Now we need to prove
Alxgr yo)

(2=y1, %9—%1)

X1+% N1ty
B(xl’yl) M( 2 ’ 2 )

Figure 1.3 Three points and the center of the circle.



Practice for Simple Computing

_ Xy — Xy
=D 72
xg—x 2 J0

k= 21
=D N =)
Xo — X1 Xy — X1
Because PN L AB,
_ Yty

m

2 NnTh_
Xt X x —x

2
Because
+
X = M"’(}’z—yl)*k,
2
and
+
Im = A 2},2 + (3 —x2)* k

_ V2=
(3 — x2 )k + PR

(9 _},1)/6+x22;x° X1 — Xo
holds. Therefore, (*) holds.
Elementary Geometry
Suppose a = |E, b= |%|, c= |@|, and
_atb+c
2

Based on Heron’s formula,

s=plp—a)(p—b)(p—c)

the formula for calculating the area of a triangle

_a *b* sin(ZLab)
2

25



26 m Data Structure Practice: For Collegiate Programming Contests and Education

and sine theorem

a b ¢
sin(Lbc)  sin(Lac)  sin(Lab)

= diameter of circumcircle &

we can calculate the diameter of circumcircle 4 = (a*6*)/(2*s) and the circumference of circum-

circle / = d*=.

1.5.7 Vertical Histogram

Write a program to read four lines of uppercase (i.e., all CAPITAL LETTERS) text input (no
more than 72 characters per line) from the input file and print a vertical histogram that shows how
many times each letter (but not blanks, digits, or punctuation) appears in the all-uppercase input.
Format your output exactly as shown.

Input
Lines 1—4: Four lines of uppercase text, no more than 72 characters per line.
Output

Lines 1-2: Several lines with asterisks and spaces followed by one line with the uppercase alphabet
separated by spaces. Do not print unneeded blanks at the end of any line. Do not print any lead-
ing blank lines.

Sample Input Sample Output

THE QUICK BROWN *
FOX JUMPED OVER
THE LAZY DOG.

THIS IS AN EXAMPLE *

TO TEST FOR YOUR

HISTOGRAM

PROGRAM.

HELLO! * *
* * * *

* * * *

* * * * * *
* * * ok * ok * * k%
* * * k% * ok * ok * ok kX
* * ok ok ok k% * ok ok ok K * ok k% * ok

k ok ok ok ok ok ok 3k %k k 3k %k k 3k % % )k %k % k 3k % %k 3k *x %

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Source: USACO, February 2003, Orange.

ID for online judge: POJ 2136.



Practice for Simple Computing ®m 27

Hint
The sequence of drawing a vertical histogram is from top to bottom and left to right. From top
to bottom means dealing with every line in the frequency’s descending order. From left to right
means dealing with letters in the current line in the ordinal number’s ascending order.

Suppose cnt is the frequency array for letters, where c##[0] is the number of ‘A’, ..., cn£[25] is
the number of Z’, and

Maxc = max {cnt[i]}
0<i<25

that is, Maxc is the height of the highest “pillar” in the vertical histogram. The algorithm is as
follows:

1. Input a test case and count array cnt;
2. Getting the value of Maxc;
3. From the highest “pillar” in the vertical histogram, draw the vertical histogram from top to
bottom. A repetition statement for (int i = 1; i < Maxc; i++) implements it as follows:
o Find the right boundary for the current line. That is, in array cn#, from 25 to 0, find the
first letter whose serial number is /1-1, where cnt[/1-1] > Maxc—i.
o For letters whose serial numbers are in [0../1-1], if enelj] > Maxc—i (0 <j <11 - 1), then
output *_'; otherwise, output '_ _'

4. Output the last line' A_B_..... _Z".

1.5.8 Ugly Numbers

Ugly numbers are numbers whose only prime factors are 2, 3, or 5. The sequence 1, 2, 3, 4, 5, 6,
8,9, 10, 12, ... shows the first 10 ugly numbers. By convention, 1 is included.
Given the integer 7, write a program to find and print the #th ugly number.

Input

Each line of the input contains a positive integer 7 (z < 1500). Input is terminated by a line with
n=0.

Output

For each line, output the #th ugly number. Don’t deal with the line with 7 = 0.

Sample Input Sample Output
1 1

2 2

9 10

0

Source: New Zealand 1990, Division I.

IDs for online judges: POJ 1338, UVA 136.



28 m Data Structure Practice: For Collegiate Programming Contests and Education

Hint
An offline method is used to solve the problem. The first 1500 ugly numbers are calculated and
stored in array 4[1 .. 1500].

Suppose the upper limit for the largest ugly number /imit = 1,000,000,000. The outer
loop (control variable 7) enumerates multiples of 2. For each time, i«4*2 is performed.
The loop-continuation condition is i < /imit. The middle loop (control variable j) enumer-
ates multiples of 3. For each time, j«;*3 is performed. The loop-continuation condition is
i*j < limit. The inner loop (control variable #) enumerates multiples of 5. For each time, ugly
number **k is stored in array @ and 4<£*5 is performed. The loop-continuation condition
is %%k < limit.

Then array a is sorted such that 4[x] is the xth large ugly number (I < x < 1500).

1.5.9 Number Sequence

A single positive integer 7 is given. Write a program to find the digit located in the position 7 in
the sequence of number groups S.5, ... ;. Each group S, consists of a sequence of positive integer
numbers ranging from 1 to 4, written one after another.
For example, the first 80 digits of the sequence are as follows:
1121231234123451234561234567123456781234567891234567891012345678910111234567
8910

Input

The first line of the input file contains a single integer # (1 < # < 10), the number of test cases,
followed by one line for each test case. The line for a test case contains the single integer 7

(1 < i < 2147483647).

Output
There should be one output line per test case containing the digit located in the position 7.
Sample Input Sample Output
2 2
8 2
3

Source: ACM Tehran 2002, First Iran Nationwide
Internet Programming Contest.

IDs for online judges: POJ 1019, ZOJ 1410.

Hint

First, two functions are implemented. The first function is to calculate the length for the first j
groups (i.e., the number of digits for the first j groups) and is stored in an array. The second func-
tion is to return the digit located in the position /in a group §,,. Then dichotomy is used to find
the group S, containing the digit located in the position 7. Finally, in the group S,, the digit located
in the position 7 is returned.



Chapter 2

Simple Simulation

In the real world, there are many problems that we can solve by simulating their processes. Such prob-
lems are called simulation problems. For these problems, solution procedures and rules are showed in
problem descriptions. Programs must simulate procedures or implement rules based on descriptions.

Normally there are two kinds of simulations: stochastic simulation and process simulation.

Problems for stochastic simulation show or imply probabilities. Programmers make use of
random functions and round functions to set the random value for a range, making the random
value meet the probability as a parameter. Then programmers design the algorithm by simulating
the mathematical model. Because of uncertainty, there are fewer problems for stochastic simula-
tion in programming contests.

Problems for process simulation require programmers to design parameters for mathemacical
models, and to observe changes of states caused by parameters. Programmers design algorithms
based on process simulation. Programs depend entirely on authenticity and correctness of the
process simulation without any uncertainties.

This chapter focuses on process simulation. There are three kinds of process simulation:

1. Simulation of direct statement
2. Simulation by sieve method
3. Simulation by construction

2.1 Simulation of Direct Statement

For problems for simulation of direct statement, programmers are required to solve them by strictly
following rules showed in the problems’ descriptions. Programmers must read such problems carefully
and simulate processes based on descriptions. A problem for simulation of direct statement gets harder
as the number of rules increases. It causes the amount of code to grow and become more illegible.

2.1.1 Speed Limit

Bill and Ted are taking a road trip. But the odometer in their car is broken, so they don’t know
how many miles they have driven. Fortunately, Bill has a working scopwatch, so they can record
their speed and the total time they have driven. Unfortunately, their record-keeping strategy is a

29



30 ®m Data Structure Practice: For Collegiate Programming Contests and Education

little odd, so they need help computing the total distance driven. You are to write a program to
do this computation.
For example, if their log shows

Speed in Miles per Hour | Total Elapsed Time in Hours

20 2
30 6
10 7

this means they drove 2 hours at 20 miles per hour, then 6 — 2 = 4 hours at 30 miles per hour,
then 7 — 6 = 1 hour at 10 miles per hour. The distance driven is then (2)(20) + (4)(30) + (1)
(10) =40 + 120 + 10 = 170 miles. Note that the total elapsed time is always since the beginning
of the trip, not since the previous entry in their log.

Input

The input consists of one or more data sets. Each set starts with a line containing an integer 7,
1 < 7 <10, followed by # pairs of values, one pair per line. The first value in a pair, s, is the speed
in miles per hour, and the second value, 7, is the total elapsed time. Both s and # are integers,
1 <5<90and 1 < #<12. The values for # are always in strictly increasing order. A value of —1 for
n signals the end of the input.

Output

For each input set, print the distance driven, followed by a space, followed by the word miles.

Sample Input Sample Output

3 170 miles
202 180 miles
306 90 miles
107

601
305

151
252
303
105
1

Source: ACM Mid-Central United States 2004.
IDs for online judges: POJ 2017, ZOJ 2176, UVA 3059.



Simple Simulation ® 31

Analysis

This is a simple problem of direct statement. We can simulate the stopwatch’s running to compute
the total distance driven: if the last total elapsed time in hours is z, the current speed in miles
per hour is x, and the current total elapsed time in hours is y, then the current distance driven is
(y — 2)*x, and we add it to the total distance driven.

Program

#include <iostream> // Preprocessor Directive
using namespace std; // Using C++ Standard Library
int mainQ) //Main Function

{

intn, i, X, y, z, ans;
// Multiple test cases are dealt with by a while loop statement
while (cin >> n, n > 0)

{
ans = z = 0;
// Simulate the stopwatch to calculate

for (i = 0; 1 < n; i++) // Input and calculate the
current data set
{
cin >> X >> y; //1Input the speed and the total
elapsed time
ans += (y - 2) * Xx; // Accumulate the distance driven
zZ =Y; //Record the total elapsed time
}

cout << ans <<
the current data set

}

return O;

miles" << endl; //0Output the distance driven for

}

2.1.2 Ride to School

Many graduate students of Peking University are living on Wanliu Campus, which is 4.5 kilometers
from the main campus—Yanyuan. Students in Wanliu have to either take a bus or ride a bike to go
to school. Due to the bad traffic in Beijing, many students choose to ride a bike.

We may assume that all the students except “Charley” ride from Wanliu to Yanyuan at a fixed
speed. Charley is a student with a different riding habit—he always tries to follow another rider
to avoid riding alone. When Chatley gets to the gate of Wanliu, he will look for someone who
is setting off to Yanyuan. If he finds someone, he will follow that rider, or if not, he will wait for
someone to follow. On the way from Wanliu to Yanyuan, at any time if a faster student surpasses
Chatley, he will leave the rider he is following and speed up to follow the faster one.

We assume the time that Charley gets to the gate of Wanliu is zero. Given the set-off time and
speed of the other students, your task is to give the time when Chatley arrives at Yanyuan.

Input

There are several test cases. The first line of each case is N(1 < N < 10,000) representing the num-
ber of riders (excluding Charley). V= 0 ends the input. The following /V lines are information of
N different riders, in such format:

V,[TAB] T,



32 m Data Structure Practice: For Collegiate Programming Contests and Education

V. is a positive integer < 40, indicating the speed of the 7th rider (kilometers per hour). 7} is the
set-off time of the 7th rider, which is an integer and counted in seconds. In any case, it is ensured
that there always exists a nonnegative 7.

Output

The output is one line for each case: the arrival time of Chatley. Round up (ceiling) the value when
dealing with a fraction.

Sample Input Sample Output
4 780

20 0 771

25 -155

27 190

30 240

2

21 0

22 34

0

Source: ACM Beijing 2004, Preliminary.
IDs for online judges: POJ 1922, ZOJ 2229.

Analysis

There is no mathematical formula to solve the problem. We can calculate the arrival time of
Chatley by simulating each student leaving from Wanliu to Yanyuan. For each test case, the time
that Charley gets to the gate of Wanliu is zero. From it we calculate the arrival time of each stu-
dent. Obviously, the earliest arrival time is the arrival time of Chatley.

Suppose min is the earliest arrival time for the first 7 — 1 riders, the speed of the ith rider is v,
and the set-off time of the ith rider is z Then the time when the ith rider arrives at Yanyuan is
x = t+ (4.5*3600)/v. If x < min, then min is adjusted as x. Obviously, after the arrival time of all
riders is calculated, min is the arrival time of Charley.

There is a trap in the test data. If 7 is a negative integer, we should neglect it. It doesn’t affect
the arrival time of Charley.

Program
#include <iostream> // Preprocessor Directive
#include <cmath>
using namespace std; // Using C++ Standard Library
int mainQ) //Main function
{

const double DISTANCE = 4.50; //The distance between Yanyuan and
Wanliu

while(true) //A while statement deals with test
cases

{

int n; //The number of riders except Charley

scanf('%d", &n);



Simple Simulation ® 33

if (n == 0) break; //1nput ends

double v, t, x, min = 1e100; //min is initialized 101%

for(int 1 = 0; 1 < n; ++i) // A while statement deals
with riders

{

scanf("%l Rl ", &v, &t); // the speed and the set off time
of the i-th rider
// Calculate time x when the i-th rider arrives at Yanyuan. If x<min,
then min is adjusted to x.

if (t >= 0 & (X = DISTANCE * 3600 /7 v + t) < min)

min = X;
}
printfFC'%.0IF\n", ceil(min)); //0utput the arrival time of
Charley
}
return O;
}

2.2 Simulation by Sieve Method

The simulation by sieve method is to get constraints in the problem description, and such con-
straints constitute a sieve. And then all possible solutions are put in the sieve to filter out solutions
that do not meet constraints from time to time. Finally, solutions settling in the sieve are solutions
to the problem. The structure and idea for the simulation by sieve method is concise and clear, but
also blind. Therefore, maybe the time efficiency is not good. The key to the simulation by sieve
method is to find the constraints. Any errors and omissions will lead to failure. Because filtering
rules do not need complex algorithm design, such problems are usually simple simulation problems.

2.2.1 Self~-Numbers

In 1949, the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-
numbers. For any positive integer 7, define d(n) to be 7 plus the sum of the digits of 7. (The 4
stands for digitadition, a term coined by Kaprekar.) For example, 4(75) =75 + 7 + 5 = 87. Given
any positive integer # as a starting point, you can construct the infinite increasing sequence of
integers n, d(n), dldn), ddd®m), .... For example, if you start with 33, the next number is
33 +3 + 3 =39, the nextis 39 + 3 + 9 = 51, the nextis 51 + 5 + 1 = 57, and so on, and you gener-
ate the sequence

33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...

The number 7 is called a generator of 4(n). In the sequence above, 33 is a generator of 39, 39 is
a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator;
for example, 101 has two generators, 91 and 100. A number with no generators is a self-number.

There are 13 self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.
Input

There is no input for this problem.

Output

Write a program to output all positive self-numbers less than 10,000 in increasing order, one per line.



34 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

a lot more numbers
|
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993

Source: ACM Mid-Central United States 1998.

IDs for online judges: POJ 1316, ZOJ 1180, UVA 640.

Analysis

The simulation by sieve method is used to solve the problem. Suppose the sieve is array g, where
glyl = x means y is a number in ascending sequence for x. Based on d(x) = x + the sum of the
digits of x, a subprogram generate_sequence(x) is to generate the ascending sequence [d(x), d(d(x)),
d(d(d(x))), ...] for x. Suppose x is the generation number for every number in the sequence:

gld(x)]) = gld(d(x)] = glddd)] = ... = x

If a number is in ascending sequence for x, it is not a self-number and should be sieved from
sieve g. The process will repeat until the generated number >1000 or the generated number has
been generated before (g[x] # x). If x has been generated, it is not a self-number.

The algorithm is as follows:

First, g[7] is initialized as 7 (1 < 7 < 1000). Then generate_sequence(l) ... generate_sequence(1000) are
called to calculate ¢[1..1000]. Finally, numbers left in the sieve, that is, g[x]==x, are self-numbers.



Simple Simulation ® 35

Program
#include <stdio.h> // Preprocessor Directive
#define N 10000 // All positive self-numbers less
than 10000
unsigned g[N]; //Array g is the sieve
unsigned sum _of _digits (unsigned n) //Calculate the sum of the digits of n
if (n < 10)
return n;
else
return (n % 10) + sum_of _digits (n / 10);
}
void generate_sequence (unsigned n) //Construct ascending sequence
for n.
while (n < N) //n=10000 is the end condition
{

unsigned next=n+sum_of _digits(n); //Calculate d[n]
if (next >= N || glnext] != next) //If d[n]>=N or d[n] is not a
self-number, return;

return;
glnext] = n; //put d[n] into ascending sequence for n.
n = next;
}
}
int main ()
{
unsigned n;
for (n = 1; n < N; ++n) //Initialization
gln] = n;
for (n = 1; n < N; ++n) //Calculate g[1..1000]
generate_sequence (n);
for (n = 1; n < N; ++n) //0utput all self-numbers
if (g[n] == n)
printf ("%un', n);
}

2.3 Construction Simulation

Construction simulation is a kind of relatively complex simulation method. It requires a complete
and accurate mathematical model to represent and solve a problem. We need to design parameters
of the model and calculate simulation results. Because such mathematical models represent objects
and their relationships accurately, the efficiencies are relatively high.

2.3.1 Bee

In Africa, there is a very special species of bee. Every year, the female bees of the species give birth to
one male bee, while the male bees give birth to one male bee and one female bee, and then they die.

Now scientists have accidentally found one “magical” female bee of the special species to the
effect that she is immortal, but still able to give birth once a year as all the other female bees. The
scientists would like to know how many bees there will be after IV years. Write a program that
helps them find the number of male bees and the total number of all bees after /V years.



36 m Data Structure Practice: For Collegiate Programming Contests and Education

Input

Each line of input contains an integer /V (>0). Input ends with a case where N = —1. (This case
should 7oz be processed.)

Output

Each line of output should have two numbers, the first one the number of male bees after N years
and the second one the total number of bees after Nyears. (The two numbers will not exceed 232.)

Sample Input Sample Output
1 12

3 47

=1

ID for online judge: UVA 11000.

Analysis
From the description of bees’ breeding, it is a problem of process simulation. Because bees’ breed-
ing is based on rules, the corresponding mathematical model can be constructed. Therefore, it is
also a problem of construction simulation.

There is only one integer for a test case, and —1 marks the end of input. After the first test
case is input, there is a while repetition statement while(n > —1). In the loop body, the calculation
process is as follows:

1. Initialize the number of female bees z as 1 and the number of male bees & as 0. Because of
the size of the operation, the type of 2 and 4 is long long.

2. Making a series of recurrences for 7 from 0 to 7 — 1. After i + 1 years, the number of female
bees is the number of last year’s male bees + 1, and the number of male bees is the number
of last year’s bees. Therefore, formulas are as follows:
c=l+bd=a+ba=cb=d

3. Output the number of male bees 2 and the number of bees a + & after N years.

4. Input the next test case.

Program
#include <iostream> // Preprocessor Directive
using namespace std; // Using C++ Standard Library
int main(void)
{

int n;

cin >> n; //The number of years

while (n > -1) {
// Initialize the number of female bees a 1, and the number of
male bees b 0.
long long a = 1;

long long b = 0;

for (int 1 = 0; 1 < n; i++) { // a series of recurrences
long long c, d;
c=1+b; //Calculate the number of female bees and the

number of male bees



Simple Simulation w37

d=a+ b;
a = c;
b =4d;

}

// Output the number of male bees a and the number of bees atb
after N years

cout << b << << a + b << endl;

cin >> n; //The next number of years

}

return O;

The key to “construction simulation” is to find a mathematic model. Sometimes there are
several mathematic models. We should select a suitable mathematic model based on its simulation
efficiency and complexity of the program.

2.4 Problems

2.4.1 Gold Coins

The king pays his loyal knight in gold coins. On the first day of his service, the knight receives one
gold coin. On each of the next two days (the second and third days of service), the knight receives
two gold coins. On each of the next three days (the fourth, fifth, and sixth days of service), the
knight receives three gold coins. On each of the next four days (the seventh, eighth, ninth, and
tenth days of service), the knight receives four gold coins. This pattern of payments will continue
indefinitely: after receiving N gold coins on each of NV consecutive days, the knight will receive
N + 1 gold coins on each of the next NV + 1 consecutive days, where NV is any positive integer.

Your program will determine the total number of gold coins paid to the knight in any given
number of days (starting from day 1).

Input

The input contains at least 1, but no more than 21 lines. Each line of the input file (except the last
one) contains data for one test case of the problem, consisting of exactly one integer (in the range
1 .. 10000), representing the number of days. The end of the input is signaled by a line containing the
number 0.

Output

There is exactly one line of output for each test case. This line contains the number of days from
the corresponding line of input, followed by one blank space and the total number of gold coins
paid to the knight in the given number of days, starting with day 1.

Sample Input Sample Output
10 10 30

6 614

7 718

(Continued)



38 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output
11 1135

15 15 55

16 16 61

100 100 945

10000 10000 942820
1000 1000 29820

21 2191

22 2298

0

Source: ACM Rocky Mountain 2004.
IDs for online judges: POJ 2000, ZO) 2345, UVA 3045.

Hint

The rule that the king pays his loyal knight in gold coins is showed in the problem description. We
partition 7 days into p intervals. The 7th interval is 7 days, and 7 gold coins are received every day
1<i<p (A +p2]p <n [2+pl2](p + 1) > n). Suppose 7 is the total number of days; ans is
the number of received gold coins; 7 is the number of current days; j is the number of the current
interval, that is, the interval in which the king pays his loyal knight the same number of gold coins
every day; and 4 is the number of remaining days.

A double loop is used to calculate the total number of gold coins.
The outer loop enumerates every interval j: for(int i = 0, j = 1; i < 75 j++).
The inner loop calculates the total number of received gold coins in interval j: int # = j, while
(k-- && ++i < m) ans +=.
Finally, ans is the total number of gold coins paid to the knight in the given number of days.

2.4.2 The 3n + 1 Problem

Problems in computer science are often classified as belonging to a certain class of problems (e.g.,
NP, unsolvable, recursive). In this problem you will analyze a property of an algorithm whose clas-
sification is not known for all possible inputs.

Consider the following algorithm:

1. input n

2. print n

3. if n =1 then STOP

4. if n is odd then n <-- 3n + 1
5. else n <-- n/2

6. GOTO 2

Given the input 22, the following sequence of numbers will be printed: 22 11 34 17 52 26 13
4020105168421.

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral
input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true.



Simple Simulation ® 39

It has been verified, however, for all integers 7 such that 0 < 7z < 1,000,000 (and, in fact, for many
more numbers than this).

Given an input 7, it is possible to determine the number of numbers printed before the 1 is
printed. For a given 7 this is called the cycle length of 7. In the example above, the cycle length
of 22 is 16.

For any two numbers 7 and j you are to determine the maximum cycle length over all numbers
between 7 and ;.

Input

The input will consist of a series of pairs of integers 7 and j, one pair of integers per line. All integers
will be less than 10,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length
over all integers between and including 7 and ;.

Output

For each pair of input integers 7 and j you should output 7, j, and the maximum cycle length for
integers between and including 7 and j. These three numbers should be separated by at least one
space with all three numbers on one line and with one line of output for each line of input. The
integers 7 and j must appear in the output in the same order in which they appeared in the input
and should be followed by the maximum cycle length (on the same line).

Sample Input Sample Output
110 11020

100 200 100 200 125

201 210 201210 89

900 1000 900 1000 174

Source: Duke Internet Programming Contest 1990.

IDs for online judges: POJ 1207, UVA 100.

Hint
It is a problem for classical simulation of direct statement; steps for the algorithm are shown in
the problem description. If the input pair of integers are # and b, then the interval is [min(a, ),
max(a, b)]. A double loop is used to solve the problem.

The outer loop is a repetition statement for(n = min(a, b); n < max(a, b); n++). It enumerates
every number 7 in the interval (min(a, 6) < n < max(a, b)).

The inner loop is a repetition statement for(i = 1, m = n; m > 1; i++). It calculates cycle length
of n (if m%2 == 0) m /= 2; else, m = 3*m + 1).

Obviously, the maximum cycle length over all numbers in [min(a, b), max(a, b)] is the solution
to the problem.

2.4.3 Pascal Library

Pascal University, one of the oldest in the country, needs to renovate its library building, because
after all these centuries the building has started to show the effects of supporting the weight of the
enormous amount of books it houses.



40 ®m Data Structure Practice: For Collegiate Programming Contests and Education

To help in the renovation, the alumni association of the university decided to organize a series
of fund-raising dinners, for which all alumni were invited. These events proved to be a huge suc-
cess, and several were organized during the past year. (One of the reasons for the success of this
initiative seems to be the fact that students that went through the Pascal system of education have
fond memories of that time and would love to see a renovated Pascal library.)

The organizers maintained a spreadsheet indicating which alumni participated in each dinner.
Now they want your help to determine whether any alumnus or alumna took part in all of the
dinners.

Input

The input contains several test cases. The first line of a test case contains two integers, N and D,
indicating, respectively, the number of alumni and the number of dinners organized (1 < N <
100 and 1 < D < 500). Alumni are identified by integers from 1 to /V. Each of the next D lines
describes the attendees of a dinner and contains V integers X; indicating if the alumnus or alumna
i attended that dinner (X;= 1) or not (X;= 0). The end of input is indicated by N= D = 0.

Output

For each test case in the input your program must produce one line of output, containing either
the word “yes,” in case there exists at least one alumnus or alumna that attended all dinners, or
the word “no” otherwise.

Sample Input Sample Output

33 Yes
111 No
011
111
72
1010101
0101010
00

Source: ACM South America 2005.
IDs for online judges: POJ 2864, UVA 3470.

Hint
Suppose yes is the mark that there exists at least one alumnus or alumna that attended all dinners.
Array att shows whether an alumni or alumna attends dinners or not, where az#(j] == 1 represents

alumni or alumna j attending all dinners so far.
First, input the number of alumni 7 and the number of dinners 4 for the first test case. Then
there is a loop while(n || d). In the loop body, the process is as follows:

1. Initially, suppose all alumni attend dinners, that is, 2#[0] = a#[l] = ... attln — 1] = 1.
2. A double loop is used to enumerate all dinners that alumni attend. The outer loop enumer-
ates dinner j (0 < j < 4— 1). The inner loop enumerates alumni 7 (0 < 7 < 7 — 1). In the loop



Simple Simulation ® 41

body, based on case 4 that alumnus or alumna j attends dinner 7, calculate whether alumnus
or alumna j attends dinners or not, that is, a##(j] = azt(j] & k.
3. Calculate whether there exists at least one alumnus that attended all dinners, that is,

yes = U att(z]

0<i<n—1

4. If yes == true, then output “yes;” else, output “no.”
5. Input the next test case.

2.4.4 Calendar

Most of us have a calendar on which we scribble details of important events in our lives—visits
to the dentist, the Regent 24-hour book sale, programming contests, and so on. However, there
are also the fixed dates—partner’s birthdays, wedding anniversaries, and the like—and we also
need to keep track of these. Typically we need to be reminded of when these important dates are
approaching—the more important the event, the further in advance we wish to have our memo-
ries jogged.

Write a program that will provide such a service. The input will specify the year for which the
calendar is relevant (in the range 1901-1999). Bear in mind that, within the range specified, all
years that are divisible by 4 are leap years and hence have an extra day (February 29) added. The
output will specify “today’s™ date, a list of forthcoming events and an indication of their relative
importance.

Input

The first line of input will contain an integer representing the year (in the range 1901-1999).
This will be followed by a series of lines representing anniversaries or days for which the service is
requested.

An anniversary line will consist of the letter ‘A’; three integer numbers (D, M, P) representing
the date, the month, and the importance of the event; and a string describing the event, all sepa-
rated by one or more spaces. P will be a number between 1 and 7 (both inclusive) and represents
the number of days before the event that the reminder service should start. The string describing
the event will always be present and will start at the first nonblank character after the priority.

A date line will consist of the letter ‘D’ and the date and month as above.

All anniversary lines will precede any date lines. No line will be longer than 255 characters in
total. The file will be terminated by a line consisting of a single #.

Output

Output will consist of a series of blocks of lines, one for each date line in the input. Each block
will consist of the requested date followed by the list of events for that day and as many following
days as necessary.

The output should specify the date of the event (D and M), right justified in fields of width
3, and the relative importance of the event. Events that happen today should be flagged as shown
below, events that happen tomorrow should have P stars, events that happen the day after tomor-
row should have P— — 1 stars, and so on. If several events are scheduled for the same day, order
them by relative importance (number of stars).

If there is still a conflict, order them by their appearance in the input stream. Follow the format
used in the example below. Leave one blank line between blocks.



42 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

1993 Today is: 20 12

A 23125 Partner’s birthday 20 12 *TODAY* Unspecified anniversary
A 25127 Christmas 23 12 *** Partner’s birthday

A 2012 1 Unspecified anniversary | 2512 *** Christmas

D 2012

#

Source: New Zealand Contest 1993.
ID for online judge: UVA 158.

Hint
It is a problem of classical process simulation. The simulation is to directly implement the problem
description.

Suppose ¢ is a linear list for events, where e[].month and e[i].day are the date of event 7 repre-
senting the month and the date, respectively; ¢[7]./evel is the relative importance of event 7 e[4].
index is the order of input; and e[7].a is the string describing event 7.

Based on the problem description, we deal with the input as follows:

1. Input the year and determine whether the year is a leap year.
2. Repeat deal with the input until ‘#’.

If the input is a lecter ‘A’, then add up to the number of anniversaries 7 and input the nth
anniversary date (e[n].month, e[n].day), the relative importance e[n].level, the string describing the
event ¢[n].4, and the order of input e[n].index = n.

If the input is a letter ‘D’, do the following:

1. If it is the first time that ‘D’ is input, based on the order that the anniversary date is the first key,
relative importance is the second key, and the order of input is the third key, sort events e[1 .. 7).
2. Ifitis not the first time that ‘D’ is input, then input the service date (month, day) and initial-

ize date counter ¢zt — 1. Then the program enters a loop until ez exceeds 7:

— If it is today (cnt == 1), then store the event of the anniversary date (month, day) into
5, and sort s based on the order of input. Output the date and the string describing the
event, and the relative importance of the event is “TODAY”.

— Ifit is not today(cnt # —1), search the event e[7] of the anniversary date (month, day) in
events ¢ (¢[i].month == month && eli].day == day, 1 < i < n), and calculate the number
of days before the event that the reminder service should start, num = eli].level — cne. If
num < 0, the event is past; else, output the reminder service (num * and 8-num blanks)
and the string describing the event e[7].a.

— Accumulate the number of days (cnz++). If it exceeds the reminder service (cnr == 7),
then break the loop; else, get the next date (monsh, day).

2.4.5 Manager

One of the programming paradigms in parallel processing is the producer—consumer paradigm
that can be implemented using a system with a “manager” process and several “client” processes.
The clients can be producers, consumers, and so on. The manager keeps a trace of client processes.



Simple Simulation ® 43

Each process is identified by its cost, which is a strictly positive integer in the range 1 .. 10,000.
The number of processes with the same cost cannot exceed 10,000. The queue is managed accord-
ing to three types of requests, as follows:

B zx: Add to the queue the process with the cost x.

B 7: Remove a process, if possible, from the queue according to the current manager policy.
B p i: Enforce the policy 7 of the manager, where 7 is 1 or 2. The default manager policy is 1.
B ¢: Ends the list of requests.

There are two manager policies:

1. Remove the minimum cost process.
2. Remove the maximum cost process.

The manager will print the cost of a removed process only if the ordinal number of the removed
process is in the removal list.
Your job is to write a program that simulates the manager process.

Input

The input is from the standard input. Each data set in the input has the following format:

B The maximum cost of the processes.

B The length of the removal list.

B The removal lis—the list of ordinal numbers of the removed processes that will be dis-
played. For example, 1 4 means that the cost of the first and fourth removed processes will
be displayed.

B The list of requests, each on a separate line.
Each data set ends with an e request. The data sets are separated by empty lines.

Output

The program prints on standard output the cost of each process that is removed, provided that the
ordinal number of the remove request is in the list and the queue is not empty at that moment. If
the queue is empty, the program prints —1. The results are printed on separate lines. An empty line
separates the results of different data sets.

An example is given in the following:

Sample Input Sample Output
5 2

2 5

13

a2

a3

(Continued)



44 wm Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

r
a4
p2
r

ab

r

e

Source: ACM Southeastern Europe 2002.
IDs for online judges: POJ 1281, UVA 2514.

Hint

Suppose minp is the minimum cost of the processes, minp = 1; mapx is the maximum cost of the
pp p

processes; print is the removal sign list of the processes, where print{4] == true means process £ is

removed; plen is the number of processes that should be removed; 7p is the number of processes that
have been removed; ¢z stores the number of processes for each cost, where cnz[£] is the number of
> < <

processes costing 4; req is the types of requests (@, T, ‘p’, ‘©)); and condition is manager policy (1 or 2).
The format for each test case is as follows:

The maximum cost of the processes maxp

The length of the removal list plen

plen removed processes

The list of requests (‘ax’, t’, ‘pi’, ‘¢’), and ‘¢’ marks the end
mapx == 0 marks the end of test cases

Obviously, repetition statement while(cin >> maxp) constitutes the main program, and its
procedure is as follows:

1. Input the length of the removal list plen and plen removed processes, and set these processes’
print signs true.
2. Initialize 7p 0. Input the first request. Repetition statement while(req | = ‘¢’) deals with
requests one by one. The procedure is as follows:
a. Ifreqis @, then add the process with the cost x into the queue, cn#[x]++.
b. If req is °r’, then remove a process, if possible, from the queue according to the current
manager policy:

» If condition == 1, then remove the minimum cost process. # is enumerated in
ascending order from minp to maxp. The process for the first cnt[k] # 0 will be
removed, and cnt[k]--.

* If condition == 2, then remove the maximum cost process. £ is enumerated in
descending order from maxp to minp. The process for the first cnt{k] # 0 will be
removed, and cnz(k]--.

The number of removed processes is np++. If (print[np] == true), output the cost of
the process k.

c. Ifreqis ‘p’, then change condition (1 or 2).

d. Input the next request reg.



Chapter 3

Simple Recursion

The programming technique of a program calling itself is called recursion. There are two kinds
of recursions: direct recursion and indirect recursion. We can use the Droste effect to illustrate
recursion (Figure 3.1):

The Droste effect ... is the effect of a picture appearing within itself, in a place where a
similar picture would realistically be expected to appear. The appearance is recursive:
the smaller version contains an even smaller version of the picture, and so on. (heep://
en.wikipedia.org/wiki/Droste_effect)

Recursion is to change a large and complex problem into a smaller problem similar to the
original problem and solve it. Therefore, a small amount of program code can implement repeated
calculation, making the program more concise and clear.

A stack is used to implement a recursive process. When a program calls itself; it stores the
point of return and pushes local variables of the current layer into a stack, and when it backtracks,
it returns to the point of the current layer and pops local variables of the current layer from the
stack. Recursive algorithms are normally concise. If a recursive process can’t reach the end or its
recursion times are too many, it will cause stack overflow. For example, a recursive process is as
follows:

n=1

n+ f(n=2) n>1

fn)=

Obviously, if 7 is an even number, then f{n) can’t reach (1), and the program will run out of
limit.
Recursive algorithms are normally used to solve three kinds of problems:

1. Functions’ definitions are recursive (such as factorial, or Fibonacci function).

2. Solutions to problems are recursive (such as backtrack).
3. Definitions of data structures are recursive (such as tree traversal, or graph search).

45



46 m Data Structure Practice: For Collegiate Programming Contests and Education

Figure 3.1 Droste effect. (From http://en.wikipedia.org/wiki/Droste_effect.)

3.1 Calculation of Recursive Functions

Definitions and calculations of factorial functions, power functions, and the Fibonacci sequence
are recursive. For example, the recursive definition of factorial function 7! is as follows:

1 n=0

ﬁw(”)zn!:{n*ﬁw(ﬂ—l) n=>1

Based on the recursive definition, we can use recursive function fac(n) to solve it.

f (n==0) return 1; // end condition of recursion

nt fac(int n);
i
if (n>=1) return n*fac(n-1); // recursion

i
{
3

Obviously, the advantage of a recursive program is concise and readable, but its efficiency is
relatively lower. For example, the recursive process of fac(3) is shown in Figure 3.2.

In the program, fzc(0) = 1 is called the end condition of recursion. The process fac(3)—
Jfac(2)—fac(1)—fac(0) is a recursive process, and the process fac(0)—fac(l)—fac(2)—fac(3) is a back
substitution process (fac(0) = 1 is back substitution to fac(1), fac(l) is back substitution to fac(2),
..., until we calculate fac(3) = 6).

Similarly, function f76 for the Fibonacci sequence is defined as follows:

7 n=0,1
ﬁb(n):{ﬁb(n—1)+ﬁb(n—2) n>1



Simple Recursion m 47

fac (3)  fac(2) fac (1) fac (0)

Jac (3)

6
3xfac(2) 2xfac(l) 1xfac(0) fac(0)=1

Figure 3.2 The recursive process of fac(3).

Based on the above recursive format, recursion function f16(n) is shown as follows:

f ((n==1)] | (h==0)) return n; // the end condition of recursion

nt fib(int n);
i
if (n>1) return Fib(n-1)+Fib(n-2); // The recursive steps

i
{
}

From above examples, we can get following hints for recursion:

1. The recursive process is used to solve recursive functions. A recursive process can be directly
implemented by a program based on the definition of recursive functions.

2. For a complex problem, if it can be decomposed into several relatively simple subproblems,
these subproblems’ solutions are the same or similar, and the original problem can be solved
as long as these subproblems are solved, then it is a recursive solution. For example, before
we calculate 4!, we calculate 3!, and the result of 3! is back substitution and we can calculate
4! (4! = 4*3!). The decomposition and solution strategy are called divide and conquer.

3. When the subproblems can be solved directly, the decomposition terminates. Such sub-
problems are called the end conditions of recursion. If the recursive function can’t reach
the end conditions, then the program will fail due to stack overflow. For example, the end
condition for the factorial is fzc(0) = 1, and the end conditions for the Fibonacci sequence

are f16[0] = 0 and f26[1] = 1.

3.2 Solving Problems by Recursive Algorithms

If the initial status and the goal status are shown in the problem description, and rules and con-
straints for the expended status are the same, then a recursive algorithm can be used to find a solu-
tion from the initial status to the goal status. When a recursive algorithm is used, the following
should be noted.

How to represent a status with value parameters or local variables in decomposition should be
noticed to recover its original status in backtracking. If storage of these parameters is large (such
as an array) and initial values should be passed by the main program, in order to avoid memory
overflow, these variables must be set as global variables, and before backtracking, these variables
are required to restore their original values before recursion.

The end conditions of recursion should be determined.

The search area and constraints should be determined, that is, in what situation the end condi-
tions can’t be reached and in what area search the recursive process can continue.



48 ®m Data Structure Practice: For Collegiate Programming Contests and Education

The above recursive algorithm is called backtracking. The essence of backtracking is the same
as the essence of the depth-first search (DFS) in Section IV. DEFS is used in graph traversal. Both
methods make use of the recursive strategy of depth search.

3.2.1 Red and Black

There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A
man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can’t
move on red tiles; he can move only on black tiles. Write a program to count the number of black
tiles that he can reach by repeating the moves described above.

Input

The input consists of multiple data sets. A data set starts with a line containing two positive inte-
gers Wand H; Wand H are the numbers of tiles in the x and y directions, respectively. Wand A
are not more than 20.

There are H more lines in the data set, each of which includes W characters. Each character
represents the color of a tile as follows:

7 A black tile

#: A red tile

‘@ A man on a black tile (appears exactly once in a data set)

The end of the input is indicated by a line consisting of two zeros.

Output

For each data set, your program should output a line that contains the number of tiles the man can
reach from the initial tile (including itself).

Sample Input Sample Output
69 45

H 59

..... # 6

...... 13

#@.. #

#.H#.

119




Simple Recursion ®m 49

Sample Input Sample Output

Heen
HHHHRRE
HH
HH AR
M. @ 4.

H AR .

RE
HHH
A
HH#HQ@,
R
A
77

A
A

HHE A
HHHEHHHE
A
A

00

Source: ACM Japan 2004, Domestic.
ID for online judge: POJ 1979.

Analysis

The recursive method (backtracking) can be used to count the number of black tiles that the man
can reach. Suppose 7 and 7 are the numbers of tiles in the x direction and y direction, respectively;
ans is the number of black tiles that the man reach, and its initial value is 0; map represents the
rectangular room covered with square tiles, where mapl[d][;] is a character that represents the tile



50 ®m Data Structure Practice: For Collegiate Programming Contests and Education

whose positions in the x direction and y direction are 7 and j, respectively; visized is visited marks
for the man, where visited|i][j] == true means the man has reached the tile whose position is (7, /).
The recursive function is search(i, j), where the following apply:

Status: The man’s current position is (7, 7). Obviously the position before the recursion is the
position of the initial tile.

End condition of recursion: If the current position is out of the rectangular room
(i < 0]]i >= n||j < 0]|j >= m) or can’t pass (mapli][j] == ‘#’), or the position has been vis-
ited (visited[i][j] == true), then backtrack; otherwise, for the current position (4, j), visited]i]
[/] = true, the number of tiles that the man has reached increases 1 (++ans), and then con-
tinue recursion.

Search area: For the current position (7, j), recursively search the four neighbor positions
(search(i — 1, j); search(i + 1, j); search(7, j — 1); and search(s, j + 1);).

Program

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

const int maxn = 20 + 5, maxm = 20 + 5; // the upper limit of
numbers of cow and column

int n, m, ans; // numbers of cow and column, the number of black
tiles which the man reach

string map[maxn]; // the rectangular room covered with square tiles

bool visited[maxn][maxm]; // the man has reached the tile

void search(int row, int col) // recursively count the number of
black tiles which the man can reach from [row, col]

{

if (row <O |] row >=n |] col < 0 |] col >=m || map[row][col] ==

"#* || visited[row][col])

// backtrack condition

return;
visited[row][col] = true; // visit mark
++ans; // accumulation of the number of black tiles which
the man reach
search(row - 1, col); // recursions for four adjacent tiles

search(row + 1, col);
search(row, col - 1);
search(row, col + 1);
b
int main(void)
{
cin >> m >> n; // The room size of the first test case
while (n || m) {
int row, col;
for (int 1 = 0; 1 < n; i++) { // lInput the current room
cin >> map[i];
for (int j = 0; j < m; j++)
if (map[il[J]1 == @) { // The position where the
man stands on



Simple Recursion ® 51

s
s
memset(visited, false, sizeof(visited)); //Initialization
ans = 0;
search(row, col); // Recursion calculation

cout << ans << endl; // Output the number of black tiles
which the man reach

cin >> m >> n; // Input the size of the room in the
next case

}

return O;

3.3 Solving Recursive Datum

When we construct a mathematical model for a problem, sometimes we find its data structure is in
a recursive form. For example, tree traversal and depth-first traversal for a graph are defined recur-
sively and will be discussed in Sections III and IV, respectively. An easy and interesting example
is shown as follows.

3.3.1 Symmetric Order

In your job at Albatross Circus Management (yes, it’s run by a bunch of clowns), you have just
finished writing a program whose output is a list of names in nondescending order by length (so
that each name is at least as long as the one preceding it). However, your boss does not like the
way the output looks and instead wants the output to appear more symmetric, with the shorter
strings at the top and bottom and the longer strings in the middle. His rule is that each pair of
names belongs on opposite ends of the list, and the first name in the pair is always in the top part
of the list. In the first example set below, Bo and Pat are the first pair, Jean and Kevin the second
pair, and so forth.

Input

The input consists of one or more sets of strings, followed by a final line containing only the
value 0. Each set starts with a line containing an integer, 7, which is the number of strings in
the set, followed by # strings, one per line, sorted in nondescending order by length. None of the
strings contain spaces. There is at least 1 and no more than 15 strings per set. Each string is at most
25 characters long.

Output

For each input set print “SET #” on a line, where 7 starts at 1, followed by the output set as shown
in the sample output.

Sample Input Sample Output
7 SET 1
Bo Bo

(Continued)



52 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output
Pat Jean

Jean Claude
Kevin Marybeth
Claude William
William Kevin
Marybeth Pat

6 SET 2

Jim Jim

Ben Zoe

Zoe Frederick
Joey Annabelle
Frederick Joey
Annabelle Ben

5 SET 3
John John

Bill Fran

Fran Cece
Stan Stan
Cece Bill

0

Source: ACM Mid-Central United States 2004.
IDs for online judges: POJ 2013, ZOJ 2172.

Analysis
The list of names in nondescending order by length is s[1] ... s[#]. The format of output is sym-
metric, with the shorter strings at the top and bottom, and the longer strings in the middle.
Lengths of names in the upper half part are ascending, and lengths of names in the lower half
part are descending. There are two solutions to the problem: nonrecursive method and recursive
method.

1. Nonrecursive method: The input consists of one or more sets of strings sorted in nonde-
scending order by length. The output is symmetric, with the shorter strings at the top and
bottom and the longer strings in the middle. So the upper half of the output is as follows:

s1]
s(3]



Simple Recursion ® 53

s[5]

s[n), if 7 is an odd number, or s[z — 1], if 7 is an even number
That is, the for statement for(int i = 1; i < n; i += 2) cout << s[i] << endl; will implement
the upper half of the output.

The lower half of the output is as follows:

s[n — (n%2)]

s[ln — (n%2) — 2]

s[n — (n%2) — 4]

e)

That is, the for statement for(int i = n — (#%2); i > 1; i —= 2) cout << s[{] << endl; will
implement the lower half of the output.

2. Recursive method: First the program outputs s[1]s[3] ... s[n], if # is odd; or the program
outputs s[1]s[3] ... s[# — 1], if 7 is even; Then the program outputs s[n]s[z — 2] ... s[2], if n is
even or s{n — 1]s[z — 3] ... s[2] if n is odd.

n strings are divided into [ 7/2 ] groups, and each group contains two adjacent strings s{1]
s[2], s[3]s[4], ..., and so on.

If s[klslf + 1] (1 < & < n) is in a group, first input the first parameter s[#] and output it
and then input the second parameter s[# + 1] and push it into a stack. After the last group
is input, elements in the stack are popped and output. It can be implemented by recursive
function print(n).

The process for print(n) is as follows.

Input and output the first string of the current group s[£]; 7--;

If 7> 0, then input the second string of the current group s[# + 1] and push it into a stack,
n--. If n > 0, then recursively call print(n) until » ==

In backtrack, s[n — 1]s[n — 3] ... s[2] if # is even; or s[n]s[n — 2] ... s[2], if n is odd; are
popped from the stack and output.

Program

#include <iostream>
using namespace std;

void print(int n) //n strings are inputted, and are outputted
in symmetric order
{
string s; // the current string
cin >> s; // Input and output the First string
cout << s << endl;
if (--n) { // lInput 2™ string and push it into a stack
through recursion
cin >> s;
if (--n)
print(n);
cout << s << endl; //Backtracking, elements popped from

stack and output

}



54 ®m Data Structure Practice: For Collegiate Programming Contests and Education

}
int main(void)
{
int n, loop = O;
cin >> n; //number of strings
while (n) {
cout << "SET " << ++loop << endl;
print(n); // recursive function
cin >> n; // number of strings in the next set
}
return O;
}

3.4 Problems
3.4.1 Fractal

A fractal is an object or quantity that displays self-similarity, in a somewhat technical sense, on all
scales. The object need not exhibit exactly the same structure at all scales, but the same “type” of
structures must appear on all scales.

A box fractal is defined as below.

B A box fractal of degree 1 is simply
X
B A box fractal of degree 2 is
X X
X
X X
B Ifusing B(n — 1) to represent the box fractal of degree 7 — 1, then a box fractal of degree 7 is
defined recursively as follows:

B(n—-1) B(n—-1)
B(n-1)
B(n-1) B(n-1)

Your task is to draw a box fractal of degree 7.

Input

The input consists of several test cases. Each line of the input contains a positive integer 7 that is
no greater than 7. The last line of input is a negative integer —1 indicating the end of input.
Output

For each test case, output the box fractal using the X’ notation. Please notice that X’ is an upper-
case letter. Print a line with only a single dash after each test case.



Simple Recursion ® 55

Sample Input

Sample Output

A WN =

X
X X
X
X X
XX XX
X X
XX XX
X X
X
X X
XX XX
X X
XX XX
XX XX
X X
XX XX
X X
X
X X
XX XX
X X
XX XX
XX XX
X X
XX XX
X X
X
X X
XX XX
X X
XX XX
XX XX
X X
XX XX
X X
X
X X
XX XX
X X
XX XX

XX XX
X X

XX XX
X X

X X
XX XX
X X
XX XX

XX XX
X X

XX XX
X X

X X
XX XX
X X
XX XX

Source: ACM Shanghai 2004, Preliminary.

IDs for online judges: POJ 2083, ZOJ 2423.



56 W Data Structure Practice: For Collegiate Programming Contests and Education

Hint

The size of a box fractal of degree 7 is 37!, n > 1. That is, a box fractal of degree 7 is a square whose
length of each side is 37-!. Recursive function print(n, x, y) produces a square of degree 7 whose
top left corner is at (x, y):

1. The end condition of recursion: If # == 1, then output a X at (x, ).

2. If » > 1, then a box fractal of degree 7z — 1 is a square whose length of a side is 372, and
output five box fractals of degree 7 — 1 at the top left corner, top right corner, center, low left
corner, and low right corner, respectively.

— For the box fractal of degree 7 — 1 at the top left corner, the coordinate at the top left
corner is (x, ), and print(n — 1, x, y) is called recursively to produce the box fractal.

— For the box fractal of degree 7 — 1 at the top right corner, the coordinate at the top left
corner is (x, y + m), and print(n — 1, x, y + m) is called recursively to produce the box
fractal.

— For the box fractal of degree 7 — 1 at the center, the coordinate at the top left corner is
(x + m, y + m), and print(n — 1, x + m, y + m) is called recursively to produce the box
fractal.

— For the box fractal of degree # — 1 at the low left corner, the coordinate at the top left
corner is (x + 2*m, y), and print(n — 1, x + 2*m, y) is called recursively to produce the box
fractal.

— For the box fractal of degree # — 1 at the low right corner, the coordinate at the top left
corner is (x + 2*m, y + 2*m), and print(n — 1, x + 2*m, y + 2*m) is called recursively to
produce the box fractal.

Obviously, print(n, 0, 0) is called to produce a box fractal of degree 7.

3.4.2 Sticks

George took sticks of the same length and cut them randomly until all parts became at most 50
units long. Now he wants to return the sticks to their original state, but he forgot how many sticks
he had originally and how long they were originally. Please help him and design a program that
computes the smallest possible original length of those sticks. All lengths expressed in units are
integers greater than zero.

Input

The input contains blocks of two lines. The first line contains the number of stick parts after cut-
ting; there are at most 64 sticks. The second line contains the lengths of those parts separated by
the space. The last line of the file contains zero.

Output

The output should contain the smallest possible length of original sticks, one per line.

Sample Input Sample Output

9 6
521521521 5




Simple Recursion ®m 57

Sample Input Sample Output

4
1234
0

Source: ACM Central Europe 1995.

IDs for online judges: POJ 1011, UVA 307.

Hint
Based on the problem description, given 7 sticks sticks[0 .. n — 1] (old sticks), the program com-
putes the smallest possible original length of those sticks. Suppose the smallest possible original
length of those sticks is len, and sticks[0 .. n — 1] are sorted in descending order. Obviously, proper-
ties for len are as follows.

First,

n—1
sum = Z sticks[7]
i=0

must be divided by /en, that is, sum % len == 0 and Jen must be a divisor for sum. Then, len must
be larger than or equal to the length of each old stick, that is, len > sticks[0].

Second, if there are at least two sticks, then sticks[0] < len < (sum/2). If the suitable length
can’t be found in the interval, then 7 old sticks must be obtained from only one stick. That is,
len is sum.

Therefore, the problem is how to find /en in the interval [sticks[0], (sum/2)].

A recursive Boolean function dfs(i, /, #) is to calculate len, where i is the serial number of
the old stick that will be cut, /is the remainder length of the current stick, and # is the sum of
lengths of the remainder sticks. If dfs(0, len, sum) returns true, then /en is the smallest origi-
nal length of those sticks; otherwise, repeat len++ and dfs(0, len, sum) until len is found or
len > (suml?2).

Suppose array used| ] represents whether old sticks are used or not. Initially, used] ] is zero.

The recursive boundary is / == 0; that is, the current stick is cut from sticks whose length is
len, and t —=len. If /== 0 if t == 0, then » old sticks are all cut and the function returns true;
if # 0, then the first unused old stick 7 is searched in descending order of length. Old stick 7 is
the longest old stick for unused old sticks, and it must be used (used[i] = 1). Therefore, the serial
number of searched old sticks is 7 + 1, and dfs(i + 1, len — sticks[d], 1) is called. If the function returns
true, Jen is the solution.

If the remainder length of the current stick /# 0, then old stick j after old stick 7 is searched in
descending order of length ( <j < n - 1).

If the length of old stick j — 1 is the same as the length of old stick /, and old stick j— 1 is unused
(j > 0 && (sticks(j] == sticks[j — 1] &&! used|[j — 1])), then old stick j needn’t to be tested, and old
stick j + 1 is tried.

If old stick j is unused and /is longer than or equal to its length (‘used(j] &8> = sticks[j]),
then old stick j is cut (/ —= sticks[j]; used[j] = 1), and dfs(j, [, #) is called. If the function recturns
false, and if the length of old stick j is / before cut, the remainder sticks can’t be cut, then
break.



58 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Program

#include <iostream>
#include <algorithm>
using namespace std;

int sticks[65]; // given n old sticks
int used[65]; // whether a stick is used or not
int n,len; // n: the number of old sticks
bool dfs(int i, int I, int t) //determine whether len is the solution
it (1==0) // old stick i is cut from a stick
whose length is len
{
t-=len;; // the sum of lengths of remainder sticks
if (t==0) return true; //if n are all cut
for (i=0; used[i]; ++i); // in descending
order, the First unused old stick i
used[i]=1; // old stick 1 is used

if(dfs(i+l, len-sticks[i], t))return true; // if from old stick
i+l, len can be determined

used[i]=0; t+=len; // recover parameter before recursion
}
else
{

for (int j=i; j<n; ++j) // in descending order, search

old stick j after old stick i
{
if (>0&&(sticks[jl==sticks[j-1]&&lused[j-11))

continue; // If the length of old stick j-1 is the same as the length of
old stick j, and old stick j-1 is unused
if (lused[j]&&l>=sticks[j]) // 1T old stick j is unused and I
is longer than or equal to its length
{
I-=sticks[j]; used[j]l=1;
if (dfs,l,t))return true; //from old stick j, len
can be determined
I+=sticks[j]; used[j]=0;
if (sticks[j]==1) break; // If the length of old

stick j is I before cut, the remainder sticks can"t be cut, then break
¥
hs
}
return false;
s
bool cmp(const int a, const int b)
{
return a>b;
b
int mainQ)
{
while (cin>>né&&n) // the number of sticks parts after cutting
{
int sum=0;

for(int i=0;i<n;++i) // input the lengths of those parts



Simple Recursion ®m 59

{
cin>>sticks[i]; sum+=sticks[i];
used[i]=0;
b
sort(sticks,sticks+n,cmp); //sort n old sticks in

descending order of length
bool flag=false;
for(len=sticks[0];len<=sum/2;++len) // from the longest old
stick, search the smallest possible length of original sticks (at least 2

sticks)
{
if(sum%len==0) // if len is a divisor for sum
if(dfs(0, len,sum)) //if len is the smallest
possible length of original sticks
{
flag=true;
cout<<len<<endl; // output the smallest possible
length of original sticks
break;
}
}
if(Iflag) cout<<sum<<endl; // it the suitable length can"t

be found in [sticks[0],sum/2], then n old sticks must be gotten from one
stick

}

return 0O;






SUMMARY OF SECTION 1

Section I is for students who just learn programming languages. It is not only the review course
for programming languages, but also the elementary course for data structure. Section I focused
on experiments for simple computing, simple simulation, and simple recursion.

Experiments for simple computing allow students to understand that the pattern of a program-
ming contest problem is input—process—output. Students should improve their programming style
to make programs readable and meet requirements for input and output.

A simulation program is to simulate a process or implement some rules shown in the problem
description. Experiments for simple simulation not only help students be familiar with this kind
of problem, but also improve students’ coding ability.

Recursion means a subprogram calls itself directly or indirectly. In Section I, experiments for
calculation of recursive functions, solving problems by recursive algorithms, and solving recursive
data were shown. In Sections III and IV, some data structures are recursively defined, and some
algorithms are recursive algorithms.

In Section I, some programming strategies, such as dichotomy, were also shown. It will also
be discussed in the future.

There are three kinds of data structures: linear list, tree, and graph. Their experiments will be
shown in Sections II to IV, respectively.






EXPERIMENTS FOR
LINEAR LISTS

A linear list consists of a finite ordered set of data elements. The type of all data elements in the
set is the same. Each data element contains one or more items. Such a data structure is simple and
commonly used. Its features are as follows:

Uniformity: The type of data elements in a linear list is the same. For example, the string is
a linear structure; in a string, each data element is a single character. In a student score list,
cach darta element consists of a student name, a student ID, scores of several subjects, and
so on. And such items represent a student’s attributes. Therefore, a student score list is also a
linear list.

Order: If alinear list isn’t null, in it there exist the first and the last data element; if there exist
other elements, for each element there are only one direct predecessor and one direct succes-
sor. For the first data element, there isn’t a direct predecessor, and for the last data element,
there isn't a direct successor. For example, for characters in a string and data elements in a
student score list, there exist such relationships.

Based on storage mode, this section discusses three kinds of linear lists:
1. Linear lists accessed directly

2. Application of sequential access
3. Generalized list using indexes






Chapter 4

Linear Lists Accessed Directly

In linear lists accessed directly, an element can be accessed directly without visiting its predecessor
or successor. An array is one of these kinds of data structure.

An array is a set of data elements with the same type stored in a continuous area and with fixed
length. A one-dimensional array (or single-dimension array) is a typical linear list accessed directly.
Arrays can also have more than one dimension, such as two-dimensional arrays that can be used
to represent matrices. Such an array is called a multidimensional array. In an array, indexes of
data elements indirectly show their memory addresses, and data elements can be accessed directly.
Therefore, time complexity for the access of one element in the array is O(1). In this sense, the
storage structure of an array is a structure of direct access. For example, a string is a direct access
structure. In a string, any character can be accessed directly.

Linear lists accessed directly (arrays) are used mostly, such as calculation of date, calculation
of high precision, representation and access of polynomial, and calculation of numerical matrices.

4.1 Application of Arrays 1: Calculation of Dates

Date is represented by year, month, and day. Problems for date type can make use of arrays as data
structures. Normally there are two kinds of storage modes:

1. A linear list (array) whose data element is a structure containing year, month, and day
2. Three integer arrays that record years, months, and days, respectively

Dates are stored in a linear list. As a linear list, it is finite (the number of date elements is finite),
ordered (date elements are listed one by one in a permutation), and uniform (the type of all date
elements is the same). Elements can be directly accessed. Therefore, the linear list for the date ele-
ment is a typical linear list accessed directly.

The calculation of date and the conversion of calendar are based on a linear list. Months and
days are generally represented by English words. Therefore, months and days are stored in arrays of
strings, and the indexes also correspond to months and days. Two examples are shown as follows.

65



66 ®m Data Structure Practice: For Collegiate Programming Contests and Education

4.1.1 Calendar

A calendar is a system for measuring time, from hours and minutes, to months and days, and
finally to years and centuries. The terms hour, day, month, year, and century are all units of time
measurements of a calendar system.

According to the Gregorian calendar, which is the civil calendar in use today, years evenly
divisible by 4 are leap years, with the exception of centurial years that are not evenly divisible by
400. Therefore, the years 1700, 1800, 1900, and 2100 are not leap years, but 1600, 2000, and
2400 are leap years.

Given the number of days that have elapsed since January 1, 2000 AD, your mission is to find
the date and the day of the week.

Input

The input consists of lines each containing a positive integer, which is the number of days that
have elapsed since January 1, 2000 AD. The last line contains an integer —1, which should not be
processed.

You may assume that the resulting date won’t be after the year 9999.

Output

For each test case, output one line containing the date and the day of the week in the format
of “YYYY-MM-DD DayOfWeek,” where “DayOfWeek” must be one of “Sunday,” “Monday,”
“Tuesday,” “Wednesday,” “Thursday,” “Friday,” or “Saturday.”

Sample Input Sample Output

1730 2004-09-26 Sunday
1740 2004-10-06 Wednesday
1750 2004-10-16 Saturday
1751 2004-10-17 Sunday

1

Source: ACM Shanghai 2004, Preliminary.
IDs for online judges: POJ 2080, ZOJ 2420.

Analysis

First, two functions are designed as follows:

1. days_of year(year): Calculate the number of days in year. If year is a leap year, the number of
days in year is 366; otherwise, the number of days in year is 365.

2. days_of month(month, year): Calculate the number of days in month, year. 1f month == 2 and
year is a leap year, the number of days is 29; else, the number of days is 28. If month == 1,
3,5,7, 8,10, or 12, the number of days is 31. If month == 4, 6, 9, or 11, the number of days
is 30.

Then, we use January 1, 2000 (Saturday), as the benchmark. Suppose year, month, and day
are variables; wstr is a string array storing the day of the week, that is, ws#[0 .. 6] = {“Saturday”,



Linear Lists Accessed Directly m 67

“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”}. Initially year = 2000,
month = 1, and day = 1. Suppose 7 is the number of days that have elapsed since January 1, 2000
AD. The steps finding the date and the day of the week are as follows:

Step 1 is to calculate the day of the week: Because January 1, 2000 (Saturday) is the bench-
mark, and wszr[0 .. 6] = {“Saturday”, “Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”}, obviously wstr[n % 7] is the day of the week.

Step 2 is to calculate year: While n > days_of” year(year), repeat statements n— = days_of"
year(year); and ++year. When the loop ends, year is calculated, and 7 is the number of days
in year.

Step 3 is to calculate month and day: While n > days_of month(month, year), repeat statements
n— = days_of_month(month, year); ++month. When the loop ends, month is calculated. And the
statement day += n is to calculate day.

Program

#include <iostream> //Preprocessor Directive

using namespace std; //Using C++ Standard Library

const char wstr[][20] = {“Saturday”, “Sunday”, ‘“Monday”, “Tuesday”,
“Wednesday”, “Thursday”, “Friday’”}; //String array for the day of
the week

int days_of_year(int year) // Return the number of days of year
{
if (year % 100 == 0)
return year % 400 == 0 ? 366 : 365;
return year % 4 == 0 ? 366 : 365;
b
int days_of_month(int month, int year) // Return the number of days of
month in year
{
if (month == 2)
return days_of year(year) == 366 ? 29 : 28;
int d;
switch (month) {
case 1: case 3: case 5: case 7: case 8:
case 10: case 12:

d = 31;
break;
default:
d = 30;
3
return d;

int main(void)

int n;
cin >> n; //Input the first test case
while (n >= 0) {
int year, month, day, week;
week = n % 7; // use January 1, 2000 (Saturday) as the benchmark
and the beginning of a week
year = 2000;
month = 1;
day = 1;



68 m Data Structure Practice: For Collegiate Programming Contests and Education

while (n) {

if (n >= days_of _year(year)) { // Calculate the year
n —-= days_of _year(year);
++year;

} else if (n >= days_of_month(month, year)) { // Calculate

the month

n —-= days_of_month(month, year);
++month;

} else { // Calculate the day
day += n;
n=20;

}

//0utput the date and the day of the week
cout << year << “-7 << (month < 10 ? “0” : “”) << month << “-~

<< (day < 10 ? “0” : “7) << day << “ “ << wstr[week] <<
endl;
cin >> n; //Input the next test case
}
return O;
}

4.1.2 What Day Is It?

The calendar now in use evolved from the Romans. Julius Caesar codified a calendar system
that came to be known as the Julian calendar. In this system, all months have 31 days, except
for April, June, September, and November, which have 30 days, and February, which has 28
days in non-leap years and 29 days in leap years. Also, in this system, leap years happened
every 4 years. That is because the astronomers of ancient Rome computed the year to be 365.25
days long, so that after every 4 years, one needed to add an extra day to keep the calendar on
track with the seasons. To do this, they added an extra day (February 29) to every year that
was a multiple of 4.

Julian rule: Every year that is a multiple of 4 is a leap year, that is, has an extra day
(February 29).

In 1582, Pope Gregory’s astronomers noticed that the year was not 365.25 days long, but closer
to 365.2425. Therefore, the leap year rule would be revised to the following:

Gregorian rule: Every year that is a multiple of 4 is a leap year, unless it is a multiple
of 100 that is not a multiple of 400.

To compensate for how the seasons had shifted against the calendar up until that time, the
calendar was actually shifted 10 days: the day following October 4, 1582, was declared to be
October 15.

England and its empire (including the United States) didn’t switch to the Gregorian calendar
system until 1752, when the day following September 2 was declared to be September 14. (The
delay was caused by the poor relationship between Henry VIII and the pope.)

Werite a program that converts dates in the United States using a calendar of the time and
outputs weckdays.



Linear Lists Accessed Directly ®m 69

Input

The input will be a series of positive integers greater than zero, three integers per line, which repre-
sent dates, one date per line. The format for a date is “month day year,” where month is a number
between 1 (which indicates January) and 12 (which indicates December), day is a number between
1 and 31, and year is positive number.

Output

The output will be the input date and name of the weekday on which the given date falls in the
format shown in the sample. An invalid date or nonexistent date for the calendar used in the
United States at the time should generate an error message indicating a invalid date. The input
will end with three zeros.

Sample Input Sample Output

11151997 November 15, 1997, is a Saturday.
112000 January 1, 2000, is a Saturday.
741998 July 4, 1998, is a Saturday.

2111732 February 11, 1732, is a Friday.
921752 September 2, 1752, is a Wednesday.
9141752 September 14, 1752, is a Thursday.
4331997 4/33/1997 is an invalid date.

000

Source: ACM Pacific Northwest 1997.
IDs for online judges: ZO) 1256, UVA 602.

Analysis
The problem is a simulation problem. That is, you are asked to solve the problem following some
rules. Generally, these rules are given in the problem description.

Because months and days of the week are strings in the output, string arrays should be defined
first:

const char wstr[ ][maxs] // A string array represents the day of
the week

={“Sunday”’, ”Monday”, “Tuesday”, ”Wednesday”, “Thursday”, “Friday”,
”Saturday”’};

const char mstr[ ][maxs] // A string array represents months

= {‘511’ ‘LJanuary11, “February11, “Marchll’ ‘LApri I”, “Mayll’ ‘LJunell’ ‘LJuIyll’
“August”, “September”, “October”, “November”, “December’};

The indexes of arrays correspond to months and days of the week.

Suppose year, month, and day are variables representing the current date; 0/d is a Boolean variable
representing whether the current date is before September 2, 1752, or not, that s, old = ((year < 1752)
|| (ear == 1752 && month < 9) || (year == 1752 &8& month == 9 && day <= 2)). If old is true and



70 m Data Structure Practice: For Collegiate Programming Contests and Education

year can be divided by 4, then year is a leap year, or if year can be divided by 4, but can’t be divided
by 100, or can be divided by 400, year is a leap year.
Four functions are designed based on the Boolean variable o/d:

isLeap(year, old): determine whether year is a leap year or not.

days_of year(year, old): Calculate the number days in year.

days_of” month(month, year, isLeap(year, old)): Calculate the number of days in month, year.
valid(month, day, year, old): Determine whether month, day, year is a valid date or not. If
(year > 1) && (1 < month < 12) && (1 < day < days_of_month(month, year, isLeap(year,
old)) && (the date is not from September 3 to 13, 1752), it returns true.

The main algorithm is based on the above functions. Repeat inputting the current date—jyear,
month, and day;—and for each date, the processes are as follows:

Determine whether the current date is before September 2, 1752, or not. The result is set

to old.

Determine whether the current date is valid or not by valid (month, day, year, old). If it is
invalid, then output the invalid date’s message; else, calculate the total number of days from 0 AD
to the current date:

year—1 month—1
sum = Z day _of _ year(i,old) + Z day _of _month(i, year,isleap(year, old)) + day

i=1 i=1

If the current date is after September 2, 1752, the day of the week is (sum % 7); else, the day
of the week is ((sum + 5)% 7). Output the transferred date.
Repeat the above processes until the test case is three zeros.

Program

#include <iostream> // Preprocessor Directive
#include <cstdio>
#include <cstring>
using namespace std; // Using C++ Standard Library
const int maxs = 20; // The size of string array

// String array representing days of the week
const char wstr[ ]J[maxs] = {“Sunday”, “Monday”, “Tuesday”, “Wednesday”,
“Thursday”, “Friday”, “Saturday”};

// String array representing months
const char mstr[ J[maxs] = {*”, “January”, “February”, “March”,
“April”,”May”, “June”, “July”, “August”, “September”, “October”,
“November”, “December”};
bool isLeap(int year, bool old = false) //Determine whether year is a
leap year or not

if (old) // The date is before September 2, 1752
return year % 4 == 0 ? true : false;



Linear Lists Accessed Directly m 71

return (year % 100 == 0 ? (year % 400 == 0 ? true : false) : (year %
4 == 0 ? true : Talse));
}
int days_of_month(int month, int year, bool leap) // Return the number
of days in month, year

{
if (month == 2)
return leap ? 29 : 28;
int d;
switch (month) {
case 1: case 3: case 5: case 7: case 8:
case 10: case 12:
d = 31;
break;
default:
d = 30;
¥
return d;
b
int days_of_year(int year, bool old) // Return the number of
days in year
{
return isLeap(year, old) ? 366 : 365;
b

int getNum(char s[ ], const char ss[ ][maxs], int tot) // Return the
position of s in ss. If there is no s in ss, return -1.

{
int 1 = 0;
while (i < tot && strcmp(s, ss[i]))
++1i;
return 1 < tot ? 1 : -1;
}
bool valid(int month, int day, int year, bool old) // If year>=1

and monthe{l..12} and daye{l.. the number of days from O A.D. to month,
year} and the current date is not from September 3 to 13, 1752; then
return true; else return false
{
if (year < 1)
return false;
if (month < 0 |] month > 12)
return false;
if (day < 1 || day > days_of month(month, year, isLeap(year, old)))
return false;
if (year == 1752 && month == 9 && 3 <= day && day <= 13)
return false;
return true;

bool isOld(int month, int day, int year) // If the current date is
before September 2, 1752, return true; else return false
{
return year < 1752 || (year == 1752 && month < 9) ||
(year == 1752 && month == 9 && day <= 2);
}
i

nt main(void) // Main function



72 m  Data Structure Practice: For Collegiate Programming Contests and Education

int month, day, year;
cin >> month >> day >> year; // Input date
while (month || day || year) {
bool old = isOld(month, day, year); // Determine whether the date
is before September 2, 1752 or not
if (lvalid(month, day, year, old)) { // 1If the date is invalid
cout << month << “/” << day << “/” << year
<< “ is an invalid date.” << endl;
} else { // Accumulate the number of days
from O A.D.
int sum = O;
for (int yy = 1; yy < year; yy++)
sum += days_of year(yy, old);
for (int mm = 1; mm < month; mm++)
sum += days_of _month(mm, year, isLeap(year, old));
sum += day;
int week = sum % 7; // Calculate the day of the week
it (old) // If the date is before
September 2, 1752
week = (week + 5) % 7;
cout << mstrmonth] << © “ << day << “, “ << year // Output
the transferred date and the day of the week

113

<< is a “ << wstr[week] << endl;
}
cin >> month >> day >> year; // Input the next date
}
return O;

4.2 Application of Arrays 2: Calculation
of High-Precision Numbers

In programming languages, range and precision for integer and real are limited. If the range and
precision of integer or real in a problem is out of the range and precision for integer or real in
programming languages, calculation of high-precision numbers should be used. For calculation
of high-precision numbers, there are two fundamental problems: representation of high-precision
numbers and fundamental calculations of high-precision numbers.

1. Representation of high-precision numbers: A high-precision number can be represented by
an array. Numbers are separated by decimal digits, and each decimal digit is sequentially
stored in an array. In the program, first a string is used to store a high-precision number,
and in the string a character stores a digit. Then the string is conversed to the correspond-
ing decimal number and stored in an array. For example, for a long positive integer, the
program segment is as follows:

int a[100]={0}; // Array a is used to store a long positive
integer, one digit is stored in one element. Initial values are O.
int n; // n is the number of digits for the long integer

string s; // String s is used to receive the integer



Linear Lists Accessed Directly m 73

cin>>s; // Input the integer into s

n=s.length( ); // Calculate the number of digits
for (i=0; i<n; i++) // Array a stores the integer from right to
left, and one element stores one digit.

a[i]=s[n-i-1]-"0";

From the above discussion, a high-precision number is stored in an integer array in the

order of decimal digits. The array’s indexes correspond to digit numbers of the high-

precision number so that one digit of the high-precision number is stored in one element

in the array.

2. Fundamental calculations of high-precision numbers: Fundamental calculations of high-

precision numbers are +, —, *, and /.

— Addition and subtraction of high-precision numbers: Rules for addition and subtraction
of high-precision numbers are the same as rules of arithmetic addition and subtraction.
In programs, addition of high-precision numbers needs to carry, and subtraction of
high-precision numbers needs to borrow.

Suppose x and y are two nonnegative high-precision integers, and 71 is the number of digits of
x, and 72 is the number of digits of y. x and y are stored in array « and array & in the above format.
The program segment for addition of x and y is as follows:

for (i=0; i<( n1>n2 ? n1 : n2 ); i++ ){ Addition of two integers whose
numbers of digits are nl and n2 respectively

al[i]=ali]+b[i]; // Bitwise addition

if ( a[i]>9 ) { // Carry

a[i]=a[i]-10;

a[i+1]++;

}

}

Suppose x and y are two nonnegative high-precision integers (x > ), and # is the number of
digits of x. x and y are stored in array # and array & in the above format. If x <y, then # and &
exchange each other and take a negative after the subtraction. The program segment for subtrac-
tion of x and y is as follows:

for (i=0; i<n; i++) {
it (a[i]>=b[i])
a[i]l= a[i]-b[i];
else // Borrow
{ alil= a[i]+10-b[i];
afi+1]--;
}

}

— Multiplication and division of high-precision numbers: Based on addition and subtrac-
tion of high-precision numbers, algorithms for multiplication and division of high-
precision numbers are given.

For multiplication of high-precision numbers, first the number of digits of the product must be
determined. Suppose @ and & are two positive high-precision integers. LA is the number of digits



74 ®m  Data Structure Practice: For Collegiate Programming Contests and Education

for a, and LB is the number of digits for 4. The number of digits for the product of # and 4 is at
least LA + LB — 1. And the upper limit of the number of digits is LA + LB.

The algorithm for multiplication of two positive high-precision integers is as follows: First,
calculate the product of each digit of the multiplicand and each digit of the multiplier, where the
product of a[7] and 6[j] is accumulated in array c[i + j]. Then the carry process is done in array .
The program segment is as follows:

for (i=0; i<=LA-1, i++) // The product of each digit of multiplicand a
and multiplier b is accumulated to corresponding digits of array c
for (J=0; j<=LB-1; j++)
cli+j] += a[i1*b[i]:
for (i=0; i<LA+LB; i++) // Carry
if(c[i] >= 10)
{

c[i+1] += c[i]/10;
c[i] %=10;
}

The algorithm calculating the quotient and the remainder for positive high-precision integer
a + positive high-precision integer & is as follows:

If 2 < b, then the quotient is 0 and the remainder is 4; else, start division of positive high-
precision integers based on subtraction. First, based on the difference between the digit number of
a and the digit number of 4 4,, determine how many times 4, that 2 can subtract $*10%' and get
remainder y; = 2 — 2,*6*10%'. Then based on the difference between the digit number of y, and &
d,, determine how many times 4, that y; can subtract $*10%? and get remainder y, = y, — 2,*6*10%2.
Repeat the above steps until times #, that y, | can subtract 4. Finally, get remainder y =y, | —a,*
and the quotient is #,()a, ... ()a,. (Note: () means if d, — d,,, > 1, then &, — d,,; — 1 zeros should
be added before 4,,,, 2 <i< k- 1)

For example, 2 = 12345 and & = 12. Then the difference between the digit number of # and
the digit number of & is d; = 3. 12345 can subtract (12*10°) one time, that is, 2, = 1, and get
remainder y, = 12345 — 12*10° = 345. And the difference between the digit number of 345 and the
digit number of 12 is &, = 1. 345 can subtract (12*10') two times, that is, 2, = 2, and get remain-
der y, = 345 — 2*12*10' = 105. y, can subtract 12 eight times, 2, = 8, and finally get remainder
y =105 - 8*12 =9 and quotient 1028.

4.2.1 Adding Reversed Numbers

The Antique Comedians of Malidinesia prefer comedies to tragedies. Unfortunately, most of the
ancient plays are tragedies. Therefore, the dramatic advisor of the ACM has decided to transfigure
some tragedies into comedies. Obviously, this work is very hard because the basic sense of the
play must be kept intact, although all the things change to their opposites. For example, with the
numbers, if any number appears in the tragedy, it must be converted to its reversed form before
being accepted into the comedy play.

A reversed number is a number written in arabic numerals, but the order of digits is reversed.
The first digit becomes last and vice versa. For example, if the main hero had 1245 strawberries
in the tragedy, he has 5421 of them now. Note that all the leading zeros are omitted. That means
if the number ends with a zero, the zero is lost by reversing (e.g., 1200 gives 21). Also note that
the reversed number never has any trailing zeros.



Linear Lists Accessed Directly m 75

ACM needs to calculate with reversed numbers. Your task is to add two reversed numbers
and output their reversed sum. Of course, the result is not unique because any particular num-
ber is a reversed form of several numbers (e.g., 21 could be 12, 120, or 1200 before reversing).
Thus, we must assume that no zeros were lost by reversing (e.g., assume that the original number
was 12).

Input

The input consists of N cases. The first line of the input contains only positive integer /V. Then fol-
low the cases. Each case consists of exactly one line with two positive integers separated by space.
These are the reversed numbers you are to add.

Output

For each case, print exactly one line containing only one integer—the reversed sum of two reversed
numbers. Omit any leading zeros in the output.

Sample Input Sample Output
3 34

241 1998

4358 754 1

305 794

Source: ACM Central Europe 1998.
IDs for online judges: POJ 1504, ZOJ 2001, UVA 713.

Analysis

Suppose Num[0][0] stores the length of the first addend, and the first addend is stored in Num[0]
(1 .. Numl[0][0]]; Num[1][0] stores the length of the second addend, and the second addend is
stored in Num(1][1 .. Num(1][0]]; Num[2][0] stores the length of the sum, and the sum is stored in
Num[2][1 .. Num[2][0]].

The algorithm is as follows.

First, strings for the first addend and the second addend are input and zeros that the two
numbers end with are deleted. The two addends are stored in Num[0] and Num|1]. Then they are
changed into reversed numbers.

Second, two reversed numbers, Num[0] and Num[1], are added. Then their reversed sums
Num|2] are output. And any leading zeros should be omitted.

Program

#include <iostream> // Preprocessor Directive
#include <cstdio>
#include <cstring>
#include <string>

using namespace std; // Using C++ Standard Library
int Num[3][1000];
void Read(int Ord) // If Ord==0, input the first addend ; If Ord==1,

input the second addend

{



76 W Data Structure Practice: For Collegiate Programming Contests and Education

int flag=0;

string Tmp;

cin>>Tmp; // Input the string represent the integer

for(int i=Tmp.length( )-1;i>=0;i--) // Analyze each character from
right to left

{
if(MmpLi] > “07) // Store the integer into Num[Ord]
flag = 1;
if(flag)
Num[Ord] [++Num[Ord][0]] = Tmp[i] - “07;
}
for(int i=Num[Ord][0].j=1;i>j;i--,j++) // Get reversed number
Num[Ord]
{
flag = Num[Ord][i];
Num[Ord][i] = Num[Ord][i]:
Num[Ord][j] = flag;
}
}
void Add( )

{
Num[2][0] = max(Num[O]J[O0],Num[1][0]); // the number of additions is
the maximum length of two addends

for(int i=1;i<=Num[2][0];i++) // Bitwise addition
Num[2][i] = Num[O][i] + Num[1][i];

for(int i=1;i<=Num[2][0];i++) // Carry

{

Num[2][i+1] += Num[2][i]/10;
Num[2][i] %= 10;

}
if(Num[2] [Num[2][0]+1] > O) // Carry
Num[2][0] ++;
int flag = 0;
for(int i=1;i<=Num[2][0];i++) // Output the reversed sum of two
reversed numbers
{
if(Num[2][i] > 0)
flag = 1;
if(flag)
printf(“%d” ,Num[2][i]);
}
printf(*\n”);
}
int main( ) // Main function
{
int N; // The number of test cases
cin>>N;
for(N;N;N--) // Input and process for each test case
{
memset(Num,0,sizeof(Num)); // Initialize arrays of high
precision numbers 0O
Read(0); // The first addend
Read(1); // The second addend



Linear Lists Accessed Directly m 77

Add( ); // Add two reversed numbers, and output their
reversed sum

}

return O;

In some cases, calculation of high-precision numbers is reduplicated, such as computing power
or polynomial. An object-oriented programming method is suitable for these problems. It makes
the program structure more clear.

4.2.2 Very Easy!

Most of the time, the students of Computer Science and Engineering Department of the
Bangladesh University of Engineering and Technology (BUET) deal with bogus, tough, and very
complex formulas. That is why, sometimes, even for an easy problem, they think very hard and
make the problem more complex to solve. But, the team members of the BUET Pessimistic team
are the only exceptions. In the opposite manner, they treat every hard problem as easy and so
cannot do well in any contest. Today, they try to solve a series but fail for treating it as hard. Let

them help.
Input

You are given the values of Vand A4 (integer, 1 < V< 150; integer, 0 < A < 15), respectively. Just
try to determine the answer for the following series:

N

zz’*A"

i=1
Output

For each line of the input, your correct program should output the integer value of the sum in
separate lines for each pair of values of N and A.

Sample Input Sample Output
33 102
44 1252

Source: The Sams’ Contest.

ID for online judge: UVA 10523.
Analysis
Based on upper limits of NV (150) and A (15) for

N

zz’*A"

i=1



78 m  Data Structure Practice: For Collegiate Programming Contests and Education

calculation of high-precision numbers must be used. Because the calculation process requires
repeated high-precision multiplication and addition, the object-oriented programming method is
more appropriate.

Define class bigNumber, where its private section is array « representing a high-precision num-
ber whose length is /en, and its public section includes

bigNumber( ): Initialize array « 0.

int length( ): Return the length of array 4.

int a#(int £): Return a[£].

void setnum(char s[ ]): Change string s[ ] into array a.

bool isZero( ): Determine whether array « is 0 or not.

void add(bigNumber &x): Addition of high-precision integers: 2<a + x.

void multi(bigNumber &x): Multiplication of high-precision integers: a«a*x.

Based on the above definitions, the algorithm calculating

N

Z;’*A"

i=1

becomes simple and clear:

1. Define base number # and power ap as objects of class bigINumber (bigNumber a, ap); trans-
late string s representing a base number into array @ (a.setnum(s)) representing a high-preci-
sion number; initialize @p 1 (ap.setnum(“1”)); and define sum as an object of class bigNumber
(bigNumber sum).

2. Loop 7 times. Each loop calculates 74 and accumulactes it into sum:

Define the current item num as an object for class bigNumber (bigINumber num).
Initialize num i (sprintf(s, “%d”, i; num.setnum(s)).
Calculate power ap<ap*a and the current item num<«num*ap (ap.multi(a); num.multi(ap));

Accumulate the current item sum<—sum+num (sum.add(num)).
N

3. Output i* A
2
Program

#include <cstdio>
#include <cstring>

const int maxlen = 500; // The size of array a representing high
precision number
const int maxs = 5; // The size of string s representing base number
class bigNumber { // Class declaration of bigNumber

private: //Private: array a representing high precision

number whose length is len.
int a[maxlen];

int len;
public: //Public:
bigNumber( ) { // Initialize array a 0

memset(a, 0, sizeof(a));



Linear Lists Accessed Directly m 79

len = 1;
}
int length( ) { // Return the length of array a
return len;
}
int at(int k) { // Return a[k]
if (0 <= k & k < len)
return a[k];
return -1;
}
void setnum(char s[ ]) { // Change string s[ ] into array a
len = 0;
for (int i = strlen(s) - 1; i >= 0; i--)
a[len++] = int(s[i] - “07);
}
bool isZero( ) { // Determine whether array a

is 0 or not
return len == 1 && a[0] == O;

}
void add(bigNumber &x) { // Addition of high precision
integers: a<atx
for (int i = 0; 1 < x.len; i++) { // Bitwise addition
a[i] += x.a[i];
a[i + 1] += a[i] 7/ 10;
a[i] %= 10;
}
int k = x.len; //Carry
while (a[k]) {
a[k + 1] += a[k] 7/ 10;
a[k++] %= 10;
}
len = len > k ? len : k; // The number of digits
}
void multi(bigNumber &x) { // Multiplication of high precision
integers: a<a*x
if (x.iszZero( ))
setnum(“0”);
int product[maxlen];
memset(product, 0, sizeof(product));
for (int i = 0; i < len; i++) // product of a*x is stored
in array product
for (int j = 0; j < x.length( ); j++)
product[i + j] += a[i] * x.at(Q);

int k = 0; // Become decimal number
while (k < len + x_.length( ) - 1) {
product[k + 1] += product[k] 7/ 10;
product[k++] %= 10;
s
while (product[Kk]) { // Carry
product[k + 1] += product[k] 7/ 10;
product[k++] %= 10;



80 m Data Structure Practice: For Collegiate Programming Contests and Education

len = k; // The length of product
memcpy(a, product, sizeof(product)); // product is
assigned to a

}
};
int main(void)
{
int n; // The number of items
char s[maxs]; // String for base number

while (scanf(“%d%s”, &n, s) !'= EOF) { // Input the number of the
items and base number
bigNumber a, ap; // Define base number a and power ap as
objects of class bigNumber
a.setnum(s); // Change string s[ ] into array a
ap.setnum(*“1”); // Initialize ap 1
bigNumber sum; // Define sum as an object of class bigNumber
for (int i = 1; i <= n; i++) {
bigNumber num; // Define the current item num as an object
as class bigNumber
sprintf(s, “%d”, 1); // Initialize num i
num._setnum(s);
ap-multi(a); // Calculate power ap<ap*a
num.multi(ap); // Calculate the current item num<num*ap
sum.add(num) ; // Accumulate the current item sum<sum+num

}
N
for (int i = sum.length( ) - 1; i >= 0; i--) // Output i*A
printf(“%d”, sum.at(i)); i1
putchar(“\n”);
}
return O;

4.3 Application of Arrays 3: Representation
and Computation of Polynomials

Representation and computation of polynomials is one of the applications of linear lists accessed
directly. A polynomial of one indeterminate is as follows:

n

) .
Pﬂ(x)=ﬂo +ax+ax +...a,x" = E a;x’'
i=0

There are two storage methods for polynomials of one indeterminate:

1. Numeric array 4 is used to store a polynomial of one indeterminate. All elements’ coeffi-
cients are stored in a array #[0 .. 7] in exponents’ ascending order (7 is the highest degree).
The index for 2 shows the number of exponents for the current element. For example, if the
ith element is empty, that is, in the polynomial the ith element’s coefficient ;= 0, then the



Linear Lists Accessed Directly m 81

corresponding array element a[7] = 0. Obviously, the length of array « lies on the highest
degree of the polynomial.

2. Structure array « is used to store a polynomial of one indeterminate. Indexes for array
a are serial numbers of elements. An array element is a structure containing its coefh-
cient a[f].coef and exponent a[i].exp. Obviously, the length of array « is the length of the
polynomial.

Based on the above data structures, computations of polynomials are introduced. For example,

£l 42 max{£1,£2)
Za,-xi + Zaixi = Z (a; +b,)x’
=0 i=0 i=0
£l k2 £ k2
Za,-xi *ijxj = (a;x" *Z(bjxj))
i=0 =0 i=0 =0

Similarly, subtraction and division of two polynomials and other polynomials’ computations

can also be implemented. If storage method 1 is used, the storage of memory will be larger and
algorithms will be simple. If storage method 2 is used, the memory consumption will be reduced,
but the algorithms will be complex.

4.3.1 Polynomial Showdown

Given the coeflicients of a polynomial from degree 8 down to 0, you are to format the polynomial
in a readable format with unnecessary characters removed. For instance, given the coefficients
0,0,0, 1,22, -333, 0, 1, and 1, you should generate an output line that displays x5 + 22x4
—333x"3 + x— 1.

The formatting rules that must be adhered to are as follows:

. Terms must appear in decreasing order of degree.

. Exponents should appear after a caret, A

. The constant term appears as only the constant.

. Only terms with nonzero coeflicients should appear, unless all terms have zero coeflicients,

in which case the constant term should appear.

. The only spaces should be a single space on cither side of the binary + and — operators.

6. If the leading term is positive, then no sign should precede it; a negative leading term should
be preceded by a minus sign, as in —7x"2 + 30x + 66.

7. Negated terms should appear as a subtracted unnegated term (with the exception of a nega-
tive leading term, which should appear as described above). That is, rather than /2 + —3x,
the output should be x2 — 3x.

8. The constants 1 and -1 should appear only as the constant terms. That is, rather than

—1x73 + 1x"2 + 3x71 — 1, the output should appear as —x"3 + xA2 + 3x — 1.

BN 0 N =

N

Input

The input will contain one or more lines of coefficients delimited by one or more spaces. There are
nine coeflicients per line, each coeflicient being an integer with a magnitude of less than 1000.



82 m Data Structure Practice: For Collegiate Programming Contests and Education

Output

The output should contain the formatted polynomials, one per line.

Sample Input Sample Output
000 122 -33301-1 XA5 + 22xM —333xA3 + x -1
0000005550 —55xA2 + 5x

Source: ACM Mid-Central United States 1996.
IDs for online judges: POJ 1555, ZOJ 1720, UVA 392.

Analysis
Coefficient 4, _; ; whose exponent is 7 — i — 1 is stored in array element 4[7]. Array element a[n — 1]
is the constant term. Initially, based on exponents’ order from high to low, coeflicients are input
into 2[0 .. n —1].

Nonzero term a[é] (a[i] #0,i =10 .. n— 1) is analyzed from the exponents” order from high to
low. There are two cases: «[i] is the first term or is not the first term:

1. al4] is the first term of the polynomial:
Coecflicient: If 4[] == -1 and it is not a constant term (i < 7 — 1), then output - directly;
otherwise, if [7] # 1 or 4[] is a constant term ( == 7 — 1), then output coeflicient a[7].
Power: If the exponent is 1 ( == n — 2), then output X directly; else, if it is not a constant
term (i < n — 1), output ‘%™ (n—i—1).
Reserve the mark of the first term of the polynomial.

2. ald] is not the first term of the polynomial:
Sign: Output (2[i] <02 =" : %),
Coefficient: If 4[7] # 1 or -1, or a[4] is a constant term, output the absolute value of 4[i].
Power: If the exponent is 1 (i == n — 2), then output X’ directly; else, if it is not a constant
term (i < 7 — 1), output “xV’(n — i — 1).

After dealing with the polynomial, if the mark of the first term of the polynomial is not
changed, all coefficients are 0. Then output 0.

Program
#include <iostream> // Preprocessor Directive
using namespace std; // Using C++ Standard Library
const int n = 9; //The number of terms of a polynomial
inline int fabs(int k) // Return the absolute value of k
{

return k < 0 ? -k : k;
}
int main(void) // Main function
{

int a[n];

while (cin >> a[0]) { // Input coefficients

for (int i = 1; i < n; i++)
cin >> a[i];
bool first = true; // Set the mark for the first term



Linear Lists Accessed Directly m 83

for (int i = 0; i < n; i++)

if (a[i]) { //0utput non-zero terms
it (first) { // Deal with the first term
if (a[i] == -1&& 1 <n-1) // The current term
is -1
cout << “-7;
else if (a[i] '=1|]] i == n - 1) // The current
is not 1

cout << af[i];
if (i ==n - 2) // If the exponent is 1, don’t output
the exponent; else output the exponent.
cout << “Xx7;
else if (i <n -1)
cout << “x™N’ << n -1 - 1;
first = false; // Reserve the mark of the first term
of the polynomial
} else { //0utput the sign and the absolute value
cout << “ “ << (@[i] <0 ? “=7 : “+7) << “ “; //
Output the sign
if (fabs(@l[il]) '=1]] i ==n-1) //1f the
coefficient is 1, don’t output it
cout << fabs(a[i]);
if (i ==n-2) // If the exponent is 1, don’t
output the exponent; else output the exponent.
cout << “X7;
else if (i <n -1)
cout << “XN” << n -1 - 1;
}
by
it (first) // 1T all coefficients are 0, output O.
cout << O;
cout << endl;

}

return 0;

Making use of arrays to store polynomials can not only normalize polynomials’ output, but
also be convenient for the computation of polynomials.

4.3.2 Modular Multiplication of Polynomials

Consider polynomials whose coefficients are 0 and 1. Addition of two polynomials is achieved by
adding the coeflicients for the corresponding powers in the polynomials. The addition of coef-
ficients is performed by addition modulo 2, thatis, (0 + 0) mod2=0, (0 + 1) mod 2 =1, (1 + 0)
mod 2 =1, and (1 + 1) mod 2 = 0. Hence, it is the same as the exclusive-or (xor) operation.

N6+ xM o+ xM2 +x+ 1) + (N +x+ 1) = 5N + x16 + xM + x\2

Subtraction of two polynomials is done similarly. Since subtraction of coefficients is performed
by subtraction modulo 2, which is also the xor operation, subtraction of polynomials is identical
to the addition of polynomials:

N6+ xM o+ xM2 +x+ 1) = (N7 + x+ 1) = xN7 + xN6 + xMN + xN2



84 m Data Structure Practice: For Collegiate Programming Contests and Education

Multiplication of two polynomials is done in the usual way (of course, addition of coeflicients
is performed by addition modulo 2):

"6+ xM o+ X2 + x+ 1) (XN + x+ 1) = xM3 + XM + 579 + x78 + X106 + xM5 + xM + xM3 + 1

Multiplication of two polynomials f{x) and g(x) modulo a polynomial 4(x) is the remainder of

Sfx)g(x) divided by A(x):
(N6 + xM + xM2 + x + 1) (x7 + x + 1) modulo (x"8 + x" + x"3 + x + 1) = x"7 + x76 + 1

The largest exponent of a polynomial is called its degree. For example, the degree of
X7 +xM6+ 1is 7.

Given three polynomials f{x), g(x), and /4(x), you are to write a program that computes f{x)g(x)
modulo A(x).

We assume that the degrees of both f{x) and g(x) are less than the degree of A(x). The degree of
a polynomial is less than 1000.

Since coefficients of a polynomial are 0 or 1, a polynomial can be represented by 4 + 1 and
a bit string of length & + 1, where 4 is the degree of the polynomial and the bit string represents
the coeflicients of the polynomial. For example, xA7 + x26 + 1 can be represented by 8 110 0
0001.

Input

The input consists of 7 test cases. The number of test cases (7)) is given in the first line of the input
file. Each test case consists of three lines that contain three polynomials f{x), g(x), and A(x), one
per line. Each polynomial is represented as described above.

Output

The output should contain the polynomial f{x)g(x) modulo 4(x), one per line.

Sample Input Sample Output

2 811000001
71010111 1411011001110100
810000011

9100011011
101101001001
12110100110010

1510101101111 1001
Source: ACM Taejon 2001.

IDs for online judges: POJ 1060, ZOJ 1026, UVA 2323.

Analysis
Suppose the length of the bit string for polynomial f{x) is /f; and all coefficients are stored in
SfIf—1 .. 0]; the length of the bit string for polynomial g(x) is /g, and all coefficients are stored in



Linear Lists Accessed Directly m 85

gllg—1 .. 0]; the length of the bit string for polynomial 4(x) is /b, and all coefficients are stored
inhllh—-1..0].

Array Sum is used to store the product of f{x)*¢(x) and the result of (f{x)*¢(x)) modulo A(x), and
its bit string length is /s. All coefficients are stored in f[/s— 1 .. 0].

1. Calculate Sum(x) = flx)*g(x)
Because coefficients for f{x) and g(x) are 0 or 1, the length of the bit string for flx)*g(x) is
Is=lf+ [g— 1. Multiply x”'s coeflicient f17] in fand #'’s coeflicient g[;] in g. And add the result
1] & glj] to x*'s coeflicient in the product polynomial, that is, sumli + j] = sumli + j]1 » (f1i]
&gj) 0<i</f-1,0<;<[g-1).

2. Calculate Sum(x) = Sum(x) modulo h(x)
Sum(x) = Sum(x) modulo A(x), that is, Sum(x) is repeatedly divided by A(x) until the remain-
der is less than A(x). The remainder is the result of modulo. The process comparing Sum(x) with
h(x) is as follows.

If /s > b, then Sum(x) is greater. If Is < /b, then h(x) is greater. If /s == /b, then from
the highest power /s — 1 compare coeflicients termwise until the following cases holds:
suml[i] == 1 and h[i] == 0, or sum[i] == 0 and b[i]] == 1. If sum[i] == 1 and A[i] == 0,
then Sum(x) is greater. If suml[i] == 0, h[i] == 1, then h(x) is greater.

If Sum(x) is greater than h(x), Sum(x) is divided by /4(x): From the lowest bit of 4(x), the
division operation is done in the order of powers from low to high. A[7] xor sumli + Is — Ih],
that is, sumli + d] = sumli + d] » bli] (i=0 .. [s — 1). Then the degree of sum(x) is adjusted
(while (/s && 'sum(ls — 1]) — ).

Repeat the above process until Sum(x) is not greater than A(x). /s is the number of terms of the
remainder of the polynomial. All coeflicients are in Sum[/s—1 .. 0].

Program

#include <iostream> // Preprocessor Directive

using namespace std; // Using C++ Standard Library
const int maxl = 1000 + 5; // The size of product array sum

int compare(int a[ ], int la, int b[ ], int Ib) //Compare polynomials a
and b

it (la > Ib) //Compare degrees of a and b
return 1;

if (la < Ib)
return -1;

for (inti =1la - 1; i1 >= 0; i--) // If degrees are equal,

compare coefficients termwise.

if (a[i] & b[i])

return 1;
else if (1a[i] && b[i])
return -1;
return O;
¥
int main(void) // Main function
{
int loop;
cin >> loop; //1nput the number of test cases.

while (loop--) {



86 m Data Structure Practice: For Collegiate Programming Contests and Education

int f[max1], g[max1], h[maxl];
int If, 1g, Ih;

cin >> If; //1Input the length of bit string
for polynomial f
for (int i = If - 1; 1 >=0; i--) // Input coefficients in f
cin >> f[i];
cin >> Ig; // Input the length of bit string
for polynomial g
for (int i =1g - 1; i >=0; i--) // Input coefficients in g
cin >> g[i];
cin >> Ih; // Input the length of bit string
for polynomial h
for (int i = lh - 1; 1 >=0; i--) // Input coefficients in h

cin >> h[i];
int sum[maxl + max1], Is = If + 1g - 1; //Initialize product
array sum and its length
for (int i =0; i < Is; i++)
sum[i] = O;
for (int i =0; i < If; i++) // Calculate product array sum
for (int j =0; j < Ig; j++)
sumfi + j] ~= (FL1] & g[iD);
// Calculate sun[ Imodulo h[ ]
while (compare(sum, Is, h, Ih) >= 0) { // If the current sum is
not less than h, then continue
int d = Is - Ih; // Calculate the remainder that
sum is divided by h
for (int i = 0; i < Ih; i++)
sum[i + d] ~= h[i];

while (Is && !sum[ls - 1]) //Determine the degree of sum
--1Is;
if (Is == 0) //Calculate and output the length of sum
Is = 1;
cout << Is << © “;
for (int i =1Is - 1; 1 > 0; i--) //0utput coefficients in sum

cout << sum[i] <<
cout << sum[0] << endl;

}

return 0O;

4.4 Application of Arrays 4: Calculation of Numerical Matrices

Matrices are used widely in many fields. Normally two-dimensional arrays are used to represent
numerical matrices. Suppose the numbers of the row and column of a matrix are 7 and », respec-
tively. A two-dimensional array « is used to represent a matrix, where a[7 — 1][j — 1] represents the
element in row 7 and column j in the matrix. Any element in a matrix can be accessed through the
array subscript directly. Therefore, using a two-dimensional array to store a numerical matrix is a
kind of linear list accessed directly.

Using two-dimensional arrays can implement many calculations of numerical matrices, such
as matrix transpose, addition, subtraction, and multiplication of two numerical matrices.



Linear Lists Accessed Directly m 87

4.4.1 Error Correction

A Boolean matrix has the parity property when each row and each column has an even sum,
that is, contains an even number of bits that are set. Here’s a 4 X 4 matrix that has the parity

property:

1010
0000
1111
0101

The sums of the rows are 2, 0, 4, and 2. The sums of the columns are 2, 2, 2, and 2.

Your job is to write a program that reads in a matrix and checks if it has the parity property. If
not, your program should check if the parity property can be established by changing only 1 bit.
If this is not possible either, the matrix should be classified as corrup.

Input

The input file will contain one or more test cases. The first line of each test case contains one inte-
ger 7 (n < 100), representing the size of the matrix. On the next # lines, there will be 7 integers
per line. No other integers than 0 and 1 will occur in the matrix. Input will be terminated by a
value of 0 for 7.

Output

For each matrix in the input file, print one line. If the matrix already has the parity property, print
“OK.” If the parity property can be established by changing one bit, print “Change bit (7, ),
where 7 is the row and j the column of the bit to be changed. Otherwise, print “Corrupt.”

Sample Input Sample Output

4 OK
1010 Change bit (2, 3)

0000 Corrupt

o =
o O
-
o O

(Continued)



88 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

0110
1111
0101
0

Source: Ulm Local Contest 1998.
IDs for online judges: POJ 2260, ZOJ 1949.

Analysis
Suppose there is matrix @, where the sum of numbers in the ith row is row[7] and the sum of num-
bers in the jth column is co/[/].

First, after matrix « is input, the sums of all numbers in every row and all numbers in every
column are calculated and stored in arrays row and co/, respectively.

Second, the number of rows ¢ and the number of columns cc whose sum is odd are calculated.
The last row number 7 and the last column number j whose sum is odd are stored. (if (rowl[4] & 1),
then {er++; i = k;}; if (col[k] & 1), then {cct+; j=ks}; (0 < k< n—1)).

Finally, determine the parity property of matrix a:

1. If sums of all elements in every row and all elements in every column are even (cc == 0 and
cr == 0), then matrix # has the parity property, and “OK” is output.
2. If there is only one row and one column that has an odd sum (cc == 1 and ¢ == 1), then

the bit in (7, /) makes sums odd, and the bit is changed to make matrix 2 have the parit
J g parity
roperty. Because rows and columns in array 4 are numbered from 0, (7 + 1, 7 + 1) is output.
property. y J p
3. Otherwise, “corrupt” is output.
p p

Program

#include <stdio.h> // Preprocessor Directive
#include <assert.h>

#define MAXN 512 //The max size of matrix
int n; // The size of matrix

int a[MAXN][MAXN], row[MAXN], col[MAXN];//* matrix a, the sum of numbers
in the ith row is row[i] and the sum of numbers in the jth column is

col[j]

FILE *input; //Pointer variable for input
int read_case( ) //1nput matrix
{ - - -

int i,j;

fscanf(input,”%d”,&n); //Input the size of matrix

if (n==0) return O; //1f input ends, return O

for (i=0; i<n; i++) //1nput the matrix and return 1

for (J=0; j<n; j++)
fscanf(input,”%d”,&[i1D);
return 1;
}
void solve_case( ) //Determine whether the boolean matrix has the
parity property or not
{



Linear Lists Accessed Directly m 89

int cc,cr,i,j,k;
for (i=0; i<n; i++) //Initialization
row[i] = col[i] = O;
for (i=0; i<n; i++) // Calculate the sums of the rows and the

sums of the columns
for (J=0; j<n; j++)
{
row[i] += a[illj];
col[j] += a[il10i];

s
cr = cc = 0;
for (k=0; k<n; k++) // Calculate the number of rows cr and the
number of columns cc whose sum is odd
{

if (row[k]&1) { cr++; i=k; }
it (col[k]&1) { cc++; j=k; }
}
if (cc==0 && cr==0) printf(*“OK\n”); // determine the parity property
of matrix a
else if (cc==1 && cr==1) printf(“Change bit (%d,%d)\n”,i+1,j+1);
else printf(“Corrupt\n”);
}

int main( )

{
input = fopen(“error.in”,”r);
assert(input!=NULL);
while(read_case( )) solve_case( );
fclose(input);
return O;

}

4.4.2 Matrix Chain Multiplication

Suppose you have to evaluate an expression like A*B*C*D*E, where A, B, C, D, and E are matri-
ces. Since matrix multiplication is associative, the order in which multiplications are performed
is arbitrary. However, the number of elementary multiplications needed strongly depends on the
evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix, and C a 20*5 matrix. There are two
different strategies to compute A*B*C, namely, (A*B)*C and A*(B*C). The first one takes 15,000
elementary multiplications, but the second one only 3,500.

Your job is to write a program that determines the number of elementary multiplications
needed for a given evaluation strategy.

Input

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer 7 (1 < 7 < 26), representing the number of
matrices in the first part. The next 7 lines each contain one capital letter, specifying the name of
the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line {Line}
Line = Expression



90 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Expression = Matrix | “(“ Expression Expression )”
Matrix = “A” ‘(B” | ‘(C’) | . “X” ‘(Y)’ “Z”

Output

For each expression found in the second part of the input file, print one line containing the word
“error” if evaluation of the expression leads to an error due to nonmatching matrices. Otherwise,
print one line containing the number of elementary multiplications needed to evaluate the expres-
sion in the way specified by the parentheses.

Sample Input Sample Output
9 0

A 5010 0

B 1020 0
C205 error
D 3035 10000
E3515 error
F155 3500
G510 15000
H 1020 40500
12025 47500
A 15125
B

C

(AA)

(AB)

(AC)

(A(BQC))

((AB)C)

((((DB)RG)H)I)
(D(E(F(G(HN))))
(DEFNGH)D)

Source: Ulm Local Contest 1996.
IDs for online judges: POJ 2246, ZOJ 1094.

Analysis
Suppose matrix A, whose size is 7%z, and matrix B, whose size is #*/, multiply. The product is
matrix C, whose size is 7%/, where



Linear Lists Accessed Directly m 91

Clljl= Y Alllkl]* BEI0<i<m—1,0< j<[—1)

k=0

It takes 7*n*/ elementary multiplications.

Suppose ¢ is the string array for an expression and p is the character pointer for e.

The number of elementary multiplications mu/lts and the number of rows and columns in the
product matrix rows and cols constitute a structure, defined by #riple. Function expression( ) is
used to calculate the number of elementary multiplications. And the current product matrix zand
matrix #1 and matrix #2, which are needed to multiply, are all instances of #riple.

When the first part, a list of matrices, is input, the number of rows rows[c] and columns co/s[c]
(A < ¢ < 2) are recorded, and a capital letter represents a matrix. Then expressions are input
repeatedly. Before expression e is input, character pointer p and error mark for ¢ are initialized 0.
Function expression() is called to calculate product matrix #

1. If the current character is ‘(" and then character pointer p++, recursively calculate expres-
sions #1 and 22 in brackets (¢1 = expression( ); 12 = expression( )) and character pointer
p++. If the number of columns for 71 is not equal to the number of rows for 22 (z1.
cols! = r2.rows), then set error mark (error = 1); else, calculate product matrix # which
#1 and 2 multiply (2.rows = tl.rows; t.cols = £2.cols; t.mults = t1.mults + 12.mults + t1.
rows*tl.cols*t2.cols).

2. If the current character is a letter, then record the number of rows and columns and initial-
ize the number of multiplications 0 (z.rows = rowsle[pll; t.cols = colsle[p]]; t.mults = 0) and
character pointer p++.

Finally, return product matrix #. After calling function expression( ), if error == 1, then expres-
sion calculation is wrong; else, the number of elementary multiplications is z.mults.

Program

#include <stdio.h> // Preprocessor Directive

typedef struct {int mults; int rows; int cols;} triple; // The number of
elementary multiplication mults, the number of rows and columns in the
product matrix rows and cols constitute struct triple.

int rows[256],cols[256]; // Matrix c with the number of rows rows[c] and
columns cols[c]

char e[100]; // Character array e stores an expression
int p; // character point e
char error; // error mark
triple expression( ) //Calculate the product matrix for expression e
{
triple t; //the product matrix

if (e[pl=="(*) // If the current character is “(“, then character
pointer p++, and take out expressions tl and t2 in the bracket
{
triple t1,t2;
p++;
tl = expression( );
t2 = expression( );
p++; // then character pointer p++



92 m Data Structure Practice: For Collegiate Programming Contests and Education

if (tl.cols!=t2.rows) error = 1;// If the number of columns for tl is
not equal to the number of rows for t2, then the set error mark (error=1)

t.rows = tl.rows; // calculate the number of
columns and rows for product matrix t and the number of elementary
multiplications

t.cols = t2.cols;

t.mults = tl.mults+t2.mults+tl.rows*tl.cols*t2.cols;

}
else // IT the current character is a letter, then

record the number of rows and columns and initialize the number of
multiplications 0

{
t.rows = rows[e[pl];
t.cols = cols[e[p]];
t.mults = 0;
p++; // character pointer p++
}
return t; // Return product matrix t
}
main( )
{
FILE* input = fopen(“matrix.in”,”r”);
char c;
int i,n,ro,co;
triple t; //Product matrix t is an instance
of class triple
fscanf(input,”%d%c™,&n,&c) ; // the number of matrices
for (i=0; i<n; i++) //1nput n matrices” information
{

fgets(e,99, input);

sscanf(e,”%c %d %d”,&c,&ro,&co); // one capital letter,
specifying the name of the matrix, and two integers, specifying the
number of rows and columns of the matrix

rows[c] = ro;

cols[c] = co;

while (1) //1Input and deal with each expression
{

fgets(e,99, input); //1nput the expression

if (feof(input)) break; //1Ff input ends, end the loop

p = error = 0; //1Initialize character pointer and
error mark

t = expression( ); //Calculate the product matrix for
expression e

iT (error) // if evaluation of the expression

leads to an error, then output “error”; else output he number of
elementary multiplications
puts(“error™);
else
printf(“%dn”,t.mults);
}
fclose(input);
return 0O;

}



Linear Lists Accessed Directly ®m 93

4.5 Character Strings 1: Storage Structure of Character Strings

A character string is a sequence of characters. The length of a string is the number of charac-
ters in the sequence. If the length is zero, the string is called an empty string. Character string
s=“aa, ...a,,, where s is the name of the string, 44, ... a,_, is the value of the string, and 4,
(0 <7< #n-1)is acharacter in the string. The length of the string is 7. \0” is the end mark for a
string and isn’t regarded as a character in the string. Obviously, a character string is a linear list
whose element is a character.

Normally, a character string is stored in an array. There are many library functions for charac-
ter string in the C++ standard library.

4.5.1 TEX Quotes

TEX is a typesetting language developed by Donald Knuth. It takes source text together with
a few typesetting instructions and produces, one hopes, a beautiful document. Beautiful doc-
uments use double-left-quote and double-right-quote to delimit quotations, rather than the
mundane ", which is what is provided by most keyboards. Keyboards typically do not have
an oriented double-quote, but they do have a left-single-quote, *, and a right-single-quote, .
Check your keyboard now to locate the left-single-quote key * (sometimes called the backquote
key) and the righe-single-quote key “ (sometimes called the apostrophe or just quote). Be care-
ful not to confuse the lefe-single-quote * with the backslash key, \. TEX lets the user type two
left-single-quotes ™ to create a left-double-quote and two right-single-quotes “ to create a right-
double-quote. Most typists, however, are accustomed to delimiting their quotations with the
unoriented double-quote, ".
If the source contained

“To be or not to be,” quoth the bard, “that is the question.”

then the typeset document produced by TEX would not contain the desired form: “To be or not
to be,” quoth the bard, “that is the question.” In order to produce the desired form, the source file
must contain the sequence:

“To be or not to be,” quoth the bard, “‘that is the question.”

You are to write a program that converts text containing double-quote (“) characters into text
that is identical except that double-quotes have been replaced by the two-character sequences
required by TEX for delimiting quotations with oriented double-quotes. The double-quote ()
characters should be replaced appropriately by either ** if the “ opens a quotation or ™ if the
closes a quotation. Notice that the question of nested quotations does not arise: The first “ must be
replaced by ', the next by ", the next by *, the next by ", the next by *, the next by ", and so on.

Input

Input will consist of several lines of text containing an even number of double-quote (“) charac-
ters. Input is ended with an end-of-file character.

Output

The text must be output exactly as it was input except that



94 ®m Data Structure Practice: For Collegiate Programming Contests and Education

B The first " in each pair is replaced by two * characters: **
B The second " in each pair is replaced by two ' characters: "

Sample Input Sample Output

"To be or not to be," quoth the Bard, “that “*To be or not to be," quoth the Bard, “that

is the question." is the question."”

The programming contestant replied: “I The programming contestant replied:
must disagree. “I must disagree.

To C' or not to"C/, that is The Question!" To "C' or not to "C', that is The Question!"

Source: ACM East Central North America 1994.
IDs for online judges: POJ 1488, UVA 272.

Analysis

Substitution forms for each pair of double-quotes appear alternately. That is, the first " is replaced

by two ' characters, and the second " is replaced by two ' characters. Suppose p[0] is the first

substitution form “*” for the first ", and p[1] is the second substitution form “”” for the second ".
Initially #= 0. Then the string is scanned. If the current character is not a double-quote, then

output it; else, replace it by p[£], and change the substitution form (4 = 4).

Program
#include <cstdio> // Preprocessor Directive
#include <cstring>
const char p[ JI51 = { “ 7, “?*” }; //p[0] is two ~ characters,
and p[1] is two “ characters
int main(void)
{
int k = 0; // The first “ is replaced by two ~
characters
char c;
while ((c = getchar( )) !'= EOF) { // Input character c repeatedly
if (c == “"){ // If the current character is not

double-quote, then output it; else replace it by p[k], and change the
substitution form (k = k) .
printf(“%s”, p[kD):

k = 1k;
} else
putchar(c);
}
return O;

4.6 Character Strings 2: Pattern Matching of Character Strings

Pattern matching is an important operation for character strings. Suppose 7 and P are two char-
acter strings, where the length of 7'is 7 and the length of Pis m, 1 < m < n. T'is the target. Pis the
pattern. Pattern matching is to search whether there is a substring in 7" that equals P and return
the substring’s position in 7, if it exists. There are two kinds of algorithms for pattern matching:



Linear Lists Accessed Directly m 95

1. Brute force algorithm: A naive pattern matching algorithm. That is, characters in P are com-
pared with characters in 7 successively. Its time complexity is O((z — m + 1)m)).
2. KMP algorithm: Shown by D.E. Knuth, J.H. Morris, and V.R. Pratt.

4.6.1 Blue Jeans

The Genographic Project is a research partnership between IBM and the National Geographic
Society that is analyzing DNA from hundreds of thousands of contributors to map how the earth
was populated.

As an IBM researcher, you have been tasked with writing a program that will find commonali-
ties among given snippets of DNA that can be correlated with individual survey information to
identify new genetic markers.

A DNA base sequence is noted by listing the nitrogen bases in the order in which they are
found in the molecule. There are four bases: adenine (A), thymine (T), guanine (G), and cytosine
(C). A six-base DNA sequence could be represented as TAGACC.

Given a set of DNA base sequences, determine the longest series of bases that occurs in all of
the sequences.

Input

Input to this problem will begin with a line containing a single integer 7 indicating the number of
data sets. Each data set consists of the following components:

B A single positive integer 72 (2 < m < 10) indicating the number of base sequences in this
data set
B 7 lines each containing a single base sequence consisting of 60 bases

Output

For each data set in the input, output the longest base subsequence common to all of the given base
sequences. If the longest common subsequence is less than three bases in length, display the string
“no significant commonalities” instead. If multiple subsequences of the same longest length exist,
output only the subsequence that comes first in alphabetical order.

Sample Input Sample Output

3 no significant commonalities
2 AGATAC
GATACCAGATACCAGATACCAGATACCAG CATCATCAT

ATACCAGATACCAGATACCAGATACCAGATA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

3

GATACCAGATACCAGATACCAGATACCAG
ATACCAGATACCAGATACCAGATACCAGATA

(Continued)



96 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

GATACTAGATACTAGATACTAGATACTAAAGG
AAAGGGAAAAGGGGAAAAAGGGGGAAAA

GATACCAGATACCAGATACCAGATACCAAAGG
AAAGGGAAAAGGGGAAAAAGGGGGAAAA

3

CATCATCATCCCCCCCceeccccececcececcce
CCcCccceeeeeceeeeeceeececcecececececececc

ACATCATCATAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

AACATCATCATTTTTTTTTTTTITTTITTITITITTITTITIT
TTTTTTTTITITTITTTITTITITITT

Source: ACM South Central United States 2006.

IDs for online judges: POJ 3080, ZOJ 2784, UVA 3628.

Analysis
Suppose the longest common subsequence is ans and its length is len.

m base sequences are stored in p[0] .. p[m — 1]. Because the common subsequence is a substring
for all base sequences, all subsequences for p[0] are enumerated: a subsequence for p[0] s is a pat-
tern, and p[1] .. p[m — 1] are targets. The process of pattern matching is as follows.

If s is a common subsequence for p[1] .. plm — 1] (strser(plk], s)! = NULL, 1 <= k<=m — 1), and
(the length of s > Jen) or (the length of s == Jen) and s is the first for the current longest common
subsequence ans in alphabetical order (stremp(ans, s) > 0), then s is adjusted as the current longest
common subsequence (Jen = the length of s; strepy(ans, 3)).

After all subsequences for p[0] are enumerated, the longest common subsequence ans is the
solution to the problem.

Because the length of the base sequence is only 60, the brute force algorithm can be used.
Some library functions for character strings, such as strlen( ), stremp( ), and strepy( ), are used to
make the program concise and clear.

Program

#include <cstdio> // Preprocessor Directive

#include <cstring>

const int maxm = 10 + 5; //The upper limit of the number of base
sequences

const int maxs = 60 + 5; // The upper limit of the length of a

base sequence
int main(void)

{
int loop;
scanf(*“%d”, &loop); //The number of test cases
while (loop--) {
int m;

char p[maxm][maxs];
scanf(“%d”, &m); // The number of base sequences



Linear Lists Accessed Directly m 97

for (int i = 0; i < m; i++) //The i-th base sequence
scanf(“%s”, p[iD):

int len; // The length of longest common base subsequence
char ans[maxs]; // The longest common base subsequence
len = 0;

// All subsequences for p[0] are enumerated and determined
for (int i = 0; 1 < strlen(p[0]); i++) // The starting position
of the enumerated subsequence i
for (int j =i + 2; j < strien(p[O0D; j++) { // The end
position of the enumerated subsequence j
char s[maxs]; //The enumerated
subsequence s
strncpy(s, p[0] + i, jJ -1 + 1);
s[j -1 +1] = “07;
bool ok = true; // Determine whether s is a common
subsequence for p[1]...p[m-1]
for (int k = 1; ok & k < m; k++)
if (strstr(p[k], s) == NULL)
ok = false;
// IT s is a common subsequence for p[1]..p[m-1]; and (the length of s >
len), or (the length of s == len) and s is the First for current longest
common subsequence ans in alphabetical order ; then s is adjusted as the
current longest common subsequence.
if (k& g-1i+1>1len|]]J-1+1==1Ien&&
strcmp(ans, s) > 0)) {
len = j -1 + 1;
strcpy(ans, s);

}

if (len < 3) // 1If the longest common subsequence is less than
three bases in length, display the string “no significant commonalities™;
else output the longest common base subsequence
printf(“%s\n”, “no significant commonalities”);
else {
printf(“%s\n”, ans);
}
}

return O;

In fact, the brute force algorithm is not perfect. There are a large number of repeated operations.
For example, in Figure 4.1, the sixth character in pattern P = “ATATACG” can’t be matched. The
brute force algorithm makes s increase 1 and begins the matching again from the first character
in P. We can also make s increase 2 and begin the matching again from the fourth character in P
(Figure 4.2), for the previous matching will lead to failure.

In order to avoid repeated operation and improve time complexity, the KMP algorithm is
introduced as follows.

[6lafcls[alr][a[r]afalc][c[c]alc] 7

S——|a|r|a]T|A|c|G]| P

Figure 4.1 The sixth character in pattern P = ATATACG can’t be matched.



98 ®m Data Structure Practice: For Collegiate Programming Contests and Education

[6lafcls[alr][a[r]a]alc]c[c]alc] 7

» (AT |Aa|T[A|C|G]| P

Figure 4.2 The matching from the fourth character in P.

—— [a]r]a]r]a]c]q]

22— [a[r[a]r]a]c]e]

Figure 4.3 sis increased by 2.

For Figure 4.2, why can s be increased by 2, and why can the matching begin from the fourth
character in P? It lies on pattern P.

In Figure 4.3, a prefix for P “ATA” is just a suffix for a prefix for P “ATATA”. Therefore, if
“ATATA” can be matched and “ATATAC” can’t be matched, the substring 77s + 2 .. s + 4] must be
“ATA” in T. (Because in position s “ATATA” can be matched, 77s .. s + 4] == “ATATA”.) Therefore,
the prefix for P “ATA” must be matched in position s + 2. The KMP algorithm improves the time
complexity to O(# + m) by making use of the property.

The key to the KMP algorithm is prefix function suffix[ ] for P, where suffix[g] = max{k |
(k< q) A (P[0 .. #—1] == the suthx of P[0 .. g — 1])}. That is, suffix[q] represents the length of the
longest matching substring for the suffix of P[0 ... (¢ — 1)] and the prefix of P. Calculating suffix| |
is a process matching P with P, and it can be implemented as follows:

suffix[0] = -1; //Set the boundary value for prefix function
suffix[ ] for P

suffix[1] = O;

int k = 0; //1Initialize the pointer of the
prefix function

for (int i = 2; 1 <=m; i++) {

while (k>=0 && P[k]!'= P[i-1]) //Through the pointer of the
prefix function to find position k that P is equal to P[i-1], that is, if
the target current can’t match P[i], it must be compared with P[k+1]
k = suffix[Kk];
suffix[i] = ++k;

}
With prefix function suffix[ ], the process that P matches T can be
implemented by a loop, matching T[2],..., T[nh-1] with P[O] one by one.
IT P[J] can match T[i] successfully, then P[j+1] and T[i+1] are matched;
IT P[J] can’t match T[i], let T[i] match P[suffix[j1],
P[P[suffixj11l.----- ., until it matches successfully (TLi]=P[...
P[suffix[j111) or the match fails (P[...P[suffix[j]]1]=-1). If it matches
successfully, then compare P[P[...P[suffix[j]1]11+1] with T[i+1]; and if it
the match fails, then compare P[0] with T[i+1] (O<=i<=n-1, O<=j<=m-1).

i=0; // Initialize matching pointers of T and P
3=0;

while (i<=n-1 && j<=m-1)

if g==-111TLi1==PD) // 1f prefix function can’t match T[i], then

compare P[0] with T[i+1]; If the matching is successful, then compare
Pi+1] with T[i+1]



Linear Lists Accessed Directly m 99

{ i++; j++;
}
else j= suffix[j]; // 1f TLi] and P[j] can’t match, backtrack along the

pointer of prefix function
it g>m-1) //1T all characters in P successfully match, return the
matching position in T; else return -1
return(i-(m-1));
else
return(-1);

4.6.2 Oulipo

The French author Georges Perec (1936-1982) once wrote a book, La disparition, without the
letter e. He was a member of the Oulipo group. A quote from the book:

Tout avait Pair normal, mais tout saffirmait faux. Tout avait Fair normal, d’abord, puis
surgissait 'inhumain, Paffolant. Il aurait voulu savoir ot sarticulait l'association qui
I’unissait au roman : stir son tapis, assaillant A tout instant son imagination, I’intuition
d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l'avision
d’un oubli commandant tout, ou s’abolissait la raison : tout avait I’air normal mais.

Perec would probably have scored high (or rather, low) in the following contest. People are asked
to write a perhaps even meaningful text on some subject with as few occurrences of a given “word”
as possible. Our task is to provide the jury with a program that counts these occurrences, in order
to obtain a ranking of the competitors. These competitors often write very long texts with nonsense
meaning; a sequence of 500,000 consecutive “I’s’ is not unusual. And they never use spaces.

So we want to quickly find out how often a word, that is, a given string, occurs in a text. More
formally, given the alphabet {A’, ‘B’, °C,’ ..., Z’} and two finite strings over that alphabet, a word
W and a text 7, count the number of occurrences of Win 7. All the consecutive characters of W
must exactly match consecutive characters of 7. Occurrences may overlap.

Input
The first line of the input file contains a single number: the number of test cases to follow. Each

test case has the following format:

B One line with the word W] a string over {A’, ‘B’, ‘C’, ..., “Z’}, with 1 < |W| < 10,000 (here
|W| denotes the length of the string W)
B One line with the text 7; a string over {A’, ‘B, ‘C’, ..., “Z’}, with |W]| < |7] < 1,000,000

Output

For every test case in the input file, the output should contain a single number, on a single line: the
number of occurrences of the word Win the text 7

Sample Input Sample Output
3 1
BAPC 3

(Continued)



100 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output
BAPC 0

AZA
AZAZAZA
VERDI

AVERDXIVYERDIAN
Source: BAPC 2006, Qualification.

ID for online judge: POJ 3461.

Analysis
Because the problem requires calculating the number of occurrences of the word w in the text ¢, #
is the target and w is the pattern. First, the KMP algorithm is used to calculate the prefix function
next for w, and then next is used to calculate the number of occurrences ¢z for the word w in the
text ¢. The process is as follows.

Suppose p is the matching pointer for w, and scur is the matching pointer for . Initially p = 0,
cur = 0. Then ¢ is scanned one by one:

1. If current characters for # and w are the same (¢{cur] == w[p]), then pointers for rand w are
moved forward (++cur, ++p).
2. If current characters for rand w are different (#[cur] # w[p]), then
a. Ifanalysis of characters for w is not finished (p >=0), then pointer for w is moved based
on array next (p = next{p]).
b. If analysis of characters for w is finished (p < 0), then try to match the next character of
¢ with the first character of w (++cur, p = 0).
3. If the match is successful (p == the length of w), then the number of occurrences of the
word w in the text # is cnt++; the pointer for w is moved based on array next (p = next{p]).
Try to match the next character for 2.

Repeat the match process until cur > £. And cnt is the number of occurrences of the word w
in the text z.

Program

#include <cstdio>
#include <cstring>

const int maxw = 10000 + 10; //upper limit of the length of word w
const int maxt = 1000000 + 10; // upper limit of the length
of text t

int match(char w[ ], char s[ ], int next[ 1)
{ // calculate the number of occurrences of the word
w[ ] in the text s[ ]

int cnt = 0;

int slen = strilen(s);

int wlen = strlen(w);

int p =0, cur = 0;

while (cur < slen) { // while the scan isn’t finished
if (s[cur] == w[pl) { // IT current characters for t and w are

the same (t[cur]==w[p])., then pointers for t and w are moved forward



Linear Lists Accessed Directly m 101

++cur;

++p;

} else if (p >=0) { // If analysis of characters
for w is not finished (p>=0), then pointer for w is moved based on array
next (p = next[p]); else try to match the next character of t with the
first character of w (++cur, p=0)

p = next[p];
} else {
++Cur;
p=0;
}
if (p == wlen) { // I the match is

successful ( p==the length of w ), then the number of occurrences of the
word w in the text t cnt++; pointer for w is moved based on array next
(p = next[p]); try to match the next character for t.

++cnt;
p = next[p];
}
}
return cnt;
}
int main(void)
{
int loop;
scanf(“%d”, &loop); // Number of test cases

while (loop--) {
char w[maxw], t[maxt];
scanf(“%s%s”, w, t); // word w and text t
int suffix[maxw]; // prefix function for word w
suffix[0] = -1;
suffix[1] = O;
int p = 0;
for (int cur = 2; cur <= strlen(w); cur++) {
while (p >= 0 && w[p] '= w[cur - 1])
p = suffix[pl;
suffix[cur] = ++p;

printf(“%d\n”, match(w, t, suffix)); // the number of
occurrences of the word w in the text t

}

return O;

4.7 Problems

4.7.1 Moscow Time

In email, the following format for date and time setting is used:

EDATE::=Day_of week, Day_of" month Month Year Time Time_zone

Here EDATE is the name of the date and time format; the text to the right from “:=”
defines how date and time are written in this format. Below the descriptions of EDATE fields
are presented:



102 m Data Structure Practice: For Collegiate Programming Contests and Education

Day_of_week The name of a day of the week. Possible values are MON, TUE, WED, THU,
FRI, SAT, SUN. The name is followed by the “” character (a comma).

Day_of_month A day of the month. Set by two decimal digits.

Month The name of the month. Possible values are JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, and DEC.

Year Set by two or four decimal digits. If a year is set by two decimals, it is
assumed that this is a number of the year of the twentieth century. For
instance, 74 and 1974 set a year of 1974.

Time Local time in the format hours:minutes:seconds, where hours, minutes,
and seconds are made up of two decimal digits. The time keeps within the
limits from 00:00:00 to 23:59:59.

Time_zone Offset of local time from Greenwich Mean Time. It is set by the difference
sign “+” or “~" and by a sequence of four digits. The first two digits set the
hours and the last two the minutes of the offset value. The absolute value
of the difference does not exceed 24 hours. The time zone can also be
presented by one of the following names:

Name Digital Value
uT —0000
GMT —0000
EDT —0400
CDT —0500
MDT —0600
PDT —0700

Both adjacent fields of EDATA are separated with exactly one space. Names of day of the
week, month, and time zone are written in capitals. For instance, 10 a.m. of the contest day in
St. Petersburg can be presented as

TUE, 03 DEC 96 10:00:00 +0300

Write a program that transforms the given date and time in EDATE format to the correspond-
ing date and time in Moscow time zone. So-called “summer time” is not taken into consideration.
Your program should rely on the predefined correctness of the given Day_of week and Time_zone.
Note

B Moscow time is 3 hours later than Greenwich Mean Time (time zone +0300).

B January, March, May, July, August, October, and December have 31 days. April, June,
September, and November have 30 days. February, as a rule, has 28 days, save for the case
of the leap year (29 days).

B A year is a leap year if one of the two following conditions is valid:

1. Its number is divisible by 4 and is not divisible by 100.
2. Its number is divisible by 400.

Input

Input contains date and time in EDATE format in the first line. The minimum permissible year
in the input data is 0001, maximum 9998. The input EDATA string does not contain leading and

trailing spaces.



Output

Output must contain a single line with date and time of the Moscow time zone in EDATE format.
In the output EDATE string a year can be presented in any of the two allowed ways. The output

Linear Lists Accessed Directly ®m 103

string should not include leading and trailing spaces.

Sample Input

Sample Output

SUN, 03 DEC 1996 09:10:35 GMT

SUN, 03 DEC 1996 12:10:35 +0300

Source: ACM Northeastern Europe 1996.

IDs for online judges: POJ 1446, ZOJ 1323, UVA 505.

Hint

First, date and time in EDATE format are represented as numbers. Suppose the following:

week is the variable for the day of the week, where week == 0 corresponds to “SUN,”
week == 1 corresponds to “MON,” ..., week == 6 corresponds to “SAT.”

year is the variable for the number of the year; if a year is given by two decimals, 1900 must
be added.

month is the variable for the month, where month == 1 corresponds o “JAN,” ...,
month == 12 corresponds to “DEC.”

day is the variable for a day of the month.

hour, minute, and second are variables for hour, minute, and second. hour and minute need to
be adjusted based on the current time zone, and second need not be changed.

zt is the variable for time zone, where zz == 0 corresponds to UT, ..., zz== 5 corresponds to
PDT. Based on Greenwich Time, the adjustment for the z¢th time zone is 4[z#]. Accordi g to
the problem description, £[0] = 3, 4[1] = 3, d[2] =7, d[3] = 8, d[4] = 9, and 4[5] = 10. If the
input time is in time zone z#, then hour is adjusted hour += d[zt]; otherwise, it is Greenwich
Time. Sign ¢ should be input to calculate the adjustment to hour @/ and minute dm. If
sign ¢ is negative, then hour —= dh, minute += dm; if sign ¢ is positive, then hour += db,
minute —= dm.

Then time and date are normalized based on 60 minutes an hour and 24 hours a day. When

minutes are normalized, hour and date (day, month, week, and year) may be changed.

1. Minute: If minute < 0, then minute += 60, and —hour; if minute > 60, then minute —=60,
and ++hour.

2. Hour: If hour < 0, then hour += 24, week = (week —1 + 7)% 7, and ——day. If day < 0,
then ——month. If month < 1, then month = 12, —year, and day = day + the number of
days in the month of the year. If hour > 24, then hour — = 24, week = (week + 1)% 7, and
++day. If day > the number of days in the month of the year, then day = 1, and ++month. If
month > 12, then month = 1, ++year.

Then date and time of the Moscow time zone in EDATE format is obtained: week is the

string for the day of the week; day and month is the string for the month; and year, hour, minute,
second.



104 ®m Data Structure Practice: For Collegiate Programming Contests and Education

4.7.2 Double Time

In 45 BC, a standard calendar was adopted by Julius Caesar—each year would have 365 days,
and every fourth year have an extra day—the 29th of February. However, this calendar was not
quite accurate enough to track the true solar year, and it became noticeable that the onset of the
seasons was shifting steadily through the year. In 1582 Pope Gregory XIII ruled that a new style
calendar should take effect. From then on, century years would only be leap years if they were
divisible by 400. Furthermore, the current year needed an adjustment to realign the calendar with
the seasons. This new calendar and the correction required were adopted immediately by Roman
Catholic countries, where the day following Thursday, October 4, 1582, was Friday, October 15,
1582. The British and Americans (among others) did not follow suit until 1752, when Wednesday,
September 2 was followed by Thursday, September 14. (Russia did not change until 1918, and
Greece waited until 1923.) Thus, there was a long period of time when history was recorded in
two different styles.

Write a program that will read in a date, determine which style it is in, and then convert it to
the other style.

Input

Input will consist of a series of lines, each line containing a day and date (such as Friday, December
25, 1992). Dates will be in the range January 1, 1600 to December 31, 2099, although converted
dates may lie outside this range. Note that all names of days and months will be in the style shown;
that is, the first letter will be capitalized with the rest lowercase. The file will be terminated by a
line containing a single ‘#’.

Output

Output will consist of a series of lines, one for each line of the input. Each line will consist of a date
in the other style. Use the format and spacing shown in the example and described above. Note
that there must be exactly one space between each pair of fields. To distinguish between the styles,
dates in the old style must have an asterisk (*°) immediately after the day of the month (with no
intervening space). Note that this will not apply to the input.

Sample Input Sample Output

Saturday 29 August 1992
Saturday 16 August 1992
Wednesday 19 December 1991
Monday 1 January 1900

#

Saturday 16* August 1992
Saturday 29 August 1992
Wednesday 1 January 1992

Monday 20* December 1899

Source: New Zealand Contest 1992.
ID for online judge: UVA 150.

Hint

Julius Caesar’s calendar is called old calendar, and Pope Gregory XIII’s calendar is called new
calendar. Suppose week represents day of week, and day, month, and year represent input date




Linear Lists Accessed Directly m 105

(day, month, and year). Based on the problem description, in the old calendar, a year that is a
multiple of 4 is a leap year, and in the new calendar, a year that is a multiple of 4 is a leap year
unless it is a multiple of 100 that is not a multiple of 400.
According to the old calendar, the number of days that elapsed from January 1, 0000 AD to
month day — 1, year is calculated as follows:
month—1
year —

d1=((year —1)* 365+ B + z (Number _of _days _ for _the _ith _month)—2)

i=1

+day —1

According to the new calendar, the number of days that elapsed from January 1, 0000 AD to
month day — 1, year is calculated as follows:

year —1 _ year — 1 year—1
4 100 400

d2 = ((year —1)*365+

month—1
+ z (Number _of _days _ for _the _ith_month))+ day —1

i=1

1. If (1 + d1) % 7 == week, then the current calendar is the old calendar, and the date of the
new calendar should be output. The process is as follows:
— Adjustment is based on the rule of leap year:

year =1 year —1
100 400

day = day + 2

— Normalize the date: If day is larger than the number of days in month, year for the old
calendar, then decrease the number of days in the month, and month++. If month is
larger than 12, then month = 1 and year++.

2. If (1 + d1) % 7 # week, then the current calendar is the new calendar, and the date of the old
calendar should be output. The process is as follows:

— Adjust day based on leap years:

-1 -1
year—1  year

day = day —
4 4 100 400

+2

— Normalize the date: If day is less than 1, then month——. If month is less than 1, then
month = 12 and year——. Then calculate the number of days & in month, year under the

old calendar, day = day + d.

4.7.3 Maya Calendar

During his last sabbatical, professor M.A. Ya made a surprising discovery about the old Maya
calendar. From an old knotted message, the professor discovered that the Maya civilization used
a 365-day-long year, called Haab, which had 19 months. Each of the first 18 months was 20 days



106 ®m Data Structure Practice: For Collegiate Programming Contests and Education

long, and the names of the months were pop, no, zip, zotz, tzec, xul, yoxkin, mol, chen, yax, zac,
ceh, mac, kankin, muan, pax, koyab, and cumhu. Instead of having names, the days of the months
were denoted by numbers starting from 0 to 19. The last month of Haab was called uayet and had
5 days denoted by numbers 0, 1, 2, 3, and 4. The Maya believed that this month was unlucky,
the court of justice was not in session, the trade stopped, and people did not even sweep the floor.

For religious purposes, the Maya used another calendar in which the year was called Tzolkin
(holly year). The year was divided into 13 periods, each 20 days long. Each day was denoted by a
pair consisting of a number and the name of the day. They used 20 names, imix, ik, akbal, kan,
chicchan, cimi, manik, lamat, muluk, ok, chuen, eb, ben, ix, mem, cib, caban, eznab, canac, and
ahau, and 13 numbers, both in cycles.

Notice that each day has an unambiguous description. For example, at the beginning of the
year the days were described as follows: 1 imix, 2 ik, 3 akbal, 4 kan, 5 chicchan, 6 cimi, 7 manik,
8 lamat, 9 muluk, 10 ok, 11 chuen, 12 eb, 13 ben, 1 ix, 2 mem, 3 cib, 4 caban, 5 eznab, 6 canac,
7 ahau, and again in the next period, 8 imix, 9 ik, 10 akbal, and so forth.

Years (both Haab and Tzolkin) were denoted by numbers 0, 1, : : :, where the number 0 was
the beginning of the world. Thus, the first day was

Haab: 0. pop 0
Tzolkin: 1 imix 0

Help Professor M.A. Ya and write a program to convert the dates from the Haab calendar to
the Tzolkin calendar.

Input
The date in Haab is given in the following format:
NumberOfTheDay. Month Year

The first line of the input file contains the number of the input dates in the file. The next 7 lines
contain 7 dates in the Haab calendar format, each in separate lines. The year is smaller than 5000.

Output
The date in Tzolkin should be in the following format:
Number NameOfTheDay Year

The first line of the output file contains the number of the output dates. In the next 7 lines,
there are dates in the Tzolkin calendar format, in the order corresponding to the input dates.

Sample Input Sample Output
3 3

10. zac 0 3 chuen0

0. pop 0 1imix 0

10. zac 1995 9 cimi 2801

Source: ACM Central Europe 1995.
IDs for online judges: POJ 1008, UVA 300.



Linear Lists Accessed Directly m 107

Hint
Suppose the date of the Haab calendar is month date, year. The number of days from the beginning
of the world is day = 365*year + (month — 1)*20 + date + 1.

Suppose the date of the Tzolkin calendar is num (period) word (day), year. There are 260 days
every year for the Tzolkin calendar. (There are 13 periods every year, and there are 20 days for
each period.) If day % 260 = 0, the day must be the last day of a year in Tzolkin calendar, that is,
year = day/260 — 1; num = 13; word = 20. If day % 260 # 0, then year = day/260; num = (day %
13==07?13: day % 13); word = (day — 1) % 20 + 1.

4.7.4 Time Zones

Prior to the late nineteenth century, timekeeping was a purely local phenomenon. Each
town would set their clocks to noon when the sun reached its zenith each day. A clockmaker
or town clock would be the official time, and the citizens would set their pocket watches
and clocks to the time of the town—enterprising citizens would offer their services as mobile
clock setters, carrying a watch with the accurate time to adjust the clocks in customers” homes
on a weekly basis. Travel between cities meant having to change one’s pocket watch upon
arrival.

However, once railroads began to operate and move people rapidly across great distances, time
became much more critical. In the early years of the railroads, the schedules were very confusing
because each stop was based on a different local time. The standardization of time was essential to
efficient operation of railroads.

In 1878, Canadian Sir Sanford Fleming proposed the system of worldwide time zones that
we use today. He recommended that the world be divided into 24 time zones, each spaced 15° of
longitude apart. Since the earth rotates once every 24 hours and there are 360° of longitude, each
hour the earth rotates 1/24 of a circle or 15° of longitude. Sir Fleming’s time zones were heralded
as a brilliant solution to a chaotic problem worldwide.

U.S. railroad companies began utilizing Fleming’s standard time zones on November 18,
1883. In 1884 an International Prime Meridian Conference was held in Washington, DC,
to standardize time and select the Prime Meridian. The conference selected the longitude of
Greenwich, England, as 0° longitude and established the 24 time zones based on the Prime
Meridian. Although the time zones had been established, not all countries switched immediately.
Though most U.S. states began to adhere to the Pacific, Mountain, Central, and Eastern time
zones by 1895, Congress didn’t make the use of these time zones mandatory until the Standard
Time Act of 1918.

Today, many countries operate on variations of the time zones proposed by Sir Fleming.
All of China (which should span five time zones) uses a single time zone—8 hours ahead
of Coordinated Universal Time (known by the abbreviation UTC, based on the time zone
running through Greenwich at 0° longitude). Russia adheres to its designated time zones,
although the entire country is on permanent Daylight Saving Time and is an hour ahead of
their actual zones. Australia uses three time zones—its central time zone is a half hour ahead
of its designated time zone. Several countries in the Middle East and South Asia also utilize
half-hour time zones.

Since time zones are based on segments of longitude and lines of longitude narrow at the poles,
scientists working at the North and South Poles simply use UTC. Otherwise, Antarctica would be
divided into 24 very thin time zones.



108 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Time zones have recently been given standard capital-letter abbreviations as follows:

UTC Coordinated Universal Time

GMT Greenwich Mean Time, defined as UTC

BST British Summer Time, defined as UTC + 1 hour

IST Irish Summer Time, defined as UTC + 1 hour

WET Western Europe Time, defined as UTC

WEST  Western Europe Summer Time, defined as UTC + 1 hour
CET Central Europe Time, defined as UTC + 1

CEST  Central Europe Summer Time, defined as UTC + 2

EET Eastern Europe Time, defined as UTC + 2

EEST  Eastern Europe Summer Time, defined as UTC + 3

MSK Moscow Time, defined as UTC + 3

MSD Moscow Summer Time, defined as UTC + 4

AST Atlantic Standard Time, defined as UTC — 4 hours

ADT Atlantic Daylight Time, defined as UTC — 3 hours

NST Newfoundland Standard Time, defined as UTC — 3.5 hours
NDT  Newfoundland Daylight Time, defined as UTC — 2.5 hours
EST Eastern Standard Time, defined as UTC — 5 hours

EDT Eastern Daylight Saving Time, defined as UTC — 4 hours
CST Central Standard Time, defined as UTC — 6 hours

CDT  Central Daylight Saving Time, defined as UTC — 5 hours
MST Mountain Standard Time, defined as UTC — 7 hours

MDT  Mountain Daylight Saving Time, defined as UTC — 6 hours
PST Pacific Standard Time, defined as UTC — 8 hours

PDT Pacific Daylight Saving Time, defined as UTC — 7 hours

HST Hawaiian Standard Time, defined as UTC — 10 hours

AKST  Alaska Standard Time, defined as UTC — 9 hours

AKDT  Alaska Standard Daylight Saving Time, defined as UTC — 8 hours
AEST  Australian Eastern Standard Time, defined as UTC + 10 hours
AEDT  Australian Eastern Daylight Time, defined as UTC + 11 hours
ACST  Australian Central Standard Time, defined as UTC + 9.5 hours
ACDT  Australian Central Daylight Time, defined as UTC + 10.5 hours
AWST  Australian Western Standard Time, defined as UTC + 8 hours

Given the current time in one time zone, you are to compute what time it is in another time
zone.

Input

The first line of input contains /N, the number of test cases. For each case a line is given
with a time and two time zone abbreviations. Time is given in standard a.m./p.m. formart,
with midnight denoted “midnight” and noon denoted “noon” (12:00 a.m. and 12:00 p.m. are
oxymorons).



Output

Linear Lists Accessed Directly m 109

For each case, assuming the given time is the current time in the first time zone, give the current

time in the second time zone.

Sample Input

Sample Output

4

noon HST CEST
11:29 a.m. EST GMT
6:01 p.m. CST UTC

12:40 p.m. ADT MSK

midnight
4:29 p.m.
12:01 a.m.
6:40 p.m.

Source: Waterloo Local Contest, September 28, 2008.

IDs for online judges: POJ 2351, ZOJ 1916, UVA 10371.

Hint

Suppose #d[i] is the hour increment for the 7th time zone with respect to UTC (1 <7 < 24). For a
test case, the first time zone is time zone 7, and the second time zone is time zone j. The time of a
time zone is represented with hour and minute.

1. For convenience, the time of time zone i is represented with the 24-hour system.
a. If “noon” is input, then hour = 12 and minute = 0.
b. If “midnight” is input, then hour = 0 and minute = 0.
c. If hour, minute, and “p.m.” (or “a.m.”) are input, then
If hour == 12 and “a.m.” is input, then hour is adjusted (hour = 0).
If hour # 12 and “p.m.” is input, then hour = hour + 12.
2. The time in time zone 7 is transferred into the time in time zone ;.
Because the time difference between the two time zones is #d(j] — td[j], hour = hour + int(td
[7] — #d[j]), minute = minute + int(60.0*(delta — int(¢d|j] — #}]))), then hour and minute are

adjusted as follows:

a. If the time difference between two time zones is one day, then
If minute < 0, then hour = hour — 1, minute = minute + 60.
If minute > 60, then hour = hour + 1, minute = minute — 60.
b. hour must be adjusted in [0 .. 23]:
If hour < 0, then hour = hour + 24.
If hour > 24, then hour = hour — 24.
3. The time in time zone j is transferred into the 12-hour system:

o0 oP

If hour == 12 and minute == 0, then output “noon.”

If hour == 0 and minute == 0, then output “midnight.”

If hour == 0, then output 12; else, output (hour > 12 2 hour — 12 : hour).
Output minute.

If hour < 12, then output “a.m.”; else. output “p.m.”

4.7.5 Polynomial Remains

Given the polynomial a(x) =a,x"+ ... + a;x + a,, compute the remainder 7(x) when a(x) is divided

by x*+ 1 (Figure 4.4).



110 ®m Data Structure Practice: For Collegiate Programming Contests and Education

x3 xs—xz x3—x2+x
x+1 |t +x+1 x+1|a* +x+1 x+1 | & +x+1
x4+x3 x4+ x3 x4+x3
-3 +x+1 -3 +x+1 —x3 +x+1
—xs—xz —x3—x2
+x+1 rx+l
X2+

Figure 4.4 Polynomial remains.

Input

The input consists of a number of cases. The first line of each case specifies the two integers # and 4
(0< 7, £<10,000). The next 7 + 1 integers give the coeflicients of 2(x), starting from 4, and ending
with a,. The input is terminated if 7 = kb = -1.

Output

For each case, output the coeflicients of the remainder on one line, starting from the constant
coeflicient 7,. If the remainder is 0, print only the constant coeflicient. Otherwise, print only
the first 4 + 1 coefficients for a remainder of degree d. Separate the coeflicients by a single
space.

You may assume that the coefficients of the remainder can be represented by 32-bit integers.

Sample Input Sample Output

52 32
633201 -3 -1
52 -2
003201 -12-3
41 0
14111 0

63 123 4
23-34101
10

51

00

7

35




Linear Lists Accessed Directly m 111

Sample Input Sample Output

123 4

11

Source: Alberta Collegiate Programming Contest,
October 18, 2003.

ID for online judge: POJ 2527.

Hint
Suppose array « is used to store the remainder, the length of the array is # + 1, and coefficients of
the remainder are stored in #[0 .. #]. Initially, an array is used to store polynomial a(x):

for (i=0; i<=n; i++)

scanf(“%d”, &a[i]):;
The algorithm that a(x) is repeatedly divided by x+1 is as follows:
Initially i=n. If i>=k, then a(x) can be divided by xk+1 repeatedly until
i<k:

for (i=n; i>=k; i--) // for each non-zero coefficient in a[n] ..
a[k],division is done
if (a[i]!'=0) { // coefficients for the remainder must

be adjusted
ali-k] += (-a[i]):
a[i]=0;

}
Then the length of array a is adjusted:

while (n >= 0 && ! a[n]) n--;
Finally a[0..n-1] is the coefficients of the remainder and outputted:
for (i=0; i<n; i++)

printf(“%d “, a[il);

4.7.6 Factoring a Polynomial

Recently Georgie has learned about polynomials. A polynomial in one variable can be viewed as a
formal sum 2,x" + a, | x"' + ... + a;x + a,, where x is the formal variable and 4, are the coefficients
of the polynomial. The greatest 7 such that 2! = 0 is called the degree of the polynomial. If 2! = 0
for all 7, the degree of the polynomial is considered to be —c0. If the degree of the polynomial is
zero or —oo, it is called trivial; otherwise, it is called nontrivial.

What really impressed Georgie while studying polynomials was the fact that in some cases
one can apply different algorithms and techniques developed for integer numbers to polynomials.
For example, given two polynomials, one may sum them up, multiply them, or even divide one of
them by the other.

The most interesting property of polynomials, from Georgie’s point of view, is the fact that a
polynomial, just like an integer number, can be factorized. We say that the polynomial is irreduc-
ible if it cannot be represented as the product of two or more nontrivial polynomials with real
coeflicients. Otherwise, the polynomial is called reducible. For example, the polynomial x?~2x + 1
is reducible because it can be represented as (x — 1)(x — 1), while the polynomial x? + 1 is not. It
is well known that any polynomial can be represented as the product of one or more irreducible
polynomials.



112 m  Data Structure Practice: For Collegiate Programming Contests and Education

Given a polynomial with integer coeflicients, Georgie would like to know whether it is irreduc-
ible. Of course, he would also like to know its factorization, but such a problem seems to be too
difficult for him now, so he just wants to know about reducibility.

Input

The first line of the input contains z—the degree of the polynomial (0 < 7 < 20). The next line
contains 7 + 1 integer numbers, 4,, 4, 1, ..., 4;, a;—polynomial coeflicients (-1000 < #,< 1000,
al=0).

n—13

Output
Output YES if the polynomial given in the input file is irreducible and NO in the other case.

Sample Input Sample Output
2 NO
1-21

Source: ACM Northeastern Europe 2003, Northern Subregion.
ID for online judge: POJ 2126.

Hint
If the degree of the polynomial 7z < 2, then the polynomial is irreducible; if # > 2, then we can
prove that the polynomial is reducible; and if 7 == 2, we can determine whether ax? + bx + ¢ is

reducible or not based on Vieta’s theorem: if 42 — 4ac > 0, the polynomial is reducible; otherwise,
the polynomial is irreducible.

4.7.7 What’s Cryptanalysis?

Cryptanalysis is the process of breaking someone else’s cryptographic writing. This sometimes
involves some kind of statistical analysis of a passage of (encrypted) text. Your task is to write a
program that performs a simple analysis of a given text.

Input

The first line of input contains a single positive decimal integer 7. This is the number of lines that
follow in the input. The next 7 lines will contain zero or more characters (possibly including white
space). This is the text that must be analyzed.

Output

Each line of output contains a single uppercase letter, followed by a single space, then followed by
a positive decimal integer. The integer indicates how many times the corresponding letter appears
in the input text. Upper- and lowercase letters in the input are to be considered the same. No other
characters must be counted. The output must be sorted in descending count order; that is, the
most frequent letter is on the first output line, and the last line of output indicates the least fre-
quent letter. If two letters have the same frequency, then the letter that comes first in the alphabet
must appear first in the output. If a letter does not appear in the text, then that letter must not
appear in the output.



Linear Lists Accessed Directly m 113

Sample Input Sample Output

3 S7
This is a test. T6
Countme 12345. 15
Wow!!!! Is this question easy? E4
O3
A2
H2
N2
U2
W2
C1
M1
Q1
Y1

Source: University of Valladolid Contest, September 2000.
ID for online judge: UVA 10008.

Hint
In the set of letters, the serial number for “A”(“a”) is 0, the serial number for “B”(“b”) is 1, ..., and
the serial number for “Z”(“z”) is 25. That is, for letter ¢, the serial number is zolower(c) — “a”. Suppose
cnt[d] indicates how many times the corresponding letter appears in the input text (0 <7 < 25).
First, characters are repeatedly input, and how many times every letter appears is accumulated,
until EOF is input.
Then, for array cnt, repeat the process until elements in array cn# all become 0: every time, find
the serial number £ that appears most, and output its corresponding letter (its ASCII is £ + “A”)
and cntlk); then cntlk] is set to 0.

4.7.8 Run-Length Encoding

Your task is to write a program that performs a simple form of run-length encoding, as described
by the rules below.

Any sequence of between two and nine identical characters is encoded by two characters. The
first character is the length of the sequence, represented by one of the characters 2-9. The second
character is the value of the repeated character. A sequence of more than nine identical characters
is dealt with by first encoding nine characters, then the remaining ones.

Any sequence of characters that does not contain consecutive repetitions of any characters is
represented by a 1 character followed by the sequence of characters, terminated with another 1. If
a 1 appears as part of the sequence, it is escaped with a 1; thus, two 1 characters are output.



114 m  Data Structure Practice: For Collegiate Programming Contests and Education

Input

The input consists of letters (both upper- and lowercase), digits, spaces, and punctuation. Every
line is terminated with a new-line character, and no other characters appear in the input.

Output

Each line in the input is encoded separately, as described above. The new line at the end of each
line is not encoded, but is passed directly to the output.

Sample Input Sample Output
AAAAAABCCCC 6A1B14C
12344 11123124

Source: Ulm Local Contest 2004.

IDs for online judges: POJ 1782, ZOJ 2240.

Hint by the Problemsetter (http://www.informatik.uni-ulm.de/acm/Locals/2004/)

The input is processed line by line. Every line is processed by a loop that checks if a sequence
of consecutive repetitions starts at the current position. If this is the case, the length of the
repetition is calculated up to a maximal length of 9 characters, and its encoding is output.
Otherwise, the next sequence of consecutive repetitions, if any, is located and the intermedi-
ate characters are encoded and output. This procedure is continued until the end of the line is
reached.

4.7.9 Zipper

Given three strings, you are to determine whether the third string can be formed by combining
the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must
stay in its original order.

For example, consider forming “tcraete” from “cat” and “tree™

String A: cat
String B: tree
String C: tcraete

As you can see, we can form the third string by alternating characters from the two strings. As
a second example, consider forming “catrtee” from “cat” and “tree”™

String A: cat
String B: tree
String C: catrtee

Finally, notice that it is impossible to form “ctraree” from “cat” and “tree”.
Input

The first line of input contains a single positive integer from 1 through 1000. It represents the
number of data sets to follow. The processing for each data set is identical. The data sets appear on
the following lines, one data set per line.



Linear Lists Accessed Directly m 115

For each data set, the line of input consists of three strings, separated by a single space. All
strings are composed of upper- and lowercase letters only. The length of the third string is always
the sum of the lengths of the first two strings. The first two strings will have lengths between 1
and 200 characters, inclusive.

Output
For each data set, print
Data set n: yes

if the third string can be formed from the first two or
Data set n: no

if it cannot. Of course, 7 should be replaced by the data set number. See the sample output below
for an example.

Sample Input Sample Output
3 Data set 1: yes
cat tree tcraete Data set 2: yes
cat tree catrtee Data set 3: no
cat tree cttaree

Source: ACM Pacific Northwest 2004.
IDs for online judges: POJ 2192, ZOJ 2401, UVA 3195.

Hint

Suppose A = aya, ... a,_,, where its prefix A, = aya, ...a; 0 < i< n-1); B=byb, ... b,
where its prefix B;= byb, ... 6; (0 <j<m—1); C= ¢y, ... ¢,,, 1, where its prefix C,= ¢, ... ¢
(0< k< n+m—1);and canli][j] is the sign that A, , (the prefix of A whose length is 7) and B,
(the prefix of B whose length is /) can successfully constitute C;,; , (the prefix of C whose length is
i + j) or not. Obviously, can[0][0] = true.

Ifi>1and Cipjor == a;y, canlillj] = canli][]] || canli — 1][j]; that is, canli][j] is determined
whether A4, , and B;_; can constitute Cl-+j-_2 or not. If j > 1 and Crpjo == b]-_l, canlillj] = canld][}]
|| canli][j — 1]; that is, canli][j] is determined whether 4, ; and B, can constitute C;,
O0<i<nm 0<j<m).

Finally, can[n][m] is the sign whether 4 and B can constitute C or not.

_, Or not

4.7.10 Anagram Groups

World-renowned Prof. A.N. Agram’s current research deals with large anagram groups. He has
just found a new application for his theory on the distribution of characters in English language
texts. Given such a text, you are to find the largest anagram groups.

A text is a sequence of words. A word w is an anagram of a word v if and only if there is some per-
mutation p of character positions that takes w to ». Then, w and v are in the same anagram group. The
size of an anagram group is the number of words in that group. Find the five largest anagram groups.



116 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Input

The input contains words composed of lowercase alphabetic characters, separated by white space.
It is terminated by EOF.

Output

Output the five largest anagram groups. If there are less than five groups, output them all. Sort the
groups by decreasing size. Break ties lexicographically by the lexicographical smallest element. For
each group output, print its size and its member words. Sort the member words lexicographically
and print equal words only once.

Sample Input Sample Output

undisplayed Group of size 5: caret carte cater crate trace.
trace Group of size 4: abet bate beat beta.

tea Group of size 4: ate eat eta tea.

singleton Group of size 1: displayed.

eta Group of size 1: singleton.

eat
displayed
crate
cater
carte
caret
beta

beat

bate

ate

abet

Source: Ulm Local Contest 2000.
IDs for online judges: POJ 2408, ZOJ 1960.

Hint by the Problemsetter (http://www.informatik.uni-ulm.de/acm/Locals/2000/)

Since anagram groups are classes of an equivalence relation, we pick as a representative element
of each class the sorted version of a member. Then, it takes logarithmic time to find the representa-
tive and update the class, as we read the words. We sort the classes by their size and their smallest
member. We take the first five and output them in sorted order.

Although the problem is not too difficult, many mistakes can be made when writing a pro-
gram. Some of them are



Linear Lists Accessed Directly m 117

B Too small-dimensioned arrays (assuming too few words or groups)

B Sorting equal-sized groups not by their smallest elements but by their (sorted) representatives

B Words that occur multiple times in the input must be counted multiple times, but output
only once

B Too many groups in the output

B Inefficient handling of the sorted data structures (leads to Time Limit Exceeded (TLE))

4.7.11 English Number Translator

In this problem, you will be given one or more integers in English. Your task is to translate these num-
bers into their integer representation. The numbers can range from —999,999,999 t0 999,999,999. The
following is an exhaustive list of English words that your program must account for: negasive, zero, one,
two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fificen, sixteen, seventeen,

eighteen, nineteen, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, hundred, thousand, million.
Input
The input consists of several instances. Notes on input follow:
1. Negative numbers will be preceded by the word negative.
2. The word “hundred” is not used when “thousand” could be. For example, 1500 is written
“one thousand five hundred,” not “fifteen hundred.”
The input is terminated by an empty line.
Output

The answers are expected to be on separate lines with a new line after each.

Sample Input Sample Output

six 6

negative seven hundred twenty-nine -729

one million one hundred one 1000101

eight hundred fourteen thousand 814022
twenty-two

Source: CTU Open 2004.
IDs for online judges: UVA 486, POJ 2121, ZOJ 2311.

Hint

Suppose word is a list used to store 32 words for 0, 1, 2, ..., 20, 30, 40, 50, 60, 70, 80, 90,
hundred, thousand, million, negative.

Indexes for word[0] ... word[20] correspond to their strings; that is, word[i] corresponds
to integer 7 (0 < 7 < 20); from word[21] to word[27], wordl[i] corresponds to integer (i — 18)*10
(21 £7<27). word[28], word[29], and word[30] correspond to the strings “hundred,” “thousand,”
and “million,” respectively. is/Veg is the negative sign.

Input words repeatedly. For each word s,



118 ®m Data Structure Practice: For Collegiate Programming Contests and Education

1. Initially isNeg is false. If s is word[31], then isNeg=true; input
the next word s;
2. Calculate:
num=0;
Enter the loop:
Calculate the index r for s in word:
IT re[0, 27], then

r r <20
num=num+ ;
(r -18)*10 21 <r <27

If re[28, 31], then

num=num % b*b +Lm;mJ * b

(b 1s the number that word[r] corresponds to);
Get character c; if ¢ is “\n” or EOF, then exit the loop; else,
input word s;

3. ITf isNeg is true, then num is negative; output num.

4.7.12 Message Decowding

The cows are thrilled because they’ve just learned about encrypting messages. They think they will
be able to use secret messages to plot meetings with cows on other farms.

Cows are not known for their intelligence. Their encryption method is nothing like Data
Encryption Standard (DES) or Blowfish or any of those really good secret coding methods. No,
they are using a simple substitution cipher.

The cows have a decryption key and a secret message. Help them decode it. The key looks like this:

yrwhsoujgcxgbativndfezmlpk

An @ in the secret message really means ‘y’, a ‘b’ in the secret message really means r, a ‘¢’
decrypts to ‘w’, and so on. Blanks are not encrypted; they are simply kept in place.

Input text is in upper- or lowercase; both decrypt using the same decryption key, keeping the
appropriate case, of course.

Input

Line 1: 26 lowercase characters representing the decryption key
Line 2: As many as 80 characters that are the message to be decoded

Output

Line 1: A single line that is the decoded message. It should have the same length as the second line
of input.

Sample Input Sample Output

eydbkmiqugjxlvtzpnwohracsf Jump the fence when you seeing me coming

Kifq oua zarxa suar bti yaagrj fa xtfgrj

Source: USACO, March 2003, Orange.
ID for online judge: POJ2141.



Linear Lists Accessed Directly m 119

Hint
Suppose key is the decryption key. In a secret message, ‘@’ is represented by 4ey[0], ..., and 2’ is
represented by key[25].

Character ¢ is input repeatedly until ¢ is EOF. For each character ¢, we deal with it as follows:

1. If cisn’t a letter, then ¢ is output directly.
2. If ¢ is a letter, then
If ¢ is a lowercase letter, then key[c — ‘@] is output.
If ¢ is an uppercase letter, then key[c —‘A’] — ‘@” + ‘A’ is output.

4.7.13 Common Permutation

Given two strings of lowercase letters, @ and b, print the longest string x of lowercase letters such
that there is a permutation of x that is a subsequence of @ and there is a permutation of x that is a
subsequence of b.

Input

Input file contains several lines of input. Consecutive two lines make a set of input. That means in
the input file, lines 1 and 2 are a set of input, lines 3 and 4 are a set of input, and so on. The first
line of a pair contains & and the second contains b. Each string is on a separate line and consists
of at most 1000 lowercase letters.

Output

For each set of input, output a line containing . If several x satisfy the criteria above, choose the
first one in alphabetical order.

Sample Input Sample Input
pretty e

women nw

walking et

down

the

street

Source: World Finals Warm-Up Contest, Problem
Source: University of Alberta Local Contest.

ID for online judge: UVA 10252.

Hint
Because a permutation of x is a common subsequence of z and &, the number of a letter in x can’t
exceed the number of the letter in # and &; that is, the number of letter ¢ in x = min {the number
of letter ¢ in 4, the number of letter ¢ in 4}.

Suppose 4[i] is the number of the letter whose serial number is 7 in #, and 4[] is the number of
the letter whose serial number is 7 in &; that is, the serial number of a’ is 0, the serial number of ‘b’
is 1, ..., and the serial number of ‘Z’ is 25; 0 < i < 25.



120 m Data Structure Practice: For Collegiate Programming Contests and Education

When two strings are input, arrays  and & are calculated. Then every letter’s serial number i
is enumerated (0 < 7 < 25), and the number of the corresponding letter (its ASCII code is 7 + @)
in x is min{a(4], 6[7]}.

4.7.14 Human Gene Functions

It is well known that a human gene can be considered a sequence, consisting of four nucleotides,
which are simply denoted by four letters, A, C, G, and T. Biologists have been interested in iden-
tifying human genes and determining their functions, because these can be used to diagnose
human diseases and design new drugs for them.

A human gene can be identified through a series of time-consuming biological experiments,
often with the help of computer programs. Once a sequence of a gene is obtained, the next job is
to determine its function.

One of the methods for biologists to use in determining the function of a new gene sequence
that they have just identified is to search a database with the new gene as a query. The database to be
searched stores many gene sequences and their functions—many researchers have been submitting
their genes and functions to the database and the database is freely accessible through the Internet.

A database search will return a list of gene sequences from the database that are similar to the
query gene.

Biologists assume that sequence similarity often implies functional similarity. So, the function
of the new gene might be one of the functions that the genes from the list have. To exactly deter-
mine which one is right, another series of biological experiments will be needed.

Your job is to make a program that compares two genes and determines their similarity as
explained below. Your program may be used as a part of the database search if you can provide an
efficient one.

Given two genes AGTGATG and GTTAG, how similar are they? One of the methods to
measure the similarity of two genes is called alignment. In an alignment, spaces are inserted, if
necessary, in appropriate positions of the genes to make them equally long and score the resulting
genes according to a scoring matrix.

For example, one space is inserted into AGTGATG to result in AGTGAT-G, and three spaces
are inserted into GTTAG to result in —GT-—TAG. A space is denoted by a minus sign (). The two
genes are now of equal length. These two strings are aligned:

In this alignment, there are four matches, namely, G in the second position, 7 in the third, 77
in the sixth, and G in the eighth. Each pair of aligned characters is assigned a score according to
the scoring matrix shown in Figure 4.5. It denotes that a space—space match is not allowed. The
score of the alignment aboveis (-3) +5+5+ (-2) + (-3) + 5+ (-3) + 5=9.

Of course, many other alignments are possible. One is shown below (a different number of
spaces are inserted into different positions):



Linear Lists Accessed Directly m 121

HlQ|a|»>

|
—
n

|
w

|
)

|
kS

Figure 4.5 Scoring matrix.

This alignment gives a score of (=3) + 5 + 5 + (-2) + 5 + (1) + 5 = 14. So, this one is better than
the previous one. In fact, this one is optimal since no other alignment can have a higher score. So,
it is said that the similarity of the two genes is 14.

Input

The input consists of 7 test cases. The number of test cases (7') is given in the first line of the input
file. Each test case consists of two lines: each line contains an integer, the length of a gene, followed
by a gene sequence. The length of each gene sequence is at least 1 and does not exceed 100.

Output

The output should print the similarity of each test case, one per line.

Sample Input Sample Output
2 14

7 AGTGATG 21

5 GTTAG

7 AGCTATT

9 AGCTTTAAA

Source: ACM Taejon 2001.

IDs for online judges: POJ 1080, ZOJ 1027, UVA 2324.

Hint

The space and four nucleotides are labeled as integers: [0(space), 1(A), 2(C), 3(G), 4(T)]. Gene
sequence 2 and gene sequence & are transferred into integer sequence sl and s2, respectively.

Because the last digit in a gene sequence may be matched with a space, a 0 is added to the end of
s1 and s2. That is, the lengths of s1 and 52 are lenl + 1 and /len2 + 1, respectively.

Suppose score[ ][ ] is used to represent the scoring matrix. Based on the problem description,

score[ ][ ]= -4 -1 5 -3 2




122 m  Data Structure Practice: For Collegiate Programming Contests and Education

f14, 7] is the maximal score for alignment of the prefix whose length is 7 in 2 and the prefix whose
length is j in &.

Of course, 7 and j can’t be 0 simultaneously.

If i > 0, the maximal score for alignment of #; | and space is f17 — 1][;] + score[O][s1[7 — 1]].

If j > 0, the maximal score for alignment of 4, ; and space is fi][j — 1] + score[0][s2[j — 1]].

When 7 and j are both larger than 0, the maximal score for alignment of #; ; and 4, , is fIi — 1]
[/ — 1] + score[s1[i — 1]][s2[j — 1]].

Therefore, flil[j] = max{fli — 1][j] + score[O][s1[i — 1]], fI[j — 1] + score[0][s2[j — 1]], and 17 — 1]
[/ — 1+ scorel[sl[i — 1]][2[j — 1]]; 0< i< /enl + 1,0 <5< [en2 + 1.

Obviously, the maximal score of two gene sequences when the last two characters (2,
and 4,,,, ) match is fllenl][len2], but the last character in a gene sequence may match with a
space.

The maximal score that ,,,_; and space match is f[lenl][len2+1], and that space and 4, ,
match is fllenl + 1][len2].

The similarity of gene sequence « and gene sequence & is max{fllenl][len], fllenl]len2 + 1],
fllenl + 1][len2]}.

4.7.15 Palindrome

A palindrome is a symmetrical string, that is, a string read identically from left to right as well as
p y g g y g
from right to left. You are to write a program that, given a string, determines the minimal number
g prog g g

of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting two characters, the string “Ab3bd” can be transformed into a

p y g )

palindrome (“dAb3bAd” or “Adb3bdA”). However, inserting fewer than two characters does not
produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the
input string NV, 3 <= N <= 5000. The second line contains one string with length V. The string
is formed from uppercase letters from A to Z, lowercase letters from 4 to 2, and digits from 0 to 9.
Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the
desired minimal number.

Sample Input Sample Output
5 2
Ab3bd

Source: 1012000.
ID for online judge: POJ 1159.
Hint

Suppose C(4, j) is the minimal number of characters to be inserted into the string s; ... s; in order
to obtain a palindrome. Therefore, the problem requires calculating C(1, 7).



Linear Lists Accessed Directly m 123

The following formula holds:
0 P>
CG,j)= Cli+1,j-1) 5=
min(C(i +1,7),CG,j-1))+1 5 #s;

4.7.16 Power Strings

Given two strings 2 and 4, we define 4*/ to be their concatenation. For example, if 2 = “abc” and
g p
b= “def”, then a*6 = “abedef.” If we think of concatenation as multiplication, exponentiation by a

2

nonnegative integer is defined in the normal way: 220 = “” (the empty string) and a*(n + 1) = a*(a"n).
Input

Each test case is a line of input representing s, a string of printable characters. The length of s will be
atleast I and will not exceed 1 million characters. A line containing a period follows the last test case.

Output

For each s you should print the largest # such that s = 2/ for some string a.

Sample Input Sample Output
abcd 1
aaaa 4
ababab 3

Source: Waterloo Local Contest, July 1, 2002.
IDs for online judges: POJ 2406, ZOJ 1905.

Hint
Based on the definition of s = 27, the length of 2 must be the shortest if 7 is the largest. Suppose
len is the length of s.

The KMP algorithm is used to produce the prefix function suffix[ ] for s. If suffix[cur] == k,
s[0 ... (b—1)] ==sl(cur — k) .. (cur—1)], and k is the length of the longest matching substrings for
the prefix of s and the suffix of 5[0 ... (cur — 1)].

Because 5[0 ... suffix[len] — 1] == s{(len — suffixllen]) ... (len — 1)], if (len — suffixllen]) is the
divisor of Jen, then 5[0 ... (len — suffix[len] — 1)] is the shortest repeated substring, its length is
len — suffix(len], and

len

- len — suffix(len]

4.7.17 Period

For each prefix of a given string S with /V characters (each character has an ASCII code between
97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i



124 m Data Structure Practice: For Collegiate Programming Contests and Education

(2 <7< N) we want to know the largest K> 1 (if there is one) such that the prefix of § with length
i can be written as AX, that is, 4 concatenated K times, for some string A. Of course, we also want

to know the period K.
Input

The input consists of several test cases. Each test case consists of two lines. The first one contains
N (2< N<1000000)—he size of the string S. The second line contains the string S. The input file
ends with a line, having the number zero in it.

Output

For each test case, output “Test case #” and the consecutive test case number on a single line; then, for
each prefix with length 7 that has a period K> 1, output the prefix size i and the period K separated
by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.

Sample Input Sample Output
3 Test case #1
aaa 22
12 33
aabaabaabaab
0 Test case #2

22

62

93

124

Source: ACM Southeastern Europe 2004.
IDs for online judges: POJ 1961, ZOJ 2177, UVA 3026.

Hint
First, the KMP algorithm is used to produce the prefix function suffix[ ] for s. If suffix[cur] == &,
then 5[0 ... (k—1)] == s[(cur— k) .. (cur — 1)], and # is the length of the longest matching substring
for the prefix of s and the suffix of s[0 ... (cur — 1)].

Second, for all prefixes of s, s[0] .. s[m — 1] (2 < m < n) are enumerated. Because s[0 ...
suffixim] — 1] == s(om — suffixm]) ... m — D), if (m — suffix[m]) is the divisor of m, then
s[0 ... (m — suffix[m] — 1)] must be the shortest repeated substring for s[ .

4.7.18 Seek the Name, Seek the Fame

The little cat is so famous that many couples tramp over hill and dale to Byteland and ask the little
cat to give names to their newly born babies. They seek the name, and at the same time seek the
fame. In order to escape from such a boring job, the innovative little cat works out an easy but
fantastic algorithm:



Linear Lists Accessed Directly m 125

Step 1: Connect the father’s name and the mother’s name to a new string S.

Step 2: Find a proper prefix—suffix string of S (which is not only the prefix, but also the suffix
of S).

Example: Father = ala, Mother = la; we have § = ala + la = alala. Potential prefix—suffix
strings of § are {a, ala, alala}. Given the string S, could you help the little cat to write a pro-
gram to calculate the length of possible prefix—suffix strings of S? (He might thank you by
giving your baby a name.)

Input

The input contains a number of test cases. Each test case occupies a single line that contains the
string § described above.
Restrictions: Only lowercase letters may appear in the input: 1 <= length of § <= 400,000.

Output

For each test case, output a single line with integer numbers in increasing order, denoting the pos-
sible length of the new baby’s name.

Sample Input Sample Output
ababcababababcabab 249 18
aaaaa 123 45

Source: POJ Monthly, January 22, 2006, Zeyuan Zhu.
ID for online judge: POJ 2752.

Hint
First, the KMP algorithm is used to produce the prefix array suffix( ]. If suffix[cur] == k, then
S[0... (k—1)] == Sl(cuur — k) .. (cur — 1)], and £ is the length of the longest matching substring for
the suffix of S[0 ... (cur — 1)] and the prefix of S.

Based on the KMP algorithm, through suffix(len], suffix(suffixlen]], suffix(suffix[suffixllen]]],
..., the length of all possible prefix—suffix strings of S can be calculated.

4.7.19 Excuses, Excuses!

Judge Ito is having a problem with people subpoenaed for jury duty giving rather lame excuses in
order to avoid serving. In order to reduce the amount of time required listening to goofy excuses,
Judge Ito has asked that you write a program that will search for a list of keywords in a list of
excuses identifying them as lame. Keywords can be matched in an excuse regardless of case.

Input

Input to your program will consist of multiple sets of data. Line 1 of each set will contain exactly
two integers. The first number (1 £ K < 20) defines the number of keywords to be used in the
search. The second number (1 < £ < 20) defines the number of excuses in the set to be searched.
Lines 2 through K+ 1 each contain exactly one keyword. Lines K + 2 through K+ 1 + £ each con-
tain exactly one excuse. All keywords in the keyword list will contain only contiguous lowercase
alphabetic characters of length L (1 < L < 20) and will occupy columns 1 through L in the input
line. All excuses can contain any upper- or lowercase alphanumeric character, a space, or any of



126 m Data Structure Practice: For Collegiate Programming Contests and Education

the following punctuation marks [,!?], not including the square brackets, and will not exceed 70
characters in length. Excuses will contain at least one nonspace character.

Output

For each input set, you are to print the worst excuse(s) from the list. The worst excuse(s) is defined
as the excuse(s) that contains the largest number of incidences of keywords. If a keyword “occurs”
more than once in an excuse, each occurrance is considered a separate incidence. A keyword
occurs in an excuse if and only if it exists in the string in contiguous form and is delimited by the
beginning or end of the line or any nonalphabetic character or a space.

For each set of input, you are to print a single line with the number of the set immediately
after the string “Excuse Set #” (see the sample output). The following line(s) is to contain the worst
excuse(s), one per line, exactly as read in. If there is more than one worst excuse, you may print
them in any order. After each set of output, you should print a blank line.

Sample Input Sample Output

53 Excuse Set #1

dog Can you believe my dog died after eating my
canary ... AND MY HOMEWORK?

ate

homework

canary

died

My dog ate my homework.

Can you believe my dog died after eating my
canary ... AND MY HOMEWORK?

This excuse is so good that it contains 0

keywords.
65 Excuse Set #2
superhighway I am having a superhighway built in my
bedroom.
crazy There was a thermonuclear war!

thermonuclear
bedroom

war

building

I am having a superhighway built in my
bedroom.




Linear Lists Accessed Directly m 127

Sample Input Sample Output

I am actually crazy.
1234567890.....,,,,0987654321222221 11111
There was a thermonuclear war!

| ate my dog, my canary, and my homework
... note outdated keywords?

Source: ACM South Central United States 1996.
IDs for online judges: POJ 1598, UVA 409.

Hint
Suppose key is the set of keywords, where key[i] is the ith keyword; next is the set of prefix functions,
where next[7] is the prefix function for the 7th keyword; keycnt is the number of keywords occurring
in the current excuse, where keycne(d] is the number of ith keywords occurring in the current excuse;
and sentence is the set of excuses, where sentencelj] is the jth excuse; (0<i<e—1,0<;< k- 1).

The problem requires outputting the worst excuses; that is, the excuses contain the largest
number of incidences of keywords. Therefore, the key to the problem is to calculate the number of
incidences ¢z of the jth keyword key[j] in an excuse sentenceli]. Suppose the number of characters
in excuse sentenceld] is n, and the number of characters in the jth key key[j] is m; cur is the match-
ing pointer for sentenceli], and p is the matching pointer for keyl;].

The method calculating cnt is as follows.

Initially, cnt is 0, from the first characters in sentenceli] and key[j] (p = 0, cur = 0); the KMP
algorithm is used as follows:

1. If sentenceli][cur] and key[j][p] are the same, then the next characters in the two strings are
compared (++cur; ++p3).

2. If sentenceli][cur] and key[j][p] aren’t the same, if there are matching characters, that is, p>0,
then sentencelil[cur] is compared with the next[j][p]th character in key[j] (p = next[jl[p]);
otherwise, sentence[i][cur+1] is compared with key[;][0] (++cur; p=0).

3. If the matching is successful (p == m), and if sentenceld][cur] and sentencelil[cur—p—1] aren’t
letters, then ++cnz. Then p = next[r][p].

Repeat the above process until cur > n. cnt is the number of incidences of keyword key[;] in
excuse sentencel).
The main algorithm is as follows:

1. Input keyli], and calculate its prefix function next[] (0 <7 < k-1).
2. Input excuse sentenceli] (0 < i < e—1) one by one, and calculate the number of incidences of

the % keywords
=

keyent; = Z keyent] f]
=0

in sentencel(i).
3. The sentence with the largest number of incidences of keywords max {keyent;} is the
. 0<i<e—1
solution.



128 m Data Structure Practice: For Collegiate Programming Contests and Education

4.7.20 Product

The problem is to multiply two integers X, ¥ (0 <=X, ¥ < 10%9).

Input

The input will consist of a set of pairs of lines. Each line in a pair contains one multiplier.
Output

For each input pair of lines the output line should consist of one integer, the product.

Sample Input Sample Output

12 144

12 444444444444444444444444
2

222222222222222222222222

Source: Sergant Pepper’s Lonely Programmers Club Junior Contest 2001.

ID for online judge: UVA 10106.

Hint
The problem is solved by multiplication of high-precision numbers. Suppose X'is the string repre-
senting the multiplicand, L1 is the length for X; and Y'is the string representing the multiplier, L2
is the length for Y. Ans is the array representing the product, where Ans[0] is used as the length of
the array, and its length’s upper limit is L1 + L2, and Ans[Ans[0] .. 1] is the result.

The algorithm has been shown in Section 4.2.

4.7.21 Expression Evaluator

This problem is about evaluating some C-style expressions. The expressions to be evaluated will
contain only simple integer variables and a limited set of operators; there will be no constants in
the expressions. There are 26 variables in the program, named by lowercase letters # through z.
Before evaluation, the initial values of these variablesarea=1,6=2, ..., 2= 26.

The operators allowed are addition and subtraction (binary + and -), with their known mean-
ings. So, the expression # + ¢ —d + b has the value 2 (1 + 3 — 4 + 2). Additionally, ++ and — opera-
tors are allowed in the input expression too, which are unary operators, and may come before or
after variables. If the ++ operator comes before a variable, then that variable’s value is increased
(by 1) before the variable’s value is used in calculating the value of the whole expression. Thus, the
value of ++ ¢— b is 2. When ++ comes after a variable, that variable is increased (by 1) after its value
is used to calculate the value of the whole expression. So, the value of the ¢ ++ — & is 1, though ¢ is
incremented after the value for the entire expression is computed; its value will be 4 too. The —
operator behaves the same way, except that it decreases the value of its operand.

More formally, an expression is evaluated in the following manner:

B [dentify every variable that is preceded by ++. Write an assignment statement for increment-
ing the value of each of them, and omit the ++ from before that variable in the expression.
B Do similarly for the variables with ++ after them.



Linear Lists Accessed Directly ®m 129

B At this point, there is no ++ operator in the expression. Write a statement evaluating the remain-
ing expression after the statements determined in step 1 and before those determined in step 2.

B Execute the statements determined in step 1, then those written in step 3, and finally the
one written in step 2.

This way, evaluating ++ @ + & ++ is the same as computing 2 = 2 + 1, result = a + b, and

b=b+1
Input

The first line of the input contains a single integer 7 that is the number of test cases, followed by
T lines each containing the input expression for a test case. Ignore blanks in the input expression.
Be sure that no ambiguity is in the input expressions (like #+++6). Similarly, ++ or — operators
do not appear both before and after one single variable (like ++a++). You may safely assume each
variable appears only once in an expression.

Output

For each test case, write each expression as it appears in the input (exactly), and then write the
value of the complete expression. After this, on separate lines, write the value of each variable after
evaluating the expression (write them in sorted order of the variable names). Write only the values
of the variables that are used in the expressions. To find out about the output format, follow the
style used in the sample output below.

Sample Input Sample Output
2 Expression:a + b
a+b value =3
c+f—+—a a=1

b=2

Expression: c +f —+—a
value =9

a=0

Source: ACM Tehran 2006, Preliminary.
ID for online judge: POJ 3337.
Hint

The problem is a simulation problem. You are asked to solve the problem following rules in the
problem description. From left to right, every character in the expression is evaluated.

4.7.22 Integer Inquiry

One of the first users of BIT’s new supercomputer was Chip Diller. He extended his exploration of
powers of 3 to go from 0 to 333, and he explored taking various sums of those numbers.



130 m Data Structure Practice: For Collegiate Programming Contests and Education

“This supercomputer is great,” remarked Chip. “I only wish Timothy were here to see these
results.” (Chip moved to a new apartment, once one became available on the third floor of the
Lemon Sky apartments on Third Street.)

Input

The input will consist of at most 100 lines of text, each of which contains a single VeryLonglInteger.
Each VeryLonglnteger will be 100 or fewer characters in length and will only contain digits (no
VeryLonglnteger will be negative).

The final input line will contain a single zero on a line by itself.

Output

Your program should output the sum of the VeryLonglntegers given in the input.

Sample Input Sample Output

123456789012345678901234567890 370370367037037036703703703670
123456789012345678901234567890
123456789012345678901234567890

0

Source: ACM East Central North America 1996.
IDs for online judges: POJ 1503, ZOJ 1292, UVA 424.

Hint
Because the length of a single VeryLonglnteger is 100, arrays are used to store a high-precision
numbers. Additions of high-precision numbers are used to get the result.

4.7.23 Super-Long Sums

The creators of a new programming language D++ have found out that whatever limit for
SuperLonglnt type they make, sometimes programmers need to operate even larger numbers. A
limit of 1000 digits is so small. You have to find the sum of two numbers with a maximal size of
1 million digits.

Input

The first line of an input file is an integer /V, and then a blank line followed by /Vinput blocks. The
first line of each input block contains a single number M (1 < M < 1,000,000) — the length of
the integers (in order to make their lengths equal, some leading zeros can be added). It is followed
by these integers written in columns. That is, the next M lines contain two digits each, divided
by a space. Each of the two given integers is not less than 1, and the length of their sum does not
exceed M.

There is a blank line between input blocks.

Output

Each output block should contain exactly M digits in a single line representing the sum of these
two integers.
There is a blank line between output blocks.



Linear Lists Accessed Directly m 131

Sample Input Sample Output

2 4750

4 470
04
42
638
37

3
30
79

28

Source: Ural State University Collegiate Programming
Contest, March 25, 2000, Problem Authors:
Stanislav Vasilyev and Alexander Klepinin.

IDs for online judges: UVA 10013, Ural 1048.

Hint
The problem is for addition of high-precision numbers. Based on the input format, a for statement
Sor (int i = m — 1; i >= 0; i——) is used to calculate the result.

4.7.24 Exponentiation

Problems involving the computation of exact values of very large magnitude and precision are
common. For example, the computation of the national debt is a taxing experience for many
computer systems.

This problem requires that you write a program to compute the exact value of R”, where Ris a
real number (0.0 < R < 99.999) and 7 is an integer such that 0 < # <= 25.

Input

The input will consist of a set of pairs of values for R and 7. The R value will occupy columns 1-6,
and the 7 value will be in columns 8 and 9.

Output

The output will consist of one line for each line of input giving the exact value of R*n. Leading
zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don’t
print the decimal point if the result is an integer.



132 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

95.123 12 548815620517731830194541.899025343415715973535967221869852721

0.4321 20 .0000000514855464107695612199451127676715483848176020072635120383
5429763013462401

5.1234 15 43992025569.92857370126648804114665499331870370751166629547672049
3953024

6.7592 9 29448126.764121021618164430206909037173276672

98.999 10 90429072743629540498.107596019456651774561044010001

1.0100 12 1.126825030131969720661201

Source: ACM East Central North America 1988.
IDs for online judges: POJ 1001, UVA 748.

Hint
Power is based on multiplication of high-precision numbers. The problem requires computing
the exact value of R?, where R is a real number. The process is as follows:

1. When R is stored in an array as a high-precision number, the position of decimal point dec
must be noted.
2. When real « and real 4 are multiplied (the lengths of arrays storing 2 and & are /, and /,
respectively, and the positions of decimal points are £, and £,),
a. Muldply high-precision numbers ¢ = 4*6 and note the position of decimal point
k,+ ky+ 1.
Carry c and calculate its length /. (/, + [, — 1 or [, + ).
c. Delete redundant 0 after the decimal point.

4.7.25 Number Base Conversion

Write a program to convert numbers in one base to numbers in a second base. There are 62 differ-
ent digits: {0-9, A-Z, a—z}.

Hint: If you make a sequence of base conversions using the output of one conversion as the
input to the next, when you get back to the original base, you should get the original number.

Input

The first line of input contains a single positive integer. This is the number of lines that follow.
Each of the following lines will have a (decimal) input base followed by a (decimal) output base
followed by a number expressed in the input base. Both the input base and the output base will
be in the range from 2 to 62. That is (in decimal), A =10, B=11, ..., Z=35,2=36, 6= 37, ...,
z = 61 (0-9 have their usual meanings).

Output

The output of the program should consist of three lines of output for each base conversion per-
formed. The first line should be the input base in decimal followed by a space and then the input



Linear Lists Accessed Directly m 133

number (as given expressed in the input base). The second output line should be the output base
followed by a space and then the input number (as expressed in the output base). The third output
line is blank.

Sample Input

8

62 2 abcdefghiz

10 16 1234567890123456789012345678901234567890

16 35 3A0C92075CODBF3B8ACBC5F96CE3 FOAD2

35 23 333YMHOUES8JPLT7OX6K9FYCQS8A

23 49 946B9AA02MI37E3D3MMJ4G7B L2F05

49 61 1TVbDkSIMJL3JjRgAdIUfcaWj

615 dIIMDSWqwHjDnToKcsWE1S

510 4210444444100141440122130240220123334031110421202213303

Sample Output

62 abcdefghiz
2 11011100000100010111110010010110011111001001100011010010001

10 1234567890123456789012345678901234567890
16 3A0C92075CODBF3B8ACBC5F96CE3F0AD2

16 3A0C92075CODBF3B8ACBC5F96CE3F0AD2
35 333YMHOUES8JPLT7OX6KIFYCQS8A

35 333YMHOUESJPLT7OX6KIFYCQS8A
23 946B9AA02MI37E3D3MMJ4G7BL2F05

23 946B9AA02MI37E3D3MM)4G7BL2F05
49 1VbDkSIMJL3JjRgAdIUfcaW;j
61 dI9OMDSWqgwHjDnToKcsWE1S

Source: ACM Greater New York 2002.
IDs for online judges: POJ 1220, ZOJ 1325, UVA 2559.
Hint

Suppose the first base is ibase, the string representing the number in ibase is 5, and the second base
is obase.



134 m Data Structure Practice: For Collegiate Programming Contests and Education

First, every digit for s is transferred into its corresponding number and stored in a high-preci-
sion array 4. Second, the number in ibase is transferred into the number in decimal base. Third,
it is transferred into the number in obase. Finally, the number in obase is transferred into a string.

4.7.26 Super-Long Sums

“Oh! If T could do the easy mathematics like my school days! I can guarantee that I'd not make
any mistake this time!” says a smart university student.

But his even smarter teacher said, “OK! I'll assign you such projects in your software lab. Don’t
be so sad.”

“Really!” the students happily exclaims. He is so happy that he cannot see the smile on his
teacher’s face.

The first project for the poor student was to make a calculator that can just perform the basic
arithmetic operations.

But like many other university students, he doesn’t like to do any project by himself. He just
wants to collect programs from here and there. As you are a friend of him, he asks you to write the
program. But, you are also intelligent enough to tackle this kind of problem. You agreed to write
only the (integer) division and mod (% in C/C++) operations for him.

Input

The input is a sequence of lines. Each line will contain an input number, one or more spaces, a
sign (division or mod), again spaces, and another input number. Both input numbers are non-
negative integers. The first one may be arbitrarily long. The second number 7 will be in the range
0<n<23,

Output

The output is a line for each input, each containing an integer. See the sample input and output.
The output should not contain any extra spaces.

Sample Input Sample Output
110 /100 1

99 % 10 9

2147483647/ 2147483647 1

2147483646% 2147483647 2147483646

Source: Monthly Contest, May 2003.
ID for online judge: UVA 10494.

Hint
The problem is for the division of high-precision numbers. The algorithm is shown in Section 4.2.

4.7.27 Simple Arithmetics

One part of the new WAP portal is also a calculator computing expressions with very long num-
bers. To make the output look better, the result is formatted in the same way as it is usually used
with manual calculations.



Linear Lists Accessed Directly ®m 135

Your task is to write the core part of this calculator. Given two numbers and the requested
operation, you are to compute the result and print it in the form specified below. With addition and
subtraction, the numbers are written below each other. Multiplication is a little bit more complex:
first, we make a partial result for every digit of one of the numbers, and then sum the results together.

Input

There is a single positive integer 7 on the first line of input. It stands for the number of expressions
to follow. Each expression consists of a single line containing a positive integer number, an opera-
tor (one of +, —, and *), and the second positive integer number. Every number has at most 500
digits. There are no spaces on the line. If the operation is subtraction, the second number is always
lower than the first one. No number will begin with zero.

Output

For each expression, print two lines with two given numbers, the second number below the first
one, and last digits (representing unities) must be aligned in the same column. Put the operator
right in front of the first digit of the second number. After the second number, there must be a
horizontal line made of dashes (-).

For each addition or subtraction, put the result right below the horizontal line, with the last
digit aligned to the last digit of both operands.

For each multiplication, multiply the first number by each digit of the second number. Put the
partial results one below the other, starting with the product of the last digit of the second number.
Each partial result should be aligned with the corresponding digit. That means the last digit of the
partial product must be in the same column as the digit of the second number. No product may
begin with any additional zeros. If a particular digit is zero, the product has exactly one digit—
zero. If the second number has more than one digit, print another horizontal line under the partial
results, and then print the sum of them.

There must be a minimal number of spaces on the beginning of lines, with respect to other
constraints. The horizontal line is always as long as necessary to reach the left and right end of
both numbers (and operators) right below and above it. That means it begins in the same column
where the leftmost digit or operator of those two lines (one below and one above) is. It ends in
the column where the rightmost digit of those two numbers is. The line can be neither longer nor
shorter than specified.

Print one blank line after each test case, including the last one.

Sample Input Sample Output
4 12345
12345+67890 +67890
324111 | e
325*4405 80235
1234*4

324

111

(Continued)




136 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

1431625
1234
*4

4936

Source: ACM Central Europe 2000.
IDs for online judges: POJ 1396, ZOJ 2017, UVA 2153.

Hint

The problem is for addition, subtraction, and multiplication of high-precision numbers.
4.7.28 a® - b?

You are given natural numbers z and 4. Find a* — .

Input

The input contains numbers 2 and & (1 < 4, < 100).

Output
Write the answer to the output.
Sample Input Sample Output
23 -1

ID for online judge: SGU 112.

Hint

Because of the reduplicated addition of high-precision numbers, the object-oriented programming
method is suitable to solve this problem. Class 6iglNumber is defined, where its private section is a
high-precision array @ whose length is /en, and its public section includes



Linear Lists Accessed Directly m 137

bigNumber(): High-precision array « is initialized 0.

int length( ): Return the length of high-precision array 4.

int at(int £): Return a(k].

void setnum(char s[ ]): A string s | is transferred into a high-precision array 2 whose length is
len.

isNeg(): Determine whether high-precision array « is negative or not.

void add(bigNumber &x): Addition of high-precision integers: a<a + x.

void multi(bigNumber &x): Multiplication of high-precision integers: a<a*x.

int compare(bigNumber &x): Compare 4 with x, and return

1 a>x
-1 a<x
0 a=x

void minus(bigNumber &x): Subtraction of high-precision integers: a<a — x.
void power(int k): Exponentiation of high-precision integers: num«—num*.

Based on class bigINumber, the main algorithm is as follows:

1. Define bna and bnb as objects of class bigINumber (bigNumber bna, bnb) and a and b as arrays
of bna and bnb (bna.setnum(a); bnb.setnum(b)).

2. Compute bna—bna®, bnb—bnb* (bna.power(b); bnb.power(a)); bna—bna-bnb (bna.
minus(bnb)).

3. If bna is negative (bna.isNeg( ) == true), then output minus sign; output bna.at(bna.
length()-1..bna.ar(0).

4.7.29 Fibonacci Number

A Fibonacci sequence is calculated by adding the previous two members of the sequence, with the
first two members both being 1.

A)=1LA2)=1fn>2)=fn-1) +fln-2)
Input and Output

Your task is to take numbers as input (one per line) and print the corresponding Fibonacci number.

Sample Input Sample Output
3 2
100 354224848179261915075

Source: UVA Local Qualification Contest 2003.

Note: No generated fibonacci number in excess of 1000
digits will be in the test data; that is, f (20) = 6765 has
four digits.

ID for online judge: UVA 10579.



138 m Data Structure Practice: For Collegiate Programming Contests and Education

Hint

Because the upper limit of Fibonacci numbers is 1000 digits, a high-precision array is used to
store these numbers. Because of the reduplicated addition of high-precision numbers, the object-
oriented programming method can be used.

4.7.30 How Many Fibs

Recall the definition of the Fibonacci numbers:

F =1
F=2
F=F_+F,_,n>3)

Given two numbers # and 4, calculate how many Fibonacci numbers are in the range [, 4].
Input

The input contains several test cases. Each test case consists of two nonnegative integer numbers
a and b. Input is terminated by 2 = 6 = 0. Otherwise, 2 <= b <= 10, The numbers # and 4 are
given with no superfluous leading zeros.

Output

For each test case, output on a single line the number of Fibonacci numbers F; with 2 <= F, <= 6.

Sample Input Sample Output

10100 5
1234567890 9876543210 4
00

Source: Ulm Local Contest 2000.
IDs for online judges: POJ 2413, ZOJ 1962.

Hint

Because the 500th number in the Fibonacci sequence exceeds 10'°°, the offline method is used and
the first 500 Fibonacci numbers f16[1] ... fi6[500] are calculated by the high-precision method. For
each test case, 2 and 4, in array f1b[ ] the largest fib[/ef], which is no less than a (f26[/ef?] > a), and
the smallest f76[right], which is no more than & (fi6[right] < b), are found. Obviously, the number
of Fibonacci numbers F, with 2 < F,< b is right—left.

4.7.31 Heritage

Your rich uncle died recently, and the heritage needs to be divided among your relatives and the
church (your uncle insisted in his will that the church must get something). There are /V relatives
(V< 18) that were mentioned in the will. They are sorted in descending order according to their
importance (the first one is the most important). Since you are the computer scientist in the family,
your relatives asked you to help them. They need help because there are some blanks in the will left
to be filled. Here is how the will looks:



Linear Lists Accessed Directly ®m 139

Relative 1 will get 1/... of the whole heritage.
Relative 2 will get 1/... of the whole heritage.

Relative 7 will get 1/... of the whole heritage.

The logical desire of the relatives is to fill the blanks in such way that the uncle’s will is pre-
served (i.e., the fractions are nonascending and the church gets something) and the amount of
heritage left for the church is minimized.

Input
The only line of input contains the single integer N (1 £ N < 18).
Output

Output the numbers that the blanks need to fill (on separate lines), so that the heritage left for the
church is minimized.

Sample Input Sample Output
2 2
3

Source: Bulgarian Online Contest, September 2001.

IDs for online judges: POJ 1405, Ural 1108.
Hint

Suppose a[7] is the number of the 7 + 1th blank to be filled. That is, the 7 + 1th relative gets 1/a[i]
of the whole heritage (0 <= i <=7 - 1).

ﬂ[l]: 2 1=0
ali —11*ali -1]—ali-1]+1 1<=i<=n-1

can be proved.

The heritage left for the church is

Because 4[0] ... a[n—1] are all positive integers, in order to minimize the heritage left for the
church /, we should prove

a[0]  a[1] aln—1] 4[0]a[1]---a[n—1]



140 m Data Structure Practice: For Collegiate Programming Contests and Education

Proof.

There are recursive formulas as follows:

= 4[0]*2[0] — 2[0] + 1 = 2[0]*(2[0] — 1) + 1 = 4[0] + 1
=a[l]*@[1] = 1) + 1 = 2[0]*2[1] + 1

Based on it, we can imply 4[i] = a[0]*a[1]* ... ali—1] + 1 (1 <=i<=n-1).
The following formula can be implied:

(1_1) ..... 1
a[0] (1] aln—1]

_[ L _1) ..... L
L 40141]  4[2] aln—1]




Chapter 5

Applications of Linear Lists
for Sequential Access

Linear lists for sequential access are linear lists in which all elements are stored and accessed in
order. The first data element in a linear list is at the front position, and the last one is at the rear
position.

There are two features for linear lists for sequential access:

1. There is no size restriction for the length of the list after it is created. That is, the list can be
dynamically changed.

2. Elements in the list can only be accessed in sequential order and can’t be accessed directly.
In order to access an element, we should visit elements in the list one by one from the first
element (or from the last element).

A simple example for linear lists for sequential access is a shopping list. Write down all items
that you want to buy in a shopping list. When you find an item, you cross it out from the list. In
this kind of linear list, elements can be listed in order, but they can also be listed in disorder. In
disordered linear lists, the order of elements is random, and in ordered linear lists, all elements are
listed in some order. For example, in the following list, names are in alphabetical order.

Beata Bernica David Frank Jennifer Mike Raymond Terrill

The search efficiency for an ordered list is higher. For example, the efficiency of binary search
for an ordered linear list is much higher than the efficiency of the sequential search. Based on the
access mode, there are two kinds of linear lists for sequential access:

1. Linear lists for sequential access based on positions of data elements, such as arrays and

linked lists
2. Stacks and queues

141



142 m Data Structure Practice: For Collegiate Programming Contests and Education

5.1 Application of Sequence Lists

A sequence list is a linear list storing 7 data elements, where 7 is the length of the list, and if
n == 0, the list is null. The data type for each element in the list is the same. The length of the list
can be changed by inserting or deleting elements.

The relationship of data elements in the sequence list is linear. Elements can be accessed
through their position in the list. There are two kinds of storage structures:

1. Array: The type of array elements can not only be simple, but also be a structure type.
An array element can be accessed through its index. Inserting or deleting an element not
only increases or decreases the length of the list, but also needs to move elements in the
list.

2. Linked list: If a linear list is a linked list, inserting or deleting an element doesn’t need to
move elements in the list, and only needs to change related pointers.

There are several kinds of linked lists. Singly linked lists are the simplest and classical linked
lists. And based on them, there are doubly linked lists and circular linked lists. Linked lists are
widely used.

5.1.1 Children

N children constitute a circle. Children are numbered from 1 to V. Then children begin to circu-
larly count off from the Wth child. Every time, the Sth child gets out from the circle and the next
child begins to count off. The process repeats until all children get out from the circle. Output the
sequence of children getting out from the circle.

Input
The first line is the number of children NV (N < 64).

Then children’s names are shown, one name per line. The length of a child’s name doesn’t
exceed 15.
W, S (W < N) are shown in the last line and separated by a comma.

Output

Output the sequence of children getting out from the circle, one name per line.

Sample Input | Sample Output
5 Zhangsan
Xiaoming Xiaohua
Xiaohua Xiaoming
Xiaowang Xiaowang
Zhangsan Lisi

Lisi

2,3

Source: Preliminary Contest for C
Programming Language.

ID for online judge: POJ 3750.



Applications of Linear Lists for Sequential Access ® 143

Analysis
It is a Josephus problem. V children constitute a circle. /V children can be represented as an array
and can also be represented as a circular linked list. Each child corresponds to an element. The
element type is a string storing a child’s name.

The problem is a simulation problem. The process in the problem description is simulated to
solve the problem.

Program

#include <stdio.h>
#include <stdlib.h>
int main( )
{
int child[65];
char name[65][16]; // children’s linear list storing names
intn, s, w, ss, 1i;
scanf("'%d", &n); // the number of children
for (i = 0; i < n; i++) // Input children’s names
{
child[i] = 1;
scanf("%s', name[i]);

scanf('%d,%d", &w, &s); // w and s specified in the problem
description
W=-73
for (i =n; 1 >=1; i--)
// Every time the sth child get out from the circle and the next child
begin to count off.
{
ss =s % n;
while (1)

if (child[w] == 1)
{
SS--3;
if (ss == 0) break;
}
w= W+ 1) % n;
}
printf(%sn™, name[w]);
child[w] = O;
}

return 0O;

}

There are some modifications for the Josephus problem. The following problem is an example.

5.1.2 The Dole Queue

In a serious attempt to downsize (reduce) the dole queue, the New National Green Labor
Rhinoceros Party has decided on the following strategy. Every day, all dole applicants will be
placed in a large circle, facing inward. Someone is arbitrarily chosen as number 1, and the rest
are numbered counterclockwise up to IV (who will be standing on Is left). Starting from 1 and



144 m  Data Structure Practice: For Collegiate Programming Contests and Education

moving counterclockwise, one labor official counts off # applicants, while another official starts
from NV and moves clockwise, counting 7 applicants. The two who are chosen are then sent off for
retraining; if both officials pick the same person, he or she is sent off to become a politician. Each
official then starts counting again at the next available person, and the process continues until no
one is left. Note that the two victims (sorry, trainees) leave the ring simultaneously, so it is possible
for one official to count a person already selected by the other official.

Input

Write a program that will successively read in (in that order) the three numbers (V, £, and m; 4,
m > 0,0 < NV < 20) and determine the order in which the applicants are sent off for retraining.
Each set of three numbers will be on a separate line, and the end of data will be signaled by three
zeros (0 0 0).

Output

For each triplet, output a single line of numbers specifying the order in which people are chosen.
Each number should be in a field of three characters. For pairs of numbers, list the person chosen
by the counterclockwise official first. Separate successive pairs (or singletons) by commas (but
there should not be a trailing comma).

Sample Input | Sample Output

1043 AA4AA8,AAIAAS,AA3AAT,AA2AN6,AT0,AA7
000

Source: New Zealand contest 1990.
A Represents a space.

ID for online judge: UVA 133.

Analysis
The problem is a modified Josephus problem. There are two directions: counterclockwise and
clockwise, counting # and 7 applicants.

Suppose left is the number of persons in the current circle. Marks for persons in the circle are
exist, where exist[i] == true represents the 7th person is in the circle. Suppose p; is the ith person
whom the first official selects, and ¢; is the 7th person whom the second official selects. Obviously,
20=0,qy=mn+1, left=n, and exist[1 .. n] all are true.

The program should simulate the process until left ==

Program

#include <cstdio>
#include <cstring>
const int maxn = 20; //The upper limit of the number of persons in
the circle
int main(void)
{
int n, k, m;
scanf("%d%d%d'*, &n, &k, &m); // a test case
while (n || kK Il m) {



Applications of Linear Lists for Sequential Access ® 145

bool exist[maxn]; //exist[i] represents the i-th person is in the
circle or not

memset(exist, true, sizeof(exist));
int p=0, gq=n+1;
int left = n; //Initialization
while (left) { //Simulate the process until left is O
int cnt = (k% left ? k % left : left);
while (cnt--)

do {

p=p+1D)%n? EP+1)%n:n);

} while (lexist[pl):;
cnt = (Mm% left 2 m % left - left);
while (cnt--)

do {

ga=@-1+n)%n?@-1+n)%n:n);

} while (lexist[ql]):;
it (left < n) // Output

putchar(®,");
printf('%3d*, p);
if (p =)

printf("%3d", q);
exist[p] = exist[q] = false; // Out the circle
left - = (p==q?1:2); //Calculate the number of persons in

the circle

b

putchar("n®);

scanf('%d%d%d**, &n, &k, &m); // The next test case
s
return O;

}

5.2 Application of Stacks

A stack is a linear list in which insertions and deletions take place at the same end. Therefore, a
stack is a last-in, first-out (LIFO) structure. Several operations are defined on stacks. Two of the
most important operations are PUSH and POP. PUSH adds an element at the top of the stack.
POP, in contrast, reduces the stack size by one by removing the last element at the top of the stack.
Suppose top is the stack pointer (SP) pointing to the top of the stack. If a new element is added into
the stack, the stack pointer #0p ++ and the new element are stored in the address. If an element is
deleted from the stack, rop — (Figure 5.1).

5.2.1 Rails

There is a famous railway station in PopPush City. The country there is incredibly hilly. The sta-
tion was built in the last century. Unfortunately, funds were extremely limited at that time. It was
possible to establish only a surface track. Moreover, it turned out that the station could be only a
dead-end one (Figure 5.2), and due to lack of available space, it could have only one track.

The local tradition is that every train arriving from direction A continues in direction B with
coaches reorganized in the some way. Assume that the train arriving from direction A has V<1000
coaches numbered in increasing order, 1, 2, ..., V. The chief for train reorganizations must know



146 m Data Structure Practice: For Collegiate Programming Contests and Education

Pushw /-9 Pop

Top

Figure 5.1 Normally arrays are used as storage structures for stacks, to avoid using pointers,
to save time.

5,4,3,2,1 1,2,3,4,5

Station

Figure 5.2 Railway station.

whether it is possible to marshal coaches continuing in direction B so that their order will be #;,
4y, ..., ay. Help him and write a program that decides whether it is possible to get the required
order of coaches. You can assume that single coaches can be disconnected from the train before
they enter the station and that they can move themselves until they are on the track in direction
B. You can also suppose that at any time there can be located as many coaches as necessary in the
station. But once a coach has entered the station, it cannot return to the track in direction A, and
also, once it has left the station in direction B, it cannot return back to the station.

Input

The input consists of blocks of lines. Each block except the last describes one train and possi-
bly more requirements for its reorganization. In the first line of the block there is the integer NV
described above. In each of the next lines of the block there is a permutation of 1, 2, ..., N. The
last line of the block contains just 0.

The last block consists of just one line containing 0.

Output

The output contains the lines corresponding to the lines with permutations in the input. A line of
the output contains “Yes” if it is possible to marshal the coaches in the order required on the cor-
responding line of the input. Otherwise, it contains “No.” In addition, there is one empty line after
the lines corresponding to one block of the input. There is no line in the output corresponding to
the last null block of the input.

Sample Input Sample Output

5 Yes

12345 No




Applications of Linear Lists for Sequential Access ® 147

Sample Input Sample Output

54123
0 Yes
6
654321
0
0

Source: ACM Central Europe 1997.
IDs for online judges: POJ 1363, ZOJ 1259.

Analysis
The railway station is a stack. The train arriving from direction A has #» < 1000 coaches numbered
in increasing order, 1, 2, ..., 7. And the coaches leaving in direction B are numbered as a permuta-
tion for 1, 2, ..., n. The permutation is implemented by stack operations.

There are two methods to solve the problem.

Method 1

Based on last-in-first-out, for an element x, elements that are larger than x are pushed into the stack
after x is pushed into the stack, and elements that are less than x are pushed into the stack before x
is pushed into the stack. Therefore, when an element x is popped from the stack, elements that are
larger than x in the stack must be popped before, and elements that are less than x must be in the
stack. Suppose valid is the legal flag for the permutation, max is the maximal value of elements in
the stack or popped from the stack, and p is the flag of an element’s status, where

0 element x hasn’t been pushed into the stack
plxl=11 element x is in the stack
2

element x has been popped from the stack

The algorithm is as follows:

Initially all elements aren’t in the stack, that is, all elements in p are set 0, max=0;

Input elements in the current permutation one by one. For the current element x, determine
the permutation is valid or not as follows.

If valid==true, then

B [f there exists an element # which is larger than x in the stack (p[]==1, and x+1 < < max),
then valid=false; for x can’t be popped from the stack. Based on “last-in-first-out,” p should
be popped before x;

B Adjust the maximal value of elements in the stack or popped from the stack (max = (max >
X ? max: x));

B Any element p[j] which is less than x should be in the stack (p[j] =1, 1 <j<x - 1).



148 m Data Structure Practice: For Collegiate Programming Contests and Education

After the above process, output the result based on valid (valid? “Yes” : “No”).
Its time complexity is O(#3).

Program for Method 1

#include <iostream>
#include <cstring>
using namespace std;

const int maxn = 1000 + 10; // The upper limit for the number of
coaches
int main(void)
{
int n, p[maxn];
cin >> n; //number of elements
while (n) {
int x, max = 0;
cin >> X; // the first permutated element
while (X)) {

memset(p, 0, sizeof(p)); // Initialization (0: element isn’t
pushed into the stack; 1: element is in the stack; 2: element is popped
from the stack;)
bool valid = true;
for (int i =1; 1 <=n; i++) {
it (valid) { // check whether there exists an
element t which is larger than x in the stack
bool ok = true;
for (int i = x + 1; i <= max; i++)
if (p[i] == 1) {

ok = false;

break;
}
it (1ok) // 1T exist
valid = false;
else { // adjust the maximal value of

elements in the stack or popped from the stack

max = (max > X ? max : X);

p[x] = 2; //x is popped from the stack, element
p[J] which is less than x should be in the stack

for (int i =x - 1; i > 0 && !p[i]; i--)

pLil = 1;
by
if (i <n)
cin >> Xx; // the next permutated element
¥
cout << (valid ? "Yes"™ : "No") << endl; // the permutation
is valid or not
cin >> X;
b
cout << endl;
cin >> n; // the number of elements in the next case
T
return O;



Applications of Linear Lists for Sequential Access ® 149

Method 2

For each test case, the permutation is simulated. That is, coaches 1, 2, ..., 7 in direction A are
pushed into the stack and compared with the elements in the permutation one by one, to deter-
mine whether the permutation is valid or not.

1. If the current elemenct in direction 4 (i.e., the element that will be pushed into the stack) is
the same as the current element in the permutation, then the current element in direction
A will be pushed into the stack and popped from the stack directly. The next elements in
direction 4 and in the permutation become the current elements.

2. If the element at the top of the stack is the same as the current element in the permuta-
tion, then the element will be popped from the stack. The next element in the permutation
becomes the current element in the permutation.

3. Otherwise, the current element in direction A is pushed into the stack. The next element in
direction A becomes the current element in direction A.

Repeat the above steps. If # elements in the permutation can be popped from the stack,
then the permutation is valid; otherwise, the permutation isn’t valid. Its time complexity is

O(n).

Program for Method 2

#include<stdio.h>
int mainQ)
{
int a[1005], b[1005], i, j, k, n; // a[0..n-1] stores elements
pushed into the stack , and k is the pointer pointing to the top of the
stack; b[0..n-1] stores elements popped from the stack, that is, the
permutation, and j is the pointer pointing to the top of the permutation.
while (scanf(""%d", &n), n) //n: the number of coaches

while (scanf('%d", &b[0]), b[0D)

{
for (J=1; j<n; j++) scanf('%d",&[J]); // Input the
permutation
// Determine whether the permutation is valid or not
for (i=1, j=0, k=0; i<=n&&j<n; i++, k++) // coaches 1,
2, ..., n in the direction A are pushed into the stack and compared with
the current element in the permutation one by one
{
a[k]=i; // 1 is pushed into stack a[ ]
while (a[K]==b[J1) // If the current element in

the direction A (that is, the element will be pushed in the stack) is
same as the current element in the permutation, then the current element
in the direction A will be pushed in the stack and popped from the stack
directly.

{
if (k>0) k--;
else { a[k]=0, k--; }
J++; //b[]j] i1s popped from the stack

it (k==-1) break;



150 ® Data Structure Practice: For Collegiate Programming Contests and Education

3
}
if (g==n) printf(’Yesn); //all elements are popped

from the stack
else printf("'Non™);

3
printf(*'n');
T

A stack is also used for expression evaluation. An expression constitutes

1. Operands: Valid variable names or constants
2. Operators, including
— Arithmetic operators, including +, —, *, /, %, and unary operator (-)

— Relation operators, including <, <=, ==, I=, >, >=
— Logical operators, including &&, ||, !
— Brackets

In order to correctly evaluate expressions, the priority for operators should be defined. In C++,
the priority for operators is defined as follows:

Priority Operators

7 — ! (unary)

6 * 1, %

5 +, -

4 <, <=,>,>=
3 ==, 1=

2 &&

1 Il

For example, for an expression A + B*(C — D) — E/F, the order of evaluation is as shown in
Figure 5.3, where R, R,, R;, R,, and R are intermediate results.
In the process of the expression evaluation, two stacks should be used:

1. Operator stack op: Used to store operators
2. Value stack val: Used to store operands and intermediate results

A+ B*(C-

S

) — E/F
4

~Tp —

t

Figure 5.3 Calculation of A + B¥(C - D) - E/F.



Applications of Linear Lists for Sequential Access ® 151

The expression is a string. The algorithm is as follows:

While there are still tokens to be read in, get the next token:

{ If the token is an operand and there is no unary operator at the
top of operator stack, the current operand is pushed into the value stack;
else unary operators are popped and are operated on the current operand;

IT the token is an operator (Op), while the operator stack is not
empty, and the top element’s priority on the operator stack is the same
or greater precedence as Op;

{ Pop the operator from the operator stack;

Pop the value stack twice, getting two operands;

Apply the operator to the operands, in the correct order;

Push the result into the value stack;

}:
Push Op into the operator stack;

}

While there is no token to be read in, and Operator stack is not
empty
{ Pop the operator from the operator stack;
Pop the value stack twice, getting two operands;
Apply the operator to the operands, in the correct order;
Push the result into the value stack;

}

Finally, the value in the value stack is the result of the expression.

5.2.2 Boolean Expressions

The objective of the program you are going to produce is to evaluate Boolean expressions such as
the one shown next:

Expression: (V| V) & F & (F| V)

where V is for true and F is for false. The expressions may include the following operators: ! for not,
& for and, and | for or; the use of parentheses for operations grouping is also allowed.

To perform the evaluation of an expression, it will be considered the priority of the operators,
the nor having the highest and the or the lowest. The program must yield V or F as the result for
each expression in the input file.

Input

The expressions are of a variable length, although they will never exceed 100 symbols. Symbols
may be separated by any number of spaces or no spaces at all; therefore, the total length of an
expression, as a number of characters, is unknown.

The number of expressions in the input file is variable and will never be greater than 20. Each
expression is presented in a new line, as shown below.

Output

For each test expression, print “Expression” followed by its sequence number, “,” and the resulting
value of the corresponding test expression. Separate the output for consecutive test expressions
with a new line.



152 m  Data Structure Practice: For Collegiate Programming Contests and Education

Use the same format as that shown in the sample output below.

Sample Input Sample Output

(V|V) &F&(F|V) Expression 1: F
IVIV&V&IF&(F|V) & (IF|F|1V&YV) | Expression2:V
(F&F|V[IV&!F&! (FIF&V)) Expression 3: V

Source: ACM Mexico and Central America 2004.
ID for online judge: POJ 2106.

Analysis
The priority for operators is defined in the following list, where ‘" is a unary operator and ‘| and
‘& are operators.

Operators | Priority
( 0
| 1
& 2
! 3
) 4

Two stacks are used to solve the problem: stack op is used to store operators, ozop is its stack
pointer, and stack va/ is used to store values.

Because of the priority, if there are some ‘!’ at the top of stack op, before a value is pushed into
stack val, these ‘" should be popped and the final result is pushed into stack val.

The algorithm is as follows:

1. Initially stack va/ and stack op are empty (vrop = otop = 0);
2. Analyze every character c in the expression one by one:

— Ife=="(, then 0 is popped into stack op;

— Ife=="), then the expression between ‘" and ‘)’ is calculated, the result is pushed into
stack val, and the ‘(" at the top of stack op is popped;

— Ife=="1, then 3 is pushed into stack op;

— If ¢ =="&/, then ‘& and ‘" at the top of stack gp are popped and calculated, and 2 is
pushed into stack op;

— Ifc=="|, then |, ‘& and ‘!’ at the top of stack op are popped and calculated, and 1 is
pushed into stack op;

— Ifcis “V’ or ‘F’, then transfer it into a number (‘V’ is transferred into 1, and ‘F’ is trans-
ferred into 0); and is pushed into stack val;

3. Operators in stack op are popped one by one, and are calculated. Finally the element at the
bottom of stack val is the result (v2/[0] 2 "V': 'F").



Applications of Linear Lists for Sequential Access ® 153

Program

#include <cstdio>

const int maxn = 100 + 10; //the upper limit of the length of
the expression

int val[maxn], vtop; // stack val and its stack pointer
int op[maxn], otop; // stack op and its stack pointer
void insert(int b) //b is pushed into stack val

while (otop && op[otop - 1] == 3) { // while "!I" at the top of stack

op
b = 1b;
--otop;
}
val[vtop++] = b; // b is pushed into stack val
void calc(void) // calculation
{
int b = val[--vtop]; // a and b are popped from stack val
int a = val[--vtop];
int opr = op[--otop]; // operator opr is popped from stack op
int c = (a & b);
if (opr == 1)
c=(@]|] b);
insert(c); // the result is pushed into stack val

int main(void)

{
int loop = 0O;
char c;
while ((c = getchar( )) = EOF) { // Character of the expression
vtop = otop = O;
do { // the expression is scanned
if (c=="(){ // if c = (", then O is pushed into
stack op

op[otop++] = O;
} else if (c == ")) { // if c = ")", the subexpression in
the brackets is calculated, and the result is pushed into stack val
while (otop && op[otop - 1] I= 0)
calc( );
--otop; //" (" is popped from stack op
insert(val[--vtop]):
} else if (c == "17) { //if c¢c = "1", then 3 is pushed into
stack op
op[otop++] = 3;
}else if (c == "&") { // if c = "&", then "&" or "1" at the
top of stack op are popped and calculated, and 2 is pushed into stack op
whille (otop && op[otop-1] >= 2)
calc( );
op[otop++] = 2;
} else if (c == "|") { //if c = "|", then "|","&" or "I" at
the top of stack op are popped and calculate, and 1 is pushed in stack op
whille (otop && op[otop - 1] >= 1)
calc( );



154 ® Data Structure Practice: For Collegiate Programming Contests and Education

op[otop++] = 1;
} else if (c == *V" || ¢ == "F") {// if c is a value, c is
pushed into stack val

insert(c == V" ? 1 : 0);
}
} while ((c = getchar( )) = "\n" && c !'= EOF);
while (otop) // elements are popped from stack
op and calculate
calc( );

printfF(""Expression %d: %c\n", ++loop, (val[0] ? "V" : "F")); //
the result of the expression

}

return O;

5.3 Application of Queues

A queue is also a kind of linear list. Unlike stacks, additions of entities are at the rear terminal posi-
tion of the linear list, called enqueue, and removals of entities are from the front terminal position,
called dequeue. Therefore, queues are first-in, first-out (FIFO) data structures.

5.3.1 A Stack or a Queue?

Do you know stack and queue? They’re both important data structures. A stack is a first-in, last-
out (FILO) data structure, and a queue is a FIFO one.

Here comes the problem: Given the order of some integers (it is assumed that the stack and
queue are both for integers) going into the structure and coming out of it, what kind of data struc-
ture could it be—stack or queue?

Notice that here we assume that none of the integers are popped out before all the integers are pushed
into the structure.

Input

There are multiple test cases. The first line of input contains an integer 7" (7'< 100), indicating the
number of test cases. Then 7 test cases follow.

Each test case contains three lines: The first line of each test case contains only one integer /V,
indicating the number of integers (1 < N < 100). The second line of each test case contains /V inte-
gers separated by a space, which are given in the order of going into the structure (i.e., the first one
is the earliest going in). The third line of each test case also contains N integers separated by a space,
which are given in the order of coming out of the structure (the first one is the earliest coming out).

Output

For each test case, output your guess in a single line. If the structure can only be a stack, output
“stack,” or if the structure can only be a queue, output “queue”; otherwise, if the structure can be
either a stack or a queue, output “both,” or else output “neither.”

Sample Input | Sample Output

4 stack




Applications of Linear Lists for Sequential Access ® 155

Sample Input | Sample Output

3 queue
123 both

321 neither

123

123

121
121
3

123

231

Source: 6th Zhejiang Provincial Collegiate Programming Contest.

ID for online judge: ZO) 3210.

Analysis

Based on definitions of stack and queue, for each test case, if the ith integer in the first sequence is
equal to the ith integer in the second sequence, the data structure is a queue, and if the ith integer
in the first sequence is equal to the reciprocal ith integer in the second sequence, the data structure
isastack; 0<i<n—1.

Suppose 4[] is the ith integer in the first sequence and 4[7] is the 7th integer in the second
sequence, 0 <7< 7 — 1, and issta and isque are flags for stack and queue, respectively. Initially, issta
and Zsque are true.

The algorithm is as follows:

For each element in @ and 4, if b[{]#a4(i], the data structure isn’t a FIFO structure, and isn’t a queue
(isque=false); and if bli]#a[n—i-1], the data structure isn’t a LIFO structure, and isn’t a stack
(issta=false); 0 < i<m—1.

Finally, output the result based on isstz and isque:

issta | isque | Output

false | false “neither”
false | true “queue”
true | false “stack”

true | true “both”




156 m Data Structure Practice: For Collegiate Programming Contests and Education

Program

#include <iostream>
using namespace std;
const int maxn = 100 + 10; //the upper limit of the length the
structure
int main(void)
{
int loop;
cin >> loop; //the number of test cases
while (loop--) {
int n, a[maxn]; // the number of iIntegers and the
structure
cin >> n;
for (int i = 0; 1 < nj; i++) // Input integers into the
structure
cin >> a[i];
bool isque = true, issta = true; // marks for queue and stack
for (int i =0; 1 < n; i++) {

int x;
cin >> Xx; // the i-th integer leaving the
structure
if (x = a[i]) // the structure isn’t a queue
isque = fTalse;
if (x I=a[n -1 - 1]) // the structure isn’t a stack
issta = false;
}

if (issta && isque) // the structure is both
a stack and a queue
cout << "both" << endl;
else if (issta) // stack
cout << "stack" << endl;
else i1f (isque) // queue
cout << "queue" << endl;
else // neither a queue nor a stack
cout << "neither" << endl;

}

return 0O;

}

5.3.2 Team Queue

Queues and priority queues are data structures that are known to most computer scientists. The
team queue, however, is not so well known, though it occurs often in everyday life. At lunchtime
the queue in front of the Mensa is a team queue, for example.

In a team queue each element belongs to a team. If an element enters the queue, it first
searches the queue from head to tail to check if some of its teammates (elements of the same
team) are already in the queue. If yes, it enters the queue right behind them. If not, it enters
the queue at the tail and becomes the new last element (bad luck). Dequeuing is done like in
normal queues: elements are processed from head to tail in the order they appear in the team
queue.

Your task is to write a program that simulates such a team queue.



Applications of Linear Lists for Sequential Access ® 157

Input

The input will contain one or more test cases. Each test case begins with the number of teams #
(1 £ £<1000). Then ¢ team descriptions follow, each one consisting of the number of elements
belonging to the team and the elements themselves. Elements are integers in the range 0-999,999.
A team may consist of up to 1000 elements.

Finally, a list of commands follows. There are three different kinds of commands:

ENQUEUE x: Enter element x into the team queue.

DEQUEUE: Process the first element and remove it from the queue.

STOP: End of test case.

The input will be terminated by a value of 0 for #.

Warning: A test case may contain up to 200,000 commands, so the implementation of the
team queue should be efficient: both enqueing and dequeuing of an element should only take
constant time.

Output

For each test case, first print a line saying “Scenario #k,” where 4 is the number of the test case.
Then, for each DEQUEUE command, print the element that is dequeued on a single line. Print a
blank line after each test case, even after the last one.

Sample Input Sample Output
2 Scenario #1
3101102103 101
3201202 203 102
ENQUEUE 101 103
ENQUEUE 201 201
ENQUEUE 102 202
ENQUEUE 202 203
ENQUEUE 103

ENQUEUE 203 Scenario #2
DEQUEUE 259001
DEQUEUE 259002
DEQUEUE 259003
DEQUEUE 259004
DEQUEUE 259005
DEQUEUE 260001
STOP

(Continued)



158 ® Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

2

5259001 259002 259003 259004 259005
6 260001 260002 260003 260004 260005 260006
ENQUEUE 259001

ENQUEUE 2600071

ENQUEUE 259002

ENQUEUE 259003

ENQUEUE 259004

ENQUEUE 259005

DEQUEUE

DEQUEUE

ENQUEUE 260002

ENQUEUE 260003

DEQUEUE

DEQUEUE

DEQUEUE

DEQUEUE

STOP

0

Source: Ulm Local 1998.
IDs for online judges: POJ 2259, ZOJ 1948, UVA 540.

Analysis

In a team queue, teams constitute a queue. And in a team, elements constitute a queue. Therefore,
a team queue is a queue of queues. Queues consisting of elements are nested in a team queue. The
algorithm is to simulate the problem description and implement a queue of queues.

Program

#include <stdio.h>
#include <assert.h>

#define MAXTEAMS 1024
#define MAXTEAMSIZE 1024
#define MAXELEMENTS 1048576
#define DBG(X)

FILE *input;



Applications of Linear Lists for Sequential Access ® 159

int kase=0;

int numteams;

int team[MAXELEMENTS]; /* team[i] = the team element #i belongs to */
int teampos[MAXTEAMS]; /* teampos[i] = position of team #i in the queue
*/

int teamsize[MAXTEAMS]; /* teamsize[i] = number of elements of team #i
currently in the queue */

int queue[MAXTEAMS][MAXTEAMSIZE]; /* the queue of queues */

int queuehead[MAXTEAMS]; /* the heads of the single queues */
int queuetai l[MAXTEAMS]; /* the tails of the single queues */
int head,tail; /* head and tail of the queue of queues */
int read_case( )

{

int i,j,n,elmt;

/* read team descriptions */
fscanf(input,"%d",&numteams) ;
if (numteams==0) return O;
for (i=0; i<numteams; i++)

fscanf(input,"%d",&n);
for (J=0; j<n; j++)

{
fscanf(input,"%d",&elmt);
DBG(printf(*'%d ",elmt));
team[elmt] = i;

}

DBG(printf('OK\n'"));

return 1;
}
void enqueue (int element)
{ -
int t,pos;
t = team[element];
if (teamsize[t]==0) /* create a new team at the tail */
queue[tail][0] = element;
queuehead[tail] = 0;
queuetail[tail] = 1;
teampos[t] = tail;
teamsize[t] = 1;
tail = (tail+1)%MAXTEAMS;
}
else /* add element to the team */
{
pos = teampos[t];
queue[pos][queuetail[pos]] = element;
queuetail[pos] = (queuetail[pos]+1)%MAXTEAMSIZE;
teamsize[t]++;
by
¥

int dequeue( )
{



160 m Data Structure Practice: For Collegiate Programming Contests and Education

int element = queue[head][queuehead[head]];

int t = team[element];

queuehead[head] = (queuehead[head]+1)%MAXTEAMSIZE;

teamsize[t]--;

if (teamsize[t]==0) /* team is empty => remove it */
head = (head+1)%MAXTEAMS;

return element;

}

void solve_case( )
{
char cmd[30];
int element,t;
printf(*'Scenario #%d\n",++kase);
/* initialize queue */
head = tail = 0;
for (t=0; t<numteams; t++)
teamsize[t] = 0;
/* simulation */
while (1)
{
fscanf(input,"%s",cmd) ;
it (strcmp(cmd,ENQUEUE™)==0)

fscanf(input, %d",&element);
enqueue(element);

else it (strcmp(cmd,"DEQUEUE')==0)
printf("'%d\n",dequeue( ));

else if (strcmp(cmd, " STOP'™)==0)

P ™

printf(''\n"");
return;

else

assert(0);

L S

}

int main( )

{
input = fopen('team.in","r");
assert(input!=NULL);
while (read_case( )) solve case( );
fclose(input);
return O;

A priority queue is a queue that each element has a priority associated with it. In a priorit

Y q q y y
queue, an element with high priority is served before an element with low priority. If two elements
have the same priority, they are served according to their order in the queue.



Applications of Linear Lists for Sequential Access ® 161

5.3.3 Printer Queue

The only printer in the computer science students’ union is experiencing an extremely heavy work-
load. Sometimes there are a hundred jobs in the printer queue and you may have to wait for hours
to get a single page of output.

Because some jobs are more important than others, the hacker general has invented and imple-
mented a simple priority system for the print job queue. Now, each job is assigned a priority
between 1 and 9 (with 9 being the highest priority and 1 being the lowest), and the printer oper-
ates as follows:

B The first job J in queue is taken from the queue.

B [f there is some job in the queue with a higher priority than job /, then move / to the end of
the queue without printing it.

B Otherwise, print job / (and do not put it back in the queue).

In this way, all those important muffin recipes that the hacker general is printing get printed
very quickly. Of course, those annoying term papers that others are printing may have to wait for
quite some time to get printed, but that’s life.

Your problem with the new policy is that it has become quite tricky to determine when your
print job will actually be completed. You decide to write a program to figure this out. The program
will be given the current queue (as a list of priorities) as well as the position of your job in the
queue, and it must then calculate how long it will take until your job is printed, assuming that
no additional jobs will be added to the queue. To simplify matters, we assume that printing a job
always takes exactly 1 minute, and that adding and removing jobs from the queue is instantaneous.

Input

The input is one line with a positive integer: the number of test cases (at most 100). Then, for each
test case,

B One line with two integers 7 and 7, where 7 is the number of jobs in the queue (1 < 72 < 100)
and  is the position of your job (0 < 7 < n — 1). The first position in the queue is number
0, the second is number 1, and so on.

B One line with 7 integers in the range 1-9, giving the priorities of the jobs in the queue. The
first integer gives the priority of the first job, the second integer the priority of the second
job, and so on.

Output

For each test case, print one line with a single integer: the number of minutes until your job is
completely printed, assuming that no additional print jobs will arrive.

Sample Input | Sample Output

3 1

10 2

(Continued)



162 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input | Sample Output

5 5
42
1234
60
119111

Source: ACM Northwestern Europe 2006.
IDs for online judges: POJ 3125, UVA 3638.

Analysis
The problem is a priority queue’s problem.

Suppose 4 is the priority queue storing jobs; the size of 2 maxn = 100 + 5. Initially, 7 jobs are
stored in 4, and a[m] is your job. In order to mark your job, a[m] = —a[m], and cnt is the number
of minutes until your job is completely printed, initially ¢zz = 0.

The algorithm is to simulate the printer operation. The process is shown in the program.

Program

#include <iostream>
using namespace std;

const int maxn = 100 + 5; // the upper limit of the
length of priority queue a
inline int fabs(int k) // return absolute value
{
return k < 0 ? -k : k;
}
int main(void)
{
int loop;
cin >> loop; // the number of test cases
while (loop--) {
int n, m;
cin >> n >> m; // the number of jobs in the queue and the
position of your job
int st, ed, a[maxn]; // priority queue a, points for
the front and the rear
for (int i = 0; 1 < n; i++) // the priorities of n jobs
cin >> a[i];
a[m] = -a[m]; // initialization
st = 0;
ed = n;

int cnt = 0;
while ((ed + 1) % maxn '= st) { // a circular queue used to
simulate the printer queue
int k = a[st];
st = (st + 1) % maxn;
bool print = true;
for (int i =st; 1 I=ed; 1 = (i + 1) % maxn)



Applications of Linear Lists for Sequential Access ® 163

if (fabs(k) < fabs(al[i])) {
print = false;

afed] = k;
ed = (ed + 1) % maxn;
break;
¥
if (print) {
++cnt;
if (k<0 {
cout << cnt << endl;
break;
b
by
b
h
return O;

The priority queue is represented with an array. Its time complexity is O(#) (7 is the number of
elements in the priority queue.) A binary tree can also be used to store a priority queue to improve
time complexity. It will be introduced in Section III.

5.4 Problems
5.4.1 Roman Roulette

The historian Flavius Josephus relates how, in the Romano-Jewish conflict of 67 AD, the Romans
took the town of Jotapata, which he was commanding. Escaping, Josephus found himself trapped
in a cave with 40 companions. The Romans discovered his whereabouts and invited him to surren-
der, but his companions refused to allow him to do so. He therefore suggested that they kill each
other, one by one, the order to be decided by lot. Tradition has it that the means for effecting the lot
was to stand in a circle and, beginning at some point, count round, every third person being killed
in turn. The sole survivor of this process was Josephus, who then surrendered to the Romans. This
begs the question: Had Josephus previously practiced quietly with 41 stones in a dark corner, or had
he calculated mathematically that he should adopt the 31st position in order to survive?

Having read an account of this gruesome event, you become obsessed with the fear that you will
find yourself in a similar situation at some time in the future. In order to prepare yourself for such an
eventuality, you decide to write a program to run on your handheld PC that will determine the posi-
tion from which the counting process should start in order to ensure that you will be the sole survivor.

In particular, your program should be able to handle the following variation of the processes
described by Josephus: 7 > 0 people are initially arranged in a circle, facing inward, and numbered
from 1 to 7. The numbering from 1 to 7 proceeds consecutively in a clockwise direction. Your allo-
cated number is 1. Starting with person number 7, counting starts in a clockwise direction, until
we get to person number £ (£ > 0), who is promptly killed. We then proceed to count a further 4
people in a clockwise direction, starting with the person immediately to the left of the victim. The
person number 4 so selected has the job of burying the victim and then returning to the position
in the circle that the victim had previously occupied. Counting then proceeeds from the person
to his immediate left, with the 4th person being killed, and so on, until only one person remains.

For example, when =5, #= 2, and i = 1, the order of execution is 2, 5, 3, and 1. The survivor is 4.



164 m Data Structure Practice: For Collegiate Programming Contests and Education

Input and Output

Your program must read input lines containing values for # and 4 (in that order), and for each
input line output the number of the person with which the counting should begin in order to
ensure that you are the sole survivor. For example, in the above case the safe starting position is 3.
Input will be terminated by a line containing values of 0 for # and 4.

Your program may assume a maximum of 100 people taking part in this event.

Sample Input | Sample Output

11 1
15 1
00

Source: New Zealand Contest 1989.
ID for online judge: UVA 130.

Hint
The problem is a simulation problem. The program is to simulate the process in the problem
description. Suppose the number for the ith person is whold], the number of persons in the circle
is cnt, and the position of the pth killed person is By 1, = (i, + k) %cnt. Initially wholi] = i + 1
0<i<n-1),cnt=n,and i, =-1.

Simulate the process until cne == 1.

5.4.2 M*A*S*H

Corporal Klinger is a member of the 4077th Mobile Army Surgical Hospital in the Korean War,
and he will do just about anything to get out. The U.S. Army has made an offer for a lottery that
will choose some number of lucky people (X) to return to the states for a recruiting tour. Klinger
needs your help getting out.

The lottery is run by lining up all the members of the unit at attention and eliminating mem-
bers by counting off the members from 1 to &V, where /V is a number chosen by pulling cards off
of the top of a deck. Every time NV is reached, that person falls out of the line, and counting begins
again at 1 with the next person in line. When the end of the line has been reached (with whatever
number that may be), the next card on the top of the deck will be taken, and counting starts again
at 1 with the first person in the remaining line. The last X people in line get to go home.

Klinger has found a way to trade a stacked deck with the real deck just before the selection
process begins. However, he will not know how many people will show up for the selection until
the last minute. Your job is to write a program that will use the deck Klinger supplies and the
number of people in line that he counts just before the selection process begins and tell him what
position(s) in the line to get in to assure himself of a trip home. You are assured that Klinger’s deck
will get the job done by the time the 20th card is used.

A simple example with 10 people, 2 lucky spots, and the numbers from cards 3, 5, 4, 3, and 2
would show that Klinger should get in position 1 or 8 to go home.

Input

For each selection, you will be given a line of 22 integers. The first integer (1 < V< 50) tells how
many people will participate in the lottery. The second integer (1 < X < N) is how many lucky



Applications of Linear Lists for Sequential Access ® 165

“home” positions will be selected. The next 20 integers are the values of the first 20 cards in the
deck. Card values are interpreted to integer values between 1 and 11 inclusive.

Output

For each input line, you are to print the message “Selection #4” on a line by itself, where A is the
number of the selection starting with 1 at the top of the input file. The next line will contain a list
of “lucky” positions that Klinger should attempt to get into. The list of “lucky” positions is then
followed by a blank line.

Sample Input Sample Output

1023543296101062673474532 Selection #1
47611273485107837423910253 | 18

Selection #2
1316233147

Source: ACM South Central United States 1995.
IDs for online judges: POJ 1591, ZOJ 1326, UVA 402.

Hint
The problem is also a modified Josephus problem. A list is used to represent members. The pro-
gram simulates the process in the problem description.

5.4.3 Joseph

Joseph’s problem is notoriously known. For those who are not familiar with the original problem: from
among 7 people, numbered 1, 2, ..., n, standing in a circle every mth is going to be executed and only
the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the
last remaining person, thus saving his life to give us the message about the incident. For example, when
n=6and m = 5, then the people will be executed in the order 5, 4, 6, 2, and 3, and 1 will be saved.

Suppose that there are £ good guys and 4 bad guys. In the circle the first 4 are good guys and
the last # bad guys. You have to determine such minimal » that all the bad guys will be executed
before the first good guy.

Input

The inpuc file consists of separate lines containing 4. The last line in the input file contains 0. You
can suppose that 0 < £ < 14.

Output

The output file will consist of separate lines containing 7 corresponding to 4 in the input file.

Sample Input | Sample Output

3 5

(Continued)



166 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input | Sample Output

4 30
0

Source: ACM Central Europe 1995.
ID for online judge: POJ1012.

Hint
The problem is also a modified Joseph’s problem. In order to avoid time limit exceeded, an offline
method is used. First, all solutions to Joseph’s problem are calculated. That is, for all possible 4,
corresponding m is calculated and is stored in an array: ans[k] = m. Then, for each test case 4,
output ansk] directly.

Because 0 < £ < 14, m can be enumerated.

5.4.4 City Skyline

The best part of the day for Farmer John’s cows is when the sun sets. They can see the skyline of
the distant city. Bessie wonders how many buildings the city has. Write a program that assists
the cows in calculating the minimum number of buildings in the city, given a profile of its
skyline.

The city in profile is quite dull architecturally, featuring only box-shaped buildings. The sky-
line of a city on the horizon is somewhere between 1 and W units wide (1 £ W< 1,000,000) and
described using IV (1 < N'<50,000) successive x and y coordinates (1 <x< W, 0 < y < 50), defining
at what point the skyline changes to a certain height.

An example skyline could be that shown in Figure 5.4 and would be encoded as (1,1), (2,2),
(5,1), (6,3), (8,1), (11,0), (15,2), (17,3), (20,2), (22,1). This skyline requires a minimum of six build-
ings to form; Figure 5.5 shows a possible set of six buildings that could create the skyline above.

Input

Line 1: Two space-separated integers: N and W

XXXXXXXXXX .. XX XXX XXX XXXX

Figure 5.4 Example skyline.

Figure 5.5 One possible set of six buildings.



Applications of Linear Lists for Sequential Access ® 167

Lines 2 .. N + 1: Two space-separated integers, the x and y coordinates of a point where the
skyline changes. The x coordinates are presented in strictly increasing order, and the first x coor-
dinate will always be 1.

Output

Line 1: The minimum number of buildings to create the described skyline.

Sample Input | Sample Output

10 26 6
11
22
51
63
81
110
152
173
202
221

Source: USACO, November 2005, Silver.
ID for online judge: POJ 3044.

Hint
Because successive x and y coordinates for the skyline are listed from left to right, if the current
point’s y coordinate is higher than its left adjacent point’s y coordinate, the point is a starting posi-
tion for a building (Figure 5.6a); if the current point’s y coordinate is lower than its left adjacent
point’s y coordinate, the point is an ending position for a building (Figure 5.6b); and if the current
point’s y coordinate is equal to its left adjacent point’s y coordinate, it shows that two points belong
to the same building (Figure 5.6c¢).

A stack is used to store coordinates. Coordinates are used to represent buildings. When a
point’s coordinate (x, ) is input, it is compared with the coordinate at the top of the stack. The
element at the top of the stack is its left adjacent point’s coordinate.

(s 21) i1 ¥ic1) (%
i i i1 Yic1) (% 93)
(i1 ¥ic1) ® o o 4
Tﬁ —T (x5 33)
(@) (b) ©

Figure 5.6 Points and buildings.



168 m Data Structure Practice: For Collegiate Programming Contests and Education

If the current point’s y coordinate is lower than its left adjacent point’s y coordinate, the point
at the top of stack is an ending position for a building and must be popped from the stack, and the
number of buildings increases 1; then the point’s coordinate (x, y) is compared with the coordinate
at the top of the stack again. The process is repeated until the current point’s y coordinate isn’t
lower than its left adjacent point’s y coordinate.

If the current point’s y coordinate is higher than its left adjacent point’s y coordinate, the point
is a starting position for a building, and the coordinate (x, y) is pushed into the stack.

If the current point’s y coordinate is equal to its left adjacent point’s y coordinate, it shows that
two points belong to the same building, and we needn’t do anything.

After n coordinates are dealt with, the number of coordinates in the stack is added up to the
number of buildings. The result is the solution to the problem.

5.4.5 Anagrams by Stack

How can anagrams result from sequences of stack operations? There are two sequences of stack
operators that can convert TROT to TORT:

iiiioooo

ioiiooio
where i stands for push and o stands for pop. Given pairs of words, your program should produce
sequences of stack operations that convert the first word to the second.

Input

The input will consist of several lines of input. The first line of each pair of input lines is to be
considered a source word (which does not include the end-of-line character). The second line
(again, not including the end-of-line character) of each pair is a target word. The end of the input

is marked by the end of the file.
Output

For each input pair, your program should produce a sorted list of valid sequences of 7 and o that
produce the target word from the source word. Each list should be delimited by

[

]

and the sequences should be printed in dictionary order. Within each sequence, each 7 and o is
followed by a single space and each sequence is terminated by a new line.

Sample Input | Sample Output

madam [

adamm iiiioooioo
bahama iiiiooooio
bahama iioioioioo

long iioioiooio




Applications of Linear Lists for Sequential Access ® 169

Sample Input | Sample Output

short ]
Eric [
Rice ioiiiooiiooo

ioiiioooioio
ioioioiiiooo
ioioioioioio
]

[

]

[

iioioioo

]

Source: Zhejiang University Local Contest 2001.

ID for online judge: ZO) 1004.

Hint
The problem is similar to the rails problem in Section 5.2.1.






Chapter 6

Generalized List Using Indexes

Arrays and generalized lists are indexed data structures. The difference between an array and a general-
ized list is that the array is directly indexed by an integer index and the generalized list is indexed by a
key. In a generalized list, normally one or several items are set as the key to identify records. For exam-
ple, records for residents of an area use residents’ ID numbers as keys to identify residents. Therefore, a
generalized list is a set of keyword—data value pairs. There are two kinds of generalized lists:

1. Dictionary
2. Hash table

6.1 Solving Problems Using Dictionaries

Dictionaries are commonly used tools in our lives, such as an English—Chinese dictionary, tele-
phone directories, library catalogs, a computer’s file directory, and so on. In computer science, a
dictionary can be used as an abstract data type. Such a data type defines a dictionary as a set of
(name—attribute) pairs. Based on problems, names can be given different meanings. For example,

Occasion Name Attribute

Library catalog Title Information for index number,
authors, and so on

File list in computer File name Information for addresses and
sizes of files

Variable listin a program | Variable name | Data type and address for variables

Normally, a file (or a table) contains a set of objects, where a record in the file (or an item in
the table) represents an object. In a dictionary, a pair of (name—attribute) will be stored as a record
(or an item), and a key (i.e., name in (name—attribute)) is used to identify the record (or the item).

Dictionaries can be organized as linear lists or other nonlinear structures. This chapter focuses
on dictionaries organized as sequence lists.

171



172 m  Data Structure Practice: For Collegiate Programming Contests and Education

6.1.1 References

Editors of an electronic magazine make draft versions of the documents in the form of text files.
However, publications should meet some requirements, in particular concerning the rules of
reference use. Unfortunately, lots of the draft articles violate some rules. It is desirable to develop
a computer program that will make a publication satisfy all the rules from a draft version.

Lets call a paragraph a set of lines in the article going one after another, so that paragraphs are
separated by at least one empty line (an empty line is a line that contains no characters different
from spaces). Any paragraph can contain an arbitrary number of references. A reference is a posi-
tive integer not greater than 999 enclosed in square brackets (e.g., [23]). There will be no spaces
between the brackets and the number. The square brackets are not used in any other context but
references.

There can be two types of paragraph: regular and reference description. Reference description
differs from the regular paragraph because it begins with the reference it describes, for example:

(list)[23] It is the description ...

The opening square bracket will be at the first position of the first line of the reference descrip-
tion paragraph (i.e., there will be no spaces before it). No reference description paragraph will
contain references inside itself.

Each reference will have exactly one corresponding description, and each description will have
at least one reference to it.

To convert a draft version to a publication, you have to use the following rules:

B References should be renumbered by the successive integer numbers, starting from 1 in the
order of their first appearance in the regular paragraphs of the source draft version of the
document.

B Reference descriptions should be placed at the end of the article ordered by their number.

B The order of regular paragraphs in the document should be preserved.

B Your program should not make any other changes to the paragraphs.

Input

The input file will be a text file containing a draft article your program should process. All lines
will be no more than 80 characters long. Any reference description will contain no more than
three lines. The input file will contain up to 40,000 lines.

Output

The output file contains the result of processing. All paragraphs should be separated by one true
empty line (i.e., a line that contains no characters at all). There should be no empty lines before
the first paragraph.

Sample Input Sample Output

[5] Brownell, D., “Dynamic Reverse The Reverse Address Resolution Protocol (RARP)
Address Resolution Protocol [1] (through the extensions defined in the
(DRARP),” Work in Progress. Dynamic RARP (DRARP) [2]) explicitly addresses

the problem of network address discovery, and
includes an automatic IP address assignment
mechanism.




Generalized List Using Indexes m 173

Sample Input

Sample Output

The Reverse Address Resolution
Protocol (RARP) [10] (through the
extensions defined in the Dynamic
RARP (DRARP) [5]) explicitly addresses
the problem of network address
discovery, and includes an automatic
IP address assignment mechanism.

[10] Finlayson, R., Mann, T., Mogul, J.,
and Theimer, M., “A Reverse Address
Resolution Protocol,” RFC 903,
Stanford, June 1984.

[16] Postel, J., “Internet Control
Message Protocol,” STD 5, RFC 792,
USC/Information Sciences Institute,
September 1981.

The Trivial File Transfer Protocol (TFTP)
[20] provides for transport of a boot
image from a boot server. The
Internet Control Message Protocol
(ICMP) [16] provides for informing
hosts of additional routers via “ICMP
redirect” messages.

[20] Sollins, K., “The TFTP Protocol
(Revision 2),” RFC 783, NIC, June 1981.

Works [10], [16], and [20] can be
obtained via Internet.

The Trivial File Transfer Protocol (TFTP) [3] provides
for transport of a boot image from a boot server.
The Internet Control Message Protocol (ICMP) [4]
provides for informing hosts of additional routers
via “ICMP redirect” messages.

Works [1], [4], and [3] can be obtained via Internet.

[1] Finlayson, R., Mann, T., Mogul, J., and Theimer,
M., “A Reverse Address Resolution Protocol,” RFC
903, Stanford, June 1984.

[2] Brownell, D., “Dynamic Reverse Address
Resolution Protocol (DRARP),” Work in Progress.

[3]1 Sollins, K., “The TFTP Protocol (Revision 2),” RFC
783, NIC, June 1981.

[4] Postel, J., “Internet Control Message Protocol,”
STD 5, RFC 792, USC/Information Sciences
Institute, September 1981.

Source: ACM Northeastern Europe 1997.
IDs for online judges: POJ 1706, UVA 765.

Analysis
In this problem, references are as dictionaries, where names are as reference numbers and attri-
butes are as reference descriptions.

In regular paragraphs, indexes are created by reference numbers. The program should show
regular paragraphs and reference descriptions based on rules in the problem description.

Suppose p[ ] is the sequence of reference descriptions, its length is 7¢fCnz, its elements’ type is
struct, where pli].desc is a reference description, p[i].0ldno is the old number of the reference in the
input, p[#].newno is the sequence number in regular paragraphs (0 <7 < refCnt — 1), and refSort is
the new current number.

For array p, there are two calculations.

1. Insert the reference whose old number is o/dno and reference description is desc into array p.
2. For the reference whose old number is 0/dno, the new number newno is calculated.



174 m  Data Structure Practice: For Collegiate Programming Contests and Education

Based on it, the algorithm is as follows:

Initially p is empty, there is no new number (refCnt=0, refSort=0). Repeat the following steps
until input ends.

1. Ignore empty lines;

2. If the current line s[ ] is a reference description (s[0] == '['), then get o/dno and desc for the
reference, and insert it into sequence p; else if s[ ] is a regular paragraph, each character is
analyzed as follows: if the current character is '[', get o/dno and compute newno; else, output
the current character;

3. For each reference in array p, the new number newno is the sequence number for the refer-
ence. Array p is sorted based on newno and is output.

Program

#include <cstdio>

#include <string>

#include <cstring>

#include <cctype>

using namespace std;

const int maxRef = 1000; //the upper limit of the number of references
const int maxCol = 80 + 5;

struct reference { // Structure type for reference
string desc; // reference description
int oldno, newno; // the old and new numbers of the reference
} pl[maxRef]; // the sequence of reference descriptions
int refCnt, refSort;
void gsort(int st, int ed) // Sort references p based on newno
in ascending order
{
if (st >= ed)
return;
int i, j, k = p[(st + ed) / 2].newno; // the middle newno
i=st-1, j=ed+ 1; // Initialize the left and right
pointers
do {
do

++1 ]
while (p[i]l-newno < k); // from left to right, find the first
reference whose newno >=k
do
--3;
while (p[j]-newno > k); // from right to left, find the first
reference whose newno <=k

if (i <)) { // exchange two references
reference tmp = p[i];
pLil = p[]:
pi] = tmp;
}
} while (i < j);
gsort(st, j); // left and right subintervals

gsort(j + 1, ed);



Generalized List Using Indexes ®m 175

bool isBlank(char s[ 1) // s[ ] is an empty line, return
true, else return false
{

int k = 0;

while (s[k] '= "\0")

it (lisspace(s[k++]))
return false;
return true;

nline bool isReference(char s[ 1) // s[ ] is a reference or not

return s[0] == "[";

W Ao

int searchRef(int oldno)
{ 7/ find the index in p[ ] for oldno, if it doesn"t exist, return -1
for (int i = 0; i < refCnt; i++)
if (p[i]-oldno == oldno)
return i;
return -1;
}
int insertRef(string desc, int oldno) // Insert the new reference into p.
IT the reference description hasn®"t appeared, desc is empty
{ int cur = searchRef(oldno);
if (cur < 0) {
cur = refCnt++;
p[cur].-newno = O;
}
pl[cur].desc = desc;
p[cur].oldno = oldno;
return cur;
}
inline int getRefNo(const char s[ ], int st = 1)
{ 7/ the original number for reference
int refno;
sscanf(s + st, "%d", &refno);
return refno;

int getRefNewNo(int oldno) //find the newno for oldno

t k = searchRef(oldno);
(k < 0)
k = insertRef("", oldno);
it (Ip[k]-newno)

p[k]-newno = ++refSort;
return p[k]-newno;

n
if

}
void proc(char s[ 1) // regular paragraph
{
int len = strlen(s);
for (int i = 0; 1 < len; i++) {
if (sli] == "[") {
int oldno = getRefNo(s, i + 1);
int newno = getRefNewNo(oldno);
printf("'[%d]", newno);



176 ®m Data Structure Practice: For Collegiate Programming Contests and Education

while (s[++i] !'= "17);
} else
putchar(s[i]);

}
putchar(*\n");
}
int main(void)
{
refCnt = 0;
refSort = 0O;
char s[maxCol];
while (gets(s) != NULL) {
while (isBlank(s)) //
if (gets(s) == NULL)
break;
it (isBlank(s))
break;
if (isReference(s)) { //s[ ] i1s reference description
int oldno = getRefNo(s); // oldno
string desc;
do { // desc
desc += s;
desc += "\n";
} while (gets(s) !'= NULL && tisBlank(s));
insertRef(desc, oldno); // new reference record
} else { // regular paragraph
do {
proc(s);
} while (gets(s) !'= NULL && tisBlank(s));
putchar(*\n");
}
}
gsort(0, refCnt - 1); // Sort references
for (int i = 0; 1 < refCnt; i++) {
printf(C'[%d]", pL[i]-newno);
int k = 0;
while (p[i]-desc[k++] = "]");
printf(%sn”, p[i].desc.c_str( ) + k);
}

return O;

If sequential search is used in dictionaries, its time complexity for searching an element is
O(n). In order to improve the query efficiency, we can sort dictionaries, and then dichotomy is
used in the query and its time complexity is O(log, ().

6.1.2 Babelfish

You have just moved from Waterloo to a big city. The people here speak an incomprehensible
dialect of a foreign language. Fortunately, you have a dictionary to help you understand
them.



Generalized List Using Indexes ®m 177

Input

The input consists of up to 100,000 dictionary entries, followed by a blank line, followed by a
message of up to 100,000 words. Each dictionary entry is a line containing an English word, fol-
lowed by a space and a foreign language word. No foreign word appears more than once in the
dictionary. The message is a sequence of words in the foreign language, one word on each line.
Each word in the input is a sequence of at most 10 lowercase letters.

Output

The output is the message translated to English, one word per line. Foreign words not in the
g g g
dictionary should be translated as “eh”.

Sample Input Sample Output

dog ogday cat
cat atcay eh
pig igpay loops

froot ootfray

loops oopslay

atcay

ittenkay

oopslay

Source: Waterloo Local Contest, September 22, 2001.
ID for online judge: POJ 2503.

Analysis

The dictionary is represented as a linear list dict, where the length is 7, and for the ith dictionary
entry, dict[i][0] is used to store the English word and dict[#][1] is used to store the foreign language
word, 0 <i<#n-—1.

Binary search is used to solve the problem. First, the dictionary is sorted in the foreign lan-
guage words™ alphabet order. Then, after a foreign language word is input, the corresponding
English word is searched through binary search. If there is no such foreign language word, “eh” is
output; else, the corresponding English word is output.

Because input consists of up to 100,000 dictionary entries, scanfand printfare used.

Program

#include <cstdio>
#include <cstring>
const int maxn = 100000 + 10; // the upper limit of the number of words
const int maxs = 10 + 5; // the upper limit of the length of a word



178 ®m Data Structure Practice: For Collegiate Programming Contests and Education

char dict[maxn][2][maxs]; // dictionary, for the i-th word, English word
is dict[i][0], and foreign language word is dict[i][1]

int n; // the number of words
bool isblank(char s[ 1) // the current line is empty line or not
{

int k = strlen(s);
while (--k >= 0)
if (s[k] >= "a" && s[k] <= "z%)
return false;

return true;
3
void swap(char a[ ], char b[ ]) //exchange strings a and b
{

char t[maxs];

strcpy(t, a);

strcpy(a, b);

strcpy(b, ©);
¥
void sort(int a, int b, char s[ ][2][maxs]) // sort dictionary in
alphabet order for foreign words

{
if (a >= b)
return;
char t[maxs];
strepy(t, s[(a + b) 7 2][1]);
int i, j;
i=a-1, j=Db+ 1;
do {
do
++1i ;
while (strcmp(t, s[i]l[1]) > 0);
do
-3
while (stremp(t, s[j1[1]) < 0);
it a<pA
swap(s[i1[0]1, s1[0D):
Y swap(s[i]l[1], sO1[1D):
} while (i < j);
sort(a, j, s);
sort(J + 1, b, s);
int find(char s[ 1) // dichotomy is used
{
int I, r;
1 =0;
r =n;
while (1 + 1 <r) {
intmid =1 +r) 7/ 2;
if (stremp(dict[mid][1], s) <= 0)
I = mid;
else
r = mid;



Generalized List Using Indexes ®m 179

if (stremp(dict[I1]1[1], s))
return -1;
return 1I;

int main(void)

char s[maxs + maxs];
n=20;
gets(s); //Input the first word
while (Yisblank(s)) { // Input all words in the
dictionary
sscanf(s, "%s%s', dict[n][0], dict[n][1]); //English word and
foreign language word
++Nn;
gets(s); //next word

sort(0, n - 1, dict);
while (scanf("'%s'", s) != EOF) {
int k = find(s);

if (k < 0)
printf("'%s\n", "eh'™);
else
printf(""%s\on", dict[k][0]);
}
return O;

6.2 Solving Problems Using a Hash Table and the Hash Method

Like a dictionary, a hash table is also used to search records in an indexed linear list with keys.
A hash table uses a hash function that maps keys into addresses in a table; that is, there is a hash
function address = hash(key). When we need to search element ¢ with key 4, the first step is to
calculate hash function address = hash(k) and get addresses (hash(k)), which is the position of
the element in the table. Obviously, the ideal situation is that the hash function is an injection
function.

Unfortunately, sometimes a hash function maps different keys into a same hash value. Such a
situation is called a conflict. There are two methods to eliminate the conflict:

1. Hash with linear open addressing: The data structure of hash table 7 is a one-dimensional
array. Hashing with linear open addressing can be used directly. If there exists a conflict,
we need to test other addresses until an address can store the element. The hash function is
designed based on linear probing, quadratic probing, or double hashing, and so on.

2. Hashing with chains: Hash table 7 uses chains. That is, elements with the same hash value
are linked in a chain.

6.2.1 10-20-30

A simple solitaire card game called 10-20-30 uses a standard deck of 52 playing cards in which suit
is irrelevant. The value of a face card (king, queen, jack) is 10. The value of an ace is 1. The value
of each of the other cards is the face value of the card (2, 3, 4, etc.). Cards are dealt from the top



180 m Data Structure Practice: For Collegiate Programming Contests and Education

of the deck. You begin by dealing out seven cards, left to right, forming seven piles. After playing
a card on the rightmost pile, the next pile upon which you play a card is the leftmost pile.

For each card placed on a pile, check that pile to see if one of the following three card combina-
tions totals 10, 20, or 30:

1. The first two and last one
2. The first one and the last two
3. The last three cards

If so, pick up the three cards and place them on the bottom of the deck. For this problem,
always check the pile in the order just described. Collect the cards in the order they appear on the
pile and put them at the bottom of the deck. Picking up three cards may expose three more cards
that can be picked up. If so, pick them up. Continue until no more sets of three can be picked up
from the pile.

For example, suppose a pile contains 5 9 7 3, where the 5 is the first card of the pile, and then
a 6 is played. The first two cards plus the last card (5 + 9 + 6) sum to 20. The new contents of the
pile after picking up those three cards becomes 7 3. Also, the bottommost card in the deck is now
the 6, the card above it is the 9, and the one above the 9 is the 5 (Figure 6.1).

Ifa queen were played instead of the 6,5 +9 + 10 =24,and 5 + 3+ 10 =18, but 7 + 3 + 10 = 20,
so the last three cards would be picked up, leaving the pile as 5 9 (Figure 6.2).

If a pile contains only three cards when the three sum to 10, 20, or 30, then the pile “disap-
pears” when the cards are picked up. That is, subsequent play skips over the position that the now-
empty pile occupied. You win if all the piles disappear. You lose if you are unable to deal a card. It
is also possible to have a draw if neither of the previous two conditions ever occurs.

Werite a program that will play games of 10-20-30 given initial card decks as input.

First—-5iy 4 First — 5, 4 First—»g* 'y

Y4 a P A 3
is & e E )
> 3 a ‘
Last—a- 4 i Last — ¢ Last —
* vy X
$ 3 vy
£
A A
Original pile After playing 6 After picking up
Figure 6.1 An example.
e a Ja_a
:A A §¢ &
s a
= Aud
H i, 4
¢ v

Original pile  After playing queen  After picking up

Figure 6.2 An example.



Generalized List Using Indexes m 181

Input

Each input set consists of a sequence of 52 integers separated by spaces or ends of line. The integers
represent card values of the initial deck for that game. The first integer is the top card of the deck.
Input is terminated by a single zero following the last deck.

Output

For each input set, print whether the result of the game is a win, loss, or a draw, and print the
number of times a card is dealt before the game results can be determined. (A draw occurs
as soon as the state of the game is repeated.) Use the format shown in the “Sample Output”
section.

Sample Input Sample Output

265101041010104510451097617 | Win: 66
69531010410921

1011010103109 8 Loss: 82
1087128673382

4321081068958 Draw: 73
10535469917635

1010810910107

261010410131011
1022104107710

1054357108239
1084517672691023
1034491011

105101018107 810
61010109621010

0

Source: ACM-ICPC World Finals 1996.
ID for online judge: UVA 246.

Analysis
A string s is used to represent cards in piles and in the hand.

1. Intervals are used to represent cards in piles and in the hand. Cards in piles and in the
hand are represented as a string 5. Capital letters ABCDEFGH?” are used to separate inter-
vals. Initially values of 52 playing cards are stored in an array 4[1 .. 52]. That is, s = “A4[]]
Ba[2]Ca[3]Dal4]Ea[5]Fa[6]Gal7]Ha(8 .. 52],” where a[l .. 7] is the first seven cards put into
pile 1 ... pile 7, respectively, and «[8 .. 52] are cards in the hand and can be regarded in pile
8. Suppose signli] is the flag for pile 7 (sign[l] = “A,” ..., sign[7] = “G,” sign[8] = “H”); the
front pointer and the rear pointer for pile 7 are /[7] and 7[i], respectively.

2. Hash technology is used to determine repetition state. String s is regarded as a state.

Obviously, if the current state is the same as a previous state, it is a draw. The hash function



182 m  Data Structure Practice: For Collegiate Programming Contests and Education

for string s is defined as follows:

s.size—1

hash(s) 2 (1] = 07) * 1371 |961999997

Hashing with open addressing is used to eliminate conflicts. Rejudging the hash function,

hash2(s) is defined as follows:

s.size—1
hash2(s) = 2 (s1i] = 0") * 13"~ |9510000009

=0

Only when hash(s)) == hash(s,) and hash2(s,) == hash2(s,), state 5, and s, are same.

3. Simulate the process putting a card into pile 7. First, the first card in the hand is taken
out (the character in /[8]) and is inserted into the rear of pile 7. Second, the 10-20-30 rule is
implemented. If there is no card in pile 7, the pile “disappears”.

4. The game process is simulated.

Initially 52 cards are input, and initial state s is gotten;
The number of pile i is initialized 1;
Repeat the loop until the result is gotten:
{ Accumulate the number of cards put into piles (step++);
Put the first card into pile i, and 10-20-30 rule is implemented;
If state s exists, output "Draw" and step; and exit;
If there is no card in the hand, output "Loss" and step; and
exit;
IT all the piles disappear, output "Win" and step; and exit;
Go to the next pile, and continue the loop;

}

Program

#include<iostream>

#include<cstdio>

#include<fstream>

#include<algorithm>

#include<cmath>

#include<vector>

#include<map>

#include<cstring>

#include<math.h>

#include<string>

#include<set>

using namespace std;

const int p=1999997; // modular for hash function 1
const int p2=10000009; // modular for hash function 2



Generalized List Using Indexes ®m 183

bool h[2100000]; //h[f]: state that hash function 1 is f has appeared
int key[2100000]; // the value for hash function 1 is f, its
corresponding value for hash function 2 is key[T]

string s; // the current state

int a[60],n; // a: stores face values of cards

char sign[10]; // sign[i] is the flag for pile i
(sign[1]="A", ..., sign[8]="H")

bool v[10]; // mark whether the pile has been taken. v[i] == true

means pile i has disappeared
int num(char c){ // face values of cards

if (c=="0") return 10; else return c-"07;
}

int ch(int x){ // face values of cards
if (x==10) return "0"; else return char("0"+x);

}

int 1(int 1){ // pointer for the front
return s.find(sign[i])+1;

}

int r(int 1){ // pointer for the rear
return s.find(sign[i+1])-1;

}

int hash(string s)

s.size-1
{ 7/ Hash function 1: hash(s) = [ 2 di]-°07)* 135-5”9-“]%1999997
int =0; i=0
for (int i=0;i<=s.size( )-1;i++) f=(F*13+s[i]-"0")%p;
return F;

int hash2(string s)

ssize-1
// Hash function 2: hash2(s) = i]-707)* 13>size-1-1 19410000009
{

int £=0; ic0
for (int i=0;i<=s.size( )-1;i++) F=(F*31+s[i]-"0")%p2;
return T;
}
bool have(string s)
{ // if state s hasn"t appeared, it is added into hash table

and return 0; else return 1
int f=hash(s), f2=hash2(s); // calculate hash functions for state s
while (h[Fl&&(key[f]!=F2)) F++;
it (Ih[F]){ 7/ state s hasn"t appeard
h[f]=1;
key[f]=F2;
return O;
} else return 1; // state s exists
}
void initialize( ){ //Initialization
s.clear( );
char c="A";
for (int i=1l;i<=n;i++){ //sign[1l..8]="ABCDEFGH", state
s="Aa[1]Ba[2]Ca[3]Da[4]Ea[5]Fa[6]1Ga[7]Ha[8-..52]"
if (i<=8){
S+=C;
sign[i]=c;



184 m Data Structure Practice: For Collegiate Programming Contests and Education

Cc++;
}
s+=ch(a[i]);
}
memset(v,0,sizeof(Vv));
memset(h,0,sizeof(h)); //hash table is initialized empty
memset(key,0,sizeof(key));
have(s);
}
void removel(int i){ // the first combination for pile i
string t=s.substr(1(i),2);
t+=s.substr(r(i),1);
s+=t;
s.erase(1(i),2);
s.erase(r(i),1);
}
bool casel(int i){ //determine the first combination in pile
i
int sum=num(s[I(D)]D+num(s[1(i)+1])+num(s[r(i)]);
if (sum==10] | sum==20] | sum==30) {removel(i); return 1;}
return O;
}
void remove2(int i){ // the second combination for pile i
string t=s.substr(1(i),1);
t+=s.substr(r(i)-1,2);
s+=t;
s.erase(1(i),1);
s.erase(r(i)-1,2);
}
bool case2(int i){ // determine the second combination in
pile i
int sum=num(s[I(D)])+num(s[r(i)-1])+num(s[r(i)]);
ifT (sum==10] | sum==20] | sum==30) {remove2(i); return 1;}
return O;
}
void remove3(int i){ // the third combination for pile i
string t=s.substr(r(i)-2,3);
S+=t;
s.erase(r(i)-2,3);
}
bool case3(int i){ // determine the third combination in
pile i
int sum=num(s[r(i)-2])+num(sLr(i)-1])+num(sfr(i)D);
if (sum==10] |sum==20] | sum==30) {remove3(i); return 1;}
return O;
void deliver(int i){ //put the card in the hand into pile i, and

then combinations
string t=s.substr(1(8),1);
s.insert(r(i)+1,t);
s.erase(1(8),1);
if (r(H)-1(i)>=2)
while (r(i)-1(1)>=2){
bool flag=0;



Generalized List Using Indexes ®m 185

if (casel(i)) continue; else

if (case2(i)) continue; else

it (case3(i)) continue; else flag=1;
if (flag) break;

}
if (r()<I(i)) v[il=1; // pile i disappears
}
int over( ){ // determine whether game is
over or not
if (have(s)) return 3; else // Draw
if (1(8)>=s.size( )) return 2; else // Loss
for (int i=1;i<=7;i++) // Continue
if (1v[i]) return O;
return 1; // Win
void game( ){ // Simulate the game
int i=1; // From pile 1
int step=7;
int res; // Flag for end
while (1){
deliver(i); // put a card into pile i, and combination
step++;
res=over( );
if (res) break; // if the result is produced, break the loop
i=(1%7)+1; // the next pile
while (v[L[i]) i=Ci%7)+1;
}
// Output the result
if (res==1) cout<<"Win : "; else
if (res==2) cout<<"Loss: "; else
if (res==3) cout<<"Draw: ";
cout<<step<<endl; // the number of cards put into piles
}
int main( ){
n=52; // number of cards
cin>>a[1l]; // the first card
while (a[1]){ // if the first card isn"t O, then the next
51cards
for (int i1=2;i<=n;i++) cin>>al[i];
initialize( );
game( ); // simulate the game
cin>>a[1l]; // the first card for the next test case
}
}

6.3 Problems
6.3.1 Spell Checker

You, as a member of a development team for a new spell checking program, are to write a module
that will check the correctness of given words using a known dictionary of all correct words in all
their forms.



186 m Data Structure Practice: For Collegiate Programming Contests and Education

If the word is absent from the dictionary, then it can be replaced by correct words (from the
dictionary) that can be obtained by one of the following operations:

B Deleting one letter from the word
B Replacing one letter in the word with an arbitrary letter
B [nserting one arbitrary letter into the word

Your task is to write the program that will find all possible replacements from the dictionary
for every given word.

Input

The first part of the input file contains all words from the dictionary. Each word occupies its own
line. This part is finished by the single character ‘#’ on a separate line. All words are different.
There will be at most 10,000 words in the dictionary.

The next part of the file contains all words that are to be checked. Each word occupies its own
line. This part is also finished by the single character #’ on a separate line. There will be at most
50 words that are to be checked.

All words in the input file (words from the dictionary and words to be checked) consist only of
small alphabetic characters, and each one contains 15 characters at most.

Output

Write to the output file exactly one line for every checked word in the order of their appearance
in the second part of the input file. If the word is correct (i.e., it exists in the dictionary) write the
«Ke » . . . .
message “is correct.” If the word is not correct, then write this word first, and then write the char-
acter ¢ (colon), and after a single space write all its possible replacements, separated by spaces. The
replacements should be written in the order of their appearance in the dictionary (in the first part
of the input file). If there are no replacements for this word, then the line feed should immediately
follow the colon.

Sample Input Sample Output
i me is correct

is aware: award
has m: i my me
have contest is correct
be hav: has have
my oo: too

more or:

contest i is correct

me firi

too mre: more me




Sample Input

Sample Output

if
award
#

me
aware
m
contest
hav
00

or

i

fi

mre

#

Source: ACM Northeastern Europe 1998.
IDs for online judges: POJ 1035, ZOJ 2040, UVA 671.

Hint

Generalized List Using Indexes ®m 187

Because there are at most 10,000 words in the dictionary, a linear list is used to store the diction-
ary. Suppose dict[ ] is used to store the dictionary, where the ith word in the dictionary is dict[i]

and the length of the dictionary is dicsSize.

When dictSize words are input, a dictionary is constructed. Then for each checked word s, if
p y

s is in the dictionary, output the correct message (printf(“%s is correct\n”, s)); else, every word in

the dictionary is analyzed as follows:

1. If the length of dict[7] is the same as the length of s, and dict[7] and s can be the same by
replacing one letter in the word with an arbitrary letter, s and dic#[i] are output.
2. If dict[] and s can be the same by inserting one arbitrary letter into s, s and dict[4] are

output.

3. If dict[i] and s can be the same by deleting one letter in s, s and dict[i] are output.

For steps 2 and 3, function match(s1[ ], slenl, s2[ ]) is implemented. The length of s1[ ] is
slenl, and the length of s2[ ] is slenl + 1. The function march(s1[ 1, slenl, s2[ ]) is used to deter-
mine whether s1[ ] and s2[ ] can be the same by inserting one letter into s1[ ]. The algorithm is

as follows:

Search the first position 4 that s1[£] and s2[£] are different from left to right. Then we need to
determine whether s1[£]...s1[slen]] is the same as s2[k+1]...52[slenl+1].



188 m Data Structure Practice: For Collegiate Programming Contests and Education

6.3.2 Snowflake Snow Snowflakes

You may have heard that no two snowflakes are alike. Your task is to write a program to determine
whether this is really true. Your program will read information about a collection of snowflakes
and search for a pair that may be identical. Each snowflake has six arms. For each snowflake, your
program will be provided with a measurement of the length of each of the six arms. Any pair of
snowflakes that have the same lengths of corresponding arms should be flagged by your program
as possibly identical.

Input

The first line of input will contain a single integer 7, 0 < 7 < 100,000, the number of snowflakes
to follow. This will be followed by 7 lines, each describing a snowflake. Each snowflake will be
described by a line containing six integers (each integer is at least 0 and less than 10 million), the
lengths of the arms of the snowflake. The lengths of the arms will be given in order around the
snowflake (either clockwise or counterclockwise), but they may begin with any of the six arms. For
example, the same snowflake could be describedas 12345 60r432165.

Output

If all of the snowflakes are distinct, your program should print the message
No two snowflakes are alike.
If there is a pair of possibly identical snowflakes, your program should print the message
Twin snowflakes found.

Sample Input | Sample Output

2 Twin snowflakes found.
123456

432165

Source: Canadian Computing Competition 2007.

ID for online judge: PO]J 3349.

Hint
The hash method is used to solve the problem. When a snowflake is input, the value of a hash func-
tion is obtained. If there is a same hash value in the hash table, then output “Twin snowflakes found.”

6.3.3 Equations

Consider equations having the following form:

ayx® + ayy? + agx? + axdv axg =0
The coeflicients are given integers from the interval [-50, 50].

A solution is considered a system (x;, x,, x3, %, x5) that verifies the equation, x; € [-50, 50],
x;!=0,any i € {l, 2, 3, 4, 5}.

Determine how many solutions satisfy the given equation.

Input

The only line of input contains the five coeflicients 4, a,, a5, a,, as, separated by blanks.



Generalized List Using Indexes ®m 189

Output

The output will contain on the first line the number of solutions for the given equation.

Sample Input | Sample Output

37 29 41 43 47 654

Source: Romania Ol 2002.
ID for online judge: POJ 1840.

Hint

The hash method is used to solve the problem. The equation @,x;? + 2,x,% + azx5® + ax® + asx> =0 is
transferred into @,x,> + 2,%,> + 43503 = —(ax3 + asxs®). First, solutions to expression ,x, + a2x23 + a;x5
are calculated and stored in the hash table. Then solutions to expression —(ax,> + 25x5%) are calculated
and searched in the hash table.






Chapter 7

Sort of Linear Lists

A sorting algorithm puts elements of a list in a certain order. Sorting algorithms are important
for managing data. There are a large number of sorting algorithms, such as bubble sort, insertion
sort, selection sort, merge sort, heapsort, and quicksort. Such algorithms have been discussed in
many classical books. This chapter focuses on using the sort function in the Standard Template

Library (STL).

7.1 Using Sort Function in STL

The STL isa C++ library of container classes, algorithms, and iterators. It provides many algorithms
and data structures of computer science, including sorting algorithms. Like many class libraries,
the STL includes container classes containing objects. The STL includes the class vector, list,
deque, set, multiset, map, multimap, hash_set, hash_multiset, hash_map, and hash_multimap.

For example, map is a sorted associative container that associates objects of type Key with objects
of type Data. Map is a pair associative container, meaning that its value type is pair {(const Key,
Data). It is also a unique associative container, meaning that no two elements have the same key.

If there is a mapping relationship between students’ names and their scores, map can describe
the relationship easily. At the head of the program, there is a preprocessor directive #include
(map), and container mapStudent is specified as follows:

map(string, int)mapStudent
Based on the above statements, students’ names and scores are specified with string and int,

respectively. All students’ information, mapStudent[namel=score, is stored in the container map-
Student. The compiling system sorts students’ names in alphabetical order.

7.1.1 Hardwood Species

Hardwoods are the botanical group of trees that have broad leaves, produce a fruit or nut, and
group p
generally go dormant in the winter. America’s temperate climates produce forests with hundreds

191



192 m Data Structure Practice: For Collegiate Programming Contests and Education

of hardwood species—trees that share certain biological characteristics. Although oak, maple, and
cherry all are types of hardwood trees, for example, they are different species. Together, all the
hardwood species represent 40% of the trees in the United States.

On the other hand, softwoods, or conifers, from the Latin word meaning “cone bearing,” have
needles. Widely available U.S. softwoods include cedar, fir, hemlock, pine, redwood, spruce, and
cypress. In a home, the softwoods are used primarily as structural lumber, such as 2 X 4s and
2 X 6s, with some limited decorative applications.

Using satellite imaging technology, the Department of Natural Resources has compiled an
inventory of every tree standing on a particular day. You are to compute the total fraction of the
tree population represented by each species.

Input

The input to your program consists of a list of the species of every tree observed by the satellite,
one tree per line. No species name exceeds 30 characters. There are no more than 10,000 species
and no more than 1 million trees.

Output

Print the name of each species represented in the population, in alphabetical order, followed by the
percentage of the population it represents, to four decimal places.

Sample Input

Sample Output

Red Alder Ash 13.7931

Ash Aspen 3.4483
Aspen Basswood 3.4483
Basswood Beech 3.4483

Ash Black Walnut 3.4483
Beech Cherry 3.4483

Yellow Birch

Cottonwood 3.4483

Ash Cypress 3.4483
Cherry Gum 3.4483
Cottonwood Hackberry 3.4483
Ash Hard Maple 3.4483
Cypress Hickory 3.4483
Red Elm Pecan 3.4483

Gum Poplan 3.4483
Hackberry Red Alder 3.4483
White Oak Red Elm 3.4483




Sort of Linear Lists ® 193

Sample Input Sample Output
Hickory Red Oak 6.8966
Pecan Sassafras 3.4483
Hard Maple Soft Maple 3.4483
White Oak Sycamore 3.4483
Soft Maple White Oak 10.3448
Red Oak Willow 3.4483

Red Oak Yellow Birch 3.4483
White Oak

Poplar

Sassafras

Sycamore

Black Walnut

Willow

Source: Waterloo Local Contest, January 26, 2002.

Hint: This problem has huge input; use scanfinstead of
cinto avoid time limit exceeded.

ID for online judge: POJ 2418.

Analysis
Suppose the number of the tree whose species name is x is 4[x], and the total number of trees is 7.
First, the number of each species and the total number of tree 7 are calculated based on the input,
and then in alphabetical order print the name of each species and its percentage of the population,
blxl/n.

For this problem, the STL map can be used to store 4 and sort keys.

Program

#include<iostream>
#include<string>

#include<map>

using namespace std;

typedef map<string, int> record;

record h; // h[x]: the number of the tree whose name is
X
string s; // tree name
int n; // the number of trees
int main( ){
n=0;

while (getline(cin,s)){ // a list of the species of every tree, and
accumulate



194 m Data Structure Practice: For Collegiate Programming Contests and Education

n++;
h[s]++;
}
for (record::iterator it=h.begin( );it!=h_end( );it++){
//sequential search (h is sorted in alphabet order)
string name=C*it).first;
int k=(*it).second;
printf(""%s %.41fn", name.c_str( ), double(k)*100/double(n));
// output name and percentage
}

In STL, there is a sort function sort to sort elements in an interval. At the head of the pro-
gram, there must be a preprocessor directive #include (algorithmy). There are two kinds of usages:
sort(l, r) and sort(l, r, compare). For the next two examples, two kinds of usages are used to solve
problems.

7.1.2 Who’s in the Middle?

EJ. is surveying his herd to find the most average cow. He wants to know how much milk this
median cow gives: half of the cows give as much or more than the median; half give as much
or less.

Given an odd number of cows V(1 £ N < 10,000) and their milk output (1 .. 1,000,000), find
the median amount of milk given such that at least half the cows give the same amount of milk or
more and at least half give the same or less.

Input
Line 1: A single integer V.
Lines 2 .. N + 1: Each line contains a single integer that is the milk output of one cow.

Output

Line 1: A single integer that is the median milk output

Sample Input Sample Output

5 3
2
4
1
3

5

Source: USACO, November 2004.
ID for online judge: POJ 2388.



Sort of Linear Lists ®m 195

Analysis
The problem is simple. We only need to sort NV cows” milk output. The element in the middle is
the median milk output.

The function sort( ) in algorithm.h is used to sort.

Program
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=11000; //the upper limit of the number of cows
int a[maxn],n; // milk outputs and the number of cows
int main( ){
cin>>n; // the number of cows

for (int i=1; i<=n; i++) cin>>a[i];// milk outputs

// Sort milk outputs

sort(a+l, a+n+l);

cout<<al[(n+1)/2]<<endl; // the median milk output

7.1.3 ACM Rank Table

Association for Computing Machinery (ACM) contests, like the one you are participating in, are
hosted by the special software. That software, among other functions, performs a job of accepting and
evaluating teams’ solutions (runs) and displaying results in a rank table. The scoring rules are as follows:

1. Each run is either accepted or rejected.

2. The problem is considered solved by the team if one of the runs submitted for it is accepted.

3. The time consumed for a solved problem is the time elapsed from the beginning of the con-
test to the submission of the first accepted run for this problem (in minutes) plus 20 minutes
for every other run for this problem before the accepted one. For an unsolved problem,
consumed time is not computed.

4. The total time is the sum of the time consumed for each problem solved.

5. Teams are ranked according to the number of solved problems. Teams that solve the same
number of problems are ranked by the least total time.

6. While the time shown is in minutes, the actual time is measured to the precision of 1 sec-
ond, and the seconds are taken into account when ranking teams.

7. Teams with equal rank according to the above rules must be sorted by increasing team
number.

Given the list of N runs with submission time and the result of each run, your task is to com-
pute the rank table for C teams.
Input

The input contains integer numbers C NV, followed by /N quartets of integers ¢; p; #; r,, where ¢; is

team number, p; is problem number, 7 is submission time in seconds, and 7; is 1 if the run was
accepted and 0 otherwise.

1<C N<1000,1<¢,<C, 1< p,<20,1<£<36,000



196 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Output

Output file must contain C integers—team numbers sorted by rank.

Sample Input Sample Output
33 213

123000 O

123100 1

214200 1

Source: ACM Northeastern Europe 2004,
Far-Eastern Subregion.

ID for online judge: POJ 2379.

Analysis
The submissions” sequence is represented as an array 4. For the ith submission, 4[7].c is the team
number, a[4].t is the submission time, and #[4].p is the problem number, 1 <7< 7.

The teams’ sequence is represented as an array . For the ith team, #[i].id is the team number,
t[i].ac is the number of solved problems, and #[i].p[j] is the number of wrong runs for problem j;
the flag that problem £ is accepted is #[7].s0l[k], 1 <i< C, 1<k, j< n.

The problem is a simulation problem. In the problem description, rules for ACM rank are
shown. The program should implement these rules.

First, n submissions are sorted in the submission time’s ascending order.

Then every submission is processed based on rules.

Finally, arrays ¢ are sorted based on rules.

Function sort in STL can be used to simplify the program.

Program

#include<iostream>

#include<algorithm>
using namespace std;
const int maxn=1100;

struct judgement{ // submission structure

intc, t, p, r; // team number, submission time, problem
number, and run result
}:
struct team{ // team structure

int id, ac, t; // team number, the number of solved
problems, time

int p[25]; //p[i] is the number of wrong runs for problem
i

bool sol[25]; //sol[i] is he flag that problem i is accepted
}:
bool cmp_t(const judgement &a, const judgement &b){ //compare a and b
with time

return a.t<b.t;

¥



Sort of Linear Lists m 197

bool cmp_ac(const team &a, const team &b){ // array t are sorted
based on rules

if (a.ac!'=b.ac) return a.ac>b.ac;

if (a.t!=b.t) return a.t<b.t;

return a.id<b.id;

};

judgement a[maxn]; // submissions

team t[maxn]; //teams

int n, m; //numbers of teams and submissions

int main( ){
memset(a, 0, sizeof(a));
memset(t, 0, sizeof(t));
cin>>n>>m; // numbers of teams and submissions
for (int i=1; i<=m; i++) cin>>a[i].c>>a[i].p>>a[i].t>>a[i].r; //
Each submission
for (int i=1; i<=n; i++) t[i].id=i;
sort(a+l, a+m+1l, cmp_t); // Sort array a based on submission time
for (int i=1; i<=m; i++){ // For each submission
int x=a[i].c, y=al[i]-p;
if (t[x]-sol[y]l) continue;
if (a[i]-r{ // if accepted
t[x].t+=1200*t[x] -pLy]+a[i]-t;
t[x]-sol[y]=1;
t[x]-ac++;
} else t[x].ply]++;

e
sort(t+l, t+n+l, cmp_ac); // sort
for (int i=1; i<n; i++) cout<<t[i].id<<" *; // rank

cout<<t[n].id<<endl;

7.2 Using Sort Algorithms

STL is encapsulated for programmers. But some problems require you to implement sort algo-
rithms. For example, a problem requires you to calculate the number of exchanges in sorting.

7.2.1 Flip Sort

Sorting in computer science is an important part. Almost every problem can be solved efficiently if
sorted data are found. There are some excellent sorting algorithms that have already achieved the
lower bound nlgn. In this problem, we will also discuss a new sorting approach. In this approach
only one operation (flip) is available, and that is you can exchange two adjacent terms. If you think
a while, you will see that it is always possible to sort a set of numbers in this way.

A set of integers will be given. Now using the above approach, we want to sort the numbers in
ascending order. You have to find the minimum number of flips required. For example, to sort 1 2
3, we need no flip operation, whereas to sort 2 3 1, we need at least two flip operations.

Input

The input will start with a positive integer N (V< 1000). In the next few lines there will be V
integers. Input will be terminated by the end of the file (EOF).



198 m Data Structure Practice: For Collegiate Programming Contests and Education

Output

For each data set print “Minimum exchange operations: M,” where M is the minimum flip opera-
tions required to perform sorting. Use a separate line for each case.

Sample Input Sample Output

3 Minimum exchange operations : 0
123 Minimum exchange operations : 2
3

231

ID for online judge: UVA 10327.

Analysis

Suppose the given set of integers is stored in an array 4. Initially, the minimum flip operations ans

is 0. Minimum exchange operations are simulated by using bubble sort. For each exchange, ans++.
When there is no exchange operation, azs is the solution to the problem.

Program

#include<iostream>

using namespace std;

const int maxn=1100; // the upper limit of the number of
integers

int n,a[maxn]; // the number of integers n, the given set of

integers is stored in an array a
int main( ){
cin>>n;
whille (Icin.eof( )){
for (int i=1l;i<=n;i++) cin>>al[i];

bool flag=1;
int ans=0; // initialize the number of
exchange operations
while (Flag){ //Simulate bubble sort
flag=0;
for (int i=1l;i<n;i++) if (a[il>ali+1]) { //adjacent
elements
swap(a[i].a[i+1]); //exchange
flag=1;
ans++; //accumulate the number of exchange
operations
}
}
cout<<"Minimum exchange operations : "<<ans<<endl; //output
result
cin>>n;
}

system(*'pause');



Sort of Linear Lists ® 199

7.2.2 Ultra-Quicksort

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a
sequence of 7 distinct integers by swapping two adjacent sequence elements until the sequence is
sorted in ascending order. For the input sequence,

91054

Ulera-quicksort produces the output
01459

Your task is to determine how many swap operations Ultra-quicksort needs to perform in
order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer
n < 500,000—the length of the input sequence. Each of following 7 lines contains a single integer
0<4[i] 999,999,999, the ith input sequence element. Input is terminated by a sequence of length
n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number 0p, the
minimum number of swap operations necessary to sort the given input sequence.

Sample Input Sample Output

5 6

9 0

3

0

Source: Waterloo Local Contest, February 5, 2005.

IDs for online judges: POJ 2299, ZOJ 2386, UVA 10810.



200 m Data Structure Practice: For Collegiate Programming Contests and Education

Analysis
For 7 integers, if each pair (4, A]-) is enumerated to determine whether 4, is larger than A, i<},
and to calculate the number of inversions. The time complexity is O(7?).

Divide and conquer can be used to improve the time complexity. The new time complexity is
O(nlogn).

Suppose the number of inversions for a series of numbers A[/ .. 7] is d(/, 7). A/ .. 7] is divided
into two parts, A[/.. mid] and A[mid + 1 .. r], where

ml‘d:{/-’-}ﬂJ
2

If two numbers in an inversion are from A[/.. mid] and A[mid + 1 .. 7], respectively, the number
of such inversions is f{/, mid, r). Obviously, d(/, r) = d(l, mid) + d(mid + 1, r) + f{l, mid, 7).

After d(/, 7) is calculated, A[/ .. 7] is also sorted. That is, after d(/, mid) and d(mid + 1, 7) are
calculated, A[/, mid] and A[mid + 1, 7] are sorted. Suppose 7 and j are pointers for A[/, mid] and
Almid + 1, r] respectively, where A[j — 1] < A[4] and A[j] > A[i]. Therefore, in A[mid + 1 .. 7], there
are j — mid — 1 numbers that are less than A[7], as shown in Figure 7.1. Therefore, j — mid — 1 will
be accumulated into fU/, mid, 7).

Because A/, mid] and Almid + 1, r] are all sorted, f{/, mid, 1) is calculated through moving
pointer 7 and pointer j. The process is like merge sort.

Program

#include<iostream>
#define lolo long long
using namespace std;

const lolo maxn=510000; // the upper limit of the length of the
input sequence
lolo n, a[maxn], ans, t[maxn]; // the length of the input sequence
n, the input sequence a, Merge sequence t, the number of inversions ans
void Sort(lolo I, lolo r{ // Merge Sort

if (I==r) return; // Sort finish

lolo mid=(1+r)/2;

Sort(l, mid); // Sort the left sub interval

Sort(mid+1, r); // Sort the right sub interval

lolo i=1, j=mid+1, now=0;
while (i<=mid&&j<=r){
if (afil>apjD{
ans+=mid-i+1l; //if a[i]l>a[j]. a[i]l and numbers after a[i]
and a[j] are inversions

j— mid -1 L Jmmid=1
[1]2]5]9]3]4]6]7]8]10] [1]2]5]9]3]4]6]7]8]10]
L

(@ (b)

Figure 7.1 Dichotomy.



Sort of Linear Lists m 201

t[++now]l=alj++];
} else {
t[++now]=a[i++];
}
}

while (i<=mid) t[++now]=a[i++];

while (J<=r) t[++now]=a[j++];

now=0;

for (lolo k=1; k<=r; k++) a[k]l=t[++now];

}
int main( ){
cin>>n;
while (n){
for (lolo i=1; i<=n; i++) cin>>a[i]; // the input sequence
ans=0;
Sort(l, n);
cout<<ans<<endl; // the minimum number of swap operations
cin>>n;
}
}

7.3 Problems

7.3.1 Ananagrams

Most crossword puzzle fans are used to anagrams—groups of words with the same letters in dif-
ferent orders—for example, OPTS, SPOT, STOP, POTS, and POST. Some words, however, do
not have this attribute; no matter how you rearrange their letters, you cannot form another word.
Such words are called ananagrams; an example is QUIZ.

Obviously, such definitions depend on the domain within which we are working; you might
think that ATHENE is an ananagram, whereas any chemist would quickly produce ETHANE.
One possible domain would be the entire English language, but this could lead to some problems.
One could restrict the domain to, say, music, in which case SCALE becomes a relative ananagram
(LACES is not in the same domain), but NOTE is not since it can produce TONE.

Write a program that will read in the dictionary of a restricted domain and determine the
relative ananagrams. Note that single-letter words are, ipso facto, relative ananagrams since they
cannot be rearranged’ at all. The dictionary will contain no more than 1000 words.

Input

The input will consist of a series of lines. No line will be more than 80 characters long, but may
contain any number of words. Words consist of up to 20 upper- and lowercase letters and will not
be broken across lines. Spaces may appear freely around words, and at least one space separates
multiple words on the same line. Note that words that contain the same letters but of differing
case are considered to be anagrams of each other; thus, tleD and EdiT are anagrams. The file will
be terminated by a line consisting of a single #.

Output

The output will consist of a series of lines. Each line will consist of a single word that is a relative
ananagram in the input dictionary. Words must be output in lexicographic (case-sensitive) order.
There will always be at least one relative ananagram.



202 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output
ladder came tape soon leader acme RIDE lone Dreis peat Disk
ScAIE orb eye Rides dealer NotE derail LaCeS drled NotE
noel dire Disk mace Rob dries derail
# drled
eye
ladder
soon

Source: New Zealand Contest 1993.

ID for online judge: UVA 156.

Hint

If the current word’s ascending order is the same as another word’s ascending order, the word is
a relative anagram, and if a word’s ascending order isn’t the same as any other word’s ascending
order, the word is a relative ananagram. The algorithm is as follows.

Suppose the words” list is a, where the ith word is a[i]-s and its
ascending order is a[i]-t, 1l<=i<=n. First, a is sorted in alphabet order
for a[i].s, and a[i]-t is calculated. Then for each word, determine
whether the word is a relative ananagram or not.

7.3.2 Grandpa Is Famous

The whole family was excited by the news. Everyone knew grandpa had been an extremely good
bridge player for decades, but when it was announced he would be in the Guinness Book of World
Records as the most successful bridge player ever, that was astonishing.

The International Bridge Association (IBA) has maintained, for several years, a weekly ranking
of the best players in the world. Considering that each appearance in a weekly ranking constitutes
a point for the player, grandpa was nominated the best player ever because he got the highest
number of points.

Having many friends who were also competing against him, grandpa is extremely curious to
know which player(s) took second place. Since the IBA rankings are now available on the Internet,
he turned to you for help. He needs a program that, when given a list of weekly rankings, finds out
which player(s) got second place according to the number of points.

Input

The input contains several test cases. Players are identified by integers from 1 to 10,000. The first
line of a test case contains two integers /V and M, indicating, respectively, the number of rank-
ings available (2 < V< 500) and the number of players in each ranking (2 < M < 500). Each of
the next NV lines contains the description of one weekly ranking. Each description is composed of
a sequence of M integers, separated by a blank space, identifying the players who figured in that
weekly ranking. You can assume that

B In each test case there is exactly one best player and at least one second-best player.



Sort of Linear Lists m 203

B Each weekly ranking consists of M distinct player identifiers.

The end of input is indicated by N = M = 0.
Output

For each test case in the input, your program must produce one line of output, containing the
identification number of the player who is second best in number of appearances in the rank-
ings. If there is a tie for second best, print the identification numbers of all second-best players in
increasing order. Each identification number produced must be followed by a blank space.

Sample Input Sample Output
45 3233
2033253299 122123313234363867 7679889193100

3286992510
209910 33 86
1933749932
36
23467367993
100 38 21 76 91 85
32238531881
00

Source: ACM South America 2004.
ID for online judge: POJ 2092.

Hint

Linear list « is used to represent bridge players, where 4[i].id is the ith bridge player’s identification

number, and «[i].p is the number of appearances in weekly rankings for the bridge player.
Obviously, a[i].id == i. And a[i].p is calculated when a test case is input. Then linear list « is

sorted in «[i].p’s descending order (as the first key) and in 4[7].id’s ascending order (as the second

key). Finally, the identification numbers of all second-best players are output in increasing order.

7.3.3 Word Amalgamation

In millions of newspapers across the United States there is a word game called Jumble. The object
of this game is to solve a riddle, but in order to find the letters that appear in the answer, it is
necessary to unscramble four words. Your task is to write a program that can unscramble words.

Input

The input contains four parts: (1) a dictionary, which consists of at least 1 and at most 100 words,
one per line; (2) a line containing XXXXXX, which signals the end of the dictionary; (3) one or
more scrambled words that you must unscramble, each on a line by itself; and (4) another line



204 wm Data Structure Practice: For Collegiate Programming Contests and Education

containing XXXXXX, which signals the end of the file. All words, including both dictionary
words and scrambled words, consist only of lowercase English letters and will be at least one and at
most six characters long. (Note that the sentine]l XXXXXX contains uppercase X’s.) The diction-
ary is not necessarily in sorted order, but each word in the dictionary is unique.

Output

For each scrambled word in the input, output an alphabetical list of all dictionary words that can
be formed by rearranging the letters in the scrambled word. Each word in this list must appear on
a line by itself. If the list is empty (because no dictionary words can be formed), output the line
“NOT A VALID WORD?” instead. In either case, output a line containing six asterisks to signal
the end of the list.

Sample Input Sample Output
tarp score

score refund

only part

trap tarp

work trap

course NOT A VALID WORD
part course

resco

nfudre

aptr

sett

oresuc

XXXXXX

Source: ACM Mid-Central United States 1998.
ID for online judge: POJ 1318.

Hint
Suppose the dictionary is represented by a linear list 2, and the number of words is 7. After a test
case is input, a dictionary is set up.



Sort of Linear Lists m 205

For each word 4[i] in 4, letters in a[7] are sorted in alphabetical order and stored in 4[4,
1<:<n.

After a scrambled word is input, its letters are also sorted in alphabetical order and stored in
a string .

If there exists 6[7] such that 4[i] == # output 4[i]; else, output the line “NOT A VALID
WORD.”

7.3.4 Questions and Answers

The database of the Pentagon contains top-secret information. We don’t know what the informa-
tion is—you know, it’s top secret—but we know the format of its representation. It is extremely
simple. We don’t know why, but all the data is coded by the natural numbers from 1 up to 5000.
The size of the main base (we’ll denote it be N) is rather big—it may contain up to 100,000 of
those numbers. The database is to quickly process every query. The most often query is “Which
element is 7th by its value?”—with 7 being a natural number in a range from 1 to V.

Your program is to play a role of a controller of the database. In other words, it should be able
to quickly process queries like this.

Input

The standard input of the problem consists of two parts. At first, a database is written, and then
there’s a sequence of queries. The format of the database is very simple: in the first line there’s
a number /V, and in the next NV lines there are numbers of the database, one in each line, in an
arbitrary order. A sequence of queries is written simply as well: in the first line of the sequence a
number of queries K (1 £ K'< 100) are written, and in the next X lines there are queries, one in
each line. The query “Which element is ith by its value?” is coded by the number 7. A database is
separated from a sequence of queries by the string of three ‘#” symbols.

Output

The output should consist of K'lines. In each line there should be an answer to the corresponding
query. The answer to the query 7 is an element from the database, which is ith by its value (in the
order from the least to the greatest element).

Sample Input Sample Output
5 121

7 121

121 7

123 123

7

121

HH

4

(Continued)



206 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

3
3
2

5

Source: Ural State University Internal Contest,
October 2000, Junior Session.

ID for online judge: POJ 2371.

Hint
For 7 integers 4[1] ...a[n] in the database, array 4 is sorted in ascending order. Then for query 7,
a[i] is the answer.

7.3.5 Find the Clones

Doubleville, a small town in Texas, was attacked by aliens. They have abducted some of the resi-
dents and taken them to a spaceship orbiting around earth. After some (quite unpleasant) human
experiments, the aliens cloned the victims and released multiple copies of them back in Doubleville.
So now it might happen that there are six identical persons named Hugh F. Bumblebee: the origi-
nal person and his five copies. The Federal Bureau of Unauthorized Cloning (FBUC) charged you
with the task of determining how many copies were made from each person. To help you in your
task, FBUC has collected a DNA sample from each person. All copies of the same person have the
same DNA sequence, and different people have different sequences (we know that there are no
identical twins in the town, so this is not an issue).

Input

The input contains several blocks of test cases. Each case begins with a line containing two inte-
gers: the number 1 < 7 < 20,000 people and the length 1 < m < 20 of the DNA sequences. The
next 7 lines contain the DNA sequences: each line contains a sequence of 7 characters, where each
character is either A, ‘C’, ‘G’, or “T".

The inpuct is terminated by a block with 7 = m = 0.

Output

For each test case, you have to output # lines, each line containing a single integer. The first
line contains the number of different people that were not copied. The second line contains the
number of people that were copied only once (i.e., there are two identical copies for each such
person.) The third line contains the number of people that are present in three identical copies,
and so on: the 7th line contains the number of persons that are present in 7 identical copies. For
example, if there are 11 samples and one of them is from John Smith and all the others are from
copies of Joe Foobar, then you have to print ‘1’ in the 1st and the 10th lines and ‘0’ in all the
other lines.



Sort of Linear Lists m 207

Sample Input Sample Output
96 1
AAAAAA 2
ACACAC 0
GTTTTG 1
ACACAC 0
GTTTTG 0
ACACAC 0
ACACAC 0
TCCCCC 0
TCCCCC

00

Source: ACM Central Europe 2005.

Hint: The problem has a huge input file; scanf is
recommended to avoid time limit exceeded.

ID for online judge: POJ 2945.

Hint

Suppose DNA sequences are stored in s, where the 7th person’s DNA sequence is stored in s[7],

1 <7< n, and the number of persons who share the #th same DNA sequence is stored in ans[£].
First, s is sorted in alphabetical order. Then s is searched in order; accumulate the number of

persons who share the same DNA sequence. Finally, output the resul.

7.3.6 487-3279

Businesses like to have memorable telephone numbers. One way to make a telephone number memo-
rable is to have it spell a memorable word or phrase. For example, you can call the University of
Waterloo by dialing the memorable TUT-GLOP. Sometimes only part of the number is used to spell
a word. When you get back to your hotel tonight, you can order a pizza from Gino’s by dialing 310-
GINO. Another way to make a telephone number memorable is to group the digits in a memorable
way. You could order your pizza from Pizza Hut by calling their “three tens” number, 3-10-10-10.

The standard form of a telephone number is seven decimal digits with a hyphen between the
third and fourth digits (e.g., 888-1200). The keypad of a phone supplies the mapping of letters to
numbers, as follows:

A, B, and C map to 2
D, E, and F map t0 3
G, H, and I map to 4
J, K, and L map to 5
M, N, and O map to 6



208 m Data Structure Practice: For Collegiate Programming Contests and Education

P, R, and S map to 7
T, U, and V map to 8
W, X, and Y map to 9

There is no mapping for Q or Z. Hyphens are not dialed and can be added and removed as
necessary. The standard form of TUT-GLOP is 888-4567, the standard form of 310-GINO is
310-4466, and the standard form of 3-10-10-10 is 310-1010.

Two telephone numbers are equivalent if they have the same standard form (they dial the same
number).

Your company is compiling a directory of telephone numbers from local businesses. As part of
the quality control process, you want to check that no two (or more) businesses in the directory
have the same telephone number.

Input

The input will consist of one case. The first line of the input specifies the number of telephone
numbers in the directory (up to 100,000) as a positive integer alone on the line. The remaining
lines list the telephone numbers in the directory, with each number alone on a line. Each telephone
number consists of a string composed of decimal digits, uppercase letters (excluding Q and Z), and
hyphens. Exactly seven of the characters in the string will be digits or letters.

Output

Generate a line of output for each telephone number that appears more than once in any form.
The line should give the telephone number in standard form, followed by a space, followed by
the number of times the telephone number appears in the directory. Arrange the output lines by
telephone number in ascending lexicographical order. If there are no duplicates in the input, print
the line “No duplicates.”

Sample Input Sample Output

12 310-1010 2
4873279 487-3279 4
ITS-EASY 888-4567 3
888-4567
3-10-10-10
888-GLOP
967-11-11
967-11-11
310-GINO
F101010
888-1200




Sort of Linear Lists ®m 209

Sample Input Sample Output

-4-8-7-3-2-7-9-

487-3279

Source: ACM East Central North America
1999.

ID for online judge: POJ 1002.

Hint

First, # telephone numbers in the directory are transferred into their standard forms. Then the 7
telephone numbers are sorted in ascending order; calculate numbers for each telephone number
that appears. Finally, output the result.

7.3.7 Holiday Hotel

Mr. and Mrs. Smith are going to the seaside for their holiday. Before they start off, they need to
choose a hotel. They got a list of hotels from the Internet and want to choose some candidate hotels
that are cheap and close to the seashore. A candidate hotel M meets two requirements:

1. Any hotel that is closer to the seashore than M will be more expensive than M.
2. Any hotel that is cheaper than M will be farther away from the seashore than M.

Input

There are several test cases. The first line of each test case is an integer NV (1 < N < 10,000), which
is the number of hotels. Each of the following /Vlines describes a hotel, containing two integers D
and C (1 £ D, C<10000). D means the distance from the hotel to the seashore, and C means the
cost of staying in the hotel. You can assume that there are no two hotels with the same D and C.
A test case with V= 0 ends the input and should not be processed.

Output

For each test case, you should output one line containing an integer, which is the number of all
the candidate hotels.

Sample Input Sample Output

5 2
100 300
100 300
400 200

200 400

(Continued)



210 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

100 500
0

Source: ACM Beijing 2005.
ID for online judge: POJ 2726.

Hint
The list of hotels is represented as linear list 4; for the 7th hotel, a[7]. is the distance from the hotel
to the seashore, and a[7].c is the cost of staying in the hotel, 1 < 7 < #. Based on two requirements
for candidate hotels, z is sorted so that the distance from the hotel to the seashore is the first key,
and the cost of staying in the hotel is the second key. Suppose the number of candidate hotels is
ans, and the last candidate hotel is pre.

Initially, the first hotel is a candidate hotel (a7s = pre = 1).

From hotel 2 to hotel 7, if a[i].c < a[pre].c, then hotel 7 is also a candidate hotel (a7s++; pre = i).

Finally, output the number of candidate hotels ans.

7.3.8 Train Swapping

At an old railway station, you may still encounter one of the last remaining “train swappers.”
A train swapper is an employee of the railroad whose sole job it is to rearrange the carriages of
trains.

Once the carriages are arranged in the optimal order, all the train driver has to do is drop the
carriages off, one by one, at the stations for which the load is meant.

The title train swapper stems from the first person who performed this task, at a station close to
a railway bridge. Instead of opening up vertically, the bridge rotated around a pillar in the center
of the river. After rotating the bridge 90°, boats could pass left or right.

The first train swapper had discovered that the bridge could be operated with at most two car-
riages on it. By rotating the bridge 180°, the carriages switched place, allowing him to rearrange
the carriages (as a side effect, the carriages then faced the opposite direction, but train carriages
can move either way, so who cares).

Now that almost all train swappers have died out, the railway company would like to automate
its operation. Part of the program to be developed is a routine that decides for a given train the
least number of swaps of two adjacent carriages necessary to order the train. Your assignment is
to create that routine.

Input

The input contains on the first line the number of test cases (V). Each test case consists of two
input lines. The first line of a test case contains an integer L, determining the length of the train
(0 < L <50). The second line of a test case contains a permutation of the numbers 1 through Z,
indicating the current order of the carriages. The carriages should be ordered such that carriage 1
comes first, then 2, and so forth, with carriage L coming last.

Output

For each test case, output the sentence “Optimal train swapping takes S swaps,” where S is an
integer.



Sort of Linear Lists m 211

Sample Input Sample Output

3 Optimal train swapping takes 1 swap.
3 Optimal train swapping takes 6 swaps.
132 Optimal train swapping takes 1 swap.
4

4321

2

21

Source: ACM North Western European Regional Contest 1994.
ID for online judge: UVA 299.

Hint
Bubble sort is used to solve the problem. The number of exchanges is the solution to the problem.

7.3.9 Unix Is

The computer company you work for is introducing a brand new computer line and is developing
a new Unix-like operating system to be introduced along with the new computer. Your assignment
is to write the formatter for the Is function.

Your program will eventually read input from a pipe (although for now your program will read
from the input file). Input to your program will consist of a list of (F) filenames that you will sort
(ascending based on the ASCII character values) and format into (C) columns based on the length
(L) of the longest filename. Filenames will be between 1 and 60 (inclusive) characters in length
and will be formatted into left-justified columns. The rightmost column will be the width of the
longest filename, and all other columns will be the width of the longest filename plus 2. There
will be as many columns as will fit in 60 characters. Your program should use as few rows (R) as
possible, with rows being filled to capacity from left to right.

Input

The input file will contain an indefinite number of lists of filenames. Each list will begin with a
line containing a single integer (1 < N < 100). There will then be N lines, each containing one
left-justified filename, and the entire line’s contents (between 1 and 60 characters) are considered
to be part of the filename. Allowable characters are alphanumeric (a to z, A to Z, and 0 to 9) and
from the following set {._-} (not including the cutly braces). There will be no illegal characters in
any of the filenames and no line will be completely empty.

Immediately following the last filename will be the NV for the next set or the end of the file. You

should read and format all sets in the input file.
Output

For each set of filenames, you should print a line of exactly 60 dashes (-), followed by the formatted
columns of filenames. The sorted filenames 1 to R will be listed down column 1, filenames R + 1
to 2R listed down column 2, and so forth.



212 m  Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

10

tiny 12345678.123 size-1
2short4me 2short4me size2
very_long_file_name | mid_size_name size3

shorter much_longer_name tiny

size-1 shorter very_long_file_name

size2

size3 Alfalfa Cotton Joe Porky
much_longer_name Buckwheat Darla Mrs._Crabapple Stimey
12345678.123 Butch Froggy P.D.  Weaser

mid_size_name

12 Alice Chris Jan Marsha Ruben
Weaser Bobby Cindy Jody Mike Shirley
Alfalfa Buffy Danny Keith  Mr._French Sissy
Stimey Carol Greg Lori  Peter

Buckwheat
Porky

Joe

Darla

Cotton

Butch

Froggy
Mrs._Crabapple
P.D.

19

Mr._French
Jody

Buffy

Sissy

Keith




Sort of Linear Lists m 213

Sample Input Sample Output

Danny
Lori
Chris
Shirley
Marsha
Jan
Cindy
Carol
Mike
Greg
Peter
Bobby

Alice

Ruben

Source: ACM South Central Regional 1995.
ID for online judge: UVA 400.

Hint
A string array s is used to store V filenames. First, s is sorted in alphabetical order, and

max / = max{s[7].size}
1<isN

is calculated. Obviously, the number of columns

C_{ 62 J
max/+2

-1
r=‘fq +1J.
c

Suppose anslj] is to store formatted output in the jth row, 1 <7< 7. Finally, output ans(1] ... ans[7].

and the number of rows

7.3.10 Children’s Game

There are lots of number games for children. These games are pretty easy to play but not so
easy to make. We will discuss an interesting game here. Each player will be given V positive



214 m  Data Structure Practice: For Collegiate Programming Contests and Education

integer. He or she can make a big integer by appending those integers after one another. For
example, if there are four integers 123, 124, 56, and 90, then the following integers can be
made: 1231245690, 1241235690, 5612312490, 9012312456, 9056124123, and so forth. In fact,
24 such integers can be made. But one thing is sure: 9056124123 is the largest possible integer
that can be made.

You may think that it’s very easy to find the answer, but will it be easy for a child who has just
gotten the idea of number?

Input

Each input starts with a positive integer NV (£50). In the next lines there are V positive integers.
Input is terminated by N = 0, which should not be processed.

Output

For each input set, you have to print the largest possible integer that can be made by appending
all the V integers.

Sample Input

Sample Output

4
123 124 56 90

5

9056124123
99056124123
99999

12312456 90 9
5

99999

0

Source: 4th IIUC Interuniversity Programming
Contest 2005, Problemsetter: Md.
Kamruzzaman.

ID for online judge: UVA 10905.

Hint
Note that whether we should swap two subsequent strings depends only on these two strings. If
the strings are x and y, their possible concatenations are xy and yx. If and only if yx > xy should
we swap them.

Given any starting sequence, make such swaps until no more swaps are possible. It can be
proved that the result is optimal.

7.3.11 DNA Sorting

One measure of unsortedness in a sequence is the number of pairs of entries that are out of order
with respect to each other. For instance, in the letter sequence “DAABEC?, this measure is 5, since
D is greater than four letters to its right and E is greater than one letter to its right. This measure
is called the number of inversions in the sequence. The sequence “AACEDGG” has only one



Sort of Linear Lists ® 215

inversion (E and D)—it is neatly sorted—while the sequence “ZWQM?” has six inversions (it is as
unsorted as can be—exactly the reverse of sorted).

You are responsible for cataloging a sequence of DNA strings (sequences containing only the
four letters A, C, G, and T). However, you want to catalog them, not in alphabetical order, but
rather in order of “sortedness,” from “most sorted” to “east sorted.” All the strings are of the same

length.
Input

The first line contains two integers: a positive integer 7 (0 < 7 < 50), giving the length of the
strings, and a positive integer 7 (0 < 7 < 100), giving the number of strings. These are followed
by m lines, each containing a string of length 7.

Output

Output the list of input strings, arranged from “most sorted” to “least sorted”. Since two strings
can be equally sorted, output them according to the original order.

Sample Input Sample Output
106 CCCGGGGGGA
AACATGAAGG AACATGAAGG
TTTTGGCCAA GATCAGATTT
TTTGGCCAAA ATCGATGCAT
GATCAGATTT TTTTGGCCAA
CCCGGGGGGA TTTGGCCAAA
ATCGATGCAT

Source: ACM East Central North America 1998.
ID for online judge: POJ 1007.

Hint
A linear list @ is used to represent the sequence of DNA strings. For the ith DNA string, [i].s is
the string and «[7].x is the number of inversions.

Bubble sort is used to calculate the numbers of inversions. Then 4 is sorted in ascending order
for numbers of inversions. Finally, output 4.

7.3.12 Exact Sum

Peter received money from his parents this week and wants to spend it all buying books. But he
does not read a book fast because he likes to enjoy every single word while he is reading. In this
way, it takes him a week to finish a book.

As Peter receives money every 2 weeks, he decided to buy two books; then he can read them
until he receives more money. As he wishes to spend all the money, he should choose two books
whose prices summed up are equal to the money that he has. It is a little bit difficult to find these
books, so Peter asks for your help to find them.



216 m Data Structure Practice: For Collegiate Programming Contests and Education

Input

Each test case starts with 2 < N'< 10,000, the number of available books. The next line will have
N integers, representing the price of each book; a book costs less than 1,000,001. Then there is
another line with an integer M, representing how much money Peter has. There is a blank line after
each test case. The input is terminated by the end of the file (EOF).

Output

For each test case you must print the message “Peter should buy books whose prices are 7 and 7,
where 7 and j are the prices of the books whose sum is equal to M and 7 <. You can consider that
it is always possible to find a solution; if there are multiple solutions, print the solution that mini-
mizes the difference between the prices 7 and j. After each test case, you must print a blank line.

Sample Input Sample Output

2 Peter should buy books whose prices are 40 and 40.
40 40

80 Peter should buy books whose prices are 4 and 6.

5
102684
10

Source: ACM-ICPC: UFRN Qualification Contest 2006.
ID for online judge: UVA 11057.

Hint by the Problemsetter (http://www.algorithmist.com/index.php/Main_Page)

Peter wants to spend his allowance on books. It takes him a week to read a book because he
likes to savor every word. Peter receives his allowance every two weeks, so he’d like to buy two
books that he can read until he gets his allowance again.

Given the value of his allowance and the prices of a list of books that he wants, find two books
whose prices summed up are equal to his allowance exactly. Where there are multiple answers,
output the pair that minimizes the difference in price between the two books.

There can be up to 10,000 books in the worst case, so we can’t afford to check every pair of
books. So, we need to be a bit more clever. If our target is 7and you choose to buy a book of price
P, the price of the other book must be 7'— P. If we sort the books, then we can find the other book
in logarithmic time using binary search. Keep track of the books that add up to the target with
the least difference.

Note: The problem statement specifically states that there will always be a solution. In other
words, there will always be at least two books that add up to the target value.

7.3.13 Shellsort

He made each turtle stand on another one’s back
And he piled them all up in a nine-turtle stack.



Sort of Linear Lists m 217

And then Yertle climbed up. He sat down on the pile.

What a wonderful view! He could see ‘'most a mile!*

King Yertle wishes to rearrange his turtle throne to place his highest-ranking nobles and clos-
est advisors nearer to the top. A single operation is available to change the order of the turtles in
the stack: a turtle can crawl out of its position in the stack and climb up over the other turtles to
sit on the top.

Given an original ordering of a turtle stack and a required ordering for the same turtle stack,
your job is to determine a minimal sequence of operations that rearranges the original stack into
the required stack.

Input

The first line of the input consists of a single integer K giving the number of test cases. Each test case
consists of an integer 7 giving the number of turtles in the stack. The next 7 lines specify the original
ordering of the turtle stack. Each of the lines contains the name of a turtle, starting with the turtle on
the top of the stack and working down to the turtle at the bottom of the stack. Turtles have unique
names, each of which is a string of no more than 80 characters drawn from a character set consisting
of the alphanumeric characters, the space character, and the period. The next 7 lines in the input give
the desired ordering of the stack, once again by naming turtles from top to bottom. Each test case
consists of exactly 27 + 1 lines in total. The number of turtles () will be less than or equal to 200.

Output

For each test case, the output consists of a sequence of turtle names, one per line, indicating the
order in which turtles are to leave their positions in the stack and crawl to the top. This sequence
of operations should transform the original stack into the required stack and should be as short
as possible. If more than one solution of shortest length is possible, any of the solutions may be
reported. Print a blank line after each test case.

Sample Input Sample Output
2 Duke of Earl

3

Yertle Sir Lancelot
Duke of Earl Richard M. Nixon
Sir Lancelot Yertle

Duke of Earl

Yertle

Sir Lancelot

9

(Continued)

* Dr. Seuss. Yertle the Turtle and Other Stories. Random House, 1958.



218 m  Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

Yertle

Duke of Earl

Sir Lancelot
Elizabeth Windsor
Michael Eisner
Richard M. Nixon
Mr. Rogers

Ford Perfect

Mack

Yertle

Richard M. Nixon
Sir Lancelot

Duke of Earl
Elizabeth Windsor
Michael Eisner
Mr. Rogers

Ford Perfect

Mack

ID for online judge: UVA 10152.

Hint
Suppose the original ordering of the turtle stack is 4, and the desired ordering of the stack is 4,
where 6[7] and 4[i] are the 7th turtle top down in their stacks.

Suppose 7 is the first position that &[i] # 4[i] bottom up. It can be obtained through the follow-
ing statements: (i = », while (6[i] == a[i] && i >= 1) i—;).

Then turtle 6[4] that crawls out of its position in the stack and climbs up over the other turtles
to sit on the top is found.

for (g=i; j>=1; j--)

for (k=i; k>=j; k--)

it (ali]==b[kD{

Output b[k];

temp= b[k];

for (int t=k-1; t>=1; t--) b[t+1]=b[t];
b[1]=temp;

break;

}



Sort of Linear Lists ®m 219

7.3.14 Tell Me the Frequencies!

Given a line of text, you will have to find the frequencies of the ASCII characters present in it. The
given lines will contain none of the first 32 or last 128 ASCII characters. Of course, lines may end
with/n and/r, but always keep those out of consideration.

Input

Several lines of text are given as input. Each line of text is considered a single input. The maximum
length of each line is 1000.

Output

Print the ASCII value of the ASCII characters that are present and their frequency according to
the given format below. A blank line should separate each set of output. Print the ASCII characters
in the ascending order of their frequencies. If two characters are present at the same time, print
the information of the ASCII character with the higher ASCII value first. Input is terminated by
the end of the file.

Sample Input Sample Output

AAABBC 671
122333 66 2

653

491
502
513

Source: Bangladesh Programming Contest 2001.

ID for online judge: UVA 10062.

Hint
First, the frequencies of all ASCII characters are calculated. Then results are obtained through a
loop statement.

7.3.15 Anagrams (II)

One of the preferred kinds of entertainment of people living in the final stages of the twentieth
century was filling in crosswords. Almost every newspaper and magazine has a column dedicated to
entertainment, but only amateurs have enough after solving one crossword. Real professionals require
more than one crossword a week. And it is so dull—just crosswords and crosswords—while so many
other riddles are waiting out there. For those people there are special, dedicated magazines. There are
also quite a few competitions to take part in, even reaching the level of world championships.

You were taken on by such a professional for whom competing to solve riddles is just a job. He
had a brilliant idea to use a computer at work not just to play games. Somehow, anagrams found



220 m Data Structure Practice: For Collegiate Programming Contests and Education

themselves first in line. You are to write a program that searches for anagrams of given words,
using a given vocabulary, tediously filled with new words by your employer.

Input
The structure of input data is given below:

(number of words in vocabulary)
(word 1)

(word N)

(test word 1)

(test word k)
END

(number of words in vocabulary) is an integer number V< 1000. (word 1) up to (word N are
words from the vocabulary. (test word 1) up to (test word k) are the words to find anagrams for.
All words are lowercase (word END means end of data—it is NOT a test word). You can assume
all words are not longer than 20 characters.

Output

For each (test word) list the found anagrams in the following way:

Anagrams for: (test word)

(No)) (anagram)

(No) should be printed on 3 chars.

In case of failing to find any anagrams, your output should look like this:
Anagrams for (test word)

No anagrams for (test word)

Sample Input

Sample Output

1 Anagrams for: tola
1) atol

8 2) lato

atol 3) tola

lato Anagrams for: kola

microphotographics

No anagrams for: kola

rata Anagrams for: aatr
rola 1) rata
tara 2) tara




Sort of Linear Lists m 221

Sample Input Sample Output

tola Anagrams for: photomicrographics
pies 1) microphotographics

tola

kola

aatr
photomicrographics

END

ID for online judge: UVA 630.

Hint
First, a dictionary of words is given. Then a set of words is given, and for each word, you are
required to find all its permutations in the dictionary.

The solution is like that of the find the clones problem in Section 7.3.5. That is, for each word
in the directory, its letters are sorted in alphabetical order and stored in another list z Then, for
each word in the set of words, its letters are also sorted in alphabetical order; search whether it
exists in .

7.3.16 Flooded!

To enable home buyers to estimate the cost of flood insurance, a real-estate firm provides clients
with the elevation of each 10 X 10—meter square of land in regions where homes may be pur-
chased. Water from rain, melting snow, and burst water mains will collect first in those squares
with the lowest elevations, since water from squares of higher elevation will run downhill. For
simplicity, we also assume that storm sewers enable water from high-elevation squares in valleys
(completely enclosed by still higher-elevation squares) to drain to lower-elevation squares, and that
water will not be absorbed by the land.

From weather data archives, we know the typical volume of water that collects in a region.
As prospective home buyers, we wish to know the elevation of the water after it has collected in
low-lying squares and also the percentage of the region’s area that is completely submerged (i.c.,
the percentage of 10-meter squares whose elevation is strictly less than the water level). You are to
write the program that provides these results.

Input

The input consists of a sequence of region descriptions. Each begins with a pair of integers, m
and 7, each less than 30, giving the dimensions of the rectangular region in 10-meter units.
Immediately following are 7 lines of 7 integers giving the elevations of the squares in row-major
order. Elevations are given in meters, with positive and negative numbers representing elevations
above and below sea level, respectively. The final value in each region description is an integer that
indicates the number of cubic meters of water that will collect in the region. A pair of zeros follows
the description of the last region.



222 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Output

For each region, display the region number (1, 2, ...), the water level (in meters above or below sea
level), and the percentage of the region’s area under water, each on a separate line. The water level
and percentage of the region’s area under water are to be displayed accurately to two fractional
digits. Follow the output for each region with a blank line.

Sample Input Sample Output

33 Region 1

2537 45 Water level is 46.67 meters.

511234 66.67 percent of the region
is under water.

94 83 27

10000

00

Source: ACM World Finals 1999.
ID for online judge: POJ1877.

Hint
Based on the problem description, the area of each square of land is 1010 = 100 square meters.
n*m elevations of all squares are stored in an array 4[ ] and sorted in ascending order.

The difference of elevations of 4[7 + 1] and a[4] is a[i + 1] — a[7]. The area for the first i squares
is 7¥100; that is, water is increased 100*(a[7 + 1] — a[7])*i from square 7 to square 7 + 1. Suppose the
elevation of water is between a[£] and «[£ + 1], that is,

k+1

£
2100*(¢[i+1] )*z<w<2100 ai +1] - ali])* 5.
The number of cubic meters of water over «[#] is
e = w— 2100 i+ 1= ali])* i

Therefore, the water level is (k] + (w,/100*k), and the percentage of the region’s area under
water is 100*(k/n*m)% (1 < k < n*m).

7.3.17 Football Sort

Write a program that, given the fixtures of a football championship, outputs the corresponding
classification following the format specified below. Win, draw, and loss earn three, one, and zero
points, respectively.



Sort of Linear Lists m 223

The criteria of classification are the number of points scored, followed by goal average and then
scored goals. When more than one team have exactly the same number of points, goal average, and
scored goals, these are considered as having the same position in the classification.

Input

The input will consist of a series of tests. Each test starts with a line containing two positive inte-
gers, 28 > 7> 1 and G > 0. T is the number of teams, and G is the number of games played. The
following T lines each contain the name of a squad. Squad names have up to 15 characters and
may only contain letters and dash characters (). Finally, the following G lines contain the score
of each game. The scores are output with the following format: name of the home team, number
of goals scored by the home team, a dash, number of goals scored by the away team, and name of
the away team.
The input ends with a test case where 7= G = 0 and should not be processed.

Output

The program shall output the classification tables corresponding to each input test separated by
blank lines. In each table, the teams appear in order of classification, or alphabetically when they
have the same position. The statistics of each team are displayed on a single line: team position,
team name, number of points, number of games played, number of scored goals, number of suf-
fered goals, goal average, and percentage of earned points, when available. Note that if several
teams are in a draw, only the position of the first is printed. Fields shall be formatted and aligned
as shown in the sample output.

Sample Input Sample Output

610 1. tA 4 4 1 1 0 33.33
tA tB 4 4 0 0 0 33.33
tB 3. tC 4 4 0 0 0 33.33
tC td 4 4 0 0 0 33.33
td tE 4 4 0 0 0 33.33
tE 6. tF 0 0 0 0 0 N/A
tF

tA1-1tB 1. Botafogo 6 2 6 4 2 100.00
tC0-0td 2. Flamengo 0 2 4 6 -2 0.00
tE0-0tA

tC0-0tB 1. tA 4 4 0 0 0 3333
td0-0tE tB 4 4 0 0 0 33.33
tA0-0tC tC 4 4 0 0 0 33.33
tBO-0tE tD 4 4 0 0 0 33.33

(Continued)



224 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input

Sample Output

td0-0tA
tE0-0tC
tBO-0td
22
Botafogo
Flamengo

Botafogo 3 - 2
Flamengo

Flamengo 2 - 3
Botafogo

510

tA

tB

tC

tD

tE
tA0-0tB
tC0-0tDh
tE0-0tA
tC0-0tB
tDO0-0tE
tA0-0tC
tBO-0tE
tD0-0tA
tE0-0tC
tB0-0tD
32

Quinze-
Novembro

Flamengo

tE

1. Quinze-Novembro

2. Santo-Andre

3. Flamengo

-8

33.33

100.00
100.00

0.00




Sort of Linear Lists m 225

Sample Input Sample Output

Santo-Andre

Quinze-
Novembro 6 - 0
Flamengo

Flamengo 0 - 2
Santo-Andre

00

Source: Federal University of Rio Grande do Norte Classifying Contest 2004, Round 2.
ID for online judge: UVA 10698.

Hint
The problem is a simulation problem. Following the instruction, the points for each team are cal-
culated, and then teams are sorted according to the criteria of classification.

A linear list p is used to represent teams; for the ith team, the team name is p[i].name, the
number of points is p[7].pts, the number of games played is p[i].g7s, the number of scored goals is
plil.goal, and the number of suffered goals is p[i].suffer, (0 < i< n—1).

1. Initialization. First, # teams’ information is input. For team 7, pld].pts, plil.gms, plil.goal,
and pl#].suffer are initialized to 0. Sort p in team names by alphabetical order.

Second, m games’ information is input. For the current game, suppose the sequence
number of the home team is x, the number of goals scored by the home team is #; the
sequence number of the away team is y, and the number of goals scored by the away team
is v. Then ++p(x].gms; ++plyl.gms; plxl.goal += u; plxl.suffer += v; plyl.goal += v; plyl.suf
Jer += s if u > v, plx].pts += 35 else, if u < v, plyl.pts += 3; else, if u == v, ++ plx].pts, ++
pUlpts.

2. Teams are sorted. The number of points is the first key, the goal average is the second key,
and the number of scored goals is the third key. Teams are sorted based on these keys.
3. Output the classification table.

7.3.18 Trees

The road off the east gate of Peking University used to be decorated with a lot of trees. However,
because of the construction of a subway, many of them have been cut down or moved away. Now
please help to count how many trees are left.

Let’s only consider one side of the road. Assume that trees were planted every 1 meter from
the beginning of the road. Now some sections of the road are assigned for the subway station,
crossover, or other buildings, so trees in those sections will be moved away or cut down. Your job
is to give the number of trees left.

For example, the road is 300 meter long and trees are planted every 1 meter from the begin-
ning of the road (0 meter). That is, there used to be 301 trees on the road. Now the section from
100 to 200 meters is assigned for the subway station, so 101 trees need to be moved away and only
200 trees are left.



226 ®m Data Structure Practice: For Collegiate Programming Contests and Education

Input

There are several test cases in the input. Each case starts with an integer L (1 < L < 200,000,000),
representing the length of the road, and M (1 £ M < 5000), representing the number of sections
that are assigned for other use.

The following M lines each describe a section. A line is in the following format:

Start End

Here Start and End (0 < Start < End < L) are both nonnegative integers representing the start
point and the end point of the section. It is confirmed that these sections do not overlap with each
other.

A case with L = 0 and M = 0 ends the input.

Output

Output the number of trees left in one line for each test case.

Sample Input Sample Output

3001 200
100 200 300
500 2

100 200
201 300

00

Source: ACM Beijing 2005, Preliminary.
ID for online judge: POJ 2665.

Hint
The problem is a simulation problem. Based on the problem description, for each test case, the
number of moved trees is calculated.



SUMMARY OF SECTION I

A linear list is a data structure containing a finite ordered set of data elements. First, experiments
for applications of linear lists were shown: applications of arrays, strings, stacks, queues, dictionar-
ies, hash tables, and so on. Then practices for sort algorithms of linear lists were given.

In Section II, experiments for applications of STL were also introduced. Through experiments,
students can become familiar with STL.

Also in this section, object-oriented programming was introduced.

227






EXPERIMENTS
FOR TREES

Section III focuses on trees. A tree is a data structure representing hierarchical data. In this
section, experiments are organized in two fields: trees and binary trees. In Chapter 8, experi-
ments for hierarchical problems, tree storage structures, and union-find sets are shown. In
Chapters 9 and 10, experiments for binary trees, such as traversal of binary trees, binary search
trees, Huffman trees, and heaps, are shown.






Chapter 8

Programming by
Tree Structure

A tree can be defined recursively. A tree is a collection of 7 vertices. The collection can be empty
(n == 0); otherwise, a tree constitutes a distinguished vertex 7, called the root, and zero or more
nonempty subtrees that the root of each subtree is a child of 7, and r is the parent of each subtree
root.

In Chapter 8, there are two parts of the experiments:

1. Solving hierarchical problems by tree traversal
2. Union—find sets supported by tree structure

8.1 Solving Hierarchical Problems by Tree Traversal

A hierarchical structure can be modeled mathematically as a rooted tree: the root of the tree
forms the top level, and the children of the root are at the same level, under their common par-
ent. Vertices in a rooted tree constitute a partially ordered set, and the relations between vertices
constitute relations of partial orders.

Hierarchical problems can be represented as tree structures and can be solved by tree
traversal.

Tree traversal (also known as tree search) refers to the process of visiting (examining or updating)
each vertex in a tree exactly once, in a systematic way.

There are two ways to traverse a tree:

Preorder traversal
Visit the root
Preorder traversal for subtrees from left to right
Postorder traversal
Postorder traversal for subtrees from left to right
Visit the root

231



232 ®m  Data Structure Practice: For Collegiate Programming Contests and Education

The algorithm for preorder traversal is as follows:

void preorder(int v);
{ visit vertex v;
for (i € the set of adjacent vertices for v) // Pre-order traverse
all adjacent unvisited vertices for v
if (vertex i isn’t visited)
preorder(i);

The algorithm for postorder traversal is as follows:

void postorder(int v);
{ for (i € the set of adjacent vertices for v) // Post-order traverse
all adjacent unvisited vertices for v
if (vertex i isn’t visited)
postorder (i);
visit vertex v;

}:

Different storage structures for trees can affect tree traversal’s efficiency. There are many stor-
age representations for trees. The most common representation methods are as follows:

1. Representation of generalized list. A generalized list can be used to represent a tree. In a
tree there are three kinds of vertices: root, leaf, and inner node. In a generalized list, there are
also three kinds of corresponding vertices: ATOM, HEAD, and LST. There are two kinds
of representations for a tree: bracket and linked list.

2. Representation of parents. Representation of parents is suitable for postorder traversal for a
tree. Representation of parents for a tree uses an array to store vertices in the tree. There are
two fields for a vertex: data field, to store data, and pointer field, to store the pointer pointing
to its parent.

3. Representation of multiple linked list. Representation of multiple linked list is suitable
for preorder traversal for a tree. An element in a multiple linked list is to store its data and its
pointers pointing to its children. It is shown as

data | (child,) | (childy) | ... | (child,)

The shortage for representation of multiple linked lists is to waste storage space.

A Standard Template Library (STL) container can be used to define a multiple linked list for a
tree. For example, a multiple linked list adj[#] can be defined as a vector, where adjx].push_back(y)
is to push y into the list for the children of x, and y = adjj[x].pop_back() is to get a vertex from the
list for the children of x.

8.1.1 Nearest Common Ancestor

A rooted tree is a well-known data structure in computer science and engineering. An example is
shown in Figure 8.1.



Programming by Tree Structure ®m 233

Figure 8.1 A rooted tree.

In the figure, each node is labeled with an integer from {1, 2, ..., 16}. Node 8 is the root of
the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For
example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. In fact, nodes
8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes
8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different
nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4
are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of
nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common
ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to
nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest com-
mon ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is
node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (7)) is given in the first line of the
inpuc file. Each test case starts with a line containing an integer /V, the number of nodes in a tree,
2 < N < 10,000. The nodes are labeled with integers 1, 2, ..., N. Each of the next NV — 1 lines
contains a pair of integers that represent an edge—the first integer is the parent node of the sec-
ond integer. Note that a tree with /V nodes has exactly V-1 edges. The last line of each test case
contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest
common ancestor.

Sample Input | Sample Output

2 4

16 3

(Continued)



234 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input | Sample Output

114
85
1016
59
46
84
410

615
1011
67
102
163
81
1612
167
5
23
34
31
15
35

Source: ACM Taejon 2002.
ID for online judge: POJ 1330.

Analysis
From each node in a tree, there is only one path to the root. Therefore, any pair of nodes has com-
mon ancestors in a tree. A tree is represented with representation of parents and representation of
multiple linked lists. Each node’s level number can be obtained by preorder traversal (the root’s
level number is 0, its children’s level number is 1, and so on). The multiple linked list is represented
by class vecror. And an integer array is used to represent parents and hierarchical data.

The algorithm finding the nearest common ancestor for nodes x and y is as follows:

while (x#y)
{ if (the level number of x is great than the level number of y)



Programming by Tree Structure ® 235

x=the parent of Xx;

else
y= the parent of y;
}

When the loop ends, x is the nearest common ancestor.

Program

#include <iostream>
#include <vector>

using namespace std;
const int N = 10000;

vector<int> a[N]; // multiple linked list, the list of children
for node i is a vector
int f[N], r[N]; // representations of parents and hierarchy,

the parent and hierarchy for node i is f[i] and r[i]
void DFS (int u, int dep) // Pre-order Traversal from node u

rfu]=dep; // node u is at hierarchy dep
for (vector<int>::iterator it = afu]-begin(); it I= aful.end(); ++it)
DFS(C*it, dep + 1);// Recursion for every child of u

b
int mainQ)
{ ]
int casenum, num, n, i, X, VY;
scanf(""%d", &casenum); // number of test cases
for (num = 0; num < casenum; num++)
{

scanf('%d", &n); // number of nodes
for (i = 0; i < n; i++) a[i].clear(); //initialization
memset(f, 255, sizeof(f));
for (i =0; 1 < n - 1; i++)
{
scanf("%d %d", &x, &y); // edge (X, Yy)
a[x - 1].push_back(y - 1); // push node (y-1) into the list of
(x-1)’s children

fly - 1] = x - 1; //node(y-1)’s parent is (x-1)

3

for (i = 0; f[i] >= 0; i++); // search the root i

DFS(i, 0); // calculate every nodes’ hierarchy
from the root

scanf("%d %d", &x, &y); // a pair of nodes

X==3 y-=;

while (x = y) // to find the Nearest Common Ancestors

if (r[xXI>ryD) x = f[x];
else y = flyl;

}
printf(""%dn", x + 1);// Output
}

return O;



236 ®m Data Structure Practice: For Collegiate Programming Contests and Education

8.1.2 Hire and Fire

In this problem, you are asked to keep track of the hierarchical structure of an organization’s
changing stafl. As the first event in the life of an organization, the chief executive officer (CEO)
is named. Subsequently, any number of hires and fires can occur. Any member of the organiza-
tion (including the CEO) can hire any number of direct subordinates, and any member of the
organization (including the CEO) can be fired. The organization’s hierarchical structure can be
represented by a tree. Consider the example shown by Figure 8.2.

VonNeumann is the CEO of this organization. VonNeumann has two direct subordinates:
Tanenbaum and Dijkstra. Members of the organization who are direct subordinates of the same
member are ranked by their respective seniority. In the diagram, the seniority of such members
decreases from left to right. For example, Tanenbaum has higher seniority than Dijkstra.

When a member hires a new direct subordinate, the newly hired subordinate has lower senior-
ity than any other direct subordinates of the same member. For example, if VonNeumann (in
Figure 8.2) hires Shannon, then VonNeumann’s direct subordinates are Tanenbaum, Dijkstra,
and Shannon in order of decreasing seniority.

When a member of the organization gets fired, there are two possible scenarios. If the victim
(the person who gets fired) had no subordinates, then he or she will simply be dropped from the
organization’s hierarchy. If the victim had any subordinates, then his or her highest-ranking (by
seniority) direct subordinate will be promoted to fill the resulting vacancy. The promoted person
will also inherit the victim’s seniority. Now, if the promoted person also had some subordinactes,
then his or her highest-ranking direct subordinate will similatly be promoted, and the promotions
will cascade down the hierarchy until a person having no subordinates has been promoted. In
Figure 8.2, if Tanenbaum gets fired, then Stallings will be promoted to Tanenbaum’s position and
seniority, and Knuth will be promoted to Stallings’s previous position and seniority.

Figure 8.3 shows the hierarchy resulting from Figure 8.2 after (1) VonNeumann hires Shannon
and (2) Tanenbaum gets fired.

Input

The first line of the input contains only the name of the person who is initially the CEO. All names
in the input file consist of 2-20 characters, which may be upper- or lowercase letters, apostrophes,
and hyphens (but no blank spaces). Each name contains at least one uppercase and at least one
lowercase letter.

VonNeumann

Tanenbaum

| Stallings | | Silberschatz |

| Knuth | | Hamming | | Huffman |

Figure 8.2 The hierarchical structure of an organization.



Programming by Tree Structure ®m 237

VonNeumann

| Stallings | | Dijkstra | | Shannon |

| Knuth | | Silberschatz |

| Hamming| | Huffman |

Figure 8.3 The hierarchy resulting from Figure 8.2.

The first line will be followed by one or more additional lines. The format of each of these lines
will be determined by one of the following three rules of syntax:

B [Existing member] hires [new member]
B Fire [existing member]
B Print

Here [existing member] is the name of any individual who is already a member of the organi-
zation, and [new member] is the name of an individual who is not a member of the organization
yet. The three types of lines (hires, fire, and print) can appear in any order, any number of times.

You may assume that at any time there is at least one member (who is the CEO) and no more
than 1000 members in the organization.

Output

For each print command, print the current hierarchy of the organization, assuming all hires and
fires since the beginning of the input have been processed as explained above. Tree diagrams (such
as those in Figures 8.2 and 8.3) are translated into textual format according to the following rules:

B Each line in the textual representation of the tree will contain exactly one name.

B The first line will contain the CEO’s name, starting in column 1.

B The entire tree, or any subtree, having the form shown in Figure 8.4 will be represented in
textual form as shown in Figure 8.5.

The output resulting from each print command in the input will be terminated by one line
consisting of exactly 60 hyphens. There will not be any blank lines in the output.

Sample Input Sample Output

VonNeumann VonNeumann

VonNeumann hires Tanenbaum | +Tanenbaum

(Continued)



238 m Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input

Sample Output

VonNeumann hires Dijkstra
Tanenbaum hires Stallings

Tanenbaum hires Silberschatz

++Stallings
+++Knuth

+++Hamming

Stallings hires Knuth +++Huffman

Stallings hires Hamming ++Silberschatz

Stallings hires Huffman +Dijkstra
print

VonNeumann hires Shannon VonNeumann
fire Tanenbaum +Stallings
print ++Knuth

fire Silberschatz +++Hamming

fire VonNeumann +++Huffman
print ++Silberschatz
+Dijkstra

+Shannon

Stallings
+Knuth
++Hamming
+++Huffman
+Dijkstra

+Shannon

Source: ACM Rocky Mountain 2004.
IDs for online judges: POJ 2003, ZOJ 2348, UVA 3048.

Analysis
The hierarchical structure of an organization is a rooted tree, where CEO is the root; and can be
represented as a multiple linked list. When members are hired and fired, the hierarchical structure
of an organization is changed. Each node’s parents and its level number should be recorded. Each
subtree is preceded by one more 4+ than its root.

The hierarchical structure of an organization and commands are analyzed as follows:

1. Because a member’s seniority should be considered, the tree is an ordered tree. The seniority
of children decreases from left to right. A multiple linked list is used as the storage mode. All
children for a node are stored in a queue. And the queue is defined as class /st in STL.



Programming by Tree Structure ®m 239

Root

Subtree 1 Subtree 2 Subtree N
Figure 8.4 Tree diagram.
Root
+ Subtree 1
Each subtree is preceded by one more
+ Subtree 2 + than its root. The ultimate root of the

[y ]

entire tree is not preceded by a +.

Figure 8.5 Textual form.

2. x hires y: y is added into the queue for x’s children, and y’s parent pointer points to x.

3. fire y: y’s highest-ranking (by seniority) direct subordinate will be promoted to fill the result-
ing vacancy. The promoted person will also inherit y’s seniority. And if the promoted person
also had some subordinates, then his or her highest-ranking direct subordinate will similarly
be promoted, and the promotions will cascade down the hierarchy until a person having no
subordinates has been promoted.

4. print: A multiple linked list is set up to represent the tree. CEO is the root, and it is at level 0.
Preorder traversal is used for the command. If the current node 7 is at level p, print p +’ and
the member name, and then children of node 7 are visited recursively.

STL containers, such as string, map, and list, are used to set up relationships between mem-
bers’ names and nodes and to implement operations.

Program

#include <string>
#include <iostream>
#include <list>
#include <map>

using
using
using
using
using
using

std::list;
std::string;
std::cin;
std: :cout;
std::endl;
std::map;

struct Tman

Tman

{

string name;
Tman *f;

// Struct for multiple linked list

// Member name name
// Pointer for parent *f



240 m Data Structure Practice: For Collegiate Programming Contests and Education

list<Tman *> s; // Pointers list for children s
Tman( ) {f = NULL;}
}:
map<string, Tman*> hash; //hash[x] stores pointers for subtree
whose root is x
Tman *root; // pointer for root

void print(long dep, Tman *now) //print a tree from node pointer now
(level dep)

{
if (now == NULL) return; // if pointer is NULL, backtracking
for (long i=1; i<=dep; ++i) // output dep “+’
cout<<™"+";
cout<<now->name<<endl ; // output name, and then output children

at dep+l level
for(list<Tman *>::iterator j=now->s.begin(); j!=now->s.end(Q); ++j)
print(dep+1, *j);
}
void hires(string nl, string n2) // nl hires new member n2

{

Tman *f = hash[nl]; // pointer for the subtree whose root
is nl

Tman *s = new Tman( ); // New node s: name is n2 and parent
is T

s->name = n2;

s—>F = F;

f->s.push_back(s); //Add new node s into a queue for nl’s
children

hash[n2] = s;

void Fire(string nl) //fire a member whose name is nl
{

Tman *s = hash[nl]; // pointer for the subtree whose root is nl is *s,
and pointer for parent of s is *f

Tman *f = s->F;

hash.erase(nl);

while (s->s.size( ) !'= 0) // Promotion from s

{

s->name = s->s.front( )->name; // the name for the first child of s
is adjusted as the name for s

hash[s->name] = s; // s is adjusted as a subtree whose
root is s->name

s = s->s.front( );

¥

s->F->s._remove(s);

delete s; //delete s
void solve( ) //Calculate the change of a tree’s struct
{

string sl, s2;

long i;

cin>>sl; //1Input name of CEO

root = new Tman( ); //1Initialize a subtree whose root
is CEO

hash[sl1l] = root;



Programming by Tree Structure ®m 241

root->name = si;

while (cin>>sl) // Input the first string for the command
{
if (sl == "print") // Print command
print(0, root); // Output a tree’s textual format

for (i=1; i<=60; ++i) cout<<"-%;
cout<<endl;

}
else if (s1 == "fire") // Fire command
{
cin>>s2; // Fired person’s name
fire(s2);
}
else // Hire command
{
cin>>s2; // input “hires”
cin>>s2; // new member’s name s2 as the new
child of sl
hires(sl, s2);
}
}
}
int main( )
{
solve( );
return O;
}

8.2 Union-Find Sets Supported by Tree Structure

In some applications, # elements are divided into several groups. Each group is a set. Because
such problems are mainly related to union and search for sets, they are called union—find
sets.

Union—find sets are disjoint sets § = {S,, S,, ..., S}, where set S, has an element rep[S],
called a representative. Any two different sets in S are disjoint. There are three operations for
union—find sets:

1. Make_Set(x): For union—find sets S = {S,, S,, ..., S}, a set containing only one element {x}
is added into union—find sets S, and rep[{x}] = x, where x is not in any S, 1 < i < 7. Initially,
for each element x, Make_Set(x) is called.

2. join(x, y): Merge two different sets containing x and y, respectively. That is, S, and Sy are
deleted from §, and §, U §, is added into .

3. set_find(x): Return representative rep[S,] for set S, containing x.
There are two storage structures for union—find sets:

1. Linear list: A set is represented as a doubly linked list, where rep[S] is the front of the list.
Each element has a pointer pointing to rep[S] (Figure 8.6).



242 m  Data Structure Practice: For Collegiate Programming Contests and Education

rep

o] = el b n] ]

rep[S;]

S |

Figure 8.6 A set is represented as a doubly linked list S; = {X;, X,, ..., X;}.

rep[S] | X,

X, X

Xy X5

Figure 8.7 A setis represented as a tree S; = {X,, X,, ..., X;}.

Searching element ¥, in the set Searching y, is with path compression

(2) (b)

Figure 8.8 Search with path compression.

If union—find sets are represented as linear lists, the program becomes complex and its
time efficiency of merging two sets is low. If two different lists containing x and y, respec-
tively, are merged into a new linear list, we need to let 7ep pointers for all elements in S, point
to rep[S,], and the time complexity is O(n).

2. Tree structure: A set is represented as a tree, where the root is the representative for the set

(Figure 8.7).
Each node p has a pointer sez[p] pointing to its parent. If sez[p] < 0, p is the root node.
Initially, a set is constructed for each element, that is, sez[x] = -1 (1 < x< 7).

In search operation, we make use of the method that the search is with “path compression,”
to reduce the depth of the tree in the search process. For example, in Figure 8.8a, we need
to search element y, in the set. The path is y,-y5-y,-x; from y,. So set pointers for y,, y;, and
y; point to x; (Figure 8.8b).

The algorithm that the search is with “path compression” is as follows:

First, from node x, through set pointers the root of the tree f'(sez[f] < 0) is found. Then
set pointers for all nodes on the path from x to fpoint to fto compress the path. The search
process is as follows:



Programming by Tree Structure ®m 243

int set_find(int p) // Search the representative of the set
containing p, and compress the path

it (set[p]<0)
return p;
return set[p]=set_find(set[p]):;

}

Merging two sets is to connect roots for the two corresponding trees. That is, merging the set
containing x (the tree root is fx) and the set containing y (the tree root is /) is to let the set pointer

for fx point to fy (Figure 8.9).

The merging algorichm is as follows:

Calculate root fx in the tree for the union—find set containing x, and calculate root fy in the
tree for the union—find set containing y. If fx==fy, then x and y are in the same union—find set;
else, the set containing x is merged into the set containing y, that is, the set pointer for fx points

to fy:

void join(int p, int q) // Merging the set containing p into the set
containing q

{
p=set_find(p);
g=set_Tfind(q);
it (p!'=q)

) set[p]=q;

Search with “path compression” can reduce the length of a tree and improve the time complex-
ity. In algorithm complexity, a union—find set represented as a tree is better than one represented
as a linear list.

8.2.1 Find Them, Catch Them

The police department in Tadu City decides to end the chaos and launch actions to root up the
two gangs in the city, Gang Dragon and Gang Snake. However, the police first need to identify
which gang a criminal belongs to. The present question is, given two criminals, do they belong to
the same clan? You must give your judgment based on incomplete information (since the gangsters
are always acting secretly).

.

The séon}ﬁng y
Jx S fx
The set containing x The set containing y The set containing x
Two sets Union of two sets

(a) (b)

Figure 8.9 Merging two sets.



244 m  Data Structure Practice: For Collegiate Programming Contests and Education

Assume N (N < 10°) criminals are currently in Tadu City, numbered from 1 to N. And of
course, at least one of them belongs to Gang Dragon, and the same for Gang Snake. You will be
given M (M < 10°) messages in sequence, which are of the following two kinds:

1. D [4] [4], where [4] and [&] are the numbers of two criminals, and they belong to different
gangs.

2. A [4] [6], where [4] and [&] are the numbers of two criminals. This requires you to decide
whether # and 4 belong to the same gang.

Input

The first line of the input contains a single integer 7" (1 < 7'< 20), the number of test cases. Then
T cases follow. Each test case begins with a line with two integers, NV and M, followed by M lines,
each containing one message as described above.

Output

For each message “A [4] [6]” in each case, your program should give the judgment based on the
information obtained before. The answers might be one of “In the same gang,” “In different
gangs,” and “Not sure yet.”

Sample Input | Sample Output

1 Not sure yet.

55 In different gangs.
A12 In the same gang.
D12

A12

D24

A4

Source: POJ Monthly, J